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PREFACE

The material in this book contains sufficient mathematical
background to challenge the graduate student and to allow
the experienced communication systems engineer to analyze,
specify, and select optimum solutions for a variety of appli-
cations. Furthermore, it is hoped that the many performance
plots, tables, and design concepts will prove beneficial to sys-
tem design engineers who are less inclined to delve into the
mathematical rigors. The importance of communication sys-
tems performance simulations cannot be overstated as a
developmental tool prior to the software and hardware
designs. Computer simulations allow the designer to predict
the system performance beyond the assumptions leading to
mathematical models. In nearly every chapter to follow,
the results presented have been verified using computer simu-
lations and found to be in agreement with the theoretical
results.

Although the material presented in this book focuses on
the modulator and demodulator (modem) subsystems, the
transmitter and receiver (transceiver) subsystems and the cor-
responding antenna subsystems must be considered in order
to evaluate the overall communication link performance. Fur-
thermore, the design of these subsystems is influenced by the
communication channels that are broadly characterized as
wireline and wireless or radio frequency (RF) channels.

The modulator, transmitter, and transmitter antenna sub-
systems function together with inputs from an information
source. Similarly, the receiver antenna, receiver, and demod-
ulator subsystems perform the complementary functions pro-
viding optimum data estimates to the information destination
or sink. In these roles, the modulator performs the important
functions of preparing the source information data for subse-
quent transmission. This involves source coding, channel
coding, and optimal mapping of the coded data to the selected
symbol modulation format for transmission. Design

considerations regarding the symbol modulation format
selection involve bandwidth conservation and power effi-
ciency that are largely influenced by the channel.

Communication systems are broadly defined in terms of
point-to-point and network communications. Within these
systems, there are three basic forms of transmissions: simplex
refers to information transmission in one direction only as in
commercial broadcast radio; half-duplex refers to transmis-
sion is one direction at a time as in push-to-talk radios;
full-duplex refers to simultaneous transmissions in both
directions. These forms of transmission require increasing
degrees of complexity and performance capabilities. The data
link performance analysis presented in the book typically
applies to the physical layer corresponding to single carrier
per channel (SCPC) point-to-point communication links.
With the inclusion of the network controls [1] and the asso-
ciated overhead functions, the physical layer performance
can be applied directly to time division multiple access
(TDMA) networks. The performance of frequency division
multiple access (FDMA) and code division multiple access
[2] (CDMA) networks can also be evaluated with the respec-
tive inclusion of adjacent channel interference (ACI) and co-
channel interference (CCI) losses. In general, network centric
protocols are specialized for specific applications and as such
are beyond the scope of the book. However, because of its
relative simplicity and utility in providing virtually error-free
data transmission, the performance of automatic repeat
request (ARQ) protocols requiring half or full-duplex net-
working capabilities is discussed.

A major performance measure of a digital communication
system is the bit-error probability characterized as a function
of the ratio of the received signal energy per source bit to the
noise density. Many of these performance plots are obtained
using Monte Carlo simulations with the goal of providing a



smooth eye-appealing curve approximating the theoretical
performance.1 To this end, the number of Monte Carlo trials
over the entire range of signal-to-noise ratios is selected to
achieve a reasonable confidence level at the lowest bit-error
probability of interest. The resulting performance curve is
very accurate for the lower signal-to-noise ratios; however,
the performance at the highest signal-to-noise ratio may
appear as an outlier not conforming to the expected theoret-
ical result. In these cases, the outlier data is brought into com-
pliance with the smooth performance curve in one of two
ways; the simulation is re-run using a minimum of 10 times
the number of Monte Carl trials or the data point is brought
into compliance manually by adjusting the bit-error probabil-
ity; this approach is comparable to fitting a French curve to
the lower signal-to-noise ratio data points and appropriately
adjusting the outlier. Flaring of the performance curve due to
nonlinearities or intersymbol interference is also taken into
account.

The following is a brief description of the subjects in each
chapter that often includes case studies to illustrate the meth-
odology of the evaluation and the characteristics of the under-
lying performance measure.

Chapter 1 focuses on the description of techniques and
analytical methods used throughout the book including real
and analytic characterization of waveform modulations,
Fourier transforms, an introduction to statistical analysis,
optimum waveform detection and parameter estimation, a
brief look at ARQ protocols, spectral control using windows,
vector and matrix operations, and lists of commonly mathe-
matical relationships. The chapter can be considered as refer-
ence material associated with the remaining chapters;
however, the notion of the complex envelope or analytic rep-
resentation of baseband signals should be thoroughly
understood.

Chapter 2 discusses many fundamental relationships
required for analysis involving digital signal processing.
The notion of Nyquist sampling and the requirement for cap-
turing the information contained in the received signal are
described using baseband and bandpass sampling techniques.
Multirate signal processing and rate conversion is examined
using various rate conversion filters including the cascade
integrate and comb (CIC) filter. The chapter includes a dis-
cussion of polyphase filters and Lagrange interpolation lead-
ing to the Farrow filter. The chapter concludes with the
derivation of a parabolic interpolator for improvement of
time and frequency estimation errors used during waveform
acquisition and information detection and tracking. The
material in the chapter provides essential insights into funda-
mental digital signal processing requirements for the design
of the modem subsystem and, as such, each topic should be
examined in sufficient detail to result in an optimum design.

Chapter 3 introduces the fundamental concepts of digital
communication systems involving source and channel cod-
ing and optimum techniques for information recovery. The
concepts are discussed using discrete memoryless and binary
symmetric channels. Shannon’s channel capacity limit forms
the basis of the analysis and bounds on the bit error are exam-
ined using the computational cutoff rate. The chapter con-
cludes with a discussion of the probability integral and the
error function. The chapter, like Chapter 1, may be consid-
ered reference material; however, Shannon’s error-free per-
formance limit must be understood along with the many
applications and forms of the error function.

Chapters 4 through 7 provide a comprehensive analysis of
various waveform modulations and the corresponding power
spectral density (PSD) and bit-error performance. Constant
envelope modulations ranging from multiphase shift keying
(MPSK) to Gaussian minimum shift keying (GMSK) are
examined. Spectral efficiency achieved through phase shap-
ing while maintaining a constant envelope is a major topic.
The simplicity and robustness of differentially coherent
waveform modulation and demodulation is also examined.
The spectral root-raised-cosine (SRRC) waveform, although
not a constant envelope modulation, results in superior spec-
tral efficiency. The spectrums of these modulated waveforms
are compared to industry-standard transmit spectral masks.
Chapter 5 examines the bit-error performance and PSD of fre-
quency shift keying with coherent and noncoherent detec-
tion. Chapter 6 examines the performance of amplitude
shift keying (ASK) including binary on–off keying (OOK),
pulse amplitude modulation (PAM), and quadrature ampli-
tude modulation (QAM). Chapter 6 concludes with a discus-
sion of partial response modulation focusing on the modified
and multilevel duobinary modulations. Chapter 7 discusses
M-ary coded waveforms focusing on the coherent and nonco-
herent detection of M-ary orthogonal and biorthogonal
waveforms.

Chapter 8 focuses on coding for improved communica-
tions, beginning with the description of commonly used pulse
code modulation (PCM) waveforms. Coding techniques that
are generally applied to a variety of waveform modulations
include gray and differential coding, binary cyclic coding,
cyclic redundancy check (CRC) coding, data randomizers,
and block and convolutional interleaving. The chapter also
includes descriptions and performance results for Wagner
coding, convolutional coding with Viterbi decoding, turbo
and turbo-like parallel concatenated convolutional coding
(PCCC) or turbo coding, serial concatenated convolutional
coding (SCCC), low-density parity-check (LDPC) coding,
and turbo product codes (TPCs). The chapter concludes with
Bose–Chaudhuri–Hocquenghem (BCH), Reed–Solomon
(RS), and Reed–Solomon Viterbi (RSV) coding.

Chapter 9 focuses on forward error correction (FEC)
codes without bandwidth expansion. In these cases, addi-
tional modulation states are included as redundant states

1To aid in the simulation of a smooth eye-appealing performance curve, all of
the noise generator seeds are reset at each signal-to-noise ratio.
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for maximum likelihood error correction in a trellis decoder.
The implementation and performance of multi-h M-ary con-
tinuous phase modulation (CPM) is compared to that of
MPSK trellis-coded modulation (TCM).

Chapter 10 provides a detailed analysis and performance
evaluation of carrier acquisition and tracking using first
through third-order phaselock loops. The tracking perfor-
mance using classical control theory is compared to that
using the maximum a posteriori probability (MAP) estima-
tion procedure. Detailed implementations diagrams and per-
formance results are provided for MPSK andMSKwaveform
modulations. A procedure is discussed to optimize the phase-
lock loop gains in simulation and hardware designs to con-
form to the theoretical response under prescribed input
conditions. Case studies are provided that demonstrate the
dynamic and steady-state tracking conditions.

Chapter 11 discusses the signal presence detection and
acquisition of a received waveform using a data preamble;
the topics including automatic gain control (AGC), coarse
and fine carrier frequency estimation and acquisition, symbol
synchronization, and start-of-message (SOM) detection. The
chapter concludes with various methods of estimating signal
and noise powers and the received signal-to-noise ratio.

Chapter 12 analyzes various adaptive estimation algo-
rithms beginning with a discussion of the orthogonality prin-
ciple andWiener’s solution to the optimum filtering problem.
Various estimation techniques are examined with algorithms
developed for the finite impulse response (FIR) and least
mean-square (LMS) adaptive filters. Adaptive equalization
algorithms include the zero-forcing, linear feedforward, non-
linear decision feedback, fractionally spaced and the recur-
sive least-squares (RLS) equalizers. Interference and noise
cancellation algorithms are also discussed.

Chapter 13 provides a detailed study of the spread spec-
trum communications focusing on direct-sequence spread-
spectrum (DSSS), frequency-hopping spread-spectrum
(FHSS), and time-hopping spread-spectrum (THSS). The
link geometry and link margins are characterized for
anti-jam (AJ) and low probability of intercept (LPI)
communications. The probability of detecting and intercept-
ing spread-spectrum waveforms is examined for various
interceptor detection algorithms. The communicator’s perfor-
mance with intentional jamming is evaluated under the
following conditions: BPSK and QPSK with a continuous
wave (CW) jammer; M-ary FSK and DC-MPSK with partial
band noise jammers; and FHSS with multitone jammers.
A simplified analytical computation of the upper bound on
the bit-error performance with various modulations and jam-
mers is outlined. The chapter concludes with a case study of a
terrestrial jammer encounter using the Longley–Rice irregu-
lar terrain model (ITM).

Chapter 14 describes various acceptance and rejection
procedures suitable for modem pre- and postproduction test-
ing. Modem subsystem modeling and Monte Carlo

simulation techniques are also described leading to the bit-
error performance evaluation through various types of chan-
nels. The chapter concludes with the description of the bit-
error performance evaluation using quadrature integration.
Several case studies are provided to demonstrate the method-
ology and utility of the evaluation procedures.

Chapter 15 describes the link budget analysis using the
communication range equation. This is an essential chapter
that outlines fundamental system requirements and related
analysis that must be established prior to a detailed subsys-
tem design. The link budget essentially establishes the
cost-effective subsystem conditions to ensure that the sig-
nal-to-noise ratio at the receiver input is sufficient for relia-
ble communications under the specified channel condition.
The chapter highlights the important topics involving
high-power amplifier (HPA) nonlinearities, transmitter and
antenna effective isotropic radiated power (EIRP), receiver
antenna gain-temperature ratio (G/T), receiver noise figure,
antenna polarization, system phase noise, and channel rain
losses.

Chapter 16 analyzes various satellite orbits focusing on
the link range and signal dynamics. The results correspond
to terrestrial or airborne satellite links and satellite cross-links
and are used in establishing a satellite link budget as dis-
cussed in Chapter 15.

Chapter 17 discusses the transmission information
through a bandlimited time-invariant channel. The chan-
nel response to an input data symbol is examined in terms
of the channel amplitude and phase functions. This anal-
ysis forms the bases for evaluating the performance of
baseband PCM modulated waveforms using wireline
medium.

Chapter 18 discusses communicating through a Ricean
fading channel characterized in terms of the specular-to-
random power ratio with limits corresponding to the
Rayleigh and Gaussian channel models. The bit-error perfor-
mance of fast and slowing nonselective fading channels is
examined for coherent BPSK, differentially coherent BPSK,
and noncoherent BFSKwaveformmodulations. The relation-
ship between the channel coherence time and bandwidth is,
respectively, associated with Doppler spread and time disper-
sion. The channel concludes with a discussion to diversity
combining techniques to mitigate the loss associated with
fading channels. This material is considered to be a prerequi-
site for the material in Chapters 19 and 20.

Chapter 19 discusses various aspects of atmospheric prop-
agation using the spherical 4/3 effective Earth radius model.
The topics discussed include line of sight (LOS) propagation,
reflection from the Earth’s surface, tropospheric and iono-
spheric refraction, and diffraction. Several propagation loss
models are characterized for urban, suburban, rural environ-
ments with applications to land mobile and satellite commu-
nications. The chapter concludes with the characterization of
communication links involving impulsive noise induced by
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lightning strikes, ocean wind-waves, and dispersion of opti-
cal pulses through clouds.

Chapter 20 discusses various aspects of ionospheric prop-
agation beginning with the characterization of electron den-
sities in the natural and nuclear-disturbed environments. The
refractive index is characterized in terms of the magnetic field
strength and electron collisions fromwhich the signal absorp-
tion and phase functions are established. Signal fading is
characterized in terms of the scintillation index and the Rytov
parameter. The dependence of the signal-decorrelation time
and the frequency-selective bandwidth on the carrier fre-
quency is also identified. A methodology is described for
seamlessly concatenating an unlimited number of fading
channel temporal FFT generated records to facilitate accurate
Monte Carlo performance simulations in a stressed environ-
ment. Based on the electron density profiles, the Rayleigh
channel fading model corresponding to severe signal scintil-
lation is used to evaluate the link performance using several
robust waveform modulations. Monte Carlo simulations are
used to compare the performance of DEPSK, DCBPSK, and
8-ary FSK modulations with and without FEC coding in the
slow Rayleigh fading channel. The simulated performance of
interleaved RSV coded DCBPSK and DCQPSK is also
examined over the range of fast to slow Rayleigh fading
regimes.

The book concludes with three appendices:
Appendix A discusses the following classical analog fil-

ters: Butterworth, Chebyshev, Bessel, and Elliptic. The filter
functions are implemented as digital filters and used in sev-
eral chapters and case studies.

Appendix B is a brief discussion of the design and imple-
mentation of digital filters. The filter functions are used in
several chapters and case studies.

Appendix C discusses the theoretical detection and false-
alarm probabilities of signals in noise under a variety of condi-
tions are examined, including coherent and noncoherent detec-
tion using single and multiple pulse integration with and
without fading. The results are based on the classical radar
relatedwork of J.I.Marcum andP. Swerling and are selectively
applied principally to the detection and acquisition of commu-
nication waveforms.
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SUMMARY OF NOTATIONS

Notation Description

T Modulation symbol duration† (= 1/Rs)
Tb Information bit duration (= 1/Rb)
Tx Transmitter subsystem
Rx Receiver subsystem
No One-sided white noise spectral density
= Equal

Approximately equal
Not equal

~ Asymptotically equal
<, >; ≤, ≥ Inequality; inclusion
o.w. Otherwise all values not indicated

Approaches in the limit
For all

≜ Definition
Implies
Transform pair

1/ab Inline division: 1 ab
x Floor: greatest integer ≤ x
x Ceiling: smallest integer ≥ x
(xt1, …, xtn) Finite time sequence of elements xt
{x1, …, xn} Finite set of elements x
<x(t)> Time average
Σixi Summation over all i except i = 0
[x], int(x) Integer value of x

Notation Description

[x]n, nint(x) Nearest integer to x computed as: [x+.5]: x > 0
and [x−.5]; x ≤ 0

m

n
, mCn Binomial coefficient

[A]T Matrix transpose
[A]∗ Matrix conjugation
[A]+ Matrix complex conjugate transpose
|A|, |A|det Determinate of matrix
δij Kronecker delta function: δij = 1: i = j; o.w. δij = 0

δ(t) Delta function:
∞

−∞
δ t dt = 1

sinc(fT) sin(πfT)/πfT
rect(t/T) = 1 : |t| ≤ T/2 ; = 0 o.w.
rectT(t/T,n) rect((t − nT)/T)‡

Sign(a,x) = a: x ≥ 0; = −a: o.w.
N(m,σ) Gaussian (normal) distributed random variable
E[x] Statistical average (expectation)
pdf Probability density function
pmf Probability mass function
cdf Cumulative distribution function
iid Independently and identically distributed
id Identically distributed
iff If and only if

†Almost exclusively used as the symbol duration.
‡Repetition notation for P.M. Woodward’s rect(t/T) function.
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1
MATHEMATICAL BACKGROUND AND
ANALYSIS TECHNIQUES

1.1 INTRODUCTION

This introductory chapter focuses on various mathematical
techniques and solutions to practical problems encountered
in many of the following chapters. The discussions are
divided into three distinct topics: deterministic signal analy-
sis involving linear systems and channels; statistical analysis
involving probabilities, random variables, and random pro-
cesses; miscellaneous topics involving windowing functions,
mathematical solutions to commonly encountered problems,
and tables of commonly used mathematical functions. It
is desired that this introductory material will provide the
foundation for modeling and finding practical design solu-
tions to communication system performance specifications.
Although this chapter contains a wealth of information
regarding a variety of topics, the contents may be viewed
as reference material for specific topics as they are encoun-
tered in the subsequent chapters.

This introductory section describes the commonly used
waveform modulations characterized as amplitude modula-
tion (AM), phase modulation (PM), and frequency modula-
tion (FM) waveforms. These modulations result in the
transmission of the carrier- and data-modulated subcarriers
that are accompanied by negative frequency images. These
techniques are compared to the more efficient suppressed
carrier modulation that possesses attributes of the AM,
PM, and FM modulations. This introduction concludes
with a discussion of real and analytic signals, the Hilbert
transform, and demodulator heterodyning, or frequency
mixing, to baseband.

Sections 1.2–1.4, deterministic signal analysis, transform
in the context of a uniformly weighted pulse f(t) and its spec-
trum F(f) and the duality between ideal time and frequency
sampling that forms the basis of Shannon’s sampling theorem
[1]. This section also discusses the discrete Fourier transform
(DFT), the fast Fourier transform (FFT), the pipeline imple-
mentation of the FFT, and applications involving waveform
detection, interpolation, and power spectrum estimation. The
concept of paired echoes is discussed and used to analyze the
signal distortion resulting from a deterministic band-limited
channel with amplitude and phase distortion. These sections
conclude on the subject of autocorrelation and cross-
correlation of real and complex deterministic functions; the
corresponding covariance functions are also examined.

Sections 1.5–1.10, statistical analysis, introduce the con-
cept of random variables and various probability density func-
tions (pdf) and cumulative distribution functions (cdf) for
continuous and discrete random variables. Stochastic pro-
cesses are then defined and the properties of ergodic and sta-
tionary random processes are examined. The characteristic
function is defined and examples, based on the summation
of several underlying random variables, exhibit the trend in
the limiting behavior of the pdf and cdf functions toward the
normal distribution; thereby demonstrating the central limit
theorem. Statistical analysis using distribution-free or nonpa-
rametric techniques is introduced with a focus on order statis-
tics. The random process involving narrowband white
Gaussian noise is characterized in terms of the noise spectral
density at the input and output of an optimum detection filter.
This is followed by the derivation of thematched filter and the
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equivalence between the matched filter and a correlation
detector is also established. The next subject discussed
involves the likelihood ratio and log-likelihood ratio as they
pertain to optimum signal detection. These topics are general-
ized and expanded in Chapter 3 and form the basis for the opti-
mum detection of the modulated waveforms discussed in
Chapters 4–9. Section 1.9 introduces the subject of parameter
estimation which is revisited in Chapters 11 and 12 in the con-
text of waveform acquisition and adaptive systems. The final
topic in this section involves a discussion of modem configura-
tions and the important topic of automatic repeat request
(ARQ) to improve the reliability of message reception.

Sections 1.11–1.14, miscellaneous topics, include a
characterization of several window functions that are used
to improve the performance the FFT, decimation filtering,
and signal parameter estimation. Section 1.12 provides an
introductory discussion of matrix and vector operations. In
Section 1.13 several mathematical procedures and formulas
are discussed that are useful in system analysis and simulation
programming. These formulas involve prime factorization of
an integer and determination of the greatest common factor
(GCF) and least common multiple (LCM) of two integers,
Newton’s approximation method for finding the roots of
a transcendental function, and the definition of the
standard deviation of a sampled population. This chapter
concludes with a list of frequently used mathematical formu-
las involving infinite and finite summations, the binomial
expansion theorem, trigonometric identities, differentiation
and integration rules, inequalities, and other miscellaneous
relationships.

Many of the examples and case studies in the following
chapters involve systems operating in a specific frequency
band that is dictated by a number of factors, including, the
system objectives and requirements, the communication
range equation, the channel characteristics, and the result-
ing link budget. The system objectives and requirements
often dictate the frequency band that, in turn, identifies the
channel characteristics. Table 1.1 identifies the frequency

band designations with the corresponding range of frequen-
cies. The designations low frequency (LF), medium fre-
quency (MF), and high frequency (HF) refer to low,
medium, and high frequencies and the prefixes E, V, U,
and S correspond to extremely, vary, ultra, and super.

1.1.1 Waveform Modulation Descriptions

This section characterizes signal waveforms comprised of
baseband information modulated on an arbitrary carrier fre-
quency, denoted as fc Hz. The baseband information is char-
acterized as having a lowpass bandwidth of B Hz and, in
typical applications, fc >> B. In many communication system
applications, the carrier frequency facilitates the transmission
between the transmitter and receiver terminals and can be
removed without effecting the information. When the carrier
frequency is removed from the received signal the signal pro-
cessing sampling requirements are dependent only on the
bandwidth B.

The signal modulations described in Sections 1.1.1.1
through 1.1.1.4 are amplitude, phase, frequency, and sup-
pressed carrier modulations. The amplitude, phase, and fre-
quency modulations are often applied to the transmission
of analog information; however, they are also used in various
applications involving digital data transmission. For exam-
ple, these modulations, to varying degrees, are the underlying
waveforms used in the U.S. Air Force Satellite Control
Network (AFSCN) involving satellite uplink and downlink
control, status, and ranging.

In describing the demodulator processing of the received
waveforms, the information, following removal of the carrier
frequency, is associated with in-phase and quadphase (I/Q)
baseband channels or rails. Although these I/Q channels
are described as containing quadrature real signals, they
are characterized as complex signals with real and imaginary
parts. This complex signal description is referred to as com-
plex envelope or analytic signal representations and is dis-
cussed in Section 1.1.1.5. Suppressed carrier modulation
and the analytic signal representation emphasize quadrature
data modulation that leads to a discussion of the Hilbert
transform in Section 1.1.1.6. Section 1.1.1.7 discusses con-
ventional heterodyning of the received signal to baseband
followed by data demodulation.

1.1.1.1 Amplitude Modulation Conventional amplitude
modulation (AM) is characterized as

s t =A 1 +mIm t sin ωmt sin ωct (1.1)

where A is the peak carrier voltage, mI > 0 is the modulation
index, m(t) is the information modulation function, ωm is the
modulation angular frequency, and ωc is the AM carrier
angular frequency. Upon multiplying (1.1) through by sin

TABLE 1.1 Frequency Band Designations

Designation Frequency
Letter
Designation

Frequency
(GHz)

ELF 3–30 Hz L 1–2
SLF 30–300 Hz S 2–4
ULF 0.3–3 kHz C 4–8
VLF 3–30 kHz X 8–12
LF 30–300 kHz Ku 12–18
MF 0.3–3 MHz K 18–27
HF 3–30 MHz Ka 27–40
VHF 30–300 MHz V 40–75
UHF 0.3–3 GHz W 75–110
SHF 3–30 GHz mm (millimeter) 110–300
EHF 30–300 GHz
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(ωct) and applying elementary trigonometric identities, the
AM-modulated signal is expressed as

s t =Asin ωct +
AmI

2
m t cos ωc−ωm t

−
AmI

2
m t cos ωc +ωm t

(1.2)

Therefore, s(t) represents the conventional double side-
band (DSB) AM waveform with the upper and lower side-
bands at ωc ±ωm equally spaced about the carrier at ωc.
With the information modulation function m(t) normalized
to unit power, the power in each sideband is mIPS/4 where
PS is the power in the carrier frequency fc.

1.1.1.2 Phase Modulation Conventional phase modula-
tion (PM) is characterized as

s t =Asin ωct +φ t (1.3)

where A is the peak carrier voltage, ωc is the carrier angular
frequency, and φ(t) is an arbitrary phase modulation function
containing the information. The commonly used phase func-
tion is expressed as

φ t =ϕsin ωmt (1.4)

where ϕ is the peak phase deviation. Substituting (1.4) into
(1.3), the phase-modulated signal is expressed as

s t =A sin ωct +ϕsin ωmt (1.5)

and, upon applying elementary trigonometric identities, (1.5)
yields

s t =Asin ωct cos ϕsin ωmt +Acos ωct sin ϕsin ωmt

(1.6)

The trigonometric functions involving sinusoidal argu-
ments can be expanded in terms of Bessel functions [2]
and (1.6) simplifies to

s t =AJ0 ϕ sin ωct +A
∞

n = 1

Jn ϕ sin ωc + nωm t

+ −1 nJn ϕ sin ωc−nωm t

(1.7)

Equation (1.7) is characterized by the carrier frequency
with peak amplitude AJ0(ϕ) and upper and lower sideband
pairs at ωc ± nωm with peak amplitudes AJn(ϕ). For small
arguments the Bessel functions reduce to the approximations
J0 ϕ 1,J1 ϕ ϕ 2 with Jn ϕ 0 n> 1 and (1.7)
reduces to

s t Asin ωct +
Aϕ

2
sin ωc +ωm t −

Aϕ

2
sin ωc−ωm t

small ϕ
(1.8)

Under these small argument approximations, the similari-
ties between (1.8) and (1.2) are apparent.

1.1.1.3 FrequencyModulation The frequency-modulated
(FM) waveform is described as

s t =Asin ωct +
Δf
fm

sin ωmt (1.9)

where A is the peak carrier voltage, ωc is the carrier angular
frequency, Δf is the peak frequency deviation of the modula-
tion frequency fm, and ωm is the modulation angular fre-
quency. The ratio Δf/fm is the frequency modulation index.
Noting the similarities between (1.9) and (1.5), the expres-
sion for the frequency-modulated waveform is expressed,
in terms of the Bessel functions, as

s t =AJ0
Δf
fm

sin ωct +A
∞

n = 1

Jn
Δf
fm

sin ωc + nωm t

+ −1 nJn
Δf
fm

sin ωc−nωm t

(1.10)

with the corresponding small argument approximation for the
Bessel function expressed as

s t Asin ωct +
AΔf
2fm

sin ωc +ωm t −
AΔf
2fm

sin ωc−ωm t

small
Δf
fm

(1.11)

The similarities between (1.11), (1.8), and (1.2) are apparent.

1.1.1.4 Suppressed Carrier Modulation A commonly
used form of modulation is suppressed carrier modulation
expressed as

s t =Am t sin ωct +φ t (1.12)

In this case, when the carrier is mixed to baseband, infor-
mation modulation functionm(t) does not have a direct current
(DC) spectral component involving δ(ω). So, upon multiplica-
tion by the carrier, there is no residual carrier component ωc in
the received baseband signal. Because the carrier is suppressed
it is not available at the receiver/demodulator to provide a
coherent reference, so special considerations must be given
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to the carrier recovery and subsequent data demodulation.
Suppressed carrier-modulated waveforms are efficient, in
that, all of the transmitted power is devoted to the information.
Suppressed carrier modulation and the various methods of
carrier recovery are the central focus of the digital communi-
cation waveforms discussed in the following chapters.

1.1.1.5 Real and Analytic Signals The earlier modula-
tion waveforms are described mathematically as real wave-
forms that can be transmitted over real or physical
channels. The general description of the suppressed carrier
waveform, described in (1.12), can be expressed in terms
of in-phase and quadrature modulation functions mc(t) and
ms(t) as

s t =mc t cos ωct −ms t sin ωct (1.13)

The quadrature modulation functions are expressed as

mc t =Adcm t cos φ t (1.14)

and

ms t =Adsm t sin φ t (1.15)

With PM the data {dc, ds} may be contained in a phase
function φd(t), m(t) is a unit energy symbol shaping function
that provides for spectral control relative to the commonly
used rect(t/T) function, and A represents the peak carrier
voltage on each rail. With quadrature modulations, unique
symbol shaping functions, mc(t) and ms(t), may be applied
to each rail; for example, unbalanced quadrature modulations
involve different data rates on each quadrature rail. With
quadrature amplitude modulation (QAM) the data is
described in terms of the multilevel quadrature amplitudes
{αc, αs} that are used in place of {dc, ds} in (1.14) and (1.15).

Equation (1.13) can also be expressed in terms of the real
part of a complex function as

s t =Re s t ejωct (1.16)

where

s t =mc t + jms t (1.17)

The function s t is referred to as the complex envelope or
analytic representation of the baseband signal and plays a
fundamental role in the data demodulation, in that, it contains
all of the information necessary to optimally recover the
transmitted information. Equation (1.17) applies to receivers
that use linear frequency translation to baseband. Linear fre-
quency translation is typical of heterodyne receivers using
intermediate frequency (IF) stages. This is a significant result
because the system performance can be evaluated using the

analytic signal without regard to the carrier frequency [3];
this is particularly important in computer performance
simulations.

Evaluation of the real part of the signal expressed in (1.16)
is performed using the complex identity No. 4 in
Section 1.14.6 with the result

s t =
1
2

s t ejωct + s t ∗e− jωct (1.18)

A note of caution is in order, in that, the received signal
power based on the analytic signal is twice that of the power
in the carrier. This results because the analytic signal does not
account for the factor of 1/2 when mixing or heterodyning
with a locally generated carrier frequency and is directly
related the factor of 1/2 in (1.18). The signal descriptions
expressed in (1.12) through (1.18) are used to describe the
narrowband signal characteristics used throughout much of
this book.

1.1.1.6 Hilbert Transform and Analytic Signals The
Hilbert transform of the real s(t) is defined as

s t ≜
1
π

∞

−∞

s τ

t−τ
dτ = s t ∗ 1

πt
(1.19)

The second expression in (1.19) represents the convolu-
tion of s(t) with a filter with impulse response h t = 1 πt
where h(t) represents the response to a Hilbert filter with fre-
quency response H(ω) characterized as

h t H ω

=
− jsign ω ω > 0

0 o w

(1.20)

The Hilbert transform of s(t) results in a spectrum that is
zero for all negative frequencies with positive frequencies
representing a complex spectrum associated with the real
and imaginary parts of an analytic function. Applying
(1.20) to the signal spectrum S ω s t results in the spec-
trum of the Hilbert transformed signal

S ω =

jS ω ω< 0

0 ω= 0

− jS ω ω> 0

(1.21)

Applying (1.21) to the spectrum S(ω) of (1.12) or (1.13),
the bandwidth B of m(t) must satisfy the condition B << fc.
In this case, the inverse Fourier transform of the spectrum
S ω yields the Hilbert filter output s t given by
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s t = TH Am t sin ωct +ϕ t =Am t sin ωct +ϕ t −π 2

= −Am t cos ωct +ϕ t

(1.22)

where TH[s(t)] represents the Hilbert transform of s(t).
The function s t expressed by (1.22) is orthogonal to s(t)

and, if the carrier frequency were removed following the
Hilbert transform, the result would be identical to the
imaginary part of the analytic signal expressed by (1.17).
The processing is depicted in Figure 1.1.

1.1.1.7 Conventional and Complex Heterodyning Con-
ventional heterodyning is depicted in Figure 1.2. The zonal
filters are ideal low-pass filters with frequency response
given by

H f = rect f −
fc
2

zonal lowpass filter (1.23)

These filters remove the 2ωc term that results from the
mixing operation and, for s(t) as expressed by (1.13), the
quadrature outputs are given by

sc t =
A

2
mc t cos ϕ t −ms t sin ϕ t (1.24)

and

ss t =
A

2
mc t sin ϕ t +ms t cos ϕ t (1.25)

With ideal phase tracking the phase term ϕ(t) is zero
resulting in the quadrature modulation functions mc(t) and
ms(t) in the respective low-pass channels.

1.2 THE FOURIER TRANSFORM AND
FOURIER SERIES

The Fourier transform is so ubiquitous in the technical liter-
ature [4–6], and its application are so widely used that it
seems unnecessary to dwell at any length on the subject.
However, a brief description is in order to aid in the under-
standing of the parameters used in the applications discussed
in the following chapters.

The Fourier transform F(f) of f(t) is defined over the inter-
val t ≤ ∞ and, if f(t) is absolutely integrable, that is, if

∞

−∞

f t dt < ∞ (1.26)

then F(f) exists, furthermore, the inverse Fourier transform
of F(f) results in f(t). In most applications* of practical inter-
est, f(t) satisfies (1.26) leading to the Fourier transform pair
f t F f defined as

F f =

∞

−∞

f t e− j2πftdt f t =

∞

−∞

F f ej2πftdf (1.27)

In general, f(t) is real and the Fourier transform F(f) is
complex and Parseval’s theorem relates the signal energy
in the time and frequency domains as

∞

−∞

f t 2dt =

∞

−∞

F f 2df (1.28)

The Fourier series representation of a periodic function is
closely related to the Fourier transform; however, it is based
on orthogonal expansions of sinusoidal functions at discrete
frequencies. For example, if the function of interest is peri-
odic, such that, f(t) = f(t – iTo) with period To and is finite
and single valued over the period, then f(t) can be represented
by the Fourier series

f t =
∞

n= −∞
Cne

jnωot (1.29)

where ωo = 2π/To and Cn is the n-th Fourier coefficient
given by

s(t) s(t)

s(t)˘Hilbert
filter

FIGURE 1.1 Hilbert transform of carrier-modulated signal s(t)
B fc 1 .

Ss(t)

Sc(t)

s(t)

cos(ωct)

Zonal
filter

–sin(ωct)

Zonal
filter

FIGURE 1.2 Heterodyning of carrier-modulated signal s(t)
B fc 1 .

*For special cases refer to Papoulis (Reference 7, Chapter 2).
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Cn =
1
To

To 2

−To 2

f t e− jnωotdt (1.30)

Equation (1.29) is an interesting relationship, in that, f(t)
can be described over the time interval To by an infinite set
of frequency-domain coefficient Cn; however, because f(t)
is contiguously replicated over all time, that is, it is periodic,
the spectrum of f(t) is completely defined by the coefficients
Cn. Unlike the Fourier transform, the spectrum of (1.29) is not
continuous in frequency but is zero except at discrete fre-
quencies occurring at multiples of nωo. This is seen by taking
the Fourier transform of (1.29) and, using (1.27), the result is
expressed as

F f =
∞

n= −∞
Cn

∞

−∞

e− j2π f −nfo tdt

=
∞

n= −∞
Cnδ f −nfo

(1.31)

where δ f −nfo is the Fourier Transform* of ejnωoT .
Equation (1.31) is applied in Chapter 2 in the discussion of
sampling theory and in Chapter 11 in the context of signal
acquisition.

Alternate forms of (1.29) that emphasize the series expan-
sion in terms of harmonics of trigonometric functions are
given in (1.32) and (1.33) when f(t) is a real-valued function.
This is important because when f(t) is real the complex coef-
ficients Cn and C−n form a complex conjugate pair such that
C−n =C∗

n which simplifies the evaluation of f(t). For example,
using the complex notations Cn = αn + jβn and C∗

n = αn− jβn,
the function f(t) is evaluated as

f t =Co + 2
∞

n= 1

αn cos nωot −βn sin nωot (1.32)

this simplifies to

f t =Co + 2
∞

n= 1

Cn cos nωot +ϕn (1.33)

where Cn = α2 + β2 and ϕn = arctan β α .
An important consideration in spectrum analysis is the

determination of signal spectrums involving random data
sequences, referred to as stochastic processes [8]. A stochas-
tic process does not have a unique spectrum; however, the
power spectral density (PSD) is defined as the Fourier
transform of the autocorrelation response. Oppenheim and

Schafer [9] discuss methods of estimating the PSD of a
real finite-length (N) sampled sequence by averaging
periodograms, defined as

IN ω =
1
N

F ω 2 (1.34)

where F(ω) is the Fourier transform of the sampled sequence.
This method is accredited to Bartlett [10] and is used in the
evaluation of the PSD in the following chapters. For a fixed
length (L) of random data, the number of periodograms (K)
that can be averaged is K = L/N. As K increases the variance
of the spectral estimate approaches zero and as N increases
the resolution of the spectrum increases, so there is a trade-
off between the selection of K and N. To resolve narrowband
spectral features that occur, for example, with nonlinear
frequency shift keying (FSK)-modulated waveforms, it is
important to use large values of N. Fortunately, many of
the spectrum analyses presented in the following chapters
are not constrained by L so K and N are chosen to provide
a low estimation bias, that is, low variance, and high spectral
resolution. Windowing† the periodograms will also reduce
the estimation bias at the expense of decreasing the spectral
resolution.

1.2.1 The Transform Pair rect(t/T) Tsinc(fT)

The transform relationship rect(t/T) Tsinc(fT) occurs so
often that it deserves special consideration. For example,
consider the following function:

s t =Acos ωc t−τ −ϕ rect
t−τ

T
(1.35)

where ωc, τ, and ϕ represent arbitrary angular frequency,
delay, and phase parameters. The signal s(t) is depicted in
Figure 1.3.

The Fourier transform of s(t) is evaluated as

S f =A

T 2 + τ

−T 2 + τ

cos ωc t−τ −ϕ e− j2πftdt (1.36)

T/2 + τ–T/2 + τ τ

A

0

t

s(t)

FIGURE 1.3 Pulse-modulated carrier.

*A summary of Fourier transforms pairs is given in Section 1.2.11. †Windows are discussed in Section 1.11.
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Expressing the cosine function in terms of complex
exponential functions and performing some simplifications
results in the expression

S f =
A

2
e− j 2πf τ +ϕ

τ + T 2

τ−T 2

e− j2π f − fc tdt

+ e− j 2πf τ−ϕ
τ + T 2

τ−T 2

e− j2π f + fc tdt

(1.37)

Evaluation of the integrals in (1.37) appears so often that it
is useful to generalize the solutions as follows:

Consider the integral

I y =

x2

x1

e− j y ± y xdx

=
e− j y ± y x2 −e− j y ± y x1

− j y± y

(1.38)

The general solution involves multiplying the last equality
in (1.38) by the factors e− j y ± y x2 + x1 2 and ej y ± y x2 + x1 2,
having a product of one, where x2 + x1 2 is the average
of the integration limits. Distributing the second factor over
the numerator of (1.38) and then simplifying yields the result

I y = x2−x1 e− j y ± y x2 + x1 2 sin y ± y x2−x1 2
y ± y x2−x1 2

(1.39)

Applying (1.39) to (1.37) and simplifying gives the
desired result

S f =
AT

2
e− j 2πf τ +ϕ sinc f − fc T + e− j 2πf τ−ϕ sinc f + fc T

(1.40)

When fc 1 T , the positive and negative frequency
spectrums do not influence one another and, in this case,
the positive frequency spectrum is defined as

S + f =
AT

2
sinc f − fc T fc

1
T

(1.41)

On the other hand, when the carrier frequency and phase
are zero, (1.40) simplifies to the baseband spectrum, evalu-
ated as

Sbb f =ATe− j2πf τsinc fT fc = 0, ϕ= 0 (1.42)

Using (1.42), the baseband Fourier transform pair, corre-
sponding to of (1.35) with fc = 0, is established as

rect
t−τ

T
Te− j2πf τsinc fT t−τ ≤

T

2
(1.43)

and, with τ = 0,

rect
t

T
Tsinc fT t ≤

T

2
(1.44)

1.2.2 The sinc(x) Function

The sinc(x) function is defined as

sinc x =
sin πx

πx
(1.45)

and is depicted in Figure 1.4. When x is expressed as the nor-
malized frequency variable x = fT then (1.45), when scaled by
T, is the frequency spectrum of the unit amplitude pulse rect
(t/T) of duration T seconds such that t ≤ |T/2|. This function is
symmetrical in x and the maximum value of the first sidelobe
occurs at x=1.431with a level of 10log(sinc2(x)) =−13.26 dB;
the peak sidelobe levels decrease in proportion to 1/|x|. The
noise bandwidth of a filter function H(f) is defined as

Bn ≜

∞

−∞
H f 2df

H fo
2 (1.46)

where fo is the filter frequency corresponding to the maxi-
mum response. When a receiver filter is described as
H(f) = sinc(fT) the receiver low-pass noise bandwidth is eval-
uated as Bn = 1/T where T is the duration of the filter impulse
response.

x
0 1 2 3 4 5 6 7 8 9

si
nc

(x
)

–0.4

–0.2

0.0

0.2

0.4

0.6

0.8

1.0

FIGURE 1.4 The sinc(x) function.
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It is sometimes useful to evaluate the area of the sinc(x)
function and, while there is no closed form solutions, the
solution can be evaluated in terms of the sine-integral
Si(x)

* as

z

0
sinc x dx=

z

0

sin πx

πx
dx=

1
π

π z

0

sin λ

λ
dλ

=
1
π
Si πz

(1.47)

where the sine-integral is defined as the integral of sin(λ)/λ.
Equation (1.47) is shown in Figure 1.5. The limit of Si(πz) as
|z| ∞ is† π sign(1,z)/2 so the corresponding limit of (1.47)
is 0.5sgn(z).

A useful parameter, often used as a benchmark for
comparing spectral efficiencies, is the area under sinc2(x)
as a function of x. The area is evaluated in terms of the
sine-integral as

z

0
sinc2 x dx=

z

0

sin2 πx

πx 2 dx

=
1
π

Si 2πz −
sin2 2πz

2πz

(1.48)

Equation (1.48) is plotted in Figure 1.6 as a percent of the
total area and it is seen that the spectral containment of 99%
is in excess of 18 spectral sidelobes, that is, x = fT = 18. In
the following chapters, spectral efficient waveforms are
examined with 99% containment within 2 or 3 sidelobes,
so the sinc(x) function does not represent a spectrally efficient
waveform modulation.

1.2.3 The Fourier Transform Pair

n
δ t−nT ωo n

δ ω−nωo

The evaluation of this Fourier transform pair is fundamental
to Nyquist sampling theory and is demonstrated in
Section 2.3 in the evaluation of discrete-time sampling. In this
case, the function f(t) is an infinite repetition of equally spaced
delta functions δ(t) with intervals T seconds as expressed by

f t =
∞

n= −∞
δ t−nT (1.49)

The challenge is to show that the Fourier transform of
(1.49) is equal to an infinite repetition of equally spaced
and weighted frequency domain delta functions expressed as

F ω =ωo

∞

n= −∞
δ ω−nωo (1.50)

with weighting ωo and frequency intervals ωo = 2π T . Direct
application of the Fourier transform to (1.49) leads to the

spectrum
n
e− jnωT but this does not demonstrate the equal-

ity in (1.50). Similarly, evaluation of the inverse Fourier
transform of (1.50) results in the time-domain expression

g t =
1
T

∞

n = −∞
ejnωot (1.51)

So, by showing that g t = f t , the transform pair between
(1.49) and (1.50) will be established. Consider gN(t) to be a
finite summation of terms in (1.51) given by

gN t =
1
T

N

n= −N

ejnωot

=
sin 2N + 1 ωot 2

T sin ωot 2

(1.52)
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FIGURE 1.6 Integral of sinc2(x) function.
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FIGURE 1.5 Integral of sinc(x).

*The arguments x and z may be complex; however, the following analysis
uses only real arguments.
†The sign(a, x) function is defined in Section 1.14.7.
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The second equality in (1.52) can be shown using
the finite series identity No. 12, Section 1.14.1. Equation
(1.52) is referred to by Papoulis [7] as the Fourier-series
kernel and appears in a number of applications involving
the Fourier transform.

The function gN(t) is plotted in Figure 1.7 for N = 8. The
abscissa is time normalized by the pulse repetition interval
T = 1 fo such that, gN t = gN t−nT , and there are a total
of 2N + 1 peaks of which three are shown in the figure. Fur-
thermore, there are eight time sidelobes between t/T = 0 and
0.5 with the first nulls from the peak value at t/T = 0 occurring
at ±T 2N + 1 ; the peak values are 2N + 1 T = 17 T in
this example.

The maximum values of 2N + 1, occurring at t T = n, are
determined by applying L’Hospital’s rule to (1.52), which is
rewritten as

gN t = 2N + 1
sin 2N + 1 ωot 2
T 2N + 1 sin ωot 2

2N + 1
sin 2N + 1 ωot 2
T 2N + 1 ωot 2

(1.53)

The approximation in (1.53) is obtained by noting that
as N increases the rate of the sinusoidal variations in the
numerator term increases with a frequency of 2N + 1 fo Hz
while the rate of sinusoidal variation in the denominator
remains unchanged. Therefore, in the vicinity of t T = n,
sin ωot 2 ωot 2 and (1.53) reduces to a sin(x)/x function
with x = 2N + 1 ωot 2 and a peak amplitude (2N + 1). The
proof of the transform pair is completed by showing that
f(t) = g(t). Referring to (1.51) g(t) is expressed as

g t = lim
N ∞

gN t (1.54)

From (1.53) as N approaches infinity the sin(x)/x sidelobe
nulls converge to t/T = n, the peak values become infinite,
and the corresponding area over the interval |t/T| = n ± 1/2
approaches unity. Therefore, g(t) resembles a periodic series
of delta functions resulting in the equality

g t = lim
N ∞

gN t =
∞

n = −∞
δ t−nT

= f t

(1.55)

thus completing the proof that (1.49) and (1.50) correspond to
a Fourier transform pair. Papoulis (Reference 7, pp. 50–52)
provides a more eloquent proof that the limiting form of
gN(t) is indeed an infinite sequence of delta functions.

1.2.4 The Discrete Fourier Transform

The DFT pair relating the discrete-time function f(mΔt) ≡
f(m) and discrete-frequency function F(nΔf) ≡ F(n) is de-
noted as f m F n where

F n =Δt
M−1

m = 0

f m e− j2πnΔfmΔt f m =Δf
N−1

n = 0

F n ej2πnΔfmΔt

DFT

(1.56)

With the DFT the number of time and frequency samples
can be chosen independently. This is advantageous when pre-
paring presentation material or examining fine spectral or
temporal details, as might be useful when debugging simula-
tion programs, by the independent selection of the integers m
and n.

1.2.5 The Fast Fourier Transform

As discussed in the preceding section, the DFT pair, relating
the discrete-time function f(mΔt) ≡ f(m) and the discrete-
frequency function F(nΔf) ≡ F(n), is denoted as f m

F n where f(m) and F(n) are characterized by the expres-
sions for the DFT. The FFT [11–17], is a special case corre-
sponding to m and n being equal to N as described in the
remainder of this section. In these relationships N is the num-
ber of time samples and is defined as the power of a fixed
radix-r FFT or as the powers of a mixed radix-rj FFT.

*

The fixed radix-2 FFT, with r = 2 and N = 2i, results in the
most processing efficient implementation.

Normalized time (t/T)
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T/(2N + 1)

FIGURE 1.7 The Fourier-series kernel gN(t) (N = 8).

*Mixed radix FFTs provide an efficient method of computing the Fourier
transform when the number of samples is not a power of r. In general,
N = r1 i1 r2 i2… and the radices of the FFT are determined as the prime factors
of N. For example, N = 31 = 1∗31 requires a single radix = 31 FFT, N = 32 =
2∗2∗2∗2∗2 requires a radix-2 FFT, and N = 33 = 3∗11 requires a radix-3 and
a radix-11 FFT.
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Defining the time window of the FFT as Tw results in
an implicit periodicity of f(t) such that f(t) = f(t ± kTw)
and Δt = Tw/N. The sampling frequency is defined as
fs = 1 Δt =N Tw and, based on Shannon’s sampling theo-
rem, the periodicity does not pose a practical problem as
long as the signal bandwidth is completely contained in
the interval |B| ≤ fs/2 = N/(2Tw). Since the FFT results in
an equal number of time and frequency domain samples, that
is,Δf = fs/N andΔt = Tw/N, it follows thatΔfΔt = fs Tw/N

2 = 1/
N. Normalizing the expression of the time function, f(m), in
(1.56), that is, multiplying the inverse DFT (IDFT) by Δt
requires dividing the expression for F(n) by Δt. Upon substi-
tuting these results into (1.56), the FFT transform pairs
become

F n =
N−1

m= 0

f m e− j2πnm N f m =
1
N

N−1

n = 0

F n ej2πnm N

FFT

(1.57)

The time and frequency domain sampling characteristics
of the FFT are shown in Figure 1.8. This depiction focuses
on a communication system example, in that, the time sam-
ples over the FFT window interval Tw are subdivided into
Nsym symbol intervals of duration T seconds with Ns sam-
ples/symbol.

Typically the bandwidth of the modulated waveform is
taken to be the reciprocal of the symbol duration, that is, 1/
THz; however, the receiver bandwidth required for low sym-
bol distortion is typically several times greater than 1/T
depending upon the type of modulation. Referring to
Figure 1.8 the sampling frequency is fs = 1/Δt, the sampling
interval is Δt = T/Ns, the size of the FFT is Nfft = NsNsym, and
the frequency sampling increment is Δf = fs/Nfft. Upon using
these relationships, the frequency resolution, or frequency
samples per symbol bandwidth B = 1/T, is found to be

B

Δf
=Nsym determines frequency resolution (1.58)

and the number of spectral sidelobes* or symbol bandwidths
over the sampling frequency range is

fs
B
=Ns determines spectral sidelobes (1.59)

Therefore, to increase the resolution of the sampled signal
spectrum, the number of symbols must be increased and this

is comparable to increasing Tw. On the other hand, to increase
the number of signal sidelobes contained in the frequency
spectrum the number of samples per symbol must be
increased and this is comparable to decreasing Δt. Both of
these conditions require increasing the size (N) of the FFT.
However, for a given size, the FFT does not allow independ-
ent selection of the frequency and time resolution as
determined, respectively, by (1.58) and (1.59). This can be
accomplished by using the DFT as discussed in
Section 1.2.4. Since the spectrum samples in the range 0 ≤
f < fs/2 represent the positive frequency signal spectrum
and those over the range fs/2 ≤ f < fs represent the negative
frequency signal spectrum, the range of signal sidelobes of
interest is ±fs/(2B) = ±Ns/2. As a practical matter, if the signal
carrier frequency is not zero then the sampling frequency
must be increased to maintain the signal sidelobes aliasing
criterion. The sampling frequency selection is discussed in
Chapter 11 in the context of signal acquisition when the
received signal frequency is estimated based on locally
known conditions.

The following implementation of the FFT is based on the
Cooley and Tukey [18] decimation-in-time algorithm as
described by Brigham and Morrow [19] and Brigham [20].
Although (1.57) characterizes the FFT transform pairs, the
real innovation leading to the fast transformation is realized
by the efficient algorithms used to execute the transforma-
tion. Considering the radix-2 FFT with N = 2n, this involves
defining the constant

W ≜ e− j2π N (1.60)

and recognizing that

F n =Δt
N−1

m= 0

f m Wnm (1.61)

Equation (1.61) can be expressed in matrix form, using
N = 4 for simplicity, as

Nsym : symbols / window (Tw)
Ns : samples / symbol (T)

…

0 3T2T

f(mΔt)

Δt
Tw =

NsymT

t
…

(a)

T
f

(b)

…

F(nΔf )

Δf
fs / 2 fs =

Nfft Δf
0 1/T

Ns : bandwidths / frequency ( fs)
Nsym : samples / bandwidth (B)

Bandlimited sampled spectrum
( f = nΔf )

 Time sampled waveform
(t = mΔt)

FIGURE 1.8 FFT time and frequency domain sampling.

*These results are based on the underlying rect(t/T) window and the sinc(fT)
frequency function that includes the principal lobe and the positive and neg-
ative spectral side lobes.
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F 0

F 1

F 2

F 3

=Δt

W0 W0 W0 W0

W0 W1 W2 W3

W0 W2 W4 W6

W0 W3 W6 W9

f 0

f 1

f 2

f 3

(1.62)

Recognizing that W0 = 1 and the exponent nm is modulo
(N), upon factoring the matrix in (1.62) into the product of
two submatrices (in general the product of log2N subma-
trices) leads to the implementation involving the minimum
number of computations expressed as

F 0

F 2

F 1

F 3

=Δt

1 W0 0 0

1 W2 0 0

0 0 1 W1

0 0 1 W3

1 0 W0 0

0 1 0 W2

1 0 W2 0

0 1 0 W2

f 0

f 1

f 2

f 3

(1.63)

The simplifications result in the outputs F(2) and F(1)
being scrambled and the unscrambling to the natural-number
ordering simply involves reversing the binary number
equivalents, that is, with F (1) = F(2) and F (2) = F (1); there-
fore, the unscrambling is accomplished as F(1) = F (01) =
F (2) = F (10) and F (2) = F (10) = F (1) = F (01). The
radix-2 with N = 4 FFT, described by (1.63), is implemented
as shown in the diagram of Figure 1.9.

The inverse FFT (IFFT) is implemented by changing the
sign of the exponent ofW in (1.60), interchanging the roles of
F(n) and f(m), as described earlier, and replacing Δt by Δf.

Recognizing that ΔtΔf = 1/N, it is a common practice not
to weight the FFT but to weight the IFFT by 1/N as indicated
in (1.57). The number of complex multiplication is deter-
mined from (1.63) by recognizing that W2 = −W0 and not
counting previous products like W0f(2) from row 1 and
W2f(2) = −W0f(0) from row 3 in the first matrix multiplication
on the rhs of (1.63). For the commonly used radix-2 FFT, the
number of complex multiplications is (N/2)log2(N) and the
number of complex additions is Nlog2(N). By comparison,
the number of complex multiplications and additions in the
direct Fourier transform are N2 and N(N − 1), respectively.
These computational advantages are enormous for even mod-
est transform sizes.

1.2.5.1 The Pipeline FFT The FFT algorithm discussed
in the preceding section involves decimation-in-time proces-
sing and requires collecting an entire block of time-sampled
data prior to performing the Fourier transform. In contrast,
the pipeline FFT [21] processes the sampled data sequentially
and outputs a complete Fourier transform of the stored data at
each sample. The implementation of a radix-2, N = 8-point
pipeline FFT is shown in Figure 1.10. The pipeline FFT
inherently scrambles the outputs F (n) and the unscrambled
outputs are not shown in the figure; the unscrambling is
accomplished by simply reversing the order of the binary
representation of the output locations, n, as described in
the preceding section.

In general, the number of complex multiplications for a
complete transform is (N/2)(N − 1). In Chapter 11 the pipeline
FFT is applied in the acquisition of a waveform where a

F′(3)

F′(2)

F′(1)

F′(0)

F(3)

F(2)

F(1)

F(0)

W 1

W 0

W 2

W 2

W 2

W 3

W 0

W 0

1

1

11

1

1

11

f(2)

f(3)

f(1)

f(0)

Ts

Ts

Ts Unscramble

Sampled
data

FIGURE 1.9 Radix-2, N = 4-point FFT implementation tree diagram.
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complete N-point FFT output is not required at every sample.
For example, if the complete N-point FFT is only required at
sample intervals of NsTs, the number of complex multiplica-
tions can be significantly reduced (see Problem 10). The
pipeline FFT can be used to interpolate between the
fundamental frequency cells by appending zeros to the data
samples and appropriately increasing the size of the FFT;
it can also be used with data samples requiring mixed radix
processing. The pipeline FFT is applicable to radar and sonar
signal detection processing [21] using a variety of spectral
shaping windows; however, the intrinsic rect(t/T) FFT win-
dow is nearly matched for the detection of orthogonally
spaced M-ary FSK modulated frequency tones.

1.2.6 The FFT as a Detection Filter

The pipeline Fourier transform is made up of a cascade of
transversal filter building blocks shown in Figure 1.10. The
transfer function of this building block is

Ti s =
eo s

ei s

=Wi + e
−skiTs

(1.64)

The overall transfer function from the input to a particular
output is evaluated as

Sampled
data
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F′(0)

F′(1)

F′(2)

F′(3)

F′(4)

F′(5)

F′(7)

F′(6)

f(m)

W3

W1

W2

W2

W0
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W0 Ts
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Ts

Ts

2Ts

2Ts

4Ts

FIGURE 1.10 Radix-2, N = 8-point pipeline FFT implementation tree diagram.

12 MATHEMATICAL BACKGROUND AND ANALYSIS TECHNIQUES



Tℓ s =
eℓ s

ei s

=
k

i= 1

Wℓ, i + e
−skiTs

(1.65)

where k = log2(N) and ki = 2i − 1, i = 1, …, k. The complex
weights are given by

Wℓ, i = e
− jϕℓ, i (1.66)

where

ϕℓ, i =
2πℓi
N

(1.67)

Substitution of Wℓ,i into (1.65) results in

Tℓ s = e− jΦℓ

N−1

k = 0

e−k sTs − jϕℓ (1.68)

where

Φℓ =
k

i= 1

ϕℓ, i (1.69)

This transfer function is expressed in terms of a
magnitude and phase functions in ω by substituting s = jω
with the result

Tℓ ω =
sin N ωTs−ϕℓ,k 2

sin ωTs−ϕℓ,k 2
e− jΦℓ e− j N−1 ωTs 2 (1.70)

where

Φ
ℓ
=Φℓ − N−1 ϕℓ,k 2 (1.71)

Therefore, the FFT forms N filters, ℓ = 0,…,N−1 each
having a maximum response Tℓ ω max =N that occurs at
the frequencies ω=ϕℓ,k Ts. As N increases these transfer
functions result in the response

Tℓ ω =N
sin N ωTs−ϕℓ,k 2

N ωTs−ϕℓ,k 2
e− jΦℓ e− j N−1 ωTs 2 N ∞

(1.72)

The magnitude of (1.72) is the sinc(x) function associated
with the uniformly weighted envelope modulation function
and, therefore, the FFT filter functions as a matched de-
tection filter for these forms ofmodulations. Examples of these
modulated waveforms are binary phase shift keying (BPSK),
quadrature phase shift keying (QPSK), offset quadrature phase
shift keying (OQPSK), andM-ary FSK.

The FFT detection filter loss relative to the ideal
matched filter is examined as N increases. The input signal
is expressed as

s t = 2Pcos ωct−ϕ rect
t

T
(1.73)

and the corresponding signal spectrum for positive frequen-
cies with ωc 2π/T is

S ω =
T

2
sin ω−ωc T 2

ω−ωc T 2
e− jϕ (1.74)

The matched filter for the optimum detection of s(t) in
additive white noise with spectral density No is defined as

H ω =KS∗ ω e− jωTo (1.75)

where K is an arbitrary scale factor and To is an arbitrary
delay influencing the causality of the filter. By letting
K = 2N 2P T , ϕ = −Φ

ℓ
, To = (N − 1)Ts/2, and ωc = ϕℓ,n

Ts it is seen that the FFT approaches a matched filter as N
increases.

The question of how closely the FFT approximates a
matched filter detector is examined in terms of the loss in sig-
nal-to-noise ratio. The filter loss is expressed in dB as

ρ = 10log10
SNRo

SNRo opt

(1.76)

where (SNRo)opt = 2E/No is the signal-to-noise ratio out of the
matched filter and E is the signal energy. The signal-to-noise
ratio out of the FFT filter is expressed in terms of the peak
signal output of the detection filter and the output noise
power as

SNRo =
gℓ t max 2

NoBn
(1.77)

where Bn is the detection filter noise bandwidth. For conven-
ience the zero-frequency FFT filter output is considered, that
is, for ℓ = 0, and letting the signal phase ϕ = 0, the response of
interest is

To ω =
sin NωTs 2
sin ωTs 2

(1.78)

and, from (1.74),

S ω =
T

2
sin ωT 2
ωT 2

(1.79)
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To evaluate SNRo at the output of the FFT filter, go(t)max
and Bn are computed as

go t max =
1

2πN

∞

−∞

To ω S ω dω

=
1

2πN

π Ts

0

sin ωT 2 sin NωTs 2
ωT 2 sin ωTs 2

dω

(1.80)

and

Bn =
1
2π

∞

−∞

To ω 2dω

To 0 2

=
1
πN

π Ts

0

sin2 NωTo 2

sin2 ωTo 2
dω

=
1

2NTs

(1.81)

Substituting these results into (1.77) and using (1.76), the
parameter ρ is evaluated as

ρ = 20log
2
Nπ

π 2

0

sin2 Nx

xsin x
dx dB (1.82)

Equation (1.82) is evaluated numerically for several
values of N and the results are tabulated in Table 1.2. These
results indicate, for example, that detecting an 8-ary
FSK-modulated waveform with orthogonal tone spacing
using an N = 8-point FFT results in a performance loss of
0.116 dB relative to an ideal matched filter.

1.2.7 Interpolation Using the FFT

When an FFT is performed on a uniformly weighted set of
N data samples a set of N sinc(fTw) orthogonal filters is gen-
erated where Tw = NTs is the sampled data window and Ts is

the sampling interval. The N filters span the frequency range
fs = 1/Ts and provide N frequency estimates that are separated
by Δf = fs/N Hz. Frequency interpolation is achieved if the
FFT window is padded by adding nN zero-samples, thereby
increasing the window by nNTs seconds. In this case, a set of
(n + 1)N sinc(fTw) filters spanning the frequency fs is gener-
ated that provides n-point interpolation between each of
the original N filters.

The FFT can also be used to interpolate between time
samples. For example, consider a sampled time function
characterized by N samples over the interval Tw = NTs where
Ts is the sampling interval. The corresponding N-point FFT
has N filters separated by Δf = fs/N where fs = 1/Ts. If nN
zero-frequency samples are inserted between frequency sam-
ples N/2 and N/2 + 1 and the IFFT is taken on the resulting
(n + 1)N samples, the resulting time function contains n inter-
polation samples between each of the original N time sam-
ples. These interpolations methods increase the size of the
FFT or IFFT and thereby the computational complexity.

1.2.8 Spectral Estimation Using the FFT

Many applications involve the characterization of the PSD of
a finite sequence of random data. A random data sequence
represents a stochastic process, for which, the PSD is defined
as the Fourier transform of the autocorrelation function of the
sequence. If the random process is such that the statistical
averages formed among independent stochastic process are
equal to the time averages of the sequences, then the Fourier
transform will converge in some sense* to the true PSD,
S2(ω); however, this typically requires very long sequences
that are seldom available. Furthermore, the classical
approach, using the Fourier transform of the autocorrelation
function, is processing intense and time consuming, requiring
long data sequences to yield an accurate representation to the
PSD. Amuch simpler approach, analyzed by Oppenheim and
Schafer [22], is to recognize that the Fourier transform of a
relatively short data sequence x(n) of N samples is

X ejω =
N−1

n= 0

x n e− jωn (1.83)

and, defining the Fourier transform of the autocorrelation
function Cxx(m) of x(n) as the periodogram

IN ω =
N−1

m= − N−1

Cxx m e− jωm

=
1
N

X ejω
2

(1.84)

TABLE 1.2 N-ary FSK Waveform
Detection Loss Using anN-Point FFT
Detection Filter

N ρ (dB)

2 0.452
3 0.236
8 0.116
16 0.053

*These are referred to as ergodic process and, under some circumstances,
converge to the mean of the stochastic process.
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However, the periodogram is not a consistent estimate* of
the true PSD, having a large variance about the true values
resulting in wild fluctuations. Oppenheim and Schafer then
show that Bartlett’s procedure [10, 23] of averaging period-
ograms of independent data sequences results in a consistent
estimate and, if K periodograms are averaged, the resulting
variance is decreased by K. In this case, the PSD estimate
is evaluated as

S2xx =
1
K

K

i= 1

I i
N ω (1.85)

Oppenheim and Schafer also discuss the application
of windows to the periodograms and Welch [17] describes a
procedure involving the averaging of modified periodograms.

1.2.9 Fourier Transform Properties

The following Fourier transform properties are based on the
transform pairs x t S f and y t Y f where x(t) and
y(t) may be real or complex.

1.2.9.1 Linearity

ax t + by t aX f + bY f (1.86)

1.2.9.2 Translation

x t−τ X f e− j2πf τ (1.87)

and

X f − fo x t e− j2πfot (1.88)

1.2.9.3 Conjugation

x∗ t X∗ − f (1.89)

and

X∗ f x∗ − t (1.90)

1.2.9.4 Differentiation With z t ≜ dnx t dtn and Z f
≜ dnX f df n then

z t j2πf nX f (1.91)

and

Z f − j2πt nx t (1.92)

1.2.9.5 Integration Defining z t ≜
t

−∞
…

τ1

−∞
x τ

dτ…dτn and Z f ≜
f

−∞
…

f1

−∞
Z f df…dfn then

z t X f
δ t

2
+

1
j2πf n (1.93)

and

Z f x t
δ t

2
+

1
− j2πt n (1.94)

1.2.10 Fourier Transform Relationships

The following Fourier transform relationships are based on
the transform pairs x t X f and y t Y f where
x(t) and y(t) may be real or complex.

1.2.10.1 Convolution Defining the Fourier transforms
z t X f Y∗ f and Z f x t y∗ t then

z t =
∞

−∞
x t−τ y∗ τ dτ =

∞

−∞
x τ y∗ t−τ dτ (1.95)

and

Z f =
∞

−∞
X f − f y∗ f df =

∞

−∞
X f Y∗ f − f df (1.96)

1.2.10.2 Integral of Product (Parseval’s Theorem)

∞

−∞
x t y∗ t dt =

∞

−∞
X f Y∗ f df (1.97)

Letting y(t) = x(t) results in Parseval’s Theorem that
equates the signal energy in the time and frequency
domains as

∞

−∞
x t 2dt =

∞

−∞
X f 2df Parseval’s theorem

(1.98)
*A consistent estimate is one in which the variance about the true value and
the bias approaches zero as N increases.
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1.2.11 Summary of Some Fourier Transform Pairs

Some often used transform relationships are listed in
Table 1.3.

1.3 PULSE DISTORTION WITH IDEAL
FILTER MODELS

In this section the distortion is examined for an isolated base-
band pulse after passing through an ideal filter with uniquely
prescribed amplitude and phase responses. In radar applica-
tions isolated pulse response leads to a loss in range resolu-
tion; however, in communication application, where the
pulse is representative of a contiguous sequence of informa-
tion-modulated symbols, the pulse distortion leads to inter-
symbol interference (ISI) that degrades the information
exchange. The following two examples use the baseband
pulse, or symbol, as characterized in the time and frequency
domains by the familiar functions

s t = rect
t

T
S f =Tsinc fT (1.99)

1.3.1 Ideal Amplitude and Zero Phase Filter

In this example, the filter is characterized in the frequency
domain as having a constant unit amplitude over the band-
width f ≤ |B| with zero amplitude otherwise and a zero phase
function. Using the previous notation the filter is character-
ized in the frequency and time domains as

H f = rect
f

2B
h t = 2Bsinc 2Bt (1.100)

The frequency characteristics of the signal and filter are
shown in Figure 1.11.

TABLE 1.3 Fourier Transforms for f(t) F(f)

Waveform f(t) Spectrum F(f)

1 δ(f)

f(t − τ) F(f)exp(−j2πfτ)

f t ej2πfot f f − fo

δ(t)
1
2π

ejω tdt = 1

δ(t − τ) exp(−j2πfτ)

f(at) (1/a)F(f/a)

ej2π fot δ f − fo

cos(2πfot)
1
2

δ f + fo + δ f − fo

sin(2π fot)
j

2
δ f + fo −δ f − fo

∞

n= −∞
δ t−nτ

1
τ

∞

n= −∞
e− j2πnf τ =

1
τ

∞

n= −∞
δ f −

n

τ

dnf t

dtn
(j2πf)nF(f)

− j2πt nf t dnF f

df n

t

−∞
f ξ dξ 1 2 δ f + 1 jπf F f

1 2 δ t −1 jπt s t
f

−∞
F λ dλ

e− t a 2 2 2πae− 2πfa 2 2

f(t) = x(t) y(t) X(f)*Y(f) = X f −λ Y λ dλ

f(t) = x(t)*y(t) F(f) = X(f) Y(f)

u t =
1 t ≥ 0

0 o w
U f =

1
2

δ f +
1
jπf

u t−τ =
1 t−τ ≥ 0

0 o w
U(f)exp(−j2πfτ)

sgn t = 2u t −1

=
1 t > 0

−1 t < 0

a

sgn f =
1
jπf

sgn t =
1
jπt

sgn f = 2u f −1

rect
t

T
= 1 t <

T

2

= 0 o w

Tsinc(fT)b

sinc(2t/T) T

2
rect

fT

2
= 1 f <

1
T

= 0 o w

*Denotes convolution.
aThe signum function sgn(x) is also denoted as signum(x).
bWoodward [24].

–B B

0

0

… … f

T

–2/T –1/T 1/T 2/T

S(f)

f

1
H(f)

FIGURE 1.11 Ideal signal and filter spectrums.
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The easiest way to evaluate the filter response to a pulse
input signal is by convolving the functions as

g t =
∞

−∞
h τ s τ− t dτ

= 2B
∞

−∞
sinc 2Bτ rect

τ− t

T
dτ

(1.101)

The rect(•) function determines the integration limits
with the upper and lower limits evaluated for τ when the
argument equals ±½, respectively. This evaluation leads to
the integration

g t = 2B
t + T 2

t−T 2

sin 2πBτ
2πBτ

dτ (1.102)

Equation (1.102) is evaluated in terms of the sine
integral [25]

Si y =
y

0

sin x

x
dx (1.103)

resulting in the filter output g(t) expressed as

g t =
1
π
Si 2πB t +T 2 −

1
π
Si 2πB t−T 2 (1.104)

Defining the normalized variable y = t/T and the parameter
ρ = BT, Equation (1.104) is expressed as

g y =
1
π
Si 2πρ y+ 1 2 −

1
π
Si 2πρ y−1 2 (1.105)

Equation (1.105) is plotted in Figure 1.12 for several
values of the time-bandwidth (BT) parameter. Range resolu-
tion is proportional to bandwidth and the increased rise time

or smearing of the pulse edges with decreasing bandwidth is
evident. The ISI that degrades the performance of a commu-
nication system results from the symbol energy that occurs in
adjacent symbols due to the filtering.

This analysis considers only the pulse distortion caused by
constant amplitude filter response and, as will be seen in the
following section, filter amplitude ripple and nonlinear phase
functions also result in additional signal distortion. If the filter
were to exhibit a linear phase functionϕ(f) = −2πfTowhere To
represents a constant time delay, then, referring to Table 1.3,
the output is simply delayed by Towithout any additional dis-
tortion. If To is sufficiently large, the filter can be viewed as a
causal filter, that is, no output is produced before the input
signal is applied.

1.3.2 Nonideal Amplitude and Phase Filters: Paired
Echo Analysis

In this section the pulse distortion caused by a filter with
prescribed amplitude and phase functions is examined using
the analysis technique of paired echoes [26]. A practical
application of paired echo analysis occurred when a modem
production line was stopped at considerable expense due to
noncompliance of the bit-error test involving a few tenths
of a decibel. The required confidence level of the bit-error
performance under various IF filter conditions precluded
the use of Monte Carlo simulations; however, much to the
pleasure of management, the paired echo analysis was suc-
cessfully applied to identify the cause of the subtle filter dis-
tortion losses.

Consider a filter with amplitude and phase functions
expressed as

H f =A f e− jϕ f rect
f

2B
(1.106)

where the amplitude and phase fluctuations with frequency
are expressed as

A f = 1 + asin 2πf τa (1.107)

and

ϕ f = 2πfTo + bsin 2πf τb (1.108)

The parameters a and τa represent the amplitude and
period of the amplitude ripple and b and τb represent the
amplitude and period of the phase ripple. Using these func-
tions in (1.106) and separating the constant delay term invol-
ving To, results in the filter function

H f = 1+ acos 2πf τa e− jbsin 2πf τb rect
f

2B
e− j2πfTo

(1.109)
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FIGURE 1.12 Ideal band-limited pulse response (constant-
amplitude, zero-phase filter).
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Equation (1.109) is simplified by using the trigonometric
identity

cos 2πf τa =
1
2

e− j2πf τa + ej2πf τa (1.110)

and the Bessel function identity [27]

e− jbsin 2πf τb =
∞

n = −∞
Jn −b ej2πnf τb

= Jo b + J1 b e− j2πf τb −ej2πf τb +O2 ± n

(1.111)*

In arriving at the last expression in (1.111), the following
identities were used

Jn −b = J−n −b = −1 nJn b (1.112)

Upon substituting (1.110) and (1.111) into (1.109), and
performing the multiplications to obtain additive terms repre-
senting unique delays results in the filter frequency response

H f = J0 b e− j2πfTo +
a

2
J0 b e− j2πf To + τa

+
a

2
J0 b e− j2πf To −τa + J1 b e− j2πf To + τb

+
a

2
J1 b e− j2πf To + τa + τb +

a

2
J1 b e− j2πf To −τa + τb

−J1 b e− j2πf To −τb −
a

2
J1 b e− j2πf To + τa −τb

−
a

2
J1 b e− j2πf To −τa −τb

rect
f

2B
+ higher order filter terms involving Jn b

(1.113)

Upon performing the inverse Fourier transform of each
term in (1.113), the filter impulse response, h(t), becomes a
summation of weighted and delayed sinc(x) functions of
the form 2BKsinc(2B(t − Td)) where K and Td are the ampli-
tude and delay associated with each of the terms. Performing
the convolution indicated by the first equality in (1.101), that
is, for an arbitrary signal s(t), the ideally filtered response g(t)
is expressed as

g t = 2B
∞

−∞
sinc 2Bτ s τ− t dτ (1.114)

When g(t) is passed through the filter H(f) with amplitude
and phase described, respectively, by (1.107) and (1.108), the
distorted output go(t) is evaluated as

go t = J0 b g t−To +
a

2
J0 b g t−To−τa

+
a

2
J0 b g t−To + τa + J1 b g t−To−τb

+
a

2
J1 b g t−To−τa−τb +

a

2
J1 b g t−To + τa−τb

−J1 b g t−To + τb −
a

2
J1 b g t−To−τa + τb

−
a

2
J1 b g t−To + τa + τb

(1.115)

If the input signal is described by the rect(t/T) function,
then g(t) is the response expressed by (1.104) and depicted
in Figure 1.12. The distortion terms appear as paired echoes
of the filtered input signal and Figure 1.13 shows the relative
delay and amplitude of each echo of the filtered output g(t).
For b << 1 the approximations J0(b) = 1.0 and J1(b) = b/2
apply and when a = b = 0 the filter response is simply the

Amplitude distortion terms

t
To + τaTo – τa

aJo(b)/2 aJo(b)/2

Jo(b)

To

t
To + τbTo

To + τa – τb
To – τa – τb

To + τa + τb
To – τa + τb

To

To – τb

J1(b)

J1(b)

Phase distortion terms

aJ1(b)/2

aJ1(b)/2

t

Joint amplitude and phase distortion terms

(a)

(b)

(c)

FIGURE 1.13 Location of amplitude and phase distortion paired
echoes relative to delay To.

*The notation O2(±n) refers to higher order terms involving |n| ≥ 2. These
terms can be neglected for small values of b, that is, b < 0.2.
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delayed but undistorted replica of the input signal, that is,
go(t) = g(t − To). More complex filter amplitude and phase
distortion functions can be synthesized by applying Fourier
series expansions that yield paired echoes that can be viewed
as noisy interference terms that degrade the system perfor-
mance; however, the analysis soon becomes unwieldy so
computer simulation of the echo amplitudes and delays must
be undertaken.

1.3.3 Example of Delay Distortion Loss Using
Paired Echoes

The evaluation of the signal-to-interference ratio resulting
from the delay distortion of a filter is examined using paired
echo analysis. The objective is to examine the distortion
resulting from a specification of the filters peak phase error
and group delay within the filter bandwidth. The filter phase
response is characterized as

ϕ f = 2π fTo−ϕo sin 2πf τ (1.116)

where To is the filter delay resulting from the linear phase
term, ϕo is the peak phase deviation from linearity over the
filter bandwidth, and τ is the period of the sinusoidal phase
distortion function. The linear phase term introduces the filter
delay To that does not result in signal distortion; however, the
sinusoidal phase term does cause signal distortion. In this
example, the phase deviation over the filter bandwidth is
specified parametrically as ϕo(deg) = 3 and 7 . The parameter
τ is chosen to satisfy the peak delay distortion defined as

Td f = −
∂ϕ f

2π∂f

= τϕo cos 2πf τ

(1.117)

where ϕo is in radians. The peak delay, evaluated for fτ = 0,
is specified as Td = 34 and 100 ns and, using (1.117), the
period of the sinusoidal phase function, τ = Td/ϕo, is tabu-
lated in Table 1.4 for the corresponding peak phase errors
and peak delay specification. Practical maximum limits of
the group delay normalized by the symbol rate, Rs, are also
specified.

Considering an ideal unit gain filter with amplitude
response of A(ω) = 1, the filter transfer function is ex-
pressed as

H f = e− jϕ f

= e− j2π fToejϕo sin 2π f τ

= e− j2π fTo
∞

n= −∞
Jn ϕo ejnπ f τ

(1.118)

Upon taking the inverse Fourier transform of (1.118), the
filter impulse response is evaluated as

g t = Jo ϕo δ t−To

+
∞

n= 1

Jn ϕo δ t−To + nτ 2 −δ t−To−nτ 2

(1.119)

The parameter τ determines the delay spread of all the
interfering terms; however, for small arguments the interfer-
ence is dominated by the J1(ϕo) term and the signal-to-
interference ratio is defined as

γi = 20log
J1 ϕo

Jo ϕo
(1.120)

For ϕo(deg) = 3 and 7 , the respective signal-to-inter-
ference ratios are 32 and 24.3 dB and under these
conditions, a 10 dB filter input signal-to-noise ratio results
in the output signal-to-noise ratio degraded by 0.02 and
0.17 dB, respectively.

1.4 CORRELATION PROCESSING

Signal correlation is an important aspect of signal processing
that is used to characterize various channel temporal and
spectral properties, for example, multipath delay and fre-
quency dispersion profiles. The correlation can be performed
as a time-averaged autocorrelation or a time-averaged cross-
correlation between two different signals. Frequency domain,
autocorrelation, and cross-correlation are performed using fre-
quency offsets rather than time delays. The Doppler and multi-
path profiles are characteristics of the channel that are typically
based on correlations involving statistical expectations as
opposed to time-averaged correlations that are applied to deter-
ministic signal waveforms and linear time-invariant channels.
The following discussion focuses on the correlation of deter-
ministic waveforms and linear time-invariant channels.

The autocorrelationof the complex signal x t is defined as*

Rxx τ ≜
∞

−∞
x t x∗ t−τ dt =

∞

−∞
x t + τ x∗ t dt (1.121)

TABLE 1.4 Values of τ for the Phase and Delay Specifications

ϕo(deg) Td(ns) τ(ns) Tg/Rs
a

3 34 649 ±0.15
7 100 818

aNormalized group delay over filter bandwidth.

*The asterisk denotes complex conjugation. The double subscripts on Rxx(τ)
are not always included for the autocorrelation notation; however, they are
important when describing the cross-correlation response.
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The autocorrelation function implicitly contains the mean
value of the signal and the autocovariance is evaluated, by
removing the mean value, as

Cxx τ =

∞

−∞

x t −mx x t−τ −mx
∗dt

=Rxx τ − mx
2

(1.122)

where mx =mxc + jmxs is the complex mean of the signal x t .
The cross-correlation of the complex signals x t and y(t) is
defined as

Rxy τ ≜
∞

−∞
x t y∗ t−τ dt =

∞

−∞
x t + τ y∗ t dt (1.123)

Similarly, the corresponding cross-covariance is evalu-
ated as

Cxy τ =
∞

−∞
x t −mx y t−τ −my

∗
dt

=Rxy τ −mxm
∗
y

(1.124)

The properties of various correlation functions applied to
complex and real valued functions are summarized in
Table 1.5. The properties of correlation functions are also
discussed in Section 1.5.9 in the context of stochastic
processes.

1.5 RANDOM VARIABLES AND PROBABILITY

This section contains a brief introduction to random variables
and probability [6, 8, 28–30].A randomvariable is described in
the context of Figure 1.14 in which an event χ in the space S is
mapped to the real number x characterized as X(χ) = x or f(x) :
xa ≤ x ≤ xb. The function X(χ) is defined as a random variable

which assigns the real number x or f(x) to each event χ S.* The
limits [xa, xb] of the mapping are dependent upon the physical
nature or definition of the event space. The second depiction
shown in Figure 1.14 comprises disjoint, or nonintersecting,
subspaces, such that, for i j the intersection Si Sj = Ø is
the null space. Each subspace possesses a unique mapping
x|Sj conditioned on the subspace Sj : j = 1, …, J. The union
of subspaces is denoted as Si Sj. This is an important distinc-
tion since each subspace can be analyzed in a manner similar
to the mapping of χ S. The three basic forms of the
random variable X are continuous, discrete, and a mixture of
continuous and discrete random variables as distinguished
in the following sections.

1.5.1 Probability and Cumulative Distribution and
Probability Density Functions

The mathematical description [6, 8, 24, 28, 30–32] of the ran-
dom variable X resulting from the mapping X(χ) given the
random event χ S is based on the statistical properties of
the random event characterized by the probability P({X ≤
x}) where {X ≤ x} denotes all of the events X(χ) in S. For
continuous random variables P(X = x) = 0. The probability
function P(Xi Si) satisfies the following axioms:

A1. P(X(χ) S) ≥ 0

A2. P({X(χ) S}) = 1

A3. If P(Si Sj) = Ø i j then P S1 ,…,SJ =
J

j= 1
P Sj

AxiomA3 applies for infinite event spaces by letting J =∞.
Several corollaries resulting from these axioms are as follows:

C1. P(χc) = 1 − P(χ) where χc is the complement of χ
such that χc χ = Ø

C2. P(χ) ≤ 1

C3. P(χi χj) = P(χi) + P(χj) − P(χi χj)

C4. If P(Ø) = 0

The cumulative distribution function (cdf) of the variable
X is defined in terms of the value of x on the real line as

FX x ≜P X ≤ x −∞ < x< ∞ , cumulative

distribution function
(1.125)

TABLE 1.5 Properties of Correlation Functions

Property Comments

Rxx −τ =R∗
xx τ

Cxx −τ =Rxx τ − mx
2

Rxx −τ =Rxx τ x : real

Cxx −τ =Rxx τ −m2
x x : real

Rxy −τ =R∗
yx τ

Cxy τ =Rxy τ −mxm∗
y

Cxy τ =Rxy τ −mxmy x,y : real

Rzz τ =Rxx τ +Ryy τ +Rxy τ +Ryx τ z = x+ y

*A particular outcome x = f(x) is a random variable resulting from the map-
ping X(χ) onto the real line; however, X(χ) is also referred to as a random
variable. Wozencraft and Jacobs (Reference 30, p. 39) point out that this
nomenclature stems from practical applications and is somewhat misleading.
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where FX(x) has the following properties:

P1. 0 ≤ FX(x) ≤ 1

P2. In the limit as x approaches ∞, FX(x) = 1

P3. In the limit as x approaches −∞, FX(x) = 0

P4. FX(x) is a nondecreasing function of x

P5. In the limit as ε approaches 0, FX(xi) = FX(xi + ε)

P6. The probability in the interval xi < x ≤ xj is: P(xi < x
≤ xj) = FX(xj) – FX(xi)

P7. In the limit as ε approaches 0, the probability of the
event xi is P(xi − ε < x ≤ xi) = FX(xi) − FX(xi − ε).

Property P5 is referred to as being continuous from the
right and is particularly important with discrete random vari-
ables, in that, FX(xi) includes a discrete random variable at xi.
Property P7, for a continuous random variable, states that
P(xi) = 0; however, for a discrete random variable, P(xi) =
pX(xi) where pX(xi) is the probability mass function (pmf)
defined in Section 1.5.1.2.

The probability density function* (pdf) of X is defined as

fX x ≜
dFX x

dx
probability density function (1.126)

The pdf is frequency used to characterize a random vari-
able because, compared to the cdf, it is easier to describe
and visualize the characteristics of the random variable.

1.5.1.1 Continuous Random Variables A random varia-
ble is continuous if the cdf is continuous so that FX(x) can be
expressed by the integral of the pdf. The mapping in
Figure 1.14 results in the continuous real variable x. From
(1.125) and (1.126) it follows that

P X ≤ x =FX x =
x

−∞
fX x dx (1.127)

A frequently encountered and simple example of a
continuous random variable is characterized by the uniformly
distributed pdf shown in Figure 1.15 with the corresponding
cdf and probability function.

From property P7, the probability of X = xi is evaluated as

P X = xi = lim
ε 0

FX xi−ε −FX xi (1.128)

However, for continuous random variables, the limit in
(1.128) is equal to FX(xi) so P(X = xi) = 0; this event is han-
dled as described in Section 1.5.2.

1.5.1.2 Discrete Random Variables The probability
mass function [8, 28, 29] (pmf) of the discrete random vari-
able X is defined in terms of the discrete probabilities on the
real line as

pX xi ≜P X = xi (1.129)

The corresponding cdf is expressed as

FX x =
i

pX xi u x−xi (1.130)

Real line: x 
Real line: x 

X(χ) = x  
χJ χj χ1 

S

xa xbx 

Event space

X(χj) = x|Sj 

χ xbjxaj x|Sj

S = S1
◡S2

◡…SJ

…

Si ◠ Sj = Ø : i ≠ j  

Event space

FIGURE 1.14 Mapping of random variable X(χ) on the real line x.
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(xb – xa)–1

0
x

fX(x)

0
x

1

P(X ≤ x)

xaxa xa xb0
X

(a)

pdf

(b)

cdf  Probability

(c)

FIGURE 1.15 Uniformly distributed continuous random variable.

*The pdf is formally denoted fX(x) and in the notation f(x) the random variable
X is understood by the usage; the notation p(x) is also used to denote the pdf;
however, these notations are sometimes justified by notational simplicity.
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where u(x − xi) is the unit-step function occurring at x = xi and
is defined as

u x−xi ≜
0 u< xi

1 u ≥ xi
(1.131)

Using (1.126), and recognizing that the derivative of u(x −
xi) is the delta function δ(x − xi), the pdf of the discrete ran-
dom variable is expressed as

fX x =
i

pX xi δ x−xi (1.132)

The pmf pX(xi) results in a weighted delta function and,
from (1.130), (1.131), and property P2, the summation must

satisfy the condition
i
pX xi = 1.

The pdf, cdf, and the corresponding probability for the
discrete random variable corresponding to binary data {0,1}
with pmf functions pX(0) = 1/3 and pX(1) = 2/3 are shown
in Figure 1.16. The importance of property P5 is evident in
Figure 1.16, in that, the delta function at x = 1 is included in
the cdf resulting in P(X ≤ 1) = 1. Regarding property P7, the
limit in (1.128) approaches X = xi from the left, corresponding
to the base of the discontinuity, so that P(X = xi) = pX(xi).

1.5.1.3 Mixed Random Variables Mixed random vari-
ables are composed of continuous and discrete random vari-
ables and the following example is a combination of the
continuous and discrete random variables in the examples of
Sections 1.5.1.1 and 1.5.1.2. The major consideration in this

case is the determination of the event pmf for the continuous
(C) and discrete (D) random variables to satisfy property P2.
Considering equal pmfs, such that, pX(S = C) = pX(S = D) =
1/2, the pdf, cdf, and probability are depicted in Figure 1.17.

1.5.2 Definitions and Fundamental Relationships for
Continuous Random Variables

For the continuous random variables X, such that the events X
(χj) Si, the joint cdf is determined by integrating the joint
pdf expressed as

FX1,…,XN x1,…,xN =
x1

−∞

xN

−∞
fX1,…,XN x1 ,…,xN dx1,…,dxN

(1.133)

and, provided that FX1,…,XN x1,…,xN is continuous and
exists, it follows that

fX1,…,XN x1,…,xN =
∂NFX1,…,XN x1,…,xN

∂x1…∂xN
(1.134)

The probability function is then evaluated by integrating
xi over the appropriate regions xi1 < ri ≤ xi2: i = 1,…,N with
the result

P Xr1,…,XrN =
r1 rN

fX1,…,XN x1,…,xN dx1…dxN

(1.135)
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FIGURE 1.16 Discrete binary random variables.

1/6

x

FX(x)

x
1

x

fX(x)

1

1/2

1/6

0

1

1/6

0

P(X ≤ x)

X
1

1

0

(b)

cdf

(a)

pdf

(c)

Probability

1/3
2/3

FIGURE 1.17 Mixed random variables.
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1.5.2.1 Marginal pdf of Continuous Random Variables
The marginal pdf is determined by integrating over the
entire region of all the random variables except for the
desired marginal pdf. For example, the marginal pdf for x1
is evaluated as (see Problem 17)

MX1 x1 =
d

dx1

x1

−∞

∞

−∞

∞

−∞
fX1…XN x1,…,xN dx1,…,dxN

= fX1 x1
∞

−∞

∞

−∞
fX2…XN x2,…,xN dx2,…,dxN

= fX1 x1

(1.136)

The random variables Xi are independent iff the joint cdf
can be expressed as product of the each cdf, that is

FX1,…,XN x1,…,xN =FX1 x1 FX2 x2 FXN xN (1.137)

In addition, if Xi i are jointly continuous, the random
variables are independent if the joint pdf can be expressed
as the product of each pdf as

fX1,…,XN x1,…,xN = fX1 x1 fX2 x2 fXN xN (1.138)

Therefore, the joint pdf of independent random variables
is the same as the product of each marginal pdf computed
sequentially as in (1.136).

The joint cdf of two continuous random variables is
defined as

FX,Y x,y ≜P X ≤ x,Y ≤ y (1.139)

with the following properties,

FX,Y x,∞ =FX x , FX,Y ∞ ,y =FY y , FX,Y ∞ ,∞ = 1

FX,Y x, −∞ = 0, FX,Y −∞ ,y = 0

(1.140)

and the joint pdf is defined as

f X,Y =
∂2

∂x∂y
FX,Y x,y (1.141)

with the following properties,

∞

−∞

∞

−∞
fX,Y x,y dxdy = 1,

∂FX,Y x,y
∂x

=
y

−∞
fX,Y x,y dy ,

∂FX,Y x,y
∂y

=
x

−∞
fX,Y x ,y dx

(1.142)

1.5.2.2 Conditional pdf and cdf of Continuous Random
Variables The conditional pdf is expressed as

fX1…Xi x1,…,xi xi + 1,…,xn =
fX1…Xn x1,…,xn

fXi + 1…Xn xi+ 1,…,xn
(1.143)

and the conditional cdf is evaluated as

FX1…Xi x1,…,xi xi+ 1,…,xn

=

x1

−∞
…

xi

−∞
fX1…Xn x1,…, xi,xi+ 1,…,xn d x1,…,d xi

fXi + 1…Xn xi+ 1,…,xn
(1.144)

A basic rule for removing random variables from the left
and right side of the conditional symbol ( | ) is given by
Papoulis [33]. To remove random variables from the left side
simply integrate each variable xj from −∞ to ∞: j ≤ i. To
remove random variables from the right side, for example,
xj and xk: i + 1 ≤ j,k ≤ n, multiply by the conditional pdfs
of xj and xk with respect to the remaining variables and inte-
grate xj and xk from −∞ to ∞. For example, referring to
(1.143) and considering fX1(x1|x2,x3,x4), eliminating the ran-
dom variables x3 and x4 from the right side is evaluated as

fX1 x1 x2 =
∞

−∞

∞

−∞
fX1 x1 x2,x3,x4 f x3,x4 x2 dx3dx4

(1.145)

The conditional probability of Y S1 given X(χ) = x is
expressed as

P Y S1 X = x =
P Y S1,X = x

P X = x
(1.146)

Since P(X = x) = 0 for the continuous random variable X,
(1.146) is undefined; however, if X and Y are jointly contin-
uous with continuous joint cdfs, as defined in (1.139), then
the conditional cdf of Y, given X, is defined as

FY y X ≤ x ≜
P X ≤ x,Y ≤ y

P X ≤ x
=
FX,Y x,y

FX x
(1.147)

and differentiating (1.147) with respect to y results in

fY y X ≤ x =
∂yFX,Y x,y dy

FX x
=

x

−∞
fX,Y x ,y dx

∞

−∞

x

−∞
fX x ,y dx dy

=
fX,Y x,y

fX x

(1.148)
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If fX(x) 0, the conditional cdf of y, given X = x, is
expressed as [34]

FY y X = x =

y

−∞
fX,Y x,y dy

fX x
(1.149)

and the corresponding conditional pdf is evaluated by differ-
entiating (1.149) with respect to y and is expressed as

fY y X = x =
fX,Y x,y
fX x

=
fX,Y x,y

∞

−∞

fX,Y x,y dy

(1.150)

If X and Y are independent random variables then
fY ,X y,x = fY y fX x and (1.147) and (1.150) become
FY y x =FY y and fY y x = fY y .

Upon rearranging (1.150), the joint pdf of X and Y is
expressed as

fY ,X y,x = fY y x fX x (1.151)

Considering the probability space S1 = SY|X SX, such
that ScX Ø, the probability P(Y SX) is determined by the
total probability law defined as

P Y SX =
SX

SY X

fY y x dy fX x dx

=
SX

P Y SY x fX x dx

(1.152)

In this case, the subspace SX can be examined as if it were a
total probability space obeying the axioms, corollaries, and
properties stated earlier.

1.5.2.3 Expectations of Continuous Random Variables
In general, the k-th moment of the random variable X is
defined as the expectation

E Xk ≜
∞

−∞
xkfX x dx (1.153)

and the k-th central moments are defined as the expectation

E X−mx
k ≜

∞

−∞
x−mx

kfX x dx (1.154)

The mean value mx of X is defined as the expectation

mx ≜E X =
∞

−∞
xfX x dx (1.155)

The second central moment of X is evaluated as

E X−mx
2 ≜

∞

−∞
x−mx

2fX x dx

=E x2 −m2
x

=Var x

(1.156)

where Var[x] is the variance of x. An efficient approach in
evaluating the k-th moments of a random variable, without
performing the integration in (1.153) or (1.155), is based
on the moment theorem as expressed by the moment gener-
ation function (1.241) in Section 1.5.6.

The expectation of the function g(x) is evaluated as

E g X =
∞

−∞
g x fX x dx (1.157)

and the expectation of the function g(X,Y) of two continuous
random variables is

E g X,Y =
∞

−∞

∞

−∞
g x,y fX,Y x,y dxdy (1.158)

The expectation is distributive over summation so that

E X +Y =E X +E Y (1.159)

and

E X + Y 2 =E X2 + 2E XY +E Y2 (1.160)

The following relationships between X and Y apply under
the indicated conditions:

E XY =
E X E Y X and Y are uncorrelated

0 X and Y are orthogonal
(1.161)

From (1.160) and (1.161) it is seen that if X and Y are
uncorrelated random variables they are also orthogonal ran-
dom variables if the mean of either X or Y is zero. The follow-
ing example demonstrates that if two jointly Gaussian
distributed random variables are orthogonal they are also
independent.

The conditional expectation of X given Y is defined as

E X Y =
∞

−∞
xfX x y dx (1.162)

However, if Y is a random variable the function g2(Y) =
E(X|Y) is also a random variable and, using (1.157), the
expectation (1.162) becomes

E g2 Y =E E X Y =
∞

−∞
E x y fY y dy (1.163)
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Papoulis [35] establishes the basic theorem for the condi-
tional expectation of the function g(X,Y) conditioned on
X = x, expressed as the random variable E[g(X,Y)|X = x].
The theorem is:

E E g X,Y X =E g X,Y (1.164)

with the corollary relationship

E g1 X g2 Y =E E g1 X g2 Y X =E g1 X E g2 Y X

(1.165)

Papoulis refers to (1.165) as a powerful formula.

The Bivariate Distribution—An Example of Conditional
Distributions Consider that x1 and x2 are Gaussian random
variables with means m1, m2 and variances σ1, σ2, respec-
tively, with the joint pdf is expressed as [36]

fX1,X2 x1,x2

=

exp −
σ22 x1−m1

2−2σ1σ2ρ x1−m1 x2−m2 + σ21 x2−m2
2

2 σ21 σ
2
2 1−ρ2

2πσ1σ2 1−ρ2

(1.166)

where ρ is the correlation coefficient, such that, |ρ| ≤ 1,
expressed as

ρ=
E x1−m1 x2−m2

σ1σ2
=
E x1x2 −m1m2

σ1σ2
(1.167)

Using (1.150), the distribution of x1 conditioned on x2 is
expressed as

f
X1 X2

x1 x2 =
fX1,X2 x1,x2

fX2 x2

=
1

2π 1−ρ2 σ1
exp −

x1−m1 −ρ σ1 σ2 x2−m2
2

2 σ21 1−ρ2

=
1

2π 1−ρ2 σ1
exp −

x1−m1 −ρ x2−m2
2

2 σ21 1−ρ2
σ2 = σ1

(1.168)

If x1 and x2 are uncorrelated random variables then
E[x1x2] = E[x1]E[x2] and, from (1.167), the correlation
coefficient is zero and (1.168) reduces to the Gaussian distri-
bution of x1 with fX1 X2

x1 x2 = fX1 x1 ρ= 0. Therefore, two

jointly Gaussian distributed random variables are orthogonal
and independent if they are uncorrelated.

Referring to (1.165), the first and second conditional
moments of the second equality in (1.168) are evaluated

using as E[g1(X1)g2(X2)] and E g21 X1 g22 X2 , respectively,
with g1 X1 =X1 and g2 X2 =X2 In the evaluation, the con-
ditional mean of the Gaussian distribution is established
from (1.168) by observation as

E X1 X2 = x2 = ρ
σ1
σ2

x2−ρ
σ1
σ2

m2 +m1 (1.169)

and the desired result is evaluated as

E X2E X1 X2 = x2 =E x2 ρ
σ1
σ2

x2−ρ
σ1
σ2

m2 +m1

= ρ
σ1
σ2

E x22 − ρ
σ1
σ2

m2−m1 E x2

= ρσ1σ2 +m1m2

(1.170)

where E x22 = σ22 +m
2
2 and E x2 =m2. The evaluation of

E g21 X1 g22 X2 is left as an exercise in Problem 12. The
evaluation of (1.169) could have been performed using the
integration in (1.155); however, it is significantly easier
and less prone to error to simply associate the required para-
meters with the known form of the conditional Gaussian
distribution as indicated in (1.168).

With zero-mean random variables X1 and X2, that is, when
m1 = m2 = 0, the second equality in (1.168) results in (see
Papoulis [37])

E X1X2 = ρσ1σ2 zero-mean Gaussain conditional pdf

(1.171)

and

E X2
1X

2
2 =E X2

1 E X2
2 + 2E2 X1X2 (1.172)

The time correlated zero-mean, equal-variance Gaussian
random variables denoted as xi and xi−1 taken at ti = ti−1 +
Δt are characterized, using the last equality in (1.168), as

fXi Xi−1
xi xi−1 =

1

2πσ1 1−ρ2
exp −

xi−ρxi−1
2

2 σ21 1−ρ2

(1.173)

Equation (1.173) is used to model Gaussian fading chan-
nels with the fade duration dependent on Δt and ρ and the
fade depth dependent on σ1.

1.5.3 Definitions and Fundamental Relationships
for Discrete Random Variables

In the following relationships, xi, yi, x, and y are considered
to be discrete random variables corresponding to the
event probabilities PX(xi), PY(yi), PX(x), and PY(y) with the
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corresponding pmfs pZ(z) =PZ(Z = z) : Z = {X,Y}, z = {xi,yi,z,y}
corresponding to the amplitude of the discrete delta functions.
In general, the characterization of discrete random variables is
similar to that of continuous random variables with the integra-
tions replaced by summations and the pdf replaced with
the pmf.

1.5.3.1 Statistical Independence If X(χi) = x with χi S
and the events χi are independent i, then the joint probabil-
ities are expressed as the product

P X1 = x1,…,XN = xN =
N

i= 1

Pi Xi = xi (1.174)

or, in terms of the pmf, pX(xi) = P(X = xi)

pX1
,…,pXN x1,…,xN =

N

i= 1

p
Xi xi (1.175)

If S = S1 S2 such that X(χi) = xiwith χi S1, Y(χj) = yjwith
χj S2 , and the individual mdfs satisfy (1.175), then

P S =
i j

pX,Y xi,yj =
i j

pX xi pY yj

=
i

pX xi
j

pY yj

=P S1 P S2

(1.176)

Therefore, if the joint pmfs are independent, X and Y are
also independent and, from the last equality in (1.176), S1
and S2 are also independent. Consequently, {X,Y} are inde-
pendent iff the pmfs of X and Y can be expressed in the prod-
uct form as in (1.175).

The expectation of x is evaluated as

E X =
∞

−∞
x

i

pX x δ x−xi =
i

xipX xi =
i

xiP X = xi

(1.177)

For the discrete sampled function g(X,Y), the expectation
value is evaluated as

E g X,Y =
i, j

g xi,yj pXY X = xi,Y = yj (1.178)

where the pmf is expressed as pXY xi,yj =P X = xi,Y = yj .

1.5.3.2 Conditional Probability The conditional proba-
bility of X given Y = yj is expressed as

P X = xi Y = yj =
P X = xi,Y = yj

P Y = yj
(1.179)

and, in terms of the conditional pmfs, (1.179) becomes

pX xi yj =
pX,Y xi,yj
pY yj

(1.180)

The pmf behaves like the pdf of continuous random vari-
ables, in that, if the event X(χi) = xi with χi S1, the proba-
bility of X S1 given Y = yj is evaluated as

P X S1 Y = yj =
i

pX xi yj (1.181)

If X and Y are independent (1.180) becomes

pX xi yj =
pX xi pY yj

pY yj
= pX xi (1.182)

1.5.3.3 Bayes Rule Bayes rule is expressed, in terms of
the condition probability, as

P X = xi Y = yj =
P Y = yj xi P X = xi

P Y = yj
(1.183)

and, in terms of probabilities and pmfs, Bayes rule is
expressed as

pX xi yj =
pY yj xi P X = xi

P Y = yj
(1.184)

The probability state transition diagram is shown in
Figure 1.18 for N-dimensional input and output states xi
and yi, respectively. The outputs are completely defined by
the conditional, or transition, probabilities P(yj|xi) and the
input a priori probabilities P(xi). Upon choosing the state
yj, that is, given yj, the a posteriori probability P(xi|yj) is

P(yj)

P(yj|xN)

P(yj|xi)

P(yj|x1)

P(x1)

P(xi)

P(xN)

...

...

FIGURE 1.18 Probability state transition diagram.
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the conditional probability that the input state was xi.
Wozencraft and Jacobs (Reference 30, p. 34) point out that,
“The effect of the transmission [decision] is to alter the
probability of each possible input from its a priori to its a
posteriori value.”

The conditional expectation of X given Y = y is

E X Y =
xi

xipX xi y (1.185)

where the pmf pX(xi|y) = P(X = xi|y).

1.5.4 Functions of Random Variables

Applications involving random variables that are functions of
random variables, that is, z = g(x1,…, xM), require that the
density function fZ(z) be determined given fXm xm : n = 1,
…,M. In the following subsections, the transformation from
fXm xm to fZ(z) is discussed for the relatively easy case invol-
ving functions of one random variables, that is, M = 1. More
complicated cases are also discussed involving functions of
two random variables and M random variables of the form

Z =
M

m = 1
Xm. The following descriptions involve continu-

ous random variables and cases involving discrete and mixed
random variables are discussed in References 6, 8, 29.

1.5.4.1 Functions of One Random Variable In the fol-
lowing description, the mapping of the random variable
X = x is continuous and FX(x) is differentiable at x as in
(1.126), with finite values of fX(x). The transformation from
X to Z can be based on the functional relationships z = g(x) or
x = h(z) with the requirements that P X = ∞ =P Z = ∞ = 1
corresponding to unit areas under each transformation. These
transformations correspond, respectively, to

fZ z =
fX x = h z

dg x dx x= h z

(1.186)

and

fZ z = fX x= h z
dh z

dz
(1.187)

Equations (1.186) and (1.187) require the inverse
relationship

dh z

dz
=

dg x

dx

−1

x = h z

(1.188)

The function z = h(x) typically has a finite number of
solutions xn, corresponding to the roots z = h(x1), h(x2),…,
h(xN) of the transformation and, under these conditions, the

solution to fZ(z) given fX(xn) is determined using the funda-
mental theorem [38, 39],

fZ z =
N

n = 1

fX xn = h zn
dh zn
dzn

=
N

n= 1

fX xn = h zn h zn

(1.189)

where h(zn) corresponds to the transformation of xn expressed
in terms of zn and h zn = dh zn dzn.

As an example, consider a sinusoidal signal z, with con-
stant amplitude a and random phase φ uniformly distributed
between ±π, expressed as

z = asin φ (1.190)

Referring to Figure 1.19, and noting that z= asin φ1 =
asin φ2 , the problem is to determine the pdf fZ(z) using
the two roots of φ1 = h z1 and φ2 = h z2 . Using (1.190),
φ= h z is evaluated as

φ= h z = sin−1 z

a
φ= φ1,φ2 (1.191)

and

h z =
dh z

dz
=

1

a2−z2
φ= φ1,φ2 and z < a

(1.192)

Therefore, evaluating (1.189) with fΦ(φ) = 1/(2π) results in

fZ z = fΦ φ
1

h z1 + fΦ φ
2

h z2

=
1
2π

1

a2−z2
+

1

a2−z2

=
1
π

1

a2−z2
z < a

(1.193)

1.5.4.2 Functions of Two or More Random Variables
The concepts involving a function of one random variable
can also be applied when the random variable Z is a function

–a

a

1 2

z

φ φ
φ

π–π 0

FIGURE 1.19 Random variable x = asin(φ) (fΦ(φ) = 1/(2π)).
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of several random variables; for example, the dependence on
two random variables, such that, z = g(x,y) is discussed at
length by Papoulis (Reference 8, Chapters 6 and 7) where
the subjects involving marginal distributions, joint density
functions, probability masses, conditional distributions and
densities, and independence are introduced. According to
(1.126), the probability density function fZ(z) is determined
from the distribution function FZ(z) as

fZ z =
∂FZ z

∂z
(1.194)

and the joint pfd of X and Y is characterized for continuous
distributions as

fXY x,y =
∂2FXY x,y

∂x∂y
(1.195)

where the joint cdf is given by

FXY x,y =
y

−∞

x

−∞
fXY x ,y dx dy (1.196)

Based on the conditions for the equality of the probabil-
ities, that is,

PZ Z ≤ z =PXY x,y g x,y ≤ z

the pdfs are equated as

FZ z =FXY g x,y ≤ z =
g x,y ≤ z

fX,Y x,y dxdy (1.197)

Upon differentiating (1.197) with respect to z yields the
desired result expressed as

fZ z =
∂FZ z

∂z
=

∂

∂z g x,y ≤ z
f x,y dxdy (1.198)

As an example application consider the random variable
Z = X + Y; Papoulis states that, “This is the most important
example of a function involving two random variables.”
Upon letting y = z – x and using (1.198) the density function
of Z is evaluated as

fZ z =
∂

∂z

∞

−∞

z−x

−∞
f x,y dxdy =

∞

−∞
fXY x,z−x dx

(1.199)

and, when X and Y are independent, (1.199) is simply the
convolution of fX(x) with fY(y). Several examples involving
the use of (1.199) are given in Section 1.5.6.1.

Using the joint probability density function of two contin-
uous random variables x and y, as expressed in (1.195), the

marginal pdfs fX(x) and fY(y) are obtained by integrating over
y and x, respectively, resulting in

fX x =
∞

−∞
fXY x,y dy (1.200)

and

fY y =
∞

−∞
fXY x,y dx (1.201)

These results can also be generalized to apply to the joint
density function of any number of continuous random vari-
ables by integrating over each of the undesired variables.

1.5.5 Probability Density Functions

The following two subsections examine the probability den-
sity function [40] of the magnitude and phase of a sinusoidal
signal with additive noise and the probability density func-
tion of the product of two zero-mean equal-variance Gaussian
distributions. In these cases, the random variables of interest
involve functions of two random variables. In Section 1.5.6,
the characteristic function is defined and examined for
several probability distribution functions demonstrating the
central limit theorem with increasing summation of random
variables. In Section 1.5.7, many of the probability distribu-
tions used in the following chapters are summarized and
compared.

1.5.5.1 Distributions of Sinusoidal Signal Magnitude
and Phase in Narrowband Additive White Gaussian Noise
This example involves the evaluation of the pdf of the mag-
nitude and phase at the output of a narrowband filter when the
input is a sinusoidal signal with uniformly distributed phase
and zero-mean additive white Gaussian noise [41] (AWGN).
In this case, the output of the narrowband filter is a
narrowband random process. The evaluation involves three
random variables: the input signal phase φ and the two inde-
pendent-identically distributed (iid) zero-mean quadrature
noise random variables with variance σ2n. The signal plus
noise out of the filter is expressed as

s t =Acos ωct +φ + n t cos ωct +ϕ t

=Acos φ cos ωct −Asin φ sin ωct

+ n t cos ϕ t cos ωct −n t sin ϕ t sin ωct

= Acos φ + nc t cos ωct − Asin φ + ns t sin ωct

(1.202)

where the third equality in (1.202) emphasizes the in-phase
and quadrature functions of the signal and noise terms and,
when sampled at t = iTs, represent the random variables
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xc, nc, xs, and ns. The functional relationships are
xc =Acos φ + nc and xs =Asin φ + ns with nc and ns repre-
senting zero-mean quadrature Gaussian random variables.
The signal phase, φ, is uniformly distributed between 0
and 2π. Under these conditions, the quadrature signal and
noise components xc and xs are independent random vari-
ables* and the pdfs of xc and xs are expressed as

fXc xc =
1

2πσn
e− xc−Acos φ 2 2σ2n (1.203)

and

fXs xs =
1

2πσn
e− xs −Asin φ 2 2σ2n (1.204)

The pdf of the phase is

fΦ φ =
1
2π

0 ≤φ ≤ 2π (1.205)

Using (1.203), (1.204), and (1.205) the joint pdf is
expressed as

fXc , Xs,Φ xc,xs,φ = fXc xc fXs xs fΦ φ

=
1

4π2σ2
e−

xc −Acos φ 2 + xs −Asin φ 2

2σ2

(1.206)

The evaluation of the joint pdf of the magnitude and phase
of the sampled sine-wave plus noise involves the transfor-
mation of variables from (xc,xs) to (r,θ) as depicted in
Figure 1.20. The magnitude is described as

r = s iTs = x2c + x
2
s (1.207)

and the in-phase and quadrature components, xc and xs, are
described in terms of the angle θ as

xc = rcos θ and xs = r sin θ (1.208)

Expressing the phase angle in (1.208) as a function of xc
and xs leads to the expressions

θ = cos−1
xc
x2c + x2s

(1.209)

and

θ = sin−1 xs
x2c + x2s

(1.210)

The Jacobian of the transformation is defined as [6, 8,
28, 29]

J xc,xs ≜
∂g11 xc,xs

∂xc

∂g12 xc,xs
∂xs

∂g21 xc,xs
∂xc

∂g22 xc,xs
∂xs det

(1.211)

and, using the Jacobian, the transformation from (xc,xs) to
(r,θ) is expressed as

fR,Θ,Φ r,θ,φ =
fXc , Xs,Φ h1 r,θ ,h2 r,θ ,φ

J xc,xs
(1.212)

To evaluate the Jacobian for this transformation, the func-
tions gij(xc,xs) are defined in terms of (1.207), (1.209), and
(1.210) as follows:

g11 xc,xs = g12 xc,xs = x2c + x
2
s (1.213)

g21 xc,xs = cos−1
xc
x2c + x2s

(1.214)

and

g22 xc,xs = sin−1 xs
x2c + x2s

(1.215)

Upon evaluating the partial derivatives in (1.211), the
Jacobian is found to be†

J xc,xs =
1

x2c + x2s
=
1
r

(1.216)

xs

0

r
θ

xc

FIGURE 1.20 Relationship between transformation variables.

*Orthogonal Gaussian random variables are also independent.

†The phase angle can also be expressed as θ = tan−1(xs/xc) with the Jacobian
evaluated as earlier using, g21(xs, xc) = g22(xs, xc) = tan−1(xs/xc) (see
Problem 16).
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and, using (1.208), the functions h1(r,θ) and h2(r,θ) are
expressed as

h1 r,θ = xc r cos θ = rcos θ (1.217)

and

h2 r,θ = xs r sin θ = r sin θ (1.218)

Substituting (1.216), (1.217), and (1.218) into (1.212) and
applying the independence of xc, xs, and φ, as in (1.206), the
pdf of the transformed variables r and θ is expressed as

fR,Θ,Φ r,θ,φ = fR r fΘ θ fΦ φ

=
r

4π2σ2
e−

rcos θ −Acos φ 2 + rsin θ −Asin φ 2

2σ2

=
r

4π2σ2
e−

r2 + A2 −2Arcos θ−φ
2σ2

(1.219)

where r ≥ 0, otherwise the pfd is zero, and θ and φ are
uniformly distributed over the range 0 ≤ θ, φ ≤ 2π. The pdf
for the magnitude r is determined by computing the marginal
distribution MR(r) by integrating over the ranges of θ and φ.
Defining ψ = θ − φ, the marginal is evaluated as

fR r =
r

σ2
e−

r2 + A2

2σ2
1
2π

2π

0

1
2π

2π−φ

φ

eArcos ψ σ2dψ dφ

(1.220)

Davenport and Root [42] point out that the integrand of the
bracketed integral is periodic in the uniformly distributed
phase ψ and can be integrated over the interval 0 to 2π. With
this integration range, the bracketed integral is identified as
the zero-order modified Bessel function expressed as [43]

Io
Ar

σ2
=

1
2π

2π

0

eArcos ψ σ2dψ (1.221)

Therefore, upon using (1.221) and performing the integra-
tion over φ, the marginal distribution function MR(r) simpli-
fies, at least in notation, to

fR r =
r

σ2
e−

r2 + A2

2σ2 Io
Ar

σ2
(1.222)

Equation (1.222) is the Rice distribution or, as referred to
throughout this book, the Ricean distribution that, as devel-
oped in the forgoing analysis, characterizes the baseband

magnitude distribution of a CW signal with narrowband addi-
tive white Gaussian noise. The Ricean distribution also char-
acterizes the magnitude distribution of a received signal from
a channel with multipath interference; this channel is referred
to as a Ricean fading channel. The Ricean distribution
becomes the Rayleigh distribution as A 0 and the Gaussian
distribution as A ∞; the proof of these two limits is the
subject of Problems 19 and 20. The Rayleigh distribution
characterizes the amplitude distribution of narrowband noise
or, in the case of multipath interference, the composite signal
magnitude of many random scatter returns without a domi-
nant specular return or signal component. The multipath
interference is the subject of Chapter 18. Defining the
signal-to-noise ratio as γ = A2/(2σ2), (1.222) is expressed as

fR r =
r

σ2
e− r2 2σ2 + γ Io

r 2γ
σ

(1.223)

The pdf of the phase function is evaluated by computing
the marginal distribution MΘΦ(θ,φ) by integrating over the
range of the magnitude r. By forming or completing the
square of the exponent in the last equality in (1.219) the inte-
gration is performed as

fΘΦ θ,φ =
1

4π2σ2
e−Asin

2 θ−φ 2σ2
∞

0
re− r−Acos θ−φ 2 2σ2dr

(1.224)

Davenport and Root [44] provide an approximate solution
to (1.224), under the condition Acos(θ – φ) >> σ. The approx-
imation is expressed as

fΘΦ θ,φ
Acos θ−φ

2π 3 2σ
e−γsin

2 θ−φ 0 ≤ θ,φ ≤ 2π (1.225)

where γ is the signal-to-noise ratio defined earlier. An alter-
nate solution, without the earlier restriction, is expressed by
Hancock [45], with ψ = θ − φ, as

fΨ ψ =
e−γ

2π
1 + 4πγcos ψ eγcos

2 ψ P 2γcos ψ

−π ≤ψ ≤ π

(1.226)

where P(z) is the probability integral defined in Section 3.5.
Hancock’s phase function is used in Section 4.2.1 to charac-
terize the performance of phase-modulated waveforms.

As γ 0 in (1.226) the function fΨ(ψ) 1/2π resulting in
the uniform phase pdf. However, for γ greater than about 3,
the probability integral is approximated as [26]

P z 1−
e− z

2 2

2πz
z > 3 (1.227)
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Using (1.227), the phase pdf is approximated as

fΨ ψ
γ πcos ψ e−γsin

2 ψ 1 > cos ψ > 2 5 γ

0 −2 5 γ > cos ψ > −1

(1.228)

With |ψ | 0 such that sin2(ψ) ψ2 and defining
γ = 1 2σ2ψ (1.228) is approximated as

fΨ ψ
1

2πσψ
e−ψ

2 2σ2ψ ψ 0 and γ = 1 2σ2ψ (1.229)

Equation (1.229) describes a zero-mean Gaussian phase
pdf with the phase variance σ2ψ = 1 2γ. Hancock’s phase
function, expressed in (1.226), is plotted in Figure 4.3 for var-
ious signal-to-noise ratios.

1.5.5.2 Distribution of the Product of Two Independent
Gaussian Random Variables In this section the pdf of
the product z = xy of two zero-mean equal-variance iid Gaus-
sian random variables X and Y is determined. The solution
involves defining an auxiliary random variable w = h(x) = x
with z = g(x,y) = xy and evaluating fZ,W(w,z) characterized as

fW ,Z w,z =
fX,Y w,z w

JX,Y x,y
(1.230)

where JX,Y(x,y) is the Jacobian of the transformation evalu-
ated as

JX,Y x,y =

∂g x,y
∂x

∂g x,y
∂y

∂h x,y
∂x

∂h x,y
∂y det

= −x (1.231)

Using (1.231) and the joint Gaussian pfd of X and Y,
expressed by (1.230), with x = w and y = z/w, the marginal
pdf of z is evaluated as

fZ z =
∞

−∞

1
w

fX,Y w,z w dw (1.232)

However, since X and Y are independent

fX,Y x,y = fX x fY y =
1

2πσ2
e
−

x2 + y2

2σ2 (1.233)

and, upon substituting x = w and y = z/w into (1.233), (1.232)
is expressed as

fZ z =
1

2πσ2

∞

−∞

1
w

e−
w2 + z w 2

2σ2 dw

=
1
πσ2

∞

0

1
w
e−

w2 + z w 2

2σ2 dw

(1.234)

where the second equality recognizes that the first equality is
symmetrical in w. Letting λ = w2/2σ2 (1.234) is expressed as

fZ z =
1

2πσ2

∞

0

1
λ
e− λ + z2

4σ4 λ dλ (1.235)

The solution to the integral in (1.235) appears in the
table of integrals by Gradshteyn and Ryzhik (Reference
46, p. 340, pair No. 12) as

∞

0
λv−1e

− λ+ u2

4λ dλ= 2
u

2

v
K−v u (1.236)

whereKv(u) is the modified Bessel function of the second kind
of order v. With v = 0 and u = z/σ2, (1.235) is evaluated as

fZ z =
1
πσ2

Ko
z

σ2
(1.237)

The magnitude of z in (1.237) is used because of the even
symmetry of fZ(z) with respect to z. The symmetry of fZ(z)
results in a zero-mean value so the variance is evaluated as

Var z =E z2 zero-mean

=
2
πσ2

∞

0
z2Ko

z

σ2
dz

(1.238)

The solution to the integral in (1.238) is found in Gradsh-
teyn and Ryzhik (Reference 46, p. 684, Integral No. 16) and
the variance fZ(z) is evaluated as

Var z =
4
π
Γ2 3

2
σ4 = σ4 (1.239)

where the second equality in (1.239) results from the value of
the Gamma function Γ 3 2 = π 2. In Example 4 of
Section 1.5.6.1, the pdf of the summation of N iid random
variables with pdfs expressed by (1.237) is examined.

1.5.6 The Characteristic Function

The characteristic function of the random variable X is
defined as the average value of ejvx and is expressed as

CX v ≜E ejvx =
∞

−∞
fX x ejvxdx (1.240)
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With v = −ω and x = t (1.240) is similar to the Fourier
transform of a time-domain function. The characteristic func-
tion is also referred to as the moment-generating function, in
that, the nth moment of the random variable X, defined as the
expected value E[xn], is evaluated (see Problem 26) as

E xn = − j nd
nCX v

dvn v = 0

(1.241)

The Fourier transform relationship between time domain
convolution and frequency domain multiplication also
applies to the convolution of random variables and the mul-
tiplication of the corresponding characteristic functions.
Therefore, based on the discussion in Section 1.5.6.1, the
summation of N identically distributed (id) random variables
corresponds to the product of their individual characteristic
functions, that is,

CZ v =
N

i= 1

CXi v Z = Xi, i = 1,…,N; Xi id

(1.242)

This is a very useful result, in that, the distribution of the
summation of N independent random variables is obtained as
the inverse transform [47] of (1.242) expressed as

fZ z =
∞

−∞
CZ v e− jvzdz (1.243)

Campbell and Foster [47] provide an extensive listing of
Fourier transform pairs defined as

G g =
∞

−∞
F f ej2πfgdf and F f =

∞

−∞
G g e− j2πfgdg

(1.244)

and, by defining v = −2πf, the Fourier transform pairs apply
to the transform pairs between fX(x) and CX(v) as expressed
in (1.240).

1.5.6.1 Summation of Independently Distributed Random
Variables If two random variables X and Y are independent
then the probability density fZ(z) of their sum Z = X + Y is
determined from the convolution of fX(x) with fY(y) so that*

fZ z =
∞

−∞
fX z−y fY y dy=

∞

−∞
fX x fY z−x dx (1.245)

For multiple summations of a random variable, the convo-
lution is repeated for each random variable in the summation.

Example 1 Consider the summation of N zero-mean uni-
formly distributed random variables Xi expressed as

Z =
N

i= 1

Xi 1 246

with

fX x =
1
2a

−a ≤ x ≤ a (1.247)

For N = 2 the convolution involves two ranges of the
variable z as shown in Figure 1.21 and the integrations are
evaluated as

fZ z =
1
4a2

z+ a

−a
dx −2a ≤ z ≤ 0 (1.248)

and

fZ z =
1
4a2

a

z−a
dx 0 ≤ z ≤ 2a (1.249)

Upon evaluation of (1.248) and (1.249) and recognizing
the symmetry about z the density function is expressed as

fZ z =
1
2a

−
z

2a
+ 1 z ≤ 2a (1.250)

Repeating the application of the convolution for N = 3
and 4 (see Problem 24) results in the probability density func-
tions shown in Figure 1.22 with the corresponding cdf results
shown in Figure 1.23. As N ∞ the probability density and
characteristic functions will approach those of the Gaussian
distributed random variable (see Problem 23).

x

x

x

z + a 

0 a–a

f(x)

1/2a

z

Range 1:
–2a ≤ z ≤0 

z

Range 2:
0 ≤ z ≤ 2a

z – a

1/2a

1/2a

FIGURE 1.21 Convolution of two zero-mean uniform
distributions.

*For proof see Reference 8, p. 189.
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The moments of the random variable X are evaluated
using the characteristic function

CX v =
sin av

av
(1.251)

In regions where the characteristic function converges, the
moments E[xn] completely define the characteristic function
and the pdf of the random variable X, so, upon expanding
(1.251) as the power series

CX v = 1−
av 2

3
+

av 4

5
− (1.252)

the moments are easily evaluated using (1.241). The
moments for the random variable Z, formed as in (1.246),
are determined using (1.242) and, with Xi : i = 1,…,N
iid random variables, the characteristic function for Z is
approximated as

CZ v =CN
X v 1−

N av 2

3
(1.253)

The first and second moments for N = 1, …, 4 are listed
in Table 1.6. These results are also obtained by evaluating
fZ(z) using (1.250) and then evaluating the moments (see
Problem 25) as

E zn =
Na

−Na
znfZ z dz (1.254)

However, it is much easier to use the characteristic
function.

Example 2 As another example, consider the summation of
N random variables Xi characterized as the sinusoidal
function

Xi =Ai sin Φi 1 255

with constant amplitudes Ai and zero-mean uniformly distrib-
uted phase, expressed as

fΦ φ =
1
2ϕ

φ ≤ϕ (1.256)

The resulting pdf of the random variable Xi for ϕ = π, is
evaluated in (1.193) as

fX xi =
1

π A2
i − x2i

(1.257)

and is plotted in Figure 1.24.

z
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f Z
(z
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0.375

0.500

N = 2
3

4

FIGURE 1.22 pdf for sum of N = 2, 3 and 4 independent zero-
mean uniform distributions (a = 1).
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N = 2

4
3

FIGURE 1.23 cdf for sum of N = 2, 3 and 4 independent zero-
mean uniform distributions (a = 1).

TABLE 1.6 Moments of fZ(zN) for
Z= Xi i = 1,…,4, Xi iid Zero-Mean
Uniform Distributions

N E[z] E[z2]

1 0 a2/3
2 0 2a2/3
3 0 a2

4 0 4a2/3

RANDOM VARIABLES AND PROBABILITY 33



The pdf of the random variable Z, expressed as in (1.246),*

is evaluated by successive convolutions as in (1.245) and the
results for N = 2, 3, and 4 are plotted in Figure 1.25 with the
corresponding cdf functions shown in Figure 1.26. The
results in Figures 1.25 and 1.26 for N > 1 are obtained by
numerical evaluations of the convolutions using incremental
values of Δz = 2.5 × 10−5; this is a reasonable compromise
between simulation time and fidelity in dealing with the infi-
nite value at |x| = 1.0.

In this case, the mean and variance of the random variable
X are evaluated using the characteristic function of (1.257)

found in (Reference 47, p. 123, Transform Pair 914.5); the
result is

CX v = Io − jAv (1.258)

where Io(−) is the modified Bessel function of order
zero. Expanding (1.258) for Av < 1 as a power series,
(Reference 46, p. 375, Ascending Series 9.6.10), results in†

CX v = 1−
Av 2

4 1 2 +
Av 4

42 2 2 −
Av 6

43 3 2 (1.259)

and the moments are easily evaluated using (1.241). The first
and second moments are listed as the theoretical values in
Table 1.7. The moments for the random variable Z, formed
as in (1.246) with Xi iid random variables for all i as expressed
by the pdf in (1.255), are determined using the characteristic
function expressed as

N = 2 

f Z
(z

)

0.00

0.25

0.50

0.75

1.00

3

4

z
–4 –3 –2 –1 0 1 2 3 4

FIGURE 1.25 pdf of N = 2, 3, and 4 successive convolutions
of fX(x).
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FIGURE 1.26 cdf of N = 2, 3, and 4 successive convolutions
of fX(x).
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f X
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FIGURE 1.24 pdf of x = Asin(φ) with zero-mean uniformly
distributed phase, A = 1 and ϕ = π.

TABLE 1.7 Moments of fZ(zN) for Z= Xi i= 1,…,N, Xi iid

Random Variables Expressed by (1.255)

N

Theoretical Numericala (A = 1)

E[z] E[z2] E[z] E[z2]

1 0 A2/2 0 0.4999
2 0 A2 0 1.0044
3 0 3A2/2 0 1.5055
4 0 2A2 0 2.0146

aNumerical values are sampled with Δz = 2.5 × 10−5.

*By forming the average summation Z = 1 N
N

i= 1
xi, the range of the pdf

is limited to ±a with an associated decrease in the standard deviation.

†By comparing the ascending series expansion of Io(z) with that of the Bessel
function Jo(z) it is found that Io(−jz) = Jo(z).
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CZ v =CN
X v 1−

N Av 2

4 1 2 (1.260)

The corresponding first two moments of the random var-
iable Z for N = 2, 3, and 4 are also listed in Table 1.7. The
numerical results listed in Table 1.7 are based on computer
evaluations of the various convolutions resulting in the pdfs
shown in Figures 1.24 and 1.25.

A major observation in these two examples is that the
probability distribution of the random variable Z approaches
a Gaussian distribution as N increases (see Problem 27). This
is evidence of the central limit theorem which states that (see
Davenport and Root, Reference 6, p. 81) the sample mean of
the sum of N arbitrarily distributed statistically independent
samples becomes normally distributed as N increases. This is
referred to the equal-components case of the central limit the-
orem. However, as pointed out by Papoulis (Reference 8,
p. 266), a consequence of the central limit theorem is that
the distribution fZ(z) of the sum of N statistically independent
distributions having arbitrary pdf’s tends to a normal distri-
bution as N increases. This is a stronger statement and sug-
gests that the probability P(z) = fZ(Z < z) can be considered a
Gaussian distribution for all z as is frequency assumed to be
the case in practice. Davenport and Root also point out that,
even though N is seemingly large, the tails of the resulting
distribution may result in a poor approximation to the
Gaussian distribution.

Upon computing the mean and variance using the power
series expansion of CZ(v) expressed by (1.252) with av << 1,
the approximate expression for the corresponding Gaussian
distribution is easily obtained. After summing N uniformly
distributed amplitudes the expression for the pdf is

fZ z =
1

2πNa2 3
e− z

2 2Na2 3 z = xi, i= 1,…,N,

p xi =
1
2a

, xi ≤ a

(1.261)

Similarly, for the summation of N sinusoids with Av << 1,
the pdf in Example 2 is expressed as

fZ z =
1

2πNA2 2
e− z

2 2NA2 2

z = xi, i= 1,…,N, xi =Asin φi

p φi =
1
2π

, φi ≤ π

(1.262)

It is interesting to note that the second moments are Nλ2

for all values of N including those for which the pdf does
not have the slightest resemblance to the Gaussian pdf.

In these cases, the important difference is that the corres-
ponding probabilities P(x) = FX(X < x) are entirely different
from those of the Gaussian distribution with the possible
exception of the median value. Finally, it is noted that the
limiting behavior for λv << 1 and N ∞ applies to the sum-
mation of independently distributed distributions that may,
or may not, be identically distributed distributions.

Example 3 This example involves the summation of
random chips {±1} in a direct-sequence spread-spectrum
(DSSS) waveform. In this case, the chips occur with equal
probabilities according to the pdf expressed as

fX x =
1
2
δ x−1 +

1
2
δ x + 1 1 263

Using (1.240), the characteristic function is evaluated as

CX v =
∞

−∞
fX x ejvxdx

=
1
2

∞

−∞
ejvxδ x−1 dx+

∞

−∞
ejvxδ x+ 1 dx

= cos v

(1.264)

The DSSS waveform uses N chips per bit and the demod-
ulator correlation sums the N chips to form the correlation

output y =
N−1

n= 0
xn with the corresponding characteristic

function given by

CY v =CN
X x = cosN v

= 1−
v2

2
+
v4

4
−
v6

6
+

N

= 1−
Nv2

2
+

(1.265)

To evaluate the first and second moments of y only the
first two terms in the expansion of cosN(v) are required
and, upon using (1.241), these moments are evaluated as

E x = j
2Nv
2 v = 0

= 0 first moment mean value, x

(1.266)

and

E x2 = −1
−2N
2 v = 0

=N second moment (1.267)
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The variance of y is defined as the second central

moment E x−x 2 =E x2 −x2 and with zero-mean the var-

iance is σ2y =E x2 =N.

Example 4 The pdf fZ(z) of the product of two, zero-mean,
equal-variance, iid Gaussian random variables, z = xy, is
expressed in (1.237) as a function of the zero-order modified
Bessel function Ko(|z|/σ

2) where the magnitude of z provides
for the range: −∞ ≤ z ≤∞. In this example, the pdf fZ z

is evaluated where Z =
i
Zi : i = 1,…,N. The evaluation

is based on the N-th power of the characteristic function
CZ(v) and, from the work of Campbell and Foster
(Reference 47, p. 60, pair No. 558), the characteristic func-
tion is evaluated as*

CZ v =
1 σ2

1 σ4−p2
(1.268)

The characteristic function of Z is the N-th power of
(1.268) expressed as

CN
Z v =

1 σ2N

1 σ4−p2 N 2
(1.269)

and, using the transform pair of Campbell and Foster
(Reference 47, p. 61, pair No. 569.0), the pdf of Z is evaluated
as

fZ z =
1 σ2N

πΓ N 2 2 σ2 N−1 2
z N−1 2K N−1 2

z

σ2

(1.270)

As in the case for fZ(z), the pdf fZ z applies for −∞ ≤ z ≤∞
and is symmetrical with respect to z resulting in a zero-mean
value with the variance expressed as

Var z =E z2 with zero-mean

=
2 σ2N

πΓ N 2 2 σ2 N−1 2

∞

0
z2z N−1 2K N−1 2

z

σ2
dz

(1.271)

The solution to the integral in (1.271) is found in
Gradshteyn and Ryzhik (Reference 46, p. 684, Integral No.
16) and the variance fZ(z) is evaluated using

∞

0

zuKv az dz=
2u−1

au + 1
Γ

1 + u + v
2

Γ
1 + u−v

2
(1.272)

Substituting the solution to the integral in (1.272) into
(1.271), with u = (N + 3)/2, v = (N − 1)/2, and a = 1/σ2,
the solution to variance simplifies to

Var z =Nσ4 (1.273)

In the earlier evaluation, the integer argument Gamma
function is related to the factorial as Γ N = N−1 ! and
Γ 3 2 = π 2. This result could also be evaluated using
the movement generating function of (1.241), however, using
the integral solution as in (1.272) it is sometimes easier
to evaluate the moments. With a sufficiently large value
of N the pdf fZ z is approximated as the Gaussian pfd
expressed as

fZ z
N ∞

1

2πNσ4
e−z

2 2Nσ4 zero-mean Gaussian pdf

(1.274)

The probability density functions discussed earlier and
others encountered in the following chapters are summarized
in Table 1.8 with the corresponding mean values, variances,
and characteristic functions.

1.5.7 Relationships between Distributions

In the following two subsections, the relationship between
various probability density functions is examined by straight-
forward parameter transformations, allowing parameters to
approach limits, or simply altering various parameter values.
The most notable relationship is based on the central limit
theorem in which a distribution approaches the Gaussian
distribution by increasingly summing the operative random
variable.

1.5.7.1 Relationship between Chi-Square, Gaussian,
Rayleigh, and Ricean Distributions A random variable
has a chi-square (χ2) distribution with N degrees of freedom
if it has the same distribution as the sum of the squares of
N-independent, normally distributed random variables, each
with zero-mean and unit variance.†

Consider the zero-mean Gaussian or normal distributed
random variable x with variance σ2x and pdf expressed as

pX x =
1

2πσx
e− x

2 2σ2x (1.275)

The pdf of a new random variable y = x2, obtained by sim-
ply squaring x, is determined by considering the positive and
negative regions of x = ± y as shown in Figure 1.27.

*The tables of Campbell and Foster are Fourier transform pairs that corre-
spond to characteristic function pairs with p = −jv.

†A normally distributed random variable x with mean value mx and variance
σ2x can be transformed into a zero-mean, unit-variance normally distributed
random variable y by substituting y = (x −mx)/σx.
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The pdf of y is determined using the incremental intervals
dy = 2xdx at x= ± y such

pY y = pX x = y
dx

dy
+ pX x = − y

dx

dy
U y

=
1

2πσx
e−y 2σ2x + e−y 2σ2x

1
2 y

U y

=
e−y 2 σ2x

2πyσx
U y

(1.276)

TABLE 1.8 Probability Distributions and Characteristic Functions

Name fX(x) E[x] Var[x] CX(v) Conditions

Uniform 1
b−a

a+ b
2

b−a 2

12

ejvb−ejva

jv b−a

a ≥ x ≤ b

Bernoulli p i= 1

1−p i= 2

p p(1 − p) (1 − p) + pv Discrete binary variable
x = ki : i = 1, 2

Binomial n

k
pk 1−p n−k

np np(1 – p) 1−p + pv n Discrete variable
x= k = 1,2,…,n

Poisson αke−α k! α α eα v−1 Discrete variable
x= k = 0,1,…; α> 0

Exponential αe−αx 1/α 1/α2 α α− jv x ≥ 0; α > 0

Gaussian (normal)
e−

x−m 2

2σ2

2πσ

m σ2
e− jmv−

σ2 v2

2
−∞ ≤ x ≤ ∞

Chi-square (N = 2)
Exponential (α = 1/2)

e−x 2

2

2 4 1− j2v −1 x ≥ 0

Chi-squared (N-degrees) xN 2−1e−x 2

2N 2 N 2−1

N 2N 1− j2v −N 2 N-degrees of freedom x ≥ 0

Rayleigh xe− x
2 2σ2

σ2
π 2σ as γ ∞ 4−π σ2

2
as γ ∞

1− jv β α x > 0

Ricean
xe−

x2 −A2

2σ2

σ2
Io

xA

σ2

a a a x > 0

A2 2σ2 ∞

A2 2σ2 = 0

Gamma β βx α−1

Γ α
e−βx

α/β α/β2 1

1− j vβ
α

x > 0
β > 0; λ > 0

Lognormal
e−

ln y −m 2

2σ2

2πyσ

em + σ2 2 em+ 2σ2

−em+ σ2

b y is lognormal
y = ex ≥ 0
x = N(m,σ)

Nakagami-m 2mmx2m−1e−mx2 Ω

Γ m Ωm

c c c x ≥ 0

m =
E x2

2

E x2−E x2 2

≥ 1 2

Notes: γ = A2/(2σ2) is the signal-to-noise ratio. γ 0 fX(x) = Rayleigh with E[x] = π 2σ, Var[x] = 4−π σ2 2.
aγ ∞ fX(x) = Gaussian with E[x] = A, Var[x] = σ2.
bApproximated using a series expansion of ejvy.
cRefer to special cases in Section 1.5.7.2.

x–x

y

0

y

x

FIGURE 1.27 Transformation of the random x to y = x2.
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The characteristic function of (1.276) is evaluated as

C1
Y v =E pY y ejvy =

1

1− j2 σ2xv
1 2

(1.277)

Consider now the random variable z resulting from the
summation of N independent random variables yi such that

z=
N

i= 1

yi =
N

i= 1

x2i (1.278)

The characteristic function of z is simply the N-th power
of CY(v) so that

CN
Z v = C1

Y v
N

=
1

1− j2 σ2xv
N 2

(1.279)

Equation (1.279) transforms to the pdf of z, resulting in

pZ z =
zN 2−1e−z 2 σ2x

2 σ2x
N 2 N

2
−1

U y (1.280)

In conforming to the earlier definition, the chi-square
distribution is expressed by letting σ2x = 1 in (1.280) or, more
formally, using the transformation χ = z σ2x ; therefore, the
pdf of the chi-square random variable χ with N degrees of
freedom is

pX χ =
χN 2−1e−χ 2

2N 2 N

2
−1

U y Chi-square distribution

(1.281)

and the corresponding characteristic, or moment generating,
function is

CN
X v =

1

1− j2v N 2
Chi-square characteristic function

(1.282)

Equation (1.281) is occasionally referred to as the central
χ2 distribution because it is based on noise only, that is,
the underlying zero-mean Gaussian random variables xi

with distribution given by (1.275) do not contain a signal
component.*

Special Case for N = 2 Under this special case z = x21 + x
2
2

(1.280) reduces to the exponential distribution

pZ z =
e−z 2 σ2x

2 σ2x
U y exponential distribution (1.283)

So the resulting chi-square χ2 distribution is obtained from
(1.281) with N = 2. This is an important case because x1 and
x2 can be thought of as orthogonal components in the com-
plex description of a baseband data sample. Urkowitz [48]
shows that the energy of a wide-sense stationary narrowband
white noise Gaussian random process with bandwidth –W to
W Hz and measured over a finite interval of T seconds is
approximated by N = 2WT terms or degrees of freedom.
The frequency W is the noise bandwidth of the narrowband
baseband filter and the approximation error in the energy
measurement decreases with increasing 2WT. The factor of
two can be thought of as the computation of complex orthog-
onal baseband functions z= x2c + jx

2
s so N = 2 degrees of free-

dom correspond to WT = 1. For example, the rect(t/T)
function observed over the interval T seconds has a noise
bandwidth of W = 1/T Hz corresponding to WT = 1 resulting
in 2 degrees of freedom.

Upon letting w= z = x2c + x
2
s , the random variable w is

described in terms of the Rayleigh distribution

pW w =
w

σ2x
e−w

2 2σ2x U y Rayleigh distribution (1.284)

So the Rayleigh distribution is derived from the magni-
tude of the quadrature zero-mean Gaussian distributed ran-
dom variables, x = N(0,σ).†

1.5.7.2 Relationship between Nakagami-m, Gaussian,
Rayleigh, and Ricean Distributions The Nakagami-m dis-
tribution [49] was initially derived from experimental data to
characterize HF fading; however, subsequent experimental
observations demonstrate its application to rapid fading at
carrier frequencies from 200 MHz to 4 GHz. It is considered
to be a generalized distribution from which other distri-
butions can be derived, for example, m = 1 results in the
Rayleigh power distribution, m = ½ results in the one-sided

*When the underlying Gaussian distributed random variable is composed of
signal plus noise, the signal amplitude represents the mean value of the dis-
tribution. An analysis, similar to that of (1.276) through (1.280), containing a
mean value, results in a noncentral χ2 distribution with 1 through N degrees
of freedom. The noncentral χ2 distribution is developed and discussed in
Appendix C.
†The notation N(m,σ) is used to denote the distribution of a Gaussian, or nor-
mal, random variable with mean value m and standard deviation σ.
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zero-mean Gaussian distribution, and as m ∞ the
m-distribution approaches the Gaussian distribution with a
unit mean value. In the region 1 ≤ m ≤ ∞, the Nakagami-m
distribution behaves much like the Ricean distribution;
however, the normalized distributions are subtly different
when plotted for various signal-to-noise ratios less than
about 10 dB. The Ricean distribution, referred to as the
n-distribution by Nakagami, is derived from concepts invol-
ving narrowband filtering of a continuous wave (CW) signal
with additive Gaussian noise, whereas the Nakagami-m
distribution is derived from experimental data involving
multipath communication links.

1.5.8 Order Statistics

Communication systems analysis and performance evalua-
tions often involve a large number of random samples taken
from an underlying continuous or discrete probability distri-
bution function. The various parameters, used to characterize
the system performance, result in limiting distributions
with associated means, variances, and confidence levels as
dictated, for example, by an underlying distribution. Order sta-
tistics [31, 50, 51], on the other hand, involves a distribution-
free or nonparametric analysis that requires only that
the probability distribution functions be continuous and not
necessary related to the underlying distribution from which
the samples are taken. However, the randomly drawn samples
are considered to be statistically independent.

Consider that the n random samples {X1, X2, …, Xn} are
taken from the continuous pdf fX(x) over the range a ≤ x ≤ b.
Now consider reordering the random variables Xi : i = 1,
…, n to form the random variables {Y1, Y2,…, Y n} arranged
in ascending order of magnitude, such that, a ≤ Y1 < Y2 <
< Yn ≤ b where fYi yi = 1 b−a is uniformly distributed
over the interval b − a. The joint pdf of the ordered samples
[52] is expressed as

gY1,Y2,…,Yn y1,y2,…,yn = n
n

i= 1

fYi yi (1.285)

for a ≤ y1 < y2 < < yn ≤ b and n! is the number of mutually
disjoint sets of x1, x2,…, xn. For example, for n = 4 the set
x1, x2, x3, x4 results in n! = 24 mutually disjoint sets deter-
mined as shown in Table 1.9. The first six mutually disjoint
sets are determined by cyclically left shifting the indicated
subsets of original set x1, x2, x3, x4; a cyclic left shift of a
subset is obtained by shifting each element of the subset to
the left and replacing the leftmost element in the former posi-
tion of the rightmost element. Following the first six sets
shown in the figure, the original set is cyclically shifted three
more times each leading to six mutually disjoint sets by shift-
ing subsets resulting in a total of 24 mutually disjoint sets.

The ordered sample Yi is referred to as the i-th order sta-
tistic of the sample set. The marginal pfd of the n-th order
statistic Yn, that is, the maximum of {X1, X2,…, Xn}, is eval-
uated using (1.285) by performing the integrations in the
ascending order i = 1, 2, …, n − 1 as follows*:

gYn yn = n
yn

a

y4

a

y3

a

y2

a
f y1 dy1 f y2 f yn dy2 dyn−1

= n
yn

a

y4

a

y3

a
F y2 f y2 dy2 f y3 f yn dy3 dyn−1

= n
yn

a

1
2

y4

a
F2 y3 f y3 dy3 f y4 f yn dy4 dyn−1

= n fYn yn
1

n−2

yn

a
Fn−2 yn−1 f yn−1 dyn−1

(1.286)

The solution (see Problem 15) to (1.286) is

gYn yn = n F yn
n−1fYn yn a < yn ≤ b (1.287)

where Fn−1(yn) is the cdf evaluated as

Fn−1 yn = n−1
yn

a
Fn−2 yn−1 fY yn−1 dyn−1 =

yn−a
n−1

b−a n−1

(1.288)

Using the marginal pdf of Yn given by (1.287), the prob-
ability of selecting the maximum of value Yn is determined as

P y = n
y

a
Fn−1 yn fY yn dyn

y = b

= 1 (1.289)

TABLE 1.9 Example of Mutually Disjoint Sets (n = 4,
24 Mutually Disjoint Sets)

No. Mutually Disjoint Sets Shiftinga

1 x1, x2, x3, x4 Original set
2 x1, x2, x4, x3 Shift subset x3, x4
3 x1, x3, x4, x2 Shift subset x2, x3, x4
4 x1, x3, x2, x4 Shift subset x4, x2
5 x1, x4, x2, x3 Shift subset x3, x4, x2
6 x1, x4, x3, x2 Shift subset x2, x3
7 x2, x3, x4, x1 Shift original set
8 x2, x3, x1, x4 Shift subset x4, x1
9 x2, x4, x1, x3 Shift subset x3, x4, x1

aShift denotes a cyclic left shift of a previous set or subset.

*For notational simplicity f(y) is used to denote fY(y).
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These results are distribution free, in that, the pdf has not
been defined; however, from a practical point of view (1.289)
can be evaluated for any continuous pdf.

The distributions from which the xi are taken need not be
identical*; for example, the samples x1 through xj can be
taken from a distribution involving signal plus noise (or clut-
ter) and those from xj+1 through xn corresponding to noise
(or clutter) only. Using this example the distribution in
(1.287) is expressed as

fYn yn =
n

j−1 n− j
Fsn yj

j−1
1−Fn yj

n− j
fYn yn

(1.290)

where Fsn(y) is the distribution corresponding to signal plus
noise and Fn(y) is the noise-only distribution.

Example distributions used to evaluate the performance
of communication and radar systems are Gaussian, Ricean,
lognormal, and Weibull distributions. Table 1.10 lists the
false-detection probabilities, for the indicated signal-to-noise
ratios γdB, associated with the detection of j = 1 signal-plus-
noise event and k = n − j = (1,2,4, and 8) noise-only events.

1.5.9 Properties of Correlation Functions

Correlation processing is used in nearly every aspect of
demodulator signal detection from energy detection, wave-
form acquisition, waveform tracking, parameter estimation,
and information recovery processing. With this wide range
of applications, the theoretical analyst, algorithm developer,
software coder, and hardware developer must be thoroughly
familiar with the properties and implementation of waveform
correlators. An equally important processing function is
that of convolution or linear filtering. The equivalence
between matched filtering and correlation is established in
Section 1.7.2 and involves a time delay in the correlation
response; with this understanding, the properties of correla-
tion can be applied to convolution or filtering. The correlation

response can be exploited to determine the signal signature
regarding the location of a signal in time and frequency,
the duration and bandwidth of the signal, the shape of the
modulated signal waveform, and the estimate of the informa-
tion contained in the modulated waveform.

The correlation function† is evaluated for the complex
functions x t and y t as the integral

Rxx τ =
∞

−∞
x t x∗ t−τ dt autocorrelation (1.291)

and

Rxy τ =
∞

−∞
x t y∗ t−τ dt cross-correlation (1.292)

where the asterisk denotes complex conjugation.
Autocorrelation processing examines the correlation

characteristics of a single random process with the maximum
magnitude corresponding to the zero-lag condition Rxx τ = 0
that is equal to the maximum energy over the correlation
interval. The correlation response Rxx τ is indicative of
the shape of x t and the duration, τd, of the principal corre-
lation response is indicative of the correlation time. For deter-
ministic signals, the correlation time (τo) is usually
characterized in terms of the one-sided width of the principal
correlation lobe; however, for stochastic processes the corre-
lation interval is defined when |Rxx τ | decreases monotoni-
cally from Rxx 0 to a defined level; for example, when the
normalized correlation response first reaches the level
Rxx τo Rxx 0 = e−1. The normalized correlation response
is referred to as the correlation coefficient as defined in
(1.295) or (1.296). The parameters related to the correlation
of the function x t have equivalent Fourier transform
frequency-domain definitions. In the case of stochastic
processes, the Fourier transform of Rxx τ is defined as the
PSD of the process.

Expanding (1.292) in terms of the real and imaginary
with x t = xr t + jxi t and y t = yr t + jyi t results in

Rxy τ =
∞

−∞
xr t yr t−τ dt +

∞

−∞
yi t yi t−τ dt

+ j
∞

−∞
xi t yr t−τ dt−

∞

−∞
xr t yi t−τ dt

(1.293)

This evaluation requires four real multiplies and integra-
tions for each lag, whereas, if x t and y(t) were real functions
only one multiplication and integration is required for each

TABLE 1.10 Order Statistics False-Detection Probability for
Gaussian Distributed Random Variables

Ordered S + N and
N Statistics (j,k)

False-Detection Probability (Pfd)

γdB = 10 γdB = 15 γdB = 20

1,1 2.440e−2 6.645e−5 1.408e−12

1,2 4.226e−2 1.308e−4 2.815e−12

1,4 6.980e−2 2.547e−4 5.629e−12

1,8 1.089e−1 4.874e−4 1.126e−11

*Equation (1.286) allows for different distributions; however, (1.287)
through (1.289) are based on independent identically distributed (iid) random
variables.

†A stationary stochastic processes is characterized by the first- and second-
order moments corresponding to the mean E x t =mxr + jmxi and autocor-
relation response Rxx τ =E x t x∗ t−τ .
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lag. With discrete-time sampling, the integrations are
replaced by summations over the finite sample values xn
and yn where t = nTs: n = 0, …, N − 1 and Ts is the sampling
interval; in this case, the computational complexity is propor-
tional toN2. The computation complexity can be significantly
reduced by performing the correlation in the frequency
domain using FFT [53], in which case, for a radix-2 FFT
with N = 2k, the computation complexity is proportional to
Nlog2(N). Brigham [54] provides detailed descriptions of
the implementation and advantages of FFT correlation and
convolution processing. The correlation results throughout
the following chapters use the direct and FFT approaches
without distinction.

Referring to (1.291) the zero-lag correlation is
expressed as

Rxx 0 =
∞

−∞
x t x∗ t dt +

∞

−∞
x t 2dt

=Ex

(1.294)

where Ex is the total energy in the received signal. Using
(1.294), the normalized correlation is defined in terms of
the normalized autocorrelation coefficient as

ρx τ ≜
Rxx τ

Ex
normalized autocorrelation coefficient

(1.295)

with |ρx(τ)| ≤ 1. From (1.292), the normalized cross-correlation
coefficient is defined as

ρxy τ ≜
Rxy τ

ExEy
normalized cross-correlation coefficient

(1.296)

with |ρxy(τ)| ≤ 1.
The correlation may also be defined in terms of the long-

term average over the interval T as

Rxx τ = lim
T ∞

1
T

T 2

−T 2
x t x∗ t−τ dt autocorrelation

(1.297)

However, most practical waveforms are limited to a finite
duration Tc = NTs and, in these cases, x t is zero outside of
the range Tc. Therefore, dividing the zero-lag correlation by
Tc results in the second-order moment E x 2 = σ2x +m

2
x

where m2
x is the DC or mean signal power. Removing the

mean signal level prior to performing the correlation results
in the autocovariance with E x 2 = σ2x . Table 1.11 summar-
ized several properties of correlation functions.

Consider, for example, that y t = x t + n t is a received
signal plus AWGN, the correlation Rxy τ is performed in the
demodulator using the known reference signal x t . The
dynamic range of the demodulator detection processing is
minimized by the normalization in (1.296) and the optimum
signal detection corresponds to ρxy(0). On the other hand, if
the optimum timing is not known, near optimum detection
can be achieved by choosing the maximum correlation output
over the uncertainty range of the correlation lag about τ = 0.
During initial signal acquisition, the constant false-alarm rate
(CFAR) threshold, described in Section 11.2.2.1, is an effec-
tive algorithm for signal presence detection and coarse
synchronization.

1.6 RANDOM PROCESSES

Many of the signal descriptions and processing algorithms in
the following chapters deal exclusively with the signal and
neglect the additive noise under the reasoning that the noise
detracts from the fundamental signal processing requirements
and complicates the notation which has the same effect. On
the other hand, understanding the impact of the noise on the
system performance is paramount to the waveform selection
and adherence to the system performance specifications. To
this end, the performance evaluation is characterized by
detailed analysis of the signal-plus-noise conditions and con-
firmed by computer simulations.

The following descriptions of noise and signal plus noise
are provided to illustrate the assumptions and analysis asso-
ciated with the inclusion of the most basic noise source—
AWGN. The reference to narrowband Gaussian noise simply
means that the carrier frequency fc is much greater than

TABLE 1.11 Correlation Function Properties of Deterministic
and Stochastic Processes

Property Comments

Rxx −τ =R∗
xx τ Autocorrelation

Rxx −τ =Rxx τ x(t) is real

Cxx −τ =Rxx τ − mx
2 Autocovariance

Cxx −τ =Rxx τ −m2
x x t real

Rxx τ =Ryy τ
x t =m t cos ωct
y t =m t sin ωct

Rxy τ = −Ryx τ
x t =m t cos ωct
y t =m t sin ωct

Rxy −τ =R∗
yx τ x t ,y t complex

Cxy τ =Rxy τ −mxm∗
y Cross-covariance

Cxy τ =Rxy τ −mxmy x t ,y t real

Rzz τ =Rxx τ +Ryy τ +Rxy τ +Ryx τ z t = x t + y t
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the signal modulation Nyquist bandwidth BN so that the 2fc
heterodyning or homodyne mixing terms are completely
eliminated through filtering. In such cases, the white noise
in the baseband demodulator bandwidth is denoted by the
single-sided noise density No watts/Hz, where single-sided
refers to positive frequencies.

1.6.1 Stochastic Processes

The subject of stochastic processes is discussed in consider-
able detail by Papoulis [55] and Davenport and Root [56] and
the following definitions are often stated or implied in the
applications discussed in throughout the following chapters.
A stochastic process is defined as a random variable that is a
function of time and the random events χ in S as depicted in
Figure 1.14. In this context the random variable is character-
ized as x(t,χ). For a fixed value of t = ti, x(ti,χ) is a random
variable and χ = χi, x(t,χi) denotes as the real random process
x(t) such that x(ti) is a random variable with pdf fX(x:ti); in
general, the pdf of x(t) is defined as fX(x:t).

1.6.1.1 Stationarity There are several ways to define the
stationarity of a stochastic process, for example, stationarity
of finite order, asymptotic stationary, and periodic stationar-
ity; however, the following two are the most frequently
encountered.

Strict-Sense Stationary Process The stochastic process x(t)
is strict-sense stationary, or simply stationary, if the statistics
are unaltered by a shift in the time axis. Furthermore, two ran-
dom variables are jointly stationary if the joint statistics are
unaltered by an equal time shift of each random variable, that
is, the probability density function f(x ; t) is the same for all
time shifts τ. This is characterized as

f x1,x2,…; t1, t2,… = f x1,x2,…; t1 + τ, t2 + τ,…

1 298

Wide-Sense Stationary Process The stochastic process x(t)
is wide-sense stationary (WSS) if its expected value is con-
stant and autocorrelation function is a function of the time
shift τ = t2 − t1 t1 and t2. WSS stationarity is characterized
as

E x t =mx = constant 1 299

and

E x t x t−τ =Rx τ (1.300)

Because wide-sense stationarity depends on only the first
and second moments it is also referred to asweak stationarity.
A function of two random processes is wide-sense stationary

if each process is wide-sense stationary and their cross-
correlation function is dependent only the time shift, that is,

E x t1 y t2 =Rxy t1− t2 =Rxy τ (1.301)

1.6.1.2 Ergodic Random Process The random process x
(t), defined earlier, is an ergodic random process if the statis-
tics of x(t) are completely defined by the statistics of x(t,χ).
Denoting the random process x(ti,χ) as an ensemble of x
(t,χ), then ergodicity ensures that the statistics x(ti) are iden-
tical to those of the ensemble; in short, the time statistics are
identical to the ensemble statistics.* Ergodicity of the mean,
of the stochastic process x(t,χ), exists under the condition

x t,χ i =E x ti,χ i (1.302)

where the time average is defined as

x t,χi ≜ lim
T ∞

1
2T

T

−T
x t,χi dt (1.303)

and the ensemble average is defined as

E x ti,χ ≜
∞

−∞
χfχ ti,χ dχ (1.304)

Since the mean value of a random process must be a con-
stant, the ergodic of the mean theorem states that the equality
condition in (1.302) is satisfied when E x ti,χ = η i
where η is a constant. This is a nontrivial task to prove, how-
ever, following the discussion by Papoulis [57], the ergodic
of the mean theorem states that

lim
T ∞

1
2T

T

−T
x t dt =E x t = η

iff lim
T ∞

1
2T

T

−T
Rx τ dτ = η2

(1.305)

The iff condition in (1.305) is formally expressed in terms
of the autocovariance function for which the limit T ∞
is expressed as the variance σ2x = η

2−E x t 2. However,
from (1.305), the expectation E[x(t)] = η resulting in σ2x = 0.
Therefore, the limit T ∞ of the autocovariance function
converges in probability with the conclusion that
E x t,χi =E x ti,χ proving ergodicity of the mean.† Dem-
onstration of ergodicity of the autocorrelation function

*Papoulis (Reference 8, Chapter 9) discusses the ergodicity of a stochastic
process with respect to certain parameters.
†Convergence in probability is also discussed by Davenport and Root
(Reference 6, pp. 66–71).
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is considerably more involved, requiring the fourth-order
moments.

1.6.2 Narrowband Gaussian Noise

Consider the noise described by the narrowband process [58]
with bandwidth B << fc expressed as

n t =N t cos ωct + θ t −N t sin ωct + θ t (1.306)

where N(t) and θ(t) represent, respectively, the envelop
and phase of the noise and ωc = 2πfc is the angular carrier
frequency. Upon expanding the trigonometric functions,
(1.306) can also be expressed as

n t = nc t cos ωct −ns t sin ωct (1.307)

where

nc t =N t cos θ t (1.308)

and

ns t =N t sin θ t (1.309)

The noise terms nc(t) and ns(t) are uncorrelated with spec-
trum S(f) and bandwidth B, such that S(f) = 0 for |f − fc| > B/2.
This is the general characterization of a narrowband noise
process; however, in the following analysis, nc(t) and ns(t)
are also considered to be statistically independent, stationary
zero-mean white noise Gaussian processes with one-sided
spectral density No watts/Hz.

Because of the stationarity, the noise autocorrelation is
dependent only on the correlation lag τ and is evaluated as

Rnn τ =E n t n t−τ

=E nc t cos ωct −ns t sin ωct

nc t−τ cos ωc t−τ −ns t−τ sin ωc t−τ

(1.310)

Upon evaluating the product in (1.310) and distributing
the expectation, it is found that the conditions for stationarity
require* Rss(τ) = Rcc(τ) and Rcs(τ) = −Rsc(τ) so that (1.310)
reduces to

Rnn τ =Rcc τ cos ωcτ −Rss τ sin ωcτ (1.311)

The noise power is evaluated using (1.311) with τ = 0 with
the result Rnn(0) = Rcc(0) = σ2n. This evaluation can be carried

further using the Wiener–Khinchin theorem† which states
that the power spectral density of a WSS random process
is the Fourier transform of the autocorrelation function,
that is,

Sn f =
∞

−∞
Rnn τ e− j2πf τdτ (1.312)

From (1.312) the inverse Fourier transform is

Rnn τ =
∞

−∞
Sn f ej2πf τdf (1.313)

and, substituting the condition that the single-sided noise
spectral density is defined as No watts/Hz, (1.313) becomes

Rn τ =
No

2

∞

−∞
ej2πf τdf =

No

2
δ τ (1.314)

In (1.314) the single-sided noise density is divided by two
because of the two-sided integration, that is, the integration
includes negative frequencies. In this case, the noise power,
defined for τ = 0, is infinite, however, when the ideal band-
limited filter, with bandwidth B, is considered the noise
power in the filter centered at fc is computed as

Rn 0 =No

fc+B 2

fc −B 2
df =NoB (1.315)

In this case the one-sided noise density No is used instead
of No/2 because the one-sided integration is over positive
frequencies.

If a linear filter with impulse response h(t) is used, the fre-
quency response is given by

H f =
∞

−∞
h t e− j2πftdt (1.316)

The corresponding unit gain normalizing factor is |H(0)|.
With the stationary noise process n(t) applied to the input of
the filter, the output is determined using the convolution inte-
gral and the result is as follows:

no t =
∞

−∞
n t−λ h λ dλ (1.317)

*See Problem 29.

†Leon-Garcia (Reference 29, p. 404) refers to this theorem as the Einstein–
Wiener–Khinchin theorem based on the discovery of an earlier paper by
Albert Einstein.
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Using (1.317) it can be shown (see Problem 33) that
the normalized spectrum of the output noise is expressed,
in terms of the input noise PSD Sn(f), as

Sno f = Sn f
H f

H 0

2

(1.318)

where |H(0)| is the normalizing gain of the filter. Using
(1.318), with Sn(f) = No/2 corresponding to white noise, the
output noise power is evaluated as

Rno 0 =
fc+B 2

fc−B 2
Sn f

H f 2

H fc
2df

=
No

2

fc+B 2

fc −B 2

H f 2

H fc
2df

=NoBn

(1.319)

where the second integral in (1.319) is recognized as the def-
inition of the noise bandwidth of the bandpass filter with low-
pass bandwidth Bn.

1.7 THE MATCHED FILTER

The problem in the detection of weak signals in noise is one
of deciding whether the detection filter output is due to the
signal and noise or simply noise only. The matched filter
[59, 60], provides for the optimum signal detection in AWGN
noise based on the maximum instantaneous signal-to-noise
ratio when sampled at the optimum time.* The matched filter,
for an AWGN channel, is characterized as having an impulse
response equal to the delayed time-reverse replica of the
received signal. To maximize the signal detection probability
the matched filter output must be sampled at To as defined in
the following analysis. The matched filter can be implemen-
ted at a convenient receiver IF or in the demodulator using
quadrature baseband-matched filters.

Considering the received signal, sr(t), the matched filter
impulse response depicted in Figure 1.28 is expressed as

h t =Gsr To− t (1.320)

The gain G is selected for convenience; however, it must
be a constant value. The delay To is required to result in a
causal impulse response, that is, the response of h(t ≤ 0) =
0 for h(t) to be realizable; consequently, sr(t ≥ To) must be
zero. Usually the selection of To is not an issue since many
symbol modulation functions are time limited or can be trun-
cated without a significant impact on the transmitted signal

spectrum; however, the matched filter delay results in a
throughput delay. To the extent that the impulse approxi-
mates (1.320) a detection loss will be encountered.

The criterion of the matched filter is to provide the max-
imum signal-to-noise ratio in the AWGN channel when
sampled at the optimum time To. The following matched fil-
ter analysis follows that of Skolnik [61]. The signal-to-noise
ratio of interest is

γf =
sr t 2

max

N
(1.321)

where sr t 2
max = sr To 2 is evaluated as

so To
2 =

∞

−∞
S f H f ej2πfTodf

2

(1.322)

and N is the noise power evaluated as

N =
∞

−∞
N f H f 2df =

No

2

∞

−∞
H f 2df (1.323)

In these expressions, the filter spectrum H(f) is normal-
ized, such thatH(0) = 1, and the last equality in (1.323) results
because the channel noise is white with one-sided constant
power density of No watts/Hz. Substituting (1.322) and
(1.323) into (1.321) results in the expression for the signal-
to-noise ratio

γf =

∞

−∞
S f H f ej2πfTodf

No 2
∞

−∞
H f 2df

2

(1.324)

Themaximum signal-to-noise ratio is evaluated by applying
Schwarz’s inequality (see Section 1.14.5, Equation 5) to the
numerator of (1.324). Upon substituting f ∗ f = S f ej2πfTo

and g f =H f into the Schwarz inequality, (1.324) is
expressed as

0

0 To

To
t

sr(t)

t

h(t)

FIGURE 1.28 Example received signal and corresponding
matched filter.

*The matched filter was first derived by D.O. North [59] and is also referred
to as the North filter.
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γf ≤

∞

−∞
S f 2df

∞

−∞
H f 2df

No 2
∞

−∞
H f 2df

=

∞

−∞
S f 2df

No 2

(1.325)

The equality condition of the signal-to-noise ratio in
(1.325) applies when f(f) = cg(f), where c > 0 is a conven-
iently selected constant resulting in the matched filter fre-
quency response expressed as

H f =GS∗ f e− j2πfTo matched filter frequency response

(1.326)

where G = 1/c is an arbitrarily selected constant gain greater
that zero. Upon applying Parseval’s theorem and recognizing
that the numerator of the second equality in (1.325) is the sig-
nal energy, E, the optimally sampled matched filter output
signal-to-noise ratio is simply expressed as

γf max =
2E
No

baseband modulated signal (1.327)

Therefore, for the AWGN channel, the optimally sampled
matched filter output results in a signal-to-noise ratio that is a
function the signal energy and noise density and is independ-
ent of the shape of the signal waveform. The factor of two in
(1.327) results from the analytic or baseband signal descrip-
tion in the derivation of the matched filter. Typically, the
received signal spectrum is modulated onto a carrier fre-
quency with an average power equal to one-half the peak car-
rier power. In this case, the signal-to-noise ratio at the output
of the matched filter is one-half of that in (1.327) resulting in

γf max =
E

No
carrier moduated signal (1.328)

Referring to (1.326), the inverse Fourier transform of the
complex conjugate of the signal spectrum results in the filter
impulse response corresponding to the time reverse of the sig-
nal. In addition, the inverse Fourier transform of the exponen-
tial function in (1.326) results in a signal time delay of To
seconds, so the resulting filter impulse response, h(t), corre-
sponds to the example depicted in Figure 1.28. Consequently,
the matched filter impulse response can be expressed in the
time domain by (1.320) or in the frequency domain by (1.326).

The detection loss associated with a filter that is not
matched to the received signal is evaluated as

ρf ≜
γf

γf max
=

so t 2
max No

2E No
(1.329)

where so t and No are the output signal and mean noise
power density at the output of the unmatched filter. Typically

the matched filter is based on the transmitted waveform;
however, the received signal into the matched filter may be
distorted by the channel or receiver filtering* resulting in a
detection loss. The matched filter implementation may also
result in design compromises that result in a detection loss.

1.7.1 Example Application of Matched Filtering

In this example, a BPSK-modulated received signal is con-
sidered with binary source data bits bi = {0,1} expressed
as the unipolar data di = (1 − 2bi) = {1,−1} over the data inter-
vals iT ≤ t ≤ i+ 1 T of the bit duration T. The received signal
plus noise is expressed as

r t = dis t + n t (1.330)

The signal is described as

s t =Acos ωct (1.331)

The noise is zero-mean additive white Gaussian noise with
one-sided spectral density No described as

n t = nc t cos ωct −ns t sin ωct (1.332)

The receiver-matched filter impulse response and Fourier
transform are given by

h t =As To− t
ℑ

H f =GS∗ f e− j2πfTo (1.333)

In (1.333) the signal spectrum defined as S(f) and the
squared magnitude of the matched filter output at the opti-
mum sampling point is

so To
2 =

∞

−∞
S f H f ej2πfTodf

=
∞

−∞
S f 2df =E

(1.334)

where the gain G = |H(0)| is normalized to one resulting in a
unit gain-matched filter response H(f).

Referring to the additive noise described by (1.332) and
Section 1.6.2, the noise power at the output of the matched
filter is expressed as

Rno 0 =
No

2

B 2

−B 2
H f 2df (1.335)

where B/2 is the baseband bandwidth of the matched filter.

*Adaptive channel equalizers are often used to compensate for the channel
distortion.

THE MATCHED FILTER 45



The received signal, as expressed in (1.330), can be
rewritten in terms of the optimally sampled matched filter
output as

l r iTo = Edi +
No

2
ni (1.336)

where ni are iid zero-mean, unit variance, white Gaussian

noise samples. Upon dividing (1.336) by No 2 the sampled
matched filter output is expressed as

l ri =
2E
No

di + ni (1.337)

The sampled values l(r(iTo)) and l (ri) are referred to as
sufficient statistics, in that, they contain all of the information
in r(t), expressed in (1.330), to make a maximum-likelihood

estimate di of the source-bit di. The normalized form in
(1.337) is used as the turbo decoder input discussed in
Section 8.12. In Section 1.8 the sufficient statistic is seen
to be a direct consequence of the log-likelihood ratio.

1.7.2 Equivalence between Matched Filtering
and Correlation

Consider the receiver input as the sum of the transmitted
signal plus noise expressed as

r t = s t + n t (1.338)

The cross-correlation of r(t) with a replica of the received
signal is computed as

R τ =
∞

−∞
r t s t−τ dt cross-correlation (1.339)

Defining the matched filter impulse response as h(t), the
matched filter output response to the input r(t) is

yo t =
∞

−∞
r λ h t−λ dλ convolution (1.340)

However, referring to the preceding matched filter discus-
sion, the matched filter response is equal to the delayed image
of the signal, such that,

h t = s To− t (1.341)

As mentioned previously, the delay To ensures that
the filter response is causal and, therefore, realizable.
To substitute (1.341) into (1.340) first let t = t−λ so that
h t−λ = s To− t−λ = s λ− t−To and substitute this
result in (1.340) to get

yo t =
∞

−∞
r λ h t−λ dλ

=
∞

−∞
r λ s λ− t−To dλ

=R t−To

(1.342)

So that the convolution response is equal to the cross-
correlation response delayed by To. If the input noise is zero,
so that r(t) = s(t), the same conclusion can be drawn regarding
the autocorrelation response.

1.8 THE LIKELIHOOD AND
LOG-LIKELIHOOD RATIOS

Bayes criterion is based on two events, referred to as hypoth-
esis H1 and H0, that are dependent upon a priori probabilities
P1 and P0 and the, respective, associated costs (C01,C11) and
(C10,C00). Letting m correspond to the decision and n corre-
spond to the hypothesis, the range of the cost is 0 ≤ Cmn ≤ 1
with Cmn + Cnn|m n = 1. The cost of a correct decision is Cnn

and an incorrect decision is Cmn|m n. For communication
links the cost of incorrect decision is typically higher than
a correct decision so that Cmn|m n > Cnn. For example, when
Cmn|m n = 1 and Cnn = 0 the decision threshold minimizes
the probability of error which is the goal of communication
demodulators. In summary,

Cmn =
m= n cost of correct decision

m n cost of decision error
(1.343)

and the a priori probabilities are typically known and equal.
In the following example, the hypotheses correspond to

selecting di = {1,−1}, such that, under the two hypotheses

H1 di = + 1 with a prioi probability P1

H0 di = −1 with a prioi probability P0
(1.344)

with the observations

ri = di + ni t = iTo (1.345)

corresponding to the optimally sampled outputs of the
matched filter. In terms of the a priori, the transition probabil-
ities, and the cost functions, the hypothesis H1: with di = 1 is
chosen if the following inequality holds,

Pr H1
r H1 P1 C01−C11 ≥Pr H0

r H0 P0 C10−C00

(1.346)
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otherwise, chose H0 with di = −1. The decisions are made
explicit under the following rearrangement of (1.346)

Pr H1
r H1

Pr H0
r H0

>
H1

<
H0

P0 C10−C00

P1 C01−C11
(1.347)

Left and right sides of (1.347) are defined as the likelihood
ratio (LR) Λ(r) and decision threshold η or, alternately, as the
log-likelihood ratio (LLR) lnΛ(r) with the threshold lnη, so
(1.347) is also expressed as

Λ r >
H1

<
H0

η or lnΛ r >
<
H0

H1
lnη alternate decisions thresholds

(1.348)

1.8.1 Example of Likelihood and Log-Likelihood
Ratio Detection

Consider the two hypotheses H1 and H0 mentioned earlier
with di = {1,−1} and the observation ri in (1.345) with the
additive noise ni characterized as iid zero-mean white
Gaussian noise, denoted as N(0,σn). The transition probabil-
ities are expressed in terms of the Gaussian noise pdf as

p n =
1

2πσn
e− r−m 2 2σ2n (1.349)

Upon forming the likelihood ratio and recognizing that
m = ±di, the likelihood ratio decision simplifies to

exp
2ri
σ2n

>
H1

<
H0

P0 C10−C00

P1 C01−C11
(1.350)

and the log-likelihood ratio decision simplifies to

2
σ2n

ri >
H1

<
H0

ln
P0 C10−C00

P1 C01−C11
(1.351)

Recognizing that l(ri) is a sufficient statistic, (1.351) is
rewritten as

l ri >
H1

<
H0

σ2n
2
ln

P0 C10−C00

P1 C01−C11
(1.352)

When C10 = C01 = 1, C00 = C11 = 0, and P0 = P1 the LLR
simplifies to

l ri >
H1

<
H0

0 ln η= 1 = 0 (1.353)

Therefore, the data estimate is di = 1 when l(ri) > 0, other-

wise, di = −1. Recall that observations ri : t = iTo are made at
the output of the matched filter. These concepts involving the
LR and LLR surface again in Section 3.2 and the notion of the
natural logarithm of the transitions probabilities is discussed
in the following section involving parameter estimation.

1.9 PARAMETER ESTIMATION

The subject of optimum signal detection in noise was exam-
ined in the preceding section in terms of a pulsed-modulated
carrier and it resurfaces throughout the following chapters in
the context of a number of different waveform modulations.
However, signal detection is principally based on the signal
energy without regard to specific signal parameters, although
frequency and range delay must be estimated to some degree
to declare signal presence and subsequently detection. Signal
detection uses concepts involving direct probabilities,
whereas the subject of parameter estimation uses concepts
involving inverse probabilities as discussed by Feller [32],
Slepian [62], Woodward and Davies [63], and others. The
distinction between these concepts is that direct probability
is based on the probability of an event happening, whereas
inverse probability formulates the best estimate of an event
that has already occurred. With this distinction, it is evident
that parameter estimation involves inverse probabilities. The
major characteristic of inverse probability is the use of a
priori information associated with the available knowledge
of each source event. At the receiver the a posteriori proba-
bility is expressed in terms of the inverse probability using
Bayes rule that associates the transition probability and a
priori knowledge of the source events.

The subject of this section is signal parameter estimation
and, although the major parameter of interest in communica-
tions is the estimation of the source information, the estima-
tion of parameters like, frequency, delay, and signal and
noise powers are important parameters that aid in the estima-
tion of the source information. For example, estimation of
the received signal and noise powers form the basis for esti-
mating the receiver signal-to-noise ratio that is used in the
network management to improve and maintain communica-
tion reliability. Furthermore, characterizing the theoretical
limits in the parameter estimates provides a bench mark or
target for the accuracy of the parameter estimation during
the system design.

The following discussion of statistical parameter estima-
tion is largely based on the work of Cramér [64], Rao [65],
Van Trees [66], and Cook and Bernfeld [67]. The received
signal is expressed in terms of the transmitted signal with
M unknown parameters a1, a2, …, aM and additive noise, as

r t = s t;a1,a2,…,aM + n t (1.354)
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Considering that N discrete samples of the received signal
and additive noise are used to estimate the parameters, the
joint probability density function (pdf) of the samples is

pr r1,r2,…,rN a1,a2,…,aM = pn r1−s1,r2−s2,…,rN −sN
(1.355)

where the noise samples ni = ri − si are substituted into
the joint pdf of the noise. The noise samples are statistically
independent and the statistical characteristics of the noise
are assumed to be known. Therefore, based on the received
signal-plus-noise samples ri, the receiver must determine
the estimates â1, â2,…, âM of the M unknown parameters.
The probability density function pr(r1,… |a1,…) in (1.355)
is called the likelihood function.

Van Trees discusses several estimation criteria* and the
following focuses on the optimum estimates for the mean-
square (MS) error† and maximum a posteriori probability
(MAP) criterion that are defined, respectively, for a single
parameter a as

ams r =
∞

−∞
apa r a r da MS estimate (1.356)

and

∂

∂a
lnpa r a r

a= amap r

= 0 MAP equation (1.357)

The estimate âms(r) is optimum in the sense that it results
in the minimumMS error over all si and a. TheMAP estimate
âmap(r) is the solution to (1.357) and is optimum in the sense
that it locates the maximum of the a posteriori probability
density function; however, the solution must be checked to
determine if it corresponds to the global maximum in the
event of a multimodal distribution.

By applying Bayes rule to (1.357), the MAP estimate is
expressed in terms of the a priori pdf, pa(a), and the likelihood
function, pr a r a , as

∂

∂a
lnpr a r a +

∂

∂a
lnpa a

a = amap r

= 0 (1.358)

When the a priori probabilities are unknown, that is, as
the a priori knowledge approaches zero, (1.358) becomes
the maximum-likelihood equation and âml(r) is the
maximum-likelihood estimate, evaluated as the solution to

∂

∂a
lnpr a r a

a = aml r
= 0 ML estimate (1.359)

To make use of these estimates it is necessary to determine
the bias and the variance of the estimate. The mean value of
the estimate is computed as

E a r =
∞

−∞
a r pr a r a dr (1.360)

The bias of the estimate is defined as B a =E a r −a. If,
as indicated, the bias is a function of a, the estimate has an
unknown bias, however, if the bias is B, independent of a,
the estimate has a known bias that can be removed from
the observation measurements r. In general, for any known
biased estimate â(r) of the real random variable a, the vari-
ance is defined as

σ2a =Var a r −a ≜E a r −a 2 −B2 (1.361)

Although the bias and variance are often difficult to deter-
mine, the Cramér–Rao inequality provides a lower bound on
the variance of the estimate. For a biased estimate of the ran-
dom parameter a with a priori pdf pa(a), the variance is lower
bounded by the Cramér–Rao inequality [64, 66]

σ2a ≥
∂E a r ∂a 2

E
∂ln pr a r a

∂a
+
∂ln pa a

∂a

2 biased; variable

(1.362)

or, the equivalent result,

σ2a ≥
∂E a r ∂a 2

−E
∂2 ln pr a r a

∂a2
+
∂2 ln pa a

∂a2

biased; variable

(1.363)

When the estimate is unbiased, that is, when E a r = a,
the estimation variance of the random variable a simplifies to

σ2a ≥
1

E
∂ln pr a r a

∂a
+
∂ln pa a

∂a

2

unbiased; variable

(1.364)

or, the equivalent result,

σ2a ≥
1

−E
∂2 ln pr a r a

∂a2
+
∂2 ln pa a

∂a2

unbiased; variable

(1.365)

*The criteria are based on Bayes estimation procedure that minimizes the risk
associated with the cost or weight assigned to various kinds of statistical deci-
sions. In communication systems, the decision costs are assigned tominimize
the demodulator bit-error probability.
†The MS error is also referred to as the minimum mean-square
error (MMSE).
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The Cramér–Rao bound in these relationships is formu-
lated in terms of the Schwarz inequality and the equality
condition applies when

∂ln pr a r a

∂a
+
∂ln pa a

∂a
= k a r −a

MAP efficient estimate condition

(1.366)

where k is a constant. Therefore, (1.366) guarantees that the
equality condition for the variance applies in (1.362) through
(1.365); in this case, the MAP estimate is defined as an effi-
cient estimate. Furthermore, an unbiased estimate, excluding
the trivial case k = 0, requires that a r = a leading to (1.358).

When the a priori knowledge pa(a) is constant, that is,
the parameter a is nonrandom, or unknown, then (1.359)
also requires that a = a or aml r = a. Under the maximum-
likelihood (ML) criteria Schwarz’s equality condition
applies when

∂ln pr a r a

∂a
= k a a r −a

ML efficient estimate condition

(1.367)

In this case, the constant k(a) may be a function of a; this
condition only applies when parameter a is a constant which
corresponds to the ML estimate.

Van Trees lists three principles based on the forgoing
results:

1 The mean-square (MS) error estimate is always the
mean of the a posteriori density, that is, the conditional
mean.

2 The MAP estimate corresponds to the value of a for
which the a posteriori density is maximum.

3 For a large class of cost functions, the optimum esti-
mate is the conditional mean whenever the a posteriori
density is a unimodal function which is symmetric
about the conditional mean. The Gaussian pdf is a com-
monly encountered example.

By way of review, the estimates are evaluated using the a
posteriori pdf; however, if the parameter is a random variable,
the a posteriori pdf must be expressed in terms of the transi-
tion distribution and the a priori pdf of the random parameter
using Bayes rule. If the estimate is unbiased, that is, if
B=E a r −a = 0, evaluation of the Cramér–Rao bound
simplifies to (1.364); it is sometimes necessary to use the
equivalent expression in (1.365). The Cramér–Rao equality
condition is established if the left-hand side of (1.366) can
be expressed in terms of the right-hand side where k is a
constant parameter resulting from Schwarz’s condition for
equality.

If the a priori knowledge is unknown then the maximum-
likelihood equation given in (1.359) is used to determine
maximum-likelihood estimate. In this case, the Cramér–
Rao bound is established by omitting the dependence of
pa(a) in, (1.362) through (1.365) and the equality condition
is established if the left-hand side of (1.367) can be expressed
in terms of the right-hand side where, in this case, the con-
stant k(a) is a function of the parameter a. With either the
MAP or ML estimates, if the bias is zero and the equality
condition applies, the estimate is referred to as an efficient
estimate.

Van Trees shows that for the MS estimate to be an effi-
cient estimate, the a posteriori probability density pa r a r
must be Gaussian for all r and, for efficient MAP estimates,
ams r = amap r . However, it may be easier to solve the MAP
equation than to determine the conditional mean as required
by the MS estimation procedure.

1.9.1 Example of MS and MAP Parameter
Estimation

As an example application of the parameter estimation pro-
cedures discussed earlier, consider the Poisson distribution
that is used to predict population growth, telephone call ori-
ginations, gamma ray emissions from radioactive materials,
and is central in the development of queueing theory [68].
For this example, the Poisson distribution is characterized as

pa a n =
an

n
e−a a ≥ 0; n = 0,1,2,… (1.368)

In the application of (1.368) to queueing theory, a = λt is
the average number of people entering a queueing line in
the time interval 0 to t and λ is the arrival rate. The a
posteriori distribution pa n a n is the probability of a condi-
tioned on exactly n arrivals occurring in the time interval.
A fundamental relationship in the Poisson distribution is that
the time interval between people entering the queueing line is
exponentially distributed and is characterized by the a priori
distribution

pa a = e−a a ≥ 0 (1.369)

The a posteriori pdf in (1.368) is expressed in terms of the
a priori and transition pdfs as

pa n a n =
pn a n a pa a

pn n
=
k

n
ane−2a (1.370)

where the constant k is a normalizing constant that includes 1/
pn(n). Integrating of the second equality in (1.370) with
respect to da over the range 0 to∞ and setting the result equal
to one, the value of k is found to be k = 2n+1 and (1.370)
becomes
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pa n a n =
2n+ 1

n
ane−2a (1.371)

Using (1.356) and (1.371) the MS estimate is evaluated as

ams n =
2n+ 1

n

∞

0
an + 1e−2ada=

n

2
(1.372)

Also, using (1.357) and (1.371) the MAP estimate is eval-
uated as

∂

∂a
ln

2n+ 1

n
ane−2a =

∂

∂a
ln

2n+ 1

n
+ n ln a −2a

=
n

a
−2

a= amap n
= 0

(1.373)

and solving the second equality in (1.373) for a results in
amap n = n 2. As is typical in many cases, the MS and
MAP estimation procedures result in the same estimate. It
is left as an exercise (see Problem 38) to determine the bias
of the estimates, compute the Cramér–Rao bound, and using
(1.366), determine if the estimates are efficient, that is, if the
Cramér–Rao equality condition applies.

1.9.2 Constant-Parameter Estimation in
Gaussian Noise

To simplify the description of the estimation processing,
the analysis in this section considers the single constant-
parameter case with zero-mean narrowband additive
Gaussian noise. Under these conditions, the estimation is
based on the solution to the maximum-likelihood equation
with the joint pdf of the received signal and noise written as

pr r1,r2,…,rN ;a = pn r1−s1,r2−s2,…,rN −sN

=
N

i= 1

pn ri−si
(1.374)

where a is the constant parameter to be estimated and ri = si +
ni represents the received signal samples. The sampling rate
satisfies the Nyquist sampling frequency and the second
equality in (1.374) recognizes that the noise samples are inde-
pendent. The following analysis is based on the work of the
Woodard [24] and Skolnik [61] and uses the maximum-
likelihood estimate of (1.359) with the Cramér–Rao bound
expressed by (1.365).

Using (1.374) with zero-mean AWGN, the minimum
Cramér–Rao bound on the variance of the estimate is
expressed as

σa2 min = −E
∂2

∂a2
ln

N

i

1

2πσn
exp −

ri−si
2

2 σ2n

−1

= −E
∂2

∂a2
ln kexp

−1
2No

N

i= 1

ri−si
2Δt

−1

= −E
∂2

∂a2
ln kexp

−1
2No

Te

0
r t −s t 2dt

−1

(1.375)

In arriving at the third equality in (1.375) the factor k is
independent of the parameter a and, it is recognized that,
σ2n =NoB where B = 1/Te is the bandwidth corresponding to
the estimation time. The integral is formed by letting Δt
0 as the number of samples N ∞ over the estimation inter-
val Te. Upon taking the logarithm of the product kexp(−) and
performing the partial derivatives on the integrand, (1.375)
simplifies to

σa2 min =E
−1
No

Te

0
r t −s t

∂2s t

∂a2
−

∂s t

∂a

2

dt

−1

=
1
No

Te

0

∂s t

∂a

2

dt

−1

(1.376)

The last equality in (1.376) is the basis for determining the
variance and is obtained by moving the expectation inside of
the integral and recognizing that E r t −s t =E n t = 0.
The following example outlines the procedures for estimating
the variance of the estimate using the ML procedures.

1.9.2.1 Example of ML Estimate Variance Evaluation
Consider the signal s(t) expressed as

s t =Acos ωot +ωt
2 2 +ϕ (1.377)

where A is the peak carrier voltage, ωo is the IF angular fre-
quency, ω is the angular frequency rate, and ϕ is a constant
phase angle; the signal power is defined Ps = A2/2.

The variance of the frequency estimate is determined by
squaring the partial derivative of s(t) respect to ωo and inte-
grating over the estimation interval Te as indicated in (1.376).
Under these conditions the analysis of the Cramér–Rao lower
bound is performed as follows.

σ2ωo
min =

A2

No

Te

0
t2sin2 ωot +ωt

2 2 +ϕ dt
−1

=
Ps

No

Te

0
t2 1−cos 2ωot +ωt

2 + 2ϕ dt
−1

(1.378)
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Upon neglecting the term involving 2ωo and performing
the integration, (1.378) becomes

σ2ωo
min =

3
T2
e γe

rad2 s2 (1.379)

where γe = PsTe/No is the signal-to-noise ratio in the estima-
tion bandwidth of 1/Te. In terms of the carrier frequency fo
in hertz, the standard deviation of the estimate is

σf o min =
3

2πTe γe
Hz (1.380)

In a similar manner, the standard deviation of the fre-
quency rate and phase are evaluated as

σ
f
min =

5
π T2

e γe
Hz s (1.381)

and

σϕ min =
1
γe

rad (1.382)

The evaluation of the standard deviation of the signal
amplitude (A) estimation error is left as an exercise (see
Problem 39).

1.9.3 Received Signal Delay and Frequency
Estimation Errors

Accurate estimation of the signal delay and frequency are
essential in aiding the signal acquisition processing by mini-
mizing the overall time and frequency search ranges. The delay
estimation accuracy (σTd) is inversely related to the signal
bandwidth (B) and the signal frequency estimation accuracy
(σfd) is inversely related to the time duration (T) of the signal.
Neglecting the signal-to-noise dependence of each measure-
ment, these inverse dependencies are evident, in that, the prod-
uct σTdσfd 1/TB where TB is the time-bandwidth product
of the waveform. For typical modulated waveforms T and B
are inversely related so that simultaneous accurate time and
frequency estimates are not attainable. However, the use of
spread-spectrum (SS) waveformmodulation provides for arbi-
trarily large BT products with simultaneous accurate estimates
of Td and fd. The analysis of delay and frequency estimation
errors in the following sections is based on the work of
Skolnik [61] and can be applied to conventional or SS-
modulated waveforms. In Section 1.9.3.3 delay and frequency
estimation is examined using a DSSS-modulated waveform.

1.9.3.1 Delay Estimation Error Based on Effective
Bandwidth The signal delay measurement accuracy using

the effective signal bandwidth was introduced by Gabor
[69] and is discussed by Woodward [24] and defined as the
standard deviation of the delay measurement expressed as*

σTd =
1

β 2γe
second (1.383)

where γe = Ps/NoW = E/No is the signal-to-noise ratio
† meas-

ured in the two-sided bandwidth W, No is the one-sided
noise density, Ps is the signal power, and β is the effective
bandwidth of the signal. β2 is the normalized second moment
of the waveform spectrum |S(f)|2, defined as

β2 ≜

∞

−∞
2πf 2 S f 2df

∞

−∞
S f 2df

(1.384)

The denominator in (1.384) is the signal energy and the
integration limits extend over the frequency range f ≤ |W/2|
corresponding to the nonzero signal spectrum. The one-
way range error corresponding to (1.383) is σrng = cσTd
meters where c is the free-space velocity of light in meter/
second.

For the rectangular symbol modulation function rect
(t/T), band limited to W Hz with β2 W/T and large time-
bandwidth products WT/2, (1.383) is evaluated as

σTd =
T

WTγe
band-limited rect t T symbol; WT 2 1

(1.385)

1.9.3.2 Frequency Estimation Error Based on Effective
Signal Duration In a manner similar to the analysis of
the delay estimation error in the preceding section, Manasse
[70] shows that the, minimum root-mean-square (rms) error
in the frequency estimate is given by‡

σfd =
1

α 2γe
Hz (1.386)

where γe = E/No is the signal-to-noise ratio measured in the
two-sided bandwidthW, No is the one-sided noise density, Ps

is the signal power, and α is the effective time duration of the

*Woodward refers to the delay error as the standard deviation of the error.
Slepian’s analysis [62] is based on the likelihood function and also arrives
at (1.383).
†The factor of two in γe results because No is the one-sided noise density and
W is the two-sided bandwidth.
‡The notation σfd is used to denote the standard deviation of the frequency
estimation error.
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received signal. The parameter α2 is the normalized second
moment of the waveform s(t) and is defined as

α2 ≜

∞

−∞
2π t 2s2 t dt

∞

−∞
s2 t dt

(1.387)

The Doppler frequency results from the velocity (v) and
the carrier frequency (fc) and is expressed as fd = (v/c)fc.
Frequency errors resulting from hardware oscillators are
usually treated separately and combined as the root-sum-
square (RSS) of the respective standard deviations.

For the band-limited rect(t/T) symbol modulation used
in the preceding section, the normalized second moment is
evaluated as α2 (πT)2/3 and (1.386) is expressed as

σfd =
3

πT 2γe
band-limited rect t T symbol; WT 2 1

(1.388)

Comparison of (1.385) and (1.388) demonstrates the
inverse relationship between the estimation accuracy of the
range-delay and frequency errors for conventional (unspread)
modulations. For example, for a given time bandwidth (WT)
product and signal-to-noise ratio (γe), the delay estimate error
decreases with decreasing symbol duration; however, the fre-
quency estimate error increases. The issue resolves about the
signal-to-noise ratio in the estimation bandwidth. For exam-
ple, with conventional waveform modulations,WT = 2BT = 2
so BT = 1 and the bandwidth changes inversely with the sym-
bol duration. Consequently, by decreasing symbol duration,
the bandwidth increases resulting in a signal-to-noise γs,

measured in the symbol bandwidth, degradation of B/B
where B >B. Therefore, in the previous example, to maintain
a constant signal-to-noise ratio γe the estimation interval
must be appropriately adjusted. As mentioned previously,
the solution to simultaneously obtaining accurate estimates
of range delay and frequency while maintaining a constant
γs, involves the use of a SS-modulated signals with an inher-
ently largeWT product as discussed in the following section.

1.9.3.3 Improved Frequency and Time Estimation Errors
Using the DSSS Waveform The DSSS waveform uses a
pseudo-noise (PN) sequence of chips with and instantaneous
bandwidth (W) over the estimation interval (T) as shown in
Figure 1.29.* The resulting largeWT product signal provides
for arbitrarily low time and frequency estimation errors. This
is accomplished by the respective selection of a high band-
width (short duration) chip interval (τ) and the low bandwidth
(long duration) estimation interval T. The estimation interval
can be increased to improve the frequency estimate; con-
versely, the chip interval can be decreased to improve the
range-delay estimate; however, to maintain the accuracy of
the other, the number of chips per estimation interval (N)
must be increased. These relationships are described in terms
of the pulse compression ratio, defined as ρ = T/τ = N. In
Figure 1.29 the chips are depicted as appropriately delayed
Adnrect((t−n)/τ − 0.5): n = 0,…,N − 1 functions and, because
of the equivalence between the correlator and matched filter,
the peak correlator output is a triangular function with a peak
value† of AN. When sampled at t = Nτ, the correlator output
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(b) 

Signal spectrum

Time
Sidelobes

Nτ

(c) 

Demodulator correlation response

Rs(t)

t

AN

A

 Transmitted signal

dn = {1,–1}

2τ 3τ Nττ0

s(t)

t
. . . . . .

. . .

. . .

T

}dn

(a)

FIGURE 1.29 Time–frequency estimation using DSSS waveform.

*Although not shown in the figure, the chips are ± binary pulses which sug-
gest that the received signal carrier frequency is BPSK modulated.
†This suggests that the local reference is an identical unit amplitude PN
sequence that is synchronized with the received PN sequence.
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results in the maximum signal-to-noise ratio measured in the
bandwidth of 1/T Hz.

Based on the fundamental principles for jointly achieving
accurate time and frequency estimates as stated earlier, the
triangular shape of the wide bandwidth correlator output is
related to the accuracy of the time estimate and the low band-
width sampled output at interval of T = Nτ determines the
accuracy of the frequency estimate. Therefore, evaluation
of the time and frequency estimation accuracies of the DSSS
waveform involves evaluating, respectively, the effective
bandwidth (β) of the triangular function and the effective
time duration (α) of the rect(t/T − 0.5) function.

Delay Estimation Error of the DSSS Waveform The delay
estimation error is based on detecting the changes in the lead-
ing and trailing edge of wideband signals. This does not
require that the signal has a short duration but that the band-
width is sufficiently wide to preserve the rapid rise and fall
times of the correlator response. On the other hand, received
signals with additive noise must be detected and the para-
meters estimated under the optimum signal-to-noise condi-
tions as provided by matched filtering or correlation. In
this regard, the correlator output in Figure 1.29 is examined
in the context of the signal delay estimate error.

The triangular function, corresponding to the correlator
output, is an isosceles triangle with base and height equal
to 2τ and AN, respectively, and is described as

Rs ξ =AN 1− ξ τ ξ ≤ τ (1.389)

where, for convenience, ξ = t − Nτ such that the time axis
is shifted so that the isosceles triangle is symmetrical about
ξ = 0. The effective bandwidth of Rs(ξ) is evaluated (see
Problem 41) as

β =
3
τ

triangular function (1.390)

and the corresponding standard deviation of the delay esti-
mate is

σTd =
τ

3 2γe
triangular function (1.391)

Frequency Estimation Error of the DSSS Waveform The
frequency estimation error is based on the interval T of the
PN sequence under the conditions corresponding to the local
PN reference being exactly synchronized with and multiplied
by the received signal; in other words, with zero frequency
and phase errors, the integrand of the correlation integral is
constant over the interval T. However, with a frequency error
of fε Hz the correlator response is computed as

Rs T ; fε =A
T

0
ej2π fεξdξ

=ATejπ fεT
sin π fεT

π fεT
correlator response with fε

1 392

The principal frequency error in the main lobe of the sinc
(fεT) function corresponds to| fε| ≤ 1/T which defines the fun-
damental resolution accuracy of the frequency estimate.
However, the effective duration of the correlator of length
T = Nτ is evaluated (see Problem 42) as

α=
2πT
3

rectangular function (1.393)

and the corresponding standard deviation of the frequency
estimate is

σfd =
3

2πT 2γe
rectangular function (1.394)

Considering the SS pulse compression ratio, or processing
gain, ρ = T/τ, the correlator output signal-to-noise ratio (γe) in
(1.391) and (1.394) is measured in the bandwidth of 1/T. The
product of the estimation accuracies of the SS waveform is

σTdσfd =
τ

2πTγe
=

1
2πργe

(1.395)

Therefore, the time and frequency estimates accuracies
can be made arbitrarily low, even in low signal-to-noise ratio
environments, by designing a SS waveform with a suffi-
ciently high pulse compression ratio.

1.9.3.4 Effective Bandwidth of SRRC and SRC
Waveforms In view of the increasing demands on band-
width, the spectral containment of the spectral raised-
cosine (SRC) waveform meets the corresponding need for
spectrum conservation. Although the spectral root-raised-
cosine (SRRC) waveform has a slightly wider bandwidth
than the SRC waveform, it is preferred because of the
improved matched filter detection* and, in the context of
range delay estimation, provides for a somewhat better range
delay estimate. The spectrum of the SRC waveform is char-
acterized, in the context of a spectral windowing function, in
Section 1.11.4.1 and the spectrum of the SRRC is character-
ized in Section 4.3.2 in the context of the optimum transmit-
ted waveform for root-raised-cosine (RRC) waveform
modulation. The following analysis compares the effective

*The optimally sampled SRRC matched filter output results in the maximum
signal energy and orthogonal symbol samples resulting in zero intersymbol
interference.
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bandwidth of the SRC and SRRC waveforms with the under-
standing that the SRC delay estimate is based on the matched
filter out samples taken symmetrically about the optimum
matched filter sample at t = To.

The dependence of the effective bandwidth of the SRRC
and SRC waveforms on the excess bandwidth parameter α is
expressed as

βT = π
1
3
+

π2−8
π2

α2 SRRC waveform (1.396)

and

βT = π
4−3α+ 12α2−α3

3 4−α
−
8α2 16−α

2π 2 4−α
SRC waveform

(1.397)

Equations (1.396) and (1.397) are plotted in Figure 1.30
that demonstrates the advantages of the wider bandwidth
SRRC waveform in providing short rise-times symbols with
the associated improvement in range-delay detection. In this
regard, the rect(t/T) modulated received symbol, as character-
ized by the BPSK-modulated waveform, has zero rise-time
and results in perfect range-delay detection in a noise-free
channel and receiver; however, infinite bandwidth is required
to achieve this performance. The dashed curve in Figure 1.30
shows the normalized effective bandwidth of the rect(t/T)
modulated symbol after passing through an ideal (1/B)rect
(f/B) filter with one-sided bandwidth B/2 Hz; this is referred
to a filtered BPSK and is discussed in the following section.

The noise bandwidth of the SRRC frequency function
is significant, in that, it corresponds to the demodulator-
matched filter response used in the detection of the SRRC-
modulated waveform. On the other hand, the interest in the
noise bandwidth of the SRC is more academic in nature
because of its application as a windowing function. In either
event, the noise bandwidth of the SRRC and SRC frequency
functions is examined in Problem 44.

1.9.3.5 Effective Bandwidth of the Ideally Filtered rect
(t/T) Waveform In this case the effective bandwidth of
the ideal symbol modulation, characterized by rect(t/T), is
evaluated after passing through an ideal filter with frequency
response (1/B)rect(f/B) where B/2 is the one-sided or low-
pass bandwidth of the filter. The filter response is examined
in Section 1.3 and the normalized effective bandwidth of the
filtered symbol is characterized by Skolnik [71] as

βT =
πBT −sin πBT

Si πBT + cos πBT −1 πBT

ideally filtered rect t T waveform

(1.398)

This result is plotted in Figure 1.31 as a function of BT
where T is the symbol duration. From this plot it is evident
that as BT approaches infinity the standard deviation of the
range-delay estimate approaches zero resulting in an exact
estimate of the true range delay. A practical application is
to define a finite bandwidth which is sufficiently wide so
as not to degrade the symbol detection through intersymbol
interference.

Defining the excess bandwidth factor for the ideal filter as
α =B Rs =BT , where Rs = 1/T is the rect(t/T) symbol rate, in
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FIGURE 1.31 Normalized effective bandwidth for filtered
rect(t/T) waveform.
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terms of the excess bandwidth factor α of the raised-cosine
(RC) waveform, α = 1+ α 2. The corresponding range of
BT is 1/2 ≤ BT ≤ 1; this range of the filtered rect(t/T) effective
bandwidth from Figure 1.31 is plotted as the dashed curve in
Figure 1.30. The range of BT results in significant intersym-
bol interference and received symbol energy loss even under
the ideal conditions of symbol time and frequency correction.
However, under the same conditions, if the SRRC waveform
and matched filter responses are sufficiently long, the inter-
symbol interference and symbol energy loss will be negligi-
ble. At the maximum SRRC normalized effective bandwidth
of βT = 2.27, the filter time bandwidth product corresponds to
BT = 2.64 or a 32% increase with the filter bandwidth span-
ning the main signal spectral lobe and 16% of the adjacent
sidelobes. In other words, the one-sided filter bandwidth
spans 1.32 lobes and, referring to Appendix A, this results
in a performance loss of about 1.25 dB for BPSK waveform
modulation; for a loss of less than 0.3 dB the BT product
should be greater than 5 with a resulting effective bandwidth
of βT = 3.23 corresponding to a (3.23/2.27 − 1)100 = 42%
improvement relative to the best SRRC range-delay estima-
tion error; however, the required bandwidth is 150% wider.
The bandwidth and range-delay estimation accuracy are
design trade-off in the waveform selection.

1.10 MODEM CONFIGURATIONS AND
AUTOMATIC REPEAT REQUEST

The three basic modulator and demodulator configurations
are simplex, half-duplex, and full-duplex. The definition of
simplex communications involves communication in one
direction between a modulator/transmitter and a remote
receiver/demodulator. Examples of simplex communications
include broadcasting from radio and television stations or
from various types of monitoring devices. Half-duplex com-
munications is a broader definition including two-way com-
munications but only in one direction at a time. In these
cases, transceivers and modems are required at each loca-
tion. A common application of half-duplex operation is the
push-to-talk handheld radios. Full-duplex communications
provide the capability to communicate in both directions
simultaneously. In these cases the bidirectional communica-
tions may use identical transceivers and modems operating at
the same symbol rate; however, as is often the case, the com-
munication link in one direction may be designated as the
reverse channel and operated at a lower symbol rate. In either
event, the forward and reverse channels must operate at
different, noninterfering, frequencies.

The transfer of data is often performed using information
frames or packets, each containing a cyclic redundancy check
(CRC) code for error checking. If an error is detected the
receiving terminal requests that the frame be retransmitted,
otherwise an acknowledgment may be returned indicating

that the frame was received without error. These protocols
are referred to as automatic repeat request [72] (ARQ). The
ARQ protocol requires either a half-duplex or full-duplex
communication capability. The two commonly used varia-
tions of the ARQ protocol are generally referred to as idle-
repeat request (RQ) and continuous-RQ.* However, more
complex variations involving point-to-point and multipoint
protocols are also defined.†

The remainder of this section analyzes the idle-RQ proto-
col which is the simplest ARQ system to implement and eval-
uate, in that, when a data frame is transmitted a timer is
initiated and a new frame is transmitted only after acknowl-
edgment (ACK) that the current frame was received without
errors and/or the timer has not exceeded a maximum timeout
Tmax. However, the current frame is retransmitted if the
timer exceeds Tmax, a negative acknowledgment (NAK) is
received, indicating the receipt of an incorrect frame, or the
ACK or NAK code is received in error. The timer limit is
based on the information bits per frame, the bits in the
ACK and NAK codes, the date rates, and the expected
two-way link propagation delay through the media. The
idle-RQ implementation also has the advantage of requiring
less data storage compared to the continuous-RQ protocol
and the Go-back-N protocol [73]. However, the performance
cost of these advantages is that the end-to-end transmission
efficiency is lower and more sensitive to the link propagation
delay. The end-to-end transmission efficiency is defined as

ηtrans ≜
Rbf

Rbf
(1.399)

where Rbf is the average bit rate over the forward channel and
Rbf is the uninterrupted forward channel bit rate.

The idle-RQ is modeled as shown in Figure 1.32 with the
delays and other parameters defined in Table 1.12.

Using the parameters described earlier, the average time
associated with the transmission and acknowledgment is
described as

T =N Tdf + Tsf + 2Tp + Tcs + Tdr + Tsr + Tcp (1.400)

where N is the average number of frame repetition based on
the specified bit-error probability and the number of frame
information and CRC bits NB. The computation of N is based
on iid additive white Gaussian channel noise over all of the
NB bits. This provides for the probability of a correct message
to be expressed in terms of the discrete binomial distribution‡

given the bit-error probability Pbef; the result is expressed as

*Reference 72, Chapter 4, Protocol Basics.
†Reference 72, Chapter 5, Data Link Control Protocols.
‡See Table 1.42.
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Pcm = 1−Pbef
NB (1.401)

Therefore, using (1.401), the average number of transmis-
sions required to obtain an error-free frame with NB bits is
evaluated as

N =P−1
cm = 1−Pbef

−NB (1.402)

The idle-RQ transmission efficiency, as defined in
(1.399), is expressed as

ηtrans =
Tdf + Tsf

T
(1.403)

The number of forward channel bits per frame is
defined as∗

NB ≜ Tdf + Tsf Rbf (1.404)

With this definition, the transmission efficiency is
expressed explicitly in terms of NB, by substituting (1.400)
and (1.402) into (1.403) and, after some simplifications, the
efficiency is expressed as

ηtrans =
NB 1−Pbef

NB

NB +KB
(1.405)

where KB is defined as

KB ≜ 2Tp+ Tcr + Tdr +Tsc +Tcf Rbf (1.406)

The idle-RQ efficiency expressed in (1.405) is plotted in
Figure 1.33 for several one-way communication link ranges;
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FIGURE 1.32 Model of idle-RQ implementation.

TABLE 1.12 Idle-ARQ Parameter Definitions

Delay Value Description

Tdf (Nb + Ncrc)/Rbf Forward message duration
Tsf Nsf/Rbf Forward synchronization duration
Tp range/c Propagation delay between terminals
Tdr (Nbr+Nchk)/Rbr Reverse message duration
Tsr Nsr/Rbr Reverse synchronization duration
Tcs 0 Secondary terminal computational

delay (ms)a

Tcp 0 Primary terminal computational
delay (ms)a

Tmax >Tmin Idle-RQ maximum idle time (ms)
NB Variable Message bits: (Nb = info) +

(Ncrc = CRC)
Nsf 30 Forward synchronization bits
Rbf 100 Forward bit rate (kbps)
range Parameter One-way: 18.5, 200, 600, 35,800 (km)
c 3 × 108 Free-space velocity (m/s)
Nbrt 30 ARQ bits:(Nbr=ACK) +

(Nchk = parity)
Nsr 10 Reverse synchronization bits
Rbr = Rbf Reverse bit rate (kbps)
Pbef Parameter Forward channel bit-error probability:

10−4, 10−5

Pber = Pbef Reverse channel bit-error probability

aThe CRC and parity check codes provide instantaneous error decisions.
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FIGURE 1.33 Idle-RQ efficiency as function of bits/frame (Rbf =
100 kbps, Pbef = 10−5 solid, 10−4 dashed curve).

∗Inclusion of the synchronization bits Nsf = Tsf Rbf in the definition of NB is
optional.
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the solid curves correspond to Pbef = 10−5 and the dashed
curves correspond to Pbef =10

−4. The impact of the link prop-
agation delay (Tp) is significant and results in long idle
times for the ACK/NAK response. The performance is also
dependent on the link bit-error probabilities, the bit rate,
and the number of bits per frame.

The optimum number of forward channel bits per frame,
NB, corresponding to the maximum efficiency, ηtrans(max), is
evaluated by differentiating (1.405) with respect to NB and
setting the result equal to zero and then solving for NB(opt).
Following this procedure, the optimum NB, corresponding to
the maximum efficiency, is evaluated as the solution to the
quadratic equation

N2
B +NBKB−KB λ = 0 (1.407)

where λ = ln 1 1−Pbe . The solution to (1.407) is

NB opt = −
KB

2
+

KB

2

2

+
KB

λ
(1.408)

Using the example parameters, NB(opt) is listed in
Table 1.13 for the conditions shown in Figure 1.33.

Optimizing the message frame size using NB(opt) has lim-
ited practical appeal because the resulting maximum effi-
ciency may be unacceptable or because of the broad range
of NB over which the slope around ηtrans(max) is virtually
unchanged; this latter point is seen in Figure 1.33 correspond-
ing to Pbef = 10−5. Selecting NB from a range that satisfies an
acceptable minimum transmission efficiency is a preferable
criterion and operating at low bit-error probabilities offers
a wider range of selections.

1.11 WINDOWS

Windows have been characterized and documented by a
number of researchers [74, 75], and this section focuses on
the windows that are used in the simulation codes in the fol-
lowing chapters to enhance various performance objectives.
Windows are applied in radar and communication systems to

achieve a variety of objectives including antenna sidelobe
reduction, improvements in range resolution and target dis-
crimination, spectral control for adjacent channel interference
(ACI) reduction [76], ISI control, design of linear phase fil-
ters, and improvements in parameter estimation algorithms.
Windows can be applied as time or frequency functions to
achieve complementary results depending on the application.

Windows are described in terms of the discrete-time sam-
ples* w(n) where n is indexed over the finite window length
of N samples. When the window is applied as a discrete-
frequency sampled window the notation W(n) is used. The
discrete-time sampled rectangular window, defined, for
example, as w(n) = 1 for |n| ≤ N/2 and zero otherwise, is
typically used as the reference window by which the perfor-
mance measures of other windows are compared. The spec-
trum of the time-domain rectangular window is described in
terms of the sinc(x) function as S(f) = sinc(nf/N). The rectan-
gular window is also referred to as a uniformly weighted or
simply as an unweighted window.

Several window parameters [75] that are useful in select-
ing a window for a particular application are the gain, the
noise bandwidth, and the scalloping loss. The window volt-
age gain is defined as

Gv ≜
n

w n (1.409)

The noise bandwidth of the window follows directly
from the definition of the noise bandwidth defined by
Equation (1.46). In terms of the discrete-time sampling and
application of Parseval’s theorem, the normalized noise
bandwidth is expressed as

Bn =
n
w2 n

n
w n

2 (1.410)

In terms of Hertz, the bandwidth is given by

Bn Hz =
Bn

Tw
(1.411)

where 1/TwHz is the fundamental frequency resolution of the
window with duration Tw seconds. The theoretical normal-
ized noise bandwidth of the rectangular window is Bn = 1,
so the noise bandwidth is Bn = 1/Tw Hz. Harris [75] defines
the scalloping loss (SL) of a time-domain window, as the fre-
quency domain loss, relative to the maximum level, mid-way
between two maximum adjacent DFT outputs. The scallop-
ing loss is expressed as

TABLE 1.13 Optimum NB
a Corresponding to the Maximum

Efficiency Conditions in Figure 1.33

Pbef

Range (km)

18.5 200 600 35,800

1e−3 204 338 478 960
1e−4 697 1,232 1,889 7,589
1e−5 2,261 4,077 6,416 38,380
1e−6 7,208 13,079 20,757 143,125
1e−7 22,850 41,546 66,112 477,137

aNB in bits.

*The notation w(n) is a time-normalized sample corresponding to w(nTs)
where Ts is the sampling interval. Similarly, the frequency-domain samples
W(n) are normalized by fs/N = 1/NTs.
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SL≜
W π N

W 0
=

n
w n e− jπn N

n
w n

(1.412)

The characteristics of the various windows considered in
the following sections are summarized in Tables 1.14 and
1.15. The maximum sidelobes correspond to those adjacent
to the central, or main, lobe, and apply to the time (or fre-
quency) domains depending on whether the window is
applied, respectively, in the frequency (or time) domains.
The scalloping loss results from the frequency or time
domain ripple resulting from contiguous repetitions of the
window functions. Harris has compiled an extensive table
of windows and their performance characteristics.

The duration of the window and the manner in which it is
sampled is dependent upon the application. In the following
descriptions, the sampling is applied to windows that are sym-
metrical and asymmetrical about t = 0 as described by (1.413)
using the rect(x) window. The rect(x) window is a uniformly
weighted window* that is used to describe the window delay†

and duration Tw for all arbitrarily weighted windows.

w t =

rect
t−Td

Tw
−m−

1
2

asymmetrcial about t = 0

rect
t−Td
Tw

−m symmetrical about t = 0

(1.413)

The parameter Td introduces a delay and m is an integer
corresponding to a contiguous sequence of windows; in the
following analysis Td and m are zero. Considering N to be
an integer number of samples over the window duration with

the sampling interval of Ts = Tw/N seconds, the windows are
characterized, with a maximum value of unity, in terms of the
sample index n. In the following examples, the Bartlett or
triangular window‡ is used and the respective odd and even
values of N are 9 and 8. For odd integers N, the asymmetrical
triangle window is expressed as

w n N odd = 1−
n− N−1 2

N−1 2
0 ≤ n ≤N−1, asymmetrical

(1.414)

and the symmetrical triangle window is expressed as

w n N odd = 1−
n

N−1 2
n ≤ N−1 2, symmetrical

(1.415)

For the even integers, the asymmetrical triangle window is
expressed as

w n
N even
n = n + 5

=

2n + 1
N

0 ≤ n <N 2

2−
2n + 1
N

N 2 ≤ n ≤N−1

, asymmetrical

(1.416)

and the symmetrical triangle window is expressed as

w n N even
n= n + 5

=
1 +

1−2 n

N
−N 2 ≤ n < 0

1−
1 + 2 n

N
0 ≤ n ≤N 2−1

, symmetrical

(1.417)

Equations (1.414) through (1.417) are plotted in
Figure 1.34 with the circles indicating the window sampling
instances. The distinction between the symmetrical and
asymmetrical sampling is evident and must be applied com-
mensurately to the sampled data. In this regard, the windows
can be applied, for example, to the transmitted data-
modulated symbols for spectrum control, to the received data
symbol for detection, or to the FFT window for spectrum
evaluation. With minimum shift keying (MSK) modulation,
discussed in Section 4.2.3.4, a cosine window is applied to
each quadrature rail that are delayed, or offset, by one-half
symbol period, so the notion of symmetrical and asymmetri-
cal windows applies.§ The examples using an odd number of
window samples, shown in Figure 1.34a and b, include the
first and last window samples that are zero and increase

TABLE 1.14 Summary of Window Performance Results

Window
Max.
Sidelobe (dB) At ±fTw

Scalloping Loss (dB)
with Tw Zero-Padding

0 1 2 3

Rectangular −13.26 1.5 3.92 0.91 0.4 0.18
Bartlett −26.4 3.0 1.81 0.44 0.20 0.09
Blackman −58.2 3.6 1.09 0.27 0.12 0.05
Blackman–

Harris
−92.0 4.52 0.82 0.20 0.09 0.04

Hamming −42.6 4.5 1.74 0.43 0.19 0.09
Cosine k = 1 −23.0 1.89 2.08 0.51 0.22 0.10

k = 2 −31.5 2.4 1.41 0.35 0.15 0.07
k = 3 −39.3 2.83 1.06 0.26 0.12 0.05
k = 4 −46.7 3.33 0.85 0.21 0.09 0.04

Using N = 200 samples/window.

*Since the weighting is constant over Tw, the uniformly weighed window is
also referred to as an unweighted window.
†The application of a window to a sequence of received symbols prior to
spectral analysis requires the window to be appropriately delayed.

‡The triangular window is used to emphasize the sampling with respect to a
nonuniformly weighted window.
§Windows applied to transmitter symbols for spectral control are generally
referred to as symbol shaping functions and denoted as p(t).

58 MATHEMATICAL BACKGROUND AND ANALYSIS TECHNIQUES



–4 –3 –2 –1 0 1 2 3 4

N
or

m
al

iz
ed

 a
m

pl
itu

de

0.00

0.25

0.50

0.75

1.00

Sample (n)

(a) 

Nodd = 9: symmetrical

Sample (n)
0 1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 a
m

pl
itu

de

0.00

0.25

0.50

0.75

1.00

(b) 

Nodd = 9: asymmetrical

–4 –3 –2 –1 0 1 2 3 4

N
or

m
al

iz
ed

 a
m

pl
itu

de

0.00

0.25

0.50

0.75

1.00

Sample (n')

(c) 

Neven = 8: symmetrical 

Sample (n')
0 1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 a
m

pl
itu

de

0.00

0.25

0.50

0.75

1.00

(d) 

Neven = 8: asymmetrical 

FIGURE 1.34 Examples of triangular window sampling.

TABLE 1.15 Summary of Window Performance Results

Bartlett Blackman Blackman–Harris Hamming

Samples (N) Bn Gv Bn Gv Bn Gv Bn Gv

1000 1.3357 0.4995 1.728 0.4196 2.006 0.3584 1.364 0.5395
500 1.335 0.499 1.730 0.419 2.008 0.358 1.365 0.539
200 1.340 0.498 1.735 0.418 2.014 0.357 1.368 0.538
100 1.347 0.495 1.744 0.416 2.025 0.355 1.373 0.535
50 1.361 0.490 1.762 0.412 2.045 0.352 1.383 0.531
25 1.394 0.480 1.799 0.403 2.088 0.344 1.403 0.522
12 1.467 0.455 1.884 0.385 2.186 0.329 1.450 0.502

Cosine k = 1 Cosine k = 2 Cosine k = 3 Cosine k = 4

1000 1.235 0.636 1.502 0.4995 1.737 0.424 1.946 0.3746
500 1.236 0.635 1.503 0.499 1.738 0.4236 1.948 0.3742
200 1.240 0.633 1.507 0.498 1.744 0.422 1.954 0.373
100 1.246 0.630 1.515 0.495 1.752 0.420 1.964 0.371
50 1.260 0.624 1.531 0.490 1.770 0.416 1.984 0.368
25 1.290 0.610 1.562 0.480 1.807 0.407 2.026 0.360
12 1.364 0.580 1.636 0.458 1.892 0.389 2.121 0.344

Noise bandwidth and voltage gain.
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symmetrically to the peak value. Although these cases are
visually appealing, the sampled windows in Figure 1.34c
and d use an even number of samples per window and result
in same performance commensurate with the Nyquist sam-
pling rate. Furthermore, using an even number of samples
is suitable for analysis using the efficient FFT.

The case for using an even number of samples can be
made based on the down-sampled output of a high sample
rate analog-to-digital converter. For example, relative to a
received data-modulated symbol, the down-sampled, or
rate-reduced, output is the average symbol amplitude of
the down-sampled interval from nTs to (n + 1)Ts, so the
window weighting should be applied to the point mid-
way between the two samples as is often done using rectan-
gular integration. This is accommodated by the even num-
ber of samples over the window interval shown in
Figure 1.34c and d, with the understanding that the data
sample at n = n + 0.5 results from the linear interpolation
of the data between sample n and n + 1. In addition to
applying the correctly aligned window with interpolated
data samples, this sampling arrangement also removes
the delay estimation bias thereby improving the symbol
tracking performance. Of course, the roles of the odd and
even sampling can be reversed; however, it is convenient
to use an even number of samples per symbol into the
detection-matched filter for symbol tracking and the detec-
tion of quadrature symbol offset modulations. However, as
long the Nyquist sampling criterion is satisfied the symbol
information can be extracted in either case. In the following
sections, the spectrums of the various windows are evalu-
ated using both symmetrically and asymmetrically sampled
windows with an odd number of samples. The reason for
this choice is simply based on esthetics or eye appeal which
is particularly noticeable when only a few number of sam-
ples is used.

1.11.1 Rectangular Window

In the time domain, the rectangular window is a uniformly
weighted function described by the rect(t/Tw) function
with amplitude equal to unity over the range |t/Tw| ≤ 1/2
and zero otherwise. Expressing the time in terms of the
discrete samples t = nTs, where Ts is the sampling interval,
results in the sample range |n| ≤ (N − 1)/2 for the symmetrical
window and 0 ≤ n ≤N − 1 for the asymmetrical window,where
N = Tw/Ts is the total number of samples per window.

The spectrum of the rectangular window is described in
terms of the sinc(fTw) function and, upon letting f = nδf
and δf = Δf/L, where Δf = 1/Tw is the fundamental frequency
resolution of the window, the spectrum is expressed as

W n =
sin πn L

πn L
= sinc

n

L
(1.418)

Defining the frequency increment in this way allows for
L samples per spectral sidelobe. The Fourier transforms
relationship between the time and frequency domains is dis-
cussed in Section 1.2. Special applications involving the rect
(x) window in the time and frequency domains are discussed
in Sections 1.11.4, 4.4.1, 4.4.4, and 4.4.5.

1.11.2 Bartlett (Triangular) Window

The sampling of the Bartlett or triangular window is dis-
cussed earlier under a variety of conditions that depend
largely on the application and signal processing capabilities.
The Bartlett window is shown in Figure 1.35 for N = 21 sam-
ples per symbol. Considering the frequency dependence of
the spectral attenuation, expressed as sinc2(fTw/2), the spec-
tral folding about the Nyquist band fN = fs/2 = N/2Tw is neg-
ligible for N = 201 and the peak spectral sidelobes are
virtually identical to the theoretical Bartlett spectrum over
the range of frequencies shown in Figure 1.36b, although
the sidelobe level at fTw = 29 is −65.8 dB and the theoretical
value is −66.5 dB. Furthermore, upon close examination, the
peak values of the sidelobe are progressively shifted to the
right with increasing fTw. These observations are more evi-
dent for the case involving N = 21 where the first sidelobe
level is −26.8 dB (1 dB higher that theory) and the sidelobe
at fTw = 9 is significantly skewed to the right with a level 6 dB
higher than the theoretical value. The sidelobe skewing is a
direct result of the odd symmetry of the folded spectrum
about 2kfTw : k = 1, 2, … which does not occur when N is
even. However, with even values of N, the sidelobes are still
altered by the folded spectral sidelobes. This phenomenon is
a direct result of the sampling and the implicit periodicity of
the window when using the discrete Fourier transform. These
observations do not alter the utility of windows for spectral
control; however, they may influence the spectral detail in
applications involving spectral analysis.
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FIGURE 1.35 Bartlett window with N = 21 samples.
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1.11.3 Cosine Window

The sidelobes of the window spectrum can be reduced by
providing additional shaping or tapering of the window func-
tion at the expense of a wider main spectral lobe that results
in a higher noise bandwidth. For example, the rectangular
window has an abrupt change in amplitude leading to a first
sidelobe level of −13 dB, a spectral roll-off proportional to
1/f 2 (6-dB/octave), and a noise bandwidth of 1/Tw Hz. On
the other hand, the Bartlett window has an abrupt change
in the slope of the amplitude leading to a first sidelobe level
of −26.9 dB, a spectral roll-off of 1/f 4 (12-dB/octave), and a
noise bandwidth of 1.336/Tw. The cosine window results in
the k-th derivative of the amplitude, that is, the slope of the
amplitude at the edges of the window is zero resulting in even
greater spectral sidelobe roll-off.

The cosine window is characterized as

w n = cosk ϕn + δ1 (1.419)

where δ1 = 0 when n ≤ N−1 2 and δ1 = −π/2 when
n = 0,…, N − 1; this corresponds to a sink(ϕn) window func-
tion. The phase function in (1.419) is expressed as

ϕn =
π

N−1
n + δ0 n ≤ N−1 2 (1.420)

where δ0 = 0 when n odd and δ0 = 0.5 when n even.
The cosine window is shown in Figure 1.37 for n > 0 and k =
1, …,4. In the following subsections, the cosine windows for
various values of k are described for the conditions δ0 = δ1 = 0.

The gain for the finite sampled cosine window with k = 1
and N samples per window is given by

Gv =
2
π

N−1
N

(1.421)

and the normalized noise bandwidth is given by

Bn =
π2

8
N

N−1
(1.422)

Gv and Bn are recorded in Table 1.15 for various values of N.
Equations (1.421) and (1.422) approach their theoretical lim-
its as N ∞.

1.11.3.1 Cosine Window (k = 1) With k = 1 the cosine
window is expressed as

w n = cos ϕn (1.423)

This window is used as the symbol weighting function for
MSK modulation and, in terms of the window duration Tw,
the theoretical spectrum is given by

0 2 4 6 8 10N
or

m
al

iz
ed

 s
pe

ct
ru

m
 m

ag
ni

tu
de

 (
dB

)

–60

–50

–40

–30

–20

–10

0

–25.9 dB

–40 dB

Normalized frequency (fTw)Normalized frequency (fTw)

0 2 4 6 8 1012141618202224262830N
or

m
al

iz
ed

 s
pe

ct
ru

m
 m

ag
ni

tu
de

 (
dB

)

–90

–80

–70

–60

–50

–40

–30

–20

–10

0

–26.9 dB

–46.0 dB

–65.8 dB

(a) 

N = 21 samples

(b) 

N = 201 samples

FIGURE 1.36 Bartlett (triangular) window spectrums.

Sample (n)
0 2 4 6 8 10 12 14 16 18 20

W
in

do
w

 a
m

pl
itu

de

0.0

0.2

0.4

0.6

0.8

1.0

k=

2

3

4

1

FIGURE 1.37 Cosine windows (δ0 = 0, δ1 = −π/2).

WINDOWS 61



W f =
4Tw
π

cos πfTw

1− 2fTw
2 (1.424)

The spectrum shown in Figure 1.38a is based on computer
simulation with N = 200 samples per window.

1.11.3.2 Cosine-Squared (Hanning)Window (k = 2) The
cosine-squared window with k = 2 is referred to as a Hanning
window [74]. Applying trigonometric identities, this window
is expressed as

w n = 0 5 + 0 5cos 2ϕn (1.425)

and the spectrum is shown in Figure 1.38b for N = 200 sam-
ples per window.

1.11.3.3 CosineWindow (k = 3 and 4) Applying trigono-
metric identities, the cosine windows for k = 3 and 4 are
expressed as

w n = 0 75cos φn + 0 25cos 3φn k = 3 (1.426)

and

w n = 0 375 + 0 5cos 2ϕn + 0 125cos 4ϕn k = 4

(1.427)

The spectrums for these two cases are shown in
Figure 1.38c.

1.11.4 Temporal Raised-Cosine (TRC) Window

The temporal raised-cosine (TRC) window applies a cosine
shaping function symmetrically about each end of the
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rectangular window function, rect(nΔt/Tw), as shown in
Figure 1.39. In this case, the integer n corresponds to the sam-
ples N over the interval Tw such that N = Tw/Δt.

The TRC window is expressed as

w n =
1 n <

1−α
2

1
2

1−sin
π

α
n −

1
2

1−α
2

≤ n ≤
1 + α
2

(1.428)

where n = t/Tw = nΔt/Tw is the normalized sample index and
α is a design parameter limited to 0 ≤ α ≤ 1. The TRCwindow
is applied to the phase function of PSK-modulated wave-
forms in Sections 4.2.8 and 4.4.3.9 to improve the waveform
spectral containment while maintaining a constant signal
amplitude; in this application α is referred to as the excess
phase factor.

Letting m = f/Tw, the spectrum of the TRC amplitude win-
dow is evaluated as

W m =
sin πm

πm

cos απm

1− 2αm 2 (1.429)

1.11.4.1 Spectral Raised-Cosine Window The raised-
cosine window when applied in the frequency domain is
referred to as the spectral RC (SRC) window and the param-
eter α is referred to as the excess bandwidth. With m = fTw,
the SRC frequency response is expressed as

W m =
Tw m <

1−α
2

Tw
2

1−sin
π

α
m −

1
2

1−α
2

≤ m ≤
1 + α
2

(1.430)

and upon letting n = t/Tw, the SRC impulse response is eval-
uated as

w n =
sin πn

πn

cos απn

1− 2αn 2 (1.431)

This response has indeterminate solutions of the form 0/0
at n = 0 and 1/(2α) that are evaluated as w 0 = 1 and

w
1
2α

=
α

2
sin

π

2α
(1.432)

Using these results, (1.431) is plotted in Figure 1.40 for
several values of the excess bandwidth factor. The SRRC
window, associated with spectral shaping of a modulated
symbol, is discussed in detail in Section 4.3.2. In this appli-
cation the symbol duration is T = Tw and the transmitted
symbol and demodulator-matched filter spectrums have a
square-root RC, or simply root RC, frequency response of

W n . The matched filter output results in the SRC impulse
response shown in Figure 1.40 with symbol spacing corre-
sponding to integer values of n that results in zero ISI
n 0. With an AWGN channel and optimum matched filter

sampling the demodulator performance corresponds to max-
imum-likelihood detection.

1.11.5 Blackman Window

The Blackman window uses three terms to provide more
tapering of the window at the expense of a narrower time
response and a wider noise bandwidth. The Blackman
window is expressed as

w n = 0 42−0 5cos ϕn + 0 08cos 2ϕn (1.433)

where the phase function in (1.433) is expressed as

ϕn =
2π
N−1

n 0 ≤ n ≤N−1

=
2π
N−1

n+ N 2 − N 2 ≤ n ≤ N 2

(1.434)
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This definition of the phase function results in a symmet-
rical window for all values of N with indexing over ± N 2
as shown in Figure 1.41a for N = 21. The spectrum of the
Blackman window corresponding to N = 200 samples per
window is shown in Figure 1.41b.

1.11.6 Blackman–Harris Window

The Blackman–Harris window is expressed as

w n = co−c1cos ϕn + c2 cos 2ϕn −c3 cos 3ϕn (1.435)

Harris [75] performed a gradient search on the coefficients
ci to minimize spectral sidelobe level and the results are given
in Table 1.16 for a three- and four-term window.

The Blackman–Harris window, as formulated by
Harris, divides the phase function by N that results in an
asymmetrical window. To provide a symmetrical window
for all N, the phase function ϕn is divided by N − 1 and
expressed as

ϕn =
2π
N−1

n 0 ≤ n ≤N−1

=
2π
N−1

n+ N 2 − N 2 ≤ n ≤ N 2

(1.436)

The spectrum of the 4-Term 92 dB Blackman–Harris win-
dow is shown in Figure 1.42 for N = 200 samples per symbol
and L = 40 samples in the bandwidth 1/Tw Hz.

The coefficients for the Blackman–Harris function, as
given in Table 1.16, do not result in window values of zero
for the first and last sample resulting in a window pedestal of
6 × 10−5; this is a direct result of the coefficients not summing
to zero at the window edges. The pedestal plays a critical
role in the control of the sidelobes and noise bandwidth
and windows with more dramatic pedestals are examined
in the following sections.

Normalized frequency (fTw)

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 s
pe

ct
ru

m
 m

ag
ni

tu
de

 (
dB

)

–120
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10

0

FIGURE 1.42 Blackman–Harris window spectrum (N = 200,
92 dB, 4-Term).

TABLE 1.16 Blackman–Harris
Window Coefficientsa

Coefficient
3-Term
67 dB

4-Term
92 dB

c0 0.42323 0.35875
c1 0.49755 0.48829
c2 0.07922 0.14128
c3 0.0 0.01168

aHarris [75]. Reproduced by permission of
the IEEE.
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1.11.7 Hamming Window

The Hamming window is expressed as

w n = 0 54−0 46cos ϕn (1.437)

where the phase function ϕn is expressed as

ϕn =
2π
N−1

n 0 ≤ n ≤N−1 (1.438)

The window is shown in Figure 1.43a with indexing
over the range 0 ≤ n ≤ N − 1 and the spectrum is shown in
Figure 1.43b.

1.11.8 Kaiser (Kaiser–Bessel) Window

The Kaiser window, also referred to as the Kaiser–Bessel
window, is expressed as

w n =

Io πβ 1− n
N 2

2

Io πβ
n ≤N 2 (1.439)

where Io(x) is the modified Bessel function of order zero
and β is the time-bandwidth product equal to TwB
where Tw is the window duration and B is the corresponding
baseband bandwidth. The Kaiser window is shown in
Figure 1.44a, using N = 51 samples per window, as a
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symmetrical window for β = 2, 3, and 4; the range −N/2 ≤ n ≤
N/2 corresponds to –Tw/2 ≤ t ≤ Tw/2. The corresponding spec-
trum of the Kaiser window is shown in Figure 1.44b.

1.12 MATRICES, VECTORS, AND RELATED
OPERATIONS

A matrix is a convenient way to describe complicated linear
systems and is used extensively in the analysis of control
systems. For example, a large linear system is generally
described in terms of the inputs xj, outputs yi, and the system
coefficients aij as

y1 = a11x1 + a12x2 + + a1nxn

y2 = a21x1 + a22x2 + + a2nxn

ym = am1x1 + am2x2 + + amnxn

(1.440)

and using matrix and vector notations (1.440) is described as

y1

y2

ym

=

a11 a12 a1n

a21 a22 a2n

am1 am2 amn

x1

x2

xn

(1.441)

where the 1 by n inputs xj, and the 1 by m outputs yi are
described by vectors and the coefficients aij are described
by them by nmatrix. The notation of anm by nmatrix refers,
respectively, to the number of rows and columns of the
matrix. The linear system may include time-varying inputs,
outputs, and coefficients as found in control systems and
time-varying parameter estimation and tracking applications.
The following descriptions of matrices and vectors are intro-
ductory and targeted to the description of adaptive systems
in Chapter 12. More in-depth discussions on the subject
and applications are given by Derusso, Roy, and Close
[77], Haykin [78], Sage and White [79], and Gelb [80].

1.12.1 Definitions and Types of Matrices

• Am × nmatrix A containsm rows and n columns of ele-
ments aij and is denoted as

A=

a11 a1n

am1 amn

(1.442)

• A diagonal matrix (Λ) is a m ×m square matrix with
aij = 0: i j, otherwise, the elements on the principal
diagonal are identified as aii with Λ = diag(aii) i.

• The unit matrix (I) is similar to the diagonal matrix with
aij = 0: i j, and aii. = 1.

• A null matrix or zero matrix (O) is a matrix for which
all of the elements are zero.

• A symmetric matrix is a square matrix of real elements
if A = AT, that is, aji = aij i,j.

• A skew matrix is a square matrix of real elements if A =
−AT, that is, aij = −aji i,j.

• A nonsingular matrix A has an inverse A−1.

• A complex matrix is denoted as Ã and has complex
elements aij = acij + jasij where acij and asij denote the
respective real and imaginary values of the complex
elements. Conjugation the complex matrix is denoted
as Ã∗ with elements aij = acij− jasij.

The transposition of the matrix interchanges the row and
columns and is denoted with the superscript T. For example,
the transpose of the matrix A is the n ×m matrix denoted as

AT =

a11 am1

a1n amn

(1.443)

The Hermitian matrix is a complex matrix with the ele-
ments below the principal diagonal equal to the complex
conjugate of the those about the principal diagonal; satisfying
the conditions (A∗)T = A+ = AH where the superscripts + and
H denote the complex conjugate transposition. The super-
script + generally denotes complex transposition and H is
used to emphasize the Hermitian complex transposition.

The order, or rank, of an (m × n) matrix is denoted as
m-by-n and the order, or rank, of the square (m ×m) matrix
is denoted as m.

1.12.2 The Determinant and Matrix Inverse

The determinant [81] of an m ×m square matrix A is denoted
as |A| and defined in terms of the cofactors, Aij, of A as

A =
m

i= 1

aijAij =
m

j= 1

aijAij (1.444)

The cofactors are defined as

Aij = −1 i+ jMij (1.445)

where Mij is the determinant of the minor matrix of the
element aij. The m ×m m =m−1 minor matrix of aij
is the matrix formed by the m rows and columns of A
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excluding the row and column containing aij. For example,
considering the 4 × 4 square matrix A, the 3 × 3 minor matrix
A of the element a32, and the determinant M32 are expressed
in (1.446) as

A=

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

, A =

a11 a13 a14

a21 a23 a24

a41 a43 a44

, M32 = A

(1.446)

Therefore, using (1.446), the cofactor A32 is evaluated as
A32 = (−1)5M32. Following the evaluation of the remaining
m−1 cofactors Ai,2: i = 1,2,4 or the cofactors A3j: j = 1,3,4,
the determinant |A| is evaluated using, respectively, the first
or second equality in (1.444).

For square matrices of order ≤ 3, the determinant can be
computed in terms of the elements aij as expressed, for exam-
ple, in the 3 × 3 matrix described in (1.447). In this example,
the determinant is formed by summing the n = 3 products of
the elements parallel to the principal diagonal elements
(a11,a22,a33) and subtracting the n = 3 products of the ele-
ments parallel to the diagonal elements (a13,a22,a31). The
three positive products are indicated by solid arrows pointing
to the diagonal elements parallel to the principal diagonal and
the three negative products are indicated by dashed arrows
pointing to the diagonal elements parallel to the complement
of the principal diagonal. In both cases, the elements below
the diagonals are wrapped around to form the three element
products. In general, this procedure does not give the correct
results for orders > 3.

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

=
a11a22a33 + a12a23a31 + a13a21a32

−a13a22a31−a12a21a33−a11a23a32

(1.447)

Determinants are defined only for square matrices and
if |A| = 0 the matrix A is referred to as a singular matrix,
otherwise, A is nonsingular. The inverse of a nonsingular
n × n matrix A, with elements aij, is expressed as

A−1 =
Aji

A
(1.448)

where the matrix [Aji] is defined as the adjoint of the matrix
A. Considering the n × n matrix of cofactors [Aij] of the
matrix A, with the cofactor of each element aij evaluated
using (1.445), the adjoint matrix is the transpose of the
matrix [Aij] so that

Aji = Aij
T

(1.449)

Premultiplication of A−1 by A results in the unit matrix,
that is, AA−1 = I

1.12.3 Definition and Types of Vectors

A vector is an m × 1 column matrix with elements ai and is
denoted as

a=

a1

am

(1.450)

A complex vector is denoted as ã with complex elements
ak = ack ± jask where ac and as denote the real and imaginary
values of the complex element. The transposition of the
matrix a is the 1 ×m complex row vector aT. Conjugation
and conjugate transposition are denoted by the respective
superscripts ∗ and +.

1.12.4 Matrix and Vector Operations

Addition of two matrices of the same order (m × n) is

C = A + B : The elements of C are cij = aij + bij

Multiplication of the two matrices must conform to the
following rule: [m × n][ n ×m ] = [m ×m ] where the inner
dimension n must be identical.

y = Ax : Matrix postmultiplication by a vector results in
a [m × n][n × 1] = [m × 1] vector

The element multiplication is yi =
n

k
aikxk i= 1,…,m

y = xTA : Matrix premultiplication by a vector results in
a [1 × n][n ×m] = [1 ×m] vector.

The element multiplication is yi =
m

k
akixk i= 1,…,n

C = AB : Matrix multiplication results in a m× ℓ
ℓ × n = m× n matrix

The element multiplication is cij =
ℓ

k
aikbkj i= 1,m;

j= 1,…,n

In general, multiplication is not communicative AB BA

A(BC) = (AB)C : Associative

A(B + C) = AB + AC : Distributive

Multiplication by diagonal matrix D

C = AD : Postmultiplication of a real (m ×m) matrix A
by D results in a diagonal matrix C with the diagonal
element of A scaled by those of D; the elements of C
are cij = aijdjj : i,j = 1, …, m

C =DA : Premultiplication of a real (m ×m) matrix A by
D results in the same diagonal matrixC; the elements ofC
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are cij = diiaij : i,j = 1,…, m. In this case multiplication is
communicative.

Multiplication by unit matrix I

IA = A : Multiplication of a (m ×m) matrix A by I does
not alter the matrix A.

IA = AI : Multiplication by I is communicative.

Transposition of AB

C = (AB)T = ATBT

Scalar, or inner, product of two (m × 1) complex vectors
x and y

yTx∗= x + y =
m

i
yix

∗
i

xTy∗= y + x =
m

i
xiy∗i

are complex values and yTx∗ xTy∗

Scalar product of two (m × 1) real vectors x and y

yTx =
m

i
yixi is a real scalar value and yTx=

xTy =
m

i
xiyi

Orthogonality of two vectors is defined if their scalar
product is zero.

Length of a complex vector x is defined as magnitude,
denoted as ||x||, of the inner product

x =
m

i
xix∗i =

m

i
xi

2 (1.451)

Outer, or dyadic, product of two (m × 1) and (1 × n)
complex vectors x and y forms an (m × n) complex

matrix C = xy + with elements cij =
n

j
xiy

∗
j i = 1,…,m.

The autocorrelation matrix of a complex vector is
computed as the outer product.

Differentiation of Complex Matrices: Differentiation
of a complex matrix Ã(t) results in the complex
matrix C = d dt A t with elements evaluated as cij =
dacij dt ± j dasij dt .Thedifferentiationof sumsandpro-
ducts of matrices is evaluated as

d

dt
A t +B t =

d

dt
A t +

d

dt
B t (1.452)

d

dt
A t B t =

d

dt
A t B t +A t

d

dt
B t (1.453)

Differentiation of a complex vector follows by consider-
ing the vector as a single column matrix. Therefore,
differentiation of real matrices and vectors is identical with
aij = 0.

Differentiation of quadratic transformation with the
matrix Q t expressed as

Q t = xH t A t x t (1.454)

where the elements of the (m ×m) complex matrix Ã(t)
and the complex (m × 1) vector x t are functions of t.
The derivative of Q t is evaluated as

dQ t

dt
=

d

dt
xH t A t x t + xH t

dA t

dt
x t

+ xH t A t
d

dt
x t

(1.455)

For a real matrix A(t) and vector x(t), the matrix Q(t) is
symmetric and the derivative of the quadratic function
Q(t) simplifies to

dQ t

dt
= 2

d

dt
xT t A t x t + xT t

dA t

dt
x t (1.456)

Bilinear transformation with the real (m × m) matrix B(t),
expressed in terms of the (m × 1) real vectors x(t) and y(t),
is evaluated as

B t = xT t A t y t (1.457)

Differentiation of B(t) with respect to t is evaluated as

dB t

dt
=

d

dt
xT t B t y t + xT t

dB t

dt
y t

+ xT t B t
d

dt
y t

(1.458)

1.12.5 The Quadratic Transformation

The quadratic matrix Q is similar to the bilinear matrix,
expressed in (1.457), with the vector y = x. The following
description is based on the (n × n) correlation matrix*

R=E uuH (1.459)

where ũ is an (n,1) complex vector of arbitrary data and ũH

is the complex conjugate transpose† of ũ. The n columns
of the matrix Q represent the (n,1) characteristic vectors of

*In Chapter 12 the data vector is denoted as x and represents the discrete-time
samples of a stationary stochastic process andw is used to denote an arbitrary

nonzero vector with y =wHx.
†The Hermitian transpose ũH is an alternate notation to u+ denoting the com-
plex conjugate transpose.
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the correlation matrix R that is transformed to the diagonal
matrix Λ as

QHRQ =Λ (1.460)

The diagonal elements of Λ are the characteristic values∗

of the matrix R.
The derivation of (1.460) follows the work of Haykin [82]

and is based on the linear transformation of the (n,1) complex
vector x to the vector λx using the transformation

Rx= λx (1.461)

where λ is a constant. Equation (1.461) can be expressed as
R−λI x=Owhich has nontrivial solutions with x 0, iff the
determinant of R − λI is zero, that is,

R−λI det = 0 (1.462)

Equation (1.462) is the characteristic equation of the
matrix R and has n solutions corresponding to the λi charac-
teristic values or roots of (1.462). In general, the characteris-
tic values are distinct; however, for the correlation matrix R,
with the complex vector ũ based on samples of a discrete-
time weakly stationary stochastic process, the mean-square
value of the scalar y = xHu is evaluated as

E y 2 = xHRx ≥ 0 (1.463)

Equation (1.463) corresponds to a nonnegative definite
quadratic form and Haykin points out that the equality
condition rarely applies in practice so that (1.463) is almost
always positive definite.† Consequently, in these cases, char-
acteristic values are real with and λi > 0 i and, for the weakly
stationary stochastic process, the characteristic values are
equal with λi = σ2 i.

Referring to (1.461), the n solutions to the characteristic
equation are determined using

Rxi = λixi (1.464)

where xi are the characteristic vectors corresponding to the
characteristic values λi. Based on the correlation matrix R,
it can be shown [83] that the characteristic values are all real
and nonnegative and the characteristic vectors are linearly
independent and orthogonal to each other. A corollary to
the proof of independence is that when the characteristic
value is multiplied by a scalar constant the characteristic

vectors remain independent and orthogonal. This allows
for the independent scaling of all characteristic values so that

xi
Hxj =

1 i= j

0 i j
(1.465)

resulting in an orthonormal set of characteristic vectors
satisfying (1.464). Recognizing that the matrix Q is a
column of characteristic vectors with Q= x1 ,x2 ,…,xn
and Λ is a diagonal matrix of characteristic values
Λ = diag λ1,λ2,…,λn , (1.464) is expressed as

RQ =QΛ (1.466)

and the orthonormal matrix Q satisfies the relationship
QHQ = I, therefore, QH = Q−1 and premultiplying both sides
of (1.466) by QH results in (1.460) as stated. Also, by post-
multiplying both sides of (1.466) the correlation matrix is
expressed as

R=QΛQH =
n

i

λixixi
H (1.467)

Haykin states that there is no best way to compute the
characteristic values and suggest that the use of the character-
istic equation should be avoided except for the simple case
involving the 2 × 2 matrix. However, a number of authors
[77, 78, 84–89] describe computationally efficient methods
for computing the characteristic values.

Consider the quadratic form Q=wHRw discussed in
Section 12.3, where w is a (m × 1) complex vector with ele-
ments wi =wci + jwsi and R= E xx∗ is a (m × m) Hermitian
matrix with elements rji = r∗ij: i j corresponding to the auto-
correlation matrix of the (m × 1) complex vector x. The fol-
lowing derivatives with respect to the complex vector w are
evaluated as:

d

dw
Q =

d

dw
xHRw= 2Rw (1.468)

d

dw
cHw= 0 (1.469)

and

d

dw
wHc= 2c (1.470)

where c is a (m × 1) complex vector. The solutions to the
derivative of the quadratic form with respect to the vector
w are used in Chapter 12 in the analysis of adaptive systems.
The proofs of (1.468), (1.469), and (1.470) are given by
Haykin [78].

∗The characteristic vectors and values are also referred to as the eigenvectors
and eigenvalues.
†A quadratic form is positive definite iff the characteristic values of R are all
positive.
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1.13 OFTEN USED MATHEMATICAL
PROCEDURES

This section outlines the processing and formulas encoun-
tered in several of the chapters throughout this book.

1.13.1 Prime Factorization and Determination
of Greatest Common Factor and Least
Common Multiple

Prime factors are used in various coding applications where
polynomials are used as code generators. The greatest com-
mon factor (GCF) and least common multiple (LCM) are
often used where signal processing sample-rate changes are
required to improve performance or reduce processing com-
plexity. They are also used in the implementation of mixed
radix fast Fourier transforms. An integer p is prime if p
±1 and the only divisors are ±p and ±1. The procedures
involved in determining the prime factors of a number and
the GCF and LCM between two or more numbers are simply
given by way of the following examples. The algorithms are
easy to generalize and implement in a computer program.

1.13.1.1 Prime Factors of Two Numbers The following
examples, presented in Table 1.17, demonstrate the procedure
for determining the prime factors of the numbers 120 and 200.
The results are used in the following two examples to deter-
mine the GCF and LCM. The prime factors of a number are
determined, starting with repeated division of the number by 2.

1.13.1.2 Determination of the Greatest Common
Factor This example outlines the procedures in determin-
ing the GCF of the two numbers 120 and 200 using the prime
factors listed in Table 1.17; inclusion of more than more than
two numbers is straightforward. The GCF is also referred to
as the greatest common divisor (GCD). The GCF (or GCD)
between 120 and 200 is determined as the product of the
prime factors taken the minimum number of times that they
occurred in any one of the prime factorizations, that is,

GCF 120,200 = 23 × 30 × 51 = 8 × 1 × 5 = 40

1.13.1.3 Determination of the Least Common Multiple
This example outlines the procedures in determining the
LCM between 120 and 200. In this case, the LCM is deter-
mined as the product of the prime factors taken the maximum
number of times that they occurred in any one of the prime
factorizations, that is,

LCM 120,200 = 23 × 31 × 52 = 8 × 3 × 5 = 600

1.13.2 Newton’s Method

A transcendental equation involves trigonometric, exponen-
tial, logarithmic, and other functions that do not lend them-
selves to solutions by algebraic means. Newton’s method
[90] of solving transcendental equations is used extensively
in arriving at solutions to problems characterized by nonalge-
braic equations. The method provides a rapid and accurate
solution to determine the value of functions having the form
f(x) = h(x), by finding the solution of the auxiliary function g
(x) = f(x) – h(x) = 0. The solution begins by starting with an
estimate xo of the solution and performing iterative updates to
the estimate, described as

xi+ 1 = xi−
g xi
g xi

i= 0,… (1.471)

where g (xi) = ∂g(xi)/∂xi. The evaluation is terminated when
f xi+ 1 −h xi+ 1 ≤ ε where ε is an acceptable error in the
solution and the corresponding xi+1 is the desired value of
x satisfying f(x) h(x).

1.13.3 Standard Deviation of Sampled Population

When a finite number of samples n comprises the entire pop-
ulation, the standard deviation is computed as

σ =
1
n

x2−
1
n

x
2

(1.472)

where the summation is over the entire population. However,
when the samples n are a subset of the entire population, the
standard deviation is computed as

s =
1

n−1
x2−

n

n−1
1
n

x
2

(1.473)

where the summations are over the sample size n of the
subset.

TABLE 1.17 Example of Prime
Factorization

Using 120 Using 200

120 2 = 60 200 2 = 100
60 2 = 30 100 2 = 50
30 2 = 15 50 2 = 25
15 3 = 5 25 5 = 5
5 5 = 1 5 5 = 1
The prime factors are:
2 × 2 × 2 × 3 × 5 2 × 2 × 2 × 5 × 5
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1.13.4 Solution to the Indeterminate Form 0/0

The frequently encountered functional form

h x =
f x

g x
(1.474)

evaluated at x = a often results in the indeterminate form 0/0
resulting from f(a) = g(a) = 0. Application of L’Hospital’s
rule of repeated differentiation of f(x) and g(x) and evaluating
the result as

h x = lim
x a

f n x

g n x
(1.475)

often leads to a solution for n = 1 or 2. Solutions to other inde-
terminate forms involving ∞/∞, 0∗∞, ∞−∞, 00, ∞0, 0∞,
and 1∞ may also be found using similar techniques [90, 91].

1.14 OFTEN USED MATHEMATICAL
RELATIONSHIPS

In this section a number of mathematical relationships are
listed as found in various mathematical handbooks. The
references frequently referred to are as follows: Burington
[92], Korn and Korn [93], Milton and Stegun [94], and
Gradshteyn and Ryzhik [46].

1.14.1 Finite and Infinite Sums

1
M

m = 1

m =
M M + 1

2
summation of integers

2
M

m = 1

2m−1 =M2 summation of odd integers

3
M

m = 1

2m=M M + 1 summation of even integers

4
M

m = 1

m2 =
M M + 1 2M + 1

6

5
M−1

m= 0

xm =
1−xM

1−x
x < 1 finite geometric series

6
∞

m = 0

xm =
1

1−x
x < 1 infinite geometric series

7
∞

m = 0

mxm =
x

1−x 2 x < 1

8
M

m= 0

sin mα+ β =
sin

M + 1
2

α

sin α 2
sin

M

2
α+ β

M = positive integer

9
M

m= 0

cos mα+ β =
sin

M + 1
2

α

sin α 2
cos

M

2
α+ β

M = positive integer

10 1 + 2
M

m= 1

cos mα =
sin M + 1 2 α

sin α 2

11
M

m= 0

ej mα+ β =
sin

M + 1
2

α

sin α 2
e
j

M

2
α+ β

M = positive integer

12
M

m= −M

e ± jmα =
sin M + 1 2 α

sin α 2

13 1 ± x m = 1 ±mx +
m m−1

2
x2 +

+ ± 1 nm m−1 … m−n+ 1
n

xn + m> 0

14 1 ± x −m = 1 mx+
m m+ 1

2
x2 +

+ ± 1 nm m+ 1 … m+ n−1
n

xn + m> 0

1.14.2 Binomial Theorem and Coefficients

1 x ± y m = xm ±
m

1
xm−1y+

m

2
xm−2y2 ±

± 1 m−2
m

m−1
xym−1 ± 1 m−1

m

m
ym

=
m

i= 0

± 1 i
m

i
xm− iyi

2 1 ± y m = 1−
m

i= 1

± 1 i+ 1 m

i
yi

3
m

n
= mCn =

m

m−n n
coefficient evaluation

4
m

n
=

m

m−k
coefficient symmetry

5
m

n = 0

m

n
= 2m coefficient summation

6
m

n= 0

m

n
−1 n = 0 alternating sign coefficient summation
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7

m−1

n = 1

m−1

n

1
n + 1

=
1
m

m

n= 2

m

n

coefficient summation identity

1.14.3 Trigonometric Identities

1 sin 2α = 2sin α cos α

2 cos 2α = 2cos2 α −1 = 1−2sin2 α = cos2 α −sin2 α

3 sin2 α =
1
2
1−cos 2α

4 sin3 α =
1
4
3sin α −sin 3α

5 sin4 α =
1
8
3−4cos 2α + cos 4α

6 cos2 α =
1
2
1 + cos 2α

7 cos3 α =
1
4
3cos a + cos 3α

8 cos4 α =
1
8
3 + 4cos 2a + cos 4α

9 sin α + sin β = 2sin α+ β 2 cos α−β 2

10 sin α −sin β = 2cos α+ β 2 sin α−β 2

11 cos α + cos β = 2cos α+ β 2 cos α−β 2

12 cos α −cos β = −2sin α+ β 2 sin α−β 2

13 sin α sin β =
1
2
cos α−β −

1
2
cos α+ β

14 cos α cos β =
1
2
cos α−β +

1
2
cos α+ β

15 sin α cos β =
1
2
sin α+ β +

1
2
sin α−β

16 cos α sin β =
1
2
sin α+ β −

1
2
sin α−β

17 tan−1 z1 ± tan−1 z2 = tan−1 z1 ± z2
1 z1z2

18 sinh z =
1
2
ez−e−z = 1 csch z

19 cosh z =
1
2
ez + e−z = 1 sech z

20 tanh z =
ez−e−z

ez + e−z
=
sinh z

cosh z
= 1 ctnh z

1.14.4 Differentiation and Integration Rules

The notations u and v are functions of x

1
d

dx
uv = u

dv

dx
+ v

du

dx

2
d

dx
u v =

v
du

dx
−u

dv

dx
v2

3
d

dx
uv = uv

v

u

du

dx
+ ln u

dv

dx

4
d

dx
ln u =

1
u

du

dx
;
d

dx
loga u =

loga e

u

du

dx

5
d

dx
au = auloge a

du

dx
;
d

dx
eu = eu

du

dx

TABLE 1.18 Brief List of Binomial Coefficients

n

0 1 2 3 4 5 6 7 8 9 10m

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 1

9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1
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6
d

dx
sin u = cos u

du

dx
;
d

dx
sin−1 u =

1

1−u2
du

dx

7
d

dx
cos u = −sin u

du

dx
;
d

dx
cos−1 u =

−1

1−u2
du

dx

8
d

dx
tan u = sec2 u

du

dx
;
d

dx
tan−1 u =

1
1 + u2

du

dx

9
d

dx
sinh u = cosh u

du

dx
;
d

dx
sinh−1 u =

1

1 + u2
du

dx

10
d

dx
cosh u = sinh u

du

dx
;

d

dx
cosh−1 u =

1

−1 + u2
du

dx
u > 1

11
d

dx
tanh u = sech2 u

du

dx
;

d

dx
tanh−1 u =

1
1−u2

du

dx

12 udv= uv− vdu: integration by parts with u = f(x) and

dv = g(x)dx

13

∞

0

xbe−axdx=
Γ b + 1
ab+ 1

a> 0, b > −1

=
b

ab+ 1
a > 0, b= 0,1,2,…

14

∞

0

e−axdx= 1
a

15

∞

0

xe−axdx=
π a

2a

16

∞

0

1
x
e−axdx=

π

a

17

∞

0

xbe−ax
2
dx=

Γ b + 1 2

2a b + 1 2
a > 0, b > −1

=
1 3 … b−1 π

2b 2 + 1a b + 1 2
a > 0, b = 0,2,4,…

=
b−1 2

2a b+ 1 2
a> 0, b = 1,3,5,…

18

∞

0

e− a
2 x2dx=

π

2a

19
d

dy

b y

a y

f x,y dx=

b y

a y

∂

∂y
f x,y dx

+ f b,y
db

dy
− f a,y

da

dy
Leibniz’s theorem

20

∞

−∞

s t 2dt =
1
2π

∞

−∞

F ω 2dω

Parseval’s Theorem

21 g t =

∞

−∞

x λ h t−λ dλ

=

∞

−∞

x t−λ h λ dλ convolution

22 R τ =

∞

−∞

x t y t−τ dt

=

∞

−∞

x t + τ y t dt correlation

1.14.5 Inequalities

1 a−b ≤ a ± b ≤ a + b triangle inequality

2
N

n= 1

an ≤
N

n= 1

an triangle inequality

3
N

n= 1

bn

1 N

≤
1
N

N

n= 1

an geometric mean ≤

arithmetic mean
bn > 0; equality holds iff bn = an

4
N

n= 1

anbn

2

≤
N

n = 1

a2n

N

n = 1

b2n Cauchy’s inequality

Equality holds for c = constant > 0 iff an= c bn

5

b

a

f ∗ x g x dx

2

≤

b

a

f x 2dx

b

a

g x 2dx

Schwarz’s inequality
Equality holds for c = constant > 0 iff f(x) = c g(x).

1.14.6 Relationships between Complex Numbers

For A=Maejα and B=Mbejβ

1 A − B ≤ A±B ≤ A + B

2 AB = A B ; A B = A B

3 A B=AB B 2

4 Re A =
1
2
A +A∗

5 Re A Re B =
1
2
Re AB +

1
2
Re AB∗
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6 Re A Im B =
1
2
Im AB −

1
2
Im AB∗

=
1
2
Im AB +

1
2
Im A∗B

7 Im A Re B =
1
2
Im AB +

1
2
Im AB∗

=
1
2
Im AB −

1
2
Im A∗B

8 Im A Im B =
−1
2
Re AB +

1
2
Re AB∗

1.14.7 Miscellaneous Relationships [94]

1 Γ z =
∞

0
tz−1e− tdt Euler’s integral, Re z > 0

2 Γ
1
2

=
−1
2

= π

3 Γ
3
2

=
1
2

=
π

2

4 Γ n+ 1 = n = n n−1 n−2 …1 integer factorial; 0 = 1

5 2n+ 1 = 1 3 5 2n+ 1 odd integer factorial [95]

6 2n = 2 4 6 2n even integer factorial [95]

7 log10 x = log x common logarithm of x

8 loge x = ln x natural logarithm of x

9 loga b =
1

logb a

10 loga x =
logb x

logb a

11 aloga x = x

12 r =mod a,b = a− int
a

b
b r,a,b 0

are same type real or integer*

Example: for b = 3: a = …−4 −3 −2 −1 0 1 2 3 4 …

r = …−1 0 –2 −1 0 1 2 0 1 …

13 r =modulo a,b

=

a− a b b r,a,b real

a−bq
r,a,b,q integer with q selected
so that r is nearer to zero than b

∗

Example: for b = 3: a = …−4 −3 −2 −1 0 1 2 3 4 …

r = … 2 0 1 2 0 1 2 0 1 …

14 sign a,b =
a b ≥ 0

− a b < 0
a,b are same type

real or integer∗

15 The solutions to the quadratic equation x2 + bx + c= 0 is

x1,x2 = −b 2 ± b 2 2−c

16 Completing the square of: x2 + bx= x + b 2 2− b 2 2

17 Completing the square of: ax2 + bx= ax + b 2 a 2

− b 2 2 a

ACRONYMS

ACI Adjacent channel interference
ACK Acknowledgment (protocol)
AFSCN U.S. Air Force Satellite Control Network
AM Amplitude modulation
ARQ Automatic repeat request
AWGN Additive white Gaussian noise
BPSK Binary phase shift keying
BT Time bandwidth (product, low pass)
CFAR Constant false-alarm rate
CRC Cyclic redundancy check (code)
DC Direct current
DFT Discrete Fourier transform
DSB Double sideband
DSSS Direct-sequence spread-spectrum (waveform)
EHF Extremely high frequency
ELF Extremely low frequency
FFT Fast Fourier transform
FM Frequency modulation
FSK Frequency shift keying
GCD Greatest common divisor
GCF Greatest common factor
HF High frequency
I/Q In-phase and quadrature (channels or rails)
IDFT Inverse discrete Fourier transform
IF Intermediate frequency
IFFT Inverse Fast Fourier transform
ISI Intersymbol interference
LCM Least common multiple
LF Low frequency
LLR Log-likelihood ratio
LR Likelihood ratio
MAP Maximum a posteriori
MF Medium frequency
ML Maximum likelihood
MMSE Minimum mean-square error
MS Mean square
MSK Minimum shift keying
NAK Negative acknowledgment (protocol)
OQPSK Offset quadrature phase shift keying
PM Phase modulation
PN Pseudo-noise (sequence)
PSD Power spectral density
PSK Phase shift keying
QAM Quadrature amplitude modulation

*Fortran 95 Language Reference, Revision D, Lahey Computer Systems,
Inc., Incline Village, NV, 1994. The notations a modulo(b) and a modulo-
b are also used.
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QPSK Quadrature phase shift keying
RC Raised-cosine
RQ Repeat request
RRC Root-raised-cosine (temporal)
RSS Root-sum-square
SHF Super high frequency
SLF Super low frequency
SRC Spectral raised-cosine
SRRC Spectral root-raised-cosine
SS Spread-spectrum
TRC Temporal raised-cosine
UHF Ultra-high frequency
ULF Ultra-low frequency
VLF Very low frequency
WSS Wide-sense stationary
WT Time bandwidth (product, bandpass)

PROBLEMS

1. Show that the amplitude-modulated waveform given by
(1.2), when heterodyned by a receiver local oscillator
that is phase locked to the received carrier angular
frequency ωc, recovers the modulation function
s t =A 1 +mI sin ωmt , except for a factor of 1/2.

Hint: Mix (1.2) with sin(ωct+ϕ) and show that ϕ must
be zero.

2. Show that the real signal given by (1.13) is a form of sup-
pressed carrier modulation. Under what conditions of M
(t) and ϕ(t) + ψ (t) does (1.13) reduce to the form of the
suppressed carrier modulation given by (1.12)? What
can be said about the information capacity between
the suppressed carrier modulations given by (1.12)
and (1.13)?

3. Compute the Hilbert transform of sc t = cos ωct
and ss t = sin ωct .

4. Given that the bandwidth of the modulation function A(t)
satisfies the condition B << fc, compute the Hilbert trans-
form of s t =A t cos ωct +ϕ t .

5. Show that the Fourier coefficients Cn and C−n, expressed
in (1.30), form complex conjugate pairs when f(t) is real.

6. Show that the real-valued function f(t) can be expressed
in terms of the Fourier series real coefficient Co = αo and
the complex coefficients Cn = αn + jβn: 1 ≤ n ≤ ∞ as

f t =Co + 2
∞

n= 1

Cn cos nωot +ϕn

where Cn = α2n + β
2
n and ϕn = arctan βn αn . Note:

This solution is based on Problem 5.

7. Show that the finite summation 1 T
N

n= −N
ejnωot is

equal to the second equality in (1.52).

Hint: Expand the summation and combine the exponen-
tial terms to yield a series involving cos(nωoT) terms and
then evaluate the closed form of the corresponding trig-
onometric series as identified in Section 1.14.1 Identity
No. 12.

8. With ωo = 2π/T show that the integral 2N + 1
T 2

−T 2

sin 2N + 1 ωot 2
2N + 1 ωot 2

dt is equal to unity as N ∞.

9. Referring to Figure 1.7 and using ωo = 2π/T, show that
the maximum value of (1.52) is (2N + 1)/T and that the
closest zero or null removed from a maximum occurs at
t = nT ± T/(2N + 1): |n| = 0,1,….

10. Consider a radix-2, N-point, pipeline FFT with the out-
put sampled at intervals of T = NsTs seconds, where Ns is
the number of samples per symbol. If the sequential input
samples are simply passed through the FFT delay ele-
ments with the complex multiplications and additions
only performed at the output sampling instants: (A)
determine the percentage of complex multiplies relative
to the pipeline FFT sampled every Ts seconds. Examine
the result as a function of increasing Ns with 1 ≤Ns ≤ 32
and N ≥ Ns; (B) determine the minimum number of com-
plex multiplications when 100 % zero padding is used
for frequency estimation and tracking and discuss the
pipeline FFT sampling requirements.

11. Compute the second moment, E[X2], of the Gaussian
random variable X with mean m and variance σ2.

12. Referring to (1.165) compute E g22 X2 E g21 X1 X2 =
x2 for the conditional Gaussian pdf, expressed by
the second equality of (1.168), with g22 X2 =X2

2 and
g21 X1 =X2

1 . Express the result in terms of the expecta-
tions as E X2

2X
2
1 =C1E X2

2 +C2E X3
2 +C3E X4

2 and
express C1, C2, and C3 in terms of the para-
meters ρ, σ21, σ

2
2, m1, and m2.

Using E X2
2 = σ22 +m

2
2, E X3

2 = 3σ22m2 +m3
2, and

E X4
2 = 3σ42 + 6σ

2
2m

2
2 +m

4
2 evaluate E X2

2X
2
1 with m1 =

m2 = 0.

13. Repeat Problem 12 using (1.172) and show that

E x21x
2
2 =E x21 E x22 + 2E2 x1x2

when x1 and x2 are zero-mean Gaussian random
variables.

14. In the transformation from fX(x) to fZ(z), discussed in
Section 1.5.4.1, show that the inverse relationship in
(1.188) applies for the function z = ax2.
Part B: Express fZ(z) using (1.186) or (1.187).
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Part C: Express fZ(z) when the pdf of fX(x) is Gaussian
with mean value m and variance σ2. Plot or sketch your
expression fZ(z) as a function of z.

Note: eλ + e−λ = 2cosh(λ).

Part D: Express fZ(z) when m = 0 in Part C and plot or
sketch as a function of z.

15. Given the statistically independent ordered random vari-
ables {X1, X2, …, Xn} such that a ≤ X1<X2< <Xn ≤ b
and characterized by the uniformly distributed pdf
fX xi = 1 b−a : i , i = 1,2,…, i ,…,n with the corre-

sponding cdf expressed as FX x =
x

a
fX xi dxi. Show that

1
i −2

xi

a
Fi −2
X xi −1 fX xi −1 dxi −1 =

1
i −1

Fi −1
X xi

with xn ≤ b.

Hint: Start with F1
X x2 =

x2

a
F0
X x1 fX1 x1 dx1 with

F0
X x1 ≜ 1 and note that F1

X x2 = x2−a b−a .

16. For the transformation in Section 1.5.5, evaluate the
Jacobian in (1.211) using the phase angle expressed as
θ = tan−1(xs/xc).

Hint: useg11(xc,xs) =g12(xc,xs) = x2c + x
2
s and g21(xc,xs) =

g22(xc,xs) = tan−1(xs/xc).

17. Given the joint pdf fX,Y(x,y), expressed in (1.166), com-
pute the marginal pdf MX(x).

Hint: Complete the square using: a2 + ba+ c2 =

a + b 2 2−b2 4 + c2.

18. Given the pdf fX,(x), perform the following:

A. Compute the pdf fY,(y) under the condition y = |x|.
Note that fY,(y) = 0 for y < 0.

B. Determine and sketch fY,(y) when fX,(x) is described
by the normal distribution N(mx,σx)

C. Repeat Part B with mx = 0

19. Show that the limiting form of the Ricean distribution,
expressed by (1.222), corresponds to the Rayleigh distri-
bution as A 0. Refer to Table 1.8.

Hint: Use the ascending series expression

Io z = 1 + z2 4 1 2 + z2 4
2

2 2

+ z2 4
3

3 2 + with z=Ar σ2.

20. Show that the limiting form of the Ricean distribution,
expressed by (1.222), corresponds to the Gaussian distri-
bution as A ∞. Refer to Table 1.8.

Hint: Use the asymptotic expansion of Io(z) for large
arguments expressed as

Io(z) ~ ez

2πz
1 + 1 8z+ 9 2 8z 2 + z ∞

with z =Ar σ2.

Recognize that as r A the condition r = A results in
the Gaussian distribution.

21. Determine the marginal pdf of Y1 = min{X1, X2, …, Xn}
given the joint pdf gY(y1, y2,…, yn) of the uniformly dis-
tributed ordered samples a ≤ y1 < y2 < < yn ≤ b corre-
sponding to fYj yj = 1 b−a j.

Hint: Show that the cdfs in the descending order
yn,yn−1,…,yj ,…y2 are expressed as

1
n− j + 1

Fn− j + 1
Y yj −1 =

1
n− j

b

yj −1

Fn− j
Y yj f yj dyj

with Fn− j
Y yj =

b−yj
b−a

n− j

and F0
Y yn ≜ 1.

Also show that Fn− j
Y yj = 1−FY yj

n− j
where

FY yj =
yj −a

b−a .

22. Show that the Nakagami-m distribution is the same as the
Rayleigh power distribution.

Hint: Use the transformation y = x 2 in the Rayleigh
distribution.

23. Derive the expression for the characteristic function
CX(v) for the Gaussian distribution fX(x) with mean value
xo and variance σ2.

24. Set up the integrations identifying the integration lim-
its and ranges of the variable z for the evaluation of
fZ(z) where the random variable Z is the summation
of three (3) zero-mean uniformly distributed random
variables X between –a and a.

Hint: There are three unique ranges on z. The evaluation
of the integrations is optional; however, the application
of Mathsoft’s Mathcad® symbolic formula evaluation is
an error-free time saver.

25. Using fZ(z) evaluated in Problem 24 forN= 3, compute the
first and second moments of the random variable Z using
(1.254) and compare the results with those in Table 1.6.

Hint: It is much easier and less prone to mistakes to use
Mathsoft’s Mathcad symbolic formula evaluation.

26. Show that the moments of the random variable X are
determined from the characteristic function as expressed
in (1.240).

Hint: Take the first derivative of CX(v) with respect to v
and evaluate the result for v = 0; and observe that the
resulting integral is E[x]. Repeat this procedure for addi-
tional derivatives of CX(v) and show that (1.240) follows.

27. Plot the cdf of a zero-mean Gaussian distribution with
variances corresponding to the second moments in
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Table 1.6 for N = 3 and 4 and compare the results with
the corresponding cdf’s in Figure 1.23; comment on the
quality of the match in light of the central limit
theorem. Repeat this exercise using the theoretical sec-
ond moments from Table 1.7 for N = 3 and 4 and com-
pare with the corresponding cdf’s in Figure 1.26.

28. Show that equations (1.261) and (1.262) apply for λv
<<1 as N increases in the respective summation
of N iid distributions in Examples 1 and 2 of
Section 1.5.6.1.

29. The narrowband noise process n(t), given by (1.307), is
expressed in terms of the baseband analytic noise ñ(t) as

n t =
1
2

n t ejωct + n∗ t e− jωct

Using this relationship, express the correlation func-
tion Rnn τ =E n t n t−τ in terms of the individual cor-
relation functions Rnn∗ τ , Rññ(τ), Rn∗n∗ τ and Rn∗n τ .
What are the required conditions on these correlation
functions to satisfy the stationarity property of the nar-
rowband process n(t)?

30. Express the individual correlation functions in Problem
29 in terms of the correlation functions Rcc(τ), Rcs(τ),
Rsc(τ), and Rss(τ), where the baseband analytic noise is
given by n t = nc t + jns t . Use these results and the
conditions for stationarity found in Problem 29 to
express Rnn(τ) in terms of the Rcc(τ) and Rsc(τ).

31. Referring to (1.315), that applies to the noise power out
of a bandpass filter centered at the positive frequency fc.
When the bandpass filter output is mixed to baseband,
express the noise power out the baseband filter in terms
of the bandwidth B and the one-sided noise spectral den-
sity No.

32. Given the noise input, expressed by (1.307), to a linear
filter with impulse response h(t), show that the respective
input and output of the correlation responses Rnn(τ)
and Rn n τ are related by the convolutions Rn n τ =
h∗ −τ ∗h τ ∗Rnn τ . Using this result with Fourier
transform pairs h(τ) H(f) and h∗(−τ) H∗(f), show
the relationship between the input and output noise
spectrums.

Hint: Using the convolution integral n t =
∞

−∞
n t−λ h λ dλ show that n (t) has zero-mean. Then

from the correlation

Rn n τ =E n t n∗ t−τ =E n t−λ h λ n∗ t−τ dλ

and show that Rn n τ =Rnn τ ∗h τ and, as the final step,
form the correlation

Rn n τ =E n t + λ n ∗ t−τ =E n t + τ n∗ t−λ h∗ λ dλ

and show that Rn n τ =Rn n τ ∗h∗ −τ .

33. Derive the expression for the matched filter output sig-
nal-to-noise ratio when the additive noise is not white
noise, that is, the noise power spectral density into the
matched filter is Ni f No.

34. Under the condition stated in Section 1.7.1 show that
(1.332) is a wide-sense stationary random process.

35. Given the random process x(ti) = a where ti is a discrete-
time sample and a is a discrete random variable such that
a = 1 with probability p and = −1 with probability q = 1 −
p. Using (1.303) and (1.304) determine if x(ti) is ergodic.

36. Show that the random process y t = x t cos ωct +φ is
wss if fc is constant and x(t) is a wss random process inde-
pendent of the random variable φ uniformly distributed
over the interval 0 to 2π. Also, express the PSD Sy(ω) in
terms of the autocorrelation Rx(τ) and the PSD Sx(ω).

37. The risk for the mean-square estimate is defined as

ℜms ≜
∞

−∞

∞

−∞
a−a sr

2pa sr a sr da psr sr dsr

Show that ∂ℜms ∂a rs = 0 and results in the opti-
mum estimate given by (1.356).

38. Determine if the MS and MAP estimates in the example
of Section 1.9.1 are unbiased estimates. If not, what is the
bias of the estimate? Also, evaluate the Cramér–Rao
bound for the estimates and, using (1.366), determine
if the estimates are efficient.

39. Given that the received baseband signal amplitude is A
volts, using theMLestimate, determine the following: Part
1, the variance σ2a of the estimation error of A given the
baseband samples ri =A+ ni: i = 1,…, N where ni are iid
Gaussian random variables characterized asN(0,σn), Part
2, show that the estimate âml(r) is efficient, Part 3 show
the condition for which the estimate âml(r) is unbiased.

40. Repeat Problem 39 under the following condition: the
baseband signal amplitude is Gaussian distributed with
a priori pdf pa(A) characterized by N(A,σa).

41. Using (1.384) determine the effective bandwidth (β) for
the isosceles triangle shaped pulse with base equal to
2τ and peak amplitude of AN volts.

Hints: The solution to the integral
∞

0

sin2m ax

x2
dx=

2m−3
2m−2

aπ

2
is encountered withm = 2 and the double
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factorial [96] is defined as (2m + 1)!! = 1 × 3 × 5…
(2m + 1). The denominator in the expression for α2 is
the signal energy E.

42. Determine the normalized effective bandwidth (βT) and
the corresponding standard deviation (σTd) for the SRC
and SRRC waveforms with 100% excess bandwidth,
that is, α = 1.

43. Determine the normalized effective bandwidth (βT) and
the corresponding standard deviation (σTd) of the delay
estimate for the SRC and SRRC waveforms with zero
excess bandwidth, that is, α = 0.

44. Determine the noise bandwidth for the SRRC and SRC
frequency functions.

Note: the noise bandwidth is defined by (1.46).

45. Using (1.387) determine the normalized effective time
duration αT for the rectangular pulse Arect(t/T − 0.5).
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2
DIGITAL SIGNAL PROCESSING AND MODEM DESIGN
CONSIDERATIONS

2.1 INTRODUCTION

This chapter describes the conversion of the analog signal at
the input of the demodulator to a digitally sampled version of
the signal required for the application of digital signal proces-
sing techniques in the recovery of the desired information.
This signal conversion involves the discrete-time and ampli-
tude sampling of the analog signal and represents the window
into the world of digital signal processing with unprece-
dented capabilities in terms of algorithms for reliable and effi-
cient waveform processing and information detection. The
information is typically in the form of binary data formatted
to convey text messages using, for example, the American
Standard Code for Information Interchange (ASCII)* that
uses 7- or 8-bit characters to describe 128 or 256 characters.
However, advances in computer technology using 32 and
64 bits provide virtually unlimited character sets in the fore-
seeable future.

A general description of discrete amplitude and time sam-
pling is given in Sections 2.2 and 2.3, with a case study of
discrete amplitude sampling in Section 2.2.1. Specialized
applications of discrete-time sampling involving baseband
and bandpass sampling are described, respectively, in Sec-
tions 2.5 and 2.6. Subcarrier sampling is described in
Section 2.6.1 and Hilbert transform sampling is described
in Section 2.6.2. In Section 2.7 nonideal modulator and

demodulator implementations are discussed and various
methods of correction are examined that reduce the loss in
received information.

With these concepts in-hand the remainder of this chapter
describes special applications of digital signal processing
(DSP) that are referred to in various chapters and used exten-
sively in computer simulations leading to demodulator per-
formance evaluation results. The DSP topics are described
in Section 2.8 under the general heading of multirate signal
processing and interpolation. The topics include signal up
and down sample rate conversion and the associated filtering
requirements, including the cascaded integrate and comb
(CIC) filter, polyphase-matched filtering, and Lagrange inter-
polation. The signal processing functions are referred to and
used throughout this book in the context of efficient imple-
mentations for the demodulator recovery of the transmit-
ted data.

2.2 DISCRETE AMPLITUDE SAMPLING

Each discrete-time sample of an analog signal is character-
ized by a discrete-amplitude representation of the signals
amplitude. The discrete amplitude is typically represented
by a binary sequence of Nb-bits. In the following description,
the sign-magnitude binary representation of the sampled sig-
nal is used withMb bits representing the range of the sampled
voltage magnitude and an additional bit that is used to
signify the sign of the sampled input. Therefore, with the
sign-magnitude representation, an Nb-bit analog-to-digital

*Also the International Organization for Standardization (ISO) designation
ISO-646.

Digital Communications with Emphasis on Data Modems: Theory, Analysis, Design, Simulation, Testing, and Applications,
First Edition. Richard W. Middlestead.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/digitalcommunications



converter (ADC) usesMb =Nb − 1 magnitude bits and 1 sign-
bit. With this characterization the most significant bit (MSB)
is used to represent the maximum ADC voltage magnitude
Vm and the least significant bit (LSB) is used to represent
the smallest voltage magnitude. When the peak voltage of
the input signal and noise is less than Vm the ADC is operat-
ing in the linear range; however, if the analog input
exceeds Vm the ADC will clip the signal and noise resulting
in nonlinear operation and some degree of performance
degradation.

Using the binary number representation of the sampled
amplitude with uniform quantization, the number of quanti-
zation levels over the ADC voltage range ±Vm is Nℓ = 2Nb

and the corresponding amplitude resolution or minimum
quantization level is

ℓ =
2Vm

Nℓ

=
2Vm

2Nb
(2.1)

The dynamic range of the ADC is defined and evaluated as

ρ dB ≜ 20log10
2Vm

ℓ

= 6 03Nb

(2.2)

Therefore, uniform quantization results in 6.02 dB/bit
or a dynamic range of 48.16 and 96.32 dB for an 8- and
16-bit ADC, respectively.

When the ADC is used to convert a received carrier mod-
ulation signal to a digital format, the signal dynamic range at
the input to the ADC is considerably more limited than that at
the input to the receiver. For example, because the signal
power is based on the magnitude of the received carrier-
modulated signal voltage, the dynamic range, corresponding
to the linear range of the ADC, is evaluated as

ρs dB ≜ 20log10 2Mb −ΔdB

= 6 03Mb−ΔdB
(2.3)

whereΔdB is the signal backoff required to avoid clipping of
the input signal and noise.

For example, if the receiver gain is adjusted so that the peak
voltage, Vp, of a noise-free carrier-modulated binary phase
shift keying (BPSK) waveform is equal to Vm, then the root-
mean-square (rms) signal voltage is Vrms =Vp 2 =Vm 2
corresponding to ΔdB = 3 dB, or 1/2-bit below saturation.
If the received signal includes channel or receiver noise then
an additional 6 or 9 dB may be required; further limiting the
signal dynamic range by 1–1.5 bits. A more extreme case
occurs when the received signal includes multipath fading.
In this case, ΔdB must be increased to include the average
fade depth relative to the maximum power of the fading

signal. This example emphasizes the task of the automatic
gain control in maintaining a precisely controlled average
signal-plus-noise power at the input to the ADC.

Two unit gain ADC voltage transfer functions with uni-
form quantization are shown in Figures 2.1 and 2.2 distin-
guished, respectively, as having a zero level transition and
a distinct zero rest level. The effective dynamic range* of
the uniformly sampled ADC can be increased somewhat
by applying a low-level pseudo-random amplitude jitter with
a peak voltage level of ℓ/2 to the input signal. This intention-
ally added noise ensures that a quantized signal does not lie
within a fixed quantization interval that would otherwise lead
to a phase or power estimation error. For example, referring
to voltage transfer function of Figure 2.1, a quantized signal
within the quantization interval 0–ℓ will result in a positive
fixed output level, whereas the additive noise-like amplitude
jitter will force a quantization level change resulting in an
improved estimate of the true input signal level. When the
ADC is used to provide quadrature baseband signal samples
the amplitude jitter will improve the estimation accuracy of
the received signal including the phase and power estimates.
The random chip modulation of a direct-sequence spread-
spectrum received waveform will have a similar impact on
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2
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…
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–

–2 –
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FIGURE 2.1 Unit gain uniform quantization zero-level
transition ADC.

*The effective dynamic range is the linear ADC dynamic range as expressed
in (2.2) plus the effective range into the underflow region provided by the
jitter signal. Because the jitter signal alters the signal level with the truncation
limit unchanged, the net effect is that the jitter improves the ADC resolution.
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the detection of the correlation response, in that, the ran-
domly modulated chips that are buried in noise provide
inherent jitter to the ADC quantization enhancing the
dynamic range of the ADC; this is examined in the following
case study.

In the linear range of the uniformly quantized ADC, the
sampled amplitude quantization error, vεj, is related to the
quantization level ℓ, such that, for an input voltage jℓ < vj
< j+ 1 ℓ, vεj = vε = ± ℓ 2 independent of j with the result
that vεm = ℓ 2 .* The quantization noise is often evaluated
assuming a uniform amplitude distribution over the sampling
interval ℓ for which the quantization noise power or variance
is evaluated as

σ2q =
ℓ
2

12
uniform sampling quantization noise power

=V2
m

2−2Nb

3
(2.4)

The quantization noise power, expressed by (2.4), repre-
sents an additive noise source that is independent of the addi-
tive receiver thermal noise and in most applications a 12 or
more bit ADC will result in negligible quantization noise.
Subsequent digital signal processing should use word lengths
in excess of the ADC to ensure that rounding, overflow, and

truncation effects do not degrade the quality of the signal
detection; this is a particular concern with fixed word size sig-
nal processors [1]. Floating point digital signal processors
virtually eliminate the concerns regarding signal quality fol-
lowing the ADC; however, because the ADC establishes a
limit on the ultimate quality of the signal processing, special
applications involving high quality signal processing fre-
quently use more than 12-bit digital-to-analog converters
(DACs) requiring special amplitude conversion techni-
ques [2–6].

In the following chapters, when the impact of quantization
on the demodulator performance is examined, the zero level
transition ADC is used with the sign-magnitude representa-
tion of the quantized time sample. A fast amplitude quantiza-
tion algorithm is described in Appendix 2A.

2.2.1 Case Study: ADC Quantization of
Direct-Sequence Spread-Spectrum Waveform

This case study examines the detection performance of a
direct-sequence spread-spectrum (DSSS) waveform after
sampling and ADC conversion. The objective is to determine
the correlation performance of the DSSS waveform as the
level is attenuated to and below the LSB of the ADC. The first
evaluation is based on a noise-free DSSS waveform at the
input to the ADC and LSB rounding and the addition of a
noise-like jitter signal is examined and shown to extend
the dynamic range of the ADC by 1–1.5 bits or 6–9 dB.
The second evaluation is based on the DSSS waveform
buried in additive white Gaussian noise (AWGN) and the
dynamic range of the ADC is examined as the composite
signal plus noise is attenuated to and below the LSB of the
ADC. In this case, the dynamic range of the ADC is extended
by 2-bits or 12 dB for the example considered.

For these evaluations, the DSSS waveform and the ADC
are specialized as follows. The DSSS waveform is a pseudo-
random noise (PRN) sequence of 256 bipolar (±1 V) chips
and, to center the zero-lag correlation response, the received
chip sequence is shifted relative to the demodulator stored
replica by 128 chips. The receiver replica of the PRN
sequence is stored as bipolar unit amplitude chips. The
ADC uses a total of Mb = 8 bits with M = 2 integer bits.
Although the voltage level of the received chip sequence is
gain adjusted to examine the performance with ADC quanti-
zation, the maximum chip voltage of ±1 V corresponds toMb

−M = 6 bits or 36.12 dB of fractional dynamic range of the
ADC. The amplitude range of the DSSS received waveform
relative to the ADC bits is depicted in Figure 2.3.

The first evaluation considers a noise-free received
DSSS waveform characterized by the unit amplitude bipolar
chips that coincide with the 0 dB attenuation scale of
Figure 2.3 and, upon passing through the ADC with under-
flow truncation, the resulting correlation response is shown
in Figure 2.4a. The standard deviation of the correlation
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FIGURE 2.2 Unit gain uniform quantization zero-level ADC.

*Nonuniform sampling results in vεj = ± ℓj 2 and is used to increase the res-
olution at the lower voltage levels of the sampled signal.
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FIGURE 2.3 ADC magnitude bit allocation and dynamic range (M = 2, Mb = 8).
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sidelobes is evaluated as* σSL = 15.44 and the resulting cor-
relation peak-to-sidelobe ratio is 24.39 dB. In keeping with
the objective of this case study, the noise-free DSSS wave-
form is attenuated by 30.1 and 33.11 dB and then amplitude
quantized by the ADC with the respective correlation
responses shown in Figure 2.4b and c; the peak-to-sidelobe
ratios are 24.33 and 24.36, respectively. Although the case
with 33.11 dB of attenuation is only 3.01 dB above the lower
range of the ADC, these results clearly demonstrate that
the DSSS waveform is operating within the linear range of
the ADC. When the DSSS waveform is attenuated by
36.12 dB and passed through the truncating ADC the corre-
lation response is zero, that is, the received signal chips are in
the underflow region so the output of the ADC is zero. On the
other hand, when rounding is applied to the ADC the received
chips do appear in the LSB of the ADC and the resulting cor-
relation response is shown in Figure 2.4d; in this case the
peak-to-sidelobe ratio is 24.37 dB again operating in the lin-
ear range of the ADC. When the received signal is attenuated
by 42.14 dB the correlation response is again zero suggesting
that rounding will extend the dynamic range of the ADC by
3 dB or one-half bit.

Another evaluation regarding extending the dynamic
range of the ADC involves the addition of a noisy amplitude
jitter signal to the received DSSS waveform prior to the ADC
processing. In this case, a noisy jitter signal consisting of a
random sequence of bipolar low-amplitude chips, independ-
ent of the DSSS chips, is added to the received signal. The
chip amplitude of the noisy jitter signal is 11.05 mv corre-
sponding to an attenuation 39.13 dB in Figure 2.3, that is,
one-half the level of the first underflow bit. Upon repeating
the ADC and correlation processing for the DSSS received
waveform with the additive jitter noise the correlation result
for a signal attenuation of 45.15 dB is shown in Figure 2.5.
The peak-to-sidelobe ratio in this case is 21.35 dB, that is,
3 dB less than in the cases operating in the linear range of
the ADC. The reason for this loss is that one-half of the DSSS
chips fall into the underflow region of the ADC and result in
zero output contributing nothing to the correlation peak. As
the attenuation is increased beyond 45.15 dB the ADC output
is zero, therefore, with 45.15 dB of signal attenuation, the
selected noisy chip amplitude extends the dynamic range
of the ADC by 9 dB or 1.5 bits.†

The utility of adding a low-level jitter signal to increase
the sensitivity of the LSB impacts all of the quantization
levels of the ADC and enhances the estimation of various

signal parameters by ensuring that a signal-dependent param-
eter does not rest on a single quantization level resulting in an
averaging that results in an improved estimate of the true
parameter value. This low-level jitter signal effectively
results in a signal gain variation that presumably has a neg-
ligible impact insofar as the dynamic range of the ADC is
concerned. Sklar [7] discusses additional applications of
amplitude dithering (jitter) including improvements in esti-
mating the true signal level that might appear, for example,
at the output of a baseband ADC.

Although the preceding evaluation using the DSSS wave-
form to demonstrate the capability of rounding and the addi-
tion of a noise-like jitter signal to increasing the dynamic
range of the ADC, the conditions of the evaluation are some-
what unrealistic. For example, received signals typically
involve additive channel or receiver Gaussian noise and most
practical receivers use some form of automatic gain control
(AGC) to establish and maintain a nearly constant received
power level at the input to the ADC. In the case of the
DSSS-modulated waveform, the additive noise generally
overwhelms the desired signal and the process of correlation
despreading results in a net positive signal-to-noise ratio suf-
ficient for signal detection. In this regard, the final evaluation
in this case study involves the DSSS received waveform bur-
ied in additive white Gaussian noise and examines the
despreading correlator output for various AGC level setting
relative to the ADC input range as depicted in Figure 2.3.
In keeping with the previous examples, the signal correlation
response is examined as the composite signal-plus-noise
level is attenuated over the linear range of the ADC. The var-
iance of the additive noise is defined as

σ2n =
V2
p

2γ
(2.5)

where Vp is the peak carrier-modulated signal voltage and γ is
the signal-to-noise ratio measured in the input bandwidth of
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FIGURE 2.5 Correlation dynamic range with additive jitter noise
(attenuation = 45.15 dB).

*The sidelobe standard deviation is based on the, nearly zero mean, bipolar
correlation sidelobe response.
†The dynamic range can be increased further by increasing the amplitude of
the noisy chips; however, there will still be a 3 dB correlation processing loss.
Further increasing of the jitter signal level will eventually result in an unde-
sirable mapping of the input signal onto the ADC bits that will result in signal
clipping.
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the ADC; in the following analysis, γ is assumed to be
−10 dB. To examine the impact of operating at different
levels over the ADC linear range, the signal level is attenu-
ated over the linear range of the ADC with the noise power,
as expressed in (2.5), 10 dB above the signal power.

In Figure 2.6a the signal power is attenuated by
30.10 dB and, while the noise appearing in the underflow
region will be truncated, the composite input signal is

essentially operating in the linear range of the ADC with
a peak-to-sidelobe ratio of the correlation response equal
to 17.56 dB. Figure 2.6b shows the correlation response
when the signal level is attenuated by 42.14 dB corre-
sponding to 6 dB (1-bit) into the underflow region. In this
case, the correlation peak-to-sidelobe ratio is virtually
unchanged at 17.4 dB. Figure 2.6c and d corresponds to
further reductions in the signal level by 3 dB corresponding
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FIGURE 2.6 Correlation dynamic range of DSSS waveform with noise.
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to 1.5 and 2-bits into the underflow region with corre-
sponding correlation peak-to-sidelobe ratios of 16.58 and
13.07 dB. Another 3 dB of signal attenuation results in zero
ADC output so the composite signal and noise is entirely in
the underflow region. The phenomenon resulting in the
preservation of the correlation response is understood
if the additive noise is viewed as a jitter signal that carries
the low-level DSSS signal into the higher order bits of the
ADC effectively providing gain to the DSSS signal.
Because the noise is 10 dB higher than the signal this
phenomenon persists until the noise is essentially in the
underflow region resulting in the rapid loss in the peak-
to-sidelobe ratio from 13.07 dB to zero output when
the attenuation is increased by an additional 3.01 dB from
48.16 dB. This is an interesting and distinctly different
view of the low-amplitude jitter noise discussed earlier
and can only be taken advantage of if subsequent signal
processing can lift the desired signal above the noise for
subsequent signal detection. It follows from this explana-
tion that a lower signal-to-noise ratio will result in a
larger useful linear region of operation over the ADC
linear range.

2.3 DISCRETE-TIME SAMPLING

The sampling of an analog signal is fundamental to the suc-
cess of digital signal data processing and various discrete-
time sampling criteria are established in this section based
on the work and conclusions of Nyquist [8] and Shannon
[9]. Shannon’s sampling theory concludes that the original
analog signal can be perfectly reconstructed from the
sampled signal if Nyquist sampling criteria are satisfied. This
is an important conclusion because it implies that all of the
information contained in the analog signal is also contained
in the sampled version so the desired received information
can be recovered through digital signal processing techni-
ques. Ideal sampling occurs when the sampling pulse is
described in terms of the delta function δ(t) and, when
applied using uniform sampling intervals Ts over all time,
the sampling is expressed as

fs t =
∞

n = −∞
δ t−nTs (2.6)

In Chapter 1 it is shown that Fourier transform of (2.6) is

Fs f = fs
∞

n = −∞
δ f −nfs (2.7)

where fs = 1 Ts is the sampling frequency so that (2.6) and
(2.7) form a Fourier transform pair as shown in Figure 2.7.

Consider that a baseband signal s(t) has the spectrum S( f ),
shown in Figure 2.8a, with a 3 dB baseband bandwidth of B
and a bandwidth Bmax such that

S f = 0 f ≥ Bmax (2.8)

where f, B, and Bmax have units of Hz. In practice, it is
required that S( f ) have negligible spectral power in the
range | f | ≥ Bmax as determined by the distortion loss resulting
from the spectral aliasing as described in the following
discussion.

The sampled signal is the product of s(t)fs(t) with the
corresponding frequency response given by the convolution
S( f )∗Fs( f ) and evaluated as

Ss f =

∞

−∞

S λ Fs f −λ dλ

=
1
Ts

∞

n = −∞
S f −nfs

(2.9)

The spectrum of the sampled signal is shown in
Figure 2.8b for a sampling frequency fs < 2Bmax. Sampling

 Time samples  Frequency samples

fs1
t

Ts–Ts–2Ts 2Ts0

… …

fs(t)

–2ωs 2ωs0
ω

–ωs

… …

Fs( f )
(a) (b)

ωs

FIGURE 2.7 Ideal sampling Fourier transform Pairs.
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FIGURE 2.8 Spectrum of signal and under-sampled signal
(shaded regions are aliased spectrums).
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of the signal s(t) occurs at the sampling rate fs and the signal
spectrum is repeated without limit and centered about nfs.
Because the sampling frequency depicted in Figure 2.7b
corresponds to fs < Bmax, spectral interference from the dupli-
cated spectrums at ±fs appears in the baseband signal spec-
trum. This phenomenon is referred to as spectrum aliasing
and results in distortion of the baseband signal resulting in
degraded signal processing performance.* It is also evident
from the figure that with fs ≥ 2Bmax spectrum aliasing will
not occur. This is the genius of Shannon’s sampling theorem
which states, in effect, that s(t) can be completely recon-
structed from samples s(nTs) n if Ts = 1/2Bmax or less, that
is, fs ≥ 2Bmax; this is depicted in Figure 2.9a in which there
is no spectrum aliasing. From a practical point of view,
because of the antialiasing filter transition bandwidth and
received signal frequency uncertainties, including Doppler,
the sampling frequency is selected to satisfy the condition
fs > 2Bmax. With fs/2 ≥ Bmax, the baseband spectrum corre-
sponds to negative frequencies in the range −fs/2 ≤ f < 0 and

the sampled spectrum corresponds to negative frequencies
in the ranges

n−1 fs + fs 2 ≤ f ≤ nfs n sampled spectrum
negative frequencies

(2.10)

Shannon’s sampling theorem applies for an infinite number
of samples so s(t) must exist for all time. Functions of infinite
time duration are the only functions that results in band-limited
spectrums. This is evident in the time–frequency duality
between the functions sinc t 2T 1 2T rect fT 2 and
rect t T T sinc fT . Therefore, functions with an infinite
frequency response are generally band limited by using an
antialiasing filter prior to the sampling; however, a digitally
implemented antialiasing filter can be used after the ADC
conversion [10]. The design of the antialiasing filter is criti-
cal, in that, the filter must not result in significant signal dis-
tortion relative to the aliased spectrum. Consequently, there is
a system performance trade-off between the antialiasing filter
bandwidth, transition band, sampling frequency selection,
and the resulting aliasing distortion. These characteristics
are depicted in Figure 2.9b and c. Figure 2.9b shows the
aliasing of large bandwidth sampled signal without an
antialiasing filter, in which, the spectrum aliasing is over
the entire baseband bandwidth. Figure 2.9c shows the
performance improvement when an antialiasing filter
(dashed lines) is used with a bandwidth Ba > B and transition
bandwidth fT.

†

2.3.1 Nonideal Sampling

The ideal sampling described in the previous section
involved delta function sampling in both the time and fre-
quency domains as characterized by the Fourier transform
pair (2.6) and (2.7). In this section, nonideal time-domain
sampling [11, 12], is examined based on a finite sampling
width of τ seconds with f(t) described as the unit amplitude
sampling pulse

f t = rect
t−nTs

τ
−∞ ≤ n ≤ ∞ (2.11)

Figure 2.10 depicts the nonideal finite width sampling
function and two different techniques involving average
and exact sampling‡ of the signal s(t). In both cases, the sam-
pling pulse is defined of the |t − nTs| ≤ τ/2. For sufficiently
narrow sample pulses, that is, τ 1/B, average sampling

Ss(f )

–fs/2 0
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B

f

…

fs–fs

…

Bmax fs/2

Ss(f )

–fs/2 0

Band unlimited sampled spectrum  
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…

fs–fs

…

Ba + f T

fs/2

Ss(f )

–fs/2 0

Band unlimited anti-aliased filtered
   sample spectrum
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f

…

fs–fs

…

Ba

(a)

(c)

(b)

FIGURE 2.9 Signal spectrums with and without antialiasing filter
(shaded regions are aliased spectrums).

*Spectrum aliasing also impacts all of the repeated signal spectrums in the
same way; however, the baseband signal is of interest in this discussion.

†Refer to Section 2.8.2 for more details on the design of antialiasing filters.
‡Average sampling is also referred to as flat-top and square-top sampling and
exact sampling as natural and top sampling.
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can be thought of as providing a single sample at nTs that
corresponds to the average signal level over the interval
nTs − τ/2 ≤ t ≤ nTs + τ/2. The following discussions focus on
the evaluation of the sampled signal spectrum Ss( f ) for each
of the sampling techniques and, in both cases, the sampling
frequency satisfies the Nyquist criterion fs ≥ 2Bmax.

2.3.1.1 Signal Spectrum Using Average Sampling With
average sampling, the sampled signal is the product of the
signal sample at the center of each sample pulse, s(nTs),
and the sampled function is expressed as

ss t =
∞

n= −∞
s nTs fs t−nTs (2.12)

Normally the spectrum of Ss( f ) is evaluated as the con-
volution of the signal spectrum, S( f ), with the sampling
function spectrum, Fs( f ), however, because s(nTs) repre-
sents a constant weight associated with each time sample,
the evaluation of Ss( f ) is simply the product of S( f ) and
Fs( f ) evaluated as

Ss f =

∞

−∞

ss t e
j2πftdt

=
∞

n = −∞
s nTs

nTs + τ 2

nTs −τ 2

fs t−nTs e
j2πftdt

(2.13)

The integral in the second equality of (2.13) is evaluated
using the substitution of variables ξ = t−nTs, dξ = dt, with the
integration range ξ ≤ τ 2 yielding

nTs + τ 2

nTs −τ 2

fs t−nTs e
− j2πftdt =

τ 2

−τ 2

fs ξ e− j2πf ξ + nTs dξ

=F f e− j2πfnTs

(2.14)

where

F f = τsinc f τ (2.15)

Using s(nTs) in (2.13), the sampled signal is evaluated in
terms of the signal spectrum, S( f ), as

s nTs =

∞

−∞

S λ ej2πλnTsdλ (2.16)

Substituting (2.16), (2.15), and (2.14) into (2.13) results
in the equalities

Ss f = τsinc f τ
∞

n= −∞

∞

−∞

S λ ej2π λ− f nTsdλ

= τsinc f τ

∞

−∞

S λ
∞

n = −∞
ej2π λ− f nTs dλ

= τfs sinc f τ

∞

−∞

S λ δ f −λ−nfs dλ

= τfs sinc f τ S f −nfs

∞

−∞

δ f −λ−nfs dλ

(2.17)

The second equality in (2.17) simply moves the summa-
tion inside the integral, from which, the delta function is
established using the identity in Section 1.2.3 resulting in
the third equality using

∞

n= −∞
ej2π λ− f nTs =

∞

n= −∞
e− j2π f −λ nTs

= fsδ f −λ−nfs

(2.18)

The fourth equality uses the sifting property of the delta
function corresponding to λ = f − nTs. The final result, using

s(t)
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FIGURE 2.10 Nonideal sampling.
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average sampling, is expressed in (2.19) with fs = 1/Ts and the
property that the delta function integrated over the infinite
range is unity.

Ss f =
τ

Ts
sinc f τ S f −nfs

spectrum using average sampling (2.19)

Equation (2.19) indicates that the each replication of the
signal spectrum is weighted by (τ/Ts)sinc( fτ) as depicted in
Figure 2.11. Since this weighting is a function of the fre-
quency variable f, the repeated spectrums are increasingly
diminished and distorted over the frequency bands 2Bmax

as f increases. The first spectral null of the weighting func-
tion occurs at fτ = 1/τ and, in the figure, corresponds to fτ/fs =
Ts/τ 3.5; however, in practice Ts/τ 10, so the attenuation
and distortion of the baseband signal spectrum and nearby
spectral repetitions is negligible.

2.3.1.2 Signal Spectrum Using Exact Sampling With
exact sampling, the sampled signal is the product of signal
s(t) and the sampling function and is expressed as

ss t = s t
∞

n = −∞
fs t−nTs (2.20)

Equation (2.20) is distinct from the signal sample s(nTs)
used with the average sampling technique and requires
that the sampled signal spectrum be evaluated using
the convolution of the spectrums S( f ) and Fs( f ) as
expressed by

Ss f =

∞

−∞

S λ Fs f −λ dλ (2.21)

The evaluation of (2.21) is left as exercise by noting that
s(t) is a function of t and is not dependent on the summation
over n and that Fs( f ) is the Fourier transform involved in the
summation in (2.20). Upon working through the details the
solution to (2.21) is expressed as

Ss f =
τ

Ts

∞

n= −∞
sinc nfsτ S f −nfs (2.22)

Equation (2.22) is plotted in Figure 2.12 and it is noted
that each spectral repetition at f = nfs is weighted by a
constant given by (τ/Ts) sinc(nfsτ). In this case, the spectral
repetitions are attenuated as |n| increases; however, they
are not distorted.

(𝜏/Ts) S ( f–nfs) sinc(f𝜏):n = 1

(𝜏/Ts)sinc(f𝜏)

–3fs 3fs

Ss( f )

f

fs–fs–2fs 2fs0
… …

fτ–fτ

FIGURE 2.11 Signal spectrum with average sampling.
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(τ/Ts) S(f–nfs) sinc(nfsτ):n = 1

FIGURE 2.12 Signal spectrum with exact sampling.
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2.3.1.3 Exact Sampling with Finite Sample Window In
this section, the sampling is considered to exist over a finite
time interval or window resulting in the nonideal sampled
signal expressed as

ss t =w t s t fs t

=w t ss t t = nTs
(2.23)

where the fs(t) is the ideal sampling function expressed
in (2.6) and s(t) and ss(t) are the signal of interest and
the sampled signal with respective spectrums shown in
Figure 2.9a.

The sampling window w(t) is considered to be a uniformly
weighted unit amplitude function of duration Tw seconds,
expressed by the Fourier transform pair

w t = rect t Tw W f =Twsinc fTw (2.24)

The spectrum of the windowed sampled signal, ss t , is
evaluated as the convolution of the frequency functions of
ss(t) and w(t) and is expressed as

Ss f =

∞

−∞

Ss λ W f −λ dλ (2.25)

The numerical evaluation of (2.25) is shown in Figure 2.13
for three repeated sampled spectrums about the zero

frequency. The signal spectrum corresponds to that shown
in Figure 2.9a with B = 1 kHz, Bmax = 1.2 kHz, and oversam-
pling corresponding to fs/2 = 1.8 kHz; however, the normal-
ized abscissa in Figure 2.13 applies to any frequency
scale. The frequency resolution of the window is fres = 1/
Tw and this numerical example corresponds to fres = B/4,
so, if B were to represent the symbol bandwidth Rs, there
are only four symbols per window. Typically the window
contains many symbols and the impact of the sinc(fTw) side-
lobes is significantly diminished by increasing Tw. In addi-
tion to increasing the window duration, the impact of the
spectral distortion can be further reduced by using a
weighted window as discussed in Chapter 1. In any event,
the signal distortion resulting from a finite sampling win-
dow must be examined in terms of the demodulator acqui-
sition and detection processing.

Referring to the ranges of negative frequency samples as
expressed by (2.10), consider, for example, an Nfft-sample
fast Fourier transform (FFT) generated spectrum and the neg-
ative frequency range corresponding to n = 1 in (2.10). The
FFT samples are taken over the positive sample window
interval 0 ≤ t ≤ Tw and a right cyclic shift of the resulting
FFT samples by Nfft/2 corresponds to the normalized
frequency range given by

fn
B
= −

Ns

Nfft

Nfft

2
− n −1 n = 1,…,Nfft (2.26)

where B is signal bandwidth and Ns = 1/(BTs) is the number
of samples in the signal bandwidth. For example, if B is equal
to the modulated symbol bandwidth, that is, B = Rs = 1/T,
then Ns = T/Ts is the number of samples per symbol. For a
radix-2 FFT, Nfft = 2k and Ns is selected to be integrally
related* to Nfft. Equation (2.26) indicates that, after the
cyclic shift, the frequencies limits correspond to f0/B = −Ns/2,
fNfft/2+1/B = 0, and fNfft/B =Ns/2 −Ns/Nfft.

2.4 SIGNAL RECONSTRUCTION FOLLOWING
DISCRETE-TIME SAMPLING

Shannon’s sampling theorem states that if the Fourier trans-
form of a signal s(t) is zero at or above a certain frequency,
for example, Bmaxwith S( f ) = 0 for | f | ≥ Bmax, then s(t) can be
uniquely determined from a function g(nTs) of the uniformly
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FIGURE 2.13 Windowed sampled signal spectrum (repeated
spectrums not shown).

*In general, the ratio Nfft/Ns should be a rational number to simplify the sam-
ple rate reduction processing. However, if Ns is integrally related to Nfft then
an integrate-and-dump (I&D) matched filter simply sums Ns symbol sam-
ples; furthermore, if Ns is an even integer then E/L symbol tracking proces-
sing is also simplified.
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spaced samples nTs with Ts = 1/2Bmax. Under these condi-
tions, the reconstructed signal is expressed as [9, 13]

s t =
∞

n = −∞
g nTs

sin π Ts t−nTs
π Ts t−nTs

(2.27)

To demonstrate (2.27), an ideal, or zonal low-pass filter,
H( f ), is used to recover the baseband spectrum of the
sampled signal as shown in Figure 2.14, where the dashed
lines represents the low-pass filter with bandwidth confined
to the range Bmax ≤ Bf ≤ fs − (B + Bmax).

The filter output is determined by the convolution of the
sampled signal ss(t) with the filter impulse response h(t)
expressed as

s t =

∞

−∞

ss ξ h t−ξ dξ (2.28)

Therefore, using (2.6), the ideally sampled signal is
expressed as

ss t = s t fs t

= s nTs
∞

n = −∞
δ t−nTs

(2.29)

and the filter impulse response is evaluated as

h t = 2Bf Ts
sin 2πBf t

2πBf t
(2.30)

Upon substituting (2.29) and (2.30) into (2.28) and using
the properties of the delta function the reconstructed signal is
evaluated as

s t = 2Bf Ts
∞

n= ∞
ss nTs

sin 2πBf t−nTs
2πBf t−nTs

(2.31)

with g nTS = 2Bf TSsS nTS . Comparing (2.31) with (2.27)
it is seen that s(t) is exactly reconstructed when Bf = Bmax

corresponding to g nTS = sS nTS and, for t =mTs, this
occurs when

sin 2πBmax m−n Ts
2πBmax m−n Ts

= 1 (2.32)

Equation (2.32) corresponds to m = n and is equal to
zero m−n 0; these conditions are only satisfied when
Bf = Bmax.

The zonal or low-pass filter in Figure 2.14 is not realiza-
ble; however, the practical filter shown in Figure 2.15 can be
constructed based on a specified passband attenuation (δpb),
passband cutoff frequency (fc), transition bandwidth (fT), and
stopband attenuation (δsb) as discussed in Section 2.8.2. The
selection of these parameters is subject to the system perfor-
mance requirements; however, the low-pass filter, shown as
the dashed lines in Figure 2.15, will recover the signal spec-
trum from which the original signal can be reconstructed.*

The three ideal conditions are as follows: δpb = 0 for f ≤
Bmax, δsb =∞ for f ≥ fs − Bmax, and the signal spectrum is
zero for f ≥ Bmax. The selection of the sampling frequency
is a major consideration in the design, in that, the transition
frequency can be chosen to simplify the filter.

2.5 BASEBAND SAMPLING

Baseband sampling involves mixing the demodulator inter-
mediate frequency (IF) input frequency to baseband using
conventional procedures discussed in Section 1.1.1.7. How-
ever, the resulting analog in-phase and quadrature baseband
signal must be orthogonal, gain balanced, and direct current
(DC) offset balanced as discussed in Section 2.7. Typically,
high quality mixers and low-pass filters satisfy these condi-
tions; however, temperature sensitivities are issues to be con-
sidered in the design.

2.6 BANDPASS SAMPLING

The minimum software loading on a demodulator results
when an IF data-modulated waveform is mixed to baseband
using analog quadrature mixers; however, analog signal

Ss( f), H( f )

–fs/2 0 fs/2

B 

f 

…

fs–fs

… 

Bmax

Bf

FIGURE 2.14 Ideally filtered sampled signal spectrum.
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FIGURE 2.15 Filtered sampled signal spectrum.

*The raised-cosine attenuation function can be used as an alternate to using a
linear transition band attenuation. Refer to the discussion of Nyquist filtering
in Section 4.4.4.1.
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conversion to baseband is subject to a number of sensitivities
as mentioned in the preceding section. To mitigate these
effects DSP techniques are used to generate the baseband sig-
nal as an integral part of the ADC processing. ADC involves
discrete-time and discrete-amplitude sampling; however, the
following sections focus on the discrete-time sampling of the
carrier-modulated signal referred to as bandpass sampling.
The bandpass sampling techniques discussed are subcarrier
sampling and Hilbert transform sampling. Each of these tech-
niques use a carrier-modulated input signal at a suitably
selected IF.*

The subcarrier sampling involves sampling the IF-
modulated waveform with bandpass bandwidth W resulting
in a lower frequency as a consequence of spectral aliasing.
To achieve the aliased signal spectrum without spectral inter-
ference requires judicious selection of the sampling fre-
quency. The resulting aliased sampled waveform is then
processed to recover the information in the signal bandwidth.

The Hilbert transform processing is also similar, in that,
discrete-time sampling of the IF-modulated waveform is per-
formed and passed through a Hilbert filter that produces a
quadrature set of I/Q data-modulated carrier frequencies cor-
responding to the input signal within the bandwidth of the
Hilbert filter. The I/Q-modulated waveforms are then mixed
to baseband using a complex mixer and the information is
recovered.

2.6.1 Subcarrier Sampling

In this section the bandpass sampling of a carrier-modulated
signal using subcarrier sampling is described. As in the case
of bandpass sampling, the sampling frequency must be cho-
sen such that aliasing distortion does not occur; however, the
selection of the sampling frequency is much more rigorous
and restrictive.

The analysis of the bandpass sampling criteria involves
the IF frequency (fif) and the corresponding bandwidth W,
defined as the A dB bandwidth of the antialiasing filter shown
in Figure 2.16. The bandwidthW is influenced by the system
information bandwidth and may involve a single carrier or
multiple carriers as with frequency division multiple access
(FDMA) implementations and the value of A dB is chosen
so as not to degrade the system performance in consideration
of the aliasing distortion. In the context of Figure 2.16, the
aliasing distortion is represented by the signal levels
below A dB and outside of the bandwidth W. Typically, the
bandwidth W is somewhat greater than the useable or 3-dB
bandwidth, W3, of the IF filter, for example, specifying
A dB = 30 dB, with a 4-pole Butterworth antialiasing filter
W = 2.3W3 and with a 4-pole, 0.1 dB ripple Chebyshev
filter W = 1.8W3. As shown in Figure 2.16, W includes the

filter transition bandwidth; however, W3 must also include
the frequency uncertainty range of the received waveform.

In the following analysis, the IF and sampling frequencies
are normalized by the IF filter bandwidth. The sampling fre-
quency is established in consideration of the antialiasing
requirement. For a filter centered at the fif with bandwidth
W, the criteria for the bandpass sampling frequency, fs, so
as not to result in aliasing, are given by [14, 15],

2fif W + 1
m+ 1

≤
fs
W

≤
2fif W −1

m
(2.33)

where m = 1, 2, …, M, and M is the maximum value of m.
Referring to Problems 4 and 5, M is evaluated as

M =
fif
W

−0 5 m ≤M (2.34)

The maximum value of M results in the lowest range of
sampling frequencies that does not result in spectral aliasing,
so, in (2.33), m is chosen as m =M. Figure 2.17 is a plot of
(2.33) showing the normalized maximum andminimum sam-
pling frequencies as a function of the normalized IF fre-
quency for M = 1, 3, and 7 corresponding to fif = 70MHz
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FIGURE 2.16 Bandpass antialiasing filter characteristics.
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FIGURE 2.17 Bandpass sampling characteristics (fif = 70MHz,
W = 36, 18, and 9MHz).

*The IF frequency is usually the carrier-modulated frequency into the demod-
ulator subsystem.
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with respective bandwidths W = 36, 18, and 9MHz. As M
increases the sampling frequency decreases and the spread
between the maximum and minimum sampling frequencies
decreases; the starting points, that is, the intersection of the
maximum and minimum curves, in these plots correspond
to the upper and lower limits in (2.33) being equal.

Based on (2.33) and (2.34) the minimum sampling
frequency is expressed, in the normalized form, as

fsmin
W

=
2fif W + 1
M + 1

(2.35)

WhenM is exactly equal to argument of the floor(−) func-
tion, then (2.35) is evaluated as (see Problem 6) fsmin/W = 2
so, the minimum sampling frequency is expressed in terms
of the lower limit as

fsmin ≥ 2W (2.36)

with the equality condition corresponding to M = fif/W − 1/2.
To illustrate the relationship between the minimum sam-

pling frequency (fsmin) and the maximum signal frequency*

(fmax), Figure 2.18 shows the sampling requirements as fmax
increases from W to 2W −Δf where Δf is a small frequency
increment. As fmax increases linearly over this range the sam-
pling frequency increases linearly over the range 2W ≤ fsamp ≤
4W −Δf; this is a direct result of M being constant as seen
from (2.34). As Δf approaches zero, the upper limit of fmax

approaches 2W and the sampling frequency approaches
4W. However, when Δf = 0 the integer M is indexed by
one and the minimum sampling frequency abruptly changes
to fsmin = 2W as expressed by (2.36). This abrupt change is
seen to occur in Figure 2.18 corresponding to fmax = 2W. This
linear increase in fsmin followed by an abrupt change to fsmin =
2W continues with increasing fmax and defines the minimum
sampling requirements to avoid spectral aliasing or interfer-
ence between any repeated spectrums of bandwidth W Hz;
these repeated spectrums are packed contiguously with no
separation when fmax = kW: k integer. For this reason, as
a practical matter, the bandwidthWmust be chosen to include
oversampling to provide for the antialiasing filter transition
bandwidth and signal frequency errors.

The range of the minimum sampling frequencies is
evaluated numerically using (2.35) with fif = fmax −W/2 and
is plotted in Figure 2.19 as a function of fmax. Based on these
results, the minimum sampling frequency is limited to the
range 2W ≤ fsmin ≤ 4W with the normalized maximum values
evaluated as

f
smin max

W
=
2 fmax W

M

fmax
W

= 2,3,…;M = fmax W −1

(2.37)

2.6.1.1 Example of Subcarrier Sampling This example
of subcarrier sampling is considered to demonstrate the
dependence of the maximum and minimum normalized sam-
pling fs/W on the normalized IF frequency fif/W as depicted in
Figure 2.17. The example considers the case corresponding

W–ΔfSs(f)

0–fs fmax
f

Ss(f)

Ss(f)

fmax = W
fs = 2W

fmax = W + Δf
fs = 2W + Δf

fmax = 2 W–Δf
fs = 4W–Δf

fmax–fmax –fif
f 

fif0

W
…

…

…

… …

…

…

…

–fs fs
f

–fmax fmax0

Ss(f)

W

fs–2fs 2fs–fs
f

0

Δf

fmax = W
fs = 2W

FIGURE 2.18 Illustration of minimum bandpass sampling.

*The maximum signal frequency fmax is used in the following analysis and
corresponds to a translation of the IF frequency defined as fmax = fif + W/2.
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to fif = 70MHz, W = 9MHz, and M = 7 computed using
(2.34). The normalized IF frequency parameter is fif/W =
7 777 and the range of normalized sampling frequencies

fs/W is determined using (2.33), with the result

2 069444444 ≤
fs
W

≤ 2 079365079 (2.38)

The spectrums and sampling frequencies are shown in
Figure 2.20; the repeated spectrums at multiplies of two and
three times fsmin/W are not shown. In this example, sampling
frequency fs W = 4fsmin = 8 277 corresponds exactly to the

upper frequency of the IF bandwidth and the repeated
spectrum of interest lies in the band fsmin/W resulting in a

4 : 1 reduction in the signal IF carrier frequency. The sam-
pling frequency corresponding to fsmax/W is fs W = 4fsmax =
8.317460317. The sampling frequency difference is
defined as δf = fsmax − fsmin = 0.009920635 and 4δf =
0.03968254. Therefore, the maximum IF signal spectrum,
relative to 4fsmax corresponds to 4fsmax − 4δf =
8.317460317 − 0.03968254 = 8 277. This is exactly the

same results as for the fs W = 4fsmin sampling frequency so
the desired repeated spectrum again results in a 4 : 1 reduc-
tion in the signal IF carrier frequency. The frequency of
the desired signal spectrum at fif/(4W) is independent of fs/W
and is not distorted by spectral aliasing as long as fs/W satis-
fies (2.38). The accuracy of sampling frequency, to avoid
spectrum aliasing, expressed as a percent of (fsmax − fsmin)/
fsmax is 0.48%.

2.6.2 Hilbert Transform Sampling

Consider the signal at the radio or receiver IFoutput described as

s t = a t cos ωif t +ϕ t (2.39)

whereωif is the IF carrier frequency in radians per second and
a(t) and ϕ(t) are time-dependent amplitude and phase func-
tions that describe the waveform modulation and channel fil-
tering affects upon the received signal. The received signal is
considered to be contained entirely within in the bandpass
bandwidth W and the antialiasing filter serves to reject out-
of-band interfering signals and limit the receiver noise power
into the ADC to (No/2)Wn where Wn is the two-sided noise
bandwidth of the filter and No is the one-sided noise density.
When the filtered signal is sampled at the rate fs ≥ 2W and
passed through the Hilbert transformer, the resulting quadra-
ture output signals are expressed as

sc t = a t cos ωct +ϕ t (2.40)

ss t = a t sin ωct +ϕ t (2.41)

where ωc =ωif −ωlo is the intermediate frequency prior to the
ADC and ωlo is the local oscillator used as a reference to
translate the radio IF. The demodulator functional implemen-
tation is shown in Figures 2.21 and 2.22 shows the spectral
characteristics for the frequencies and bandwidths of interest.
This example uses a demodulator input IF frequency of
70MHz that is mixed to 18MHz using the local oscillator
frequency of 52MHz. The information bandwidth (2B <W)
of the received signal may correspond to a single user-
modulated signal or multiple frequency division multiplex
(FDM) users with independent data.

2.6.2.1 Hilbert Filter Characteristics Based on the
efforts of many researchers [16–18], the design of Hilbert
filters has matured to the point where sets of finite impulse

Normalized maximum signal
frequency (fmax/W) 

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 m
in

im
um

 s
am

pl
in

g
fr

eq
ue

nc
y 

(f
sm

in
/W

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Maximum
values

FIGURE 2.19 Minimum bandpass sampling characteristics.
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FIGURE 2.20 Minimum and maximum sampling frequencies
(fif = 70MHz, W = 9MHz, M = 7).
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response (FIR) filter coefficients are tabulated based on
various design requirements and signal processing capabil-
ities. Rabiner and Schafer [18] provide extensive tables
of the filter coefficients and Tables 2B.1, 2B.2, 2B.3,

and 2B.4 in lists the coefficients for filters with an odd
number of coefficients for various values corresponding
to the lower cutoff frequency FL. A typical Hilbert filter
implementation is shown in Figure 2.23 and the frequency
response is shown in Figure 2.24 identifying the filter
design parameters when using an odd number of filter
coefficients. The number of filter coefficients N, the sam-
pling frequency fs, the upper and lower transition bands FH

and FL, the gain ripple δ over the filter bandwidth FH − FL,
and the corresponding filter coefficients are all that is nec-
essary to implement the Hilbert filter. The coefficients
listed in the tables apply for FH = fs/2 − FL so there are only
four design parameters: N, fs, FL, and δ. When N = odd
integer the filter cutoff frequencies are equal corresponding
to FH = fs/2 − FL. Also, when N is an odd integer the filter
response at fs/2 is zero as shown in Figure 2.24. The Hil-
bert filter response for even N is shown in Figure 2B.1, in
which case, the filter response at fs/2 is not zero and the
upper and lower transition bands are not equal so FH

fs/2 − FL. Rabiner and Schafer present compelling argu-
ments for using an odd number of coefficients; the most
notable is that more efficient realizations are possible
because every other coefficient is zero.

For N = odd integer, the filter impulse response, h(n),
has odd symmetry about the sample n = (N − 1)/2 and the
frequency response is given by

H ejω = e− j ω N−1 2 + π 2 H∗ ejω (2.42)

Bandpass
filter

fw/2fLO

Anti-aliasing
lowpass filter

(W)Receiver if
signal sin(t)

fif

s(iTs)

Quadrature
outputs 

ss(iTs)

sc(iTs)
Hilbert

transform

fs

ADC

FIGURE 2.21 Functional implementation bandpass sampling
with Hilbert transformer.
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FIGURE 2.22 Filtering and Hilbert transform frequency
characteristics.
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FIGURE 2.23 Functional implementation of Hilbert transform
(N = odd integer).
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FIGURE 2.24 Typical Hilbert filter response for N = odd.
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where

H∗ ejω = 2
N−1 2

i= 1

a n sin nω (2.43)

is a real function of ω and a n = 2h N−1 2−n . Substitut-
ing these results into (2.42) the magnitude of the frequency
response is evaluated as

H ejω = 2
N−1 2

n= 1

h N−1 2−n sin nω (2.44)

The magnitude of the frequency response expressed
by (2.44) is plotted in Figure 2.25 for the coefficients
listed in Tables 2B.1 and 2B.4 corresponding to a unit
sampling frequency fs = 1 with FL = 0.1, N = 31, and D =
8 × 10−6 and FL = 0.01, N = 55, and D = 0.095498 as indi-
cated; the peak-to-peak in-band ripple is defined as Rp =
20 log10(1 +D).

Figure 2.26 shows the quadrature outputs of Hilbert filter
in response to a continuous wave (CW) carrier at the center
of the filter response and at the upper and lower transition
band edges. The in-phase carriers are shown as the solid
curves and the quadrature carriers as the dashed curves.
This quadrature relationship is exhibited over the entire
band from fL to fH. With data-modulated carriers, significant
demodulator performance loss occurs from the quadrature
unbalance when the waveform bandwidth extends into the
transitions regions. Quadrature rail unbalance is shown in
Figure 2.26d when the CW input signal is in the lower tran-
sition region.

2.6.3 Case Study: Hilbert Filtering

In this case study, the Hilbert transform is applied at the out-
put of a wideband radio receiver for the subsequent detection
of up to four data-modulated subchannels. The radio covers
the entire ultra-high frequency (UHF) band of interest with an
instantaneous bandwidth of 36MHz and outputs an interme-
diate frequency of 70MHz. The concepts discussed here are
also applicable to tri-band radios operating in the C, X, and
Ku bands that also provide a 70MHz IF output. In this case
study, the 70MHz radio IF is translated to 18MHz where
analog-to-digital conversion and digital Hilbert filtering is
performed using a sampling frequency of fs = 72MHz to pro-
duce I/Q bandpass outputs for subsequent subchannel filter-
ing and data detection.

The Hilbert filter has N = 31 taps, equal lower and upper
transition bands of fT = 0 05 fs = 3 6MHz, and a maximum
in-band peak ripple of 0.023 dB. The resulting Hilbert
bandwidth that satisfies this ripple condition is
W = 0 5−2 0 05 fs = 28 8 MHz and the 3 dB bandwidth
is about 32.4 MHz.* The Hilbert filter bandwidth W over
the equal ripple specification can be increased by using a
55 tap Hilbert filter with transition bands Δ = FL = 0.01 with
a corresponding in-band ripple to 0.8 dB. In this case,
fT = 0 01 fs = 0 72MHz and the resulting ripple bandwidth
is W = 34.56 MHz with a 3 dB bandwidth of approximately
35MHz. The multi subchannel demodulator is shown in
Figure 2.27 with the M complex mixer referenced inputs
(not shown) equal to the assigned carrier frequencies within
the Hilbert bandwidth W .
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FIGURE 2.25 Hilbert filter frequency responses.

*The amplitude of the I and Q responses may differ by the ripple at the oper-
ating frequency of the subchannel carrier and the impact of rail unbalance
must be considered in the waveform demodulation.
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FIGURE 2.26 Hilbert filter subchannel carrier responses.
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FIGURE 2.27 Multichannel demodulator implementation using Hilbert transform (N = odd integer).
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2.7 CORRECTIONS FOR NONIDEAL
MODULATORS AND DEMODULATORS

In the preceding sections, the carrier-modulated waveforms
are ideal, in that, the quadrature rails have equal gains and
are separated by exactly 90 . Furthermore, there is no DC off-
set on either rail. In the modulator this corresponds to no car-
rier frequency leakage and, in the demodulator, zero DC
offset corresponds to symmetrical data levels on each rail.
Carrier leakage results in signal interference and lower power
efficiency relative to suppressed carrier modulation and, in
the demodulator, quadrature rail offsets result in subopti-
mal-matched filter sampling and carrier phase and symbol
tracking [20–23], Analog quadrature mixers use the nonlin-
ear properties of a balanced set of diodes to generate the dif-
ference frequency between the input and a local oscillator
(LO) reference frequency and any imbalance in the diodes
results in nonideal waveform modulation. The diode imbal-
ances are associated with quadrature rail gain and phase
imbalance and DC offset imbalance as depicted in
Figure 2.28.* High quality mixers typically have a phase
imbalance of less than 3 and generally do not require phase
correction; with quadrature phase shift keying (QPSK)
modulation a three degree phase imbalance results in about
0.06 dB degradation in Eb/No at Pbe = 10−6.

The principal interest in this section is on methods for cor-
recting analog mixer imbalances and the resulting impact on
the demodulator bit-error performance. The mixer imbal-
ances are also encountered in the demodulator when analog
down-conversion is used to generate quadrature baseband
signals following the final IF frequency stage. However,
demodulator imbalances may also occur when using digital
signal conversion as, for example, when using the Hilbert
transform discussed in Section 2.6.2 where, referring to
Figures 2.33 and 2.34, the amplitude of the Hilbert transform
output ss(t) will differ from sc(t) based on the received signal
carrier frequency and the quantization of the Hilbert filter
coefficients.

In the following sections, nonideal modulators and demo-
dulators are examined in the context of the imbalances shown
in Figure 2.28 and the effectiveness of the compensation is
examined and characterized in terms of the resulting demod-
ulator bit-error performance. In the modulator, the compen-
sation algorithms are implemented in the sampled data, or
digital signal processing domain, with DAC before the non-
ideal analog up-conversion mixers. In the demodulator, the
compensation algorithms are implemented following the
analog-to-digital conversion to baseband. The DAC and
ACD sampling is assumed to have infinite amplitude
resolution with discrete-time sampling Ts = 1/fs where fs is
the sampling frequency with t = iTs. Furthermore, without

loss of generality, the analysis is based on analytic or com-
plex signal representations as discussed in Section 1.1.1.

2.7.1 Nonideal Waveform Modulator

The transmitted signal for an imbalanced modulator operating
at a carrier frequency of ωc radian per second is described as

sT t =Re sT t ejωct (2.45)

where the baseband analytic signal sT t is expressed as

sT t = mc t + αc βc cos ϕ 2 + ms t + αs βssin ϕ 2

+ j mc t + αc βcsin ϕ 2 + ms t + αs βs cos ϕ 2

(2.46)

The functions mc(t) and ms(t) represent the in-phase and
quadrature source data modulations. With an ideal modulator
the DC offsets (α) and the phase imbalance (ϕ) are zero and
the rail imbalances (β) are unity, the ideal modulator is
characterized by the analytic signal

sT t ideal =mc t + jms t (2.47)

and the carrier-modulated signal, expressed by (2.45),
becomes

sT t ideal =mc t cos ωct −ms t sin ωct (2.48)

The nonideal up-converter, shown in Figure 2.29, depicts
the functional implementation of (2.46) with the gain and
phase imbalance terms contained in the matrix D given by

D =
βc cos ϕ 2 βs sin ϕ 2

βc sin ϕ 2 βs cos ϕ 2
(2.49)

The first step in the distortion correction processing is
to predistort the I/Q data modulation functions by the inverse
of (2.49) using the measured gain and phase imbalances

Gain imbalance Phase imbalance
(𝜙≥0)

I

Q Q

I

DC imbalance

I

Q

βs

βc

αs

αc

𝜙/2

𝜙/2

FIGURE 2.28 Analog frequency conversion error sources.

*This analysis refers to the inphase and quadrature rails as the cosine and sine
baseband channels, respectively.
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denoted as β and ϕ, respectively.* Using these measured
values, the inverse distortion matrix is defined as

D
−1

≜

cos ϕ 2

βc
−
sin ϕ 2

βc

−
sin ϕ 2

βs

cos ϕ 2

βs

(2.50)

and the correction matrix E, used to reduce the cross-channel
distortion, is given by

E≜
0

βc
βc
sin ϕ

βc
βc
sin ϕ 0

(2.51)

Removal of the DC offsets is accomplished using the
estimates α as indicated in Figure 2.29 and, using the earlier
notations, the output is expressed as

sT = DD
−1
−E m +D α−α (2.52)

Determination of the estimates of the up-converter imbal-
ances requires observing the level of the carrier frequency fc
as in (2.45) under the prescribed conditions of the source data
modulation inputs m(t). The order of the parameter estima-
tion is important, in that, the DC offset must first be elimi-
nated, followed by the gain imbalance, and ending with the
phase imbalance correction. These procedures are depicted
in terms of the baseband functions in Figure 2.29, however,
because the carrier frequency output of the analog balanced
modulator is observed, the test and operational configuration
is as shown in Figure 2.30. There is virtually no noise
involved in the measurement of the distortion parameters
so the measurement accuracies are limited only by the
instrumentation.

ms(t)

mc(t)

Non ideal up-converterDistortion correction

sTc(t)

sTc(t)gs(t)

gc(t)
–

–
+

+

D–1

gs′(t)

gc′(t)
+

+

+
+

D

fs

DACE

αc
αc

αs

ˆ

αsˆ

ˆ

FIGURE 2.29 Analytic signal implementation of nonideal up-converter with distortion correction.
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FIGURE 2.30 Modulator operational configuration.

*The boldface notation with an over-bar signifies a column vector with two
rows corresponding to the I/Q rails, respectively.
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In Section 2.7.2 the distortion correction is examined for
the nonideal demodulator down-converter and evaluation of
the demodulator correction is similar and is suggested as an
exercise. The modulator involves evaluation of the matrix

product DD
−1

which is somewhat more involved than eval-

uating C
−1
C as required in the demodulator down-converter.

2.7.1.1 Modulator DC Offset Measurement To measure
the DC offset correction parameter α, the source data I/Q
inputs m(t) are each grounded and the carrier power (PT) is
minimized by adjusting αc and αs; the values corresponding
the minimum power are the correct estimates for use in
Figure 2.30.

2.7.1.2 Modulator Gain Imbalance Measurement The

gain imbalance parameter β is determined by holding the
mc(t) input at a constant level, grounding the ms(t) input rail,

and selecting βc to achieve a prescribed power level. The role

ofmc(t) andms(t) is then reversed and βs is selected to achieve
the prescribed carrier power level.

2.7.1.3 Modulator Phase Imbalance Measurement The

evaluation of the phase imbalance (ϕ) must be determined
after the DC offset and gain estimation parameters have been
established. Referring to Figure 2.31, the angle between the
vector Vc and Vs is less than 90 * so the I/Q source data will
not be orthogonal resulting in degraded demodulator perfor-
mance. Furthermore, the vectors V0 and V1 bisect two iden-
tical equilateral parallelograms† and the ratio of the vector
magnitudes is defined as

ρ≜
V0

V1
(2.53)

Using the geometry of the equilateral parallelogram, the
angle ϕ is related to the parameter ρ as

tan
ϕ

2
=
ρ−1
ρ + 1

(2.54)

The desired estimate of the phase imbalance is the solution
to (2.54) with the result

ϕ= 2tan−1 ρ−1
ρ + 1

(2.55)

Therefore, to determine ϕ it is necessary to determine the
parameter ρ using the measured magnitudes of the vectors V0

and V1 as expressed in (2.53). The vector magnitude |V0| is
measured using constant and equal source data inputs, that is,
mc(t) =ms(t) = A volts, and recording the balanced modulator
output carrier voltage level as V0 , using peak or rms voltage
units. The vector magnitude V1 is then measured using con-
stant but antipodal source data inputs, with mc(t) = −A and
ms(t) = A volts, and, using the same units as before, recording
the balanced modulator output carrier level as V1 . The phase
estimate is then computed using (2.55).

The sensitivity of the phase estimate to the measurement
of the parameter ρ is evaluated using

Δϕ =
∂ϕ

∂ρ
Δρ (2.56)

The solution to (2.56) is plotted in Figure 2.32 as a func-
tion of (ρ +Δρ)/ρ expressed in decibels under the ideal
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FIGURE 2.31 Geometrical description of phase imbalance.
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FIGURE 2.32 Sensitivity of phase imbalance to amplitude
measurement.

*When the phase imbalance is negative, the vectors Vs and Vc are in the sec-
ond and fourth quadrants, respectively; however, the same estimation proce-
dures apply.
†An equilateral parallelogram is a parallelogram with equal length sides.
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condition ρ = 1. Because there is essentially no noise
involved in this measurement, it is reasonable to expect meas-
urement accuracies less than 0.25 dB so a phase estimate
accuracy of less than 2 is a realistic expectation.

2.7.2 Nonideal Waveform Demodulator

In this section the demodulator down-conversion of the final
IF output to baseband is examined in terms of the corrected
gain, the phase imbalances, and the DC offsets that often exist
in analog mixers. The received signal is assumed to be ideal,
that is, all of the modulator up-conversion distortion has been
removed,* so the noise-free received signal† is given by

sR t =mc t cos ωct −ms t sin ωct (2.57)

Following the measurement and application of the down-
conversion distortion parameters, the channel phase function
must be removed using a phaselock loop (PLL) prior to the
optimum I/Q data decision processing; this is implicit in
(2.57) by the absence of the phase function of the form
θ(t) + θo in the sinusoidal arguments.

The demodulator analog baseband down-converter
encounters similar distortion parameters as those in the mod-
ulator up-converter. In this case, however, the test input used
to measure the distortion parameters is a CW signal. The
baseband outputs, in response to the test signal, are used to
determine the amplitude and phase distortion parameters that
are used to compensate for the baseband rail imbalances. In
addition, the CW test signal is used to determine the DC

offset distortion parameters that are used to compensate
for the DC bias on each rail. To distinguish the demodulator
distortion parameters from those used in the modulator up-
converter, the gain, phase, and DC offset parameters in the
demodulator down-converter are denoted, respectively,
as bc, bs, φ and ac, as. These parameters are implicit in
Figure 2.33, in that, C describes the down-converter gain
and phase imbalance and the vector ā describes the DC offset.

Except for the parameter notation and a factor of one-half
arising from the analog down-conversion of the carrier
frequency, the matrix C is otherwise identical to (2.49);
the matrix C, the inverse matrix C

−1
, and the matrix E are

expressed as‡

C=
1
2

bc cos φ 2 bs sin φ 2

bc sin φ 2 bs cos φ 2
(2.58)

C
−1

≜

cos φ 2

bc
−
sin φ 2

bc

−
sin φ 2

bs

cos φ 2

bs

(2.59)

and

E ≜
0

bs

bc
sin φ

bc
bs
sin φ 0

(2.60)

The DC-offset vectors ā and a are expressed as (ac, as)
T

and (âc, âs)
T, respectively.
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FIGURE 2.33 Demodulator operational configuration.

*Inclusion of the modulator compensation distortion in the up-converter
needlessly complicates the analysis; however, the formulation of the demod-
ulator output using (2.52) as the received signal is suggested as an exercise in
Problem 15.
†This analysis is concerned with compensation of the desired signal distor-
tion in a linear mixer and the inclusion of additive noise simply complicates
the notation with no impact on the conclusion.

‡The matrix inverse C
−1

is normalized by the factor 2/cos(φ) that is associ-
ated with the matrix inverse C−1. This factor simply represents a constant
gain and plays no role in the parameter compensation.
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Under normal operation, the input signal sR(t) is the
received carrier-modulated waveform; however, during the
measurement of the distortion parameters sR(t) is a CW test
signal described as

sR t =Acos ωc +ωd t + θ input test signal (2.61)

The carrier offset frequency fd is used for the parameter
measurements and the low-pass filters are used to remove
the tone at 2fc + fd and minimize aliasing resulting from the
sampling. In general, the filter outputs are expressed as

fc t = sR t bc cos ωdt−φ 2 + ac

=
Abc
2

cos ωdt + θ−φ 2 + ac
(2.62)

and

fs t = sR t −bs sin ωdt +φ 2 + as

=
Abs
2

sin ωdt + θ +φ 2 + as
(2.63)

The following measurements are based on observations of
the baseband signals given by (2.62) and (2.63) and, because
the observations are virtually noiseless, averaging of the mea-
surements is not necessary so, theoretically, only one cycle of
fd =ωd/2π is necessary to perform each of the three measure-
ments.* The selection of fd is influenced by the low-pass filter
(LPF) response and the ADC sampling frequency. For exam-
ple, because the measurements involve determining maxi-
mum and minimum values of the sinusoidal test signal, a
measurement accuracy of 0.03 dB requires a sampling reso-
lution of less than 5 or fd < 0.014fs; however, fd must also be
high enough for the LPFs to reject the 2fd term.† The time for
all three measurements will be on the order 2/fd seconds, so,
under these conditions, for fs = 500 kHz the test measurement
time will be on the order of 0.3ms plus any additional test
overhead time.

2.7.2.1 Demodulator DCOffset Measurement Using the
test signal described by (2.61) with ac = as = 1, the DC offsets
ac and as are measured by recording the maximum and min-
imum values of fc t and fs t at the output of the ADC as
shown in Figure 2.33. These functions are sampled represen-
tations of (2.62) and (2.63) and the unknown parameters bc,

bs, and φ will not influence the DC offsets measurements.
The correction parameters âc and âs are computed as

ac =
Ac max +Ac min

2
(2.64)

and

as =
As max +As min

2
(2.65)

where the maximum and minimum amplitudes are the
recorded values indicated earlier.

2.7.2.2 Demodulator Gain Imbalance Measurement
The gain distortion parameters bc and bs are measured in a
similar way and the maximum and minimum values
from the DC offset test can be used to compute the gain
imbalance as

bc =
Ac max −Ac min

2
(2.66)

and

bs =
As max −As min

2
(2.67)

These computations are independent of âc and âs so the DC
offset corrections do not have to be applied before the gain
imbalance measurement. The correction factors are adjusted
to result in equal output levels on each rail. For example,
by letting bc bc = g, where g is an arbitrary gain, the gain

corrections are computed as bc = bc g and bs = bs g.

A simplification occurs if bc is always considered to be unity
so that bs = bs bc.

2.7.2.3 Demodulator Phase Imbalance Measurement
Before measuring the phase imbalance, the DC offset and
gain imbalance corrections must be applied. Under these con-
ditions, the measurement involves recording the maximum
and minimum values of the magnitude of the baseband out-
puts fc t and fs t as they rotate in response to the test signal
phase. With the gain imbalance adjusted for unit gain (g = 1)
and with ideal DC offset compensation, these baseband func-
tions are obtained from (2.62) and (2.63) with the result

fc t =
A

2
cos ωdt + θ−φ 2 offset and gain corrected

(2.68)

and

fs t =
A

2
sin ωdt + θ +φ 2 offset and gain corrected

(2.69)

*Upon application of the test tone several cycles will be necessary to allow
for settling of the transients.
†These may be conflicting requirements that require a digitally implemented
notch filter at 2fd and/or sample rate up-conversion as discussed in
Section 2.8.1.1.
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Equations (2.68) and (2.69) are shown in Figure 2.34 for
the condition ωdt = 0 and the magnitudeMo is seen to exceed
the A/2.

The normalized variation of Mo with fdt is shown in
Figure 2.35 with the indicated dependence on θ and φ. Mo

is seen to vary in amplitude about the normalized magnitude
Mo/(A/2) at the frequency 2fd with a sign dependence on the
sign of the phase imbalance.

The magnitude Mo is evaluated as

Mo t = f 2
c t + f 2

s t (2.70)

Based on these observations, the phase imbalance is
measured by recording the maximum and minimum values
of Mo(t) and forming the ratio

ρ =
Mo max
Mo min

(2.71)

and recording the sign of the product of (2.68) and (2.69) as
κ = sign(fc tm fs tm ) where tm is the time corresponding to
the recording of Mo(max). Using these recorded values the
phase imbalance is computed as

φ= 2κtan−1 ρ−1
ρ + 1

(2.72)

Problems 11, 12, and 13 provide further insights into the
phase measurement in the context of the frequency dependent
test inputs.

2.7.3 Demodulator Down-Conversion
Imbalance Error Analysis

The imbalance in the demodulator down-converter after
the measured correction parameters have been applied is a
result of the measurement inaccuracies associated with each
of the distortion parameters. The overall transfer function is
expressed as

m= C
−1
C−E sR +C

−1
a−a (2.73)

and is evaluated in terms of the measured distortion para-
meters and the measurement errors. The imbalances after
application of the corrections are embodied in (2.73) and,
upon using small argument approximations for the sine
and cosine functions, the approximate expression is

m
1
2

bc
bc

1−
Δφ2

8
−
bs
bc

Δφ
2

−
bc
bs

Δφ
2

bs
bs

1−
Δφ2

8

sR

+

1

bc
1−

φ−Δφ 2

8
1

bc

φ−Δφ
2

1

bs

φ−Δφ
2

1

bs
1−

φ−Δφ 2

8

Δa

(2.74)

where the phase and DC offset measurement errors are

defined as Δφ=φ−φ and Δa= a−a and the baseband
functions are:

m= mc,ms
T (2.75)

f ′c(t)

Mo

ωdt+ϴ

A/2 f ′s(t)

0

φ/2

φ/2

FIGURE 2.34 Demodulator phase imbalance (ω t = 0).
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and

sR = mc t c,ms t
T

(2.76)

In the following case study, these parameters are exam-
ined in terms of the measurement accuracy expressed in dec-
ibels and the resulting bit-error probability is characterized
for the QPSK-modulated waveform.

2.7.4 Case Study: Bit-Error Performance with
Baseband Mixer Imbalance

In this case study, the bit-error performance of a QPSK-
modulated waveform is examined in terms of the imbalance
in a demodulator analog down-converter to baseband. The
performance is based on (2.74) with the quadrature modula-
tion functions expressed in the simplest forms as

mc t =AdIi and ms t =AdQi (2.77)

where A is the received carrier frequency peak amplitude and
dIi and dQi represent the in-phase and quadrature bipolar
binary source data bits equal to ±1 in the symbol interval
iT ≤ t ≤ iT + T; the demodulated quadrature data estimates
are mc = dIi and ms = dQi. In the following performance char-
acterization, the phase measurement error is defined as the
ratio ηφ =Δφ/φ and, expanding (2.74) in terms of ηφ, the
I/Q rails are expressed as

mc =
A

2
bc
bc

1−
φηφ

2

8
dIi +

bs
bc

φηφ
2

dQi

+
Δac
bc

1−
φ2 1−ηφ

2

8
+
Δas
bc

φ

2
1−ηφ

(2.78)

and

ms =
A

2
bc

bs

φηφ
2

dIi +
bs

bs
1−

φηφ
2

8
dQi

+
Δac
bs

φ

2
1−ηφ +

Δas
bs

1−
φ2 1−ηφ

2

8

(2.79)

The parameters b and b represent voltage gains and are
unitless, whereas, the terms A and Δa represent voltage
levels. The gain and DC offset distortion terms in (2.78)
and (2.79) are formulated in terms of normalized ratios as
defined in Table 2.1.

Using these definitions (2.78) and (2.79) are rewritten as

mc =
A

2
1

kc
1−

φηφ
2

8
dIi +

1
kcρcs

φηφ
2

dQi

+
ρac 1−Kc

bckc
1−

φ2 1−ηφ
2

8

+
ρas 1−Ks

bckc

φ

2
1−ηφ (2.80)

and

ms =
A

2
ρcs
ks

φηφ
2

dIi +
1
ks

1−
φηφ

2

8
dQi

+
ρac 1−Kc

bsks

φ

2
1−ηφ

+
ρas 1−Ks

bsks
1−

φ2 1−ηφ
2

8
(2.81)

The bit-error performance of QPSK with demodulator
imbalances is expressed in terms of the I and Q channel error
probabilities as

TABLE 2.1 Gain and DC Offset Parameter Definitions

Parameter Definition
Example
Values Description

Phase imbalance

φ 10 Degrees

ηφ
Δφ
φ

10 Measurement accuracy (%)

Gain imbalance

bc −0.25 I-ch gain (dB)
bs 0.25 Q-ch gain (dB)

ρcs
bc
bs

0.5
I/Q gain imbalance

(computed) (dB)

kc
bc
bc

−0.2
I-ch gain measurement

accuracy (dB)

ks
bs
bs

0.2 Q-ch gain measurement
accuracy (dB)

DC—offset imbalance

ρac
ac
A 2 −25 I-ch DC offset imbalance (dB)

ρas
as
A 2 −25 Q-ch DC offset imbalance (dB)

Kc
ac
ac

0.2
I-ch DC offset measurement

accuracy (dB)

Ks
as
as

−0.2
Q-ch DC offset measurement

accuracy (dB)
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Pbe =
1
2
Pbe I +

1
2
Pbe Q (2.82)

where the I andQ channel error probabilities are evaluated as

Pbe I =
1
2
erfc γb mc dI,dQ (2.83)

and

Pbe Q =
1
2
erfc γb ms dI,dQ (2.84)

where erfc is the error function discussed in Section 3.5, γb
is the signal-to-noise ratio measured in the information-bit
bandwidth, mc and ms are given by (2.80) and (2.81) and
the I/Q data estimates consider all four combinations of
the estimates (dIi, dQi) = {(1, 1), (1, −1), (−1, 1), (−1, 1)}:
i = 1, 4 so that

erfc γ m dI,dQ =
1
4

4

i= 1

erfc γ m dIi,dQi (2.85)

Equation (2.82) is evaluated using these relationships and
plotted in Figures 2.36 and 2.37 under the indicated condi-
tions. These results indicate that performance losses in excess
of 1 dB occurs if the imbalance corrections are not applied
and with the corrections the loss can be reduced to less than
0.05 dB. The imbalance conditions and measurement accura-
cies listed in Table 2.1 are considered to be typical values and
particular mixer devices and measurement conditions must
be considered for each unique application.

2.8 MULTIRATE SIGNAL PROCESSING AND
INTERPOLATION

Waveform sampling is derived from a system oscillator or
clock that provides the timing reference for many receiver
and demodulator functions including LO frequency genera-
tion and baseband input and output (I/O) interface for data
and control. The focus of multirate signal processing [1,
24, 25] in this section is on sample rate conversion from
the system oscillator frequency to various sampling frequen-
cies required for waveform acquisition and subsequently
to the sampling frequency required for the baseband
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signal-matched filtering. As discussed in the following sec-
tion, the sampling rate during acquisition must be high
enough to avoid aliasing distortion in view of the high carrier
frequency uncertainty resulting from various clocks and
the received signal Doppler frequency. The clock frequency
uncertainties include those of the remote transmitter and,
with relays or repeaters, all intermediate clock uncertainties
throughout the link. Following acquisition, the received
waveform is mixed to the baseband where it is maintained
with the aid of a frequency tracking phaselock loop. In this
case, the sampling frequency is typically two to four times
the symbol rate; however, to accommodate low-loss symbol
tracking, the sample time resolution is typically one-sixteenth
of the symbol interval or less depending on the symbol wave-
form modulation. For example, with the rect(t/T) symbol
weighting function a symbol timing error of one-sixteenth
of a symbol corresponds to a symbol energy loss of 0.28
dB. Sample time interpolation is used to bring the matched
filter symbol samples inline with the symbol edge transitions
so that all of symbol energy captured with no intersymbol
interference (ISI). These subjects, involving multirate signal
processing and interpolation, are discussed in the following
sections in the context of specific applications and demodu-
lator capabilities. For example, applications requiring large
rate reductions, that is, rate reduction in excess of several
hundred, are efficiently achieved using a CIC filter, whereas,
applications requiring lower rate reductions and more strin-
gent filtering performance are efficiently implemented using
techniques involving FIR filters.

2.8.1 Sample Rate Conversion

A fundamental consideration in rate conversion [26, 27]
between two input clock frequencies is the evaluation and
application of the greatest common divisor (GCD) discussed
in Section 1.13.1. This is best explained by the following
example, wherein, a received signal with a symbol modula-
tion rate of Rs = 4.8 ksps is sampled at fs1 = 70MHz. The
example uses two sample rate conversions, one requiring a
sample rate of fsa = 48 kHz during acquisition to accommo-
date a large frequency uncertainty and the second at fsd =
19.2 kHz for matched filter detection at four samples per
symbol.

During signal acquisition, the GCD between 70MHz and
48 kHz is fgcd = 16 kHz and this is used to determine the ratios
k1 = fsa/fgcd = 3 and k2 = fs1/fgcd = 4375; these are the required
up and down sampling rate conversions of the input 70MHz
sampling frequency to provide the desired 48 kHz sampling
frequency during acquisition. The rate conversion processing
is depicted in Figure 2.38 where the up and down arrows
indicate rate increase and reduction, respectively. The image
reject and antialiasing filters are shown as separate filters to
facilitate the following descriptions of the individual
rate conversion processes; however, when an overall rate

reduction by the rational number k1/k2 < 1 is required, the
two filters can be combined using a single dual-function filter
having the most restrictive requirements of the two individual
filters as shown by second implementation in Figure 2.38. As
mentioned in Section 2.8.1.1 the process of sample rate up-
conversion is referred to as interpolation and the image reject
filter functions as an interpolation filter; on the other hand, in
Section 2.8.1.2, the process of sample rate reduction is
referred to as decimation and the antialiasing filter is referred
to as the decimation filter. The terms interpolation and dec-
imation are applied to these two processes in the following
descriptions.

When the signal acquisition is completed and the fre-
quency uncertainty has been removed, the sample rate can
be altered once again to simplify the symbol-matched filter
detection processing. In this example, the symbol-matched
filter sample rate is fsd = 19.2 kHz so an additional rate
change is required; the details of the rate change from fsa
to fsd is left as an exercise in Problem 16.

The decimation described in Section 2.8.1.2 applies to one
stage of decimation as shown in Figure 2.38. However, for
applications requiring large decimations, as in the earlier
example, it is more efficient in terms of processor loading
and memory to cascade several stages of decimations. For
example, considering the earlier example, with an input fre-
quency of 210MHz and k2 = 4375, a multistage decimator
using factors k21 = 125, k22 = 7, k23 = 5 is implemented as
shown in Figure 2.39a. The implementation efficiency in
Figure 2.39a can be improved by replacing the first decima-
tion of 125 with the CIC filter shown in Figure 2.39b. Ifea-
chor and Jervis [24] and Fliege [25] are recommended
reading for the use of other filter types and rate-conversion
implementations.

The natural rate-conversion analysis begins with the
input signal sampled at the highest rate to be converted.
For example, referring to Figure 2.38, for up-conversion or
down-conversion the highest sampling rate is fs2. Of course,

y(n)

Image reject
filter

x(m)
↑k1 LPF

Anti aliasing
filter

w(  )

w(  )

↓k2LPF

fs1 fs2 fs3

Equivalent implementation
using dual-function filter 

x(m)
↑k1 LPF ↓k2

FIGURE 2.38 Rate conversion processing description.
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if the down-conversion were not preceded by up-conversion,
as shown in the figure, then the down-conversion sampling
rate would be fs1, which may limit the final sampling rate
options. The rate-conversion analysis proceeds with the
design of a bank of polyphase filters with z-transforms:
Gi(z

k1): i = 0, 1,…, k1 for the up-conversion filter andHi(z
k2):

i = 0, 1,…, k2 for the down-conversion filter. In other words,
the filtering is performed at the highest sampling rate corre-
sponding to the z-transform delay zk. However, by applying
the noble identities [27, 28] depicted in Figure 2.40,* the
filtering can be performed at the output sampling rate corre-
sponding to the z-transform delay z resulting in considerable
computational savings.

The z-transform rate-conversion filters are expressed as

G z =
k1 −1

i= 0

z− iGi z
k1 up-conversion (2.86)

and

H z =
k2 −1

i= 0

z− iHi z
M down-conversion (2.87)

Equations (2.86) and (2.87) are the polyphase representa-
tions of G(z) and H(z) expanded in terms of the polynomials
Gi zk1 and Hi zk2 , respectively. G(z) and H(z) are similarly
partitioned in terms of their discrete filter coefficients c(n);
this partitioning is denoted as F(z) and evaluated as

F z =

c 0 + c k z−k + c 2k z−2k +

c 1 z−1 + c k + 1 z− k + 1 + c 2k + 1 z− 2k + 1

c k−1 z− k−1 + c 2k−1 z− 2k−1 + c 3k−1 z− 3k−1 +

=

z0 c 0 + c k z−k + c 2k z−2k +

z−1 c 1 + c k + 1 z−k + c 2k + 1 z−2k +

z− k−1 c k−1 + c 2k−1 z−k + c 3k−1 z−2k +

(2.88)

Equation (2.88) follows directly from (2.86) and (2.87)
where the coefficients are associated with F(z) =G(z) and
k = k1 for up-conversion and F(z) =H(z) with k = k2 for
down-conversion. The ellipsis in (2.88) extends over the
length or number of taps, Nc, required by the digital
filter to satisfy the design requirements as discussed in
Section 2.8.2. Typically, the number of taps required to

fs23=
48 KHz

fs22=
240 KHz

fs21=
1.68 MHz

fs2=
210 MHz

↓125LPF ↓7LPF

Three-stage FIR filter decimation 

↓5LPF

48 kHz240 kHz1.68 MHz210 MHz

↓125
CIC
filter ↓7LPF ↓5LPF

CIC with two-stage FIR filter decimation

(a)

(b)

FIGURE 2.39 Rate-conversion processing examples.

y(n)x(m)

y(n)
G(zk1)

x(m)
↑k1

y(n)x(m)
G(z) ↑k1≡

 Up-conversion

H(zk2)
y(n)

↓k2

x(m)
H(z)↓k2

 Down-conversion

≡

(a)

(b)

FIGURE 2.40 Noble identities for sample rate conversion.

*There are six noble identities, three each related to up- and down-conver-
sion; Fliege refers to those depicted in Figure 2.40 as identities 2 and 5.
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satisfy the design requirements is adjusted to satisfy the con-
dition Nc =Nk where N is an integer. Figure 2.41 compares
the sample rate down-conversion implementations using
the natural and more efficient processing using the second
noble identity where the filtering is performed at the rate-
reduced sample rate.

2.8.1.1 Interpolation (Up-Conversion) Sample rate
up-conversion by k1 is accomplished by including k1 − 1
uniformly spaced zero samples between each of the input
samples separated by Ts1 seconds resulting in a sampling
interval of Ts2 = Ts1/k1. Using the impulse-invariant
z-transform z = esTs1 , the sample delay is given by* z−1 and
the z-transforms of x(m) and y(n) are evaluated as

X z =
∞

m = −∞
x m z−m (2.89)

and

Y z =
∞

m= −∞
x m z−mk1 (2.90)

The effect of the added zeros is most easily seen by exam-
ining the spectrums of X( f ) and Y( f ) shown in Figure 2.42.†

Essentially the addition of the zero samples in x(n) corre-
sponds to selecting the sampled spectrum of X( f ) located
at f = k1fs1 and removing the spectral images at fs1 through
(k1 − 1)fs1 shown in the figure as the dotted spectrums. The

filtering of the spectral images functions as an interpolator
for the k1 − 1 samples points in the response y(n) correspond-
ing to the zero added in x(m), therefore, the process of
up-conversion by k1 involves the addition of k1 − 1 zeros to
x(m) and image reject low-pass filtering as depicted in
Figure 2.42.

2.8.1.2 Decimation (Down-Conversion) The sample rate
decimation, or rate reduction by k2, is described in terms of
the down-sampler shown in Figure 2.38 preceded by an anti-
aliasing low-pass filter. In the time domain, decimation by an
integer k2 is accomplished by choosing every k2-th sample of

Y(z)

↓k2
X(z)

z–1

z–1

z–1

H0(z)

H1(z)

H2(z)

Hk2–1(z)

↓k2

↓k2

↓k2

Y(z)

X(z)

z–1

z–1

z–1

H0(zk2)

H1(zk2)

H2(zk2)

Hk2–1(zk2)

↓k2

Natural down-conversion Down-conversion using
second noble identity

⋮ ⋮

FIGURE 2.41 Down-conversion for natural and efficient processing using second noble identity.
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FIGURE 2.42 Spectrum of the sampled functions x(m) and y(n)
and image reject filter.

*In terms of the Laplace transform variable s, the transform for a sample
delay is x(t − Ts) X(s)e−sTs where x(t) X(s).
†The spectrums are evaluated using the Laplace variable s = j2πf.

MULTIRATE SIGNAL PROCESSING AND INTERPOLATION 109



the sampled signal y(n) and considering the k2 − 1 intervening
samples to be zero. In terms of the z-transform with sample
interval Ts2, that is, with z = esTs2 , the z-transform of y(n) is

Y z =
∞

n= −∞
y n z−n (2.91)

However, from the sample set y(n) every k2-th sample is
selected so that the z-transform of the down-sampled
sequence of y(n) samples is

Yk zk2 =
∞

ℓ = −∞
yk ℓk2 z−ℓk2 (2.92)

where the subscript k = 0, 1,…, k2 − 1 represents the starting
phase or sample of the down-sampled sequence of y(n). The
parameter k identifies the polyphase filter functions discussed
in Section 2.8.5 and, for the present discussion, it is assumed
the polyphase filter of interest corresponds to k = 0. With this
understanding, the z-transform of the down-sampled
sequence w(ℓ) is given by

W z =Y0 zk2

=
∞

ℓ = −∞
w ℓ z−ℓk2

(2.93)

where z = esTs3 corresponds to the sample interval Ts3.
As in the case with interpolation, the decimation filtering

requirements are best explained in terms of the sampled spec-
trums as shown in Figure 2.43. The first or top axis depicts
the input signal spectrum Y( f ) as it would appear when
sampled at fs2 without any preceding up-conversion, that
is, if only down-conversion is being performed. In this case,
the function of the input antialiasing, or zonal,* filter is to
confine the sampled spectrum within the low-pass bandwidth
fs2/2. The second axis in Figure 2.43 depicts the role of the
decimation or antialiasing filter which serves to eliminate
all of the image spectral content between the desired base-
band signal spectrum and that centered around the Nyquist
sampling frequency fs2 in preparation for the decimated sig-
nal spectrum as shown on the third axis. When preceded by
up-sampling the image rejection filter may also serve as the
antialiasing filter which results in a more efficient design.
Therefore, the down-sampled signal results in equally spaced
replicas of the input signal spectrum centered at nfs3; how-
ever, an important difference is that the magnitude of the
spectra is reduced by a factor of k2; this is an important con-
sideration when unit gain filtering or digital signal processing
dynamic range is a concern.

Referring to Figure 2.42, the up-sampled signal spectrum
S( f ) is seen to be ideally replicated at the new sampling fre-
quency fs2 = k1fs1. This ideal spectrum replication is evidence
of the ideal interpolation provided by the image reject filter.
Similarly, from Figure 2.43 the down-sampled perfect repli-
cation of the signal spectrum S( f ) is evidence of the complete
elimination of all distortion signals by the antialiasing or
zonal filter. With nonideal filtering, the signal spectrums will
be corrupted and analysis, performance simulations, and test-
ing must be performed to determine the impact on the system
performance.

2.8.2 Sample Rate Conversion Filter Specifications

The interpretation and decimation filters, with frequency
response H( f ), are typically specified in terms of various
combinations of the following parameters: the passband
and stopband frequencies fpb and fsb; the transition band-
width, fT = fsb − fpb; the passband and stopband† ripple, δpb
and δsb; the maximum loss over the passband, δpl and the
minimum stopband attenuation, Asb. These parameters are
depicted in Figure 2.44. The ripple specifications δpb and
δsb are one-sided or symmetrical deviations about the filter
amplitudes of 1 and 0, respectively.

These filters are typically implemented using transversal
or FIR filters with H( f ) consisting only of zeros, giving rise
to a linear phase response, with the filter complexity deter-
mined by the number of filter coefficients. The number of

Signal spectrum S(f )

2fs30 fs3
f

W(f )

fs2
=k2fs3

0
f

Y(f )
Anti aliasing

filter

fs20
f

Y(f )

Input anti aliasing
(zonal) filter

fs2/2

⋯

⋯

⋯

⋯

⋯⋯

FIGURE 2.43 Spectrum of the sampled functions y(m) and w(n)
and antialiasing filter.

*The antialiasing filter is described inSection 2.3 as an ideal filterwithH( f ) =
rect((f− B/2)/B) and zero phase response. †The stopband is also referred to as the rejection band.
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coefficients, Nc, has been empirically characterized by vari-
ous authors, for example,

Nc =
2

3 fT fs
log10

1
10δpbδsb

(2.94)[29]

Nc = 1 +
10log10 1 δpbδsb −13

14 6 fT fs
(2.95)[30]

and

Nc =
fs
fT

Asb dB
22

(2.96)[31]

Considerable research has been devoted to designing
filters with a flat passband, high stopband attenuation, low
transitional bandwidth, and linear phase response. The FIR
filters are generally used in these applications* and the design
reduces to identifying the filter taps weights or coefficients.
The filter design focuses on synthesizing a zonal or prototype
filter by curve fitting passband and stopband samples with
prescribed ripple specifications while using a minimum num-
ber of transition band samples. For example, the procedure of
Herrmann and Schuessler [32] involves fixingNc, δpb, and δsb
and adjusting fpb and fsb while Parks and McClellan [33] fix
Nc, fpb, and fsb and adjust δpb and δsb. Parks and McClellan

use the iterative Remez algorithm to minimize the maximum
absolute difference between the approximation samples and
the underlying target or prototype function. These design pro-
cedures are reviewed and summarized by Rabiner, Gold, and
McGonegal [34], Ifeachor and Jervis [35], Oppenheim
and Schafer [36], and Fliege [24]. Another effective way to
establish the transversal filter coefficients is through the
use of windows to realize a desired filter response. The Kaiser
window is used in the following case study to generate an
interpolation filter with 60 dB of stopband attenuation.

Half-band FIR decimation filters [24, 25] are efficient
implementations because they require fewer multiplies, for
example, with Nc odd, aside from the center tap coefficient,
the even coefficients are zero so the multiplications are
reduced by nearly 2 : 1. Half-band filters exhibit symmetry
about one-half the Nyquist frequency requiring: δpb = δsb; fpb =
fs/2 − fsb. The last condition also requires that the transition
bandwidth is symmetrical about fs/2 and these conditions
taken together result in H( f ) being symmetrical about fs/4.

2.8.3 Case Study: Sample Rate Conversion
Filter Design

In this case study, the Kaiser window described in
Section 1.11.8 is used to generate FIR filter coefficients that
are used for an antialiasing interpolation filter. The transmit-
ted signal modulation uses Nyquist root-raised-cosine
(RRC) frequency shaping with 40% excess bandwidth.†

The prototype filter spectrum is characterized as a Nyquist
filter with zero excess bandwidth and frequency response
given by

H f =
rect

f

2B
f ≤B

0 o w

(2.97)

Although this ideal prototype filter response is unrealiza-
ble, application of a window function results in a realizable
and practical filter design.‡ The desired result is obtained
by choosing a window with a suitable frequency response
W( f ) and convolving it with the prototype filter response
H( f ). The window is selected based on the design criteria
given in Figure 2.44b and identified in Table 2.2. The tran-
sition bandwidth is not explicitly specified but is computed
as fT = fsb − fpb = 72 kHz.

The Kaiser window meets the requirements with a time-
bandwidth product of β = 2. In this example, the desired
transversal filter coefficients are determined by multiplying
the frequency response of the prototype filter with the Kaiser
window and then taking the inverse discrete Fourier

Passband and stopband ripple specifications

Passband loss and attenuation specifications

Signal
spectrum

S(f)

fpb

δpl

f

…

fs

fT

0

1

Asb

fsb0

|H(f)|

1
fT

Signal
spectrum S(f)

fpb

…

fs

0

|H(f)|

f

δsb

fsb0

δpb

(a)

(b)

FIGURE 2.44 Lowpass interpolation filter characteristics.

*Infinite impulse response (IIR) filters inherently result in a nonideal phase
response that gives rise to signal distortion when the filter bandwidth is not
sufficiently greater than the signal bandwidth.

†Spectral RRC-shaped-modulated waveforms are discussed in Section 4.3.2.
‡Causality issues are overcome by including a finite delay.
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transform to obtain the desired filter impulse response.* The
impulse response of the prototype filter is the sinc(2tB)
function shown in Figure 2.45a over the duration of the
window |t| ≤ Tw/2 and the Kaiser window is shown in
Figure 2.45b. Based on the definition of the time-bandwidth
product β = TwB, where B is the baseband bandwidth, the
impulse response of the prototype filter has zero-crossing
intervals of 1/(2B) seconds and there are β such intervals
over one-half the window duration, that is, exactly two inter-
vals in this example.

The frequency response of the interpolation filter is
shown in Figure 2.46 using Nc = 51 coefficients. For this
plot the frequency response is oversampled by 36 samples
to improve the sidelobe resolution for viewing; the time
responses in Figure 2.45 are also oversampled for the same
reason. The sidelobe roll-off with frequency is virtually
unchanged by using fewer samples. When Nc is reduced
to 13 coefficients, the 60 dB transition bandwidth is
increased by 8% and the passband loss is decreased by
about 0.1 dB.

The prototype filter baseband bandwidth was selected to
be two times the Nyquist bandwidth of Rs/2 so that B = Rs.
The interpolation filter meets the following design require-
ments: minimum stopband attenuation of 60 dB at fsb = 96
kHz; δpl = 0.88 dB loss over Nyquist band of Rs/2.
Figure 2.46 also shows the aliased signal folding into the sig-
nal spectrum with a maximum level of about −72 dB. The
RRC detection-matched filter will eliminate the aliased signal
in the transitions band. By choosing a Kaiser window with
lower β, the aliased signal level at Rs/2 can be specified as
−60 dB; this lower value of β will also result in a narrower
transition bandwidth; however, the passband attenuation will
increase requiring a larger prototype filter bandwidth. The
interpolation filter design requirements are based on the sys-
tem performance requirements that are verified by simula-
tions. The filter design in this example will tolerate a high
level of adjacent channel interfering signals relative to the
desired channel signal [37].

2.8.4 Cascaded Integrate and Comb Filter

Cascaded integrate and comb (CIC) filters [38] are a class of
FIR filters that provides large rate conversions in applications
involving interpolation or decimation. The CIC filter requires
very little memory and no coefficient multipliers are required.
However, the limited control over the passband bandwidth
and the stopband attenuation relegate CIC filters to large
initial rate conversions with the final rate change being left
to FIR implemented interpolation or decimation filters as
discussed in the preceding sections. The filters are based
on a fundamental building block, or stage, comprising a sin-
gle integrator and a comb filter. Control over the stopband
attenuation is provided by cascading M-stages denoted as

TABLE 2.2 Example Filter Requirements

Parameter Specification Units

Sampling frequency (fs) 192.0 kHz
Symbol bandwidth (Rs) 48.0 kHz
Prototype filter bandwidth (B) 48.0 kHz
Passband frequency (fpb) 24.0 kHz
Stopband frequency (fsb) 96.0 kHz
Passband attenuation (δpl) ≤1.0 dB
Stopband attenuation (Asb) ≥60.0 dB
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FIGURE 2.45 Prototype filter impulse response and Kaiser
window.

*This process is the same as convolving the window spectrum with the pro-
totype filter impulse response.
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anM-th order CIC filter. In the following section, the analysis
of CIC filter decimation is examined and its application as an
interpolator is left as an exercise in Problem 19.

2.8.4.1 CIC Filter Decimation The basic building block
stage of a CIC filter is characterized by considering the
sampled sequence x(n) of equally spaced sampled of x(t)
for t = nTs: n = 0, …, RN − 1 with the filter output y(m)
formed by the summation

y m =
RN−1

n= 0

x n (2.98)

The product RN refers to the number of samples of the
input x(n) before rate conversion by R and the parameter N
is the number of samples that are spanned by the comb filter;
N is also referred to as the sample duration or differential
delay of the comb filter. Typical values of N are 1 and 2.
With, z = esT s the z-transform of (2.98) is a finite geometric

series* in z −1 and the CIC filter z-plane transfer function is
evaluated as

H z =
Y z

X z
=
1−z −RN

1−z −1 (2.99)

However, the interest is in the frequency response of the
decimated output, so, using z = esTs with Ts =RTs, the desired
result is

H z =
Y z

X z
=
1−z−N

1−z−1
(2.100)

Equation (2.100) is expressed as an ideal integrator HI(z)
cascaded with an ideal comb filter HC(z) as shown in
Figure 2.47 so the single-stage or first-order CIC filter is
expressed as

H z =HI z HC z (2.101)

In terms of the frequency response H( f ), (2.100) is
evaluated by substituting s= j2πf and using z= ej2πfTs with
the result

H f =
sin πNfTs
sin πfTs R

ejπ N−1 fTs (2.102)

For large rate conversions R such that R 1 and fTs
R/2, the magnitude of the frequency response is approxi-
mated as

H f RN
sin πNfTs
πNfTs

R 1 and fTs
R

2

=RNsinc NfTs

(2.103)

Significant improvement in the aliasing rejection is achieved
when the CIC filter response is raised to an integer power ofM
giving rise to an M-th order CIC filter expressed as

H f M =
sin πNfTs
sin πfTs R

M

ejπM N−1 R fTs (2.104)

The magnitude of the M-th order CIC filter is shown in
Figure 2.48 for R = 64, N = 1, and M = 1, …, 5. The squared
magnitude of the frequency spectrum is given by

H f 2M =
sin πNfTs
sin πfTs R

2M

(2.105)

+x(n)

+
+

z–1

– y(n)

z–N

HI(z)

↓R

HC(z)

FIGURE 2.47 Single-stage decimation cascade integrate and
comb filter.
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*Reference: Section 1.14.1.
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Referring to the approximation (2.103), the M-th order
CIC filter attenuation rolls off with frequency as 1/f 2M, so
the first spectral sidelobe level of −13 dB for M = 1 corre-
sponds −65 dB for M = 5. The negative aspect of the M-th
order CIC filter is that the passband or band edge attenu-
ation at fpb increases significantly with M as shown in
Figure 2.49. Because the passband roll off severely limits
the signal bandwidth, a gain compensation filter is fre-
quently used to compensate for the loss as discussed in
Section 2.8.4.2.

An important observation in Figures 2.48 and 2.49 is that
the sampling frequency is normalized by the decimated or
down-sampled output frequency fs = fs R where fs is the
sampling frequency of the input signal. Therefore, f/fs = 1
is the decimated normalized sampling frequency and, based
on Nyquist’s criterion, the signal must be confined to the

bandwidth fpb ≤ fs/2 or more practically fpb < fs/2.
* For

example, the abscissa of Figure 2.49 is limited to fpb =
0.375 fs = 0.75(fs/2). Furthermore, again referring to
Figure 2.48 and (2.103), the CIC filter response is approxi-
mated by the frequency function sinc(Nf/fs) for sufficiently
large rate reductions,† albeit scaled in amplitude by RN.
The importance of these observations is that the CIC filter
aliasing is computed as the signal power about each of
the sinc(Nf/fs) spectral nulls at fnull = nfs/N: 1 ≤ n ≤ RN − 1,
such that, |f − fnull| ≤ fpb. In this description, f ≤ RNfs/2 and
f > RNfs/2 corresponds to positive and negative frequencies,
respectively. The scale factor or power gain (RN)2M of the
M-th order CIC filter is discussed in depth by Hogenauer [38]
and can be handled by floating-point or two’s-complement
processing; in this analysis the filter responses are normalized
for unit gain.

The earlier description of the alias signal folding is used
to evaluate the alias signal level relative to the passband
signal defined as

ρa ≜ 10Mlog10
Pa

Ps
(2.106)

where Pa is the alias power evaluated as

Pa =
RN−1

n= 1

fpb

− fpb

sinc2 Nf fs−n df (2.107)

and Ps is the signal power over the passband bandwidth eval-
uated as

Ps =

fpb

− fpb

sinc2 πNf fs df (2.108)

The continuous integrals in (2.107) and (2.108) are
evaluated as discrete summations with 20 samples per
spectral sidelobe to provide visual fidelity for simulations
and hardware evaluations. Equation (2.106) is plotted in
Figure 2.50 for the indicated conditions and improvement
in the aliased signal level is evident with increasing CIC filter
order. On the other hand, as the passband bandwidth, fpb,
increases the alias level increases due to the increased
power alias around each spectral null and because of the
lower signal level due to the CIC filter passband attenuation.
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FIGURE 2.48 Frequency response of M-th order cascaded
integrate and comb filter (R = 64, N = 1).
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FIGURE 2.49 Passband attenuation of M-th order cascaded
integrate and comb filter (R = 64, N = 1).

*This condition applies for N = 1 and for N > 1 the Nyquist criterion is fpb <
fs/2N.
†For rate reductions R ≥ 8 the sinc(NfTs) approximation results in negligible
error for fTs < 1, that is, within the principal spectral lobe. All of the plots in
this section are based on the exact response given by (2.105).
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2.8.4.2 CIC Filter Passband Gain Compensation The
CIC filter loss across the passband results in a demodulator
performance loss due to signal distortion. The signal loss
within the passband can be reduced by choosing the sampling
frequency of the rate-reduced CIC filter output to be two to
four times that required to satisfy the Nyquist criterion and
then use FIR filter decimation to achieve the final sampling
frequency; however, it is necessary to provide gain compen-
sation for the sinc(NfTs)

* gain roll-off within the Nyquist
band fN = fs/2N = fs 2 where fs and fs are the input and
rate-reduced sampling frequencies, respectively.

The CIC filter gain compensation function is designed
to have nearly unit gain over the band f < fs 2. To this end,
the inverse of the frequency roll-off expressed in (2.103) is
approximated by the function

H f ≜
πNfTs

sin πNfTs

1 +
1
6
πNfTs

2 +
7
360

πNfTs
4 +

31
15120

πNfTs
6

+
127

604800
πNfTs

8

(2.109)

The approximation in (2.109) corresponds to a ninth-order
polynomial approximation to the sine function and provides
for a gain compensated loss of less than 0.1 dB over the
Nyquist band fN = fs 2. By way of comparison, a third-order
polynomial approximation results in a comparable loss over
the band fN/2. To prevent the response in (2.109) from
increasing without bound with increasing frequency a

denominator term is included so the entire gain compensation
function becomes

H fTs =
H f Ts
G f Ts

(2.110)

where H fTs is the approximation in (2.109) normalized
by the down-sampled sampling interval Ts =NTs and the
function G fTs is defined as

G fTs ≜ 1 + b πfTs
k

(2.111)

The parameter k > ko, where ko is the order of the sine
approximation in (2.109), ensures that the gain of the com-
pensated response decreases with increasing frequency.
Selecting k = ko + 1 minimizes the impact of G fTs on the
compensated gain in the Nyquist band. The parameter b is
chosen so that (2.111) results in a specified maximum com-
pensated gain loss at fN; in the following analysis a maximum
compensated gain loss of 0.1 dB is specified at fN. The overall
compensated response of the M-th order CIC decimation
filter is expressed as

H f M
comp = H f M H f M (2.112)

The compensated gain losses at fN and the parameters k
and b are listed in Table 2.3 for CIC ordersM ≤ 5 and the nor-
malized frequency responses given by (2.103) and (2.112) for
M = 3 and 5 are shown in Figures 2.51 and 2.52, respectively.

2.8.5 Polyphase-Matched Filter Interpolation for
Symbol Timing Control

The notion of a polyphase filter response was introduced
in Section 2.8.1.2 in terms of the down-sampled sequence
yk(k + ℓk2) expressed in (2.92). In this section, however, the
samples y(n) are considered to be the finite-length unit-pulse
response samples h(n) of a filter characterized by H(z). As
an example of the application, the filter impulse response
is considered to be matched to the received signal and the
optimally sampled output is used to determine the received
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FIGURE 2.50 Alias signal level ofM-th order cascaded integrate
and comb filter (R = 64, N = 1).

TABLE 2.3 CIC Filter Gain Compensation Parameters and
Maximum Nyquist Band Loss

Order (M) k b Loss at fN (dB)a

1 9 1.5e−4 −0.090
2 9 6.0e−3 −0.089
3 9 3.6e−5 −0.098
4 9 2.0e−5 −0.098
5 10 6.0e−4 −0.095

aMaximum specified loss = 0.1 dB.

*The sinc(NfTs) function is an approximation for large rate reductions as
expressed in (2.103).
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data estimate. This application applies for band-limited
waveforms so spectral root-raised-cosine (SRRC) modula-
tion is used with 40% excess bandwidth. The number of
matched filter samples is considered to be Ns and the filter
impulse response is oversampled by Ns samples per symbol.
The objective of this example is to correct a symbol timing
error not by adjusting the underlying sampling time but rather
by altering the matched filter coefficients to match those of
the received symbol given the timing error. The altering of
the matched filter coefficients corresponds to selecting a
polyphase filter response as discussed in the remainder of
this section.

In the context of the earlier description, the sequence
h(n) is down-sampled by k2 =Ns so that the samples 0, k2,
2k2, …, ℓk2, … form the k = 0-th polyphase down-sampled
sequence h0(ℓk2): ℓ = 0, 1,…, ℓm − 1 and, in general, the sam-
ples k, k + k2, k + 2k2, …, k + ℓk2: 0 ≤ k ≤ k2 − 1, form the k-th

polyphase down-sampled sequence hk(k + ℓk2): ℓ = 0, 1, …,
ℓm − 1. The parameter ℓm is related to the maximum number
of matched filter samples spanned by the impulse response
h(n). The k2 uniquely sampled sequences represent the poly-
phase filter impulse responses hk(k + ℓk2) as characterized in
Figure 2.53.

The following example is specialized for Ns = 4 matched
filter samples per symbol with an underlying waveform over-
sampling of Ns = 36 samples per symbol; this corresponds to
a symbol timing resolution of 1/36 symbol. Although not
obvious, these are the conditions of the 40% SRRC-matched
filter response shown in Figure 2.54. When this response is
correlated with the identical SRRC received waveform the
matched filter output response is that of the sinc(t/T) response
with zero correlation between adjacent symbols when opti-
mally sampled at the symbol intervals of t = iT. Appling these
conditions to the earlier polyphase filter responses, shown in
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FIGURE 2.51 Gain compensated third-order CIC filter.
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FIGURE 2.52 Gain compensated fifth-order CIC filter.
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Figure 2.54, there are a total of Ns/Ns = 9 polyphase filters
each having Ns = 4 matched filter samples per symbol.
Choosing Ns/Ns to be a odd integer is convenient because
the center polyphase filter with delay z−kc: kc = Ns 2Ns +
1 = 5 can be selected to correspond to the polyphase filter
response with zero symbol timing error. Responses for delays
<kc correspond to a timing advance and responses for delays
>kc correspond to a timing delay. Actually, the range of the
polyphase timing adjustment is ±T/2Ns about each matched
filter sample so, if kc does not result in zero symbol timing
error, adjustments by T/Ns must be made to bring the timing
error into alignment with the received symbols. However,

during symbol acquisition the timing is frequently estimated
to be within ±T/2Ns of the optimum alignment. The sign of
the timing error estimate p, indicated in Figure 2.54 and dis-
cussed in Section 2.8.7, controls the direction of the symbol
timing correction and the magnitude of p can be used for
course timing adjustments of T/Ns.

The nine polyphase filter responses depicted in
Figure 2.55 represent the responses about the optimum filter
response corresponding to zero timing error. The application
of the polyphase filter responses to adjust symbol timing
requires considerable memory for the filter coefficients.
The following section provides an alternative solution requir-
ing less memory.

2.8.6 Lagrange Interpolation

In this section the Lagrange interpolation [39, 40] formulas
are characterized in terms of a specified, or estimated, symbol
delay error and the resulting interpolation coefficients are
modified to achieve a symbol timing adjustment of the
matched filter samples to compensate for the error. This
approach is distinctly different from the polyphase approach
to symbol timing adjustment discussed in the preceding sec-
tion. Although there are considerably fewer coefficients
using Lagrange interpolation the coefficients must be recom-
puted for each timing adjustment.

The Lagrange interpolation formulas and coefficients are
based on those given by Abramowitz and Stegun [41]; how-
ever, the natural numbering notation … xk−1, xk, xk+1 …

given in the reference is reversed to reflect the sequential
time sampling given by tk+1, tk, xk−1. The coefficient
formulas for N-point Lagrange interpolation with, equally
spaced sampling increments Ts, are expressed as

h1(m)

x(n)

z–1

↓k2

↓k2 h0(m)

z–k2–1

↓k2 hk2–1(m)

z–kc

↓k2 hc(m)
y(n′)

Symbol timing
error estimate

(p)
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FIGURE 2.53 Polyphase decimation filters.
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FIGURE 2.54 40% SRRC oversampled-matched filter response
(Ns = 36 samples/symbol spanning 6 symbols).
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FIGURE 2.55 Nine 40% SRRC polyphase-matched filter
responses (Ns = 4 samples/symbol spanning 6 symbols).
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y tk + pTs =
i

AN
i p x tk− i +RN−1 (2.113)

where the index i is over the range

− N−2 2 ≤ i ≤N 2 N even (2.114)

and

− N−2 2 ≤ i ≤ N−1 2 Nodd (2.115)

The parameter p determines the fractional delay and the
coefficient AN

i p and the remainder, or error, RN−1 is given
in the reference and are functions involving i, p, and even or
odd values of N. Factional timing adjustments based on the
samples x(tk−i) are implemented for a three-point interpola-
tion example as shown in Figure 2.56.

Abramowitz and Stegun provide interpolation coefficients
for two- through eight-point Lagrange interpolation and the
coefficients for two- through five-point interpolations are
listed in Table 2.4. The range of the fractional delay and
the corresponding interpolation error are also dependent on
N as tabulated in Table 2.5. The interpolation remainder or
error is given by

RN−1 p =CN p TN
s x

N (2.116)

whereCN(p) is a constant over the various ranges of p and x
(N)

is the N-th derivative of x(t) in the range of t over the inter-
polation interval; additional details are given in Ref. [41].

Examples of Lagrange interpolation symbol timing delay
at the matched filter output for an minimum shift keying
(MSK) modulated waveform are shown in Figure 2.57 and
the 40% SRRC BPSK-modulated waveform is shown in
Figure 2.58. In both examples the underlying binary source
data is random. The circled data points in Figure 2.57 corre-
spond to the MSK-matched filter samples. MSK modulation
involves cosine weighted quadrature data-modulated sym-
bols that result in a constant amplitude waveform, whereas,
the 40% SRRC waveform is not a constant envelope wave-
form; these waveforms are discussed in more detail in
Chapter 4. The small amount of variation in the magnitude
of the MSK waveform corresponds to the delayed waveform
and results from the transients associated with the interpola-
tion coefficients with changes in the random source data.
Both examples use N = 3 point interpolation and Ns = 4
matched filter samples per symbol with an estimated symbol
timing error of p = 0.5. From Table 2.5 the symbol timing
corrections correspond to pT/Ns = T/2Ns or one-half of a sam-
ple interval. The delayed waveforms are shown as the dashed
curves and p > 0 corresponds to a symbol timing delay.
Application of the Lagrange interpolator to provide symbol
timing adjustments is more efficient than the polyphase filter
approach because of the lower data storage requirement and
the capability to provide continuous timing adjustments over
the range −1 ≤ k ≤ 1.

2.8.6.1 The Farrow Filter Farrow [42] refers to the
Lagrange interpolator shown in Figure 2.56 as a continuously
variable digital delay (CVDD) that eliminates the explicit
computations of the FIR filter coefficients, AN

i , for each value
of p. This is accomplished by expressing the coefficients in
Table 2.4 as anN − 1 degree polynomial in pwith coefficients
Ci being functions of the sampled inputs x(tk+j). The Farrow
implementation is shown in Figure 2.59 for the N = 3-point
interpolator. The Farrow implementation requires several
additions and fixed multiplications with a net computational

1
A3

0
A3

x(tk) x(tk+1)
Ts

x(tk–1)

y(tk + pTs)

Ts

–1
A3

Σ

FIGURE 2.56 Lagrange interpolator implementation of fractional
sample delay (example for N = 3).

TABLE 2.4 N-Point Lagrange Interpolation Coefficientsa

N 2 3 4 5

AN
−2 p2−1 p p−2

24
AN
−1 p p−1

2
−p p−1 p−2

6
−p p−1 p2−4

6

AN
0 1 − p 1−p2 p2−1 p−2

2
p2−1 p2−4

4
AN
1 p p p+ 1

2
−p p+ 1 p−2

2
−p p+ 1 p2−4

6

AN
2 p p2−1

6
p2−1 p p+ 2

24
aAbramowitz and Stegun [41]. Courtesy of U.S. Department of Commerce.

TABLE 2.5 Range of Fractional Interpolationa

N Range with Respect to T/Ns

2 0 ≤ p ≤ 1
3 −1 ≤ p ≤ 1
4 −1 < p < 0, 0 < p < 1, 1 < p < 2
5 −2 < p < −1, −1 < p < 1, 1 < p < 2

aAbramowitz and Stegun [41]. Courtesy of U.S. Department of Commerce.
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savings. For example, in the 3-point interpolator, shown in
Figure 2.59, the multiplications, except for those involving
the generation of the error p, simply involve binary shifts
and sign changes.

2.8.7 Symbol Time and Frequency Error Estimation

Estimation of the symbol timing error parameter is necessary
to align the demodulator time base with that of the received
symbol timing. During acquisition of the received signal,
coarse symbol time estimates are made and, during data
detection, fine symbol time corrections are made for symbol
time tracking. The estimation of the correct symbol timing
during acquisition typically is within ±T/4 and subsequent
symbol tracking will bring the receiver time base into the cor-
rect alignment with the received symbol.

Generally, estimation of the parameter p involves compar-
ing the signal energy of an early integrator output with that of
a late integrator output relative to the demodulator time base;
this process is referred to as early–late (E/L) gate processing.*

The simplest application of the E/L gate processing for sym-
bol time estimation involves processing the received signal
sr(t) with a rect(t/T) weighting as shown in Figure 2.60. In
this example, the early and late integrator outputs are:

Ie =A
T

2
and Iℓ =A

T

2
−τ (2.117)

Defining Im = AT as the maximum integrator output with
ideal symbol timing, that is, when τ = 0, the timing error is
defined and evaluated as
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FIGURE 2.57 Lagrange three-point MSK symbol sample
interpolator (Ns = 4, p = 0.5, curves: solid—input, dashed—output).
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FIGURE 2.58 Lagrange three-point BPSK 40% SRRC symbol
sample interpolator (Ns = 4, p = 0.5, curves: solid—input,
dashed—output).
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•

FIGURE 2.59 Farrow implementation of three-point Lagrange
interpolator.

*Early/late gate processing is also used for frequency and antenna acquisition
and tracking.
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p≜
Ie− Iℓ
Im

=
τ

T
(2.118)

The notation < > denotes a time average that is required to
eliminate the influence of the adjacent random data symbols
and the additive noise that are not included in (2.117) or
shown in Figure 2.60. Equation (2.118) forms a discriminator
response centered about zero when the early and late gate
responses are equal. In this regard, the timing is adjusted
in the correct direction to result in zero error; this is funda-
mental to early–late gate processing. The timing error is
used in a feedback timing loop to provide adaptive timing
adjustments.

The following example uses a parabolic curve to
estimate the frequency using three frequency domain samples
as shown in Figure 2.61a. In this example, a 100% zero

1

T/2–T/2 0
t

sref(t)

A
sr(t)

0
t

IIe

τ

FIGURE 2.60 Early–late gate processing for rect(t/T) symbol
weighting.
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FIGURE 2.61 Early–late gate processing for 100% zero padded FFT with uniform data weighting.

120 DIGITAL SIGNAL PROCESSING AND MODEM DESIGN CONSIDERATIONS



padded FFT* is used to determine the frequency of a received
CW signal. The FFT window is uniformly weighted so the fre-
quency response of each cell is expressed as sinc(fT). The
received frequency is shown to be at fr = n/T + δf: |δf| ≤ 1/2T
and the maximum output occurs in cell n as indicated by the
filled-circle data point.† The corresponding responses of the
adjacent E/L gate cells are also indicated by filled-circle data
points.

Figure 2.61b shows the application of a parabola that is
curve fit to the three data points with the peak of the
curve-fit parabola corresponding to the estimate δf of the
frequency error.

Using the filter responses (y−1, y0, y1), indicated in
Figure 2.61b, it is shown in Appendix 2A that the frequency
estimate is given by the discriminator function

δf ≤
Δf
2

y1−y−1
2yo− y1 + y−1

(2.119)

where Δf = 1/2T corresponds to the 100% zero padded FFT
filter frequency spacing.‡ In this case, the normalized delay
estimation parameter is p= δf T . Because the parabolic
interpolator estimates the frequency error including the sign,
when the frequency is adjusted using a feedback tracking
loop the sign of the frequency error must be reversed to result
in a zero steady-state tracking error.

APPENDIX 2A AMPLITUDE QUANTIZATION
FUNCTION SUBPROGRAM

The function subprogram described in this appendix is a fast
amplitude quantization function of a time-sampled analog
function f(t). The amplitude quantization is represented by
the number of magnitude bits (n) and excludes the sign.
The assignment of the integer part of the magnitude suggests
that a decimal point (.) appears after the integer bits (m) with
the magnitude having the form m.n-m. Therefore, the selec-
tion ofm determines the placement of the decimal point. This
function subprogram provides a mechanism for mapping
the dynamic range throughout the digital signal processor
simulation to minimize the loss of information contained in

x = f(ts). The parameters of the fast amplitude quantization
subprogram are identified and described in Table 2A.1.

The function subprogram quant is coded as follows.

function quant(x, m, n, type, fold)
! x is the input to be quantized
! n is the number of magnitude bits

not including sign bit.
! m is the number of bits representing

the integer portion of
! of the magnitude saturates at xm =

2m.
! n-m is the fractional portion to the

magnitude bits.
! type = 0 no quantization : quant = x
! = 1 truncates underflow
! = 2 rounds underflow

! fold = 0 saturates
! = 1 folds modulo(max magnitude)

implicit none
real, intent(in) :: x
integer, intent(in) :: m, n, type, fold
real :: quant
real :: y, xm, xnp, xp
if(type = = 0) then

quant = x ! no quantization
is applied

else
xm = 2.∗∗m
snp = 2.∗∗(n- m)
y = abs(x)
if(y > = xm) then

TABLE 2A.1 Fast Amplitude Quantization Function
Subprogram Parameters

Parameter Input/Output Description

x Input Analog sample
m Input Number of bits representing the

integer portion of the input
magnitude sample

n Input Number of bits representing the
input sample magnitude

type Input = 0 No quantization
= 1 Truncated under flow
= 2 Round under flow

fold Input = 0 Saturates on overflow
= 1 Folds magnitude: modulo(max

magnitude)
quant Output Quantized output representation of x

*Expanding the FFTwindow using 100% zero padding results in interpolated
FFT cells between each of the unpadded cells. Although the frequency res-
olution is increased from n/T to n/2T, the bandwidth of each FFT cell is
unchanged.
†Additive noise may result in the maximum occurring in an adjacent cell;
however, the parabolic estimation procedure is still applicable.
‡If the FFT does not include zero padding the filter spacing is Δf = 1/T.
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! overflow processing
if(fold = = 1) then
y = mod(y, xm)

else
y = xm

endif
endif

! underflow processing
xpp = y ∗ snp
xp = int(xpp)
if(type = = 2) then ! round if

fractional
part > = 0.5

if(xpp – xp > = 0.5) xp = xp + 1
endif
xp = xp/xm ! quantized

magnitude |x|
quant = sign(xp, x)! include sign

and return
endif

end function quant

APPENDIX 2B HILBERT TRANSFORM
PARAMETERS

The following tables of Hilbert transform coefficients are
selected from the extensive lists of Hilbert transform coeffi-
cients tabulated by Rabiner and Schafer [19]. To approximate
the ideal Hilbert transform without phase distortion it in
necessary to use a finite impulse response (FIR) filter that is
characterized by the filter coefficients over the normalized
frequency band 0 ≤ f/fs ≤ 1, where fs is the selected sampling
frequency of the system under consideration. However, the
FIR filter impulse response coefficient, h(n), optimization that
results in the minimum peak distortion error, denoted as D, is
applied over a restricted normalized frequency band: FL ≤ f/fs ≤
FHwith FH ≤ fN/fswhere fN = fs/2 is the Nyquist band resulting
in FH ≤ 0.5. So, FL and FH are the normalized lower and upper
cutoff frequencies over the optimized bandwidth of the filter.
With an odd number of coefficients (N) the upper and lower
transition bands are defined as FL and 0.5 − FH.

Example frequency response magnitudes for even and odd
values of FIR filter coefficients are shown in Figure 2B.1.With
even values of N the response at F = 0.5 is not zero so, for the
same values of FH, the aliased distortion is somewhat more
severe than with odd values of N. Furthermore, odd values
of N result in the FIR filter delay corresponding to an integer
number of samples, whereas, the delay with even values of N
result in the output the delay corresponding to an additional
one-half sample interval. The responses in the figures are
shown to be flat with equal peak distortion over the usable fre-
quency range. This condition occurs with equal lower and

upper transition bands, that is, when FL = 0.5 − FH. When
the transition bands are unequal, the responses will exhibit
an undesirable peak at the lower or upper frequency ranges.
For these reasons, the following tables identify Hilbert filters
corresponding to an odd number of coefficients, a lower fre-
quency range of FL, and equal transition bands.

Rabiner and Schafer [43] conclude that there are substan-
tial processing advantages, in terms of the multiplications per
sample, in using a Hilbert transformer with the largest possi-
ble transition bandwidth, FL, the largest peak distortion error,
D, compatible with the system application, and the shortest
odd length, N, impulse response. The best approximation
toD is based on computer simulations [16] that result in equal
ripple over the band FL to FH with the smallest number of
coefficients. Since only the even numbered coefficients are
required for an odd length impulse response, the required
number of coefficient multiplications is one-half that required
for a comparable even length impulse response.

The following tables of filter coefficients cover a por-
tion of the Hilbert transformers given by Rabiner and Scha-
fer and correspond exclusively to odd values of N.
However, the tables include the coefficients for the maxi-
mum value of N corresponding to a specified FL and gen-
erally include those for the minimum value of N with
several designs for intermediate values of N. The maxi-
mum in-band distortion error, expressed in decibels, is
given by 20log10(D) and the impact of the designs that
are not included in the following tables can be assessed
by the peak distortion error D between those designs that
are listed. For example, the distortion error for FL = 0.05
and N = 31 is D = 2.68(−3) or −51.4 dB. The next higher
value of N given in the tables is N = 39 with D = 6.79
(−4) or −63.4 dB but Rabiner and Schafer also list the coef-
ficients for N = 35 with D = 1.349(−3) or −57.4 dB. The
parameter D is the ratio of the in-band gain ripple relative
to the unit amplitude response and the corresponding peak
ripple, expressed in decibels, is defined as

Rp ≜ 20log10 1 +D (2B.1)

Kaiser [17] expresses the approximate number of filter
coefficients, in terms of δ =D and the transition parameter
Δf = FL = 0.5 − FH, as
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D FHFL
D

0 0.5
F

|H(F)|

N = Odd

|H(F)|

N = Even

(a)  (b)

FIGURE 2B.1 Example of Hilbert transformer magnitude
responses.
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N
−0 61log10 δ

Δf
(2B.2)

Figure 2B.2 is a plot of the in-band peak ripple Rp in dec-
ibels as a function of the number of filter coefficients for the
values of the transition parameter FL. The dependence on N
of these results for the peak ripple is based on Kaiser’s
approximation as expressed in (2B.2).

The tables of Rabiner and Schafer include a portion of the
coefficients of the Hilbert filter starting at n = 0 from which
the entire set of coefficient values is computed as

h N−1−n = −h n
n= 0, 2, 4, …, N−3 2 N = odd

n= 0, 1, 2, …, N−2 2 N = even

(2B.3)

The following tables correspond to odd values of N and
the filter impulse response has odd symmetry about the sam-
ple at (N − 1)/2 that corresponds to a zero sample value.
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FIGURE 2B.2 Approximate in-band peak ripple dependence on
the number of Hilbert filter coefficients (δ =D, Δf = FL = 0.5 − FH).

TABLE 2B.1 Wideband Hilbert Transform Coefficients for FL = 0.1a

n

N = 15 N = 23 N = 31 N = 39

D = 2.546(−3) D = 1.420(−4) D = 8.0(−6) D = 1.0(−6)

0 −1.25869(−2) −1.5643(−3) −2.098(−4) −2.92(−5)
2 −5.17464(−2) −8.2383(−3) −1.3764(−3) −2.304(−4)
4 −1.563345(−1) −2.69557(−2) −5.2972(−3) −1.0348(−3)
6 −6.159002(−1) −7.02312(−2) −1.53339(−2) −3.4149(−3)
8 −1.722057(−1) −3.71398(−2) −9.1741(−3)
10 −6.221851(−1) −8.14346(−2) −2.12775(−2)
12 −1.810706(−1) −4.45889(−2)
14 −6.255683(−1) −8.89475(−2)
16 −1.867128(−1)
18 −6.276691(−1)

aRabiner and Schafer [19]. Reproduced by permission of Alcatel-Lucent USA Inc.

TABLE 2B.2 Wideband Hilbert Transformers for FL = 0.05a

n

N = 23 N = 31 N = 39 N = 47

D = 1.1071(−2) D = 2.68(−3) D = 6.79(−4) D = 1.73(−4)

0 −1.44218(−2) −4.1956(−3) −1.2787(−3) −3.957(−4)
2 −2.72241(−2) −9.2821(−3) −3.2636(−3) −1.1534(−3)
4 −5.25858(−2) −1.88358(−2) −7.1031(−3) −2.7042(−3)
6 −9.71984(−2) −3.44010(−2) −1.35513(−2) −5.4585(−3)

(continued overleaf )

HILBERT TRANSFORM PARAMETERS 123



TABLE 2B.2 (continued)

n

N = 23 N = 31 N = 39 N = 47

D = 1.1071(−2) D = 2.68(−3) D = 6.79(−4) D = 1.73(−4)

8 −1.929460(−1) −5.95516(−2) −2.37704(−2) −9.9769(−3)
10 −6.299931(−1) −1.030376(−1) −3.95684(−2) −1.70000(−2)
12 −1.968315(−1) −6.44154(−2) −2.75785(−2)
14 −6.313536(−1) −1.070280(−1) −4.34280(−2)
16 −1.994533(−1) −6.79619(−2)
18 −6.322687(−1) −1.098913(−1)
20 −2.013159(−1)
22 −6.329151(−1)

n

N = 55 N = 63 N = 71 N = 79

D = 4.5(−5) D = 1.2(−5) D = 3.0(−6) D = 1.0(−6)

0 −1.243(−4) −3.96(−5) −1.27(−5) −4.1(−6)
2 −4.080(−4) −1.447(−4) −5.12(−5) −1.79(−5)
4 −1.0288(−3) −3.910(−4) −1.476(−4) −5.50(−5)
6 −2.2014(−3) −8.853(−4) −3.531(−4) −1.389(−4)
8 −4.2215(−3) −1.7821(−3) −7.456(−4) −3.074(−4)
10 −7.4746(−3) −3.2906(−3) −1.4366(−3) −6.182(−4)
12 −1.24599(−2) −5.6838(−3) −2.5777(−3) −1.1532(−3)
14 −1.98467(−2) −9.3111(−3) −4.3663(−3) −2.0239(−3)
16 −3.06162(−2) −1.46260(−2) −7.0545(−3) −3.3761(−3)
18 −4.64284(−2) −2.22481(−2) −1.09630(−2) −5.3956(−3)
20 −7.06666(−2) −3.31126(−2) −1.65113(−2) −8.3167(−3)
22 −1.120458(−1) −4.88448(−2) −2.42838(−2) −1.24372(−2)
24 −2.027050(−1) −7.28120(−2) −3.51847(−2) −1.81511(−2)
26 −6.333949(−1) −1.137361(−1) −5.08176(−2) −2.60178(−2)
28 −2.037871(−1) −7.45415(−2) −3.69200(−2)
30 −6.337675(−1) −1.150864(−1) −5.24475(−2)
32 −2.046464(−1) −7.59556(−2)
34 −6.340625(−1) −1.161821(−1)
36 −2.053402(−1)
38 −6.343000(−1)

aRabiner and Schafer [19]. Reproduced by permission of Alcatel-Lucent USA Inc.

TABLE 2B.3 Wideband Hilbert Transformers for FL = 0.02a

n

N = 31 N = 39 N = 47 N = 55

D = 7.50950(−2) D = 4.13090(−2) D = 2.31120(−2) D = 1.30540(−2)

0 −5.1061(−2) −2.86598(−2) −1.64094 (−2) −9.5117(−3)
2 −3.15637(−2) −1.87406(−2) −1.14516(−2) −7.1168(−3)
4 −4.25110(−2) −2.50998(−2) −1.54645(−2) −9.7423(−3)
6 −5.77251(−2) −3.32813(−2) −2.04740(−2) −1.29935(−2)
8 −8.05394(−2) −4.41044(−2) −2.67802(−2) −1.70107(−2)
10 −1.196632(−1) −5.91324(−2) −3.48570(−2) −2.19890(−2)
12 −2.075778(−1) −8.16868(−2) −4.55267(−2) −2.82298(−2)
14 −6.350674(−1) −1.206017(−1) −6.03428(−2) −3.61989(−2)
16 −2.081174(−1) −8.26818(−2) −4.67260(−2)
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TABLE 2B.4 Wideband Hilbert Transformers for FL = 0.01a

n

N = 55 N = 63 N = 71 N = 79

D = 9.54980(−2) D = 7.04360(−2) D = 5.22480(−2) D = 3.88830(−2)

0 −5.55675(−2) −4.11397(−2) −3.06629(−2) −2.29388(−2)
2 −1.67258(−2) −1.26851(−2) −9.7354(−3) −7.5151(−3)
4 −1.94725(−2) −1.47109(−2) −1.13179(−2) −8.7784(−3)
6 −2.26148(−2) −1.71191(−2) −1.31328(−2) −1.01565(−2)
8 −2.64560(−2) −1.97933(−2) −1.51642(−2) −1.17808(−2)
10 −3.10395(−2) −2.29817(−2) −1.75162(−2) −1.35612(−2)
12 −3.66783(−2) −2.67924(−2) −2.02240(−2) −1.55902(−2)
14 −4.39134(−2) −3.13469(−2) −2.33958(−2) −1.79182(−2)

(continued overleaf )

TABLE 2B.3 (continued)

n

N = 31 N = 39 N = 47 N = 55

D = 7.50950(−2) D = 4.13090(−2) D = 2.31120(−2) D = 1.30540(−2)

18 −6.352463(−1) −1.213191(−1) −6.13745(−2)
20 −2.085553(−1) −8.35102(−2)
22 −6.353986(−1) −1.219297(−1)
24 −2.089363(−1)
26 −6.355268(−1)

n

N = 63 N = 75 N = 87 N = 95

D = 7.4430(−3) D = 3.2330(−3) D = 1.4170(−3) D = 8.240(−4)

0 −5.5706(−3) −2.5265(−3) −1.1577(−3) −6.935(−4)
2 −4.4618(−3) −2.2373(−3) −1.1264(−3) −7.156(−4)
4 −6.2078(−3) −3.1981(−3) −1.6565(−3) −1.0724(−3)
6 −8.3775(−3) −4.4073(−3) −2.3363(−3) −1.5362(−3)
8 −1.10475(−2) −5.9065(−3) −3.1921(−3) −2.1265(−3)
10 −1.43195(−2) −7.7446(−3) −4.2528(−3) −2.8655(−3)
12 −1.83266(−2) −9.9820(−3) −5.5519(−3) −3.7775(−3)
14 −2.32716(−2) −1.26922(−2) −7.1273(−3) −4.8903(−3)
16 −2.94397(−2) −1.59751(−2) −9.0270(−3) −6.2348(−3)
18 −3.73177(−2) −1.99615(−2) −1.13048(−2) −7.8492(−3)
20 −4.77262(−2) −2.48494(−2) −1.40366(−2) −9.7764(−3)
22 −6.22273(−2) −3.09326(−2) −1.73154(−2) −1.20734(−2)
24 −8.41979(−2) −3.86871(−2) −2.12753(−2) −1.48104(−2)
26 −1.224340(−1) −4.89418(−2) −2.61107(−2) −1.80826(−2)
28 −2.092445(−1) −6.32654(−2) −3.21163(−2) −2.20234(−2)
30 −6.356280(−1) −8.50334(−2) −3.97698(−2) −2.68256(−2)
32 −1.230441(−1) −4.99010(−2) −3.27847(−2)
34 −2.096158(−1) −6.40805(−2) −4.03791(−2)
36 −6.357524(−1) −8.56865(−2) −5.04390(−2)
38 −1.235215(−1) −6.45363(−2)
40 −2.099064(−1) −8.60506(−2)
42 −6.358499(−1) −1.237874(−1)
44 −2.100684(−1)
46 −6.359043(−1)

aRabiner and Schafer [19]. Reproduced by permission of Alcatel-Lucent USA Inc.
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APPENDIX 2C DERIVATION OF PARABOLIC
INTERPOLATION ERROR

The parabolic interpolation algorithm is based on the
equation for a parabola given by

x−x 2 = 2a y−y (2C.1)

where a is the distance from the vertex at x,y to the focus
of the parabola. Increasing the magnitude of a increases the
latus rectum or spread of the parabola and a > 0 results in a
concave upward parabola and a < 0 results in a concave
downward parabola; the case for a < 0 is used for parabolic
interpolation. For the purpose of interpolation, the data points
(y−1, y0, y1) are associated with the ordinate values of the

TABLE 2B.4 (continued)

n

N = 55 N = 63 N = 71 N = 79

D = 9.54980(−2) D = 7.04360(−2) D = 5.22480(−2) D = 3.88830(−2)

16 −5.35532(−2) −3.69689(−2) −2.71460(−2) −2.06260(−2)
18 −6.71782(−2) −4.41620(−2) −3.16681(−2) −2.37742(−2)
20 −8.81528(−2) −5.37578(−2) −3.72851(−2) −2.74953(−2)
22 −1.253143(−1) −6.73427(−2) −4.44587(−2) −3.19865(−2)
24 −2.109951(−1) −8.82996(−2) −5.40183(−2) −3.75627(−2)
26 −6.362148(−1) −1.254324(−1) −6.75540(−2) −4.47012(−2)
28 −2.110732(−1) −8.84541(−2) −5.42333(−2)
30 −6.362430(−1) −1.255376(−1) −6.77331(−2)
32 −2.111303(−1) −8.85965(−2)
34 −6.362585(−1) −1.256401(−1)
36 −2.111964(−1)
38 −6.362830(−1)

n

N = 87 N = 95

D = 2.90440(−2) D = 2.17910(−2)

0 −1.72371(−2) −1.30099(−2)
2 −5.8530(−3) −4.5718(−3)
4 −6.8525(−3) −5.3689(−3)
6 −7.9733(−3) −6.2800(−3)
8 −9.2241(−3) −7.2616(−3)
10 −1.06323(−2) −8.3873(−3)
12 −1.22073(−2) −9.6455(−3)
14 −1.39949(−2) −1.10350(−2)
16 −1.60152(−2) −1.26022(−2)
18 −1.83265(−2) −1.43770(−2)
20 −2.10006(−2) −1.63895(−2)
22 −2.41199(−2) −1.86922(−2)
24 −2.78194(−2) −2.13465(−2)
26 −3.22920(−2) −2.44424(−2)
28 −3.78402(−2) −2.81175(−2)
30 −4.49441(−2) −3.25665(−2)
32 −5.44359(−2) −3.80864(−2)
34 −6.79017(−2) −4.51608(−2)
36 −8.87289(−2) −5.46233(−2)
38 −1.257349(−1) −6.80547(−2)
40 −2.112513(−1) −8.88468(−2)
42 −6.363005(−1) −1.258168(−1)
44 −2.112989(−1)
46 −6.363167(−1)

aRabiner and Schafer [19]. Reproduced by permission of Alcatel-Lucent USA Inc.
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received signal sinc(x) spectral function* with the corre-
sponding abscissa values (x−1, x0, x1), that is,

yi =
sin πxi
πxi

i= −1, 0, 1 (2C.2)

With frequency interpolation of the received modulated
symbols, the normalized frequency variable is xi = fiT where
T is the received symbol duration and 1/T corresponds to the
frequency interval between the zeros of the sinc(x) function.

Considering the three sample pairs (x−1, y−1), (x0, y0), and
(x1, y1), a set of three simultaneous equations are solved for
the three unknowns parameters x, y, a . To simplify the
evaluation, without any loss in meaning, the parameter x0
is set to zero and the desired normalized frequency interpo-
lation is computed as x = p = δfT .

The three simultaneous equations corresponding to
(2C.1) are

x−1−x
2 = 2a y−1−y

x0−x
2 = 2a y0−y

x1−x
2 = 2a y1−y

(2C.3)

Upon expanding the squared terms, with the simplifying
assumption x0 = 0, (2C.3) becomes

x2−1−2x−1x+ x
2 = 2a y−1−y

x2 = 2a y0−y

x21−2x1x+ x
2 = 2a y1−y

(2C.4)

Substituting x2 from the second equation into the first and
third equations and collecting the terms involving 2a gives

x2−1−2x−1x = 2a y−1−y0

x21−2x1x = 2a y1−y0
(2C.5)

This step has eliminated the unknown parameter y and sol-
ving for 2a in the first equation in (2C.5) and substituting the
result into the second equation and solving for x yields

x=
1
2
x2−1 y1−y0 − x21 y−1−y0
x−1 y1−y0 −x1 y−1−y0

(2C.6)

With the exception of the simplifying assumption that
x0 = 0, (2C.6) is a general solution to the parabolic interpola-
tor that can be specialized for the 100% zero padded FFT
by recognizing that x−1 = x0 − 1/2 and x1 = x0 + 1/2 or, with
the simplifying condition, x−1 = −1/2 and x1 = 1/2. Therefore,
using these conditions, (2C.6) becomes

x =
1
4

y1−y−1
2y0− y1 + y−1

100 zero padded FFT (2C.7)

In terms for the un-normalized frequency estimate
δf ≤ x T , (2C.7) becomes

δf ≤
1
2

y1−y−1
2y0− y1 + y−1

Δf 100 zero padded FFT

(2C.8)

where Δf = 1/2T is the frequency resolution of the 100%
zero padded FFT.

ACRONYMS

ADC Analog-to-digital converter
AGC Automatic gain control
ASCII American Standard Code for Information

Interchange
AWGN Additive white Gaussian noise
BPSK Binary phase shift keying
CIC Cascaded integrate and comb (filter)
CVDD Continuously variable digital delay
CW Continuous wave (frequency)
DAC Digital-to-analog converter (or conversion)
DC Direct current
DSP Digital signal processing
DSSS Direct-sequence spread-spectrum (waveform)
E/L Early–late (gate sampling)
FDM Frequency division multiplex
FDMA Frequency division multiple access
FFT Fast Fourier transform
FIR Finite impulse response (filter)
GCD Greatest common divisor
I&D Integrate-and-dump (filter)
I/O Input and output (interface)
I/Q Inphase and quadrature (channels or rails)
IF Intermediate frequency
ISI Intersymbol interference
LO Local oscillator
LPF Low-pass filter
LSB Least significant bit
MSB Most significant bit
MSK Minimum shift keying
PLL Phaselock loop
PRN Pseudo-random number (sequence)

*This description of the parabolic interpolator is specialized to the example
involving the sinc(x) frequency spectrum. The concept can be applied to a
variety of spectral functions or, in the case of parabolic symbol timing inter-
polation, to symbol weighting functions. However, to be effective, the func-
tions must generate a useful interpolation gain or slope at the zero-crossing of
the interpolation S-curve.
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QPSK Quadrature phase shift keying
rms Root-mean-square
RRC Root raised-cosine (temporal)
SRRC Spectral root-raised-cosine
UHF Ultra-high frequency

PROBLEMS

1. Consider that a noise-free received CW carrier signal
with a phase error of ϕ degrees relative the receiver local
oscillator frequency is mixed to baseband and that two
uniform quantizing 8-bit ADCs, that is, Nb = 8 bits, are
used to sample the in-phase and quadrature phase rails.
Considering that the rails are within the linear range of
the ADC, determine the maximum phase error at the
ADC output when no jitter signal or rounding is used.
Repeat this problem using Nb = 10 and 12 bit ADCs.

2. Starting with the convolution integral expressed in
(2.21), derive the expression for the sampled signal spec-
trum given in (2.22). Hint: Note that s(t) is a function of t
and is not dependent on the summation over n and that
Fs( f ) is the Fourier transform involving the summation
in (2.20). Show and explain all of the details in the
derivation.

3. Sketch the sampled spectrums using subcarrier bandpass
sampling for fif = 70MHz and W = 36MHz. Identify the
upper and lower sampling frequencies, in MHz, relative
to the IF filter centered at 70MHz. Include in the sketch
the first sampled spectrum and the sampled spectrum just
below the 70MHz filter for the upper and lower sam-
pling frequencies.

4. Substituting the real parameter ρ into (2.33) for the inte-
ger m, show that the maximum value of ρ = ρmax corre-
sponds to ρmax = fif W −0 5. State why it follows that the
integer M = floor(ρmax), where M is defined as max(m).

5. Using ρmax determined in Problem 4, it follows that the
sampling frequency is lower bounded by fs ≥ fif W −0 5.
Show that this condition also corresponds to fs ≥ fmax W
where fmax is the maximum signal frequency.

6. Show that fs = fsmin = 2W when M = fif/W − 1/2.

7. Repeat the subcarrier sampling example in
Section 2.6.1.1 for the following conditions fif = 70
MHz and W = 18 and 36MHz.

8. Derive the expression for the carrier leakage out of an
imbalanced modulator with ideal rail and phase balance
corresponding to βc = βs = 1, and ϕ = 0, with DC offsets
of αc and αs. Express the result in the formMcos(ωct + ψ)
and expresses the magnitude,M, and phase, ψ , as a func-
tions of the DC offsets αc and αs.

9. Using Figure 2.29 derive the output of the imbalanced
modulator with precorrection as expressed by (2.52).

10. Derive equation (2.54) for the phase imbalance in terms
of the parameters ρ using the geometry of the two equi-
lateral parallelograms in Figure 2.31.

11. Derive the expression for the modulator phase measure-
ment sensitivity given by (2.56) in terms of the para-
meters ρ and Δρ.

12. Using (2.68) and (2.69) express the magnitudeMo for the
demodulator phase imbalance measurement given by
(2.70) in terms of ωdt, θ, and φ. Evaluate the following:

Determine the general conditions of the argument ωdt +
θ corresponding to the maximum and minimum magni-
tudes and enter the angles of the argument corresponding
to quadrants I, II, III, and IV in the following table.

Using φ = 10 , evaluate the parameter ρ given by (2.71)
usingωdt + θ found earlier and enter the results in the fol-
lowing table.

Determine the parameter κ as discussed in the text and
enter the value in the table corresponding to the quadrants.

Compute the measured phase imbalance using (2.72)
and enter the results in the following table.

Discuss the consequences of changing the sign of φ.
Measurement of Phase Imbalance φ for φ = 10 .

Quadrant ωdt + θ ρ κ φ

I

II

III

IV

13. Using algebra and trigonometry show that φ=

2tan−1 ρ−1
ρ + 1

when ρ =
1+ sinφ

1−sinφ
.

14. Figure 2.34 is shown for a positive phase imbalance,φ > 0,
and corresponds to the solid curve in Figure 2.35; redraw
Figure 2.34 corresponding for φ < 0.

15. Using (2.52) as the noise-free receiver input, reformulate
the demodulated quadrature data estimates mc t and
ms t in terms of the up-converter imbalance compen-
sated parameters. Hint: Substitute the distortion cor-
rected baseband transmitter output expressed in (2.52)

into (2.74) using SR = ST ; this corresponds to an ideal
noise-free channel.

16. Referring to the example in Section 2.8.1, analyze
the sample rate change from the 48 kHz rate during
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acquisition to the 19.2 kHz rate for the matched filter
detection. Specify the requirements for the image rejec-
tion and antialiasing filters by specifying their 3 dB and
transition bandwidths.

17. Referring to the case study in Section 2.8.3, derive the
expression of the impulse response of the prototype filter
given by (2.97) in terms of the low-pass bandwidth B.
Then show that the Kaiser window time-bandwidth
product parameter β = TwB corresponds to the number
impulse response zero-crossing intervals in one-half of
the window duration Tw.

18. Using the half-band antialiasing filter response shown in
the following figure, select fpb and fT and determine the
number of FIR coefficients using (2.96) with Asb = 30 dB
for the following implementation.

fs21=

48 KHz

fs2=

910 MHz

↓4375LPF

Repeat the earlier analysis using the three-stage FIR filter
decimation shown in Figure 2.39a and using the CIC fil-
ter with the two-stage FIR filter decimation shown in
Figure 2.39b. For these three implementations complete
the following table.

Half-band anti aliasing filter.

Asb

fpb fs/2 fs0

fsmax

fT

f

F(f )

19. Referring to the CIC decimation diagram in Figure 2.47,
sketch a similar implementation diagram for a rate R sin-
gle-stage CIC interpolation filter with N samples per fil-
ter. Derive the z-plane transfer function H(z) = Y(z)/X(z)
for z = esTs where Ts = 1/fs and fs is the output sampling
frequency. Also, derive the magnitude of the frequency
response |H( f )|.

20. Without using the approximations leading to (2.103),
determine the maximum magnitude of (2.102) and iden-
tify the frequencies at which they occur.

21. Starting with H(z) as given in (2.100) derive H( f ) given
by (2.102) and the approximation to |H( f )| given
in (2.103).

22. Using (2.104) show that the maximum value of |H( f )|M

is (RN)M and identify the location(s) of the maximum
values. Do not use any approximations on R and fTs as
used in arriving at (2.103). Hint: Use L’Hospital’s rule
for indeterminate forms.

23. Show that the Nyquist criterion forN > 1 requires that the
signal spectrum be confined to fpb < fs/2N.

24. Sketch the unit pulse response of the single-stage deci-
mation filter shown in Figure 2.47.

25. Redraw the single-stage or first-order decimation filter
shown in Figure 2.47 to represent anM-th order CIC dec-
imation filter. Show the first two states with ellipses (…)
to the M-th stage.

26. Derive the approximation to the gain compensation
function |H ( f )|M given in (2.109). Hint: Start with the
approximation sin(ϕ) 1 − ϕ3/3!.

27. Derive the equation for the N = 3 point Lagrange
interpolator using the Farrow implementation shown in
Figure 2.59.

28. Derive the equation for theN = 4 point Lagrange interpo-
lator using the Farrow implementation and sketch the
multiplier and adder connections similar to that shown
in Figure 2.59.

Table Design and Performance Parameters for Various Decimation Configurations

Configuration

Stage 1 Stage 2 Stage 3 Total

fpb fT Nc fpb fT Nc fpb fT Nc Multiplies Memory

1 — — — — — —

2

3

CIC Filter
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29. Referring to Appendix 2C, evaluate the expression for
the parabolic interpolated frequency estimate for an
FFT that does not use zero padding interpolation.

30. Derive the linear interpolation for a 100% zero
padded FFT. Hint: Referring to Figure 2.61, use
the sampled values y−1 = sinc π xo−x−1 + x and
y1 = sinc π xo + x1−x and, letting xo = 0, solve for x.
The solution involves expressing the numerator of the
sinc(−) function in terms of sine and cosine functions
and combining y−1 and y1 using the surviving cosine
function. Then convert to the frequency δf ≤ 2Δf x
and express the result in terms of y1, y−1, and Δf where
Δf is the frequency resolution of the 100% zero pad-
ded FFT.

31. Repeat Problem 30 for an FFT that does not use zero
padding.
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3
DIGITAL COMMUNICATIONS

3.1 INTRODUCTION

A functional description of a communication system is
shown in Figure 3.1. Generally the information source data
is represented by discrete-time and discrete-amplitude digital
data; however, if the information source is represented by
continuous-time and continuous-amplitude analog data, then
the source encoder includes time-domain sampling and
amplitude quantization. The resulting data is referred to as
the source or user bit of duration Tb. Depending upon the
nature of the data and the system performance requirements,
the resulting digital information sequence may then undergo
data compression. For example, if the information source is a
facsimile system, then data compression is applied to elimi-
nate redundant or unnecessary data or, in the case of voice
data, the sampled voice signal is typically processed using
a voice-coding algorithm to minimize the required amount
of data to be transmitted. The resulting source coded data
sequence υo,υ1,…,υQ−1 undergoes channel coding to mit-
igate impact of distortion on the received signal. Examples of
channel coding are forward error correction (FEC) coding,
data interleaving, and pseudo-noise (PN) spread-spectrum
encoding. The FEC-coded output consists of one digit per
Tcb seconds where Tcb is the code-bit duration. When
direct-sequence spread-spectrum (DSSS) is applied each
interval of duration Tc seconds is referred to as a chip. The
channel coded data is then applied to the data modulator that
assigns the resulting bits or chips to an amplitude and/or
phase constellation that characterizes the transmitted

symbol of duration T seconds.* The modulator may interface
at baseband with the transmitter; however, the interface com-
monly follows digital-to-analog conversion (DAC) and up-
conversion to an intermediate frequency (IF) on the order
of 70MHz. The functions of the transmitter provide fre-
quency up-conversion commensurate with the communica-
tion channel, power amplification, and spectral control;
however, the more advanced waveform modulators include
spectrally efficient waveforms that inherently satisfy specific
transmit spectral masks. The transmit antenna plays a central
role in establishing the directive power to establish the com-
munication link. The functions following the channel per-
form the inverse of those just described, starting with the
receiver antenna and ending with user data estimates pro-
vided to the information sink. However, these inverse func-
tions are generally more complex and, in the case of the
demodulator, more processing intense. The receive antenna
interfaces with the receiver input low-noise power amplifier
(LNPA) and the subsequent frequency down-conversion to
the demodulator IF includes filtering for interference rejec-
tion and automatic gain control (AGC).† Typically, the first
tasks of the demodulator are to convert the IF input to base-
band and provide analog-to-digital conversion (ADC) in
preparation for the various functions of digital signal

*Unless otherwise noted, the symbol T is used to denote the transmitted
symbol interval with the corresponding symbol rate denoted as Rs = 1/T.
†The AGC control processing is often performed in the demodulator
following analog-to-digital conversion (ADC).
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processing to accomplish signal acquisition, frequency,
phase and symbol tracking, message synchronization, opti-
mum symbol detection, and channel and source decoding
to provide the best estimates of the source information.

Figure 3.1 serves as an outline of the subjects covered in
this book. For example, a number of techniques for channel
coding and decoding are discussed including the block and
convolutional coding and their utility in different applica-
tions. Code concatenation, involving the application of sev-
eral codes, has culminated in the powerful turbo codes (TCs)
that perform very close to the theoretical coding limit
introduced by Shannon [1] in 1948. The choice of waveform
modulation is extremely important and establishes the trans-
mission efficiency in terms of the number of bits/hertz and the
spectral containment of the transmitter emission. A variety of
digitally modulated waveforms are considered with applica-
tions to radio frequency (RF) transmission as in satellite com-
munications and noncarrier or baseband transmission as used
between many computer systems. The waveform demodula-
tor is driven by the modulator selection and must perform a
variety of functions for optimally detecting the received
signal. In this regard, demodulator optimum filtering, carrier
frequency and phase acquisition, and symbol synchroniza-
tion and tracking are discussed in considerable detail. The
ubiquitous channel is extremely important to understand
and characterize to accurately design and predict the perfor-
mance of communication systems. The channel characteris-
tics and behavior are determined largely by the carrier
frequency selection and channels ranging from very low fre-
quency (VLF) to extremely high frequency (EHF) and optical
frequencies are discussed and characterized. The waveform
selection is also driven by the expected channel conditions.
The most benign channel, and the easiest one to characterize,
is the additive white Gaussian noise (AWGN) channel.

In addition to its frequent occurrence in many applications,
the AWGN channel forms the basis for comparing the
performance of systems under more severe channel condi-
tions. For example, the performance with selective and non-
selective frequency fading is discussed, along with mitigation
techniques, and compared to that of the AWGN channel.

In addition to the functional considerations of the system
design as outlined in Figure 3.1, a heavy emphasis is placed
on computer simulation results to characterize the communi-
cation systems performance. Computer simulations serve
several essential functions: they provide a basis for the sys-
tem performance evaluation in applications which defy
detailed analysis, for example, evaluation of an entire com-
munication link including complex channels and nonlinear
acquisition and tracking functions; they provide a direct
method for generating code for firmware and digital signal
processor (DSP) implementations; they provide design and
evaluation flexibility by means of relatively simple code
changes; and, if properly written, they provide a form of
self-documentation throughout the code development.

Figure 3.2 shows a simplified application involving
binary data from the information source occurring at a
rate Rb = 1/Tbwhere Tb is the bit duration of the source infor-
mation. In this example, the source data undergoes rate
rc =1/2 FEC encoding resulting in a code-bit rate of Rcb =
Rb/rc = 2Rb. Assuming that a quadrature phase shift keying
(QPSK) waveform is used to transmit the data over the chan-
nel, the function of the channel encoder is to map two con-
secutive code bits into one of four carrier phases resulting in
a transmitted symbol rate of Rs = Rcb/2 = Rb. The symbol rate
is important in that it must be compatible with the channel
bandwidth requirements so as not to significantly distort
the received signal and thereby degrade the detection
performance.
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3.2 DIGITAL DATA MODULATION AND
OPTIMUM DEMODULATION CRITERIA

Establishing an optimum decision rule involves multiple
hypotheses testing of a statistical event given various statis-
tical characteristics of the system model. The statistics gener-
ally involves a priori probabilities, transition probabilities,
and a posteriori probabilities and the decision test involves
minimizing the risk in the decision that involves choosing
the event m given that the event m actually occurred. For
example, if the decision is based on some measurement y,
and the estimate of the actual event is characterized as
m y , then it is desired to minimize the risk in saying that
m y = m. This concept is shown in Figure 3.3 that depicts
a space containing all possible hypotheses Hm of the events
m: m = 0, …, M − 1 in the source. When the source events
undergo a transformation to the decision space, the outcomes
of the decisions represent estimates of the source events with
associated probabilities of error. The transformation from the
source to decision spaces can be viewed as source messages
undergoing transmission over a noisy channel and, after

some manipulation, interpreted by the receiver as to what
message was sent. The receiver must have a priori knowl-
edge, that is, know in advance that the messages will occupy
unique decision regions in a noise-free or deterministic trans-
formation. The probabilities P mi Hi are referred to as tran-
sition probabilities and represent the transformation from the
source to the decision space as shown in Figure 3.3. Associ-
ated with each hypothesis there is also a probability P(Hi)
representing the probability that the source event Hi will
occur among all of the possible events; this probability is
called the a priori probability of the source event.

For the M-ary hypotheses the risk of a decision is defined
as the weighted summation of probabilities, expressed as

ℜ≜
i, j

CijP i j P j (3.1)

where P(i|j) are the transition probabilities and represent
the probability of event i when event j actually occurred.
The transition probabilities correspond to an error event
when i j and a correct decision is made when i = j.
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The probabilities P( j) represent the a priori probabilities of
the individual events. The weights Cij represent costs associ-
ated with the corresponding decisions. In communication
systems the emphasis is placed on minimizing errors so an
error event is given the highest cost corresponding to Cij = 1
when i j and Cij = 0 when i = j. Under these conditions,
the risk represents the overall system error probability and is
expressed by the total probability law,

Pe =
i j

P i j P j (3.2)

In the following analysis, the multiple hypothesis error cri-
teria are applied to a communication system and, in the proc-
ess, the requirements for making a decision that minimizes
the overall error, as expressed by (3.2), are established. Con-
sider, for example, that the source information has undergone
source and channel coding resulting in contiguous M-ary
symbol messages νi =m as shown in Figure 3.4. Based on
the earlier discussion, the a priori probability of a message
is defined as

Pr message m transmitted =P m =Pm (3.3)

and the system error probability is characterized as

Pe =Pr message error =Pr m m (3.4)

Applying the total probability law, the error is
expressed as

Pe =
M−1

m= 0

P m m m Pm

= 1−
M−1

m= 0

P m =m m Pm

(3.5)

The probability that m=m is simply the integral of the
probability density function (pdf ) of the received signal taken
over the decision region for the message event m and is
expressed as

P m =m m =
ym

p y m dy (3.6)

so the error becomes

Pe = 1−
ym

M−1

m= 0

p y m Pmdy (3.7)

The error is minimized by maximizing the integrand, or
the summation under the integral, and is expressed as

Pe min = 1−
ym

max
M−1

m = 0

p y m Pm dy (3.8)

Therefore, the optimum decision rule is simply

Choose m y =m iff p y m Pm =max p y m Pm m

(3.9)

This rule states that given the message m was transmitted
the correct decision is made by choosing the message esti-
mate m y that minimizes the error. However, at the demod-
ulator the test statistic y is available, so the optimum decision
must be based on y alone. To facilitate the use y, the decision
rule can be reformulated into the desired result by applying a
mixed form of Bayes rule to obtain the a posteriori probabil-
ity of message m given by

P m y =
p y m Pm

p y
(3.10)

This result states that the probability of declaring message
m, given the test statistic y, can be accomplished through the
demodulator processing by substituting (3.10) into the deci-
sion rule (3.9) resulting in the reformulated decision rule

Choose m y =m iff P m y =max P m y m

=max
p y m Pm

p y
m

(3.11)

The second equality in (3.11) is the formal characteriza-
tion of the maximum a posteriori (MAP) decision rule; how-
ever, because p(y) is simply a constant, independent of the
message, it does not influence the selection of the maximum
value so the second equality corresponds to the decision rule
given by (3.9), thus confirming that y is a sufficient statistic
for making an optimal decision.

The MAP decision rule explicitly involves the a priori
probabilities Pm; however, if the messages are equally likely,
so that Pm = 1 M for all m, the decision rule is referred to as
the maximum-likelihood (ML) rule. The ML decision rule is
expressed as

Choose m y =m iff P m y =max P m y m

=max
p y m M

p y
m

=max p y m m

(3.12)

m̂vi = m

{m= 0,1, … , M–1}
Data

modulator
Channel

Data
demodulator

FIGURE 3.4 Waveform transmission with AWGN channel.
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The decision rules can be formulated in terms of the
likelihood ratio test (LRT) defined as

Λ y;m,m =
p y m

p y m
(3.13)

for which the MAP decision rule is

Choose m y =m iff Λ y;m,m >
Pm

Pm
m (3.14)

The logarithm is a monotonically increasing function of its
argument and because the logarithm of the likelihood ratio
often leads to a more intuitive result, the decision rule is
also conveniently characterized in terms of the log-likelihood
ratio test (LLRT) as

Choose m y =m iff ln Λ y;m,m > ln
Pm

Pm
m

(3.15)

3.2.1 Example Using Binary Data Messages

As an example of the application of the decision rules,
consider the binary hypothesis test defined as

H0: message m = 0, with a priori probability P(H0) = P0

H1: message m = 1, with a priori probability P(H1) = P1

The message is transmitted over an AWGN channel as
indicated in Figure 3.5.

In this description, the channel is formulated as a simple
vector channel and does not refer to a waveform type. For this
characterization of the channel, the noise power is specified
in terms of the one-sided noise spectral density No (watts/
hertz) and is consistent with the vector characterization
of the signal in terms of the signal energy-per-symbol E

(watt-second). Because of the zero-mean additive Gaussian
noise channel, the pdf of the received vector is*

pY y m = pN n = y−x

=
1

πNo
e− y−xm

2 No
(3.16)

Based on the MAP decision rule, m y = 0 is chosen
iff p y 0 Po > p y 1 P1 and, using the likelihood ratio
Λ y = p y 0 p y 1 , the optimum decision is formulated as

If Λ y >
P1

Po
or ln Λ y > ln

P1

Po

choose Ho o w choose H1

(3.17)

Therefore, using the pdf for Y, the LRT becomes

Λ y = exp
− y−xo

2 + y−x1
2

No

= exp
2y xo−x1 − x2o− x21

No

(3.18)

The utility of the log-likelihood ratio (LLR) is evident in
forming the LLRT test for the AWGN channel that results in
the optimum decision rule

ln Λ y =
2y xo−x1 − x2o− x21

No
> ln

P1

Po

choose Ho o w choose H1

(3.19)

Solving (3.19) in terms of the test statistic y gives the use-
ful result for the MAP decision rule, with respect to the
threshold yt, expressed as

y> yt =
xo + x1

2
+

No

2 xo−x1
ln

P1

Po

choose Ho o w choose H1

(3.20)

With equally probable messages and antipodal signaling,
that is, with P0 = P1 and X0 = −X1, the decision threshold with
respect to the origin of the x,y plane is shown in Figure 3.6a.
The effect of different a priori probabilities tends to bias the
threshold away from the message with the higher probability
of occurrence.

For this example involving binary messages, the error
probability is expressed as

Pe =Pe y y1 0 Po +Pe y yo 1 P1 (3.21)

N

m̂YXm
Modulator

–

Demodulator

; Y = X + NNN = N  0,

E  : m = 1

E   : m = 0
m = {0,1}; X=

o 2/

FIGURE 3.5 Binary message with AWGN channel.

*Gaussian pdf with zero mean and unit variance is often referred to as a nor-
mal distribution.
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Using the decision threshold yt, the individual error
probabilities are evaluated as

Pe y y1 0 =
1

πNo

yt

−∞

e− y−xo
2 Nody (3.22)

and

Pe y yo 1 =
1

πNo

∞

yt

e− y−x1
2 Nody (3.23)

Changing variables in these integrals by letting ξ=
2 No y−x and recognizing that the integral is simply

the probability integral* for the Gaussian pdf results in the
expressions

Pe y y1 0 =
1

2π

2 No yt −xo

−∞

e− ξ
2 2dξ

= erf∗
2
No

yt −xo

(3.24)

Pe y yo 1 =
1

2π

∞

2 No yt −x1

e− ξ
2 2dξ

=
1

2π

− 2 No yt −x1

−∞

e− ξ
2 2dξ

= erf∗ −
2
No

yt−x1

(3.25)

Upon evaluating 2 No yt −x for each message state,
it is found that

2
No

yt −xo = −
2
No

xo−x1
2

−
No ln P1 Po

2 xo−x1
(3.26)

2
No

yt −x1 =
2
No

xo−x1
2

+
No ln P1 Po

2 xo−x1
(3.27)

and substituting these results into (3.24) and (3.25) gives

Pe y y1 0 = erf∗ −
2
No

xo−x1
2

−
No ln P1 Po

2 xo−x1

= erfc∗
2
No

xo−x1
2

−
No ln P1 Po

2 xo−x1
(3.28)

Pe y yo 1 = erf∗ −
2
No

xo−x1
2

+
No ln P1 Po

2 xo−x1

= erfc∗
2
No

xo−x1
2

+
No ln P1 Po

2 xo−x1
(3.29)

Defining the distance between the two modulated signals
as d = xo−x1 these results simplify to

Pe y y1 0 = erfc∗
d2

2No
1−

No ln P1 Po

d2

2

(3.30)

Pe y yo 1 = erfc∗
d2

2No
1 +

No ln P1 Po

d2

2

(3.31)

A particularly simple expression results for the ML detec-
tion case with P1 = P0 = 1/2. In this case, the conditional-error
probabilities given by (3.30) and (3.31) are equal and the
total-error probability becomes

ML decision rule (P0 = P1)

Detection processing

0

EX1 = –

•

EX0 =

Decision
boundary

(a)

(b)

m̂ = 1

m̂ = 0

φ(t)

y(t) T

0
ʃ( )dt

> yt 

≤ yt

•

FIGURE 3.6 Optimum decision boundary for binary detection
processing.

*The notation erf∗(x) for the probability integral is used by Van Trees, and
Section 3.5 examines the relationship to several other conventional defini-
tions of the error function.
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Pbe =Pe = erfc∗
d2

2No
ML decisions (3.32)

where Pbe denotes the bit-error probability resulting from the
binary message source, that is, each message represents a
sequence of binary information bits. Recall that the modula-
tor being considered in this example corresponds to xo = E

and x1 = − E so the squared distance is d2 = 4E, where the
energy represents the energy-per-bit (Eb), and (3.32) is
expressed as

Pbe = erfc∗
2Eb

No
=
1
2
erfc

Eb

No
(3.33)

The relationship to the complementary error function erfc
(•) is discussed in Section 3.5. The argument Eb/No is the
signal-to-noise ratio measured in a bandwidth equal to
the data rate Rb = 1/Tb.

An interesting variation of the modulator can be examined
by representing the squared distance in terms of the normal-
ized correlation coefficient (ρ) between the two modulated
messages as [2]

d2 = x2o + x
2
1−2ρ xo x1 (3.34)

where ρ ≤ 1 and ρ is defined as

ρ=
xox1
xo x1

(3.35)

Upon using these results with xo = x1 = Eb the bit-
error probability becomes

Pbe = erfc∗
Eb 1−ρ

No
(3.36)

When ρ= −1 the modulated signals are antipodal as in the
preceding example; however, for ρ= 0 the signals are orthog-
onal and the bit-error probability is degraded by 3 dB as
seen from

Pbe = erfc∗
Eb

No
=
1
2
erfc

Eb

2No
ρ = 0 (3.37)

The bit-error probability is plotted in Figure 3.7 as a
function of the signal-to-noise ratio Eb/No, expressed in
dB, for antipodal and orthogonal signaling.

3.3 INFORMATION AND CHANNEL CAPACITY

In this section a quantitative definition of information is intro-
duced [1] and applied to a data source and, after passing
through a discrete memoryless channel (DMC), the informa-
tion content at a data sink is evaluated. The DMC channel is
shown in Figure 3.8 and is characterized as having a fixed
number of input and output letters Xi and Yi: i = 0, …,
I − 1; j = 0,…, J – 1 with source probabilities PX(xi) and tran-
sitions from xi to yi defined in terms of the conditional prob-
abilities PY|X(yj|xi). The conditional probabilities of the source
data given the sink data are the a posteriori probabilities,
denoted as PX|Y(xi|yj); these a posteriori probabilities are the
performance measures to be optimized for i = j. The sink
probabilities PY(yi) are of ancillary interest in the application
of Bayes rule.

With the information content of the source data character-
ized in terms of the self-information and average self-
information or source entropy, the remaining task is to define
and characterize similar measures of information at the com-
munication receiver or data sink when the source data is
passed through the channel. The DMC channel is memory-
less, in that, each channel use of a source letter xi is statisti-
cally independent of all the source letter uses. An
example application of a DMC channel is the time and ampli-
tude sampling of an analog signal s(t) such that t = iΔTwhere
ΔT represents the discrete channel-use interval and the
finite number of discrete amplitudes samples, ΔAi, are
represented by source letters xi = f(ΔAi).
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FIGURE 3.7 Bit-error performance for antipodal and orthogonal
binary signaling.
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FIGURE 3.8 Discrete memoryless channel.
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The binary symmetric channel (BSC) channel, shown in
Figure 3.9, is a special case of the DMC channel that uses
binary input and output data, that is, the discrete amplitudes
during each channel use have the form xi = {bi}: i = 0,1 with
the natural bit mapping (b0, b1) = (0,1). In this case, the
conditional probabilities PY|X(yi|xi) represent the channel
transition probability defined as PY|X (yi|xi) = ε when j i
and 1 − ε when j = i.

The discrete-time and amplitude analog signal samples,
described earlier, can be applied to the BSC channel by quan-
tizing the source samples into M = 2K discrete binary levels
every ΔT seconds and then mapping each of the binary digits
into a serial binary data sequence representing all of the
discrete-time source data samples. This technique is referred
to a pulse code modulation (PCM) and the resulting bits are
applied to the BSC channel as though originating from a
binary data source.

The BSC channel capacity is defined as the maximum
average mutual information between the source and sink
data maximized over the a priori probabilities, PX(xi). In
Section 3.3.1 the capacity of the BSC channel is evaluated
using a binary source, and in Section 3.3.2 the results
are extended to include an M-ary source data. This
section concludes by examining Shannon’s capacity limit
for coded and uncoded waveforms using the Gaussian chan-
nel model.

3.3.1 Binary Symmetric Channel with Binary
Data Source

Consider a binary data source X(xi) consisting of one infor-
mation bit-per-channel use corresponding to K = 1 and
M = 2. In the case xi = {bi}: i = 0,1 with the natural bit
mapping (b0, b1) = (0,1). The self-information contained in
each bit is defined as

IX xi ≜ log2 1 P xi self-information

= − log2P xi
(3.38)

where the base-2 logarithm is used specifically to denote
binary data in bits of information,* that is, K = 1 binary bit
corresponds to M = 2K = 2 bit combinations giving rise to
log2(2) = 1 bit of information. Note that (3.38) expresses
the uncertainty of the source data, in that, for P(xi)
approaching 1 the uncertainty, IX(xi), is nearly 1 and as
P(xi) approaches 0 IX(xi) increases indicating more uncer-
tainty. Because the source will generate either a binary 0
or 1, it follows from the total probability law that P(x0 = 0) +
P(x1 = 1) = 1 so P(x0 = 1) = 1 − P(x1 = 0). Figure 3.10 shows
the self-information associated with each bit for 0 ≤ P(x1 =
1) ≤ 1, and it is seen that each source-bit conveys one bit of
information when each source-bit is equally probable, that is,
when P(x0 = 1) = P(x1 = 0) = 1/2.

The average self-information is defined as the entropy of
the source and is given by

HX ≜E IX xi

= −
1

i= 0

P xi log2P xi average self-information

(3.39)

As an example, suppose that a binary source generates the
binary sequence xi = {0,1) and that it is required to evaluate
the entropy of the source data for P(x1) = q: 0 ≤ q ≤ 1. In this
case, M = 2 so (3.39) is evaluated as

HX = − 1−q log2 1−q −qlog2 q (3.40)
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FIGURE 3.9 Binary symmetric channel.
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FIGURE 3.10 Self-information associated with one source bit.

*Any logarithmic base can be used; however, base 2 results in the informa-
tion expressed in terms of bits. If the natural logarithm is used, then the infor-
mation is expressed in nats where there are ln2 = 0.693 nats/bit. To change
between logarithmic bases use: loga(x) = logb(x)/logb(a).
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This result is shown in Figure 3.11 and verifies that the
maximum average self-information or maximum entropy is
one bit and occurs when the source bits are equally probable,
that is, when q = 1/2.

The mutual information corresponding to the source data
xi and channel output or sink data yj is defined as

IX,Y xi,yj ≜ log2
PX,Y xi,yj
PX xi PY yj

mutual information

(3.41)

The mutual information can also be expressed in terms of
the channel conditional transition probabilities between the
sink and source data with the result

IY ,X yj,xi = log2
PY X yj xi
PY yj

(3.42)

Because IY ,X yj,xi = IX,Y xi,yj the probability space
notation in (3.42) is changed to be consistent with the condi-
tioning. The average mutual information is defined as

IY ,X ≜
i, j

PY ,X yj,xi IY ,X yj,xi

average mutual information
(3.43)

where the subscript ranges are i, j = 0,1. Substituting (3.42)
into (3.43) with the change in notation gives

IY ,X =
i, j

PY X yj xi PX xi log2
PY X yj xi

ℓ
PY X yj xℓ PX xℓ

(3.44)

where

PY yj =
ℓ

PY X yj xℓ PX xℓ (3.45)

An alternate solution, and an easier solution to evaluate, is
obtained by conditioning the mutual information, expressed
by (3.41), on the sink data with the result

IX,Y xi,yj = log2
PX Y xi yj
PX xi

= IX xi − IX Y xi yj

(3.46)

Using this result the average mutual information becomes

IX,Y =HX −HX Y (3.47)

where the average self-information of the source or the source
entropy is given by (3.39) and the conditional entropy of the
source given the sink data is evaluated as

HX Y ≜ −
1

i, j= 0

PX,Y xi,yj log2 PX Y xi yj

= −
1

i, j= 0

PY X yj xi PX xi log2 PX Y xi yj

(3.48)

Evaluation of (3.48) in terms of the source probability q
and the BSC channel transition error probability ε results in

HX Y = − 1−ε log2 1−ε −εlog2 ε (3.49)

This result shows that, for binary source data, the condi-
tional entropy of the BSC is independent of the a priori prob-
abilities P(xi).

* The channel capacity is defined as the
maximum average mutual information between the source
and sink data maximized with respect to the a priori source
data probabilities and is expressed as

C1 ≜ max
PX xi

IY ,X

= max
PX xi

HX −HX Y channel capacity
(3.50)

Referring to Figure 3.11, the maximum source entropy,
HX, corresponds to PX(xi) = 1/2 i and, using (3.49) for
the conditional entropy, the capacity of the BSC channel is
evaluated as

C1 = 1− 1−ε log2 1−ε −εlog2 ε (3.51)
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FIGURE 3.11 Source entropy or average self-information of
Figure 3.10.

*In the next section it is shown that this is also true for M-ary source data.
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This result is plotted in Figure 3.12 as a function of the
channel error. Referring to Figure 3.11 the maximum condi-
tional entropy occurs under the condition ε = 1/2 correspond-
ing to the most uncertainty in the received data. Not
surprisingly, this also corresponds to condition for the least
amount of information through the channel giving rise to
the minimum channel capacity. The conditions correspond-
ing to the minimum conditional entropy, that is, ε = 0
and 1, also correspond to the maximum channel capacity.
While the definition of capacity does not distinguish between
correct and incorrect data, if the data is known to be com-
pletely incorrect, ε = 1, then a correct decision can be made
with certainty by simply reversing the decision. In practice,
the bit-error probability of an uncoded waveform will range
between 1/2 and 1.0 as the signal-to-noise ratio increases
from −∞ to∞, thus limiting the practical range of the abscis-
sas in Figure 3.12.

3.3.2 Binary Symmetric Channel with M-ary
Data Source

In this section the channel capacity is evaluated when K
binary digits of source data are transmitted during each
channel use. For an arbitrary integer K this corresponds to
xi = {biK−1, …, bi1, b

i
0}: b

i
k (1, 0), k = 0, …, K − 1 where

i = 0, …, M − 1 and M = 2K. By convention the least signif-
icant bit, b0, is on right-hand side with the index i corre-
sponding to the natural order of the binary bits, that is, x0
corresponds to = {0,…,0, 0), x1 corresponds to (0,…,0,1),
and so on. The average self-information of theM-ary source
data involves averaging over all of the M source data
sequences and is computed as

HX = −
M−1

i= 0

P xi log2P xi (3.52)

Equation (3.52) is evaluated in terms of the source-bit
probabilities P bik = 1 = q and P bik = 0 = 1−q with

P xi =
K−1

k = 0

P bik (3.53)

It is easy to show (see Problem 4a and 4b) that the a priori
probabilities of the M source sequences P(xi) are not all
equal and that the summation of P(xi): i = 0, … <M − 1 is
unity, that is,

M−1

k = 0

P xi = 1 (3.54)

so that each channel use necessarily corresponds to one of the
source sequences. The thrust of this analysis and Problem 4 is
to demonstrate that when the binary (1,0) source data prob-
abilities are equal, that is, when q = 1 − q = 1/2 the source
probabilities are identical and equal to P(xi) = 1/M i and that
this condition results in the maximum source entropy.

Substituting (3.53) into (3.52) and summing over the
M source sequences using the source bit probabilities q and
1− q results in the following expression for the source entropy:

HX = −
K

ℓ = 0

K

ℓ
qℓ 1−q K−ℓlog2 qℓ 1−q K−ℓ (3.55)

where the first term in the brackets denotes the binomial coef-
ficients. By differentiating (3.55) with respect to q and setting
the result equal to zero, the maximum source entropy is found
to occur when q = 1/2 and the result is

HX =
K

2K

K

ℓ = 0

K

ℓ
=K maximum when q =

1
2

(3.56)

From (3.55), the unique source bit a priori probabilities are

P xℓ = qℓ 1−q K−ℓ
ℓ = 0,…,K−1 (3.57)

and the number of sources with probability P(xℓ) corresponds
to the value of the binomial coefficient given in (3.56).
With q = 1/2, (3.57) is P xℓ = 1 2K = 1 M ℓ and, con-
sidering the duplicated occurrences, this corresponds
to P xi = 1 M i.

The conditional entropy of the source data, given the sink
data, is evaluated using (3.48) by summing over theM source
and sink sequences so that

HX Y = −
M−1

i, j= 0

PY X yj xi PX xi log2 PX Y xi yj (3.58)
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FIGURE 3.12 Channel capacity of BSC (K = 1, PX(xi) = 1/2).
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The conditional entropy is evaluated using the same
rationale as in the evaluation of the source entropy with
the source-bit probabilities P(bik = 1) = q and P(bik = 0) =
1 – q and the transition probabilities ε and (1 − ε) correspond-
ing the BSC channel. Performing the summations in (3.58)
with the appropriate source and sink sequences xi and yj
the conditional entropy is evaluated as

HX Y = −
M−1

i= 0

PX xi
K

ℓ = 0

K

ℓ

εℓ 1−ε K−ℓlog2 εℓ 1−ε K−ℓ

= −
K

ℓ = 0

K

ℓ

εℓ 1−ε K−ℓlog2 εℓ 1−ε K−ℓ

(3.59)

The final expression in (3.59) uses (3.54) so the condition
entropy is independent of the a priori probabilities; this is
explicit in (3.49) for the binary source case. Using (3.56)
and (3.59) the average mutual information becomes

IY ,X =K−
K

ℓ = 0

K

ℓ
εℓ 1−ε K−ℓlog2 εℓ 1−ε K−ℓ (3.60)

The capacity over the BSC with an M-ary data source is
evaluated as

CK ≜ max
P xi

IY ,X

=K−
K

ℓ = 0

K

ℓ

εℓ 1−ε K−ℓlog2 εℓ 1−ε K−ℓ
(3.61)

Evaluation of (3.61) for ε = 1 and 0 using the limiting
value xlog2(x) = 0: lim x 0 results in the channel capacity
C =K bits/use and the capacity at ε = 1/2 is found to be zero.

As an example application, consider the BSC channel
with PX(xi) = 1/M: i = 0,…,M − 1. In this case the conditional
entropy HX|Y and the capacity are plotted in Figures 3.13 and
3.14, respectively. The maximum conditional entropy occurs
under the condition ε = 1/2 corresponding to the most uncer-
tainty in the received data. Not surprisingly, this also corre-
sponds to the condition for the least amount of information
through the channel giving rise to the minimum channel
capacity. The conditions corresponding to the minimum
conditional entropy are ε = 0 and 1 that also correspond to
the maximum channel capacity. Although the definition of
capacity does not distinguish between correct and incorrect
data, if the data is known to be completely incorrect, ε = 1,
then a correct decision can be made with certainty by simply
reversing the results. In practice, the bit-error probability
will range between 1/2 and 1.0 as the signal-to-noise ratio

increases from −∞ to ∞, thus limiting the practical range
of the abscissas in Figures 3.13 and 3.14.

3.3.3 Converse to the Noisy-Channel
Coding Theorem

The converse to the noisy-channel coding theorem has a very
practical application that will be developed in Section 3.3.5.
The application of interest is the characterization of the chan-
nel capacity for constrained data sources. That is, unlike
Shannon’s unconstrained capacity limit, in this section, the
channel capacity for a specified waveform modulation and
coding is developed for the BSC channel. The converse to
the coding theorem is related to concepts involving rate-
distortion theory and this introductory description focuses
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FIGURE 3.13 Conditional entropy of BSC for K = 1, …, 4
(PX(xki) = 1/M).
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exclusively on the BSC channel and follows the more general
and thorough description by Gallager [3].

The distortion measure for the BSC channel with source
i = 0, …, M − 1 and sink j = 0, …, M − 1 is denoted as d
(i,j) and is assigned a numerical value depending on the cost
of the association between source xi and sink yj. For example,
on the BSC channel with transition probability PY|X(yi|xi),
the distortion measure assignment d(i,j) = 0 if i = j and =1
if i j. This notation indicates that the cost is zero for a cor-
rect decision and 1 for each incorrect decision. Assigning
costs to various statistical decisions is a common practice
in the performance optimization of both communications
and radar system designs [4, 5]. The average distortion is
defined as

d≜
M−1

i, j= 0

PX xi PY X yj xi d i, j (3.62)

and the rate-distortion function of the source relative to a
given distortion measure d is defined as

R d ≜ min
P yj xi d ≤ d

IY ,X bits source symbol (3.63)

where IY,X is the average mutual information given by (3.60)
for the BSC and R(d ) is the source rate relative to d with

dmax = min
j

i

P xi d i, j (3.64)

The rate-distortion function is a measure of the source
capacity and, after considerable manipulations, is evaluated
by Gallager (Reference 3, pp. 457–469) for a discrete mem-
oryless source as

R d ≥K−d log2 d − 1−d log2 1−d −d log2 M−1

=C

(3.65)

where d is the lower bound on the M-ary source bit-error
to achieve the capacity C . Equation (3.65) represents the
converse to the channel coding theorem for a discrete mem-
oryless source and the equality condition applies when

d ≤ M−1 min
i
PX xi (3.66)

As stated previously, (3.65) and (3.66) will be applied in
Section 3.3.5 to evaluate the theoretical capacity limits for
multilevel pulse amplitude modulation (MPAM) and multi-
level quadrature amplitude modulation (MQAM) modulated
waveforms.

3.3.4 Shannon’s Channel Capacity Limit

The communications capacity through an AWGN channel is
established by Shannon’s classical formula [6]

C =W log2 1 +
Ps

N
bits second (3.67)

where W is the one-sided bandwidth of the channel, Ps is the
signal power, N =NoW is the total noise power, and No is the
one-sided noise power spectral density. Shannon’s capacity
theorem states that, through proper coding and decoding
design, error-free transmission can be achieved through
the AWGN channel for a communication source data rate
Rb <C where C is the capacity of the channel in bits/second
and that error-free transmission cannot be achieved for
Rb >C.

Shannon’s capacity limit applies to an unconstrained
channel use, that is, it is not constrained by a particular type
of waveform modulation. Although this channel capacity is
unattainable in practice, except under the most ideal of
circumstances,* there are a number of coding techniques that
are used together with waveform modulations that come very
close to Shannon’s limit. For example, M-ary coded wave-
forms and waveforms employing convolutional and block
coding demonstrate the trend toward Shannon’s capacity
limit. However, the most notable advances toward Shannon’s
capacity limit have been in the area of TCs, turbo-like codes,
and low-density parity-check (LDPC) coding techniques; TC
and LDPC codes are discussed in Sections 8.12 and 8.13.
Shannon’s formula is used in Section 3.3.5, together with
the converse to the coding theorem, to establish the capacity
limit for various types of waveformmodulations with coding.

Shannon’s capacity limit is interpreted in two distinct
ways: the bandwidth limited interpretation and the power
limited interpretation. In the bandwidth limited regime, the
available channel bandwidth W is fixed and the capacity
increases logarithmically with an increase in the signal power
Ps, that is, the signal power must increase exponentially with
the channel capacity. In this regime, the channel bandwidth is
on the order of the information rate so improvements in the
bit-error probability is limited to increasing the signal power,
providing waveform coding, within the confines of the chan-
nel bandwidth, and demodulator equalization; the wire-line
telephone channels are classical examples of fixed bandwidth
channels. In the power limited regime, the signal power
is a premium commodity and bandwidth abounds, that is,
W Rb. In this case, the available bandwidth is used to pro-
videM-ary waveform coding and FEC coding to improve the

*For example, when using spectral root-raised-cosine shaping, the ideal
Nyquist bandwidth of Rs/2 is obtained only if the corresponding impulse
response is infinite in duration. Placing practical constraints on the impulse
response will result in ISI thus degrading the performance.
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bit-error probability. The satellite communication channel is
a classic example of operating in the power limited regime
where power is very costly. Although Shannon’s capacity
theorem provides performance limits in both regimes, in
the power limited regime error-free communications is
approached with increasing bandwidth.

Shannon’s capacity in the bandwidth-limited region is
evaluated by normalizing (3.67), by the bandwidth W to
obtain a measure of the channel efficiency expressed as

η=
C

W

= log2 1 +
Ps

NoW
bits second hertz or bits use

(3.68)

where γW = Ps/NoW is the signal-to-noise ratio measured in a
bandwidth of W hertz. In this regime, the bandwidth W is
fixed and the signal-to-noise ratio is increased by increasing
the signal power Ps. Figure 3.15 shows the channel efficiency
as defined by C/W as a function of γW. In this case, the num-
ber of degrees of freedom, based on the Nyquist bandwidth,
is Nd = 2WT where T is the duration of the channel use.
Shannon’s theoretical capacity, expressed by (3.67), applies
for Nd = 2 degrees of freedom so W = 1/T is the bandwidth
occupied by each channel use. For example, to transmit
4 bits/s/Hz through an AWGN channel requires a minimum
signal-to-noise ratio of 12 dB using 2 degrees of freedom.

The BSC channel capacity can be applied when the
channel errors result from AWGN simply by substituting
ε = Pbe where

Pbe = erfc∗
d2

2No
(3.69)

The solid line plots in Figure 3.16 show the results forK =
1, 2, and 3 bits-per-use (or bits-per-symbol) when plotted as a
function of the signal-to-noise ratio Eb/No and interpreted as
representing binary phase shift keying (BPSK), QPSK, and
8PSK waveform modulations, respectively. BPSK modula-
tion uses only one of the two orthogonal dimensions in phase
space, that is, only one channel of the in-phase and quadrature
(I/Q) baseband channels. Therefore, the fundamental capac-
ity is limited to one half that of higher order phase modulated
waveforms like QPSK and 8PSK that use both quadrature
channels. The dashed curves in Figure 3.16 represent
Shannon’s modulation independent or unconstrained maxi-
mum capacity for one- and two-dimensional (1D and 2D)
systems; Shannon’s capacity limit for coded modulation
waveforms is discussed in Section 3.3.5. The detection loss
of theM-ary channel capacity relative to Shannon’s capacity
measured at Eb/No = 2 dB is about 2.2 dB for each dimension.

With multiphase shift keying (MPSK) modulation, prior to
saturation at the capacity limit, the parameter K corresponds
to a relatively high bit-error probability condition so the gray
and random decoding formulas* for converting symbol errors
to bit errors are not accurate. Consequently, the bit-error per-
formance results are obtained using Monte Carlo simulations
to determine the 8PSK capacity performance in Figure 3.16.

In the power-limited regime, the signal power is held con-
stant and the bandwidthW is allowed to increase without limit.
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FIGURE 3.15 Shannon’s theoretical channel efficiency limit.
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FIGURE 3.16 MPSK capacity of AWGN channel for K = 1, 2, 3
(PX(xi) = 1/M).

*The formulas are discussed in Section 4.2.1 in connection with MPSK
detection.
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In this case, carrier-to-noise power density ratio, Ps/No, is
constant and the capacity is evaluated as

C = lim
W ∞

W log2 1 +
Ps

NoW

= lim
W ∞

W log2 e ln 1 +
Ps

NoW

≈ lim
W ∞

W log2 e
Ps

NoW

= 1 443
Ps

No

(3.70)

This approximation requires that Ps NoW ≤ 1* so the com-
munication is in a very low signal-to-noise environment. In
this case, as the modulation coding uses more and more band-
width the capacity increases linearly with the carrier-to-noise
density ratio so bandwidth expansion through the use of cod-
ing is an effective way to approach the channel capacity limit.
This result is based on a value of signal-to-noise ratio less
than unity which is the case in a jamming environment so
spread-spectrum is an efficient use of bandwidth when the
communication is being jammed.

In a period of time equal to T seconds, the maximum num-
ber of information bits that can be communicated under low
signal-to-noise conditions is given by

CT = 1 443
E

No
= 1 443γb

T

Tb
bits (3.71)

where γb =Eb No is the signal-to-noise ratio in the source
information or bit bandwidth 1/Tb. Equation (3.71) can be
viewed as having dimensions of bits/second/hertz in a band-
width of W 1/THz so CT is also a measure of bandwidth
efficiency. The rate of the coding, including the waveform
symbol mapping, is defined as r = T/Tb Rb/W 1.

A commonly used performance measure is the ratio of
the energy per information bit to the noise density, Eb/No,
required to achieve a specified bit-error probability Pbe. Upon
letting C = Rb, the channel efficiency is expressed as

Rb

W
= log2 1 +

Eb

No

Rb

W
bits second hertz (3.72)

Defining the channel coding rate as† r = Rb/W and solving
(3.72) for Eb/No results in

Eb

No
=
2r −1
r

(3.73)

This result is plotted in Figure 3.17 with Eb/No as the
independent variable. The region r ≥ 1 represents the band-
width-limited region corresponding to modulation wave-
forms without coding like MPSK, MPAM, and MQAM.
Typically M = 2K where K is the number of source bits
mapped into an M-ary signal amplitude and phase constella-
tions. The channel efficiency of these modulated waveforms is
included in Figure 3.17 corresponding a bit-error probability of
Pbe = 10

−5; these performance data points are established in
Chapters 4 and 6. On the other hand, the region corresponding
to r < 1 represents the power-limited region. Modulated wave-
forms having high coding gains and bandwidth requirements
apply to this region.

The Eb/No asymptote in the power-limited region is deter-
mined by letting r 0 in (3.73). Because the limit is indeter-
minate, the application of L’Hospital’s rule results in

Eb

No limit

= ln 2 2r r 0

= 0 693 = −1 59 dB

(3.74)

This is the theoretical limit in Eb/No for error-free commu-
nications and is the target performance limit for coded
waveforms. For example, for Eb/No > −1.59 dB there exists
a coded waveform that will result in an arbitrarily small error
probability. Conversely, for Eb/No < −1.59 dB there is no
coding structure that will provide for an arbitrarily small error
probability. Until the discovery of TCs [7] in 1993 the
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FIGURE 3.17 Theoretical channel efficiency limit at Pbe = 10−5

(MQAM (squares), MPAM (circles), MPSK (triangles), M-ary
coded BPSK (diamonds)).

*In general, the approximation requires that | Ps/NoW | ≤ 1 with Ps/NoW −1;
however, in this case, Ps/NoW ≥ 0.
†This code rate can be viewed as the rate rc = k/m of a block code with k infor-
mation bits and m code bits with m – k parity bits.
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practical limit was on the order of 2–3 dB; however, with
turbo coding Eb/No ratios below 0 dB have been achieved.
Shannon’s capacity limit does not address the complexity
associated with the decoding of low-rate codes; however,
prior to 1993 it was thought to be prohibitive; this notion
was also overturned through iterative decoding, a hallmark
of turbo decoding, resulting in reasonable computational
complexity. As mentioned previously, TC, TC-like codes,
and LDPC codes are discussed in Chapter 8.

3.3.5 Capacity of Coded Modulated Waveforms

The channel capacity of an M-ary data source with con-
strained waveform modulation, for example, MPAM, and
MQAM, with coding over the BSC channel is evaluated
using the rate-distortion function characterized by (3.65) with
source bit-error probability corresponding the channel capac-
ity given by (3.66). For the BSC channel, the maximum
capacity occurs when PX(xi) = 1/M i so that the equality
condition of (3.65) applies when d ≤ M−1 M. Therefore,
using d = Pbe where Pbe is the bit-error probability of the
waveform modulation of interest corresponding to a pre-
scribed signal-to-noise ratio Eb/No. With these conditions
C is expressed as

C =K−Pbelog2 Pbe − 1−Pbe log2 1−Pbe −Pbelog2 M−1

(3.75)

The overall source rate r is defined as the ratio of the sym-
bol rate (Rs) to the source bit-rate (Rb) to the transmitted,
that is,

r≜
Rs

Rb
= rcK (3.76)

The second equality includes the FEC coding rate rc = Rcb/
Rbwhere Rcb is the rate of the FEC code bits and K = Rs/Rcb is
number of code bits mapped into a transmitted symbol.*

Figure 3.18 shows the relationship between the source coding
functions.

For this evaluation Shannon’s capacity, expressed in terms
of Eb/No, r, Nd and normalized by the bandwidth W = Rb/r,
becomes

C =
Nd

2
log2 1 +

2r
Nd

Eb

No
(3.77)

where Nd = 1 and 2 corresponding to the degrees of freedom.
For example, in phase space, Nd = 1 corresponds using one of
the quadrature phase channels as in BPSK modulation and

Nd = 2 corresponds to using both the I and Q channels as
in QPSK modulation.

For reliable communication, the code rate rc must satisfy
the condition

rc ≤
C

C
=
log2 1 +

2r
Nd

Eb

No

2C Nd
(3.78)

where C is given by (3.65). Solving (3.78) for Eb/No under
the equality condition results in

Eb

No
=
Nd

2r
22rcC Nd −1 (3.79)

This result is plotted in Figure 3.19a for coded binary
PAM (2PAM) with K = 1, M = 2 and, because pulse ampli-
tude modulation (PAM) only uses one dimension of the car-
rier phase,Nd = 1. In this figure, and the following figures, the
performance is plotted using the FEC code rate rc = r/K. The
uncoded performance, shown as the dashed curves in the fol-
lowing figures, is included for comparison and is evaluated in
Chapter 6. The results show the minimum Eb/No that can be
obtained for a given code rate r and when r = 0 the FEC cod-
ing bandwidth is infinite and corresponds to Shannon’s limit
of −1.59 dB. For this special case, the performance is identi-
cal to BPSK. Figure 3.19b shows the performance results
using 4PAM with K = 2, M = 4, and Nd = 1. In this case,
the theoretical limiting Eb/No values are considerably higher
than with 2PAM coded modulation.

Figure 3.20 shows the performance of coded 4QAM and
8QAM with K = 2 and 3 and the limiting performance with
r = 0 corresponds to the Shannon limit. The 4QAM case is
unique, in that, it also corresponds to the performance of
coded QPSK modulation. The uncoded 8QAM performance
curve, shown dashed, is based on a rectangular rest-point
constellation that is not an optimum configuration.

Figure 3.21 is a summary of the minimum Eb/No as a func-
tion of the codulator rate r =Krc with modulation waveforms
using Nd = 1 and 2 degrees of freedom. These maximum
values correspond to Pbe = 0 so that C = K in (3.79). The lim-
iting performance for r = 0 is Shannon’s limit of −1.59 dB.
Because rc ≤ 1, values of r > 1 correspond to M-ary modu-
lated waveforms with M > 2.

Rcb RsRb

To power
amplifier

Source
data Symbol

mapping
Modulator

rc

FEC
coding

K

r

FIGURE 3.18 Source data coding rates.

*Sergio Benedetto and Guido Montorsi refer to the rate r as the codula-
tor rate.
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3.4 BIT-ERROR PROBABILITY BOUND ON
MEMORYLESS CHANNEL

The analysis in Sections 3.3.1 and 3.3.2 characterizes the the-
oretical channel capacity of memoryless BSC channels in
terms of the average mutual information as expressed in
(3.61) for M-ary modulated waveforms. In Section 3.3.5
the theoretical limit on Eb/No as a function of the code rate
(rc) is examined for coded PAM and quadrature amplitude
modulation (QAM) modulated waveforms. The results indi-
cate that as rc approaches zero the limiting Eb/No approaches
Shannon’s limit of −1.59 dB. However, these results do not
establish the practical issue regarding the achievable capacity
of a particular modulated waveform. An approach involving
the computational cutoff rate (Ro) [8–11], defined in terms of
the memoryless channel transition probabilities pY|X(yj|xi)
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introduced in Section 3.3, is used to examine this question.*

For example, using a n-bit block coded waveform with n
information bits with code rate Rc = rc = n /n, the upper bound
on the bit-error probability for maximum-likelihood decod-
ing is expressed as

Pbe ≤ 2
−n Ro −Rc (3.80)

Equation (3.80) indicates that if Rc < Ro the bit-error prob-
ability can be made arbitrarily small by increasing the code
block size, otherwise an irreducible error event occurs.

The value of Ro for the BSC channel is listed in Table 3.1
[12] for hard- and soft-decision detection of coherent BPSK
and for binary, constraint lengthK, convolutional coding; this
convolutional coded case requires that Ro/Rc > 1 to achieve
an arbitrarily small bit-error probability with increasing con-
straint length.

The computational cutoff rate is also applied in the design
and evaluation of antijam (AJ) waveforms to counter jam-
ming strategies [13–16]. In these descriptions the computa-
tional cutoff rate is conveniently characterized, in terms of
the decoding metric D,M = 2k the modulation symbol states,
and the code sequences of length n bits. The average bit-error
bound for pairs of code sequences of length n with randomly
selected symbols is expressed as [17]

Pbe ≤
1 + M−1 D

M

n

(3.81)

For (3.81) to conform to (3.80), such that Pbe ≤ 2−nRo , the
computational code rate is defined as

Ro ≜ log2
M

1 + M−1 D
(3.82)

Upon solving (3.82) for D results in

D=
M2−Ro −1
M−1

(3.83)

The upper bound on the bit-error probability is defined in
terms of parameter D as

Pbe ≤G D

=D 2 with ML detection
(3.84)

For coherent BPSK modulation, corresponding to M = 2,
with the AWGN channel and hard-decision detection, the
decoding metric is computed as [17]

D= min
λ ≥ 0

εeλ + 1−ε e−λ = 4ε 1−ε

BPSK hard-decision detection
(3.85)

Similarly, with soft-decision detection,

D = min
λ ≥ 0

e−2λEb + λ2EbNo = e−Eb No

BPSK soft-decision detection
(3.86)

For these binary cases, Ro is computed as

Ro ≜ log2
2

1 +D
bits symbol (3.87)

and (3.85) and (3.86) correspond to the respective conditions
in Table 3.1.

The upper bound on the decoded bit-error probability of
the constraint length K, convolutional codes is expressed in
terms of Ro as [11, 16]

Pbe <
2−KRo Rc

1−2− Ro Rc −1 2 (3.88)

Equation (3.88) applies for Ro > Rc. A more general
bound, based on the channel coding and demodulator deci-
sion metric parameter D, is expressed as

Pbe ≤
1
2
F D (3.89)

where

F D = ∂T N,L,D ∂N N,L = 1 (3.90)

The factor of 1/2 in (3.89) applies to all ML demodulation
detection processing; typically this applies to antipodal and
orthogonal modulated waveforms. The convolutional decod-
ing function F (D) is expressed as a polynomial in D, with

Dn =Q nEb No . The polynomials inD are listed for con-

straint lengths 3 through 7 in Tables 8.29 and 8.30 for binary

TABLE 3.1 Computation Cutoff Rate for Selected
Waveforms.

Waveform Ro (Bits/Channel Use) Comments

Coherent BPSK 1− log2 1 + 4ε 1−ε
Hard-decision

detectiona

Coherent BPSK 1− log2 1 + exp
−Eb

No

Soft-decision
detectionb

aε=Q 2Eb No for BSC channel with AWGN.
bIn general, the exponent is Es/No where Es = kEb with k bits/symbol or
channel use.

*This subject is discussed in Chapter 13 in the context of signal jamming.
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convolutional codes with rates 1/2 and 1/3 and in Tables 8.31
and 8.32 for rate 1/2 convolutional codes with 4-ary and 8-ary
coding, respectively.

Wozencraft and Jacobs [18] apply the computational
cutoff rate as a measure to determine the bit-error perfor-
mance degradation with receiver quantization. In this case,
a memoryless transition probability diagram is used to char-
acterize L matched filter output levels and Q quantizer levels
(Q > L) defining the transition probabilities qℓ,q ℓ= 1,…,L;
q = 1, …, Q from which Ro is computed.

3.5 PROBABILITY INTEGRAL AND
THE ERROR FUNCTION

Evaluation of the bit-error probability for a communication
system in an AWGN channel is essential in determining
the performance in the most basic of environments. One of
the most important measures of the system performance is
the signal-to-noise ratio Eb/No required to achieve a specified
bit-error probability. This performance measure is applied to
most systems early in the design process even though the
systems are ultimately to be used in vastly different environ-
ments like band-limited channels and fading or impulsive
noise channels. One reason for the characterization of the
system performance in the AWGN channel is the simplicity
associated with mathematical evaluations and the fidelity
with which the channel noise can be implemented in the lab-
oratory or modeled in computer simulations. Another reason
is that AWGN is an underlying source of noise in almost
all systems and must, therefore, be addressed at some point
in the evaluation process. In this section various mathemati-
cal techniques are examined for describing the integral of
the Gaussian pdf and clarifying various relationships
between them and their application to system performance
evaluations.

The Gaussian pdf is completely characterized by two
parameters: the mean value (m) and standard deviation (σ)
and is expressed as

pX x =
1

2πσ
e− x−m 2 2σ2 (3.91)

A normalized form with zero mean and unit variance
is obtained by letting y = (x −m)/σ for which p(y) is
evaluated as

pY y = pX
y2

2
dx

dy

=
1

2π
e− y

2 2

(3.92)

The probability integral is defined as

P Y ≜Pr y ≤Y

=

Y

−∞

pY y dy=
1

2π

Y

−∞

e− y
2 2dy

(3.93)

The complement Pr Y < y ≤ ∞ is defined as

Q Y ≜Pr Y < y ≤ ∞

=
1

2π

∞

Y

e− y
2 2dy

(3.94)

The use of Q(Y) to denote the complement of the proba-
bility integral* is used by Wozencraft and Jacobs [19] to
characterize the bit-error probability of a communication
demodulator operating in an AWGN environment.

The error function [20, 21] and its complement are often
used in place of Q(Y) to describe the bit-error probability
performance. These functions are defined as

erf Y ≜
2
π

Y

0

e− y
2
dy and erfc Y ≜ 1−erf Y (3.95)

and are depicted in Figure 3.22 in the context of the Gaussian
pdf pY(y).

Unfortunately, there are several other definitions used for
Q(Y), erf(Y), and erfc(Y). For example, Van Trees [22] uses
the notation erf∗(•) for P(Y) and erfc∗(•) forQ(Y) and the error
function and its complement are alternately defined as

erf Y =
2

2π

Y

0

e− y
2 2dy and erfc Y = 1−erf Y

(3.96)

erfc(Y) = Area(A+C)

erf(Y ) = Area(B)

= Area(C)

2
1 erfc(Y) = Area(A)

pY (y)

CA y
–Y Y0

B

FIGURE 3.22 Depiction of error notations.

*The notationQ(Y) must not be confused with theQ-function which is a two-
parameter function used to define the error probability of a noncoherent
detector.
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In the literature these alternate definitions use identical
notations; however, to avoid confusion they are distinguished
in this text using the primed notation as in (3.96).

Using a simple substitution of variables these definitions
are found to be related as

erf Y = erf
Y

2
(3.97)

The error functions erf(Y) and erf (Y) represent the area
under the Gaussian pdf over the interval (−Y < y ≤ Y) about
the mean value so that one half of the complementary error
function corresponds to the complement of the probability
integral, that is,

Q Y =
1
2

1−erf
Y

2
=
1
2
1−erf Y = 1−erf∗ Y

=
1
2
erfc

Y

2
=
1
2
erfc Y = erfc∗ Y

(3.98)

and it follows that

P Y = 1−
1
2
erfc

Y

2
= 1−

1
2
erfc Y = 1−erfc∗ Y

=
1
2

1 + erf
Y

2
=
1
2
1 + erf Y = erf∗ Y

(3.99)

A polynomial approximation to the error function erf(Y),
defined by (3.95), is attributed to Hastings [23], and
expressed (Reference 20, Equation 7.1.26, p. 299) as

erf Y 1−e− Y
2

5

i= 1

ai
1

1 + pY

i

0 ≤Y ≤ ∞ (3.100)

where p = 0.3275911, a1 = 0.254829592, a2 = −0.284496736,
a3 = 1.421413741, a4 = −1.453152027, and a5 = 1.061405429.
Over the indicated range of Y the approximation error is |ε
(Y)| ≤ 1.5 × 10−7. Although (3.100) is used extensively in this
book to compute the error function, more current applications
use the VAX/IBM© intrinsic functions erf(x) and erfc(x) availa-
ble with 32-, 64-, and 128-bit precision [24].

ACRONYMS

ADC Analog-to-digital conversion
AGC Automatic gain control
AJ Antijam (waveform)
AWGN Additive white Gaussian noise
BPSK Binary phase shift keying

BSC Binary symmetric channel
DAC Digital-to-analog conversion (or converter)
DMC Discrete memoryless channel
DSP Digital signal processor
DSSS Direct-sequence spread-spectrum (waveform)
EHF Extremely high frequency
FEC Forward error correction
I/Q Inphase and quadrature (channels or rails)
IF Intermediate frequency
LDPC Low-density parity-check (code)
LLRT Log-likelihood ratio test
LNPA Low-noise power amplifier
LRT Likelihood ratio test
MAP Maximum a posteriori (decision rule)
ML Maximum likelihood (decision rule)
MPAM Multilevel pulse amplitude modulation
MPSK Multiphase shift keying
MQAM Multilevel quadrature amplitude modulation
PAM Pulse amplitude modulation
PCM Pulse code modulation (baseband)
PN Pseudo-noise
PSK Phase shift keying
QAM Quadrature amplitude modulation
QPSK Quadrature phase shift keying
RF Radio frequency
TC Turbo code
VLF Very low frequency

PROBLEMS

1. Show that the average conditional information or condi-
tional entropy for the BSC with binary source data given
by of (3.48) is independent of the source a priori prob-
abilities. Using this result verify mathematically that
the maximum capacity, shown in Figure 3.12, occurs
when the source a priori probabilities are equal.

2. Determine the self-information and entropy for the
source data sequences consisting of all possible combi-
nations of K = 2 bits of binary data xi = {b1,b2}: bℓ
{1,0}, ℓ = 1,2 when each bit bℓ occurs with equal prob-
ability. Express the results in both bits and nats. When
each bit bℓ occurs with equal probability, and for any
positive integer K, show that the source entropy is equal
to K bits.

3. Consider that 8-bit ASCII characters are randomly gener-
ated with equal probabilities for 1 and 0 bits. Furthermore,
each 8-bit character is preceded with a mark (b1 = 1)
start bit and is terminated with a space (b10 = 0) stop
bit. Determine the self-information associated with
each bit and the average self-information of the 10-bit
sequence.
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4. Suppose that a data source associates two bits-per-symbol,
that is, K = 2, M = 4, and xi = {b1,b2}: bℓ {1,0}, ℓ = 1,2
with the probability of each mark bit equal to P(bℓ = 1) =
q: 0 ≤ q ≤ 1.

a. Determine the probability of P(xi): i = 1, …, M in
terms of q for all 2K combinations of xi.

b. Show that
i
P xi = 1.

c. Express the average self-information in terms of q.

d. Plot a graph of HX(q) for 0 ≤ q ≤ 1.

e. What is the maximum entropy of the source data bits
and at what value of q does the maximum occur?

5. Show that IY ,X yj,xi = IX,Y xi,yj .

6. For the BSC shown in Figure 3.9, express the sink state
probabilities P(yj): j = 1,2 in terms of the source bit or a
priori probabilities P(xi): i = 1,2 and the channel error ε.
Sketch P(y1) as a function of P(x1) for ε = 0, 1/2, and 1.
Under what condition is P(yj) = P(xi)? What is the rela-
tionship between the channel transition probability
and the a posteriori probability P(xi|yj) under these
conditions?

7. Referring to (3.73) derive Shannon’s limit for the power-
limited channel, that is, shown that Eb/No = −1.59 dB as
r 0.

8. Derive the relationship between erf (Y) and erf(Y) given
by (3.97).

9. Derive the relationship between erf(Y) and erf(−Y) and
plot or sketch erf(Y) for all Y.

10. Repeat Problem 9 for erfc(Y) and erfc(−Y).
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4
PHASE SHIFT KEYING (PSK) MODULATION,
DEMODULATION, AND PERFORMANCE

4.1 INTRODUCTION

The various forms of phase shift keying (PSK) waveform
modulations are discussed in this chapter with an emphasis
on binary PSK (BPSK) and quadrature PSK (QPSK) corre-
sponding to M = 2 and 4 respectively. A significant feature
of multiphase PSK (MPSK) waveforms is that they result
in a constant envelope waveform that provides for the effi-
cient use of transmitter power amplifiers. Furthermore, they
are relatively simple to implement and provide performance
robustness with severe channel conditions like: hard limiting,
fading, impulse noise, and Doppler rate. The simplest imple-
mentations use rect(t/T) time-domain symbol shaping result-
ing in a sinc(fT) spectrum.Amajor drawbackwith the sinc(fT)
spectrum is the poor spectral containment leading to more
severe intersymbol interference (ISI) with channel filtering
and a greater sensitivity to adjacent channel interference
(ACI). The QPSK waveform and its variant offset QPSK
(OQPSK)* are unique, in that, the bit-error performance, in
terms of the energy-per-bit, is identical to that of BPSK.
The OQPSK modulation is characterized by the quadrature-
phase channel, or rail, being shifted in time by the bit duration
Tb = T 2 relative to the in-phase channel. This offsetting of
the quadrature channels provides: robustness to spectral
re-growth in a hard-limited channel; stable phase tracking
at 0 and π radians, compared to nπ/2 (n = 0, …, 3) for
QPSK, and less sensitivity to demodulator phase tacking.
The poor spectral containment associated with the rect(t/T)

symbol shaping is improved with minimum shift keying
(MSK) modulation which uses cosine symbol shaping. MSK
modulation, also referred to as fast FSK (FFSK) [1, 2], uses
offset quadrature symbols with the advantages listed above
for OQPSK.MSKwas invented in 1961 [3] and it was not until
the early 1980s that further improvements in themodulated sig-
nal spectrum were achieved with the introduction of phase
shaping over adjacent symbols using phase-shaped BPSK
(S-BPSK) [4], phase-shaped MPSK (S-MPSK), and Gaussian
MSK (GMSK).During this same timeperiod continuous phase
modulation (CPM) [5], using multiple modulation indices
(multi-h CPM), was finding widespread applications because
of the excellent spectral properties and inherent coding gain.
MSK embodies binary continuous phase FSK (CPFSK) mod-
ulation and can be detected using a much simpler FSK demod-
ulator, albeit with a loss in performance.

In the following sections, the various forms of MPSK are
examined focusing primarily on the modulator and demodu-
lator implementations and the spectral characteristics. The
implementation of BPSK, QPSK, OQPSK, and MSK is
examined using conventional baseband I/Q channel descrip-
tions. These results lead to the generalized implementations
involving CPM as discussed in Section 4.2.5 and Chapter 9.
Based onmore generalized implementations ofMSK, GMSK
and sinusoidal MSK (SMSK) are examined with a focus on
CPM. The notion of continues-phase frequency modulation
(CPFM) is introduced and compared to CPM modulation.

The modulations mentioned above all provide a constant
amplitude-modulated signal with improvement in the basic
sinc(fT) spectral response as more exotic phase shaping is*Offset QPSK is sometimes referred to as staggered QPSK (SQPSK).
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applied to the symbol phase transitions. These approaches to
spectral containment are successful in reducing spectral side-
lobes at frequencies | f | > Rs Hz but have little impact for | f | ≤
Rs. However, an improvement in the spectral characteristics
is obtained by using root-raise-cosine (RRC) shaping* in the
frequency domain. With spectral RRC [6] (SRRC) shaping,†

the signal spectrum is confined, under ideal conditions, to the
bandwidth Rs 1 + α 2 where α is the spectral shaping, or
excess bandwidth, factor. The range of α is between 0 and
1; when α = 0 the waveform is, in theory, completely con-
fined to the Nyquist bandwidth Rs/2. The practical aspects
of the frequency containment of SRRC modulation are dis-
cussed in Section 4.3.2. The penalty in using RRC wave-
forms is that they result in amplitude modulation (AM) and
require a linear power amplifier (PA). When operating with
a nonlinear PA, the power must be backed off to operate in
the linear range with an associated power backoff loss. The
application of SRRC shaping to MPSK-modulated wave-
forms is examined in Section 4.4.5.

4.2 CONSTANT ENVELOPE PHASE-
MODULATED WAVEFORMS

Constant amplitude waveforms allow for operating the trans-
mitter power amplifier in saturation thus providing the max-
imum available power to be delivered to the antenna. The
improvement in the transmitted power is particularly impor-
tant with disadvantaged terminals that typically operate with
low prime power and small antennas. The main focus of this
chapter is on PSK-modulated waveforms; however, the
description of constant amplitude modulations involving
CPFM and FSK is unavoidable.

4.2.1 Multiphase PSK (MPSK) Modulation

The performance of BPSK, corresponding to M = 2, was
evaluated in Section 3.2.1 and in this section the performance
is examined for the general case involving M = 2k. Rather
than using the signaling distance as in the previous evalua-
tions, the pdf of the received signal phase is established
and used to evaluate the symbol and bit-error probability.
In this evaluation, the bit-error performance for M = 2 and
4 is shown to be identical. Furthermore, the performance is
ideal, in that, the demodulator is assumed to have perfect
symbol timing and carrier recovery and the memoryless addi-
tive white Gaussian noise (AWGN) channel introduces no
distortion.

The waveform modulator applies the channel-coded data
to a phase-modulated carrier as shown in Figures 4.1 and 4.2
showing the carrier phase states and the demodulator deci-
sion regions, respectively. The transmitted signal for symbol
m is

sm t = 2Pcos ωct +ϕm (4.1)

and, neglecting the 2ωc term, the energy-per-symbol is
simply

Es =

Ti +T

Ti

sm t 2dt =PT (4.2)

Expressing sm(t) in terms of the energy-per-symbol and
defining the unit energy modulation waveform functions
uc(t) and us(t) gives

sm t = Escos ϕm uc t − Essin ϕm us t (4.3)

where

uc t =
2
T
cos ωct (4.4)

and

us t =
2
T
sin ωct (4.5)

It is easily shown that these functions have unit energy and
are orthogonal to one another.

For the special case of BPSK with a binary source coded
alphabet (M = 2), m = {0, 1}, the transmitted signal becomes

sm t = −1 m Esus t (4.6)

The pdf of the received carrier phase is evaluated by consid-
ering a sinusoidal carrier signal-plus-narrowband Gaussian
noise. This has become a conventional problem and the solu-
tions involving the magnitude and phase distributions of the
signal-plus-noise are well documented [7]. In general, the pdf
of the envelope is a Ricean-distributed random variable and a
convenient expression for the distribution of the received sig-
nal phase, ϕ, is expressed by Hancock [8] as

p ϕ =
e−γs

2π
1 + 4πγscos ϕ eγs cos

2 ϕ erf∗ 2γscos ϕ

(4.7)

where γs is the signal-to-noise ratio in the symbol bandwidth.
This function is symmetrical about ϕ= 0 and is plotted in
Figure 4.3. With zero noise γs 0 , the phase pdf is uni-
formly distributed between −π and π.

*Formally this is the square-root raised-cosine abbreviated as root RC.
†The prefix spectral is an important distinction, in that, the root-raised-cosine
shaping is applied in the frequency domain resulting in a theoretically ban-
dlimited spectrum.
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For the messagem ϕ =m, the symbol-error probability is
evaluated as

Pse m = 1−Pcs m

= 1−

ϕm + π M

ϕm −π M

p ϕ−ϕm dϕ
(4.8)

where ϕm = 2πm M is the transmitted phase for message m.
Based on the symmetry of the decision regions, the error
results are identical for all messages m so the average error
probability is the same as the error probability for a givenmes-
sage. Based on this observation, the average error probability
is most conveniently evaluated for the caseϕm = 0. Therefore,
the above integral is numerically evaluated with ϕm = 0 and
the results are shown in Figure 4.4 for M = 2, 4, …, 32.
The signal-to-noise ratio is in the bit bandwidth where
γb =Eb No = γs k. The results for M = 2 and 4 modulations
are exactly the same as previously mentioned and it is seen
that a considerable penalty in signal-to-noise performance
is incurred for M > 4. For example, M = 8 and 16 require
respective increases in the signal-to-noise ratio of about 3.5
and 4.5 dB for reasonably low-error probabilities.

Converting the symbol errors to bit errors is straightfor-
ward for M = 2; however, the conversion is not as simple
forM > 2. The solid curves in Figure 4.5 assume that random
bit errors occur with each symbol error and any of the M − 1
possible symbol errors are equally likely. Therefore, because
of the assumed random distribution of the k-bits in each sym-
bol, the upper bound on the bit-error probability is
expressed as

Pbe ≤
2k−1

2k −1
Pse random error decoding (4.9)

…

sin(𝜔ct)

cos(𝜔ct)2P

2P

sm(t)

–

+

M-ary alphabet: M = 2k  

vi : m = {0,…, M – 1}   

……

2k-phases

Ti Ti + T

Binary alphabet
Q = 2 : 𝜐i = {0,1}   

Channel
coding

cos(𝜑m)

sin(𝜑m)… …

Ti

Tb

Ti + kTb 

𝜑m = 2πm/M

FIGURE 4.1 MPSK channel coding and waveform modulation.
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FIGURE 4.2 MPSK phase constellation with demodulator
decision boundaries.
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In the case of BPSK (k = 1), the equality condition applies
in (4.9). When the bits are gray coded and mapped to the
modulated waveform signal phase and when the decision
errors are dominated by errors in adjacent decision regions,
as is the case with high signal-to-noise ratios, then a wrong
decision results in essentially only one bit-error. Since there
are k bits-per-symbol, the approximate bit-error probability
with gray coding is evaluated as

Pbe
Pse

k
gray coding (4.10)

This result is shown as the dashed curves in Figure 4.5 for
M > 4 and applies only for low-error probabilities. Although
not shown in Figure 4.5 as a dashed curve, the performance of

QPSK (M = 4) with gray coding approaches that of BPSK for
low-error probabilities. Because BPSK assigns one bit to
each symbol, gray coding is not distinguished, so that
Pbe =Pse in (4.10) and the performance is identical to the
antipodal signaling results (ρ = −1) shown in Figure 3.7.

Numerical evaluation of the integral for Pse(m) using Han-
cock’s distribution can be simplified for large signal-to-noise
ratios by using the asymptotic expansion for erf∗ x leading
to the result

p ϕ
γs
π
cos ϕ e−γs sin

2 ϕ γs 1 and ϕ ≤
π

2
(4.11)

This approximation is reasonably good for signal-to-noise
ratios greater than 10 : 1; the restriction on ϕ simply avoids
a negative pdf.

The differences between the BPSK and QPSK perfor-
mances shown in Figure 4.5 result because the QPSK is based
on the symbol error computed using (4.8) and there is no con-
venient way to convert the symbol-error probability to bit-
error probability other than by using the approximations
(4.9) or (4.10). The fact that the error performance for BPSK
and QPSK is identical can be reasoned in two ways; for a fair
comparison, the carrier power is considered to be identical for
each modulation. First, the QPSK modulation can be viewed
as two orthogonal equal power channels of BPSK modula-
tion. Because orthogonal Gaussian distributed noise sources
are also independent, the two equivalent BPSK channels are
independent with identical signal-to-noise ratios so each
exhibits the same bit-error performance, that is, the carrier
signal and noise powers divide equally between each quad-
rature channel so that PbeI =PbeO =Pbe (BPSK). Based on
this reasoning, Pbe QPSK = PbeI +PbeO 2 =Pbe QPSK .
Another view is to consider the mapping of two BPSK bits,
each of duration Tb, to one QPSK symbols of duration
T = 2Tb. Although the symbol signal-to-noise ratio
Es No = Es No T Tb is 3 dB higher, each of the equiva-
lent BPSK channels has 1/2 of the carrier power. Therefore,
it would appear that the bit-error performance of the equiva-
lent BPSK channels would be degraded by 3 dB; however,
each of the equivalent QPSK channels is 2Tb in duration
so the symbol matched filtering reduces the noise by an addi-
tional 3 dB resulting in identical performance for BPSK and
QPSK. Therefore, referring to Figure 4.5, the QPSK bit-error
probability forM = 4 is identical to the BPSK bit-error prob-
ability corresponding toM = 2; this result is also substantiated
through Monte Carlo simulations.

4.2.2 Binary PSK (BPSK) Modulation

BPSK is the simplest form of phase shift keying to implement
and demodulate and, although not the most efficient in terms
of channel efficiency, BPSK provides the most robust

Signal-to-noise ratio (Eb/No) dB
0 2 4 6 8 10 12 14 16 18 20

Sy
m

bo
l-

er
ro

r 
pr

ob
ab

ili
ty

 (
P

se
)

1e–8

1e–7

1e–6

1e–5

1e–4

1e–3

1e–2

1e–1

1e+0

2
4

8

16

M = 32

FIGURE 4.4 Coherent MPSK symbol-error performance.

Signal-to-noise ratio (Eb/No)dB
0 2 4 6 8 10 12 14 16 18 20

B
it-

er
ro

r 
pr

ob
ab

ili
ty

 (
P

be
)

1e–8

1e–7

1e–6

1e–5

1e–4

1e–3

1e–2

1e–1

1e+0

2

8

16

M = 32

4

≅ (M = 4)
with gray
mapping

FIGURE 4.5 Coherent MPSK bit-error performance (solid:
random; dashed: gray coding).

156 PHASE SHIFT KEYING (PSK) MODULATION, DEMODULATION, AND PERFORMANCE



performance to channel impairments compared to the other
forms of MPSK. The poor channel efficiency arises because
only one of the two dimensions in phase-space is used. How-
ever, these same characteristics provide the tolerance to chan-
nel-induced phase variations and nonlinearities that result in
the robust performance.

The implementation of BPSK is shown in Figure 4.6. The
channel coding converts the binary bits bi = {0,1} to bipolar
data di = {1, −1} as: di = 1−2bi, i = 0, 1,… so the transmitted
signal is simply

si t = di 2Pcos ωct

= 2Pcos ωct +
1−di
2

π
(4.12)

where ωc is the carrier frequency in radians-per-second and P
is the transmitted power level that is related to the peak carrier
voltage as V = 2P. The second expression in (4.12) maps a
binary 0 to a phase of zero radians and binary 1 to π radians.

Figure 4.7 shows the implementation of a BPSK demodu-
lator with symbol time and carrier phase tracking loops. As
discussed in Chapter 10, the hard-limiting nonlinearity pro-
vides a binary data estimate that results in near optimum per-
formance with phase tracking for Eb/No ratios greater than
about 6 dB. In applications involving fading channels or
forward error correction (FEC) decoding, soft-decision
estimates of the data are available before the hard limiter.
Under ideal noise-free channel conditions,* the received
signal at the baseband input to the demodulator, that is, after
passing through the noise-free channel, receiver heterodyn-
ing, and demodulator mixing to baseband, is expressed as

s t =
Pr

2
ej ωεt +ϕi +φ (4.13)†

where Pr is the received signal power, ωε is the frequency
error after removal of the received carrier frequency ωc, ϕi

is the data-related phase corresponding to the i-th symbol
and is given by

ϕi =
1−di
2

π (4.14)

and φ is constant phase error associated with the channel,
receiver, and demodulator heterodyning and filtering. The
phaselock loop tracking provides the estimate φ t of the sig-
nal time dependent phaseωε t +φ that is removed by the com-
plex phase rotation. With ideal symbol timing, the symbol
matched filters perform the symbol integration over the fun-
damental interval |t| = ≤T/2 and the corresponding weighting
function w(t) = sign(−1, t) provides an early–late (E/L) inte-
grator output for estimating and tracking the symbol timing
error. For example, with an initial symbol timing error of τ
seconds, the estimate τ is computed and the symbol timing
is adjusted to align the demodulator symbol timing to the
received symbol timing, that is, τ is driven to zero. Consid-
ering the sequence of contiguous received symbols, the inte-
gration intervals are identified by the integration limits in
Figure 4.7 for i = 0,1,… and the corresponding weighting
function is defined as

w t =
i

rect
t− iT −τ

T
sign −1, t− iT −τ (4.15)

Figure 4.8 shows the required processing for the data
detection, symbol timing, and phase-error computations;
for simplicity the frequency error is assumed to be zero

and di = di. The data estimate is the hard limiter ±1 output
based on the sign of the input B. The symbol timing and
phase errors are generated using the detection filter outputs
A and C as indicated in Figures 4.7 and 4.8. With random
data the average loop filter outputs are‡

τ KτE ετ = τKτV cos φε and φ KφE εφ = T −τ KφV
sin φε respectively where φε =φ−φ. The sign of the symbol
timing error provides the discriminator response and, under
ideal conditions, the symbol timing is adjusted through the
dynamics of the closed-loop tracking to result in τ = 0. Sim-
ilarly, the sin(φ) function provides the phase discriminator
response with the phase error εφ being driven to zero.

4.2.2.1 π/2-BPSK Modulation The rest phase-state for
BPSK modulation are typically 0 and π radians and, if the
input data consist of long strings of mark or space data, the
demodulator symbol timing will drift resulting in degraded
performance. Data randomizers ensure to some degree that
random data are applied to the modulator; however, when
the phase modulation between consecutive symbols is shifted
by ±π/2 radians the demodulator is guaranteed to have a
phase transition at every symbol. Based on this description,
the rest phase-states for π/2-BPSK modulation are alternately

cos(𝜔ct)2P

si(t)…

Channel-coded
data

…

Tb

di di+1

FIGURE 4.6 BPSK implementation.

*It is easier and more instructive to examine the underlying waveform
demodulator algorithms without the complications involving the channel
noise; the impact of AWGN and other channel impairments is addressed
in subsequent sections and chapters.
†The dependence of ϕi on time such that (i − 1/2)T ≤ t ≤ (i + 1/2)T is implicit.

‡The loop filter gains Kτ and Kφ are adjusted for the optimal acquisition time
and steady-state error.
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(0, π) and (±π/2). In addition to the symbol tracking issue, the
sensitivity to spectral re-growth with filtering and hard lim-
iting is reduced since the maximum phase change is |π/2|
instead of π radians. Abrupt modulation phase transition that
pass through, or near, the center of the phase constellation
produces large amplitude variations when filtered to limit
the out-of-band signal energy. However, when a nonlinearity
is encountered, as with a hard-limiting repeater, the resulting
AM is removed and the spectrum tends to revert to the
original unfiltered spectrum. This is particularly apparent
with the sinc(fT) modulation spectrum as characterized in
Section 4.4.3.2.

The coherent detection of π/2-BPSK modulation is
accomplished as follows. Given the phase coordinates (xk,
yk) corresponding to φk, the π/2-BPSK modulator advances
or retards the phase to φk + 1 =φk ±Δj corresponding to the
coordinates (xk+1, yk+1) where

Δφ=
dkπ

2
(4.16)

The demodulator uses the estimate xk + 1,yk + 1 and the pre-
vious data estimate xk,yk and computes the estimated phase
change as

Integration

interval (T)

C

A, B

ss(t)

sc(t)

3T/2T/2

diV sin(φε) di+1V sin(φε)

ετ= d̂ iA = (τ+ d̂ idi+1τ)V cos(φε)

εφ= d̂ iC = (T – τ+ d̂ idi+1τ)V sin(φε)

diV cos(φε) di+1V cos(φε)

A = (diT/2 – di(T/2 – τ)+di+1 τ)V cos(φε)

–T/2 0

Timing error τ

B = (di(T – τ) + di+1 τ)V cos(φε) 

C = (di(T – τ) + di+1 τ)V sin(φε) 

d̂ i = sign(1, B)

FIGURE 4.8 Example processing for BPSK demodulation.
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FIGURE 4.7 BPSK demodulator implementation using hard limiter.
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Δφ=φk + 1−φ k = tan
−1 yk + 1 xk −xk + 1 yk

yk + 1 yk + xk + 1 xk
(4.17)

Using (4.16) with ρ equal to the argument of the tan−1(•)
function, the demodulated data estimate is computed as

dk + 1 = sign 1,ρ (4.18)

The estimates xk,yk correspond to the rest phase-states
of the modulated waveform and simplify the evaluation
of ρ. With zero-mean additive noise the rest phase-states cor-
respond to nπ/2 (n = 0,…, 3) and the phaselock loop tracking
errors are computed based on the average estimate of
xk + 1,yk + 1 relative to the rest phase-states resulting in
coherent carrier tracking; however, the resulting bit-error per-
formance corresponds to that of differentially encoded BPSK
(DEBPSK). Differentially coherent detection of BPSK mod-
ulation is discussed in Section 4.2.4. The bit-error perfor-
mance of DEBPSK and differentially coherent BPSK
(DCBPSK) is shown in Figure 4.21.

4.2.3 Quadrature Phase-Modulated Waveforms

In this section, the implementation of three forms of QPSK
modulation is considered: QPSK, OQPSK, and MSK. Each
of these modulations alternately distributes the source data
between the in-phase (I) and quadrature-phase (Q) channels.
The I and Q channels are associated with the real or cosine
channel and the imaginary or sine channel respectively; these
channels are also referred to as I/Q rails. With QPSK the sym-
bol data associated with each channel is time-aligned so that
the modulated symbol phase changes abruptly to one of four
phase states, typically {0, ±π/2, π} or {±π/2, ±3π/2}; the
selection and associated input data pair is defined by the mod-
ulator specification. OQPSK modulation is similar; however,
the I/Q channel symbols are offset by one bit interval and
associated with the respective sinusoidal quadrature channel.
MSK modulation is similar to OQPSK, however, a cosine
window or weighting function is applied to each channel
symbol that results in a significantly improved transmitted
spectrum, that is, the frequency is attenuated as f −2 compared

to f −1 for QPSK and OQPSK. The additional performance
differences mentioned in the introduction are examined in
various case studies. The QPSK implementations discussed
in the following sections represent alternates to the imple-
mentation shown in Figure 4.1.

4.2.3.1 Quadrature PSK (QPSK) Modulation An imple-
mentation of QPSK in which the channel-coded data are
applied directly to the modulator is shown in Figure 4.9.
The channel coded binary bits bi = {0,1} are converted to
bipolar data di = {1,−1} as: di = 1−2bi, i = 0,1,…. In this
depiction, the parameter k is an even integer and is related
to i as: k = 2 i 2 for i ≥ 0. This simply states that for the nat-
ural numbering of the input bits, the even (odd) numbered
bits are assigned to the quadrature (in-phase) channel.*

The subscript k corresponds to the dk symbol being trans-
mitted and the switch changes at the data rate (1/Tb) in such a
way that the first symbol data bit (dk = ±1), k = … 0,2,…
modulates the quadrature phase channel as shown. In this
case the transmitted waveform is expressed, for k = {even},
as

sk t = dk + 1 Pcos ωct −dk Psin ωct

= 2Pcos ωct +ϕk

(4.19)

where the data-dependent phase is expressed as

ϕk = tan
−1 dk

dk + 1
=
π

4
2m+ 1 (4.20)

for m = {0,1,2,3}. At each bit transition, the change in carrier
phase is evaluated as

Δϕk =ϕk + 1−ϕk

= 0, ± π 2,π
(4.21)

T

… …dkiTb

T
… …dk + 1

sin(𝜔ct)P

cos(𝜔ct)P

sk(t)

–

+

Delay
Tb

…

Channel-coded
data

…

Tb

dk dk+1

T

FIGURE 4.9 QPSK modulator implementation.

*The use of the index k to denote the data indexing should not be confused
with the parameter k = log2(M) used previously to denote the bits-per-
symbol; the context should make the distinction clear.
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As will be seen, the instantaneous changes in the carrier
phase play a significant role in determining the spectral char-
acteristics of the waveform and the resulting performance
with filtering and hard limiting. With the exception of the
constant phase shift of π/4, (4.20) is identical to the MPSK
detection shown in Figure 4.2 withM = 4. With the π/4 phase
shift, the decision regions correspond to the first through
fourth quadrants of the phase space. On the other hand, if
the π/4 phase shift is removed the decision regions are iden-
tical to those defined in Figure 4.2. Since the error perfor-
mance is invariant with a translation or rotation of the
decision space, the performance will be identical in
both cases.

Figure 4.10 shows the implementation of a QPSK demod-
ulator with symbol time and carrier phase tracking loops. As
in the BPSK demodulator implementation, the hard-limiting
nonlinearity provides near optimum performance with phase
tracking for high input signal-to-noise ratios. The input signal
is described as the baseband function

s t =
Pr

2
ej ωε t +ϕk +φ (4.22)

where Pr is the received signal power, ωε is the frequency
error after removal of the received carrier frequency ωc, ϕk

is the data-related phase given by (4.20), and φ is a constant
phase error associated with the channel and receiver filtering.
The phase and time tracking loops use the phase estimate φ t
and symbol time estimate τ to remove the phase and timing
errors in the same manner as in the BPSK demodulator. Con-
sidering the sequence of contiguous received symbols, the
integration intervals are identified by the integration limits
in Figure 4.10 and the corresponding weighting function is
defined by (4.15) with i replaced by the index k.

4.2.3.2 π/4-QPSK Modulation The benefits of π/4-
QPSK modulation are similar to those described in
Section 4.2.2.1 for π/2-BPSK modulation. The rest phase-
states for QPSK modulation are expressed in (4.20); how-
ever, the instantaneous phase shifts include ±π radians as
described by (4.21). These large and abrupt phase changes
result in nearly 100% spectral re-growth from hard limiting
following spectral control filtering. This sensitivity results
from the phase transition passing through the origin of the
phase constellation as described in Section 4.2.2.1 for BPSK
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FIGURE 4.10 QPSK demodulator implementation using hard limiter.
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modulation. With QPSK, the sensitivity to hard limiting can
be reduced by including an additional phase shift of Δj= p 4
at each phase transition in the modulator. The demodulator
can remove the phase shift by computing φk =φk−2−Δϕ
and using phase tracking to zero the phase error given by
φε =φk −φk, where φk is the quantized phase corresponding
to the rest phase-state. In this case, the bit-error performance
corresponds to differentially encoded QPSK (DEQPSK).
Alternately, the demodulator can recover the received π/4-
QPSK modulation data using differentially coherent QPSK
(DCQPSK) [9] detection [10]. The bit-error performance of
DEQPSK and DCQPSK is shown in Figure 4.23.

4.2.3.3 Offset QPSK (OQPSK) Modulation When the
channel-coded data aremapped into offset or staggered symbol
intervals as shown in Figure 4.11, the resulting modulated
waveformis referred toasOQPSK.Under ideal symbol andcar-
rier recovery conditions in the demodulator, the performance of
OQPSK modulation is identical to that of QPSK. However,
OQPSK is more robust in the presence of filtering followed
by a nonlinearity, for example, when using a solid-state power
amplifier (SSPA) or a traveling wave tube amplifier (TWTA).
In addition, the offset symbols result in less crosstalk between
the demodulator channels, which results in more immunity to
data transitions during phase and symbol time tracking.

The OQPSK-modulated waveform is expressed, for k =
{even}, as

sk t =
dk−1 Pcos ωct −dk Psin ωct kTb ≤ t ≤ k + 1 Tb

dk + 1 Pcos ωct −dk Psin ωct k + 1 Tb ≤ t ≤ k + 2 Tb

(4.23)

sk t =
2Pcos ωct +ϕk,o kTb ≤ t ≤ k + 1 Tb

2Pcos ωct +ϕk,1 k + 1 Tb ≤ t ≤ k + 2 Tb

(4.24)

where

ϕk,o = tan
−1 dk

dk−1
(4.25)

and

ϕk,1 = tan
−1 dk

dk + 1
(4.26)

At each bit transition, the carrier phase change is evaluated as

Δϕk =ϕk,1−ϕk,o

= dktan
−1 dk−1−dk + 1

1 + dk−1dk + 1

= 0, ± π 2

(4.27)

These abrupt phase changes are similar to those occurring in
QPSK modulation and result in identical spectral character-
istics. However, the improved performance of OQPSK over
QPSK with narrowband filtering followed by a nonlinearity
is attributed to the fact that an abrupt phase change of π
radians cannot occur.

Figure 4.12 shows the implementation of a OQPSK
demodulator with symbol time and carrier phase tracking
loops. The general description of the QPSK demodulator
applies to the OQPSK demodulator with the in-phase symbol
matched filter integration over the fundamental interval, that
is, with τ = 0, (k − 1/2)T ≤ t ≤ (k + 1/2)T and with the symbol
time weighting function ws t =w t given by (4.15) and
wc(t) = ws(t) = 1. These in-phase filters are sampled at
t = k + 1 2 T . However, because the quadrature channel
is offset in time by T/2 seconds, the quadrature symbol
matched filter integration is over the fundamental interval
kT ≤ t ≤ (k + 1)T with the symbol time weighting function
given by wc t =w t−T 2 . These quadrature phase filters
are sampled at t = (k + 1)T. From this description and
Figure 4.12, the symbol time and phase loops are updated
by the respective errors ετ and εφ every T/2 seconds corre-
sponding to every source bit interval Tb.

4.2.3.4 Minimum Shift Keying (MSK) Modulation The
MSK-modulated waveform, shown in Figure 4.13, is also
an offset QPSK waveform; however, the symbols in each
quadrature channel are cosine weighted resulting in a signif-
icant improvement in the out-of-band spectral energy. To
obtain the offset, the quadrature or sine channel is delayed
by one-half symbol (one-bit) interval relative to the in-phase
channel. This delay is implicit in Figure 4.13 by the switching
of the input data bits between the two channel, that is, the
switch operates at the bit rate Rb = 2/T where T is the symbol
duration. The minimum shift property results because the
phase rotation between bit durations is exactly ±π/2 radians
which is the minimum phase shift resulting in antipodal sig-
naling (π radians) over the symbol duration in each of the
quadrature channels. Therefore, with ωm = πRb 2 each chan-
nel can be thought of as cosine weighted BPSK-modulated
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FIGURE 4.11 OQPSK waveform modulator.
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channels. The implementation shown in Figure 4.13 is the-
classical implementation of MSK [3] and provides
a mathematical description that conveniently highlights
many of the features of the waveform including the unique

modulation index of 0.5; this condition is also referred to
as FFSK [1, 2].

Based on the implementation in Figure 4.13, the MSK
waveform is expressed, for k = {even}, as

t = (k+1)T + τ
t = kT + T / 2 + τ

+

+

–

+

ss(t)

sc(t)
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FIGURE 4.12 OQPSK demodulator implementation using hard limiter.
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sk t =

dk−1 2Pcos ωmt cos ωct −dk 2Psin ωmt sin ωct

kTb ≤ t ≤ k + 1 Tb

dk + 1 2Pcos ωmt cos ωct −dk 2Psin ωmt sin ωct

k + 1 Tb ≤ t ≤ k + 2 Tb
(4.28)

Upon applying some simple trigonometric identities, this
result can be expressed as

sk t =

2Pcos ωc + dk−1dk ωm t + dk−1−1 π 2

kTb ≤ t ≤ k + 1 Tb

2Pcos ωc + dkdk + 1 ωm t + dk + 1−1 π 2

k + 1 Tb ≤ t ≤ k + 2 Tb
(4.29)

Defining the phase terms as

ϕk,0 t = dk−1dkωmt + dk−1−1 π 2 (4.30)

and

ϕk,1 t = dkdk + 1ωmt + dk + 1−1 π 2 (4.31)

the time-dependent change in the carrier phase over a bit
interval Tb is π k /2, where k is an integer and the data-
dependent phase terms ensure a continuous phase function.
Referring to (4.29), the phase change over the symbol inter-
val T = 2Tb is evaluated for even integers k as

Δϕk =ϕk,0 +ϕk,1 = ± πk π 2 (4.32)

Although (4.32) is developed for even integers k, a similar
result is obtained for odd integers, so the data in each channel
are antipodal and the additive fixed phase terms ensure a con-
tinuous phase transitions. Therefore, the MSK waveform is
characterized as having continuous phase transitions giving
rise to a significant reduction in theout-of-band spectral energy
compared to theQPSKorOQPSKwaveforms. It is also appar-
ent that the MSK waveform results in a constant amplitude
modulation giving rise to robustness in nonlinear channels
similar to that of BPSK, QPSK, and OQPSK. A segment of
an MSK-transmitted waveform with fcTb = 1 is shown in
Figure 4.14 for the data sequence (dk−1,dk, dk+1, …) =
(1,1,−1,1,1,1,−1,…). The abscissa is normalized to the bit
durations so the transitions occur at integer values along
the abscissa with continuous phase transitions.

Further examination of the MSK waveform indicates that
the phase transitions are not abrupt but change linearly over
the bit interval. This is seen by examining the phase func-
tions ϕk,o and ϕk,1 over the appropriate intervals of t and
recognizing that ωmTb = π 2. The modulation index is

defined as mI = 2Δf/Rb and, for MSK Δf = fm and fm = 1/
2T = 1/4Tb, so mI = 1/2. The allowable phase transitions of
the MSK waveform are shown as the dashed lines in
Figure 4.15 and the solid curve corresponds to the data
sequence associated with Figure 4.14. The π/2 phase shift
is evident in Figure 4.14 by noting that there is one carrier
cycle-per-bit, that is, fcTb = 1, and that an additional 1/4 cycle
occurs in the first, fourth, and fifth bits while the second and
third bits each result in 1/4 cycle less of the carrier phase. The
carrier frequency shown in Figure 4.14 is conveniently cho-
sen to be equal to the bit duration and with arbitrary carriers
the phase change at the bit transitions will not necessarily
occur as the waveform goes through zero or a maximum;
however, the carrier phase will always be continuous.

Figure 4.16 shows an embodiment of the demodulation of
the MSK waveform [11] as implemented in Figure 4.13. The
received signal is squared to remove the random data and
reveal the modulation tones at 2fc ± 2fm Hz that are used to
phase lock the two voltage controlled oscillators (VCOs);
one at fc + fm and other fc − fm Hz. The phaselocked oscillator
outputs are used to generate the matched filter weights for
each of the input signal quadrature channels; they are also
used to generate the optimum matched filter sampling times
for each channel. Because the cosine weighting is applied
before the symbol filtering, a simple integrate-and-dump
(I&D) detection filter is used; immediately following the
sampling of the detection filters the integrators are zeroed,
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or dumped, for the detection of the next symbol. It is implied
that the sampling switches are sample-and-hold devices that
decouple the filter samples from the next integration interval.
The optimum sampling times correspond to the sample
impulses d()/dt of the hard-limited (HL) output shown in
Figure 4.16. The negative impulses correspond to the opti-
mum sampling instants for the quadrature channel corre-
sponding to dk in Figure 4.13 with k = even integer and the
positive impulses correspond to the optimum samples for
the detection of dk+1. The received serial data sequence

is …dk,dk + 1… and the output switch is toggled by the sam-
pling impulses as shown. Although the implementation in
Figure 4.16 looks formidable, it includes the carrier fre-
quency phaselock loop and symbol timing acquisition and
tracking functions that are equally daunting in other imple-
mentations. It is interesting to observe the quadrature
matched filter cosine weighting functions adjust as the carrier
frequency and channel delay change over time.

Figure 4.17 shows a more conventional implementation of
MSKwhere the cosine weighted symbol shaping is applied to
each channel with

p t = rect
t− j T

T
cos ωm t− j T (4.33)

and

p t = rect
t− jT −T 2

T
cos ωm t− jT −T 2 (4.34)

where j = k + 1 2 and j= k 2 and k corresponds to the odd
numbered source bits. The parameters j and j simply repre-
sent the natural numbering of the bits in the I and Q channels
respectively; the relationship between k and k is character-
ized in Section 4.2.3.4. Also, the switch, operating at the
bit rate, directing the source data estimates between the
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FIGURE 4.16 MSK demodulator implementation for modulator in Figure 4.13.
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I and Q channels introduces a one-half symbol delay because
of the offset modulation.*

Data detection of the MSK-modulated waveform, as
implemented in Figure 4.17, is identical to the OQPSK detec-
tion shown in Figure 4.12 with the filter weighting functions
changed as follows:

ws t =ws t = sin ωmt (4.35)

and

wc t =wc t = cos ωmt (4.36)

where ws(t) and wc(t) are equivalent to p (t) and p(t) respec-
tively as expressed in (4.33) and (4.34) over the offset quad-
rature symbol intervals.

4.2.3.5 MSK Detection Using Frequency Dis-
criminator The MSK waveform expressed in (4.29) indi-
cates that MSK can be viewed as a narrow band frequency
shift keying (FSK) modulation with a modulation index of
mI = 2fmTb = 1/2. This is evident from the phase functions
which indicate that the waveform frequency during a bit
interval is given by

ωi =
dϕi

dt

=ωc + di−1di ωm

(4.37)

where i = {0,1,…}. From this result it is apparent that
the MSK modulator, as implemented in Figure 4.13, per-
forms the differential encoding operation given by the
product di−1di corresponding to +fm when di−1 = di and
−fm when di−1 di. The MSK demodulator inherently
unscrambles the differentially encoded data preserving
the antipodal bit-error performance. However, an FSK
demodulator must differentially decode the data to recover
the source data bits. For example, letting Di = di−1di, the
FSK demodulator recovers the data estimate Di and then

determines the source data estimate as di =Didi−1; however,
this feedback operation involving the previous data estimate

di−1 results in catastrophic error propagation when a data
error occurs. This can be avoided if the source data are dif-
ferentially encoded as Di = Di−1di and the data sequence
Di is applied to the MSK modulator as shown in
Figure 4.18. In this case, the MSK-demodulated tones
are given by

ωi =ωc + Di−1Di ωm

=ωc + diωm

(4.38)

where the modulation tone fm is directly related to the source
data di. Because this form of modulated signal is compatible
with MSK and FSK demodulators, it is referred to as compat-
ible shift keying (CSK). Unfortunately, however, the perfor-
mance of the MSK demodulator will be degraded because of
the necessity to differentially decode the received data esti-

mates Di such that di =DiDi−1. This decoding will not result
in catastrophic error propagation but results in error multipli-
cation that decreases to 2 : 1 as the signal-to-noise ratio
increases. The error performance using an FSK frequency
discriminator is examined later; however, it is degraded from
that using coherent phase detection of the received MSK
waveform.

4.2.4 Differentially Coherent PSK Modulation

Technically, differentially coded PSK refers to the type of
phase modulation where the information is contained in the
phase difference between the current and the preceding sym-
bol, whereas, differentially coherent PSK refers to the
method of detection in the demodulator. The term differen-
tially coherent detection is also referred to as differential
comparison and phase-comparison detection so the notation
differentially coherent PSK (DCPSK) is appropriate for all of
these descriptions; the designation differential PSK (DPSK)
is widely used in the literature.†

DCPSK modulation is a robust constant envelope modu-
lation that is simple to demodulate, in that, the information in
the current symbol is contained in the phase shift relative to
the preceding symbol so there is no need for a phase tracking
phaselock loop; although symbol phase decoding must be

di di

di

Differential
encoder

Di

Di Di–1

Di–1

MSK
modulator

FSK
demodulator

Tb

Tb
MSK

demodulator

FIGURE 4.18 Differential encoding of MSK modulator
(compatible shift keying).

*In Figure 4.17, the Q-channel data corresponding to k = ieven is depicted as
being delayed by T/2 from the I-channel data.

†The binary data is often differentially encoded and is denoted by the prefix
DE, for example, DEBPSK modulation differentially encodes the binary
source bits prior to binary phase modulation. Differential data encoding
was introduced in the preceding section and is discussed in more detail in
Chapter 8.
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established using a reference symbol. The simplicity of detect-
ing a DCPSK-modulated waveform is accompanied by a bit-
error performance loss that lies between that of coherent and
noncoherent detection. For decreasing signal-to-noise ratios
the bit-error performance approaches that of noncoherent
detection and as the signal-to-noise ratio increases thebit-error
performance approaches that of coherent detection.

Differently coherent MPSK (DCMPSK) modulation is
implemented as shown in Figure 4.19 where bℓ source bits
are mapped into bn: n = 0,…, k − 1 symbol bits that are, in
turn, gray coded and the resulting bn symbol bits are mapped
into one of M = 2k symbol phase states given by

ϕmi =
2πm
M

+
π

M
(4.39)

The subscript i signifies the i-th symbol and inclusion of the
additional π/M phase shift is optional and simply ensures that
a phase transition always occurs to aid symbol tracking at the
demodulator, although, as mentioned above, the DCMPSK
waveform does not require phaselock loop phase tracking.
The inherent differential phase encoding is obtained as

ϕi =ϕi−1 +ϕmi (4.40)

where the phase ϕi−1 corresponds to the reference symbol
phase in the demodulator.

The phase modulator produces an intermediate frequency
(IF)-modulated waveform that is amplified and frequency
translated to the transmitted carrier (fc) expressed as

s t =Acos ωct +ϕi +φo (4.41)

where A is the peak signal level, ωc = 2π fc, φo is an arbitrary
phase shift and ϕi is the phase of the differentially
encoded data.

The demodulator is shown in Figure 4.20 and performs the
indicated functions in the differentially coherent demodula-
tion of the received waveform; for simplicity additive noise
is not considered and sr(t) = s(t). The symbol timing recovery
can be accomplished in random data; however, a preamble
will provide for more rapid synchronization without the loss
of data. DCPSK is often used in fast frequency-hopping
applications where symbol timing is a byproduct of the hop-
ping sequence acquisition, although acquiring the hopping
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FIGURE 4.19 Differentially coherent MPSK (DCMPSK) modulator.
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sequence may take much longer depending on the time and
frequency uncertainties.

The theoretical bit-error probability of DCMPSK is diffi-
cult to evaluate for all values of M except the binary case
corresponding to M = 2 or DCBPSK. The theoretical perfor-
mance of DCBPSK is established by Wozencraft and Jacobs
[12], Viterbi [13], and Proakis [14] who present arguments
based on the similarity of DCBPSK with the noncoherent
detection of orthogonal noncoherent binary-modulated
waveforms and conclude that the theoretical bit-error proba-
bility for DCBPSK is

Pbe =
1
2
e−γb DCBPSK (4.42)

where γb = Eb/No and Eb is the received signal energy-per-bit.
Equation (4.42) is plotted in Figure 4.21 and compared

with the performance of coherently detected BFSK
(CBFSK) and the antipodal modulation performance of
coherently detected BPSK (CBPSK). The dashed theoretical
DCBPSK curve is a plot of (4.42) and the circled data points
are based on Monte Carlo simulations using 10 M bits for
each signal-to-noise ratio. The theoretical performance of
CBFSK modulation is discussed in Chapter 5 and that of
DEBPSK is discussed in Chapter 8. It is interesting to note
that if the reference phase of the DCBPSK detected wave-
form is forced or set to the center of the decision region, that
is, the rest phase-state corresponding to the phase of the cur-
rently detected bit, then the resulting performance is identical
to that of DEBPSK. This has limited utility because the per-
formance is intolerant to frequency errors unless a phaselock
loop is used.

Lucky, Salz, and Weldon [15] evaluate the symbol-error
probability of DCMPSK using the phase pdf given in
(4.7). Their evaluation of the symbol-error probability

involves the phase difference Δϕ between consecutive sym-
bols expressed as

Δϕ= tan−1 NIk + 1

2P+NQk + 1
− tan−1 NIk

2P+NQk

(4.43)

where NI and NQ are independent quadrature noise samples
associated with symbol k and k + 1. Using (4.43) and (4.7),
the symbol-error probability is evaluated as

Pse M = 2 1−

π M

−π

π

−π

p ϕ p Δϕ+ϕ dϕ dΔϕ (4.44)

Because a closed-form expression for (4.44) does not
exist, the integrations must be performed numerically invar-
iably leading to some degree of approximation and the neces-
sity of an additional approximation in converting the symbol
errors to bit errors. Because of these approximations it is
more convenient to evaluate the symbol and bit-error perfor-
mance using Monte Carlo simulations as discussed in
Chapter 14. It is, however, instructive to evaluate the loss
of DCMPSK relative to coherently detected PSK
(CMPSK) modulation using the high signal-to-noise asymp-
totic approximations to Pse(M) for DCMPSK and CMPSK
expressed by Cahn [16] as

Pse M ≈e−2γsin
2 π 2M DCMPSK, γ > 10 1 (4.45)

and

Pse M ≈e−γsin
2 π M CMPSK, γ > 10 1 (4.46)

Forming the ratio of the exponents in (4.45) and (4.46), the
resulting loss is

Δγ =
sin2 π M

2sin2 π 2M
γ > 10 (4.47)

This result is plotted in Figure 4.22 as a function ofM and
indicates that the maximum loss in the symbol-error perfor-
mance of DCMPSK relative to that of CMPSK approaches
3 dB with increasing M. The performance loss in
Figure 4.22 provides a reasonable estimate for signal-to-
noise ratios corresponding to Pse(M) ≤ 10−5.

The following evaluations of the performance of
DCMPSK are based on Monte Carlo computer simulations
using 10 M symbols for each signal-to-noise ratio and gray
coding of the bits prior to the symbol phase mapping.
Figure 4.23 shows the simulated performance of DCMPSK
and differentially encoded MPSK (DEMPSK) for M = 2,
4, and 8. At Pbe = 10−5 the performance relative to antipodal
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signaling is degraded by about 1, 2.5, and 7 dB for M = 2, 4,
and 8 respectively. The equivalent performance of
DEMPSK, obtained by resetting the reference phase of the
differential coding as described above, degrades by about
0.5 dB for M = 2 and 4 and by 4 dB for M = 8; however,
as mentioned above, the performance advantage is lost with
a frequency error, that is, the DEMPSK waveform requires
frequency estimation and correction.

The performance degradation ofDCMPSK resulting from
a frequency error fε is dependent on the accumulated phase
error over the current and reference symbol periods
expressed as

ϕε = 4πfεT (4.48)

where T = Tb for BPSK. The degradation of DCBPSK and
DCQPSK as a function of the normalized frequency error
fεT is shown in Figures 4.24 and 4.25 respectively.

4.2.5 Generalized Modulator Implementations

The constant envelop-modulated waveforms discussed in this
section employ phase shaping functions during symbol phase
changes that result in significantly lower spectral sidelobes.
The improved spectral containment allows for the use of nar-
rower receiver IF bandwidths, reducing the susceptibility to
ACI, and providing more efficient use of the radio frequency
(RF) bandwidth by allowing closer channel spacing in fre-
quency division multiplex (FDM) applications. In the
absence of the inherent waveform modulation spectral
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control, the modulated waveforms must be passed through a
bandpass filter or quadrature rail lowpass filters to achieve a
desired spectral response often required to meet a specified
spectral mask. However, because of spectral re-growth, filter-
ing before hard-limiting power amplification or a channel
with a hard limiter is problematic and power backoff before
power amplification defeats the advantage of the constant
amplitude modulation. In this regard, the design of symbol
phase functions that provide the spectral control and preserve
the constant signal amplitude is a major step in bandwidth
control and transmitter power efficiency.

The implementations discussed in the proceeding sections
focused on specific topologies involving in-phase and quad-
rature-phase (I/Q) processing of the source coded data. In the
discussions, BPSK, QPSK, and OQPSKwere shown to result
in instantaneous phase changes resulting in discontinuous
phase function with a corresponding sinc(fT) spectrum. How-
ever, in Figure 4.15, the phase transitions of MSK were
shown to be continuous with a linear phase change of ±90
over a bit interval or as CPFSK modulation with a constant
frequency of Rb/4 Hz over a bit interval. The I/Q and CPM
implementations are contrasted in Figure 4.26. The modula-
tor implementation shown in Figure 4.26b is used to generate
continuous phase-modulated waveforms and is the principal
focus of this section. In the following descriptions, the time-
dependent functions are understood to correspond to dis-
crete-time samples such that t = iTs where Ts is the sampling
interval.

Referring to Figure 4.26b the function dkrectTb t,k
describes the contiguous sequence of source data bits dk of
duration, Tb and the function h(t) characterizes the continu-
ous phase modulation shaping to be applied to the waveform.
The function h(t) is specified for a given modulation over the
interval Tp and is described as

h t =m t w t (4.49)

where m(t) is a stored function that is unique to the specified
shaping function g(t) and w(t) is a delta or rect function that
influences the duration of g(t). When the normalizing factor
K is applied in the computation of m(t), the stored samples
result in unit area over the interval Tp. The function g(t) is
determined as the convolution

g t = dkrectTb t,k ∗h t (4.50)

and, upon multiplying g(t) by one-half the modulation index,
the normalized frequency function is

f t Tb =
h

2
g t (4.51)

The phase increment Δϕ = 2π Ns is multiplied by f(t)Tb, and
the phase accumulator produces the desired continuous phase
function given by

θ iTs = θ i−1 Ts +Δϕf t Tbi (4.52)

In these relationships, the parameter Ns = Tb Ts is the number
of samples-per-bit and Ts is the sampling interval.

The integration switch in Figure 4.26b is shown in the
MSK/GMSK position that results in a linear data-dependent
phase transition between successive source bits. When
GMSK is used, the Gaussian phase function smooths the
MSK phase transitions resulting in spectral improvement;
the phase function smoothing is similar to that described
for SMSK in Section 4.2.6. When the switch is in the zero
position, the modulator generates various CPFSKwaveforms
including Gaussian FSK (GFSK) with selectable modulation
indices. These functions and parameters and their relation-
ships to the CPM modulator implementation in
Figure 4.26b are discussed in the following example applica-
tions. The CPM modulator can also be used to generate con-
ventional BPSK, QPSK, OQPSK, and MPSK-modulated
waveforms that require instantaneous changes in phase.
The details for the implementation of these waveforms are
left as an exercise.

4.2.5.1 MSK I/Q Modulator Characterized as CPM
This section focuses on the I/Q MSK implementation shown
in Figure 4.26a that also depicts the classical implementation
shown in Figure 4.13. As discussed in the previous sections,

sk(t)

P cos(ωct)

P sin(ωct)

+

–

Q-channel

I-channel

pI(t)

pQ(t)

I/Q modulator implementation

(a)

(b)

I/Q
channel

multiplexer

𝜙(iTs)Δ𝜙

CPM modulator implementation

f(t)Tb

θ(iTs)
cos(θ(iTs))

sin(θ(iTs))
Sinusoidal

PAC

MSK/GMSK
zero

dkrectTb (t, k)

dk dk–1rectTb (t, k)
g(t)

h/2

h(t)

+
Ts

+

FIGURE 4.26 Modulator implementations.
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the I/Q implementation multiplexes the source data between
the two channels and the symbol weighting functions pI(t)
and pQ(t) provide for spectral containment; for constant
amplitude modulation, this requires that p2I t + p2Q t = 1.

The MSK waveform described by (4.29) contains phase
terms dk−1−1 π 2 for t in the interval kTb, ≤ t ≤ (k+1)Tb
and dk + 1−1 π 2 for t in the interval ((k+1)Tb ≤ t ≤ (k+2)
Tb). These terms ensure that the data-dependent phase is con-
tinuous as the phase transitions through nπ/2 radians at each
bit transition. This continuous phase characteristic can also
be described, in terms of the accumulated phase up to t =
(k − 1)Tb : k integer, as follows:

θk−1 d = d0ωmTb + d1d0ωmTb + d2d1ωmTb + + dj−1dj−2ωmTb

= d0π 2 + d1d0π 2 + d2d1π 2 + + dk−1dk−2π 2

=
π

2

k−1

n = 0

dndn−1

(4.53)

where d is a vector of past data. For the MSK waveform,
ωmTb = π 2 and at t = 0, corresponding to n = 0, the data
d−1 is considered to be d−1 = 1. In the current kTb bit interval,
the continuous phase function is expressed as

θ t; d = θk−1 d +
π

2
dkdk−1

t− k−1 Tb
Tb

k−1 Tb ≤ t ≤ kTb

(4.54)

where the time normalization by Tb corresponds to
ωmTb = π 2. During the k-th bit interval, the phase starts at
θk−1(d) and advances linearly by ±π/2 over the k-th bit
interval.

Based on these results, the CPFSK description of theMSK
waveform is expressed as

sk t = Pcos ωct + dkdk−1ωmt + θk−1 d (4.55)

Therefore, as indicated by (4.29), the angular frequency
changes instantaneously at the bit transitions and, when
differential encoding of the data is used, the radian
frequency shift is expressed as ωk =ϕ= dkωm for
kTb ≤ t ≤ k + 1 Tb which corresponds to the constant angular
frequency

ϕ= dk
πh

Tb
(4.56)

Based on these relationships, the CPM implementation is
shown in Figure 4.27.

In Section 9.2, multi-h CPM waveform modulation is
examined with theM-ary data into the continuous phase mod-
ulator denoted as αi. This results in M-ary multi-h CPM

modulation, however, for the single-h binary data case being
considered here αi ≡ di = {1, −1}.

4.2.5.2 MSK Continuous Phase Modulation (CPM) In
this section, the implementation of MSK, using the CPM
modulator shown in Figure 4.26b, is examined and the gen-
eral nature of the implementation lends itself to a variety of
other CPM-modulated waveforms. Specific examples, exam-
ined in the following sections are: sinusoidal FSK (SFSK),
alternately referred to as sinusoidal MSK (SMSK), GMSK,
and S-MPSK with linear and raised-cosine phase shaping.

Returning to Figure 4.26b, theMSK phase function θ(iTs),
that is applied to a sinusoidal phase-to-amplitude converter
(PAC), results in quadrature MSK-modulated baseband
signal sk iTs = cos θ iTs + jsin θ iTs . After digital-to-
analog conversion (DAC) and lowpass filtering, the PAC
output signal is applied to a balanced modulator to produce
the carrier-modulated output* sk(t). The sampled phase incre-
ment in Figure 4.26b is Δϕ = 2π/Ns, where Ns is the number
samples-per-bit† as determined by the sampling frequency
and the bit rate such that Ns = fs Rb = Tb Ts.

The following description of the CPM modulator imple-
mentation of MSK starts with the known linear phase transi-
tions of MSK and works backward starting with (4.51) from
which g(t) = dk and, in turn, h(t) = δ(t) is established using
(4.50). Furthermore, because the data is dk, the implied time
interval is kTb ≤ t ≤ (k + 1)Tb. With this understanding, the
MSK linear-phase function is expressed in terms of the
source data dk as

ϕ t =
dkπ

2Tb
t kTb ≤ t ≤ k + 1 Tb (4.57)

and the corresponding constant-frequency deviation over a
bit interval is evaluated as

f t =
dϕ t

2πdt
=

dk
4Tb

= dkfm (4.58)

sk(t)
ϕ(t)

π h / Tb

dkdk–1rectTb (t, k) CPFSK
modulator

.

FIGURE 4.27 MSK implementation using CPFSK modulator.

*The PAC can be implemented as a frequency synthesizer that produces the
analog and CPM-modulated signal at the carrier or an intermediate
frequency.
†In many applications, like S-MPSK, the continuous phase function is based
on the symbol interval.

170 PHASE SHIFT KEYING (PSK) MODULATION, DEMODULATION, AND PERFORMANCE



In normalized form, (4.58) is expressed as

f t Tb = dkfmTb (4.59)

The modulation index, h, is defined as h≜ 2fm Rb so that
(4.59) becomes

f t Tb =
h

2
dk (4.60)

Referring to (4.51), it is evident that g(t) = dk and from (4.50)
that h(t) = δ(t), therefore, using (4.52) the continuous phase
function is expressed as

θ iTs = θ i−1 Ts +
2π
Ns

dkfmTb i (4.61)

This form of MSK generation is also referred to as serial
MSK [17–20] because there is no explicit quadrature proces-
sing. The demodulation can use either conventional quadra-
ture cosine weighted rail matched filter detection or serial
detection techniques. Also, the source data can be differen-
tially encoded by substituting dk−1dk for dk. Table 4.1 sum-
marizes the required parameters for CPM implementation
of MSK, in the context of Figure 4.26b, and includes the
SFSK/SMSK and GMSK modulations discussed in the fol-
lowing sections.

4.2.6 Sinusoidal FSK (SFSK) or Sinusoidal MSK
(SMSK) Waveform Modulation

With MSK modulation the modulation phase changes line-
arly by ±90 over successive bit intervals with continuous
phase transitions from one bit to the next resulting in abrupt
changes in the phase slope. The corollary is that the fre-
quency is constant over a bit interval with abrupt frequency
changes of ±fm Hz over successive bit intervals. These abrupt
changes in phase and frequency influence the spectral shape
and improved spectral characteristics can be achieved
by eliminating the abrupt changes by applying sinusoidal
changes over each bit interval while maintaining the
±90 phase shift and continuous phase properties. The

characterization of the sinusoidal phase shaping in the fol-
lowing section is based on the analysis of Amoroso [21]
who coined the term sinusoidal-FSK (SFSK); however, the
U.S. Navy refers to SFSK as sinusoidal-MSK (SMSK).*

As with MSK, SFSK modulation can be conveniently char-
acterized in terms of the symbol shaping function p(t) and
implemented as an I/Q modulator or alternatively by the
shaping filter h(t) giving rise to the CPM modulator imple-
mentation. The following discussion starts by describing
p(t) and then characterizing the I/Q implementation and con-
cludes with a discussion of the CPM modulator implementa-
tion of SFSK. Simon [22] and Prabhu [23] elaborate on the
work of Amoroso by characterizing the conditions for the
selection of p(t) that satisfy the unique conditions of MSK
and Simon extends the analysis to include phase-shaped
M-ary MSK.

4.2.6.1 SFSK/SMSK I/Q Modulator Implementation
The following characterization of the symbol-shaping func-
tion is that of Amoroso [20] and the frequency deviation
parameter α is used simply to determine the optimum spec-
trum containment that occurs when α = 1/4 referred to as
SFSK modulation. In the following, α-FSK is used to refer
to the shaping for an arbitrary value of α 1/4.

The symbol shaping function for α-FSK is given by

p t = cos ωmt−αsin 4ωmt (4.62)

and, referring to Figure 4.13 and (4.29), the modulated signal
is expressed as

sk t =

2Pcos ωct + dk−1dk ωmt−αsin 4ωmt + dk−1−1 π 2

t I0

2Pcos ωct + dkdk + 1 ωmt−αsin 4ωmt + dk + 1−1 π 2

t I1

(4.63)

where the intervals I0 and I1 correspond to the first and sec-
ond halves of the offset symbol interval as defined for MSK
in Section 4.2.3.4. When α = 0, the symbol shaping function
results in MSK modulation. The corresponding phase func-
tions in (4.63) over these intervals are expressed as

ϕk,o t = dk−1dk ωmt−αsin 4ωmt + dk−1−1 π 2 (4.64)

ϕk,1 t = dkdk + 1 ωmt−αsin 4ωmt + dk + 1−1 π 2 (4.65)

and, as in the case of the MSK waveform, the change in the
carrier phase at the bit transitions is evaluated as

TABLE 4.1 CPM Parameters for Different Waveform
Modulations h t =m t w t

Modulation m(t)a w(t) Tp

MSK 1.0 δ(t) Tb
SFSK/
SMSK

2sin2 πt Tb δ(t) Tb

GMSK Ke−28 478 f3t
2 rectTp(t, 0) 0.265Tb(to/σ)/(f3Tb)

b

aK is a gain constant resulting in unit area over Tp.
bReference, Equation (4.83).

*Some authors refer to MSK as fast FSK or FFSK.
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Δϕk =ϕk,1−ϕk,0

= 0, ± 2kπ
(4.66)

resulting in a continuous phase modulated waveform. From
(4.62), thephase function isdefinedas the time-dependent phase

ϕ t ≜ωmt−αsin 4ωmt (4.67)

Equation (4.67), normalized by π/2, is shown in
Figure 4.28 for several values of α and the optimum response
for α = 0.25 results in a zero phase slope at the bit transitions.
The spectrum of the waveform for the optimum value of α
also results in the lowest sidelobe levels for frequencies
removed several sidelobes from the peak of the principal
spectral lobe and, for this reason, is considered to be the opti-
mum value. The phase transition characteristics for α = 0.25
are shown in Figure 4.29 where the solid phase path corre-
sponds to the data sequence used in the MSK example of
Figure 4.15. These phase transitions have the form of a con-
tinuous function over the bit interval with a phase change of
±90 and the corresponding advantage of continuous fre-
quency changes that improve the spectrum containment.

4.2.6.2 SFSK/SMSK CPM Modulator Implementation
In the following analysis, only SFSK is considered for which
α = 0.25. To examine the implementation of the SMSKwave-
form using the CPM modulator, consider the phase function

ϕk t = dk ωmt−0 25sin 4ωmt (4.68)

and the normalized derivative

f t Tb =
ϕk t Tb
2π

= dkfmTb 1−cos
2πt
Tb

=
h

2
g t

(4.69)

From (4.69) with h = 1/2, the function g(t) is

g t = dk 1−cos
2πt
Tb

= dk

t

0

h τ dτ

(4.70)

Using (4.70), the shaping filter impulse response h(t) is eval-
uated as

h t =
d

dt
1−cos

2πt
Tb

=
2π
Tb

sin
2πt
Tb

(4.71)

The shaping filter is seen to have a sinusoidal pulse response
and the normalized frequency deviation function, f(t)Tb =
ϕ t Tb/2π, is shown in Figure 4.30 in terms of the normalized
variable t/Tb.

4.2.7 Gaussian MSK (GMSK) Waveform
Implementation

The GMSK waveform is characterized by a shaping filter
having a zero-mean Gaussian frequency response expressed
as

H ω = 2πae− aω 2 2 (4.72)

The parameter a is related to the 3-dB angular-frequency
bandwidth ω3 of the low-pass function H(ω) and is evaluated
in terms of the parameter a as

a=
b

ω3
Hz (4.73)
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FIGURE 4.28 SFSK phase transitions for various values of α.
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FIGURE 4.29 SFSK phase function for α = 1/4 and data sequence
dk = {1,1,−1,1,1,1,−1}.
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where b = 2ln 2. The shaping filter response, evaluated as
the inverse Fourier transform of H(ω), is also a zero-mean
Gaussian function and, using the Fourier transform pair from
Table 1.3, the result is expressed as

h t =K
1
2π

∞

−∞

H ω ejωtdω rect
t

Tp

= Ke− ω3t b 2 2 rect
t

Tp

(4.74)

The constant K is used as a normalizing constant for the
frequency shaping function as described below. The range
|t| ≤ Tp/2 is an important consideration and, from a practical
point-of-view, Tp must be finite. The paramount requirement
is that Tp must be sufficiently large to capture an acceptable
percentage of the area under the normalized Gaussian density
function defined as

p y =
1

2π
e− y

2 2 (4.75)

where y= t/σ and, from (4.74),σ = b 2πf3. Table 4.2 lists a typ-
ical range of to/σ, the level of truncation at p(to/σ), and the
corresponding area under p(to/σ) over the range of ±to/σ
given in column 1. Truncating at ±to/σ results in a disconti-
nuity or pedestal and, in the following applications, the ped-
estal is removed* prior to normalization by K. The area under
the truncated distribution is important in approximating the
Gaussian shaping function and, from Table 4.2, truncation
in the range 3 ≤ |to/σ| ≤ 4 represent reasonable conditions.

Expressing (4.74) in terms of the normalized variables† t/
Tp and ω3Tb = 2πf3Tb and, upon defining ρ = Tp/Tb, x = t/Tp,
and c = 2π/b, the normalized shaping function becomes

h t = Ke− cρ f3Tb t Tp
2
2 rect

t

Tp
(4.76)

After some transformation of variables, g(t) is evaluated as

g t = dkrectTb t,k ∗h t

=K

λU

λL

e− λ
2 2dλ

(4.77)

where the integration limits are

λL =
cρf3Tb

2
and λU = cρf3Tb

t

Tp
(4.78)

Equation (4.77) is evaluated in terms of the probability inte-
gral P(x) with the result

g t =K P λU −P λL (4.79)

where the scale constant K is chosen such that

∞

−∞

g t dt = 1 normalization condition (4.80)

Using (4.80), the normalized frequency function applied to
the CPM modulator is evaluated as

f t Tb =
h

2
g t (4.81)

where h = 1/2 for the MSK modulation. The function g(t) is
plotted in Figure 4.31 for several values of the normalized
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FIGURE 4.30 Frequency function for SMSK waveform
modulation (α = 0.25).

TABLE 4.2 Normal Distribution Parameters

to/σ p(to/σ) Area(|t| ≤ Tp/2)

2 0.053991 0.9545
2.5 0.017528 0.987581
3 0.004432 0.9973
3.5 0.000873 0.999535
4 0.000134 0.999937
4.5 1.60e−5 0.999993
5 1.49e−6 0.999999

*By removing the pedestal the spectral attenuation for f T >> 1 was improved
in cases involving to/σ < 3. †Normalizing by t/Tb results in f(x) = h(t)Tb.
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filter 3-dB bandwidth f3Tb for an isolated source data bit dk = 1
and with K chosen to satisfy (4.80).

The corresponding phase function is evaluated as

ϕ t = ϕ t dt

= dk
πh

Tb

t

−∞

g τ dτ

(4.82)

and, using h = 1/2, this result approaches di(π/2) as t Tp 2.
The phase function, normalized to π/2, is shown in
Figure4.32 as a functionof the normalizedvariable t/Tb for sev-
eral values of the normalized phase-shaping filter bandwidth.

In these plots the isolated input bit corresponds to the
interval 0 ≤ t/Tb ≤ 1 so, unlike the previous waveforms,

adjacent symbols will interfere with each other giving rise
to intersymbol interference. On the other hand, increasing
the range of the phase transitions results in a significant
reduction in the spectral sidelobes. When using a single-
symbol I&D matched filter, the Eb/No loss is about 0.8 dB
for f3Tb = 0.35; however, using a trellis decoder with metric
updates integrated over the interval −1 ≤ t/Tb ≤ 2 essentially
corresponds to maximum-likelihood sequence estimation
(MLSE) [24] detection with a reduced loss in the signal-to-
noise ratio. These subjects are considered in more detail is
Section 4.4.3.7 and in the following.

For a specified value of to/σ = yo, the parameter ρ = Tp/Tb is
inversely proportional to the selected time bandwidth product
f3Tb. The expression determining the one-sided range (Tp/
2Tb), given yo and f3Tb, is

Tp
2Tb

=
yo

c f3Tb
(4.83)

Equation (4.83) is plotted in Figure 4.33 as a function of
the time-bandwidth product f3Tb for various yo values. The
one-sided range corresponds to the amount of ISI from the
preceding and succeeding symbols. The example shown in
Figure 4.33 for f3Tb = 0.3, corresponding to yo = 3, indicates
that the Gaussian response occupies 1.325Tb of the preceding
and succeeding symbols. With Ns samples-per-bit, the num-
ber of one-sided samples of the phase-shaping function h(t) is
defined as

Ns ≜ floor
yoNs

c f3Tb
(4.84)

In the preceding example Ns = 16, so Ns = 21 and the
total span of the phase-shaping function corresponds to
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Nspan = 2Ns + 1 = 43 samples. For values ofNs >Ns the loss in
Eb/No becomes significant when using a detection filter that
integrates over one bit interval; in these cases MLSE detec-
tion processing is necessary to maintain an acceptable loss.
The power density spectrums for GMSK are examined in
Sections 4.4.3.6 through 4.4.3.8.

4.2.8 Phase-Shaped PSK Modulation

The application of phase shaping to PSK-modulated wave-
forms results in a significant improvement in the spectrum
sidelobes relative to the sinc(fT) spectrum of conventional
PSK modulation. Phase shaping of the BPSK-modulated
waveform is referred to as phase-shaped PSK (S-PSK) and
is discussed by Dapper and Hill [4], Andren [25], and Cofer,
Franke, Johnson, and Erman [26]. As in the previous
applications, the phase shaping smooths the abrupt
data-dependent symbol phase transitions resulting in an
improvement of spectral containment while preserving the
constant amplitude of the transmitted signal. In this section,
the linear and raised-cosine phase shaping functions, defined
by (4.85) and (4.86), are examined. In Section 4.4.3.9, the
waveform spectral re-growth and bit-error characteristics
are examined with the phase-shaped modulations: S-BPSK,
S-QPSK, S-8PSK, and S-OQPSK modulated waveforms.

The linear and raised-cosine phase shaping functions are
characterized as

ϕ t =

ϕm t ≤
T

2
1−α

ϕm

2
−
ϕm

αT
t −T 2

T

2
1−α < t <

T

2
1 + α linear shaping

0 o w

(4.85)

and

φ t =

φm t ≤
T

2
1−α

φm

2
1−sin

π

αT
t −T 2

T

2
1−α < t <

T

2
1 + α

RC shaping

0 o w

(4.86)

In these descriptions, the phase ϕm = 2π/M corresponds
to the fundamental phase change associated with the under-
lying MPSK modulation and the symbol phase-shaping
parameter α is constrained to the range 0 ≤ α ≤ 1 where
α = 0 corresponds to no shaping and α = 1 corresponds to
the maximum shaping. For example, considering a symbol
centered at t = 0, the span of the symbol phase shaping is
constrained to the range –αT ≤ t ≤ αT. This is depicted in

Figure 4.34 for linear phase shaping where it is seen that
for α = 1 the phase-shaping function ϕ(t), corresponding
to the dashed curve, extents over the entire symbol centered
at t = 0 with 50% corresponding to the symbol phase change
from ϕm−1 to ϕm and 50% corresponding to the change from
ϕm to ϕm+1. This is referred to as 100% phase shaping and
the ISI represents a 50% contribution from each of the pre-
ceding and succeeding symbols. Similarly, the linear phase
shaping for α = 0.5 corresponds to 50% intra-symbol phase
shaping with 25% ISI contribution from each of the preced-
ing and succeeding symbols. The phase-shaped raised
cosine (S-RC) shaping behaves in a similar manner; how-
ever, the dashed curve does not have an abrupt phase dis-
continuity leading to much lower spectral sidelobes as in
the case of SMSK modulation. Phase shaping, applied with
a monotonically changing phase, results in a shift of the
modulated signal spectrum; this spectral shift is avoided
by alternately or randomly changing the sign of the phase
shift (see Problem 12).

4.3 NON-CONSTANT ENVELOPE PHASE-
MODULATED WAVEFORMS

This section examines several spectrally efficient waveform
modulations that do not result in constant envelopes and
require power amplifiers operating in the linear range with
linear channels or repeaters to preserve the spectral character-
istics. Typically, this requires power amplifier input signal
backoff resulting in less power efficient operation. The
SRRC shaping discussed in Section 4.3.2 is a benchmark
for spectral conservation and is used in many communication
systems.

t
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FIGURE 4.34 Symbol linear phase shaping characteristics.
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4.3.1 Waveform Modulation with sincn(t/2T)
Shaping Filter

Amoroso [27] examines the waveform modulation with the
symbol shaping function expressed as*

pn t =

sin πt T

πt T

n

t ≤ T

0 o w

(4.87)

Equation (4.87) is shown in Figure 4.35 for several
values of the parameter n. The motivation for using
(4.87) is based on improving the spectral containment
of MSK by eliminating the constant amplitude require-
ment and relaxing the symbol time restriction; MSK is
a constant amplitude modulation and the shaping filter
response occupies the interval |t| ≤ T/2 as described by
(4.33) with j = 0. However, the argument of the MSK shap-
ing function is the same as that of the sinc(−) function in
(4.87), that is, for MSK ωmt = π t T . The cosine-shaping
function for MSK is also shown in Figure 4.35 for compar-
ison. Because the modulated waveform involves intersymbol
interference the spectrum for a random sequence of data is not
simply the spectrum of p(t). Amoroso examines the spectrum
and discusses the performance through a channel with filter-
ing and hard limiting. A value of n = 3 appears to be a rea-
sonable compromise in the detection loss associated with the
amplitude modulation, hard-limiter distortion, the spectral
containment, and ISI.

The performance of Amoroso’s quasi-bandlimited MSK
shaping function is not examined in detail here; however,
some salient features [26] are listed in Tables 4.3 and 4.4.
Typically, phase shaping functions do a good job in reducing
the spectrum level at frequencies far removed from the carrier
and one of the objectives using (4.87) is to lower the near-in
sidelobes, that is, for the baseband spectrum at frequencies in
the range |f| <= 1/Tb = 2/T. As a point of reference, the first
MSK spectral sidelobe occurs at |f| 1/Tb and is −23 dB rel-
ative to the peak spectrum level or main lobe. For the case
n = 3 and considering the linear channel, the first sidelobe
level occurs at a frequency <1/Tb and is −30 dB below the
first MSK sidelobe or −53 dB below the main lobe. For
the linear channel case with n = 4, the first spectral sidelobe
is located slightly higher in frequency than the first MSK
sidelobe; however, the level is lowered by an additional
44 dB corresponding to −67 dB below the main lobe. The
detection loss results, listed in Table 4.4, are equally impres-
sive considering that the main source of loss is the ISI and that
adaptive equalization is not used.

4.3.2 Spectral Root-Raised-Cosine (SRRC)
Waveform Modulation

In Section 1.11.4.1 the impulse response of the spectral
raised-cosine (SRC) filter H(ω) with a Nyquist bandwidth
of 1/2T was shown to be zero at the sampling instants t =
nT: n 0. If this response were to correspond to the demod-
ulator matched filter output, then the optimum sampling
instants nT: n 0 are orthogonal to the adjacent symbols
resulting in zero ISI and optimum detection. Since the
matched filter response is the product the received signal
and matched filter frequency responses, that is, H(ω) =

Hs(ω)Hmf(ω), by letting Hs ω   = Hmf ω = H ω , the
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TABLE 4.3 Spectral Sidelobe Levels Relative to MSK
Spectrum

Channel

n = 3 n = 4

1st
SL (dB)

2nd
SL (dB)

1st
SL (dB)

2nd
SL (dB)

Linear −30 −33 −44 −54
Hard

limiting
−12 −20 −8 −21

TABLE 4.4 Detection Loss at Pbe = 10−7 with Respect to
Ideal MSK

Channel

Detection Loss (dB)

n = 3 n = 4

Linear 0.54 0.12
Hard limiting 0.66 0.15

*Amoroso uses the notation T = Tb to denote the bit duration, whereas, in this
description T is the symbol duration equal to 2Tb.

176 PHASE SHIFT KEYING (PSK) MODULATION, DEMODULATION, AND PERFORMANCE



received symbols will be optimally detected using the
matched filter sampled output. Therefore, the SRRC filter
is used to design the modulator waveform and demodulator
matched filter as described in this section.

Referring to the discussion in Section 1.11.4.1, the expres-
sion for the SRRC frequency response is

Hs ω =

AT ω ≤ π 1−α T

AT

2
1−sin

T

2α
ω −π T

1 2

π 1−α T ≤ ω ≤ π 1 + α T

0 o w

(4.88)

This theoretical response is completely contained within the
angular frequency range ± π 1 + α T where α is defined as
the excess bandwidth factor. The impulse response or symbol
shaping function of the SRRC filter is evaluated by taking the
inverse Fourier transform of (4.88), see Problem 13, and the
result is expressed as

p t =A
sin πt T 1−α

πt T

+
4Aα
π

cos πt T 1 + α + 4αt T sin πt T 1−α

1− 4αt T 2

(4.89)

There are three conditions that result in the indeterminate
form 0/0 and these occur at t/T = 0 and ±1/(4α). Evaluation
of the response under these special conditions results in

p 0 =A 1 +
4−π
π

α (4.90)

and

p
± 1
4α

=
A

2π
π−α cos

π

4α
+ π + α sin

π

4α
(4.91)

The one-sided SRRC symbol shaping function is shown in
Figure 4.36 for several values of the excess bandwidth factor.
Although the responses are shown as finite one-sided
responses, they actually extend over the infinite range
|t| =∞, that is, a bandlimited frequency response has an infi-
nite duration impulse response and vice versa. In practice,
this is problematic because it requires a matched filter with
infinite delay. This issue is overcome by limiting or truncat-
ing the two-sided span of the symbol shaping function, for
example, the symbol shaping function depicted in
Figure 4.36 is truncated to a two-sided span of Nspan =
12 symbols. The loss in symbol energy, although dependent
on α, becomes insignificant for reasonably large values of

Nspan. The resulting finite time response gives rise to an infi-
nite frequency response which is examined in
Section 4.4.4.1; the matched filter detection loss for practical
values of Nspan is also examined.

Upon examination of the responses in Figure 4.36 it is
apparent that the values at nT: n 0 are not zero and that
the amplitude of the temporal sidelobes increase with
decreasing α, for example, with α= 0,Hs w = AT p
rect w 4p T and p(t) = Asinc(t/T). As reasoned above,
the matched filter output satisfies the zero response condition
nT: n 0, so it follow that this condition is also satisfied
when the responses in Figure 4.36 are convolved with them-
selves; a process performed by the matched filter. The result-
ing RC responses are shown in Figure 1.40 for the same
values of α.

The preceding analysis addresses the characteristics of an
isolated symbol and Figures 4.37 and 4.38 show the AM
associated with the SRRC-shaped waveform applied to a
sequence of BSPK- and QPSK-modulated symbols for
excess bandwidth factors α = 0.25 and 1.0. These results
are based on the in-phase and quadrature baseband samples
and do not include the fluctuations of the carrier. The AM
results are quantified in Table 4.5 where the first parameter
is the ratio of the second moment to the square of the first
moment of the signal magnitude and corresponds to the
total-to-average power ratio of the AM. The second parame-
ter corresponds to the ratio of the maximum or peak power to
the average power. For constant envelope modulation both of
these parameters have a ratio of one or 0 dB. There is not a
great deal of difference between these two shaping functions;
however, the frequency of the AM is significantly greater for
the α = 1.0 case. The SRRC-modulated waveforms are spec-
trally efficient; however, the power levels into the transmitter
PA must be backed off to preserve the AM and the spectral
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FIGURE 4.36 Theoretical SRRC symbol impulse responses (α =
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efficiency. Consequently, SRRC-modulated waveforms are
not power efficient compared to constant envelop-modulated
waveforms. The spectral efficiency of the SRRC-modulated
waveform with PA backoff is discussed in Section 15.14.2.

4.4 PHASE-MODULATED WAVEFORM
SPECTRUMS AND PERFORMANCE

In this section the spectral characteristics and bit-error perfor-
mance of the various forms of PSK modulation, discussed in
the previous sections, are examined. The following
section identifies various definitions of signal bandwidth and

discusses spectral mask specifications that must bemet to con-
form to national and international regulations. Subsequent sec-
tions address the spectral characteristics of constant envelope
PSK-modulatedwaveforms and their conformance to the spec-
tral masks. The impact of conventional filtering as a means of
spectral control is examined in terms of the spectral re-growth
following power amplifier hard limiting and shown to be ben-
eficialwithOQPSKandMSKmodulations. The application of
phase-shaping to MPSK-modulated waveforms is shown to
result in significant spectral containment while preserving
the constant amplitude characteristic resulting in spectral and
power efficientwaveforms. The bit-error performance of these
modulations is also examined under selected conditions. In
Section 4.4.4.1, the SRRC-modulated waveform is examined
for spectral containment, and the case study in Section 4.4.5
examines the bit-error performance of SRRC-modulated
BPSK, DCBPSK, QPSK, and OQPSK waveforms.

4.4.1 Spectral Masks

A significant performance measure of a modulated waveform
is the spectrum containment that specifies the maximum level
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TABLE 4.5 Summary of AM Characteristics (dB) with SRRC
Shaping

Parameter (dB)

BPSK α QPSK α

0.25 1.0 0.25 1.0

10log 1−σ2m Pa 0.72 0.61 0.35 0.47

10 log(Pm/Pa) 5.63 4.21 4.81 3.97
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of the signal spectrum at frequencies removed from the trans-
mitted carrier frequency. These specifications or spectral
masks impact, for example, the tolerance to channel filtering,
the allowable ACI, and the channel spacing in frequency
division multiple access (FDMA) applications.* The impor-
tant underlying parameter of the modulated signal is the sig-
nal bandwidth as defined in Table 4.6. To standardize the
spectral containment for specific applications and waveform
modulations, unique spectral masks are specified and several
examples are given in the remainder of this section.

The spectral masks specified by the Consultative Commit-
tee for Space Data Systems (CCSDS) Space Frequency Coor-
dination Group (SFCG) recommendation† Rec-21-2R3 [28]
for RF emissions for space-to-earth communication links
are shown in Figure 4.39 and the specified break-points
are listed in Table 4.7. These specifications apply to the sup-
pressed carrier-modulated waveforms discussed in this chap-
ter; however, for symbol rates in less than 2 Msps the
specification also applies to Bi-Phase and non-return to zero
(NRZ) modulations. These masks are for space-to-ground
satellite links operating in the bands: 2.2–2.29 GHz,
8.025–8.4 GHz, and 8.45–8.5 GHz. The spectral containment
requirements apply to bandwidth efficient modulations
[29, 30].

The National Telecommunications Industry Association
(NTIA) defines spectral masks that are tailored to specific
classes of modulations [31]. The following specifications
apply to space services, discussed in Section 5.6 of Reference
30, and include associated earth terminals and space stations

operating in portions of the spectrum allocated to space ser-
vices above 470 MHz.‡ The form of the spectral mask atten-
uation is expressed as

A dBsd =

0 f <Bn 2

8 f =Bn 2

40log 2 f Bn + 8 f >Bn 2

(4.92)

where dBsd is the level of the power spectral density§ (PSD)
of the modulated waveform relative to the maximum level in
the band | f | < Bn/2 and Bn is the necessary bandwidth of the

TABLE 4.6 Various Definition of Signal Bandwidth

Bandwidth Definitiona

Occupied Two-sided bandwidth containing 99% of the signal
power.

Boundedb Two-sided bandwidth outside of which the PSD does
not exceed a specified level (dBsd). Often applied
to spectral re-growth.

Necessaryc Two-sided bandwidth that is just sufficient to ensure
the transmission of information at the rate and
quality required under specified conditions.

Noisec Two-sided bandwidth of an ideal rectangular
spectrumwith level equal to the maximum value of
the signal PSD and area equal to the total area
under the PSD; see Equation (1.46).

aPSD is the power spectral density.
bdBsd is level relative to the maximum of the modulated waveform PSD.
cThe notationBn is used to denote the noise bandwidth soBn is used to denote
the necessary bandwidth.
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FIGURE 4.39 SFCG Rec-21-2R3 one-sided spectral mask
(suppressed carrier modulation, Rs < 2 MHz also includes PCM/
PM/Bi-Phase and NRZ).Space Frequency Coordination Group
(SFCG) [28]. Reproduced by permission of the Consultative
Committee for Space Data Systems (CCSDS).

TABLE 4.7 Specifications for SFCG Rec-21-2R3
Spectral Maska

Rs > 2 Msps Rs < 2 Msps

|f/Rs| Mask (dBsd) |f/Rs| Mask (dBsd)

0.0 0.0 0.0 0.0
0.5 0.0 0.5 0.0
1.4 −30.0 3.0 −30.0
3.0 −60.0 8.0 −60.0
>3.0 −60.0 >8.0 −60.0

aSpace Frequency Coordination Group (SFCG) 2013 [28]. Reproduced by
permission of the Consultative Committee for SpaceData Systems (CCSDS).

*Transmit power control specifications also limit the permissible degradation
in the Eb/No performance from adjacent channels.
†The SFCG recommendations are subject to change and should be reviewed
periodically for updates.

‡The reader should review the NTIA Red Book specifications thoroughly to
ensure the compliance of a selected modulation. For example, power output,
frequency tolerance, and maximum Doppler shift should be considered as
discussed in Reference 30, Chapter 10.
§The power spectral density is also referred to as [7]: power spectrum and
spectral density.
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modulated signal. The upper bound of the spectral density
based on (4.92) is plotted as a function of the normalized fre-
quency f/Bn as shown in Figure 4.40. In Section 4.4.3.1, this
mask is applied to several modulated waveforms based on the
computed necessary bandwidths.

The necessary bandwidths for several commonly used
modulations are given in Table 4.8 and the following param-
eter definitions apply:

D = Peak frequency deviation, that is, one-half the differ-
ence between the maximum and minimum values of
the instantaneous frequency.

R = Total bit rate including data, encoding, and any other
overhead bits.

S = Number of equivalent non-redundant signaling states.

K = An overall numerical factor which varies according to
the emission and which depends upon the allowable
signal distortion.

Ns = Number of sub-carriers.

Cs = Separation in frequency between adjacent sub-
carriers or carriers of a multi-carrier modulation.

Nyquist signaling is a bandwidth efficient waveformmod-
ulation and the theoretical power spectral density and spectral
mask are discussed in the remainder of this section. The the-
oretical results are unrealizable, in that, the impulse response
is infinite in duration; however, practical implementations
involving finite duration windowed impulse responses are
discussed in Section 4.4.4.1.* Nyquist signaling corresponds

to a minimum baseband bandwidth of B = Rs/2 Hz
without ISI and represents an ISI-free binary rate of two
bits-per-channel-use.

The power spectral density of the Nyquist waveform is
characterized as a raised-cosine (RC) function; however,
for maximum-likelihood (ML) symbol detection, the modu-
lated or transmitted waveform is characterized in terms of the
spectral properties of the RRC or SRRCwaveform. The spec-
tral mask, defined in this section for the SRRC-modulated
waveform, is not an accepted standard; however, it is based
on the Intelsat IESS-30 [35] standard spectral mask shown in
Figure 4.41 for QPSKmodulation and plotted as a function of
the normalized frequency deviation from the carrier fre-
quency as fT where the symbol duration is T = 1/Rs = 2/Rb

and Rb is the information bit-rate.†The specified break-points
in Figure 4.41 are listed in Table 4.9. The Intelsat standard
spectral mask characterizes the modulator out spectrum at
the IF to the radio transmitter. It also applies to waveforms
using FEC codes with an appropriate adjustment in the sym-
bol rate Rs. The Intelsat document IESS-310 [36] specifies
the same mask, with an appropriate adjustment in Rs, to char-
acterize the spectrum of the rate 2/3 TCM/8PSK-modulated
waveform with a Reed–Solomon outer code.

The usual procedure in designing a waveform starts by
specifying the symbol shaping function p(t) and then pro-
ceeds to determine the spectrum H(f). This procedure has
the benefit of controlling the intersymbol interference by lim-
iting the symbol shaping function to the symbol interval or, as
in the case of partial response modulation, designing the sym-
bol function with a known intersymbol interference response
that can be taken advantage of in the demodulator. In either
case, restricting the duration of the symbol shaping function
places limits on the waveform spectrum. When designing the
SRRC waveform,‡ the procedure is reversed by first specify-
ing the waveform spectrum and then proceeding to character-
ize the symbol weighting function. With an emphasis on
spectrum conservation, this is a logical way to proceed; how-
ever, the selection of a frequency spectrum with an impulse,
or symbol shaping function, response with zero intersymbol
interference is limited to the class of Nyquist filters, or
Nyquist spectrums, and the resulting modulation is often
referred to as Nyquist signaling.

The theoretical RC spectrum is a bandlimited function
such that H(f) = 0 for |f | > B where B is the baseband band-
width given by§
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FIGURE 4.40 NTIA maximum emission levels for space
services.National Telecommunications and Information
Administration (NTIA) [31]. Reproduced by permission of the
U.S. Department of Commerce.

*Nyquist signals are also discussed in Section 6.6 in the context of partial
response modulation.

†The abscissa of the standard Intelsat mask is plotted in terms of normalized
frequency fTb with Tb = T/2.
‡The goal is to design an RC waveform corresponding to the output of the
demodulator matched filter that does not result in ISI. To accomplish this,
the RC frequency response is proportioned or distributed between the mod-
ulator and demodulator matched filter responses that are characterized as
SRRC frequency responses.
§This bandwidth also applies to the RRC spectrum.
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B=
1 + α
2T

=
Rs

2
1 + α Hz (4.93)

with 0 ≤ α ≤ 1 and Rs = 1/T is the modulation symbol rate. The
factor α defines the excess bandwidth αRs/2 and is referred to
as the excess bandwidth factor. In practice, the RRC spec-
trum is used as the modulator or transmitter filter so that
the demodulator matched filter output results in the RC
spectrum* that, theoretically, does not exhibit intersymbol
interference; this theoretical condition also requires ideal
symbol, frequency, and phase tracking. From this

description, the product of the transmitted and received
SRRC spectrums is equal to the RC spectrum of the demod-
ulator matched filter output which is a bandlimited function
with sampled impulse response x(nT) such that x(nT) = 0 n
except n = 0, where T is the matched filter output symbol
sampling interval. These conditions were established by
Nyquist and T is referred to as the Nyquist interval and Rs/
2 as the Nyquist bandwidth. Upon examining the RC spec-
trum shown in Figure 4.42, it is seen that sampling at the rate
Rs/2 corresponds to half-band sampling discussed in
Section 2.8.2. When the folded spectrum segments A, indi-
cated as dashed lines, exactly matches the void spectrum
segments B, a rect(f/Rs) spectrum is formed having a x(t) =
sinc(t/T) impulse response with zeros occurring at x(nT) as
described above. The sinc function is the only function that

TABLE 4.8 Evaluation of Necessary Bandwidth for Commonly Used Modulationsa

Modulation Bn
b Conditions Comments

BFSKc [32–34] 3 86D+ 0 27R
2 4D+ 1 0R

0 03 < 2D R< 1 0
1 0 < 2D R < 20

Multilevel FSK R

log2S
+ 2DK K ≤ 0 89 K = 0.89 corresponds to 99% bandwidth

GMSKd R

log2S
+ 0 5RK K ≤ 0.28 K = 0.28 corresponds to 99% bandwidth (S = 2)

MSKd R

log2S
+ 0 5RK K ≤ 0.36 K = 0.36 corresponds to 99% bandwidth (S = 2)

PSK 2RK
log2S

0.5 ≤ K ≤ 1 Typically: 0.7 ≤ K ≤ 0.8
K > 0.7 should be justified for fixed microwave systems

QAM 2RK
log2S

K ≤ 0.81 K = 0.81 corresponds to 99% bandwidth

OFDM Ns + 16 25 Cs Ns > 16

aNTIAAppendix J. National Telecommunications and InformationAdministration (NTIA) [31]. Reproduced by permission of theU.S. Department of Commerce.
bExample calculations are given in Appendix J.
cThe following three references contain additional details concerning the calculation of Bn for microwave radio relay systems using BFSK.
dThe parameter S = 2 in determining Bn for GMSK and MSK.
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FIGURE 4.41 Intelsat one-sided PSD mask at modulator output.
Intelsat Earth Station Standards [35]. Reproduced by permission of
Intelsat Global Services LLC).

TABLE 4.9 Specifications for Intelsat Spectral Maska

Inner Mask Outer Mask

|f/Rb| |f/Rs| Level (dB) |f/Rb| |f/Rs| Level (dB)

0.00 0.00 −0.25 0.00 0.00 0.25
0.05 0.10 −0.40 0.05 0.10 0.25
0.10 0.20 −0.40 0.10 0.20 0.25
0.20 0.40 −1.00 0.20 0.25 0.25
0.25 0.50 −4.00 0.225 0.45 −0.50

0.25 0.50 −2.00
0.35 0.70 −16.00
0.40 0.80 −24.00
0.45 0.35 −35.00
0.53 1.60 −40.00

aIntelsat Earth Station Standards [35]. Reproduced by permission of Intelsat
Global Services LLC.

*The characteristics of the temporal and spectral RC functions are discussed
in Sections 1.11.4 and 1.11.4.1 in the context of windows.
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possesses these Nyquist properties. Lucy, Salz, and Weldon
[14] and Papoulis [37] provide a more in-depth treatment of
the Nyquist criterion.

Unfortunately, the SRRC waveform does not have a con-
stant magnitude so the input to the modulator power amplifier
must be backed off to avoid clipping that deteriorates the
transmitted spectrum and the demodulator detection perfor-
mance. The spectrum and bit-error performance of SRRC
modulation are evaluated in Sections 15.14.2 and 15.14.3
for various backoff levels using a solid-state power amplifier.

4.4.1.1 Spectral Root-Raised-Cosine (SRRC) Shaping
Function The theoretical SRRC spectrum H(ω) is
expressed by (4.88) and plotted in Figure 4.43 as a function
of the normalized frequency fT for an arbitrary excess band-
width factor α. In terms of the normalized bandwidth BT in
(4.93), the abscissa of Figure 4.43 is identical to the RC spec-
trum shown in Figure 4.42; however, the amplitude is related
by the square-root.

The spectral mask for Nyquist signaling using the
SRRC-modulated waveform is based on a modification of
the Intelsat mask in Figure 4.41. The modifications reflect
the theoretical spectrums that are dependent on the selection
of the excess bandwidth factor. The resulting SRRC mask is
shown in Figure 4.44 with various break-points listed in
Table 4.10. This mask represents the spectrum at the output
of the waveform modulator. The two symbol rate-dependent
variations for Rs ≥ 2 and <2 Msps are motivated by the
requirements of the CCSDS SFCG recommendation shown
in Figure 4.39.

Figure 4.45 shows the theoretical baseband SRRC power
spectral density for several values of the parameter α. The

SRRC spectral mask is designed to satisfy the theoretical
spectrum for α = 0.4 with a slight margin based on the prac-
tical implementations. The final test of the SRRC power
spectral density evaluation, and to some extent the spectral
mask evaluation, is examined in Section 4.4.4.1 where real-
izable implementations of the SRRC waveforms are exam-
ined using windowed SRRC impulse responses.

4.4.2 Power Spectral Density Characterization

The spectrum of a modulated waveforms is evaluated in
terms of the PSD defined as the Fourier transform of the
waveform correlation function R(t) [38], that is,
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FIGURE 4.44 SRRC one-sided spectral masks (α ≤ 0.4).

TABLE 4.10 Specifications for SRRC Spectral Masksa

(α ≤ 0.4)

Inner Mask

Outer Mask Outer Mask

Rs < 2 Msps Rs ≥ 2 Msps

|f/Rs| Level (dB) |f/Rs| Level (dB) |f/Rs| Level (dB)

0.00 −0.25 0.00 0.25 0.00 0.25
0.10 −0.40 0.10 0.25 0.10 0.25
0.20 −0.40 0.20 0.25 0.20 0.25
0.40 −1.50 0.40 0.25 0.40 0.25
0.47 −5.00 0.45 −0.50 0.45 −0.50
0.50 −12.00 0.50 −2.00 0.50 −2.00
0.50 −70.00 0.58 −5.00 0.58 −5.00

0.64 −10.00 0.64 −10.00
0.70 −21.00 0.70 −21.00
0.75 −35.00 0.75 −35.00
0.88 −35.00 0.88 −35.00
0.88 −40.00 0.88 −40.00
8.00 −60.00 1.50 −50.00
10.00 −60.00 3.00 −60.00

10.00 −60.00

aThe last value in the “Level(dB)” columns are for plotting only and
represent infinite limits.
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G ω =

∞

−∞

R t e− jω tdt (4.94)

The function R(t) has the property of being real and even so
G(ω) is also real and even. In terms of the waveform function
s(t) the PSD is given by

G ω = lim
T ∞

1
T

ST ω 2 (4.95)

where ST(ω) is the Fourier transform of a finite or truncated
interval of s(t) evaluated as

ST ω =

T 2

−T 2

s t e− jωtdt (4.96)

If s(t) is fundamentally limited to the interval |t| ≤ T/2, that is,
it is zero outside of this interval, then the power spectrum is
simply the squared magnitude of the spectrum of s(t) divided
by T. In this case, GT(ω) is defined as the average power of
ST(ω) in the interval T expressed as

GT ω =
1
T

ST ω 2 (4.97)

ST(ω) has dimensions of volt-seconds and GT(ω) has dimen-
sions of watt-seconds or watts/hertz; therefore,GT(ω) is often
referred to as the PSD of s(t).

Typically, the baseband spectrums are evaluated because
the carrier modulation is linear and simply translates or
shifts the spectrum to the carrier frequency, although, the
influence of the negative frequency portion of the spectrum
must be considered when the bandwidth to carrier frequency
ratio is not sufficiently high to ensure that the folding of the
spectral sidelobes about the direct current (DC) is
negligible.

As long as the symbols in the data sequence are uncorrelated,
the power spectral density can be evaluated in terms of an isolated
symbol so that s t = p t where p(t) is the symbol shaping
function discussed in the previous sections. However, when
intersymbol interference is inherent in the signal waveform,
as, for example, with GMSK, S-MPSK, and severely fil-
tered modulated waveforms, the spectrum must be evalu-
ated using the Fourier transform of the autocorrelation
function of a data sequence or the method involvingMarkov
processes described by Gronemeyer and McBride [39]. In
the following sections, the power spectral density for the
commonly used PSK-modulated waveforms is examined.

4.4.3 Constant Envelope PSK Waveforms:
Spectrums and Bit-Error Performance

In this section, the spectrums of constant amplitude-modulated
waveformsare examinedandcompared to the appropriate spec-
tral mask. The waveforms examined are: BPSK, QPSK,
OQPSK, MSK, SMSK, and GMSK. The spectral re-growth
is examined when linear filtering is applied in the modulator
and transmitter before power amplifier hard limiting. The spec-
trum containment of phase-shaped BPSK, QPSK, 8PSK, and
OQPSK modulations is examined for linear and raise-cosine
phase shaping functions and the resulting bit-error performance
examined using a single-symbol detection filter.

4.4.3.1 BPSK, QPSK, and OQPSK Power Spectral
Densities In view of the introductory remarks, the power
spectral density of the BPSK waveform is determined from
the Fourier transform of p t = Prect t T with T equal
to the bit duration Tb. The signal spectrum is evaluated as,

STb ω = P

Tb 2

−Tb 2

e−ωtdt

= PTb
sin ωTb 2
ωTb 2

(4.98)

and the power spectral density is

GT ω =PTb
sin ωTb 2
ωTb 2

2

BPSK (4.99)

The QPSK and OQPSK spectrums are evaluated in the same
way using T = 2Tb and recognizing that the symbol on each
quadrature rail is characterized as p t = P 2 rect t T .
Upon evaluating the signal spectrum, the PSD is evaluated
using (4.97) as

GT ω =PTb
sin ωTb
ωTb

2

QPSK and OQPSK (4.100)
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These waveforms have identical symbol-modulated
signal power with equal area under each spectrum. To
examine the spectral containment, the normalized power
spectral densities are plotted in the following figures
with the modulation-specific NTIA spectral mask
expressed by (4.92) and the necessary bandwidth corre-
sponding to Table 4.8. Figures 4.46 and 4.47 show the
results for BPSK and QPSK. The abscissa of the
BPSK PSD and mask are normalized to the bit interval
and the QPSK PSD and mask are normalized to symbol
interval T = 2Tb so, aside from the different values of
the factor K, the two plots appear to be identical. The
selection of K demonstrates the differences in the mask

when plotted as a function of the fT compared to f Bn
as shown in Figure 4.40. For example, with K = 1.0 the –8
dBsd step occurs at the first spectral null and the −60 point
occurs at fTb = 20 compared to fT = 14 for QPSK with
K = 0.7.

The BPSK and QPSK modulations use the rect(t/T) sym-
bol weighing and do not meet the masks that are designed for
spectrally efficient modulations. In Section 4.4.3.9, the PSD
of S-BPSK and S-QPSK-modulated waveforms is examined
and found to meet the NTIA spectral masks for properly cho-
sen phase-shaping factors.

4.4.3.2 BPSK, QPSK, and OQPSK Spectral Re-growth
and Bit-Error Performance The increasing demand for
bandwidth in commercial radio, including terrestrial and
satellite applications, has nurtured new development in
waveform designs that increase the bandwidth efficiency.
The spectral masks are intended to provide a frequency
environment where a variety of users with different
bandwidth requirements can coexist without interfering
with each other. For example, applications involving
FDM and FDMA* use spectrally efficient modulations
to allow for closer channel spacing thus conserving band-
width or increasing user data rates within the same
bandwidth.

One way to generate a spectrally efficient modulated
signal is simply to pass the signal through a linear filter
with an appropriately selected 3-dB frequency and transi-
tion bandwidth. However, the filter introduces signal dis-
tortion that is characterized by AM and phase distortion
resulting in demodulator performance degradation.
Although the linear filter distortion can be removed
through equalization in the demodulator, if the waveform
is amplified by a hard-limiting transmitter power amplifier
or encounters a hard-limiting channel, as in a bent-pipe
satellite transponder, the AM is removed and the resulting
nonlinear waveform spectrum encounters re-growth that
tends to restore the unfiltered waveform spectrum. In
the case of BPSK modulation the filtered spectrum essen-
tially returns to the original sinc(fT) spectrum before the
hard limiting.

The spectral re-growth is examined in this section for
BPSK, QPSK, and OQPSK modulations following linear
filtering with a 3-pole Butterworth filter with 3-dB cut-
off frequency equal to three times the symbol rate, that
is, fc = 3Rs; for this filter the attenuation at 2 fc is about
18 dB. The spectrums and bit-error performance are
evaluated using a Monte Carlo simulation with 32 sam-
ples-per-symbol. The Butterworth filter is perfectly
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*The use of orthogonal frequency spacing in these cases is referred to as
OFDM and OFDMA. However, these are distinctly different waveforms that
result in high peak-to-rms power variations unlike the constant amplitude
waveforms discussed in this section.
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phase equalized and is implemented as a 64-tap linear-
phase finite impulse response (FIR) filter with a delay
of one symbol. The number of samples-per-symbol is
well in excess of the Nyquist sampling criterion and
is used to examine the spectrum over ±16 symbol inter-
vals; however, only the positive frequencies over 11 side-
lobes are displayed in the following graphs. The Monet
Carlo bit-error performance uses 500K symbols for each
signal-to-noise ratio for Pbe > 5e−4 otherwise 10 M sym-
bols are used.

Referring to Figures 4.48, 4.49, 4.50, 4.51, 4.52, and 4.53
the spectral re-growth of BPSK, following the hard limiter,
essentially results in the sinc(fT) spectrum before the filter

and the bit-error performance loss is recovered. The QPSK
spectrum behaves in a similar way, however, the re-growth
is less than that of BPSK and the bit-error performance loss
due to the filtering is essentially recovered. The OQPSK
spectrum is considerably less sensitive to spectral re-growth
and the bit-error performance following the hard limiter
shows some signs of the ISI loss as a result of the spectral
sidelobe reduction. The progressively reduced spectral re-
growth for these modulations is a direct result of the lower
phase transitions encountered during the symbol data
changes. In the following section, the spectral re-growth of
MSK is seen to be considerably less sensitive even than that
of OQPSK.
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FIGURE 4.48 BPSK power spectral density with filtering
followed by hard limiting.
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FIGURE 4.49 BPSK bit-error performance with filtering
followed by hard limiting.

Normalized frequency (f/Rs) 
0 2 4 6 8 10 12

Sp
ec

tr
um

 m
ag

ni
tu

de
 (

dB
)

–80

–70

–60

–50

–40

–30

–20

–10

0
Curve

Dot-dash
Solid

Dotted

Conditions
Theory

Filter only
Filter/hardlimiter

FIGURE 4.50 QPSK power spectral density with filtering
followed by hard limiting.
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FIGURE 4.51 QPSK bit-error performance with filtering
followed by hard limiting.
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4.4.3.3 MSK Power Spectral Density For MSK wave-
form modulation p t = Pcos ωmt rect t 2Tb and the sig-
nal spectrum is evaluated as

ST ω = P

Tb

−Tb

cos ωmt e
− jωtdt

=
4 PTb

π

cos ωTb

1−4 ωTb π 2

(4.101)

and the power spectral density is

GT ω =
8PTb
π2

cos ωTb

1−4 ωTb π 2

2

MSK (4.102)

The PSD of MSK meets the NTIA spectral mask, however,
does not meet the CCSDS mask for Rs < 2 Msps as shown
Figure 4.54.

4.4.3.4 Filtered MSK (FMSK) Spectral Re-growth and
Bit-Error Performance The MSK spectrum can be filtered
to reduce the spectral sidelobes for frequencies greater than
3Rs; however, the filtering introduces AM resulting in a
non-constant amplitude-modulated waveform. Nevertheless,
because of the excellent spectral characteristic of MSK, the
low power levels of the filtered sidelobe will result in negli-
gible bit-error performance degradation. If a hard-limiting
PA or repeater is encountered, the issue of spectral re-growth
must be considered. For example, if the filter precedes a hard
limiter that removes the AM from the filtered signal, nothing
is gained if 100% spectral re-growth occurs. As characterized
in the previous section, spectral re-growth is sensitive to the
waveformmodulation and the symbol shaping function and it
was demonstrated that BPSK with rect(t/T) symbol shaping
results in nearly 100% spectral re-growth. Fortunately, MSK
is less sensitive to spectral re-growth because the phase
change between phase rest-states does not exceed π/2 radians
and occurs when the quadrature offset symbol weight func-
tions cos(ωmt) are zero. To demonstrate the performance of
filtered MSK (FMSK), the spectral and the bit-error perfor-
mance characteristics before and after hard limiting are
shown in Figures 4.55 and 4.56 respectively. In both cases,
the CCSDS spectral mask for symbol rates less than 2 Msps
is met and the bit-error probability degradation is negligible;
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FIGURE 4.52 OQPSK power spectral density with filtering
followed by hard limiting.
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less than 0.1 dB. The MSK filter corresponds to a phase-
equalized 6-pole Butterworth filter with a 3-dB normalized
frequency of f3T = 3.

The simulated bit-error performance of FMSK is shown in
Figure 4.56 with and without limiting and compares the the-
oretical and simulated performance of MSK. The Monte
Carlo simulations are based on 500K symbols or trials for
Pbe > 5 × 10−4 otherwise 100 M symbols or trials are used.
From the Monte Carlo simulation performance shown in
Figure 4.56 the corresponding losses at Pbe = 10−6, with
and without limiting, are about 0.3 and 0.12 dB. Upon exam-
ination of the noise-free matched filter eye closure* of the

FMSK and hard-limited FMSK-modulated signals, the
respective worst-case detection losses are found to be 0.1
and 0.05 dB.

4.4.3.5 SFSK/SMSK Power Spectral Density The spec-
trum of the SFSK/MFSK-modulated waveform is evaluated
using the Fourier transform of p(t) and is expressed by

GT ω =
1
2Tb

2P

Tb

−Tb

cos ωmt−αsin 4ωmt e− jωtdt

2

SMSK (4.103)

Although Amoroso [20] has derived an expression for this
spectrum involving the summation of Bessel functions, the
results shown in Figure 4.57a are based on numerical integra-
tion of the integral in (4.103). The SFSK spectrum in
Figure 4.57b is obtained using the Fourier transform of the
modulated waveform generated using either the I/Q or
CPM implementations of Figure 4.26. Both techniques (the
I/Q and CPM) yield identical results and the spectrum details
are in better agreement with Amoroso’s results. The spectral
sidelobes of the α-FSK spectrums for α = 0.2 and 0.3 become
increasingly higher than those of SFSK (α = 0.25) for |fT | ≥ 6.
As α continues to decrease the spectral sidelobes continue to
increase resulting in the MSK spectrum when α = 0 and,
when α continues to increase, the spectral sidelobes also
increase slightly exceeding those of the MSK spectrum when
α = 0.5. In the range |fT| < 6 the spectral sidelobes behave
somewhat differently with a significant broadening of the
main lobe and adjacent sidelobes with the level of the adja-
cent sidelobes exceeding those of the first two adjacent MSK
sidelobes. Because the SFSK spectrum does not meet the
CCSDS or the NTIA spectral masks no further consideration
is given to SFSK except to note that it is an optional modu-
lation mode, referred to as SMSK by the U.S. Navy.

4.4.3.6 Gaussian MSK (GMSK) Power Spectral
Density GMSKmodulation modifies the linear phase func-
tion ofMSKmodulation using a Gaussian phase function that
spans several symbol intervals as described in Section 4.2.7.
The span of the Gaussian phase function is defined as the
total number of symbol, including the current and adjacent
symbols, over which the phase function in non-zero. This
corresponds to the span of the symmetrical Gaussian shaping
filter response g(t) that is centered on the current symbol and
extends into the adjacent symbols as determined by the time-
bandwidth parameter f3Tb. The theoretical span of the Gaus-
sian function is infinite and symmetrical about the current
symbol; however, for practical considerations, the span is
symmetrically truncated and the resulting pedestal is
removed prior to the normalization of the phase function to
π/2 radians.
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*The eye closure is a common metric used to characterize the demodulator
loss at the sampled matched filter output. The eye closure, observed with sig-
nal distortion, is also a reliable estimate of the performance loss for low levels
of distortion and, in this regard, is similar to estimating the paired echo dis-
tortion discussed in Section 1.3.2.
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For example, referring to Figure 4.31, if the span is limited
to three symbols the impulse response g(t) corresponding to
f3Tb = 0.25 results in a pedestal or step at t/Tb = −1 and 2.
Removing the pedestal and performing the phase normaliza-
tion results in a 10 dB reduction in the power spectral density
sidelobes corresponding to |fT| > 1.5. The encroachment of
the symbol phase function into the adjacent symbols results
in ISI and suboptimum symbol detection when a single-
symbol detection filter is used. In the following performance
evaluations, the span of the phase function is examined for
specific values of f3Tb and reducing the span results in an
increasing spectral sidelobe floor. In general, as f3Tb is
decreased the span should be increased to preserve the low
spectral sidelobe characteristics; however, increasing the
span results in greater ISI loss when using a single-symbol
I&D detection filter. The use of MLSE detection as described
by Forney can be used to reduce the detection loss at the
expense of increased system complexity.

Murota and Hirade [40] have evaluated the power spectral
density, the fractional power ratio, the ACI performance, and
the single-symbol detection filter loss of GMSK using
machine computations and their results are used as a baseline
or standard for comparison with the following Monte Carlo
simulated performance results. Figure 4.58 shows the PSD
of GMSK for f3Tb = 0.5, 0.3, 0.2, and 0.1 based on averaging
and smoothing one-hundred, 92 dB Blackman-Harris* win-
dowed, 1024-point fast Fourier transforms (FFTs) of a
sequence of 64 randomly generated bits with 16 samples-
per-bit. The spectral smoothing is the average of a current
sample and five adjacent samples using a uniformly weighted
11-tap sliding window FIR filter. The theoretical PSD for

MSK and the CCSDS spectral mask for symbol rates greater
than 2Msps are also shown. The total spans corresponding to
the selected f3Tb values are: 5, 5, 7, and 13 bits. The GMSK
waveform corresponding to f3Tb = 0.5 does not meet the spec-
tral mask; however, the case with f3Tb = 0.3 is within the
mask. The GMSK spectrum results of Murota and Hirade
are limited to |f/Rs| ≤ 5.0 and over this range the simulated
results in Figure 4.58 are in good agreement with their results.

Figure 4.59 compares the PSD when the total spans† are
reduced as indicated. With shorter spans the spectral sidelobe
levels tend to flare resulting in a sidelobe floor; however, this
does not impact the CCSDS spectral mask results as indicated
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*Windowing the FFT is important for spectral control and the Hanning win-
dow yields similar results.

†The total span in bits is 2(one-sided span) + 1 where the one-sided span is
the extent of the phase function over the one-sided adjacent bits.
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above. Furthermore, in both of these cases, the most spec-
trally efficient PSD corresponding to f3Tb = 0.1 does not meet
the Intelsat IESS-308 SRRC spectral mask defined in
Section 4.4.1.1.

4.4.3.7 GMSK Spectral Containment and Bit-Error
Performance Figure 4.60 compares the spectral contain-
ment of GMSK with that of MSK shown as a reference.
The GMSK cases, denoted as A and B, correspond to the
difference spans of the phase function as indicated in
Figures 4.58 and 4.59 respectively. The spectral containment
corresponding to f3Tb = 0.1, 0.2, and 0.5 are not discernable
between the two cases. Under the conditions f3Tb = 0.3, 0.2,
and 0.1, the percentage of the total spectral power contained
within the lowpass frequency band, equal to the symbol rate,

corresponds, respectively, to 99.9, 99.99, and 99.999.* This
is a remarkable concentration of power that results in a very
bandwidth efficient modulation; however, there is a signifi-
cant increase in processing complexity when attempting to
capture the modulation power in a ML detector.

Referring to the theoretical bit-error performance
expressed by (3.32), Murota and Hirade evaluate the perfor-
mance bound on the bit-error probability for MSK using the
minimum distance dmin = min(d) between the complex mark
and space received signals, sm(t) and ss(t), where d2 is
defined as

d2 ≜
1
2

T2

−T1

sm t −ss t
2dt (4.104)

and the energy-per-bit, Eb, given by

Eb ≜
1
2

Tb

0

sx t 2dt x =m,s (4.105)

Their results apply to coherent detection of the received
MSK waveform and the use of dmin applies under high sig-
nal-to-noise conditions. Upon machine evaluation of dmin
as a function of f3Tb, Murota and Hirade evaluate the bit-error
probability and resulting degradation in Eb/No relative to
antipodal signaling as shown in Figure 4.61. The data points
are based on the single-symbol† detection filter using the
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*The percent bandwidth is the two-sided or bandpass bandwidth equal to 2Rs.
The occupied bandwidth is defined as the 99% bandwidth.
†The simulation uses quadrature symbol-detection filters.
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Monte Carlo simulation results shown in Figure 4.62. The
simulations use 1 M bits for each signal-to-noise ratio for
Pbe > 5e−4 and 10M bits otherwise and the total span of
the phase functions correspond to those used in
Figure 4.59 (case B) as described above. The total span for
the case f3Tb = 0.5 and 0.3 is three bits, that is, the phase func-
tion extends over the two adjacent bits. As f3Tb increases the
ISI decreased and the detection performance approaches the
ML detection of MSK. It appears that these two cases are rea-
sonably close to the performance of ML detection. The case
involving f3Tb = 0.2 uses a total span of five bits, that is, the
phase function extends over four adjacent bits (two on each
side of the current bit) and the ISI significantly degrades the
detection performance. The performance using the case A
phase function spans result in flaring of the bit-error perfor-
mance resulting in an irreducible bit-error probability. In
these cases, theML detector must be implemented as aMLSE
that typically involves a finite-state trellis detector.

4.4.3.8 Revisiting the GMSK Power Spectral Density In
Section 4.4.3.6, the PSD of the GMSK-modulated waveform
was examined for fixed shaping-function spans equal to an
integer number of bits or equivalently an integer number of
samples N(Ns) where Ns is the number of samples-per-bit.
In this section, the span is examined in terms of the number
standard deviations of the Gaussian phase-shaping function,
defined in Section 4.2.7 as*

σ =
b

2πf3
(4.106)

where b = 2ln 2, f3 is the 3-dB frequency of the Gaussian
frequency function. This approach provides for specifying an
arbitrary number of one-sided samples over the Gaussian
phase-shaping function. Furthermore, the PSDs are evaluated
by averaging periodograms which is less cumbersome than
averaging and smoothing the raw spectrums.

Using the normalized parameter yo = to/σ, defined in
Section 4.2.7 and characterized in Table 4.2, the focus in this
section is on the case f3Tb = 0.3, Ns = 16, with yo = 2, 3, and 4.
The number of one-sided samples over the Gaussian phase-
shaping function, defined in (4.84), is repeated here as

Ns = floor χyo (4.107)

with

χyo = yoσNs

= 7 0669yo
(4.108)

The last equality in (4.108) corresponds to the parameter
values identified above.

The PSD results are shown in Figure 4.63 for the three
conditions of yo as indicated by the parameter χyo .
Figure 4.63a is provided as a point-of-reference and corre-
sponds to the spectrum in Figure 4.59 for f3Tb = 0.3 with a
total span of 3-bits corresponding to a one-sided span of
Ns samples. The impact of increasing the span by increasing
yo has very little impact with regard to meeting the CCSDS
mask; however, the sidelobe levels are reduced for t/Tb >
1.5. The impact of removing the pedestal also reduces the
sidelobes; however, the affect is indistinguishable for the
case yo = 4. Between these conditions, a good choice is
yo = 2 because the spectral mask is satisfied with a minimum
ISI, although the one-sided span is about 88% of the bit
interval.

4.4.3.9 S-MPSK and S-OQPSK Performance Char-
acteristics In the following sections, the performance of
linear and raised-cosine phase-shaped MPSK (M = 2, 4, 8)
and OQPSK is examined in terms of the spectral contain-
ment† and the bit-error probability. All of the performance
results are obtained using computer simulations with 32 sam-
ples-per-symbol. The time and frequency are normalized to
the symbol rate and, because the channel is modeled as a
memoryless AWGN channel, the bit-error results can be
applied to any bit or symbol rate. The signal is modeled as
a baseband-modulated waveform and the number of sam-
ples-per-symbol is chosen to provide ±16 spectral sidelobes
for the spectrum evaluations. The signal spectrum
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FIGURE 4.62 GMSK bit-error performance (single-symbol
detection filter).

*The parameter σ is defined as the parameter a in Section 4.2.7.

†The spectral containment when measured as a percent of the total spectral
energy is also referred to as the spectral efficiency.
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corresponds to the output of a linear transmitter and is eval-
uated by averaging and smoothing the FFT outputs. The
spectral containment is the integrated spectral power over
positive frequencies expressed in percent of the total positive
frequency spectral power. The bit-error probability is based
on 600K symbols, or Monte Carlo trials, for each signal-
to-noise ratio corresponding to bit-error probabilities greater
than about 5e−4, otherwise, 10 M symbols are used. The
demodulator uses ideal phase and symbol tracking, that is,
symbol timing, frequency, and phase errors are perfectly
removed, and the symbol detection uses a single-symbol
weighted I&D filter. The filter weighting is expressed as

w t = sinn
πp t

2
T 1−α

2
≤ t ≤

T

2
(4.109)

where a value of n = 2 results in the best performance and is
used in the performance simulations. The filter weighting
improves the signal-to-noise ratio of the sampled detection
filter output by minimizing the impact of the adjacent sym-
bols phase function. As mention previously, MLSE detection

provides the optimum performance at the expense of proces-
sing complexity.

Referring to (4.85) and (4.86) the parameter α is defined in
terms of the symbol duration T and, when α = 1, the phase
shaping extends over an entire symbol as depicted in
Figure 4.34a. The performance evaluations of S-MPSK use
phase shaping corresponding to α = 0.25, 0.5, and 1.0. How-
ever, with S-OQPSK the symbols in the quadrature rails
change at alternating intervals of the bit duration Tb. Conse-
quently, with α > 0.5, the phase changes simultaneously on
each rail degrading the spectrum containment, so, in the case
of S-OQPSK, the shaping parameter is limited to the bit inter-
val corresponding to α ≤ 0.5. For this reason, the spectral
characteristics with phase shaping applied to OQPSK offers
little performance improvement.

The following figures show the simulated performance for
the three S-MPSK waveforms and the S-OQPSK waveform
mentioned above. For each modulation, three performance
curves are given: the power spectral density; the spectral con-
tainment in percentage of the total spectrum power; and the
bit-error performance. In addition, each of the three
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FIGURE 4.63 GMSK power spectral density results (f3Tb = 0.3 and Ns = 16).
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performance curves is characterized for the linear and raised-
cosine phase shaping functions. The results for each of the
three MPSK modulations exhibit the following common per-
formance trends:

• The spectral containment improves with increasing α

• The occupied bandwidth, defined as 99% containment,
is lower with linear phase shaping

• The bounded bandwidth is lower for RC phase shaping
provided that |fT| > 2

• The RC phase shaping requires that α ≥ 0.5 for a signif-
icant spectral containment advantage

• The bit-error performance degrades with increasing α

• The bit-error performance is less sensitive with RC
shaping

S-BPSK Performance Characteristics
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FIGURE 4.64 S-BPSK power density spectrum.
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S-QPSK Performance Characteristics
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FIGURE 4.66 S-BPSK bit-error probability.
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S-8PSK Performance Characteristics
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0 2 4 6 8 10 12 14
–100

–80

–60

–40

–20

0

Normalized frequency (fT) dB Normalized frequency (fT) dB 
0 2 4 6 8 10 12 14

S
pe

ct
ru

m
 m

ag
ni

tu
de

 (
dB

)

S
pe

ct
ru

m
 m

ag
ni

tu
de

 (
dB

)

–100

–80

–60

–40

–20

0

Curve
Dashed
Solid

Dot-dash

Shaping (𝛼 )
1.0
0.5
0.25

Curve
Dashed
Solid

Dot-dash

Shaping (𝛼 )
1.0
0.5
0.25

Linear phase shaping

(a)

Raised-cosine phase shaping

(b)

FIGURE 4.70 S-8PSK power density spectrum.

0.0 2.0 4.0 6.0 8.0 10.0
50

70

90

99

99.9

99.99

99.999

Curve
Dashed
Solid

Dot-dash

Shaping (𝛼)
1.0
0.5
0.25

Curve
Dashed
Solid

Dot-dash

Shaping (𝛼)
1.0
0.5
0.25

Normalized frequency ( fT) dB Normalized frequency ( fT) dB 

0.0 2.0 4.0 6.0 8.0 10.0

S
pe

ct
ru

m
 c

on
ta

in
m

en
t (

%
)

S
pe

ct
ru

m
 c

on
ta

in
m

en
t (

%
)

50

70

90

99

99.9

99.99

99.999

Linear phase shaping Raised-cosine phase shaping

(a) (b)

FIGURE 4.71 S-8PSK spectral containment.



S-OQPSK Performance Characteristics
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FIGURE 4.72 S-8PSK bit-error probability.
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FIGURE 4.73 S-OQPSK power density spectrum.

0.0 2.0 4.0 6.0 8.0 10.0
50

70

90

99

99.9

99.99

99.999

𝛼′
1.0
0.5
0.25

Normalized frequency ( fT) dB Normalized frequency ( fT) dB 
0.0 2.0 4.0 6.0 8.0 10.0

S
pe

ct
ru

m
 c

on
ta

in
m

en
t (

%
)

S
pe

ct
ru

m
 c

on
ta

in
m

en
t (

%
)

50

70

90

99

99.9

99.99

99.999

Curve
Solid

Dot-dash
Dot-dot-dash

Shaping (𝛼)
0.5
0.25
0.125

𝛼′
1.0
0.5
0.25

Curve
Solid

Dot-dash
Dot-dot-dash

Shaping (𝛼)
0.5
0.25
0.125

Linear phase shaping Raised-cosine phase shaping

(b)(a)

FIGURE 4.74 S-OQPSK spectral containment.



4.4.4 Non-Constant Envelope PSK Waveforms:
Spectrums and Bit-Error Performance

Amoroso’s symbol shaping function, discussed in
Section 4.3.1, falls in this category of modulations; however,
because of the superior spectral efficiency of SRRC modula-
tion, the results in this section focus on the SRRC-modulated
waveform defined by (4.88). In the following sections, the
spectrum and bit-error performance of the SRRC waveforms
are examined with simulated performance results for SRRC
BPSK and SRRC QPSK presented as a case study. The mod-
ified Intelsat IESS-308 spectral mask is used as the spectral
efficiency reference.

4.4.4.1 Spectral Root-Raised-Cosine (SRRC) Shaping
Function The inverse Fourier transform p(t) of the SRRC
function is expressed in (4.89) with the time response extend-
ing over the infinite range |t| =∞. In practice, the theoretical
response is truncated by a finite window over a practical
range of symbols. The window span is denoted as* Nspan

and defined in terms of symbols withNs samples-per-symbol.
Therefore, the span is computed as,

Nspan ≜
Ns window

Ns
(4.110)

where Ns(window) is the number of samples-per-window.
For example, with Ns(window) = 34 and Ns = 4 samples-
per-symbol, the window span is Nspan = 8.5 symbols. The

frequency responseH (ω) of the windowed impulse response
is evaluated as the convolution of H (ω) with W(ω) or as the
Fourier transform of the product p(t)w(t) where the window
functions W(ω) and w(t) form a Fourier transform pair.

The following results for a realizable implementation of
the SRRC waveform are evaluated using a rectangular mod-
ulator window with various spans (Ntspan) to demonstrate the
compliance with the indicated transmission spectral masks.
Although it is demonstrated that a rectangular window span
can be selected to meet the requirements of the frequency
masks, application of a temporal RC (TRC) window,
depicted in Figure 4.79, reduces the out-of-band spectral
sidelobes further improving the spectral efficiency. If the
mean duration of the TRC window is equal to the span of
the rectangular window, then the width of the main spectral
lobe will remain unchanged; however, the two-sided span of
the TRCwindow will increase by the factor of 1 + αt where αt
is the excess duration of the TRC window.

Figure 4.76 shows the SRRC PSD using an excess band-
width factor of α = 0.2 and a rectangular impulse response
window spanning 6, 9, and 12 symbols. The effect of the
sinc(fT) frequency sidelobes of the rectangular window is
apparent in these responses and is dependent on the span
of the widow. The response for Ntspan = 6 does not meet
the SRRC spectral mask for symbol rates Rs ≥ 2 Msps, the
case with Ntspan = 9 slightly exceed the mask at fT = 3.0
and the Ntspan = 12 case satisfies the mask.† The cases for
Nspan = 9 and 12meet the spectral mask for Rs < 2Msps; how-
ever, the Nspan = 6 case does not.

Figure 4.77 shows the SRRC PSD under similar condi-
tions used in Figure 4.76 for an excess bandwidth factor of
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FIGURE 4.75 S-OQPSK bit-error probability.

*The span discussed in this section is the modulator or transmitted window
span denoted asNtspan. The demodulator or receiver span is the matched filter
window Nrspan where Nrspan ≤ Ntspan. The transmitted span is chosen for
transmission bandwidth efficiency and the receiver span is chosen to mini-
mize the detection loss and implementation complexity.

†As in all for these comparisons, the PSD results are bases on ideal window
coefficients that must be examined for the practical case involving finite
coefficient quantization.
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α = 0.4. In these cases, the response for Ntspan = 6 still does
not meet the SRRC spectral mask for symbol rates Rs ≥ 2
Msps; however, the cases for Ntspan = 9 and 12 meet the spec-
tral masks.

The improved spectral roll-off with frequency is demon-
strated in Figure 4.78 using a raised-cosine modulator win-
dow instead of the rectangular window used in
Figures 4.76 and 4.77. Part (a) of the figure corresponds to
α = 0.2 and can be compared to Figure 4.76b that did not meet
the spectral mask. Part (b) corresponds to α = 0.4 and can be
compared to Figure 4.76b. In both cases, there is a significant
reduction in the spectral levels for normalized frequencies
(fT) greater than about 3.0. Choosing the raise-cosine
response to be symmetrical about the ends of the average
window, as shown in Figure 4.79, minimizes the impact on
the width of main spectral lobe; however, for the low values
of αt being considered, there is very little influence over the
near-in spectral sidelobes by varying αt. The impact of the
TRC window on the demodulator matched filter detection

is minimal, in that, the orthogonality loss of the detected sym-
bols is similar to that observed with the rectangular window.
For example, for cases involving αt = 0.2–0.4, the noise-free
maximum level of the matched filter response at intervals of
nT was observed to be about 0.03 dB with typical values of
0.004 dB. The span of the transmitted and matched filter ref-
erence symbols is an important consideration in the design
and detection of the SRRC-modulated waveform.

The raised-cosine window is defined in terms of the aver-
age window duration Tw and the overall window duration Tw
as depicted in Figure 4.79. The average duration is defined in
terms of an integer number of symbols with Ns samples-per-
symbol, so Tw = NsymbT = NsymbNsTs where the span of the
window is defined as Nspan =NsymbNs and Ts is the sample
interval. Referring to Figure 4.79, the raised-cosine intervals
at each end of the window are defined as NαtTs and, using
these parameters, the overall window duration is expressed as

Tw = NsymbNs + 2Nαt Ts (4.111)

Normalized frequency (fT) Normalized frequency (fT)

Normalized frequency (fT)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
–70

–60

–50

–40

–30

–20

–10

0

10

Inner
mask

Inner
mask

Outer
mask

( 𝛼<= 0.4)

Outer
mask

( 𝛼<= 0.4)

Outer
mask

( 𝛼<= 0.4)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
–70

–60

–50

–40

–30

–20

–10

0

10

Ntspan = 6 Ntspan = 9

Ntspan = 12

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

N
or

m
al

iz
ed

 s
pe

ct
ru

m
 (

dB
)

N
or

m
al

iz
ed

 s
pe

ct
ru

m
 (

dB
)

N
or

m
al

iz
ed

 s
pe

ct
ru

m
 (

dB
)

–70

–60

–50

–40

–30

–20

–10

0

10
(c) 

Inner
mask

(a) (b) 

FIGURE 4.76 SRRC PSD with impulse response rectangular windowing (α = 0.2).

PHASE-MODULATED WAVEFORM SPECTRUMS AND PERFORMANCE 197



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
–70

–60

–50

–40

–30

–20

–10

0

10

Normalized frequency (fT)Normalized frequency (fT)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

N
or

m
al

iz
ed

 s
pe

ct
ru

m
 (

dB
)

N
or

m
al

iz
ed

 s
pe

ct
ru

m
 (

dB
)

N
or

m
al

iz
ed

 s
pe

ct
ru

m
 (

dB
)

–70

–60

–50

–40

–30

–20

–10

0

10

Inner
mask

Outer
mask

(α< = 0.4)
Inner
mask

Outer
mask

(α< = 0.4)

(a) (b)

Ntspan =  9Ntspan = 6

Normalized frequency (fT)

Ntspan =  12

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
–70

–60

–50

–40

–30

–20

–10

0

10

(c) 

Inner
mask

Outer
mask

(𝛼<= 0.4)

FIGURE 4.77 SRRC PSD with impulse response rectangular windowing (α = 0.4).

Normalized frequency (fT) Normalized frequency (fT)

0 1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 s
pe

ct
ru

m
 (

dB
)

N
or

m
al

iz
ed

 s
pe

ct
ru

m
 (

dB
)

–100
–90
–80
–70
–60
–50
–40
–30
–20
–10

0
10

0 1 2 3 4 5 6 7 8
–100

–90
–80
–70
–60
–50
–40
–30
–20
–10

0
10

Inner
mask

Inner
mask

Outer
mask

(𝛼<= 0.4)

Outer
mask

(𝛼<= 0.4)

(a)

𝛼 = 0.2, Ntspan = 11 𝛼 = 0.4, Ntspan = 9 

(b)

4.55% RC window 4.17% RC window
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Considering that the window is symmetrical about t = 0, such
that, t ≤ Tw 2, then, upon defining t = nTs and dividing by
NsymbNsTs, the normalized sampling index is expressed as*

n =
n

NsymbNs
(4.112)

and the range of n is

n ≤
1 + αt
2

(4.113)

where αt =Nα NsymbNs 2 is the excess temporal factor;
100αt expresses the percent of the raised-cosine weighting.

Upon comparing these results with the expression for the
temporal RC window in Section 1.11.4, the symmetrical win-
dow samples are evaluated as

w n =

1 n < 1−αt 2

1
2

1−sin
π

αt
n −1 2 1−αt 2 ≤ n ≤ 1 + αt 2

(4.114)

The selection of αt andNtspan is based on system specification
of the ACI. Implementation issues include demodulator pro-
cessing complexity, matched filter loss, and symbol and fre-
quency tracking losses which are also dependent on the
selection of αt and Ntspan. Several of these issues are exam-
ined in the following case study.

The SRRC matched filter detection loss is evaluated in
terms of the matched filter span (Nrspan) relative to a transmit-
ted signal span (Ntspan) of 12 symbols. The detection loss is
evaluated by varying Nrspan while maintaining ideal symbol
timing. The loss is shown in Figure 4.80 for the indicated
excess bandwidth factors. For example, a matched filter
detection loss of 0.1 dB corresponds to an SRRCmatched fil-
ter spans of approximately: 1, 1.3, and 1.5 symbols for the
respective values of α = 0.45, 0.3, and 0.2.

Figure 4.81 shows the detection sensitivity to a matched
filter symbol timing error. These results correspond to the
matched filter loss for an isolated symbol and do not include
the intersymbol interference loss associated with a sequence
of modulated symbols. In the following case study, the
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Nsymb21
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FIGURE 4.79 Raised-cosine window description.
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FIGURE 4.80 SRRC symbol detection loss with matched filter
span relative to Ntspan = 12 symbols.
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FIGURE 4.81 SRRC isolated symbol detection loss with
matched filter sampling error.

*It is convenient for the product NsymbNs to be even, and in the examples in
this section Ns = 16 and Nsymb may be even or odd.
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symbol timing sensitivity is examined for SRRC BPSK-
modulated data that includes the effect of the ISI.

4.4.5 Case Study: Spectral and Bit-Error
Performance of SRRC Applied to BPSK, QPSK,
and DCBPSK

Figure 4.82 shows the simulated PSD of SRRC applied to
BPSK and QPSK modulations for α = 0.2 and Ntspan =
Nrspan = 12 symbols. The approximation to the PSD is based
on averaging 200 random data spectrums and then smoothing
the average spectrum using a 41-tap uniformly weighted slid-
ing window transversal filter. These approximations to the
simulated PSD show some residual random variations; how-
ever, the average spectrums are similar to that shown in

Figure 4.76c and meet the SRRC spectral mask for Rs ≥
2 Msps.*

The simulated bit-error performance of SRRC spectral
shaping applied to BPSK and QPSK modulations is shown
in Figure 4.83. In each case, the excess bandwidth factor is
equal to 0.2, the underlying transmitter symbol span is
12 symbols, and the matched filter span Nrspan is varied as
denoted by the ratio Spans = Ntspan/Nrspan in the figures.
For these results, and the remaining bit-error performance
results in this case study, ideal symbol timing and phase
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FIGURE 4.82 SRRC simulated power spectral density (α = 0.2, Ntspan = 12).
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FIGURE 4.83 Uncoded SRRC bit-error performance with matched filter span (α = 0.2, Ntspan = 12).

*The simulated PSD is obtained by taking the Fourier transform of the cor-
relation response of the modulated data sequence; however, additional fidel-
ity can be achieved in these results by averaging periodograms as discussed
in Chapter 1.
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tracking is used. The bit-error performance characteristics are
very similar for all of these modulations and the demodulator
matched filter span must be at least six symbols to result in an
Eb/No loss of less than 0.1 dB. The performance indicated by
the circled data points in each figure corresponds to a
matched filter span of 12 symbols and is virtually the same
as the ideal performance of antipodal signaling as indicated
by the dotted curves. The SRRC waveform is sensitive to fil-
ter distortion over the baseband bandwidth Rs/2, for example,
the cascaded integrate and comb (CIC) rate reduction to four
samples-per-symbol with uncompensated gain roll off must
be greater than 32 : 1 to result in a performance loss of less
than 0.1 dB. These Monte Carlo simulations are based on
500K symbols for each signal-to-noise ratio for Eb/No ≤
8 dB, otherwise 5 M symbols are used.

Figures 4.84 and 4.85 compare the performance of coded
SRRC DCBPSK modulation for excess bandwidth factors
0.35 and 0.2. The purpose is to examine the performance sen-
sitivities under these two commonly used excess bandwidth
factors that satisfy the SRRC spectral mask corresponding to
α = 0.4. The coding corresponds to a rate ½, constraint length
K = 9 convolutional code using a Viterbi decoder with a trel-
lis depth of 32 symbols and virtually infinite metric quanti-
zation. Figure 4.84 shows the performance sensitivity to
the matched filter timing error using transmitter and matched
filter spans of 12 symbols. The simulation performs the
matched filtering using 16 samples-per-symbol and the
performance loss is examined for the normalized timing error
τ/T = n/16 : n = 0 – 3. Upon close examination, it is observed
that the performance with α = 0.2 is slightly more sensitive
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FIGURE 4.84 Coded SRRC DCBPSK bit-error performance with matched filter sample error (Ntspan, Nrspan = 12, rate 1/2, K = 9,
convolutional coding).
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and, for fine-tuning the link budget, 0.05 dB additional loss
should be included for this case. The more important obser-
vation is that, in either case, the absolute timing error should
be less than 1/16th of a symbol to result in a loss of less than
about 0.1 dB. Figure 4.85 examines the performance sensitiv-
ity to the matched filter span for the same two excess band-
width factors and with a constant transmitter span of
12 symbols. The results also demonstrate the relative perfor-
mance sensitivity of the α = 0.2 case. To keep the detection
loss less than 0.1 dB, these results suggest that the minimum
matched filter span should be 6 and 10 symbols for the,
respective, excess bandwidth factors of 0.35 and 0.2. The dif-
ferentially coherent waveform modulation is used in a
frequency-hopping modem with 32 code-bits/hop
(16-information bits/hop) and a matched filter sampling rate
of 16 samples-per-symbol. The Monte Carlo simulations of
the coded performance use 500K hops for each signal-to-
noise ratio for Eb/No ≤ 5 dB, otherwise 4 M hops are used;
this corresponds to 8 and 64M bits for eachMonte Carlo trial.
The channel is modeled as an AWGN channel and at Pbe =
1e−7 the measurement accuracy is ΔPbe = 8e−8 with a confi-
dence of 95%.

ACRONYMS

ACI Adjacent channel Interference
AM Amplitude modulation
AWGN Additive white Gaussian noise
BFSK Binary frequency shift keying
Bi-Phase Two-phase (a PCM data format)
BPSK Binary phase shift keying
CBFSK Coherently detected BFSK
CBPSK Coherently detected BPSK
CCSDS ConsultativeCommittee for SpaceData Systems
CIC Cascaded integrate and comb (filter)
CMPSK Coherently detected MPSK
CPFM Continues-phase frequency modulation
CPFSK Continuous phase frequency shift keying
CPM Continuous phase modulation
CSK Compatible shift keying
DAC Digital-to-analog conversion
DC Direct current
DCBPSK Differentially coherent BPSK
DCMPSK Differentially coherent MPSK
DCPSK Differentially coherent PSK (also DPSK)
DCQPSK Differentially coherent QPSK
DEBPSK Differentially encoded BPSK
DEMPSK Differentially encoded MPSK
DEQPSK Differentially encoded QPSK
DPSK Differential PSK (Same as DCPSK)
E/L Early–late (sampling)
FDM Frequency division multiplex (protocol)
FDMA Frequency division multiple access (protocol)

FEC Forward error correction (coding)
FFSK Fast frequency shift keying
FFT Fast Fourier Transform
FIR Finite impulse response (filter)
FMSK Filtered MSK
FSK Frequency shift keying
GFSK Gaussian frequency shift keying
GMSK Gaussian minimum phase shift keying
HL Hard limiter
I&D Integrate-and-dump (filter)
I/Q In-phase and quadrature (channels or rails)
IESS Intelsat Earth Station Standards
IF Intermediate frequency
ISI Intersymbol interference
ML Maximum-likelihood (estimate or decision

rule)
MLSE Maximum-likelihood sequence estimation (or

estimator)
MPSK Multiphase shift keying
MSK Minimum shift keying
NRZ Non-return to zero form of PCM data format

(a PCM data format)
NTIA National Telecommunications Industry

Association
OFDM Orthogonal frequency division multiplexing
OFDMA Orthogonal frequency division multiple access
OQPSK Offset quadrature phase shift keying (also

called SQPSK)
PA Power amplifier
PAC Phase-to-amplitude converter
PCM Pulse code modulation (baseband)
PSD Power spectral density
PSK Phase shift keying
QPSK Quadrature phase shift keying
RC Raised cosine
RF Radio frequency (carrier)
RRC Root-raise-cosine
S-8PSK Phase-shaped 8PSK
S-BPSK Phase-shaped BPSK
SFCG Space Frequency Coordination Group
SFSK Sinusoidal FSK
S-MPSK Phase-shaped MPSK
SMSK Sinusoidal minimum shift keying
S-OQPSK Phase-shaped QPSK
S-PSK Phase-shaped PSK
SQPSK Staggered QPSK (alternate notation for

OQPSK)
S-QPSK Phase-shaped QPSK
SRC Spectral RC
S-RC Phase-shaped RC
SRRC Spectral root-raised-cosine
SSPA Solid-state power amplifier
TCM Trellis-coded modulation
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TRC Temporal RC
TWTA Traveling wave tube amplifier
VCO Voltage controlled oscillator

PROBLEMS

1. Show that uc(t) and us(t) given by (4.4) and (4.5) are unit
energy functions and are orthogonal to each other.

2. Considering the gray-coded QPSK symbol constellation,
the probability of a correct symbol detection is Pcs = (1 –
Pbe)

2, where Pbe is the bit-error probability. Using this
result, express the symbol-error probability, Pse, in terms
of Pbe and show the conditions for the approximation
Pbe Pse/2.

a. Repeat the above problem for MPSK and indicate the
conditions for the approximation Pbe Pse/log2(M).

3. Show that Hancock’s phase distribution, (4.7), is
approximated by (4.11) for |ϕ| ≤ π/2 and large symbol
signal-to-noise ratios, that is, as γs ∞.

4. Considering the π/2-BPSK-modulated waveform, sup-
pose that the matched filter orthogonal output samples
(xk,yk) and (xk+1,yk+1) correspond the phase φk and
φk+1 with the phase difference Δφ = φk+1 − φk. Express
the coordinates (xo,yo) of the phase difference in terms of
(xk,yk) and (xk+1,yk+1).

Hint: Use the trigonometric identity tan−1(z2) − tan−1(z1) =
tan−1((z2 − z1)/(1 + z1z2)).

5. Referring to the π/4-QPSK discussion in Section 4.2.3.2,
provide answers to the following: (a) Sketch the constel-
lation of the phase rest-states for a noiseless received sig-
nal with zero phase error. (b) Determine the phase
change from the pervious-to-current phase-state Δφ =
φk − φk−2 defined in terms Cartesian coordinates
(xk,yk) and (xk−2,yk−2). (c) Using the expression for
Δφ = tan−1(xk,yk; xk−2,yk−2) developed in part (b), evalu-
ateΔφ given the detected points (xk,yk) = (−0.174,0.985)
and (xk−2,yk−2) = (−0.766,0.643). (d) Quantize the previ-
ous detected phase xk−2,yk−2 to the nearest phase rest-
point xk−2,yk−2 and compute Δφ .

6. Equation (4.28) expresses the MSK symbol transmitted
in the interval kTb ≤ t ≤ (k + 1)Tb corresponding the
Q-channel symbol k. Write a similar expression for
the I-channel symbol k − 1 over the interval and reduce
the form to correspond to that of (4.29).

7. Referring to (4.29), determine the source bit data patterns
(… dk+1, dk, dk−1 …) required to generate the unique
MSK tone sets corresponding to: the upper MSK tone
at fm, the lower MSK tone at −fm, and alternating

MSK tones at ±fm. Note: These data patterns are useful
in testing phaselock loop performance and in generating
acquisition preambles.

8. Show that the squared MSK noise-free signal s(t) in
Figure 4.16 is equal to

s2 t =P 1 +
1
2
cos 2 ωc +ωm t +

1
2
cos 2 ωc−ωm t

+ T dk−1,dk, dk + 1

where T(−) involves independent zero-mean random data
terms that are removed by lowpass filtering. Hint: In the
solution to this problem it is convenient to use the trigo-
nometric identities:

sin α sin β = 1 2 cos α−β −cos α+ β ,

cos α cos β = 1 2 cos α−β + cos α+ β ,

sin2 α = 1 2 1−cos 2α , and cos2 α

= 1 2 1 + cos 2α

9. Show the modifications required to Figure 4.16 to differ-
entially decode the data when the source bits are differ-
entially encoded as in Figure 4.18.

10. In the context of the CPM modulator shown in
Figure 4.26b, discuss the implementation for conven-
tional MPSK and OQPSK-modulated waveforms that
use instantaneous changes in phase. Show all modifica-
tions to Figure 4.26b and the necessary parameters
including the use of αm for MPSK, such that, αm =
mΔϕ : m = 0, 1, …, M − 1 and Δϕ = 2π/M. Modify
Table 4.1 to include each of these modulated waveforms.

11. Using (4.61) and the definitions of the various para-
meters with t = iTs show that θ(iTs) = θ(t) = θ(t − Ts)
+ diωmt.

12. Determine the expression for the frequency shift of a
linearly phase-shaped BPSK-modulated waveform
when the phase is advanced by π radians for each mark
and space data bit. Express the frequency shift in terms
of the shaping factor α under the following conditions:
(a) with alternating mark and space data; (b) with ran-
dom data; (c) determine the frequency shift when the
modulation phase of the space data is not advanced
but retarded by π radians under the condition of random
data.

13. Derive the expression for the SRRC symbol weighting
function in (4.89) by performing the inverse Fourier
transform of (4.88). Hint: Integrate over the two cosine
weighted intervals –(1 + α)/2T ≤ f ≤ –(1 − α)/2T and
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(1 − α)/2T ≤ f ≤ (1 + α)/2T to obtain the respective
responses p1(t) and p2(t). Then integrate over the con-
stant amplitude interval |f| ≤ (1 − α)/2T to obtain p0(t).
Then combine the responses as p(t) = p1(t) + p2(t) +
p0(t) and simplify to obtain in the desired response
expressed in (4.89).

a. Show all of the steps leading to the responses (4.90)
and (4.91) corresponding to t = 0 and ±1/4α.

14. Derive the expression for the noise bandwidth of the
SRRC waveform.

15. Derive the Fourier transform ST(ω) for QPSK and
OQPSK-modulated signals and use the results to verify
the power spectral density (PSD) expressed in (4.100).

16. Verify the Fourier transform of the MSK-modulated
signal expressed in (4.101) and show all of the steps
in the derivation. Hint: Convert p t = Pcos ωmt to
the complex form p t = P 2 ejωmt + e− jωmt and, at
the appropriate point in the simplification, use the trigo-
nometric identities:

sin α + sin β = 2sin α+ β 2 cos α−β 2 and

sin α −sin β = 2cos α+ β 2 sin α−β 2

When these trigonometric identities are used a major
simplification results using the MSK condi-
tion ωmTb = π 2.

17. Upon substituting the symbol interval T = 2Tb and sol-
ving the expression for the MSK spectrum in Problem
16 in terms of the normalized frequency fT, the indeter-
minate form 0/0 is encountered at fT = 1/2. Using L’Hos-
pital’s rule, determine the value of the MSK spectrum at
fT = 1/2. Show all of the steps in arriving at your answer.

18. Design a trapezoidal frequency function that satisfies the
Nyquist criterion and then calculate and plot the filter
impulse response. Comment on the zero-crossing and
relate the intervals to the average bandwidth of the spec-
trum. What is the excess bandwidth for the trapezoidal
frequency function that you selected?
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5
FREQUENCY SHIFT KEYING (FSK) MODULATION,
DEMODULATION, AND PERFORMANCE

5.1 INTRODUCTION

Frequency shift keying (FSK) modulation is a robust modu-
lation, in that, phase coherence is not required to achieve near
optimum performance. In this chapter, the focus is on binary
FSK (BFSK) and several implementations are discussed in
the context of known or estimated frequency and phase infor-
mation regarding the received signal. In particular, the perfor-
mance of coherent and noncoherent detection of BFSK is
characterized in terms of known frequency and phase; known
frequency and unknown phase; unknown frequency and
phase. These knowledge-based characteristics of the received
signal dictate the use of coherent detection or noncoherent
detection and when the frequency and/or phase are unknown
noncoherent detection must be used. The theoretical loss of
coherently detected BFSK relative to antipodal signaling is
3 dB for all bit-error conditions and, with known frequency
and unknown phase, the performance loss of noncoherent
BFSK detection is degraded by about 0.9 dB at Pbe = 10−5 rel-
ative to coherent BFSK detection. On the other hand, with
unknown frequency and phase, the loss is a function of the
range of the frequency uncertainty with losses as high as
17 dB at Pbe = 10−5 relative to coherent detection for a fre-
quency uncertainty range of 104 times the bit rate. The neces-
sity to estimate and track bit timing for optimum sampling of
the detection filtering is required with all implementations.
Typically, the bit timing is estimated during a data preamble
and tracking is achieved using conventional early–late (E/L)
gate processing or the zero crossings of the lowpass filter
(LPF) detection filter output. Alternately, bit-timing estimation

and tracking can be achieved by selecting a low modulation
index amplitude modulation (AM) on the BFSK waveform
that is synchronized to the data. In this case, the demodulator
provides an AM detector followed by a narrowband filter for
recovering bit timing.

The following sections discuss the detection algorithms
for each of the knowledge-based conditions. In each case,
expressions for the theoretical bit-error probability are devel-
oped that provide a baseline for simulated and hardware
testing performance evaluations. Several case studies are
included that examine the performance sensitivities of spe-
cific implementations. The chapter concludes with the char-
acterization of the spectrum of BFSK for various modulation
indices. The important subject ofM-ary FSK modulation and
detection is deferred to Chapter 7.

5.2 COHERENT DETECTION OF BFSK—

KNOWN FREQUENCY AND PHASE

Coherent detection of BFSK is easily accomplished when the
modulator generates the mark and space tones using contin-
uous wave (CW) frequencies as shown in Figure 5.1. In this
case, the phase transitions between the mark and space tones
are not continuous resulting in higher out-of-band spectral
power; however, receiver phase tracking for coherent detec-
tion is relatively easy to achieve. Phase continuity between
the mark and space tones can be achieved by applying the
binary source data (bi) to a frequency synthesizer. However,
coherent detection can only be achieved for integer values of

Digital Communications with Emphasis on Data Modems: Theory, Analysis, Design, Simulation, Testing, and Applications,
First Edition. Richard W. Middlestead.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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the modulation index. Furthermore, if a first-order phaselock
loop is used, the received frequency will be corrected but the
resulting unknown phase will require using an enveloped
detector resulting in noncoherent detection performance.

The bandpass filter (BPF) shown in Figure 5.1 is not
essential and is intended to provide a spectral mask to ensure
rejection of spurious interfering signal with negligible impact
on the desired FSK modulated waveform. In Sections
4.4.3.6–4.4.3.8, spectral containment is discussed using
frequency shaping between the FSK tone transitions which,
like phase-shaped PSK (S-PSK), function as a transmitter
BPF. The spectrum of the FSK modulate waveform is con-
trolled by shaping the frequency transitions while maintain-
ing the constant amplitude characteristic. Since FSK is
ideally a constant amplitude waveform, the transmitter power
amplifier (PA) efficiency can be increased by driving it into
saturation.

Consider the BFSK transmitted waveform expressed as

et t =Acos ωc + diΔω t (5.1)

with the received waveform expressed as

er t =Acos ωc + diΔω t +ϕ t + n t (5.2)

where di = 2bi−1 = 1, −1 , that is, a binary bi = 1 corre-
sponds to a positive frequency offset Δω and binary bi = 0
corresponds to a negative frequency offset −Δω. These tones
are referred to as mark and space tones corresponding to the
mark data bi = 1 and space data bi = 0. The phase functionϕ(t)
corresponds to a frequency error (ωε) and a constant phase
error of ϕε. The additive noise term in (5.2) is typically
zero-mean white Gaussian noise characterized as N(0, σn).
A coherent FSK (CFSK) demodulator implementation is
shown in Figure 5.2.

After amplification by an input low-noise power amplifier
(LNPA) and intermediate heterodyning stages (not shown),
the received signal is mixed to baseband and the output of
the baseband filter is expressed as

eo t =
A

2
cos diΔωt +ϕ t + no t (5.3)

Reference
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+

A′ sin(2πfct)

A′ cos(2πfct)
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FIGURE 5.1 Continuous frequency FSK tone generation.
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FIGURE 5.2 Functional implementation of coherent BFSK demodulator.
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where the double frequency term from the final mixing stage
is removed by the lowpass detection filters.* The bandwidth
of the baseband filter is selected to pass the desired FSK sig-
nal and establish the Nyquist band for subsequent digital signal
processing; it also removes nearby interfering signals that will
degrade the detection performance. If bandpass sampling is
used, as discussed in Chapter 2, the baseband filter can be
replaced by a bandpass filter to serve the same functions.

The baseband filter shown in Figure 5.2 results in the
baseband output corresponding to the FSK mark and space
tones with ωm = +Δω and ωs = −Δω. The estimate ϕ t of
the phase term is provided by a phaselock loop (PLL) that
removes the phase error in the baseband outputs correspond-
ing to each tone frequency. The LPF in the quadrature rails
eliminate the terms involving 2Δω and correspond to the
detection-matched filters. The inphase-matched filter output
samples, corresponding to the mark and space data estimates,
are expressed in terms of the analytic signals as

em t =

A

4
ejϕε t +Nm t when bi = 1

Nm t when bi = 0

(5.4)

and

es t =

A

4
ejϕε t +Ns t when bi = 0

Ns t when bi = 1

(5.5)

When the phase error ϕε t =ϕ t −ϕ t is negligible, the
amplitudes of the inphase and quadrature rails corresponding
to the mark and space tones are approximately A/4 and (A/4)
sin(ϕε(t)) respectively. The inphase-matched filter outputs
are sampled at the optimum times nTb : n = 0, 1, … and the
noise-free samples are given by em =AT 4 when bi = 1 and
es =AT 4 when bi = 0. The E/L gate symbol timing adjust-
ment is shown in Figure 5.2. In this regard, the E/L timing
function includes filtering and incremental timing adjust-
ments are a fraction of the bit duration Tb and are derived
from the demodulator clocks.

For clarity in describing the signal processing, the channel
and receiver noises are often not included in the above
descriptions; however, the initial phase and bit-timing esti-
mates in the presence of noise are typically established during
a preamble with PLL and bit-time tracking insuring that the
estimation errors remain negligible over the message

duration. Eliminating the phase and frequency errors using
a second-order PLL permits coherent detection of the FSK
waveform and the theoretical bit-error performance is evalu-
ated as follows.

The bit-error detection performance of BFSK is evaluated
with additive white Gaussian noise (AWGN) in terms of the
pdf of the mark and space-matched filter outputs. Recogniz-
ing that one filter contains noise only (n) and the other con-
tains signal plus noise (A + n); the pfds are shown in
Figure 5.3 and the bit-error probability is evaluated as

Pbe =Pr x2 ≤ x1 A+ n (5.6)

This result strictly applies under the condition that the upper
or positive FSK tone is present; however, the conditions for
the lower tone are similar and, assuming equal a priori tone
probabilities, (5.6) also applies to the overall bit-error
probability.

The random variables x1 and x2 in (5.6) are independent
with variances σ2n and, upon defining the decision variable
y = x2−x1, the error condition occurs when y ≤ 0 and upon
evaluating pdf of the random variable† y, the bit-error prob-
ability is computed as

Pbe =
1

2πσy

0

−∞
e− y−A 2 2σ2y dy (5.7)

Referring to Section 3.5, (5.7) is expressed in terms of the
complementary error function as

Pbe =
1
2
erfc

γb
2

(5.8)

where the noise power, σ2n, is measured in the bandwidth Rb

of the data bit and σ2y = 2σ
2
n. This result is shown in Figure 5.4

as the solid curve labeled coherent and requires a 3 dB higher
signal-to-noise ratio to achieve the same performance using
antipodal signaling, that is, compared to coherently detected
BPSKmodulation. The performance of noncoherent detection

x1 A0
x

p(x2|A+n)p(x1|n)

Pbe

FIGURE 5.3 Bit-error evaluation for coherent BFSK (CBFSK)
detection.

*The filtering associated with the sample-rate reduction is used. Typically,
the sample-rate reduction involves the processing from the input sampling
frequency of about 2.4h + RbHz to that required by the upper and lower
detection filters of about 4RbHz. Rate reduction reduces the computational
intensity and dynamic range requirement of the demodulator detection pro-
cessing shown in Figure 5.2. †The pdf of y is determined by convolving the pdfs of x1 = y—x2 and x2.
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of BFSK is shown for comparison and is developed in the next
section.

5.3 NONCOHERENT DETECTION OF BFSK—

KNOWN FREQUENCY AND UNKNOWN PHASE

The optimum noncoherent detection of BFSK when the fre-
quency is known or estimated and the phase is unknown is
shown in Figure 5.5. Because of the unknown phase, the data
detection decisions must be based on the magnitude of the

mark and space tone rails that is not influenced by the phase.
However, because of the unknown phase, the conventional
phase-error derived from the quadrature rail cannot be used
to form the phase discriminator error required by the phase-
lock loop. One solution is to form a frequency discriminator
error to be used with a frequency-lock loop. A frequency dis-
criminator error is formed by using a frequency discriminator
that estimates the frequency error ωε. The frequency and
symbol time tracking are not shown in Figure 5.5; however,
with the caveat that a frequency discriminator is used, the
processing is similar to that described for the coherent detec-
tor. The received frequency error and bit timing must be esti-
mated and tracked as in the coherent demodulator and a
preamble is typically used to determine the initial estimates.

The bit-error performance of noncoherently demodulated
BFSK is evaluated in the same manner as in the coherent
demodulator, in that, using the pdf of the mark and space-
matched filter outputs recognizing that one filter contains
noise only and the other contains signal plus noise. However,
with noncoherent detection, the pfds are more complicated
with the pdf of the noise only filter output described by the
Rayleigh distribution and the pdf of the filter containing sig-
nal plus noise described by the Ricean distribution as shown
in Figure 5.6.

Considering that the random variable x1 represents the
noise only at the sampled output of the matched filter and
the random variable x2 represents the sample-matched filter
output containing the signal and noise; the respective Rayleigh
and Ricean distributions, as depicted in Figure 5.6, are
expressed as
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FIGURE 5.4 Theoretical coherent and noncoherent BFSK
performance.
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p x1 =
x1
σ2n

e− x1
2 2σ2n x1 ≥ 0 (5.9)

and

p x2 =
x2
σ2n

e− x22 + A2 2σ2n Io
Ax2
σ2n

x2 ≥ 0 (5.10)

In this case, the bit-error is evaluated as

Pbe =Pr x1 ≥ x2

=
∞

0
p x2

∞

x2

p x1 dx1 dx2
(5.11)

and substitution of (5.9) and (5.10) into (5.11) results in the
bit-error expression

Pbe =
∞

0

x2
σ2n

e− 2x22 + A2 2σ2n Io
Ax2
σ2n

dx2 (5.12)

where the second integral in (5.11) is evaluated as e−x
2
2 2σ2n .

Upon defining the signal-to-noise ratio as γ =A2 2σ2n and
expressing (5.12) in terms of the random variable
y= 2 σn x2, (5.12) is evaluated as

Pbe =
1
2
e−γ 2

∞

0
ye− y2 + γ 2Io γy dy (5.13)

The integral in (5.13) is recognized as the Marcum Q-function
denoted as Q γ,0 . The Marcum Q-function is defined as

Q a,b =
∞

b
ye− y2 + a2 2Io ay dy (5.14)

with thepropertiesQ a,0 = 1,Q 0,b = e− b
2 2 andQ 0,0 = 1.

Using the first of these properties, (5.13) becomes simply

Pbe =
1
2
e−γ 2 (5.15)

The bit-error performance of noncoherently detected FSK,
expressed by (5.15), is plotted in Figure 5.4. Compared to
the performance of coherently detected FSK at Pbe = 10−5,
the noncoherent detection loss is about 0.9 dB relative to
coherent detection.

5.4 CASE STUDIES: COHERENT AND
NONCOHERENT BFSK PERFORMANCE
SIMULATION

The simulated performance of coherently and noncoherently
detected BFSK discussed in this case study is based onMonte
Carlo simulations using 100K bits for each signal-to-noise
ratio for Pbe > 10−4 and 10M bits otherwise. The simulations
model the demodulator implementations shown in Figures 5.2
and 5.5. The received FSK waveform is characterized as the
sampled baseband analytic signal*

eb nTs =
A

2
ej 2πfεTb −di2πΔfTb n Ns +ϕε (5.16)

where Ts = 1 fs is the sampling interval, fs is the sampling fre-
quency, fε and ϕε represent frequency and phase errors based
on the estimation error ϕε t =ωεt +ϕε. Also Tb = 1 Rb is the
bit interval, Rb is the bit rate, andNs is the number of samples-
per-bit. To characterize the ideal or theoretical performance
shown in Figure 5.4, the simulation uses fε = 0 and ϕε = 0.
The parameter Δf is the magnitude of the FSK tone deviation
and δf = ±Δf is the frequency deviation from the center fre-
quency. The modulation index of BFSK is defined as
h = 2Δf Rb and orthogonal tone spacing corresponds to h
being an integer and the minimum orthogonal spacing occurs
when h = 1. Orthogonal frequency spacing for the BFSK
waveform with matched filter detection occurs when the
modulation tones fall in the spectral nulls at mRb : |m| > 0
of the adjacent tones of the sinc( fTb) spectrum.

5.4.1 Orthogonal Tone Spacing (h = 19)

The performance simulation in this case study uses the nor-
malized FSK tone shiftΔfTb = 9 5 and a bit rate ofRb = 1 kbps,
so the baseband mark and space tones are: fmk = 9 5Rb and
fsp = −9 5Rb corresponding to ±9.5 kHz respectively. In the
simulation, the IF BPF shown in Figure 5.2 is modeled as
a 6-pole Butterworth lowpass equivalent filter with ideal
phase equalization and a normalized 3 dB bandwidth of
f3Tb = 12 5. The function of the IF BPF is to reject interfering
signals outside of the detection bandwidth and to establish the
Nyquist bandwidth and the related sampling frequency.

Ricean

Pbe

Rayleigh

x
x2 A0

p(x2|A + n)
p(x1|n)

FIGURE 5.6 Bit-error evaluation for noncoherent BFSK
(NCBFSK) detection.

*For a description of the simulated signal sampling, refer to Sections
14.4–14.6.
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The minimum sampling frequency, based on the Nyquist
criterion, is fs min = 2fN where fN is Nyquist bandwidth.
The 6-pole Butterworth filter provides an attenuation of about
40 dB at 2f3Tb = 25 and the 40 dB rejection criterion is taken
to be Nyquist bandwidth, that is, fN = 25Rb, so the sampling
frequency must be fs ≥ 50Rb corresponding to Ns ≥ 50
samples-per-bit. Although fs = 50Rb is sufficient to make
the aliasing loss negligible, the number of samples-per-tone
frequency is only fs fmk = fs Rb Rb fmk = 50 9 5 = 5 26
so, to assist in data viewing and debugging, it is
convenient to use fs = 128Rb that results in fmk fs = 13 47
samples-per-tone; therefore, the simulation uses Ns = 128
samples-per-symbol. These parameter values are depicted
in Figure 5.7 in terms of the normalized frequency-domain
specification and the simulated received BFSK signal spec-
trum is shown in Figure 5.8 with and without the lowpass
equivalent IF BPF.

Figure 5.9 shows the simulated performance of the coher-
ent and noncoherent demodulator as the circled data points
without the IF BPF and the triangular data points show
the performance when IF BPF is included. The noncoherent
detector exhibits negligible performance degradation with
the filter and the coherent detector is more sensitive to the
filter distortion; however, because the filter design has
ideal phase equalization, the filter loss is attributed strictly
to the filter amplitude response. The solid and dotted curves
represent the theoretical performance from Figure 5.4.

Under the ideal conditions without the input filter, the
mark and space tones in this example are orthogonal, in that,
the number of sinc( fTb) spectral side lobes between the FSK
tones is 2ΔfTb = 19, so each tone falls in the spectral null of
the adjacent tone. This orthogonal spacing results in inde-
pendent quadrature channel noise and zero adjacent tone
interference leading to the optimum performance. Although
the input filter will degrade the optimum performance, the
degradation caused by the selected filter is considered to
be acceptable. The tone spacing of 19Rb requires considera-
bly more bandwidth than with the minimum orthogonal spa-
cing; however, the degradation due to the frequency errors is
reduced. The impact of frequency errors with minimum
orthogonal tone spacing is examined in the following
case study.

The final evaluation of this case study involves the simula-
tion of the degradation of the noncoherent BFSK detector with
normalized frequency errors fεTb = 0.1, 0.3, and 0.4. In this
evaluation the input filter is not included so the degradation
results solely from the frequency errors relative to the demod-
ulator-matched filter. The performance in this case is shown in
Figure 5.10. The performance degradationmay be tolerable for
frequency errors of up to about 20% of the data rate, however,
for larger frequency errors, the performance degradation
increases dramatically. The coherent demodulator requires a
PLL to maintain phase lock and keep the frequency centered
on the mark and space-matched filters,
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FIGURE 5.7 Demodulator filter characteristics (positive
frequencies).
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5.4.2 Minimum Orthogonal Tone Spacing (h = 1)

This case study is similar to the previous case, however, min-
imum orthogonal tone spacing corresponding to h = 1 is used.
Using a data rate of Rb = 1 kbps, the tone shift corresponding
to the minimum orthogonal spacing is Δf = 0 5 kHz. The
input filter is similar to the filter used in the previous case
study with the following exceptions: the normalized 3 dB fre-
quency is f3Tb = 1.5, and the sampling frequency is 5.333
times the Nyquist bandwidth, fN, and results in 16 samples-
per-bit. The filter and sampling characteristics are depicted
in Figure 5.11 and the spectrum is shown in Figure 5.12
superimposed on the spectrum of the BFSK waveform.
The filter 3 dB bandwidth is chosen based on the theoretical
spectrum results shown in Figure 5.25. Referring to the spec-
trum corresponding to a unit modulation index, the mark tone
impulse occurs at the normalized frequency β = 0 5 and the
filter 3 dB bandwidth is located at the first spectral null occur-
ring at β = 1 5 or 1.5RbHz.

Figure 5.13 shows the theoretical performance of the
coherent and noncoherent demodulator as the solid and
dashed curves respectively. The performance with the filter

is indicated by the corresponding solid and dashed curves
with the triangular data points. As in the previous case,
the simulation uses 100K Monte Carlo samples at each
signal-to-noise ratio for Pbe > 10−4 and 10M samples other-
wise. The performance of the noncoherent detector exhibits
negligible degradation with the filter* and the degradation
of the coherent detector is about the same as that for the
previous case using h = 19. To reduce the impact of the filter
on the coherent detector, the filter bandwidth should be
increased to include the second spectral sidelobe; for exam-
ple, by placing the filter 3 dB point at the second spectral null
corresponding to β = 2.5 or 2.5RbHz. As with the previous
case, the filter design has ideal phase equalization so the filter
loss is attributed strictly to the filter amplitude response.
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FIGURE 5.11 Demodulator input filter characteristics (positive
frequencies).
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In this case, the BFSK tones are separated by the minimum
orthogonal spacing so that each tone falls in the first spectral
null of the adjacent tone; however, the spectral sidelobes sur-
rounding the tones are only attenuated by 13 dB and, com-
pared to the 35 dB adjacent sidelobe of the previous case
study, this results in a greater sensitivity to frequency errors.
The final evaluation of this case involves the signal-to-noise
loss with frequency errors. The results are shown in
Figure 5.14 for the noncoherent BFSK detector with normal-
ized frequency errors of fεTb = 0.1, 0.3, and 0.4. In this eval-
uation, the input filter is not included so the degradation
results solely from the frequency error relative to the matched
filter response. The maximum performance loss is about
0.9 dB for frequency errors up to about 10% of the data rate;
this is nearly the same loss that occurred in the previous case
study for a frequency error of 20%.

5.5 NONCOHERENT DETECTION OF BFSK—

UNKNOWN FREQUENCY AND PHASE

The detection of BFSK-modulated waveforms is accom-
plished in several ways without using complicated frequency
acquisition and tracking algorithms. These techniques
involve noncoherent detection methods wherein the imple-
mentation simplicity is traded for degraded performance.
For example, in Section 5.3 the performance of noncoherent
detection is examined with known frequency and unknown
phase using a sinc( fTb)-matched filter for each tone with a
loss of about 0.9 dB at Pbe = 10−5 relative to coherent detec-
tion with known frequency and phase. The mark and space-
matched filters provide some tolerance to frequency errors;
however, in this section, the frequency is unknown over a
very wide band W Rb so the matched filters are replaced
with envelope detectors and, for a given bit-error probability,
the noncoherent detection may require in excess of 10 dB
more signal-to-noise ratio.

In the following sections, two methods for noncoherently
detecting BFSK-modulated data are examined with
unknown frequency and phase. The first method involves
using envelope detectors for the mark and space tones; in
this case, the performance of linear and square-law envelope
detectors is compared. The second method involves using a
frequency discriminator to distinguish between the mark
and space tones.

5.5.1 Linear Envelope Detection

The functional diagram of the detection circuitry is shown in
Figure 5.15 where the detectors are characterized as linear, or
envelope, detectors. The implementation does not provide
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optimum noncoherent detection of BFSK-modulated data
because the noise bandwidth,W, of the mark and space detec-
tion filters is much wider than required for optimum
detection, that is,W Bb, where Bb = 1 Tb is the bandwidth
of the detection filter and Tb is the mark/space bit duration.
The wide bandwidth mark and space filters provide a simple
implementation when shifts in the received carrier frequency
occur and are not corrected.

The performance analysis of this noncoherent detector has
been analyzed by Glenn [1] under the condition WTb 1.
Glenn’s analysis begins with the characterization of the
envelope detector output pdf as being Ricean when signal
and noise is present and Rayleigh when only noise is present.
However, the pdf of the lowpass post-detection filter output is
approximately Gaussian due to the central limit theorem. The
lowpass filter with bandwidth 1/Tb essentially integrates
n=WTb samples and for WTb > 10 the Gaussian approxima-
tion is accurate over a 3-sigma range with rapid improvement
in the tails of the distribution with increasing WTb.

Based on these results, Glenn characterizes the bit-error
probability as

Pbe
1
2

1−erf
mz

2σz
WTb 10 (5.17)

where mz and σz are the mean and standard deviation of the
approximately Gaussian distributed output of the lowpass fil-
ter. Actually, mz =mz1 when a mark or upper tone is present
and mz = −mz0 when a space or lower tone is present. With
symmetrical filtering and balanced channel gains, the mean
values are antipodal with mz1 = −mz0. Glenn has shown that
the argument of the error function is expressed as

mz

2σz
=

π

8

1
2

WTb 1F1 −
1
2
;1;− Eb NoWTb −1

Eb NoWTb + 2−
π

4
1 + 1F

2
1 −

1
2
;1; −Eb NoWTb

1 2

(5.18)

where 1F1() is the confluent hypergeometric function [2, 3], Eb
is the energy-per-bit, and No is the noise power spectral density
(PSD). The confluent hypergeometric function 1F1(−1/2; 1; −z)
is evaluated using more familiar Bessel functions [4] as

1F1 −
1
2
;1;−z = e−z 2 1 + z Io

z

2
+ zI1

z

2
(5.19)

Using (5.19) and (5.18), the bit-error results given by (5.17)
are plotted in Figure 5.16 as a function of the signal-to-noise
ratio Eb/No for WTb products of 10, 10

2, 103, and 104. Glenn

has also evaluated approximations for the bit-error probabil-
ity for large and small values of the signal-to-noise ratio.
These approximations are given by

Pbe
1
2

1−erf
Eb

2No
−

πWTb
8

WTb 10 and
Eb

NoWTb
1

(5.20)

and

Pbe
1
2

1−erf
πWTb

16 4−π
Eb

NoWTb

WTb 10 and
Eb

NoWTb
1

(5.21)

As a practical application of these results, some measured
performance data are compared to the theoretical bit-error
performance. The measured data are based on a radio receiver
followed by a data demodulator used to detected BFSK-
modulated data. The function of the radio receiver is to
mix the radio frequency (RF) input to a 1 or 2.55 kHz inter-
mediate frequency (IF) which is applied to the demodulator.
The demodulator uses a linear detector and the measured data
are based on the 1 kHz IF output which applies for modula-
tion frequency shifts ranging from 5 to 100 Hz on each side of
the carrier frequency. Under ideal conditions, the received
carrier frequency is unimportant as long as the mark and
space tones fall with the bandwidth of the respective pre-
detection filters. However, as a practical matter, gain ripple
in the input bandpass filter and gain unbalance in the mark
and space filters will degrade the performance and result in
some dependence on the modulation frequency shifts as well
as the carrier frequency.
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The measured test results are based on a fixed data rate of
Rb = 50 bps with modulation frequency shifts ofΔf = ±25 and
±85 Hz. The corresponding modulation indices, defined as
2Δf/Rb, are 1.0 and 3.4. The specified bandwidth of the
demodulator input filter is 520 Hz. The measured responses
of the mark and space filters and the input bandpass filter are
shown in Figure 5.17 and the composite responses of the
mark and space channels are shown in Figure 5.18. Based
on these measured results, the noise bandwidths of the mark
and space filters are computed to be 293 and 246 Hz respec-
tively. In the following comparison, the average of these
measured bandwidths is used corresponding to W = 270 Hz
so that the WTb product is 5.4.

Based on these conditions and recognizing that the WTb
product is less than required, the measured performance results
are compared to the theoretical result in Figure 5.19. In contrast
to the theoretical result, the dependence of the performance on
the modulation index is clearly evident. This is due to the filter

amplitude ripple in each channel. Also, a portion of the
approximately 0.5–1.0 dB of degradation from the theoretical
prediction is due to the amplitude asymmetry between the
mark and space filters which results in a tone unbalance into
the post-detection filter. Although performance measurements
are not made with various IF frequency offsets, the asymme-
tries in the mark and space filter frequency responses suggest
that the bit-error performance is dependent on the IF carrier fre-
quency offset.

5.5.2 Square-Law Envelope Detection

The functional diagram for the square-law detection is identi-
cal to that shown in Figure 5.15 when the envelope detectors
are replaced by square-law detectors. Also, as in the previous
section, the pre-detection filter bandwidth is much greater than
the bandwidth of the post-detection filter, that is, W Bb

The analysis of the square-law detector also applies for
WTb > 10 with the understanding that the lowpass filter out-
put pdf is approximated by a Gaussian distribution. Using the
results of Glenn’s analysis of the square-law detector imple-
mentation, the bit-error probability is given by

Pbe
1
2

1−erf
mv

2σv
WTb 10 (5.22)

where

mv

2σv
=

Eb

2NoWTb

WTb
1 +Eb NoWTb

(5.23)

The performance results for the square-law detector are
shown in Figure 5.20 as a function of Eb/No forWTb products
of 10, 102, 103, and 104. To achieve Pbe = 10−5 withWTb = 10
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the square-law detector requires a signal-to-noise ratio about
1.5 dB higher than the linear detector; however, this differ-
ence is about 0.5 dB for WTb = 100 and is negligible as the
time-bandwidth continues to increase.

5.5.3 Noncoherent BFSK Detection Using
Frequency Discriminator

Themost straightforward implementation of a BFSK detector
uses a frequency discriminator to distinguish between the
received mark and space tones. The implementation of a
conventional BFSK discriminator detector is shown in
Figure 5.21. The simplified implementation over that of
the noncoherent detectors discussed in the previous sections
results in significantly different performance characteristics,
the most notable of which is the strong dependence upon the
frequency shift of the BFSK-modulated waveform.

Referring toFigure5.21, the limiter-filter function isnotnec-
essary in implementing the frequency discriminator; however,
it will result in a signal-to-noise ratio improvement for input
signal-to-noise ratiosgreater than−5.5 dB.The implementation
of the limiter-filter is discussed in more detail in Section 10.2.
Thefrequencydiscriminatorcanbe implemented inanumberof
ways (see Problems 1 and 2); however, the implementation dis-
cussed in Section 11.2.2.4 is preferred. The lowpass filter

following the discriminator is essential for accurately estimat-
ing the frequency in the presence of noise and, because of the
similarities to a correlator response, at a given correlator delay
or lag, the combination of the discriminator and filter is referred
to as a lag-correlator. The frequency discriminator output func-
tion is characterized as an unbiased estimate of the frequency
havingodd symmetryabout zero.Typically the output response
corresponds to a sine function, often referred to as an S-curve.
The important feature is that thepositiveornegative sense of the
estimate is available for the purpose of frequency estimation
and control. In addition, the quadrature output corresponds to
a cosine function that is used for signal presence detection.

Analyzing the performance of the conventional frequency
discriminator is a difficult undertaking. Fortunately, how-
ever, Stein [5, 6] has characterized the pdf at the output of
the limiter/discriminator detector with AWGN. Stein
expresses the bit-error probability of the discriminator detec-
tor in terms of the Marcum Q-function [7, 8] as

Pbe a,b
1
2

1−Q b, a +Q a, b (5.24)

where the Marcum Q-function is defined as

Q a,b ≜
∞

b
xe− x2 + a2 2Io ax (5.25)

The parameters a and b are expressed in terms of the signal-
to-noise ratio γ, the modulation frequency shift Δf, and the
rms frequency f2, of the normalized IF filter frequency func-
tion G( f). The parameters a, b, and f2 are given by Stein as

a =
γ

2
1−

Δf
f2

2

(5.26)

and

b=
γ

2
1 +

Δf
f2

2

(5.27)

where

f2 =
∞

−∞
f 2G f df

1 2

(5.28)
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with G( f ) defined as

G f ≜
H f 2

∞

−∞
H f 2df

(5.29)

The bit-error probability, expressed by (5.24), is plotted in
Figure 5.22 as a function of the parameter b for various values
of f2/Δf where, using (5.26) and (5.27), the parameter a is
expressed in terms of b as

a =
f2 Δf −1
f2 Δf + 1

2

b (5.30)

For a given modulation frequency, as the IF filter bandwidth
is increased the detector noise increases degrading the perfor-
mance. In the following discussion, it is shown that f2/Δf = 1
(a = 0) results in the minimum or optimum bit-error probabil-
ity. Table 5.1 lists the ratios of a/b corresponding to f2/Δf
used in Figure 5.22.

These results clearly demonstrate the dependence of the
performance on the modulation frequency shift and the IF
bandpass filter characteristics. Assuming an N-pole Butter-
worth IF filter, the 3 dB bandwidth fB and the rms frequency
are related to fB by the expression

f2 =
fB
2

sin π 2N
sin 3π 2N

1 2

(5.31)

The signal-to-noise ratio γ is defined at the input to the
limiter discriminator. However, it is desirable to characterize
the performance as a function of γb = Eb/No as defined in the
previous sections so γ must be reflected to the receiver input
and expressed in terms of the bandwidth of the modulated
waveform, Rb. The necessary relationship for the N-pole
Butterworth filter is

γb = γLf
Bn

Rb
(5.32)

where

Bn = fB
π 2N

sin π 2N
(5.33)

is the noise bandwidth of the input bandpass Butterworth fil-
ter with a filter loss given by

Lf = 1 +
Δf
fB

2N

(5.34)

Substituting the noise bandwidth and the filter loss in the
expression for γb gives

γb =
γπ

2N
fB
Rb

1 + Δf fB
2N

sin π 2N
(5.35)

Schwartz, Bennett, and Stein [6] have shown that the min-
imum bit-error probability occurs when a = 0 and the result is
expressed as

Pbe min =Pbe 0,b =
1
2
e− b

2 2

=
1
2
e− γ

2 1 +Δf f2
4 8

(5.36)

Referring to (5.26)or (5.30), it is seen that the conditiona = 0
requires that Δf = f2. Under this condition, and using a 3-pole
(N = 3) Butterworth IF filter with f2 = 0 35fB, the optimum
BFSK frequency shift is Δf = 0 35fB. In terms of the modu-
lation index these conditions yield mI = 2Δf Rb = 0 7fB Rb

and, upon equating the filter bandwidth with the modulation
data rate, as is frequently done in practice, the optimum mod-
ulation index for BFSKmodulation becomesmI = 0.7. This is
a frequently assumed condition for optimum performance;

b
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FIGURE 5.22 Bit-error probability as a functionof the parameterb.

TABLE 5.1 Parameter Relationships Corresponding to Figure 5.22

f2/Δf 1 2 3 4 5 7 10 100 1000
a/b 0 0.111 0.250 0.360 0.444 0.562 0.669 0.961 0.996
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however, as seen from the preceding discussion, it applies to
a specific receiver/detector implementation.

As an example application, these theoretical results are
compared to measured bit-error performance data using a
very low frequency (VLF) radio receiver. For this compari-
son, the input bandpass filter is a 3-pole Butterworth design,
so N = 3. Stein has characterized a set of universal design
curves describing the bit-error probability in terms of the
parameters a and b. The universal design curves shown in
Figure 5.23 are established using Johansen’s algorithms [9]
for evaluating the Q-functions expressed respectively in
(5.24) and (5.25). The resulting contours of constant
Pbe(a,b), expressed in (5.24), are used to evaluate the bit-error
probability of noncoherent BFSK detection using the
frequency discriminator as described in the following
paragraphs.

Figure 5.23 is used by first identifying the receiver filter
bandwidth. The radio receiver provides for several band-
width selections by way of a front panel switch, and
bandwidths of fB = 200 and 400 Hz are considered for this
comparison. Next, the frequency shift of the received modu-
lated waveform is identified and values of |Δf| = 12.5, 25, and
85 Hz are used. Using these conditions, a design load-line is
defined expressing a as a function of b by eliminating γ
between (5.26) and (5.27). Therefore, the load-line is
expressed by (5.30). The load-line eliminates the parameter
a from the design procedure and upon applying (5.30) to
Figure 5.23, a value of Pbe(a,b) is selected and the corre-
sponding value of b is determined from the intersection with
the load-line. The selected value of b is used to compute
signal-to-noise ratio γ based on the relationship

γ =
2b

1 +Δf f2
2 (5.37)

where f2 = 0 35fB is used for the 3-pole Butterworth IF band-
pass filter. Finally, the energy-per-bit to noise-density ratio γb
corresponding to the selectedbit-error probability isdetermined
using (5.35). For the 3-poleButterworth filter this conversion is

γ
b
= γ

π fB
3Rb

1 +
Δf
fB

6

(5.38)

This procedure determines one point on the curve of Pbe versus
γb and is repeated as necessary to obtain a performance curve.
The results of the theoretical performance for the VLF radio
receiver under the conditions discussed above are shown in
Figure 5.24 as the solid curves and the correspondingmeasured
results are shown as the dashed curves. The nomenclature used
inFigure 5.24 denotes the frequency shift and the IF filter band-
widthsas (Δf, fB).Themeasuredperformance results are reason-
ably close to the theoretical considering that the radio receiver
used in these tests was operational in the field for a number of
years and that no special consideration was given to tuning or
adjustments prior to the testing. The theoretical noncoherent
performance curve, shown as the dotted curve in Figure 5.24,
corresponds to noncoherent BFSK detection using a linear
receiver with orthogonal frequency shifts, that is, mI = 1, and
matched filter detection as discussed in Section 5.3.

5.6 BFSK SPECTRAL DENSITY WITH
ARBITRARY MODULATION INDEX

In this section, the spectral density of BFSK is evaluated for
arbitrary modulation indices based on the work of Anderson
and Salz [10]. This work is also published by Salz [11] and
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summarized in Lucky, Salz, andWeldon [12]. The notation h
is used to denote the modulation index and the symbol
duration T = Tb for binary modulated waveforms. Based
on these references, the normalized spectral density of
BFSK modulation with arbitrary modulation index is
expressed as*

S β

A2T
=

1
2

F an
2 + Re

F an
2

1−Ca ωdT e− j2πβ

Ca ωdT < 1

1
2

F an
2 −

1
2

F an
2

+
1
2
cos λ F an

2
2

n = 1

δ λ−2πn

Ca ωdT = 1

(5.39)

where

F an =
sin ω−ωc T 2−anωdT 2

ω−ωc T 2−anωdT 2
e− j ω−ωc T 2−anωdT 2

(5.40)

and

λ= − ω−ωc T −bωdT (5.41)

In these expressions, b is an arbitrary constant, ωd is the
frequency deviation from the carrier frequency ωc,
β = f − fc T is the frequency relative to the carrier normalized
by the bit duration T = Tb, an = 1, −1 n= 0,1 for binary
modulation, and Ca(ωdT) is the characteristic function of
the random data an. In this analysis, fd is the modulation tone
deviation frequency from the carrier frequency; in the preced-
ing sections, the notation Δf = fd is used for the frequency
deviation. Assuming equally likely data, the characteristic
function is evaluated as

Ca v =
T 2

−T 2
p an ejvandan

=
1
2

T 2

−T 2
δ an−1 + δ an + 1 ejvandan

=
1
2
ejv +

1
2
e− jv

= cos v

(5.42)

so that Ca ωdT = cos ωdT . Using the modulation index
h = 2fdT , the function F(an) is expressed as

F an =
sin π β−anh 2
π β−anh 2

e− jπ β−anh 2 (5.43)

The statistical average of the squared magnitude of F(an)
is evaluated as

F an
2 =

sin2 π β−anh 2

π2 β−anh 2 2

=
1
2

sin2 π β−h 2

π2 β−h 2 2 +
sin2 π β + h 2

π2 β + h 2 2

(5.44)

This general result is evaluated in a spectrum evaluation
program; however, a simpler form results with minimum shift
keying (MSK) (h = 1/2) and orthogonal BFSK (h = 1.0). These
unique conditions result in

F an
2 =

1
2π2

β2 + 1 4 2− β 2 sin 2πβ

β2− 1 4 2
2

MSK h =
1
2

(5.45)

F an
2 =

cos2 πβ

π2
β2 + 1 2 2

β2− 1 2 2
2 BFSK h = 1 0

(5.46)

Similarly, the squared average of F(an) is evaluated as

F an
2 =

1
4

sin π β−h 2
π β−h 2

e− jπ β−h 2

+
sin π β + h 2
π β + h 2

e− jπ β + h 2
2

5 47

Theexpression in (5.47)doesnot applywhendelta functions
appear in the spectrum as in the case of BFSK with h = 1.0;
however, for MSK modulation (5.47) is expressed as

F an
2 =

1
64π2

cos 2πβ + j 4β−sin 2πβ 2

β2− 1 4 2
2

MSK h= 1 2

(5.48)*<x> denotes the ensemble average.
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Finely, the squared magnitude of the average of F(an) is
evaluated as

F an
2 =

sin π β−anh 2
π β−anh 2

e− jπ β−anh 2
2

=
1
4
sin π β−h 2
π β−h 2

e− jπ β−h 2 +
sin π β + h 2
π β + h 2

e− jπ β + h 2
2

(5.49)

Equation (5.49) only applies for BFSK with h = 1, that is,
when impulse functions explicitly appear in the spectral den-
sity, and (5.49) is specialized for this case with the result

F an
2 =

β2cos2 πβ

π2 β2−1 4
2 BFSK h= 1 (5.50)

Before evaluating these results for arbitrary modulation
indices, it is informative to substitute the various expressions
into the normalized spectral density function, S(β)/A2T, for
the special cases of MSK and orthogonal BFSKmodulations.

5.6.1 MSK Power Spectral Density (h = 1/2)

For MSK, Ca ωdT =Ca πh = cos πh = 0 and the normal-
ized spectral density is expressed as

S β

A2T
=
1
2

F an
2 + Re F an

2 (5.51)

Substituting (5.45) and (5.48) for MSK into the right-
hand-side (rhs) of (5.51) gives

S β

A2T
=

1
4π2

β2 + 1 4 2− β 2 sin 2πβ

β2− 1 4 2
2

+
1

64π2
cos2 2πβ − 4β−sin 2πβ 2

β2− 1 4 2
2

(5.52)

and, after some manipulation, (5.52) can be expressed in the
form (see Equation 4.101),

S β

A2T
=

8
π2

cos2 2πβ

1−16β2
2 MSK h =

1
2

(5.53)

The peak value of the MSK spectral density function is
evaluated at β = 0 with S 0 = 0 81057A2T and the value at
the MSK tone locations β = ± 1 4 is S ± 0 25 = 0 5A2T .

5.6.2 Orthogonal Binary FSK Power Spectral
Density (h = 1)

For orthogonal BFSK, Ca ωdT =Ca π = cos π = 1 and the
normalized spectral density is expressed as

S β

A2T
=
1
2

F an
2 −

1
2

F an
2

+
1
2
cos λ F an

2
2

n=1

δ λ−2πn
(5.54)

Substituting (5.46) and (5.50) for BFSK into the rhs of
(5.54) and combining terms gives

S β

A2T
=

cos2 πβ

8π2 β2− 1 2 2
2

+
β2cos2 πβ cos λ

2π2 β2− 1 2 2 2 δ λ + δ λ−2π

(5.55)

From (5.41) λ= −2π β−bh 2 and choosing unity for the
arbitrary constant b with h = 1 results in

cos λ δ λ + δ λ−2π = cos 2π β−1 2

δ β−1 2 + δ β + 1 2

= δ β−1 2 + δ β + 1 2

(5.56)

and substituting this result into (5.55) gives

S β

A2T
=

cos2 πβ

8π2 β2− 1 2 2
2

+
β2cos2 πβ

2π2 β2− 1 2 2
2 δ β + 1 2 + δ β−1 2

(5.57)

The weight on the delta functions at β = ± 1 2 is evaluated
as 1/8 so the spectral density for orthogonal BFSK becomes

S β

A2T
=

cos2 πβ

8π2 β2− 1 2 2
2 +

1
8
δ β + 1 2 + δ β−1 2

BFSK h= 1

(5.58)

The area under the one-sided normalized spectrum is 0.25
so the energy at each of the BFSK tone frequencies represents
one-half of the total signal energy.
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Returning to the generalized case for arbitrary modulation
indices, plots of the normalized spectral densities are shown
in Figure 5.25 for h = 0.5 (MSK), 1.0 (orthogonal BFSK),
and 1.2; the negative frequency portion of the spectrum is
mirrored about β = 0. The energy in the MSK spectrum is
much more concentrated about the central lobe with distinct
nulls at ±(0.75 + 0.5m)Tb, m = 0, 1, …. For modulation indi-
ces close to and exceeding unity, the continuous portion of
the central lobe extends to β = 1.5 and the energy tends to
concentrate about β = 0.5. Figure 5.26 shows similar results
for h = 0.5, 0.7, 0.8, 0.9, 1.0, 1.1, and 1.2 over a wider range
of frequencies. Table 5.2 summarizes the computed one-
sided area and the zero-frequency value for the various mod-
ulation indices considered in Figure 5.26.

The PSD of the BFSK-modulated waveform is shown in
Figure 5.27 for a tone spacing of eight times the minimum

orthogonal spacing. Large BFSK frequency tone separations,
that is, greater than the minimum orthogonal spacing, are typ-
ically used in applications involving unknown frequencies
with simplified demodulators that do not use frequency track-
ing loops or even a preamble in some cases; the demodulator
performance in these situations is discussed in Section 5.5.
When the modulation index is integrally related to the data
rate, the FSK tones appear as delta functions about the carrier
frequency with an underlying continuous spectrum. How-
ever, as indicated in Figure 5.28, these delta-function tones
are very sensitive to the modulation index with a significant
loss in energy for changes in the modulation index |Δh| >
0.01. Furthermore, the peak of the spectral energy is mirrored
about h for |Δh| ≤ 0.5 approximating a folded sinc( fT) func-
tion at Δh = ±0.5 as indicated by the dash-dot-dot curves.

5.6.3 Discontinuous FSK Phase Modulation

The preceding section examined the spectrum for continuous
phase modulation (CPM) FSK, that is, the phase transitions
between the FSK tones that occur at or during* a change in
the source data are continuous. In this case, the appearance
of delta functions in the spectrum occurs only with integer-
valued modulation indices, that is, when 2Δf = kRb where k
is an integer. Under this condition the mark and space data
tones are continuous resulting in the delta functions in the
modulated spectrum. With this understanding, if the FSK
modulator generates continuous mark and space tone and
the modulator simply chooses one or the other tone depend-
ing on the source data, then the delta functions will always
appear in the spectrum regardless of the modulation index.
This situation results in abrupt phase changes or discontinu-
ous phase transitions when the data are changed. For
example, Figure 5.29a shows the continuous mark and space
frequency tones for a 2.5-bit segment of data for the normal-
ized tones given by ΔfT = 2.105 corresponding to the non-
integer modulation index h = 4.21. These tones are generated
in the modulator and characterized as baseband tones at ±Δf
about zero frequency with mark data associated with the pos-
itive frequency tone. Figure 5.29b shows the BFSK modula-
tor output for a 1, 0, 1 ormark, space,mark segment of binary
data. The abrupt phase changes corresponding to the data
transitions are evident resulting in discontinuous phase
modulation.

The PSD for discontinuous phase modulation as described
above is shown in Figure 5.30 for modulation indices of 8
and 8.5 corresponding to ΔfT = 4 and 4.25 respectively.
The appearance of the delta function in Figure 5.30b is a
direct result of the constant mark and space tones used
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FIGURE 5.25 Spectral density characteristics for BFSK
modulation (expanded view).
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FIGURE 5.26 Spectral density characteristics for BFSK
modulation.

*Typically, the phase/frequency change is instantaneous; however, the fre-
quency change is often controlled over a finite interval to improve the spec-
tral efficiency.
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in the modulator and the resulting discontinuous modulation
phase with changes in the data.

When the modulation index is an integer, as in
Figure 5.30a, there are no modulation phase discontinuities
and the spectral efficiency is improved somewhat over the
non-integer case shown in Figure 5.30b. In either case, the

demodulator can use first- or second-order phaselock loops
to achieve phase lock and track the received modulation tones
to realize, respectively, either noncoherent or coherent FSK
bit-error detection performance. For BFSK modulation, the
bandwidth is defined in terms of the necessary bandwidth
as defined in Table 4.6.

TABLE 5.2 Computed Simulation Values

Modulation Index

Parameter 0.5 0.7 0.8 0.9 1.0 1.1 1.2
One-sided area 0.250 0.250 0.250 0.250 0.250 0.250 0.250
S(0)/A2T 0.811 0.414 0.317 0.250 0.203 0.167 0.141
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FIGURE 5.27 BFSK power spectral density for modulation index h = 8.0.
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BFSK SPECTRAL DENSITY WITH ARBITRARY MODULATION INDEX 223



ACRONYMS

AM Amplitude modulation
AWGN Additive white Gaussian noise
BFSK Binary frequency shift keying
BPF Bandpass filter
BPSK Binary phase shift keying
CBFSK Coherent BFSK
CFSK Coherent FSK
CPM Continuous phase modulation
CW Continuous wave
E/L Early–late (sampling)
FSK Frequency shift keying

IF Intermediate frequency
LNPA Low-noise power amplifier
LPF Lowpass filter
MSK Minimum shift keying
NCBFSK Noncoherent BFSK (detection)
PA Power amplifier
PLL Phaselock loop
PSD Power spectral density
PSK Phase shift keying
RF Radio frequency (carrier)
RHS right-hand side
S-PSK Phase-shaped PSK
VLF Very low frequency
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FIGURE 5.29 BFSK discontinuous phase modulation (h = 4.21, Rb = 1 kbps).
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PROBLEMS

1. Referring to the decision variable y in (5.7), show that the
mean and variance of the random variable y are A and 2σ2n
respectively. With the FSK signal-to-noise ratio γb = Eb/No

show that the bit-error probability of coherently detected
BFSK is expressed in terms of the error function as given
in (5.8).

2. Show that the integral of the Rayleigh pdf expressed in
(5.9) integrated over the range x2 to ∞ is equal to

e−x
2
2 2σ2n . Using this result determine the solution of the

Q-function Q(0, b). Show that the Q-functions Q(a, 0) =
Q(0, 0) = 1.

3. Compute the loss in signal-to-noise ratio for the signal
s t =Arect t Tb cos 2πfεt in a matched filter detector
corresponding to fε = 0. A is the signal amplitude, Tb is
the bit duration, and fε is the frequency error relative to
the matched filter. Express the loss in decibels and com-
pare the result with the loss in Figure 5.10.

4. By deriving the output response so(t) using the quadrature
inputs sc t = cos ωt +φ and ss t = sin ωt +φ show that
the processing in the following figure corresponds to a fre-
quency discriminator.

so(t)

+

–

sc(t)

ss(t)

d/dt

d/dt

5. The definition of the derivative of a function f(t) and the
approximation are expressed as

df t

dt
=

limτ 0

f t − f t−τ

τ

f t − f t−τ

τ τ 1 B

where B is the bandwidth of f(t). Redraw the discriminator
in Problem 4 using the above approximation and show
that the resulting output of this implementation forms
the frequency discriminator function.
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6
AMPLITUDE SHIFT KEYING MODULATION,
DEMODULATION, AND PERFORMANCE

6.1 INTRODUCTION

This chapter discusses communication waveforms involving
various forms of amplitude shift keying (ASK). As used here
ASK is a general term that applies to the modulation of a car-
rier signal with discrete amplitudes that uniquely identify a
symbol of binary data or bits. When the amplitude keying
is expressed in terms of αm = 2m: m = 0, 1, and applied to
one quadrature component of the carrier frequency, the
modulation is referred to as on–off keying (OOK) and when
αm = −1 + 2m: m = 0, 1, it is referred to as antipodal ASK or,
when applied to a radio frequency (RF) carrier, OOK is the
same as binary phase shift keying (BPSK). The more general
case of ASK applied to one quadrature component occurs
when αm = −(M − 1) + 2m: m = 0, 1, …, M − 1 and this is
referred to as pulse amplitude modulation (PAM) or, more
specifically, M-ary PAM. When PAM is applied to each
quadrature component, the modulation is referred to as quad-
rature amplitude modulation (QAM) or M-ary QAM. Based
on this description, it is evident that BPSK is a subset of PAM
modulation and quadrature phase shift keying (QPSK) is a
subset of QAM modulation. QAM necessarily involves a
phase-modulated carrier with the resulting signal rest-points
at the intersection of the quadrature amplitude terms αIm and
αQm, where I and Q are the inphase and quadrature carrier
components. The term rest-points refer to the ideal noise-free
optimum signal samples at the output of the demodulator
inphase and quadrature (I/Q) matched filters. Other variations
of ASK are derived by not restricting the rest-points to form
a rectangle as in QAM. For example, modulated signals

with rest-points that form a regular polygon, or that lie on
concentric circles, are sometimes referred to as amplitude
PSK (APSK).

The selection of the rest-points impacts the average power
required to achieve a given error probability, and minimizing
the transmitter power to achieve the performance is a major
consideration in the waveform design and selection. Another
major consideration, that is dependent on the rest-point selec-
tion, is the peak-to-average power ratio. The peak-to-average
power ratio influences the amount of power backoff required
at the input to the transmitter power amplifier (PA) to avoid
waveform distortion and adjacent channel interference.
Although ASK-modulated waveforms have a relatively large
peak-to-average power ratio, it can be minimized by judi-
cious selection of the rest-points. The spectral efficiency of
the transmitted ASK waveform is also a consideration and
the M-ary QAM waveform has a distinct advantage as M
increases; however, the spectral efficiency and bit-error per-
formance can be lost if the PA is not operated in the linear
range. These waveforms and related topics are discussed in
the remainder of this chapter that ends with a case study of
16-ary QAM.

6.2 AMPLITUDE SHIFT KEYING (ASK)

In this section, a simple form of ASK modulation is consid-
ered that amplitude modulates a carrier based on a direct map-
ping of the source data bits to the waveform symbol. In this
case, the transmitted signal is expressed as

Digital Communications with Emphasis on Data Modems: Theory, Analysis, Design, Simulation, Testing, and Applications,
First Edition. Richard W. Middlestead.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/digitalcommunications



sm t =Aαmp t cos ωct

=Re sm t ejωct t ≤ T 2
(6.1)

where αm is the data-dependent scaling factor applied to the
signal amplitude A, T is the symbol duration, and p(t) is
defined as a unit-power amplitude shaping function satisfy-
ing the relationship

1
T

T 2

−T 2

p2 t dt = 1 (6.2)

This form of ASK modulation is referred as PAM. The
shaping function is used to control the transmitted signal
spectrum, however, in most applications it is characterized
as the unit amplitude rectangular function given by rect(t/T) :
|t| ≤ T/2 that results in the sinc( fT) frequency spectrum; this is
assumed throughout the remainder of this section. The analytic
or baseband-modulated waveform is given by

sm t =Aαmp t (6.3)

In general, the ASK-modulated waveform is not very effi-
cient in terms of the Eb/No required to obtain a specified bit-
error result. One notable exception, however, is the situation
when αm = {1,−1} that results in antipodal signaling and, with
coherent detection, results in the performance of coherently
detected BPSK. An understanding of the analysis and perfor-
mance of PAM has direct application to the more efficient
QAM waveform. The relative inefficiency of ASK arises
because only one dimension of the orthogonal I/Q signal space
is used, whereas QAM uses both dimensions resulting in a
theoretical 2 : 1 improvement in the spectrum utilization.

The following analysis considers two special cases of
PAM: binary PAM involving 1 bit/symbol and M-ary PAM
that uses k = log2(M) bits/symbol. To the extent that the
modulated waveform is operating in the band-limited region
of the Shannon capacity curve, the channel and transmitter
amplifiers are considered to be linear and no penalty is
incurred for the peak-to-average power ratio. The average
power is computed as

Pavg =
A2

2

M−1

m = 0

α2mP m (6.4)

where P(m) is the a priori probability of the signal state αm.
Normally the states αm are equally likely so that P(m) = 1/M,
a condition that is assumed throughout this section. The peak
signal power is computed as

Pp =A
2max

m
α2m (6.5)

The square of the minimum distance is defined as

d2 = min
m n

T 2

−T 2

sm t −sn t 2dt (6.6)

and, upon substituting the equivalent baseband signal expres-
sion into (6.6), d2 is expressed as

d
2
=
1
2
min
m n

T 2

−T 2

sm t −sn t 2 1 + cos 2ωct dt (6.7)

When fcT 1, and in consideration of low-pass filtering,
the term involving 2ωc can be neglected with little effect on
the result. For example, even without lowpass filtering, when
p(t) = rect(t/T − 1/2) the additive term resulting from the inte-
gration is given by Tsinc(2fcT) which decreases in proportion
to 1/fcT. Therefore, upon eliminating the 2ωc term (6.7)
becomes

d
2
=
1
2
min
m n

T 2

−T 2

sm t −sn t 2dt

=
1
2
d2

(6.8)

where d
2
is the minimum squared decision distance of

the baseband signal. Based on the previous definitions,
d2 is evaluated as

d2 =A2Tmin
m n

αm−αn
2

= 4Eb

(6.9)

In the following analysis of OOKmodulation, the normal-
ized minimum distance is d Eb = 1; however, for antipodal
binary PAM, and multilevel PAM and QAM, the normalized
minimum distance is equal to 2.

6.2.1 On–Off Keying (OOK) Modulation

The most rudimentary form of ASK is given the special name
OOK and is characterized by (6.1) with αm = b = {0,1} where
b is the source data and p(t) = rect(t/T −mT) corresponding to
p(t) = 1 for all t. In this evaluation, the received signal and
noise is considered to be

sr t = smr t + n t (6.10)
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The noise is characterized as white Gaussian noise with
spectral density No and the received signal is expressed as

smr t =Aαm cos ωc +Δω t +ϕ

=Re smr t ejωc

(6.11)

where Δω is the received carrier angular frequency error and
ϕ is an arbitrary phase shift. The baseband signal in (6.11) is
expressed as

smr t =Aαme
j Δω+ϕ (6.12)

6.2.1.1 Coherent Detection of OOK Modulation A
coherent demodulator for the received OOK-modulated
signal with received phase error ϕ t =Δω t +ϕ is shown
in Figure 6.1. The processing details, including the sampling
requirements before the matched filter, are not shown; how-
ever, the details for the phaselock loop (PLL) processing are
discussed in Chapter 10. With coherent detection, the
received carrier frequency error and phase are removed by
the PLL with ϕ t =ϕ t , so the baseband signal into the
matched filter simplifies to

smr t =Aαm (6.13)

With random data, the average and peak powers of OOK
modulation are A2/4 and A2, respectively, and the square of
the minimum distance is computed as

d2 =

T 2

−T 2

sor t −s1r t 2dt

=A2T 2 =Eb

(6.14)

This result implicitly assumes a zonal filter has removed
the double frequency term. The energy-per-symbol is defined

as the average power times the symbol or bit duration so, in
this case, Eb =A2T 2.

For equal a priori probabilities of the mark and space data,
the optimum decision threshold, based on the signal energy,
is The = d 2 = Eb 2. The relationship between signal energy

and amplitude is A= Eb 2 T , so, in terms of the signal
amplitude, the optimum decision threshold is Th = A/2. In
practice, the decision threshold is Th = Â/2, where Â is the
estimate of the received signal amplitude A as determined
using an automatic gain control (AGC) or signal level estima-
tion processing; the estimation processing can be aided by
using a CW preamble.

Based on the minimum distance, given by (6.14), and the
optimum decision threshold Th = A/2, the bit-error probabil-
ity for coherent detection of OOK is evaluated as

Pbe =Q
Eb

2No
=

1
2

erfc
Eb

4No
(6.15)

This bit-error performance is 6 dBworse than that of BPSK
and any variations in the estimated signal level from Awill fur-
ther degrade the performance. The bit-error performance of
coherently detected OOK, using the optimum threshold A/2,
is shown as the solid curve in Figure 6.3 and the circled data
point represents the Monte Carlo simulated performance using
1 million bits for each signal-to-noise ratio.

The performance analysis using the minimum distance is
simple and direct; however, it is instructive to examine the
performance using the known Gaussian probability density
functions for noise only and for signal plus noise as depicted
in Figure 6.2. This analysis is fairly straightforward and
serves as an introduction to the more involved analysis invol-
ving noncoherent detection of OOK.

The bit-error probabilities indicated in Figure 6.2 are
evaluated as,

Pb error α1 =
1

2πσn

Th

0

e− x−A 2 2σ2ndx (6.16)
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FIGURE 6.1 Implementation of coherent OOK demodulator.
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and

Pb error α0 =
1

2πσn

∞

Th

e− x
2 2σ2ndx (6.17)

Considering equal a priori mark and space source data,
such that, P(α1) = P(α0) = 1/2 and, using the transformation
λ= x−A 2σn in (6.16) and λ = x 2σn in (6.17), the over-
all bit-error probability is evaluated as

Pbe Th =Pb error α1 P α1 +Pb error α0 P α0

=
1
2

1−
1
π

∞

Th −A

2σn

e− λ
2

dλ+
1
π

∞

Th
2σn

e− λ
2

dλ

=
1
2
−
1
4
erfc

Th−A

2σn
+
1
4
erfc

Th
2σn

(6.18)

By differentiating Pbe(Th) with respect to Th and setting
the result equal to zero, the optimum threshold, Tho, corre-
sponding to the minimum bit-error probability is found
be Tho = A/2 and the corresponding minimum bit-error
probability is

Pbe =Pbe Tho

=
1
2
erfc

γ
b

2
=Q

γ
b

2

(6.19)

This result is identical to (6.15) with γb = Eb/No and, as
stated above, requires a signal-to-noise ratio that is 6 dB
higher to achieve the same bit-error performance as antipodal
BPSK signaling. The solid curve in Figure 6.3 represents the
optimum OOK performance using the threshold A/2 and the
circled data point represents the Monte Carlo simulated per-
formance using 1 million bits for each signal-to-noise ratio.
The dotted curve is the performance of antipodal signaling
and indicates that the performance of OOK requires a 6 dB
higher Eb/No to achieve the same bit-error performance.
The dashed curves show the performance sensitivity of
OOK with a non-optimum threshold expressed as a percent
of the A/2. For example, if the received signal amplitude esti-
mation error is 10% of the true amplitude, the performance
will be degraded by about 0.6 dB at Pbe = 10−6.

6.2.1.2 Noncoherent Detection of OOK Modulation
Noncoherent detection of OOK is depicted in Figure 6.4.

The evaluation of the performance for the noncoherent
detection of OOK focuses on the probability density func-
tions involving the reception of mark and space data corre-
sponding to signal plus noise and noise only, respectively.
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The respective pdfs are characterized by the Ricean pdf
expressed as

p x α1 =
x

σ2n
e
− x2 + A2

2 σ2n Io
xA

σ2n
x ≥ 0, Ricean pdf (6.20)

and the Rayleigh pdf expressed as

p x α0 =
x

σ2n
e
− x2

2 σ2n x ≥ 0, Rayleigh pdf (6.21)

These distribution functions are shown in Figure 6.5 with
the corresponding regions of the conditional-error events.

The bit-error probability is evaluated using equal a priori
mark and space data probabilities in a manner similar to that
in (6.18) for the coherent OOK and, upon using (6.20) and
(6.21), the expression for the threshold-dependent bit-error
probability is expressed as

Pbe Th =Pb error α1 P α1 +Pb error α0 P α0

=
1
2

1−

∞

Th

x

σ2n
e
−
x2 + A2

2 σ2n Io
xA

σ2n
dx+

∞

Th

x

σ2n
e
−

x2

2 σ2ndx

(6.22)

The optimum threshold (see Problem 4) is found to be the
solution to the transcendental equation

Io
ATho
σ2n

= eA
2 2σ2n (6.23)

By defining the normalized threshold as ρ = Tho/A and the
signal-to-noise ratio as γ =A2 2σ2n, (6.23) is expressed as

Io 2ργ = eγ (6.24)

The solution to (6.24) for the optimum normalized thresh-
old is evaluated using Newton’s method and the result is plot-
ted in Figure 6.6 as a function of the signal-to-noise ratio as

measured in the bandwidth of the data rate. As the noise level
becomes smaller the optimum threshold approaches A/2
which is the optimum threshold for the coherent detection
case. The optimum threshold is approximated by the third-
order polynomial

Tho
A

−0 0000585γ3db + 0 0038γ2db−0 082γdb + 1 1 (6.25)

with less than 2% error for 0 ≤ γdb ≤ 28 dB and less than 4.4%
error for γdb ≤ 30 dB. By setting Tho/A = 0.5 for γdb ≥ 23 dB,
the error will be less than 2% for γdb ≥ 0 dB. The estimation
accuracy of the signal-to-noise ratio must be factored into the
performance evaluation.

Upon changing the integration variable in (6.22) to λ = x/
σn and defining the normalized threshold as β =Th σn and
α=A σn, the bit-error probability is expressed as

Pbe β =
1
2

1−

∞

β

λe−
λ2 + α2

2 Io αλ dλ+

∞

β

λe− λ
2 2dλ

=
1
2
1−Q α,β +Q 0,β

(6.26)

The function Q(α, β) [1, 2] is the Marcum Q-function
or simply as the Q-function.* Marcum (Reference [1],
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FIGURE 6.5 Mark/space distribution functions for noncoherent
detection of OOK.
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FIGURE 6.6 Optimum threshold for noncoherent OOK detection.

*The notation Q(a, b) is also used to denote the incomplete Gamma function
and the notation Q(a) is used to denote the complement of the Probability
Integral so the designation Q-function is misleading.
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pp. 227, 228) provides plots ofQ(α, β) in terms of the incom-
plete Toronto function Tβ 2 1, 0, α 2 * as a function of

the threshold β 2 for various parameter values α 2;
Marcum also provides extensive tables of the Marcum
Q-function [3] with intervals of Δβ = 0.1 and Δα = 0.05. The
Marcum Q-function is difficult to evaluate for the entire range
of thresholds and signal levels ≥0; however, Johansen [4]
provides a method for computer evaluation with a relative
accuracy of 1 × 10−5. Johansen’s method is used to evaluate
(6.26) and the results are shown in Figure 6.7 using the opti-
mum threshold and for threshold variations of ±10% and
±20% around the optimum threshold. The performance degra-
dation with threshold error is comparable to that of coherent
detected OOK. The circled data points are based on Monte
Carlo simulations using 500K bits for each signal-to-noise
ratio. In this case, the optimum threshold is selected from the
minimum bit-error probability corresponding to a range of
thresholds with increments of Δρ = 0.01.

6.2.2 Binary Antipodal ASK Modulation

The special case of ASK results when αm = {1,−1}. Under
this condition αm is related to the input binary data as αm =
1 − 2b, where b = {0,1}, so the modulated waveform is
expressed as

sm t =Aαm cos ωct
=Acos ωct + π 1−αm 2
=Acos ωct + πb

(6.27)

In this case, the average and peak powers are given by
A2/2 and A2, respectively, and the square of the minimum dis-
tance is computed as d2 = 2A2T = 4Eb so the bit-error perfor-
mance for coherent detection becomes

Pbe =Q
2Eb

No
=

1
2

erfc
Eb

No
(6.28)

This is identical to the coherent detection of BPSK
modulation.

6.2.3 Pulse Amplitude Modulation (PAM)

The general case of M-ary ASK is referred to as M = 2k,
where k is the number of bits-per-symbol. In this analysis,
M is considered to be a positive integer such that M ≥ 2.
The normalized rest-points defining the decision regions
are related to M by the relationship

αm = − M−1 + 2m m = 0,1,…,M−1 (6.29)

Using (6.4) with P(m) = 1/M, the average power and peak
powers are given by

Pavg =
M2−1

6
A2

=
M2−1

3
A2 2 M

(6.30)

and

Pp = M−1 2A2 (6.31)

The power A2/2 is the rms signal power associated with
the carrier-modulated signal. Figure 6.8 shows how the
peak-to-rms signal power ratio changes with M. The maxi-
mum ratio is 6 and is nearly reached for M = 64, that is, with
6 bits/symbol.

Figure 6.9 shows the decision regions around each rest-
point in the signal space containing points on the real
line x. The conditional distributions about each point repre-
sent the normalized amplitude† of the received signal and
in the following analysis the performance is evaluated for
the additive white Gaussian noise (AWGN) channel.
Figure 6.9a and b represent the unique cases with M even
and odd, respectively.

The shaded regions, corresponding to the conditional dis-
tributions around each decision point, represent a symbol-
error event and the symbol-error probability is computed,
using the total probability law, as
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FIGURE 6.7 Summary of noncoherent OOK detection.

*Q α,β = T v 2N−1,N−1, Nγ N = 1 , where N is the number of noncoher-

ently integrated pulses, v= β 2 is the threshold, and γ = α2 2 is the
single-pulse signal-to-noise ratio.

†Defining the received signal decision statistic as y, the normalized distribu-
tion p(x) is obtained by letting x = y/A.
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Pse =
M−1

m= 0

P error m P m (6.32)

The conditional-error probability in (6.32) is the error
associated with each decision region and, from Figure 6.9,*

for each of the inner regions (m = 1, 2, …, M− 2) this
involves two distribution tails, whereas, only one distribution
tail is involved for each for the two outer decision regions.
Consequently, for m = 1, 2, …, M− 2, the conditional-error
probability is evaluated as,

P error m =

A αm −1

−∞

p y−Aαm dy

+

∞

A αm + 1

p y−Aαm dy m = 1,2,…,M−2

(6.33)

Letting ξ = ( y − Aαm)/σn and recognizing that, for the
carrier-modulated waveform, A= 2P where P is the rms
signal power during a symbol interval T, (6.33) is evaluated as

P error m =
1

2π

− 2P σ2

−∞

e− ξ
2 2dξ

+
1

2π

∞

2P σ2

e− ξ
2 2dξ m= 1,2,…,M−2

(6.34)

Expressing the noise power, in terms of the detection
bandwidth B and the one-sided noise power density No, as
σ2n =NoB and defining the bandwidth in terms of the symbol
duration T, such that,† B = 1/T, then the signal-to-noise ratio
can be expressed in terms of the symbol energy and noise
density as P σ2n =Es No. With these caveats, (6.34) is eval-
uated as

P error m = 2Q
2Es

No
m = 1,2,…,M−2 (6.35)

Following similar substitutions for the cases m = 0 and
M − 1 results in

P error 0 =

∞

A α0 + 1

p y−Aα0 dy=Q
2Es

No
(6.36)

and

P error M−1 =

A αM−1 −1

−∞

p y−AαM−1 dy=Q
2Es

No

(6.37)

Substituting these results into the expression for the
symbol-error probability, expressed by (6.32), with P(m) =
1/M, gives

Pse =
2 M−2

M
Q

2Es

No
+

2
M
Q

2Es

No

=
2 M−1

M
Q

2Es

No

=
M−1
M

erfc
Es

No

(6.38)

Equation (6.38) is defined in terms of the signal-to-noise
ratio based on the rms carrier power A2/2, however, for PAM
the symbol-error probability must be based on the average
signal power defined over the entire PAM symbol constella-
tion. To accommodate this requirement, (6.30) is used to
relate the corresponding symbol energy levels as

Es =
M2−1

3
Es (6.39)
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FIGURE 6.8 Peak-to-average power ratio for PAM modulation.

*The constellation in Figure 6.9b forM = odd integer does not correspond to
an integer number of bits/symbol and does not apply to the conventional
M-ary PAM waveform. †This assumes that p(t) results in the sinc( fT) frequency response.
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Furthermore, the energy-per-bit is given by Eb =Es k and,
upon applying these results, the expression for the symbol-
error probability becomes*

Pse =
2 M−1

M
Q

6k
M2−1

Eb

No
M = even integer

(6.40)

This expression for the symbol-error probability ofM-ary
PAM is shown in Figure 6.10 for k = 1, 2, 3, 4, and 5 corre-
sponding to M = 2, 4, 8, 16, and 32. The performance for
M = 2 is the same as for coherent detection of binary antipo-
dal ASK PAM which is identical to the coherent detection of
BPSK as discussed in Section 6.2.2. These results indicate
that Eb/No must be increased by about 4 dB for each addi-
tional bit per symbol.

6.3 QUADRATURE AMPLITUDE
MODULATION (QAM)

QAM is composed of two independent PAM baseband mod-
ulations placed on the quadrature rails. If the PAM on each
rail has the same number of symbols, the signal rest-points
form a square constellation decision matrix and the perfor-
mance of QAM is readily evaluated by extending the analysis
of the PAM waveform discussed in the previous section.

However, if a different number of symbols is assigned to each
quadrature rail, the rest-points form a rectangular decision
matrix that is less efficient in terms of the average signal
power, required to achieve a specified symbol-error probabil-
ity, and the peak-to-average power ratio. In the following sec-
tions, the QAM-modulated waveform is examined under
these two conditions with examples of 8-ary QAM, with
3-bits/symbol and 16-ary QAM with 4-bits/symbol. Follow-
ing this analysis, other signal constellations are examined that
improve the efficiency of the QAM-modulated waveform.
Improving the waveform efficiency, defined in terms of a
specified minimum distance, involves minimizing the aver-
age power and the peak-to-average power ratio while

*This result applies to the conventionalM-ary PAMwaveformwithM = even
integer.
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FIGURE 6.10 Symbol-error performance of M-ary PAM
modulation.
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maintaining the specified symbol-error probability. A case
study of 16-ary QAM is included with some performance
simulation results.

6.3.1 QAM as Orthogonal Pulse Amplitude
Modulation (PAM) Waveform

In this section, a simple form of QAM is considered that maps
two PAM baseband-modulated waveforms onto quadrature
rails resulting in a rectangular constellation of rest-points.
With this mapping, the transmitted signal is expressed as

sm t =AαImp t cos ωct −AαQmp t sin ωct

=Re sm t ejωct t ≤T 2
(6.41)

where αIm and αQm are the quadrature data-dependent scaling
factors applied to the signal amplitude A and p(t) is defined
as a unit-power amplitude-shaping function satisfying (6.2);
as in the preceding sections, p(t) is characterized as rect(t/T −
1/2). In the following discussion, the primed and unprimed des-
ignations forM and k refer to rectangular QAMwaveform and
the underlying quadrature PAMwaveforms, respectively. The
decision space of a rectangularM -aryQAMwaveform isbased
on M = 2k rest-points αIm and αQm distributed on the quadra-
ture I andQ rails.When k ≥ 1 is even there exists an underlying
M-aryPAMconstellationwithM = M rest-points expressed
by (6.29), such that, MI =MQ =M resulting in a square con-
stellation of rest-points. On the other hand, when k is an odd
integer there is no such underlying PAM constellation and the
M = 2k rest-points αIm and αQm result in a rectangular or non-
square constellation. In this case, the constellation is selected to
minimize the average power and peak-to-average power ratio.
Example rest-point constellations for these two cases are shown
in Figures 6.11 and 6.12 for k = 3 and 4 corresponding to 8-ary
QAM and 16-ary QAM, respectively; these constellations are
shown with gray coded symbol assignment.

The symbol-error probability for the cases with k = even
is readily obtained using (6.38) and (6.39) with Es = 2Es and
recognizing that the quadrature channel is independent and
identically distributed with equal symbol-error probability

and average power so, considering both channels, the overall
symbol-error probability is evaluated as

Pse = 1− 1−Pse
2

=
4 M−1

M
Q

3k
M2−1

Eb

No

× 1−
M−1
M

Q
3k

M2−1
Eb

No

(6.42)

whereM = M . Equation (6.42) is plotted as the solid curves
in Figure 6.13 for M corresponding to k = even integer.
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FIGURE 6.11 Rectangular constellation: 8-ary QAMmodulation
(gray-coded).
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modulation.
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With gray coding the approximate expression for the bit-error
probability, for sufficiently high values of Eb/No, is
simply Pbe Pse k .

When k = odd integer the signal rest-point constellation,
shown in Figure 6.11 for k = 3, is not square, however, it
can be formulated as a rectangular constellation with row-
column dimensions MI and MQ such that MI = 2MQ and
MI MQ =M . The symbol-error probability is expresses as

Pse = 1−PIscPQsc (6.43)

where PIsc andPQsc are the probabilities of a correct symbol in
the respectivedimensions.Lettingx = {I,Q}, these expressions
for the correct symbol detection probability are evaluated as

Pxsc = 1−2
Mx−1
Mx

Q
3k

M −1
Eb

No
(6.44)

Equation (6.43) is evaluated using (6.44), corresponding
to the I and Q rails, and plotted as the dashed curves in
Figure 6.13.

6.4 ALTERNATE QAM WAVEFORM
CONSTELLATIONS

The performance for k = odd integers in Figure 6.13, that is,
for M = 8, 32, 128, and 512, corresponds to the rectangular
rest-point constellations as shown in Figure 6.11 for 8-ary
QAMwith k = 3. These constellations require a relatively high
average power and the performance can be improved through
a more judicious selection of the rest-point locations. For

example, the constellation in Figure 6.11 is re-drawn in
Figure 6.14 as two concentric circles with equal distances
between the nearest neighbors. Because this constellation con-
tains rest-points on concentric circles, it is referred to as APSK
modulation. Four sets of nearest neighbors result in two bit-
errors so gray coding is not fully achievable. On the other
hand, if the outer circle constellation were rotated counter-
clockwise by 45 , gray coding is achievable; however, the
outer radius circle must be decreased slightly to achieve the
same distance between all of the rest-points. It is left as an exer-
cise (see Problems 8 and 9) to analyze the performance of this
constellation and compare it with the performance of the
phase-shifted outer constellation with the adjusted radius to
provide equal Euclidian distances between all adjacent rest-
points.

6.5 CASE STUDY: 16-ary QAM PERFORMANCE
EVALUATION

This case study examines the performance of 16-ary QAM
using the rest-point configuration shown in Figure 6.12.
Referring to the functional demodulator implementation
shown in Figure 6.15, the filtering and sample rate reduction
provides four complex samples-per-symbol with a bandwidth
of 2RsHz into the phase rotation and matched filtering func-
tions. The fast AGC derives the signal level error in a band-
width comparable to the input BPF bandwidth and is used
during acquisition. The slow narrowband AGC is used to
maintain the signal level throughout the data detection pro-
cessing. The slow AGC, phaselock loop, and symbol timing
errors are derived from the decision logic depicted in
Figure 6.16; otherwise, these tracking functions operate in
a conventional manner. The slow AGC error is computed
as the magnitude difference between the rest-point and
matched filter vectors; the PLL phase error is the angle
between the two vectors. The symbol timing error derivation
is not explicitly shown, however, is derived from the differ-
ence between early and late samples of the matched filter
output.

Figure 6.17 compares the simulated bit-error performance
as the circled data points and the corresponding theoretical
gray-code approximation from Figure 6.13. The dashed
curve is the simulated symbol-error performance that
approaches 4 × Pbe as the signal-to-noise ratio increases.
The Monte Carlo simulations are based on 1M symbols
for each signal-to-noise ratio and use ideal AGC, phase
and symbol timing tacking.* The transmitted signal uses
the rect(t/T) symbol shaping function and the spectrum is
shown in Figure 6.18. This traditional sinc(fT) frequency
response, with first spectral sidelobe levels of −13 dB, can
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FIGURE 6.14 Concentric circular constellations: 8-ary APSK
modulation (partial gray coding).

*The intent of this simulation is to verify agreement between the simulated
and theoretical bit-error performances.
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be improved with the use of spectral root-raised-cosine shap-
ing as discussed in Sections 4.3.2, 4.4.1.1, and 4.4.4.1.

6.6 PARTIAL RESPONSE MODULATION

The following concepts dealing with partial response modu-
lations are largely based on the ground breaking work of
Nyquist [5, 6]. Partial response modulation is a form of mul-
tilevel pulse code modulation (PCM)* or PAM in which
intentional intersymbol interference is permitted to confine
the power spectral density (PSD) of the transmitted signal.
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FIGURE 6.15 Functional implementation of an M-ary QAM demodulator implementation.
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FIGURE 6.18 QAM signal spectrum (p(t) = rect(t/T)).
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FIGURE 6.16 QAM demodulator decision logic.

*PCM modulation is discussed in more detail in Chapter 8.
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The resulting redundant modulation signal states conform to
unique state transitions and transition violations are used to
detect the presence of errors in the demodulation processing.
Partial response is also referred to as correlative coding and
was introduced by Lender [7] as duobinary modulation in
which a data rate of twice that of conventional binary mod-
ulation is achieved with a narrower PSD bandwidth. The
duobinary modulation is contrasted with Nyquist binary sig-
naling as characterized in (6.45) and (6.46) using the Fourier
transform relationship H f h t . These relationships and
the following analysis ignore causality:

H f

Trect fT fT ≤ 1 2

h t

sinc t T Nyquist α= 0

(6.45)

2T cos πfT fT ≤ 1 2
4
π

cos π t T

1−4 t T 2

duobinary

(6.46)

The frequency and time functions are plotted in
Figure 6.19. Figure 6.19a depicts the uncorrelated spacing
of the Nyquist impulse response at intervals of t = ±nT:
n > 0. These intervals are contrasted with the duobinary
uncorrelated intervals of t = ±(n + 1/2)T: n > 0 shown in
Figure 6.19b. In both cases, the filled circles are separated
by the symbol interval of T seconds and represent sampling
instances of the input data. The duobinary filter response, at
the sampling instances t = ±T/2, results in correlation
between adjacent symbols in the sequence of input source
data [8, 9]. The duobinary, or 11* partial response, correlative
encoding depicted in Figure 6.19b is also referred to as poly-
binary and biternary coding.

The only way that 2W bits/s can be transmitted through a
channel with bandwidthW = Rb/2 without experiencing inter-
symbol interference is to use the Nyquist filter described by
(6.45) and depicted in Figure 6.19a. However, the sharp cut-
off frequency of this filter and the resulting infinitely long

Normalized frequency ( fT)

0.0 0.2 0.4 0.6 0.8 1.0

Sp
ec

tr
um

 m
ag

ni
tu

de
 (

∣H
(f

 T
)∣/

T
)

0.0

0.5

1.0

1.5

2.0

Normalized frequency (f T)

0.0 0.1 0.2 0.3 0.4 0.5

Sp
ec

tr
um

 m
ag

ni
tu

de
 (

∣H
(f

 T
)∣/

T
)

0.0

0.5

1.0

1.5

2.0

Normalized time (t/T)

–4 –3 –2 –1 0 1 2 3 4

Im
pu

ls
e 

re
sp

on
se

 (
h

(t
/T

))

–0.5

0.0

0.5

1.0

1.5

••••• • • •

Nyquist (α = 0)

Duobinary

Normalized time (t/T)

–4 –3 –2 –1 0 1 2 3 4

Im
pu

ls
e 

re
sp

on
se

 (
h

(t
/T

))

–0.5

0.0

0.5

1.0

1.5

• • • • •••• •

(a)

(b)

FIGURE 6.19 Comparison of Nyquist and duobinary spectrums and impulse responses.

*Pronounced “one-one.”
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impulse response results in an unrealizable filter that requires
time and frequency design compromises as discussed in
Section 4.4.4.1. The characteristic of the ideal Nyquist filter,
that results in no intersymbol interference, is the orthogonal
spacing of the impulse response at instances of ±nT: |n| > 0 as
depicted by the filled circles in Figure 6.19a. As shown in
Figure 6.19b, orthogonal spacing also exists for duobinary
modulation, however, the symbol responses occurring at
t = ±0.5T both have unit amplitudes and result in intentional
or known intersymbol interference between adjacent
symbols. The cosine-shaped frequency response of the duo-
binary-modulated signal in confined to the same bandwidth
as the Nyquist filter; however, the noise bandwidth is Bn =
1/4THz. The cosine frequency roll-off also results in lower
impulse response sidelobes and less sensitivity to channel
impairments and demodulator frequency and timing errors
compared to the Nyquist filter.

The duobinary baseband waveform modulation and
demodulation using a random sequence of source data bits,
denoted as bi = {0,1}, is shown in Figure 6.20. The band-
width of the duobinary spectrum supports an information
capacity of 2 bits/Hz by incorporating three distinct ampli-
tude levels obtained by the correlative processing resulting
from the known intersymbol interference as described above.
For example, referring to Figure 6.20, the source data bits (bi)
are modulo-two added ( ) to the previously encoded data
Di−1 resulting in the differentially coded data Di =Di−1 bi
for i = 1, 2,…. The reference dataD0 is set to 0 corresponding
to space data. This coding prevents catastrophic error prop-
agation when an error occurs in the channel. The three cor-
relative encoded signal levels, constituting the duobinary
waveform, are obtained by algebraically adding the diffe-
rentially encoded data resulting in the modulated signal levels

ℓi =Di +Di−1 indicated in Figure 6.20. The result is a three-
level modulated signal corresponding to ℓi = {0,1,2} as
depicted in the third sequence in the figure.

The decoding of the received duobinary waveform is
based on the detection threshold levels Ld1 and Ld2 that are
established to correspond to the minimum distance dm =
A/2(L − 1) between the L = 3 levels corresponding to ℓi =
{0,1,2}.* Based on this description, the demodulated data

estimates di = 1 correspond to the decisions ℓi = 1 and di = 0
correspond to the decisions ℓi = 0 or 2. In general, for the
correlative-encoded data decisions as described above, mark
and space data correspond, respectively, to odd and even
values of ℓi; this is useful in decoding the multilevel correla-
tive coding as described by Lender [10] and discussed in
Section 6.6.1. This description of the duobinary modulator
results in unipolar modulation levels corresponding to ℓi ≥ 0
is shown in Figure 6.21a. An alternate coding configuration,
resulting in the bipolar modulation levels ℓi = {−2,0,2} is
shown in Figure 6.21b.

The correlative coded data in Figure 6.20 must be filtered
to restrict the modulated signal spectrum. In keeping with the
optimum detected filter in an AWGN channel, the duobinary
filter is split between the modulator and demodulator filters
expressed, respectively, as

Hm fTb =Hd fTb = H fTb (6.47)

where Hd( fTb) represents the demodulator matched filter. The
correlative coded data are filtered as shown in Figure 6.22
that also includes the channel, demodulator matched filter,
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*Reference bit (0)
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2
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1 2 2 1 0 1 2 1 0 1 2 2 1 0 1 1 …

Ld2

Ld1

Source data

Differentially coded data

Correlative coded data

FIGURE 6.20 Example of duobinary baseband modulation and demodulation.

*In this description the signal amplitude A is 1 V and an ideal noise-free chan-
nel is considered.
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and data recovery processing. In this case, the unipolar differ-
ential encoder output is level coded corresponding to the
unipolar-to-bipolar mapping {1,0} ≥ {1,−1}. The resulting
bipolar sampled data jTs is then passed through the channel
and the duobinary matched filter. For example, with Ns

samples-per-symbol, the symbol counter i is derived from
the sample counter j according to the condition*: if mod
( j,Ns) = 0 then i is indexed by one, so, at the beginning of each
symbol, a unit pulse 2Di − 1 of duration Ts is applied to the fil-
ter. As indicated in the figure, the remainingNs − 1 samples for
each symbol are input as zero. The filter weights hn: −N/2 ≤
n ≤N/2 correspond to N + 1 symmetrical samples of the duo-
binary impulse response. The discrete samples are evaluated

as hn Hm(m) where Hm(m) is the discrete-sample charac-
terization of the duobinary spectrum as expressed in (6.47).†

After passing the jTs samples through the channel and
demodulator matched filter, the iT received data samples
are processed as shown in Figure 6.22‡ to determine the

received bit estimates bi. Figure 6.23 shows the duobinary
matched filter response, using the 30-bit source data
sequence: (111011001110000111010011010011) and a
noise-free channel. Upon examining the data recovery pro-
cessing, it is seen that the recovered data estimates are iden-
tical to the source data, that is, di = di. Using the magnitude of
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2Di –1
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FIGURE 6.21 Encoding of duobinary baseband signal.
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FIGURE 6.22 Simplified implementation of duobinary baseband system.

*The mod( j,i) and modulo( j,i) functions are defined in Section 1.14.7.

†The discrete Fourier transform is discussed in Section 1.2.4.
‡This simplified implementation does not show the details of time synchro-
nization and gain control for determination of the detection threshold.
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the matched filter samples eo(iT) simplifies the decision
processing.

Figure 6.24 shows the one-to-one correspondence
between the sampled source data and the L = 3 levels of
the demodulator matched filter sampled outputs. There is a
one-to-one correspondence between the matched filter sam-
ples and the data samples such that the magnitude of the
matched filter output maps into the optimally detected data
estimates expressed as,

di =
0 ℓi ≥ 1

1 o w
(6.48)

The bit-error performance of the duobinary-modulated
signal is evaluated using the filtered bipolar coded detection
levels as characterized in Figure 6.21b. Considering the
AWGN channel, the decision regions are depicted in
Figure 6.25 for the bipolar and bipolar-magnitude detection
processing.

The probability distribution functions for the conditions
indicated in Figure 6.25 are expressed as follows:

pN1 n =
1

2πσn
e− n+A 2 2σ2n

pN2 n =
1

2πσn
e− n−A 2 2σ2n

pN3 n =
1

2πσn
e− n

2 2σ2n

pN4 n =
2

2πσn
e− n

2 2σ2n

(6.49)

Using the a priori probabilities P0 and P1 and integrating
the appropriate pdfs over the indicated ranges, the conditional
probabilities, using the bipolar levels characterized in
Figure 6.25a, are evaluated as

Pr error b= 0 =P0

A 2

−A 2

pN1 n dn+P0

A 2

−A 2

pN2 n dn (6.50)

and

Pr error b = 1 =P1

−A 2

−∞

pN3 n dn+P1

∞

A 2

pN3 n dn (6.51)

Performing the integrations in (6.50) and (6.51)
and expressing the result in terms of the complement
of the probability integral, the conditional probabilities
simplify to

Pr error b= 0 =
1
2
Q

γ

4
−
1
2
Q

9γ
4

(6.52)

and

Pr error b = 1 =Q
γ

4
(6.53)

Based on (6.52) and (6.53), the total-error probability is
evaluated as
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Pe =Pr error b = 0 +Pr error b= 1

=
1
2
Q

γ

4
−
1
2
Q

9γ
4

+Q
γ

4

=
3
2
Q

γ

4
−
1
2
Q

9γ
4

(6.54)

where γ =A2 σ2n is the baseband peak signal-to-noise ratio.
Equation (6.54) is also obtained when the error probability
is evaluated using the magnitude of the bipolar levels as char-
acterized in Figure 6.25b. Forming the magnitude of the
received bipolar waveform simplifies the detection proces-
sing since a matched filter detection below the single thresh-
old of Ld = 1 is declared a mark bit (bi = 1), otherwise, a space

bit (bi = 0) is declared.
The term involving the argument 9γ/4 has a negligible

effect of the error probability. For example, when Pe is
expressed in scientific notation the significand (mantissa)
is altered in the third and fourth decimal place for 0 ≤ γb ≤ 20
dBwhere γb is the signal-to-noise ratio measured in the band-
width equal to Rb. Consequently, indifference to current
usage, the error probability is expressed as

Pe =
3
2
Q

γ

4
for all practical purposes (6.55)

The argument of the square-root in (6.55) must be
expressed in terms of the maximum signal-to-noise ratio,
E/No, at the output of the demodulator matched filter, where
E is the signal energy and No is the AWGN noise density.

Since the preceding analysis involves the baseband character-
ization of the duobinary waveform, using the demodulator
matched filter Hd( fT), defined by (6.47), and Parseval’s rela-
tionship, the duobinary symbol energy is expressed as

Es =

1 2T

−1 2T

Hd fT 2df (6.56)

However, since Hd( fT) is real-valued with H2
d fT =

H fT , the integral involving H( fT) is expressed, in terms
of the square-root of the signal power at the matched filter
output, as

2Ps =

1 2T

−1 2T

H fT df =
4
π
A (6.57)

Therefore, the average received signal power is

A2 2 = π 4 2Ps and the corresponding symbol energy is

Es = π 4 2PsT resulting in the error probability expressed as

Pe =
3
2
Q

π 4 2PsT

No
(6.58)

This result is reconciled with (6.55) by considering the
definition of the argument given by

γ

4
≜

A2

4 σ2n
(6.59)

Bipolar levels Magnitude of bipolar levels 

0 A/2 

A/2 A/2 

A–A –A/2

–A/2

n 

Pr(error|b = 1)

0 A–A
n 

Pr(error|b = 0)

P0 = 1/4
b = 0 b = 1

P1 = 1/2  P0 = 1/4
b = 0

b = 1

P1 = 1/2 P0 = 1/2
b = 0

0 A–A
n 

Pr(error|b = 0)

0 A/2 A–A
n

pN
4
(n)pN

3
(n)

pN
2
(n)pN

1
(n)

Pr(error|b = 1)

(a) (b) 

FIGURE 6.25 Demodulator decision regions for duobinary waveform detection.
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Substituting A2/2 given above and σ2n =No Tb, where Tb is
the bit interval corresponding to 1 bit/symbol, (6.59) is
expressed as

γ

4
=
1
2

π

4

2PsTb
No Tb = 2T

=
π

4

2PsT

No
(6.60)

The second equality in (6.60) is based on the duobinary
waveform corresponding to 2 bits/symbol or Tb = 2T. Conse-
quently, the argument (γ/4) of the square-root in (6.55) cor-
responds to that of the duobinary filtered result in (6.58).
However, the duobinary spectrum in (6.46) has a lowpass
bandwidth ofW = 1 2T =Rb 2 corresponding to the Nyquist
rate of Rb = 2W bits/channel-use. Therefore, the interval T is
the bit interval for the duobinary waveform so that T = Tb and
the equality in (6.60) applies to the duobinary bit-error prob-
ability expressed as

Pbe =
3
2
Q

π

4

2
γb (6.61)

where γb =Eb No =PsTb No. Lucky, Salz, and Weldon [11]
arrive at the same result using the signal distance d and the
bit-error probability expressed by (3.32).

Equation (6.61) is plotted as the solid curve in Figure 6.26
as a function of γb in decibel. The theoretical bit-error prob-
ability of unipolar non-return to zero (NRZ) PCM coding is
3 dB worse than antipodal signaling and the duobinary per-
formance is degraded by an additional −20log10(π/4) =
2.1 dB from that of unipolar NRZ PCM. The circled data
points correspond to Monte Carlo simulation of the duobin-
ary performance using 1M bits/signal-to-noise ratio for γb <
12 dB, otherwise 10M bits are used. The 2.1 dB loss in the
duobinary performance can be reduced with maximum-
likelihood sequence estimation [12] (MLSE) detection over

several bits using a trellis state decoder. Because of the cor-
relation between adjacent bits, the demodulation processing
of the 11 duobinary coded waveform provides for error detec-
tion by observing violations of the following rule: two con-
secutive space bits with an intervening even number of mark
bits have opposite polarity, otherwise, if the intervening mark
bits is odd the polarity of the space bits is the same.

6.6.1 Modified Duobinary Modulation

The modified duobinary response results in a −1 0 1* filter
impulse response when sampled at the instances t = nT;
n = −1,0,1; otherwise, the samples are all zero. The obvious
difference between the modified duobinary and the 11 duo-
binary waveform is that the input signal samples are corre-
lated with symbol samples separated by 2T instead of the
adjacent symbol samples. However, as will be seen, the data
corresponding to the modulated levels ℓi = 0 is di = 0 (space)
and ℓi = ±2 is di = 1 (Mark). Another difference is that the
transitions from a level can terminate on any of the levels
so, unlike the 11 duobinary modulation, a transition from
ℓi = −2 to ℓi+ 1 = +2 may occur. Lender [10] points out that
this large shift between levels reduces the horizontal eye
opening, thus increasing the demodulator sensitivity to sym-
bol timing errors and channel impairments. The modified
duobinary waveform also uses three modulation levels with,
as discussed in the preceding section, T = Tb and provides 2
bits/channel-use. At the optimum symbol sampling instances
the vertical eye opening has zero intersymbol interference
and the degradation in Eb/No with an AWGN channel is
2.1 dB. The −1 0 1 duobinary coded waveform provides for
error detection by observing violations of the following rule:
two consecutive mark bits with an intervening odd number of
space bits have opposite polarity; otherwise, if the interven-
ing space bits is even the polarity of the mark bits is the same.
These claims are confirmed in the following analysis of the
modified duobinary modulation.

The modified duobinary filter and the corresponding
impulse response are described by (6.62). These respective
functions are plotted in Figure 6.27 in terms of the normaliz-
ing parameter T.

H fT

j2T sin
π fT

2
fT ≤ 1 2
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π
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The frequency response is a sine function contained
within the Nyquist band W = Rb/2 providing 2W = Rb bits/s
or 2 bits/symbol or channel use. As with the duobinary cosine
filter, the sine filter results in controlled intersymbol interfer-
ence; however, in this case the non-zero filter impulse
responses occur at t/T = ±1 with a correlation interval of 2T
resulting in the notation –1 0 1 partial response.* Differential
coding of the source data (Di), the unipolar-to-bipolar trans-
lation (Bi), and level coding (ℓi) are defined for a source
sequence of unipolar binary unipolar non-return to zero level
(NRZ-L) data di: i = 1, 2, … as follows:

Di =Di−2 di modulo 2 addition

Bi = 2Di−1 unipolar-to-bipolar

ℓi = −Bi−2 +Bi algebraic addition

(6.63)

where the two differentially coded bits are defined as D−1 =
D0 = 0. With Bi = {±1}, the number of coded levels ℓ is L = 3.
The correspondence of the coded levels with the source bits
and the criteria for detecting demodulator bit-error conditions
is verified by examining the coding using the defined
sequence of data (see Problem 15). The bit-error probability
performance loss of the modified duobinary modulation,
under ideal channel and demodulator timing conditions, is
2.1 dB. This loss is established by examining the symbol
energy of the modified duobinary modulation (see
Problem 20).

The property of the modified duobinary filter correspond-
ing to a zero direct current (DC) component, that is,H(0) = 0,
is significant, in that, this is a necessary requirement for the
generation of a single-sideband (SSB) modulated waveform.
The SSB waveform is obtained by passing h(t) through a

Hilbert filter [13, 14], forming h t , with the SSB baseband
waveform informally expressed as

s t =
i

di h t− iT + j h t− iT (6.64)

where di is the information data.

6.6.2 Multilevel Duobinary Modulation

The multiple levels, exceeding L = 3 discussed in the preced-
ing section, can be applied to the duobinary, modified duo-
binary, and other partial response modulations involving
higher order filter functions mentioned in the following sec-
tion. The inclusion of additional modulation levels results in
the information capacity expressed as

Rb

W
= 2log2 n bits symbol or bits channel-use (6.65)

where n = L − 1 is the span of the filter correlation interval.†

The PSD is concentrated in an increasingly narrow band-
width by virtue of a filter correlation length spanning n sym-
bols. The multilevel duobinary frequency function is
expressed as

H f =
T sin nπf T

sin πf T
fT ≤ 1 2 (6.66)

The filter frequency function is plotted in Figure 6.28 for
values of L = 3 through 7 with the dashed curve correspond-
ing to the cosine filter in Figure 6.19b. The corresponding
impulse responses are left as an exercise (see Problem 20);
however, the filter impulse response exhibits n unit-
amplitude levels occurring at t/T, such that, for i = 0, …,
n − 1, t/T is expressed as

t

T
=

− n 2 + i n odd

− n 2 + 1 2 + i n even
(6.67)
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FIGURE 6.27 Modified duobinary spectrum and impulse response.

*Some authors characterize the modified duobinary as a 10 –1 partial
response modulation; although the coding and decoding details are some-
what different, the coding and decoding can be interchanged without altering
the correspondence between ℓi and di.

†All of the filters satisfy the Nyquist bandwidth criterion, W = 1/2T.
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The unit-amplitude samples are symmetrical about t/T = 0
with zero sample values at all other values of i.

The modulator encoding of the multilevel duobinary
waveform is similar to that of the three-level waveform; how-
ever, the differential encoding spans n bits including the cur-
rent source bit di: i = 1, 2, … and the n − 1 previously
differentially encoded bits Di−m: m = 1, …, n − 1. The para-
meters D–m = 0: m = n − 1, …, 0 are initialized as space bits
and the corresponding parameters B−m are initialized as
B−m = 2D−m − 1. With these normalizations, the encoding in
(6.63) is generalized as

D=
n−1

m= 1

Di−m algebraic addition

Di =D di modulo 2 addition

Bi = 2Di−1 unipolar-to-bipolar

ℓi =
n−1

m= 0

Bi−m algebraic addition

(6.68)

The coding described in (6.68) is depicted in Figure 6.29,
under noise-free conditions, for L = 4 levels (n = 3 correlated
symbols) corresponding to 111* duobinary modulation. The
source data are represented by the square data samples with
the circles representing the demodulator matched filter sam-
ples. As in the preceding duobinary examples, there is a one-
to-one correspondence between the matched filter sample
and the received data; however, the mapping is not as
straightforward as in the three-level duobinary case
expressed in (6.48). This PAM waveform can be implemen-
ted as a QAM waveform by applying differential encoding

between the inphase and quadrature rails as discussed in
Section 8.4.

The detection levels for L = 4 shown in Figure 6.29 are
symmetrical about zero; however, there is no optimum sam-
ple at ℓ = 0 as in the L = 3 level duobinary case. The optimally
sampled duobinary coding levels ℓ are shown in Table 6.1 for
the indicated range of L.

The conditions for the decoding of the data dj correspond-
ing to the levels ℓj are given in Table 6.1. The distance
between the levels is two and when mod(ℓmax/2,2) = 1 the
optimally sampled matched filter levels are odd integer
values symmetrical about zero. The binary data correspond-
ing to negative levels are inverted with dj(ℓj > 0) = mod(dj (ℓj
< 0),2). For the case mod(ℓmax/2,2) = 0, dj(ℓj > 0) = dj(ℓj < 0);
however, when L is odd the level ℓ0 = 0 corresponds to
d0 = 0, otherwise d0 = 1. Recognizing that the data dj(−ℓmax) =
0 L, the following procedure outlines the decoding
decisions.

! ℓr is real-valued matched filter
optimum sample.
! ℓerr is real-valued error used for
matched filter gain control.
! ℓ, ℓmax, L , and icnt are integer-values

ℓmax = L – 1; icnt = 0
lp do ℓ = −ℓmax, ℓmax, 2

if (ℓr >= real(ℓmax -1)) then
di =icnt; ℓerr =ℓr – real(ℓ)

else if(ℓr <real(ℓ- 1)) then
di =icnt; ℓerr =ℓr – real(ℓ)
exit lp

endif
icnt = mod(icnt + 1,2)

enddo lp
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FIGURE 6.29 Duobinary sampled data and four-level
demodulator matched filter samples.

*Pronounced “one-one-one.”
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The decision level errors ℓerr are passed through a lowpass
filter and applied to the matched filter gain control to ensure
that the optimum decision levels are maintained for the duo-
binary demodulation. In the above examples, the optimum
levels are defined in Table 6.1. In a simulation program or
hardware test setup, the bit-error probability is computed
as the number of bit-errors, di di, divided by the total num-
ber of received bits.

6.6.3 Multilevel Duobinary Bit-Error Performance

The bit-error performance of multilevel duobinary modula-
tion is expressed as [15]

Pbe = 2 1−
1
n2

Q
π

4
3γb
n2−1

(6.69)

Equation (6.69) is plotted in Figure 6.30 for the indicated
values of L and the performance is summarized in Table 6.2.

6.6.4 Multilevel Duobinary Modulation
using k-bit Symbols

In this section, the multilevel duobinary-modulated waveform
is described by assigning k gray-coded source bits to anM-ary
symbol and performing the duobinary coding described above
to the source symbols. In this case,di represents the gray-coded
source bits and the duobinary coding is expressed in (6.70).
The number of demodulator coded levels is L = 2M − 1 where
M = 2k. This description of the duobinary-modulated symbols
results in a PAM waveform; however, the results can also be
applied to the inphase and quadrature rails resulting in a
QAMwaveform. These concepts involving correlative coding
have also been applied to frequency shift keying (FSK) and
M-ary phase shift keying (PSK)waveformmodulations result-
ing in improved spectral containment [16–18].

si =
k−1

m= 0

2mdi bits-to-symbol conversion

Di =modulo si−Di−1,M differential coding

Bi = 2Di− M−1 unipolar-to-bipolar

ℓi =Bi +Bi−1 symbol level

algebraic addition

si =modulo ℓi 2 + M−1 ,M differential decoding

(6.70)

TABLE 6.1 Comparison of Duobinary Coding Levels ℓ and Data d for 3 ≤ L ≤ 7

Levels (L) Coding Levels/Data ℓmax = n = L − 1

3 2 0 −2 ℓ 2
0 1 0 d

4 3 1 — −1 −3 ℓ 3
1 0 — 1 0 d

5 4 2 0 −2 −4 ℓ 4
0 1 0 1 0 d

6 5 3 1 — −1 −3 −5 ℓ 5
1 0 1 — 0 1 0 d

7 6 4 2 0 −2 −4 −6 ℓ 6
0 1 0 1 0 1 0 d
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FIGURE 6.30 Multilevel duobinary bit-error performance.

TABLE 6.2 Summary of Multilevel Duobinary Performance

Levels
(L) n

Loss*

γb (dB)
γb (dB)

*

(Pbe = 10−5)
Capacity Rb/W
bits/Use

3 2 2.1 14.9 2.0
4 3 6.4 19.2 3.2
5 4 9.1 22.0 4.0
6 5 11.1 24.0 4.6
7 6 12.8 25.7 5.2
8 7 14.1 27.0 5.6
9 8 15.3 28.2 6.0

17 16 21.4 34.3 8.0

*Values from Figure 6.30.
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An example of the duobinary symbol coding using k = 2
bits/symbol is given in Table 6.3. The previously defined
30-bit binary example data sequence is used with the bits
representing the gray-coded source bits. The transmit data
and the resulting demodulator matched filter sampled levels
ℓi are shown, respectively, in Figure 6.31 as the square and
circled sampled data points connected by the respective solid
and dashed lines.

6.6.5 Classification of Partial Response Filters

Kretzmer [19, 20] expands the duobinary modulation of
Lender by generalizing the implementation of partial
response-modulated waveforms. For example, the duobinary
and the multilevel duobinary waveforms are categorized as
Class 1 partial response waveforms, characterized by
equal-amplitude filter impulses. Class 2 partial response
implementations result in a symmetrical triangular-weighted
set of filter impulses. The simplest case of the Class 2 partial
response is the raised-cosine Nyquist filter with α = 1 corre-
sponding to the frequency and impulse responses expressed
in (6.71) and shown in Figure 6.32. Although the frequency

response extends over the range | f | ≤W, the Nyquist criterion
is satisfied resulting in impulses separated by T with zero
responses otherwise as depicted by the filled circles in
Figure 6.32. The triangular weighting results in a smoother,
or more continuous, frequency response with much lower
impulse response time sidelobes compared to those in
Figure 6.19. This characteristic results in less sensitivity to
demodulator symbol timing errors.

H f

Tcos2 πf T 2 fT ≤ 1

f t

sinc
t

2T
cos πt 2T

1− t T 2

Nyquist α= 1

(6.71)

TheClass 3partial response, defined byKretzmer, contains
positive and negative impulse response components resulting
from the ringing of the transient responses. The filters are char-
acterized as causal lowpass filters, with a finite DC compo-
nent, and result in nonsymmetrical decaying impulse
components for t/T ≥ 0. The number of impulses is chosen
by truncating the impulse response. Classes 4 and 5 are quasi
bandpass filters with a zero DC component. The modified
duobinary waveform discussed in Section 6.6.1 is a Class 4
partial response waveform; the Class 5 is similar, however,
the frequency response corresponds to a sine-squared func-
tion. For the classes of partial response considered, the best
tolerance to signaling rate and channel impairments corre-
sponds to the minimum value of n in each class.

ACRONYMS

AGC Automatic gain control
APSK Amplitude PSK
ASK Amplitude shift keying
AWGN Additive white Gaussian noise (channel)
BPSK Binary phase shift keying
DC Direct current
FSK Frequency shift keying
I/Q Inphase and quadrature (channels or rails)
MLSE Maximum likelihood sequence estimation
NRZ Non-return to zero (PCM code format)

TABLE 6.3 Example of Duobinary Symbol Coding (k = 2 bits/symbol)

Function Ref. Data Duobinary Coded Data

Gray-coded bits (di) 00 00 11 10 11 00 11 10 00 01 11 01 00 11 01 00 11
Source symbols (si) 0 0 3 2 3 0 3 2 0 1 3 1 0 3 1 0 3
Differential coding (Di) 0 0 3 3 0 0 3 3 1 0 3 2 2 1 0 0 3
Bipolar conversion (Bi) −3 −3 3 3 −3 −3 3 3 −1 −3 3 1 1 −1 −3 −3 3
Level coding (ℓi) 0 6 0 −6 0 6 2 −4 0 4 2 0 −4 −6 0
Differential decode (s^i) 3 2 3 0 3 2 0 1 3 1 0 3 1 0 3
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FIGURE 6.31 Example of multilevel duobinary coded symbols
(k = 2 bits/symbol).
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NRZ-L Non-return to zero level (PCM code format)
OOK On–off keying
PA Power amplifier
PAM Pulse amplitude modulation
PCM Pulse code modulation
PLL Phaselock loop
PSD Power spectral density
PSK Phase shift keying
QAM Quadrature amplitude modulation
QPSK Quadrature phase shift keying
RF Radio frequency
SSB Single-sideband (modulation)

PROBLEMS

1. Using (6.18) for the expressions of Pbe(Th) for coherent
detection of OOK, derive the optimum detection thresh-
old Tho that results in the minimum bit-error probability.

Hint: Differentiate Pbe(Th) with respect to Th using the
second equality in (6.18) and Leibniz’s Theorem and
set the result equal to zero and solve for Tho.

2. Derive the optimum bit-error probability (Pbe) for the
coherent detection of OOK by substituting the optimum
detection threshold Tho into the expression (6.18) for
Pbe(Th). That is, show all of the steps used to arrive at

Q Eb 2No in (6.19).

3. Consider the performance of a special case of OOK in
which the space level is not zero but a small value given
by α0 = ρα1 where 0 ≤ ρ ≤ 1. This situation was encoun-
tered in practice and resulted from a modulator imple-
mentation issue involving an analog amplifier bias.
Derive the expression for the signal distance and the
bit-error probability and comment on the detection loss
relative to the ideal OOK modulator.

4. Repeat Problem 1 and find the optimum threshold for the
noncoherent detection of OOK using the second equality
in (6.22); the same hint applies.

5. Repeat Problem 2 for the bit-error probability of nonco-
herent detection of OOK by substituting the optimum
threshold found in Problem 4 into (6.22).

6. Derive general expressions in terms ofM for the follow-
ing QAM parameters for k = even and odd.

a. The average signal power.

b. The peak-to-average signal power ratio.

7. Rewrite (6.42) in terms of the complementary error func-
tion erfc(x) and Eb/No.

8. Derive the expression for the symbol-error probability
for the APSK modulation shown in Figure 6.14. Also,
determine the average signal power and the peak-to-
average power ratio.

9. Determine the outer radius required to provide equal
Euclidian distances between all nearest neighbors
when the inner constellation in Figure 6.14 is
rotated 45 clockwise as shown. Derive the expres-
sion for the symbol-error probability for the modi-
fied APSK constellation. Also, determine the
resulting average signal power and the peak-to-
average power ratio. Do the 3-bit eight symbol
assignments result in gray coding?

10. The rectangular constellation for the 32-ary QAM wave-
form with k = 5 and symbol-error probability shown in
Figure 6.13, uses eight (8) I-axis and four (4) Q-axis
rest-points located symmetrically about the respective
axes with a normalized minimum Euclidian distance of
two between neighboring rest-points. Reconfigure the
32-ary constellation as shown below using the same
Euclidian distances and compute the average power
and the peak-to-average power ratio. Compute the same
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parameters for the 8 × 4 constellation and compare the
results.

I-axis

Q-axis

11. Derive the expressions for the symbol-error probabilities
for the following 8-ary QAM constellations when all
neighboring rest-points are separated by a normalized
minimum distance of two. Compute the corresponding
average power and the peak-to-average power ratio.
Associate the eight 3-bit symbols with the rest-points
to minimize the bit-errors when a symbol error occurs.
Is gray-coding possible?

Q-axis

I-axis I-axis

Q-axis

Square constellation

(a) (b)

Hexagon constellation

12. Show all of the steps in the determination of the noise
bandwidth of the duobinary spectrum expressed in (6.46).

13. Show all of the steps in the evaluation of the inverse
Fourier transform of the frequency function H( f )
in (6.46) and confirm the corresponding impulse
response.

14. Using the probability density distribution p(y) and the
random variable transformation y = |x|, where the ran-
dom variable x is characterized as the normal distribution
N(A, σx) and A is the level of bipolar NRZ-L data
sequence, show that the total-error probability (Pe) is
the same as expressed in (6.54).

Hint: Use the decision regions in Figure 6.25b and
modifications to the corresponding pdfs in (6.49)
based on the magnitude transformation. The final
result is obtained by evaluating the conditional prob-
abilities Pr(error|b = 0) and Pr(error|b = 1), performing
the integrations over the range 0 ≤ y ≤ A/2, and com-
puting Pe as the total-error probability.

15. With the same source data sequence used in Figure 6.23,
show the corresponding coded sequences Di, Bi, and ℓi

using the modified duobinary-modulated waveform.
Compare the results with each of the related introductory
comments in Section 6.6.1. The source sequence is: di =
(11101100111000011101001101001).

16. Using the same Bi sequence in Problem 15, determine the
sequence ℓi based on the 10 −1 modified duobinary filter
impulse response. As an alternative to determining the
bit-by-bit sequence ℓi, simply show the relationship
between ℓi and ℓi.

17. Evaluate the optimum samples of the received duobinary
(L = 3) response to the binary source data sequence:
1010101010101010. Repeat the evaluation for the mul-
tilevel duobinary response using L = 4, and 5. Discuss
how the received modulated sequence might be used
and sketch a functional implementation of your idea(s).

18. Determine the noise bandwidth of the modified duobin-
ary-modulated waveform.

19. Show all of the steps in the evaluation of the inverse
Fourier transform of the frequency function in (6.62)
and confirm the corresponding impulse response.

20. Using the multilevel filter function expressed in (6.66)
evaluate and plot (or sketch) the impulse response for
n = 4 − 7.
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7
M-ary CODED MODULATION

7.1 INTRODUCTION

M-ary coded waveforms operate in the power-limited region
of Shannon’s capacity curve shown in Figure 3.17 and obtain
coding gain through bandwidth expansion. These codes do
not provide forward error correction (FEC) as in convolu-
tional and block codes, that achieve bandwidth expansion
with the inclusion of parity-check bits, instead, the M-ary
code waveforms achieve their performance using brute-force
bandwidth expansion with code symbols of length M = 2k

corresponding to k information bits.* For k ≤ 10 bits, the
decoding complexity is manageable; however, for larger
values, the decoding complexity becomes unwieldy. The
complexity issue arises because a decision is made based
on the code symbol having the highest correlation among
all of the M possible hypotheses. For example, with k = 14
information bits per M-ary code symbol the decoding must
perform over 16,000 correlations before making an optimal
decision.

The binary coded M-ary sequences [1, 2] can be derived
from: maximal length sequences (M-sequences), pseudo-
random noise (PRN) generated sequences, and Hadamard
or Walsh sequences. If the code symbols are sufficiently
long, the correlation properties of the first two techniques
will result in nearly orthogonal performance; however,
the Hadamard [3] and Walsh [4, 5] sequences result in

orthogonal codes with the following properties. Two
continuous-time unit-energy waveforms si(t) and sj(t)
are orthogonal† if their normalized cross-correlation is
characterized as

Cij =

∞

−∞

si t s
∗
j t dt =

1 i= j

0 o w
orthogonal codes (7.1)

Similarly, in the case of the binary sequences Si and Sj
each with an even number ofM-bits and having identical bits
inM locations are orthogonal if the cross-correlation satisfies
the condition

Cij =
2M −M

M
=

1 i= j

0 o w
orthogonal codes (7.2)

The orthogonal condition in (7.2) requires that M =M 2.
The Gram-Schmidt [6] orthogonalization procedure gener-
ally results in non-binary sequences.

The Hadamard orthogonal codes are generated
recursively as

H2n =
Hn Hn

Hn Hn

(7.3)

*Referring to Figure 3.1, the source-coded symbols υi: i = 0, …, Q − 1, with
Q = k, are typically binary elements υi = {0,1}. Channel coding provides the
M-ary code symbols vj: j = 0,…,M − 1 of lengthM = 2kwith binary elements
vj = {0,1}.

†Orthogonal signals with equal unit energy are referred to as being
orthonormal.

Digital Communications with Emphasis on Data Modems: Theory, Analysis, Design, Simulation, Testing, and Applications,
First Edition. Richard W. Middlestead.
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where the subscript n = 2k: k > 1 is the order of the Hadamard
matrix. For unipolar binary data b = {0,1} the scalar H1 is
initialized to H1 = b and selecting H1 = 0, the second-order
Hadamard matrix H2 is

H2 =
0 0

0 1
(7.4)

where, in general,Hn = 1−Hn. Using the unipolar bit to bipo-
lar data translation* d = 1 − 2b results in d = {1,−1} with
Hn = −Hn. The data sequence in each row of Hn is referred
to as a Walsh sequence or code and the Hadamard matrices
form an orthogonal code set. For example, consider the order
n = 4 Hadamard matrix expressed in terms of the bipolar
data as

H4 =

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

(7.5)

The rows of H4 represent 4-ary orthogonal sequences that
are uniquely assigned to k = 2 source bits represented by 2k =
4-ary source symbols. In general, when k source bits are
assigned to a source symbol, the order of the Hadamard
matrix is n = 2k. Therefore, the n-th order Hadamard matrix
results in orthogonal binary codes (Walsh codes) of length
L = 2k. Randomly generated codes exhibit nearly orthogonal
performance with high probability as L ∞ ; whereas,
Walsh codes are strictly orthogonal for codes of all lengths
of 2k-bit code symbols.

The M-ary coded waveform modulation is characterized
in terms of a vector with bipolar binary elements given by

Xm
i = di Eδim (7.6)

where i = 0,…,M−1 and δim is the Kronecker delta function.
The coding is shown in Figure 7.1 for the commonly used
types of waveforms associated with M-ary coded signaling.
The underlying requirement of an optimal orthogonal data
decision in a noisy environment is that the noise-free corre-
lation function, or the related normalized correlation coeffi-
cient ρ, satisfies the conditions

ρ =
E Xm

i Xm
j

Xm
i Xm

j

=
1 i= j

0 o w
(7.7)

7.2 COHERENT DETECTION OF
ORTHOGONAL CODED WAVEFORMS

In this section, the symbol and bit-error performance is eval-
uated for the coherent detection of the M-ary coded wave-
forms operating in the additive white Gaussian noise
(AWGN) channel. The performance of the optimum decision
processing is evaluated in terms of the symbol-error probabil-
ity with the corresponding bit-error probability computed
based on the occurrence of random bit-errors in each block
of M code-bits. Using the procedures and notations devel-
oped in Section 3.2 and Appendix C, the symbol-error prob-
ability is expressed as

Pse m = 1−Pcs m

= 1−

ym

p y1,…,yM−1 ym p ym dym i m

= 1−

ym

M−1

i

p yi < ym ym p ym dym i m and independent

= 1−

ym

p ym
y ym

p y dy

M−1

dym i m and iid

(7.8)

In the last equality, the random variables yi are statistically
independent-identically-distributed (iid) random variables.

*The transformation between unipolar data bi = (0,1) and polar data di =
(1,−1) is expressed as di = 1 − 2bi; however, in some applications, this bit-
mapping convention may be specified as di = 2bi−1.
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FIGURE 7.1 M-ary coded modulation waveforms.
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Under these conditions, the joint probabilities for yi: i m are
expressed by the M − 1 products in the last equality of (7.8).
With orthogonal coding and zero-mean AWGN channel
noise, the random variables yi are expressed by the zero-mean
Gaussian pdf, however, the Gaussian random variable x,
defined as x = ym in the following expressions, with mean
value xm and noise variance σ2n is characterized as

p x =
1

2πσn
e− x−xm

2 2σ2n (7.9)

The mean value represents the noise-free peak level
xm =M corresponding to them-th correlator output associated
with the M-ary symbol identifying the estimate of the k
source data bits. Substituting these results into (7.8), the
expression for the symbol-error is evaluated as

Pse m = 1−
1

2πσ

∞

−∞

e− x−xm
2 2σ2

×
1

2πσ

∞

−x 2σ

e− y
2 2σ2 dy

M−1

dx

(7.10)

The bit-errors associated with each symbol are randomly
distributed and equally likely so that the bit-error probability
is given by the random-bit mapping conversion

Pbe =
2k−1

2k −1
Pse (7.11)

The symbol and bit-error performance results are plotted
in Figures 7.2 and 7.3 respectively as a function of the signal-
to-noise ratio measured in the bit bandwidth.

The coherent demodulation and detection of the M-ary
orthogonal waveform is shown in Figure 7.4. Code synchro-
nization and carrier frequency and phase acquisition are
established using a preamble and symbol time and carrier
phase tracking take place throughout the message reception.
The detection is based on a real signal at an intermediate fre-
quency (IF) filter output. The correlator or symbol integrator
interval is T = kTb and the correlator output samples represent
the matched filter outputs for the corresponding code symbol
estimates.

Figure 7.5 expands the symbol-error performance for neg-
ative signal-to-noise ratios and it is apparent that the perfor-
mance tends to be bounded by Shannon’s coding limit of
−1.59 dB; however, the diminishing improvement with
increasing k suggests that unrealistically large code lengths
are required. There is no known way to determine an opti-
mum code as M approaches infinity. However, Gallager [7]
discusses the coding theorem, which states that a randomly
selected code will, with high probability, be near optimum
and the bound on the error performance is proportional to
1/M, so, as M approaches infinity, the error probability
becomes zero. However, more practical solutions to
approaching Shannon’s coding limit are discussed in
Section 8.12.

7.3 NONCOHERENT DETECTION OF M-ary
ORTHOGONAL WAVEFORMS

The symbol and bit-error performance analysis of noncoher-
ently detected M-ary orthogonal coded waveforms is similar
to that used for the coherent detection analysis. The chief dif-
ference is that the decision variables are described by the
Ricean pdf

Signal-to-noise ratio (Eb/No) (dB)
0 2 4 6 8 10 12 14 16

Sy
m

bo
l-

er
ro

r 
pr

ob
ab

ili
ty

 (
P

se
)

1e–8

1e–7

1e–6

1e–5

1e–4

1e–3

1e–2

1e–1

1e+0

9
10

8
7

k

1

2

3

6 5
4

FIGURE 7.2 M-ary orthogonal symbol-error performance
(coherent detection).
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FIGURE 7.3 M-ary orthogonal bit-error performance with
random bit mapping (coherent detection).
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pR r A =
r

σ2n
e− r2 + A2 2σ2n Io

rA

σ2n
(7.12)

In the following analysis, the bit-error performance is
examined using a linear detector characterized by the trans-
formation y = r σn. In this case, a symbol decision is made
based on the largest of the M decision variables yi and with
increasing M there is a negligible performance difference
when using a square-law detector characterized by the trans-
formation y = r2 σ2n. That is, for sufficiently large values of
M, selecting the hypothesis corresponding to the largest of
M magnitudes is nearly identical to a decision based on
selecting the largest of M squared magnitudes.

For the linear detector analysis, the decision variable is
normalized as y = r σn and the signal amplitude is normalized

as a =A σn. Based on this transformation, the pdf for the lin-
ear detector is given by

pY y a = ye− y2 + a2 2Io ya (7.13)

The probability of a correct symbol decision is com-
puted as

Pcs =

∞

0

P y< yT 0 M−1pY yT a dyT (7.14)

where

P y< yT 0 =

yT

0

ye− y
2 2dy

= 1−e−y
2
T 2

(7.15)

Substituting this result in the expression for Pcs and
replacing yT with y gives

Pcs =

∞

0

1−e− y
2 2

M−1
ye− y2 + a2 2Io ya dy (7.16)

Applying the binomial theorem (see Section 1.14.2, No. 2)
to the term in the square brackets results in

Pcs =

∞

0

1−
M−1

m = 1

M−1

m
−1 m + 1e−my2 2 ye− y2 + a2 2Io ya dy

= 1−e− a
2 2

M−1

m= 1

M−1

m
−1 m+ 1

∞

0

ye− m+ 1 y2 2Io ya dy

(7.17)

ˆ
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nT
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s(t) = srm(t)
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i = 1,...,k
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∫
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s(t)sr1(t)dt
0

∫
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FIGURE 7.4 M-ary orthogonal waveform coherent detection with ideal code synchronization.
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The integral in (7.17) can be expressed in the form of the
Ricean distribution by substituting y = λ m + 1, yielding

∞

0

ye− m+ 1 y2 2Io ya dy=
1

m+ 1

∞

0

λe− λ
2 2Io

λa

m+ 1
dλ

(7.18)

Letting b= a m+ 1 and multiplying by e− b
2 2eb

2 2

results in the integral

∞

0

ye− m + 1 y2 2Io ya dy=
ea

2 2 m+ 1

m + 1

∞

0

λe− λ2 + b2 2Io λb dλ

=
ea

2 2 m+ 1

m + 1
(7.19)

The integral on the rhs of (7.19) is the Ricean
distribution integrated over all λ ≥ 0 and is equal to 1. There-
fore, upon substituting (7.19) into (7.17) and
recognizing that the signal-to-noise ratio in the symbol
bandwidth is γ = a2 2 =A2 2σ2n, the symbol-error is evalu-
ated as Pse = 1 − Pcs with the result

Pse =
M−1

m = 0

M−1

m

−1 m

m+ 1
e−γm m+ 1 (7.20)

With random bit mapping, the bit-error performance is
evaluated as

Pbe =
2k−1

2k −1

M−1

m = 1

M−1

m

−1 m+ 1

m + 1
e−γm m+ 1 (7.21)

where k = log2(M) is the number of source bits-per-symbol.
The signal-to-noise ratio in the bandwidth of the source
bits is related to that in the symbol bandwidth as
γ
b
=Eb No = γ k. For binary modulation k = 1, M = 2, and

(7.21) reduces to

Pbe =
1
2
e−γ 2 binary case (7.22)

where, in this case, γ = γ
b
=Eb No.

Evaluation of the symbol-error probability using (7.20) is
impractical for values of M > 64 because of numerical
round-off errors associated with the large binomial coeffi-
cients. Under this condition numerical integration of the

correct-symbol probability given by (7.16) is used and the
symbol error is computed as Pse = 1 − Pcs. The numerical
integration is performed using an integration increment of
Δy = σ 100 where σ = 1 is the standard deviation of the nor-
malized Ricean distribution. The integration limits are
extended over the range {0,…, max(100σ,10a)} where
a = 2γ is the mean value of the normalized distribution.
Based on these evaluation conditions, the performance
results for the symbol and bit-error probabilities are plotted
in Figures 7.6 and 7.7 as a function of γb = γ k for various
values of k = log2(M).

Signal-to-noise ratio (Eb/No) (dB)
0 2 4 6 8 10 12 14 16

Sy
m

bo
l-

er
ro

r 
pr

ob
ab

ili
ty

 (
P

se
)

1e–8

1e–7

1e–6

1e–5

1e–4

1e–3

1e–2

1e–1

1e+0

k

1

2

3

6
5

7 4

8

10
9

20

FIGURE 7.6 M-ary orthogonal symbol-error performance
(noncoherent detection).
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The noncoherent detection of theM-ary orthogonal coded
waveform is shown in Figure 7.8. Code synchronization and
carrier frequency acquisition are established using a pream-
ble and symbol time and frequency tracking take place
throughout the message reception. Because of the noncoher-
ent detection processing it is not necessary to provide phase
tracking. The correlator or symbol integrator interval is T =
kTb and the output samples ym: m = 1, …, M represent the
magnitude of the optimum matched filter outputs for the cor-
responding code symbol.

Figure 7.9 compares the performance of coherent and non-
coherent detection for selected values of k. These results indi-
cate that the performance gains using coherent detection are
less significant as k is increased; however, the difference has
a weak dependence on k.

7.4 COHERENT DETECTION OF M-ary
BIORTHOGONAL WAVEFORMS

Biorthogonal M-ary coded waveforms are also referred to
as complementary orthogonal (CO) coded waveforms in
which M/2 orthogonal codes are associated with the trans-
mission and detection of a unique set of M-ary orthogonal
codes. The major distinction between biorthogonal and
orthogonal codes is that the demodulator correlator output
decision for biorthogonal codes is based on distinguishing
between ±M/2 hypotheses and for orthogonal codes
the decision is based on distinguishing between M
hypotheses.

Drawing upon the preceding Hadamard matrix discussion
with polar source data di = {1,−1}, the square matrix Hn is
partitioned as

Hn =
Gn

Gn

(7.23)

where Gn is a M/2 ×M rectangular matrix formed as
Gn = Hn 2 Hn 2 and for bipolar data Gn = −Gn. Using the
Hadamard matrix H4 expressed in (7.5) as an example, the
submatrices G4 and G4 are constructed as follows:

H4 =

1 1 1 1

1 −1 1 −1

−1 −1 −1 −1

−1 1 −1 1

; G4 =
1 1 1 1

1 −1 1 −1
;

G4 =
−1 −1 −1 −1

−1 1 −1 1

(7.24)
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ˆ
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FIGURE 7.8 M-ary orthogonal waveform noncoherent detection with ideal code synchronization.
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With biorthogonal coding, the 2k-ary source data symbols
are uniquely associated with the M = 2k-ary orthogonal
codes; however, only M/2 of the orthogonal codes corre-
sponds to the rows ofGnwith the remainingM/2 correspond-
ing to row of −Gn. The optimum demodulator decision
chooses the largest of the M/2 magnitudes of the optimally
sampled demodulator correlator outputs and then chooses
the correct received symbol based on the binary decision
or sign of the correlator output. A significant advantage in
using biorthogonal coding is that the number of demodulator
correlations is reduced by 2 compared to orthogonal coding.

The symbol-error probability is evaluated in a manner
similar to that leading to (7.9) with M replaced by M/2 and
the additional caveats that: a correct decision among the
M/2 correlation outputs is based on the decision variable
|xm| = xmax and the correct polarity decision is based on
the sign of xm. These conditions lead to the expression for
the symbol-error probability evaluated as follows:

Pse m = 1−
1

2πσn

∞

0

e− xi −xm
2 2σ2n

×
1

2πσn

xi 2σ

−xi 2σ

e−y
2
i 2σ2n dyi

M
2 −1

dxi

(7.25)

The expression for the symbol-error probability in
(7.25) can be simplified for the biorthogonal coding by
applying the following transformations. Define the first inte-
gral in (7.25) in terms of the new random variable
x= xi 2σn−xm 2σn with dxi = 2σndx and the integra-
tion limits −xm 2σn = − γs to ∞, where γs is the signal-
to-noise ratio in the symbol bandwidth. The second integral
in (7.25) involves the M/2 − 1 zero-mean iid random vari-
ables yi and is defined in terms of the new random variable
y= yi 2σn with dyi = 2σndy and the integration limits
−xi 2σn = −x− γs to xi 2σn = x+ γs. Upon applying
these transformations, (7.25) simplifies to

Pse m = 1−
1
π

∞

− γs

e− x
2 1

π

x+ γs

−x− γs

e− y
2
dy

M
2 −1

dx (7.26)

Equation (7.26) is in the form expressed by Lindsey and
Simon [8] who provide an upper bound on the symbol-error
probability expressed in terms of the complementary error
function as

Pse ≤
M−2
2

erfc
γ
b

2
+
1
2
erfc γ

b
(7.27)

Referring to Figure 7.12 the probability of making a bit-
error is the weighted sum of the probability of a sign error
and the symbol-error probability, that is,

Pbe =
1
2
Pr sign error +

1
2
Pse (7.28)

Equation (7.28) is evaluated in terms of the complemen-
tary error function as [8]

Pbe =
1

2 π

− γb

−∞

e− x
2
erfc x+ γb −1

M

2
−1
dx

+
M−2
4

erfc
γ
b

2
+
1
4
erfc γ

b

(7.29)

The following evaluation of the symbol-error performance
is based on the solution of (7.26) using numerical integration
and the results are plotted in Figure 7.10 for k = 1 through 6.
Figure 7.11 compares the performance of the biorthogonal
and orthogonal coded waveforms. For k = 1 and 2 bits per
symbol, the biorthogonal coded symbol-error performance
is identical to that of binary phase shift keying (BPSK) and
quadrature phase shift keying (QPSK) modulated waveforms
that are also based on the polarity of the matched filter or
symbol correlator outputs. This is contrasted with orthogonal
coding where, for example, with k = 2 one of four orthogonal
codes is transmitted and the correct decision is made based on
the greatest magnitude of the four correlator outputs. The per-
formance advantage of biorthogonal coding is 3 dB for k = 1
and only a few tenths of a dB for k = 2. The plot of orthogonal
coding with k = 3 is shown in Figure 7.11; however, the per-
formance is difficult to distinguish from that of the biortho-
gonal code performance and for k > 3 the difference is
negligible.
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FIGURE 7.10 Coherently detected M-ary biorthogonal symbol-
error performance (numerical integration).
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The demodulation and detection of the M-ary biorthogo-
nal waveform is shown in Figure 7.12. As indicated, ideal
code synchronization including carrier frequency and phase
tracking has been established, perhaps through the use of a
preamble. The implementation shown is based on a real sig-
nal, s(t), at the output of the IF filter; however, baseband
demodulation involving inphase and quadrature (I/Q) proces-
sing will yield identical results. The correlator or symbol
integrator interval is T = kTb and the output samples xm :
m = 1,…,M/2 represent the optimum matched filter outputs
corresponding to the respective reference coded sig-
nals srm(t).

To verify the theoretical symbol-error performance of the
M-ary biorthogonal coded waveform, a Monte Carlo simula-
tion is used and the results are shown in Figure 7.13 as the
circled data points with the solid curves corresponding to
the theoretical results fromFigure 7.10. The simulation results
are based on 1M symbols for each signal-to-noise ratio for
Pbe ≥ 10

−4 and 10M symbols for Pbe < 10−4. The simulated

results are in good agreement with the theoretical results.
The simulations represent k = 1 through 5 with 2k code-bits
per symbol. The curve for k = 1 corresponds to binary modu-
lation and the performance clearly stands out among the
Hadamard codes corresponding to k = 2 through 5. The Hada-
mard matrices corresponding to the values of k = 2 through 4
are listed in Table 7.1.

The bit-error performance of coherently detected M-ary
orthogonal modulation based on theMonte Carlo simulations
provides a good check of the theory and/or the simulation
program over the entire range of signal-to-noise ratios of
interest. Figure 7.14 shows the simulated bit-error perfor-
mance using the simulation processing described in
Figure 7.12 with the Gn and −Gn submatrices constructed
from Table 7.1. The triangular data points correspond to
the Monte Carlo simulated performance and the solid lines
connecting the triangles are simply linear interpolated plot
lines. A detailed comparison with the symbol-error perfor-
mance in Figure 7.13 reveals that the binary performance
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performance.
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FIGURE 7.12 M-ary biorthogonal waveform coherent detection with ideal code synchronization.
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FIGURE 7.13 Coherently detected M-ary biorthogonal symbol-
error performance comparison with Monte Carlo simulation.
Circled—Monte Carlo, solid—theory.
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is identical. For k > 1, a careful comparison of the results sup-
ports the use of the theoretical symbol-to-bit mapping as
expressed in (7.11) when gray coding is not used.

ACRONYMS

AWGN Additive white Gaussian noise
BPSK Binary phase shift keying
CO Complementary orthogonal (code)
FEC Forward error correction (code)
IF Intermediated frequency
I/Q Inphase and quadrature (channels or rails)
PRN Pseudo-random noise (sequences)
QPSK Quadrature phase shift keying

PROBLEMS

1. For the Hadamard matrix H3 using polar (±) binary data
and, defining the sequences Si as the row of H3, evaluate
the correlationsCi,j for the sequences Si and Sj for all com-
binations of i,j = 1, …, 4. Note that these sequences are
perfectly aligned so there are no correlation lags.

2. Show that the integral in (7.15) is evaluated as 1−e−yT 2.

3. Show that applying the binomial expansion to

1−e−y 2 M−1
in (7.16) results in the expression given

in (7.17).

4. By performing the variable substitutions following (7.17)
show that the integral in (7.17) is evaluated as in (7.19).
Show all of the details and explain the second equality
in (7.19).

5. Show that the symbol-error probability given by (7.26)
reduces to the bit-error probability of BPSK when
M = 2 corresponding to binary modulation.
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8
CODING FOR IMPROVED COMMUNICATIONS

8.1 INTRODUCTION

Before delving into the details of error detection and forward
error correction (FEC) techniques, it is useful to describe sev-
eral baseband coding techniques. In the following sections,
various forms of baseband pulse code modulation (PCM)
are discussed. PCM codes and data compression codes are
source coding techniques. Following the description of
PCM waveforms, a variety of important coding-related topics
are introduced: gray coding* in Section 8.3 and differential
coding in Section 8.4; pseudo-random noise (PRN) sequences
in Section 8.5; binary cyclic codes in Section 8.6; cyclic
redundancy check (CRC) codes in Section 8.7; data randomiz-
ing, or scrambling in Section 8.8; data interleaving in
Section 8.9. Following these topics, several forms of FEC
channel coding are discussed; Wagner coding and decoding
in Section 8.10; convolutional coding and Viterbi decoding
in Section 8.11; turbo codes (TCs), parallel concatenated
convolutional codes (CCCs) (PCCCs), serially CCCs
(SCCCs), double parallel CCCs (DPCCCs), and double
serially CCCs (DSCCCs) with reference to the related
hybrid CCCs (HCCCs), and self-concatenated codes (SCCs)
in Section 8.12† (the nonturbo codes are collectively
referred to as turbo-like codes); low-density parity-check
(LDPC) codes, product codes (PCs), and turbo product
codes (TPCs) are introduced in Section 8.13; and

Bose–Chaudhuri–Hocquenghem (BCH) codes, including
M-ary Reed–Solomon (RS) codes and RS Viterbi (RSV)
codes, are discussed in Section 8.14.

The subject of coding to improve the performance of com-
munication systems is broad and, in certain instances,
requires knowledge in specialized areas like matrix and Bool-
ean algebra and the theory of groups, rings, and fields. For
example, an understanding of polynomials in the Galois field
(GF) is crucial in the coding and decoding of both block and
cyclic codes. These disciplines will be engaged only to the
extent that they can be applied in a practical way to the coding
and decoding of the various techniques considered. Several
coding techniques are listed in Figure 8.1.

8.2 PULSE CODE MODULATION

Baseband signals are characterized as those signals with the
signal energy concentrated around zero frequency, although
the zero-frequency power spectral density, S(f = 0), may be
zero. This is contrasted to bandpass signals that are associated
with a carrier frequency around which the signal energy is
concentrated. The data from an information source is typi-
cally formatted as binary data with a mark bit representing
logic 1 and space bit representing logic 0 data. In cases invol-
ving analog information sources, the information is time-
sampled and amplitude-quantized and represented as binary
data. In either event, the resulting binary data can be repre-
sented as a form of PCM [2] that contains all of the source
information. The binary formatted data is typically denoted

*Gray and differential coding are introduced in Chapter 4.
†The term turbo code is used in recognition of the pioneering work of Berrou
et al. [1] and is constructed as a PCCC with two CCs.

Digital Communications with Emphasis on Data Modems: Theory, Analysis, Design, Simulation, Testing, and Applications,
First Edition. Richard W. Middlestead.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/digitalcommunications



as a series of pulses, or bits, of duration Tb with amplitude
levels of 1 and 0. A series of data defined in this manner is
referred to as unipolar non-return-to-zero (NRZ) formatted
data [3], and with the binary amplitude levels of 1 and −1
the data format is referred to as polar NRZ. These and other
baseband data formats are the subject of this section. There
are a number of PCM codes that have been devised to address
issues unique to certain applications; however, the most sig-
nificant characteristics of the PCM codes are the power
spectral density (PSD), bit synchronization properties, and
the bit-error performance. Other important characteristics
involve the error detection and correction (EDAC) capabil-
ities; however, the more powerful techniques in this regard
use redundancy through increased bandwidth or decision
space. A review of 25 baseband PCM codes and their proper-
ties is presented by Deffebach and Frost [4] and much of
this section is based on their work. Another treatment of this
subject is given by Stallings [5].

The PSD, with units of watt-seconds/Hz, of binary PCM
modulated random data sequences, with mark and space
probabilities given by p and 1 − p, respectively, is evaluated
by Bennett [6], Titsworth and Welch [7], and Lindsey and
Simon [8] as

S f =
p 1−p

Tb
Hm f +Hs f 2

+
1

T2
b

∞

n= −∞
pHm f − 1−p Hs f

2

δ f −
n

Tb

(8.1)

where Tb is the bit interval and Hm(f) and Hs(f) are the under-
lying spectrums of the mark and space bits. With unipolar
formatted data, the mark data spectrum is defined as
Hm f =H f and the space data spectrum is zero, that is,

RZNRZ DMBiϕ

Pulse code modulation
PCM

Duobinary PDM PPM

RepetitionGeometric Parity check CyclicWagner
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Turbo
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Reed-Miller Hamming GolayBurst 
correcting

Fire code
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Reed-
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Linear block
codes

Convolutional
codes

Fano*

Sequential Majority
logic

Viterbi
(CC)

Turbo
(PCCC)

SCCC

Stack* Trellis* Trellis (recursive)*

* Decoding technique

FIGURE 8.1 Channel coding techniques.

262 CODING FOR IMPROVED COMMUNICATIONS



Hs f = 0, and upon substituting these results into (8.1)
yields the unipolar PSD

S f =
p 1−p

Tb
H f 2

+
p2

T2
b

∞

n = −∞
H f

2

δ f −
n

Tb
unipolar format

(8.2)

With polar formatted data the space data spectrum is
defined as Hs f = −Hm f so the polar PSD is given by

S f =
4p 1−p

Tb
H f 2 +

1−2p 2

T2
b

∞

n= −∞
H f

2

δ f −
n

Tb

polar format

(8.3)

These results are applied in the followings sections to
evaluate the spectrums of various forms of unipolar and polar
formatted PCM waveforms. Houts and Green [9] compare
the spectral bandwidth utilization in terms of the percent of
total power in bandwidths of {0.5,1,2,3}Rb for a variety of
binary baseband coded waveform. In Section 8.2.5, the
PCM demodulator bit-error performance is examined.

8.2.1 NRZ Coded PCM

The designation NRZ denotes the binary format that charac-
terizes a mark bit as being one amplitude level and space bit
as another. When the space bit is represented by a zero level,
the format is called unipolarNRZ. In contrast, when the level
of the space bit is the negative of the mark bit level, the des-
ignation polar NRZ is used. The designation NRZ-L indi-
cates that the level of the binary format is changed
whenever the level of the source data changes. These two
PCM data formats are shown in Figure 8.2. The bipolar
NRZ-L format is a special tri-level code for which a space
source bit corresponds to a zero output level, while the level
corresponding to the mark source data is bipolar, alternating
between plus and minus levels.

The designation NRZ-M (NRZ-S) indicates that changes
in the formatted data occur when the source data is a mark
(space); otherwise, the coded level remains the same. The
unipolar NRZ-M and NRZ-S coded waveforms are depicted
in Figure 8.3. This baseband coding results in differentially
encoded data and is discussed in more detail in Section 8.4.

The advantage of differentially encoded data is that cor-
rect bit detection is maintained in the demodulator with a
180 error in the carrier phase as might occur in the channel
or the demodulator carrier tracking loops. The penalty for
using differential data coding is a degradation of the bit-error
performance with a 2 : 1 increase in the bit errors at high

signal-to-noise ratios. Because the source data is encoded
in the transitions of the PCM coded data, the absolute level
is not as important; however, polar NRZ data with binary
phase shift keying (BPSK)modulation results in the optimum
detection performance through an additive white Gaussian
noise (AWGN) channel.

The PSD of the unipolar NRZ level, mark, space NRZ-
L,-M,-S formatted data is evaluated using (8.2) with the
underlying spectrum characterized by the unit amplitude
pulse rect(t/Tb − 1/2) with the square of the spectrum magni-
tude expressed as
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FIGURE 8.2 Unipolar, polar, and bipolar NRZ-L formatted data.
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FIGURE 8.3 Unipolar NRZ-M,-S formatted data.
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H f 2 = T2
b

sin2 πfTb

πfTb
2 NRZ (8.4)

The sampled spectrum expressed by (8.4) results in zero
magnitude at f = n Tb for all n except n = 0, in which case,
the magnitude is T2

b . With random source data, corresponding
to p = 1/2, (8.2) becomes

S f =
Tb
4
sin2 π fTb

π fTb
2 +

1
4
δ f unipolar NRZ-L,-M,-S

(8.5)

The PSD for the polar NRZ coded waveform is evaluated
in a similar way using (8.3) and (8.4) and, assuming random
data with p = 1/2, the result is

S f =Tb
sin2 π fTb

π fTb
2 polar NRZ-L,-M,-S (8.6)

Therefore, the polar NRZ coded waveform has 6 dB more
energy in the underlying spectrum, and there is no zero-
frequency impulse.

The spectrum for the bipolar NRZ-L,-M,-S is evaluated by
Sunde [10] as

S f =
2p 1−p

Tb
1−cos πfTb H f 2 (8.7)

The PSD in (8.4) is based on the PCM coded data having
a constant amplitude over the entire bit interval, that is,
the there is no pulse shaping, and, assuming random
source data with p = 1/2, upon substituting |H(f)|2 using
(8.4) into (8.7) yields the PSD for bipolar NRZ coded
PCM expressed as

S f =
Tb
2

sin2 πfTb

πfTb
2 1−cos πfTb bipolarNRZ-L, -M,-S

(8.8)

Equations (8.5), (8.6), and (8.8) are normalized by Tb and
plotted in Figure 8.4 as the PSD for the NRZ coded PCM
waveforms. The spectrum of the bipolar NRZ code does
not have a direct current (DC) component so transmission
over lines that are not DC coupled is possible as, for example,
over long-distance lines that use repeater amplifiers.

8.2.2 Return-to-Zero Coded PCM

Another form of baseband coding is return-to-zero (RZ) cod-
ing that is characterized by the NRZ-L coding in Figure 8.2
with the exception that the bit interval is split, that is, the
coded pulse level is nonzero over the first Tb/2 data interval

and returns to zero over the remaining interval.* The RZ
coded PCMwaveforms are depicted in Figure 8.5. In the uni-
polar case, the space bit is always zero and the mark bit is
split. The polar case is similar; however, the space bit is split
with the opposite polarity of the mark bit. The polar RZ code
allows the bit timing to be established simply by full-wave
rectifying and narrowband filtering the received bit stream.
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*The term split-bit generally refers to one-half of the bit interval being non-
zero with the other half being zero or the negative of the nonzero level.
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In the bipolar case, the mark bit is split with alternating
polarities and the space bit is always zero. By alternating
the polarity of the mark bits, the bipolar RZ code provides
for one bit-error detection [11]. The bipolar RZ coded
PCM is used in the Bell Telephone T1-carrier system [12].

The PSD of the unipolar and polar RZ coded PCM wave-
forms are evaluated using (8.2) and (8.3) in a manner similar
to that used for the unipolar and polar NRZ code; however, in
these cases, the mark bit is split and characterized by the pulse
rect(2t/Tb − 1/2) with the underlying square of the spectrum
magnitude given by

H f 2 =
T2
b

4
sin2 πfTb 2

πfTb 2 2 RZ (8.9)

Substituting (8.9) into (8.2) and recognizing that the spec-
trum is zero for all n 0, the PSD of the unipolar RZ coded
waveform with random data is evaluated as

S f =
Tb
16

sin2 πfTb 2

π fTb 2 2 +
1
16

δ f unipolar RZ-L,-M,-S

(8.10)

In a similar manner, the polar RZ PSD is evaluated using
(8.3) with the result

S f =
Tb
4
sin2 π fTb 2

π fTb 2 2 polar RZ-L,-M,-S (8.11)

The PSD of the bipolar RZ coded PCMwaveform is char-
acterized by Sunde [10] as in (8.7), with N f 2 given by
(8.9) so that, with random data,

S f =
Tb
8
sin2 πfTb 2

πfTb 2 2 1−cos πfTb bipolar RZ

(8.12)

The PSD of the bipolar RZ coded PCM waveform is plot-
ted in Figure 8.6.

8.2.3 Biphase (Biϕ) or Manchester Coded PCM

Biphase (Biϕ), or Manchester, coded PCM is a commonly
used waveform because of the robust bit timing recovery
even without random data. For example, in an idle mode that
uses either mark or space hold data, the demodulator timing
can be maintained. The biphase-level, -mark, -space (Biϕ-
L,-M,-S) coded waveforms are depicted in Figure 8.7. For
the Biϕ-L code, the mark bit is split and the space bit is
the inverse of the mark bit. With the Biϕ-M code, a transition
occurs at the beginning of each source data bit and the mark
bit is split; however there is no change in the code-bit level

when a space source bit occurs. The Biϕ-S code is similar
to the Biϕ-M with the role of the mark and space bits
reversed.

The PSD of the biphase coded PCMwaveform, using ran-
dom data with p = 1/2, is evaluated by Batson [13] as

S f =
Tb
2π

sin4 πfTb 2

πfTb 2 2 Biϕ-L, -M,-S (8.13)

Equation (8.13) is normalized by Tb and plotted in
Figure 8.8.
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8.2.4 Delay Modulation or Miller Coded PCM

Delay modulation (DM), or Miller code, is a form of PCM
where, for DM-M coding, the code bit corresponding to each
mark source bit is split, that is, the level changes in middle of
each mark bit. The level of the code bit corresponding to a
space source bit is unchanged unless it is followed by another
space source bit in which case it is changed at the beginning of
the space source bit. TheDM-S coding reverses the roles of the
mark and space source bits, that is, the code bit corresponding
to each space source bit is split and the level of the code bit
corresponding to a mark source bit is unchanged unless it is
followed by another mark source bit in which case it is
changed at the beginning of the mark source bit. DM-M,-S
coding is shown in Figure 8.9 for the source data sequence

(1,0,0,1,1,0,1). To establish the correct phase of the bit timing
in the demodulator an alternating mark-space preamble must
be transmitted.

The PSD of the DM coded PCM waveform is evaluated
for random data by Hecht and Guida [14] as

S f =
Tb

2 πfTb
2cos πfTb

23−2cos πfTb −22cos 2πfTb

−12cos 3πfTb + 5cos 4πfTb + 12cos 5πfTb

+ 2cos 6πfTb −8cos 7πfTb + 2cos 8πfTb
(8.14)

Equation (8.14) is normalized by Tb and plotted
Figure 8.10.

8.2.5 Bit-Error Performance of PCM

The bit-error performance of phase modulated* (PM), PCM,
and (PCM/PM) coded waveforms [15] are expressed in terms
ofQ(x), the complement of the probability integral, where x is
a function of the signal-to-noise ratio γb =Eb No measured
in the bandwidth corresponding to the information bit rate
Rb. The approximate functional dependencies [16] of the
indicated PCM/PM coded waveforms are expressed in
(8.15) and are based on ideal demodulator bit timing. The
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*The term phase modulation as used here and in biphase modulation refers to
the polarity of the signal amplitude and not to carrier phase modulation as
used, for example, in BPSK modulation.
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approximations improve with increasing signal-to-noise ratio
and the bit-error results are shown in Figure 8.11.

Pbe Q 2γb NRZ-L

Pbe 2Q 2γb NRZ-M,-S; Biϕ-M,-S

Pbe Q γb RZ

Pbe 2Q γb 1−Q γb DM-M,-S

(8.15)

The performance of frequency modulated (FM) PCM
(PCM/FM) coded waveforms is dependent on the normalized
frequency deviation Δf/Rb, pre-detection filter bandwidth
Bif /Rb, and post-detection or video bandwidth Bv/Rb, where
Rb is the information bit rate. Based these parameters and the
pre-detection signal-to-noise ratio γb and constants k and k1,
the approximate bit-error probability is expressed [16] as

Pbe 2Q k
Rb

Bv

3 2 Δf
Rb

2

2γ
b

+
Δf Rb

2π
e−k1 Δf Rb γ

b

(8.16)

The parameters in (8.16) are dependent on the format of
the PCM/FM modulation, for example, NRZ-L,-M and
Biϕ-L, as indicated in Table 8.1. The signal-to-noise ratio,
γb =Eb No, is measured in a bandwidth corresponding to
the bit rate Rb.

The peak deviation, Δf, is the modulation frequency
deviation from the carrier frequency fc with +Δf usually
assigned to binary 1 (Mark) data and −Δf assigned to binary
0 (Space) data; the peak-to-peak deviation is 2Δf. Using a
five-pole, phase-equalized, Butterworth intermediate fre-
quency (IF) pre-detection filter, the optimum peak deviation

[17] for NRZ PCM/FM is Δf = 0 35Rb and for Biϕ PCM/
FM Δf = 0 7Rb. The pre-detection filter 3-dB bandwidth
[18, 19] is denoted as Bif with the condition Bif /Rb ≥ 1.
The range of the normalized video bandwidth is 0.5 ≤ Bv/Rb ≤
1; however, the recommended range is 0.7 ≤ Bv/Rb ≤ 1. The
best values of these parameters are selected by examining
the bit-error performance of hardware tests or Monte Carlo
computer simulations. Typical parameters sets are shown
in Table 8.1 [20] for the indicated PCM/FM coded wave-
forms and the approximate bit-error results are shown in
Figure 8.12 [21, 22]. The bit-error performance results apply
to bit-by-bit detection corresponding to a filter matched to the
bit duration. Performance improvements can be achieved
using a maximum-likelihood detector spanning multiple bits
in the form of a decoding trellis [23, 24].

A supportive test, used to establish best parameter values,
is the evaluation of the PSD of the modulated waveform. An
analytical formulation of the PSD of the NRZ PCM/FM
modulated waveform is expressed as [25]

S
u

Rb
= 4

Bsa

Rb

D

π D2−X2

2 cos πD −cos πX 2

1−2cos πD cos πX + cos πD

(8.17)

The parameters in (8.17) are defined in Table 8.2 and the
spectrums are plotted in Figure 8.13 for peak deviations
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TABLE 8.1 Typical Parameter Sets for PCM/FM Coded
Waveforms

PCM/FM k k1 Δf/Rb Bv/Rb Bif /Rb

NRZ-L 2.31 1 0.35 1/2 1
NRZ-M,-S 2.22 1 0.35 1/2 1
Biϕ-La 1.89 1/4 0.65 1 2

aManchester code.
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FIGURE 8.12 Approximate bit-error performance of PCM/FM
coded waveforms.
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Δf/Rb = 0.25, 0.35, and 0.45. This analytical expression does
not include the influence of the pre-detection filter. The radio
frequency (RF) bandwidth is defined as the occupied band-
width corresponding to 99% spectral containment and the
objective is to select a set of parameters that minimize the
bit-error performance and provide an acceptably low

occupied bandwidth [26–29]. Spectral masks are discussed
in Section 4.4.1 and examples of spectral containment for
various modulations are given in Section 4.4.3 and following.
Section 5.6 discusses binary FSK (BFSK) modulation with
an emphasis on the PSD using various modulation indices.

8.3 GRAY CODING

The performance benefits of gray coding is demonstrated in
Section 4.2 where it is stated that the conversion from sym-
bol-error to bit-error probability is expressed by the
approximation

Pbe≈
Pse

k
(8.18)

where k is the number of bits mapped into a single symbol.
On the other hand, when the source bits are randomly

TABLE 8.2 NRZ PCM/FM PSD Parameters Used in
Equation (8.17)

Normalized
Parameter Description

S(u) Power spectral density w/r carrier powera

Bsa/Rb
b Spectrum analyzer resolution = 0.003 for

Q 0.99 (used); =0.03 for Q 0.9
D = 2Δf/Rb Peak-to-peak deviation
X = 2u/Rb Frequency deviation from carrier u = f − fcHz

aExpressed in decibels, the dimension is dBc.
bQ is related to narrowband spectral peaking when D integer value.
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FIGURE 8.13 NRZ PCM/FM PSD sensitivity to peak deviation.
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assigned to a symbol interval, that is, when gray coding is not
used, the conversion is bounded by

Pbe ≤
2k−1

2k −1
Pse (8.19)

The bit-error performance for these two symbol-to-bit-
error mapping techniques is shown in Figure 4.5 for multi-
phase shift keying (MPSK) modulated waveforms.

The function of gray coding is to minimize the number of
bit errors in the process of converting from detected symbols
to receive bits. For PSKmodulation, gray coding ensures that
adjacent symbols will differ in only one bit position. For
example, consider the 8PSK modulated signal mapped into
the two possible phase constellations shown in Figure 8.14.

The most probable error condition occurs when the
detected symbol is adjacent to the correctly transmitted sym-
bol. For example, referring to Figure 8.14, if the correct
symbol is (000), then the most likely error conditions are
the detection of symbols (001) and (111) resulting, on aver-
age, in two bit errors. On the other hand, the Gray coded data
results in symbol errors (001) and (100) with an average of
only one bit error. In general, a k-tuple of source bits
bk−1,bk−2,…,b0 results in the Gray coded k-tuple
bk−1,bk−2,…,b0 established using the encoding rule:

bn = bn bn+ 1 n= 0,…,k−2 with bk−1 = bk−1; gray coding

(8.20)

where denotes the exclusive-or operation and b0 is consid-
ered to be the least significant bit (LSB).

The modulation of gray coded quadrature PSK (QPSK)
unipolar binary data b :{1,0} is accomplished in a relatively
straightforward manner by translating to bi-polar data
d:{−1,1} as di = 1−2bi: i = 0, 1 as illustrated by the QPSK
phase constellation in Figure 8.15. This mapping results in
detected bipolar data estimates corresponding to the sign of

the quadrature decisions {x,y} such that b: d1,d0 where

d0 = sign y and d1 = sign x . The gray decoded received

bit estimates are determined as b i = 1−di 2 and the final
step is the decoding of the gray coded received bit estimates.
The decoding of a unipolar k-tuple of Gray coded bits is
accomplished using the following rule:

bn = b n bn+ 1 n= k−2,…,0 with bk−1 = b k−1; gray decoding

(8.21)

8.4 DIFFERENTIAL CODING

The need for differential encoding arises to combat cata-
strophic error propagation resulting from inadvertent
initialization or subsequent false-lock conditions in the
demodulator acquisition or phase tracking process. Although
an initial phaselock error can be overcome by using a known
preamble, subsequent phase slips, caused by channel noise or
phase hits are effectively overcome by using differential
encoding. Without differential encoding a phase hit, causing
a false-lock condition to occur, will result in a continual
stream of data errors until the phase error is detected and cor-
rected. For example, with MPSK modulation, if the receiver
phaselock loop were to settle on a conditionally stable track
point π radians out of phase, then all of the received bits
will be in error—referred to as a catastrophic error condition.
Differential encoding and decoding avoids catastrophic error
events and is implemented in the modulator as

Di = bi•Di−1 differential encoding (8.22)

and, in the demodulator, as

bi =Di• Di−1 differential decoding (8.23)

where • represents the differential encoding operator and • is
the inverse operator. For binary data, the • and • operators
are represented by the exclusive-or operation, denoted as .

Consider the simple case of differentially encoded BPSK
(DEBPSK)* to prevent catastrophic errors. The encoding,
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FIGURE 8.14 Mapping of source bits to 8PSK phase
constellation.
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FIGURE 8.15 Quadrature phase constellation using gray coding.

*The prefix DE is used to denote differentially encoded data modulation and
is contrasted to the prefix DC that is used to denote differentially coherent
symbol phase modulation.
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using the exclusive-or operation, is shown in Figure 8.16 and
an example of the received data sequence, with a received
error forced at bit i = 6, is shown in Table 8.3. The phase error
is assumed to result from a 180 phase-step in the carrier fre-
quency caused by the channel or a phase-slip in the demod-
ulator phaselock loop. This example shows that instead of
continuing to output inverted data following the phase-step,
a single error occurs because of the differential encoding.

In Table 8.3, the encoder and decoder are identically initi-
alized. In Problem 3, the error events are examined under two
cases: for a single received bit error in Di, that is, the phase-
lock loop tracking continues uninterrupted.

As a second example, consider differentially encoded
QPSK (DEQPSK) with input data bi = Ii, Qi where Ii
and Qi are the inphase and quadrature bit assignments,
respectively. The objective is to encode the data so that
receiver phase errors of π and ±π/2 will not result in a cata-
strophic error condition. The encoding and decoding func-
tions shown in Figure 8.17 provide the correct received
data for a fixed unknown phase of 0 or π radians provided
that unique I and Q symbol synchronization sequences pre-
cede the data symbols. Although the differential decoder is
self-synchronizing, without the correct initialization,* the
first received symbol will be in error and this error is
absorbed by the synchronization symbol. In this case, there
are two, phase-dependent, correct differential decoder initial-
ization symbols, and because the phase is unknown the cor-
rect initialization symbol is unknown.

To accommodate unknown phases of nπ/2: n = 0, …, 3,
caused by a channel phase hit or a false-lock condition in
the demodulator, the differential encoding and decoding

algorithms in (8.24) and (8.25) provide the correct received
data and are self-synchronizing. As in the preceding example,
a synchronization symbol is required to absorb the error in the
first received symbol because of the unknown correct initial-
ization state; in this case, there are four possible initialization
states.

Ii ,Qi =
Ii Ii−1 , Qi Qi−1 Ii Qi = 0

Ii Qi−1 , Qi Ii−1 Ii Qi = 1
encoding

(8.24)

Ii,Qi =
Q

i
Qi−1 , Ii Ii−1 Ii Qi = 0

Ii Ii−1 , Qi Qi−1 Ii Qi = 1
decoding

(8.25)

The decoding algorithm follows logically from the encod-
ing process and is best seen by examining all of the discrete
combinations as shown in Table 8.4. For example, when the
data is the same in each channel, that is, Ii Qi = 0, the phase
error affects each channel identically and differential encod-
ing of the I andQ channels individually is required; this is the
situation depicted in Figure 8.17. However, when the data is
different on each channel, that is, Ii Qi = 1, the I and Q
channels appear to be interchanged so differential encoding
across the I and Q channels is required.

The simulated bit-error performance of differentially
encoded BPSK and QPSK are shown in Figure 8.18. These
results are obtained using Monte Carlo simulations involving
100 Kbits for signal-to-noise ratios ≤6 dB: 1,000 Kbits for
6 dB < signal-to-noise ratios <10 dB, and 10,000 Kbits for
signal-to-noise ratios ≥10 dB. The results are essentially the
same for both modulations because gray coding is used with
the QPSK modulation ensuring that one bit error occurs for
each of the most probable symbol-error conditions.

8.5 PSEUDO-RANDOM NOISE SEQUENCES

The subject of PRN† sequences [30, 31] is an important topic
in applications involving ranging, FEC coding, information
and transmission security, anti-jam, and code division

Dibi
bi
ˆD̂i–1D̂i

Di–1

Channel 
BPSK

modulator  
BPSK

demodulator

Tb

Tb

FIGURE 8.16 Differential encoding for DEBPSK modulation.

TABLE 8.3 Transmitted Data Sequence Demonstrating
DEBPSK

i 0 1 2 3 4 5 6 7 8 9 10 11 …

di -- 0 1 0 0 1 1 0 1 0 1 0 …

Di 0 0 1 1 1 0 1 1 0 0 1 1 …

π radian error at i = 6
Di 0 0 1 1 1 0 0 0 1 1 0 0 …

di -- 0 1 0 0 1 0 0 1 0 1 0 …

Single bit-error at i = 6

*The unknown phase can be resolved using an appropriate message preamble
and knowledge of the differential encoder initialization state. †These sequences are sometimes referred to as pseudo-noise (PN) sequences.
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multiple-access (CDMA) communications. Furthermore,
PRN sequences fill an important role in the generation of
acquisition preambles for the determination of signal pres-
ence, frequency, and symbol timing for data demodulation.

The noise-like characteristics of binary PRN sequences
exhibit random properties similar to that generated by the
tossing of a coin with the binary outcomes: heads and tails.
In this example, the random properties for a long sequence
of j events are characterized as having a correlation response
ci characterized by the delta function response ci = δ(j − i).
A random sequence also exhibits unique run length proper-
ties; in that, defining a run of length ℓ as having ℓ contiguous
events with identical outcomes, a run of length ℓ occurs with
a probability of occurrence approaching Pr(ℓ) = 2−ℓ as the
number of trials increases. This property also indicates that
the probability of the number of heads or tails (ℓ = 1) in the
tossing of a coin approaches 1/2 as the number of trials
increases. Binary PRN sequences, generated using a linear
feedback shift register [32] (LFSR) with module-2 feedback
from selected registers, exhibit these noise-like characteris-
tics. A useful property of LFSR generators is that the noise
characteristics can be repeated simply by reinitializing the
generator.

Sequences can be generated as polynomials over a GFwith
properties analogous to those of integers. Binary sequences
contained in the GF(2)* are particularly useful because of their
simplicity and predictable pseudo-random properties. The
maximal linear PRN sequences, referred to as m-sequences,
generate the longest possible codes for a given number of
m shift registers. The code length† is Lm = 2m − 1 and repeats
with a repetition time TL = Lm/fck where fck is the shift register
clock frequency. The linear characteristic of the LFSR imple-
mentation results because of the property: for a given set of
initial conditions SIj with outcomes SOj: j = 1, 2 then, for
the initial conditions SI = SI1 SI2, the output sequence is
SO = SO1 SO2 where denotes modulo-2 addition.

The LFSR PRN generators are characterized by m-degree
polynomials in x expressed as

g x = gmx
m + gm−1x

m−1 + + g1x + g0 (8.26)

TABLE 8.4 Discrete Coding and Decoding of DEQPSK for
Zero Channel Phase Shift

IiQi Ii−1Qi−1 IiQi I iQ i I i−1Q i−1 IiQi

00 00 00 00 00 00
00 01 01 01 01 00
00 10 10 10 10 00
00 11 11 11 11 00
01 00 01 01 00 01
01 01 11 11 01 01
01 10 00 00 10 01
01 11 10 10 11 01
10 00 10 10 00 10
10 01 00 00 01 10
10 10 11 11 10 10
10 11 01 01 11 10
11 00 11 11 00 11
11 01 10 10 01 11
11 10 01 01 10 11
11 11 00 00 11 11

D̂i–1Di
ˆ

bi
ˆ

Di–1

Di
bi Channel 

QPSK
modulator

QPSK
demodulator

2Tb

2Tb

FIGURE 8.17 Differential encoding for DEQPSK modulation.
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FIGURE 8.18 Performance of differentially encoded BPSK
and QPSK.

*The elements of the binary field are represented by α = {0,1} that conform to
the rules of binary multiplication and addition; nonbinary fields GF(2m) are
discussed later in this chapter in the context of Reed-Solomon codes.
†There are 2m possible binary sequences; however, the all-zero sequence is
not included because the LFSR will remain in the zero state indefinitely. In
some applications, a test for the zero state is performed and logic is provided
to reset the registers.
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with gm = g0 = 1. Some useful properties [33] of g(x) are as
follows:

• A generator polynomial g(x) of degree m that is not
divisible by any polynomial of degree less than m but
if not divisible by a polynomial of any degree greater
than 0, then g(x) is an irreducible polynomial.

• A polynomial g(x) of degree m is primitive if it gener-
ates all 2m distinct elements; a field with 2m distinct ele-
ments is called a GF(2m) field.

• An element, or root, α of g(x) in the GF(2m) is primitive
if all powers αj: j 0 generates all nonzero elements of
the field.

• An irreducible polynomial is primitive if g(α) = 0 where
α is a primitive element.

• Polynomials that are both irreducible and primitive
result in m-sequences.

For eachm, there exits at least one primitive polynomial of
degree m. Irreducible and primitive polynomials are difficult
to determine; however, Peterson and Weldon [34] have tabu-
lated extensive list* of irreducible polynomials over GF(2),
that is, with binary coefficients, for degrees m ≤ 34; polyno-
mials that are also primitive are identified.

Them-sequences are generated based on the specific LFSR
feedback connections; otherwise, non-maximal sequences will
result with periods less than TL. A feedback connection that
does not result in an m-sequence can result in one of several
possible non-maximal sequences of varying lengths <Lm
depending on the initial LFSR settings. For a sequence of
length Lm = 2m − 1 that conforms to an irreducible primitive
polynomial, the maximum number m-sequences that can be
generated is determined as [35, 36]

Nm =
φ Lm
m

(8.27)

where φ(Lm) Euler’s phi function evaluated as

φ Lm =
Lm

i

pi−1
pi

pi is a prime factor of Lm

Lm−1 pi is a prime number

(8.28)

Table 8.5 lists the number of m-sequences for degrees
m = 2 through 14.

For a given order, m, the irreducible primitive generator
polynomial expressed by (8.26) is established by converting
the octal notation to the equivalent binary notation and then
associating the taps with the nonzero binary coefficients cor-
responding (bm = 1, bm−1,…, b1, b0 = 1). The LFSR feedback
taps are the nonzero taps for the coefficient orders less thanm.

For example, from Table 8.6, the octal notation for the
irreducible primitive generator polynomial corresponding
to m = 3 is (13)o and the binary notation is (1011)b, so the
generator polynomial is g x = x2 + x + 1. The LFSR is imple-
mented with descending coefficient order from left to right
as shown in Figure 8.19. The generator clock frequency fck
is also shown in the figure and the shift register delays

TABLE 8.5 The Number of m-Sequences and Polynomial
Representationa

Degree m Lm Nm Prime Factors of Lm

2 3 1 Prime
3 7 2 Prime
4 15 2 3∗5
5 31 6 Prime
6 63 6 3∗3∗7
7 127 18 Prime
8 255 16 3∗5∗17
9 511 48 7∗73
10 1,023 60 3∗11∗31
11 2,047 176 23∗89
12 4,095 144 3∗3∗5∗7∗13
13 8,191 630 Prime
14 16,383 756 3∗43∗127
aRistenbatt [35]. Reproduced by permission of John Wiley & Sons, Inc.

TABLE 8.6 Partial List of Binary Irreducible Primitive
Polynomials of Degree ≤ 21 with the Minimum Number of
Feedback Connectionsa

m g(x)b m g(x)b

2 7 12 10123
3 13 13 20033
4 23 14 42103
5 45 15 100003
6 103 16 210013
7 211 17 400011
8 435 18 1000201
9 1021 19 2000047
10 2011 20 4000011
11 4005 21 10000005

aPeterson and Weldon [34]. Appendix C, Table C.2, © 1961 Massachusetts
Institute of Technology. Reproduced by permission of The MIT Press.
bMinimum polynomial with root α in octal notation.

b3 b2 b1 PN
sequence  

b0

Clock ( fck)  

z–1 z–1 z–1

FIGURE 8.19 Third-order LFSR implementation of PN sequence
generator g(x) = x3 + x + 1.

*The tables were first published by Peterson, Error Correction Codes, MIT
Press, 1961, and the updated version of Peterson’s tables appear in the pub-
lication by Peterson and Weldon.
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correspond to the clock interval τ = 1/fck, which is denoted as
the unit sample delay z−1. The generator must be initialized
by the selection of the parameters (b2, b1, b0) recognizing
that, for this example, b3 = b1 b2 where is the exclu-
sive-or operation. The initialization parameters characterize
the state of the encoder, generally defined as (bn−1, bn−2,
…, b0). If g(x) is irreducible and primitive, as in this example,
the selection of the initial conditions simply results in one of
the L = 2n − 1 cyclic shifts of the output PN sequence.* If,
however, g(x) is not primitive then mutually exclusive subse-
quences with length <Lm are generated and, taken collec-
tively, the subsets contain all of the 2m − 1 states of the
encoder (see Problem 5).

8.6 BINARY CYCLIC CODES

Cyclic codes are a subset of linear codes that form the basis
for a large variety of codes for detecting and correcting iso-
lated single errors, multiple independent errors, and the more
general situation involving bursts of errors. Cyclic code enco-
ders are implemented using shift registers with appropriate
feedback connections that are easily implemented and oper-
ate efficiently at high data rates. The following discussion of
cyclic codes focuses on the encoding of systematic cyclic
codes that are used for error checking of demodulated
received data prior to passing the message data to the user.
If errors are detected in the received data, the message may
be blocked, sent to the user marked as containing errors, or
scheduled for retransmission using an automatic repeat
request (ARQ) protocol. In these applications, the cyclic code
is referred to as a CRC code.

A systematic code is characterized as containing the
uncoded message data followed by the parity-check informa-
tion as depicted in Figure 8.20. In the following description,
the parity and message data, ri and mj, are based on the field
elements in GF(2) and correspond to the binary bits {1,0}.
The notation involving the parameter x denotes the polyno-
mial representation of the cyclic-code block of n transmitted
bits, k information bits, and r = n − k parity bits. The informa-
tion and parity polynomials are expressed as

m x =m0 +m1x + +mk−1x
k−1 (8.29)

and

r x = r0 + r1x+ + rk−1x
k−1 (8.30)

so the cyclic coded message block, or code polynomial, in
Figure 8.20 is constructed as

v x = r x + xn−km x (8.31)

The structure of the (n,k) cyclic code is based on the fol-
lowing properties; the proof of the last three properties are
given by Lin [37].

• An (n,k) linear code, described by the code polynomial

v x = v0 + v1x + + vn−1x
n−1 (8.32)

is a cyclic code if every polynomial, described by shift-
ing each element by i = 1,…, n − 1 places, is also a code
polynomial of the (n,k) linear code. For example, the
polynomial

vi x = xiv x

= vn− i + vn− i + 1x + + vn−1x
i−1 + v0x

i + v1x
i + 1 + + vn− i−1x

n−1

(8.33)

is also a code polynomial of the (n,k) linear code.

• For an (n,k) cyclic code, there exists a unique polyno-
mial g(x) of degree n − k expressed as

g x = g0 + g1x+ + gn−k−1x
n−k−1 + gn−kx

n−k (8.34)

with g0, gn−k 0. Furthermore, every code polynomial
v(x) is a multiple of g(x) and every polynomial of
degree < = n − 1, which is a multiple of g(x) is a code
polynomial.

• The generator polynomial of a (n,k) cyclic code v(x) is a
factor of xn + 1,† that is,

xn + 1= g x v x (8.35)

• If g(x) is a polynomial of degree n − k and is a factor of
xn + 1, then g(x) is the generator polynomial of the (n,k)
cyclic code.

The generator polynomials are derived from irreducible
polynomials that are difficult to determine; however, as men-
tioned previously, the tables‡ of Peterson and Weldon [38]
provide a list of all irreducible polynomials over GF(2) of
degree ≤35.

Parity check bits 

xn–1xn–k+1xn–k–1 xn–k x 1

m0 mk–1m1r0 rr–1r1

Message bits 

…

… …

…

FIGURE 8.20 Coded message block.

*This feature is used in the process of synchronizing a locally generated
receiver PN sequence to a received PN sequence based on the known system
epic time and the modulator PN initialization conditions.

†xn + 1 is the binary equivalent of xn − 1.
‡These tables also identify irreducible polynomials that are primitive. Irre-
ducible primitive polynomials generate maximal length or m-sequences.
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The following description of constructing systematic
cyclic codes from the message polynomial follows the devel-
opment by Lin [39]. However, for simplicity and clarity, the
construction is described using the (5,3) single-error correct-
ing code with generator polynomial given in octal form as
(7)o; the binary equivalent (111)b corresponds to the
polynomial

g x = x2 + x + 1 (8.36)

In (8.36), the LSB is the rightmost bit.* The following
example evaluates the cyclic code polynomial for the
three-bit message m4 = 001 using the (5,3) code. In this
case, the message polynomial is m x = 0+ 0x + 1x2 = x2

and the corresponding code polynomial is obtained by divid-
ing xn−km x by the generator polynomial, that is, in this
example, dividing x2m x = x4 by g x = x2 + x+ 1 as follows:

x2 + x

x2 + x + 1 x4

x4 + x3 + x2

x3 + x2

x3 + x2 + x

x

(8.37)

The remainder in (8.37) is r(x) = x and, using (8.31), the
code polynomial for the message m4 is evaluated as

v4 x = x + x4 (8.38)

Therefore, the message bits (001) map into the cyclic code
polynomial bits (01001). This result is shown in Table 8.7
with the other seven cyclic coded message blocks. The
encoder for the example (5,3) cyclic code corresponding to
Table 8.7 is shown in Figure 8.21 and the generalized r =
n − k order encoder, generated using (8.34), is shown in
Figure 8.22. As the uncoded message bits pass by the
encoder, the bits are applied to the taped delay line according
to the generator coefficients, 1 or 0 in the binary case. When
the last message bit enters the generator, the switches, indi-
cated by the dashed lines, are changed and the parity infor-
mation contained in the registers is appended to the
information bits forming the coded message block.† These
concepts are applied to the generation and performance eval-
uation of CRC codes discussed in Section 8.7.

8.7 CYCLIC REDUNDANCY CHECK CODES

The CRC code of degree r is generated by multiplying an
irreducible primitive polynomial, p(x), by (x + 1) resulting
in the CRC code generator polynomial

g x = x+ 1 p x CRC code generator (8.39)

The polynomial p(x), with degree r − 1, corresponds to the
maximal length, or m-sequence, of 2r−1 bits containing 2r−2

ones and 2r−2 − 1 zeros. Therefore, the underlying structure
of the (n,k) CRC code is the r − 1 degree m-sequence.
CRC code parity bits are appended to the message informa-
tion bits to form a systematic code; however, the purpose is
to detect errors in the received (n,k) cyclic code for a variety
of message lengths <k, referred to a shortened codes. The
performance measure of CRC codes is the undetected error
probability (Pue). The theoretical computation of Pue requires
the Hamming weight distribution over the n-bits correspond-
ing to the 2k code words. For large values of n and k, eval-
uation of the Hamming weight distribution is impractical;
however, using MacWilliams’ theorem [40, 41], the dual
code (n,n − k) = (n,r) requires evaluation of the weight distri-
bution (Bi) over the n-bits corresponding to 2

r code words. In
this case, the undetected error probability, over the binary
symmetric channel (BSC), with bit-error probability p, is
expressed as

TABLE 8.7 Code Polynomial Coefficients Corresponding to
the (5,3) Cyclic Code

i mi

vi

ri mi

0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 1 0 0
2 0 1 0 1 0 0 1 0
3 1 1 0 0 1 1 1 0
4 0 0 1 0 1 0 0 1
5 1 0 1 1 0 1 0 1
6 0 1 1 1 1 0 1 1
7 1 1 1 0 0 1 1 1

Parity
r1

Logic
zero  

Source
data  

To channel coding
or modulator  

r0

z–1 z–1

FIGURE 8.21 Binary (5,3) second-order encoder.

*Lin uses the notation in (8.34) or, for the example (5,3) code, g(x) = 1 + x + x2

with theLSBbeing the leftmost bit. For compatibilitywith legacy equipment or
a systemspecification, caremustbeused in theproperordering and transmission
of the bits.
†The tapped delay line implementations in Figures 8.21 and 8.20 perform
polynomial division providing the remainder of r = n − k parity bits.
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Pue = 2
−r

n

i= 0

Bi 1−2p
i− 1−p n p ≤ 0 5 (8.40)

The theoretical average undetected error probability of a
binary (n,k) code, with equally probable messages, is
expressed as [42]

Pue = 2
−r 1− 1−p k p < 1 0 (8.41)

and is plotted in Figure 8.23 for r = 16, 24, and 32 order
CRC code generators and shortened messages corresponding
to k = 24 and 256 bits.

From (8.41), the average value of Pue at p = 0.5 is evalu-
ated as

Pue p = 0 5 = 2−r −2−k 2−r k r (8.42)

Equation (8.40) is used by Fujiwara et al. [43] to
evaluate the performance of two International Tele-
communication Union Telecommunication Standard

(ITU-T X.25)* CRC codes, referred to as the frame check
sequence (FCS) codes. Their evaluations provide detailed
plots of Pue as a function of p, for the 16th-order generators
and various shortened code lengths; however, the results
listed in Table 8.8 show the intersection of the bit-error prob-
ability p corresponding to Pue = 1e−15. When compared to
the r = 16th-order generators in Figure 8.23, it is evident that
these CRC codes perform considerably better than the aver-
age performance of Pue. However, the performance trends are
similar; in that, the performance for p = 0.5 is identical to the
value predicted by (8.42) and the trend in the performance
degradation as the shortened code length is increased
approaching the natural, or underlying, code length of 2r is
consistent with (8.42).

Using a simplified approach in the computation of the
Hamming weight distribution (Bi) in (8.40), Wolf and Blake-
ney [44] verify the simulated performance of the ITU-1 code
in Table 8.8 and provide the performance of the additional
codes listed in Table 8.9. Upon comparing the performance
of the CRC-16 code with that of the ITU-1 code, there is
not a significant difference; however, the CRC-16Q code per-
formance crosses the Pue = 1e−15 threshold at a lower bit-
error probability by about two and one orders of magnitude,
respectively, for the 24- and 32-bit shortened codes; this
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FIGURE 8.23 Ensemble average of undetected error probability.

TABLE 8.8 Simulated FCS Bit-Error Probability
Corresponding to Undetected Error Probability of 1e−15

FCS Code g(x)a

Shortened Length k

24 128 512 2048 16,384

p at Pue = 1e−15

ITU-1 170037 1e−4 4e−5 1e−5 2.7e−6 3.2e−7
ITU-2 140001 1e−4 3e−5 1e−5 2.7e−6 3.2e−7

ag(x) designations in octal notation.

rr–1

gr-1g2

To channel coding
or modulator  

Parity
Source
data  

Logic
zero

r1

g1

r2r0

z–1 z–1 z–1 … z–1

FIGURE 8.22 Generalized r-th-order encoder.

*Formerly, it was the International Telegraph and Telephone Consultative
Committee (CCITT). At the time of the evaluation, two code recommenda-
tions were under consideration; the code denoted as ITU-1 is the current X.25
standard.
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advantage diminishes rapidly as k increases. As seen from
Figure 8.23 and demonstrated in Table 8.9 for the CRC-
24Q and -32Q codes, the most significant performance
improvement over the range of shortened codes is obtained
by increasing the degree of the generator polynomial.

The CRCmessage decoder is shown in Figure 8.24. As the
decoded message data passes by the CRC decoder, the pro-
cessing is identical to that of the CRC encoder creating parity,
or check data, corresponding to the received message. Upon
completion of the message, the switches, indicated by the
dashed lines, are changed and the newly created message
check data is compared to those appended to the received
message. If a disagreement between the two sets of check
data is detected, the message is declared to be in error.

8.8 DATA RANDOMIZING CODES

Data randomization, or scrambling, is required in many appli-
cations to avoid long source data sequences of ones, zeros,
and other nonrandom data patterns that may disrupt the
demodulator automatic gain control (AGC), symbol and fre-
quency tracking functions, and other adaptive processing
algorithms. Nonrandom data patterns may also result in trans-
mitted spectrums containing harmonics that interfere with

adjacent frequency channels and randomizers ensure that
the transmitted signal spectral energy conforms to the theo-
retical spectrum of the modulated waveform that is based
on random data. Randomizers can be implemented using
nonbinary PRN generators initialized with a known starting
seed [45]; however, in this section, the focus is on binary
PRN generators that use LFSRs that conform to irreducible
primitive polynomials [38]. The randomization of the data
can be viewed as low-level data security; however, the
subject of data encryption provides a high level of com-
munication security and involves specialized and often
classified topics regarding implementation and performance
evaluation.

Data randomization is implemented using either synchro-
nous or asynchronous configurations. With the binary data
randomizer initialized to a known state, the randomizer is
synchronized by performing the exclusive-or logical opera-
tion of the source bits with the PRN or LFSR generated feed-
back bits. The derandomization, in the demodulator, is
accomplished in the same way; however, the derandomizer
must be synchronized to the start-of-message (SOM) or mes-
sage frame and initialized to the known state used in the mod-
ulator. In this case, the loss of demodulator timing during the
message results in catastrophic errors and missed messages.
The asynchronous randomizer is a self-synchronizing

TABLE 8.9 Simulated FCS Bit-Error Probability Corresponding to Undetected Error Probability of 1e−15

CRC Codes g(x)a

Shortened Length k

24 32 64 256 512 1024

p at Pue = 1e−15

CRC-16 100003 1e−4 8e−5 4e−5 1.8e−5 1e−5 —

CRC-16Q 104307 9e−3 2.3e−3 9e−5 2.2e−5 1e−5 —

CRC-24Q 404356 — 3e−2 2.3e−3 5.2e−3 2.8e−3 —

51
CRC-32Q 200601 — — 2.2e−2 1.3e−3 7e−4 4e−4

40231

ag(x) designations in octal notation.

rr–1r2r1r0

Message framing

Error
indicator  

Message
data  

Parity

…

gr–1g2

Message + check data from
demodulator/decoder   

g1

Compare 

z–1 z–1 z–1 z–1

FIGURE 8.24 CRC decoder.
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configuration that avoids the synchronization issues and
catastrophic error conditions; however, error multiplication
by the number of LFSR taps occurs for each received
bit error.

The following example of an asynchronous randomizer
generated using the 7th-order irreducible primitive polyno-
mial g x = x7 + x + 1 is shown in Figure 8.25a and the deran-
domizer is shown in Figure 8.25b. Table 8.10 lists some
generator polynomials with four or less feedback taps. These
generators generate m-sequences with periods of (2r − 1)Tb
where r is the order of the generator.

8.9 DATA INTERLEAVING

Controlled correlation between adjacent symbols of a modu-
lated waveform is often used to provide significant system
performance advantages for both spectrum control and detec-
tion gains. Some examples are partial-response modulation
(PRM), continuous phase modulation (CPM), tamed fre-
quency modulation (TFM) [46–49] , and Gaussian minimum
shift keying (GMSK). Using these techniques significant sys-
tem performance improvements are realized through wave-
form spectral control. On the other hand, communication
channels can result in symbol correlation causing significant
system performance degradation if mitigation techniques are
not included in the system design. The communication chan-
nels that result in symbol correlation include narrowband
channel (filters) resulting in intersymbol interference (ISI),
fading channels resulting in signal multipath and scintilla-
tion, and various forms of correlated noise channels including
impulse noise cause by lightning and man-made interference
including sophisticated jammers that have the potential to
result in significant performance losses.

Various types of equalizers provide excellent protection
against ISI and multipath. Also, burst-error correction codes,
like the RS code, can be used to mitigate these correlated
channel errors [37]. However, many FEC codes, including
the most commonly used convolutional codes, require ran-
domly distributed errors entering the decoder. Data interlea-
vers and deinterleavers provide an effective way to mitigate
the impact of correlated channel errors. An important appli-
cation of data interleavers, that cannot be understated, is their
role in providing coding gain in the construction of turbo and
turbo-like codes discussed in Section 8.12.

Randomized
data  

g7 g1 g0

Source
data  Tb Tb Tb Tb Tb Tb Tb

 Randomizer 

…

Derandomizer
data  

Randomized
data  

Tb Tb Tb Tb Tb Tb Tb

Derandomizer 

(a)

(b)

FIGURE 8.25 Binary 7th-order data randomization (Tb = bit interval).

TABLE 8.10 Some Randomizer Generator Polynomials
with ≤ 4 LFSR Tapsa

Order Generatorb Taps Order Generatorb Taps

6 103 2 13 20033 4
7 203 2 20065 4
8 703 4 14 42103 4

543 4 15 100003 2
9 1021 2 110013 4

1131 4 122003 4
10 2011 2 16 210013 4

3023 4 200071 4
2431 4 312001 4

11 4005 2 17 400011 2
5007 4 400017 4

12 10123 4 400431 4
11015 4 18 1000201 2

aPeterson and Weldon [34]. Appendix C, Table C.2, © 1961 Massachusetts
Institute of Technology. Reproduced by permission of The MIT Press.
bOctal notation.
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Interleavers typically operate on source or coded bits; how-
ever, deinterleavers may also operate on demodulator soft
decisions and require several bits of storage for each symbol.
The interleaver accepts an ordered sequence of data and out-
puts a reordered sequence in which contiguous input symbols
are separated by someminimumnumber of symbols. Themin-
imum interleaved symbol interval between contiguous input
symbols is the span of the interleaver. At the deinterleaver,
the reverse operation is performed restoring the original order
of the data. The utility of the interleaver lies in the fact that
bursts of contiguous channel errors appearing on the inter-
leaved data will appear as individual or isolated random errors
at the output of the deinterleaver. Interleavers are character-
ized in terms of the block length, delay, and the span of adja-
cent source bits in the interleaved data sequence. A good
interleaver design provides a large span with uniformly dis-
tributed symbol errors in the deinterleaved sequence. Interlea-
ver frame synchronization must be established at the
demodulator. Commonly used interleavers are the block
interleaver and the convolutional interleaver [50, 51], which
are discussed in the following sections. The convolutional
interleaver is a subset of a more general class of interleavers
described by Ramsey [50] and Newman [52].

8.9.1 Block Interleavers

Block interleavers are described in terms of an (M,N) matrix
of stored symbols where consecutive input symbols are writ-
ten to the matrix column by column until the matrix is filled*

and then forming the interleaved data sequence by reading
the contents of the matrix row by row. A block interleaver
is shown in Figure 8.26 and the following examples are spe-
cialized for a (4 × 3) matrix. In these examples, the matrix ele-
ments are initialized to zero and the input symbols are
represented by a sequence of decimal integers {1,2,3,…}.
Upon interleaving a block of NM symbols, if the process is
repeated, the last symbol of the previous block will be fol-
lowed by the first symbol of the next block resulting in zero
span between these two contiguous input symbols. This prob-
lem can be circumvented by randomly reordering the addres-
sing of rows and columns from block-to-block. Using two
data interleaver matrices in a ping-pong fashion is often pre-
ferred to the complications associated with clocking the data
in and out of the same memory area. The deinterleaving is
performed in the reverse order; in that, the received symbols
are written to the deinterleaver matrix row by row and read to
the output column by column. With block interleavers, bursts
of contiguous channel errors longer than N symbols will
result in short data bursts in the deinterleaved sequence.
For example, if the interleaved sequence contains a burst
of errors of length JM bits, then the errors in the deinterleaved

sequence can be grouped as N bursts of length ≤J bits. How-
ever, in this characterization, some of the N deinterleaved
output bursts may be contiguous. In general, block interlea-
vers do not result in a uniform distribution of deinterleaved
symbol errors.

The following example characterizes the block interleaver
for M = 4 and N = 3.

The block interleaver characteristics are summarized as
follows:

Total storage =NM (8.43)

Delay ≥ N M−1 + 1− M−1 + M N−1 + 1− N−1 ,

typically = 2NM

(8.44)

Span =M−1 (8.45)

The expression for the delay simplifies to delay ≥2[NM +
1] − (N +M). As mentioned previously, the span is defined as
the minimum interleaved symbol interval between contigu-
ous input symbols.

Block interleavers are conveniently applied to block codes
of length n by choosingN = n and then selecting the number of
interleaver rows M to correspond to the channel correlation
time, that is, the channel burst-error length, in view of the error
correction capability of the FECcode. For example, consider a
t-error correcting M-ary block code denoted as (n,k,t). In this
case, choose the interleaver span asN = nwithM ≥ 2 chosen to
provide adequate decoder error correction in viewof the burst-
error length of the channel errors. Large values ofM, however,
will result in long data throughput delays.

8.9.2 Convolutional Interleavers

The convolutional interleaver is a special case of four types of
(N1, N2) interleavers discussed by Ramsey and denoted as
types I, II, III, and IV. The major difference in the implemen-
tationbetween thedifferent types is the assignmentof the input
and output taps and the direction of commutation of the input
and output data taps. The utility of the Ramsey interleavers is
that, with the proper selection of the parametersN1 andN2, the
output error distribution resulting fromaburst of input errors is
nearly uniform. The convolutional interleaver is similar to the
type II Ramsey interleaver that requires that N1 + 1 and N2 be
relatively prime; however, the convolutional interleaver

1 2 3 …
…
…
…
…………… …

…

N 
1
2
3

M

FIGURE 8.26 (M,N) block interleaver.

*The output can be initiated as soon as the N(M − 1) + 1 symbol is written to
row one of the last column; however, additional memory must be available to
support contiguous data over more than one block.
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requires thatN2 =K (N1 − 1) whereK is a constant integer. An
advantage of convolutional interleavers overRamsey interlea-
vers is that they are relatively easy to implement.

The characteristics of convolutional interleavers are similar
to those of block interleavers; however, the amount of storage
required at the modulator and demodulator is NK(N + 1)/2 or
about one-half of that required by a block interleaverwith sim-
ilar characteristics. The interleaver parameters N and K are
defined in Figure 8.27. Also, the end-to-end delay, that is,
the delay from the interleaver input to the deinterleaver out,
is NK(N − 1). The operation of the convolutional interleaver
is characterized by a commutator that switches the input bits
throughN positions with the first position passed to the output
without delay. With the deinterleaver commutator properly
synchronized the first interleaved symbol is switched into
the (N − 1)K register, while the content of the last storage ele-
ment is shifted to the deinterleaver output. The convolutional
interleaver characteristics are summarized as follows:

Total storage =
NK N + 1

2
(8.46)

Delay =NK N−1 (8.47)

Span ≥NK + 1 (8.48)

Here, the span is defined as the interleaved symbol interval
between corresponding contiguous input symbols.

An example of the convolutional interleaver operation is
shown in the following data sequences. In this example,
the interleaver and deinterleaver are initialized with all zeros
and a sequence of symbols consisting of decimal integers
{1,2,3,…}, is applied to the input. The resulting out
sequences are tabulated below for the case N = 3, K = 1 and
the case N = 3, K = 2.

N = 3, K = 1 Interleaver:

Input Sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, …

Int’l Out: 1, 0, 0, 4, 2, 0, 7, 5, 3, 10, 8, 6, 13, 11, 9, 16, 14,
12, 19, 17, 15, 22, 20, 18, …

Deint’l Out: 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, …

N = 3, K = 2 Interleaver:

Input sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, …

Int’l out: 1, 0, 0, 4, 0, 0, 7, 2, 0, 10, 5, 0, 13, 8, 3, 16, 11, 6,
19, 14, 9, 22, 17, 12, …

Deint’l out: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, …

An example of the burst-error characteristics of the convo-
lutional interleaver is shown in the following data sequences
for the N = 3, K = 2 interleaver with a burst of ten (10) con-
tiguous channel errors following the 30th source symbol.
In this example, the error bits are denoted as an X and the data
record begins at the 30th symbol.

N = 3, K = 2 interleaver with 10 bit-error burst, denoted as
X, beginning at bit 30:

Input sequence: 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49,

Deint’l input: 18, X, X, X, X, X, X, X, X, X, X, 35, 30, 43, 38,
33, 46, 41, 36, 49,

Deint’l out: 18, 19, 20, X, 22, 23, X, 25, X, X, 28, X, 30, X,
X, 33, X, 35, 36, X, 38, 39, X, 41, 42, 43, …

Evaluations of the interleaver performance include the
uniformity of deinterleaved error events for various channel
burst-error lengths and the probabilities associated with the
span of the interleaved sequence relative to the contiguous
source symbols. However, the ultimate evaluation of the
interleaver performance is the bit-error probability for a spe-
cified waveform modulation and FEC code under various
channel fading conditions.

8.10 WAGNER CODING AND DECODING

The Wagner code is a single-error-correcting block code
denoted by (N, N − 1) where N is the block length containing
N − 1 information bits. A typical block structure for the (N,
N − 1) Wagner code is shown in Figure 8.28 where di =
{0,1}, i = 1, 2, …, N − 1 represents the binary information
bits and the single parity bit dN is determined from
the modulo-2 sum of the information bits as
dN = d1 d2 dN−1. The Wagner decoding process is
quite simple. A hard decision is made to obtain an estimate

(a) (b) 

Interleaver Deinterleaver

K 

(N–1)K 

(N–2)K 

(N–2)K 

K 

… …

(N–1)K 

FIGURE 8.27 Convolutional Interleaver Implementation.

(N–1)Tb NTb

… 

0 Tb 2Tb

d1 d2 dN–1

t
dN

FIGURE 8.28 Wagner code structure.
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of each received bit and the corresponding soft decisions are
saved. A modulo-2 addition is then performed on the five
information bits and the parity bit. If the resulting parity
bit is zero, the character is assumed to be correct. However,
if the parity is one, the bit estimate corresponding to the smal-
lest soft-decision magnitude is inverted and the character is
declared as being correct.

The (6,5) Wagner code is sometimes applied to 7-bit
American Standard Code for Information Interchange
(ASCII) character transmission. The first bit of the ASCII
character is the start bit, which is followed by five informa-
tion bits, and the seventh bit is the stop bit as shown in
Figure 8.29. The start and stop bits are space or binary zero
bits which are normally used for synchronization. In this sit-
uation, the Wagner coding is performed by replacing the stop
bit with the parity bit formed as p= d2 d3 d6 with
d7 = p, so the (6,5) Wagner code includes to the information
bits and the stop bit. With this coding structure, the start bit is
available for character synchronization.

When differential coding is applied to the source data, as
for example with compatible shift keying (CSK), the demod-
ulation processing will result in two contiguous bit errors for
every single-error event. Therefore, to ensure detection of
single-error events, the parity check must be performed on
every other bit. In this case, the start bit is used as the parity
bit and is chosen to satisfy odd parity as p = d3 d5 d7 with
d1 = p. Note that the parity check will detect all single-error
events with differential encoding; however, special consider-
ation must be given to pairs of bit errors that span two adja-
cent characters because a detection error in the stop bit
position will result in an error in the start (parity) bit in the
next character. To ensure proper decoding in this case, a total
of eight magnitude bits must be compared prior to the error
correction. When the parity check fails on the current charac-
ter block and the smallest magnitude is associated with the
stop bit of the preceding character block, then the current par-
ity bit is also assumed to be in error also and no error correc-
tion is performed on the current information bits.

In the following sections, the character-error performance
of the Wagner code is examined. First, approximate expres-
sions for the character-error probability are developed for the
three embodiments of the Wagner code discussed earlier,
namely, the raw (N, N − 1) Wagner code, and Wagner coding
applied to the 7-bit ASCII character with and without
differential encoding. The results of these analyses are

approximate because the location of the bit in error is
assumed to be known. The theoretical character-error perfor-
mance is then established based on using the soft decisions to
identify the most likely bit to be in error. This analysis is
exact in the sense that the soft decisions are used to locate
the most probable bit in error.

8.10.1 Wagner Code Performance Approximation

The character-error performance of a Wagner coded block
can be approximated by assuming that all single errors are
corrected and that all other error conditions are uncorrected
and result in a character error. In this case, the character-error
probability of the raw (N, N − 1) Wagner code is simply

Pce = 1−Pcc (8.49)

where the probability of a correct character, under the
assumption of independent error events with probability
Pbe, is given by

Pcc 1−Pbe
N +NPbe 1−Pbe

N−1 raw Wagner code

(8.50)

This result is based on the binomial distribution [53] and
Pbe is the bit-error probability of the underlying waveform
modulation.

For the Wagner coded 7-bit ASCII character without dif-
ferential coding, the probability of a correct character is
given by

Pcc 1−Pbe
5 + 5Pbe 1−Pbe

4

Wagner coded ASCII character (8.51)

With differential coding, the 7-bit ASCII character is cor-
rectly decoded if a single bit-error occurs among the six infor-
mation bits. An error in the parity bit results in an error in the
following information bits so the ASCII character cannot be
corrected. The resulting probability of a correct character
is then

Pcc 1−Pbe
6 + 6Pbe 1−Pbe

5

Wagner differential coded ASCII character (8.52)

The approximate performance results for the raw (N, N − 1)
Wagner code are shown in Figure 8.30 for antipodal wave-
form modulation with AWGN. Figure 8.31 shows the
approximate performance when theWagner coded is applied
to the 7-bit ASCII character as discussed before. The signal-
to-noise ratio (γc) for the underlying antipodal signaling
of the coded bits is expressed in term to the code-bit
bandwidth 1/Tc, where Tc is the duration of the coded bit.
The performance, however, is plotted as a function of the

6Tb 7Tb0 Tb 2Tb

Info
bits

Stop
bit

Start
bit

… d1 d2 d6

t
d7

FIGURE 8.29 Seven-bit ASCII character with Wagner coding.
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signal-to-noise ratio (γb) measured in the information bit
bandwidth 1/Tb and the relationship is given by

γb = γc
Tb
Tc

(8.53)

For the raw Wagner code, Tb Tc = N N − 1 and for the
Wagner coded 7-bit ASCII character Tb/Tc = 7/5 (= 1.46 dB).

8.10.2 (N, N − 1) Wagner Code Performance

In this section, the relationship between the bit-error
probability at the input to the Wagner decoder and the
resulting character-error probability at the decoder output

is established. The theoretical performance in the AWGN
channel is examined and the results are compared to Monte
Carlo simulation results. The theoretical results apply for
antipodal signaling such as BPSK, QPSK, OQPSK, or min-
imum shift keying (MSK); however, the simulation results
are based on MSK waveform modulation with ideal symbol
timing and phase tracking in the demodulator.

The general expression for the probability of a correctly
received Wagner coded block is given by

Pcc =Pr no bit errors

+Pr exactly one bit error Pr correctly locating error

(8.54)

When the noise is independent and identically distributed
(iid) from bit to bit, this result can be expressed as

Pcc = 1−Pbe
N

+NPbe 1−Pbe
N−1Pr correctly locating error

(8.55)

In the remainder of this section, the probability of cor-
rectly locating a single-error event is analyzed using the
stored soft decisions out of the optimally sampled matched
filter.

The location of a single-error event in the j-th bit is based
upon the magnitude zj of the j-th decision variable vj being
less than the magnitudes zi of all the other bit decision vari-
ables vi, i = 1, …, N such that i j. Given the transmitted bit

sequence {di} and the received sequence {di}, the probability
of correctly locating the error is given by the general
expression

Pr correct error location =

∞

0

dzj

∞

zj

∞

zj

f zi,…,zj,…,zn di = di,…,

dj dj,…,dn = dn dzi,…,dzj−1,…,dzj+ 1,…,dzn

(8.56)

where f(−) is the conditional joint density function of the
random variables zi = vi . With independent source data, a
memoryless channel, and ideal receiver timing, the AWGN
channel decision variables, vi, are iid with distribution
N(di, σn) for which the earlier result specializes to

Pr correct error location =

∞

0

dzjf zj dj dj

×

∞

zj

dzif zi di = di

N−1

(8.57)
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(N-bit character).
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The two conditioned distributions are found from a form
of Bayes rule given by

f v c =
P c v f v

P c v f v dv
(8.58)

Conditioning on an error event, that is, c≡ dj dj, the
following relationships apply

P d = 1,d = −1 vj =
0 vj ≤ 0

1 vj > 0
(8.59)

and

P d = −1,d = 1 vj =
1 vj ≤ 0

0 vj > 0
(8.60)

Upon combining these results with the normal distribution
f v =N d,σn , the numerator in (8.58) becomes

f dj dj vj f vj =

0 vj < 0

1

2πσn
e− vj+ dj 2 2σ2n vj ≥ 0

(8.61)

Using this result to evaluate the denominator in (8.58)
conditioned on an error, it is noted that the denominator is
simply the probability of a bit error, that is,

∞

0

P d d v dv=Pbe (8.62)

Since these results apply for vj > 0, upon substituting zj for
vj in (8.61) the solution to (8.58) becomes

f zj d d =
1

2πσnPbe

e− zj + dj
2
2σ2n (8.63)

Evaluation of (8.58) conditioned on a correct decision,

that is, c≡ dj = dj, and proceeding in a similar manner leads
to the conditional distribution

f zi d = d =
1

2πσn 1−Pbe

e− zi − di
2 2σ2n (8.64)

Using (8.64) to evaluate the second integral in (8.57)
results in

∞

zj

dzif zi di = d =
1

1−Pbe

∞

zj

dzi
1

2πσn
e− zi − di

2 2σ2n

=
Q zj− di σn

1−Pbe

(8.65)

where Q(x) = 1 −Φ(x) and Φ(x) is the probability integral.
Substituting (8.65) and (8.63) into (8.57) and, in turn, substi-
tuting (8.57) into the expression (8.55) for Pcc gives

Pcc = 1−Pbe
N +

N

2πσn

∞

0

dzje
− zj + dj

2
2σ2nQ

zj− di
σn

N−1

(8.66)

This expression is computed numerically and the result is
used to compute the character-error probability expressed as

Pce = 1−Pcc (8.67)

The solid curves in Figures 8.32 and 8.33 show the perfor-
mance as a function ofEb/No for the (6,5) and (13,12)Wagner
codes, respectively. The numerical integration is based on a
resolution of 20 samples for each standard deviation σn over a
range of 10 standard deviations above the mean value at zj =
|dj|. The discrete circled data points for the (6,5) Wagner code
are based on Monte Carlo simulations using 500 Kbits at
each signal-to-noise ratio. Upon comparing these results with
the approximations in Figure 8.30, it is seen that the approx-
imate results are optimistic by about 1.0 dB at Pce = 10−5;
owing to the fact that the bit-error locations were assumed
to be known.

The dotted curve in Figures 8.32 and 8.33 represent the
character-error performance if the information bits were
not coded with the parity bit. These results are evaluated as

Pce = 1− 1−Pbe
N (8.68)

for N = 5 and 12, respectively, and they provide a reference
for determining the coding gain of the Wagner coded
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characters which is about 2.0 dB at Pce = 10−5. The dotted
curve in these figures is simply the uncoded bit-error perfor-
mance of antipodal signaling and is used to compute uncoded
(5,5) and (12,12) Pce as a point of reference.

8.11 CONVOLUTIONAL CODES

The convolutional decoding discussed in this section focuses
on the Viterbi decoding algorithm as it applies to a trellis
decoding structure. Prior to the discovery of the trellis decod-
ing structure, sequential decoding of convolutional codes,
described by Wozencraft [54] and Fano [55], was used.
Sequential decoding is based on metric computations on var-
ious branches through a code-tree decoding structure [56]. In
this case, the decoded data is associated with the branches or
paths through the code tree that yield the largest metric. Hel-
ler and Jacobs [57] compare the advantages and disadvan-
tages of the Viterbi and sequential decoding techniques in
consideration of error performance, decoder delay, decoder
termination sequences, code rates, quantization, and the sen-
sitivity to channel conditions. The processing complexity is a
major factor that distinguishes these two decoding proce-
dures and, by this measure, Viterbi decoding is applicable
to short constraint length codes (K ≤ 9); otherwise, the
sequential decoding is more processing efficient.

The following description of convolutional coding draws
upon the vast resource of research and publications on the
subject [58–64] and other references cited throughout this
section. Convolutional codes, unlike block codes, do not
involve algebraic concepts in the decoding process and,
therefore, result in more intuitive and, to some extent,
straightforward processing algorithms. Throughout the

following descriptions, binary data is considered and
sequences are represented by polynomials f x =
bo + b1x1 + b2x3 + with binary coefficients bi {1,0}. In
this case, multiplication and summation of polynomials is
performed using GF(2) arithmetic. For example, multiplica-
tion of two polynomials f(x) and f (x) corresponds the coeffi-
cient multiplication bibi and summation is simply the
modulo-2 summation of the bi and bi coefficients.

Convolutional encoders accept a continuous stream of
source data at the rate Rb bps and generate a continuous
stream of code bits, at a rate of Rcb =Rb rc where rc is the
code rate, defined as

rc ≜
k

n
(8.69)

The parameter k represents the number of source data bits,
corresponding to a q-ary symbol (q = 2k), that are entered into
the encoder each code block and n represents the correspond-
ing number of coded bits.

A single parity bit is influenced by υ = kK source bits and
the n encoder parity bits are generated by the convolutional
sum, expressed as

Pℓ i =
υ

j= 1

gℓ j S i− j ℓ = 1,2,…,n; i= 1,2,3,…

(8.70)

where gℓ(j) represents the ℓ-th subgenerator of the code, S(j) is
the stored array of source bits, and Pℓ(i) are the output parity
bits corresponding to the ℓ-th subgenerator. The parameter K
is the constraint length of the code and corresponds to the
number of stored M-ary symbols during each code block.
The index i, corresponding to the source data, can be arbitrar-
ily long, distinguishing the convolutional codes from fixed-
length block codes. The encoder described by (8.70) can be
viewed as a transversal, or finite impulse response (FIR), fil-
ter with unit-pulse response described by the code generator.

The following description of the convolutional encoder is
characterized in terms of the coding interval, or code block,*

defined as the encoder processing required to generate n par-
ity bits in response to an input symbol of k source bits. This
significantly simplifies the convolutional encoding and
decoding description and notation. In the demodulator, the
convolutional decoding is analogous to characterizing the
trellis decoding as a recursion of multistate symbol decoding
intervals.† The encoding and decoding recognizes the correl-
ative properties of preceding symbols, for example, the

*In the following descriptions, the coding interval is referred to as a
code block.
†The symbol decoding of the convolutional coded data using amultistate trel-
lis is discussed in Section 8.11.2.
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preceding K − 1 source symbols are processed in the encoder
as described in the following.

In general, the convolutional encoder is implemented
using binary arithmetic to compute the parity symbols by
clocking a block of k source bits into shift registers and com-
puting the corresponding n parity bits over the υ source bits
stored in the encoder memory. To maintain real-time opera-
tion, the duration of the n-tuple of parity bits must equal the
input symbol duration. The implementation of a GF(2k) con-
volution encoder is shown in Figure 8.34 where the binary
arithmetic involves exclusive-or operations.

The implementation in Figure 8.34 corresponds to one
code block with the most recent k-bit source symbol corre-
sponding to the storage location 1 with the previous K − 1
symbols in the storage locations 2 through K. Following
the message of length Tm seconds, the kK flush bits are used
to return the encoder to the initial encoder state. Typically, the
encoder is initialized to the zero state. The flush bits are
also used in the decoder as described in Section 8.11.2.
Each source symbol corresponds to a (k − 1)-dimensional
polynomial

Sl x = bl,k−1x
k−1 + + bl,2x

2 + bl,1x + bl,0 l = 1,…,K

(8.71)

where the bit bl0 is the rightmost or LSB of the input symbol.
Taken collectively, the entire K symbols are denoted as the
(υ − 1)-dimensional polynomial

S x = S1 x x K−1 k + + SK−1 x xk + SK x (8.72)

In Figure 8.34, the dotted lines, connecting the stored
symbols to the subgenerators of the code, denote multiple

connections from each subgenerator corresponding to the
binary-one coefficients of the (υ − 1)-dimensional generator
polynomial, expressed as

gℓ x = b
ℓ,υ−1x

υ−1 + + b
ℓ,1x+ bℓ,0 ℓ = 1,2,…,n (8.73)

In the context of the code-block processing, the subge-
nerators and stored data bits can be viewed as vectors
with the parity formed by the scalar product Pℓ =

gℓ S
T

ℓ = 1,…,n.
An important consideration in the modulator encoding is

the mapping of the code bits* to the waveform modulation
symbol as depicted in Figure 8.35 [65, 66]. The encoder
shown in Figure 8.34 results in a nonsystematic code, in that
the coded output contains only parity-check bits; however,
the code-bit mapping also applies to systematic codes that
include the k source bits plus n − k appended parity-check
bits. In either case, the information bits or the most significant
bit (MSB) parity-check bits must be mapped to the most pro-
tected states of the modulated waveform. If an interleaver is
used, the number of interleaver columns is selected to accom-
modate an integer number of transmitted symbol. For exam-
ple, for a rate rc = 1/n code using MPSK symbol modulation
with modulation efficiency rm = log2 M and n =multiples
of rm, a row-column interleaver may be designed with rm col-
umns and n/rm rows. In this example, rate matching is not
necessary; however, puncturing of low-rate codes has many
advantages and requires rate matching to the symbol modu-
lation waveform.
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FIGURE 8.34 Generalized GF(2k) nonsystematic convolutional encoder (rate rc = k/n, constraint length K).

*The code bits are associated with the coding of one q-ary input symbol and
are often referred to as a code word.
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Puncturing is a process in which certain parity-check bits
are not transmitted to realize a higher code rate than that of
the underlying convolutional code. Although the resulting
coding gain is reduced, the symbol bandwidth W is also
reduced thus increasing the spectral efficiency, defined as,
rs = Rb/W bits/s/Hz. Alternately, the symbol rate may remain
the same thus increasing the data throughput time. In either
event, puncturing provides for tailoring the message trans-
mission to the channel conditions. When puncturing is used,
it is only applied to the parity-check bits, that is, the source
bits of a systematic code are not punctured. Optimum punc-
turing of low-rate convolutional codes is discussed in
Section 8.11.7. Appendix 8A provides a list convolutional
code puncturing patterns found by Yasuda et al. [67], for
punctured code rates (n − 1)/nwith n = 3 through 14 and con-
straint length ν = 2 through 8. The punctured codes are based
on the underlying rate 1/2 codes with the same constraint
lengths. The rate matching function in Figure 8.35 identifies
and eliminates the punctured parity-check bits and prioritizes
and assigns the surviving bits in the interleaver.

Referring again to Figure 8.34, rate-matching parity-check
bits are priority ordered and entered column by column into a
row–column interleaver with the highest priority bits in the
MSB (leftmost) columns. The information bits of a system-
atic code are always assigned the highest priority. The inter-
leaver is emptied row by row and mapped to the symbol
modulator with the highest priority row bits assigned to the
MSB of the modulation states, thus providing the most pro-
tection. Gray coding prior to the modulation symbol mapping
provides the most protection from demodulator symbol

errors. For example, consider that three contiguous code
blocks of the rate 1/3 convolutional encoder in Figure 8.34
are entered into a 3 × 3 block interleaver. The nine parity-
check bits, Pℓ, are assigned to the block interleaver, gray
coded, and then mapped to the 8PSK modulator phase con-
stellation as shown in Figure 8.36. The ordering of the bits
(P9,P8,P7) corresponds to the three consecutive MSB bits
of the encoder. For example, P9 corresponds to the parity-
check bit bm2, of the first code-block modulator polynomial

m x = bm2x
2 + bm1x + bm0 (8.74)

In terms of (8.70), P9 = P3(1), P8 = P3(2), and P7 = P3(3).
The mapping of the code bits to the symbol modulation is dis-
cussed again in Section 8.12.2 in the context of concatenated
convolutional codes where the code block is defined as the
interleaver length that ranges from 128 to over 16,384 infor-
mation bits. This is a significantly different requirement; in
that, the number of transmitted code bits corresponding to
the interleaver plus flushing bits must be integrally related
to the number of transmitted symbols.

Gray coding is used to minimize the error events in a noisy
channel and, upon examining the phase constellation, it is
seen that the first- and second-order modulator bits are the
most protected bits. In this example, the entire interleaved
parity set is transmitted in the code-block interval using three
consecutive phase modulated symbols. Increasing the num-
ber of interleaver columns and filling the interleaver across
several code blocks provides for improved mitigation of
channel fading at the expense of throughput delay.
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FIGURE 8.35 Mapping of code bits to modulation symbols.
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Beginning with the commonly used binary convolutional
encoder, the following sections examine specific convolu-
tional encoder configurations and the associated decoding
complexity and performance characteristics.

8.11.1 Binary Convolutional Coding
and Trellis Decoding

The binary convolutional code is characterized by entering
one source bit into the encoder memory array each code
block. This corresponds to k = 1 in Figure 8.34 with the K
encoder memory consisting of K bits. The widely used rate
1/2 convolutional code with constraint length K = 7 provides
excellent coding gain with reasonable complexity; however,
the following description of the rate 1/2, K = 3 binary convo-
lutional encoder provides all of the essential encoding and
decoding concepts necessary to implement the more involved
coding structures.

The coding and decoding of the simple, and relatively
easy to understand, rate 1/2, K = 3 encoder is shown in
Figure 8.37. The structure follows directly for the general
implementation shown in Figure 8.34 using k = 1, K = 3
and the two subgenerators g1(x) and g2(x).

The K = 3 encoder stores K − 1 previous bits in locations 2
and 3 andwith current bit of the input source data in location 1.
The K − 1 bits represent the state of the encoder so, for this
binary convolution encoder, there are 2K−1 = 4 states. The
encoder memory is initialized to zero and the following
example uses the input data sequence of 1011010010….
The first bit into the encoder is 1, the leftmost bit, and, in
keeping the convolutional sum, the input data is time-
reversed yielding,*…0100101101. Based on this description,
the encoder output is developed as shown in Table 8.11. The
code bits are then processed as shown in Figure 8.35 and
the modulated symbols are transmitted through the channel
to the receiver.

8.11.2 Trellis Decoding of Binary
Convolutional Codes

The maximum-likelihood decoding of convolutional codes
was published by Viterbi [68] in 1967. This paved the way
for further research in what has become known as the Viterbi
algorithm [69]. Forney [70, 71], rigorously showed that the
Viterbi algorithm results in maximum-likelihood decoding,
and Heller [72, 73] is credited with the discovery of efficient
decoding techniques using the Viterbi algorithm.

In the following, description of the trellis decoding of con-
volutional codes is based on the relatively straightforward
binary, rate 1/2, K = 3 code, recognizing that more powerful
convolutional codes use exactly the same, albeit more

involved, decoding algorithms. The decoding starts by iden-
tifying the four-state trellis decoder and the corresponding
binary representations of the four states as indicated in
Figure 8.38. The parameters of the generalized k-ary trellis
decoder in Figure 8.34 are identified in Table 8.12 with the
numerical values corresponding to the example decoder in
Figure 8.38. In general, the trellis diagram of a rate k/n
convolutional code has 2k(K−1) states with 2k transitions ema-
nating from each source state and terminating on each termi-
nation state.

By way of explanation, the decoding states in Figure 8.38
are represented by the state vectors Si with elements αi,j: j = 0,
…, 3 denoted as the state metric corresponding to each of the
trellis states. It will be seen that the state metrics αi,j are
updated with estimates of the received data at each state tran-
sition. The dark gray state transition lines are shown to indi-
cate that these transitions are not required as the trellis is
building up when starting at the known zero initial state of
the encoder. For short messages or short decoding depths,
the decoder Eb/No performance is improved somewhat by
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FIGURE 8.37 Binary, rate 1/2,K = 3, nonsystematic convolutional
encoder (g1(x) = x2 + x + 1, g2(x) = x2 + 1).

TABLE 8.11 Example of Binary Rate 1/2,K = 3 Convolutional
Encoding

Source Bit 1 Encoder State Bits 2,3 Parity Bits (1,2)

1 0 0 1 1
0 1 0 1 1
1 0 1 0 0
1 1 0 0 1
0 1 1 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 1 1
1 0 0 1 1
0 1 0 1 0

0 1

*The time-reversed data sequence is the natural ordering of the data entered
into the encoder, that is, the first, second, etc., bits are taken in order.
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not including these transition; however, the decoder synchro-
nization is more problematic, in that the first code-bit word
must be synchronized with the SOM preamble. On the other
hand, for long messages, that can tolerate longer trellis
depths, the inclusion of these transitions is not as important
because, with a trellis depth in excess of four constraint
lengths, the trellis processing essentially eliminates the incor-
rect paths through the maximum-likelihood decisions at each
state transition.*

The self-synchronizing characteristic of the trellis decoder
allows for message decoding in random data without knowl-
edge of the SOM. For example, after initializing the state met-
rics, α0,j, to zero, if the decoding is not correctly synchronized
with the received code-bit word, the surviving metrics at each

state, after about four constraint lengths, will appear as ran-
dom variables. In this event, the state metric accumulators are
re-initialized, the code-bit word timing is shifted, and the pro-
cessing is repeated until a dominant metric is observed indi-
cating code synchronization.

The dark gray state transition lines indicate the transitions
that are not associated with the trellis flushing required to
drive the trellis to the known all-zero state of the encoder fol-
lowing the message bits. The two (in general kK) zero flush-
ing bits are appended to the message bits as indicate in
Figure 8.38.

The details of the trellis decoding are described by the
transition processing shown in Figure 8.39. The state transi-
tion is depicted from the source state to the termination state
denoted by the state vectors Ss = Si−1 and St = Si. As a prac-
tical matter, only the two state vectors Ss and St, their respec-
tive elements αs,j = αi−1,j and αt,j = αi,j, and the detected data
estimate B are required for the entire trellis decoding. This
simplicity results from the add–compare–select (ACS) func-
tion of the max(a,b) algorithm and, for a sufficiently long trel-
lis depths, leads to maximum-likelihood data decoding [68].

As indicated, the state transitions in Figure 8.39 are only
shown for the sourcedata estimateB= 0 and the remaining pro-
cessing for B= 1 is implicit. The source states j = 0, …, 3
are represented by the binary equivalents j = (b2,b1)b that
are concatenated with the source data estimate B= 0 denoted†

as b2,b1 B. The rightmost bits of the concatenation corre-
spond, or point, to the termination state, and by convention
the transitions corresponding to B= 0 are denoted by the
dashes state transition lines. When the B= 1 source data esti-
mate is included, two state transitions will emanate from each
source state and terminate on the termination states as indi-
cated in Table 8.12. As mentioned before, the two transitions
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FIGURE 8.38 Description of convolutional code Trellis decoder (binary, rate 1/2, K = 3).

TABLE 8.12 Generalized Convolution Decoder Parameters

Parameter Description
Example
Value

k Input source bits per encoding block 1
n Output code bits (parity) 2
k/n Code rate 1/2
K Constraint length 3
K − 1 Trellis buildup and flushing transitions 2
kK Encoder bits and stuff bits 2
2k(K−1) Encoder and trellis decoder states 4
2k Trellis branches emanating from and

terminating on each state
2

Ndep Trellis depth (symbols) before removing
data estimates (4 or 5 constraint
lengths)a

15

aFor high-rate codes (3/4 and higher), trellis depths of 8 or 9 constraint
lengths are required.

*The path elimination procedure applied to a code tree is referred to as the
Viterbi decoding algorithm. †The notation // is used to signify concatenation.
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that terminate on state j = 0 correspond to b1,B = 0,0 with
the source states identified as (b2,b1) = (0,0) and (1,0) corre-
sponding to j = 0 and 2. For each state transition, there is an
associated source state metric αs,j, metric update Δαm, and
termination state j . Therefore, the termination state must
select the maximum αs,j +Δαm of all source states terminat-
ing on j . This is shown in Figure 8.39 as the ACS function
corresponding to the termination states j = 0 and 2.

The parity bits (p2,p1) corresponding to each transition are
determined from knowledge of the convolutional encoder
and are determined in the same manner as in the encoder.
Several important observations are that each state transition
is characterized as having a Hamming distance* of two, the
parity bits associated with transitions terminating on the same
state are antipodal, and the metric updatesΔαm are associated
with the parity bits withm = (p2,p1)b = 0,…, 3. The parity bits
form the link to the received data; in that, the received parity
bits at the demodulator matched filter output are correlated
with each set of transition parity bits (p2,p1) with the correla-
tion equal to the state transition updateΔαm. The details in the
computation of Δαm are discussed in the following.

The link between the trellis decoder and the convolutional
encoder is found in the received symbols that contain noise
corrupted estimates of the modulated waveform symbols.
For example, consider the BPSK modulated waveform with
phase modulation ϕℓ = πbℓ, where bℓ = 0,1 ℓ = 1,2† repre-
sents the two unipolar consecutive code bits corresponding to
a code-bit word; these bits are referred to as the parity bits
p
ℓ
= 0,1 ℓ = 1,2 in the earlier description of the trellis

decoding. The corresponding demodulator matched filter
samples are denoted as {ĉ2, ĉ1}, where cℓ ℓ = 1,2 are the

independent noisy estimates of bℓ ℓ = 1,2. With ideal AGC
and phase tracking, the receiver estimate, ĉℓ, is expressed as

cℓ =
2Es

No
cos ϕℓ + nℓ (8.75)

where Es/No is the symbol energy-to-noise density ratio, held
constant by the ideal gain control and nℓ is a zero-mean, unit-
variance, independent Gaussian noise random variable.

The binary code bits corresponding to each state transition
in Figure 8.38 are represented by their bipolar equivalents as
shown in Table 8.13.

The correlation of the received code block estimates
cℓ ℓ = 1,2 with the 2n|n=2 = 4 possible code-bit combinations
of the trellis bipolar state code-bits dm,ℓ ℓ = 1,2; k = 0,…,3
results in the correlations‡

Δαm =
2

ℓ = 1

dm,ℓcℓ m= 0,…,3 (8.76)

TABLE 8.13 Unipolar to Bipolar State
Conversion dℓ = 1−2bℓ

Index m

Trellis State

Unipolar Bipolar

b2 b1 d2 d1

0 0 0 1 1
1 0 1 1 −1
2 1 0 −1 1
3 1 1 −1 −1
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FIGURE 8.39 Trellis decoding state transition processing (binary (k = 1), rate 1/2, K = 3, B = 0).

*The Hamming distance is defined, between two vectors with equal number
of elements, as the number locations in which the elements differ.
†In the general case, ℓ = 1,…,no

‡The metric correlation or state transition update is denoted as Δmk in
Chapter 9.
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As the processing continues through the trellis, the surviv-
ing metric, determined from the ACS decisions, will eventu-
ally integrate to a uniquely large metric providing reliable
data decisions. The trellis integration length or depth (Ndep)
of four to five constraint lengths is usually sufficient for a reli-
able data decision. Figure 8.40 summarizes the state transi-
tion processing described in Figures 8.38 and 8.39 and
includes the storage of the data estimate Bi that is concatena-
tion with the data vector Bj. After a trellis depth of Ndep tran-
sitions, the oldest data is removed from the data vector and
output as the maximum-likelihood decoded estimate of the
corresponding source data.

As mentioned before, associated with each surviving
state metric is a stored sequence of data estimates and, after
Ndep received bits are process, the oldest bits in the stored
sequence are output as the maximum-likelihood estimate
of the transmitted bits. This is referred to at the path history
storage and Rader [74] discusses efficient memory manage-
ment and trace-back to the transmitted data estimate.
Through the ACS decisions, made at each trellis state, all
of the incorrect paths leading to the estimate of the transmit-
ted data, Ndep-bits earlier, tend to be eliminated so, with high
probability, any of the stored data vectors associated with
the surviving metrics can be used to recover the estimate
of the transmitted data. However, for shorter trellis depths
or short constraint lengths codes with lower throughput
delays, the optimum transmitted data estimate must be taken
from the stored data array associated with the maximum
metric of the trellis states, that is, max(αs,j) : j = 0, …, 3.
Upon completion of transition processing, the termination
metrics αt,j are assigned to the source metrics αs,j and the
decoding continues with a minimum of trellis memory.
To avoid metric accumulation overflow, the maximum met-
ric must be examined periodically and each metric reduced
by a constant value if overflow is imminent.

8.11.3 Selection of Good Convolutional Codes

In general, the code generators are selected to ensure that the
codes result in the maximal free distance* and do not result
in catastrophic error propagation [75] following an error
event. Exhaustive computer search algorithms are run to
determine the best code generator for specific code config-
urations [76, 77]. The search algorithms examine details of
the encoding structure including those involving cata-
strophic error propagation and equivalent codes. Equivalent
codes have properties involving the reciprocal, shifting, and
ordering of subgenerators. For example, reversing the order
of the subgenerators results in an equivalent code. The fol-
lowing convolutional codes, referred to as good codes, are
based on the maximal free distance, dfree, criterion when
used with Viterbi decoding of convolutional codes.

A useful characteristic of convolutional codes is the insen-
sitivity to signal phase reversals when used with differential
data coding. Convolutional codes exhibiting this feature are
referred to as transparent convolutional codes in which com-
plements of code words are also code words. A convolutional
code is transparent if each subgenerator has an odd number of
binary coefficients [78]. By examining the variations in the
surviving metrics through the trellis decoder, an estimate
of the channel quality and the received signal-to-noise ratio
are established. These estimates take advantage of the surviv-
ing state metric that increases at a constant rate in proportion
to the received signal-to-noise ratio through the trellis
decoder [78].

Good nonsystematic rate 1/n binary convolutional code
generators for use with the Viterbi decoding algorithm were
investigated by Odenwalder [76], and the results for rate 1/2
convolutional codes with constraint lengths 3 through 9 are
listed in Table 8.14.†Odenwalder’s results for rate 1/3 binary
convolutional codes with constraint lengths 3 through 8 are
listed in Table 8.15. Larsen [79] has extended Odenwalder’s
results to include the respective constraint lengths 10 through
14 and 9 through 14, in these tables. The constraint length 9
codes listed in these tables are specified in the North Amer-
ican direct sequence CDMA (DS-CDMA) Digital Cellular
System Interim Standard (IS-95) [80]. The rate 1/4 con-
volutional codes in Table 8.16 were found by Larson.‡
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FIGURE 8.40 Summary of convolutional code trellis decoding
(binary (k = 1), rate 1/2, K = 3).

*The maximal free distance (dfree) of a convolution code is defined as the
unrestricted minimum distance between code words; whereas, a restricted
minimum distance is defined as the distance between a predetermined num-
ber of code words. For example, upon defining dmin as the minimum distance
between code words defined over ℓ consecutive code words, or ℓn code-bits,
then dfree ≥ dmin.
†The code subgenerators are expressed in octal notation with the LSB of the
binary equivalent corresponding to the rightmost bit. For example, the octal
notation 35 corresponds to 11101 with g(x) = x4 + x3 + x2 + 1.
‡The ordering listed by Larsen is reversed to be consistent with the ordering
of the convolutional code subgenerators used in this chapter and by Oden-
walder. For example, the ordering used in this chapter is g1(x), g2(x) …;
whereas, Larsen lists the order as … g2(x), g1(x).
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The bit-error performance dependence on Eb/No for the rate
1/2 code is examined in Section 8.11.8 for constraint lengths
K = 4 through 9. Duet, Modestino, and Wismer [81] have
extended the binary rate 1/n convolutional codes with max-
imum free distances to include code generators for n = 5, 6,
7, and 8; their results are listed in Tables 8.17, 8.18, 8.19,
and 8.20 for constraint lengths 3 through 8.

The code generators in Tables 8.14, 8.15, 8.16, 8.17, 8.18,
8.19, and 8.20 are based on the binary Hamming distance
and, as such, represent good codes for binary signaling in
which each of the coded bits is mapped into one symbol
using, for example, BPSK or BFSK waveform modulation.
Alternately, each pair of code bits generated by the rate 1/2
binary convolutional code can be mapped into a 4-ary modu-
lated symbol and consecutive groups of three code bits gen-
erated by a rate 1/3 binary convolutional code can be mapped

TABLE 8.14 Rate 1/2 Nonsystematic Binary Convolutional
Code Subgeneratorsa

Constraint Length, K Subgenerators (g1,g2) dfree

3 7,5 5
4 17,15 6
5 35,23 7
6 75,53 8
7 171,133 10
8 371,247 10
9 753,561b 12
10 1545,1167 12
11 3661,2335 14
12 5723,4335 15
13 17661,10533 16
14 27123,21675 16

aLarsen [79]. Reproduced by permission of the IEEE.
bIS-95 DS-CDMA forward link speech encoder.

TABLE 8.15 Rate 1/3 Nonsystematic Binary Convolutional
Code Subgeneratorsa

Constraint Length, K Subgenerators (g1,g2,g3) dfree

3 7,7,5 8
4 17,15,13 10
5 37,33,25 12
6 75,53,47 13
7 175,145,133b 15
8 367,331,225 16
9 711,663,557c 18
10 1633,1365,1117 20
11 3175,2671,2353 22
12 6265,5723,4767 24
13 17661,10675,10533 24
14 37133,35661,21645 26

aLarsen [79]. Reproduced by permission of the IEEE.
bThis code found by Larsen and Odenwalder. Odenwalder’s published code
is (171,145,133) with dfree = 14
cIS-95 DS-CDMA reverse link speech encoder.

TABLE 8.16 Rate 1/4 Nonsystematic Binary Convolutional
Code Subgeneratorsa

Constraint Length, K Subgenerators (g1,g2,g3,g4) dfree

3 7,7,7,5 10
4 17,15,15,13 13
5 37,33,27,25 16
6 75,71,67,53 18
7 163,147,135,135 20
8 357,313,275,235 22
9 745,733,535,463 24
10 1653,1633,1365,1117 27
11 3175,2671,2353,2387 29
12 7455,6265,5723,4767 32
13 16727,15573,12477,11145 33
14 35537,35527,23175,21113 36

aLarsen [79]. Reproduced by permission of the IEEE.

TABLE 8.18 Rate 1/6 Nonsystematic Binary Convolutional
Code Subgeneratorsa

Constraint Length, K Subgenerators (g1,g2,g3,g4,g5,g6) dfree

3 7,7,7,7,5,5 16
4 17,17,13,13,15,15 20
5 37,35,27,33,25,35 24
6 73,75,55,65,47,57 27
7 173,151,135,135,163,137 30
8 253,375,331,235,313,357 34

aDaut et al. [81]. Reproduced by permission of the IEEE.

TABLE 8.19 Rate 1/7 Nonsystematic Binary Convolutional
Code Subgeneratorsa

Constraint Length, K Subgenerators (g1,g2,g3,g4,g5,g6,g7) dfree

3 7,7,7,7,5,5,5 18
4 17,17,13,13,13,15,15 23
5 35,27,25,27,33,35,37 28
6 53,75,65,75,47,67,57 32
7 165,145,173,135,135,147,137 36
8 275,253,375,331,235,313,357 40

aDaut et al. [81]. Reproduced by permission of the IEEE.

TABLE 8.17 Rate 1/5 Nonsystematic Binary Convolutional
Code Subgeneratorsa

Constraint Length, K Subgenerators (g1,g2,g3,g4,g5) dfree

3 7,7,7,5,5 13
4 17,17,13,15,15 16
5 37,27,33,25,35 20
6 75,71,73,65,57 22
7 175,131,135,135,147 25
8 257,233,323,271,357 28

aDaut et al. [81]. Reproduced by permission of the IEEE.
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to an 8-ary modulated symbol. However, a nonbinary Ham-
ming distance measure should be used when mapping the
code bits to an M-ary modulated symbol. In this regard,
Trumpis [82] investigated good rate 1/2 and 1/3 binary con-
volutional codes based on nonbinary Hamming distances
with corresponding 4-ary and 8-ary symbol mapping; the
resulting code generators are listed in Tables 8.21 and 8.22.

The preceding codes are all binary rate 1/n convolutional
codes, and Paaske [77] has evaluated nonbinary rate (n − 1)/n
convolutional codes and the subgenerators are listed in
Tables 8.23 and 8.24 for the codes rates 2/3 and 3/4. Paaske’s
work is based on Forney’s formulation [83, 84] of high-rate
convolutional codes where the parameter ν is defined as the
constraint length. The topology of the rate (n − 1)/n encoder
is similar to the general encoder shown in Figure 8.34. For

these convolutional codes, the number of source-bits input
to the encoder memory each code block is k = n − 1. The
example code, used to clarify the following description, is
shown in Figure 8.41 and corresponds to the rate 3/4, con-
straint length 6, convolutional encoder listed in Table 8.24.

In terms of the code-block parity generator matrix G,
Paaske defines as set of (n − 1 by n) generator matrices Gi:
i = 0, …, K − 1 expressed as

Gi = gi1 x gi2 x gin x (8.77)

where gi
ℓ
x ℓ = 1,…,n are n − 1-dimensional column vec-

tors with binary elements {1,0}. The subgenerators gℓ(x),
defined by (8.73) and shown in Figure 8.34, are evaluated,

TABLE 8.20 Rate 1/8 Nonsystematic Binary Convolutional
Code Subgeneratorsa

Constraint
Length, K

Subgenerators (g1,g2,g3,g4,g5,g6,
g7,g8) dfree

3 7,7,5,5,5,7,7,7 21
4 17,17,13,13,13,15,15,17 26
5 37,33,25,25,35,33,27,37 32
6 57,73,51,65,75,47,67,57 36
7 153,111,165,173,135,135,147,137 40
8 275,275,253,371,331,235,313,357 45

aDaut et al. [81]. Reproduced by permission of the IEEE.

TABLE 8.21 Rate 1/2 Nonsystematic Binary Convolutional
Code Subgenerators for 4-ary Signalinga

Constraint Length, K Subgenerators (g1,g2)

3 7,5
4 15,12
5 32,25
6 75,57
7 133,176

aMichelson and Levesque [63]. Reproduced by permission of John Wiley &
Sons, Inc.

TABLE 8.22 Rate 1/3 Nonsystematic Binary Convolutional
Code Subgenerators for 8-ary Signalinga

Constraint Length, K Subgenerators (g1,g2,g3)

3 4,6,5
4 11,15,13
5 22,33,26
6 46,67,55
7 176,155,127

aMichelson and Levesque [63]. Reproduced by permission of John Wiley &
Sons, Inc.

TABLE 8.23 Rate 2/3 Nonsystematic Nonbinary
Convolutional Code Subgeneratorsa

Constraint Length, ν Subgenerators (g1,g2,g3) dfree

2 13,06,16 3
3 41,30,75 4
4 56,23,65 5
5 245,150,375 6
6 266,171,367 7
7 1225,0655,1574 8
9 4231,2550,7345 9
10 5516,2663,6451 10

aPaaske [77] by permission of the IEEE.

TABLE 8.24 Rate 3/4 Nonsystematic Nonbinary
Convolutional Code Subgeneratorsa

Constraint Length, ν Subgenerators (g1,g2,g3,g4) dfree

3 400,630,521,701 4
5 442,270,141,763 5
6 472,215,113,764 6
8 4463,2470,1511,7022 7
9 4113,2246,1744,7721 8

aPaaske [77] by permission of the IEEE.
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FIGURE 8.41 Rate 3/4, constraint length v = 6, K = 3,
convolutional encoder.
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in terms of the transpose of the k = n − 1 column vectors

g i
ℓ
x = gi

ℓ
x

T
, as

gℓ x = g 0
ℓ
x xk K−1 + g 1

ℓ
x xk K−2 + + g K−2

ℓ
x xk + g K−1

ℓ
x

(8.78)

In words, gℓ(x) is the sum of the transpose of the ℓ-th col-
umn vector in Gi with the significance of the bits in descend-
ing order from right to left. For example, Paaske’s generator
matrices for the rate 3/4, constraint length v = 6, convolu-
tional code, shown in Figure 8.41, are listed in Table 8.25;
the corresponding subgenerators gℓ(x) are listed in
Table 8.26 using binary and octal notation.

Referring to the state transitions in the trellis diagram as
emanating from a source state and converging on a termina-
tion state, the code bits associated with each of the transitions
to a given termination state are important; in that, they influ-
ence the selection of the survivor at the termination states and
ultimately the trellis decoding performance. For the rate 1/2,
K = 3 binary trellis decoder, shown in Figure 8.38, there are
only two transitions converging on each termination state and
the corresponding Hamming distances between any two code
words is: hd = {0,1,2}. However, with the unipolar-to-bipolar
mapping di = 1 − 2bi, such that bi = {0,1} and di = {1,−1},
the, noise-free, correlation response between any two code
words is, from (8.76), Δm= 2,0, −2 . The maximum
cross-correlation, Δm max = 2, corresponds to the received
code-word matching the transition code word leading to a
correct survivor decision in the noise-free case. Therefore,
the matched filter or correlation detector responses dissimilar
to the receive code word are either orthogonal or antipodal.

For a trellis decoder with a large number of trellis states
with multiple source states converging on each termination
state, it is processing efficient to store pointers to each source

state and the corresponding transition code words. Using the
rate 3/4, constraint length 6, K = 3 convolutional code in
Figure 8.41 as an example, the 2k=3 = 8 source states (Si), con-
verging on the selected termination state (Si+1), are depicted
in Figure 8.42. The selected termination state identifies the
binary source data in the k = 3-bit encoder memory B−1,n

and B and the eight different source states is determined by
indexing the 3-bit encoder memory B−2,m from 0 to 7. For
each source state, the unique 4-bit code word (CWm) is deter-
mine by applying the subgenerators gℓ(x) as expressed in
(8.73) and identified in Table 8.24.

It is relatively easy to write a computer program to eval-
uate the encoder binary memory that identifies the source
states, the input source data B, and the corresponding transi-
tion code words given the termination state as described ear-
lier. In this evaluation, it is useful to write a procedure to
convert from binary to integer and vice versa using the con-
vention that the LSB is on the right. Computer simulations
indicate that, for all 26 = 64 possible states, hd = {0,1,4}
and the noise-free cross-correlation response between the
received and transition code-words isΔm = 4,0, −4 . Using
the binomial coefficient, the number of combinations of the
eight code words taken two at a time is 8C2 = 28 and of these
28 combinations, 4 have cross-correlations of +4 and 24 have
cross-correlations of zero.

TABLE 8.25 Paaske’s Generator Matrices for the Rate 3/4, Constraint Length 6, Convolutional Code

G0 G1 G2

g01 x g02 x g03 x g04 x g11 x g12 x g13 x g14 x g21 x g22 x g23 x g24 x

1 0 0 1 1 0 0 1 0 1 0 1
0 1 0 1 1 0 0 1 1 0 1 0
0 0 1 1 1 1 1 0 0 1 1 0

TABLE 8.26 Subgenerators for the Rate 3/4, Constraint
Length 6, Convolutional Code

Subgenerators Binary Octal

g1(x) 100111010 472
g2(x) 010001101 215
g3(x) 001001011 113
g4(x) 111110100 764

Si+1 state Determines
8 different
Si states 

CW8

CWm

CW1

Si+1 state 

Source
dataSi state 

BB–1,nB–2,1

BB–1,nB–2,8

BB–1,nB–2,m BB–1,n

…
…

FIGURE 8.42 Convolutional code trellis decoding (8-ary, rate
3/4, K = 3).

292 CODING FOR IMPROVED COMMUNICATIONS



8.11.4 Dual-k Nonbinary Convolutional Codes

The dual-k code is a nonbinary class of convolutional codes
that are designed to be used with M-ary symbol modulation.
The dual-k encoder shifts k input bits through dual (two) k-bit
registers and outputs dual (two) k-bit symbols. Proakis [85]
expresses the subgenerators gi(x) : i = 1, …, 2k for the
dual-k codes as follows:

g1 x

g2 x

gk x

= Ik Ik (8.79)

gk + 1 x

gk + 2 x

g2k x

=

1

0 Ik−1

Ik

1 0 0

(8.80)

Here, Ik is the k × k identity matrix. The dual-3 code provides
robust communications in a Rayleigh fading stressed envi-
ronment using 8-ary FSK symbol modulation and noncoher-
ent detection [86, 87]. The dual-3, -4, and -5 encoder
subgenerators are tabulated in Table 8.27 and the dual-3
encoder is shown in Figure 8.43.

8.11.5 Convolutional Code Transfer Function and
Upper Bound on Performance

An important technique in the performance analysis of a
convolutional code is the transfer function described by
Odenwalder [76] and in a tutorial paper by Viterbi [88].
The convolutional code transfer function is derived from a
state diagram [89] that highlights the Hamming distance
properties of the code for various states through the trellis
decoder. The transfer function properties are characterized
as the ratio of the output to input states over a prescribed
code sequence; however, since the convolution code is lin-
ear, the Hamming distance is independent of the selected
output to input states so the all-zero sequence is chosen
because of its relative simplicity in interpreting the transfer
function of the code.

The convolutional code transfer function is described
using, as an example, the binary rate 1/2, constraint length
K = 3 code shown in Figure 8.37 and the corresponding
trellis diagram shown in Figure 8.38. The state diagram
for this code is shown in Figure 8.44 and is based on an
all-zero data sequence with the data error branches conver-
ging on successive states and reemerging with the correct
zero state at different points through the trellis. The dis-
tance between the correct code word 00 and the code word
corresponding to the transition path is labeled Dd where d
denotes the Hamming distance, so the distance from the
state 00 to 01 labeled D2. In a like manner, the number
of bit errors and the path length corresponding to the tran-
sition path are labeled N and L, respectively. These labels
are easily determined from the trellis diagram of the code,
as shown for this example code in Figure 8.38 where, for
the assumed zero source data, a single bit error is indicated
by the solid transition lines. In the state diagram descrip-
tion, the path length L is included with each transition
path; however, when expressed in terms of the code trans-
fer function, L will take on an integer exponent indicating
the path length for a divergent path reemerging with the
all-zero path.

TABLE 8.27 Dual-3, -4, and -5 Convolutional Code
Subgenerators

Code Subgeneratorsa

Dual-3 g1, g2, g3 (4,4), (2,2), (1,1)
g4, g5, g6 (6,4), (1,2), (4,1)

Dual-4 g1, g2, g3, g4 (10,10), (4,4), (2,2), (1,1)
g5, g6, g7, g8 (14,10), (2,4), (1,2), (10,1)

Dual-5 g1, g2, g3, g4, g5 (20,20), (10,10), (4,4), (2,2), (1,1)
g6, g7, g8, g9, g10 (30,20), (4,10), (2,4), (1,2), (20,1)

aGroups of k-bits are in octal notation with the LSB on the right.
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FIGURE 8.43 Dual-3 convolutional encoder.
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The state diagram is used to compute the convolutional
code transfer function by following the few simple rules
shown in Figure 8.45.

Defining the transfer function as T(N,L,D) = y0/x0 and
applying the appropriate rules in Figure 8.45 results in the
expression

T N,L,D =
NL3D5

1−NLD−NL2D

=NL3D5 1 +N L+ L2 D +N2 L2 + 2L3 + L4 D2

+N3 L3 + 3L4 + 3L5 + L6 D3 +

=NL3D5 +N2 L4 + L5 D6 +N3 L5 + 2L6 +L7 D7

+N4 L6 + 3L7 + 3L8 + L9 D8 +

(8.81)

Referring to the last equality in (8.81), the exponents of the
parameters N, L, and D indicate, respectively, the number of
decoded bit errors that occurred before reemerging with the

all-zero path, the number of path lengths prior to reemerging
with the all-zero path, and the Hamming distance of the code
words over the path before reemerging with the all-zero path.
Therefore, theminimumdistance for this exampleconvolutional
code isdmin = 5andoccurredover onepath of 3 trellis transitions
resulting inonebit error.Thenext smallestHammingdistanceof
6 and occurred over two path lengths of 4 and 5 resulting in two
bit errors per path for a total 4 bit-errors, and so on. The number
of bit errors corresponding to each Hamming distance is deter-
minedbydifferentiating (8.81)with respect toN and then setting
N and L equal to one; the result is expressed as

∂T N,L,D
∂N N,L = 1

=D5 + 4D6 + 12D7 + 32D8 + (8.82)

For ideal BPSK waveform modulation and the AWGN
channel, the probability of error for each incorrect path prior
to reemerging with the all zero path is given by

Pbe path = npQ 2rchdγb (8.83)

where rc is the code rate, γb is the energy-to-noise-density ratio
measured in the data rate bandwidth, hd and np are the Ham-
ming distance and number of bit errors for all paths associated
with the Hamming distance. The overall bit-error probability
can be upper bounded by applying the union bound and, for
the binary, rate rc = 1/2, K = 3 example code being considered,
the bit-error probability is upper bounded by

Pbe ≤
all paths

Pbe path

=Q 5γb + 4Q 6γb + 12Q 7γb + 32Q 8γb +

(8.84)

As stated previously, the decoding path length is impor-
tant with short messages, and (8.84) and the last equality
in (8.81) provide some insight on the impact of the trellis
decoding length on the decoder performance. However, for
long messages the trellis depth of four or five constraint
lengths is not a performance limiting issue, aside from the
message throughput delay.

Odenwalder [76] provides a convenient closed-form solu-
tion for the upper bound on the bit-error probability by using
the inequality

Q x + y ≤Q x e−y 2 x,y ≥ 0 (8.85)

Using this result, (8.84) is expressed as

Pbe ≤
all paths

Pbe path

≤Q 5γb 1 + 4e−γb 2 + 12e−γb + 32e−3γb 2 +

(8.86)
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FIGURE 8.44 State diagram for binary, rate 1/2, K = 3,
convolutional code.
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The derivative of the convolutional code transfer func-
tions for the binary rate 1/2 and 1/3 convolutional codes,
listed in Tables 8.14 and 8.15, are shown in Tables 8.28
and 8.29 where

Dn =Q nγb (8.87)

Similarly, the derivative of the convolutional code transfer
functions for the rate 1/2 and 1/3 convolutional codes with
4-ary and 8-ary symbol modulations are listed in Tables 8.30
and 8.31. The subgenerators for these codes correspond to
those listed in Tables 8.21 and 8.22 for 4-ary and 8-ary sym-
bol modulations, respectively. The performance of these

codes can be compared, without the need for detailed com-
puter simulations, using (8.84), (8.85), and (8.87) with the
appropriate polynomials in D given in the following tables.

8.11.6 The Dual-k Convolutional Code
Transfer Function

The transfer function of a rate rc = 1/n dual-k convolutional
code, with ℓ transmissions of the code, is expressed as
[64, 90],

TABLE 8.28 Derivative of the Transfer Function of the
Binary Rate 1/2 Convolutional Codea

Constraint
Length, K ∂T N,L,D ∂N N,L= 1

3 D5 + 4D6 + 12D7 + 32D8 + 80D9 + 192D10 +
448D11 + 1024D12 + 2304D13 + 5120D14 +

4 2D6 + 7D7 + 18D8 + 49D9 + 130D10 + 333D11 +
836D12 + 2069D13 + 5060D14 + 12255D15 +

5 4D7 + 12D8 + 20D9 + 72D10 + 225D11 + 500D12 +
1324D13 + 3680D14 + 8967D15 + 22270D16 +

6 2D8 + 36D9 + 32D10 + 62D11 + 332D12 + 701D13 +
2342D14 + 5503D15 + 12506D16 + 36234D17 +

7 36D10 + 211D12 + 1404D14 + 11633D16 +
77433D18 + 502690D20+

aMichelson and Levesque [63]. Reproduced by permission of John
Wiley & Sons.

TABLE 8.29 Derivative of the Transfer Function of the
Binary Rate 1/3 Convolutional Codea

Constraint
Length, K ∂T N,L,D ∂N N,L= 1

3 3D8 + 15D10 + 58D12 + 201D14 + 655D16 +
2052D18+

4 6D10 + 6D12 + 58D14 + 118D16 + 507D18 +
1284D20 + 4323D22+

5 12D12 + 12D14 + 56D16 + 320D18 + 693D20 +
2324D22 + 8380D24+

6 D13 + 8D14 + 26D15 + 20D16 + 19D17 + 62D18 +
86D19 + 204D20 + 420D21 + 710D22 +
1345D23 +

7 7D15 + 8D16 + 22D17 + 44D18 + 22D19 + 94D20 +
219D21 + 282D22 + 531D23 + 1104D24 +
1939D25 +

aMichelson and Levesque [63]. Reproduced by permission of John
Wiley & Sons.

TABLE 8.30 Derivative of the Transfer Function of the
Binary Rate 1/2 Convolutional Code for 4-ary Symbol
Modulationa

Constraint
Length, K ∂T N,L,D ∂N N,L= 1

3 D3 + 4D4 + 12D5 + 32D6 + 80D7 + 192D8 + 448D9 +
1024D10 + 2304D11 + 5120D12 +

4 D4 + 14D5 + 21D6 + 94D7 + 261D8 + 818D9 +
2173D10 + 6335D11 + 17220D12 +47518D13 +

5 3D5 + 15D6 + 22D7 + 196D8 + 398D9 + 1737D10 +
4728D11 + 15832D12 + 47491D13 +144170D14 +

6 9D6 + 14D7 + 62D8 + 212D9 + 874D10 + 2612D11 +
9032D12 + 28234D13 + 93511D14 +288974D15 +

7 7D7 + 39D8 + 104D9 + 352D10 + 1348D11 +
4540D12 + 14862D13 + 48120D14 +156480D15 +
505016D16 +

aMichelson and Levesque [63]. Reproduced by permission of John
Wiley & Sons.

TABLE 8.31 Derivative of the Transfer Function of the
Binary Rate 1/2 Convolutional Code for 8-ary Symbol
Modulationa

Constraint
Length, K ∂T N,L,D ∂N N,L= 1

3 D3 + 2D4 + 5D5 + 10D6 + 20D7 + 38D8 + 71D9 +
130D10 + 235D11 + 420D12 +

4 D4 + 2D5 + 7D6 + 16D7 + 41D8 + 94D9 + 219D10 +
492D11 + 1101D12 + 2426D13 +

5 D5 + 5D6 + 8D7 + 25D8 + 64D9 + 170D10 + 392D11 +
958D12 + 2270D13 + 5406D14 +

6 D6 + 5D7 + 7D8 + 34D9 + 76D10 + 200D11 +
557D12 + 1280D13 + 3399D14 + 8202D15 +

7 D7 + 4D8 + 8D9 + 49D10 + 92D11 + 186D12 +
764D13 + 1507D14 + 4198D15 + 10744D16 +

aMichelson and Levesque [63]. Reproduced by permission of John
Wiley & Sons.
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Tℓ N,L,D =
2k −1 NL2D2nℓ

1−NL nD n−1 ℓ + 2k−1−n Dnℓ
ℓ code diversity

(8.88)

Upon differentiating (8.88) with respect to N and evaluat-
ing the result for N, L = 1 results in the expression

∂Tℓ N,L,D
∂N N,L = 1

=
2k −1 D2nℓ

1−nD n−1 ℓ − 2k −1−n Dnℓ 2

(8.89)

Equation (8.89) is evaluated for n = 2, corresponding to
the code rate rc = 1/2, and the resulting polynomial expres-
sions in terms of D are summarized in Table 8.32 for ℓ = 1
through 4 with

F D = 7 + 28D + 154D2 + 644D3 + 2765D4

+ 11144D5 + 44436D6 +
(8.90)

In thiscase, theexponentofD is theHammingdistanceof the
q-ary symbol with q = 8 corresponding to the transmissions of
two 8-ary FSK symbols-per-code. The underlying code, corre-
sponding to ℓ = 1, has a minimum free distance of dfree = 4.

8.11.7 Code Puncturing and Concatenation

Code puncturing is a technique that involves deleting speci-
fied parity bits from an underlying convolutional code, with
rate rc, to provide codes rates greater than rc, with a commen-
surate decrease in the coding gain. The puncturing is accom-
plished by the rate and symbol mapping functions shown in
Figure 8.35 and, if the puncturing is performed judiciously,
the decoding can be accomplished with very little change
in decoding complexity. Cain et al. [91] identify subgenera-
tors for the best codes, derived by periodically puncturing an
underlying rate 1/2 convolutional code, to obtain code rates
2/3 and 3/4 with constraint lengths* v = 2,…, 8. Yasuda et al.
[67], identify subgenerators (see Appendix 8A) derived from

the underlying rate 1/2 convolutional code, to obtain punctu-
red codes rates (n − 1)/n for n = 3 through 14 with constraint
length v = 2, …, 8. High-rate codes that are generated in this
manner and decoded using a trellis decoder are referred to as
pragmatic trellis codes. Wolf and Zehavi [92] discuss punc-
tured convolutional codes used to generate high-rate codes in
the generation of pragmatic punctured [93] (P2) trellis codes
[94], for PSK and quadrature amplitude modulation (QAM)
waveforms.

When the punctured codes are derived from an
underlying lower rate code, the trellis decoding is essentially
the same as that of the underlying code; however, there is an
increase in complexity associated with synchronization and
tracking of the puncturing location in the decoding trellis.
The ability to select the code rate by simply selecting the
puncturing configuration has many advantages. For example,
by altering the puncturing configuration, a single convolu-
tional decoding chip [95] can be configured to accommodate
more efficient modulation waveforms or to adjust the code
rate to maintain the message reliability under varying channel
conditions.

Code concatenation is a technique in which two codes are
operated in a serial configuration to increase the overall cod-
ing gain relative to that of a single code. This configuration
consists of an outer and inner code that may be identical
codes; however, a common configuration is to use an RS
outer code with a convolutional inner code. Typically, the
codes are separated by an interleaver to ensure that error
bursts are randomly distributed between the codes. Forney
[96] has proposed the concatenation of a 2K-ary RS outer
code with a constraint length K convolutional inner code
separated by an L-by-M row-column block interleaver. The
RS symbol contains K bits and the block interleaver is filled
row by row with L RS symbols and emptied column by col-
umn with M = 2K − 1 symbols. Odenwalder [97] examines
the performance this concatenated code configuration. Proa-
kis and Rahman [87] examine the performance of concate-
nated dual-k codes.

Other applications of code concatenation involve the
design of turbo and turbo-like codes. These configurations
may involve two or more convolutional codes with each code
separated by block interleavers that are instrumental in the
overall decoding performance. Concatenated convolutional
coding is discussed in more detail in Section 8.12 with refer-
ences to original research and additional reading.

8.11.8 Convolutional Code Performance Using the
Viterbi Algorithm

The performance results using the Viterbi algorithm are
shown in Figure 8.46 for rate 1/2 binary convolutional coding
with constraint lengths of 4 through 9. The decoding trellis
depth is four constraint lengths. The results are shown
using hard limiting and virtually infinite quantization of

TABLE 8.32 Derivative of the Transfer Function of the
Nonbinary Dual-3 Codea

ℓ ∂Tℓ N,L,D ∂N N,L= 1

1 D4F(D)
2 D8F(D2)
3 D12F(D3)
4 D16F(D4)

aWith F(D) =C0 +C1D +C2D
2 + , the notation F(Dm) =C0 +C1D

m +
C2D

2m + .

*The constraint length v corresponds to the number of memory elements as
defined by Forney [84].
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the matched filtered symbol samples. The hard-limiting per-
formance is equivalent to 1-bit quantization. For comparison,
the ideal or theoretical performance of antipodal signaling
with AWGN is shown as the dashed curve. The Monte Carlo
simulation results are based on 5M bits for each signal-to-
noise ratio less than 4 dB. To preserve the simulated perfor-
mance measurement accuracies for larger signal-to-noise
ratios, the number is increased 10 fold. Under these condi-
tions, the 90% confidence limit for bit-error probabilities
on the order of 5 × 10−7 is ±1.6 × 10−7 or within ±32%. For
the hard-limited performance evaluation, the 4.5M bit Monte
Carlo simulation is increased 10 fold for signal-to-noise
ratios ≥6 dB.

An important consideration, regarding the demodulator
processing, is the quantization of the matched filter output
sample that directly impacts the performance of the convolu-
tional decoder [72]. For example, with the received signal
level held constant by the AGC, the two-level hard-limiting
simulation performance in Figure 8.46, results in about
2.1 dB loss in Eb/No performance at Pbe = 10−5 compared
to the infinitely quantized performance. By contrast, the sim-
ulation performance results shown in Figure 8.47 indicates
that the performance loss with 4- and 8-level (2- and 3-bit)
quantization results in a, respective, performance loss of
less than 0.2 and 0.1 dB compared to the performance with
essentially infinite quantization.

The results indicate that the improvement in signal-to-
noise ratio at Pbe = 10−7, relative to the uncoded performance,
is about 4.2 dB for K = 4 with 8-level quantization and about
2.0 dBwith hard limiting. Byway of contrast, with Pbe = 10−7

and K = 9, the performance with infinite quantization and
hard limiting is 7.3 and 4.4 dB respectively. Furthermore,
for large signal-to-noise ratios, there is about 0.5 dB of

improvement in the signal-to-noise ratio with each unit
increase in the constraint length.

Figure 8.48 shows the sensitivity of the performance to
receiver AGC gain variations. The 3-bit quantizer includes
a sign bit and two magnitude bits with saturation occurring
at 1.0 V so the magnitude bits are assigned as b12

−1 +
b02

−2. It is important to note that under-flow rounding is used
in all of the simulation results. In the simulation program, the
nominal baseband signal voltage at the quantizer input of is
set to 0.707 V or 3 dB below the 1.0 V saturation level.

The results of the simulated performance show that the
loss in Eb/No performance is within ±0.2 dB over a receiver
gain variation of about ±12 dB. Furthermore, the results
indicate that symmetrical performance with respect to the
receiver gain variation is obtained by setting the nominal
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(trellis depth = 5K bits).
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baseband signal to 0.707 V below the quantizer saturation;
this is not a surprising result since the nominal receiver level
was adjusted based on this analysis.

8.11.9 Performance of the Dual-3 Convolutional
Code Using 8-ary FSK Modulation

The dual-3 convolutional coded 8-ary noncoherent FSK per-
formance with AWGN is evaluated using the uncoded bit-
error probability expressed in (7.21) as

Pbe γ =
2k−1

2k −1
e−γ

M−1

i= 1

M−1

i

−1 i+ 1

i + 1
eγ i+ 1 (8.91)

where M = 2k k = 3 = 8. Equation (8.91) is labeled as the
uncoded curve in Figure 8.49 and is used as the underlying
bit-error probability in the evaluation of the dual-3 convolu-
tional coded performance with AWGN. The signal-to-noise
ratio γ is measured in the symbol rate bandwidth and is
related to the bandwidth of the bit rate as γ = kγb. The perfor-
mance of the dual-3 coded noncoherent 8-ary FSK waveform
is evaluated using (8.89) with n = 2, corresponding to the
code rate rc = 1/2, and diversity values of ℓ = 1 through 4.*

In the evaluation of (8.89), the terms Dx are replaced by
Pbe(xγ) and the results are shown as the dashed curves in
Figure 8.49 for the indicated diversities; these curves repre-
sent upper bounds on the performance as indicate by the first
inequality in (8.86).

The dashed curves in Figure 8.50 show the performance of
the dual-3 coded noncoherent 8-ary FSK in a Rayleigh fading
channel for the indicated diversities; the solid curve represents

the uncoded performance with Rayleigh fading. The theoret-
ical expressions for these results are based on the work of
Odenwalder [98]. In this case, the bit-error probability is eval-
uated by summing the coefficients (Ci) of the polynomial

P D =D2nℓF D
n= 2 =D

4ℓ
∞

i= 0

CiD
i (8.92)

where n = 2 corresponds to the rate 1/2 dual-3 encoder. The
coefficients Ci are those of F(D) expressed in (8.90) and the
bit-error probability is expressed as

Pbe <
2k−1

2k −1

∞

i= 4ℓ

Ci−4ℓPi (8.93)

where the factor involving k = 3 is used to convert from sym-
bol errors to bit errors. Typically, only a few coefficient terms
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FIGURE 8.49 Dual-3 coded 8-ary noncoherent FSK performance with AWGN.
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with slow Rayleigh fading.

*The equivalent polynomial expression of (8.89) using (8.90) and Table 8.32
yield approximate results when the summation is performed over a finite
number of terms.
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are required to obtain a good bound on Pbe and four are used
to obtain the results in Figure 8.50. In (8.93), the probability
Pi is the probability of an error in comparing two sequences
that differ in i symbols and is evaluated as

Pi ≤ p
i
i−1

j= 0

i−1 + j

j
1−p j (8.94)

where p is given by [99]

p = 2 +
k

n

Eb

No

−1

(8.95)

An easier evaluation of Pi, which applies for i ≥ 6, is
[64, 90]

Pi <
4p 1−p i

5π2 1−2p
i ≥ 6 (8.96)

Equation (8.95) is plotted as the solid curve in Figure 8.50
and, using (8.94), (8.95), and (8.96), Equation (8.93) is plot-
ted as the dashed curves. The notation <s> denotes the aver-
age value of s corresponding to the fading channel. The
performance of the dual-3 convolutional code in combating
Raleigh fading is impressive and, referring to the perfor-
mance with diversity applied to uncoded 8-ary FSK in
Section 20.9.5, the dual-3 code without diversity, that is, with
ℓ = 1, requires about 3 dB less Eb/No than the uncoded 8-ary
FSK modulation with ℓ = 4.

8.12 TURBO AND TURBO-LIKE CODES

The discovery by Berrou, Glavieux, and Thitimajshima [1] of
near-optimum error correction coding and decoding, referred
to as TCs, represents a major step toward achieving Shan-
non’s error-free performance limit of Eb/No = −1.56 dB.
Their revolutionary results describe an implementation invol-
ving the parallel concatenation of two convolutional codes,
with an intervening random interleaver, that are decoded with
multiple forward and backward iterations through a trellis
decoder resulting in performance remarkably close to Shan-
non’s limit. This discovery sparked a new focus among ana-
lysts and practitioners that resulted in a unified theory* of
multiple PCCCs [100] with iterative decoding that performed
within a few tenths of a decibel of Shannon’s limit. Divsalar
and Pollara [101], Benedetto and Montorsi, and other
researchers have substantiated the near Shannon-limit
performance of the PCCC and present generalized

descriptions of an encoder/decoder suitable for personal com-
munications service (PCS) and many other applications. This
research has also led to a variety of alternative concatenated
codes and a unified approach to their implementation [102].
For example, Benedetto, Montorsi, Divsalar, and Pollara
have made major contributions to the understanding of the
fundamentals of turbo coding and have extended the notion
of iterative decoding to SCCCs [103]. Furthermore, their
efforts have resulted in the description of a universal soft-
in soft-out (SISO) decoding module [104] that is suitable
for implementation using a variety of technologies: digital
signal processors (DSPs), field programmable gate arrays
(FPGAs), and application-specific integrated circuits
(ASICs). Divsalar [105] provides detailed descriptions of
the coding and decoding of turbo and turbo-like codes.

Compared to high-constraint-length convolutional codes,
required to achieve moderately high coding gains, turbo-like
codes involve relatively short-constraint-length concatenated
convolutional codes.†An important distinction is that convo-
lutional codes traditionally use nonrecursive convolutional
(NRC) codes requiring, for example, constraint length K = 9
bits or 256 states, to achieve modest coding gains at relatively
high signal-to-noise ratios. For example, a 256-state convolu-
tional codewith aViterbi decoder achievesEb No 3 5 dB at
Pbe = 10−5 and the RSV concatenated code achieves Eb No

3 dB. On the other hand, TCs or PCCCs use recursive system-
atic convolutional (RSC) constituent codes (CCs) with 8 or
16 states and achieve Eb No −0 6 dB at Pbe = 10−5. The
SCCCs use two- or four-state NRC and RSC CCs to achieve
comparable performance. The selection of the code rates,
interleaver lengths, and the number of demodulator decoder
iterations is a major factor that influences the resulting perfor-
mance. There is also an accompanying increase in decoder
processing complexity that is inversely proportional to the
code rate and proportional to the interleaver length and the
number of iterations.

The use of RSC codes is critical in that they result in infi-
nite impulse response (IIR) convolutional codes that yield the
largest effective free distance [106] for the turbo encoder.
This large effective free distance provides the coding gain
necessary to overcome the operation in extremely low sig-
nal-to-noise conditions when approaching the Shannon limit
of Eb/No = −1.59 dB. Divsalar and McEliece use the notation
(r, k, m) for the convolutional CC generators defined as the
k × r matrix G(D) expressed as

G D =
P1 D

Q D

Pr D

Q D
(8.97)

*The term turbo coding was originally applied to the parallel concatenation
of two convolutional codes; however, it has become more generally used to
describe all PCCCs.

†Decoding of high-constraint-length convolutional codes use sequential
decoding to avoid the computational complexity associated with the high
number of states in the trellis decoders.
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where Q(D) is a primitive polynomial of degree m and Pi(D)
of m-degree polynomials of the form

Pi D = 1+ +Dm Q D (8.98)

The notation D is a unit delay element much like the
z-domain notation z−1. In terms of the conventional system-
atic convolutional code notation (n, k, m) with n = k + r, the
TC generator G (D) is defined as

G D ≜ IkG D (8.99)

where Ik is the k × k identity matrix and G (D) the k × n
matrix. These notations are used in the following descriptions
of the TC generators.

8.12.1 Interleavers

Interleavers play such a prominent role in the coding gain of
turbo-like codes that considerable attention has been focused
on their design [107]. Typically, random block interleavers
are employed and a number of algorithms have been exam-
ined for implementation. In addition to the interleavers
impact of the coding gain, other key interleaver characteris-
tics are delay, memory, spreading factor—a measure of the
interleavers ability to spread, or distribute, channel burst
errors to appear as independent errors over a specified inter-
val at the deinterleaver output, and dispersion—a measure of
the “randomness” of the interleaver. Interleavers are dis-
cussed in Section 8.12.1 and the selection of an appropriate
turbo-like code interleaver is based on the communication
channel considerations and the trade-off between interleaver
coding gain and delay [108]. Unfortunately, high interleaver
gains are associated with long interleavers resulting in long
delays. The decoding memory for very long interleavers
can be reduced by using overlapping sliding windows [109].

Several interleaver configurations that have been used
with turbo-like codes are described in the following sections.
In the description of the interleavers and in the general
description of the turbo-like code processing to follow, the
interleavers are denoted by the symbol π, and the following
algorithms describe how the interleavers are filled and read.
The turbo-like code performance simulations, discussed in
Section 8.12.7.1, use the Jet Propulsion Laboratory (JPL)
spread interleaver with various interleaver lengths to demon-
strate the dependence on the coding gain.

8.12.1.1 Turbo Interleaver The turbo interleaver is used
with the original description of the TC described by Berrou
et al. [1]. It is characterized as a square L × L block interleaver
and is filled, or written, row by row and emptied, or read, in a
randommanner described as follows. The respective row and
column indices are i and j, indexed as 0, 1, …, L − 1. When
the matrix is full, the data is interleaved by randomly reading

from location (ir, jr) computed as permutations of the row–
column indices i and j according to the following rules.
The row index is computed as

ir =
L

2
+ 1 i + j modulo L (8.100)

where

k = i+ j modulo L (8.101)

and the column index computed as

jr = P k i+ 1 −1 modulo L (8.102)

where P(k), k = 0, 1,…,M − 1 is a set of prime numbers. The
value ofM is dependent on L; typically, M = 8 for L < = 256.
The original set of prime numbers used by Berrou, Glavieux,
and Thitimajshima are (7, 17, 11, 23, 29, 13, 21, 19); how-
ever, other sets have also been used, for example, (17, 37,
19, 29, 41, 23, 13, 7) [110].

The factor (L/2 + 1) in (8.100) ensures that two neighbor-
ing input bits written on two consecutive rows will not remain
neighbors in the interleaved output. The factor (i + j) per-
forms a diagonal reading that tends to eliminate regular input
low-weight patterns at the input from appearing in the inter-
leaved output.

8.12.1.2 Random Interleaver The random interleaver is
a column vector interleaver with elements chosen randomly
according to the following algorithm. Define a temporary
array of integers r i = i and fill the interleaver using the fol-
lowing procedure. Generate a uniformly distributed random
number j 1 ≤ j ≤ L and assign to π 1 = r j . Then remove the
integer r(j) from the temporary array r(i) by left shifting the
elements in r(i) by one position starting at position ℓ = r j ,
that is, r i = r i+ 1 for i = ℓ,…,L−1. The size of the tempo-
rary integer array r(i) that is of interest is now L − 1 with the
randomly generated integer r(j) removed. For the next itera-
tion of this procedure, a uniformly distributed random num-
ber j 1 ≤ j ≤ L−1 is generated and assigned to π 2 = r j .
The integer r(j) is now removed from the temporary array
r(i) by left shifting the elements in r(i) by one position start-
ing at position ℓ = r j , that is, r i = r i+ 1 for i= ℓ,…,L−2.
After L − 1 iterations, there remains one unassigned element,
r(1), in the temporary array r(i). This integer is assigned as
π L = r 1 and completes the algorithms for filling the
interleaver.

8.12.1.3 JPL Spread Interleaver The JPL spread inter-
leaver proposed by Divsalar and Pollara [111] for deep-space
communications is a variation of the random interleaver and
is often referred to as a semi-random interleaver or S-random
interleaver. This interleaver is a column vector of L
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interleaver locations that are filled in much the same way as
the random interleaver; however, if the a random integer is
selected that is within a distance S2 of the past S1 selections,
it is discarded and an additional random integers are tried
until this distance condition is satisfied. The parameters S1
and S2 are chosen to be larger than the memory, or constraint
lengths, of the two related constituent convolutional codes.
The time required to determine the interleaver addresses is
somewhat longer than that for the random interleaver, and
there is no guarantee that all locations will be filled accord-
ing to this criteria. Divsalar and Pollara suggest that

S1 = S2 ≤ int L 2 is a good choice to complete the addres-

sing within a reasonable time. If the processing fails to com-
plete the array addressing, it is suggested that additional
attempts be made with different random number generator
seeds. When S1 = S2 = 1, the spread interleaver reduces to
the random interleaver discussed earlier.

8.12.1.4 JPL Interleaver The JPL interleaver [112] is a
block interleaver characterized as having a low dispersion
a = 0.0686 and spreading factors (3,1021), (6,39), (11,38),
and (19,37).WithM an even integer, the vector of eight prime
numbers p = (31, 37, 43, 47, 53, 59, 61, 67) are used to fill the
interleaver using the following algorithm. For each 0 ≤ i < L,

π i = 2r i +Mc i −m i + 1 (8.103)

where the parameters m(i), r(i), and c(i) are computed as

m i = imod 2 (8.104)

r i = 19ro + 1 mod
M

2
(8.105)

and

c i = p ℓ + 1 co + 21m mod L (8.106)

The related parameters co, ro, and ℓ are computed as

co i =
i−m

2
mod L (8.107)

ro i =
i−m

2
−co mod L (8.108)

and

ℓ = r i mod 8 (8.109)

8.12.1.5 Welch–Costas Interleavers The Welch–Costas
interleaver [113] is a column vector interleaver characterized

as having unit dispersion. The interleaver is filled using the
following algorithm:

π i = αimod L+ 1 −1 0 ≤ i< L (8.110)

Here, L = p − 1, where p is a prime number and α is a prim-
itive element [114] of the field 1,α,α2,…,αp−1 .

8.12.2 Code Rate Matching

The rate matching of PCCCs is different from that described
in Section 8.11 for the convolutional code, in that, the PCCC
rate matching must ensure that the number of bits-per-block
(No) after puncturing is commensurate with an integer num-
ber of transmitted symbols. This rate matching criteria is
based on the number of information bits-per-block N, the
desired modulation efficiency rs with units of bits/second/
Hz, and the modulation efficiency rm = log2 M

2

with units
of bits-per-symbol. The parameter N is also equal to the inter-
leaver length. To satisfy the requirement of an integer number
of transmitted symbols-per-information block, the parameter
No is evaluated as

No =
N

rs
rm (8.111)

The puncturing ratio is defined as

p≜
1−

No

L
nonsystematic code

1−
No−N

L−N
systematic code

(8.112)

where L is the total number of parity bits prior to the rate
matching. The puncturing ratio for the nonsystematic code
uses all of the party bits; whereas, for the systematic code
only the party-check bits are used.

An example of the rate matching processing, involving the
evaluation of (8.111) and (8.112), is considered using the fol-
lowing design parameters: code rate rc = 1/2, constraint
length K = 4, PCCC with interleaver length N = 2048, and
8PSK symbol modulation. The modulation efficiency is rm =
log2(8) = 3 bits-per-symbol and the desired modulation or
spectral efficiency is rs = 2 bits/s/Hz. In this case, there are
2(K − 1) = 6 flush bits, so there are L = 2N + 2(K − 1) = 4102
total bits before the rate matching. Under these conditions,
the total bits out of the rate matching is No = 3072 and using
N and L the puncturing ratio for the systematic code is evalu-
ated as p = 0.50146. Therefore, of the original L −N = 2054
parity-check bits only No −N = 1024 remain after the punctur-
ing and the number of 8PSK symbols required to transmit
the punctured block of data is No/rm = 1024 symbols.

The block interleaver columns and rows are (rm, No/rm)
and the No bits are entered into the interleaver column by
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column with the highest priority systematic bits assigned to
the leftmost columns. As the interleaver is filled, the punctu-
red bits are identified as those bits for which (i − 1)p ≥ ip :
i = 1, …, L −N with the surviving parity-check bits entered
into the rightmost columns of the interleaver.

The remaining functions, involving gray coding the inter-
leaver rows and bit mapping of the interleaver row by row to
the modulation symbols, are identical to those described in
Section 8.11. As discussed in Section 8.12.3, rate matching
is provided between each of the SCCC concatenated CCs.

8.12.3 PCCC and SCCC Configurations

As mentioned previously, convolutional code concatenation
falls into two generic configurations [65]: turbo or turbo-like
codes. The HCCC and the SCC configurations are variants of
the PCCC and SCCC configurations. These code configura-
tions have been analyzed and the bit-error performance
dependence on Eb/No (dB) evaluated using computer simula-
tions [103, 105]. This section focuses on the parallel [1, 100,
115–117] and serial [103, 115, 117, 118] configurations,
implemented as shown in Figures 8.51 and 8.52, respec-
tively. The codes are implemented as linear block codes com-
posed of a block of input data bits plus tail-bits that are used

to ensure that the decoding trellis terminates on the all-zero
state at the end of each block. For nonrecursive convolutional
encoders,* the tail-bits are input as a series of zero bits;
whereas, for recursive convolutional encoders, the tail-bits
are dependent on the encoder feedback taps.† The length of
the data interleavers is equal to the number of input data bits
and, based on coding theory, long random data sequences or
interleaved data sequences are required to approach the chan-
nel capacity. Therefore, the interleavers provide the neces-
sary random properties and the concatenated convolutional
codes provide the coding structure necessary to approach
Shannon’s theoretical performance limit. The interleavers
are filled with the block of source code-bits as described in
Section 8.12.1. The code-bits to symbol mapping is similar
to that of the convolutional code shown in Figure 8.35.
The PCCC encoder configuration is shown in Figure 8.51a
for an arbitrary number (M) of code concatenations and,
for simplicity, the PCCC decoder is shown in Figure 8.51b
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FIGURE 8.51 Multiple parallel concatenated convolutional codes. Benedetto et al. [119]. Reproduced by permission of the IEEE.

*Nonrecursive encoders do not use feedback taps; whereas, recursive enco-
ders use feedback taps; these implementations are synonymous, respectively,
with FIR and IIR transversal filters.
†The switches associated with the recursive encoders shown in Figure 8.57
are changed at the end of each code block, resulting in successive binary
zeros in each delay element thus forcing the all-zero encoder state.
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for M = 3; this configuration is referred to as a DPCCC
decoder [105].

For an arbitrary number of code concatenations, the basic
functions of the PCCC decoder involve the input-adder,
interleaver (π), SISO, and inverse interleaver (π−1). The
SISO newly formed extrinsic information outputs are fed for-
ward through the interleavers and inverse interleavers with
feedback connections forming the SISO input reliabilities.
These functions are executed for each decoding iteration
and repeated in the process of performing multiple iteration
data decoding. Upon the last iteration through the decoder,
the received data estimates are formed by summing the newly
formed extrinsic information from each of the inverse inter-
leavers. The received data block from the demodulator is
interleaved data and is applied directly to SISO1 and to sub-
sequent SISOs with the indicated block delays. The four port
SISO is described in Section 8.12.4; however, the upper out-
put, λ(c;O), is not used in the parallel configurations.

The generalized SCCC encoder is shown in Figure 8.52a
for M concatenated convolutional encoders and M − 1 inter-
leavers. The number of source data bits entered into the outer
encoder for each sample is k and the number of code bits at
the output of the inner encoder is n, so the overall code rate is
rc = k/n. The individual encoder rates are defined as* k/p1, p1/
p2, …, pM−1/pM, and pM/n. Furthermore, requiring the inter-
leaver length (Li) to be integerly related to pi, such that, ki =
Li/pi : ki integer > 0, then, with equal values ki = N: i = 1,…,

M − 1, the input source-bit block size is kN and the interleaver
lengths are determined as

Li =Npi ki =N i (8.113)

The n inner code code-bits are mapped onto the modula-
tion symbol using rate matching and interleaving to associate
the MSB code-bit mapping with the least vulnerable channel
error condition. The SCCC decoder is depicted in
Figure 8.52b for M = 3 corresponding to the DSCCC [105]
configuration. Table 8.33 provides some CC generators used
by Benedetto, Divsalar, Montorsi, and Pollara to evaluate rate
1/3, 1/4, and 1/6 SCCC implementations. Their theoretical
analysis shows that the DPCCC performs somewhat better
than the rate 1/4 SCCC implementation.

8.12.4 SISO Module

The SISO module† decoding structures have been character-
ized in considerable detail by Benedetto et al. [115, 120].
These modules perform maximum a posteriori (MAP) detec-
tion processing using a finite-state trellis decoder and are
used in either configuration by appropriately connecting
the input and output ports. Figure 8.53 shows an isolated
SISO module as a four-port device with two inputs and out-
puts denoted, respectively, as λ(c : I), λ(u : I) and λ(c :O),
λ(u :O). In the following descriptions of the decoding, the
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FIGURE 8.52 Multiple serially concatenated convolutional codes. Benedetto et al. [119]. Reproduced by permission of the IEEE.

*Puncturing the encoder outputs may be performed to achieve the desired
overall code rate.

†The description of the SISO processing in this section is based on the work
of Divsalar [105].
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number of iterations is established based on the diminishing
improvement in the bit-error or code block-error performance
and typically 8–20 iterations are used.

Depending upon the requirements of the channel coding,
the processing complexity can be reduced if M = 2 constitu-
ent encoders and SISO decoding modules are used. These
simplified implantations follow directly from the M = 2
PCCC and SCCC configurations that are shown in Fig-
ures 8.54 and 8.55, respectively. Similarly, the encoding with
an arbitrary number (M) of CCs is shown in Figures 8.51 and
8.52, and the corresponding decoding configurations can be
inferred from the M = 3 decoding implementations.

The TC configuration involves two constituent convolu-
tional encoders and one interleaver and the decoder consists
of two SISOmodules and one interleaver and deinterleaver as
shown in Figure 8.54. In this configuration, there is only one
source of received code words available for use by the SISO
external observations or inputs λ(c : I). These inputs are

obtained directly from the demodulator matched filter; con-
sequently, with PCCC decoding the decoded outputs λ(c :O)
is not used. In this case, the SISO1 output λ(u :O) represents
the newly formed extrinsic information that is interleaved to
form the reliability input λ(u : I) to SISO2. With subsequent
iterations, the deinterleaved output from SISO2 is used as the
reliability input to SISO1 and the decoding proceeds as
described before. Upon completion of the last iteration, the
received data is output as shown in Figure 8.54.

The decoding of the SCCC is described in terms of
Figure 8.55 using two serially concatenated encoders. In this
case, the decoding involves two SISOmodules with the input
λ(c : I) to the inner SISO corresponding to the demodulator
matched filter samples and represents the interleaved sym-
bols received from the channel. The input λ(c : I) to the outer
SISO corresponds to the deinterleaved output of the newly
formed extrinsic information λ(u :O) from the inner SISO.
The newly formed decoded output λ(c :O) of the outer SISO
is then interleaved forming the new observations λ(u : I) to
the inner SISO. In this case, there is no successive SISO from
which to obtain extrinsic information, so the outer SISO input
λ(u : I) is set to zero and is not used. At this point, the first
iteration is completed and following the last iteration
the received data corresponds to the extrinsic information
λ(u :O) of outer SISO.

Although the configurations of the PCCC and SCCC
implementations are quite different, the processing within
the SISOmodule is very structured with many common algo-
rithms for both codes. The internal processing is based on
optimal decoding algorithms for concatenated convolutional
codes using the trellis decoding structure. The processing is
described in broad terms in the remainder of this section and
in detail in Sections 8.12.5 and 8.12.6.

The Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm
[122] provides for the MAP decoding of binary convolu-
tional codes using the trellis decoding structure and the
SISO processing is a variant of the BCJR algorithm. The
MAP algorithm makes symbol-by-symbol decisions and,
with equal a priori source symbol probabilities, corresponds
to the a posteriori probability (APP) algorithm. However,
because the SISO module processes a block of information
and parity symbols before outputting the symbol decisions,
the SISOmodule uses an additive APP algorithm rather than
the MAP algorithm. Divsalar [105] has developed step-by-
step derivations of the generalized additive APP SISO
algorithms for the decoding of turbo, serial, hybrid, and
self-concatenated codes. These derivations compare the
multiplicative and additive APP processing within the SISO
module for symbol and bit-level processing. The multiplica-
tive APP forms the product of APPs at each trellis transition
and is more computationally complex than the additive
APP algorithm, that is based the monotonic property of
the logarithm and involves the natural logarithm of the
summation of APPs.

TABLE 8.33 Constituent Code Generators for Serial
Concatenated Convolutional Codesa

Code Rate Code Type Generator G(D)

1/2 Recursiveb
1

1 +D2

1 +D+D2

Nonrecursive 1 +D +D2 1 +D2

2/3 Recursive
1 0

1 +D2

1 +D+D2

0 1
1 +D

1 +D+D2

Nonrecursive 1 +D D 1

1 +D 1 1 +D

3/4 Recursive
1 0 0

D

1 +D

0 1 0
1 +D +D2

1 +D2

0 0 1
1

1 +D2

Nonrecursive 1 +D 1 +D D 0

1 +D D 1 0

1 1 1 1

aBenedetto et al. [119]. Reproduced by permission of the IEEE.
bNot in referenced table; included here for completeness.

SISO
module

λ(c : I) λ(c : O)

λ(u : O)λ(u : I)

FIGURE 8.53 Soft-in soft-out processing module. Benedetto
et al. [121]. Reproduced by permission of Elsevier Books.
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The relative computational simplicity in forming the log-
arithm of the sum of the APPs, however, involves some
degree of complexity. The issue is related to the ACS algo-
rithm used to choose the surviving metric at each of the ter-
mination states when using the Viterbi algorithm. With the
additive APP algorithm, the comparable processing is
referred to as an ACS plus correction, or simply the max∗
(max-star) operation, defined as

max
i

∗
ai ≜ log

L

i= 1

eai

= max
i

a1, i,a2, i + log 1 + exp − a1i−a2i

i= 1,…,L
max

i
a1, i,a2, i + δ Δi

max
i

a1, i,a2, i 8 114
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FIGURE 8.55 SCCC code implementation (M = 2).
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where aji : j = 1, 2 are the exponents of the APPs at state i, L is
the number of trellis states, and δ(Δi) is the additive correc-
tion term that is stored in a lookup table. The last approxima-
tion simply chooses the maximum exponent and results in
near-optimum performance for medium-to-high signal-to-
noise ratios; however, for very low signal-to-noise ratios
an Eb/No performance loss [123] of 0.5–0.7 dB is encoun-
tered; this loss is not insignificant given the overall coding
complexity required to approach the channel coding limit.
The first approximation in (8.114) involves a table look,
based on the additive term in the second equality, and results
in nearly the optimum performance when only eight values
are stored.

The demodulator matched filter samples (yk,i) represent
sufficient statistics that contain all the information required
to optimally detect the received information. However, the
SISO processing requires that the receiver AGC establish a
constant signal level satisfying one of the two following con-
ditions. If the AGC normalizes the signal-to-noise ratio so
that the additive noise samples (nk, i) represents a zero-mean,
unit-variance random variables, the sufficient statistics is
evaluated as

yk, i =
2Es

No
dk, i + nk, i (8.115)

where dk, i = 2ck, i – 1 with ck,i = {0,1} and dk,i = {−1,1}. The
external observations from the channel are denoted as

λk ck, i; I = 2
2Es

No
yk, i (8.116)

On the other hand, if the AGC holds the signal level con-
stant at A, such that the signal-to-noise ratio is A2 2σ2n , then
the sufficient statistic is

yk, i =Adk, i + nk, i (8.117)

where nk, i =N 0,σn and the external observations from the
channel are denoted as

λk ck, i; I =
2A
σn

yk, i (8.118)

These results apply for BPSK; however, QPSK modula-
tion can be used by considering two independent channels
of PSK, each with unit noise variance and this requires divid-
ing (8.116) and (8.118) by two.

Sections 8.12.5 and 8.12.6 describe the iterative decoding
details for the parallel and serially concatenated codes invol-
ving two SISO modules based on the work of Divsalar [105]
and Benedetto and Divsalar [65].

8.12.5 Iterative Decoding of Parallel
Concatenated Codes

The computational complexity of the additive APP algorithm
is lower than that of the multiplicative APP algorithm; so, for
this reason, the additive APP algorithm [117] is described in
this section. The description of the PCCC processing is based
on Figure 8.54 and the focus is on the bit-level processing
within the SISO module that is commensurate with BPSK
and QPSK waveform modulations. To simplify the descrip-
tion of the SISO algorithms, the state metric computation
examples are based on a rate 1/2, four-state binary convolu-
tional encoder; however, the decoding algorithms are
expressed in general terms. For example, the code rate* is
rc = p/q where p is the number of information bits; q is the
total number of coded bits, including the parity bits; and N
is the number of trellis states. For clarity, these parameters
are included in the following description. Twomajor assump-
tions are made regarding the SISO processing: the channel is
memoryless and maps the encoded symbols ck into the
matched filter samples yk according to the channel probability
density function p y c =P Yk Ck ; the encoder is time-
invariant and corresponds to a fixed block code of length
K symbols. In this case, with k = 1, …, K, the trellis-state
decoding is completely characterized by each trellis
section from state Sk−1(ℓ) to Sk ℓ ℓ = 0,…,N− 1 . Based
on the encoder convention, the decoding starts at state
S0(0) and ends at state S0(K) and includes the flush bits
required to return the trellis to the known termination state.

The SISO processing is based on the forward and back-
ward recursions through the trellis structure corresponding
to the convolutional encoder implementation. The encoder
can be implemented as a systematic or nonsystematic code
and use recursive encoders, nonrecursive encoders, or both
configurations. The recursions take place over the entire code
block length of K-symbols corresponding to the interleaver
length;† however, as mentioned earlier, the SISO processing
is based on each trellis section associated with the q-bit
received code symbol. The forward and backward recursions
for a trellis section are shown in Figure 8.56. The trellis pro-
cessing is described using the nomenclature of the referenced
authors. The trellis segment for the k-th input code bit is
described in terms of the starting edge SS(e), ending edge
SE(e), and the branch metric, γk e , for edge “e.” These three
terms correspond, respectively, to the: source metric, termi-
nation metric, and metric update used in Section 8.11.1. To
begin the description of the block decoding, the trellis states
are initialized as α0(ℓ = 0), β0(ℓ = 0) = 0 and α0(ℓ 0), β0(ℓ
0) = −∞ with hαk and hβk initialized to zero.

*In Section 8.11.1, the code rate is defined as k/n and q corresponds to the
q-ary source information symbol.
†In Section 8.12.5.1, the column interleaver length is denoted as K.

306 CODING FOR IMPROVED COMMUNICATIONS



8.12.5.1 Forward and Backward Recursions The for-
ward recursion processing is very similar to that described
in Section 8.11.2, with the inclusion of the reliability input
λ(u : I). For example, the metric update Δαm in (8.76) is
expressed as

γk e =
q

i= 1

ck, i e λk Ck, i e ; I (8.119)

and, with the inclusion of the reliability input λ(u : I), the for-
ward recursion branch metric for edge “e” is expressed as

γk e = uk e λk Uk; I + γk e

= uk e λk Uk; I +
q

i= 1

ck, i e λk Ck, i e ; I branch metric

(8.120)

For the forward recursion, the SISO processing computes
αk(s) from αk−1 SS e where SS(e) points to the starting states
that terminate on the ending state SE e = s. In Figure 8.56a,
for each ending state there are two starting states, for exam-
ple, the ending state αk s= 1 points to the starting states
αk−1 s= 0 and αk−1 s= 2 . As in the Viterbi decoding algo-
rithm, a selection algorithm, similar to the ACS algorithm,
must be used to determine the surviving metric at each end-
ing state. For the additive APP algorithm, the max∗(ai)
selection algorithm is used and the surviving metric is
computed as

αk s = max∗
e sE e = s

αk−1 sS e +
p

i = 1

uk, i e λk Uk, i; I

+
q

i = 1

ck, i e λk Ck, i; I + hαk

forward
recursion

(8.121)

The backward recursion computes βk(s) from βk + 1 S
S e

where SS(e) points to the starting states that terminate on the
ending state SE e = s. In Figure 8.56b for each ending state,
there are two starting states, for example, the ending state
βk s= 1 points to the starting states βk + 1 s = 2 and
βk + 1 s= 3 . In this case, the surviving metric is computed as

βk s = max∗
e sS e = s

βk + 1 s
S e +

p

i = 1

uk + 1, i e λk + 1 Uk + 1, i; I

+
q

i= 1

ck + 1, i e λk + 1 Ck + 1, i; I + hβk

backward
recursion

(8.122)

The demodulator matched filter observations λ(c, I) are
given by (8.116) and the constants hαk and hβk are adjusted
as required upon completion of each iteration to prevent
accumulation overflow. Overflow in path metric computa-
tions using fixed-point processing internal to the SISO must
also be considered [124]. The PCCC performance evalua-
tions in this chapter use 32-bit floating point SISO processing
and, to avoid computational overflow, the metric adjustments
are made at the completion of each iteration.
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FIGURE 8.56 Example four-state trellis section showing forward and backward recursions.
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For the PCCC implementation, the extrinsic bit informa-
tion output λ(u :O) for Uk,j ; j = 1, …, p is computed as in
(8.123) and the output λ(c :O) is not used.

λk Uk, j;O = max∗
e uk, j e = 1

αk−1 sS e +
p

i= 1
i j

uk, i e λk Uk, i; I

+
q

i= 1

ck, i e λk Ck, i; I + βk sE e

− max∗
e uk, j e = 0

αk−1 sS e +
p

i= 1
i j

uk, i e λk Uk, i; I

+
q

i= 1

ck, i e λk Ck, i; I + βk s
E e

(8.123)

The data storage requirements involve the forward and
backward branch metrics αk, βk, the SISO input data, the
interleaver and deinterleaver data, the transition code bits
uk,i, and matched filter code-bit estimates ck,i associated with
each branch transition.

8.12.6 Iterative Decoding of Serially Concatenated
Convolutional Codes

The serially concatenated code configuration is depicted in
Figure 8.55 and the details of the SISO processing and iterative
decoding between the two concatenated codes is the subject of
this section [118].Unlike thePCCCdecoding algorithm,which
only accepts the input bit reliabilities λ(c : I) from the demodu-
lator matched filter, the SCCC decoding algorithm uses the
matched filter samples on the first iteration; however, on subse-
quent iterations the input data reliabilities λ(c : I) are obtained
from the deinterleaved extrinsic bit information λ(u :O) from
the inner SISO. The outer SISO then computes the extrinsic
bit information λ(c :O). In describing the decoding algorithms,
the respective inner and outer code rates are p1/q1 and p2/q2,
ck(e) represents ck,i(e): i = 1, 2, …, qm for the inner code
(m = 1), and uk(e) represents uk,i(e): i = 1, 2,…, pm for the outer
code (m = 2). Considering that the p and q input and output bits
are binary, represented by {0,1}, the bit-by-bit decoding for the
M = 2 SCCC code is described as follows.

The max∗ operation is identical to that defined by (8.114)
and the intrinsic input λk(ck,i; I) from the demodulator
matched filter samples are identical those described by
(8.116). The inner and outer trellises are initialized as
described for the PCCC decoding, that is, with α0(ℓ = 0),
β0(ℓ = 0) = 0 and α0(ℓ 0), β0(ℓ 0) = −∞with the constants
hαk ,m and hβk ,m initialized to zero. Under these conditions, the
inner and outer trellis recursions are computed as follows:

8.12.6.1 Inner Code Forward and Backward Recursions

αk s = max∗
e sE e = s

αk−1 sS e +
p1

i= 1

uk, i e λk Uk, i; I

+
q1

i= 1

ck, i e λk Ck, i; I + hαk ,1

forward
recursion

(8.124)

and

βk s = max∗
e sS e = s

βk + 1 sE e +
p1

i= 1

uk + 1, i e λk + 1 Uk + 1, i; I

+
q1

i= 1

ck + 1, i e λk + 1 Ck + 1, i; I + hβk ,1

backward
recursion

(8.125)

with the extrinsic bit information for Uk,j: j = 1, 2, … p1 is
computed as

λk Uk, j;O = max∗
e uk, j e = 1

αk−1 sS e +
p1

i = 1
i j

uk, i e λk Uk, i; I

+
q1

i= 1

ck, i e λk Ck, i; I + βk s
E e

− max∗
e uk, j e = 0

αk−1 sS e +
p1

i = 1
i j

uk, i e λk Uk, i; I

+
q1

i= 1

ck, i e λk Ck, i; I + βk s
E e

(8.126)

8.12.6.2 Outer Code Forward and Backward Recursions

αk s = max∗
e sE e = s

αk−1 sS e +
q2

i= 1

ck, i e λk Ck, i; I + hαk ,2

forward
recursion

(8.127)
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and

βk s = max∗
e sS e = s

βk + 1 sE e +
q2

i= 1

ck, i e λk Ck, i; I + hβk ,2

backward
recursion

(8.128)

with the extrinsic bit information for Ck,j: j = 1, 2, … q2 is
computed as

λk Ck, j;O = max∗
e ck, j e = 1

αk−1 sS e +
q2

i = 1
i j

ck, i e λk Ck, i; I + βk sE e

− max∗
e ck, j e = 0

αk−1 sS e +
q2

i = 1
i j

ck, i e λk Ck, i; I + βk sE e

(8.129)

where λk(Ck,j; O) is interleaved and provided to the inner
SISO as the input reliabilities λ(ck; I). Upon the final iteration,
the output bit reliability Uk,j: j = 1, 2, …, p2 is computed as

λk Uk, j;O = max∗
e uk, j e = 1

αk−1 sS e +
q2

i= 1

ck, i e λk Ck, i; I + βk sE e

− max∗
e uk, j e = 0

αk−1 sS e +
q2

i= 1

ck, i e λk Ck, i; I + βk sE e

(8.130)

8.12.7 PCCC and SCCC Performance

In this section, the bit-error performance of the PCCCs and
SCCCs are examined and compared.* In the following per-
formance evaluation, the rate 1/3 TC, included in the Con-
sultative Committee for Space Data Systems (CCSDS)
multi-rate TC standard for space telemetry [125], is examined
using Monte Carlo simulations. The bit-error performance is
evaluated for various interleaver lengths with four iterations
and then with various iterations using an interleaver lengths
of 1024 bits. The performance is also evaluated for short
messages with interleaver lengths of 296 and 128 bits using
10 iterations. These results highlight the importance of
the interleaver length as discussed in Section 8.12.1. In
Section 8.12.7.2, the bit-error performance comparisons
between the PCCCs and SCCCs are based on the work of
Benedetto, Divsalar, Montorsi, and Pollara. All of the

following Monte Carlo performance evaluations correspond
to an AWGN channel.

8.12.7.1 Rate 1/3 Turbo Code Performance The CCSDS
[126, 127], recommended TC has selectable code rates of 1/2,
1/3, 1/4, and 1/6 and uses two 16-state convolutional enco-
ders. The interleaver lengths are also selectable among the
following options: 1,784, 3,568, 7,136, 8,920, and 16,384.
The encoder including the full complement of code rates is
shown in Figure 8.57. The source bits are randomly assigned
to the interleaver according to the selected interleaver algo-
rithm. This code is a systematic convolutional encoder with
one information-bit for each output symbol interval, so the
delay registers D correspond to the bit interval Tb. The reg-
isters are initialized to zero and, following the last of L infor-
mation bits, the code input switches are changed and four
additional clock cycles are executed to terminate the trellis
in the zero state. The four additional bits are transmitted
and used in the decoder to terminate the decoding trellis in
the zero state; consequently, (L + 4)/rc code bits are transmit-
ted to recover the L information bits.

The generator for the turbo code isG = (g0, g1, g2, g3)
T and

subgenerators (gi) are listed in Table 8.34 using octal and bin-
ary notations. The code consists of recursive generators. The
rate 1/2 code is generated by alternately puncturing the con-
nections indicated by the open circles, starting with the
encoder b connection, that is, the output of generator g1b is
punctured first. The filled circles are fixed connections so
there is no puncturing for the code rates 1/3, 1/4, and 1/6.
The subgenerator g2b (indicated by the x) is not used in
encoder b. The bits in a code symbol are transmitted in the
order of the connections (top to bottom) indicated by the cir-
cles in Figure 8.57. For example, the information bit is
always transmitted first; so, for the rate 1/3 code, the bits
associated with the generators (g1a, g1b) are transmitted fol-
lowing the information bit. For the punctured rate 1/2 code,
the bit following the information bit in the first symbol is g1a,
and in the second symbol is g1b with successive symbols
alternating between g1a and g1b. The information and parity
bits are sequentially applied to the BPSK waveform modula-
tor and transmitted over the AWGN channel.

The Monte Carlo simulated performance shown in
Figure 8.59 is based on the JPL spread interleaver; the length
2048 JPL spread interleaver data was provided by Divsalar†

as a reference to validate the simulations. The performance of
the JPL spread interleaver was also compared to the turbo and
random interleavers, discussed in Section 8.12.1, and found
to result in slightly improved bit-error performance. The
Monte Carlo bit-error performance evaluations of the PCCC
require considerably longer simulation runs compared to the
performance evaluations of convolutional codes using the

*In response to Berrou et al.’s discovery of the TC, research was supported by
the European Space Agency (ESA) and the multi-rate TC (two constituent
code PCCC configurations) was recommended by the CCSDS as the channel
coding standard for space telemetry. †Private communications, October 1998.
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Viterbi decoding algorithm; this is not surprising in view of
the much lower input signal-to-noise ratios and the steepness
of the bit-error performance curve. For example, a change in
the signal-to-noise ratio of one-tenth of a decibel can result in
several orders of magnitude change in the bit-error perfor-
mance. In this regard, the signal-to-noise ratio (γb) in the sim-
ulation is established using (8.115), such that, the peak signal
level is

A= 2γbσ2n (8.131)

where γb is measure in the bandwidth equal to the bit rate.
Using (8.131) results in a zero-mean, unit-variance additive
noise random variable. As a rule of thumb, the number of
frames (Nsim) in the Monte Carlo simulations is given by

Nsim ≥
1

ρ2Pfe
number of frames (8.132)

where ρ is the error in Pfe; Equation (8.132) is plotted in
Figure 8.58 as a function of Pfe for various values of ρ in per-
cent. Based on this rule, a frame-error probability of Pfe =
10−4 with an 80% accuracy requires a Monte Carlo simula-
tion of 20K frames or code blocks. This rule of thumb is
somewhat pessimistic; however, it is useful in establishing
a minimum upper limit while monitoring the frame-error per-
formance to terminate the simulation when the performance
improvement appears to saturate. Unless save guards are
available to restart the code, it is time-consuming to underes-
timate the simulation run times. The following simulations
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FIGURE 8.57 CCSDS selectable rate turbo code encoder. CCSDS Blue Book [126]. Reproduced by permission of the Consultative
Committee for Space Data Systems (CCSDS).
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FIGURE 8.58 Rule of thumb for the number of turbo-like code
simulation frames for each signal-to-noise ratio.

TABLE 8.34 Turbo Code Subgenerators for Encoder in
Figure 8.57

Subgenerators Octala Binary Connection

g0 13 100110 Recursive
g1 33 110110 Nonrecursive
g2 52 101010 Nonrecursive
g3 73 111110 Nonrecursive

aOctal notation with LSB on the left.
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for the 4096-bit interleaver used about 40M bits for each
signal-to-noise ratio.

Figure 8.59a shows the performance using four iterations
with interleaver lengths [128] ranging from 256 to 4096 bits.
The performance gain, between Pbe = 10−5 and 10−6, in dou-
bling the interleaver length is about 0.1 dB. Figure 8.59b
shows the performance for a fixed interleaver length of
1024 bits with iterations ranging from 1 to 10. The diminish-
ing performance gain with additional iterations above 10 is
evident in these plots. For example, at Pbe = 10−6 the perfor-
mance gain between 5 and 10 iteration is about 0.09 dB.

An application involving short-message durations must
use commensurately short interleavers, and Figure 8.60
shows the simulated performance using short-message
blocks of 296 and 128 bits. The message bits included a

CRC code to reduce the false message acceptance probabil-
ity. The error floor between Pbe = 10−5 and 10−6 is evident in
both codes and, although the 296-bit interleaver results in a
significant coding gain improvement of about 0.6 dB, the
error floor is considerably higher than that of the 128-bit code
block. These results highlight the importance of selecting
good interleavers that are sufficiently random to provide
independent estimates of the a posteriori probabilities for
an information symbol given the encoder constraint length
and channel memory.

8.12.7.2 Comparison of PCCC and SCCC Per-
formance The PCCC bit-error performance examined in
this section is based on the work of Benedetto et al. [100],
Benedetto and Montorsi [116], and Benedetto et al. [121].
The performance evaluation involves the rate 1/2, 1/3, 1/4,
and 1/15 PCCC implementations corresponding to iterations
of 18, 11, 13, and 12 and a common a data block length of
16K bits with 16-state encoders. The 2/4 rate code is unique,
in that it represents the CCs used in the generation of a trellis-
coded modulation (TCM) waveform. For a discussion of the
design, implementation, and performance of TCM, refer to
Sections 9.4 and 9.5. With TCM the parity-check redundancy
is achieved through additional modulation states so there is
no bandwidth expansion. The generator polynomials for
the rate 2/4 TCM CCs (denoted as Code A) are listed in
Table 8.35.
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TABLE 8.35 Rate 2/4 TCM Constraint Length ν = 4, 16-State
Systematic Recursive Constituent Code Generators

Code CC h2 h1 h0 Comments

A CC1 33 35 31 16-state TCM encoders
CC2 35 33 31
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Referring to Section 9.4, the two input bits d2 and d1 of
the rate 2/4 code are sequentially selected from the input
source data block of N bits. These bits correspond to the sys-
tematic output bits c2 = d2 and c1 = d1 of the constituent code
CC1. The two CCs are evaluated using

CC1 c= c2,c1,c0 , H = h2,h1,h0

CC2 c= d2,d1,c0 , H = h2,h1,h0
(8.133)

where d2 and d1 are sequentially taken from the independ-
ently interleaved block of source data bits. The resulting rate
2/4 systematic encoder results in the four output bits
d2, d1, c, and c0 that are mapped to the selected waveform
symbol(s) resulting in the rate 1/2 encoder. The generators
for the SCCCs denoted as B through E are listed in
Table 8.36 using octal notations.

The SCCC implementations are based on the encoder and
decoder configurations in Figure 8.61 with the CCs obtained
from Table 8.33. The output connections of the inner SCCC
CC in Figure 8.61b, indicated by the open circles, require
puncturing in the order (a,b), starting with connection a
and alternating between a and b at the coded symbol rate.
The following comparison of the theory, implementation,
and bit-error performance of these codes* is based on the
work of Benedetto et al. [103, 119, 121, 127] and Dolinar
et al. [129].

The performance of the PCCC implementations is shown
in Figure 8.62. The performance comparison between the
codes is based on comparable complexity in that the codes
correspond to 16-state trellis decoders and the interleaver
lengths are identical. Under the indicated conditions, the
selection of the code rate is a major decision in achieving a
specified signal-to-noise condition. However, the perfor-
mance with longer interleaver block lengths will also result
in lower Eb/No operating conditions. These simulation results

do not show any Pbe flaring that is customarily associated
with a reduction of the slope in the Pbe vs. Eb/No curve. With
16-state encoders, the flaring usually becomes evident for Pbe

below about 10−5 or 10−6 and results in Pbe = 10−15 at Eb/No

values of 6 or 7 dB. These determinations are made using the-
oretical performance bounds based on the number of error
events and the weight information sequence [116, 130]. It
is noteworthy that SCCCs are less prone to severe flaring.

TABLE 8.36 Constituent Code Generators for SCCCs B–E

Code Rate

Generatorsa

CC1 CC2 CC3

B 1/2
2
3

32
13

C 1/3 1
33
13

0
33
13

D 1/4 1
52
13

73
13

0
33
13

Eb 1/15 1
33
13

52
13

73
13

72
13

1
33
13

52
13

73
13

72
13

1
33
13

52
13

73
13

72
13

aOctal notation with the LSB on the left.
bThese generators must be verified (an alternate CC3 parity generator polynomial to 72/13 is 12/13).

(a)

(b)

Rate 1/2, 4-state, nonrecursive nonsystematic outer code
(Table 8.33 rate 1/2 constituent code) 

Rate 2/3, 2/4, and 2/6, 4-state, recursive nonsystematic inner code
(Table 8.33 rate 2/3 constituent codes) 
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b
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FIGURE 8.61 Selectable rate SCCC encoder.

*The details of the (a,b) rate matching in Figure 8.61b are based on the
author’s interpretation and should be checked for compatibility.
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The performance of the rate 2/4 (or 1/2) TCM waveform is
somewhat limited to that shown in Figure 8.62 since
bandwidth expansion is not an option and the inclusion of
additional redundant modulation states has a rapidly dimin-
ishing advantage.

The performance of the SCCC implementations is shown
in Figure 8.63. The performance assessments are based on the
identical complexity of the codes in that they each have four-
state trellis decoders with identical the interleaver lengths
and iterations. An advantage of the SCCCs is that the SISO
processing can run considerably faster than the PCCCs due
to the 4 : 1 reduction in the number of states. The SCCC

implementations do not show evidence of any Pbe flaring,
as seen with four-state PCCC performance. In comparing
the rate 1/4, four-state PCCCwith the rate 1/4, 16-state PCCC
in Figure 8.62, there is a significant advantage in the coding
gain using the 16-state encoder. Furthermore, even though
there is no evidence of Pbe flaring in the 16-state encoder,
it is predicted (see Reference 130, figure 15) that flaring is
on the verge of occurring at a signal-to-noise ratios
> 0 5 dB. In the performance critique of Figure 8.62, it
was mentioned that the SCCCs are less prone to severe flar-
ing; however, flaring occurs (see Reference 103, figure 5)
with a rate 1/3, four-state, and 2K interleaver SCCC for
Pbe below about 10−8 at Eb No 0 dB and results in Pbe =
10−15 at Eb No 8 dB. For the PCCC and SCCC implemen-
tations the flaring conditions improve with increasing inter-
leaver lengths.

8.13 LDPC CODE AND TPC

The LDPC codes were discovered in 1962 by Gallager [131]
and gained in recognition and popularity [132] following the
discovery of TCs by Berrou, Glavieux, and Thitimajshima in
1993. Costello and Forney [133] have an excellent paper
describing the development of coding theory over this period
and through 2007. LDPC codes are block codes, formed from
a class of parity-check codes [134], and specified by a sparse
matrix containing binary information-digits and parity-check
digits denoted as ones; otherwise, the matrix elements are
zeros. Using Gallager’s designation (n, j, k), the coded matrix
is partitioned into j submatrices, each with k + I rows and n =
k(k + I) columns, where n is the code block length. Designat-
ing the submatrix rows as i, each row of the first submatrix
are filled with k consecutive ones, such that, (i − 1)k, …,
ik: i = 1,…, k + I. Upon completion, each row of the first sub-
matrix contains k consecutive ones and each column contains
a single one. The remaining j − 1 submatrices are filled with
random permutations of the ones in the first submatrix col-
umns, while preserving the condition that the code matrix
contains k ones in each row and j ones in each column. LDPC
codes constructed in this manner are referred to as regular
LDPC codes [135]; however, irregular LDPC codes [136,
137] are not restricted to having an equal number of ones
in the code matrix rows and columns as described earlier
and, thereby, result in superior performance by increasing
the number of check nodes.

The k consecutive digits in the first submatrix correspond
to a coded symbol interval consisting of k − j information-
bits and j parity-bits. The k-bit symbol is characterized by
starting and ending edges much like the symbol edges
defined in the trellis decoding of convolutional codes. With
this understanding, the code rate of the LDPC code is
defined as
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rc ≜
k− j

k
(8.134)

The j−1 submatrices contain the known parity-bit infor-
mation needed to determine and correct errors in the received
LDPC coded data block. The low-density construction of the
code matrix, for large n, results in a minimum distance
between nearly all codes of [138]

dmin = nδjk (8.135)

where δjk is a constant listed in Table 8.37 for several LDPC
codes. The minimum distance increases linearly with the
code length.

Gallager [131] has also shown that maximum-likelihood
decoding of LDPC codes over a BSC, corresponding to
bit-by-bit decoding, results in a decoding error probability
that decreases exponentially with the block length. However,
to take advantage of the performance improvement using iter-
ative decoding before making a hard-bit decision requires
processing of the APP as discussed in Section 8.12.4. The
decoding algorithm is formulated in terms of the log-
likelihood ratio, and Gallager’s solution is expressed as

LLR= ln
P xd = 0 y ,S
P xd = 1 y ,S

= ln
1−Pd

Pd
+

j

i = 1

k−1

ℓ = 1

αiℓ f
k−1

ℓ = 1

f βiℓ

(8.136)

where xd is the received bit in position d of the received
sequence {y}, S is the event that xd satisfies the j parity-check
equations associated with position d, Pd is the probability
that the transmitted digit xd is 1 conditioned on
the received bit in position d with the log-likelihood
ratioLLRd = ln[(1 − Pd)/Pd].

*Defining the log-likelihood ratio

LLRiℓ = ln 1 −Piℓ Piℓ = αiℓβiℓ where Piℓ is defined simi-
larly to Pd for the ℓ th digit in the i th first parity-check set
corresponding to second submatrix. The parameters αiℓ and
βiℓ represent the sign and magnitude of LLRiℓ and f(βiℓ) is
evaluated as

f βiℓ = ln
eβiℓ + 1
eβiℓ −1

(8.137)

Using (8.137), LLRd, and the sign of αiℓ, the evaluation of
(8.136) is fairly straightforward and can be computed either
serially or in parallel for each input bit. Following the eval-
uation, if a parity error is detected at xn, the decoder corrects
the error based on the sign of (8.136) with the correspond-
ence: LLR ≥ 0 : xn = 0 and LLR < 0 : xn = 1. These corrections
are based on hard decisions and apply to the received infor-
mation and parity bits.† Using the corrected bits, the process
is repeated until a valid code word is detected or after a fixed
number of iterations. As an example of the performance, the
bit-error probability of a high code rate IEEE 802.16e-
compliant LDPC code [140, 141] is shown in Figure 8.64a.

Prior to the acceptance of LDPC codes, PCs and TPCs
[143–146] were in wide use and continue to provide compet-
itive solutions for FEC coding. PCs were introduced by Elias
in 1954. The PC is characterized as a serial concatenation of
block codes with data permutations and row–column parity-
check bits. For two concatenated block codes, the designa-
tions (ni, ki,dmi): i = 1, 2, correspond toni the length of the code
word, ki the number of information bits, and dmi the minimum
Hamming distance. With equal parameters, the PC is denoted

as‡ (n, k, dm)
2 where, in general, n =

i
ni,k = i

ki, and

dm =
i
dmi. The PC row–column matrix (n1, n2) is formed

using submatrix (k1, k2) in the upper-left portion of (n1, n2)
and forming (n2 − k2) row parity-check bits and (n1 − k1) col-
umn parity-check bits. The resulting PC rate is the product of
the individual codes rates. The optimum decoder uses soft
decision LLR processing of the rows and columns with iter-
ative decoding to improve the performance. TPC bit-error
rates on the order of 10−11 can be achieved without experien-
cing the error floor associated with some PCCC designs. The
performance of a high code rate IEEE 802.16-compliant TPC
[147] is shown in Figure 8.64b.

LDPC code and TPC are processing efficient high-rate
codes with performance approaching within a few tenths of
a decibel of the channel capacity. On the other hand, Chung
et al. [148] demonstrated that a rate 1/2 irregular LDPC code
with block length of 107 approaches the channel capacity
for binary codes to within 0.04 dB achieving Pbe = 10−6 at

TABLE 8.37 Comparison of δjk for LDPC Code (n, j, k) for
Large na

j k Rate rc δjk δb

5 6 1/6 0.225 0.263
4 5 1/5 0.210 0.241
3 4 1/4 0.122 0.214
4 6 1/3 0.129 0.173
3 5 2/5 0.044 0.145
3 6 1/2 0.023 0.110

aGallager [139]. Reproduced by permission of the IEEE.
bThe same ratio of an ordinary parity-check code of the same rate.

*With equal a priori binary probabilities, as is usually the case, Pd = 1/2 and
LLRd = 0.

†The APP processing is based on the noisy soft-inputs yn = f(A)dn + nn from
the demodulator matched filter, whereA is the peak amplitude of the received
signal. Referring to (8.115) or (8.117), the bipolar data dn = {−1,1} is related
to xn as dn = 2xn−1.
‡The notation for the PC often omits the dm designation.

314 CODING FOR IMPROVED COMMUNICATIONS



Eb/No = 0.19 dB. The long interleaver lengths required for
low-rate LDPC code and TPC are restrictive for applications
requiring low message latency. However, with parallel pro-
cessing the decoding speeds can accommodate tens of Mbps
data rates. These codes are also better suited for short mes-
sages, on the order of 256 bits or less, than concatenated con-
volution codes with performance limited by the noise floor.

The preceding description of LDPC coding is based on
Gallager’s original publication on low-density parity-check
encoding and decoding and significant advances have been
made since the mid-1990s when his work was recognized
as providing competitive solutions to the need for low Eb/
No, nearly error-free, communication systems. The advances
in high-speed, high-memory, and low-power signal proces-
sing hardware were also a major motivation. In this regard,
the vast amount of current literature on FEC coding, includ-
ing the LDPC code and TPC should be consulted for the latest
innovations, for example, the special issue of the IEEE Pro-
ceedings [149] contains a wealth of information, including
many references, on a variety of FEC coding techniques,
designs, and algorithms. TC synchronization [150, 151] is
a major consideration in the system design and synchroniza-
tion requirements for various standard FEC codes are detailed
in the CCSDS specifications [152]. The impact on the perfor-
mance through channels with memory [153] is another
important consideration.

8.14 BOSE-CHAUDHURI-HOCQUENGHEM
CODES

The binary BCH codes [34, 37] are block codes of length N
containing K information bits with an error correction capa-
bility of t bit or symbol errors; in the following discussions,

the binary BCH codes are denoted as (N, K, t); on occasions,
the notation (N,K, t)m is used wherem determines the number
of bits or symbols in the code block given by N = 2m − 1.
Binary BCH codes are generated over the GF(2m) with the
binary polynomial coefficients in GF(2). The code polyno-
mials are related to the parameters N, K, t, and m as and
the number of parity bits satisfies the condition N −K ≤
mt.* The BCH codes will correct all combinations of t errors
for t ≤ (d − 1)/2 where d is the minimum distance of the code.
These parameters are listed in Table 8.38 [154] for binary
BCH codes generated over GF(2m) for 3 ≤m ≤ 10 correspond-
ing to codes of length 7–1023. The parameter tbin = t is used
to emphasize the binary BCH code error correction capabil-
ity. However, the parameters N and K also apply to the non-
binary BCH RS codes with 2m-ary symbols generated over
GF(2m). The nonbinary RS code will correct any combination
of trs = t = N−K 2 m-bit symbol-errors or less; the fourth
column in Table 8.38 tabulates trs for the RS code.

A more extensive list of binary cyclic codes of odd length
is given by Peterson and Weldon [155] in terms of the para-
meters N, K, d, dBCH and the roots of the generating polyno-
mials. In this case, d is the true minimum distance of the code
and dBCH the minimum distance guaranteed by the BCH
bound. The extensive table of results is accredited to Chen
[156] and applies to all binary cyclic codes of odd length
or degrees ≤65. The results in Table 8.38 represent the codes
of a given length for which dxmax(dBCH).

Section 8.14.1 focuses on binary BCH codes with the
intent of introducing some basic concepts for examining
the more powerful error-correction capabilities of nonbinary,
or q-ary BCH, codes where the q-ary symbols are generated
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FIGURE 8.64 Performance of LDPC and TPC codes. Gracie et al. [142]. Reproduced by permission of the IEEE.

*In the following sections, the parameters N and K are also denoted by low-
ercase n and k.
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TABLE 8.38 BCH Code Parameters Generated by Primitive Elementsa,b

N K tbin trs N K tbin trs N K tbin trs

7 4 1 1 255 163 12 46 511 277 28 117

15 11 1 2 155 13 50 268 29 121
7 2 4 147 14 54 259 30 126

5 3 5 139 15 58 250 31 130

31 26 1 2 131 18 62 241 36 135
21 2 5 123 19 66 238 37 136
16 3 7 115 21 70 229 38 141
11 5 10 107 22 74 220 39 145
6 7 12 99 23 78 211 41 150

63 57 1 3 91 25 82 202 42 154
51 2 6 87 26 84 193 43 159
45 3 9 79 27 88 184 45 163
39 4 12 71 29 92 175 46 168
36 5 13 63 30 96 166 47 172
30 6 16 55 31 100 157 51 177
24 7 19 47 42 104 148 53 181
18 10 22 45 43 105 139 54 186
16 11 23 37 45 109 130 55 190
10 13 26 29 47 113 121 58 195
7 15 28 21 55 117 112 59 199

127 120 1 3 13 59 121 103 61 204
113 2 7 9 63 123 94 62 208
106 3 10 85 63 213

99 4 14 511 502 1 4 76 85 217
92 5 17 493 2 9 67 87 222
85 6 21 484 3 13 58 91 226
78 7 24 475 4 18 49 93 231
71 9 28 466 5 22 40 95 235
64 10 31 457 6 27 31 109 240
57 11 35 448 7 31 28 111 241
50 13 38 439 8 36 19 119 246
43 14 42 430 9 40 10 127 250
36 15 45 421 10 45

29 21 49 412 11 48 1023 1013 1 5
22 23 52 403 12 54 1003 2 10
15 27 56 394 13 58 993 3 15
8 31 59 385 14 63 983 4 20

255 247 1 4 376 15 67 973 5 25
239 2 8 367 16 72 963 6 30
231 3 12 358 18 76 953 7 35
233 4 11 349 19 81 943 8 40
215 5 20 340 20 85 933 9 45
207 6 24 331 21 90 923 10 50
199 7 28 322 22 94 913 11 55
191 8 32 313 23 99 903 12 60
187 9 34 304 25 103 893 13 65
179 10 38 295 26 108 883 14 70
171 11 42 286 27 112 873 15 75
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over the GF(q). In particular, the nonbinary case is special-
ized to the RS code for which q = 2m.

8.14.1 Binary BCH Codes

This section briefly reviews binary BCH codes as an intro-
duction to RS codes discussed in Section 8.14.2. To this
end, the following introduces the GF(2) involving binary data
di {0,1}. The set of elements α forms a field [157] with
respect to addition and multiplication, if the set is closed with
respect to addition and multiplication, the distributive law
applies, and it contains a zero and unit element. The key to
the generation of the field elements over GF(2) is that the
generator, or primitive polynomial p(x), has binary coeffi-
cients* {0,1}. The field element for which p(α) = 0 is referred
to as the primitive element. Furthermore, the primitive

polynomials for which p(α) = 0 are irreducible polynomials,
that is, p(x) of degree m are not divisible by any other poly-
nomial of degree m : 0 <m <m ; this ensures that the field is
closed.

Construction of the elements over GF(2) is best described
by the following example using m = 3 and the known prim-
itive polynomial p(x) = x3 + x + 1. Using the primitive poly-
nomial, all of the distinct 23 symbols of the code are
generated in terms of the primitive element α as shown in
Table 8.39.

In the second column of Table 8.39, the primitive polyno-
mial provides the key equality p(α) = α3 + α + 1 = 0 from
which α3 = α + 1 is determined. Furthermore, addition and sub-
traction are indistinguishable, multiplication is performed by
adding the exponents, and the field is closed, that is, α7 = 1.
The primitive element of the field is the unit element so
the set of elements 0, 1, α, α2, …, α2

m −2 form the 2m unique
elements of the field. As mentioned earlier, the operations
of addition and subtraction are the same in GF(2) with the
special case αn ± αn = 0 : 0 ≤ n ≤m − 1; these properties are

TABLE 8.38 (continued)

N K tbin trs K tbin trs K tbin trs

1023 863 16 80 573 50 225 278 102 372
858 17 82 563 51 230 268 103 377
848 18 87 553 52 235 258 106 382
838 19 92 543 53 240 248 107 387
828 20 97 533 54 245 238 109 392
818 21 102 523 55 250 228 110 397

808 22 107 513 57 255 218 111 402
798 23 112 503 58 260 208 115 407
788 24 117 493 59 265 203 117 410
778 25 122 483 60 270 193 118 415
768 26 127 473 61 275 183 119 420
758 27 132 463 62 280 173 122 425
748 28 137 453 63 285 163 123 430
738 29 142 443 73 290 153 125 435
728 30 147 433 74 295 143 126 440
718 31 152 423 75 300 133 127 445
708 34 157 413 77 305 123 170 450
698 35 162 403 78 310 121 171 451
688 36 167 393 79 315 111 173 456
678 37 172 383 82 320 101 175 461
668 38 177 378 83 322 91 181 466
658 39 182 368 85 327 86 183 468
648 41 187 358 86 332 76 187 473
638 42 192 348 87 337 66 189 478
628 43 197 338 89 342 56 191 483
618 44 202 328 90 347 46 219 488
608 45 207 318 91 352 36 223 493
598 46 212 308 93 357 26 239 498
588 47 217 298 94 362 16 147 503
578 49 222 288 95 367 11 255 506

aThe shaded parameters result in approximate code rates of 1/2 for the given N.
bPeterson and Weldon [154]. Reproduced by permission of The MIT Press.

*The primitive polynomials for nonbinary BCH codes are identical; however,
the coefficients are q-ary symbols or words. For RS codes, the coefficients
are q = 2m-ary symbols.
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a direct result of the modulo-2 addition of the binary coeffi-
cients bn. Multiplication is performed simply by adding the
exponents as αnαn = αn+n .

Primitive polynomials are difficult to determine; however,
Table 8.40 provides a list, for m = 3 through 10; these poly-
nomials are also applicable to 8-ary through 1024-ary RS
codes discussed in Section 8.14.2. More extensive tables of
primitive polynomials are provided by Peterson and Weldon
[155], from which Table 8.40 is compiled, and by Lin [37],
Peterson [58], and Marsh [158].

Binary BCH codes are defined for any positive integers m
and t with the following properties:

• Block length n = 2m − 1

• Parity-check bits n − k ≤mt

• Minimum distance d ≥ 2t + 1

The binary BCH code is denoted as a (n, k, t) t-error cor-
recting code, where t or less errors can be corrected in any
block of n bits, where (n − k)/m ≤ t ≤ (d − 1)/2. There is no
easy way to evaluate the value n − k that satisfies the equality
mt = (n − k); however, the values of t are tabulated in the third
column of Table 8.38 as tbin.

The generator polynomial of a, t-error-correcting, binary
BCH code is defined as the least common multiple (LCM)
of the minimum polynomials* mi(x) : i = 1, 3, 5, …, 2t − 1,
expressed as

g x =LCM m1 x ,m3 x ,…,m2t−1 x (8.138)

Comparing (8.151), the expression for computing the gen-
erator polynomials for nonbinary RS codes, with (8.138), it
appears evident that determining the generator polynomials
for binary BCH codes is considerably more difficult. The
details for determining the minimum polynomials for the
primitive element in GF(2) and the generator polynomial
g(x) are discussed by Lin [159], Lin and Costello [160],
and Peterson and Walden [34]. Peterson and Walden
(Appendix C) provide tables of irreducible polynomials over
GF(2) in which the minimum polynomials are identified.
Michelson and Levesque [63] provide succinct descriptions
of these topics with an explanation of the method for deter-
mination of the minimum polynomials from Peterson’s table.
The generator polynomials for primitive binary BCH codes,
tabulated by Stenbit [161], are listed in Appendix 8B.

Referring to Appendix 8B, the generator for the length n =
15, t = 2 error-correcting (15,7,2) binary BCH code, in octal
notation, is (721) and, considering the binary coefficients
gi = {1,0}, the generator is computed as

g x = g8x
8 + g7x

7 + g6x
6 + g4x

4 + 1

= x8 + x7 + x6 + x4 + 1
(8.139)

The generator is implemented as shown in Figure 8.66 for
the RS code; however, the generator weights gi correspond-
ing to the coefficients of (8.139) are equal to binary one.

The decoding involves the following three principal
decoding computations:

1. Error syndrome calculation

2. Error location polynomial calculations

3. Error location calculation

The computation of the error values, required for the RS
code, is not required because the error correction simply
involves changing the binary coefficient at the calculated error
location. There are several techniques, including the Berle-
kamp algorithm, that are used in the decoding computations
for the binary BCH codes; these techniques are discussed
by several authors [37, 58, 160, 162–165]. The following sec-
tions focus on the decoding of the binary BCH codes with the
major emphasis on the decoding ofM-ary RS codes using the
Berlekamp algorithm. The procedures for finding and correct-
ing the errors in the binary BCH code are identified by

TABLE 8.40 Primitive Polynomials for GF(2m) for m = 2–10a

m p(x)

2 x2 + x + 1
3 x3 + x + 1
4 x4 + x + 1
5 x 5 + x2 + 1
6 x6 + x + 1
7 x7 + x3 + 1
8 x8 + x4 + x3 + x2 + 1
9 x9 + x4 + 1
10 x10 + x3 + 1

aPartial list from Reference 155.

TABLE 8.39 Construction of the GF(23) Using p(x) = x3 + x + 1
[f(x) = b2x

2 + b1x + b0]

Elements
Reduction over Coefficient
Field GF(2) b2 b1 b0 Integer

0 0 0 0 0
1 0 0 1 1
α 0 1 0 2
α2 1 0 0 4
α3 α + 1 0 1 1 3
α4 αα3 = α(α + 1) = α2 + α 1 1 0 6
α5 αα4 = α(α2 + α) = α2 + α + 1 1 1 1 7
α6 αα5 = α(α2 + α + 1) = α2 + 1 1 0 1 5
α7 αα6 = α(α2 + 1) = 1 0 0 1 1

*For an element α GF(2m), the minimum polynomial m(x), with binary
coefficients, has the smallest degree such that m(α) = 0.
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evaluating the t rows of Table 8.41 as described by Lin [166].
The table is initiated as shown and the rows are completed iter-
atively, as described by the following algorithm, in the process
of determining the error location polynomial.

Table 8.41 is filled out using the following algorithm.
Given the previous row υ, the υ + 1 row is determined as

if (dυ = 0) then
συ+1 x = συ x

else
Find another row υ < υ, such that the
last column 2υ −ℓυ
is the largest value with dυ 0, and
then compute:
συ+1 x = συ x +dυd−1

υ x2 υ− υ συ x
end if
ℓυ+1 = 2 υ−υ + υ : the degree of συ+1 x and
dυ+1 =S2υ+3 + συ+1

1 S2υ+2 + συ+1
2 S2υ+1 + + συ+1

ℓυ+1

S2υ+3−ℓυ+1

where the συ+1
i are the coefficients of

the polynomial
συ+1 x =1+ συ+1

1 x + συ+1
2 x2 + + συ+1

ℓυ+1
x ℓυ+1

The polynomial σt(x) in the last row of Table 8.41 is the
error location polynomial; however, if it has degree greater
than t, the errors cannot be located and corrected.

8.14.2 RS Codes

The RS code is a subclass of nonbinary BCH codes that have
excellent burst- and random error correcting properties. In
general, the M-ary RS code has a code or block length of
N =M − 1 symbols where each symbol is composed of an
M-ary symbol alphabet. Referring to the number of informa-
tion symbols as K <N, the M-RS code is designated as a (N,
K) code. The code rate is defined as rc =K/N. The error-free
correction capability of the RS code is t = (N −K)/2 symbols,
that is, any combination of symbol errors equal to or less than
one-half the number of parity symbols can be corrected. In
the following discussions, the notation (N, K, t) is used
to explicitly identify the error-correction capability being
considered. The minimum distance of the RS code is

dmin = 2t + 1. In the event that the decoder fails to correct
the received symbol errors, additional processing can be
performed by using symbol erasures to correct up to
t = 2t − e 2 symbol errors where e is the number of sym-
bols that are erased. The decision as to which symbols to erase
must be made on the basis of a maximum-likelihood rule at the
symbol detection processor output; noisy threshold margins
will influence the erasure selections. The code symbols most
commonly used in the implementation of the RS code are
taken from the GF(2m) where M = 2m. The notation (N, K,
t)m is used to identifying the underlying code structure. This
is a particularly useful notation when dealing with shortened
codes with N <M − 1 that may lead to confusion as to the
applicable GF. Several references are given in the following
sections in which the details of GF arithmetic can be found.
The RS code characteristics are summarized in Table 8.42.

In the following sections, themessage format and encoding
requirements are reviewed for a generalM-ary RS encoder. Of
particular interest is the development of the encoder vector
notation from the transmitted sequence. The vector notation
represents the encoded message as a polynomial upon which
the decoding algorithms are performed and is not an implicit
function of time. Also the concept of shortened codes is intro-
duced for which a specific example of a (24,12) code is given.
The following discussion focuses on the processing require-
ments without the use of erasures; the processing requirement
with erasures is discussed in Section 8.14.2.3. In either case,
with or without erasures, the four principal decoding compu-
tations involve:

1. Error syndrome calculation

2. Error location polynomial calculations

3. Error location calculation

4. Error value calculations

The concluding sections outline a computer simulation
code for all of the required processing for both the encoder
and decoder. This chapter concludes with a discussion of
several theoretical and simulated performance results. The
performance is characterized in terms of the bit-error

TABLE 8.41 Binary BCH Iterative Algorithm for
Determining the Error Location Polynomiala

υ συ(x) dυ ℓυ 2υ−ℓυ

−1/2 1 1 0 −1
0 1 S1 0 0
1
…

t

aLin [166]. Reproduced by permission of Pearson Education, Inc.,
New York, NY.

TABLE 8.42 Summary of M-ary Reed–Solomon Code
Characteristics

Parameter Symbols Bits

Block length (N) M − 1 m(M − 1)
Bits/symbol (m) — log2(M)
Information K mK
Parity N − K m(N −K)
Error correction
Without erasures (t) (N − K)/2 m(N −K)/2
With erasures (t ) (2t − e)/2 m(2t − e)/2
Min. distance (dmin) 2t + 1 —
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probability dependence on the signal-to-noise ratio as meas-
ured in the symbol and information-bit bandwidths.

8.14.2.1 Encoder Processing This section relates the
source data information or message sequence to the sequence
of encoded symbols including the parity symbols. The parity
symbols are appended to the message to form a systematic
M-ary RS coded sequence. The relationship between the
time-dependent transmitted sequence and the notion of a
code vector generated from elements of the GF(2m) is dis-
cussed. Also, the generation of shortened forms of the under-
lying or parent (N, K) code is discussed.

Binary data comprising the source message is collected in
a block of mK bits and taken m at a time to form K message
symbols. Each symbol forms a 2m-ary vector that is repre-
sented as an element in the GF having a primitive polynomial
p(α) where α is called the “primitive element.” Therefore,
each nonzero message symbol can be represented as a power
of α such that

αn = element of GF 2m (8.140)

where n = i modulo-(2m − 1) and i is any integer. The com-
plete set consists of the 2m elements 0,1,…,α,α2

m −2.
Most of the simulation examples provided in the follow-

ing sections are based on the 64-ary RS code generated over
GF(26) and the corresponding set of elements are listed in
Table 8.43. These elements form the basis upon which the
encoding and decoding operations are performed and serve
to illustrate the algebraic properties of GFs. The nonzero ele-
ments of GF(26) are generated from the primitive polynomial

p x = x6 + x + 1 (8.141)

with p α = 0. The binary values are assigned, from left to
right, as (b0, b1, b2, b3, b4, b5) where b0 is the LSB. The
LSB is taken first-in-time from the data source, or parity gen-
erator, and is transmitted first-in-time. The relationship
between the binary bits and the primitive element α for a
typical symbol is

Encoded symbol =
m−1

i= 0

biα
i (8.142)

Because of this assignment of the LSB, it is necessary in
the simulation to reverse the binary symbol to accommodate
the vector processing as defined throughout the literature and
used in the following sections.

In completing Table 8.43, it is noted that the first m − 1
powers of α are simply evaluated as αi = 2i, i = 0, 1, …, m −
1 and αm is evaluated directly from the solution of the prim-
itive polynomial as αm = p α −αm. Subsequent powers are
determined by repeated multiplication by α and subsequent
reduction using the first m powers previously evaluated.

Multiplication (division) over GF(2m) is performed simply
by adding (subtracting), modulo-(2m − 1), the exponents of
α, that is, α5α59 = α1 and α5α58 = α0 = 1. Addition over
GF(2m) is performed by forming the binary representations
of the terms being added and summing the corresponding
coefficients modulo-2; this is the same as performing
an exclusive-or on the corresponding binary elements.
For example, referring to Table 8.43 and
(8.140), α5 + α59 = α5 + 1 + α2 + α3 + α4 + α5 = 1 + α2

+ α3 + α4 = α41, noting that, α5 + α5 = 0.
Figure 8.65 depicts an arbitrary message symbol from a

data source with each symbol composed of m source data
bits. The collection of K source symbols forms the RS code
block duration.

The message sequence is described as

m t =
K−1

n = 0

mK−1−nd t−nT (8.143)

TABLE 8.43 Binary and Integer Equivalents of Field
Elements in GF(26) [f(x) = b5x

5 + b4x
4 + b3x

3 + b2x
2 + b1x + b0]

Symbol Binary Integer Symbol Binary Integer

0 000000 0 α31 100101 37
α0 000001 1 α32 001001 9
α1 000010 2 α33 010010 18
α2 000100 4 α34 100100 36
α3 001000 8 α35 001011 11
α4 010000 16 α36 010110 22
α5 100000 32 α37 101100 44
α6 000011 3 α38 011011 27
α7 000110 6 α39 110110 54
α8 001100 12 α40 101111 47
α9 011000 24 α41 011101 29
α10 110000 48 α42 111010 58
α11 100011 35 α43 110111 55
α12 000101 5 α44 101101 45
α13 001010 10 α45 011001 25
α14 010100 20 α46 110010 50
α15 101000 40 α47 100111 39
α16 010011 19 α48 001101 13
α17 100110 38 α49 011010 26
α18 001111 15 α50 110100 52
α19 011110 30 α51 101011 43
α20 111100 60 α52 010101 21
α21 111011 59 α53 101010 42
α22 110101 53 α54 010111 23
α23 101001 41 α55 101110 46
α24 010001 17 α56 011111 31
α25 100010 34 α57 111110 62
α26 000111 7 α58 111111 63
α27 001110 14 α59 111101 61
α28 011100 28 α60 111001 57
α29 111000 56 α61 110001 49
α30 110011 51 α62 100001 33
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and the parity sequence is described as

p t =
N−K−1

n= 0

pN−K−1−nd t−nT (8.144)

where

d t−nT = rectT t,n−0 5 (8.145)

and

rectT t,n−0 5 =
1 nT ≤ t ≤ n+ 1 T

0 o w
(8.146)

For the systematic-code format, the parity is simply
appended to the message sequence and results in the transmit-
ted code sequence expressed as

r t =m t + p t−KT (8.147)

It is convenient to represent the transmitted sequence as
an N-dimensional code vector by making the substitution*

x−n = d(t − nT) which gives

r X =
K−1

n= 0

mK−1−nX
−n +

N−K−1

n= 0

pN−K−1−nX
−n (8.148)

Applying the common coefficient notation

αN−n =
mK−n n = 1,…,K

pN−n n =K + 1,…,N
(8.149)

to each summation in (8.148) and multiplying both sides by
XN−1 result in the simplified expression

r X =XN−1r X

=
N−1

n= 0

αnX
n

(8.150)

where the first N −K terms represent the parity information
and the remaining K terms represent the unaltered message
information.

It is important to keep in mind the apparent reversal of the
message and parity information symbols between the
sequence notation of (8.147) and the vector notation of
(8.150). In both cases, the message symbols are transmitted
first and the first message symbol into the receiver corre-
sponds to the coefficient of the highest order (N − 1) term
of r(X). The expression for r(X) given by (8.150) presupposes
an encoder implementation that stores the sequence prior to
the encoding and transmission. This is not required, however,
and r(X) can be generated without delay between the data
source and modulator as shown in Figure 8.66.

The tap weights, gn, of the parity generator are determined
from the coefficients of the generator polynomial g(X). For
the t-error correcting RS code, g(X) is expressed as

g X =
2t

n = 1

X−αn

=
2t

n= 0

gnX
n

(8.151)

where g2t = 1 and g0 =
2t

n= 1
αn.

This description of the generator polynomial is not unique
and more in-depth discussions can be found in the literature
[37, 157, 158, 164, 167]. All of these operations must be per-
formed in accordance with the algebraic rules of the GF(2m).
As in the previous discussion of mn and pn, gn is also an ele-
ment of the GF for which

Data 
source 

Encoder/
modulator 

Message block 

Source 
bits 

1st symbol Kth symbol 

…
t 

…1 m 2 …1 m 2 

FIGURE 8.65 Relationship between sourcemessage bits, symbols,
and code block.

0

Parity/message 

Parity generator 

g0 g2t–1g1

T …

…

T 

Source 
data 

Modulator

FIGURE 8.66 Reed–Solomon encoder.

*This substitution is similar to the z-transform of the unit delay defined
as u t−nT z−n.
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gn = 0,α
n n = 0,1,…,2m−2 (8.152)

Although the basic M-ary RS code for which M = 2m is
defined for N =M − 1, a shortened code for N <M − 1 can
be easily implemented by considering the first message sym-
bols mn: n =N, …, M − 1 to be zero. As is evident from
Figure 8.66, these leading message symbols will not contrib-
ute to the parity information. For example, the shortened
(32,20) 64-ary RS code assumes that the code vector is
expressed as

r X = α0 + + α11X11 + α12X12 + + α31X31 + α32X32 + + α62X62

Parity Message Forced zeros

(8.153)

The shortened RS codes are denoted as (N , K , t )m codes
that are derived from the parent (N, K, t)m code by reducing
theN andK symbols by a constant integer I < K. The resulting
shorted code corresponds to N =N − I and K = K − I.
Although the symbol-error correction capability remains
the same, that is, t = t, the code rate of the shortened code is

rc = rc
1− I K

1− I N
(8.154)

so that, for I > 0, rc < rc.

8.14.2.2 Decoder Processing without Erasures When
errors, introduced by the transmission media, are added to
the transmitted code vector r(X) the resulting received vector
is expressed as

r X = r X + e X (8.155)

The first operation of the receiver decoder is to compute
the error syndrome to determine the existence of errors.
For the RS codes, the syndrome is a 2t-dimensional vector
given by

S X =
2t−1

i= 0

SiX
i (8.156)

When S(X) 0, it is concluded that errors have occurred
in the received data and that additional processing must be
performed to determine their locations and magnitudes.
The components Si are examined individually to determine
the existence of an error condition. These components are
given by

Si = r αi

=
N−1

n= 0

αn αi n
(8.157)

where αn = 0,aj j= 0,1,…,N−1 are the coefficients of the
received vector. Whenever Si = 0 i, the message block is
assumed to be received without errors; otherwise, an error
condition is declared. The operations involved in computing
Si are referred to as the parity-check calculations.

In the event of υ ≤ t symbol errors, there exists a set of
unique nonzero error location numbers (Xℓ) and error value
numbers (Yℓ) that are related to the syndrome components by

Si =
υ

ℓ = 1

YℓX
i
ℓ

1 ≤ i ≤ 2t (8.158)

The problem in solving the nonlinear equations (8.158) for
Xℓ and Yℓwas the major task facing algebraic coding theorists
and the major task facing hardware or software engineers is to
efficiently implement the resulting algorithms. The following
development follows closely that given by Berlekamp.*

When υ ≤ t errors occur a set of elementary symmetric
functions, σℓ, are defined by the equations

υ

ℓ = 1

1−XℓX =
υ

ℓ = 0

σℓX
ℓ (8.159)

where the elementary symmetric functions are related to the
error syndrome components by the linear equations†

υ

j= 0

Si+ jσυ− j = 0 1 ≤ i ≤ 2t−υ (8.160)

Berlekamp developed an iterative procedure for solving
this set of linear equations for the elementary symmetric
functions and Lin presents a simplified outline of the algo-
rithms. The procedure involves completing Table 8.44 after
initialization of the first two rows as shown. In Table 8.44, Si
is the error syndrome computed previously and completion of
the table, given the υ-th row, is accomplished as follows:

TABLE 8.44 Iterative AlgorithmTable for the Error Location
Polynomiala

υ συ(x) dυ ℓυ υ−ℓυ

−1 1 1 0 −1
0 1 S1 0 0
1
…

2t

aLin [166]. Reproduced by permission of Pearson Education, Inc., New
York, NY.

*Refer to Lin [37] for a description of the Berlekamp algorithm.
†Equation (8.160) is developed by Peterson and Weldon (see Reference 34,
Equation (9.16), p. 284).
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if (dυ = 0), then
συ+1 x = συ x
ℓυ+1 = ℓυ

else
Find row υ < υ, such that the last column
υ −ℓυ
is the largest value with dυ 0, and
then compute:
συ+1 x = συ x −dυd−1

υ x υ− υ συ x
ℓυ+1 = max ℓυ, ℓυ + υ−υ

endif
dυ+1 =Sυ+2 + συ+1

1 Sυ+1 + + συ+1
ℓυ+1

Sυ+2−ℓυ+1

where the συ+1
i are the coefficients of the

polynomial

συ+ 1 x = 1 + συ + 11 x + συ + 12 x2 + + συ+ 1
ℓυ+ 1

xℓυ+ 1 (8.161)

Finding the row such that υ < υ under the indicated con-
ditions requires completing 2t rows in Table 8.44 and the pol-
ynomial σ2t(x) in the last row is the error location polynomial.
If the degree of this polynomial is greater than 2t, the errors
cannot be located and corrected.

Upon successful completion of Table 8.44, the resulting
polynomial σ2t(x) is the required error location polynomial.
Therefore, having solved for the elementary symmetric func-
tions (σℓ), the error locations numbers are determined as fol-
lows. The right-hand side of (8.159) is referred to as the error
location polynomial, and it follows from the left-hand side of
(8.159) that any valid error location number Xℓ 1 ≤ ℓ ≤ υ ≤ 2t
is related to the roots of this polynomial. The roots form a
subset of the GF(2m) field elements given by

Xroot = α
i i= 0,1,…,2m−2 (8.162)

from which the error location numbers are given by

Xℓ = Xroot
−1 = αN− i (8.163)

This is equivalent to identifying the error location in terms
of the power n of Xn given in (8.150). Therefore, the location
of the received symbol αn that is in error is given by the coef-
ficients of Xn in the received vector where n =N − i.

The terminology used here is consistent with that used by
Berlekamp. Peterson [58], however, defines the error loca-
tions as being the reciprocal of the error location numbers.
The difference arises because of the form of (8.159), which
Peterson expresses as

υ

ℓ = 1

Xℓ −X (8.164)

The location numbers are determined simply by substitut-
ing each element of GF(2m), except zero, into (8.159) and tak-
ing those values that are roots.

Having computed the error locations, the error values (Yℓ)
are determined from (8.158), which is linear in Yℓ. For the
binary BCH codes, the received bits found to be in error are
simply inverted to give the corrected information. Determin-
ing the error values for the nonbinary BCH codes, however, is
considerablymore involved. The error values are expressed as

Yℓ =
W X −1

ℓ

υ

j = 1
i ℓ

1−Xj X
−1
ℓ

(8.165)

where W(X) is referred to as the error evaluation polynomial
and can be expressed in the form

W X = 1+
υ

i= 1

CiX
i (8.166)

where the coefficients are given by

Ci =
i

j= 0

Si− jσj (8.167)

where So = 1, Si 1 < i< 2t are the previously computed error
syndromes, and σj are the elementary symmetric functions.
An alternate procedure for computing the error values when
with erasures is discussed in Section 8.14.2.3.

8.14.2.3 Decoder Processing with Erasures As outlined
in this section, the processing requirements with erasures fol-
low the development given by Peterson. In the event that the
decoding processing as outlined previously fails, additional
attempts can be made with symbol erasures. The advantage
of this procedure lies in the fact that the erasure locations
are known that eliminates the need to evaluate of the error
location polynomial. The computed error locations are then
combined with the known erasure locations to compute the
error values. The four basic steps listed in the introduction
are still required with modifications as outlined in the follow-
ing discussion.

The first requirement is to compute a new or modified
error syndrome taking into consideration the known erasure
locations. If symbols are erased in e locations, then, from
Table 8.42, there are υ ≤ t additional errors where

t =
2t−e
2

(8.168)

and (8.158) can be expressed as

Sj =
υ

ℓ = 1

YℓX
j
ℓ
+

e

ℓ = 1

VℓU
j
ℓ

1 ≤ j ≤ 2t (8.169)
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where Uℓ are the known erasure locations and Vℓ are the era-
sure error values that may be zero. Proceeding as before, a set
of elementary symmetric functions is defined in terms of the
known erasure locations as

e

ℓ = 1

U−Uℓ =
e

ℓ = 0

σℓU
e−ℓ (8.170)

The elementary symmetric functions (σℓ) are readily deter-
mined by expanding both sides of (8.170) and equating the
coefficients of the parameter U. The modified syndrome
components are then evaluated as

Ti =
e

ℓ = 0

σℓSi−ℓ i= e + 1,e + 2,…,2t (8.171)

where the syndrome components Sj are determined from the
received code vector as expressed by (8.157). The remaining
unknown error location numbers are related to a modified set
of elementary symmetric functions and the modified error
syndrome components as given by (8.159) and (8.160) where
Te+i is substituted for Si in (8.160) and the index i is taken
over the range 1 ≤ i ≤ 2t-e-υ. The new set of elementary sym-
metric functions is computed using Berlekamp’s iterative
algorithm. The unknown error location numbers Xℓ are com-
puted from the roots on the right-hand side of (8.159) as
expressed in (8.163).

The error values can now be computed based on the error
location numbers Xℓ and Uℓ. However, in view of the era-
sures, only υ nontrivial elementary symmetric functions have
been computed; whereas, using (8.165) through (8.167), υ + e
such functions are required. For this reason, the error values
will be computed using Forney’s procedure [165], which is
also discussed by Peterson [58]. The result of Forney’s eval-
uation is

Yℓ =

υ −1

j= 0
σℓjSυ − j

υ −1

j= 0
σℓj X

υ − j

ℓ

(8.172)

where υ = υ+ e. The elementary symmetric functions (σℓj)
can be determined from the recursive relationship

σℓj = σj +Xℓσℓ j−1 1 ≤ j ≤ υ (8.173)

where σℓ0 = 1 and σj 1 ≤ j ≤ υ are the elementary symmetric
functions of the error location numbers Xℓ 1 ≤ ℓ ≤ υ , namely,

υ

ℓ = 0

Xℓ −X =
υ

j= 0

σjX
j (8.174)

It is not necessary to compute each value of σj based on
(8.174) since the coefficients related to υ of the products

are also related to the error polynomial coefficients computed
using Berlekamp’s algorithm. Therefore, defining the coeffi-
cients for the partial expansion as γj, the relationship of
interest is

γj = συ− j 0 ≤ j ≤ υ (8.175)

Consequently, the product expansion must only be contin-
ued over the erasure locations and (8.174) becomes

υ

j= 0

γjXj

e

ℓ = 1

Uℓ −U =
υ

j= 0

σjX
j (8.176)

Actually, the product expansion in (8.176) was also eval-
uated using (8.170) and could be used to further reduce the
computational time. Of particular interest is the case with
no erasures (e = 0), in which, all the coefficients σj are com-
puted using (8.175) and, in the case where only erasures are
used (υ = 0), then (8.170) provides the required coefficients
directly. These procedures for determining the error values
could also be used without erasures, in which case υ = υ.

8.14.2.4 RS Simulation Program Outline The program
used to evaluate the RS code and the required processing
functions are listed in Table 8.45. The simulation program
focuses of the 64-ary RS code and various shortened forms
defined by the parent (N,K) code. However, the code can also
be used to evaluate the performance of 16-ary through 1024-
ary RS codes by selectingm = 4 through 10, respectively. The
required inputs to the simulation are defined in Table 8.46.

A block of source data consisting of mK message bits is
obtained using a uniform number generator. The bits are
taken m at a time to form the message coefficients mn, n =
0, 1, …, K − 1. From this message information, the parity
coefficients pn, n = 0, 1, …, N −K − 1 are generated and
appended to the message block to form a systematic block
code. The unipolar binary block data (bn) is converted to

TABLE 8.45 Reed–Solomon Simulation Code Processing

Main program
Error syndrome computations.
Modified error syndrome computations
Berlekamp algorithm, error locations, and error values
Erasure coefficient computations
Error value computations
Block- and bit-error statistics
GF(2m) field element and encoder coefficients
GF(2m) addition
GF(2m) multiplication
Symbol bit reverse
Binary-to-integer conversion
Uniform number generator
Gaussian number generator
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bipolar data as dn = 1 − 2bn. This translation can be viewed as
the baseband equivalent modulation for BPSK for which the
signal-to-noise ratio is given by

γc =
A2 2 T

No
(8.177)

where γc is expressed in terms of the transmitted code-bit or
symbol* duration, T, and is defined as Ec/No. This definition
is used for a normalized comparison of the performance;
however, an absolute comparison is based on the signal-to-
noise ratio defined in terms of the message bit duration, Tb,
defined as Eb/No. These signal-to-noise ratios are related as

Eb

No dB

=
Ec

No dB

+ 10log
N

K
BPSK modulation (8.178)

The Gaussian noise is generated as a zero-mean random
variable with standard deviation given by

σn =
No

T
=

A2

2γc
(8.179)

The received signal is then the sequence composed of
noisy bipolar data di = di + ni. The receiver threshold is set

as zero and the received binary data is determined as bi = 1

di < 0 and bi = 0 di ≥ 0 where bi is the estimate of the trans-
mitted block data bi. Therefore, based on the received binary

estimates, the RS decoder outputs estimates the original
source message bits.

The RS decoding functions are outlined in Table 8.45.
First, the syndromes are computed and a flag is set to one
if an error is detected from the syndrome results. The number
of decoding attempts to correct a block of data is recorded.
The first attempt at correcting errors is made without erasures
and subsequent attempts are for various combinations of era-
sures. Three erasure conditions are considered in the simula-
tion using 3, 6, and 8 symbol erasures, respectively.
Table 8.47 outlines the number of computed error locations
based on the number of erasures (e). The computed error
locations listed in Table 8.47 are based on t = 2t−e 2
and the total number of correctable symbols is simply the
sum of the erasures and the computed error locations.

It may be desirable to compute t error locations, one less
than the maximum values shown in Table 8.47, by using t =
5, 3, 2, 1. This set of computed error locations reflects a con-
servative decoding approach based on the minimum code dis-
tance and the related false-decoding probabilities. The
simulation results discussed in the following section are
based on the uncorrectable-error condition corresponding
to the degree of the error locator polynomial; however,
in the event of a declaration of a successful error correction,
the error syndromes are re-computed as a final check of the
error-free message.

8.14.2.5 RS Code Performance In this section, the ana-
lytical performance of the RS code is examined and the
results are compared to the performance based on the Monte
Carlo simulation program. Because the RS code is based on
symbol alphabets consisting of m binary bits, the analytical
performance over the BSC is relatively easy to evaluate. In
addition to providing a simple method of evaluating the per-
formance over a very basic channel, the analytical perfor-
mance results serve the important function of validating
the implementation of the software code. Once validated,
the simulation code can be targeted to an FPGA, ASIC, or
DSP device. In addition, the simulation code will provide
the user with an important capability to evaluate the perfor-
mance of the RS code over a variety of channels without

TABLE 8.46 Simulation Code Input Parameters

Parameter Description

SNR Signal-to-noise ratio (Eb/No) dB (SNR ≥ 301 no noise
is added)

m Log2(M) for M-ary RS code
N,K Defines block code
mpass Number of data blocks in simulation (bits per

simulation =mpass∗N∗m)
iwrite =1 Detailed output for evaluation

=0 Suppresses detailed output
(defaults to zero for mpass > 2)

iforce =1 Forces defined error patterns for evaluation
=0 Suppresses forced error patterns
(defaults to zero for mpass > 2)

nstart Seed for random source data
mstart Seed for channel noise

TABLE 8.47 Computed Error Locations for Various Erasure
Conditions Using Six Error-Correcting 64-ary Reed–
Solomon Code

Number of Erasures (e)

Theoretical and Simulated

Computed (t ) Total

0 6 6
3 4 7
6 3 9
8 2 10

*The use of the term symbol as used here to define the modulated waveform
interval should not be confused with the same term used to describe the RS
M-ary symbol. For the M-ary RS code, the latter consists of m modulated
waveform intervals or symbols with BPSK modulation.
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having to make simplifying assumptions. For example, the
analytical results can be obtained assuming a slowly or rap-
idly varying channel; however, the simulation program can
evaluate the performance over any channel fading condition.
The burst-error statistics are integrally related to the channel
fading conditions and impact the RS code performance in
way that are difficult to model.

The performance of various shortened forms of the parent
(63,51) code structure is compared to the performance of
antipodal and 64-ary coherent orthogonal signaling. The
(24,12) shortened code is used to show the improvement uti-
lizing forced erasure processing. In all cases, the performance
is evaluated in terms of the probability of a bit error in the
received message as related to the signal-to-noise ratio.
The baseline bit-error probability for the underlying wave-
form modulations have been developed previously and are
shown in the following figures as the dotted curves. These
results are based on uncoded BPSK waveform modulation
and the signal-to-noise ratio is expressed in terms of the
source-bit energy (Eb).

Under the conditions of a BSC with bit-error probability
Pbe, the analytical bit-error probability, Pbe, for a t-error cor-
rectingM-ary RS code is evaluated as follows. First, the prob-
ability of a symbol error is determined as

Pse = 1− 1−Pbe
m (8.180)

Since t or fewer of the N symbols are corrected by the RS
decoding, the resulting corrected symbol-error probability is
evaluated as

Pse =
N

i= t + 1

N
i Pi

se 1−Pse
N− i

= 1−
t

i= 0

N
i Pi

se 1−Pse
N− i

(8.181)

Using (8.181) the corrected bit-error probability is deter-
minedby solving (8.180) forPbe in terms of Pse with the result

Pbe = 1− 1−Pse
m (8.182)

Figure 8.67 shows the results for the first four high-rate
64-ary RS codes denoted as (63,57,3), (63,51,6), (63,45,9),
and (63,39,12). Figure 8.68 shows similar results for the first
five highest rate 256-ary RS codes denoted as (255,247,4),
(255,239,8), (255,231,12), (255,223,16), (255,215,20) and
a lower rate code (255,123,66). The uncoded bit-error prob-
ability is shown as the dotted curve. The abscissa is expressed
in terms the energy-per-bit so the correction for the code rate
has been applied.

The higher order codes exhibit two advantages: compared
to lower order codes having the same code rate, they result in

greater coding gain, for example, comparing the coding gain
of the rate 0.906 code in Figure 8.68 with the rate 0.905 code
in Figure 8.67, and they result in error probability curves with
steeper slopes resulting in improved performance with an
incremental change in Eb/No. These results also show the
effect of the diminishing returns as the code rate is reduced
and, for a given RS code order, there exists a code rate, below
which, the relative coding gain decreases. Figure 8.69 com-
pares the performance of the 64-ary RS codes: (63,57,3),
(63,45,9), (63,30,16), (63,16,23), and (63,7,28). The code
rate loss for the rate 0.111 code is about 1.8 dB at Pbe =
10−5, which nullifies the coding gain resulting from the error
correction. The performance of the rate 0.714 and 0.476
codes is nearly the same. These observations of the coding
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FIGURE 8.67 Analytical performance for several high-rate
64-ary Reed–Solomon codes.

Signal-to-noise ratio (Eb/No) dB

0 2 4 6 8 10 12 14

B
it-

er
ro

r 
pr

ob
ab

ili
ty

 (
P

be
)

1e–10

1e–9

1e–8

1e–7

1e–6

1e–5

1e–4

1e–3

1e–2

1e–1

1e+0

Antipodal

256-ary

rc = 0.969 
0.937

0.843

0.906

0.482

0.874

FIGURE 8.68 Analytical performance for several high-rate 256-
ary Reed–Solomon codes.
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gain result because of performance dependence on Eb/No and,
when plotted as function of the signal-to-noise ratio measured
in the symbol bandwidth, the plots would continually move
to the left with decreasing code rate. These results suggest
that the RS code parameters should be selected to achieve
the minimum bit-error performance when plotted as a func-
tion of Eb/No.

The dashed curves in Figures 8.70 and 8.71 show, respec-
tively, the Monte Carlo simulation results for the (63,51,to)6
code and a shortened (24,12,to)6 version of the 64-ary RS
code with various symbol-error correction capabilities. These
results are compared to the corresponding analytical perfor-
mance, shown as the solid curves. The dotted curve is the

bit-error performance of the underlying uncoded antipodal
or BPSK modulated waveform. The Monte Carlo results
are based on 100K RS blocks for each signal-to-noise ratio
corresponding to 63(6)100K = 37.8M and 24(6)100K =
14.4M bits, respectively. Whenever an RS message block
fails the decoder processing, the bit errors in the received
message are counted. This results in the bit-error perfor-
mance, for low signal-to-noise ratios, bending to the left
away from the analytical predictions. If the antipodal wave-
form reference is plotted in terms of the signal-to-noise ratio
in the symbol bandwidth, that is, by moving the dotted curve
to the right by 10log(N/K) dB, then the coded results would
be seen to approach the adjusted antipodal performance curve
for low values of Eb/No; this is the correct comparison since
the uncoded and coded results would both be operating under
the same of the additive noise bandwidth.

Figure 8.72 compares the simulated performance of the
(255,247,to)8 256-ary RS code for to = 2 and 4. In this case,
the difference between the coded and uncoded signal-to-
noise ratio is only 10log(255/247) = 0.14 dB, so the coded
asymptotic performance for low signal-to-noise ratios is
shifted from the uncoded (dotted) curve by this amount.

As a final example, Figure 8.73 shows the performance of
a concatenated code using an inner convolutional code and
RS outer code; the convolutional code is decoded using the
Viterbi algorithm so this concatenated configuration is
referred to as an RSV concatenated code. The performance
is shown for two rate 1/2 convolutional codes with constraint
lengths 7 and 9. The RS code performance is based on the
theoretical relationship given the hard-decision outputs of
the convolutional code. The theoretical bit-error probability
out of the RSV code is evaluated using (8.180) to compute
the symbol-error probability into the RS decoder given the
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FIGURE 8.69 Analytical performance for high- and low-rate
64-ary Reed–Solomon codes.
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bit-error probability output of the convolutional code
decoder, then using (8.181) to compute the corrected sym-
bol-error probability and (8.182) to compute the desired cor-
rected bit-error probability with the signal-to-noise ratio
adjusted to reflect the measurement in the bandwidth of the
source-bit interval. Although not evaluated, the Monte Carlo

simulated RSV bit-error performance results will bend to the
left approaching a limiting value as depicted by the dashed
curves in Figures 8.70, 8.71, and 8.72. The theoretical results
are ideal, in the sense that they assume that the bit-errors are
independent; this is the same as assuming the use of an ideal
interleaver between the codes. In practice, the RSV code typ-
ically uses an interleaver between the inner and outer codes to
improve the decoding reliability.

APPENDIX 8A
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TABLE 8A.1 Map of Deleting Bits for Punctured Codes Derived from Rate 1/2 Codes with Constraint Lengths 2 through 8a

The constraint length ν is defined by Forney [84]. The code generators for the underlying rate 1/2 codes with maximal free distance are indicated
in octal notation by the brackets. The parity-check bits signified by a “0” are punctured and a “1” indicates the bits that are transmitted as the
code word.

Code Rate

Constraint Length ν

2 3 4 5 6 7 8

1/2 1 (5) 1 (15) 1 (23) 1 (53) 1 (133) 1 (247) 1 (561)
1 (7) 1 (17) 1 (35) 1 (75) 1 (171) 1 (371) 1 (753)

2/3 10 11 11 10 11 10 11
11 10 10 11 10 11 10

3/4 101 110 101 100 110 110 111
110 101 110 111 101 101 100

4/5 1011 1011 1010 1000 1111 1010 1101
1100 1100 1101 1111 1000 1101 1010

5/6 10111 10100 10111 10000 11010 11100 10110
11000 11011 11000 11111 10101 10011 11001

6/7 101111 100011 101010 110110 111010 101001 110110
110000 111100 110101 101001 100101 110110 101001

7/8 101111 1 100001 0 101001 1 101110 1 111101 0 101010 0 110101 1
110000 0 111110 1 110110 0 110001 0 100010 1 110101 1 101010 0

8/9 101111 11 100000 11 101000 11 111000 10 111101 00 101101 10 111000 00
110000 00 111111 00 110111 00 100111 01 100010 11 110010 01 100111 11
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APPENDIX 8B

TABLE 8A.1 (continued)

Code Rate

Constraint Length ν

2 3 4 5 6 7 8

9/10 101111 101000 111110 100001 111101 101100 111000
111 000 011 111 110 110 101
110000 110111 100001 111110 100010 110011 001 100111
000 111 100 000 001 010

10/11 101111 100000 100000 100111 111011 100100 100010
1111 0011 0101 0100 0111 0011 1100
110000 111111 111111 111000 100100 111011 111101
0000 1100 1010 1011 1000 1100 0011

11/12 101111 100000 101011 100011 111101 101100 110000
11111 00010 01101 10100 11110 00110 10001
110000 111111 110100 111100 100010 110011 101111
00000 11101 10010 01011 00001 11001 01110

12/13 101111 100000 101101 110100 111111 100100 110000
111111 000011 111011 110110 110101 001100 011010
110000 111111 110010 101011 100000 111011 101111
000000 111100 000100 001001 001010 110011 100101

13/14 101111 101000 111011 110001 110100 101010 110000
111111 1 000000 0 011011 1 100010 0 000111 1 010000 0 010000 1
110000 110111 100100 101110 101011 110101 101111
000000 0 111111 1 100100 0 011101 1 111000 0 101111 1 101111 0

aYasuda et al. [67]. Reproduced by permission of the IEEE.

TABLE 8B.1 Coefficients for Generator Polynomials of Primitive Binary BCH Codes (Octal Notation)a

n k t g(x)

7 4 1 13
15 11 1 23

7 2 721
5 3 2467

31 26 1 45
21 2 3551
16 3 107657
11 5 542332 5
6 7 313365 047

63 57 1 103
51 2 12471
45 3 170131 7
39 4 166623 567
36 5 103350 0423
30 6 157464 165547
24 7 173232 604044 41
18 10 136302 651235 1725
16 11 633114 136723 5453
10 13 472622 305527 250155
7 15 523104 554350 327173 7

127 120 1 211
113 2 41567
106 3 115547 43
99 4 344702 3271

(continued overleaf )
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TABLE 8B.1 (continued)

n k t g(x)

92 5 624730 022327
85 6 130704 476322 273
78 7 262300 021661 30115
71 9 625501 071325 312775 3
64 10 120653 402557 077310 0045
57 11 335265 252505 705053 517721
50 13 544465 125233 140124 215014 21
43 14 177217 722136 512275 212205 74343
36 15 314607 466652 207504 476457 472173 5
29 21 403114 461367 670603 667530 141176 155
22 23 123376 070404 722522 435445 626637 647043
15 27 220570 424456 045547 705230 137622 176043 53
8 31 704726 405275 103065 147622 427156 773313 0217

255 247 1 435
239 2 267543
231 3 156720 665
223 4 756266 41375
215 5 231575 647264 21
207 6 161765 605676 36227
199 7 763303 127042 072234 1
191 8 266347 017611 533371 4567
187 9 527553 135400 013222 36351
179 10 226247 107173 404324 163004 55
171 11 154162 142123 423560 770616 30637
163 12 750041 551007 560255 157472 451460 1
155 13 375751 300540 766501 572250 646467 7633
147 14 164213 017353 716552 530416 530544 101171 1
139 15 461401 732060 175561 570722 730247 453567 445
131 18 215713 331471 510151 261250 277442 142024 165471
123 19 120614 052242 066003 717210 326516 141226 272506 267
115 21 605266 655721 002472 636364 046002 763525 563134 72737
107 22 222057 723220 662563 124173 002353 474201 765747 501544

41
99 23 106566 672534 731742 227414 162015 7433225 524110 764323 03431
91 25 675026 503032 744417 272363 172473 251107 555076 272072 434456 1
87 26 110136 763414 743236 435231 634307 172046 206722 545273 311721 317
79 27 667000 356376 575000 202703 442073 661746 201153 267117 665413 42355
71 29 240247 105206 443215 155541 721123 311632 054442 503625 576432 217060 35
63 30 107544 750551 635443 253152 173577 070036 661117 264552 676136 567025 43301
55 31 731542 520350 110013 301527 530603 205432 541432 675501 055704 442603 547361 7
47 42 253354 201706 264656 303304 137740 623317 512333 414544 604500 506602 455254 3173
45 43 152020 560552 341611 311013 463764 237015 636700 244707 623730 332021 570250 51541
37 45 513633 025506 700741 417744 724543 753042 073570 617432 343234 764435 473740 304400 3
29 47 302571 553667 307146 552706 401236 137711 534224 232420 117411 406025 475741 040356 5037
21 55 125621 525706 033265 600177 315360 761210 322734 140565 307745 252115 312161 446651 347372 5
13 59 464173 200505 256454 442657 371425 006600 433067 744547 656140 317467 721357 026134 460500 547
9 63 157260 252174 724632 010310 432553 551346 141623 672120 440745 451127 661155 477055 616775 16057

aStenbit [161]. Reproduced by permission of the IEEE.
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ACRONYMS

ACS Add–compare–select
AGC Automatic gain control
APP A posteriori probability
ARQ Automatic repeat request
ASCII American Standard Code for Information

Interchange
ASIC Application-specific integrated circuit
AWGN Additive white Gaussian noise
BCH Bose–Chaudhuri–Hocquenghem (code)
BCJR Bahl–Cocke–Jelinek–Raviv (algorithm)
BFSK Binary frequency shift keying
Biϕ Biphase or Manchester code (PCM format)
Biϕ-L,
-M,-S

Biphase-level, -mark, -space (PCM formats)

CC Constituent code (code concatenation)
CCC Concatenated convolution code
CCITT International Telegraph and Telephone Con-

sultative Committee (currently referred to
as ITU)

CCSDS Consultative Committee for Space Data
Systems

CDMA Code division multiple access
CPM Continuous phase modulation
CRC Cyclic redundancy check
CSK Compatible shift keying
DC Direct current
DEBPSK Differentially encoded BPSK
DEQPSK Differentially encoded QPSK
DM Delay modulation or Miller code (PCM

format)
DM-M,-S Delay modulation-mark, -space (PCM format)
DPCCC Double parallel concatenated convolutional code
DSCCC Doubleseriallyconcatenatedconvolutionalcode
DS-
CDMA

Direct sequence CDMA

DSP Digital signal processor
EDAC Error detection and correction
FCS Frame check sequence
FEC Forward error correction
FIR Finite impulse response
FM Frequency modulation (PCM format)
FPGA Field programmable gate array
FSK Frequency shift keying
GF Galois field
GMSK Gaussian minimum shift keying
HCCC Hybrid concatenated convolutional code
IF Intermediate frequency
IIR Infinite impulse response (filter)
IS-95 Interim Standard 95
ISI Intersymbol interference
ITU-T International Telecommunication Union

(Sector T: Telecommunications and Computer
Protocols)

JPL Jet Propulsion Laboratory (California Institute
of Technology)

LCM Least common multiple
LDPC Low-density parity-check (code)
LFSR Linear feedback shift register
LSB Least significant bit
LSS Least significant symbol
MAP Maximum a posteriori (probability)
MPSK Multiphase shift keying
MSB Most significant bit
MSK Minimum shift keying
MSS Most significant symbol
NRC Nonrecursive convolutional (code)
NRZ Non-return-to-zero (PCM format)
NRZ-L,
-M,-S

Non-return-to-zero-level, -mark, -space (PCM
formats)

NSC Nonsystematic convolutional (code)
OQPSK Offset QPSK
PC Product code
PCCC Parallel concatenated convolutional code
PCM Pulse code modulation
PCM/FM Frequency modulated PCM
PCM/PM Phase modulated PCM
PCS Personal communications service
PM Phase modulation (PCM format)
PRM Partial response modulation
PRN Pseudo-random noise (sequence)
PSD Power spectral density
QAM Quadrature amplitude modulation
QPSK Quadrature phase shift keying
RF Radio frequency (carrier)
RS Reed–Solomon (code)
RSC Recursive systematic convolutional (code)
RSV Reed–Solomon Viterbi (concatenated code)
RZ Return-to-zero (PCM format)
RZ-L,
-M,-S

Return-to-zero-level, -mark, space (PCM
formats)

SCC Self-concatenated code
SCCC Serially concatenated convolutional code
SISO Soft-in soft-out (processor module)
SOM Start-of-message
TC Turbo code
TCM Trellis-coded modulation
TFM Tamed frequency modulation
TPC Turbo product code

PROBLEMS

1. Referring to the unipolar NRZ-M and NRZ-S baseband
data formats shown in Figure 8.3, sketch the formats of
the corresponding polar NRZ-M and NRZ-S PCM
waveforms.

2. In generating the unipolar NRZ and unipolar RZ coded
waveforms, the level of the coded bit corresponding to a
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zero source bit is always zero. Given the nonzero mark-
bit spectrum, Hm(f) with Hs(f) = 0, derive the PSD for
these PCM waveforms. Hint: Evaluate the space-bit
modulation as es(t) = em(t − Tb) − em(t).

3. Evaluate the bit-error performance for the DEBPSK
modulated data sequence in Table 8.3 if a single-error
event occurs at bit i = 6. In this case, the phaselock loop
continues to operate uninterrupted. Show the modified
rows Di and di in Table 8.3 and indicate the error events.
Then repeat this example if there are no received bit
errors, but the encoder and decoder are initialized differ-
ently, that is, using Di = 0 andDi−1 = 1. Is the differential
decoder self-synchronizing? If the encoder and decoder
cannot be identically initialized, how can the data error
event be avoided?

4. For the m = 21 degree polynomial listed in Table 8.6,
determine the number of m-sequences that can be gener-
ated. Show all of the details in determining the prime fac-
tors pi. Hint: The prime factors can be determined using
the procedures described in Section 1.13.1.

5. For the degree 4 irreducible and non-primitive polyno-
mial described by the octal notation (37), determine
the output sequence when the shift registers are initia-
lized with (b3,b2,b1,b0) = (0001). Repeat this using the
initialization (b3,b2,b1,b0) = (1001) and (1111). Identify-
ing these respective subsequences as A, B, and C, com-
pute the integer values of the binary states for each cyclic
shifted subsequence. Compare the results of the subse-
quences A, B, and C with the 24 − 1 = 15 states of the
4th-degree nonprimitive polynomial.

6. For the m-sequence generated by the polynomial g(x) =
x3 + x + 1, compute or determine the following: (i) the
length of the sequence, (ii) a table of all initial conditions,
(iii) the run length probabilities Pℓ(0), Pℓ(1) for all run
lengths ℓ, (iv) that the m-sequence generator is linear,
and (v) the correlation response for two contiguous
received sequences, including the leading and trailing
correlation responses, that is, for a total correlation
response over a length of four sequences.

7. Consider the binary data randomizer implemented as the
m-sequence generated by the third-degree polynomial
(13)o. Using the randomizer initial state (001) and the
source data sequence (10011101011), with the leftmost
bit input first, evaluate (i) the randomized data sequence,
(ii) the output of the derandomizer, and (iii) the output of
the derandomizer if the 5th bit of the randomized data is in
error. Suggestion: complete the following tables whereDs

is the source data,Dr is the randomized data, b3 =Ds b0,
the primed designations correspond to the estimations in
the derandomizer, and the shaded cells correspond to the
randomizer and derandomizer initializations.

Randomizing Derandomizing

Ds b3 b2 b1 b0 Dr Dr d2 d1 d0 Ds

1 0 0 1 0 0 1

0

0

etc. etc.

8. Derive equation (8.21) for the gray decoding of an
n-tuple of gray coded binary bit. Hint: Use the gray
encoding algorithm given in (8.20).

9. With a word (vector or n-tuple) defined as (bn, …, b0) :
bi = {1,0}, the following definitions apply:

Hamming distance (hd) between two equal-length words
is the number differing elements bi.

Minimum distance (dmin) of a linear block code of words
is the smallest Hamming distance between pairs of
code words.

Hamming weight (hw) is the number of nonzero elements
in a word.

Applying these definitions to a linear block code of
three words:

x = (11000101011), y = (01011100010) and z =
(10000000001) determine hd(x,y), hd(x,z), hd(y,z), w(x),
w(y), w(z) and dmin and, using modulo-2 addition, show
that hd(x,y) = hw(x + y), hd(x,z) = hw(x + z), and hd(y,z) =
hw(y + z).

10. Using the state diagram in Figure 8.44 and the state reduc-
tion rules in Figure 8.45, show that the convolutional code
transfer function for the binary rate 1/2, K = 3, convolu-
tional code is given by the first equality in (8.81). Also,
show all of the steps in the division resulting in the first
four terms of the infinite series given by the second equal-
ity in (8.81).

11. Referring to the punctured code example in
Section 8.11.7 corresponding to the rate 1/2, K = 3 con-
volutional code in Figure 8.37, draw a sketch of the four-
state trellis decoder for the states Si,Si+ 1, and Si+ 2 and
label the parity-check bits (P2,P1) on each state transi-
tion, noting the punctured parity-check bits by X.

12. Redraw the SCCC encoder shown in Figure 8.52a for the
DSCCCdecoder shown inFigure 8.52b.Using outer,mid-
dle, inner code rates of 1/2, 2/3, and 3/4, respectively, with
k = 1 source bit for each input sample and a block length of
kN = 16,384 source bits, determine the overall code rate
and the interleaver lengths L1 and L2. Hint: for the i-th
encoder output, with rate pi/pi+1, the interleaver length is
Li = kipi+1 where, using (8.113), ki is constant for all i.
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13. Using Table 8.33 and referring to Figure 8.61, draw the
rate 1/2 SCCC outer and inner constituent encoders and
identify encoder number of states, if the CCs are both
recursive and systematic.

14. For the LDPC code (n, j, k), described in Section 8.13,
derive the expression for the density of ones in terms
of the parameters n, j, and k.

15. For the binary GF(28), complete the table for the first
16 field elements including the zero and unity elements.
Express the primitive elements αn n > 7 in terms of the
elements αn 1 ≤ n ≤m− 1. Also include in the table the
binary coefficients and the corresponding integer value
as shown in Table 8.39.

16. Show that addition and subtraction of powers the prim-
itive element α is the same in the binary Galois field
GF(2), that is, show that αn + αn = αn−αn . Also show
that αn ± αn = 0 for 0 ≤ n ≤m− 1.
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9
FORWARD ERROR CORRECTION CODING WITHOUT
BANDWIDTH EXPANSION

9.1 INTRODUCTION

This chapter focuses on two modulation waveforms that
provide coding gain without requiring additional band-
width beyond that of the transmitted information symbol
[1]. The two waveforms are M-ary multi-h continuous
phase modulation (CPM) and multiphase shift keying
(MPSK) trellis-coded modulation (TCM). The MPSK
TCM is also examined in terms of multilevel quadrature
pulse amplitude modulation (MQPAM) TCM. Because
the information or data is contained in the signal phase
function, both of these techniques provide constant envel-
ope waveforms: a necessary condition for robust per-
formance when used with hard-limiting channels.
Furthermore, the capability to provide coding gain without
bandwidth expansion is paramount when attempting to
achieve the highest possible data rate in narrowband chan-
nels with low-power small aperture disadvantaged term-
inals. The coding gain for these waveforms is provided
by the inclusion of redundant phase states that behave
much like the redundant parity bits in conventional band-
width expansion with forward error correction (FEC) cod-
ing techniques as discussed in Chapter 8. The multi-h
CPM waveform provides the redundant phase states by
judicious variations of the modulation index h, whereas
the MPSK-TCM waveform provides redundant phase
states by the using M < M phase states for the source
information leaving M – M redundant phase states to
resolve errors.

In Section 9.2, the theoretical characteristics of the multi-h
M-ary CPMwaveform are discussed including the selection of
the modulation indices (h), the evaluation of the modulated
waveform spectrum, and the waveform demodulation. The
options involving full response CPM, inwhich the information
bearing phase is constrained to one symbol, and partial
response CPM, where the phase response is spread over adja-
cent symbols, are also discussed.

Section 9.3 provides a case study that focuses on the 2-h
4-ary full response CPM waveform. Following a detailed
description of the waveform modulation and spectrum, the
simulated bit-error performance results are provided compar-
ing the performance using the additive white Gaussian noise
(AWGN) channel with those using a narrowband hard-
limiting satellite channel. With full response modulation,
denoted as 1REC, the symbol energy is confined to one sym-
bol interval in contrast to partial-response modulation that
distributed symbol energy over several adjacent symbols.
Demodulation of the full response modulated multi-h CPM
waveform is considerably more computationally efficient.

In Section 9.4, a similar characterization is provided for
the MPSK-TCM modulated waveform. In this case, the
intrinsic sinc(fT) frequency spectrum of the MPSK wave-
form is improved by applying phase shaping that extends
into the adjacent symbols. Section 9.5 provides a case study
characterizing the performance of the 8PSK TCM wave-
form comparing the bit-error using the linear AWGN chan-
nel with those using a narrowband hard-limiting satellite
channel.

Digital Communications with Emphasis on Data Modems: Theory, Analysis, Design, Simulation, Testing, and Applications,
First Edition. Richard W. Middlestead.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/digitalcommunications



9.2 MULTI-h M-ary CPM

In this section, the theoretical characteristics and perfor-
mance of the multi-h M-ary CPM waveform are discussed.
The modulation index is generally selected to achieve the
maximum coding gain. However, the modulation index also
influences the waveform spectrum, so the available channel
bandwidth and phase distortion must also be considered in
the selection of the modulation index. In general, higher mod-
ulation indices are associated with increased coding gain and
more efficient use of the signal spectrum, that is, the spectral
energy is more uniformly distributed over the occupied
bandwidth.

The multi-h M-ary CPM waveform is a constant envelope
signal with continuous phase variations that depend on the
past and present source data, α, and the modulation indices h.
The CPM waveform modulation is described as

s t =Acos ωct + θ t;α,h +ϕo (9.1)

where A is the peak signal amplitude, ωc is the carrier radian
frequency, and ϕo is an arbitrary signal phase. The phase
function θ(t; α, h) describes the phase history of the signal
starting at t = 0 and continuing through the present or j-th
symbol starting at t = (j – 1)T where T is the symbol duration
and j = 1, 2, …. The phase function is described as

θ t;α,h = 2π
j

n= 1

αnhnq t− n−1 T n−1 T ≤ t ≤ nT

= 2παjhjq t− j−1 T + θj−1 α,h j−1 T ≤ t ≤ jT

(9.2)

where θj−1 α,h is the accumulated phase history up to t =
( j – 1)T and is expressed as

θj−1 α,h = 2π
j−1

n= 1

αnhnq t− n−1 T n−1 T ≤ t ≤ nT

(9.3)

The data-dependent parameter α = αn
* represents the

M-ary data symbol alphabets αi = {±1, ±3, …, ±(M – 1)},
M = 2k corresponding to k source bits-per-symbol. The mod-
ulation index h= hn is typically cycled through the set hj =
{h1,h2,hK} over K contiguous symbols and repeated thereaf-
ter. An over-bar is used to explicitly denote the modulo(K)
repetition of the modulation indices as hj = hi where i =
(j − 1)modulo(K) + 1. The designation h for the modulation
index is in keeping with the standard usage for binary

frequency shift keying (BFSK) waveforms, and it is defined
as h =Δf Rb whereΔf is the frequency shift and Rb is the data
rate; for orthogonal continuous phase BFSK (CPBFSK) h = 1
and for MSK h = ½. The CPM modulation can also be char-
acterized as a constant envelope modulation with a time-
dependent frequency function g(t) with the phase function
q(t) described as

q t =

t

−∞

g τ dτ (9.4)

Several standard frequency functions have been used to
characterize the multi-h waveform [2]. The more common
ones are denoted as LREC for rectangular; LRC for raised
cosine; LSRC for spectral raised cosine. The designation
L ≥ 1 indicates the time extent of g(t) in terms of the number
of symbol intervals. The LSRC function results in an infinite
impulse response and is typically truncated after L symbols.
For 0 ≤ t ≤ LT, these functions are described as

g t =
1

2LT
rect

t

LT
−
1
2

LREC (9.5)

g t =
1

2LT
1−cos

2π t
LT

rect
t

LT
−
1
2

LRC (9.6)

g t =
1
LT

sin 2πt LT

2πt LT

cos 2πβt LT

1− 4βt LT 2

rect
t

LT
−
1
2

LSRC

(9.7)

When L = 1, the modulation is referred to as full response;
otherwise, it is a partial response modulation. Full response
simply means that the current phase trajectory is uncorrelated
with the past or future data so the frequency function, g(t),
depends on the source data corresponding to the current sym-
bol interval j−1 T ≤ t ≤ jT . Typically, full response multi-h
waveforms are much easier to demodulate, whereas partial
response waveforms have better spectral containment at the
expense of demodulator processing.† The 1REC CPM wave-
form described by (9.5) with L = 1 is also referred to as con-
tinuous phase FSK (CPFSK) and single-h CPFSK with h =
1/2 corresponds to MSK also known as fast FSK (FFSK).
Another class of frequency functions g(t) introduced in the
late 1970s is referred to as tamed frequency modulation
(TFM) [3–5]. The key parameters of the M-ary multi-h or
K–h CPM waveforms are summarized in Table 9.1.

The system performance and complexity of the demodu-
lator processing is influenced in several ways by the selection

*The use of α without italics denotes the currently selected symbol from the
alphabetic set {αj} denoted by italics; the same notation is used for modula-
tion indices h and hj.

†TheGaussianMSK (GMSK)waveform, discussed in Chapter 4, is a single-h
partial response CPM waveform with h = 1/2. In practice, the theoretically
infinite phase response is truncated to L symbols.
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of these parameters. For example, the coding gain and the
corresponding signal-to-noise ratio, Eb/No, required to
achieve a specified bit-error probability, the spectral contain-
ment required by the adjacent channel interference (ACI) and
channel bandwidth specifications, and the channel efficiency
or the required bits/second/Hz [6]. The coding gain is deter-
mined by the minimum Euclidean distance dmin with larger
values resulting in greater coding gains. The minimum
Euclidean distance increases with M, K, and h, and some
examples of their influence on the relative coding gain are
given in Tables 9.2 and 9.3 for full response modulation.

The spectral characteristics are predominantly determined
by the frequency shaping function g(t) with the REC function
exhibiting the scallop sidelobe behavior associated with the
sinc(fT) function. Functions with higher order continuous
derivatives, like the raised-cosine function, exhibit improved
asymptotic or far-out sidelobe behavior, for example, the
spectrum rolls off asymptotically as f −2 m+ 1 where m is
the highest continuous derivative of g(t). On the other hand,
the width of the main spectral lobe decreases with increasing
L and M and increases with h.

As mentioned earlier, the complexity of the demodulator
is also influenced by the waveform parameters. When using a
trellis decoder in the demodulator, it is necessary that the
modulation indices be rational numbers, that is, hi = pi q
where pi and q are integers. In the context of the trellis
decoder, the constraint length of the decoder is defined as
the smallest number of iterations that can remain unmerged.
For full response modulation, it has been shown [8, 9] that
there exits modulation index sets {h1, h2, …, hK} yielding
constraint lengths of K + 1 provided that q ≥MK and

K

i
αihi I for any αi: i = 1, …, K, selected from the

M-ary set {±1,±3,…,±(M − 1)} where I signifies the set of
integers. The total number of trellis states required by the
decoder is Kq; however, only q states are updated during
any transition. The memory length of the decoder prior to
making a data decision with negligible degradation is D
K + 1 and typically D = 5(K + 1) to 10(K + 1). These design
details are further clarified in Section 9.2.3 and in the case
study in Section 9.3.

9.2.1 Selection of Modulation Indices for Multi-h,
M-ary CPM

The selection of the optimum multi-h modulation indices is
an involved process for all but the simplest of cases. This
section focuses on the 1REC or full response multi-h modu-
lated waveforms using either a single-h or, in the case of
multi-h waveforms, the average of the modulation indices.
The performance analysis of the partial response multi-h
waveforms is considerably more involved and is discussed
in detail in the literature [10–12]. Using the average modula-
tion index is advantageous for three important reasons: the
analysis is simplified, the indices are typically very close
to one another, and optimizing the performance for the aver-
age is representative of the overall performance. The perfor-
mance measure used to determine the optimum modulation
indices is the squared Euclidean distance [7, 13] expressed as

d2 =

T

0

si t −sj t
2
dt i j

=

T

0

si t
2dt +

T

0

sj t
2
dt−2

T

0

si t sj t dt

(9.8)

In this characterization, the integration is performed over
one symbol interval T and this is extended to include obser-
vation intervals of durationNT symbols whereN is dependent
on several factors described as follows:

The signals si(t) and sj(t) have constant envelopes and are
distinguished by the phase functions in the interval 0 ≤ t ≤ NT
such that

TABLE 9.1 K–hM-ary CPM Parameter Summary

Parameter Description

M M-ary symbol, M = 2k

k Information bits/symbol
αj M-ary symbol alphabet {αi}: i = 0, …, M − 1
K Number of modulation indices hj
hi Modulation index: i = 1, …, K
L Extent of g(t), L > 1 is partial response

TABLE 9.2 Maximum Upper-Bound Values for Multi-h
Linear Phase Responsesa

M K Coding Gain (dB)b

4 1 3.25
4 2 5.15
4 3 5.83
8 1 4.87
8 2 5.74
8 3 6.23

aAulin [7]. Reproduced by permission of the IEEE.
bWith respect to BPSK.

TABLE 9.3 Dependence of Relative Coding Gain on
Waveform Parameters (L = 1, h ≤ 0.5)

Parameters Relative Coding Gain (dB)

K = 1 M = 2 – 4 3.0
M = 4 – 8 2.1

K = 2 M = 2 – 4 3.4
M = 4 – 8 1.7

M = 2 K = 1 – 2 3.0
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si t =Acos ωct + 2παihiq t +ϕo 0 ≤ t ≤ LT (9.9)

and

sj t =Acos ωct + 2παjhjq t +ϕo 0 ≤ t ≤LT (9.10)

where ϕo is the accumulated phase function expressed as

ϕo = θj−1 α,h +ϕo (9.11)

These phase expressions are obtained from (9.2) using the
time translation t = t− j−1 T . Upon substituting (9.9) and
(9.10) into (9.8), the normalized squared Euclidean distance
becomes

d 2 =
d2

2Eb

= k 1−
1
T

T

0

cos ωct + 2παihiq t +ϕo

−cos ωct + 2παjhjq t +ϕo dt

= k 1−
1
T

T

0

cos 2π αihi−αjhj q t dt

(9.12)

In this expression, the trigonometric terms involving 2ωc

are neglected under the condition that the carrier frequency is
much, much greater than the symbol rate. Eb is the energy-
per-bit and is related to the energy-per-symbol as E = kEb

where k is the number of bits-per-symbol; the symbol energy
is Eb = A2Tb/2.

Using the average modulation index,

ha =
1
K

K

i = 1

hi (9.13)

simplifies the computation of the squared distance, in that,
the terms (αihi – αjhj) in (9.12) simplify to ha(αi − αj) and
the difference in the data (αi − αj) takes on the unique values
0, ±2,…, ±2(M − 1). However, for the 1REC single-h M-ary
waveform i j in the evaluation of d2 so the zero condition is
not included and the data difference sequence becomes

αi−αj = ± 2ℓ ℓ = 1,…,M−1; 1REC single-h M-ary

(9.14)

Using these results, (9.12) simplifies to

d 2 = k 1−
1
T

T

0

cos 4πℓhaq t dt ℓ = 1,…,M−1

(9.15)

The cosine function is even, so the minus sign resulting
from (9.14) is ignored in the argument of the integrand.

The trajectory of the phase function with time is depicted
in Figure 9.1 for the single-h, 1REC waveform; the binary
case (k = 1) is depicted in part a and the quaternary case
(k = 2) in part b of Figure 9.1. Besides the significantly
increased complexity between the binary and quaternary
cases, there are two key observations concerning the
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FIGURE 9.1 Phase trajectories for 1REC, single-h, k = 1 and 2
CPM waveform.
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selection of the minimum Euclidean distance; first, paths that
diverge from points at nT reemerge after two symbols inter-
vals so the computation of the minimum Euclidean distance
must be over the interval 2 T corresponding toN = 2. The sec-
ond observation is that there are ℓmax = 2k −1 distances to
evaluate and the minimum squared distance is selected as

d 2
min =min d 2

1,…,d 2
ℓmax

(9.16)

Referring to Figure 9.1a theM − 1 = 1 phase difference path
corresponds to the unique difference sequences (1, −1; −1, 1)
for ℓ = 1, whereas, in Figure 9.1b the M − 1 = 3 phase
difference paths correspond to the three difference
sequences: (1, −1; −1, 1) for ℓ = 1, (1, −3; −3, 1) for ℓ = 2,
and (3, −3; −3, 3) for ℓ = 3; the ℓ = 1, 2 cases are not unique,
in that, other difference sequences exist that yield the same
result. As stated earlier, the paths corresponding to ℓ < 0 yield
identical results and are not considered.

The full response CPM waveform being considered
allows the computation of the squared distance over the
interval NT to be performed as a piecewise integration over
N contiguous symbols of duration T seconds. Under this
condition, evaluation of q(t) using (9.5) with L = 1 simplifies
the evaluation of the normalized squared distance as

d 2
min = k min

αni,αnj
N−

1
T

N

n= 1

T

0

cos π αnihni−αnjhnj

t

T
+Θn−1 dt (9.17)

where Θn−1 is the phase of the n − 1 cosine argument evalu-
ated at t = T and Θ0 = 0. When using multi-h values the sim-
plifications using the average ha value leading to (9.15) result
in the following single-h expression for the 1REC M-ary
modulated waveform

d 2
min = kmin

ℓ

N−
1
T

N

n= 1

T

0

cos 2πℓhat T +Θn−1 dt

(9.18)

Using these simplifying conditions, d 2
min, as expressed

in (9.18), is evaluated for the 1REC M-ary waveforms with
N = 2 as

d 2
min = kmin

ℓ

2−2
sin 2πℓha
2πℓha

(9.19)

This result is plotted in Figure 9.2 as a function of a single-h
modulation index, that is, h = ha. When h = ½, the threeM-ary
modulations (M = 2, 4, and 8) correspond tominimum squared

distances of 2, 4, and 6, respectively; the quaternary case (M =
4) corresponds to MSK modulation. For the binary case, the
minimum Euclidean distance corresponds to d2min = 2 4343
and occurs at h = 0.72. This result is comparable to the opti-
mum modulation index of h = 0.7 found in Section 5.5.3 for
the detection of BFSK modulated signals. Figure 9.2 indi-
cates that the minimum Euclidean distance for the binary case
is not sensitive to changes in the modulation index around h =
0.72 so there is considerable design latitude in the selection
modulation index.

The bit-error probability is evaluated in terms of the
Q-function as

Pbe ≤Q
d2min
2No

(9.20)

where d2min = 2d
2
minEb for the binary case; otherwise,*

d2min = d
2
minEs. Increasing the minimum Euclidean distance

results in a lower bit-error probability; however, the transmit-
ted bandwidth increases. The trade-off between the bit-error
performance and the spectrum occupancy with the selection
of the modulation index is the subject of Section 9.3.

In concluding this section, the procedures for selecting
multiple modulation indices are examined focusing on the
example 1REC 2-h 4-ary waveform used in the case study
in Section 9.3. The observation interval of N symbols for
the 1REC 1-hM-ary waveform represents the first occurrence
of a path merger in the phase trajectory and is unique, in that,
it represents the tightest upper bound on the squared

 Modulation index (h)
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d2 
m

in
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8
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bits/symbol

FIGURE 9.2 Minimum squared Euclidean distance for M-ary
modulated waveform (1REC, single-h).

*This results because the binary case uses only one channel, whereas, the
quaternary and higher modulated waveforms use both the in-phase and quad-
rature channels.
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Euclidean distance, for example, examination of d 2
min over

larger intervals yields the same result. In general, however,
the first path merger corresponds to N = K + 1 symbols.
For the 1REC 2-h M-ary waveform, the first path merger cor-
responds to N = 3; however, this represents a weak upper
bound on the signal distance and inclusion of path mergers
for N > 3 results in a tighter upper bound. Anderson, Aulin
and Sundberg [10] indicate that path mergers up to N = 7
symbols influence the upper bound for ranges of modulation
indices 0 ≤ h1,h2 ≤ 1 and identify values of N and the path
differences ℓ listed in Table 9.4 as being significant contribu-
tors to the Euclidean distance. Exclusion of the path corre-
sponding to ℓ = 0, that is, the αi − αj : i j or the zero
phase difference condition, applies only for the initial and
final phase differences in the phase difference sequence
and is unique to the single-h M-ary case. The intermediate
phase differences in the multi-h case may, however,

correspond to the condition i = j. The distance properties
of these path difference sequences are dependent upon the
initial modulation index at time zero. Therefore, the bounds
corresponding to the difference sequences in Table 9.4 must
be evaluated beginning with each hi: i = 1, 2 from which the

minimum squared distance d 2
min is selected.

The computation of the 2-h distance bounds is based on
(9.18) re-written to include the individual upper bounds on
the squared Euclidean distance for each Nm and ℓmn listed
in Table 9.4; the result is

d 2
Bm, i =Nm−

1
T

Nm

n = 1

T

0

cos 2πℓmnhit T +Θn−1 dt (9.21)

and the global normalized minimum squared Euclidean dis-
tance is determined as

d 2
min = kmin

m, i
d 2

Bm, i (9.22)

Aulin and Sundberg [7] characterize the normalized min-
imum Euclidean distance as the z-axis of a three-dimensional
surface with the x- and y-axis representing h1 and h2 respec-
tively; Figure 9.3 is a similar representation plotted as an
interpolated surface image. The modulation indices used in
the case study in Section 9.3 and the corresponding minimum
squared Euclidean distances are indicated as (h1, h2) = (p1/q,
p2/q) and d

2
min. The selection of the parameters p1, p2 with q =

16 is shown in Figure 9.3. By selecting larger values of q,

TABLE 9.4 Path Mergers and Corresponding Difference
Sequences for 1REC 2-h M-ary CPM Waveform

M Nm

Difference Sequences (ℓmn)

n = 1, …, Nm

1 3 1, 0, −1
2 4 1, 1, −1, −1
3 4 1, −1, −1, 1
4 5 1, −1, 0, 1, −1
5 7 1, −1, 1, 0, −1, 1, −1

h1
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0.0
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FIGURE 9.3 Interpolated surface image of minimum squared Euclidean distance for 1REC 2-h M-ary CPM waveform d 2
min vs h1,h2 .
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more resolution is obtained in the placement of h1 and h2
closer to the peaks on the image surface plot; however, the
required trellis decoding state for 1REC modulation is 2q
so the trade-off between performance and complexity must
be considered.

9.2.2 Multi-h, M-ary CPM Waveform Spectrum

The power spectral density (PSD) of the 1REC single-h
M-ary CPM waveform is characterized by Anderson, Aulin,
and Sundberg [14] as

S fTb =
2k
M

M

i= 1

1
2

sin γi
γi

2

+
1
M

M

j

Aij
sin γi
γi

sin γj
γj

(9.23)

where

γi = πkfTb− 2i−M−1 πh 2 (9.24)

Aij =
cos γi + γj −Cacos 2πkfTb−γi−γj

1−2Cacos 2πkfTb + C2
a

(9.25)

Ca =
1
M

sin Mπh

sin πh
(9.26)

The PSD is plotted in Figure 9.4 for the 1REC 4-ary wave-
form using the average of selected modulation indices from
Figure 9.3. The average modulation index is computed using
(9.13) with hi = pi/16. These results are based on taking the
Fourier transform of the modulated signal autocorrelation
function and can be compared to the 1REC 2-h 4-ary CPM
spectrums evaluated by windowing and averaging of Fourier
transformed signal segments of the simulated CPM wave-
forms as was done in the case study in Section 9.3.

9.2.3 Multi-h, M-ary CPM Demodulation

Optimumdetectionof themulti-hCPMwaveform involves the
maximum-likelihood detection of the current i-th symbol
given all past symbols of the message. At face value, this
involves the maximum-likelihood sequence estimation
(MLSE) spanning the entire message up to the current
symbol and choosing the maximum-likelihood estimate from
all of the past Mi−1 possible combinations. With
this implementation, at each decision the optimum demodula-
tor forms M likelihood parameters for each (i − 1)-
tuple α2,α3,…,αi and chooses α1 as the correct
symbol estimate corresponding the maximum-likelihood
parameter. The recursive property of the Viterbi algorithm
greatly simplifies the processing by requiring onlyML−1 past
sequences.

In the followingdescriptions, it is assumed that thewaveform
acquisition processing has successfully resolved the carrier fre-
quency and symbol timing to limits within the pull-in range of
the appropriate tracking loops. In this regard, the modulation
index frame synchronization, also referred to as superbaud tim-
ing, is known so that the demodulator modulation indices are
properly aligned with those of the received waveform.

Consider the received signal as being the transmitted
multi-h waveform plus AWGN, expressed as

y t = s t + n t

=Acos ωct + θ t;α,h +ϕo + n t
(9.27)

where the modulated phase term is given by*

θ t;α,h = 2παjhjq t− j−1 T + θj−1 α,h j−1 T ≤ t ≤ jT

(9.28)

and j = 1, 2,…. It is implicit in this description that the trans-
mitted signal is initiated at t = 0 so that θo α,h = 0. The cur-
rent symbol phase trajectory is given by

θ t;αj,hj = 2παjhjq t− j−1 T j−1 T ≤ t ≤ jT (9.29)

with hj = pj q. For simplicity in explanation, consider a full
response modulation (L = 1). Under this condition, the pos-
sible phase transitions are determined by letting t = jT giving
θ jT ;αj,hj = 2παjhjq T = παjpj q. The condition t = jT for
the full response waveform results in q(T) = 1/2. With
n = αjpj, the phase at each state becomes θ jT;aj,hj = nπ q.
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FIGURE 9.4 1REC, single-h, 4-ary CPM power spectral density
(ha = <p1/16, p2/16>).

*Notation using normal type represents the selected h or α for the j-th symbol
selected from the set of values denoted by italic type h or α, so that, hj = hi :
i = 1, …, K and αj = αi : i = 0, …, M − 1. Also, the use of the overbar hj
signifies that the modulation indices are repeated modulo (K), that is, for
K = 2: h1,h2,h3,… represents the sequence h1, h 2, h1,…Similarly pj = pi .
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However, the data symbol alphabets αj = ± 1, ± 3,…,
± M−1 are integer valued so n will also be an integer
when hj = pj q is a rational number. This is an important con-
dition because it results in a finite number of phase states in
the trellis decoder processing. When the initial phase error is
zero,* that is, when ϕo = 0 as required for ideal coherent
detection, the possible phase states, modulo(2π), at time jT
are nπ/q where n = 0, 1, …, 2q − 1. This result also applies
for the states at time (j − 1)T so that θj−1 α,h = nπ q, that is,
the accumulated phase up to t = (j − 1)Tmay fall on any state
depending upon the previous random source data. These are
the a priori phase states used by the decoder and the presence
of noise will result in the signal phase resting at other posi-
tions. The number of trellis states for a transition is 2q and,
considering the L-tuple of symbols over which the frequency
response exists for the general case involving partial response
modulation, the total states that must be considered before
making an optimum estimate is

Ns = 2qM
L−1 (9.30)

The detection processing for the multi-h waveform is most
easily described in terms of an Ns-state trellis diagram for
which a typical state transition from the states at (j − 1)T to
those at jT is shown in Figure 9.5. The states at (j − 1)T are

referred to as the source states denoted as Sn, and those at jT
are referred to as the terminal states denoted as Sn. Each state
is associated with a metric mn and a data storage array Dn,
which stores the tentative data estimates αj associated with
the state. The length of data storage, D, associated with Dn

is typically 5–10 times the constraint length of the multi-h
waveform, that is, typically D = 5(K + 1) to 10(K + 1).
The processing involves updating the metric and data storage
associated with each terminal state. This association is based
on the optimally selected metric and data corresponding to
the source states having transition branches to the terminal
state. There are M such source states and the optimum selec-
tion is based on the source state having the minimum metric
in consideration of the metric update corresponding to the
transition branch. Therefore, the metrics mn and the contents
of Dn are determined from the source state resulting in the
minimum metric from the M possible choices. This trellis
processing results in a maximum-likelihood decision for
the received data; the details of the processing are described
in the following paragraphs.

The first task is to identify the source states having branch
transitions to the terminal state of interest. Based on the pre-
ceding discussion, a source state Sl(ϕl) will have a transition
branch to terminal state Sn(ϕn) given by

Sn ϕn = Sl ϕl + παkhj modulo 2π

= lπ q + παkpj q modulo 2π
(9.31)
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*Any known initial phase condition is acceptable.
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where k = 0, 1, …, M − 1 represents the M-ary source sym-
bols. By removing the π/q dependence in this relationship,
the transition from the source to the terminal state indexes
is expressed as

n= l+ αkpj modulo 2q source state (9.32)

This result can be inverted to identify the M source states
ℓkn given a terminal state Sn with the result

lkn = n−αkpj modulo 2q terminal state (9.33)

The subscript k denotes the dependence of ℓ on the M
source states that terminate at state n. For example, when
evaluating the metric mn at terminal state Sn, then the source
states with branches to Sn are Slkn : k = 0, 1, …, M − 1 corre-
sponding to the M possible data symbols αk. This result can
be pre-computed for all possible conditions and stored as
pointers for subsequent processing.

The state transition processing from j − 1 to j involves
computing the metrics mn at the terminal states Sn using
the metrics mlkn

of the targeted source states Slkn and the cor-
responding metric update Δmk. The metrics are computed as

mn = min
k

mlkn
+Δmk k = 0,…,M−1

=mlkn
+Δmk

(9.34)

In this case, the index k identifies the transition resulting in
the minimum metric, that is, m

ℓkn
+Δmk <mℓkn

+Δmk k k.

The source state data estimates at t = jT are expressed in terms
of the bipolar data αk as

Dlkn
= αlkn , j−D,αlkn , j− D−1 ,…,αlkn , j−1 (9.35)

where D is the depth or delay of the trellis processing before
making a data decision. To determine the surviving source
data estimates at the terminal states, it is necessary to use
the same index k corresponding to the minimum metric.
For example, the surviving data at state Sn becomes

Dn =Dℓk,n left-shifted αlkn, j

= αlkn, j− D−1 ,…,αlkn, j−1,αlkn, j

= αn, j− D−1 ,…,αn, j−1,αn, j

(9.36)

The notation Dn left-shifted αn signifies that the ele-
ments of the array Dn are shifted to the left by one element
with αn substituted as the rightmost element. When j <D,
the leftmost D − j elements of Dn contain no information;
however, for j ≥D the leftmost element contains the oldest
data estimate αn, j− D−1 and this estimate becomes a candi-
date for the maximum-likelihood data decision. All of the
Ns candidate data estimates are available upon completion

of the terminal state processing at which time the maxi-
mum-likelihood data decision is determined as

αj− D−1 = min
mn

αn, j− D−1

= αn, j− D−1

(9.37)

where the terminal state n = n results in the minimum metric
among the entire Ns terminal states, that is, mn <mn n n.

From this result, it is seen that the maximum-likelihood data
estimate is the leftmost element of Dn. When D is signifi-

cantly larger than the constraint length K + 1, then, with very
high probability, αn, j− D−1 = αn, j− D−1 n so αj− D−1 can

be selected from any of the terminal states. The value of D
typically ranges between 5 and 10 times the constraint length
depending on the number of modulation indices and the
values of pi.

As a final step, the bipolar data estimate is translated to the
M unipolar binary source data estimate as

bj, log2 M−1 ,…,bj,1,bj,0 =
M−1−αj− D−1

2 binary

(9.38)

where the notation [I]binary denotes the binary equivalent of
the integer I. After completion of the terminal state proces-
sing, the state metrics and the data estimates contained in
the terminal state arrays are transferred to the corresponding
source data arrays in preparation of the next iteration through
the trellis, that is, mn =mn and Dn =Dn n.

The preceding description of the trellis processing has
primarily been a bookkeeping effort and the metric updates
are the link between the trellis decoder and the received sig-
nal. The metric updates Δmk are defined in terms of the
Euclidean distance between the received signal and the M
possible reference signals terminating on each trellis
state. Initially, the metrics mn are all set to zero; however,
they must be reset periodically to avoid underflow and over-
flow. The complex envelope of the received signal is
denoted as*

y t = s t + n t

=
A

2
cos 2παjhjq t− j−1 T + n π q+ϕo

+ j
A

2
sin 2παjhjq t− j−1 T + n π q+ϕo + nc t + jns t

= yc t + jys t

(9.39)

*When confusion may exist in the use of j as an index or to signify the com-
plex root of –1, then boldfaced type is used for the latter.
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where ñ(t) represents zero-mean narrowband Gaussian noise:
N(0, σn). In a similar manner the complex baseband refer-
ences signal is denoted as

xk t =
A

2
cos 2παkhjq t− j−1 T + ℓknπ q +ϕo

+ j
A

2
sin 2παkhjq t− j−1 T + ℓknπ q +ϕo

= xck t + jxsk t

(9.40)

Using these results, the normalized squared Euclidean dis-
tance is computed as

d2k =
1
2E

jT

j−1 T

y t −xk t 2dt

=
1
2E

jT

j−1 T

y t 2dt−2Re

jT

j−1 T

y t x∗k t dt

+

jT

j−1 T

xk t 2dt

(9.41)

The first and third integrals in the second equality of (9.41)
are simply positive signal energy terms that are the same for
all of the possible received and reference signal conditions
and can be neglected in determining the minimum distance.
Therefore, the desired metric update* is computed as

Δmk = −
1
E
Re

jT

j−1 T

y t x∗k t dt

= −
1
E
Re ϕyx 0,φε;n,k

≡ −d2k

(9.42)

In general, the correlation function is dependent on the
time shift τ and is denoted as ϕyx(τ, φε; n, k); however, for
the present discussion, τ = 0. The Euclidean distance is seen
to be similar to the normalized zero shift correlation function
between the received signal and the reference signal and is a
maximum value when the reference xk t is matched to s t
leading to the minimum squared Euclidean distance d2min. For

the coherent detection case ϕo =ϕo and the maximum

correlation corresponds to the conditions n = n and k = k
so that αk = αj and lkn = n . If the minus sign were omitted

in (9.42) the selection of a minimum metric must be changed
to selecting the maximum metric; in the following descrip-
tions the minus sign is used.

The correlation processing involved in the metric update
computations can be simplified by identifying the M unique
correlations for each transition and applying a phase rotation
corresponding to the position of the source state in the trellis.
In this evaluation, the time axis is translated by letting
t1 = t− j−1 T so that 0 ≤ t1 ≤T . With this translation, the cor-
relation function is expressed as

ϕyx 0,φε;n,k =
A

2

T

0

y t e− j 2παkhjq t + π lk,n q +ϕo dt

=
A2T

4
ej ϕo −ϕo

1
T

T

0

y' t e− j 2παkhjq t dt e− jπ lk,n q

=
E

2
ej ϕo −ϕo ϕyx 0;k e− jπ lk,n q

(9.43)

where E =A2T 2 is the symbol energy and the unknown
received signal phase (ϕo) is removed from y(t) to explicitly
demonstrate its impact on the detection processing. The
primed notation y (t) represents y(t) with the signal phase
removed and normalized by A/2. With coherent processing,

the phase estimate ϕo is approximately equal to ϕo with little
impact on the detection performance. At this point in the pro-
cessing, there areM unique correlation values ϕyx 0;k : k = 0,
…, M − 1 for each received symbol. These complex correla-
tion values are computed and stored once each symbol for the
subsequent state transition processing. During the evaluation
of each terminal state metric, the stored correlation values
must undergo a phase rotation given by −π lk,n q radians
as indicated earlier.

9.2.3.1 Coherent Detection For ideal coherent detection

[15, 16], the condition ϕo =ϕo applies and the metric is eval-
uated as

Δmk = −
1
2
Re ϕyx 0;k e− jπ lkn q (9.44)

where

ϕyx 0;k =
1
T

T

0

y t e− j 2παkhjq t dt (9.45)

However, in a practical coherent detector where phase
estimation and tracking is employed, there will always be

some finite phase error that is defined as φε =ϕo−ϕo. In this
case, the metric update becomes

*This definition of the negative metric update may cause some confusion
since the survivor selection is based on the minimum state metric not the
maximum. Note, however, that d2k is always positive and corresponds to
the maximum squared distance in the trellis decoding.
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Δmk = −
1
2
Re e− jϕε ϕyx 0;k e− jπ lkn q (9.46)

Without additive channel noise, the source state corre-
sponding to n = n is ℓk n = n and, under these conditions

and with αk = αj, the corresponding metric update is

Δmk = −
Re e− jφε

2
minimum metric conditions (9.47)

This suggests that the phase error is available from the cor-
relation function ϕyx(0, φε; n, k) corresponding to the mini-
mum metric over all of the terminal states. To determine
the minimum metric, the candidate correlation functions at
each terminal state are expressed as

ϕyx 0,φε ; n,k =min
k

−1 mlkn
+Δmk ϕyx 0,φε ; n,k (9.48)

where the notation min
k

−1 ak b picks the value of b corre-

sponding to the minimum of all ak values. This processing
results in the selection of the phase-error function corre-
sponding to the minimum metric at each terminal state; how-
ever, the final, or optimum, selection is based on the
minimum metric over all of the terminal states and is
expressed as

ϕyx 0,φε; n,k =min
n

−1
mn ϕyx 0,φε; n, k

Kde
jφε

(9.49)

whereKd is defined as the phase detector gain constant for the
multi-h demodulator. Based on this result, the phase detector
phase-error response is established from the imaginary part of
ϕy,x 0,φε; n, k and the real part is used as the input to the
phaselock detector. The phase detector phase error

ej φε = Im ϕyx 0,ϕε; n, k Kdsin φε (9.50)

is passed through the loop filter F(s) and applied to the input
signal y(t). Similarly, the phaselock detector

eLDj φε =Re ϕyx 0,φε; n, k Kdcos φε (9.51)

is filtered and compared to a fixed threshold to determine a
locked condition.

9.2.3.2 MAP Estimation of Received Signal Phase and
Symbol Timing The received signal phase estimation dis-
cussed earlier is based on the application of the phase error
in the correlation function ϕyx 0,φε; n, k . The maximum a
posteriori (MAP) estimation of the received signal phase

ϕo and the symbol timing error τ are examined in this
section [17, 18]. In addition to providing a formal approach
to optimally estimating these errors, this analysis yields the
sensitivity of the estimates under the joint error conditions.

In keeping with the notion of the MAP estimator for ϕo

and τ, the corresponding partial derivatives of the log-
likelihood functions are used. The equivalent process
involves the correlation function ϕyx(τ, φε; n, k) where the
phase and timing errors are explicitly denoted. In the follow-
ing analysis, the algorithms for the MAP estimation proces-
sing are established by considering the noise-free case so that
y t = s t . The performance evaluation with noise is then
examined through simulations. Figure 9.6 depicts the rela-
tionship between the received signal y(t), the local reference
x t , and the receiver integration interval.

As was noted previously, the selection of the time origin at
t = 0, to correspond to the beginning of the j-th interval of the
modulation index, simplifies thenotation in the followinganal-
ysis by eliminating the time dependence on the index j. With
this understanding, the local reference signal is expressed as

x t−τ =
A

2
ej 2παkhjq t−τ + lknπ q+ϕo τ ≤ t ≤ T + τ (9.52)

and the MAP estimation errors associated with the phase and
time estimates are given by

εj φε;τ =
∂ϕyx τ,φε;n,k

∂ϕo ϕo =ϕo

τ = 0

= 0 (9.53)

and

εj τ;φε =
∂ϕyx τ,φε;n,k

∂τ ϕo =ϕo

τ = 0

= 0 (9.54)
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. . . . . .
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y(t)~

x(t – τ)~

τ

FIGURE 9.6 Receiver processing with timing error τ.
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Equations (9.53) and (9.54) are evaluated under the
conditions corresponding to the terminal state having the
minimum metric, that is, mn =min mn n. In the ideal or

noise-free channel, these conditions are ℓk n = n and αk = αj.

These conditions are identical to those required by the selec-
tion of k and n resulting in the correlation function
ϕyx τ,ϕε; n, k as given by (9.49). Using (9.53) and (9.54),
the respective error functions are evaluated as

εj φε;τ = − j

T + τ

τ

y t x∗ t−τ dt
αk = αj

lkn = n

(9.55)

and

εj τ;φε = − j2παjhj

T + τ

τ

y t x∗ t−τ
∂q t−τ

∂τ
dt

αk = αj

lkn = n

+Δ τ,φε

(9.56)

The received signal y(t) under the bounds of the integra-
tion shown in Figure 9.6 are given by

y t =

y−1 t + T =
A

2
ej 2παj−1hj−1q t +T + n π q +ϕo −T ≤ t ≤ 0

yo t =
A

2
ej 2παjhjq t + n π q +ϕo 0 ≤ t ≤ T

y1 t−T =
A

2
ej 2παj + 1hj+ 1q t−T + nπ q +ϕo T ≤ t ≤ 2T

(9.57)

For the case τ ≥ 0, the phase-error function is evaluated by
substituting yo(t) and y1 t−T from (9.57) into (9.55) and
integrating over the appropriate limits with the result

εj φε; τ ≥ 0 =

− j
A2

4

T

τ

ej 2παjhjq t + n π q +ϕo e− j 2παkhjq t−τ + ℓknπ q+ϕo dt

+

T + τ

T

ej 2παj+ 1hj+ 1q t−T + nπ q +ϕo e− j 2παkhjq t−τ + ℓknπ q+ϕo dt
αk = αj

lkn = n

= − j
A2

4
ejφε

T

τ

ej2παjhj q t −q t−τ dt + ejπαjhj
T + τ

T

ej2π αj+ 1hj + 1q t−T −αjhjq t−τ dt

where the relationships n −ℓkn = 0 and n −n q =
αjpj q = αjhj are used in the evaluation. Similarly, for τ ≥ 0,
the symbol time-error function is evaluated by substituting
y−1 t + T and yo(t) from (9.57) into (9.56) and integrating
over the appropriate limits with the result

εj τ ≥ 0,φε = − j2παjhj
A2

4
ejφε

T

τ

ej2παjhj q t −q t−τ ∂q t−τ

∂τ
dt

+ ejπαjhj
T + τ

T

ej2π αj+ 1hj+ 1q t−T −αjhjq t−τ ∂q t−τ

∂τ
dt

−yo τ x∗ 0 + y1 τ x∗ T

(9.59)

To evaluate these functions further, the symbol phase
function q(t) must be defined; however, when τ = 0, the real
part of the phase-error function is identical to the imaginary

part of the previous result as expressed in (9.49). This is
because of the −j multiplier arising from the differentiation.
The phase and symbol time tracking processing is shown in
Figure 9.7 together with the lock detector processing. To
detect the loss of phase tracking a lower threshold is used
to detect the unlock condition as shown in Figure 9.7. In
the following case study, these functions are evaluated for
the 1REC phase function.

9.3 CASE STUDY: 2-h 4-ary 1REC CPM

As mentioned in the introduction the spectrally efficient con-
stant-amplitude multi-hM-ary CPM waveform is well suited
for operation through narrowband hard-limiting relay satel-
lite channels. For this reason, a versatile, low complexity
2-h 4-ary full response CPM waveform is used for satellite

(9.58)
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communications through the hard-limiting 5 and 25 kHz
channels of the ultra-high-frequency (UHF) relay satellite
system. This case study describes the processing require-
ments for 2-h 4-ary 1REC CPM waveform modulation and
demodulation and presents some performance results for
the U.S. Navy UHF satellite relay communication system.
The focus of this case study is on the 25 kHz channel that
is modeled as a 32 kHz, 0.05 dB ripple, 6-pole Chebyshev fil-
ter with 6 degrees of phase equalization at ±12.5 kHz and 9.4
degrees at 30 kHz. The hard limiter is followed by a spurious
signal rejection filter before routing the uplink data to the
assigned downlink. The performance is based on a received
signal with AWGN. This study focuses on the communica-
tion data rates, modulation indices, and the resulting bit-error
and spectral performance through the 25 kHz satellite
channel.

The 2-h waveform is characterized in terms of the two
modulation indices, h = {h1, h2} and the performance evalua-
tions are compared for the following sets or pairs of modula-
tion indices: {5,6}, {6,7}, {7,10}, and {12,13}. Furthermore,
the waveform is a 4-ary full response modulation with two
source bits-per-symbol with the symbol energy contained
within one transmitted symbol interval. These pairs of mod-
ulation indices result in significantly different spectral char-
acteristics and provide coding gains relative to quadrature

PSK (QPSK) waveform modulation. In general, as the data
rate is decreased the modulation index is increased so that
the waveform spectrum occupies more of the 25 kHz channel
bandwidth. The increased modulation index is also accompa-
nied by an increase in the coding gain allowing for operation
at a lower Eb/No signal-to-noise ratio. On the other hand, for
the higher data rates the modulation indices must be
decreased to confine the spectrum to the channel bandwidth
and this results a lower coding gain. The trade-off between
the modulation indices and the coding gain is based on opti-
mizing the bit-error performance in the presence of intersym-
bol interference (ISI). For the modulation indices {5,6},
{6,7}, {7,10}, and {12,13}, the respective coding gains in
Eb/No at Pbe = 10−6 are 2.2, 3.1, 3.5, and 4.2 dB. The follow-
ing analysis does not include the waveform acquisition so the
carrier frequency and symbol timing estimates are resolved
with sufficient accuracy to allow for phase and symbol track-
ing during the data demodulation. Acquisition preambles and
performance results are discussed in Chapter 11.

In Section 9.3.1, the implementation of the 2-h 4-ary CPM
waveform is discussed and Section 9.3.2 shows the resulting
spectral characteristics for the selected data rates and the cor-
responding modulation indices. In Section 9.3.3, the trellis
demodulator processing is discussed in considerable detail
emphasizing the computation of the symbol timing and phase
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errors within the trellis for optimally removing and tracking
these errors. The case study concludes with Section 9.3.4 pre-
senting simulated bit-error probability performance results
with sensitivities to symbol and phase tracking. The perfor-
mance is also characterized using the relay satellite channel
model with the filtering and hard limiting.

Referring to Table 9.1 and Figure 9.3, the corresponding
waveform parameters of interest in the design of the demodu-
lator areM = 4, k = 2, K = 2, L = 1, αj = {±1, ±3}, and hj = pj/q
with q = 16 and p1 and p2 representing pairs of modulation
indices for the 2-h waveform as indicated earlier. In all cases,
the modulation indices are rational numbers as required for a
practical trellis decoder implementation.

9.3.1 2-h 4-ary 1REC CPM Waveform Modulation

The 1REC waveform with L = 1 simplifies the modulator
implementation and, more importantly, reduces the complex-
ity of the acquisition and demodulator processing. The mod-
ulator signal and the corresponding data-dependent phase
function are characterized by (9.1) and (9.2), respectively.
The second equality in (9.2) contains the expression of
the phase trajectory during the current symbol in the range
(j − 1)T ≤ t ≤ jT and, upon translating the time by t = τ +
(j − 1)T, the current symbol phase trajectory is evaluated as

θ t;αj,hj = 2παjhjq t (9.60)

The phase function q(t) is evaluated using (9.4) and (9.5)
with L = 1 and upon substituting these expressions into (9.60)
the phase function is evaluated as

θ t;αj,hj = 2παjhj

t

0

g τ dτ

= παjhj
t

T
0 < t ≤ T

(9.61)

The parameter αj is characterized by the 4-ary symbol
alphabet {±1, ±3} and is based on the two current source data
bits {b1, b0} as defined in Table 9.5; this mapping is
described as αj = 3−2 2b1 + b0 .

The selection of the modulation index set hj influences the
spectrum with larger values resulting in a wider main spectral

lobe; therefore, the modulation indices are increased for
lower data rates to more fully occupy the available channel
bandwidth. This has the additional benefit of providing more
coding gain and hence operation at lower Eb/No values.
Selected sets of modulation indices* corresponding to the
source data rates are defined in Table 9.6 where Rs = 1/T is
the symbol rate and Bc is the channel bandwidth. For the
25 kHz satellite channel, Bc = 32 kHz.†

A typical sequence of in-phase and quadrature (I/Q)
modulated data is shown in Figure 9.8 where the solid and
dashed curves correspond to the I and Q channels, respec-
tively. The heavy dashed curve represents the data-dependent
parameter αj for the 4-ary modulation. The abscissa is nor-
malized by the symbol duration and, although not shown,
the magnitude of the I and Q channels is normalized and
results in a constant unit value.

TABLE 9.5 Mapping of Source Bits to 4-ary Levels

j {b1, b0}
a αj

0 {1, 0} −1
1 {0, 1} 1
2 {1, 1} −3
3 {0, 0} 3

ab0 is first source bit (LSB).

TABLE 9.6 Correspondence of Selected Modulation Indices
to User Data Rates (25 and 5 kHz Satellite Channels)a

Rb (kbps) Rs (ksps) {h1, h2} Rb/Bc

25 kHz channel
56.0 28 4/16, 5/16 1.75
48.0 24.0 5/16, 6/16 1.50
38.4 19.2 5/16, 6/16 1.20
32.0 16.0 6/16, 7/16 1.00
28.8 14.4 6/16, 7/16 0.90
19.2 9.6 12/16, 13/16 0.60

5 kHz channel
9.6 4.8 5/16, 6/16 1.60
6.0 3.0 7/16, 10/16 1.00
4.8 2.4 12/16, 13/16 0.80

aBattista et al. [19]. Reproduced by permission of the American Institute of
Aeronautics and Astronautics (AIAA).
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FIGURE 9.8 Typical I/Q waveform with {h1 = 5/16, h2 = 6/16}.

*The selected modulation indices do not include those with RS concatenated
coding.
†The 3-dB bandwidth of the 5 kHz satellite channel is 6 kHz.
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9.3.2 2-h 4-ary 1REC CPM Spectral Characteristics

The spectral characteristics for the 2-h 4-ary 1REC CPM
waveform are examined for several sets of modulation indi-
ces and data rates as defined in Table 9.6. To provide a point

of comparison, Figure 9.9a shows the spectrum of QPSK
modulation that is described by the sinc(fT) function. The
CPM spectrum results are based on simulations using
Welch’s method [20] of spectral estimation. In these cases,
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one hundred spectrum segments are averaged with each seg-
ment consisting of 32 random source bits with 16 samples/
bit; cosine windowing is applied to each segment. The
CPM spectrums are shown in Figure 9.9b through e. The
spectrum containment of the CPM waveforms is relative to
the total spectral power over the interval f = ±8Rs and is sum-
marized in Figure 9.9f. The spectrum shown in Figure 9.9b
results in the best spectral containment and corresponds to
the highest data rate of 48 kbps.

9.3.3 2-h 4-ary 1REC CPM Demodulator

In this section, the design of the 2-h 4-ary CPM demodulator
applies to any of the sets of modulation indices listed in
Table 9.6; however, the various examples are specialized
using the case {h1, h2} = {5/16, 6/16}. The received signal,
y(t), and the corresponding data-dependent phase function,
θ(t;α,h), are described by (9.27) and (9.28), respectively.
With these descriptions and the ensuing discussions, the sig-
nal phase at each state, in the absence of noise, is given by

θ jT;αj,hj = παjhj (9.62)

The detection processing for the multi-h waveform being
considered is most easily described in terms of the Ns = 2q =
32-state trellis diagram for which a typical state transition is
from the states at (j − 1)T to those at jT. The states at (j − 1)T
are referred to as the source states and are denoted by Sn, and
those at jT are referred to as the termination states, denoted by
Sn. Associated with each state is a metric mn and a data stor-
age array Dn that stores the tentative data estimates αj. The
length of data storage, D, associated with Dn is typically
5–10 times the constraint length of the multi-h waveform,
that is, typically D = 5(K + 1) to 10(K + 1); the following
bit-error performance simulations useD = 20. The processing
involves updating the metric and data storage associated with
each termination state using the optimally selected metric and
data associated with the source states having transition
branches to the termination state. There areM = 4 such source
states and the optimum selection is based on the source state
having the minimum metric in consideration of the metric
update associated with the transition branch. Therefore, the
metrics mn and the contents of Dn are associated with the
source state resulting in the minimum metric from the four
possible choices. This leads to a maximum-likelihood deci-
sion for the received data as described in the following para-
graphs. Although the decoding trellis is composed of
32 states, during any one state transition only 16 states are
processed. This is because n= p1αj or p2αj and αj is an odd
integer for all j; so, it follows that only even or odd values
of n, corresponding to even or odd trellis states, are involved
during a state transition from the source to the termina-
tion state.

The trellis diagram is shown in Figure 9.10 for the two
modulation indices (5/16, 6/16). In the figure, the state tran-
sitions are shown emanating from the source states and
branching to the four possible termination states. For source
state l the M = 4 termination states are determined by the
relationship

n = l+ αkpj modulo 32 terminal state (9.63)

where k = 0, 1, 2, 3. The source symbol data αi = {−3, −1, 1,
3} corresponding to each of the branch transitions from a
source state are identified in the figure. The odd and even
trellis states are identified as filled and unfilled circles,
respectively, and for a given state transition, all of the termi-
nation states will be either even or odd so one-half of the Ns

states are used during each transition. For the (5/16, 6/16)
example code the initial source states are even with
p1 odd corresponding to the first modulation index; under
this condition the termination states involve even/odd states
according to the sequence: {odd, odd, even, even, …}.
Depicting the transitions as in Figure 9.10 emphasizes the
minimum distance of the waveform as determined by the
branch separation and reemergence. For example, consider-
ing the source symbol sequence α = 1,1,1,… shown as
the heavy solid lines it is noted that the sequence {−3, −1}
diverges and reemerges after two symbols. Several other
branches are also seen to diverge and reemerge after two sym-
bols and the minimum Euclidean distance corresponding to
these situations represents the minimum distance of the coded
waveform.

The trellis decoding actually involves processing each ter-
mination state Sn: n = 0,…,31 with n even odd depending
on the initial conditions as discussed earlier. The processing
of the termination states S11,S5,S20,S2,… for j = 2, 3, 4, 5,
… is shown in Figure 9.11. The source states corresponding
to the termination states are given by

lk,n = n−αkpj modulo 32 source state (9.64)

The heavy branch lines shown in Figure 9.11 correspond
to the source symbol sequence α = 1, −1,3, −3,… . When
these transitions result in the maximum metric among the
four branches terminating at each state, they identify or point
to the source symbol estimates.

For example, when evaluating the metric mn at termina-
tion state Sn the source states with branches to Sn are Slk,n :
k = 0, 1, 2, 3 correspond to the four possible data symbols
αk. This result can be pre-computed for all possible condi-
tions and stored as pointers for subsequent processing.

The state transition processing from j − 1 to j involves
computing the metrics mn at the termination states Sn using
the metrics mlk,n of the targeted source states Slk,n and the cor-
responding metric update Δmk as
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FIGURE 9.10 Trellis coding states for symbol sequence (1, 1, 1, 1) using {5/16,6/16} 2-h 4-ary full response CPM waveform.
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FIGURE 9.11 Trellis decoding states for symbol sequence {1, −1, 3, −3} using {5/16,6/16} 2-h 4-ary full response CPM waveform.



mn = min
k

mlk,n +Δmk k = 0,…,M−1 (9.65)

The decoded source state data estimates are expressed as

Dlk,n = αlk,n, j−D,αlk,n, j− D−1 ,…,αlk ,n, j−1 (9.66)

where D is the depth or delay of the trellis processing before
making a data decision; so, at each termination state, the sur-
viving data sequence estimate is stored corresponding to the
metric mn.

Dn = min
lk,n

Dlk,n left-shifted k = 0,…,M−1

= min
lk

αlk,n, j− D−1 ,…,αlk,n, j−1,αlk,n, j k = 0,…,M−1

= αn, j− D−1 ,…,αn, j−1,αn, j
(9.67)

where min{ }: lk,n signifies the left-shifted data sequence
Dlk ,n corresponding to the smallest or surviving metric mn.
When j ≤ D, the data is simply left-shifted and αlk,n, j is set
equal to the αk corresponding to the surviving transition path;
however, when j > D the left-shifted data αlk,n, j−D falling off
the left end of the array becomes a candidate for the maxi-
mum-likelihood data decision. In general, this data decision
is computed as

αj−D = min
mn

αn, j−D (9.68)

However, when D is significantly larger than the con-
straint length K + 1 then, with very high probability,
αn, j−D = αn , j−D n so αj−D can be selected from any of
the termination states.

The metric updatesΔmk are defined in terms of the Euclid-
ean distance between the received signal and the M = 4 pos-
sible reference signals terminating on each trellis state.
Initially, the metricsmn are all set to zero; however, they must
be reset periodically to avoid underflow and overflow. The
complex envelope of the received signal y(t) and the base-
band reference signal xk t are given, respectively, by
(9.39) and (9.40) and, using these results, the squared Euclid-
ean distance d2k is computed using (9.41). Upon applying the
simplifications leading to (9.42), the metric updates are eval-
uated as

Δmk = −
1
E
Re ϕyx 0,k (9.69)

where ϕyx(0, k) is the zero lag correlation function between
the received and reference signals. The maximum correlation
response occurs when the received signal s t is matched to
the reference xk t andΔmk = −d2k . For the coherent detection

case, ϕo =ϕo and the maximum correlation corresponds to
the conditions: αk = αj and lk,n = n.

The correlation processing involved in the metric update
computations can be simplified by identifying the four
unique correlations for each transition and applying a phase
rotation corresponding to the position of the source state in
the trellis. With a shift in the time axis so that 0 ≤ τ ≤T , the
correlation function is evaluated as in (9.43) with the result

ϕyx 0;k =
E

2
ej ϕo −ϕo ϕyx 0;k e− jπ lk,n q (9.70)

With coherent processing, the phase estimate ϕo is
approximately equal to ϕo. There are four unique correlation
values ϕyx 0;k : k = 0, 1, 2, 3 for each received symbol. The
four complex correlation values are computed once for each
symbol and stored for the remaining state transition proces-
sing. During the evaluation of each termination state metric,
the stored correlation values must undergo a phase rotation
given by −πlk,n q radians as noted earlier.

9.3.3.1 2-h 4-ary 1REC CPM Coherent Detection
Defining the demodulator phase tracking error as φε =ϕo−ϕo,
the metric update becomes

Δmk = −
1
2
Re e− jϕε ϕyx 0;k e− jπ lk,n q (9.71)

where

ϕyx 0;k =
1
T

T

0

y t e− j 2παkhjq t dt (9.72)

Under noise-free conditions and when αk = αj and lk,n = n,
Equation (9.70) results in the metric update Δmk =
−Re e− jφε 2 and corresponds to the optimum detection
condition for termination state n . In this case, the phase error
is available from the correlation function ϕyx(0, k) corre-
sponding to the maximum metric over all of the termination
states. The candidate phase error is obtained from the corre-
lation response at each termination state as

ϕyx ϕε,n =min
k

−1 mlk,n +Δmk ϕyx 0,k (9.73)

where the notation mink
−1 ak b picks the value of b corre-

sponding to the minimum of all ak values. This processing
results in the optimum selection of the phase-error function
at each termination state and the final selection is based on
the optimum selection over all of the termination states,
expressed as
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ϕyx φε =min
n

−1
mn ϕyx φε ,n

Kde
jφε (9.74)

Kd is defined as the phase detector gain constant. Based on
this result, the desired phase error is determined from the
imaginary part of ϕy,x(φε) and the real part is used as the input
to the phaselock detector. The phase detector error signal

e φε = Im ϕyx φε Kd sin φε (9.75)

is passed through the loop filter F(s) and applied to the input
signal y(t). Similarly, the lock detector signal

eLD φε =Re ϕyx φε Kdcos φε (9.76)

is filtered using two synchronously tuned low-pass filters and
compared to a fixed threshold to determine a locked
condition.

9.3.3.2 MAP Estimation of Received Signal Phase and
Symbol Timing The received signal phase estimation dis-
cussed earlier is based on the intuitive application of the
observed phase error in the correlation function ϕyx(0, φε) cor-
responding to the survivingmetric at the termination states.The
details of the MAP processing for the signal phase and symbol
timing errors [17, 18] are discussed in Section 9.2.3.2 and dem-
onstrate the validity of the preceding estimates. Furthermore,
theMAP estimation analysis yields the sensitivity of these esti-
mates under the joint error conditions.

The MAP estimation corresponding to the termination
state having the maximum metric results in m =
max mn n and, under noise-free conditions, the necessary
conditions are ℓkn = n and αk = αj. These conditions are iden-
tical to those required by the selection of k and n resulting in
the correlation function ϕyx(0, ϕε) as expressed in (9.74).
Using these results, the discriminator function for the phase
estimate, given a timing error τ, is evaluated using (9.55) and
expressed as

ej φε;τ =
A2

4
T − τ sin παjhj

τ

T
+φε

+ τ sin π αj ± 1hj ± 1 + αjhj
τ

2T
+φε

sinc αj± 1hj± 1−αjhj
τ

2T
(9.77)

where the +(−) associated with the index j corresponds to the
positive (negative) values of τ. When this result is filtered and
applied to an ideal integrator with gainKo radian/volt-second,
the integrator output becomes the MAP phase estimate ϕo.
Ideally, the filtered result is evaluated as the joint expectation
over the iid discrete random data αj,αj± 1 and the resulting
three-dimensional surface characterizes the phase detector
discriminator characteristics as a function of phase and sym-
bol time error. The phase discriminator response for τ = 0 is
shown in Figure 9.12 and, under this condition, is independ-
ent of the CPM modulation indices. The discriminator detec-
tor gain is defined as the slope of the response about the
origin and is evaluated as 0.25A2T V2-s/rad.*

Similarly, the discriminator function for the symbol time
estimate, given a phase error, is evaluated using (9.56) as

ej τ;φε = παjhj
A2

4
ej φε;τ

−
A2

2
sin π αj± 1hj± 1 + αjhj

τ

2T
+φε

sinc π αj± 1hj± 1−αjhj
τ

2T
(9.78)

where the +(−) associated with the index j corresponds to the
positive (negative) values of τ. When this result is filtered
and applied to an ideal integrator with gain Ko second/volt-
second, then the integrator output becomes the MAP symbol
time estimate τ. As in the case of the phase error, the filtered
result is evaluated as the joint expectation over the iid discrete
random data αj,αj± 1 .

Normalized phase error (ϕε/π)
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FIGURE 9.12 CPM phase detector discriminator characteristic
(all CPM modes, τ = 0).

*This detector gain is the gain required for a sampled data implementation,
that is, KdT. If the result were normalized by the symbol period and the ref-
erence signal were unit amplitude, then the units would be volts/radian as
typically associated with analog detectors.
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The symbol time discriminator response for φε = 0 is not
independent of the CPM modulation indices and Figure 9.13
shows the response for the 2-h 1REC CPMwaveform used in
this case study. In this situation, the loop gain must be
adjusted to compensate for the change in detector gain to
ensure identical transient responses for the various wave-
forms. Furthermore, these results indicate that the initial sym-
bol time acquisition must be within 0.5 T, and, for the 2-h
modulation indices (12/16,13/16), within 0.25 T, to ensure
a correct lock condition.

Based on the 1REC MAP phase and symbol timing esti-
mation, the required simplified processing is shown in
Figure 9.7. This implementation recognizes that the expected
value of the additive error term in ej(τ; φε) is zero resulting in
the approximation

ej τ;φε παjhjej φε;τ (9.79)

Figure 9.7 also shows the phaselock loop (PLL) detector
processing that includes a lower threshold for determining a
lost-lock condition.

9.3.4 2-h 4-ary 1REC CPM Performance Simulation

The performance of the 2-h 4-ary 1REC CPM waveform is
examined for the four sets of modulation indices listed in
Table 9.7. To further designate the conditions of the decod-
ing, the notation (h1,h2,D) or (p1,p2,D) is used to signify the
decoding trellis depth. The performance is characterized in
terms of the bit-error probability for various signal-to-noise
ratios Eb/No. For the purpose of comparing various results,
the coding gain, relative to ideal QPSK, at a bit-error proba-
bility of 10−5 is used. The results are based on Monte Carlo
simulations using 1M bits at each signal-to-noise ratio for
Pbe ≥ 10−4; otherwise, 10M bits are used. Furthermore, the
performance is based on the completion of the waveform

acquisition processing so that the carrier frequency and sym-
bol timing are established to an accuracy that ensures carrier
frequency and symbol time loop acquisition and tracking. For
example, the frequency accuracy is estimated to within the
pull-in range of the PLL and symbol timing accuracy is esti-
mated to within one-fourth of the received symbol duration.
The CPM start-of-message (SOM) sequence and the start of
the multi-hmodulation index frame synchronization, referred
to as the superbaud timing, are also established during the
acquisition processing so that the demodulator modulation
indices are properly aligned with those of the received wave-
form. In Section 9.3.4.1, the ideal performance of the CPM
modulated waveform is evaluated with the AWGN channel
and ideal receiver phase and symbol timing. In
Section 9.3.4.2, the performance with phase and symbol
tracking are examined using the (5/16, 6/16, 20) CPM wave-
form with the AWGN channel; the performance is character-
ized for various time-bandwidth products of the tracking
loops. The (5/16, 6/16) modulation index pair is selected
for operating with a 48 kbps CPM waveform through a
25 kHz satellite channel, In Section 9.3.4.3, the performance
through the satellite transponder is examined with AWGN
receiver noise. The transponder is modeled as a bandlimited
filter followed by a hard limiter, zonal filter, and traveling
wave tube (TWT) downlink amplifier.

9.3.4.1 Ideal Performance with AWGN Channel The
ideal performance of the (5/16, 6/16, D) CPM waveform is
shown in Figure 9.14 for various decoding trellis depths D.
These results represent ideal tracking of both the received sig-
nal phase and symbol timing. A trellis depth of D = 10 sym-
bols results in a performance degradation of about 0.3 dB
while depths ≥15 result in negligible degradation. These con-
clusions are based solely on the simulation performance that
demonstrates convergence as D is increased. Unless other-
wise noted, a trellis depth of 20 symbols is used for all of
the following simulation results. Figure 9.15 shows the per-
formance with various modulation indices; the performance
gains at Pbe = 10−5 relative to ideal QPSK demodulation are
1.2, 2.1, 3.1, and 4.3 dB. Table 9.7 summarizes the 2-h 4-ary
1REC CPM performance results relative to Eb/No = 9.6 dB
corresponding to QPSK at Pbe = 10−5.
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FIGURE 9.13 Symbol time discriminator characteristics for
several CPM waveforms with φε = 0.

TABLE 9.7 CPM Waveform Performance Gain with AWGN
Channel (D = 20)

Rb (kbps) CPM (p1,p2,D) Eb/No (dB) Gaina (dB)

56 (4,5,20) 8.4 1.2
48 (5,6,20) 7.5 2.1
32 (6,7,20) 6.5 3.1
19.2 (12,13,20) 5.3 4.3

aRelative to 9.6 dB: QPSK @ Pbe = 10−5.
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9.3.4.2 Phase and Symbol Tracking Performance with
AWGN Channel Figure 9.16 shows the simulated phase
and lock-detector responses for the example 2-h, 4-ary
1REC CPM waveform. A second-order PLL is used and
the transient responses are shown for PLL time-bandwidths
products of BLT = 0.025 and 0.005. These responses result
from an input phase-step of six degrees, a damping factor
of 0.707 and a noise-free channel. The corresponding lock
detector responses are also shown for BLDT = BLT/2. Using
a lock detector threshold of 0.75, phase-lock is achieved in
approximately 20 and 110 symbols respectively. For a con-
tinuous wave (CW) input signal, a damping factor of ζ =
0.707 and an initial frequency estimate that is within the loop
bandwidth, the approximate normalized lock-in time is
given by

TLRs≈
0 5303
BLT

normalized phaselock loop lock time

(9.80)

The simulated bit-error performance results discussed in
the remainder of this section focus on the (5/16, 6/16, 20)
2-h 4-ary 1REC CPM waveform operating at 48 kbps
through the AWGN channel with the second-order PLL as
characterized in Figure 9.16. An appropriate delay is
included in the simulation before error counting is begun
to ensure that steady-state tracking conditions are achieved.
The performance degradation is defined relative to the simu-
lated AWGN performance shown in Figure 9.15. First, the
performance with AWGN and various PLL bandwidths is
considered using ideal symbol timing. Next, the performance
with symbol tracking only is examined. Last, the perfor-
mance with joint phase and symbol time tracking is exam-
ined. This section is concluded by the examining the
performance degradation with a received carrier frequency
error characterized as a linear frequency rate.

Figure 9.17 shows the performance with ideal symbol
tracking and with PLL tracking for various loop time-
bandwidths products. The results indicate that for BLT ≤
0.025, the maximum performance loss is about 0.2 dB with
a loss of less than 0.1 dB for BLT = 0.005. This loss increases
to 0.6 dB as BLT is increased to 0.05. For rapid phase conver-
gence, a higher BLT product is typically used during acquisi-
tion that is decreased prior to data detection to achieve a
lower detection loss. Typically, a phase tracking loss of
0.2 dB is included in the modem link budget.

The sensitivity to errors in the symbol timing is examined
by characterizing the performance degradation with a fixed
symbol timing error ΔT. Figure 9.18 shows that the 2-h
4-ary 1REC CPM waveform is relatively sensitive to the
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symbol timing errors, for example, a fixed timing error of
3/32 of a symbol results in a degradation of 2 dB. However,
with a fixed timing error of 1/32 of a symbol the loss
decreased to about 0.1 dB so the maximum timing adjustment
with symbol tracking should be 1/32 of a symbol. This sug-
gests that the symbols should be sampled using a minimum of
32 samples-per-symbol and subsequently down sampling to
4 or 8 samples-per-symbol for matched filter detection pro-
cessing. During the signal acquisition processing, the initial
symbol timing should be resolved to within T/8 and the
acquisition preamble must be long enough to allow tracking
to reach the steady-state condition before entering the data
detection mode.

The symbol tracking loop time-bandwidth product
(BLTT)

* is used to characterize the bandwidth of the time
tracking filter. For all of the following simulations involving
symbol time tracking, a single-pole digital filter is used. The
filter is sampled at the symbol rate and the filter coefficient is
computed as k = exp(−2π BLTT). The intrinsic filter gain
is adjusted by (1 − k) to ensure a steady-state unit-gain
response. At intervals equal to one-half of the filter time con-
stant, given by 1 1−k symbols, the receiver sampling
time is incremented by ±1 sample depending upon the sign
of the filter output eoj, that is, the time adjustment is computed
as sign(1, eoj).

Figure 9.19 shows the performance with symbol tracking
for various symbol tracking loop time-bandwidth products
BLTT and with ideal phase tracking. The initial timing error
is ΔT/T = 1/16 symbol and the tacking update is δT/T =
1/32 of a symbol. At a sufficiently high signal-to-noise ratio,
greater than 5 dB for the BLTT products considered, the per-
formance degradations are relatively low (<0.1 dB) and
nearly identical. However, there is a critical, BLTT-dependent,
signal-to-noise ratio† below which the performance degrades
rapidly. For example, with BLTT = 0.02 the performance
begins to degrade significantly at a signal-to-noise ratio of
5.0 dB and with BLTT = 0.001 the performance degradation
remains less than about 0.1 dB for signal-to-noise ratios as
low as 1 dB before significant degradation is encountered.
The focus of this discussion is on the degradation at Pbe =
10−5, and all three of the BLTT products considered have
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*The notation BLTT is used to denote the time-bandwidth product of the sym-
bol tracking loop, whereas BLT is used to denote the time-bandwidth product
of the phase tracking loop.
†The critical signal-to-noise ratio is defined and characterized in Chapter 10
for the PLL.
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comparably low degradations.* The selection of an excessively
highBLTT product will result in the critical signal-to-noise ratio
that results in significant performance degradation even at high
operating signal-to-noise ratios. These results show perfor-
mance degradations of about 0.1 dB that are consistent with
those in Figure 9.19 using a fixed timing error of ΔT = ±T/
32; they confirm that the timing adjustment increment should
be δT ≤ T/32.

Figure 9.20 shows the performance with joint phase and
symbol time tracking. For a constant BLTT product equal to
0.02, the BLT product is varied between 0.005 and 0.05.
For BLT = 0.05, the performance degradation is about 0.6 dB
and for BLT = 0.005 the degradation is less than 0.1 dB.

The final subject in this section is the performance of the
(5/16, 6/16, 20) 2-h 4-ary 1REC CPM modulated waveform
with a received carrier frequency error characterized as a fre-
quency rate. When an ideal linearly swept carrier frequency
with frequency rate fr Hz/sec is applied to a second-order
PLL, the theoretical steady-state loop condition will result
in a static phase error of φe radians. For a loop with a damping
factor of 0.707, the relationship between the frequency rate
and phase error is

fr = 0 566φe BLT
2R2

s (9.81)

Evaluation of the (5/16, 6/16, 20) CPM waveform perfor-
mance with a static phase error of φe = 0.07 radians
(4 degrees) results in a performance degradation of about
0.2 dB. Therefore, using φe = 0.07 in (9.81) with BLT =
0.025 and Rs = 24 ksps results in a frequency rate of fr =

14.263 kHz/s. However, applying this frequency rate to the
(5/16, 6/16, 20) CPM modulated waveform, the degradation
at Pbe = 10−5 is in excess of 3 dB; therefore, this theoretical
relationship is not applicable to the coded 2-h 4-ary 1REC
CPM modulated waveform.† Figure 9.21 shows the perfor-
mance with and received signal frequency rates of 14.263,
3.0 and 1.0 kHz/s when using the phase and symbol tracking
parameters BLT = 0.025 and BLTT = 0.02, respectively. The
performance losses at Pbe = 10−5 for 1.0 and 3.0 kHz/s
frequency rates are 0.25 and 0.55 dB, respectively, so the
frequency rate should be less than 1.0 kHz/s for a reasonable
detection loss.

9.3.4.3 Performance in Bandlimited Satellite Channel
The performance of the 2-h 4-ary 1REC CPM waveform
through a 25 kHz bandwidth UHF satellite transponder is
examined in this section. The transponder is modeled‡ as a
bandlimited filter followed by a hard limiter with zonal filter-
ing and a TWT downlink amplifier. The bandlimiting filter is
modeled as a 6-pole, 0.05 dB ripple Chebyshev filter. The
3 dB bandwidth of the 25 kHz channel is typically 32 kHz.
Based on measured filter phase response data, the Chebyshev
filter phase is equalized using a cubic phase function with a
6-degree phase error at ±12.5 kHz. The hard limiter is ideal in
the sense that the output is passed through a zonal filter to
remove all harmonics of the carrier. The effect of this ideal
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*For coded systems, that operate at much lower Eb/No values, selection of an
acceptable BLTT product is equally important.

†The relationship is valid for the uncoded modulated QPSK, in that, (9.81)
results in the predicable static phase error for a given frequency rate. Further-
more, the static phase error is a reliable predictor of the detection loss.
‡The channel filtering consists of an input or pre-filter that establishes the
channel bandwidth, a noise filter following hard limiter, and a post-filter that
attenuates intermodulation interference between the channels prior to the
TWT downlink amplifier.
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limiter is most pronounced when multiple carriers are com-
bined and passed through the TWT amplifier. In this analysis,
however, the TWT is operated with a high output backoff and
essentially behaves like a linear amplifier.

The performance analysis focuses on selected data rates
for use over the 25 kHz bandwidth channel. The simulated
performance results of the CPM waveform are shown in
Figure 9.22a using the AWGN channel; the triangle data
points correspond to the higher of the two user data rates.
Figure 9.22b shows the performance through the 25 kHz
bandwidth channel and clearly demonstrates the degradation
resulting from the bandlimited and hard-limiting channel
with the 64 and 56 kbps user data rates resulting in a perfor-
mance loss. A significant advantage of the CPM modulated
waveform is the spectral efficiency shown in Figure 9.9. The
improved spectral efficiency results in lower adjacent chan-
nel interference (ACI) in frequency division multiplex appli-
cations. The optional Reed–Solomon (RS) concatenated
coding is not considered in this analysis; however, the perfor-
mance of the 2-h 4-ary 1REC CPM through the 25 kHz
satellite channel with a rate 0.987 outer RS code provides
an additional coding gain of 0.5 dB at Pbe = 10−5 with
Rb = 38.4 kbps [19].

9.4 MULTIPHASE SHIFT KEYING TRELLIS-
CODED MODULATION

Trellis-coded modulation was first investigated by Unger-
boeck [21–23], and achieves coding gain by introducing
redundant, or parity check, signaling states in the underlying
modulation waveform. Transitions between the various states
of the modulated waveform follows a rigid set of coding rules
and errors are detected when the state transition rules are

violated. The errors are corrected in a trellis decoder similar
to that used in Viterbi decoding of convolutional codes. The
advantage of this approach is that additional transmission
bandwidth, as used in block and convolutional codes, is
not required. Ungerboeck recognized that the conventional
approach to error correction treats the error-correction coding
and waveform modulation as independent functions and that
by combining them improvements in the channel capacity
can be achieved. Ungerboeck formulated the difference
between optimum decoding on discrete channels based on
the minimum squared Hamming distance and optimum
decoding on continuous or unquantized channels based on
the minimum squared Euclidean distance. The squared Ham-
ming and Euclidean distances are equivalent only in the cases
of binary and 4-phase modulation; the latter being simply two
channels of orthogonal binary modulation. Consequently,
binary modulation systems using codes optimized for Euclid-
ean distance and soft-decision decoding have found wide-
spread use in power-efficient transmissions with 2 bits/Hz
capacity. This also explains the relatively poor performance
encountered when integrating codes designed for maximum
Hamming distance with multilevel modulated waveforms.
Therefore, as in the case of CPM decoding, the Euclidean dis-
tance is used as the metric for the decoding of TCM
waveforms.

The squared free-distance of the trellis-coded waveform is
the minimum squared Euclidean distance between all code
words cn and is given by

d2free = min
n m

cn−cm
2 (9.82)

For sufficiently high signal-to-noise ratios, such that the
probability of error events with distances exceeding dfree is
negligible, the error probability in an AWGN channel is
upper bounded by
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FIGURE 9.22 Bit-error performance of 2-h 4-ary CPM waveforms (ideal carrier and symbol tracking).
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Pe ≤
Nfree

2
e−d

2
free 4No (9.83)

where Nfree is the number of neighboring code words with
distance dfree and No is the one-sided noise power spectral
density. The following discussions and examples focus on
the application of TCM to PSK modulated waveforms and
the potential TCM coding gain is expressed as

G = 10log10
d2free
d2min

(9.84)

where dmin is the minimum distance of the underlying or
uncoded PSK waveform.

A generalized TCM encoder using a convolutional
encoder is shown in Figure 9.23. The uncoded input corre-
sponds tom bits and the output corresponds to n bits resulting
in a code rate is r = m/n. The n bits are mapped onto M = 2n

symbol modulation states based on set partitioning. The mod-
ulation states are characterized as MPSK and MQPAM.

The convolutional code rate, as defined in Figure 9.23, is
rc =m n; however, in the following descriptions the encoder
is specialized for an overall TCM code rate of r =m m + 1 .

The set partitioning or mapping of the coded bits to the
MPSK or MQPAM constellations is critical to ensure opti-
mum distance properties and ultimately good code perfor-
mance. Calderbank and Mazo [24] provide a generalized
theory for the formulation of trellis codes and Biglieri, Div-
salar, McLane, and Simon [25] relate the design procedures
to Ungerboeck’s implementation; they also provide a com-
prehensive treatment of trellis-coded modulation with opti-
mum codes and performance results under various channel
conditions. Tables 9.8 and 9.9 list several 8PSK and
16QPAM modulated codes tabulated by Ungerboeck [23].
In these tables, ν is the convolutional code constraint length,
2ν−1 is the number of decoding trellis states, hi are parity-
check coefficients in octal notation, dfree is normalized to
the unit circle, and G(dB) is the asymptotic coding gain for
large signal-to-noise ratios.

As an example of implementing the trellis code using
Ungerboeck’s parity-check coefficients hi, consider the
systematic eight-state (v = 3) 8PSK-TCM code given
in Table 9.8. The parity-check matrix is used to imple-
ment the feedback configuration of the convolutional
encoder and is defined in terms of the parity-check coef-
ficients as

TCM symbol
(T = mTb)
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…
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~
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cn~

~ ~
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FIGURE 9.23 Generalized systematic rate m/n trellis-coded modulator. Adapted from Ungerboeck [21]. Reproduced by permission of
the IEEE.

TABLE 9.8 8PSK-TCM codes (m = 2)a

ν 2ν m h2 h1 h0 d2free G (dB) Nfree

2 4 1 — 2 5 4.000 3.01 1
3 8 2 04 02 11 4.586 3.60 2
4 16 2 16 04 23 5.172 4.13 ≈2.3
5 32 2 34 16 45 5.758 4.59 4
6 64 2 066 030 103 6.343 5.01 ≈5.3
7 128 2 122 054 277 6.586 5.17 ≈0.5
8 256 2 130 072 435 7.515 5.75 ≈1.5
aAdapted from Ungerboeck [26]. Reproduced by permission of the IEEE.
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H= h2, h1, h0 (9.85)

The conversion of the parity-check coefficients from octal
to binary notation results in h0 = [1001], h1 = [0010], h2 =
[0100]. The binary notation is represented by the n-th degrees
polynomial p D = bnDn + bn−1Dn−1 + + b1D1 + b0 with
coefficients bi = (0, 1) and unit delay operator D. Using this
notation, the parity-check coefficients are denoted as h0 =
[D3 + 1], h1 = [D], h2 = [D2] and the parity-check matrix
becomes

H= D2, D, D3 + 1 (9.86)

The parity-check equation is used to compute the error
syndrome vector as* s = cHT ; however, since c = c, is a valid
code word the error syndrome will be zero, so the code word
of interest is the solution to

cHT = 0 (9.87)

Evaluation of (9.87) using (9.86) with c = (c2, c1, c0)
results in

c2D
2 c1D c0D

3 c0 = 0 (9.88)

Solving for c0, in consideration of the feedback implementa-
tion and using modulo-two arithmetic, yields the desired result

c0 = c2D
−1 c1D

−2 c0D
−3 = 0 (9.89)

This is implemented as the feedback configuration of the
convolutional encoder shown in Figure 9.24b; the systematic
form is characteristic of the feedback configuration. Unger-
boeck’s implementations for the v = 2, 3, and 4 TCM wave-
forms are shown†, respectively, in Figure 9.24a, b, and c.

As a second example, consider implementing the eight-
state (v = 3) 8PSK-TCM encoder as a feed-forward structure.

This involves using the generator matrix G and the binary
message vector b = (b2, b1) to generate the code vector c =
(c2, c1, c0) using

c= bG (9.90)

where c = c and G is determine as the solution to GHT = 0.
Defining the elements of the matrix G as gij, the solution is
formulated as

g11 g12 g13

g21 g22 g23

D2

D1

D3 + 1

= 0 (9.91)

From (9.91) the set of equations to be solved is

g11D2 g12D g13 D3 + 1 = 0

g21D2 g22D g23 D3 + 1 = 0
(9.92)

The solution to (9.92) is obtained by letting
gij = pij D = dnDn + + d1D1 + d0 with degree n ≤ ν, the
code constraint length, and allowing various combinations
of the binary coefficients dn. The solution involves the mod-
ulo-two sum of the terms involving powers ofD, for example,

i even
Dm = 0. Ungerboeck [23] suggests the following

coefficient solutions to (9.92): g11 = 1, g12 = D, g13 = 0,
g21 = D(D + 1), g22 = D2 + 1, and g23 = D. Substitution of
these results into (9.92) yields

D2 D2 0 = 0 (9.93)

for the first equation and the second equation is

D D 1 D2 D2 + 1 D D D3 + 1

=D4 D3 D3 D D4 D= 0 (9.94)

Equations (9.93) and (9.94) demonstrate that the compu-
tation of the error syndromes with an error-free message
(b2,b1) is zero. Using these solutions, the nonsystematic con-
volutional code vector is computed using (9.90) as

TABLE 9.9 16PSK-TCM Codes (m = 3)a

ν 2ν m h2 h1 h0 d2free G (dB) Nfree

2 4 1 — 2 5 1.324 3.54 4
3 8 1 — 04 13 1.476 4.01 2
4 16 1 — 04 23 1.628 4.44 8
5 32 1 — 10 45 1.910 5.13 8
6 64 1 — 024 103 2.000 5.33 2
7 128 1 — 024 203 2.000 5.33 2
8 256 2 374 176 427 2.085 5.51 ≈8
aAdapted from Ungerboeck [26]. Reproduced by permission of the IEEE.

*The vector ĉ is the received estimate of transmitted code vector c.
†The addition symbol in these figures signifies modulo-two addition of the
binary coefficients and the crossing of drawing lines signifies a connection
only when denoted by •.
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c2,c1,c0 = b2,b1
1 D 0

D2 +D D2 + 1 D
(9.95)

resulting in

c2 = b2 + b1D2 + b1D

c1 = b2D + b1D
2 + b1

c0 =Db1

(9.96)

Equation (9.96) is implemented by the configuration
shown in Figure 9.25.
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v = 3, rate 2/3, 8PSK and rate 3/4, 16QPAM
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FIGURE 9.24 Implementation of TCM encoders using systematic convolutional encoders. Ungerboeck [21]. Reproduced by permission of
the IEEE.
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FIGURE 9.25 Implementation of TCM nonsystematic con-
volutional encoder (v = 3, rate 2/3, 8PSK).
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Ungerboeck [23] has also suggested a minimal nonsyste-
matic configuration inwhich, the number ofmodulo-two addi-
tions are minimized. Using the v = 3, rate 2/3, 8PSK-TCM
waveform with the error syndrome expressed in (9.92), the
minimal nonsystematic configuration is obtained by choosing
g11 = 1, g12 = D, g13 = 0, g21 = D2, g22 = 1, and g23 = D. It is
easily demonstrated that these coefficients satisfy (9.87), and
that the parity-check bits are generated using (9.90) as

c2 = b2 + b1D
2

c1 = b2D + b1

c0 = b1D

(9.97)

The implementation of this minimal nonsystematic con-
figuration is shown in Figure 9.26.

Ungerboeck has published the configurations of the min-
imal nonsystematic convolutional structures that are shown
in Figure 9.27.* In comparing the implementation in
Figure 9.27b with that in Figure 9.26, the difference results
from Ungerboeck’s definition of the parity-check vector
H = D D2 D3 + 1 , whereas that in Figure 9.26

uses H = D2 D D3 + 1 .

9.4.1 Example Design using Constraint Length v = 3,
Rate 2/3 8PSK-TCM

This example of set partitioning and data-to-waveform map-
ping uses the constraint length v, rate 2/3 8PSK-TCM wave-
form. Following the given examples for implementing the
feedback encoder and using the four-state trellis decoder par-
ity-check coefficients given in Table 9.8 and the encoder
implementation for the rate 2/3 8PSK waveform is shown
in Figure 9.24b.

The set partitioning is shown inFigure9.28 for the constraint
lengthv=3encoderwith theparitybit designations correspond-
ing to (c0,c1,c2) andwherec0 corresponds to the least significant

bits (LSBs) and c2 is themost significant bits (MSBs).With this
parity bit ordering, the two LSB bits are determined by the con-
volutional encoder and dictate the fine-phase shift between 0
and 135 degrees and the MSB bit determines whether the
fine-phase shifted starts at zero or 180 degrees. The bit-to-
waveform mapping is shown in Table 9.10 and corresponds
to the set partitionedmapping. In term of the natural numbering
n the transmitted signal is given by

s t =Aej nπ 4 (9.98)

The decoding corresponds to a four-state trellis with four
branches emanating fromand terminating at each state as shown
in Figure 9.29. The goal of the set partitioning is to provide a
phase mapping that result in the greatest distance between the
correct and incorrect state transitions terminating on each output
state. Referring to Figure 9.29, the four transitions to each termi-
nation state are pair-wise antipodal†withminimum free Euclid-
ean distance dfree = 2; however, the pairs are orthogonal with a
distance of dmin = 2. These orthogonal paths, separated by
the distance 2, diverge and remerge with the distance 2
paths after two or more transitions resulting in a distance
greater than dfree and, therefore, are eventually eliminated
by selecting the surviving path associated with the minimum
metric. The underlying uncoded 4-phase shift keying (4PSK)
waveform has a minimum distance of dmin = 2 so, using
these results and (9.84), the expected coding gain relative
to 4PSK modulation is 3 dB. In the context of Figure 9.28,
theMSBs in the last row are antipodal resulting in the optimal
estimation of the two source bits: 11, 10, 01, and 00.

The decoding starts by computing the state transition met-
ric updates corresponding to the squared Euclidean distance‡

Δmk = −d2k =
−1
2E

jT

j−1 T

y t −xk t 2dt (9.99)

where E is the symbol energy, j corresponds to the j-th
received symbol, and k = 1,…, 2m corresponds to the k stored
reference symbols. The surviving metric at each termination
state is computed as

mℓ =min
k

−1 mℓk,n +Δmk (9.100)

where the subscript ℓk,n denotes the source state of the transi-
tions terminating at state ℓ. After D 5ν state transitions, the
surviving data is selected based on the minimum state metric.
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FIGURE 9.26 Implementation of TCM minimal nonsystematic
convolutional encoder (v = 3, rate 2/3, 8PSK).

*The results in Figure 9.27 are based on Reference 21 published in 1982,
whereas the preceding results are based on the more current Reference 26
published in 1987. Table 9.8 is more current and the parameters for constraint
lengths v = 6, 7, and 8 have been updated from those in the 1982 publication.

†The pair-wise antipodal transitions are referred to as parallel transitions, and
there are 2m−m parallel transitions emanating from and converging on each
state; when m=m, there are no parallel transitions.
‡The negative metric update requires selecting the optimum state transition
survivor as the minimum state transition at each termination state.
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9.5 CASE STUDY: FOUR-STATE 8PSK-TCM
PERFORMANCE OVER SATELLITE REPEATER

The performance results presented in this section are
obtained using a Monte Carlo simulation program, which
models the modulator, satellite relay, and demodulator as
shown in Figure 9.30. Gaussian channel noise is added at
the input to the receiver. The discrete-time sampling gen-
erally uses eight samples-per-symbol; however, when

phase shaping is used for spectral control 16 samples-
per-symbol are used. The Monte Carlo simulations
are based on a total of 1 M source bits at each signal-to-
noise ratio for Pbe ≥ 10−4; otherwise, 10 M bits are used.
Various combinations of the functions shown in
Figure 9.30 can be selected using an options menu at
the beginning of each simulation. This menu also provides
for inputting appropriate parameter values for each of the
functions.
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v = 2, rate 2/3, 8PSK and rate 3/4, 16QPAM

v = 3, rate 2/3, 8PSK and rate 3/4, 16QPAM
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FIGURE 9.27 Implementation of TCM minimal nonsystematic convolutional encoders. Ungerboeck [21]. Reproduced by permission
of the IEEE.
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The RS code is a rate rco = 0.937, 256-ary code with 239
source data bits-per-code block. The 8PSK trellis code,
shown in Figure 9.31, is a rate 2/3 code with two source bits
(or RS code bits) that are mapped to eight modulation phase
states corresponding to the three trellis-coded bits for each
symbol. A rate 1/2, constraint length seven, binary convolu-
tional encoder is used to generate the trellis code-bits. Linear
phase shaping is used to contain the signal spectrum thereby
reducing adjacent channel emissions and ISI resulting from
channel filtering. The phase-shaped constant envelope trans-
mitted waveform ensures that the spectral containment is
maintained with the hard limiting and the traveling wave tube

amplifier (TWTA) nonlinearities encountered in the satellite.
The 50% linear phase shaping is symmetrical about each
symbol transition so the phase shaping extends 25% into
the preceding and succeeding symbols. The transmit filter
is simply a roofing filter that reduces the effect of the near/
far interference at co-located transmit and receive ground
terminals.
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FIGURE 9.28 Set partitioning for rate 2/3 8PSK-TCM. Adapted from Ungerboeck [21]. Reproduced by permission of the IEEE.

TABLE 9.10 Code-Bit Mapping to Signal Phase

Code-bits (c0,c1,c2) n Phase (degrees)

000 0 0
100 1 45
010 2 90
110 3 135
001 4 180
101 5 225
011 6 270
111 7 315
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FIGURE 9.29 Four-state 8PSK-TCM trellis decoder.
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The satellite narrowband filtering, with baseband band-
width Bc Hz, is modeled as a 6-pole Chebyshev filter with
0.05 dB ripple. The hard limiter is ideal in the sense that it
is followed by a zonal filter that removes the out-of-band har-
monics of the carrier frequency. The output of the ideal hard
limiter is described in terms of the input as

eo t =A
ei t

ei t
(9.101)

This modeling of the hard limiter results in no harmoni-
cally related interfering signals so there is no need to imple-
ment the output filter following the limiter. The TWTA is
characterized by the amplitude modulation to amplitude
modulation (AM–AM) and amplitude modulation to phase
modulation (AM–PM) characteristics of the amplifier;

however, for the simulation results discussed in
Section 9.5.1, the TWTA backoff is set sufficiently high to
result in linear operation. The receiver input filter is a roofing
filter to ensure the rejection of adjacent channel signals and to
provide equivalent intermediate frequency (IF) filtering to
minimize aliasing resulting from the sampled data proces-
sing. The equalizer is used to reduce the ISI introduced by
the satellite and receiver filtering; the equalizer is necessary
when modulator spectral shaping is not used. The equaliza-
tion is performed using a five-tap symbol-spaced linear
equalizer and the taps are updated using the least mean-
square (LMS) algorithm. The equalizer tap gain coefficient
is typically μ = 0.001; however, a value of 0.0003 results
in improvement with severe ISI when Rb/Bc > 0.78. To
account for equalizer acquisition in the performance simula-
tion, the bit-error counting is delayed for 60 symbols (120
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symbols for μ = 0.0003).* The symbol filter performs the
function of the detection matched filter; however, when
phase shaping is used, the symbol filter is not matched to
the received symbol resulting in a performance loss. In the
following simulations, the symbol detection filter is simply
an integrate-and-dump (I&D) filter.

The 8PSK-TCM decoder, shown in Figure 9.29, uses a
four-state trellis with a depth of 30 symbols. The RS code
is inherently a burst-error-correcting code and will correct
various combinations of correlated burst errors out of the
8PSK-TCM decoder. For example, the 256-ary RS code will
correct any combination of up to eight code symbol errors.
Therefore, because a code symbol contains 8 bits, the decoder
will correct up to eight 8-bit random burst-error events or a
single burst-error containing up to 64 contiguous bit errors.

9.5.1 Four-State 8PSK-TCM Demodulator
Simulated Performance

The rate 2/3 8PSK-TCM is a bandwidth-efficient modulation
and achieves error correction through increasing the number
of phase states, not through bandwidth expansion. Based on
this bandwidth conservation property, the 8PSK-TCM
achieves 2 bits/channel-use so a user rate of Rb bps is
achieved with a symbol rate of Rs = Rb/2 sps. The bit-error
probability performance results are based on the 25 kHz
UHF satellite transponder channel model using a 6-pole,
0.05 dB ripple, Chebyshev filter with a 3 dB bandwidth of
Bc = 32 kHz. A review of measured filter phase responses
indicate that the intrinsic Chebyshev filter phase function
is modified and that the average response corresponds to a
cubic phase function† with a 6-degree phase error at
±12.5 kHz.

The following simulation results are characterized in
terms of the normalized data rates: Rb/Bc = (2.0, 1.6, 1.3,
1.0, 0.7, 0.5). The corresponding approximate data rates
are 64, 51.2, 42.7, 32, 21.3, and 16.0 kbps and, although these
are not standard rates used over the 25 kHz channel, they do
span the specified range data rates.

When RS concatenated coding is used, the transmitted
data rate in increased by Rb/rco where rco < 1 is the RS rate;
increasing the transmission rate ensures that the user data
rates are unchanged when RS coding is used. This condition
also recognizes the ISI performance penalty incurred by the
increased symbol bandwidth with the RS code. The perfor-
mance with TCM and RS code concatenation is not examined
in the following sections; however, the performance compar-
ison with and without the RS coding is presented in Refer-
ence 27. Typically, the RS coding begins to exhibit a
coding gain, relative to the performance of the underlying

modulation, for bit-error probabilities in the range of 10−2

and 10−3 and, because of the relatively steep slope of the
Pbe curve with RS coding, the coding gain begins to increases
rapidly with Eb/No in this range of bit-error probabilities.

Figure 9.32 shows the spectrum of the 8PSK-TCMmodu-
lated waveform with 50% linear phase shaping (α = 0.5) and
without phase shaping (α = 0). The spectrum is computed
using Bartlett’s procedure [28] of averaging periodograms
containing 512-point FFTs of randomly modulated data with
16 samples-per-symbol.

The objective of this performance evaluation is to deter-
mine the maximum symbol rate that can be supported by
the waveform modulation through the 25 kHz hard-limiting
UHF satellite channel. The measure of the waveform perfor-
mance is the signal-to-noise improvement, or coding gain,
relative to the underlying QPSK modulated waveform at a
bit-error probability of Pbe = 10−5. As the modulation symbol
rate increases, more of the available bandwidth is occupied
resulting in ISI that decreases the coding gain. Consequently,
the coding gain is a qualitative measure of the waveform per-
formance. Figure 9.33a and b show the bit-error performance
in an AWGN channel with and without modulation phase
shaping. Figure 9.34a and b shows the bit-error performance
under the same conditions through the 25 kHz hard-limiting
channel. The dotted curve in each of the figures corresponds
to the AWGN performance of underlying QPSK modulated
waveform. The dashed curves represent the ideal perfor-
mance of the 8PSK-TCMmodulated waveform in an AWGN
channel. These two performance curves represent operational
limits for the 8PSK-TCM modulated waveform.

Referring to Figure 9.33a and b, the 8PSK-TCM exhibits
no coding gain for Rb/Bc = 2 (64 kbps) without phase shaping
and that phase shaping results in a significant performance
loss with reasonable coding gains for Rb/Bc ≤ 1.3 (40 kbps).
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FIGURE 9.32 4-State 8PSK-TCM spectrums with phase shaping
parameter α.

*In practice, the equalizer convergence is accomplished during the acquisi-
tion preamble.
†The cubic phase function is discussed in Sections 17.8.2 and 17.8.3.
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The intrinsic loss associated with 50% linear phase shaping
and single-symbol I&D detection filtering is about 0.9 dB.*

The performance with the hard-limiting channel is shown
Figure 9.34a and b. With the exception of the case for Rb/Bc =
2 (64 kbps), the bit-error performance without phase shaping
exhibits coding gain ranging from 2 dB at Rb/Bc = 1.6 (51
kbps) to 3 dB at Rb/Bc = .5 (16 kbps). However, as shown
in Figure 9.33b, with 50% linear phase shaping there is no
coding gain for Rb/Bc ≥ 1.3 (40 kbps) and coding gains of
0.7 dB at Rb/Bc = 1 (32 kbps) and 2 dB at Rb/Bc = 0.5 (16
kbps). The application of a rate 0.937 RS outer code results
in notable improvements [19] with coding gains of 1.6 dB at
Rb/Bc = 1.6 (51 kbps) and about 2.6 dB for Rb/Bc ≤ 1.28
(41 kbps).

A major requirement of any advanced modulation wave-
form is that of spectral containment or efficiency and, unlike
the multi-h M-ary CPM waveform, the 8PSK-TCM wave-
form does not inherently provide spectral control. However,
some degree of spectral control can be achieved by altering
the phase shaping factor α which can be performed at the
transmitter location without impacting the demodulation pro-
cessing. Also, referring to Section 4.4.3.9, using the raised-
cosine phase shaping function is a viable alternative to the
linear phase shaping function. The importance of having a
constant envelope modulation is also a major requirement
in applications involving hard-limiting channels especially
for disadvantaged low-power terminals. As a final comment,
replacing the single-symbol I&D detection filter with a mul-
tiple symbolMLSE detector will result in a significant perfor-
mance improvement at the expense of demodulator
complexity.
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FIGURE 9.33 4-State 8PSK-TCM linear channel performance (rcc = 1/2, K = 7, trellis depth = 30).
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FIGURE 9.34 4-State 8PSK-TCM hard-limited channel performance (rcc = 1/2, K = 7, trellis depth = 30).

*This loss can be reduced to 0.5 dB with an optimally weighted I&D detec-
tion filter.
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ACRONYMS

1REC full response modulation
ACI adjacent channel interference
AM–AM amplitude modulation to amplitude modulation

(conversion)
AM–PM amplitude modulation to phase modulation

(conversion)
AWGN additive white Gaussian noise
BFSK binary frequency shift keying
BLDT time-bandwidth product (lock detector)
BLT time-bandwidth product (loop filter)
CPBFSK continuous phase binary frequency shift keying
CPM continuous phase modulation
CW continuous wave
FEC forward error correction
GMSK Gaussian minimum shift keying
I&D Integrate-and-dump (filter)
IF intermediate frequency
ISI intersymbol interference
LMS least mean-square
LSB least significant bit
MAP maximum a posterior (estimation)
MLSE maximum-likelihood sequence estimation
MPSK Multiphase shift keying
MQPAM multilevel quadrature pulse amplitude

modulation
MSB most significant bit
MSK minimum shift keying
PLL phaselock loop
PSD power spectral density
QPSK quadrature phase shift keying
RS Reed–Solomon (code)
SOM Start-of-message
TCM trellis-coded modulation
TFM tamed frequency modulation
TWT traveling wave tube
TWTA traveling wave tube amplifier
UHF ultra-high frequency

PROBLEMS

1. Referring to Figure 9.1a and b, identify all of the phase
trajectories, starting at t = 0, that contribute to the mini-
mum squared Euclidean distance. Hint: These are 1REC
single-h, 2-ary and 2-h 4-ary waveform so examine all
the possibilities of ℓ = αi−αj.

2. Show that (9.19) follows from (9.18) for the 1REC,
single-h, M-ary modulation with observation interval
N = 2 symbols.

3. Using (9.18) with h = 1/2, show that all of the 2k − 1
responses to the parameter ℓ have the same value of

d2min for a givenM-ary modulation. What is the implication
of this result regarding the bit-error probability expressed
by (9.20)?

4. Using the results of Problem 1, determine the exact
expression for the bit-error probability for the single-h
4-ary CPM waveform for an arbitrary modulation index.

5. The connections for the convolutional encoder are not
unique. For the generator matrices listed in the follow-
ing as (a) through (d), determine which are valid gen-
erators for the 2v-state 8PSK-TCM encoder. For those
that form a valid generator matrix, show the message
bit (b2,b1) mapping to generate the parity bits c =
(c2, c1, c0). Hint: Use the parity-check matrix
H = D2 D D3 + 1 . Also, referring to the 8PSK set par-
titioning in Figure 9.28, how does the partitioning differ
from gray coding?

(a) 
DD+ 1

D+ 1

D2 + 1

D2 + D D2 + 1 D2 + 1

D 01
(b) 

DD2

D

1

01

(c) 
D

D 01
(d) 

D

DD2 1
G =

G =

G =

G =

nπ/4

b2

b1

8PSK
waveform
modulator

c1

c0

c2

Parity
to  

phase
mapping

Parity bit
generation

s(t)

6. Formulate the v = 8 parity-check matrix H for the 256-
state 8PSK-TCM modulated waveform using the parity-
check matrix elements given in Table 9.8.
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10
CARRIER ACQUISITION AND TRACKING

10.1 INTRODUCTION

This chapter focuses on the application of phaselock techni-
ques to acquire and track the carrier frequency of a modulated
waveform. Typically, the received carrier frequency error rel-
ative to the receiver and demodulator local oscillators far
exceed the phaselock loop (PLL) frequency pull-in range
requiring frequency estimation and correction. In these cases,
the unknown frequency can be resolved by slowly sweeping
the PLL over the range of the frequency uncertainty or by
estimating the frequency error using a waveform preamble;
the choice is one of expediency, however, in most applica-
tions a preamble or in some cases a midamble is provided
to assist in the received waveform acquisition as discussed
in Chapter 11. Phaselock techniques are used in a variety
of applications involving the synchronization of various con-
tinuous wave (CW) oscillators for coherent heterodyning in a
receiver or demodulator; however, although these applica-
tions are addressed in this chapter, the main focus is on the
acquisition and tracking of data-modulated waveforms invol-
ving the baseband or Costas implementation of the PLL.
Acquisition and tracking of the carrier phase and frequency
of waveform-modulated carrier signals is essential for opti-
mum coherent detection and examples are given for multi-
phase shift keying (MPSK), quadrature phase shift keying
(QPSK), offset QPSK (OQPSK), and minimum shift keying
(MSK) modulations. The material in this chapter draws upon
Gardner’s work [1] regarding the characterization and gen-
eral applications of phaselock techniques. Emphasis is placed

on the Costas implementation of the PLL for which Lindsey
and Simon [2] have also laid a firm foundation with respect to
data communications.

The configuration of the PLL is shown in Figure 10.1
where h(t) is the loop filter impulse response function, Kd

is the gain of the phase detector with dimensions of volts/
radian, and Ko is the gain of the voltage controlled oscillator
(VCO) with dimensions of radians/volt-seconds; the VCO is
characterized as an ideal integrator in Figure 10.1. The prod-
uct KdKo has dimensions of 1/s. Consider the input signal to
the phase detector to be a real signal described as a sine wave
with amplitude A, angular frequency ωc, and unknown phase
ϕ(t). The signal phase is purposely made time dependent
which provides for an unknown frequency and frequency rate
in addition to an unknown constant phase angle. Similarly,
consider the output of the VCO to be a reference cosine func-
tion with amplitude normalized to unity and with carrier fre-

quency ωc, and a phase function, denoted as ϕ t , which is an
estimate of the input signal phase. The phase estimate is
expressed as

ϕ t =Ko

t

o
εo τ dτ radians (10.1)

The function of the phase detector is to generate an error

signal which will be zero when the estimate ϕ t is an exact
replica of the input signal phase function. The error signal is
formed by taking the product of the input and reference
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signals and, upon neglecting the double frequency term, is
given by*

ε t = s t s t filtered

=
A

2
sin ϕε t

=Kd sin ϕε t

(10.2)

where s(t) is a unit amplitude estimate of s(t) and the phase

error is ϕε t =ϕ t −ϕ t . The phase detector constant is
defined as Kd = A/2 V/rad. In many digital implementations
of the PLL, the input signal is at baseband and is described
by the analytic representation s t =Aejϕ t so the correspond-
ing baseband reference signal, or estimate of s t , is com-
puted by taking the sine and cosine of the phase estimate

yielding s t = ejϕ t . Using these results, the phase detector
output is computed by taking the conjugate of the reference
signal and computing the phase detector output

as ε t = Im e t e t ∗ .

When the phase error is small, that is, less than about 20 ,
the phase detector output is approximated as

ε t Kdϕε t (10.3)

Using this small angle linear approximation the equivalent
frequency-domain linear model of the PLL is shown in
Figure 10.1b with ε s Kdϕε s where s is the Laplace fre-
quency variable s = jω. In these cases, involving the analytic
signal representation, the VCO output is actually the phase
estimate given by

ϕ s =Koεo s s (10.4)

Using the linear model it is easily shown that the closed-
loop transfer function is defined as,

H s ≜
ϕ s

ϕ s
(10.5)

and, in terms of the loop filter transfer function F s =
εo s ε s , is expressed as

H s =
KoKdF s

s +KoKdF s
loop filter transfer function (10.6)

The direct current (DC) loop gain, defined as the product
Kν =KoKdF 0 , plays an important role in the dynamics of
the PLL. It is apparent that the order of the closed-loop
response is one more than the order of the loop filter, so
the frequently used second-order loop requires a first-order
filter. An equally useful result is the transfer function of
the phase error, defined as

T s ≜
ϕε s

ϕ s

=
ϕ s −ϕ s

ϕ s
= 1−H s

=
s

s+KoKdF s
phase-error transfer function

(10.7)

Finally, the open-loop transfer function is defined as

G s ≜
ϕ s

ϕ s open-loop

=
KoKdF s

s
open loop transfer function

(10.8)

and is used to characterize the root-locus plot of H(s) as a
function of the loop gain. The root-locus plot involves a

*In practice, the double frequency term is attenuated by the closed-loop fre-
quency response of the phase-lock loop.
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FIGURE 10.1 Phase-lock loop implementation.
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relatively simple procedure to identify the loop stability con-
ditions with varying loop gain and, to some degree, estimat-
ing the frequency response and transient behavior of the loop.
In establishing the root-locus plot when the loop gain is zero
the poles of H(s) correspond to the poles of G(s) and, as the
gain increases to infinity, the poles of H(s) terminate on the
zeros of G(s) [3]. These three transfer function relationships
are used in the following sections to characterize the perfor-
mance of the first-, second-, and third-order PLLs.

10.2 BANDPASS LIMITER

Preceding the PLL with a bandpass limiter serves as a gain
control function that limits the dynamic range requirements
following the limiter and mitigates the impact of signal level
fluctuation on the PLL dynamics. For example, without some
form of gain control, the loop bandwidth and damping factor
vary in proportion to the input signal level. In this analysis the
received signal-plus-noise, si(t), is assumed to be at a conven-
ient IF fo Hz with bandwidth Bi Hz, such that, Bi << fo, and is
expressed as

si t =Asin ωot +ϕ t + nci t sin ωot + nsi t sin ωot

(10.9)

The signal phase function ϕ(t) may include a residual
intermediate frequency (IF) error, a narrowband phase mod-
ulation term, and a constant phase, in any event, the modula-
tion bandwidth Bm of ϕ(t) must satisfy the condition Bm <
Bi << fo. The additive quadrature noise terms nci(t) and nsi(t)
are stationary iid, zero-mean, white Gaussian noise processes
with single-sided noise density No watts/hertz. The bandpass
limiter is characterized by passing the input signal si(t)
through an ideal hard limiter with the output expressed as

so t = sign AL,si t (10.10)

and then passing so t through a zonal bandpass filter cen-
tered at fo with a bandwidth Bo, such that, Bi <Bo ≤ fo. The
input bandwidth is typically determined by an abrupt cutoff
filter, so the zonal filter low-pass bandwidth is taken to be
Bo = fowhich serves the purpose of eliminating the harmonics
of fo. Under these conditions, the bandpass filtered output
so(t) consists of the carrier frequency fo plus the narrowband
iid additive orthogonal white Gaussian noise processes Nco(t)
and Nso(t). Davenport [4] and Springett and Simon [5] have
evaluated the input and output signal-to-noise ratios for the
bandpass limiter and Gardner [6] formulates the results in
the convenient approximate form

γo γi
1 + 2γi
4 π + γi

(10.11)

where γi and γo are the input and output signal-to-noise ratios.
Equation (10.11) is plotted in Figure 10.2 as the normalized
output signal-to-noise ratio as a function of the input signal-
to-noise ratio in decibels. There is a 3 dB signal-to-noise
improvement for high input signal-to-noise ratios and for
low input signal-to-noise ratios the output signal-to-noise
ratio only degraded by 1.05 dB relative to the input signal-
to-noise ratio. The crossover point, that is, when γo = γi,
occurs when γi = −5.5 dB.

In the absence of noise, the peak level of the bandpass lim-
iter output is 4AL/π volts; however, the noise suppresses the
signal level by the limiter signal suppression factor, defined
as the ratio of the output signal amplitude at a given input
signal-to-noise ratio to the noise-free signal level 4AL/π.

Gardner expresses the limiter signal suppression factor as

α=
γi

4 π + γi
(10.12)

and Tausworthe [7] provides the approximation

α
0 7854γi + 0 4768 γ2i
1 + 1 024γi + 0 4768 γ2i

(10.13)

Equations (10.12) and (10.13) are plotted in Figure 10.3 as
a function of the input signal-to-noise ratio. When the band-
pass limiter is followed by a PLL, the loop gain becomes
αKoKd which, as mentioned earlier, impacts the loop band-
width and damping factor. That is, as the input signal-to-
noise ratio decreases the loop bandwidth and damping factor
also decrease. Although the received signal dynamics influ-
ence the PLL performance, decreasing the loop bandwidth in
low signal-to-noise environments can help maintain the loop
tracking; this is discussed in more detail in Section 10.8
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ratio characteristics.
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where the optimum PLL requires that the signal be weighted
by the input signal-to-noise ratio. However, as the input sig-
nal-to-noise ratio increases α approaches one and the loop
gain is influenced by the product KoKd; this condition applies
in the following PLL analysis that selects the optimum loop
design based on an ideal automatic gain control (AGC) and
the constant loop parameter KoKd.

10.3 BASEBAND PHASELOCK LOOP
IMPLEMENTATION

As mentioned earlier the input to the complex multiplier is
typically the baseband or analytic signal representation of
the carrier-modulated received waveform. The baseband
implementation of the PLL is referred to as a Costas loop
in which the in-phase and quadrature phase (or quadphase)
rails are phase corrected to facilitate the data demodulation
on each rail. In keeping with the previous discussion,
consider that the baseband received signal s t =
A 2 exp jϕ t is applied to the input of the complex mul-
tiplier shown in Figure 10.4. In addition to a constant phase
error, the phase function may include frequency and higher
order frequency errors as expressed, for example, by

ϕ t =
ωt2

2
+ωt +ϕ (10.14)

Referring to Figure 10.4 the inputs to the phase accumu-
lator corresponding to the phase function of Equation (10.14)
are defined as

ϕε ≜ϕ−ϕ, Δϕ≜ 2π f − f ΔTs and, Δϕ≜ 2π f − f ΔT2
s

(10.15)

The phase estimate ϕ t is typically derived by squaring
and filtering operations discussed in the following section.
This is an intuitive implementation of the phase-error detec-
tor, in that, for MPSK modulation, the squaring operations
remove the received phase modulation yielding a sinusoidal
signal reference. In Section 10.9 an optimum implementation
is examined based on the minimum mean-square phase-error
estimate and several important differences are highlighted
that result in significant improvements under various input
signal-to-noise conditions.

10.4 PHASE-ERROR GENERATION

When applied to data communications the input signal is not
simply a sinusoidal signal but is typically phase modulated in
some defined way as in the various forms of MPSK. In these
cases, the generation of the phase error must remove the data-
dependent phase variations by taking the M-th power of the
input signal. For example, with MPSK the signal phase is
ϕ t = 2πm M p t +ϕ t , m = 0, 1, …, M − 1, M = 2k

where p(t) is a phase weighting function often of the form
rect(t/T) where T is the symbol period.* In this case when
the input signal is raised to the M-th power the resulting sig-
nal will be at a frequency Mω with the phase equal to
ϕ t =Mϕ t = 2π +Mϕ t . In terms of the baseband signal,
characterized by the normalized in-phase and quadrature
components cos(ϕ (t)) and sin(ϕ (t)), the M-th power is
obtained by the recursive relationships†

εMI t = cos Mϕ t = cos2
M

2
ϕ t −sin2

M

2
ϕ t

(10.16)

and

εMQ t = sin Mϕ t = 2sin
M

2
ϕ t cos

M

2
ϕ t

(10.17)

Upon repeated application of these relationships the
squaring of the signal with the phase function ϕ (t) is
obtained as

ε2I t = cos 2ϕ t = cos2 ϕ t −sin2 ϕ t (10.18)

and
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FIGURE 10.3 Limiter signal suppression factor.

*In this section it is assumed that the exact symbol timing is known at the
demodulator.
†The subscripts I and Q refer to the in-phase and quadrature phase terms,
respectively.

378 CARRIER ACQUISITION AND TRACKING



ε2Q t = sin 2ϕ t = 2sin ϕ t cos ϕ t (10.19)

This last set of quadratic expressions represents the required
phase detector output for binary phase shift keying (BPSK)
modulation. These relationships are depicted in the MPSK
phase-error computations of Figure 10.5. Lindsey and Woo
[8] discuss an alternative to the squaring loop for suppressed
carrier BPSK modulation. The loss in the signal-to-noise ratio
associated with the repeated squaring operations is referred to
as the squaring loss and is discussed in Section 10.9.

An alternate phase-error generation algorithm is based on
the inverse tangent function which computes the phase detec-
tor output phase as*

ϕ t = tan−1 Im s t

Re s t
(10.20)

The phase ϕ(t) is used to compute the received symbol

phase estimate ϕm =mΔϕ where m = 0,…,M – 1 is indexed
over the known phase rest states withϕm corresponding to the

minimum magnitude ϕ t −ϕm <Δϕ 2 where Δϕ= 2π M.
Using this result, the approximate phase-error input to

the loop filter is computed as ε t ϕ t −ϕm. The arctan
operation functions as a hard limiter by removing
the amplitude dependence of the input signal so the PLL
gain and bandwidth are unchanged. Although this is advan-
tageous, the arctan function in low signal-to-noise envir-
onments degrades the signal tracking performance
relative to the error generation processing shown in
Figure 10.5.
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*An alternate procedure without the influence of noisy samples and the com-
plexity of performing the arctan function is to determine the angular segment

that includes the real and imaginary parts of s t
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10.5 FIRST-ORDER PHASELOCK LOOP

The first-order PLL the loop filter is characterized as a con-
stant gain so that F(s) =G and, from Equation (10.6), the
closed-loop transfer function becomes

H s =
KoKdG

s+KoKdG
first-order loop (10.21)

This response has a real-axis pole at s = –KoKdG and, in
terms of the root-locus plot,* as the gain increases from zero
the pole migrates along the negative real axis from the open-
loop pole at s = 0 to the open-loop zero at infinity. Therefore,
because the pole does not enter the right half of the s-plane,
the closed-loop response is unconditionally stable. The
closed-loop gain is simply KoKdG and the best tracking per-
formance is obtained with a high-gain and low-bandwidth
loop to minimize the impact of the noise receiver noise. How-
ever, from Equation (10.21), the 3-dB bandwidth of the
closed-loop response is also KoKdG rad/s so a high gain
and low bandwidth are conflicting requirements. For this rea-
son, the first-order PLL has limited applications [9] and the
second-order loop, which is not subject to this restriction,
is used in most coherent waveform demodulators.

Referring to Problem 3, the one-sided noise bandwidth of
the first-order loop is evaluated as

BL =
KoKdG

4
first-order loop bandwidth Hz (10.22)

Referring to Equation (10.7), the phase error, ϕε(s), for an
input phase function ϕi(s) = ϕ(s) is expressed as

ϕε s =
sϕ s

s+KoKdG
(10.23)

Using inverse Laplace transforms [10], the response ϕε(t)
to a phase step, a frequency step, and a frequency ramp are
evaluated for the first-order PLL usingKoKdG = 4BL. The fol-
lowing analysis assumes sufficiently small input levels so
that the loop responses correspond to the linear operating
range of the PLL.

The response to a phase-step input is evaluated using
ϕi s =Δϕ s and results in the normalized phase-error
response

ϕε t

Δϕ
= e−4BLt phase-step input (10.24)

The response to a frequency-step input is evaluated using
ϕi s =Δw s2 and results in the normalized phase-error
response

ϕε t

Δω 4BL
= 1−e−4BLt frequency-step input (10.25)

The response to a frequency-ramp input is evaluated using
ϕi s =Δω s3 and results in the normalized phase-error
response

ϕε t

Δω 4BL
2 = − 1−e−4BLt + 4BLt frequency-ramp input

(10.26)

These responses are plotted in Figure 10.6 where the out-
put to a continually applied frequency ramp or Doppler rate
increases without bound. In the following section, similar
theoretical responses are developed for the second-order
PLL that is used to evaluate the transient responses of various
modulated waveforms with additive noise.

10.6 SECOND-ORDER PHASELOCK LOOP

The second-order PLL described in this section uses a first-
order loop filter having the form

F s =
εo s

εi s

=G1
s+ α+G2

s+ α

(10.27)

The PLL will acquire and lock to a carrier frequency
that is within the pull-in frequency of the loop and, once
the loop is locked to the carrier frequency, it will remain
locked and track the carrier as long as the carrier frequency
does not exceed the loop pull-out frequency. The loop
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FIGURE 10.6 First-order PLL theoretical responses to phase-step
input (BLT = 0.1).

*The generation of root-locus plots is discussed in Section 10.7.1.
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pull-in and pull-out frequency characteristics are discussed
in Section 10.6.9. Analysis of the root-locus plot for the
second-order loop shows that the migration of the two
poles in the left half of the s-plane as the loop gain is
increased. For example, as the gain approaches infinity,
one pole terminates on the finite real open-loop zero and
the other pole terminates on the real zero at minus infinity.
In this case, the loop is unconditionally stable and the gain
and bandwidth can be adjusted independently; for these
reasons the second-order PLL is preferred in most
applications.

10.6.1 Second-Order PLL Loop Filter
Implementations

Two implementations of a first-order loop filter are shown
in Figure 10.7. Although the transfer functions for these
loops are identical, the gains G1 and G2 are quite different.
The first implementation, shown in Figure 10.7a, provides
for a single phase/frequency estimate while the second con-
figuration provides for separate estimates of the phase and
frequency. The advantage of having separate estimates is
that the corrections can be applied at different points in
the demodulator, which is convenient in some cases. The
disadvantage in this configuration is that the ratio of the
gains, G1 and G2, is relatively large and G2 may be subject
to truncation or round-off errors in a digital implementation
of the loop. The first configuration requires that the phase
estimate be applied at a common point; however, the gain

ratio is closer to unity thus reducing the possibility of trun-
cation or round-off errors.

These complex frequency domain depictions of the filter
functions involving s = α+ jω are readily characterized in the
z-plane for discrete-time implementations amenable to digital
signal processing. Considering the discrete-time sampling
t = iTs, where Ts is the sampling interval,* and using the
impulse-invariant z-transform

z = esTs (10.28)

the filter transfer function F (z) can be obtained. For example,
evaluation of the impulse-invariant z-transform of the loop
filters, shown in Figure 10.7, involves characterizing the inte-
grator s-plain transfer function F (s) = 1/(s + α), performing
the inverse Laplace transform to determine the impulse
response f(t) of the integrator, sampling the impulse response
at uniform sampling times iTs, and then performing the var-
iable transformation in Equation (10.28).

Referring to Figure 10.7, the impulse response of the lossy
integrator is evaluated as f(t) = e−αt and the sampled impulse
response is expressed as

fs iTs =
i

f t δ t− iTs

=
i

e−αiTsδ t− iTs
(10.29)

Taking the Laplace transform of Equation (10.29) results
in the discrete sampled s-domain function

Fs s =
i

e−α iTs e−siTs

=
1

1−e−αTse−sTs

(10.30)

The second expression is obtained from the closed-form
result of an infinite power series. Applying the impulse-
invariant z-transform to Equation (10.30), the sampled data
lossy integrator is expressed as

F z =
1

1−e−αTs z−1
(10.31)

The functional implementation of F (s) and F (z) is shown
in Figure 10.8 with k = e−αTs . For convenience the parameter
α is often normalized by the sampling interval Ts. The PLL
transfer functions for the two loop filters in Figure 10.7 are
evaluated in the following sections.

Configuration no. 2

Configuration no. 1

G2 G1

εi(s) εo(s)
1/s

α

α

+
+

+
–

G1

G2

εi(s)

εo1(s)

εo2(s)
1/s

+
–

(a)

(b)

FIGURE 10.7 Loop filter configurations.

*The sample time increment subscript s should not be confused with the
Laplace s-plain complex variable s = α + jω.
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10.6.2 Loop Filter Configuration No. 1

For the loop filter configuration No. 1, the loop filter transfer
function is evaluated as

F s =
εo s

εi s
=G1

s+ α+G2

s+ α
(10.32)

An important performance consideration in the design
is the gain of the loop filter, evaluated as F 0 =
G1 α+G2 α. It will be seen that a lossy integrator results
in a finite steady-state phase error when the input signal
has a frequency error, for example, an unknown Doppler fre-
quency. Furthermore, an infinite phase-error results when the
input signal has a finite frequency-rate error. On the other
hand, with a lossless integrator, corresponding to α = 0 and
Kv =∞, the steady-state phase error is zero with an input fre-
quency error and finite with an input frequency-rate error.
Continuing with this analysis, the closed-loop transfer func-
tion for the filter function, given by Equation (10.32),
becomes

H s =
KoKdG1 s+G2 + α

s2 + KoKdG1 + α s+KoKdG1 G2 + α
(10.33)

The classical, or control theory, expression for the second-
order closed-loop transfer function is expressed in terms of
the loop damping factor (ζ) and natural resonant frequency
(ωn) as

H s =
2ςωn−α s + ω2

n

s2 + 2ςωns + ω2
n

(10.34)

Upon equating the denominator coefficients in Equations
(10.33) and (10.34), the following correspondence between
the loop parameters is obtained

2ςωn =KoKdG1 + α (10.35)

and

ω2
n =KoKdG1 G2 + α (10.36)

Based on the steady-state performance advantages of infi-
nite DC gain loops and their simplicity to implement in dig-
ital systems, the following analysis is based on α = 0.

It is convenient to specify the PLL design parameters
using the loop bandwidth rather than the natural frequency
of the loop. In general, the loop bandwidth is defined as*

BL =
1
2π

∞

0

H ω 2dω hertz (10.37)

and, for the infinite-gain (α = 0) second-order loop, the band-
width is expressed as

BL =
ωn

2
ς +

1
4ς

hertz (10.38)

Using these results the loop gains, expressed in terms of the
design parameters BL and ζ, are

G1 =
4ςBL

KoKd ς+ 1 4ς
and G2 =

BL

ς ς+ 1 4ς
(10.39)

and normalizing by the symbol interval (T), the gains for the
digital implementation become

G1 =
4ςBLT

KoKd ς+ 1 4ς
and G2 =

BLT

ς ς+ 1 4ς
(10.40)

The symbol interval is chosen as the normalizing param-
eter because the phase tracking is generally performed at the
symbol matched filter sampling rate. The ratio of the gains is
G1 G2 = 4ς2 KoKd and, with Ko =Kd = 1.0 and the com-
monly used cases of ζ = 1 and 0.707, the gain ratio is 4
and 2, respectively. In digital implementations gain ratios
near unity are less susceptible to performance issues resulting
from finite quantization levels.

The sensitivity of the loop bandwidth and damping factor
to changes in the signal level through the phase detector gain,
that is, Kd = A/2, is evaluated by expressing BLT and ζ as
functions of G1,G2,Ko, andKd and solving for the differen-
tials ΔBLT and Δζ. The results in the normalized forms are

ΔBLT

BLT
=

4ς
ς+ 1 4ς

ΔA
A

(10.41)

and

Δς
ς

=
1
2

ΔA
A

(10.42)

Discrete-time
implementation

k

 z–1

ε′(z) ε′o(z) 

α

+
+

ε′(s) ε′o(s) 

+
–

1/s

Continuous-time
implementation 

(a) (b)

FIGURE 10.8 Discrete-time characterization of lossy integrator.

*Althoughωn has dimensions of radians/sec, BL has dimensions of cycles/sec
or Hz.
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Therefore, for commonly used damping factors, the band-
width will change by about two to three times the change in
the normalized signal level and the loop damping will change
by one-half.

10.6.3 Loop Filter Configuration No. 2

For the loop filter configuration No. 2, the loop filter transfer
function is found to be

F s =G1
s + α+G2 G1

s+ α
(10.43)

and the corresponding closed-loop transfer function is

H s =
KoKdG1 s+ α+G2 G1

s2 + KoKdG1 + α s+KoKd G1α+G2
(10.44)

Following the same procedures as in the previous section,
the sampled data form of the loop filter gains with α = 0 is
expressed in terms of the damping factor and loop bandwidth as

G1 =
4ςBLT

KoKd ς + 1 4ς
and G2 =

4 BLT
2

KoKd ς+ 1 4ς 2

(10.45)

In this case, the ratio of the gains is G1 G2 =
ς ς+ 1 4ς BLT . The respective time-bandwidth products
(BLT) for BPSK and QPSK are on the order of 0.1–0.01,
respectively, so, for the commonly used cases of ζ = 1 and
0.707, gain ratios of 7–125 are encountered.

Upon examining the sensitivity of the loop bandwidth and
damping factor to changes in the input signal level the results
are found to be

ΔBLT

BLT
=

4ς−1
4 ς+ 1 4ς

ΔA
A

(10.46)

and

Δς
ς

= ς
ΔA
A

(10.47)

Therefore, for commonly used damping factors, both the
bandwidth and damping factor will change in roughly the
same proportion to changes in the signal level. Although this
loop filter is slightly more sensitive to changes in the damp-
ing factor than configuration No. 1, the sensitivity to changes
in the loop bandwidth is about 4–6× less sensitive.

10.6.4 Theoretical Closed-Loop Phase-Error
Response

In this section, the focus is on the loop characteristics using
the loop filter configuration No. 1. Evaluation of the theoret-
ical phase-error response is particularly useful, in that, it is

an effective measure for verifying the performance of
hardware and software implementations. The phase-error
transfer function was expressed in Equation (10.7) as 1 −H
(s) and the phase-error transfer function for the second-order
loop is

T s =
ϕε s

ϕ s
=

s s + α
s2 + 2ςωns + ω2

n

(10.48)

The steady-state phase error is evaluated for phase inputs
corresponding to a phase step, a linear phase ramp or fre-
quency step, and a quadratic phase function or frequency
ramp. The three inputs are characterized in terms of ϕ(s) as
Δϕ/s, Δω/s2, and Δω/s3, respectively. The steady-state value
of the phase-error response is determined by applying the
final value theorem of Laplace transforms given by

lim
t ∞

ϕε t = lim
s 0

sϕε s (10.49)

Evaluation of the steady-state phase error under the three
conditions given earlier results in phase errors ϕε(∞) of: 0,
αΔω, and αΔωt +Δω ω2

n, respectively. Therefore, an input
signal with a frequency step results in a finite frequency error
and an input signal with a frequency ramp results in a time-
dependent and fixed frequency-rate error. Recalling that the
DC gain of the loop filter is evaluated as F (0) = 1/α , by let-
ting α = 0 the only steady-state error is the fixed frequency
rate resulting from the frequency ramp input. Because of
the importance of this result α = 0 is used in the following
analyses and because digital and active filter implementa-
tions readily achieve this condition it is commonly used in
practice.

10.6.5 Phase-Error Response to Phase Step

The phase response for an input phase step ϕi s =Δϕ s is
given by

ϕε s =
sΔϕ

s2 + 2ςωns+ ω2
n

(10.50)

The time response is determined using inverse Laplace
transforms and the solution depends whether the poles are
complex or real. For example, the poles of ϕε(s) are evaluated
as

sp = −ωn ς ± ς2−1 (10.51)

and for ζ > 1 there are two distinct real poles, for ζ = 1 there
are two identical real poles, and for ζ < 1 there is a complex
pole pair. For the infinite gain loop (α = 0), the time response
for each of these conditions is evaluated as [11,12],
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ϕε t =

Δϕ cosh ωnt ς2−1 −
ς

ς2−1
sinh ωnt ς2−1 e−ςωnt

ς> 1

Δϕ 1−ωnt e−ωnt ς = 1

Δϕ cos ωnt 1−ς2 −
ς

1−ς2
sin ωnt 1−ς2 e−ςωnt

ς< 1

(10.52)

The response to a frequency ramp is plotted in Figure 10.9
for damping factors ζ = 0.5, 0.707, and 1.0.

10.6.6 Phase-Error Response to Frequency Step

The phase response, for the infinite gain loop (α = 0), with a
frequency-step input ϕi s =Δω s2 is given by

φε s =
Δω s + α

s s2 + 2ςωns+ ω2
n

(10.53)

In this case, there is an additional pole at zero and upon eval-
uating the inverseLaplace transforms the time responses for the
three conditions of the damping factor are expressed as [11,12]

ϕε t =

Δω
ωn

1

ς2−1
sinh ωnt ς2−1 e−ςωnt ς> 1

Δω
ωn

ωnt e
−ωnt ς = 1

Δω
ωn

1

1−ς2
sin ωnt 1−ς2 e−ςωnt ς < 1

(10.54)

The response to a frequency ramp is plotted in
Figure 10.10 for damping factors ζ = 0.5, 0.707, and 1.0.

10.6.7 Phase-Error Response to Frequency Ramp

The phase response, for the infinite gain loop (α = 0), with a
frequency-ramp input ϕi s =Δω s3 is given by

ϕε s =
Δω s+ α

s2 s2 + 2ςωns+ ω2
n

(10.55)

In this case, there is an additional pole pair at zero fre-
quency and the time responses for the three conditions of
the damping factor are expressed as [11,12]

ϕε t =

Δω
ω2
n

−
Δω
ω2
n

cosh ωnt ς2−1 +
ς

ς2−1
sinh ωnt ς2−1

e−ςωnt ς > 1

Δω
ω2
n

−
Δω
ω2
n

1 +ωnt e
−ωnt ς = 1

Δω
ω2
n

−
Δω
ω2
n

cos ωnt 1−ς2 +
ς

1−ς2
sin ωnt 1−ς2

e−ςωnt ς < 1

(10.56)

The response to a frequency ramp is plotted in
Figure 10.11 for damping factors ζ = 0.5, 0.707, and 1.0.

Referring to Equation (10.56) it is important to note that as
t ∞ there is a constant phase error given by

ϕε t t ∞ =
Δω
ω2
n

=
πf ς + 1 4ς 2

2 B2
L

(10.57)
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where the frequency ramp corresponds to f in hertz/second.
The second equality in Equation (10.57) is obtained using
Equation (10.38) and substituting ωn in terms of BL and ζ.
The constant phase error in Equation (10.57) is based on
the infinite DC loop gain (Kv =∞) that results when α = 0
as discussed earlier. For the finite DC loop gain Gardner
[1] shows that an additional phase-error term, given by
Δωt Kv, is present that increases without bound as t ∞.
The residual phase error with a frequency ramp is eliminated
when using a third-order loop; however, the third-order loop
results in a constant phase error with an input phase jerk char-
acterized as a f step input with dimensions hertz/second2.

10.6.8 Simulated MPSK Transient Responses

To demonstrate the application of the theoretical transient
responses, the transient response of the PLL is evaluated
using a Monte Carlo simulation program for BPSK-,
QPSK-, and 8PSK-modulated waveforms and the results
are compared to the theoretical responses. However, because
the theoretical results correspond to a noise-free CW input
signal, to make a direct comparison the simulated MPSK
modulators use mark-hold data that results in an unmodulated
or CW carrier. A reasonable comparison, either from simula-
tions or hardware tests, is viewed as a validation of the PLL
implementation. Generally, the simulation or hardware test
results are based on sampled matched filter outputs occurring
at the symbol rate Rs = 1/T, that is, for t = nT, n = 1, 2, …, so
the response is expressed in terms of the normalized time t/T.
For this comparison the theoretical transient responses for a
step input in phase and frequency are based on the respective
normalized responses for the commonly used case of ζ =

0.707. The normalized theoretical responses corresponding
to Equations (10.52) and (10.54) are:

ϕε t T

Δφ
= cos ωnT t T 1−ς2 −

ς

1−ς2
sin ωnT

t

T
1−ς2

e−ςωnT t T ς < 1 phase step

(10.58)

and

φε t T

Δω ωn
=

1

1−ς2
sin ωnT

t

T
1−ς2

e−ςωnT t T ς < 1 frequency step

(10.59)

As stated earlier, in Figures 10.9 through 10.11 the abscis-
sas or time axes are normalized by the natural resonant fre-
quency ωn; however, it is often useful to characterize the
normalized time axis in terms of the modulation symbol
interval T. This conversion is accomplished by using
ωnt =ωnT t T and solving for t/T with the result

t

T
=

1
ωnT

ωnt =
ς + 1 4ς
2BLT

ωnt (10.60)

The second equality is based on the normalized natural res-
onant frequencyωnT using Equation (10.38). Table 10.1 tabu-
lates several key theoretical response conditions in terms of t/
T. These conditions correspond to the parameters BLT = 0.1
and 0.01 with and ζ = 0.707 that are frequently used, respec-
tively, with BPSK- and QPSK-modulated waveforms. These
conditions provide convenient benchmarks for establishing
the simulated and hardware loop performance. For example,
considering BPSK modulation with a phase-step input the
simulated or hardware PLL gain KoKd must be adjusted until
the test response corresponds to a zero crossing at t/T = 5.6 and
amaximumnormalized undershoot of –0.207 occurring at t/T
= 11.9. This adjustment corresponds to optimizingG1 in con-
figuration No. 1 and G1 and G2 in configuration No. 2. In
many hardware situations, it is more convenient to generate
a frequency-step input so the optimum characteristics for a
frequency-step input are also listed in the table.

In the following comparisons the phase-error generation
algorithm, shown in Figure 10.5, is used with loop filter con-
figuration No. 1. In order for the simulated results to match,
or closely match, the theoretical response, it is essential that
the PLL gains be appropriately scaled in the simulation, or
hardware, implementations as mentioned earlier. Since the
phase detectors gain Kd changes in direct proportion to the
input signal level, the AGC setting can be used to provide
the optimum PLL gain. For these tests the phase and fre-
quency steps must be small, about 20 and Rs/20 Hz, respec-
tively, so that the loop operates in the linear region.
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The results for a phase-step input are shown in
Figure 10.12 using a damping factor of ζ = 0.707 and a loop
bandwidth of BL = 50 Hz. The abscissa is normalized to the
symbol duration and the source data rate is 12 kbps for all
three modulations corresponding to normalized loop band-
widths of BLT = 0.00417, 0.0083, and 0.0125 for BPSK,
QPSK, and 8PSK, respectively. The excellent matches
between the simulated (data points) and theoretical (solid
curves) results validate the implementation and the loop
parameter computations. The phase step used in the simula-
tion is Δϕ = 20 and these results clearly indicate that the
loop is operating in the linear regime for which the theoretical
results apply. The responses Figure 10.12 show that 8PSK
has a faster response time than QPSK and BPSK; however,
this results solely because to the selected 50 Hz loop band-
width and the 12 kbps data rate that the results in the highest
BLT product for the 8PSK modulation. It will be seen that,
among these modulations, BPSK modulation is the most
robust and can tolerate the highest BLT product; on the order

of 0.1 compared to 0.01 for QPSK. The resulting response
time for BPSK is recorded in Table 10.1 with the
frequency-step response zero crossing occurring at 23.8 sym-
bols which is 10 : 1 faster than that of the QPSK response.
Once the optimum PLL response is obtained, the BLT can
be changed without altering the characteristics of the opti-
mum response.

The phaselock detector shown in Figure 10.13 follows
directly from the phase detector implementation shown in
Figure 10.5. For BPSK modulation, the lock detector
computes cos(2ϕε) and the simulation results showing
the lock detector response for BPSK are shown in
Figure 10.14. For these results the lock detection filter is
implemented as two synchronously tuned single-pole
low-pass filters* with a composite bandwidth of BLD (Hz).
The normalized form of the lock detector bandwidth is
the time bandwidth product BLDT. When the lock detector
bandwidth is equal to about 1/10 the loop bandwidth and
the lock detector threshold is 0.75, the lock indication output
is a conservative indication of the phaselocked condition.
This condition is used in simulations where the bit-error per-
formance is being evaluated without the influence of the loop
transient response. However, with BLD = BL/10, a lock detec-
tor threshold of 0.1 is more in keeping with the lock-time cri-
terion of TL = 1/ωn. This also corresponds to a lock detector
bandwidth of approximately BL/4 and a lock detector thresh-
old of 0.75.

Comparing the implemented PLL response to the theoret-
ical response for a phase step may be inconvenient and,
depending upon the instrumentation, it may be easier to
observe the response to a step change in frequency. There-
fore, the measured response to a frequency step is compared
to the corresponding theoretical response in Figure 10.15 for
BPSK, QPSK, and 8PSK. The lock detector response is also
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FIGURE 10.12 Comparison of simulated and theoretical
responses for phase-step input (Rb = 12 kbps,BL = 50 Hz, ζ = 0.707).

TABLE 10.1 Second-Order PLL Selected Theoretical Responses using ωnT and t/T

Response Conditions

BPSK with BLT = 0.1 and ζ = 0.707

Phase Step Frequency Step

ωnt t/T Levela ωnt t/T Levelb

Peak 0.0 0.0 1.0 1.05 5.6 0.45b

First zero crossing 1.05 5.6 0.0 4.5 23.8 0.0
First undershoot 2.25 11.9 −0.207 5.4 28.6 −0.015

QPSK with BLT = 0.01 and ζ = 0.707
Peak 0.0 0.0 1.0 1.05 56 0.45
First zero crossing 1.05 56 0.0 4.5 238 0.0
First undershoot 2.25 119 −0.207 5.4 286 −0.015

aNormalized by Δϕ.
bNormalized by Δω/ωn.

*The design of synchronously tuned single-pole low-pass filters is discussed
in Appendix B.
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shown for each waveform for a lock detector bandwidth of
BLD = 10 Hz. As in the preceding examples, although the
source data corresponds to mark-hold data, the source data
rate is 12 kbps so the corresponding normalized loop band-
widths are BLT = 0.00417, 0.0083, and 0.0125.

10.6.9 Initial Frequency Error and PhaseLock Loop
Acquisition Time

Themaximum input frequency error that can be applied to the
PLL and achieve lock without cycle skipping is defined as the
lock-in frequency FL and is approximated by Gardner as

FL 2ςωn =
2ςBL

π ς + 1 4ς
hertz (10.61)

The corresponding lock-in time is given by the approxi-
mate expression

TL
1
ωn

=
ς + 1 4ς
2BL

second (10.62)

The lock-in frequency and time for a damping factor ς =
0.707 are plotted in Figure 10.16 for the normalized forms

FLT and TL/T as a function of the loop time-bandwidth
product BLT.

The pull-in frequency is related to the acquisition perfor-
mance of the PLL when cycle skipping occurs. In this case
the PLL will eventually lock if the input frequency error is
within the pull-in frequency range FP of the loop, albeit with
cycle skipping. The approximate pull-in frequency for high-
gain active filter loops, such that Kv > 2.5ωn, is given by
Gardner as

FP
1
π

ςωnKv =
1
π

2ςBLKv

ς + 1 4ς
hertz (10.63)

and the corresponding pull-in time is approximated by

TP 2 ςωnKv = 15 5
ς+ 1 4ς 3

ς B3
L

Δf 2 second (10.64)

Once the PLL is locked, the loop will remain locked with-
out cycle skipping if the input frequency error is less than the
pull-out frequency FPO given by

FPO = 0 573BL
ς+ 1

ς+ 1 4ς
(10.65)
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FIGURE 10.13 PLL lock detector implementation for BPSK.
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The normalized forms of the loop pull-in and pull-out
frequency are FpT and FpoT, respectively. The results in
Figure 10.16 apply to PLLs operating in the linear range with
a noise-free CW input signal and Sections 10.6.11, 10.8, and
10.9 address the acquisition performance when the input is a
modulated signal with additive noise.

10.6.10 Optimum Second-Order PLL Configuration

The previous discussions dealt with the second-order closed-
loop response in general terms using the damping factor ζ
and natural frequency ωn or the loop bandwidth BL as arbi-
trarily selected parameters. For example, the minimum value
of the ratio BL/ωn occurs at ζ = 0.5; however, this condition
results in a transient response overshoot of nearly 20%.
Therefore, a damping factor of 0.707 is typically selected
as a compromise between overshoot and the critically
damped case of ζ = 1.0, which has no overshoot but results
in a sluggish response. In this section, the results of Jaffe and
Rechtin [13] are used to examine the optimum selection of
the damping factor. Their analysis applies the Wiener filter
criterion to establish the optimum closed-loop transfer func-
tion of the second-order loop when the input phase function
is characterized by a frequency step. Based on this criterion,
which minimizes the mean-square phase error for a given
input condition, Jaffe and Rechtin have shown that, for a
frequency-step input and a constant input noise spectral
density, the optimum second-order loop transfer function
is given by

H s =
2Bs+B2

s2 + 2Bs+B2
optimum second-order loop

(10.66)

where the coefficient B has dimensions of radians/second and
is related to the loop noise bandwidth as

BL =
3B

4 2
(10.67)

where BL is in Hz. The closed-loop transfer function is related
to the loop filter as expressed in Equation (10.6) and the
corresponding loop filter response is readily evaluated as

F s =
2Bs+B2

KdKos
optimum second-order loop (10.68)

Upon equating the coefficients of the optimum second-
order loop transfer function to the classical parameters of
Equation (10.34) with α = 0 results in the optimum damping
factor ς = 1 2 = 0 707, so, in addition to the qualitative
advantages previously mentioned, this damping factor also
results in the optimum loop performance under the conditions
of the Wiener filter criterion with a frequency step input. The
subject of the optimum loop response is visited again when
the third-order PLL characteristics are analyzed. Gardner
[14] discusses other optimization procedures [12,15,16]
based on different loop criterion.

10.6.11 Second-Order Phaselock Loop Acquisition
Performance with Signal and Noise

The previous analysis of the PLL assumes that the input sig-
nal is a CW wave, possibly with a frequency rate and phase
jerk, in a noise-free environment. However, as a practical
matter, except for special cases of phase locking requirements
among various system oscillators, PLLs are required to oper-
ate with data-modulated input signals, additive noise, and
fading signal environments. The signal modulation is gener-
ally characterized as a complex baseband function with inde-
pendent data and noise on the quadrature rails. The symbol
matched filter outputs are used to derive an error signal that
is filtered by the loop filter to form a phase-error estimate. In
these cases the loop filter must remove the influence of the
noise as well as the self-noise introduced by the random
data-modulated carrier. The error signal, generated as shown
in Figure 10.5, is formed by taking theM-th power of the sig-
nal and the resulting loss in the signal-to-noise ratio is
referred to as the squaring loss. The squaring loss is dis-
cussed in detail in Section 10.9; however, in this
section the impact of the squaring loss on the PLLs ability
to acquire a modulated signal with additive white Gaussian
noise (AWGN) is examined. A critical signal-to-noise ratio
(γc) is identified, below which, the loop will not acquire or
remain locked to the modulated signal. The two key para-
meters in the determination of γc are the signal self-noise
and additive noise powers in the loop bandwidth BL; the input
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signal-to-noise ratio measured in a bandwidth equal to the bit
rate, that is, γb = Eb/No. The critical signal-to-noise ratio is
defined as γc = γb (min) where γb (min) is the minimum sig-
nal-to-noise ratio required to achieve and maintain phase lock
with the modulated input signal.

Consider the example shown in Figure 10.17 depicting the
PLL acquisition performance of an 8PSK-modulated signal
in terms of the bit-error probability as a function of γb
expressed in decibels with the loop time-bandwidth product
(BLT) as the parameter. The performance results in
Figure 10.17 are based on coherent detection with initial con-
ditions of zero phase, frequency, and frequency rate. The crit-
ical signal-to-noise ratio is equal to the minimum value of γb
where the PLL is reliably tracking the carrier as indicated by
the bit-error performance being nearly the same as the ideal
performance, for example, in Figure 10.17 γc = 8.375 dB for
BLT = .0125.

The critical signal-to-noise ratio for this 8PSK example
and other waveform modulations is obtained by observing
1000 Monte Carlo acquisition trials for each BLT product
with a signal-to-noise ratio resolution of 0.125 dB and the
results are summarized in Figure 10.18. The simulated per-
formance evaluation of the critical signal-to-noise ratio also
applies for initial phase errors less than ±20 to ensure that
the PLL is operating in the region to avoid cycle skipping
during acquisition. In addition to the waveform modulation,
the performance is also dependent on the form of the PLL
phase detector. In Section 10.8 it is shown that the optimum
phase detector for a minimum mean-square phase estimate is
the tanh(x) function. Figure 10.18 shows the critical signal-
to-noise ratio using the tanh(x) small argument approxima-
tion to the phase detector for 8PSK waveform modulation.
Table 10.2 summarizes the critical signal-to-noise ratio for
various modulations using the tanh(x) phase detector and
approximations. These results suggest that the PLL will

acquire a modulated signal at an arbitrarily low signal-to-
noise ratio if the BLT product is sufficiently low. The issue
is that lowering the BLT product severely restricts the PLL
pull-in frequency range requiring very accurate initial fre-
quency estimation during the waveform acquisition proces-
sing. Techniques for operating in very low signal-to-noise
environments are discussed in Chapter 11.

10.6.12 Second-Order Phaselock Loop Performance
Loss with Frequency-Rate Input

When the input signal to a second-order PLL has a fixed
frequency rate the steady-state output of the loop results
in a fixed phase error given by Equation (10.57) and
expressed as

ϕ =
πf T2 ς+ 1 4ς 2

2 BLT
2 radians (10.69)
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TABLE 10.2 Phase Detector Functions Associated with
Figure 10.18

Note Phase Detector Comment

1 x − x2/3 Small argument
2 sign(x) Large argument
3 x − x2/3 Small argument
4 sign(x) Large argument
5 tanh(x) Exact
6 tanh(x) Exact
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This fixed phase error will degrade the bit-error perfor-
mance of a coherently detected BPSK and QPSK for small
angles according to the approximations

Loss dB
20log10 cos φ BPSK

20log10 cos φ −sin φ QPSK

(10.70)

Using Equations (10.69) and (10.70) the detection loss
is plotted in Figure 10.19* as function of the normalized
frequency-rate error f T2 for a typical range of PLL time-
bandwidth products. The angle error is limited to the range
0 ≤ ϕ ≤ 0.26 rad (15 ) so Equation (10.70) corresponds to the
maximum loss in signal power and the upper limit on ϕ
ensures that the approximations apply. The results show that
QPSK is considerably less tolerable to a second-order PLL
operating with an input signal having a frequency-rate error.
For example, consider a source data rate of Rb = 9.6 kbps.
With BPSK modulation a typical loop time-bandwidth
product of BLT = 0.1 will exhibit a 0.5 dB performance loss
when f T2 = 0 002 corresponding to f = 184 kHz s, whereas,
with QPSK the typical loop time-bandwidth product is
BLT = 0.01 that results in a 0.5 dB performance loss when
f T2 = 4 × 10−6 corresponding to f = 92 Hz s. In this regard,
two factors work against the QPSK modulation: the BLT
product must be about 10 : 1 lower for comparable acquisi-
tion and tracking performance and the symbol rate is lower
than that of BPSK by a factor of two. Typical Doppler rates
for ultra-high frequency (UHF) satellite communication links
are on the order of 32 Hz/s and, in some cases, an additional
detection loss of 1 dB is provided.

10.7 THIRD-ORDER PHASELOCK LOOP

In this section the third-order PLL is examined using the
closed-loop transfer function derived by Jaffe and Rechtin
[13]. Their analysis applies the Wiener filter criterion [17]
to optimize the third-order closed-loop transfer function for
an input phase function characterized by a frequency ramp.
As in the case of the first- and second-order PLLs, the
closed-loop response is dependent upon the input signal
level; however, with AGC or a signal amplitude limiting
technique, the optimum performance will be maintained
for a wide range of input signal levels. Pool [18] examines
an analog implementation of the optimum third-order loop
using a bandpass limiter for amplitude control and found that
the circuit component values were impractical; however, he
suggested a practical implementation that closely approxi-
mates the optimum transfer function. Pool observed that
the acquisition characteristics of the third-order PLL are
degraded and suggests using a second-order loop for acqui-
sition and then switching to the third-order loop for tracking.

As stated previously, when using infinite gain integrators,
the third-order PLL, unlike the first- and second-order loops,
has a zero steady-state phase error when a frequency ramp is
applied to the input making its use appealing in more
dynamic signal environments. The stability concerns of the
third-order loop are mitigated to some extent in digital
designs where control over the parameter is more certain;
however, the impact of coefficient quantization of the param-
eter values is always a concern.

10.7.1 Optimum Third-Order Phaselock Loop
Configuration

Based on the Wiener filter criterion Jaffe and Rechtin show
that, for a frequency ramp input and a constant input phase-
noise power spectral density (PSD), the optimum third-order
closed-loop transfer function is

Hopt s =
2Bs2 + 2B2s+B3

s3 + 2Bs2 + 2B2s +B3
optimum (10.71)

Although an exact implementation of the corresponding
loop filter, F(s), is possible, Pool points out that, for practical
realizations, the extreme component values are difficult if not
impossible to fabricate. Furthermore, digital implementations
of this optimum filter require negative gain components. Pool
then proceeds to characterize a suboptimum third-order filter
as a cascade of two optimum second-order filters. This
approach results in a practical implementation that Gupta
[19] and Gupta and Solem [20] have examined and shown
to result in nearly optimum performance for a frequency-
ramp input. Pool’s practical and nearly optimum transfer
function is given by
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Hnear opt s =
2Bs2 + 2 2B2s+B3

s3 + 2Bs2 + 2 2B2s +B3
near-optimum

(10.72)

Pool defines the threshold filter gainGo = KoKd min as the
minimum gain required for the loop to maintain phase lock*

and expresses the loop filter transfer function as

F s =
1
Go

2Bs2 + 2 2B2s+B3

s2
(10.73)

Using Equation (10.73) to evaluate the closed-loop trans-
fer function and defining G =KoKd results in

H s =
G Go 2Bs2 + 2 2B2s +B3

s3 + G Go 2Bs2 + 2 2B2s+B3
(10.74)

So the optimum closed-loop transfer function, as given by
either Equation (10.71) or (10.72), results whenG=Go and is
referred to as the threshold closed-loop transfer function.

The parameter B in these expressions has dimensions of
rad/s and is used to normalize the Laplace transform variable
s by letting x = s/B, resulting in the convenient normalized
expressions

H x =
G Go 2x2 + 2 2x+ 1

x3 + G Go 2x2 + 2 2x+ 1
(10.75)

and

F x =
B

Go

2x2 + 2 2x + 1
x2

(10.76)

The normalized pole-zero locations of H(x) are given by

H x =
x−z0

2

x−p0 x−p1 x−p2
(10.77)

where

z0 = −α0

p0 = −α0

p1 = −α1 + jβ1

p2 = p∗1 = −α1− jβ1

(10.78)

With G/Go = 1 the repeated zeros corresponding to
Equation (10.77) are located at z0 = −1 2 and the pole loca-
tions are as follows:

p0 = −0 475358

p1 = −0 762322 + j1 23391

p2 = −0 762322− j1 23391

(10.79)

and the parameters in Equation (10.78) are:

α0 = 0 707107

α0 = 0 475358

α1 = 0 762322

β1 = 1 23391

(10.80)

The root-locus plot is used to examine the stability and
transient characteristics of the closed-loop response by plot-
ting the pole migration of H(x) in the normalized s-plane as
the loop gain changes from zero to infinity. Defining the nor-
malized gain as ρ =G/Go the poles are given as the solution to
the denominator polynomial of H(x) as expressed in
Equation (10.75) with the result

q x = x3 + 2ρx2 + 2 2ρx + ρ= 0 (10.81)

The zeros of Equation (10.81) are evaluated using the trig-
onometric solution given by Eshbach [21] and the results are
plotted in Figure 10.20 as the gain parameter ρ varies
between zero and infinity. The poles of H(x) start at the three
poles of the open-loop response located at the origin and
migrate through the normalized s-plane as the gain increases
to infinity and end up at the three zeros of the open-loop
response as indicated in Figure 10.20. One pole transverses
the negative real axis to one of the repeated zeros and the
other two depart from the real axis forming complex conju-
gate poles that bend around to meet the negative real axis at a
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FIGURE 10.20 Root-locus plot for Pool’s near-optimum closed-
loop transfer function.

*Based on experimental observations, Jaffe and Rechtin note that this occurs
when the rms phase error out of the VCO is equal to one radian.
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normalized gain of ρ = 2.39 at which point one pole follows
the negative real axis to the zero at infinity and the other to the
second repeated zero of the open-loop response.* The com-
plex poles that emerge from the origin initially enter the right
half of the normalized s-plane leading to instability in the
closed-loop response; however, a stable system is achieved
for normalized gains greater than ρ = 0.18 where the complex
poles enter into the left half of the normalized s-plane. The
near optimum or threshold transfer function given by Pool
applies for ρ = 1.0 and Figure 10.20 indicates that the system
is unconditionally stable for ρ ≥ 0.18. Based on the earlier
description, values of ρ < 1.0 or G <Go, the system loses
phase lock so the question of stability based on the root-locus
criteria is of little consequence.

The preceding analysis is repeated for the optimum thresh-
old response given by Equation (10.71) and the root-locus
plot is shown in Figure 10.21. In this case, the real part of
the poles at ρ = 1.0 is somewhat closer to the imaginary axis
leading to a more responsive transient response and, as seen
from the plot, the response is more sensitive to gain changes.
Pool focuses on analog implementations of the third-order
PLL and notes that the component values required to imple-
ment the optimum loop are difficult, if not impossible, to fab-
ricate leading to his near optimum implementation.

In the following sections, the transient characteristics of
the phase response to several input functions are examined
using the phase-error transfer function T(x). These theoretical
results are then compared to computer-simulated responses

of the third-order PLL as a precursor to the evaluation of
the performance with various modulated waveforms.

10.7.2 Evaluation of Loop Bandwidth

The first topic of interest is the relationship of the closed-loop
noise bandwidth to the filter coefficients. The loop bandwidth
is defined in terms of the one-sided bandwidth of the equiv-
alent low-pass response and is given by†

BL =
1
2π

∞

0

H ω 2dω hertz (10.82)

where

H ω 2 =H jω H∗ jω =H jω H − jω (10.83)

Upon letting s = jω, the bandwidth is expressed in term of
the s-plane poles as

BL =
1
2

1
2πj

c + j∞

c− j∞

H s 2ds (10.84)

The integral inside of the brackets is evaluated using the
theory of residues and, in doing so, the magnitude-squared
term (10.84) is expressed as H s 2 =H s H −s . The poles
of H(s) are in the left half of the s-plane, whereas, those of
H(−s) are mirrored about the jω axis and are in the right half
of the s-plane. In evaluating the integral along the jω axis, the
contour of integration is closed by following a semicircular
arc either counterclockwise to include the left half plane
(LHP) poles or clockwise to include the right half plane
(RHP) poles, in either event only the residues, Ri, of the
enclosed poles will influence the integral. Enclosing the
LHP poles is implicit in the integral of Equation (10.84) by
virtue of the positive offset c to account for poles lying on
the jω axis; however, under the conditions being considered,
there are no poles on the jω axis so c = 0 will include all of the
poles of interest in the transfer function. In the following
analysis, the residues of the LHP poles are used and the
integral is evaluated as

1
2πj

c + j∞

c− j∞

H s H −s ds=
2

i= 0

Ri (10.85)

In terms of the normalized parameter x, the equivalent
expressions are

*The migration of individual poles with changing loop gain follows the rules
set forth in Reference 22.
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FIGURE 10.21 Root-locus plot for Jaffe and Rechtin optimum
closed-loop transfer function.

†This definition is based on a unit gain closed-loop response, that
is, H 0 2 = 1.
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BL =
B

2
1
2πj

c B+ j∞

c B− j∞

H x 2dx (10.86)

and

1
2πj

c B+ j∞

c B− j∞

H x H −x dx=
2

i = 0

R
i

(10.87)

The residue of the i-th LHP pole is evaluated as

Ri =H x H −x x−pi x = pi

=
4 x−z0 −x−z0 x−pi

x−p0 x−p1 x−p2 −x−p0 −x−p1 −x−p2 x = pi

(10.88)

Upon substituting the pole locations given above the loop
bandwidth for Pool’s near optimum threshold transfer func-
tion is expressed in terms of the parameter B as*

BL = 0 929475B near optimum (10.89)

Similarly the expression for the optimum threshold trans-
fer function of Jaffe and Rechtin results in

BL = 0 83333B optimum (10.90)

These are important relationship and will be used in the
simulation program to match the simulated responses of
the third-order loop to the equivalent theoretical responses.
This matching of the responses provides a method of validat-
ing the correct loop parameters in simulation programs, dig-
ital signal processors (DSP), or field programmable gate
array (FPGA) hardware implementations.

10.7.3 Theoretical Responses of the Third-Order
Phase-Lock Loop

As mentioned earlier the theoretical responses of the third-
order loop under different input conditions provide a baseline
of comparison to validate the correct software or hardware
implementations. To this end the response of the phase error,
ϕε(s), to a phase step, frequency step (phase ramp), and fre-
quency ramp input is examined. The analysis procedures are
similar to those discussed in the context of the second-order
loop; however, in those cases, the resulting expressions are
based upon the previously published expressions for the
inverse Laplace transforms. For the third-order loop, the pro-
cedures for finding the inverse Laplace transform using
the normalized Laplace variable x are outlined in this

section and the time responses are evaluated in terms of the
known normalized pole-zero locations as identified earlier.

The unit-step input is characterized as un/s
n where

un = Δϕ, Δf , Δf , Δf for n = 1, 2, 3, 4 corresponding to
a phase step, frequency step, frequency ramp, and phase jerk
input, respectively. Using these inputs the phase error is eval-
uated as

ϕε s =
un
sn

1−H s

= un
s3−n

s3 + 2Bs2 + 2 2B2s +B3

(10.91)

Using Equation (10.91) the time response is the inverse
Laplace transform of ϕε(s), expressed as

ϕε t =
1
2πj

c+ j∞

c− j∞

ϕε s estds

=
un
2πj

c+ j∞

c− j∞

s3−n

s3 + 2Bs2 + 2 2B2s +B3
estds

(10.92)

In terms of the normalized variable x = s/B (10.92)
becomes†

ϕε y =
un Bn−1

2πj

c+ j∞

c− j∞

x3−n

x3 + 2x2 + 2 2x+ 1
exydx

(10.93)

where the normalized time variable is y = tB. Using partial
fraction expansion techniques [22] or Heaviside’s expansion
theorem [23] to evaluate the contributions from individual
poles and pole pairs in the integrand of Equation (10.93)
results in the following expression for n ≤ 3‡

x3−n

x+ α0 x + α1
2 + β1

2
=

Cn0

x + α0
+

Cn1x+Cn2

x + α1
2 + β1

2

=
Cn0

x + α0
+

Cn1 x+ α1

x + α1
2 + β1

2

+
−Cn1α1 +Cn2

x + α1
2 + β1

2

(10.94)

*Equation (10.89) is close to Gupta’s result, approximated as 2BL≈ 1.859B.

†The normalized responses result from a scale change in the Laplace trans-
formation: f ta aF s a .
‡In general, to apply this expansion nmust be ≤ to the order of the loop. For n
greater than the order of the loop, additional poles are included at the origin of
the x-plane.
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The coefficientsCn0,Cn1, andCn2 are determined from the
earlier expansion by multiplying both sides by the denomina-
tor terms on the left side and collecting common terms in x.
The result is

x3−n = Cn0 +Cn1 x
2 + 2α1Cn0 + α0Cn1 +Cn2 x

+ α21 + β
2
1 Cn0 + α0Cn2

(10.95)

The coefficients are determined by solving the resulting
set of simultaneous equations for a specified value of n. Upon
applying tabulated inverse Laplace transforms [24] to these
elementary terms, resulting from the expansion of the inte-
grand of Equation (10.93), the normalized phase-error
response becomes

ϕε t

un Bn−1
=C1e

−α0Bt +C1e
−α1Bt cos β1Bt +

C2

β1
e−α1Bt sin β1Bt

(10.96)

In the following subsections, the time response for the
identified inputs is characterized and the corresponding
responses are plotted in Figures 10.22 through 10.24. The
abscissas in these figures are normalized as t/T using the
transformation t/T = y/BT.

10.7.4 Phase-Error Response to Phase Step

In this case n = 1, u1 =Δϕ and, upon evaluation of the coeffi-
cients in Equation (10.96) under these conditions, the nor-
malized time response to a phase-step input is expressed
by Equation (10.97) and plotted in Figure 10.22.

ϕε y

Δϕ
=

α20
α0−α1

2 + β21
e−α0y +

α0−α1
2 + β21− α20

α0−α1
2 + β21

e−α1y cos β1y

+
−α0 α21 + β21

α0−α1
2 + β21 β1

e−α1y sin β1y

(10.97)

10.7.5 Phase-Error Response to Frequency Step

In this case n = 2, u2 =Δω, and, upon evaluation of the coef-
ficients in Equation (10.96) under these, the normalized time
response to a frequency-step input is expressed as

ϕε y

Δω B
=

−α0

α0−α1
2 + β21

e−α0y +
α0

α0−α1
2 + β21

e−α1y cos β1y

+
α21 + β21 β1

α0−α1
2 + β21

e−α1y sin β1y

(10.98)

Equation (10.98) is plotted in Figure 10.23.

10.7.6 Phase-Error Response to Frequency Ramp

In this case n = 3, u3 =Δω and, upon evaluation of the coeffi-
cients, the normalized time response to a frequency-ramp
input is given by

ϕε y

Δω B2
=

1

α0−α1
2 + β21

e−α0y−
1

α0−α1
2 + β21

e−α1y cos β1y

+
α0−2α1

α0−α1
2 + β21 β1

e−α1y sin β1y

(10.99)

Equation (10.99) is plotted in Figure 10.24.

10.7.7 Phase-Error Response to Phase Jerk

In this case n = 4 and u3 =Δω and, because n > 3, the partial
fraction expansion is evaluated by adding and subtracting
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FIGURE 10.22 Third-order PLL response to phase-step input.
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FIGURE 10.23 Third-order PLL response to frequency-step input.
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Cn2α1 and applying partial fraction expansion in terms of
the coefficients Cni with the result

1

x x+ α0 x + α1
2 + β21

=
Cn0

x
+

Cn1

x+ α0
+

Cn2 x+ α1

x+ α1
2 + β21

+
−Cn2α1 +Cn3

x+ α1
2 + β21

(10.100)

Upon evaluation of the coefficients (10.100), the normal-
ized phase-error response to a phase jerk input is given by
Equation (10.101) and plotted in Figure 10.25.

ϕε y

Δω B3
=

1

α0 α21 + β21
−

1

α0 α0−α1
2 + β21

e−α0y

+
2α1−α0

α21 + β21 α0−α1
2 + β21

e−α1y cos β1y

−
α0 + α1

2 + β21−4 α
2
1− α20

α21 + β21 α0−α1
2 + β21

e−α1y sin β1y

(10.101)

10.7.8 Loop Filter Implementation

The third-order PLL filter is implemented using two cascaded
integrators as shown in Figure 10.26 with the transfer func-
tions evaluated as

F s =
1
Go

G2
1s

2 + 2G1G2s + G2
2

s2
(10.102)

Upon equating the coefficients in Equation (10.102) with
those of the near-optimum loop filter, as expressed in
Equation (10.73), the filter gains are evaluated as

G1 = 2B and G2 = B3 (10.103)

Expressed in terms of the loop filter bandwidth BL these
gains become

G1 = 2 1518BL and G2 = 1 2453B3
L (10.104)

The normalized gains are denoted as the primed values
given by

G1 = 2 1518BLT and G2 = 1 2453 BLT
3 (10.105)

As mentioned earlier, the gain G is adjusted to equal the
gain Go resulting in the threshold response. This gain is
adjusted in hardware and software implementations or in
computer simulations until the response matches the
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FIGURE 10.24 Third-order PLL response to frequency-
ramp input.
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FIGURE 10.25 Third-order PLL response to a phase jerk input.
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FIGURE 10.26 Loop filter implementation for the third-order
phaselock loop.
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theoretical response for the corresponding input. Typically,
the phase and frequency step inputs are easily implemen-
ted so the gain is adjusted to match, or nearly match, the
theoretical responses in Figure 10.22 and Figure 10.23,
respectively.*

10.8 OPTIMUM PHASE TRACKING
ALGORITHMS

In the previous sections, the carrier phase acquisition and
tracking is based on classical feedback control theory. In this
analysis an estimate of the received carrier frequency is used to
mix the received signal to baseband, and the resulting in-phase
and quadrature signals are used in a Costas [25] loop feedback
implementation. The random data-dependent signal phase is
removed by raising the received signal, that is, the transmitted
signal plusnoise, to anappropriate power and the resulting car-
rier phase estimate is obtained from the discriminator formed
by the quadrature baseband signal sin(ϕε); this is approxi-
mately equal to ϕε for small phase errors. The Costas loop
implementation also acquires and tracks a time-dependent
baseband signal phase error that results, for example, when
the receiver local oscillator frequency is not exactly equal to
the received signal frequency. The intuitive solution to the
phase detector using the arctan(x) function, where x is the ratio
of the quadphase to in-phase baseband components, results in
significantly degraded performance at low input signal-to-
noise ratios. Because the PLL is essential inmost communica-
tion demodulators it is important to establish an optimum
implementation that applies for all signal-to-noise ratios.

In this section the phase tracking algorithms, based on the
maximum a posteriori probability (MAP) estimation proce-
dure, are examined and it is found that the optimum solution
involves a signal-to-noise weighted hyperbolic tangent phase
detector. The following analysis is based largely on the work
of Simon [26–30], and Omura and Simon [31]. For this anal-
ysis the received signal from anAWGNchannel is considered
to be a sequence of K-modulated data symbols expressed as

y t =
K−1

k = 0

yk t rect
t−kT

T
+ n t

=
K−1

k = 0

Ap t−kT cos ωot +ϕk +ϕ rect
t−kT

T
+ n t

(10.106)

where yk(t), expressed as,

yk t =Ap t−kT cos ωot +ϕk +ϕ kT −
T

2
≤ t ≤ kT +

T

2
(10.107)

The function yk(t) describes the k-th received symbol at
the frequency foHz with peak amplitude of A volts and data-
dependent phase ϕk. The phase ϕ is the unknown phase to be
estimated. The frequency fo = ωo/2π represents a convenient
receiver IF and typically is the input frequency to the
demodulator. The function p(t) represents symbol shaping
function and is confined to one symbol interval T, such that,
kT − T/2 ≤ t ≤ kT + T/2. For BPSK, QPSK, and OQPSK
p(t) = rect(t/T); however, with OQPSK modulation, the
weighting function in the quadrature channel is offset
from the in-phase channel by T/2. For MSK modulation
p t = cos ωmt with ωm = π/T and, like OQPSK, the quadra-
ture channel is offset in time by T/2. The AWGN n(t) is
denoted as N(0,σn) with zero-mean and variance σ2n. With
the understanding that the k-th received symbol interval is
characterized by the rect((t – kT)/T) function as expressed
in Equation (10.107).

The subject of this section is the characterization of the
signal processing required to compute the optimum phase

estimate, ϕ, of the unknown received signal phase using
the MAP procedure. As in the previous sections, it is
assumed that the exact symbol timing is known by the
demodulator. Although in the following analysis the
unknown phase is treated as a constant, in practice it
may be a time-dependent phase expressed, for example,
as ϕ t =ωdt +ϕ. For the PLL to acquire and track the
received signal the frequency error must not exceed the
pull-in frequency of the loop. The time-dependent phase error
may also include frequency rate and phase jerk depending on
the conditions of the channel and various oscillators. The
results of the following analysis indicate that for low sig-
nal-to-noise environments the squaring function of the
Costas PLL approaches the performance of the MAP phase
detector, whereas, for high signal-to-noise ratios, the decision
directed PLL approaches the performance of the MAP phase
detector.

Given the a posteriori pdf of the phase conditioned on
the received signal, the MAP estimation procedure for the
optimal estimate of ϕ is expressed as†

ϕ = max
ϕ

p φ y t = max
ϕ

ln p φ y t (10.108)

where the second expression involves the natural log function
as used in the log-likelihood ratio test (LLRT). Applying
Bayes rule, the second equality in Equation (10.108) is

*The gain adjustment is typically required in hardware and software imple-
mentations where the phase-lock loop gainsKo and Kd are not known and are
difficult to determine. On the other hand, in computer simulations these gains
are more easily determined so this adjustment procedure can be used as a
check. In either case, the responses should be verified against the theoretical
responses. †The analysis focuses on the estimation of the unknown fixed phase error ϕ.
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evaluated in terms of the pdf of the received signal condi-
tioned on the unknown phase and is expressed as

ϕ = max
ϕ

ln
p y t ϕ p ϕ

p y t
= max

ϕ
ln p y t ϕ p ϕ

(10.109)

The second expression follows because p(y(t)) is inde-
pendent of ϕ and, therefore, does not influence the maximi-
zation. Assuming that the unknown signal phase is uniformly
distributed between ±π, that is, the a priori probability is
p ϕ = 1 2π, Equation (10.109) simplifies to

ϕ = max
ϕ

lnp y t ϕ (10.110)

At this point the received signal is expressed as a sequence
of contiguous symbols and noise given by

y t = yo t + no t ,…,yk t + nk t ,… (10.111)

where yk(t) is expressed by Equation (10.107). Because the
data in each symbol and the associated noise is independent,
the MAP estimation, as expressed in Equation (10.109),
becomes

ϕ = max
ϕ

K−1

k = 0

p y t ϕ,ϕk p ϕk

= max
ϕ

K−1

k = 0

ln p y t ϕ,ϕk p ϕk

(10.112)

In Equation (10.112) the dependence of the data-
modulated phase angle ϕk is explicit. The received signal
and noise samples are considered to be vectors spanning
one symbol interval T such that

yk = yk t1 ,yk t2 ,…,yk tN (10.113)

and

nk = nk t1 ,nk t2 ,…,nk tN (10.114)

where t1, t2,…, tN kT −T 2, kT + T 2 : tk + 1− tk =ΔT k
and nk(tn) are iid zero-mean Gaussian random variables
with variance σ2n =No NΔT =NoB where NΔT = T and
B = 1/T is the bandwidth of the modulated symbol. The
received signal vector is defined as

Yk = yk + nk (10.115)

and under these conditions, the pdf of the received signal
vector is evaluated as

pY Yk ϕ,ϕk =
N

n = 1

pN nk tn

=
1

2πNoB
N 2

N

n= 1

exp −
Yk tn −Ap tn−kT cos ωotn +ϕk +ϕ

2ΔT
2No

=
1

2πNoB
N 2

exp −
1

2No

N

n= 1

Yk tn −Ap tn−kT cos ωotn +ϕk +ϕ
2ΔT

=
1

2πNoB
N 2

exp −
1

2No

kT +T 2

kT −T 2

Yk t −Ap t−kT cos ωot +ϕk +ϕ
2dt

(10.116)

The equality in the last expression in Equation (10.116)
applies under the limiting conditions ΔT 0 and N ∞.
The dependence upon the data phase ϕk is removed using
the total probability law with the result

pY Yk ϕ =
ϕk

pY Yk ϕ,ϕk pϕ ϕk =
1

2πNoB
N 2

ϕk

exp
−1
2No

kT + T 2

kT −T 2

Yk t −Ap t−kT cos ωot +ϕk +ϕ
2dt pϕ ϕk

(10.117)

At this point, the integrand in Equation (10.117) is simpli-
fied by evaluating the squared term as

Yk t −Ap t−kT cos ωot +ϕk +ϕ
2

= Y2
k t −2AYk t p t−kT cos ωot +ϕk +φ

+ A2 2 p2 t−kT + A2 2 p2 t−kT cos 2ωot + 2ϕk + 2ϕ

(10.118)

Subsequent low-pass or zonal filtering removes the double
frequency term and the first and third terms on the right-hand
side (rhs) of Equation (10.118) are independent of the data
phase so only the second term is of interest. Therefore, asso-
ciating the first and third terms with the data independent
constant C, Equation (10.117) simplifies to

pY Yk ϕ =
C

2πNoB
N 2

ϕk

exp −
A

No

kT + T 2

kT −T 2

Yk t p t−kT cos ωot +ϕk +ϕ dt pϕ ϕk

(10.119)

In the following sections, Equation (10.119) is applied to
the BPSK-, QPSK-, OQPSK-, and MSK-modulated wave-
forms and in each case unique functional implementations
of the MAP phase estimator are apparent in the solutions.
Under these waveform modulation conditions the square of
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the symbol weighting function in the matched filter integrand
is evaluated as

T 2

−T 2

p2 t dt =
T BPSK QPSK and OQPSK

T 2 MSK

(10.120)

The resulting signal-to-noise ratios for BPSK and MSK
are in terms of the bandwidth of the source bit (1/Tb) and
for QPSK andOQPSK the bandwidth is that of the modulated
symbol (1/T).

10.8.1 BPSK Modulation

In this section, the MAP phase estimator is applied to the
demodulation of a BPSK-modulated waveform with a priori
phase probabilities given by

p ϕk =
1 2 ϕk = 0

1 2 ϕk = π
(10.121)

Appling the a priori phase conditions to Equation (10.119)
the conditional probability is expressed as

pY Yk ϕ =
C

2 2πNoB
N 2

exp
A

No

kT + T 2

kT −T 2

Yk t p t−kT cos ωot +ϕ dt

+ exp −
A

No

kT + T 2

kT −T 2

Yk t p t−kT cos ωot +ϕ dt

=
C

2πNoB
N 2

cosh
A

No

kT +T 2

kT −T 2

Yk t p t−kT cos ωot +ϕ dt

(10.122)

Using Equation (10.122) and considering the sequence of
K contiguous independent data symbols, the pdf of
Equation (10.111) conditioned on the unknown phase is
expressed as

p Y ϕ =
K−1

k = 0

pY Yk ϕ (10.123)

and, referring to Equation (10.110), the MAP estimate of the
unknown signal phase becomes

ϕ= max
ϕ

ln
K−1

k = 0

pY Yk ϕ

= max
ϕ

K−1

k = 0

ln cosh
A

No

kT +T 2

kT −T 2

Yk t p t−kT cos ωot +ϕ dt

(10.124)

The last equality in Equation (10.124) is based on
Equation (10.122) noting that the constant C/(2πNoB)

N/2

does not influence the selection of the maximum argument.
Evaluation of the signal phase (ϕ) that maximizes this
expression involves setting the derivative of the rhs of

Equation (10.124) to zero and solving for ϕ =ϕ. The func-
tional implementation of the PLL is apparent upon noting that

ϕ is the output of the ideal integrator and corresponds to
the output of the PLL VCO and that the derivative
of the rhs of Equation (10.124), when equal to zero, is sim-

ply the error εo ϕ =ϕ = 0 evaluated at the output of the
loop filter. This also satisfies the intuitive conclusion since
the average of the loop filter output is zero under the phase-
locked condition, that is, under the optimum phase estimate
condition. With this understanding, the filtered error is eval-
uated as

lim
ϕ ϕ

εo ϕ−ϕ =
d

dϕ

K−1

k = 0

ln cosh
A

No

kT + T 2

kT −T 2

Yk t p t−kT cos ωot +ϕ dt

ϕ =ϕ

=
K−1

k = 0

d

dφ
ln cosh

A

No

kT + T 2

kT −T 2

Yk t p t−kT cos ωot +ϕ dt

ϕ =ϕ

= lim
ϕ ϕ

K−1

k = 0

εk ϕ−ϕ

(10.125)
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The earlier manipulations assume that the summation over
the K symbols is equivalent to the filtering performed by the
loop filter. The resulting MAP phase estimate is

ϕ =Ko lim
ϕ ϕ

εo ϕ−ϕ dt (10.126)

The input to the PLL filter for the k-th symbol is defined as

εk ϕ =
d

dϕ
ln cosh

A

No

kT + T 2

kT −T 2

Yk t p t−kT cos ωot +ϕ dt

= tanh
A

No

kT +T 2

kT −T 2

Yk t p t−kT cos ωot +ϕ dt

−
A

No

kT +T 2

kT −T 2

Yk t p t−kT sin ωot +ϕ dt

(10.127)

Referring to the second equality in Equation (10.127), the
integrals involving the cosine and sine functions are the
respective in-phase and quadrature matched filter samples
of the k-th received symbol. The phase detector error εk(ϕ)
into the PLL filter, characterized by the last equality in
Equation (10.125), is formed by the weighted quadrature
matched filter samples as indicated by Equation (10.127).
The weighted quadrature matched filter outputs Ik and Qk

are defined as

Ik ≜
A

No

kT + T 2

kT −T 2

Yk t p t−kT cos ωot +ϕ dt (10.128)

and

Qk ≜
A

No

kT + T 2

kT −T 2

Yk t p t−kT sin ωot +ϕ dt (10.129)

The normalization of the Ik and Qk integrator outputs can
be adjusted to provide for normalization by the input signal-
to-noise ratio γs =Es No = A2T 2 No. Using Equations
(10.128), (10.129), and the phase estimator implementation
topology dictated by Equation (10.127), the phase detector
error is expressed as

εk ϕ = − tanh Ik Qk (10.130)

Based on these results, the functional implementation
of the MAP phase estimator for BPSK is shown in

Figure 10.27.* The local oscillator reference ωot +ϕ is
obtained at the output of the loop filter VCO as shown in
the figure.

For small arguments, which corresponds to low input
signal-to-noise ratios, tanh(Ik) Ik and the phase detector
error is given by

–1

+

+

ˆ
Symbol
timing

Loop
filter

ˆcos(ωot + ϕ)

ˆsin(ωot + ϕ)

Phase to
amplitude

t = kT + T/2

Sign(I′k) 
dIk

Tanh(I′k) γb

γb

Yk(t)

kT + T/2

I′k p(t – kT )dt

kT – T/2

kT + T/2

Q′k p(t – kT )dt

kT – T/2

ωot

ϕ̂
∫εo(t)dt

εo(t)

εk(ϕε)

Q′k

I′k

FIGURE 10.27 Implementation of BPSK MAP phase estimator.

*The primed values of Ik andQk in Figure 10.27 exclude the quadrature sinus-

oidal signals involving ωot +ϕ.
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εk ϕ − IkQk small tanh arguments (10.131)

With the exception of a constant, Equation (10.131) is
identical to the BPSK result obtained by the squaring associ-
ated with the Costas loop as discussed previously. Therefore,
the BPSK Costas PLL detector results in an optimum MAP
phase estimator in low signal-to-noise environments. For
large arguments or high signal-to-noise ratios tanh(Ik)
sign(Ik) = dk and the phase detector error is given by

εk ϕ −dkQk large tanh arguments (10.132)

So the MAP estimator under these conditions is identical
to the decision-directed PLL.

It is informative to evaluate the matched filter outputs Ik
and Qk and examine the nature of the phase error resulting
from the MAP estimator. To this end, consider yk(t) as
expressed in Equation (10.107) with the additive data-
dependent phase ϕk replaced by the multiplicative data dk;
the resulting expression is

Yk t =Adkp t−kT cos ωot +ϕ + n t kT −
T

2
≤ t ≤ kT +

T

2
(10.133)

The inputs to the quadrature matched filters corresponding
to the integrands in Figure 10.27 are expressed as

Ik t =Yk t p t−kT rc t (10.134)

and

Qk t =Yk t p t−kT rs t (10.135)

where rc t = cos ωot +ϕ and rs t = sin ωot +ϕ are the
quadrature reference frequencies that are used in the demod-
ulator to mix the received signal to baseband as shown in
Figure 10.27. Substituting rc(t), rs(t) and Equation (10.133)
into Equations (10.134) and (10.135) and performing the
integration, the resulting weighted matched filter sampled
outputs are evaluated as

Ik = γsdk cos ϕε +NIk (10.136)

and

Qk = −γsdk sin ϕε +NQk (10.137)

The phase error is defined as ϕε =ϕ−ϕ and the signal-to-
noise ratio γs = (A2T/2)/No = Es/No is measured in the symbol
bandwidth of B = Rs = 1/THz where, for BPSK, Rs = Rb. The
quadrature additive noise terms are characterized as zero-
mean narrow-band white Gaussian noise as discussed in
Chapter 1. In arriving at Equations (10.136) and (10.137),

it is understood that the terms involving 2ωot are removed
by the demodulator lowpass matched filters.

Evaluation of the phase detection error εk(ϕ) for the small
and large argument approximations to tanh(x) as given by
Equations (10.131) and (10.132), the average loop filter
output, assuming small angle estimation errors, is app-
roximated as

εo t =
N

k = 1

εk ϕ 4γ2sϕε

small argument small error approximation

(10.138)

and, for large angle estimation errors, the approximation is

εo t =
N

k = 1

εk ϕ 2γsϕε

large argument small error approximation

(10.139)

These results indicate that the optimum matched filter
weighting function is based on the estimate of the received
signal-to-noise ratio as discussed in Section 11.5. In the com-
putation of εk(ϕ), the additive noise terms in the small argu-
ment approximation involve NIk, NQk, and the product
NIkNQk. However, because these quadrature noises are
zero-mean iid random processes, their mean values are zero
at the output of the loop filter. With the large argument
approximation the only additive noise is NQk with zero-mean
value at the output of the loop filter.

The MAP phase estimate, as expressed by Equation
(10.110), is actually an open-loop estimate of the phase
and is scaled by a constant gain factor. However, the MAP
estimator shown in Figure 10.27 is a closed-loop implemen-
tation that Simon substantiates by considering the reference
oscillator as a bumped oscillator that applies infinitesimal
linear corrections over the estimation interval leading to
the closed-loop solution. As a practical matter, the constant
associated with the phase error influences the closed-loop
VCO gain Ko such that the phase estimate out of the VCO
is equal to the baseband received signal phase as required
to establish the quadrature received channels.

10.8.2 QPSK Modulation

The a priori signal phase distribution for the randomly modu-
lated QPSKwaveform is given by the discrete a priori density
function

p ϕk =
1
4

ϕk = 0,
π

2
, π,

3π
2

(10.140)
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and the quadrature symbol weighting function is p(t) = rect(t/
T) with unit power as given by Equation (10.120). Following
the procedures similar to those in the preceding analysis for
BPSK modulation, the phase detector output for QPSK is
evaluated as

εk ϕ =
d

dϕ
ln cosh

A

No

kT +T 2

kT −T 2

Yk t p t−kT cos ωot +ϕ dt

+ cosh
A

No

kT +T 2

kT −T 2

Yk t p t−kT sin ωot +ϕ dt

=
1

cosh Ik + cosh Qk
sinh Qk Ik−sinh Ik Qk

(10.141)

The weighted quadrature matched filter outputs Ik and Qk

are defined as in the BPSK case by Equations (10.128) and
(10.129); however, with QPSK there is data on each quadra-
ture rail resulting in Ik and Qk being nearly identical except
for a sign difference so that Ik Qk . Using the property
that the hyperbolic cosine is an even function and the
approximation cosh Qk cosh Ik then Equation (10.141)
becomes

εk ϕ
1
2
tanh Qk Ik − tanh Ik Qk (10.142)

Therefore, using the phase estimator implementation
based on Equation (10.141), the MAP phase estimator for
the QPSK-modulated waveform is shown in Figure 10.28.*

With QPSK, the signal quadrupling requires that the small
argument approximation to the hyperbolic tangent given by
tanh(x) x – x3/3 be used† and the resulting phase detector
error becomes

εk ϕ
1
6
IkQk I2k −Q

2
k small tanh argument (10.143)

For large arguments the hyperbolic tangent is approxi-
mated as tanh(x) sign(x) and the phase detector error sim-
plifies to

εk ϕ sign Qk Ik −sign Ik Qk large tanh argument

(10.144)

Following the approach in the evaluation of Ik and Qk

for BPSK modulation, the in-phase and quadrature mat-
ched filter outputs for QPSK modulation are evaluated as
follows. The input signal for the k-th symbol is represented
by quadrature-modulated terms as

Yk t =Yck t + Ysk t (10.145)

+

–

ˆ

dIk
ˆ

Q′k

Symbol
timing

t = kT + T/2

Loop
filter

Phase to
amplitude

Yk(t)

kT+T/2

I′k p(t – kT)dt

kT–T/2

kT+T/2

Q′k p(t – kT)dt

kT–T/2

ˆcos(ωot + ϕ)

ˆsin(ωot + ϕ)

ωot

ϕ̂ εo(t) εk(t)∫εo(t)dt

dQkSign(Q′k) 

Sign(I′k) 

Tanh(Q′k)

Tanh(I′k)

I′k

γs

γs

FIGURE 10.28 Implementation of QPSK MAP phase estimator.

*The primed values of Ik andQk in Figure 10.28 exclude the quadrature sinus-

oidal signals involving ωot +ϕ.
†See Problem 6d.
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where

Yck t =Ap t−kT cos ωot +ϕk +ϕ + nc t ϕk = 0,π

=AdIkp t−kT cos ωot +ϕ + nc t dIk = 1, −1

(10.146)

and

Ysk t =Ap t−kT sin ωot +ϕk +ϕ + ns t ϕk =
π

2
, −

π

2

=AdQkp t−kT sin ωot +ϕ + ns t dQk = 1, −1

(10.147)

The functions Ik(t) and Qk(t) in the integrands of the quad-
rature matched filters, shown in Figure 10.28, are evalu-
ated as

Ik t = Yck t + Ysk t rc t (10.148)

and

Qk t = Yck t + Ysk t rs t (10.149)

where rc t = cos ωot +ϕ and rs t = sin ωot +ϕ are pha-
selocked references signals. Performing the integration over
the k-th symbol interval results in

Ik = γs dIk cos ϕε + dQk sin ϕε +NIk

γs dIk + dQkϕε +NIk

(10.150)

and

Qk = γs −dIk sin ϕε + dQk cos ϕε +NQk

γs −dIkϕε + dQk +NQk

(10.151)

where the approximation applies for small angle errors.
For small arguments, or low signal-to-noise ratios the

phase detector error is approximated as

εk ϕ
2
3
γ4s ϕε−ϕ

3
ε +O ϕn

ε + noise terms

small argument small error (10.152)

The ordered terms O ϕn
ε : n = 0, 2, 4 involve various com-

binations of random data (dIk, dQk) = ±1 that average to zero in
the loop filter; however, the n = 1, 3 terms in Equation (10.152)
are constant for all four combinations of (dIk, dQk). Similarly,
the noise terms involve various combinations of the zero-mean
iid orthogonal noise processes NIk and NQk that average to
zero in the loop filter and terms involving NIk

2 and NQk
2 with

average values that cancel. With these considerations, the
loop filter output is evaluated as

εo ϕ =
2
3
γ4s ϕε−ϕ

3
ε

2
3
γ4sϕε

(10.153)

This result is functionally equivalent to the squaring loop
implementation of the QPSK phase detector so the signal
squaring phase detector for QPSK also results in an optimum
MAP phase estimator in low signal-to-noise environments.

For large arguments, that is, large signal-to-noise ratios,
the phase detector error is evaluated using Equation
(10.144) and is approximated for small phase detector
errors as

εk ϕ γs dQkdIk + dQ
2
kϕε + dI

2
kϕε−dIkdQk

+ dQkNIk −dIkNQk large argument small error

(10.154)

With zero-mean iid noise processes the loop filter output is
evaluated as

εo ϕ 2γsϕε (10.155)

10.8.3 OQPSK and MSK Modulation

The optimum PLL implementation for OQPSK and MSK
modulations is derived in a manner similar to that for BPSK
modulation; however, the offset or staggering of the in-phase
and quadrature phase symbols requires that the quadrature
matched filters be sampled at alternating bit intervals corre-
sponding to the detection of one bit per channel. At each bit
decision sample the cross-channel contribution contains the
phase-error information plus self-noise contributions from
the cross-channel data. Several symbols of the offset wave-
form modulation are depicted in Figure 10.29 showing the
timing relationships between the in-phase and quadrature
data symbols dIk: k even and dQk: k odd with dI0 being
the symbol data corresponding to k = 0. With OQPSK mod-
ulation the symbol weighting is simply p(t) = rect(t/T);

T0

t
0

Inphase
I-channel …

…
Quadphase
Q-channel

t
dQ3

dI0 dI2 dI4

Qk(t)

′Q–1 dQ1

T/2 3T/2 2T

Ik(t)

FIGURE 10.29 OQPSK andMSKwaveform symbol description.
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however, with MSK modulation the symbols are cosine
weighted with p t = cos ωmt : ωm = π/T, –T/2 ≤ t ≤ T/2. In
both cases, the quadrature symbols are offset or staggered
by one bit interval, that is, Tb = T/2 s and the symbol weight-
ing is normalized for unit power as expressed in
Equation (10.120). The MSK cosine symbol weighting func-
tion p(t) is associated with each symbol. This is unlike the
description in Section 4.2.3.4 that describes the classical
MSK implementation with the symbol weighting functions
characterized as quadrature sinusoidal signals with zero
crossings aligned with the corresponding data symbol
transitions.

To proceed with this analysis the phase-dependent data ϕk

is replaced by the multiplicative binary symbol data dk = ±1
with (10.119) rewritten as

pY Yk ϕ =
C

πNo ΔT N 2

dk

exp −
A

No
Lk

Yk t p t−kT dk cos ωot +ϕ dt p dk

(10.156)

where

p dk =
1 2 dk = dIk = ± 1; k even

1 2 dk = dQk = ± 1; k odd
(10.157)

The integration limits Lk are defined with the aid of
Figure 10.31, Lk even: kT −T 2 ≤ t ≤ kT + T 2 and Lk odd

kT −T ≤ t ≤ kT . Keeping in mind that the two channels are sta-
tistically independent, the analysis is similar to that of BPSK
with the phase detector error expressed as

εk ϕ =

d

dϕ
ln cosh

A

No

kT + T 2

kT −T 2

Yk t p t−kT cos ωot +ϕ dt

k even

d

dϕ
ln cosh

A

No

kT + T

kT

Yk t p t−kT + Tb sin ωot +ϕ dt

k odd

(10.158)

The MAP phase estimation occurs when ϕ =ϕ as dis-
cussed in the previous sections. Upon evaluation of the
derivatives, Equation (10.158) simplifies to

εk ϕε =
− tanh Ik Qk k even

tanh Qk Ik k odd
(10.159)

The MAP phase estimator and demodulator for OQPSK
and MSK are shown in Figure 10.30.*

The matched filter sample pairs (Ik,Qk) and (Ik+1,Qk+1)
are evaluated by performing the integrations shown in
Figure 10.30 using Ik t and Qk t with k even corre-
sponding to the detection of the k-th in-phase symbol data

dIk and k odd corresponding the detection of the (k + 1)
quadrature data symbol data dQk + 1. Figure 10.31 depicts
the quadrature symbol offsets and integration ranges for
the detection of the symbols k and k + 1 used in the following
analysis.

The received signal is expressed as

Yk t = Yck t + Ysk t (10.160)

and, referring to Figure 10.31, the in-phase and quadrature
terms are expressed for k even as

Yck t =AdIkp t−kT cos ωot +ϕ + nc t

kT −
T

2
≤ t ≤ kT +

T

2
(10.161)

and

Ysk t =AdQk−1p t−kT + T 2 sin ωot +ϕ kT −
T

2
≤ t ≤ kT

+AdQk + 1p t−kT −T 2 sin ωot +ϕ + ns t kT ≤ t ≤ kT +
T

2
(10.162)

For k + 1 the in-phase and quadrature terms are expressed as

Yck + 1 t =AdIkp t−kT cos ωot +ϕ kT ≤ t ≤ kT +
T

2

+AdIk + 2p t−kT −T cos ωot +ϕ + nc t kT +
T

2
≤ t ≤ kT +T

(10.163)

and

Ysk + 1 t =AdQk + 1p t−kT −
T

2
sin ωot +φ

+ ns t kT ≤ t ≤ kT + T

(10.164)

Referring again to Figure 10.30 and defining rc t =
cos ωot +ϕ and rs t = sin ωot +ϕ the baseband outputs,

after the heterodyning by ωot +ϕ, corresponding to k
even are

Ik t = Yck t + Ysk t rc t (10.165)

*The primed values of Ik andQk in Figure 10.30 exclude the quadrature sinus-

oidal signals involving ωot +ϕ.
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and

Qk t = Yck t +Ysk t rs t (10.166)

For k + 1 the corresponding expressions are

Ik + 1 t = Yck + 1 t +Ysk + 1 t rc t (10.167)

and

Qk + 1 t = Yck + 1 t + Ysk + 1 t rs t (10.168)

Using Equations (10.165) through (10.168) to form the
integrands in Figure 10.30 and performing the integration,
recalling from Equation (10.120) that the symbol weighting

kT

kT

dIk
t 

t

Ik(t)

kT–T/2 kT+T/2 kT+T

dIk+2

dQk–1

kT–T/2 kT+T/2 kT+T

dQk+1

Qk(t)

…

…

…

…

FIGURE 10.31 OQPSK and MSK waveform symbol description (kT − T/2 ≤ t ≤ kT + T ).
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+
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FIGURE 10.30 OQPSK and MSK MAP phase demodulator (k even, γ = {γs,γb}).
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has unit power, the matched filter outputs for k even are
expressed as

Ik = γ dIk cos ϕε +
dQk−1 + dQk + 1

2
sin ϕε +NIk

(10.169)

and

Qk = γ −dIk sin ϕε +
dQk−1 + dQk + 1

2
cos ϕε +NQk

(10.170)

Similarly, for k + 1

Ik + 1 = γ dQk + 1 sin ϕε +
dIk + dIk + 2

2
cos ϕε +NIk + 1

(10.171)

and

Qk + 1 = γ dIk cos ϕε −
dIk + dIk + 2

2
sin ϕε +NQk + 1

(10.172)

These even and odd offset outputs are alternately sampled
at the bit rate so the loop filter and the phase estimate correc-
tions are applied at the sampling frequency fs = RbHz. The
phase detector estimation error is evaluated using the alter-
nately sampled errors εk(ϕε) and εk+1(ϕε) expressed by
Equation (10.159) where, in keeping with the preceding anal-
ysis, k is an even integer. Because these errors are averaged in
the loop filter they can be combined by delaying the in-phase
phase detector error by one bit interval yielding the com-
bined error

εk + 1 = εk + 1 ϕε + εk ϕε z−1

= tanh Qk + 1 Ik + 1− tanh Ik Qk

(10.173)

This implementation is similar to the phase detector error
for QPSK modulation given by Equation (10.142) with a
loop filter sampling rate of fs = RsHz.

For the small argument case, that is, low signal-to-noise
ratios tanh(x) x – x3/3 and with small estimation errors ϕε

the phase detector error εk + 1 is expressed in terms of the
fourth-order polynomial in ϕε as

εk + 1 =
4

i= 0

Ciϕ
i
ε small argument small error (10.174)

Using dInk = dQn
k = 1 n even the coefficients are evalu-

ated* as

C0 =
−dIkdQk−1 + dQk + 1dIk + 2

2
γ2

+
dIkdQk−1−dQk + 1dIk + 2

6
γ4

(10.175)

C1 = 1−
dIkdIk + 2 + dQk−1dQk + 1

2
γ2

+
1
3
+
dIkdIk + 2 + dQk−1dQk + 1

2
γ4

(10.176)

C2 =
dIkdQk−1−dQk + 1dIk + 2

2
γ2 (10.177)

C3 = −
2
3
−
dIkdIk + 2 + dQk−1dQk + 1

3
γ4 (10.178)

and

C4 =
dQk + 1dIk + 2−dIkdQk + 1

6
γ4 (10.179)

With random data the average value of the coefficients C0,
C1, and C3 is zero and the loop filter output is simply

εo t γ2 +
1
3
γ4 ϕε−

2
3
γ4 ϕ3

ε

γ2ϕε small argument small error

(10.180)

For large arguments tanh(x) sign(x) and with small esti-
mation errors, the phase detector error is evaluated as

εk + 1
dIkdQk−1 + dIk + 2dQk + 1

2
γ + 2γϕε

large argument small error (10.181)

and, with random data, the loop filter output is

εo t 2γϕε large argument small error (10.182)

The signal-to-noise weighting function, revealed by the
MAP phase estimation analysis, is an important considera-
tion especially in low signal-to-noise environments. On the
other hand, for high signal-to-noise environments the weigh-
ing will increase the loop gain and damping factor resulting in
a wider carrier acquisition range. However, if it desired to
maintain the PLL dynamics over a wide range of signal-to-
noise environments a sigmoid weighing function of the form

w γ =
γ

a + γ
(10.183)*These evaluations were made using Mathsoft’s Mathcad© symbolic calcu-

lation software.
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is a reasonable selection. The signal-to-noise ratio in
Equation (10.183) is the linear power ratio, that is, it is not
in decibels and the parameter a provides for altering the
weighting function as shown in Figure 10.32.

The additive noise terms in these evaluations result from
the zero-mean AWGN received noise and consist of inde-
pendent quadrature noise terms plus various products of
quadrature noise terms. The result is that the noise at the loop
filter output is represented as narrowband zero-mean white
noise that does not alter the average error εo(t) for the various
modulated waveforms considered earlier. The noise variance
at the loop filter output does, however, have a significant
impact on the loop performance and is characterized in terms
of the squaring loss as discussed in the following section.

Omura and Simon [31] and Lindsey and Simon [2,32] dis-
cuss the implementation of the MAP phase estimation for
higher order MPSK with M > 4. In general, the approxima-
tion to the MAP phase estimator requires that the tanh(x)
function be approximated using a polynomial in x of order
M − 1; lower order polynomial expansions will result in a
zero phase detector error. The joint MAP estimation of sym-
bol timing and carrier phase for MSK modulation is analyzed
by Booth [33]. The MAP phase estimator for unbalanced
QPSK (UQPSK) is examined by Simon [34] and Simon
and Alem [35,36]; UQPSK incorporates different data rates
on the quadrature channels.

10.9 SQUARING LOSS EVALUATION

In this section the squaring loss is evaluated for BPSK and
QPSK modulation. The squaring loss is defined as the loss
penalty relative to a linear PLL due to the distortion terms
involving the products S × S, S × N and N× N where S and
N represent the signal and noise terms of the received

waveform.When the PLL is operating in the linear range with
small phase errors, the squaring loss is expressed as

SL ≜
C

γL σ
2
ϕε

(10.184)

where C is a phase-dependent constant, γL =Ps NoBL is the
signal-to-noise ratio in the PLL bandwidth, and σ2ϕε

is the var-

iance of the phase estimation. The received signal is given by

y t = s t + n t (10.185)

and, referring to Equation (10.106), s(t) is given by

s t =A
K−1

k = 0

p t−kT cos ωot +ϕk +ϕ rect
t−kT

T

(10.186)

where the signal phase term ϕk corresponds the source data
phase. The noise is represented as narrowband quadrature
iid zero-mean, additive Gaussian noise terms with variance
σ2n and is expressed as

n t = 2 nc t cos ωot +ϕ −ns t sin ωot +ϕ (10.187)

The quadrature noise variances are σ2n =NoB/2 watts
where No is the single-sided noise density in watts/hertz
and B ≤ fo/2 Hz is the single-sided input bandwidth.

In the following sections, the squaring loss is evaluated for
the MAP phase estimation as shown in Figures 10.27 and
10.28 for BPSK and QPSK modulation, respectively. The
analysis of the squaring loss for the MAP phase estimator
is based on the work of Simon [28] using a sampled inte-
grate-and-dump (I&D) symbol filter; however, Lindsey and
Simon [2] also evaluated the squaring loss for other filter
types including the Butterworth, Gaussian, and ideal band-
pass filter. The Butterworth or a single time-constant RC fil-
ter results in improved symbol timing acquisition; however,
the I&D filter results in improved performance during PLL
tracking.

10.9.1 Squaring Loss for BPSK Modulation

Evaluation of the squaring loss for BPSK modulation starts
with the evaluation of sampled matched filter outputs Ik
and Qk shown in Figure 10.27. These quadrature responses
are then used to form the phase detector error εk(ϕ) given
by Equation (10.130) that, upon using Equations (10.136)
and (10.137), is evaluated as

εk ϕ = 2γbdk sin ϕ +NQk tanh 2γbdk cos ϕ +NIk

(10.188)
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In the following evaluation (10.188) is normalized by the
noise standard deviation, σn, and the resulting noise terms are
denoted by the iid zero-mean unit-variance Gaussian random
variables XQ and XI.

To determine the squaring loss it is necessary to evaluate
the variance of the phase error given in Equation (10.184).
The phase-error variance is defined as the ratio of the noise
power in the PLL bandwidth to the power gain or squared
slope of the discriminator curve formed by averaging the
doubled signal component of Equation (10.188) expressed,
in terms of the normalized noise, as*

η ϕ =Ex 4γb sin ϕ tanh 2γb cos ϕ +XI (10.189)

The slope of the discriminator curve is evaluated at
ϕ = 0 as

Kη =
dη ϕ

dϕ ϕ = 0

= 2γbEx tanh 2γb− 2γbXI (10.190)

The variance of the noise is evaluated by averaging the
noise terms in Equation (10.188) and the result is expressed,
in terms of the normalized noise, at ϕε = 0 as

σ2N = 8γbEx tanh2 2γb− 2γbX (10.191)

With Tb = bit interval the noise density is expressed as

No = 2σ
2
NT = 16γbTEx tanh2 2γb− 2γbX (10.192)

Therefore, using Equations (10.190) and (10.192), the
variance of the phase error is

σ2ϕε
=
NoBL

K2
η

=
4BLTEx tanh2 2γb− 2γbX

γb E2
x tanh 2γb− 2γbX

(10.193)

Substituting Equation (10.193) into (10.184) with C = 4
the squaring loss becomes

SL =
E2
x tanh 2γb− 2γbX

Ex tanh2 2γb− 2γbX

=Ex tanh 2γbX sinh 2γbX e−γb BPSK exact tanh x

(10.194)

The second equality in Equation (10.194) is a simplifica-
tion given by Simon.

Simon [30] has also evaluated the squaring loss for the
large argument approximation tanh(x) sign(x) with the
result

SL = erf
2 γb BPSK large argument approximation

(10.195)

The squaring loss for the small argument approximation
tanh(x) x is evaluated by Stiffler [37] as

SL =
2γb

1 + 2γb
BPSK small argurment approximation

(10.196)

The expectation for the exact argument is expressed by
Equation (10.194) and is evaluated by integration over the
conditional random variable X resulting in

SL =
e−γb

2π

∞

−∞

tanh 2γbX sinh 2γbX e−X
2 2dX

(10.197)

Using Hermite numerical integration [38] Equation
(10.197) is evaluated as

SL
e−γb

π

n

i= 1

Wif ξi Hermite integration (10.198)

where Wi are the Hermite weight factors and

f ξ = tanh 4γbξ sinh 4γbξ (10.199)

The hyperbolic tangent processing is based on aMAP esti-
mate of the carrier phase and results in the minimum phase
variance for all signal-to-noise ratios. Furthermore, the
hyperbolic tangent function results in the minimum squaring
loss for all signal-to-noise ratios. The squaring loss for each
implementation is shown in Figure 10.33 for BPSK modula-
tion. The hard limiter performs better than the linear feedback
for higher signal-to-noise ratios and the results suggest that
switching between the two approximations based on using
an estimate of the signal-to-noise ratio will provide a reason-
able compromise to implementing the hyperbolic tangent
function over a wide range of signal-to-noise ratios.

10.9.2 Squaring Loss for QPSK Modulation

The squaring loss for QPSK modulation is evaluated for the
phase detector error εk(ϕ) expressed by Equation (10.142)
using Equations (10.150) and (10.151). Also, the signal com-
ponent (η) of the phase detector error is based on 4εk(ϕ) and

*The expectation Ex[ ] is with respect to the normalized Gaussian noise
random variable X denoted by N(0,1). The expectation over the random data
dk = ±1 has been removed using E(dk,dj) = δkj.
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the constant in Equation (10.184) is C = 16. The analysis is
similar to that used to characterize the squaring loss of BPSK
modulation; however, it is considerably more involved so
only the results are given [28].

The squaring loss for the exact tanh(x) function is

SL =Ex 1 + γs tanh γsX − γsX sinh γsX e−γs 2

QPSK exact

(10.200)

The squaring loss for the large argument approximation
tanh(x) sign(x) is

SL =
erf γs 2 − 2γs πe−γs 2

2

1 + γs− γserf γs 2 + 2 πe−γs 2
2

QPSK large argument (10.201)

and the squaring loss for the small argument approximation
tanh(x) x − x3/3 is evaluated by Stiffler [37] as

SL =
1

1 + 9 2γs + 6 γ2s + 3 2 γ3s
QPSK small argument (10.202)

The expectation for the exact argument given by
Equation (10.200) is evaluated by integration over the condi-
tional random variable X as

SL =
e−γs 2

2π

∞

−∞

1 + γs tanh γsX − γsX sinh γsX e−X
2 2dX

(10.203)

and, as in the case for BPSK modulation, Hermite numerical
integration [38] is used to evaluate (10.203) as

SL
e−γs 2

π

n

i = 1

Wif ξi Hermite integration (10.204)

where

f ξ = 1 + γs tanh 2γsξ − 2γsξ sinh 2γsξ

(10.205)

As in the case with BPSK, the hyperbolic tangent function
results in the minimum phase variance and squaring loss for
all signal-to-noise ratios. The squaring loss for each imple-
mentation is shown in Figure 10.34 for the QPSK-modulated
waveforms. The hard limiter performs better than the linear
feedback for high signal-to-noise ratios and the results sug-
gest that switching between the two approximations as
described for BPSK modulation is a reasonable overall per-
formance compromise. Rearranging Equation (10.184) as

σ2ϕε
=

C

γLSL
(10.206)

it is evident fromFigure 10.34 that the phase variance increases
significantly as the squaring loss decreaseswith decreasing sig-
nal-to-noise ratio Eb/No. For QPSK modulation the increase is
significantly greater than that with BPSK modulation.

10.10 CASE STUDY: BPSK AND QPSK
PHASELOCK LOOP PERFORMANCE

The PLL tracking performance is evaluated in this
section based on Monte Carlo simulations for BPSK- and
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QPSK-modulated waveforms. The simulations involve
100 K Monte Carlo trials (symbols) for each signal-to-noise
ratio ≤6 dB and 10M Monte Carlo trials for each signal-to-
noise ratio exceeding 6 dB. The source data rate is 12 kbps;
however, when the PLL is characterized in terms of the nor-
malized loop bandwidth, the data rate and modulation are
implicit in the normalized parameter BLT. For each modula-
tion the sampling frequency is based on eight samples per
symbol so aliasing occurs around the fourth spectral null.
The channel is characterized as an AWGN channel so no
channel filter is used.

The bit-error performance with PLL carrier tracking and
ideal symbol timing is shown, respectively, in Figures 10.35
and 10.36 for BPSK and QPSK modulations. For these plots
the large argument approximation for the tanh(x) function is
used, so the performance approaches that of the optimum

MAP phase detector for signal-to-noise ratios greater than
about 0 dB. However, for signal-to-noise ratios greater than
or equal the critical value for the selected BLT product
must achieve an acceptable performance as discussed in
Section 10.6.11. For these simulation results the initial carrier
phase and frequency errors are zero so the acquisition depend-
ence on the BLT product is solely dependent on the received
waveform random data modulation self-noise, the additive
channel noise and, to a lesser extent, the aliasing distortion.
To provide near ideal or theoretical performance at lower sig-
nal-to-noise ratios, the PLL bandwidth must be decreased;
however, the dynamics of the received signal phase function
becomes more restrictive as indicated by the decreasing fre-
quency pull-in range of the PLL in Tables 10.3 and 10.4.
As expected BPSK modulation is considerably more robust
than QPSK and provides for operating with a BLT product
on the order of four to five times higher with less loss in per-
formance once carrier tracking is achieved.

Figure 10.37 shows the performance of BPSK modulation
for BLT = 0.01 using the phase-error generation functions cor-
responding to the large argument approximation tanh(x)
sign(x) (solid curve), the small argument approximation tanh
(x) x (dot-dashed curve), and exact tanh(x) function (dashed
curve). These results do not include the signal-to-noise ratio
weighting of the phase detector error and the performance dif-
ferences are nearly indistinguishable except for the small argu-
ment case that exhibits a critical signal-to-noise ratio of about
−3 dB. Although not shown, when the signal-to-noise ratio
weighting is included, the phase detector small argument
approximation (the dot-dash curve in Figure 10.37) acquires
the carrier phase over the entire range of signal-to-noise ratios
shown, so the weighting function extends the operating
range of the PLL at the lower signal-to-noise ratios. The sig-
moid weighting function expressed by Equation (10.183) with
a = 1 is applied to the phase detector error.
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TABLE 10.3 BPSK Loop Bandwidth and Lock-In Frequency

BLT BL (Hz) FL (Hz)

0.01 120 50
0.02 240 100
0.04 480 203
0.10 1200 509
0.14 4800 712

TABLE 10.4 QPSK Loop Bandwidth and Lock-In Frequency

BLT BL (Hz) FL (Hz)

0.004 24 10
0.01 60 25
0.04 240 100
0.08 480 203
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10.11 CASE STUDY: BPSK PHASE TRACKING
PERFORMANCE OF A DISADVANTAGED
TRANSMIT TERMINAL

This case study demonstrates the PLL tracking performance of a
received signal from a low-power battery operated transmit ter-
minal. The transmitter uses a low-cost, commercial grade refer-
ence oscillator. Following a robust acquisition preamble, the
demodulator carrier PLL tracking is initiated and tracks the car-
rier for coherent demodulation of the received message bits.
A rate 1/3 forward error correction (FEC) turbo code using
BPSK modulation is applied to the message information bits
with an operating signal-to-noise ratio of Eb/No = 3.27 dB.
The demodulator PLL tracks the received signal carrier in a
bandwidth equal to the code-bit rate corresponding to a sig-
nal-to-noise ratio of Ecb/No = −1.5 dB. The phase tracking per-
formance is shown in Figure 10.38. The results reflect the
frequency instability and lack of long-term coherence of the
transmitter referenceoscillator and theabilityof thedemodulator
second-order PLL to acquire and track the received signal under
adverse dynamic conditions. The sigmoid weighting function
described in Equation (10.183) was essential in acquiring and
maintaining phase-lock throughout the received message.

ACRONYMS

AGC Automatic gain control
AWGN Additive white Gaussian noise
BPSK Binary phase shift keying
CW Continuous wave
DC Direct current
DSP Digital signal processor
FEC Forward error correction
FPGA Field programmable gate array

I&D Integrate-and-dump (filter)
IF Intermediate frequency
LHP Left half plane
LLRT Log-likelihood ratio test
MAP Maximum a posterior probability
MPSK Multiphase shift keying
MSK Minimum shift keying
PLL Phaselock loop
PSD Power spectral density
QPSK Quadrature phase shift keying
RHP Right half plane
RHS Right-hand-side
UHF Ultra-high frequency
UQPSK Unbalanced quadrature phase shift keying
VCO Voltage controlled oscillator

PROBLEMS

1. Develop the recursive equations leading to theMPSKphase
detector in Figure 10.5 using the normalized baseband
analytic signal s t = cos ϕm + 2ϕ + jsin ϕm +ϕ =
scM + jssM where ϕm = 2πm/M: m = 0,…, M − 1, M = 2k,
with k bits/symbol, and ϕ is the constant phase error to
be estimated, and the time dependence is based on the
implicit symbol intervals, such that, t = iT. Using the arc-
tan phase detector of Equation (10.20), develop the small
angle MPSK phase error ε(t) into the PLL filter and the
MPSK lock detector input error ε t . Also, express these
inputs using the small angle approximations.

Hint: Use the trigonometric identities sin nα =
2sin nα 2 cos nα 2 and cos nα = cos2 nα 2 −

sin2 nα 2 .
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2. Referring to the discussion and procedure leading to
the root-locus plot for the third-order PLL shown in
Figure 10.20, plot the root loci for the second-order
PLL discussed in Section 10.6.

3. Derive the expression for the one-sided noise bandwidth
of a first-order PLL as expressed in Equation (10.22).

Hint: Use the definition of the noise bandwidth given by
Equation (1.46).

4. Referring to Equation (10.127) show the steps leading to
the second equality.

Hint: d{ln[cosh(u(ϕ))]}/dϕ is equal to tanh(u(ϕ)){du(ϕ)/
dϕ}.

5. Using the normalization p(t) given by Equation (10.120),
show that the matched filter outputs Ik and Qk given by
Equations (10.128) and (10.129), when weighted by 2A/
No, result in equivalent weighting equal to symbol
energy-to-noise density ratio. What are the peak and aver-
age input carrier powers?

6. a. Show the steps leading to the second equality in
Equation (10.141).

b. Using the small angle approximations for Equations
(10.150) and (10.151) and neglecting the noise terms
show the steps in establishing the phase detector error
εk(ϕ) given by Equation (10.142).

c. Using the small argument approximation tanh(x) x −
x3/3 show the steps in establishing the phase detector
error εk(ϕ) given by Equation (10.143).

d. For BPSK the low signal-to-noise approximation tanh
(x) x is used. What is the approximation to εk(ϕ) if
this tanh(x) approximation is used for the QPSK phase
detector?

7. Neglecting the noise terms and using the approximations
in Equations (10.150) and (10.151) show that the coeffi-
cient C1 of the ϕε term in the polynomial of εk ϕ =

i
Ciϕ

i
ε is equal to C1 = 2γ4s 3 and is independent of

the data dIk, dQk = ±1.
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11
WAVEFORM ACQUISITION

11.1 INTRODUCTION

Communication link budgets typically focus on the wave-
form detection requirements; however, an equally important
consideration is the message acquisition link budget. The
acquisition processing must detect the presence of the
received signal and estimate the necessary parameters with
sufficient accuracy to provide for message synchronization
[1]. The message acquisition is typically designed to operate
in a one or two decibel lower signal-to-noise ratio than that
required for the message detection. An example link acquisi-
tion budget is given in Section 15.15. The more restrictive
acquisition performance requirement and the necessity to
estimate various received waveform parameters is usually
offset by providing a unique preamble* to the message that
is tailored to expedite the estimation processing. An impor-
tant aspect of the preamble is that it provides the necessary
integration time for parameter estimation. The fundamental
issue in the acquisition processing is the time and frequency
error of the received signal relative to the receiver and
demodulator clocks and oscillators [2–4]. Time and fre-
quency precorrection requires accurate estimation of the line
of sight (LOS) range and range rate and of the receiver/
demodulator oscillator and clock accuracies. In ground-to-
satellite links, some degree of precorrection is usually
required by the ground station to aid in the satellite’s uplink
acquisition and tracking and thereby to reduce the message

overhead and processing complexity in the satellite. The time
and frequency precorrection [5, 6] are each dependent on the
estimation of two parameters:

• Time precorrection is dependent on the accuracy of the
system clock and the propagation delay estimate.

• Frequency precorrection is dependent on the accuracy
of the system oscillators and the Doppler frequency
estimate.

The accuracy with which each parameter can be estimated
is based on the transmitter and receiver system capabilities
and leads to three fundamental precorrection concepts: open
loop (OL), pseudo-open loop (POL), and pseudo-closed loop
(PCL). These precorrection concepts can be applied inde-
pendently, that is, one can be applied to time and another
to frequency.

Open loop precorrection generally applies to transmit
terminals with very accurate oscillators and clocks, extensive
processing capabilities, and knowledge of the receiver term-
inals location and dynamics, for example, access to satellite
orbit and ephemeris data. In this case, the transmit terminal
provides autonomous time and frequency precorrections
for the receiver to demodulate the message with a minimum
amount of uplink acquisition overhead. Pseudo-open loop
precorrection applies to transmit terminals with fewer cap-
abilities and requires a downlink from the receiving terminal
to aid in the uplink precorrection. The transmit terminal then
uses estimates of the downlink propagation delay and delay
rate (Doppler frequency) and the autonomous estimate of its

*Some applications use mid-ambles that occur at known locations within the
message.

Digital Communications with Emphasis on Data Modems: Theory, Analysis, Design, Simulation, Testing, and Applications,
First Edition. Richard W. Middlestead.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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own system clocks (system oscillators) to precorrection the
uplink time and frequency. Pseudo-closed-loop precorrection
involves downlink tracking, as in POL, with additional
uplink acquisition and tracking by the receiver terminal
based on less accurate autonomous estimates. In this case,
the transmitting terminal attempts to zero the uplink precor-
rection error.

Time and frequency precorrection often takes place under
the control of the network entry protocol [7] and, upon suc-
cessful network entry, the time and frequency are maintained
throughout the duration of the user’s message traffic.
Although precorrecting the transmitted waveform time and
frequency reduces the communication overhead and message
throughput and simplifies the receiver processing, the wave-
form acquisition discussed in this chapter is general and
focuses on the various acquisition algorithms that can be
applied under a variety of time and frequency conditions.

The acquisition preamble typically includes several seg-
ments to meet the acquisition requirements with a minimum
of overhead. For example, the automatic gain control (AGC)
and continuous wave (CW) segments provide for receiver gain
setting, signal presence detection, and signal power and fre-
quency estimation; the symbol synchronization segment facil-
itates symbol timing estimation and frequency tracking; the
start-of-message (SOM) segment is characterized by uniquely
coded pseudo-noise (PN) sequence that is used to determine
the first data symbol location for subsequent message or mes-
sage header detection. The message header is included to iden-
tify the message composition and aid in the message detection.
In some applications the header bits are used to resolve or ver-
ify the correct bit polarity. The AGC segment is typically a
short interval of CW transmission and can be thought of as
the initial part of the CW segment.

Figure 11.1 depicts the order of the preamble segments
and several example specifications are listed in Table 11.1;
as indicted in the table, the preamble segments included in
the message preamble are application specific. Although
the preamble results in an undesirable message overhead, the
message acquisition time is considerably less than that required
to acquire the message in random data that can take several
minutes as various frequency and timing hypotheses are exam-
ined. In time division multiple access (TDMA) applications,
the users received waveform parameters are determined during
network entry and updated or tracked after being assigned a
network time slot with an appropriate guard time. Therefore,
TDMA can accommodate many user channels with a mini-
mum of overhead following network entry. The overall

probability of acquisition is expressed, in terms of the various
correct detection probabilities, as

Pacq =Pc agc Pc cw Pc sync Pc som Pc header (11.1)

where

Pc sync =Pc coarse freq Pc fine freq

Pc carrier track Pc symbol track
(11.2)

With some waveform modulations the CW segment is not
necessary because the parameter estimation can be accom-
plished using specialized symbol synchronization bit pat-
terns; however, it does facilitate reliable AGC, signal
presence detection, and estimation of the received signal
power and frequency. With coherent data demodulation,
the accuracy of the initial, or coarse, frequency estimate is
determined by the pull-in frequency of the phaselock loop
(PLL). Phase tracking is initiated in the symbol synchroniza-
tion segment and the PLLmust achieve phase-lock before the
SOM segment. Referring to Chapter 10, the maximum fre-
quency error to achieve phase-lock without cycle skipping
in a second-order PLL is

FL = 0 42 BLT Rs PLL lock-in frequency, ζ = 0 707

(11.3)

where BLT is the time-bandwidth product of the PLL. The
corresponding lock time is

TL =
0 53
BLT Rs

PLL lock-in time, ζ = 0 707 (11.4)

Using the PLL parameters ζ = 0.707 andBLT = 0.1 and 0.03
for binary phase shift keying (BPSK) and quadrature phase
shift keying (QPSK), and phase-shaped offset quadrature

Noise CW Synchronization

Preamble

AGC Message SOM Header 

FIGURE 11.1 Message preamble segments.

TABLE 11.1 Example Preamble Segment Specificationsa

AGCb CW Syncc SOMc Headerd

10 — 114 74 —

22 — 156 74 —

14 — 111 37 —

aDefense Information Systems Agency (DISA) [8]. Courtesy of U.S.A.
Department of Defense (DOD).
bMaximum time (ms).
cBits.
dHeader is application dependent.
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phase shift keying (S-OQPSK), respectively, requires that the
accuracy of the coarse frequency estimate be measured within
the lock-in frequency of the PLL given by

FL =
0 042Rb BPSK

0 006Rb QPSK
(11.5)

Therefore, for a received carrier frequency of fc, the
accuracy of the coarse frequency estimate f c must satisfy

the requirement Δf = f c− fc < FL, in order for the PLL to
acquire and track the received modulated waveform. The ear-
lier lock-in criteria result in phase-lock without cycle slipping
and the received signal-to-noise ratio must exceed the critical
value γc for the selected BLT product. The PLL will also
acquire phase-lock if the frequency is within the pull-in
range, FP, of the loop; however, cycle skipping will occur
resulting in a longer acquisition time and, consequently, a
longer symbol synchronization segment.

The symbol synchronization preamble segment serves two
important functions in the message acquisition processing: to
provide for symbol time acquisition and tracking and, as men-
tioned earlier, to provide for carrier phase acquisition and
tracking. Symbol time and carrier frequency synchronization
and tracking are not mutually exclusive, that is, symbol syn-
chronization cannot be achieved without carrier phase-lock
andviceversa. Therefore, in the interest ofminimizing thepre-
amble overhead, parallel processing of joint timing and phase
tracking is used. For example, if the signal processing capabil-
ity is available, phase acquisition can be attempted in parallel
at several symbol timing hypotheses. Or, if the preamble
samples are stored in memory, symbol timing hypotheses

processing can be performed sequentially by revisiting the
stored preamble samples. With a sufficiently high-speed dig-
ital signal processor this can be accomplished in real timewith
an accompanying throughput delay. When a CW segment is
not included in the preamble and the symbol synchronization
segment is designedwith an acceptable time–frequency corre-
lation response, the correlation can be performed at multiple
frequency hypotheses over the frequency uncertainty range,
whereupon, choosing the time–frequency corresponding to
the maximum correlation response will simultaneously pro-
vide coarse timing and frequency estimates. In this case, the
time and frequency resolution must be adequate when revisit-
ing the corrected stored samples to establish tracking prior to
the SOM preamble segment.

The SOM synchronization is established by searching for
the peak correlation response of the SOMsegment that exceeds
the constant false-alarm rate (CFAR) threshold. The SOM
sequence is known by the demodulator and selected to provide
low autocorrelation sidelobes as provided, for example, by
PN codes such as M-sequences, Barker codes, and Neuman–
Hofman synchronization codes. Generally, the first informa-
tion or message bit follows immediately* after the last SOM
bit. The SOM sequence correlation processing and the result-
ing correct SOM detection probability are established using a
CFAR detection threshold as described in Section 11.2.2.1.

The functional outputs of the preamble segments shown in
Figure 11.1 are depicted in Figure 11.2.
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FIGURE 11.2 Functional processing of message preamble.

*On occasions the first information bit occurs a know number of bits after the
last SOM bit to allow for signal processing software conversion from acqui-
sition to the data detection mode.
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The sampling frequency during the acquisition proces-
sing is an important design consideration and must account
for the received signal modulation bandwidth and the carrier
frequency error. For example, with rate rc denoting the for-
ward error correction (FEC) coding rate and k denoting the
modulation bits per symbol, the transmitted symbol rate is
given by

Rs =
Rb

rck
(11.6)

In this case, the received modulated signal spectrum
is related to the received symbol rate as shown in
Figure 11.3 with the dashed spectrum corresponding to
the maximum specified frequency error fεmax. The sinc(fT)
spectrum shown in Figure 11.3 suggests a rect(t/T) symbol
weighting; however, any modulation symbol spectrum can
be considered withΔf selected to provide a safeguard against
intersymbol interference and the antialiasing filter transition
band distortion losses. When the spectrum describes the
baseband or analytic signal, as assumed in this section, the
frequency band fs/2 to fs represents the negative frequency
band. Based on this depiction the sampling frequency for
the modulated signal spectrum is determined from Nyquist’s
criterion as

fs ≥ 2 fεmax +Δf (11.7)

When the waveform acquisition is completed the coarse
frequency error estimate is removed and the carrier frequency
is being tracked by the PLL, so that the signal spectrum is the
baseband spectrum shown as the solid curve in Figure 11.3.
Under these circumstances, the sampling frequency is
reduced using sample rate conversion to a suitably lower
sampling frequency of fs = NsRs where Ns is typically 2 or
4 samples per symbol. Some implementations that achieve
symbol time tracking by adding and deleting samples require
a suitability higher sampling frequency, for example, because
of the sensitivity to symbol timing errors, root-raised-cosine
(RRC) frequency shaping requires Ns = 32; however, the
matched filter integration can be accomplished at a lower
sample rate.

The remainder of this chapter discusses and analyzes
various processing algorithms for achieving the objectives
of each of the preamble sections starting with the AGC

processing discussed in the following section. Section 11.2.2
outlines several approaches to estimating the received
carrier frequency using the CW preamble segment and
Section 11.3 outlines several methods of further resolving
the frequency and symbol time estimates using known data
patterns including acquisition techniques that do not require
the CW preamble segment. This section concludes with a dis-
cussion symbol and carrier tracking. Section 11.4 discusses
correlation methods for the SOM detection. An important
parameter in the correlation detection processing is the two-
parameter censored CFAR threshold. Section 11.5 concludes
this chapter with a discussion of various methods for esti-
mating signal and noise powers during the CW and syn-
chronization preamble segments as well as in random or
unknown data. These power estimates are then used to form
estimates of the received signal-to-noise ratio that is used
for optimum phase tracking and often required for network
centric medium access control layer and TDMA and fre-
quency division multiple access waveform power control
management.

11.2 CW PREAMBLE SEGMENT SIGNAL
PROCESSING

11.2.1 Automatic Gain Control

The AGC is essential to ensure that the signal level into the
analog-to-digital converter (ADC) is maintained to avoid clip-
ping while preserving the dynamic range for signal fluctua-
tions. The dynamic range is related to the number of bits
associated with the ADC*; as a rule of thumb each bit of the
ADC corresponds to 6 dB so an Nb-bit ADC will have a
dynamic range of 6Nb dB. If the average signal level at the
input to the AGC corresponds to 2 bits below the ADC satu-
ration, then 12 dB is provided for intrinsic signal and noise
fluctuations above the average signal level to avoid or mini-
mize clipping. The selection of the average signal and noise
power setting depends on the waveform modulation, channel
noise, channel fading, and inband interference signal levels.
The number of bits below the gain controlled average power
level is also an important consideration in maintaining a linear
representation of the sampled signal and is especially impor-
tant when the received signal level is below the average noise
level as with applications involving low-rate FEC coding and
spread-spectrum waveforms. The AGC is often implemented
entirelywithin the analog receiver; however, when the receiver
interfaces with a digital demodulator, it is common to derive
the gain control voltage in the digital domain and then use
it to control the variable gain analog amplifiers. This
section focuses on digitally generated gain control voltages.

f
fs0 Rs fεmax

|S( f )|

fs/2

Δf

FIGURE 11.3 Received modulated signal spectrum.

*Refer to Chapter 2 for a more in-depth discussion of analog-to-digital
conversion.
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The AGC control is generally always operating and when
a signal is not present the average receiver noise is maintained
at the prescribed level into the ADC. In this case, the voltage
controlled amplifiers are typically operating in a high-gain
condition and when a high-level signal appears the system
gain is reduced to maintain the adjusted signal plus noise
at the prescribed level into the ADC. A high-level signal is
characterized as having a signal-to-noise ratio greater than
0 dB as measured in the input bandwidth of the ADC; this
corresponds to the output bandwidth of the final IF stage.
For reasons involving specification control and subsystem
testing, the final IF stage and the related local frequency
oscillator form part of the demodulator subsystem. The IF
frequency at the modem input is often 455 kHz for ultra-high
frequency (UHF) modems and 70MHz for SHF and EHF
modems. The AGC time constant is typically characterized
in terms of the attack and decay times. The attack time is
the time required to adjust the gain to an increase in the signal
level and should be as short as possible and the decay time is
in response to a drop in the signal level and typically has a
much slower response time.

There are a number of ways to generate the AGC control
voltage in the demodulator; however, the most responsive
control is derived as soon as possible following the ADC.
When bandpass sampling or direct IF carrier sampling is used
the AGC control can be derived from the digitally sampled
carrier as shown in Figure 11.4.

The AGC error is generated by over sampling the carrier of
the received modulated waveform and comparing the level of
the sampled values to a reference voltage. When the samples
are greater than the reference a positive unit-amplitude pulse is
output to the low-pass filter (LPF) otherwise a negative unit-
amplitude pulse is provided. With an equal number of positive

and negative pulses over the period of the carrier frequency,
the average LPF output is zero and the power into the ADC
corresponds to the rms power of the received waveform. For
example, consider that the power of a noise-free CW received
waveform is to be adjusted by the AGC to be 1 bit below the
ADC saturation voltage of Vm = 1 V. Assuming a 1-Ω resistive
load, the power of the CW signal is given by

Ps =V
2
rms (11.8)

In this example, the AGC must adjust the signal power
level such that V2

rms = 0 5 V. Referring to Figure 11.5, for
an AGC threshold of Vth = Vrms a carrier cycle is divided into
equal increments of π radians above and below the threshold
and the resulting average discriminator output is zero when
the AGC reaches the steady-state condition.* This same
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FIGURE 11.4 Bandpass sampled AGC implementation.

|s(iTs)|

Vth

t

FIGURE 11.5 Sampled CW carrier AGC error discriminator
(Vth = Vrms).

*Although the steady-state output of the AGC low-pass filter is to be zero, the
ideal integrator finite output will maintain the gain of the receiver voltage
controlled amplifiers corresponding to the prescribed rms carrier voltage
at the ADC input. The integrator serves the same function as the voltage con-
trolled oscillator (VCO) in the phase-lock loop.

CW PREAMBLE SEGMENT SIGNAL PROCESSING 417



phenomenon of providing a constant average voltage into the
DAC will occur for arbitrary carrier-modulated waveforms.

The gain control and distribution function shown in
Figure 11.4 provides logic for controlling the gain incre-
ments, the attack and decay response time of the AGC, and
the various thresholds for declaring the AGC lock and unlock
conditions. The gain distribution logic allocates the gain to
the various gain controlled amplifiers in the receiver subsys-
tem to minimize the impact of receiver noise as discussed in
Section 15.2.1. The performance of the bandpass sampled
AGC is examined in the case study in Section 11.2.1.1.

The gain control voltage can also be generated from the
quadrature rails of the baseband received signal obtained
by mixing the input carrier frequency directly to baseband.
The outputs of the quadrature matched filters provide the
optimum, that is, the maximum signal-to-noise samples for
estimating the received signal power for the AGC acquisition
and tracking. For example, joint power control and PLL
tracking can be accomplished with BPSK modulation using
the in-phase or Acos(ϕε)

* rail output and estimating the signal
power as A2/2 when phase-lock is achieved. However, this
example has limited application because it is often necessary
to establish AGC before carrier phase acquisition and track-
ing. The quadrature rails can be used for AGC acquisition and
tracking as shown in Figure 11.6. The functions in the base-
band AGC implementation are similar to those of the band-
pass sampled AGC shown in Figure 11.4; however, in this
case, the logarithmic functions significantly reduce the
dynamic range requirements of the LPF and ideal integrator.†

The LPF output so is input directly into the digital gain

control function to provide for versatile gain control as
described earlier. When AGC acquisition is declared, the
bandwidth of the LPF is reduced to provide a slow decay time
for improved tracking performance by providing hysteresis in
the response.

11.2.1.1 Case Study: Bandpass Sampled AGC Perfor-
mance Evaluation This case study examines the perfor-
mance of a UHF modem AGC with the gain control
derived from the demodulator input IF of 455 kHz sampled
at a rate of fs = 6144 kHz. The noise bandwidth of the antia-
liasing filter is 80 kHz. The maximum receiver gain is 135 dB
with a minimum detectable input signal level of −135 dBm.
Referring to Figure 11.4, a 10-bit DAC is used and the AGC
reference input is Vref = Vrms where Vrms is the root-mean-
square voltage of the sampled carrier. The reference voltage
is 12 dB below Vm leaving two magnitude bits for additive
noise and peak signal fluctuations above Vref. The following
simulated performance of the AGC is based on a noise-free
CW received signal with the demodulator input signal at
455 kHz under two conditions of the receiver input level:
−5 and −60 dBm. In both cases, the receiver gain is set to
the maximum gain of 135 dB and, prior to the received signal,
the receiver input is zero, that is, receiver noise is not
included.

The low-pass AGC filter is a cascade of four synchro-
nously tuned single-pole filters with an overall bandwidth
of 200 Hz. In the following description, the LPF output is
denoted as so. The operation of the AGC control is similar
to all adaptive feedback control systems, in that, the error sig-
nal so forms a discriminator S-curve providing positive and
negative gain adjustments resulting in zero average filter
output, <so> = 0, under steady-state conditions. Under the
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FIGURE 11.6 Baseband sampled AGC implementation.

*This is the noise-free analytic signal description of the in-phase rail.
†Private conversations with Matthew Davis, Vulcan Wireless, Inc., Novem-
ber, 2009.
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steady-state conditions ideal integrator output corresponds to
the optimum receiver gain setting of Vrms = Vref.

To provide more control over the AGC performance, than
by simply letting the ideal integrator output control the
receiver gain, the simulated gain control function provides
discrete gain adjustment based on the filter output so and var-
ious thresholds as outlined in Figure 11.7. To this end, the
ideal integrator output is replaced by the gain control logic
using three fixed gain increments Δi that are applied in suc-
cession as the filter output falls to zero. The last two gain
increments are weighted by the filter output and are propor-
tionally decreased as so approaches zero. The thresholds T0
and N0 establish the conditions for the declaration of initial
AGC acquisition and T1 and N1 establish the conditions for
declaring the loss of AGC acquisition. The parameter I0 is
the number samples corresponding to one-third of the LPF
time constant and invokes the final gain control increment
Δ3 and the declaration of AGC acquisition. Taken together,
these parameters establish the AGC attack and decay time.
The selection of the AGC control parameters offers consid-
erable design flexibility in the AGC performance and the
logic is easily expanded to include additional capabilities.
For example, using logic to track signal fade rates will allow
for longer and deeper signal fading conditions or temporary

loss of signal power before declaring lost AGC. The gain
control logic can also be used to suspend demodulator sym-
bol time tracking during fading and loss-of-signal conditions.
Although not shown in Figure 11.7, the control logic also dis-
tributes the gain among the various gain-controlled amplifies
so as to preserve the receiver noise figure.*

The simulated performance of the AGC with a noise-free
CW received signal is shown in Figure 11.8 for received sig-
nal power levels of −5 and −60 dBm. The curves represent
the receiver gain and the declaration of AGC acquisition
or detection via the parameter L = 2. The first 10 ms of the
50 ms AGC simulated response is shown. The AGC refer-
ence voltage is set at Vref = Vrms where Vrms is the voltage
of the ADC input signal and is 12 dB below saturation of
the 10-bit DAC. The receiver gain is initially set to the max-
imum gain of 135 dB and, with the noise-free assumption, the
receiver input is zero, so under these conditions, application
of the CW input signal at t = 0 results in an acquisition time
1.9 ms for both the −5 and −60 dBm received signal levels.
The acquisition time is essentially determined by the band-
width of the LPF.
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FIGURE 11.7 Gain control processing diagram.

*The function of receiver gain distribution may rightly be the responsibility
of the receiver subsystem.
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Figure 11.9 shows the AGC response over the full 50 ms
of the simulation using a rate 1/2 convolutional coded 19.2
kbps QPSK-modulated waveform. The simulated signal-to-
noise performance of this coded waveform, using a constraint
length seven Viterbi decoder with infinite quantization,
corresponds to an Eb/No of 4.25 dB at Pbe = 10−5. Therefore,
because the ADC quantization noise is negligible compared
to the receiver noise, the signal-to-noise ratio in the 80 kHz
noise bandwidth of the antialiasing filter is −1.95 dB. Under
these conditions the AGC acquisition time is 2.03 ms.* The
samples so in Figure 11.9 are obtained from the AGC LPF
and occur at a rate of 2 kHz.

11.2.2 Coarse Frequency Estimation

In this section, several methods of determining the received
signal frequency error relative to the demodulator local oscil-
lator frequency are examined. When the message preamble
includes the CW segment, as shown in Figure 11.1, the fast
Fourier transform (FFT) provides an efficient method for esti-
mating the frequency error as described in Section 11.2.2.1.
An alternate method using a frequency discriminator (FD) is
discussed in Section 11.2.2.4. When the CW segment is not
included, the data pattern in the symbol synchronization seg-
ment is often specialized to provide for frequency and symbol
time estimation as discussed in Section 11.3.

11.2.2.1 Frequency Estimation Using the FFT In this
section, the determination of the received carrier frequency
error using the CW preamble segment is accomplished by
performing an Nfft-point FFT as depicted in Figure 11.10.
To account for the uncertainty of not knowing where the pre-
amble starts, FFTs must be performed sequentially until
detection is declared. Declaration of signal detection is based
on a FFT frequency cell exceeding the CFAR threshold. To
maximize the use of the CW preamble duration, overlapping
FFTs are used and, to increase the correct frequency detection
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FIGURE 11.8 AGC response for −5 and −60 dBm received signals.
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FIGURE 11.9 AGC response for −5 dBm received FEC coded
QPSK waveform (19.2 kbps, code rate = 1/2, Eb/No = 4.25 dB at
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FIGURE 11.10 CW segment FFT processing.

*The acquisition times in this case study correspond to the simulation perfor-
mance for one noise ensemble and several Monte Carlo simulations must be
performed to determine the statistical performance.
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probability, two successive FFT detections are required with
the second occurring within ±1 frequency cell of that
declared during the previous FFT. Requiring two successive
detections under these conditions also reduces the false-
detection probability. A CW segment duration of Tcw = 2Tfft
will guarantee that two FFTs with one overlapping FFT can
be performed; Tcw = 2.5Tfft guarantees three FFTs with one
overlapping FFT can be performed; Tcw = 3Tfft guarantees
four FFTs with two overlapping FFTs can be performed.
In general, for 50% FFT window overlap with Tcw = ρTfft
where ρ = 1, 1.5, 2, 2.5, 3, 3.5, … guarantees that N FFTs
can be performed with N = 2ρ−1 ρ integer and
N = 2 ρ ρ integer. The fundamental frequency resolution
of the FFT is defined as the reciprocal of the FFT window,
that is,

fres ≜
1
Tfft

(11.9)

For a given CW segment duration, increasing the number
of FFTs requires a smaller FFT window resulting in less fre-
quency resolution. Various trade-offs between the CW seg-
ment duration, the detection performance, the frequency
estimation accuracy, and the FFT parameters are discussed
in the remainder of this section.

The received CW signal spectrum shown in Figure 11.11
is similar to that shown in Figure 11.3 with the modulated
signal spectrum replaced by the discrete spectral line S(f) =
δ(f − fε); in the figure the frequency error is shown as the
maximum specified error* fεmax. In this case, the transition
or guard frequency (Δf) is related exclusively to the transition
band of the antialiasing filter, that is, there are no spectral
sidelobes to contend with as shown in Figure 11.3.

The key performance parameter for the CW signal detec-
tion is the carrier power to noise power spectral density ratio
(C/No) that is related to Eb/No as

C

No
=
Eb

No
Rb hertz (11.10)

For comparable performance, independent of the bit rate,
the duration of the CW segment is often specified in terms of
the number of baseband data bits (NB) as

Tcw =
NB

Rb
seconds (11.11)

Referring to Figure 11.11 the sampling frequency is
expressed as

fs = 2 fεmax +Δf (11.12)

The number of waveform samples in the CW segment is
determined as Ns = Tcw/Ts = Tcwfs and, upon expressing the
bit rate in terms of the symbol rate as Rb = krcRs and using
these results and (11.11) with Ns = Tcwfs , the number of
CW samples is evaluated as

Ns =
NB

krc

fs
Rs

(11.13)

Using (11.13) the size of the FFT is determined as

Nfft =
Ns

ρ
(11.14)

where ρ is the number of FFTs to be performed over the CW
interval† Tcw. Equation (11.14) generally requires using a
mixed radix FFT; however, a radix-2 FFT can be used
by choosing Nfft = 2n: n positive integer such that
2n ≤ Ns ρ . Unfortunately, the radix-2 FFT often results in
2n Ns ρ and corresponds to the inefficient use of the
CW interval and less frequency resolution.‡ The CWwindow
utilization efficiency is defined as

ηcw ≜
ρTfft
Tcw

=
ρNfft

NB

Rb

fs
(11.15)

where Tfft =Nfft/fs is the FFT window duration.
The sampling frequency can be increased to improve the

utilization efficiency of the CW interval, thereby improving

CW spectral
line

Δf

f
fs0 fεmax

|S( f )|

fs/2

FIGURE 11.11 Received CW segment signal spectrum.

*The maximum frequency error is determined by the frequency accuracies of
the transmitter and receiver subsystems, the communication relay system if
one is used, and the Doppler frequency given the dynamics of the commu-
nication channel(s).

†The number ρ is not necessarily an integer and typically ρ = 2, 2.5, 3, etc., as
described previously.
‡The frequency resolution is equal to the inverse of the FFT window Tfft, that
is, fres = 1/Tfft.
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the frequency resolution, using a radix-2 FFT. This is accom-
plished by choosing a larger number of samples per
CW interval. For example, by choosing n such that
Nfft = 2

n = Ns ρ , the number of samples per CW interval
becomes Ns = ρNfft and, using (11.13), the adjusted normal-
ized sampling frequency becomes

fs
Rs

= krc
Ns

NB
(11.16)

The FFT provides for a frequency estimation accuracy of
|facc| = fres/2; however, this estimation accuracy can be
improved by using interpolation between the FFT frequency
cells that are separated by fres. Improving the FFT resolution
using zero padding is discussed in Section 1.2.7 and 2 : 1 zero
padding results in a frequency estimation accuracy of
facc = fres 4. The frequency resolution and accuracy are
depicted in Figure 11.12 for the rectangular weighted FFT
with and without zero padding.

An important consideration in the frequency estimation
processing is establishing a signal detection algorithm for
declaring signal present and estimating the signal frequency
error. For example, for an Nfft-point FFT there are Nfft possi-
ble frequency locations, however, when the signal is present
only one location, or possibly two contiguous locations, cor-
respond to the frequency of the received signal. The signal
detection algorithmmust then provide for declaring that a sig-
nal is present for subsequent acquisition processing, when the
signal is not present it must provide for continued searching
within the CW signal segment. The importance of the signal
detection algorithm cannot be overstated: it must provide for
a low probability of false detection and a high probability of
correct signal detection with an acceptable coarse frequency
estimation.

The signal detection algorithm used in conjunction with
the coarse frequency estimation processing is the CFAR
algorithm that uses a detection threshold based on the mag-
nitude of the signal plus noise in the frequency cells around a
selected frequency cell, referred to as the cell under test. The
cell under test is defined as the FFT frequency cell currently
being examined under the hypothesis that it corresponds to
the correct received signal frequency. The threshold is based
on a two-parameter censored CFAR with the two parameters

computed as the mean and standard deviation of the cells
excluding the cell under test and Ncensor cells on either side
of the cell under test. With this definition Ncensor represents
the number of one-sided censored cells and the threshold is
computed as

Thr =mc + κsc (11.17)

where κ is the threshold factor selected to meet the specified
system detection and false-alarm probabilities. The mean and
standard deviation are based on a finite sample population
size as outlined in Section 1.13.3. Denoting the complex
spectrum sample in each of FFT frequency cell as cn: n =
1, …, Nfft the mean and standard deviation are computed
in consideration of the censoring, as

mc =
1
N

N

n= 1

cn (11.18)

and

sc =
N
n= 1 cn

2−Nm2
c

N−1
(11.19)

The primed summations signify that the summation
excludes the cell under test and the 2Ncensor censored cells
such that N =Nfft − 2Ncensor + 1 . The censoring reduces
the influence of the cell under test and the adjacent cells
on the censored mean and standard deviation. The influence
of the censored cells is related to the spectral sidelobes of the
signal. For example, the censoring for a rectangular win-
dowed FFT without interpolation is typically Ncensor = 2
and with a nonuniform weighted FFT window and/or inter-
polation, censoring values of 4–6 are often used.

The frequency cell identified by the CFAR processing is
used to compute the frequency estimate using early–late
(E/L) gate interpolation. The frequency estimates from multi-
ple FFTs separated by known intervals ofΔT seconds are used
to estimate the received signal Doppler or frequency rate as

f est =
fest 2 − fest 1

ΔT
(11.20)

where fest(1) and fest(2) are successive FFT frequency esti-
mates. These design concepts involving signal present detec-
tion and coarse frequency estimation are discussed in more
detail using the example in the following case study.

11.2.2.2 Case Study: FFT Signal Detection and Fre-
quency Estimation In this case study, signal present detec-
tion and carrier frequency error estimation are examined
using an example involving a 19.2 kHz BPSK-modulated
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FIGURE 11.12 Frequency resolution and accuracy.
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waveform without FEC coding. The maximum specified fre-
quency error is fεmax = 10 kHz and the FFT processing of the
CW preamble segment uses ρ = 2.5 that guarantees that three
FFT can be performed with one overlapping FFT. The signal
detection is based on two (Ndet = 2) consecutive FFT detec-
tions. The first FFT detection is declared if the maximum cell
magnitude exceeds the CFAR threshold. The second FFT
detection is declared if the threshold is exceeded in the same
or an adjacent cell to that of the first detection; this corre-
sponds to a frequency estimate within facc of that estimated
in the first detection. The CFAR threshold is based on a
two-parameter CFARwithNcensor = 2 cell censoring. The fre-
quency estimation uses parabolic E/L interpolation. In this
evaluation, the signal detection and frequency estimation
are examined for two FFT windows and interpolation condi-
tions: the rectangular windowwith zero padding and the Han-
ning window with and without zero padding.

The sampling frequency is evaluated using (11.12) with a
guard frequency Δf = 2Rs = 38.4 kHz yielding fs = 96.8 kHz.
For this uncoded BPSK example k = rc = 1, Rs = Rb and, using
NB = 88 information bits per CW segment, the number of
samples is found from (11.13) to beNs = 443 and the FFT size
is computed using (11.14) with the result Nfft = 177. There-
fore, a 177-point FFT can be used for the signal detection
and frequency estimation; however, because 177 is only
divisible by 3 and 59 a mixed radix FFT must be used.
The more computationally efficient radix-2 FFT with Nfft less
than 177 uses Nfft = 128; however, from (11.15) the CW win-
dow utilization efficiency is only 72% and the frequency res-
olution is fres = 756.25 Hz.

Because of the poor utilization efficiency and resolution
frequency, the FFT size is increased to Nfft = Ns ρ = 256.
With this modification, the total number of FFT samples
becomes Ns = ρNfft = 640 and the adjusted sampling fre-
quency is computed using (11.16) and found to be
139 636 kHz; this is rounded up to yield fs = 140 kHz. In this

case, the FFT efficiency is 99.7% with fres = 546.875 Hz. The
greatest common divisor of the sampling frequency and sym-
bol rate is gcd(140K, 19.2K) = 800 so these rates are derived
from a high-frequency clock of fclk = 19.2K(140,000/800) =
140K(19,200/800) = 3.36MHz. Table 11.2 summarizes the
parameters used in this case study for the CW segment acqui-
sition processing.

The CW preamble segment signal detection and frequency
estimation performance, operating under the conditions listed
in Table 11.2, are evaluated using computer simulations and
the results are shown in the following figures. Figures 11.13
and 11.14 show the signal detection performance in terms of
the detection and false-alarm probabilities as a function of the
CFAR threshold factor k using rectangular and Hanning FFT
windows, respectively, with zero padding and equivalent
Eb/No signal-to-noise ratios of 0 and −3 dB. Referring to
Figure 11.12b, the peaks or maximum magnitudes of the

FFT outputs occur at 273.4375iHz: i = 0, …, Nfft − 1 and
these conditions correspond to the best case performance,
whereas the minimum magnitudes correspond to
273.4375i + 136.71875 Hz and represent the worst case per-
formance. The false-alarm probability is conditioned on two

TABLE 11.2 CWSegment Acquisition Processing Parameters

Parameter Value Comments

Specified parameters
Data modulation — BPSK
Bit rate 19.2 Rb (kbps)
Symbol rate 19.2 Rs (ksps)
Bits per symbol 1 k
FEC code rate 1 rc
Maximum frequency

error
10 fεmax (kHz)

Guard frequency 2Rs Δf (kHz)
Bits per CW segment 88 NB

FFTs per CW segment 2.5 ρ
Consecutive detections 2 Ndet

Cell censoring 2 Ncensor

E/L interpolation — Parabolic
FFT window — Rectangular and Hanning
Computed parameters
Sample rate 140 fs (kHz)
System clock 3.36 fclk (MHz)
Samples per CW

segment
640 Ns

FFT sizea 256 Nfft without padding
Frequency resolution 546.875 fres (Hz)
Frequency accuracy 273.438 facc (Hz), without FFT

padding
136.719 facc (Hz), with FFT padding

aFFT size is without zero padding; with 2 : 1 zero padding FFT size is
doubled.

CFAR threshold factor (κ)
0 5 10 15 20 25 30Pr

ob
ab

ili
ty

 o
f 

co
rr

ec
t d

et
ec

tio
n 

(P
cd

)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f 
fa

ls
e 

al
ar

m
 (

P
fa

)

1e–6

1e–5

1e–4

1e–3

1e–2

1e–1

1e+0

0–3
Curve
Solid

Dasheda

Condition
Best case

Worst case

Pfa

Eb/No (dB)

FIGURE 11.13 CW signal detection performance using the FFT
(rectangular window with zero padding).

CW PREAMBLE SEGMENT SIGNAL PROCESSING 423



consecutive FFT detections and is obtained with a noise-only
input. All of the simulation results are based on Monte Carlo
simulations of 5000 trials for each threshold so the false-
alarm results are projected below about Pfa = 10−4.

The simulated frequency estimation performance is char-
acterized in terms of a histogram representing the cumulated
distribution function (cdf) shown in the following figures.
The normalized frequency error is expressed as
fest − fε fres where fest is the estimate of the received signal
frequency error based on the parabolic E/L estimation algo-
rithm. The histogram consists of 400 bins over the positive
frequency range of 0 to fres corresponding to a bin resolution
of δf = 1.3671875 Hz. The abscissa of the cdf is the normal-
ized frequency ratio fnorm = i|δf|/fres: i = 1, …, 400 with fnorm
limited to fnorm(max) = 1/2 in the cdf plots.* The cdf is shown
for the best and worst cases as defined earlier and the random
frequency case where the frequency error is uniformly dis-
tributed between ±facc.

Figure 11.15 shows the three performance conditions for
signal-to-noise ratios equivalent to Eb/No = 0, 3, and 6 dB
using a rectangular window with zero padding corresponding
to 2 : 1 FFT interpolation. As an example application, the
arrows in Figure 11.15 correspond to the worst case perfor-
mance at a signal-to-noise ratio of 3 dB and, under this con-
dition, the frequencyestimationerror isδf ≤ 0.19fres = 103.9 Hz
with a probability of 0.99. Referring to (11.3) and (11.4) and
using BLT = 0.1 for BPSK modulation, the lock-in frequency
and time for a second-order PLL are 806Hz and 0.28 ms,
respectively, and fest = 103.9 Hz is well within the lock-in
frequency range of the PLL.

These conditions are repeated in Figures 11.16 and 11.17
using a Hanning window with and without zero padding,
respectively. The performance of the Hanning window with

zero padding is considerably degraded from that of the rec-
tangular window performance shown in Figure 11.15. The
performance difference is attributed to the lower discrimina-
tor gain that is a consequence of the inherent wider spectral
bandwidth of the Hanning window.

11.2.2.3 Frequency Estimation Using the Pipeline
FFT The pipeline FFT described in Section 1.2.5.1,
although more signal processing intense than the block
FFT described earlier, provides an efficient method of simul-
taneous signal detection and frequency estimation that allows
for a shorter CW preamble segment. The benefits are a con-
sequence of the sequential processing that results in a contin-
uous push-broom acquisition over the range of the frequency

CFAR threshold factor (κ)

Pr
ob

ab
ili

ty
 o

f 
co

rr
ec

t d
et

ec
tio

n 
(P

cd
) 

0.0
0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f 
fa

ls
e 

al
ar

m
 (

P
fa

)

1e–6

1e–5

1e–4

1e–3

1e–2

1e–1

1e+0

0–3

Curve
Solid

Dashed

Condition
Best case

Worst case
Pfa

Eb/No (dB)

FIGURE 11.14 CW signal detection performance using the FFT
(Hanning window with zero padding).

Normalized frequency error (fnorm)
0.000 0.125 0.250 0.375 0.500

Pr
ob

ab
ili

ty
 (

 |f
es

t 
–f

ε 
|/f

re
s 
<

=
 a

bs
ci

ss
a)

0.5

0.6

0.7

0.8

0.9

1.0
6

3 0

Curve
 Solid

Dashed
Dot-dash

Condition
Best

Worst
Random

Eb/No
(dB)

FIGURE 11.15 CW frequency estimation using FFT (rectangular
window with zero padding).

6

3
0

Eb/No
(dB)

Normalized frequency error (fnorm)

0.000 0.125 0.250 0.375 0.500

Pr
ob

ab
ili

ty
 (

|f e
st

 –
f ε

 |/
f r

es
 <

=
 a

bs
ci

ss
a)

0.5

0.6

0.7

0.8

0.9

1.0

Curve
 Solid

Dashed
Dot-dash

Condition
Best

Worst
Random

FIGURE 11.16 CW frequency estimation using the FFT
(Hanning window with zero padding).

*Note that fnorm represents a frequencies ratio and is dimensionless.
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uncertainty. An example of the pipeline FFT is shown in
Figure 11.18.

This pipeline FFT example uses a 32-point FFT with 2 : 1
zero padding that corresponds to Nfft = 32 and an interpola-
tion factor* of NI = 2. All of the operating parameters for
the acquisition are based on the maximum frequency uncer-
tainty of the received signal fεmax, the frequency guard-band
Δf, and the sampling frequency fs as described by (11.7). In
this case, the determination of the sampling frequency is
somewhat simpler than that discussed in Section 11.2.2.1

because overlapping block FFTs are not involved, also,
because of the CW signal, the guard band depends solely
on the transition band of the antialiasing filter. Therefore,
upon determining the sampling frequency, the estimation
interval is determined using the sampling interval δt = 1/fs as

†

Te =
Nfft NI

fs
(11.21)

and the frequency resolution is fres = 1/Te = fs/Nfft. With zero
padding the accuracy of the frequency measurement is facc =
fres/NI. Using these relationships, the frequency axis in
Figure 11.18 spans the frequency range 32 facc and the time
axis spans the range 32δt or 2Te.

In the noise-free simulation of Figure 11.18, the CW
frequency tone is placed in the center of the frequency cell
f/facc =C0 = 7 (cell 0 corresponds to the zero frequency)
and Figure 11.19 shows magnitude response of cell C0 and
several neighboring cells. The time is normalized to the esti-
mation interval Te and the optimum cell output increases lin-
early, reaching the optimum value at t = Te. The cells C0 ± 1
are used for E/L gate frequency tracking and are included in
the CFAR censoring during acquisition. When searching for
an acquisition detection and performing detection verifications
the CFAR detection algorithm, discussed in the preceding sec-
tion, is executed at regular intervals of, for example, Te/2.

The resolution bandwidth, fres, of a uniformly weighted
FFT with an underlying size Nfft/NI ≥ 8 is essentially equal
to the noise bandwidth, so increasing the underlying FFT size
reduces the noise power in each FFT cell; however, the scal-
loping, leakage, and aliasing losses must also be dealt with in
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the acquisition processing. FFT interpolation reduces the
scalloping loss and the worst case signal-to-noise loss due
to interpolation.

11.2.2.4 Frequency Estimation Using Discriminator In
this section, the FD is examined that provides an estimate of a
received signal carrier frequency error during acquisition.
The basic implementation of the FD is then extended to fur-
ther resolve the frequency estimate by using smaller delays
that are related by powers of two and, in this regard, this
implementation is similar to the butterfly element of the
FFT. A fine frequency estimator is then described that essen-
tially zooms in on the initial coarse estimate to provide con-
siderably higher resolution.

To clarify the description of the FD, a noise-free received
CW signal is expressed as

si t =Acos ωot +ωεt +ϕo (11.22)

where ωo represents the transmitted carrier angular fre-
quency, ωε is an unknown angular frequency error involving
the Doppler frequency and various oscillator frequency
errors, ϕo is an arbitrary phase angle, and A is the peak carrier
voltage. The complex envelope of si(t) is given by

si t =Aej ωεt +ϕo

= sci t + jssi t
(11.23)

and represents the respective baseband in-phase and quadra-
ture terms are sci(t) and ssi(t). In the simplified noise-free
environment, the FD output is computed as the autocorrela-
tion of si t using a fixed lag-delay τ and is expressed as

so τ =
1
Te

Te

0

s t s∗ t−τ dt

=A2ejωετ

(11.24)

The complex implementation of the correlator is shown in
Figure 11.20a, and Figure 11.20b shows an equivalent imple-
mentation involving real functions identified as the in-phase
and quadrature components of si t . The LPFs provide time
averaging over the estimation interval Te as indicated in
(11.24). The integration or filtering is fundamental to the cor-
relation processing and is intended to reduce the influence of
the additive noise associated with the received signal; the out-
put noise is complicated by the multiplication resulting in
products involving S ×N andN ×N. The correlation lag delay
τ is selected to provide the greatest unambiguous range in the
frequency estimation as described later.

Referring to (11.24), the angle between the in-phase and
quadrature terms of so t is given by*

ϕ = atan2 sso τ ,sco τ

= 2πfετ
(11.25)

To avoid ambiguities with ± frequency uncertainties it is
necessary that the maximum unknown frequency correspond
to a correlator output phase <π radians and by solving (11.25)
for fε with ϕ = π the condition is

fε < fπ =
1
2τ

ϕ = π (11.26)

 Complex signal implementation 

so(t)
si(t)

τ

~

~

~ ~

~

~

* LPF
ϕε

atan2( )

(a)

+

(b) 
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Im{so(t)}
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+
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Re{so(t)}
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Re{si(t)}
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FIGURE 11.20 Phase discriminator implementations.

*The atan2(y,x) function computes the angle ϕ = tan−1(y/x) over the range of
ϕ = 0 to ±π.
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Allowing for some guard range in a noisy environment, it
is prudent to require that

fε ≤ fεmax =
ϕmax

2πτ
(11.27)

where |ϕmax| < π radians. These relationships are depicted by
the FD phase diagrams in Figure 11.21 where the frequency
error is given by

fε =
ϕε

2πτ
(11.28)

Defining ϕmax in terms of the guard range as a fraction,
η of π radians, such that,

ϕmax = π 1−η (11.29)

then (11.27) is expressed as

fε ≤ fεmax =
1−η
2τ

(11.30)

Equation (11.28) is the estimate of the frequency error
based on the discriminator phase error. Although evaluation
of the phase estimate using the inverse tangent function is
computationally complex, there are two major advantages:
the estimate is linear with frequency and independent of sig-
nal amplitude A.

The imaginary part of so τ can also be used to form the
discriminator response expressed as

αs = Im so τ

=A2 sin 2πfετ
(11.31)

Approximating (11.31) for small arguments and solving
for the frequency error results in

fε
αs

2πA2τ
small argument approximation (11.32)

This form of the discriminator is similar to that used in the
Costas implementation of the PLL; however, unlike (11.25),

the response given by (11.31) is not linear over the entire
unambiguous frequency range as seen by the two responses
shown in Figure 11.22. Furthermore, the unambiguous range
of (11.31) is limited to |fτ| < 0.25. The following case study
uses the linear atan2 discriminator implementation and exam-
ines the frequency estimation error under several signal-to-
noise conditions.

The FD can also be used to estimate various derivatives of
the signal phase function by cascading additional fixed lag-
delay correlators. For example, the frequency estimate ωε

and frequency-rate estimate ωε are implemented as shown

in Figure 11.23. In this case, the input phase function is
expressed as

θi t =φ+ωεt +
ωε

2
t2 (11.33)

The details in demonstrating the frequency and frequency
rate estimates in Figure 11.23 are left as an exercise (see
Problem 9).

11.2.2.5 Case Study: Discriminator Frequency Esti-
mation The frequency estimation performance and the
probability of correctly declaring the frequency using the
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FIGURE 11.21 Phase-frequency response of frequency discriminator.
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discriminator shown in Figure 11.20 are examined in this
case study. The evaluation is based on the normalized form
of the key equation (11.26) obtained by dividing by the
Nyquist band frequency fN = fπ = fs 2 yielding

fε
fN

≤
1

2fNτ
(11.34)

Two practical observations are made concerning (11.34).
First, to provide a frequency guard range against an unambig-
uous frequency estimate with additive noise, the normalized
form of (11.30) is

fεmax
fN

=
1−η
2fNτ

(11.35)

The second observation is based on the sampled data pro-
cessing requiring that the discriminator delay be integrally
related to the sampling frequency, that is, τ = n/fs where n
is an integer. Recognizing that fs = 2fN, the denominator of
the right-hand side of (11.34) and (11.35) is simply fsτ and
the maximum normalized frequency range satisfying the inte-
ger requirement occurs when fsτ = 1, that is, when the dis-
criminator delay is one sample, and (11.35) becomes

fεmax
fN

= 1−η maximum unambiguous frequency

(11.36)

The phase and frequency estimates are computed at the
output of the LPFs shown in Figure 11.20 and the accuracy
of these estimates with signal and noise is a function of the
signal-to-noise ratio and the estimation interval Te = 1/fB
where fB is the bandwidth of the LPFs as discussed in
Section 1.9.2.1.

As an example of this analysis, consider a CW carrier
sampled at fs = 19.2 kHz with fN = 9.6 kHz and a guard inter-
val of η = 0.3 (30%). Based on a simulation of the signal
processing in Figure 11.20, with a CW signal source and

AWGN channel, the frequency estimation performance of
the discriminator is shown in Figures 11.24 and 11.25 as a
function for the signal-to-noise ratio measured in a sampling
frequency bandwidth of 19.2 kHz. The ordinates are plotted
in terms of the normalized frequency estimation performance
and the example case using the 19.2 kHz sampling frequency.
The performance in Figure 11.24 corresponds to a LPF*

bandwidth of fB = 38 Hz with N = fs fB = 505 samples,
whereas the performance in Figure 11.25 corresponds to
fB = 218 Hz and N = 88 samples. This case was selected to
correspond to the 88 bit CW preamble length in the FFT case
study of Section 11.2.2.2 with a bit rate of 19.2 kbps. In both
cases the number of Monte Carlo acquisition trials at each
signal-to-noise ratio is 10,000 and the maximum and mini-
mum values correspond to the extremes recorded among
the trials for each signal-to-noise ratio.

These results correspond to the worst case frequency error
because the input signal frequency error corresponds to fεmax
= 6720 Hz as expressed in the normalized form by (11.36).
The impact of the LPF bandwidth is evident in these two fig-
ures, for example, the performance using the lower band-
width results in significantly improved estimations and
there is no evidence that an unambiguous phase estimate
occurred. To the contrary, the degraded performance for
the 218 Hz bandwidth case, shown in Figure 11.25, clearly
shows the result of the phase measurement reaching through
the guard range and causing ambiguous estimates for signal-
to-noise ratios less than 0 dB. The occurrences of a frequency
estimate exceeding the unambiguous frequency range of the
discriminator are obvious in the simulation program with a
fixed frequency error at, for example, a positive value of
fεmax. That is, referring to the phase diagram in
Figure 11.21, when ϕ = ϕmax a frequency estimate resulting
in a phase estimate π + φ is computed by the atan2(y,x) func-
tion as the phase −π + φ radians that corresponds to a nega-
tive frequency most likely in the range −fN to −fεmax.
Therefore, referring to Figure 11.25, the abrupt negative fre-
quency jump at 0 dB results from the positive frequency
exceeding fN. For the 218 Hz LPF bandwidth case, the
probability of a phase over-flow, as described earlier, for sig-
nal-to-noise ratios of −4.0 and −0.5 dB is 1.49e−2 and 1e−4,
respectively.

Although, as described earlier, the ambiguous frequency
estimate cannot be discerned in the CW segment, signal ver-
ification performed during the synchronization preamble seg-
ment will most likely fail because the PLL pull-in frequency
is exceeded. However, the initial CW segment ambiguous
frequency estimate can also be verified by correcting the fre-
quency and repeating the CW segment estimation processing
using a smaller estimation range fε by increasing the value of
τ as in (11.27); this verification processing may have to be
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FIGURE 11.23 Frequency and frequency-rate discriminator.

*The low-pass filter is implemented as a cascade of six synchronously tuned
single pole filters as described in Appendix B.
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repeated to account for the sign ambiguity of the initial esti-
mate. When τ is varied in multiples of two the processing is
similar to that of a radix-2 pipeline FFT thus improving the
frequency estimation accuracy.

The frequency detection or CW acquisition probability is
evaluated by examining the standard deviation of the phase
estimates ϕεn computed by the atan2(y,x) function over the
estimation interval of N samples as defined earlier. This cri-
terion is chosen because during the CW preamble, the phase
standard deviation is zero without noise and because it
increases inversely with the signal-to-noise ratio. The func-
tional processing for the CW acquisition or signal present
detection is shown in Figure 11.26; also shown is the

frequency correction of the input signal si t that is used in
the symbol synchronization preamble segment. The angular

frequency estimate is ωε = iϕε τfs where the index i is avail-
able from the system sample clock generator such that t = ti =
iΔt = i/fs.

The frequency detection analysis evaluates the perfor-
mance for the case of fB = 218 Hz (N = 88 samples) corre-
sponding to Figure 11.25. Because the processing of the
received signal samples by the FD is sequential, in that,
the sampled data is continuously passing through the detec-
tion algorithm, much like the pipeline FFT, a detection
hypotheses is made at regularly spaced intervals using 75%
or N = 0 75N of the most recently collected samples; this
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reduces the possibility of initial transients influencing the
detection. With this understanding, the mean and standard
deviation are computed over the most recent N = 66 phase
samples ϕεn as expressed by (11.18) and (11.19) by substitut-
ing cn =ϕεn and using the unprimed summations, that is, no
censoring of the N samples is used. Letting σf = sc and using
the normalizing frequency fnorm = 200 Hz the threshold, Thr,
is selected to meet the detection and false-alarm requirements
defined as

Pd ≜Pr σf fnorm ≤ Thr S +N (11.37)

and

Pfa ≜Pr σf fnorm ≤ Thr N (11.38)

These probabilities are evaluated using a histogram, with
200 bins spanning fspan fεmax = 0 2976 or 2 kHz, that is used
as a probability distribution function. For each signal-to-
noise ratio, the detection probability is based to 10,000 fre-
quency acquisition trials and the false-alarm probability is
based on 100,000 acquisitions trials with noise only. The per-
formance with and without noise uses an ideal AGC; how-
ever, the atan2(y,x) function also provides immunity to the
level of the received signal. Based on this description, the
detection and false-alarm performance is shown in
Figure 11.27 as the solid and dashed curves, respectively,
as a function of the threshold.

The frequency detection results are summarized in
Table 11.3 for the indicated detection probabilities and the
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FIGURE 11.26 Frequency discriminator and detection implementation.
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corresponding threshold and false-alarm probability. The
acceptable operating signal-to-noise ratio depends on the appli-
cation and system specifications and these results illustrate the
relationship between the detection and false-alarm probabil-
ities. Typically the detection probability is specified and the
false-alarm probability is chosen as low as possible to meet
other system requirements like the message throughput delay
andprocessor loading.Applications involving automatic repeat
request (ARQ) and nonreal time message processing may
tolerate higher false-alarm probabilities. The detection perfor-
mance characterized for the 88-bit CWsegment, corresponding
to fB = 38Hz, results in reasonable detection probabilities for
signal-to-noise ratios greater than 0 or 3 dB. Recall that these
results represent the worst case conditions corresponding to
an initial frequency error of fε = fεmax = 6 70 kHz and the per-
formance with uniformly distributed frequency errors will be
somewhat better. Furthermore, by decreasing the LPF band-
width the operating signal-to-noise ratios can be extended
into the negative region.

The frequency estimation can be improved by passing the
frequency corrected input signal through the FD multiple
times, each time improving the frequency of the previous
estimate. The estimation improvement is accomplished using
the same estimation time Te by decreasing the sampling fre-
quency after the initial estimate has been removed, thereby,
reducing the signal bandwidth uncertainty as shown in
Figure 11.26. In other words, instead of passing the initial fre-
quency-corrected signal to the synchronization segment as
shown, the corrected signal samples are passed through the
frequency decimator a second time using fs fs = k,k < 1, cor-
responding to fN fs = k 2 and fεmax fN = 1−η . This requires
that the signal samples over the sliding window of Te seconds
be stored in memory and that the rate of the signal processor
is commensurate with real-time processing; the sliding win-
dow refers to the estimation interval in consideration of the
sequential processing. This refinement of the frequency esti-
mate can be repeated until the estimate falls within the PLL
bandwidth as given by (11.3). For a given PLL BLT product,
the frequency estimation limit is also dependent on the sym-
bol rate of the underlying received signal modulation and the
critical signal-to-noise ratio as discussed in Section 10.6.11.

The frequency estimate resulting from a second pass
through the discriminator is shown in Figure 11.28 corre-
sponding to the first pass estimation results shown in
Figure 11.25. The parameters for the pass correspond to

the example un-normalized conditions: fεmax = 0.7fN, fB =
218 Hz, and N = 88 samples with fs = 19.2 kHz, fN = 9.6
kHz, and η = 0.3 (30%). Recalling that the first pass was eval-
uated for a constant, worse case, frequency offset of fε = fεmax =
6,720 Hz with 10,000 Monte Carlo trials for each signal-to-
noise ratio, so, for each signal-to-noise ratio there are 10,000
independent randomly distributed frequency estimates. Each
of these frequency estimates is applied to the discriminator
on the second pass using k = 2 with fs = fs/2, fN = fs /2, and
η = η resulting in the performance in Figure 11.28. The
means and standard deviations corresponding, respectively,
to the first and second passes are summarized in
Table 11.4. These results demonstrate the improvement in

TABLE 11.3 Summary of Worst-Case Detection and False-Alarm Performance (fB = 38 Hz, N = 88)

Pd

γ = 4 dB γ = 3 dB γ = 0 dB γ = −1 dB

Pfa Thr Pfa Thr Pfa Thr Pfa Thr

0.999 2.0e−3 1.92 5e−3 2.52 — — — —

0.99 4.7e−4 1.44 1.5e−3 1.80 4.0e−2 0.48 — —

0.95 1.7e−4 1.08 4.1e−4 1.44 1.1e−2 3.12 3.0e−2 4.32

0 2 4 6 8 10
–0.24

–0.18

–0.12

–0.06

0.00

0.06

0.12

0.18

0.24

–800

–600

–400

–200

0

200

400

600

800

–σ 

+σ 

Mean

Max

Min

N
or

m
al

iz
ed

 e
rr

or
 (

f ε
 / 

f ε
m

ax
) 

Fr
eq

ue
nc

y 
er

ro
r 

(f
ε)

 H
z

Signal-to-noise ratio (dB)

FIGURE 11.28 Second-pass frequency discriminator estimation
performance (fB = 218 Hz, N = 88).

TABLE 11.4 Comparison of First and Second Pass Frequency
Discriminator Performance (fB = 218 Hz, N = 88)

SNR (dB)

Mean (Hz) Standard Deviation (Hz)

Pass 1 Pass 2 Pass 1 Pass 2

0 4.37 0.65 375 135
2 2.54 0.17 228 84
4 1.55 0.11 141 53
6 0.95 0.16 89 33
8 0.59 0.12 56 21
10 0.36 0.12 35 14
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the frequency estimate resulting from the second pass
through the FD as discussed earlier.

11.3 SYMBOL SYNCHRONIZATION
PREAMBLE SEGMENT

11.3.1 Introduction

When aCWpreamble segment is available prior to the symbol
synchronization segment [9], the AGCprovides for a constant
signal level into the ADC and an initial indication of the pres-
ence of a received signal. Furthermore, estimates of the coarse
frequency, power, and signal-to-noise ratio may be estab-
lished during the CW preamble segment. Although the
knowledge of these parameters simplifies the processing
and contributes to an overall reduction in the acquisition time,
the symbol synchronization and tracking can be established
without a CW preamble segment as may be desirable, for
example, in applications involving covert communications.
Section 11.3.4 examines the acquisition processing without
the aid of the CW preamble segment. In these cases, however,
the parameter estimation, or integration, times must be
increased to provide the estimation accuracies at the expensed
of increased signal processing complexity.

For coherent data demodulation, the synchronization pre-
amble segment processing must estimate [10, 11] and correct
the fine frequency and symbol timing and provide for carrier
phase and symbol tracking prior to entering the SOM seg-
ment. To accomplish these functions with the shortest possi-
ble preamble, the demodulator often samples and stores the
raw preamble data and performs these functions sequentially
making the appropriate correction to the stored data. The last
pass through the stored data generally involves phaselock and
symbol tracking loops requiring that the final frequency and
time estimates are within the initial acquisition limits of
the loops.* Another important consideration is the required
acquisition times for each of the loops to achieve steady-state
tracking before the SOM preamble segment; this also influ-
ences length of the synchronization segment.

When the CW preamble segment is included, as is often
the case, the symbol synchronization segment uses a modu-
lated data sequence that is specifically tailored to aid the
demodulator in establishing the symbol timing, verifying
the signal presence, and further resolving the frequency esti-
mate. These data sequences typically involve repetitions of
short binary data sequence. For example, repeated mark-
space or mark-mark-space-space data patterns or pseudo-
random synchronization codes. Upon establishing and
applying the required parameter estimates, symbol and fre-
quency tracking are initiated in preparation for the SOM
processing. The SOM detection is typically based on the

correlation response of a unique and known relatively long
pseudo-random synchronization sequence with suitable cor-
relation sidelobes so as to minimize false detection of the
SOM location. Identifying the time occurrence of the maxi-
mum SOM correlation response to within a fraction of a sym-
bol is important because the symbol following the SOM
sequence is typically the first information or message header
symbol that must be detected correctly or with a sufficiently
low probability of error.

Binary sequences with good correlation properties
[12–16], principally with low correlation sidelobes, play an
important role in the waveform acquisition processing. Com-
monly used synchronization sequences are as follows: the
Barker Codes [17–21], also referred to as perfect, magic,
and optimum codes; Williard codes [22, 23]; Neuman–
Hofman codes [24, 25]; Gold codes [26]; and Kasami
sequences [27]. The number of known Barker codes is lim-
ited to those listed in Table 11.5.† Williard codes are listed
in Table 11.6 and Neuman–Hofman codes are listed in

TABLE 11.5 Barker Codes and Correlation Sidelobes

Code
Length Binary Level

Lead-Ina Cyclic

C +
max C−

max C +
max C−

max

2 + − — −1/1 0/1 —

3 + + − 0/1 −1/1 — −1/3
4 + + − + 1/1 −1/1 0/3 —

5 + + + − + 1/2 — 1/4 —

7 + + + − − + − 0/3 −1/3 — −1/6
11 + + + − − − + − − + − 0/5 −1/5 — −1/10
13 + + + + + − − + + − + − + 1/6 — 1/12 —

aRepeated analog zeros.

TABLE 11.6 Williard Codes and Correlation Sidelobesa

Code
Length Binary Level

Lead-Inb Cyclic

C +
max C−

max C +
max C−

max

2 + − — −1/1 0/1 —

3 + + − 0/1 −1/1 — −1/3
4 + + − − 1/1 −2/1 0/2 −4/1
5 + + − + − 1/1 −2/1 1/2 −3/2
7 + + + − + − − 0/2 −2/1 — −1/6
11c + + + − + + − +

− − −
2/1 −3/1 — −1/10

13 + + + + + − − +
− + − − −

3/1 −3/2 1/6 −3/6

aWilliard [22]. Courtesy of International Society of Automation (ISA).
bRepeated analog zeros.
cSame as inverted and shifted 11-bit Barker code.

*See for example: Chapter 10; Sections 11.1, 11.3, and 11.3.5. †The mapping from unipolar bits to bipolar data is di = 2bi − 1.
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Table 11.7 for code lengths up to 24. Walsh codes are dis-
cussed in Chapter 7 and correspond to the rows of a Hada-
mard matrix. Gold codes are generated from linear
combinations of M-sequences and Kasami sequences are
subsets of Gold codes with improved correlation responses;
both are widely used in spread-spectrum and code division
multiple access (CDMA) applications. M-sequences are
introduced in Chapter 8 and discussed with Gold and Kasami
codes in the context of spread-spectrum waveforms in
Chapter 13.

Polyphase codes are nonbinary codes that typically
result in nonconstant amplitude waveforms and signifi-
cantly lower correlation sidelobes [28]. Polyphase codes
[29] are as follows: Frank codes [30, 31]; Huffman codes
[32–36]. Frank codes are generated from the coefficients
of the discrete Fourier transform and, for a code of length
16 sidelobe levels ≤ −33 dB relative to the peak correlation
are achieved; −43 dB with windowing [37]. Huffman
codes are nonbinary polyphase codes that provide for
the detection of signals in high Doppler frequency
environments.

Tables 11.5 and 11.6 list all of the known Barker andWill-
iard codes, Table 11.7 lists a partial list of the Neuman–
Hofman codes, and Table 11.9 contains two long codes used
as SOM codes to identify the start of the message header
information. In each of these tables the columns labeled
C +
max and C−

max indicate, respectively, the maximum positive

and negative correlation sidelobe levels* and the number fol-
lowing the backslash is the number sidelobes having these
maximum values. The correlation lags represent one code
bit. The correlation sidelobes correspond to two noise-free
conditions: the first is denoted as the lead-in correlation
response that results when the received signal is zero preced-
ing the received code; the second condition corresponds to
the cyclic correlation response that occurs when the correla-
tion interval always involves elements of the input code. For
example, the cyclic correlation response is encountered fol-
lowing the correlation of the first of several contiguously
repeated codes. Synchronization preambles containing con-
tiguously repeated codes are discussed in Section 11.3.4.

In many applications the acquisition waveform is speci-
fied and it is up to the modem designer to implement the
acquisition processing to meet a specified correct acquisition
probability (Pca) that consists of several successful events
as discussed in Section 11.1. However, the correct acquisi-
tion probability is also impacted by the correct message deliv-
ery (Pcmd) specification. For example, for a correct message
detection probability of Pcm, it is required that Pcmd ≥PcaPcm

with a specified level of confidence, for example, Pcmd =
0.999 with a confidence level of 95%, at a specified receiver

TABLE 11.7 Neuman–Hofman Codes and Correlation Sidelobesa

Code Length Binary Level

Lead-Inb Cyclic

C +
max C−

max C +
max C−

max

7c − − − + + − + 0/3 −1/3 — −1/6
8 − − − − + + − + 1/2 −2/1 0/6 −4/1
9 − − + + + + + − + 2/1 −2/1 1/6 −3/2
10 − − − − + + − + − + 2/1 −2/1 2/3 −2/6
11c − − − + + + − + + − + 0/5 −1/5 — −1/10
12 − − + + − − − − − + − + 2/1 −3/3 4/1 0/10
13 − − − − − − + + − − + − + 2/2 −1/2 1/12 —

14 − − + + − − + + + + + − + − 2/1 −2/2 2/4 −2/9
15 − − + + + + + − − + + − + − + 2/1 −2/3 3/2 −1/12
16 − − − − − + + − − + + − + − + + 2/1 −2/4 0/12 −4/3
17 − − − − + − + + − − + + + − + − + 1/6 −4/2 1/8 −3/8
18 − − + + − − + + + + + − + − − + − + 1/5 −2/4 2/5 −2/12
19 − − − + + + − + + + − + + − + + − + − 2/1 −2/6 3/2 −1/16
20 − − − + − − − + + + + + − − + − + + − + 1/4 −2/1 0/14 −4/5
21 − − − − − − + − + + + − + − − + + + − − + 2/2 −2/2 1/12 −3/8
22 − − − + − − − + + + + + − − + + − + + − + − 1/8 −3/3 2/7 −6/2
23 − − − − − − + − + − + + − − + + − + − − + + + 2/4 −5/1 3/6 −5/4
24 − − − − − + + + − − + + + − + − + − + + − + + − 1/5 −4/2 0/17 −4/6

aNeuman and Hofman [24]. Reproduced by permission of the IEEE.
bRepeated analog zeros.
cSame as Barker code.

*The correlation sidelobes listed in the tables are not normalized; however,
the following example correlation plots are normalized so the peak correla-
tion response is unity.
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sensitivity. Typically, the correct message detection is based
on the data covered by a cyclic redundancy check code as dis-
cussed in Section 8.7.

Implementation techniques and performance specifica-
tions are available for many commercial systems. For exam-
ple, the global system for mobile communications is broadly
discussed in Mouly and Pautet [7] with references to specifi-
cations* that provide detailed performance and design
requirements. The radio interface is the subject of Mouly
and Pautet’s Chapter 4 that includes acquisition and synchro-
nization, the channel model, source and channel coding,
encryption, burst formatting, and the waveform modulation.
Another example of commercial communication systems
implementation and performance specification is the
CDMA2000 system for mobile and personal communica-
tions.† The preamble acquisition segment waveforms
listed in Table 11.8 are example applications for the indicated
modulations and symbol rates and two SOM codes are
listed in Table 11.9. SOM codes can also be generated by
concatenating shorter fixed length codes with appropriate
cyclic shifts of the successive fixed length codes that result
in desirable or minimum correlation sidelobes. These wave-
forms illustrate the complexity of the preamble message

structure required prior to the detection of the message
information.

The following figures show the lead-in and cyclic normal-
ized correlation response of selected codes. The noise-free
correlation responses of the two Barker codes shown in
Figure 11.29 demonstrate the lead-in characteristics when
attempting to synchronize to a message preceded by at least
two Barker codes. For example, by specifying a normalized
detection threshold, the low-level lead-in and cyclic correla-
tion sidelobes result in the best synchronization code detection
probability among codes of corresponding length. Since the
correlation loss with frequency error is a function of the code
length, it is typically necessary that a fine-frequency estimate
be performed prior to the code correlation. For very low signal-
to-noise ratio conditions, as might exist with low-rate FEC
coding, it is necessary to combine several contiguously
repeated code correlations to increase the signal-to-noise ratio
using coherent and/or noncoherent code combining.‡ The
lead-in and cyclic correlation sidelobe responses of the Barker
codes result in low false-detection performance leading to their
widespread use for message synchronization. Unfortunately
longer Barker sequences do not exist; however, the shorter
codes are more tolerant to channel dynamics.

TABLE 11.9 SOM LPN Code Bits with Cyclic Correlation Sidelobesa

Code Length Code Bits

Lead-Inb Cyclic

C +
max C−

max C +
max C−

max

37c 1110001000010001111010011011101100101 4/1 −3/3 1/18 −3/18
74 1000111010000100111100100001011100011 6/2 −7/1 6/8 −6/18

0100010011010111101111010110010001011

aDefense Information Systems Agency (DISA) [38]. Courtesy of U.S.A. Department of Defense (DOD).
bRepeated analog zeros.
cThe last bit, shown in bold type, is not inverted in the 37-bit ILPN pattern.

TABLE 11.8 Example of User Data Preamblesa

Modulation Symbol Rate (ksps) Ch (I/Q)

Preamble Segment

CW Sync SOM

Bits Pattern Bits Pattern Bits Patternb

BPSK 9.6 I 10 0’s 114 110110 74 LPN
BPSK 19.2 I 22 0’s 156 110110 74 LPN
QPSK 16.0 I 14 1’s 111 001001 37 LPN

Q 14 0’s 111 110110 37 ILPN
S-OQPSK 3.0 and 3.84 I 13 1’s 70 101010 37 LPN

Q 13 0’s 70 111111 37 ILPN

aDefense Information Systems Agency (DISA) [8]. Courtesy of U.S.A. Department of Defense (DOD).
bLPN is Legendre polynomial, ILPN is inverted Legendre polynomial.

*For additional specifications visit: www.3gpp.org/specifications.
†For detailed specifications visit: www.tiaonline.org/standards.

‡Coherent and noncoherent detection combining are discussed in Appen-
dix C.
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The noise-free correlation response of four Neuman–
Hofman synchronization codes is shown in Figure 11.30 and
the lead-in and cyclic correlation sidelobes are contrasted with
those of the Barker codes. Unfortunately, however, the only
known Barker codes are listed is Table 11.5 so the Neuman–
Hofman codes offer a wider selection of code lengths. For
example, the 13-bit Neuman–Hofman code has two positive
correlation sidelobes with levels that are 8.1 dB below the cor-
relation peak compared to 11 dB for the 13-bit Barker. In con-
trast, the 24-bit Neuman–Hofman code has a coherent
detectionadvantagewith13.8 dB lead-incorrelation sidelobes.

The noise-free correlation responses of the LPN SOM
detection codes listed in Table 11.9 are shown in
Figure 11.31. The SOM codes are used to locate the first
information symbol and, because the SOM codes are not
repeated, only the lead-in correlation response needs to be
considered. However, coherent correlation can be performed
because carrier phase and symbol timing tracking have been
established during the symbol synchronization processing. In
this case, the lead-in correlations for the length 37 and
74 LPN codes have respective correlation sidelobes of 9.7
and 10.9 dB. However, as indicated in Table 11.8, with
BPSK modulation the 74-bit LPN SOM code is preceded
by the repeated 110… data pattern that will alter the lead-
in correlation sidelobes; this is discussed in more detail in
Section 11.4. Furthermore, with QPSK- and S-OQPSK-
modulated waveforms, the 37-bit LPN code is used on the
in-phase rail with the ILPN code on the quadrature rail. With
coherent detection, the lead-in correlation response is
improved over the 9.7 dB of the isolated 37-bit LPN.

Although a theoretical correct-detection probability of the
synchronization and SOM codes with additive and multipli-
cative noise (fading) can be analyzed, it is often beneficial to
evaluate the performance using a Monte Carlo simulation
program in view of the carrier and symbol tracking and the

lead-in correlation peaks. However, as is always the case,
an accurate theoretical analysis will provide a baseline perfor-
mance measure for the simulated results. In the following
subsections, various details of the symbol synchronization
preamble are examined.

11.3.2 Frequency and Symbol Time Estimation

Fine-frequency estimation is performed following the coarse-
frequency estimation obtained from a CWpreamble segment.
In this case, the frequency search range is significantly
reduced and the signal processing focuses on the frequency
resolution as opposed to the frequency range.* In Sections
11.3.2.1 and 11.3.2.2, the description of the symbol time
and frequency estimation is based on the mark-mark-space-
space preamble data pattern that is known by the demodulator
and repeated over the entire synchronization preamble seg-
ment. Section 11.3.2.1 describes the joint symbol time and fre-
quency estimation using a FD with knowledge of the symbol
rate. The descriptions in Section 11.3.2.2 first resolves and
corrects the fine-frequency estimate over the stored preamble
samples and then process the frequency corrected store sam-
ples todetermine the symbol timing. In this case, the frequency
estimation is performed in the frequency domain and, because
the symbol rate can also be estimated from the preamble spec-
trum, it is not necessary to know the symbol rate in advance.

11.3.2.1 Joint Frequency and Symbol Time Estimation
Using Discriminator The approach described in this
section to estimate the frequency and symbol or bit timing
is based on the FD discussed in Sections 11.2.2.4 and
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FIGURE 11.29 Barker code correlation responses (selected from Table 11.5).

*As discussed in Section 11.3.4 short repeated data sequences can also be
used to search over large frequency ranges without the CW preamble
segment.
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11.2.2.5. The preamble synchronization segment in this anal-
ysis is composed of the 1100 repeated bit pattern and,
because the coarse frequency estimate has been removed,
the frequency error is a fraction of the bit rate. The detection
processing is based on a parallel repetition of the complex
discriminator function shown in Figure 11.20a and depicted
in Figure 11.32 as a lag-correlator* (LC).

The concept involves computing LC outputs for K − 1
hypotheses of the optimum bit timing of the sampled 1100
repeated bit pattern as shown in Figure 11.33. TheNs samples
per bit, corresponding to each timing hypothesis, are then
used to compute K − 1 lag-correlator outputs as shown in
Figure 11.34. The LC output, corresponding to the optimum
bit timing delay relative to the receiver time base, is associ-
ated with the imaginary part having the highest mean value
and lowest standard deviation or simply having the highest
ratio ρk =mk σk, such that,

ρk = max
k

ρk (11.39)

Referring to Figure 11.33, the bits are sampled at intervals
of Ts with Ns samples per bit. Relative to the local demodu-
lator time base, the bipolar data is denoted as dn = dn+1 = 1
and dn+2 = dn+3 = −1 corresponds to the repeated binary bit
pattern bn = (1100). The demodulator time base can be
defined to start anywhere over the sampled data pattern with-
out affecting the detection of the optimum timing delay.

Processing the samples over the entire data pattern as shown
results in a discriminator delay τ = 2T and, from (11.28), the
corresponding LC frequency error is (1 − η)/4THz. In this
case, the LC spans 4T seconds and the sign of the samples
corresponding to the negative data must be changed. This
is easily accomplished from the knowledge of the hypothe-
sized timing. Defining the parameter N as the number of sam-
ple intervals between each bit time hypothesis, the resulting
timing error is

Tε = ±
NTs
2

(11.40)

and the number of hypotheses is given by

K =
4Ns

N
(11.41)

For example, with Ns = 8 and the requirement Tε = ±T/8
results inN = 2 andK = 16 hypotheses. The timing offsets rel-
ative to the demodulator time reference are computed as kNTs
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FIGURE 11.32 Lag correlator.
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FIGURE 11.34 Lag correlator processing for joint frequency and bit time estimation.

*The lag-correlator implementation is similar to the theoretical definition of
the auto-correlation function given in Section 11.3.3 with a correlation lag of
τ seconds and with the low-pass filter performing the integration.
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where the parameter k represents the k-th timing hypothesis
over the range 0 ≤ k ≤ K − 1.

Referring to Figure 11.34 the inputs into the k-th LC,
denoted as LCk, are computed as

Sk,1 =
2Ns

i= 1

s iTs + kNTs (11.42)

and

Sk,2 = −
4Ns

i = 2Ns + 1

s iTs + kNTs (11.43)

The minus sign in (11.43) results from the sign of the data
bits dn+2 and dn+3. Using (11.42) and (11.43) in the context of
Figure 11.32, the output of LCk is computed as

So k = Sk,2S
∗
k,1 (11.44)

where denotes the time average that is implemented as a
LPF. Using the bit timing error estimate k NTs, the local
demodulator time base is brought into alignment with the

repeated data pattern. The fine-frequency estimate f ε is deter-
mined using the imaginary part of so k as described by
(11.23) through (11.30). The fine-frequency estimate is
removed from the baseband signal prior to the carrier acquisi-
tion and tracking. Following these corrections the bit and fre-
quency acquisition and tracking are executed as described in
Section 11.3.5. If the preamble samples have been stored,
the acquisition and tracking functions are applied to the time
and frequency corrected samples resulting in the most efficient
use to the preamble. Reusing the corrected preamble samples
results in a shorter preamble and lower message overhead.

11.3.2.2 Signal Detection and Parameter Estimation
Using Signal Spectrum In this section the coarse-
frequency estimate of the CW preamble segment is refined
in the frequency domain for subsequent acquisition and
tracking by the PLL. However, as indicated in the introduc-
tion, the signal spectrum can also be examined over a wide
frequency range with additional signal processing. The focus
in this section corresponds to the symbol synchronization
segment involving a known data pattern that is used for both
fine-frequency and symbol rate estimation. In this case, the
data pattern is uniquely designed to enhance the spectral
characteristics for determination of the frequency error and
the modulation symbol rate. The spectrum also contains
information regarding synchronization to the data pattern;
however, the unknown signal phase is problematic in making
an unambiguous data pattern synchronization decision. In
view of these remarks, the entire preamble is often sampled
and stored for processing in the frequency domain and then

revisited and processed in the time domain for symbol time
synchronization and then revisited a third time for frequency,
phase, and symbol tracking. Although, this approach requires
more memory and more intense processing to maintain real-
time throughput, the preambles are typically shorter resulting
in lower message overhead. Furthermore, in many network
applications, the frequency and timing information is stored
during network entry allowing for shorter preambles in sub-
sequent transmissions.

The signal parameters involving unique data patterns are
examined in the frequency domain relative to the demodula-
tor local time reference as shown in Figure 11.35. Denoting
the received symbols in terms of the binary data dm = ± 1 sug-
gests that binary PSK modulation is used; however, using the
symbol phase notation ϕk,K = kπ/K to denote higher order
modulations with a unique data sequence increases the nota-
tional complexity that tends to obscure the synchronization
concepts. Therefore, the focus in this description is on BPSK
modulation.

The analysis that follows uses the analytic baseband
description of the received signal expressed as

sr t = repTo A
M−1

m= 0

dmrectT t−τ,m ej ωε t−τ +φ (11.45)

where τ is the signal delay relative to the demodulator time
reference, ωε is the frequency error in radians per second,
and φ is a constant phase error. The notation repTo(x) is
Woodward’s repetition function [39] with period To =MT,
so the data sequence shown in Figure 11.35 is repeated every
M symbols as defined in this segment of the preamble. As
described in (11.45), the signal phase function is outside of
the repTo(x) brackets, so the received signal description cor-
responds to the phase of the carrier frequency.

Equation (11.45) is a general description of the signal and
applies to any repeated data pattern; however, to simplify the
analysis, the commonly used preamble synchronization bit
pattern of 1100… bits is examined for which M = 4, To =
4T, and d0 = d1 = 1, d2 = d3 = −1 where the unipolar bit to
bipolar data translation is di = 2bi − 1. The analysis of the sig-
nal spectrum uses the Fourier transform of periodic functions
discussed in Section 1.2 for which the spectrum is evalu-
ated as

A

τ + (M – 1)T τ + T 
t 

. . .. . .

0 

~sr ( t – τ)

τ

d0 dM–1d1 d0

FIGURE 11.35 Received signal timing relative to receiver
time-base.
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F f =
∞

n = −∞
Cnδ f −nfo (11.46)

where fo = 1/To and the Cn are complex coefficients. In the
context of (11.45) and the repeated data pattern 1100…,
Cn and f(t) are computed as

Cn =
1
To

e− jnωo τ

To 2

−To 2

f t e− jnωotdt (11.47)

and

f t =A rect2T t, 0 −rect2T t, 1 ej ωεt +φ (11.48)

Substituting (11.48) into (11.47) and performing the
appropriate integrations, combining of terms, some simplifi-
cations, including foT = T/To = 1/4, and then substituting the
expression for Cn into (11.46), the spectrum for the repeated
data sequence is expressed as

F f =A
∞

n= −∞
e− j 2πnfoτ + 2λnT −φ−π

2
sin2 λnT

λnT
(11.49)

where λnT = 2π nfoT − fεT . Equation (11.49) is shown in
Figure 11.36 for a zero frequency error, that is, fεT = 0.
The spectrum is simply shifted to the right or left depending
on the frequency error. The discrete spectral lines at f ± 1/4T
are of interest and have magnitudes of 2A/π corresponding to
a loss of 3.9 dB; the nearest neighbors at f ± 3/4T have mag-
nitudes of 2A/3π resulting in a loss of 13.46 or 9.56 dB below
the spectral lines of interest.

The spectral phase function is defined as the phase of F(f)
and is expressed as

θn τ, fε,φ ≜ 2πnfoτ + 2λnT −φ−
π

2
(11.50)

Upon using λnT, as given earlier, and foT = 1/4, (11.50) is
evaluated as

θn τ, fε,φ = πn 1 +
1
2

τ

T
−4πfεT −φ−

π

2
(11.51)

The spectral phase function has a considerable amount of
structure, being dependent upon each of the three parameters:
τ/T, fεT, and φ. Noting that the bit rate is Rs = 1/T, the

frequency tones of interest occur at fu = fε + Rs/4 and fl = fε
− Rs/4 corresponding to n = +1 and −1, respectively. For
example, these tones rotate linearly in opposite directions
by (π/2)τ/T radians, so that over the interval of one data pat-
tern (1100) the phase rotates by 2π radians. These delay-
dependent phase rotations occur independently of the fre-
quency error; however, an additional frequency-dependent
phase of 4πfεT radians is encountered. The unknown signal
frequency error fε and phase error φ are problematic in deter-
mining the signal delay from the spectral phase information
contained in (11.49). However, by determining fu and fl cor-
responding to the two largest spectral lines, the estimates of
the frequency error and bit rate are determined as

f ε =
fu + fl
2

(11.52)

and

Rb = 2 fu− fl (11.53)

In many cases, the symbol rate is known and is used to
advantage in locating fu and fl when the received signal
includes channel and receiver noise. Upon removing the fre-
quency error from (11.51) the signal phase φ remains an
impediment to unambiguously determining the signal delay
τ/T from the spectral phase function. If, however, the signal
phase were successfully removed, the delay estimate can be
established to any degree of accuracy with increasing sig-
nal-to-noise ratio in the measurement bandwidth. For
example, for a symbol timing error τ T < 1 8, the corre-
sponding accuracy of the spectral phase function is
θn τ, 0, 0 < π 8 radians. Considering an ℓ-sigmameasure-
ment requirement, the required signal-to-noise ratio (γBm) in
the measurement bandwidth (Bm) is computed as*

γBm
=
1
2

8ℓ
π

2

(11.54)

and using ℓ = 3 the required signal-to-noise ratio for the
3-sigma delay estimate is 14.6 dB. In the following case study,
the FFT is used to determine the spectrum of the repeated 1100
preamble sequence and the probability of correctly estimating
the symbol rate† and frequency error are examined.

11.3.2.3 Case Study: Detection, Bit Rate, and Frequency
Estimation Using BPSK-Modulated Waveform In this
case study, the FFT is used to determine the spectrum of
the repeated 1100 preamble data and the resulting probability
of correctly estimating the frequency error is examined

–3/4T–1/T 3/4T 1/T–1/4T

F(f ) 

f
. . .. . .

1/4T

sin2(λnT) / λnT

FIGURE 11.36 Magnitude of spectral lines of the repeated
preamble data pattern 1100 with fε = 0.

*This is based on the relationship γBm
= 1 2σ2φ with σφ = π 8ℓ radians.

†Baring the distinction between information bits and code bits, the use of the
term symbol rate and bit rate are synonymous with BPSK; as are T and Tb in
denoting the symbol interval and bit interval.
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when the bit rate is unknown.* It is assumed that the coarse
frequency error of the received signal has been resolved
during the CW preamble segment to an accuracy of
fε coarse ≤ 1 5Rb. The following description establishes
the sampling frequency (fs), the frequency resolution (Δf),
the size (Nfft) of the FFT, and the samples per bit (Ns) for
the fine-frequency estimation. Given fε max = 1 5Rb and
referring to Figure 11.36, the Nyquist band is chosen as
BN = 2Rb so the sampling frequency must satisfy the Nyquist
condition fs > 2Rb; the value fs = 8Rb is selected.† The fre-
quency resolution is taken to be one-fourth of the spectral
tone at Rb/4, that is, Δf = Rb/16 from which the size of
the FFT is determined as Nfft = fs Df = 128. In the time
domain, these parameters result in an estimation interval of
Tm = 1 Δf = 16 Rb or 16 bits corresponding to four 1100 data
pattern repetitions with Ns = 8 samples per bit. If a wider fre-
quency range is desired while maintaining a fixed resolution
bandwidth, the sampling rate and antialiasing filter band-
width can be increased with a commensurate increase in
the size of the FFT; in this case, the estimation interval
remains the same. On the other hand, if a finer frequency res-
olution is necessary, the size of the FFT can simply be
increased while maintaining the sampling frequency.

With a uniformly weight FFT, that is, without windowing,
the selection of Δf corresponds to the measurement band-
width, Bm =Δf, so that a specified received signal-to-noise
ratio of γb = Eb/No corresponds to a signal-to-noise ratio in
the measurement bandwidth of

γBm
= γb

Rb

Bm
(11.55)

This results in a signal-to-noise ratio improvement of
12 dB. However, as indicated in Figure 11.36, the sig-
nal-to-noise ratio in the FFT cells at fε ± Rb/4 is 3.9 dB
lower than given by (11.55) resulting in an improvement
of 8.1 dB at each tone frequency of interest. The selection
of a smaller Δf will allow a more accurate estimation of the
frequency error and bit rate as determined using (11.52)
and (11.53).

The simulated spectrums under the foregoing conditions
and a normalized frequency error of fεT = 1 are shown in
Figure 11.37 for received signal-to-noise ratios of Eb/No =
9.6 and 4.1 dB. These signal-to-noise ratios correspond,
respectively, to uncoded and rate 1/2, K = 7 convolutional
coded antipodal modulation performance at Pbe = 10−5. The
simulated signal-to-noise ratio of each spectral tone, corre-
sponding to n = ±1, is evaluated by establishing the received
signal-to-noise ratio, given the signal amplitudeA, as expressed
in (11.45) and then zeroing the signal into the demodulator and
computing the total noise power σ2n as the sum of the noise
variances on the quadrature rails of the complex spectrum.
The resulting simulated signal-to-noise ratio, averaged over
two independent FFT records, is 17.2 and 12.14 dB for the
respective Eb/No values in Figure 11.37. These signal-to-
noise ratios are simulated in the measurement bandwidth
equal to Δf and compare favorably with the theoretical value
computed using (11.55) when adjusted by the 8.1 dB loss at
the spectral tones at n = ±1. This simple evaluation, or test,
goes a long way in confirming the validity simulation.

The results of this case study are presented in normalized
form, that is, the frequencies are normalized by the bit rate
as f/Rb or fT. Because of the frequency normalization and
the AWGN channel being considered, the following

Normalized frequency (fT)

–2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 2.0

N
or

m
al

iz
ed

 m
ag

ni
tu

de
 (

lin
ea

r)

0.00

0.25

0.50

0.75

1.00

Normalized frequency (fT)

–2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 2.0

N
or

m
al

iz
ed

 m
ag

ni
tu

de
 (

lin
ea

r)

0.00

0.25

0.50

0.75

1.00
(a)

Eb/No = 9.6 dB

(b)

Eb/No = 4.1 dB

FIGURE 11.37 Simulated spectrum of repeated 1100 repeated (fεT = 1).

*The reference to the bit rate can be more broadly applied to mean the sym-
bol rate.
†This sampling frequency is somewhat larger than necessary; however, it is
convenient for two reasons: the numerology is compatible with the radix-2
FFT and a larger antialiasing filter transition bandwidth results in reduced
filter complexity for a given band-reject attenuation.
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performance results can be applied to any user bit rate of
interest; however, the bit rate must be considered when chan-
nels with memory are evaluated. The simulation includes a
145 tap transversal antialiasing filter with a normalized sam-
pling frequency of fsT = 8 and normalized 3 dB cutoff and
transition frequencies of fcT = 2 and fTT = 1.5 with a band-
reject attenuation of 50 dB. Figure 11.38 shows the noise-free
spectrums and the antialiasing filter with fεT = 0 and 1.5. The
relative magnitudes of the spectral tones at fT ± n 4 n
odd integer, when compensated for the 3.9 dB normalizing
level used in Figure 11.38, compare favorably with the the-
oretical values computed using (11.49).

The following simulated synchronization performance
results are based on 500 Monte Carlo trials for each signal-
to-noise ratio with the random number generators reinitialized
for each signal to noise. For each trail the normalized frequency
error is uniformly distributed over the range fs Rb max = 1 5.
Because the bit rate and frequency error are unknown, the
two largest spectral magnitudes found in the bandwidth of
the antialiasing filer are used in the estimation process. The
frequency estimation for each trial is based on the normalized
form of (11.52) where fuT or flT are computed for x = {u,l} as

f xT = − Nfft + 1 + ℓx
Ns

Nfft
(11.56)

The FFT array has been left shifted by Nfft/2 so that the
zero frequency location corresponds to ℓ =Nfft/2 + 1 and
the locations ℓl and ℓu are determined from the locations
of the two largest spectral magnitudes. Using (11.56) the
normalized frequency error estimate, expressed in terms of
locations ℓl and ℓu, becomes

f εT = −
Nfft

2
+ 1 +

ℓu + ℓl
2

Ns

Nfft
(11.57)

Similarly, the bit rate estimate expressed, in terms of loca-
tions ℓl and ℓu, is evaluated as

f xT = 2 ℓu−ℓl
Ns

Nfft
(11.58)

Because the bit rate is unknown, it is essential to estimate the
bit rate correctly to establish the twospectral tones for determin-
ing the frequency error. The probability that the normalized bit
rate is estimated towithin12.5%, that is, Rb Rb−1 ≤ 12 5 ,
is shown in Figure 11.39a as a function of the signal-to-noise
ratio; this resolution corresponds to two frequency resolution
cells or 2Δf. Unfortunately, the bit rate estimation is four
times more sensitive to errors in the locations ℓl and ℓu than
is the frequency estimation (see Problem 13). This is evident
from the normalized frequency and bit rate estimation errors
shown in Figure 11.39b and c as a function of the signal-to-
noise ratio.* The irregularity in the maximum and minimum
errors at low signal-to-noise ratios occurs because they rep-
resent the relatively small sample size of outliers in the
500 samples at each signal-to-noise ratio; the random gener-
ator seeds are reset for each signal-to-noise ratio. The maxi-
mum and minimum values for signal-to-noise ratio ≥8 dB
correspond to a variation of one frequency resolution cell
for the frequency and bit rate estimation errors.

The performance in this case study represents the use
of fundamental algorithms and the performance can be
improved by using more processing intense techniques.
Some examples are as follows:

• Zero padding the FFT will improve the accuracy of the
frequency estimation, although the resolution band-
width remains unchanged.
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FIGURE 11.38 Simulated spectrum of repeated 1100 repeated (Eb/No =∞ dB).

*Note that the ordinate values in these plots differ by 2 : 1.
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• Increasing the measurement window, with a com-
mensurate increase in the FFT size. The resolution
bandwidth is improved with an accompanying
improvement in the measurement signal-to-noise ratio.

• Using linear or parabolic interpolation to refine the fre-
quency resolution measurement.

• Using an FFT window to reduce the spectrum leakage
into adjacent FFT cells when the signal tones at fT ± n/4
do not fall at the center of an FFT cell.

• Using a higher bit rate estimation tolerance for declar-
ing a successful bit rate acquisition, for example,
increasing the 12.5–25%. However, increasing the bit
rate estimation tolerance is limited by the acquisition
and tracking algorithm requirement discussed in
Section 11.3.5.

• Using multiple FFTs and an m-of-n decision criterion
for declaring a successful bit rate detection.

In many applications the bit rate or a number of possible
bit rates are known and the issue becomes one of finding the
ℓl and ℓu pairs corresponding to the received bit rate. This
can be accomplished by searching through pairs of ℓl and ℓu

corresponding to combinations of FFT cells with succes-
sively lower magnitudes until the bit rate is found or a limit
is reached and a missed bit rate is declared. When the bit rate
is declared the frequency estimation is performed using
(11.52). The performance improvements listed earlier also
apply to the known bit rate case; however, the use of multiple
FFTs and the m-of-n decision criterion is a major considera-
tion for both detection and confirmation before proceeding to
the symbol acquisition and tracking processing.
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FIGURE 11.39 Detection and estimation results for repeated 1100 data.
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11.3.2.4 Detection, Symbol Rate, and Frequency Estima-
tion Using MSK-Modulated Waveform In this section, the
characteristics of the MSK-modulated waveform spectrum
are examined for detection and estimation of the frequency
and symbol rate. In this regard, the objectives are identical
to those discussed in Section 11.3.2.2; however, the focus
is on the unique spectral characteristics of the MSK wave-
form. The preamble for the multi-h CPM waveform, dis-
cussed in Chapter 9, uses MSK with a symbol rate equal to
that of the multi-h-modulated user data.

The following descriptions of the MSK-modulated signal
are based on unique data patterns that result in distinct spec-
tral lines at harmonics related to the symbol rate. These spec-
tral characteristics are exploited to estimate the signal
presence, carrier frequency, and symbol rates during the syn-
chronization segment of the preamble. The data patterns
examined are the repeated sequences 1100… and 10…where
the number of repetitions commensurate with the detection
and signal-to-noise specification based on the system appli-
cation. For example, the repeated 1100… data is specified
for the multi-h CPM-modulated waveform preamble and is
repeated for a total of 192 bits corresponding to the bit rate
of the 2-h CPM modulation. When mark- or space-hold data
is applied to the MSK modulator the transmitted signal is a
CW tone corresponding to upper MSK tone fc + Rs/2 and
when alternate mark-space data is applied the lower MSK
tone at fc − Rs/2 is transmitted; if required, these tones can

serve as a CW preamble. However, when a randomly modu-
lated MSK waveform is squared, the resulting spectrum con-
tains discrete spectral tones, at 2fc ± Rs. These tones can be
used for signal detection and synchronization without the
necessity of having a CW preamble. The downside of the sig-
nal squaring is a decrease in the signal-to-noise ratio resulting
from the squaring loss and a frequency doubling that requires
a higher demodulator sampling frequency. The noise-free
spectrums of the squared MSK-modulated signal with ran-
dom and the repeated 1010… data patterns are shown,
respectively, in Figure 11.40a and b. The characteristics of
the signal processing and the 1024-point FFT are summar-
ized in Table 11.10. In both of these cases, the spectral lines
of interest occur at fc ± Rs.

Figure 11.41a shows the noise-free spectrum of a ran-
domly modulated MSK waveform and is provided as a point
of reference for the spectrum of the MSK-modulated pream-
ble data 11001100… shown in Figure 11.41b; the preamble
pattern is repeated for 192 bits. These spectrums are normal-
ized by the maximum level and are based on computer simu-
lations using a 1024-point FFT as detailed in Table 11.10.
The efficiency is a measure of the duration of a single FFT
relative to the synchronization preamble length of 192 bits.
The 1024-point FFT occupies 66.7% of the synchronization
interval so, to ensure that at least one FFT captures the inter-
val; the FFTs must be overlapped by 33.3%. On the other
hand, the 768-point FFT ensures that at least one FFT
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FIGURE 11.40 MSK acquisition preamble spectrums (1024-point FFT).

TABLE 11.10 Summary of FFT Processing Parameters

Nfft Ns TfftRs fres/Rb η (%) Gsnr (dB)

1024 16 64 1/32 66.7 15
768 16 48 1/24 50.0 13.8

Ns = sample/symbol, TfftRs =Nfft/Ns, fres/Rb = 2/TfftRs, η (%) = 200(Tfft/Rs)/192.
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captures the interval and, with 50% overlapping, at least two
FFTs occupy the synchronization interval. Another important
parameter is the signal-to-noise ratio improvement, relative
to γb = Eb/No, expressed as

Gsnr dB = 10log10
Rb

fres
(11.59)

Figure 11.41c and d show the spectrum of the MSK syn-
chronization preamble segment using the 1024-point FFT for
the signal-to-noise ratios γb = 6 and 3 dB, respectively. In
these cases, the normalized frequency error of the received
signal is fεTb = 1. The plots with additive channel noise use
different noise seeds so the results are statistically independ-
ent. The −23.1 and −29.9 dB spectral lines are buried in the
noise; however, spectral lines at fc ± Rs/2 and fc ± Rs exhibit a

sufficient signal-to-noise ratio, although the variations result-
ing from the additive noise in the FFT resolution cells are
evident.

Figure 11.42a and b are similar to those in Figure 11.41c
and d except that the 768-point FFT is used. The increase in
the noise floor is evident; however, there is still a healthy sig-
nal-to-noise ratio in the cells containing the spectral lines of
interest. Referring to Section 9.3.4.1, the minimum γb for the
multi-h CPM modes at Pbe = 10−5 is about 5.3 dB so the syn-
chronization processing for the 3 dB condition using either
FFT provides a degree of acquisition robustness. The proces-
sing of correctly estimating the frequency error and symbol
rate is enhanced by using a weighted sliding window smooth-
ing function across the FFT spectrum cells and selecting the
optimum frequency error and symbol rate corresponding to
the minimum weighted mean-square error (MSE) between
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FIGURE 11.41 MSK multi-h CPM acquisition preamble spectrum (1024-point FFT).
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the sliding window and the magnitudes of the FFT cells. In
this case, the weights of the smoothing function are chosen
as the magnitude of the three or five symmetrical cells from
Figure 11.41b; this approach is similar to the parabolic inter-
polation discussed in Appendix 2C.

11.3.3 Signal Detection and Parameter Estimation
Using Correlator

Signal correlation is a convenient technique to determine the
symbol time and frequency and, as discussed in the following
section, can be used without the CW preamble segment. Cor-
relation processing is used extensively in spread-spectrum
applications to determine code synchronization as discussed
in Chapter 13. However, as mentioned previously, the acqui-
sition time and processing complexity is significantly
reduced when all of the preamble segments are available.

In the following analysis, the correlator is examined in
terms of the baseband BPSK-modulated received signal
s t and the demodulator reference signal sr t . The correla-
tion function is expressed as

R τ; f ε =

∞

−∞

s t; fε, f ε s∗r t−τ dt (11.60)

The delay τ is referred to as the correlation lag and fε and f ε
are the input signal frequency and frequency-rate errors fol-
lowing the coarse frequency estimation. In practice, the range
of the integration in (11.60) is over the duration of the syn-
chronization data pattern denoted as Tp. The synchronization
data pattern must have sufficient energy, either signal power
or duration, to reliably detect the synchronization code;
however, long codes are subject to unacceptable coherent
integration losses requiring coherent integration over shorter

intervals with noncoherent combining of multiple intervals
to achieve the signal to noise required for reliable synchroni-
zation. Frequently, a short synchronization code is simply
repeated a number of times to achieve the specified synchro-
nization requirements. For example, if the coarse frequency
estimate fε is such that the product fεTp results in an unaccept-
able signal to noise over the correlation interval Tp = NbTb
where Nb is the number of code bits of duration Tb, then
noncoherent combing of N repeated codes may be per-
formed to achieve the required signal-to-noise ratio for
synchronization.*

Consider the complex received noise-free baseband
BPSK-modulated signal and the corresponding demodulator
reference signal expressed, respectively, as

s t =Adne
j θε t +φ rectT t,n received signal (11.61)

and

sr t = dnrectT t−τ,n demodulator reference (11.62)

where dn ± 1 0 ≤ n ≤Nb−1 represents the received and
reference binary data, φ is the unknown constant received
signal phase error, and the time-dependent phase function
θε(t) represents the demodulator angular frequency and fre-
quency-rate errors and is expressed as

θε t =ωεt +ωεt
2 2 (11.63)

In this analysis the demodulator reference signal has unit
voltage amplitude. Considering a repeated code length of Nb

bits, the correlation response given by (11.60) is evaluated
over the code duration Tp as
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FIGURE 11.42 MSK multi-h CPM acquisition preamble spectrum (768-point mixed radix FFT).

*Coherent and noncoherent detection and multiple pulse noncoherent com-
bining loss is the subject of Appendix C.
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R τ; f ε =Aejφ
Tp

0

ejθε t dn kdnrectT t,n k rectT t−τ,n dt

(11.64)

The notation dn:k refers to the k-sample misalignment cor-
responding to the reference delay τ. This expression is best
explained by the example depicted in Figure 11.43 using a
7-bit Barker sequence with Ns = 4 samples per bit. The
received baseband sampled signal corresponding to one code
interval is sequentially stored in the complex array s iΔT
and the real sampled local reference is stored in the array
sr(iΔT). There are NsNb contiguous stored samples in each
array; however, the data samples are not aligned. For exam-
ple, the stored reference samples are delayed by k = 9 samples
from those of the stored received signal samples. The task of
the correlator synchronization processing is to determine the
optimum correlation lag, τopt, for which dn:k|k=0 = dn for all
samples. The resulting code-bit alignment is used for symbol
time and phase tracking in preparation for detecting the SOM
location and subsequently the data demodulation. In this
example the optimum correlation lag is determined by advan-
cing, or cyclically left shifting, the stored reference bits
through k = 2NsNb + 1 samples and then associating the opti-
mum lag corresponding to the maximum correlation. As
shown in Figure 11.43, the optimum correlation lag correc-
tion is seen to be Δt = 9ΔT .

In the context of Figure 11.43, consider the transmitted
BPSK baseband acquisition waveform with Barker code data
dIn = ± 1. The simplified* expression for the transmitted
waveform is expressed as

sT n =
A

2
dIn (11.65)

When the transmitted signal is passed through a noiseless
channel that introduces a signal phase shift θε t +φ, the
received baseband sampled signal is described as

s n = sT i,n ej θε iΔT +φ

=
A

2
dIn cos θε iΔT +φ + jsin θε iΔT +φ

(11.66)

The simplified BPSK acquisition correlator and demodu-
lator processing is shown in Figure 11.44.

Using the input described by (11.66), the correlator output
samples gc(m) are expressed as

gc m = εII n−m cos θε iΔT +φ + jεII n−m sin θε iΔT +φ

(11.67)

where εII n−m is evaluated as

εII m =
A

2 n

dIndIn−m =

AN

2
m= 0

Aε

2
m 0

(11.68)

When m = 0 the ideal correlator output corresponds to the
maximum response with εII 0 =AN 2. For the cyclically
shifted Barker sequence, the correlation error is ε = −1, for
the barker sequences.

During the SOM correlation and data detection, the ideal
signal phase and timing estimate errors are zero; however, at
this stage of the signal acquisition processing the phase is
unknown and the effect of the phase-error terms must be
removed using noncoherent detection as shown in
Figure 11.44. The sensitivity of the normalized correlator
output to a frequency error is evaluated at the zero lag con-
dition when the received and reference signals are perfectly
aligned. For BPSK modulation, the correlator sensitivity is
evaluated† as

R 0; f ε, f ε =
A

2Tp

Tp

0

ej φ+ 2πfεt + πf ε t
2
dt (11.69)

Substituting the variable x = t/Tp in (11.69) results in the
normalized solution

R 0; f εTp, f εT
2
p =

A

2

1

0

ej φ+ 2πfεTpx+ πf εT
2
p x

2
dx (11.70)
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FIGURE 11.43 Repeated 7-bit barker sequences (fεTb = 0, φ = 0,
Ns = 4).

*The simplifications result from eliminating the rect( ) function that describes
the BPSK symbols and, in the demodulation processing, the alignment of the
receiver reference symbol timing.

†With quadrature modulations the in-phase and quadrature symbol channel
cross-talk must be considered.
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The correlation loss resulting from fε, f ε, and φ are
evaluated numerically over the ranges of Tp shown in
Figure 11.45 where fεr = f ε. With coherent integration the
phase φ is set to zero, however with noncoherent detection
this is not necessary. A theoretical solution to (11.69) and
(11.70) is provided by Gradshteyn and Ryzhik [40] and,
using their results, the magnitude of the correlation function
can be shown to be independent of the signal phase. At this
point in the acquisition processing, the constant phase error is
the least of the concerns, since the PLL will acquire and track
the phase prior to the SOM processing. Furthermore, an esti-
mate of the phase can be obtained from the in-phase and
quadrature rails of the peak SOM correlation response to
ensure that the PLL does not lock 180 degrees out of phase.

As an example of the correlation processing, the 7-bit
Barker code correlation response is evaluated using a simu-
lation program with f ε = 0 and Ns = 4 samples per code bit.
The simulated coherent detection performance, shown in
Figure 11.46a, is ideal sense that fε and φ are also zero.
The noncoherent correlation response for a normalized fre-
quency error of fεTp = 0.2 is shown in Figure 11.46b. In this
case, the simulated peak correlation response is 0.935
corresponding to a loss of 0.58 dB which is confirmed in
Figure 11.45b.

The correlator and the CW FFT processing discussed in
Section 11.2.2.2 are based on BPSK modulation so, in the
following evaluations, the symbol interval corresponds to
the bit interval with T = Tb. The overall objective of this
section is to reduce the estimates of fε, f ε, φ, and τ to ensure
that the phaselock and symbol timing loops are tracking
throughout the SOM correlation processing. This is accom-
plished using noncoherent estimation with an iterative proc-
ess of adjusting τ to obtain a peak correlation response and
then adjusting the frequency and frequency rate to minimize
the loss. The normalized frequency error expressed as the
product of the frequency error and the observation or estima-
tion interval is defined as

fεTp = fnorm (11.71)

where fnorm is the normalized CW frequency error that is
determined from the specified probability Pr error ≤ fε CW
for a CW signal and the FFT parameters as depicted in Fig-
ures 11.15, 11.16, and 11.17. Equation (11.71) gives rise to
three system design issues: the accuracy of the CW frequency
estimate (fnorm), the duration of the synchronization code
(Tp), and the tolerance of the correlator (Loss) given the
frequency error. Considering the unweighted, zero-padded,

gc(0) Detection?

Yes/NoDetection
processing

dIn

~s(n)

Correlator

Σn

Bit
clock

FIGURE 11.44 BPSK acquisition correlator processing.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30

C
oh

er
en

t l
os

s 
(d

B
)

0

1

2

3

4

5

6

fεrTp
2

(Hz)

fεrTp
2

(Hz)
0

1/32

1/16
1/8

N
on

co
he

re
nt

 lo
ss

 (
dB

)

0.0

0.5

1.0

1.5

2.0

1/16

0

1/32

1/8

(a) (b)

Normalized frequency error ( fεTp) dBˆ

Noncoherent detection loss

Normalized frequency error ( fεTp) dBˆ

Coherent detection loss (φ = 0)

FIGURE 11.45 Acquisition code correlation loss.

SYMBOL SYNCHRONIZATION PREAMBLE SEGMENT 447



256-point FFT in Figure 11.15 with a sampling rate of fs =
140 kHz, the frequency resolution is computed as fres =
546.875 Hz and the estimation interval is Tp = Tfft = 1.828
ms. Selecting fnorm for Pr error ≤ fε CW = 0.99 correspond-
ing to the best case error estimate with Eb/No = 3 dB results in
fnorm = 0.15. Using these parameters and (11.71) results in:
fεTp = 0.15, a correlation loss of 0.26 dB, and fε = 82 Hz.
The significance of the frequency error depends on the sys-
tem symbol rate, however, referring to (11.5), for a second
order PLL to achieve phase-lock without cycle skipping
requires than fε < FL.

The length of the synchronization code impacts the
correlation gain and the correlation loss as indicated
earlier. The signal-to-noise ratio at the correlator output
is also dependent on the length of the synchronization
segment and must satisfy the requirement to declare a
correct synchronization probability, Pc(sync). However,
the practical length of the synchronization code is
dependent on the frequency estimation accuracy and
the correlation time of the channel and various system
oscillators used for frequency conversion. For example,
an off-the-shelf, low-cost, nonovenized oscillator with a
correlation time of 0.3 s limits the N-bit acquisition
correlator length to N < 0 3Rb where Rb is the BPSK-
modulated bit rate. If the resulting correlator output
signal-to-noise ratio is inadequate to provide the specified
synchronization probability then repeated synchronization
codes must be included in the synchronization segment
and noncoherently combined to achieve the performance
results.* The noncoherent combining of synchronization
codes is discussed in the following section.

11.3.4 Synchronization Without CW Preamble
Segment

The preamble discussed in this section is based on a known
synchronization preamble segment of contiguously repeated
N-bit Barker codes. The focus is on the detection, synchroni-
zation, frequency and symbol timing estimation, and PLL
tracking without the aid of the CW preamble. The synchro-
nization objective is identical to those discussed previously,
namely, to provide for the coherent detection of the SOM
sequence. The demodulator synchronization functional pro-
cessing is shown in Figure 11.47. The following description
applies to very low received signal-to-noise ratios as might be
encountered with turbo coded FEC. This is followed by the
more conventional description when operating in high signal-
to-noise ratio encounters.

The signal acquisition and synchronization processing
with very low input signal-to-noise ratios is described as
follows. Using the known range of the received signal fre-
quency uncertainty (|f| ≤ fmax) the demodulator sampling fre-
quency (fs) is established as in (11.7). The ADC Nsc samples
spanning the one Barker code interval are mixed to base-
band by the coarse reference frequencies (fref,i) and stored
as raw data samples over the range of the received signal
frequency uncertainty.† The down-sampled and low-pass
filtered stored samples result in the equivalent of Ns samples
per Barker code bit that are coherently correlated with
the stored reference Barker code; cyclic correlation is used
to identify the code misalignment. The correlation magni-
tude is stored in the correlation accumulator forming a
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FIGURE 11.46 Repeated 7-bit barker code correlation response (fεrT2
p = 0, φ = 0, Ns = 4).

*This assumes that the system is operating at the maximum transmitter power
and that coherent integration is limited by the phase stability of the system
oscillators.

†At this point, the stored raw data samples may consist of noise only or noise
only samples followed by Barker code samples. As the synchronization
search continues the stored raw data samples are replaced by the Ns newly
formed received samples; the Ns samples are not necessarily synchronized
with the Barker code bit samples.
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(NNs, imax,) time-frequency noncoherent correlation sur-
face. This provided for a global search over the entire
time–frequency uncertainty range. The number of Barker
code correlations is determined by the input signal-to-noise
ratio and the output signal-to-noise ratio required to achieve
the desired synchronization probability as discussed in
Appendix C. Upon completing the noncoherent accumula-
tions a two-dimensional time–frequency censored CFAR is
performed around the largest correlation magnitude. If the
CFAR thresholds are pasted a fine-frequency estimate is
established in the same manner around the location of the
maximum correlation and phase and symbol time tracking
are initiated while searching for the SOM location. If the
first CFAR is not passed then the process is repeated for
the next four or five largest surface maximums before
declaring a missed acquisition.

Examining the entire time–frequency correlation surface
prior to performing the CFAF detection processing mini-
mizes the false detections and thereby reduces the average
synchronization time when the received signal frequency is

uniformly distributed over the entire frequency range.
However, if the received signal frequency is, for example,
normally distributed about a previously detected mean
frequency, the correlation surface search strategy can be
improved with a reduction in the average acquisition time.
Increasing the length of the synchronization segment by con-
catenating additional synchronization codes negates the
necessity to examine multiple correlation responses over
the time–frequency surface; however, the increased preamble
duration is unacceptable in many applications. For example,
when operating with an input code-bit signal-to-noise ratio of
−3.27 dB, choosing the number of synchronization code
repetitions so that examining the four highest correlation
detections over the time–frequency surface results in a cor-
rect synchronization detection of Pc(sync) = 0.99 corre-
sponds to a preamble length that is three to four times
shorter than is otherwise required by examining one maxi-
mum correlation location.

The signal acquisition and synchronization processing
with high input signal-to-noise ratios is described as follows.
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FIGURE 11.47 Correlator synchronization and detection processing (signal-to-noise ratio: ∗low, †high).
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The time–frequency correlations are established using coher-
ent Barker code combining and the CFAR detections are per-
formed sequentially on each frequency hypothesis without
the necessity of creating a time–frequency correlation sur-
face. This allows for fewer Barker coded repetitions and
much shorter preambles; however, the correlator output sig-
nal-to-noise ratio must be sufficiently high to result in an
acceptable false-synchronization probability. The fine-
frequency correlation processing is also performed as
described earlier to ensure that the frequency estimate is
within the lock-in frequency of the PLL.

The correlation processing shown in Figure 11.47 is based
on conventional time-domain correlation that is performed at
each frequency; however, the processor loading is reduced
using an FFT correlator [41] in which the spectrum H(m)
of the sampled reference and S(m) of the received synchroni-
zation code are appropriately stored in the FFT memory.
Under these conditions the correlation response is simply
obtained as the IFFT of the product S(m)H∗(m). Furthermore,
the correlation corresponding to a correlation lag of (t − nΔτ)
is obtained in the frequency domain correlator through a
complex phase shift of exp − jωnΔτ that is efficiently exe-
cuted in the frequency domain.

11.3.5 Symbol and Frequency Acquisition and
Tracking

Based on the synchronization preamble segment processing
discussed in the preceding sections, the estimate of the carrier
frequency error has been adjusted to less than the PLL lock-in
frequency and the symbol timing error is within about 1/8 of
the symbol interval or about 1/32 of the symbol interval with
RRCmodulation. The final task of the synchronization pream-
ble segment is to use these estimates and initialize frequency
and symbol acquisition and tracking and ensure that steady-
state tracking occurs prior to the SOM preamble segment.
The PLL frequency tracking requirements, functions, and per-
formance are discussed in Chapter 10. The symbol tracking
functions are introduced in Sections 2.8.5 through 2.8.7.
The E/L gate symbol integrator is used to generate a timing
error discriminator response for symbol tracking. In
Chapter 4 the symbol timing error generation and tracking
functions are shown to be an integral part of the Costas or base-
band PLL. Symbol timing adjustments on the orderΔT ≤ T/16
are typical for most modulations; however, for RRC and
phase-shaped modulations adjustments of ΔT ≤ T/64 are
recommended.* The rate of the symbol timing adjust must
be controllable with more frequent or larger adjustments
during the pull-in range of the symbol tracking processing.
To reduce the impact of the channel and receiver noise on

the timing adjustment, the output of the E/L gate discriminator
is filtered with a controllable bandwidth that is reduced
following the detection of symbol tracking. The symbol rate
is typically established by an accurate system clock, whereas
received signal carrier frequency is dependent on the dynamics
of the channel and the link encounter. Therefore, to minimize
the mutual interaction between the two tracking functions, the
steady-state response of the symbol tracking loop should be
8–10 times slower than the carrier tracking loop.

The general implementation of the frequency and symbol
tracking functions is shown in Figure 11.48. A major differ-
ence in the PLL implementation, from those previously dis-
cussed, is that, the known synchronization preamble data, di,
is used to aid the carrier frequency acquisition; this is referred
to as data-aided synchronization. Although the preamble data
is known from the synchronization processing, it is not
known when the synchronization code ends and the SOM
code starts, so, the PLL must revert to decision-directed syn-

chronization using the demodulator data estimates di as soon
as possible. This transition is made when the loop lock detec-
tor indicates the phaselocked condition.

The stored samples of the fine-frequency corrected
received baseband signal ŝ(nTs) are used to compute the sym-
bol time error using the E/L gate outputs evaluated as

Ie =
Ns 2

k = 1

s kTs−τ (11.72)

and

Iℓ =
Ns

k =Ns 2 + 1

s kTs−τ (11.73)

where Ts =Ts M, s kTs−τ is the down-sampled baseband
signal corresponding to a symbol error of τ seconds relative
to the demodulator reference, and Ns is the number of down-
sampled samples per symbol.† The E/L output is computed as

ετ =
Ie − Iℓ
Im

(11.74)

where Im = Ie + Iℓ is the matched filter output sample. Using
the magnitudes to determine the timing error corresponds
to noncoherent detection and the performance with additive
noise is degraded from that of the coherent detector as
expressed in (2.33). Referring to (11.74), when τ > 0 the
received signal is delayed relative to the demodulator time
base and the output error is positive and when τ < 0 the signal
leads the demodulator time base and the error is negative. In
either case, the respective samples from the succeeding or

*Considering the dynamics of the symbol tracking loop, these discrete adjust-
ment steps result in an average symbol tracking error less than about T/8 and
T/32, respectively.

†Generally Ns is an even number, however, if Ns is odd then the odd sample
must be alternately distributed between the early-late outputs to ensure that
the timing error is unbiased.
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preceding symbols corrupt the E/L gate error; however, with
selected data patterns, including random data, these contribu-
tions are averaged to zero in the E/L filter output resulting in
an unbiased estimate.

The details of the timing logic in Figure 11.48 are shown
in Figure 11.49. The threshold Nthr is dependent upon the
timing update increment ΔT and is typically selected during
the demodulator simulation and confirmed during hardware
testing. After each timing update, the symbol counter is reset
to zero to provide hysteresis and avoid over-correcting of the
symbol timing. Following the detection of symbol-timing
lock the threshold is increased to slowdown the timing adjust-
ments during data detection. This can also be accomplished
by decreasing the bandwidth of the E/L LPF.* The symbol-
timing lock detection is not shown in Figure 11.48, however,
is obtained by applying the CFAR algorithm to the E/L filter
output with lock detection declared in response to a predeter-
mined low timing error variance.

The single-pole E/L LPF, shown in Figure 11.50, is a
recursive filter with the coefficient computed as

α= e−2πBTs (11.75)

The normalized bandwidth of the filter is BTs and the filter
gain Ga = 1 − α results in a unit gain response; the gain G
and the BTs product are available for externally controlled
adjustments during system testing.
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*When the symbol timing loop is modeled as a first-order loop, the filter is
simply a gain followed by an ideal integrator. In this case, the bandwidth is
controlled by selecting the filter gain.
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11.4 START-OF-MESSAGE (SOM) PREAMBLE
SEGMENT

The SOM preamble segment is used to locate the first mes-
sage header bit or the first message information bit if the
header is not included in the preamble. This first message
bit is identified by the location of the SOM code correlation
peak. When the first SOM code bit is encountered, the sym-
bol and frequency tracking loops are locked and operating
under their respective steady-state tracking conditions pro-
viding for coherent detection of the SOM bits. Upon initia-
tion of the symbol and frequency acquisition during the
synchronization preamble segment, the stored synchroniza-
tion data bits are shifted through the symbol and phase track-
ing loops eventually encountering the SOM code bits that
lead to the detection of the SOM correlation peak. Although
the first bits correspond to those of the synchronization code
segment, as the SOM code bits are encountered the SOM
lead-in correlation begins as illustrated by the LPN SOM
code correlations in Figure 11.31.* Throughout the coherent
correlation processing a one-dimensional CFAR detection
algorithm is operating looking for a threshold crossing to
identify the location of the peak correlation. Since the pream-
ble and message bits are operating at the same symbol rate,
the signal-to-noise ratio corresponds to the Eb/No required
for the message bit detection. Therefore, for a SOM sequence
of N bits, the gain in the signal-to-noise ratio corresponding
to the peak correlation output is 10log10(N) dB. For example,
the 74-bit LPN SOM code detection signal-to-noise ratio is
18.7 dB above the operating Eb/No. The detection and
false-alarm probabilities for coherent detection are character-
ized in Appendix C. Consider, for example, a SOM false-
alarm probability of Pfa ≤ 10

−3 is specified and the operating
signal-to-noise ratio is Eb/No = 6.3 dB. Using the 74-bit LPN
SOM code the SOM detection signal-to-noise ratio is γsom =
25 dB and, considering the N − 1 = 73 false-alarm opportu-
nities, the false alarm per bit must be Pfa(bit) ≤ Pfa/N =
1.37 × 10−5. Referring to Figures C.2 or C.3 the

corresponding correct SOM detection is Pc(SOM) ≥ 0.999
for a signal-to-noise ratio ≥14.3 dB so the 25 dB signal-to-
noise ratio is more than sufficient to achieve a SOM detection
probability† of 0.999.

11.5 SIGNAL-TO-NOISE RATIO ESTIMATION

In the concluding sections of this chapter, various methods of
estimating the received signal and noise powers and the
resulting signal-to-noise ratio are discussed. Estimation of
these received signal parameters is an important aspect of
the signal acquisition processing for determination of the link
quality. For example, signal-to-noise estimates are often
reported to network controllers for the purpose of power con-
trol and network configuration management. These estimates
are also used in the demodulator for: establishing the opti-
mum PLL operation, diversity combining, as discussed in
Chapter 18 and Section 20.9; detection of Reed–Solomon
symbol erasures; soft-decision Viterbi decoding; and detec-
tion of extended signal fading or loss-of-signal conditions
for the purpose of temporally suspending the demodulator
tracking functions. System specifications often require that
bit count integrity is maintained for a specified time follow-
ing a signal outage with a specified probability and confi-
dence level of recovering bit synchronization when the
signal is recovered. The design challenge is to rapidly detect
the signal loss and terminate all tracking functions while
maintaining the intrinsic synchronization accuracy based
on the parts-per-million (ppm) specification of the local oscil-
lators and system clocks.

Although the focus of this section is on the signal-to-noise
ratio estimation, the estimation of the bit error rate (BER) is
also an important demodulator signal quality measure. New-
combe and Pasupathy [42] document their survey results of
various BER estimation techniques and Rife and Boorstyn
[43] discuss multiple tone parameter estimation using dis-
crete-time samples. Pauluzzi and Beaulieu [44] have sur-
veyed several techniques for estimating the signal-to-noise
ratio. Their survey includes the analysis and simulation of
the various techniques and a performance comparison using
a commonMSE performance metric; the techniques are listed
in Table 11.11. Based on their study the following conclu-
sions are made: if the data is known at the demodulator, as
for example, during acquisition and training intervals, the
ML and SNV are superior. With unknown data, the best per-
forming estimators are the ML, SNV, and M2M4, which,
coincidently, are the easiest of the techniques to implement.

Unit gain filter 

G Ga T′s

ε𝜏ε𝜏

α

FIGURE 11.50 Symbol E/L low-pass filter.

*The lead-in correlation will not be exactly as illustrated in this figure
because the bits preceding the SOM sequence are not zero but correspond
to the synchronization data.

†This is an optimistic simplification because the false-alarms probabilities
computed in Appendix C correspond to zero-mean Gaussian noise in each
false-alarm cell, whereas the correlation response in the nonzero lag cells
include noise-like uncorrelated signal components.

452 WAVEFORM ACQUISITION



All of the estimators are based on ideal distortion less
sampled baseband data-modulated waveforms with AWGN
described as

yk = Psmk + Pnnk (11.76)

where Ps and Pn are the signal and noise power scale fac-
tors applied, respectively, to the sampled complex signal
modulation and noise functions mk and ñk. The in-phase
and quadrature noise samples are iid Gaussian random vari-
ables with zero mean and unit variance. Considering real and
symmetric modulation functions the matched filter output
samples are as follows:

yn = Sn +Nn

= Ps

Ns

ℓ = 1

mk + ℓmk + ℓ +
Ns

ℓ = 1

nk + ℓmk + ℓ

(11.77)

where Ns is the number of samples per symbol, k = n−1 Ns

is the k-th sample corresponding to the n − 1 received sym-
bols, and mℓ is the matched filter impulse response.*

Referring to the matched filter development in Section 1.7,
the matched filer output signal-to-noise ratio for a carrier-
modulated waveform is expressed in terms of the signal
energy, EB, and the one-sided noise power spectral density
(No) as

γB =
EB

No
(11.78)

In general, EB = Ps/B where B is the bandwidth in which
the noise power is measured; in the following evaluation
of the signal-to-noise ratio estimation techniques B = Rb so
the signal energy corresponds to the energy per bit, denoted
as Eb. The following sections outline the estimation proces-
sing of several techniques, as formulated by Pauluzzi and
Beaulieu and listed in Table 11.11. The concluding sections
provide two case studies of the estimation performance. Esti-
mates of the signal-to-noise ratio are often required for net-
work control and, based on Monte Carlo simulations in
AWGN channels,† reasonable expectations of the estimation
accuracies are indicated in Table 11.12.

11.5.1 Maximum-Likelihood (ML) Estimator

The maximum-likelihood signal-to-noise estimator applies
for an arbitrary number of samples per symbol (Ns) so it
can be used to estimate the signal-to-noise ratio in an arbitrary
bandwidth. The estimators of interest for the complex base-
band data-modulated waveform are expressed as

Ps =
1 K

K−1

k = 0
yIk m

i
Ik + yQk m

i
Qk

1 K
K−1

k = 0
m i

Ik

2
+ m i

Qk

2

2

(11.79)

Pn =
1
K

K−1

k = 0

y2Ik + y
2
Qk −

Ps

K

K−1

k = 0

m i
Ik

2
+ m i

Qk

2

(11.80)

TABLE 11.11 Signal-to-Noise Estimation Techniquesa

Technique Remarksb

Split-symbol moments
estimator [45–47]
(SSME)

Unknown data, Ns ≥ 1
BPSK only with real AWGN
Channel dependent
Processing intense

Maximum-likelihood
estimator [48, 49]
(ML)

Unknown and known data, Ns ≥ 1
Real or complexc samples
Estimation bias compensation

Squared signal-to-
noise variance
estimator [50]
(SNV)

Unknown or known data, Ns = 1 (MF
samples)

Real or complexc samples
Estimation bias compensationc

Second- and fourth-
order moments
estimator [51, 52]
(M2M4)

Independent of data,Ns = 1 (MF samples)
Realc or complex samples
Unaffected by unknown carrier phase

Signal to variation
ratio estimator [53]
(SVR)

Unknown data, Ns = 1 (MF samples)
Realc or complex samples (MPSK only)
Unaffected by unknown carrier phase

aThe unknown and independent of data techniques are also referred to as
in-service estimators. MF refers to matched filter.
bReal samples imply BPSK with real AWGN and complex samples imply
MPSK, QAM modulations with complex AWGN.
cExtension by authors Pauluzzi and Beaulieu.

TABLE 11.12 Reasonable signal-to-noise estimation
accuracies (γ =Eb/No in dB)

Specified Accuracy

2.5 ≤ γ ≤ 12 ±0.5
12 < γ ≤ 22 ±1.5
22 < γ ≤ 32 ±3.0

*The summation over the Ns symbol samples implies a full response modu-
lation; however, the following analysis also applies to Nyquist RRC symbol
modulation extending over several symbols, albeit with increased notational
complexity.

†The M2M4 method exhibited the lowest measurement standard deviation,
however, resulted in a bias for γ ≤ 12 dB. A bias correction factor can be
applied to remove the bias. The M2 method, discussed in Section 11.5.5,
exhibited a standard deviation within the ±0.5 dB specification for γ ≤ 12 dB
without a bias. All of the methods improved with the number of samples
per trial and the number of trials; these parameters are dependent on the sys-
tem application.
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and

γml =
Ps

Pn
=

N2
s 1 K

K−1

k = 0
Re y∗k m

i
k

2

ρc K
K−1

k = 0
yk

2− ρcNs K2
K−1

k = 0
Re y∗k m

i
k

2

(11.81)

The factor ρc in the denominator of (11.81) is included to
reduce the estimation bias and, for complex signals, is
given by

ρc =
K

K−3 2
(11.82)

In these equations K =NsymNswhere Nsym is the number of
modulation symbols associated with the estimation interval.
The notation m i

k corresponds to the k-th symbol with the i-th
MPSK phase such that m i

k = p i
k ejφi , where p i

k is the symbol
shaping function and φi = 2πi M: i = 0,…,M − 1 is the sym-
bol phase modulation with log2(M) binary bits per symbol.
After PLL and symbol tracking, BPSK modulation can be
viewed as involving real signals with m i

k =m i
k = ± p i

k
and (11.79), (11.80), and (11.81) simply accordingly. For
real signals the bias reduction factor is ρr =K K−3 .

11.5.2 Squared Signal-to-Noise Variance (SNV)
Estimator

As indicated in Table 11.11, the SNV estimator applies for
Ns = 1 so the estimator data samples correspond to the output
of the optimally sampled matched filter. This estimation pro-
cedure is based on the first absolute moment and the second
moment of the sampled data. In this case, the range of
the summation is K = Nsym. For the complex signals, the
SNV signal-to-noise ratio estimate is computed as*

γsnv =
1 K

K−1

n= 0
Re y∗n a

i
n

2

ρc K
K−1

n = 0
yn

2− ρcNs K2
K−1

n= 0
Re y∗n a

i
n

2

K =Nsym (11.83)

In this case, the estimation bias reduction factor ρc is
identical to (11.82) with K =Nsym. The symbol shaping
function has been removed by the matched filter so that
m i

n = a i
n = ejφi . The estimation for real signals is similar to

that described earlier for the ML estimator with a i
n = ± 1

and ρr = K/(K − 3).

11.5.3 Second- and Fourth-Order Moments (M2M4)
Estimator

The M2M4 also applies for Ns = 1 sample per symbol so the
estimate samples correspond to the optimally sampled
matched filter output. Benedict and Soong [51] refer to this
method as the square-law moments estimator. In general,
the noise power estimate is evaluated in terms of the signal
power estimate Ps as

Pn =M2−Ps (11.84)

Using (11.84), the estimates for the complexMPSK signal
power and signal-to-noise ratio are evaluated as

Ps = 2M2
2 −M4 complex signal (11.85)

and

γ
M2M4

=
Ps

Pn
=

2M2
2 −M4

M2− 2M2
2 −M4

complex signal (11.86)

The estimates for the real BPSK signal power and signal-
to-noise ratio are evaluated as

Ps =
1
2

6M2
2 −2M4 real signal (11.87)

and

γ
M2M4

=
Ps

Pn
=

1 2 6M2
2 −2M4

M2− 1 2 6M2
2 −2M4

real signal

(11.88)

The moments for both the real and complex signals are
computed using the approximate time averages

M2
1

Nsym

Nsym −1

n= 0

yn
2 (11.89)

and

M4
1

Nsym

Nsym −1

n= 0

yn
4 (11.90)

11.5.4 Case Study Using M2M4 Estimator

This case study examines the performance of the M2M4 esti-
mator for the real signal with BPSK modulation as described
by (11.84), (11.87), and (11.88). The results are shown in
Figure 11.51 using Nsym = 1000 and 100 matched filter sym-
bol (or bit) samples, respectively. At each signal-to-noise
ratio 100 Monte Carlo trails (or estimates) are evaluated that
form the population for establishing the mean, standard
deviation, and extreme values indicated in the figures. These
results indicate that the signal power estimation results
in negligible variation and bias with increasingly high

*In contrast to (11.77), the summation in (11.83) over the estimation interval
is based on the matched filtered samples n.
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signal-to-noise ratios; however, the noise power and signal-
to-noise ratio estimates, for commonly encountered ranges
of signal-to-noise ratio, exhibit large variations with increas-
ing bias at lower signal-to-noise ratios. Referring to
Figure 11.51c it is seen that the mean signal-to-noise estimate
enters the specification window at Eb/No = 8.5 dB; the stand-
ard deviation at 10.5 dB and the extremes at 12 dB.

Figure 11.52 represents the performance when the
estimation is based on Nsym = 100 symbol samples. The
increased variation is a consequence of the shorter estima-
tion interval. The mean signal-to-noise ratio estimation
still enters the specification at the same signal-to-noise
ratio of about 8 dB. If the specification were to include
an associated confidence level then an acceptable estimate
standard deviation could be determined, for example, by
applying the central limit theorem and associating the
standard deviation with the Gaussian distribution. In a

network application, in which communication and control
channels use repetitive messages, the demodulator can
average the estimates over several frames, thereby, redu-
cing the variation. However, in a nonfading AWGN chan-
nel, averaging will not improve the mean value of the
estimate. By using the complex product yny

∗
n = yn

2 in the
M2M4 estimator the carrier phase and received data are
removed, therefore, the estimation is insensitive to the signal
phase and cannot be improved upon using known or demod-
ulator detected data.

The preceding estimated parameter errors are computed
based on the accumulated samples at each signal-to-noise
ratio. The procedure involves determining the mean, standard
deviation, and extremes for each parameter and then perform-
ing the following normalizationwith respect to the true param-
eter value. For example, using the true or known received
power, Ps, the estimated mean signal power is computed as
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FIGURE 11.51 Baseband M2M4 estimation errors (Nsym = 1000 bits, Ntrials = 100).
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Ps =
1

Ntrial

Ntrial

n= 1

Ps n (11.91)

The plus and minus standard deviation and extremes in the
power estimates are denoted as Ps ± σps , Psmax, and Psmin.
These estimates are then normalized by the true signal power
and plotted in decibels as 10log10(normalized estimate). The
standard deviation of the estimate is computed based on the
samples comprising a subset of the entire population as dis-
cussed in Section 1.13.3.

11.5.5 Case Study: Estimator Performance Using
Independent Signal and Noise Power Estimation

In this case study, the noise power estimate is performed seri-
ally at the output of a narrowband filter before the signal is
present or in parallel with the signal acquisition during
discrete frequency searching over the entire frequency uncer-
tainty range as described in Section 11.3.4. In this case, the

noise power estimates are performed at several independent
frequency bands to ensure that other signal sources do not
influence the estimate. The signal-plus-noise power estimate
is then performed using any of the preamble segments or sim-
ply on random data when signal present is declared. During
the independent estimations, the receiver and demodulator
AGC levels are monitored and the gain changes are compen-
sated in the estimation processing.

Since there is only one parameter to estimate during an
estimation interval a second moment M2 estimator is used
to estimate the noise and signal-plus-noise powers as

Pn
1
K

K−1

k = 0

yk
2 noise-only estimate (11.92)

and

Psn
1
K

K−1

k = 0

zk
2 signal plus noise estimate (11.93)
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FIGURE 11.52 Baseband M2M4 estimation errors (Nsym = 100 bits, Ntrials = 100).
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where y ̃k and zk̂ are the complex baseband noise and signal-
plus-noise samples and K =NsymNs is the number of samples
used in forming the estimates. As with the M2M4 estimator,
the M2 estimator removes the MPSK and QAM data and car-
rier phase dependence so symbol timing and matched filter
sampling is of no consequence. The noise power estimate
is simply expressed by (11.92) and the signal power and sig-
nal-to-noise ratio are computed as

Ps =Psn−Pn noise-only estimate (11.94)

and

γB =
Ps

Pn
signal-to-noise ratio estimate (11.95)

where B is the estimation measurement bandwidth and is
converted to the user bit rate bandwidth equal to Rb

as γb = γB B Rb .

Figures 11.53 and 11.54 show the M2 estimator perfor-
mance formatted as described for the M2M4 estimator in
the previous section. The AGC gain compensation is
assumed to be ideal. The sample sizes of 4000 and 2000 cor-
respond to 1000 and 500 bits, respectively, with Ns = 4 sam-
ples per bit BPSK modulation. Therefore, except for the 2 : 1
lower ordinate scale factor, Figure 11.53 is comparable to
Figure 11.51 insofar as the sample size is concerned.

With the M2 estimator the mean signal power estimate is
nearly exact over the entire range of the signal-to-noise ratios
and the standard deviation and extreme values diminish with
increasing signal-to-noise ratios. The mean of the noise
power estimate is also nearly exact over the entire range of
signal-to-noise ratios; however, the standard deviation and
extreme values are relatively constant and demonstrate the
fluctuations associated with the narrowband white noise.
The signal-to-noise ratio estimate error follows the trends
of the signal and inverse noise power estimates. The influ-
ence of the estimation interval or sample size is demonstrated
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FIGURE 11.53 Baseband M2 estimation errors (K = 4000 samples, Ntrials = 100).
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in Figure 11.54. The fluctuations in the estimations are
decreased by increasing the sample size either directly or
by averaging additional independent measurements of the
same sample size.

ACRONYMS

ADC Analog-to-digital converter
AGC Automatic gain control
ARQ Automatic repeat request
AWGN Additive white Gaussian noise
BCI Bit count integrity
BER Bit error rate
BPSK Binary phase shift keying
CDMA Code division multiple access
CFAR Constant false-alarm rate
CRC Cyclic redundancy check (code)
CW Continuous wave

DOD Department of Defense
E/L Early–late (gate)
FD Frequency discriminator
FDMA Frequency division multiple access
FEC Forward error correction
FFT Fast Fourier transform
GSM Global system for mobile communications
ILPN Inverted Legendre polynomial
ISA International Society of Automation
LC Lag correlator
LOS Line of sight
LPF Low-pass filter
LPN Legendre polynomial
M2M4 Second- and fourth-order moments estimator
MAC Medium access control (layer)
MF Matched filter
ML Maximum-likelihood estimator
MPSK Multiphase shift keying
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FIGURE 11.54 Baseband M2 estimation errors (K = 2000 samples, Ntrials = 100).
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MSE Mean-square error
OL open loop
PCL pseudo-closed loop
PLL Phaselock loop
PN Pseudo-noise
POL pseudo-open loop
PPM Parts-per-million
QAM Quadrature amplitude modulation
RRC Root-raised-cosine
SLM Square-law moments estimator
SNR Signal-to-noise ratio
SNV Squared signal-to-noise variance estimator
SOM Start-of-message
S-
OQPSK

phase-shaped offset quadrature phase shift
keying

SSME Split-symbol moments estimator
SVR Signal-to-variation ratio estimator
TDMA Time division multiple access
VCO voltage controlled oscillator

PROBLEMS

1. When using the Costas PLL to acquire a noise-free
QPSK-modulated waveform, express the received base-
band power on each quadrature rail and the total base-
band power in terms of the peak signal amplitude A
and the phase tracking error ϕε. Then, considering that
joint AGC power control and carrier phaselock tracking
are used, express the peak signal amplitude on each rail
in terms of the AGC rms reference voltage Vref under
steady-state AGC conditions and ideal phase tracking,
that is, when ϕe = 0.

2. Consider that the input to the sampled ADC with infinite
amplitude resolution is the AWGN random variable x
described as N(0,σn). Determine the AGC reference volt-
age, Vref, which results in zero discriminator output in the
steady-state AGC condition.

Hint: Vref is determined as the median value of y = |x| and
is a linear function of σn.

3. Repeat Problem 2 when x is described as N(m,σn).

4. It is often convenient in a simulation program to imple-
ment an ideal or theoretical AGC without the signal
processing required to implement a particular AGC algo-
rithm using the sampled received signal plus noise. To
this end, define the ideal AGC power as Pagc and express
the signal power Ps and the noise power Pn in terms of
Pagc and the signal-to-noise ratio γ =Ps Pn.

5. Consider the specified parameters in Table 11.2, using
ρ = 2 FFTs for each CW segment instead of 2.5. Evaluate
a new set of computed parameters in Table 11.2 using a
radix-2 FFT that will meet the specifications with ρ = 2.

6. Referring to Figure 11.15, the simulated frequency esti-
mates (fnorm) and the corresponding probabilities (0.68,
0.9, 0.99) of a correct estimate (Pce) are listed in the fol-
lowing table for the best case 6 dB and worst case 0 dB
conditions. The probabilities correspond to the 1σ,
1.65σ, and 2.58σ sigma values of the normally distribu-
ted random variable N(0,σ). Show that the simulated
error estimates of fnorm also conform to the theoretical
error based on the normal distribution N(0,σ).

Simulated Frequency Estimates

Pce

fnorm

Best: 6 dB Worst: 0 dB

0.68 0.042 0.116
0.9 0.068 0.184
0.99 0.108 0.285

7. Evaluate and plot the E/L frequency discriminator
responses for the Rectangular, Hanning, and Cosine win-
dows with duration Tw seconds using linear and para-
bolic interpolation under the following conditions:

a. The window frequency responses are separated
by ±1/Tw Hz with E/L samples corresponding to
±1/2 Tw.

b. The window frequency responses are separated
by ±1/2Tw Hz with E/L samples corresponding to
±1/4Tw.

Hint: These windows are characterized Section 1.11.

8. Show that the frequency discriminator guard band is
equal to Δf in Equation (11.7).

9. Given the input phase function θi(t) expressed in (11.33),

show that the estimation of ωε and ωε are established as
shown in Figure 11.23 and determine the values of the
constants k, k0, and k1, in terms of given parameters.

10. Show the detailed steps in deriving the expression for Cn

in (11.47).

11. In selecting the FFT parameters for examining the spec-
trum of the repeated 1100 data pattern show the
following:

a. That commensurate increases in the number of sam-
ples/symbol (Ns) and the FFT size (Nfft) results in an
increased Nyquist bandwidth BN while maintaining a
constant resolution bandwidth with respect to the
symbol rate, that is, Δf/Rs = constant.

b. Show that a finer frequency resolution with respect to
the symbol rate (Δf/Rs) is achieved for a constant
sampling frequency (fs) by increasing the measure-
ment window Tm.
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12. Following the analysis in Section 11.3.2.2 culminating
in (11.49), derive the theoretical spectrum for the
repeated 110 repeated data pattern specified for the
BPSK-modulated waveforms in Table 11.8. Draw a
sketch of the spectrum similar to that shown in
Figure 11.37.

13. Referring to the case study in Section 11.3.2.3, show that
the sensitivity of the normalized symbol rate estimate
Rs Rs is four times more sensitive to a frequency loca-
tion error than that of the normalized frequency estimate

f s fs.

Hint: Evaluate both estimates using ℓu = ℓc +Ns 2 ± k
and ℓl = ℓc−Ns 2. where k is the frequency location error.

14. The case study in Section 11.3.2.3 examined the fre-
quency estimation for a known symbol rate and the eval-
uation was based on the FFT samples taken over exactly
four (4) repetitions of the 1100 data pattern. However,
when the symbol rate is unknown the FFT will most
likely not be taken over an integer number of data pat-
terns. Evaluate the spectrum when the spectrum is based
on an additional fractional repetition of the 1100 data
pattern. For example, evaluate the spectrum for a meas-
urement interval of Tm = 16T +Tm where 0 <Tm < 4T .

15. Referring to (11.65), develop the expression of the cor-
relator output for BPSK modulation using sT n = dIn
and the channel phase function ejϕ.
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12
ADAPTIVE SYSTEMS

12.1 INTRODUCTION

The ever-increasing demand for channel capacity and band-
width has resulted in the widespread use of adaptive signal
processing techniques that compensate for the inevitable sig-
nal interference and distortion that results from the competi-
tive needs for capacity and bandwidth. The significant
advantages in efficient spectrum utilization, gained by
high-order symbol modulation with spectral containment,
have been facilitated by the use of adaptive processing algo-
rithms that compensate for the interference and distortion
under crowded channel conditions. The development of
adaptive processing for improved communications was
jump-started when wireline telephone networks [1] were
under pressure for more capacity and higher data rates, and
was well understood and developed when wireless commu-
nications entered the marketplace.

In the following sections, the mathematical background
and algorithms are developed for adaptive systems as they
apply to waveform equalization of intersymbol interference
(ISI), cancellation of interfering signals, and waveform iden-
tification. These three objectives are obtained using subtle
alterations in the adaptive processing configurations. The
adaptive processing generally uses finite impulse response*

(FIR) filters with weights that are adaptively adjusted to min-
imize error between the sampled filter output and the received
input signal with known or estimated data using the minimum

mean-square error [2] (MMSE) algorithm. With known data,
a preamble or training sequence is available to aid in the
adaptive acquisition or convergence processing. In these
cases, the processing following the known data is based on
the estimates of the received data using a decision-directed
adaptive processing algorithm. After the training interval,
the decision error probability is sufficiently low to maintain
the MMSE condition. In applications where a training
sequence is not available, the adaptive algorithm is referred
to as a blind or self-recovering algorithm; however, using
the training sequence significantly reduces the adapta-
tion time.

In the next section, the orthogonality principle is intro-
duced and applied in the derivation of Weiner’s optimum lin-
ear estimation filter [3–5]. In Section 12.2, the Wiener
estimation filter is described using the orthogonality principle
and the MMSE criteria. In Section 12.3, the optimum FIR fil-
ter is examined, with the tap weights adaptively estimated
using the lease mean-square (LMS) algorithm. The LMS
algorithm results in lower implementation complexity than
the MMSE algorithm. Section 12.4 considers various forms
of equalizers and Section 12.5 discusses adaptive interfer-
ence cancellation using the LMS algorithm. The preceding
adaptive techniques are based on symbol-by-symbol proces-
sing and an entirely different approach, using the recursive
least-squares (RLS) algorithm, is discussed in Section 12.6.
The RLS algorithm converges to the steady-state condition
in considerably less time than that of the MMSE or LMS
algorithms. Case studies involving the application of ISI
equalization and narrowband interference cancellation are

*The FIR filter is also referred to as a transversal or tapped delay line (TDL)
filter.

Digital Communications with Emphasis on Data Modems: Theory, Analysis, Design, Simulation, Testing, and Applications,
First Edition. Richard W. Middlestead.
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given in Sections 12.7 and 12.8; this chapter concludes with
Section 12.9 with a case study of the RLS-adaptive equalizer.

12.1.1 The Orthogonality Principle

The orthogonality principle is the fundamental principle used
in the evaluation of the MMSE between a set of parameters
and their estimates. The principle applies in the analysis of
linear or nonlinear estimation, involving constant or time-
varying, real or complex parameters. However, to simplify
the following description, the linear mean-square estimation
(LMSE) of a single, constant, and real parameter is used. The
orthogonality principle states that the MMSE results when
the estimation error y−y is orthogonal to the measurement
x, that is, E y−y x = 0 and, under this condition, the MMSE
is computed as the expectation E y−y y .

Consider that a real zero-mean parameter y is observed as*

x = y + n, where n represents zero-mean additive noise and
the estimate of y is formed using linear combination of the
observations xi, expressed as

y =
i

aixi (12.1)

The weights ai form a filter that decreases the noise and,
thereby, improves the estimate. In this description, the index
i simply associates x with the sampled noisy value of the
parameter y. Using (12.1), the mean-square error (MSE) is
expressed as

ε =E y−y 2 =E y−
i

aixi

2

(12.2)

To establish the MMSE, the derivative of (12.2) with respect
to ai is formed and set to zero resulting in

εmin =
dε

dai
=E −2 y−y

dy

dai

= −2E y−y
d

dai i

aixi = 0

(12.3)

Therefore, based on the last equality in (12.3), the require-
ment for the MMSE is

E y−y xi = 0 i (12.4)

The first equality in (12.2) is expanded as

ε =E y−y y−y =E y−y y −E y−y y (12.5)

and, upon substituting (12.1) for the expectation E y−y y ,
the MMSE error expression is evaluated as

εmin =E y−y y −E y−y
i

aixi

=E y−y y −
i

aiE y−y xi

=E y−y y

(12.6)

The last equality in (12.6) follows from (12.4) and confirms
the requirement that the MMSE occurs when the expectation
of the product of the measurement error and data are orthog-
onal, that is, when E y−y xi = 0 i.

12.2 OPTIMUM FILTERING—WIENER’S
SOLUTION

Wiener’s approach to determining the optimum filter of the
noisy estimate of an event y(t) is based on the filter that

provides the MMSE y t of y(t). The solution is based on
the application of the orthogonality principle outline in the
introduction. Consider the noisy observation x t of the event
y(t) expressed as

x t = y t + n t −∞ ≤ t ≤ ∞ (12.7)

with the filtered estimate of y(t) expressed as

y t =
∞

−∞
h t,λ x λ dλ (12.8)

In the following analysis, the stochastic processes are station-
ary and characterized as complex baseband functions and the
filter is linear and time-invariant. It is desired to determine
the optimum linear filter ho(t) that results in the MMSE of
the measurement error.† Referring to Section 12.1.1, the
MMSE occurs when the orthogonality principle applies
and, under the above conditions, is expressed as

E y t1 −
∞

−∞
ho t1−λ x λ dλ x∗ t2 = 0 (12.9)

*The measured data x must be zero-mean to ensure that the correlation cor-
responds to the covariance.With zero-mean noise, the mean value of x result-
ing from y can easily be removed.

†The conditions of linearity and stationarity result in major analytical simpli-
fications that are applicable to many practical problems.
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The solution to (12.9) is expresses in terms of the expecta-
tions as

E y t1 x∗ t2 =
∞

−∞
ho t1−λ E x λ x∗ t2 dλ (12.10)

Upon using the wws property and defining τ = t1− t2, (12.10)
simplifies to

Ryx τ =
∞

−∞
ho t1−λ Rxx λ+ τ− t1 dλ (12.11)

The rhs of (12.11) is expressed as the convolution integral by
substituting ζ = λ + τ− t1 with dλ = dζ resulting in

Ryx τ =
∞

−∞
ho τ−ς Rxx ς dς

= ho τ ∗Rxx τ

(12.12)

Therefore, the optimum filter is expressed as having fre-
quency domain response

Ho ω =
Syx ω

Sxx ω
(12.13)

Evaluation of the MMSE corresponding to the optimum
filter ho(t) is left as an exercise. The LMSE algorithm can

also be applied to the prediction [6] of y t + λ from the data
x t t ≤ t .

12.3 FINITE IMPULSE RESPONSE-ADAPTIVE
FILTER ESTIMATION

In this section, the Wiener filter is applied to the sampled
signal xi = x iTs where the index i represents the uniform
sampling of x t at increments t = iTs, where Ts is the
reciprocal of the sampling frequency fs. All of the discrete-
time functions in this section are considered to be complex

baseband functions that are within the Nyquist bandwidth.
Furthermore, the analysis involves discrete-time stochastic
processes that are ergodic and stationary in the wide-sense,
that is, the mean value is constant and the correlation and
covariance functions depend only on the sample-time incre-
ment Ts. The basic structure of the adaptive filter is shown in
Figure 12.1. The filter input is represented by the current
sampled complex data xj and N − 1 previous samples. If
the sampled signal is the output of the demodulator matched
filter then Ts is equal to the modulation symbol duration T,
otherwise Ts may represent a suitable sub-symbol sampling
interval; the unit delay designation z−1 corresponds to the nor-
malized sample delay. For each set of N samples, the filter

output yj is computed and compared to a known reference
signal forming the error εj corresponding to the sample t =
jTs. The error is then applied to the weight update function
that adjusts all of the weights resulting is a steady-state con-
dition that corresponds to the minimum error. The adaptive
processing details are discussed in the remainder of this
section.

The sampled complex inputs xj+ i i = 0,…,N−1 and the
filter weights wi+ 1, j are defined, respectively, as the complex
vectors

x = xj,xj−1,…,xj− N−2 ,xj− N−1
T

(12.14)

and

w= w∗
1, j,w

∗
2, j,…,w∗

N−1, j,w
∗
N, j

T
(12.15)

The reference, or desired response, of the adaptive filter is
yj and the difference between yj and the estimated response*

yj w =w+ x is the instantaneous estimation error,
expressed as

xj–(N–1)

*wN–1, j
*w͠1, j *wN, j

Reference 

–
+

ɛj

yj
ˆ

yj

Sampled 

data 

xj xj–(N–2)xj–1
z–1 z–1

…

…

Weight update 

Σ

*w2, j
͠ ͠ ͠

͠

͠

͠

͠ ͠ ͠ ͠

FIGURE 12.1 FIR-adaptive filter.

*In this, and the following descriptions, the superscript + denotes complex
conjugate transposition, and ∗ and T denote, respectively, complex conjuga-
tion and transposition.
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εj w = yj−yj w = yj−w
+ x (12.16)

The optimum estimation filter corresponds to the MMSE that
results when the filter has settled to the steady-state condition
corresponding to the optimumweight vectorwo. Based on the
orthogonality principle, the MMSE error occurs when the
error is orthogonal to the data, that is, when

E yj−w
+
o x y∗j =E yj−w

+
o x x+w = 0 (12.17)

and, referring to (12.6), the corresponding MMSE is

εmin =E yj−w
+
o x y∗j = 0 (12.18)

Aside from the trivial condition corresponding to y∗j = 0, the
MSE criterion is based on the error defined in (12.16) and is
expressed as the expectation

J w ≜E εj w ε∗j w =E yj−w
+ x y∗j −x

+w

mean-square error

(12.19)

Upon expanding (12.19) and distributing the expectation, the
MSE is evaluated as

J w =E yjy
∗
j −E yjx

+w −E w + xy∗j +E w + xx+w

= σy2−c +w−w+ c +w +Rw
(12.20)

where σy2 is the variance of the reference, c is the N × 1
cross-correlation vector between the reference and data,
and R is an N ×N correlation matrix of the data; c and
R are defined, respectively, as

c≜E xy∗j =E y∗j x (12.21)

and

R≜E xx + (12.22)

The second equality in (12.20) is established using the fol-
lowing relationships:

E yjy
∗
j = σ2y (12.23)

E yjx
+w =E yjx

+ w= c +w (12.24)

E w+ xy∗j =w+E xy∗j =wTc (12.25)

and

E w + xx+w =w +E xx+ w=w+Rw (12.26)

The matrix R possesses unique properties based on the
stationarity of the sampled stochastic processes and is
referred to as a Hermitian matrix.* The diagonal elements
rii =E xi,x +i = r 0 i = 1,…,N are real and the trace of R
is tr R =Nr 0 . Indexing the elements of the row and column
vectors x+ and x as xi and xj respectively, the elements
rji =E xj,x +i = rk = i− j. For k > 0 (k < 0), the matrix elements
correspond to positive (negative) correlation lags that lie
above (below) the matrix diagonal. Furthermore, the ele-
ments of the Hermitian matrix correspond to the condition
r−k = r∗k , so the elements above and below the principal diag-
onal possess complex conjugate symmetry.

The MSE, defined by (12.20), characterizes a concave
upward surface with a minimum value corresponding to
the derivative ∂J w ∂w equal to zero. The derivative is
defined as the gradient vector ∇w and is evaluated as

∇w ≜
∂J w
∂w

=
∂σ2y
∂w

−
∂c+w
∂w

−
∂w + c
∂w

+
∂w+Rw

∂w

= 0−0−2c + 2Rw
(12.27)

The solution to the derivatives in (12.27), indicated by the
third equality, is found in Section 1.12.5. Upon evaluation
of (12.27) with ∇wo = 0 the optimum filter weights are
expressed as

wo =R−1c (12.28)

From the evaluation of (12.20) under the optimum condition
Rwo = c, the MMSE is expressed as

Jmin = J wo = σ2y −c
+wo = σ

2
y −c

+R−1c (12.29)

Based on the method of steepest-descent [7], the filter tap
weights are altered to reduce, or minimize, the slope of the
N-dimensional concave upward surface characterized by
the weights. At each decision sample jTs, the weight updated
is based on the first-order recursive filter response,
expressed as

w j+ 1 =w j −u∇w =w j + 2u c−Rw j (12.30)

The second equality in (12.30) results from (12.27) and the
step-size parameter u is used to provide stability and control
the rate of convergence. As the expectation of the gradient
vector approaches zero, the filter approaches the optimum
MSE estimate of the reference yj. The slope of the concave
upward surface about the minimum point forms a discrimina-
tor S-curve that ensures stable tracking about the optimum tap
weights. The updating is identical for each tap weight and the

*The Hermitian transposition xH of a vector, or RH of a matrix, is also used to
denote complex conjugate transposition.
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required processing for the n-th tap weight is determined for
the corresponding elements at sample j of the column vectors,
c and Rw, in (12.30); with the subscript n,j representing the
n-th row at sample j, the result is expressed as

wn,j+ 1 =wn,j + 2u c n, j− Rw n, j (12.31)

The complex scalars c n, j and Rw n, j are evaluated as

c n, j = xny
∗
j (12.32)

and

Rw n, j =
N

i= 1

rn, iwi, jδin = σ
2
xwn, j (12.33)

where the Kronecker delta function arises from the evaluation
of the gradient vector in (12.27) and the variance in (12.33) is
simply σ2x = rn n 0 . Substituting these results into (12.31), the
weight updating for the n-th tap weight and sample j is
expressed as

wn,j + 1 = 1−2uσ2x wn,j + 2uxj− n−1 y
∗
j (12.34)

The updating of the weight w∗
n, j at sample j given the

previous weight w∗
n, j−1 at sample j−1 j= 1,… is shown in

Figure 12.2; the asterisk ∗ denotes conjugation. The filter
is typically initialized using w∗

n,0 = 0 + j0; however, if feasi-
ble, the best guess of the steady-state solution should be used.

The stability and convergence properties of the FIR-
adaptive filter have been analyzed by Widrow [8], Unger-
boeck [9], Gitlin and Weinstein [10], and Haykin [5]. Their
analysis focuses on the eigenvalues of the correlation matrix
R and, based on the method of steepest-descent, the adaptive
is filter stable and converges to the steady-state condition,
regardless of initial conditions, if all of the eigenvalues
λn n= 1,…,N satisfy the condition

1−uλn < 1, n condition for average tap weight convergence

(12.35)

Equation (12.35) leads to the conditions 0 < u< 2 λn n
and, recognizing that the eigenvalues for the Hermitian
matrix R are all positive real values, upon defining the max-
imum eigenvalue as λmax, the condition on u is

0 < u<
2

λmax
condition for average tap weight convergence

(12.36)

Haykin [11] examines the transient behavior of the steepest-
descent algorithm for a two-tap FIR filter with varying eigen-
value spread,* fixed step-sizes u, and varying step-sizes u
with fixed eigenvalue spread. Haykin’s salient observa-
tions are:

• The steepest-descent algorithm converges most rapidly
when the eigenvalues, λ1 and λ2 are equal or when the
initial conditions are chosen properly.

• For a fixed step-size u, as the eigenvalue spread
increases the correlation matrix R becomes more ill
conditioned.

• For small step-sizes u, the transient behavior of the
steepest-descent algorithm becomes overdamped. For
large step-sized, approaching 2/λmax, the transient
behavior becomes underdamped and exhibits
oscillations.

Haykin concludes that the transient behavior of the steepest-
descent algorithm is highly sensitive to the step-size param-
eter and the eigenvalue spread. In the selection of the adapt-
ive processing gain, a performance tradeoff exists between
the variance of the tap weights and the responsiveness of
adaptive filter to the channel dynamics. For example,
decreasing the gain decreases the variance but increases the
system performance sensitivity to the received signal dynam-
ics and increasing the gain has the inverse affects. Gitlin and
Weinstein have investigated the adaptive equalizer MSE as it
relates to the tap weight precision, the number of taps, the
channel characteristics, and the digital resolution. Gitlin
and Weinstein conclude that the number of taps should be
kept to a minimum, consistent with the steady-state perfor-
mance objectives and the weight precision should be ten to
twelve bits. Insufficient processing precision will result in
tap accumulation round-off errors and dominate the system
performance as the number of filter taps is increased. In gen-
eral, the gain should be no greater than necessary to track the
time-varying fading as determined by the signal decorrelation
time and the length or span of the equalizer should not exceed
the multipath delay spread; these topics are also discussed in
Chapters 18 and 20. Adaptive filtering in the frequency
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domain is discussed by Dentino, McCool, and Widrow [12]
and by Bershad and Feintuch [13].

12.3.1 Least Mean-Square Algorithm

The weight updating in the preceding section, using the
Wiener FIR-adaptive filter, is problematic, in that, the algo-
rithm is dependent on the correlation matrix R. To circum-
vent the sensitivity of the weight update algorithm on the
correlation matrix, Widrow and Hoff [14] developed the
LMS algorithm using real data. The LMS algorithm was sub-
sequently modified byWidrow, McCool, and Ball [15] using
the complex data. The LMS algorithm is an efficient method
of updating the FIR-adaptive filter tap weights through the
entire process of adaptation and estimation. The steepest-
decent algorithm is used, in that, the filter tap weights are
updated using a single-pole recursive filter that reduces the
slope, or gradient vector ∇w, as given by the first equality
in (12.30). However, in this case, the N-dimensional instan-
taneous square-error is defined as

J w ≜ εj w ε∗j w instantaneous-squared-error (12.37)

and the gradient vector is evaluated as

∇w ≜
∂J w
∂w

= εj w
∂ ε∗j w

∂w
+ ε∗j w

∂εj w
∂w

= −2εj w x∗ + 0 (12.38)

The third equality in (12.38) is established using the rules for
complex matrix differentiation discussed in Section 1.12.4.
From (12.38), the filter tap weights are updated as

w j+ 1 =w j −u∇w =w j + 2uεj w x� (12.39)

The LMS tap weight update algorithm is identical for each
tap weight and is shown in terms of the n-th complex weight
wn, j in Figure 12.3. Although (12.39) is a convenient form in
expressing the tap weight updating, an alternate expression is
obtained by substituting (12.16) for εj w and rearranging the
terms as in (12.34) to obtain the algorithm for the n-th tap
weight update expressed as

wn,j+ 1 = 1−2u xj− n−1
2
wn,j + 2uyjx

∗
j− n−1 implicit εj

(12.40)

The tap weight update algorithm processing for the LMS
feedforward equalizer and canceler, depicted respectively
in Figures 12.6 and 12.8, is shown in Figure 12.3a.
Figure 12.3b shows the weight update processing for the
peak-distortion zero-forcing equalizer (ZFE) depicted in
Figure 12.5.

In remainder of this section, the stability and convergence
properties of the FIR-adaptive filter using the LMS algorithm
are summarized based on the work by Haykin [5]. As before,
the analysis focuses on the eigenvalues of the correlation
matrix R and, based on the method of steepest-descent, the
adaptive filter is stable and converges to the steady-state con-
dition if the step-size satisfies the condition

0 < u <
2
N

n= 1
λn

LMS condition for average MSE convergence

(12.41)

The sum of the eigenvalues represents the mean-square
value, or total power, of the filter taps. Since the sampled
input represents a stationary process, the eigenvalues
represent the zero lag correlation values σ2x = rii 0 of the
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Hermitian matrixR and the left-hand-side (lhs) of (12.41) fol-
lows from the positive real values σ2x ≥ 0.

The misadjustment parameter [16] M is defined as the
ratio of the average excess MSE Jexcess to the MMSE Jmin,
expressed in (12.29), that is,

M ≜
Jexcess
Jmin

=
u

N

n = 1
λn

2−u
N

n= 1
λn

LMS misadjustment

(12.42)

The parameter M corresponds to the steady-state condition
evaluated as expressed in the second equality in (12.42) [16].

The average excess MSE is defined as

Jexcess ≜E J ∞ −Jmin

=E εH j Rε j lim j ∞

(12.43)

where J(∞) is steady-state mean-square convergence error
of the LMS algorithm which exceeds Jmin. In terms of
the convergence samples j and the tap weight vector error
ε( j ) =w( j ) −wo, the LMS mean-square convergence error
is J j = Jmin – εH j Rε j which leads to the second equal-
ity in (12.43).

Haykin’s salient performance observations for the LMS
algorithm are [17]:

• The adaptive filter converges slowly for small values
of u with a correspondingly low misadjustment.
Conversely, for larger values of u the filter converges
rapidly with a correspondingly large misadjustment.

• The convergence of the average MSE, as given by
(12.41), also guarantees the convergence of the
mean tap weight values given by (12.36) since

λmax ≤
N

n= 1
λn.

• For increasing eigenvalue spreads, the convergence
time of the excess MSE becomes slower and the average
tap weight convergence is limited by the smallest
eigenvalues.

The simplicity of the LMS algorithm stems from the fact
that it is based on the instantaneous squared error and does
not require the expectation associated with the evaluation
of the correlation functions or inversion of the correlation
matrix. Considerable attention has been given to the theoret-
ical evaluation and measurement of the symbol-error
probability, with channel-induced ISI, using the LMS algo-
rithm [18–22].

The adaptive filters are characterized as having a primary
and reference input that determine the principal application
of the adaptive processing. The primary input is associated

with the received signal. For example, equalization uses
the received signal as the primary input into the adaptive filter
with the reference input derived from a locally generated rep-
lica of known data or data estimates derived from the received
data. The reference data are often derived from a preamble or
training sequence associated with the received data. With
noise and interference cancellation, the reference input is
a correlated replica of the interfering signal that is applied
to the input to the adaptive filter. For sufficiently high
interference-to-signal ratios (ISRs), the reference input may
also be derived directly from the received signal. System
or waveform identification is accomplished by applying
the reference signal to the adaptive filter, possibly using
multiple references that are suspected be correlated with
the primary received signal.

12.4 INTERSYMBOL INTERFERENCE AND
MULTIPATH EQUALIZATION

In this section, several commonly used equalizers are dis-
cussed with case studies of their performance presented in
Sections 12.7–12.9.

12.4.1 Zero-Forcing Equalizer

The ZFE is among the first equalizers to be analyzed and
implemented [23]. The equalizer operates on the output of
the channel filter that introduces ISI distortion on the trans-
mitted data-modulated symbols denoted by the baseband sig-
nal samples sj = s jTs . The channel filter is shown in
Figure 12.4 with the output expressed as the convolu-
tional sum

xi =
L−1

ℓ = 0

h
ℓ
si−ℓ (12.44)

The peak distortion, at the output of the channel, is defined in
terms of the channel impulse response as

Do ≜
1

h
ℓ

L−1

ℓ = 0
ℓ ℓ

h
ℓ

(12.45)
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FIGURE 12.4 Channel filter.
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where hℓ is the maximum filter sample with the filter normal-
ized such that hℓ = 1. The peak distortion is a measure of the
noise-free dispersion about the data-modulated symbol rest-
points resulting from the channel ISI. The dispersion between
adjacent rest-points characterizes the eye-opening and when
Do < 1 the eye is said to be open [24].

The ZFE, shown in Figure 12.5, follows the channel filter
and attempts to minimize the loss from the channel ISI. The
equalizer output is evaluated as the convolutional sum

gj =
N

n= −N

wn, jxj−n (12.46)

The peak distortion at the output of the equalizer is defined in
terms of the impulse response of the channel cascaded with
the equalizer and is expressed as

D
N L−1

n −N
n 0

gn (12.47)

As indicated in Figures 12.4 and 12.5 the channel has L taps
and the equalizer has 2N + 1 taps, so the extent or range of
the non-zero sampled impulse response is −N to N + L − 1
for a total of 2N + L samples. The cascaded impulse
response in (12.47) is sampled at the time intervals jTs
and computed as

gn =
j

wn jhn− j (12.48)

The peak distortion, given by (12.47), can be made arbitrarily
small at the sampled points as the number of equalizer taps
approaches infinity, and, although Lucky [25] has shown that

D is a convex upward function of the equalizer coefficients,
there is no assurance that the tap weights will converge for a
finite number of taps. However, a solution does exist for a
finite number of taps if the equalizer input peak distortion
given by (12.45) satisfies the conditionDo < 1, but the distor-
tion or decision error cannot be made arbitrarily small.
The decision error at the output of the equalizer FIR filter
is computed as

εj = yj−gj (12.49)

Using the data estimate yj results in a decision-directed
equalizer algorithm and using the known data yj, as with a
preamble or training data sequence, results in a data-directed
equalizer algorithm. The relationship between the forward
indexing of xj−α and the backward indexing of yj−β is
expressed as β = −2N + α+ 2 α= 0,…,2N−1. The weight
update processing indicated in Figure 12.5 is based on the
algorithm shown in Figure 12.3b.

12.4.2 Linear Feedforward Equalizer

The linear feedforward equalizer (LFFE) using the LMS tap
weight update algorithm is shown in Figure 12.6. The LMS
tap weight processing is indicated in Figure 12.3a. The com-
plex tap weights are all initialized to zero and, as the sampled
input data make its way through the FIR filter, the complex
output of the summing bus is applied to the decision device to

obtain the data decision estimate yj that is used to form the
decision error εj. The data decision estimate is based on a
complex limiter that computes the real and imaginary parts

of yj based on the closest received waveform modulation rest
states to the complex summation gj. For example, with binary
phase shift keying (BPSK), if Re gj ≥ 0 then yj = 1 + j0
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otherwise yj = −1 + j0. Under the input signal condition of
wide-sense stationarity,* the mean value of the decision error
will approach zero as the filter weights are adjusted during the

adaptation processing. The decision estimate yj is subject to
signal-to-noise ratio-dependent decision errors; however,
when a preamble is used, the known preamble data yj is used
to reduce the learning time.

The performance of the LFFE is examined in the case
study in Section 12.7. In the study, the recovery of the
bit-error performance loss resulting from ISI is examined
for narrowband filtering of a BPSK-modulated waveform.

12.4.3 Nonlinear Decision Feedback Equalizer

The decision feedback equalizer (DFE) [26, 27], shown in
Figure 12.7, augments the LFFE symbol equalizer by form-
ing the weighted linear combination of the previous symbols
and reducing their contributions to the ISI. The DFE proces-
sing is equivalent to that involving linear prediction as embo-
died in forward linear prediction (FLP), backward linear
prediction (BLP), and forward–backward linear prediction
(FBLP) algorithms described by Haykin [28]. Belfiore and
Park [29] and Proakis [30] also provide detailed analyses
and compare the implementation and performance of the
ZFE, LFFE, the DFE implementations. The DFE is used to
correct multipath interference and signal distortion resulting
from frequency selective fading [31] that is prevalent in
wideband direct-sequence spread-spectrum (DSSS) applica-
tions. Lee and Hill [32] discuss the application of the DFE in
terms of maximum-likelihood sequence estimation (MLSE).

Proakis shows that, for moderate to severe multipath pro-
files, there is about a 2 dB loss in Eb/No performance between

using known data decisions, as would occur during the recep-
tion of a learning or training data sequence, and using the
locally detected data estimates. When using the LFFE, a
severe multipath profile results in bit-error probabilities that
asymptotically approach Pbe 10−2 with increasing signal-
to-noise ratio; however, with the DFE equalizer the bit-error
probabilities continue to decrease. These results are demon-
strated using symbol-spaced equalizer (SSE) taps with an
optimally sampled matched filter that is matched to the wave-
form and channel. Typically the channel is unknown so using
the fractionally-spaced equalizer (FSE) taps, as described in
the following section, is necessary. The performance of the
DFE is sensitive to the detected data because each decision
error is shifted through the entire feedback path of the FIR
filter so the selection of the step-size gain is a particularly
important consideration.

12.4.4 Fractionally-Spaced Equalizers

In the preceding examples, the equalizer sample delay may
correspond to the symbol interval of T seconds or a sample
interval corresponding to Ts = T Ns seconds where Ns is
the number of samples-per-symbol. The SSE must
operate on the demodulator matched filter samples at
nT +Tε n = 0,1,…, s and only corrects for distortion
aliased about the frequency 1/2T; it is also sensitive to the
demodulator sampling delay (Tε) relative to the received
symbols. On the other hand, the FSE with sample delay Ts
will compensate for the sample delay error Tε and the channel
distortion within the sampled bandwidth of 1/2Ts. In addition
to the channel distortion compensation, the FSE provides the
symbol matched filtering required for the optimum detection
of the received signal when sampled at the optimum sampling
time [33–36].
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*The simulation results to follow involve wide-sense stationary Gaussian
noise which is also strict-sense stationary.
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12.4.5 Blind or Self-Recovering Equalizers

In many applications, it is desirable for the equalizer to adapt
to the distorted received signal without the benefit of a pream-
ble or special training sequence. Equalizers that function in
this manner are referred to as blind or self-recovering equal-
izers [37–40]. This is a major undertaking, in that, knowledge
of symbol timing and carrier phase must be resolved simul-
taneously with the equalizer weight adaptation. Godard
[41] discusses an approach for equalizer adaptation independ-
ent of the carrier phase and the modulated waveform symbol
constellation. Since this approach does not require demodu-
lator data estimates for equalization, the carrier acquisition
and tracking must be performed on the equalizer output.

12.5 INTERFERENCE AND NOISE
CANCELLATION

The adaptive filter, used as an interference signal canceler,
has many applications as discussed by Widrow et al. [42]

in their comprehensive paper on the subject. The adaptive
canceler requires two inputs, usually identified as the primary
signal and the reference signal. The primary input to the sys-
tem is the desired signal corrupted by an additive interfering
signal and the reference input is a correlated version of the
interfering signal, ideally derived from the source of the inter-
ference. The reference input may be generated internally as in
the case of decision-directed applications or obtained locally
in the case of nearby interfering signal and noise sources. The
applications are nearly endless; however, include the broad
subject of interference cancellation involving: antenna side-
lobes, adaptive antenna arrays, electric motors, power lines,
speech, and electrocardiography.

Figure 12.8 shows the general configuration of the LMS-
adaptive canceler with the reference input passing through
the FIR filter and subtracted from the primary signal forming
the estimation error that is minimized by the recursive weight
update processing. The canceler performance is evaluated in
the case study of Section 12.8 where the primary input is a
BPSK-modulated signal and a continuous wave (CW)
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interfering signal. In this case, the canceler reduces the inter-
fering signal and the performance measure is the bit-error
probability based on the optimally sampled output of the
matched filter.

12.6 RECURSIVE LEAST SQUARE (RLS)
EQUALIZER

The adaptive RLS equalizer [43] algorithm processes data
block-by-block to update the filter weights and results in fas-
ter convergence than the previously discussed equalizers.
The implementation of the RLS-adaptive equalizer is shown
in Figure 12.9 and the following description of the processing
follows the work of Haykin [44]. This configuration uses a
known training sequence yj j= 0,1,… which is stored in
a separate array containing the M most current values. The
values of yj can be generated locally at the receiver without
the need for storage. During reception of the message data,

the detected data estimates yj are used resulting in a deci-
sion-directed equalizer.

Since theRLS algorithmprocesses a block of data, it is con-
venient to characterize the filter tap values andweights in term

of the vectors xj = x0, j,…,x N−1 , j
T
and wj = w1, j,…,wN, j

T

respectively. The number of FIR filter taps (N) is selected to
span the duration of the expected ISI of the received signal.
The value of the M determines the relative location of the
reference signal and is typically about N/2; however, if the
duration of the pre- and post-symbol ISI is not equal, then
M must be selected proportionately to encompass all of the
ISI samples. The computations also require computing a gain

vector kj = k1, j kN, j
T
and theN ×NmatrixC =Φ−1; where

Φ is the N × N correlation matrix defined as

Φj≜
j

i= 1

λj− ixix
H
i (12.50)

This definition of the correlation matrix is different from the
correlationmatrixR defined by (12.22), in that, it includes the
exponential weighting factor λj− i i= 1,2,…, jwhere λ < 1 is
a positive constant close to unity. The application of the sca-
lar parameter λ forms a recursive-adaptive infinite impulse
response (IIR) filter that increasingly diminishes the influ-
ence of the older data blocks with decreasing values of λ.
From a filtering point-of-view, λ controls the bandwidth
of the recursive tap adjustments, influences the convergence
time of the weight processing, and the responsiveness to the
channel dynamics. Conventional inversion of the correlation
matrix is processing intense; however, to obtain the recursive
solution for the tap weight updating, the matrix C is com-
puted based on the matrix inversion lemma discussed by
Haykin. These quantities are initialized as indicated in
Table 12.1. The vectorw∗

j−1 and matrixCj−1 provide auxiliary
data storage for computing the recursively updated values
and, upon completion, the contents of the updated arrays
are transferred to these arrays in preparation for the next
iteration.

After initialization, the adaptive processing computations
are described as follows. Upon reception of each received
signal sample, the FIR filter output is computed as

gj =w
H
j sj =

N

n= 1

w∗
n, jxj− n−1 (12.51)

The complex output of (12.51) is used for data detection and
updating the adaptive filter weights for the next iteration. In
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TABLE 12.1 Parameter Initializations

Parameter Initial Value Comments

λ 0.99 Recursive scalar coefficient
(typically: 0.999–0.95)

w∗
j−1 (0,0) Complex weight vector

c
ℓ,ℓ (0,0): ℓ ℓ Elements of complex matrix Cj−1

(small positive constant δ = 0.005)(δ−1,0): ℓ = ℓ

RECURSIVE LEAST SQUARE (RLS) EQUALIZER 473



computing the new weight values, the estimation error is
determined as

εj = rj− M−1 −gj (12.52)

The complex error is input to the weight processing function
where the following operations are performed. Starting with
the inverse correlation matrix, the gain vector is computed as

kj =
vj

λ+ u
(12.53)

where the vector ṽj and scalar u are computed, respectively, as
vj =Cj−1xj and u = xHj vj. Using (12.52) and (12.53), the FIR
filter taps are updated as

w∗
j =w

∗
j−1 + kjε

∗
j (12.54)

The final step involves updating the matrix inverse for
the next iteration and the computation for this step is
expressed as

Cj =
1
λ

I−kjxHj Cj−1

=
1
λ

Cj−1−kjν
H
j

(12.55)

In preparation for the next iteration w∗
j−1 =w

∗
j and Cj−1 =Cj.

Following these computations, the processing is repeated
with the next received block of samples until receipt of the
communication message is completed. The message must
be prefixed with a training data sequence and possibly peri-
odically repeated training sequences throughout the entire
message. The inclusion and frequency of the periodic training
sequences depends on the channel and system dynamics. As
mentioned above, the training sequence reference bit must be
replaced with the M-th tap value of the stored data upon
declaring acquisition. With periodic training sequences, the
equalizer must switch back-and-forth between the training
sequence and the message data. A case study demonstrating
the performance of the RLS equalizer is given in
Section 12.9.

12.7 CASE STUDY: LMS LINEAR
FEEDFORWARD EQUALIZATION

In this case study, the LMS algorithm is used with the LFFE
to reduce the ISI loss of a coherently detected BPSK-
modulated waveform. The performance with ISI is examined
for three 0.4 dB ripple Chebyshev filters. Two of the filters
have 6-poles with respective normalized bandwidths BT =
1.5, 2.0; the phase response of these filters corresponds to
the intrinsic Chebyshev filter phase function. The third filter
has 4-poles, a normalized bandwidth of BT = 3.0, and
includes quadratic phase equalization with 6.5 at the band

edges. The filtered received signal spectrums are shown in
Figure 12.10 for the three filters.

The bit-error performance results, shown in Figure 12.11,
are based on Monte Carlo (MC) simulations using 1M bits at
each signal-to-noise ratio <8 dB, otherwise 10M bits are
used. The dotted curve is the theoretical or antipodal perfor-
mance of BPSK and the circled data points verify the fidelity
of the simulations program and correspond to the AWGN
channel without the equalizer. The filters are symmetrical
baseband filters and the received signal frequency error is
zero. Ideal demodulator phase and bit-time tracking is used
with an integrate-and-dump (I&D) matched filter so the per-
formance degradation is solely based on the channel and
equalizer. The solid and dashed cures in each figure corre-
spond to the channel filter without and with the equalizer.
The equalizer uses a nine tap bit-spaced FIR filter with a
tap weight gain step-size u = 0.002. The learning time, before
demodulation bit-error counting, is 400 bits. The simulation
results demonstrate the performance improvement for the
worst case filter shown in Figure 12.10a; however, for the less
severe channel filters the equalizer has little effect. Reducing
the equalizer step-size during the data detection will improve
the equalizer bit-error performance while maintaining an
acceptable learning time, although the channel dynamics will
influence the misadjustment parameter restricting the lower
limit of the step size.

12.8 CASE STUDY: NARROWBAND
INTERFERENCE CANCELLATION

In this case study, the cancellation of narrowband inter-
ference is examined using CW interfering signals character-
ized as

si t =Vi cos ωit +ϕi (12.56)

where Vi = kvVs, ωi = 2πfiT and Vs is the peak carrier voltage
of the received waveform and T is the modulation symbol
duration. The simulation program provides an arbitrary num-
ber of narrowband interfering tones; however, the following
results apply for a single tone centered on the desired signal
spectrum with discrete phases relative to the phase of the
received signal. The total power (Ptot) of the interfering tones,
the modulated signal, and the receiver noise are adjusted to
the automatic gain controlled power of Pagc according to
the relationships Vi = 2Piρ, Vs = 2Psρ, and σn = σ2nρ
where ρ is defined as ρ =Pagc Ptot and the total power is
computed as

Ptot =
1
2

Ncw

i= 1

V2
i +

V2
s

2
+ σ2n (12.57)
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The noise power is established from the specified signal-to-
noise ratio γb = Eb/No according to the relationship

σ2n =
Ps

γs
(12.58)

where γs is the signal-to-noise ratio in the bandwidth of the
transmitted symbol so γs = krcγbwith k bits/symbol and a for-
ward error correction (FEC) code rate of rc. The performance
simulations use uncoded BPSK so k = rc = 1. Using these nor-
malized conditions results in a common received power level
that provides for establishing a common adaptive filter gain,
or step size u, independent of the number of interferers or the
ISR; it also simplifies the specification of the analog-to-
digital converter (ADC) range and the maximum amplitude
level when the effect of finite amplitude quantization is being
examined.

The model for evaluating the performance with the signal
and interference is depicted in Figure 12.12. Under ideal

conditions, the interfering signal is input as the canceler ref-
erence; however, the model provides for scenarios where the
reference also contains the signal. To accommodate these
situations, the parameter ks ≤ 1 defines the signal level that
is added to the canceler reference input. In the following sim-
ulated performance results, the parameter ks = 1 ks is speci-
fied as the signal attenuation or loss and is alternately used
to denote the signal attenuation in decibels.

Based on Figure 12.12, the interference into the canceler
can be characterized, in terms of the ISR, as

Iin = I +
S

ks

= I 1 +
1

ks I S

(12.59)

Equation (12.59) is plotted in Figure 12.13 as a function of
Iin/I for various values of the parameter ks. The departure
from the condition Iin = I results from the influence of the
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additive signal power to the interference with decreasing I/S.
From Figure 12.12 it is seen that as ks increases in value from
1 (0 dB), the interference power PIin PI which is a more
authentic representation of the interference.

As defined in (12.57), the total receiver power, including
the desired signal, interference, and channel noise, is adjusted
to the AGC power of 0.5W and the resulting signal carrier
power is computed using γb =Eb No as

Ps =EbRb (12.60)

where Rb is the user bit rate. In the performance simulation
program Rb = 1 kbps so the modulated carrier power is 30
dB above the energy-per-bit. For a single interfering CW
tone, the power (Pcw) is given by

Iin=

I +

S

+

+

+

+

I

S + I

ks′

ksS′

FIGURE 12.12 Model for signal and interference.
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Pcw = ISR Ps (12.61)

As shown in Figure 12.14, the canceler gain adjustment, or
step-size Δ = 2u, is the key parameter that determines the
canceler convergence characteristics given a specified FIR fil-
ter length. As seen from Figure 12.14, the canceler conver-
gence time can be decreased by increasing Δ; however, the
bit-error performance of the demodulator is improved by
decreasingΔ following an acceptable convergence time. Con-
sequently, a lower adjustment step-size is typically usedwhen
convergence is detected based on the statistical properties of
the canceler error. In the following bit-error performance
simulations, the bit-error counting is delayed until the canceler
has reached, or nearly reached, the steady-state condition.

The canceler convergence is derived in Section 12.8.1,
and Figure 12.14 is based on the generic normalized
expression

εj
εo

= 1−NsΔ j (12.62)

where Ns is the number of canceler taps, Δ is the canceler
weight incremental adjustment, and j is the incremental time
index. The bit-error performance of the demodulator with
the CW interfering tone is shown in Figure 12.15 without
the canceler. The ISR is indicated in decibels and the results
clearly demonstrate the impact on the performance when the
canceler is not used. To achieve a performance loss less than
a few tenths of a decibel requires ISR ≤ −30 dB, which is vir-
tually no interference.

With the exception of the performance in Figure 12.15 for
ISR ≥ 0 dB, theMC simulations involve 1M symbols or trials
for signal-to-noise ratios <8 dB otherwise 10M symbols for
each signal-to-noise ratio are used. The range of signal-to-
noise ratios is 0–14 dB in 1 dB steps. Furthermore, the phase

of the interfering tone is indexed over 360 using ten deter-
ministic phases given by ϕi = 36 i−1 for i = 1,…, 10.
Therefore, the bit-error performance involving 10M MC
trails results by averaging the bit errors over ten 10M MC
trials with each trial corresponding to a different signal phase.
These simulation conditions apply to the simulated bit-error
results in the remainder of this case study.

Figure 12.16 shows the bit-error performance under the
steady-state conditions following the acquisition or learning
time using a canceler step-size of Δ = 5 × 10−5. The signal
attenuation parameter is ks =∞ dB, that is, the reference sig-
nal into the canceler is the CW interference tone without any
additive signal. Upon examining the expanded plot in
Figure 12.16b, it is seen that the performance loss is negligi-
ble for ISR ≤ 0 dB and increases to 0.4 dB at Pbe = 10−6 when
the ISR is increased to 30 dB; the corresponding loss is 0.23
dB at Pbe = 10−5. Consequently, for a step-size of Δ = 5 ×
10−5 the losses were reduced to that shown in Figure 12.16
for ISR ≤ 30 dB. These losses can be further reduced by
decreasing the step-size.*

In Figure 12.17, a series of bit-error performance curves
show the impact of the additive signal level to the canceler
reference input as depicted in Figure 12.12. For a given
ISR, the bit-error performance approaches that in
Figure 12.16 as ks approaches infinity. The objective is to
characterize the minimum value of ks (ksmin) to achieve a loss
in Eb/No ≤ 0.2 dB relative to that shown in Figure 12.16.
Examination of the results in Figure 12.17, supplemented
with the additional performance for ISR = 30 and 50 dB, indi-
cates that ks ≥ 20 dB results in an Eb/No performance that is
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*Lowering the step-size has other performance implications that are not
addressed in this case study; for example, a decreased responsiveness to
interfering signal dynamics and the increased sensitivity to demodulator
quantization.
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consistent with the above objective. These performance
results are a direct consequence of the user bit-rate of Rb =
1 kbps corresponding to the signal carrier power (Ps) being
30 dB-Hz above the energy-per-bit as expressed in (12.60).

The interpretation of these results is shown in Figure 12.18
with the signal carrier power S = Ps = 30 dBW. Referring to
Figure 12.12 and using ks = 1 ks the canceler reference input
is Iin = I + I where I = S ks (PI =Ps ks) is the interference
input power resulting from the signal. Therefore, the
signal-related interference power is ks(dB) below the signal
power and, from Figure 12.17, ks ≥ 20 dB so ksmin = 20 dB
corresponding to PI max = 10 dB. Consequently, PI max cannot
exceed the maximummargin ofΔmax = 10 dB/s relative to Eb,
otherwise, the presence of the signal in the canceler reference
degrades the bit-error probability. Noting that Rb and Δ have
units of 1/s, these results can be generalized for BPSK mod-
ulation by the requirement ksmin = Rb/Δmax = Rb/10.

12.8.1 Theoretical Canceler Convergence
Evaluation

This case study is concluded by examining the theoretical tap
weight convergence based on the characteristic equation of
the canceler. The analysis is based on the minimum shift key-
ing (MSK) symbol matched filer expressed as

h t =
cos ωmt t ≤

T

2
0 o w

(12.63)

where ωm = 2πfm with fm = 1/2T where T is symbol duration.
The analysis considers the input as a CW interfering signal
given by

s t =Vp cos ωεt +ϕ + jVp sin ωεt +ϕ (12.64)

The optimally sampled MSK filter outputs, so jTs , are input
to the canceler as xj = so jTs and the canceler output is
expressed as

yj = xj−
N

i= 1

wijxj− i−M (12.65)

where N is the number to FIR filter tap weights wij and
M = N 2 is the delay of the interfering tone into the can-
celer. The optimum weight vector wo corresponds to the
weights that minimize the MSE E y +i yi . The weight error
is defined as the vector

vj ≜wj−wo (12.66)

Applying the method of steepest-decent, discussed in
Section 12.3, the transient response of the weights is formu-
lated in terms of the weight error vector as

vj = I−ΔR jvo (12.67)

where vo is the initial weight error vector, Δ = 2u is the can-
celer gain step-size, I is an N ×N identity matrix, and R is the
N ×N correlation matrix, given by

R=E x∗j x
T
j (12.68)

The matrix R is Hermitian, so there exists N linearly inde-
pendent characteristic vectors,* and, upon using the diagonal
transformation Λ=Q−1RQ where Q is a matrix composed of
the N independent characteristic vectors and Λ is a diagonal
matrix of characteristic values. Using these results, (12.67) is
expressed as

vj = I−ΔΛ jvo (12.69)

The solution to (12.69) is based on the trace tr[Λ], defined as
the summation of the diagonal elements of Λ, that is,

tr Λ ≜
N

i= 1

λi (12.70)

so the normalized solution to (12.69) is

vj
vo

= I−Δtr Λ j (12.71)

At this point the analysis is simplified by assuming real sig-
nals corresponding to ωε and φ equal to zero, in which case,
s(t) = Vp, independent of time, and the optimally sampled
matched filter output is given by

xj =
4
π
Vp (12.72)

In this example, the corresponding characteristic values are
identical and evaluated as

Eb = PSTb
W-s

30 dB/s

PS =

30 dBW

PI′max=

10 dBW

ksmin = 20 dB

Δmax =

10 dB/s

FIGURE 12.18 Interpretation of ks in terms of received signal
energy.

*Characteristic vectors and values are also referred to as eigenvectors and
eigenvalues.
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λi = x
2
j =

4
π
V2
p i (12.73)

and (12.71) becomes

vj
vo

= 1−
16
π2

ΔNV2
p

j

(12.74)

Equation (12.74) is plotted in Figure 12.19 with Vp = 0.125 V.
The simulated performance, based on (12.72), is indicated by
the circled data points.

12.9 CASE STUDY: RECURSIVE LEAST
SQUARES PROCESSING

The RLS processing is examined using MC computer simu-
lations of the bit-error performance with MSK modulation
using 10M bits for each signal-to-noise ratio. The application
involves the acquisition of the received signal when the sig-
nal phase and/or amplitude are unknown over the respective
ranges |ϕ| ≤ 180 and A ≤Am = 2 = 3 dB . The signal
phase increment is Δϕ = 18 with ϕi = −180 +Δϕ(i − 1) :
i = 1, …, 11 and the amplitude increment is ΔA= 2 Am 9

with Ai = −Am +ΔA(i − 1) : i = 1, …, 10. For example, when
both phase and amplitude are unknown, the simulation
indexes over 100 K bits for each parameter result in 11 ×
10 × 100 K = 11M bits for each signal-to-noise ratio. At each
signal-to-noise ratio, the acquisition processing is re-initiated
for each parameter and the detected bit-error counting starts
following completion of the training sequence. The training
data sequence is generated using the same random process as
used for generating the message data, so no attention is given
to finding a good training sequence. The functions of the sim-
ulation processing are shown in Figure 12.20.

Upon completion of the training data sequence, the acqui-
sition switch is changed to use either the fixed tap weights or
the decision-directed RLS processing during receipt of the
message data.

The channel is characterized by a cosine-weighted
impulse response expressed as

h nTs = 0 5 1 + cos
2π n− Np

Ks

n= 1,…,Np,Np =
Np

2
(12.75)

where Ts is the sampling interval, Np = odd integer is the
number channel impulses, and Ks determines the impulse
spread. The characteristics of the four channels considered,
ranging in severity from theworst-case to best-case, are sum-
marized in Table 12.2.
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FIGURE 12.20 RLS simulation functional description.

TABLE 12.2 Channel Dispersion Characteristics

n

Channel Impulses

NP = 5 NP = 3

Ch-1 Ch-2 Ch-3 Ch-4
ks = 6 ks = 3.5 ks = 3.5 ks = 2.9

1 0.25 0.050 0.389 0.219
2 0.75 0.389 1.000 1.000
3 1.00 1.000 0.389 0.219
4 0.75 0.389
5 0.25 0.050
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The details of RLS processing are described in
Section 12.6 and the data detection includes the MSK
matched filter detection and ideal tracking following the
training sequence in use.

12.9.1 Performance with Fixed Weights
Following Training

The bit-error performance results in this section characterize
the acquisition and subsequent bit-error evaluation with com-
binations of known and unknown received signal phase and
amplitude as described above. For these results the RLS algo-
rithm uses δ = 0.1 for initialization of the matrix C and λ =
0.999; this value of λ results a long memory of past events
resulting in a narrow recursive bandwidth. Figure 12.21 shows
the performance using 4 samples/bit and a block length of
2-bits or 8 samples. The training data ranges in length from
4 to 64 blocks with various combinations of known and
unknown parameters. Figure 12.21a corresponds to the ideal

conditions with zero signal phase and a fixed carrier amplitude
using channel No.1. These known received signal phase and
amplitude conditions are ideal so the evaluations in
Figure 12.21a characterize the performance of the RLS proces-
sing as a channel equalizer. The circleddatapoints represent the
ideal simulation conditions corresponding to antipodal detec-
tion performance and the dashed curve represents the perfor-
mance without equalization. The solid curve demonstrates
the performance improvementwhen the RLS equalizer is used.
The results in Figure 12.21b–d represent the performance
improvements with increasing training blocks under the indi-
cated received signal parameter conditions. In these cases,
the ideal channel is used, that is without filtering, so the RLS
processing estimates the unknown received signal phase
and/or amplitude parameters. A training sequence of 64 blocks
results in near optimum performance.

Figure 12.22a–c shows the performance results with
unknown received signal phase and amplitude when using
channels No. 1 and 3 for the respective training sequence
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FIGURE 12.21 RLS performance with known and unknown parameters.
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lengths of 12, 20, and 64 blocks. These results demonstrate
the ability of the RLS-adaptive processing to perform equal-
ization, parameter estimation and correction, and acquire a
noisy received signal with sufficient fidelity to provide near
optimal bit-error performance. However, as mentioned
above, these results are based on λ = 0.999 which severely
restricts the dynamic behavior of the input signal.
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BPSK Binary phase shift keying
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DFE Decision feedback equalizer
DSSS Direct-sequence spread-spectrum
FBLP Forward–backward linear prediction
FIR Finite impulse response (filter)
FLP Forward linear prediction

FSE Fractionally-spaced equalizer
I&D Integrate-and-dump (filter)
IIR Infinite impulse response (filter)
ISI Intersymbol interference
ISR Interference-to-signal ratio
LFFE Linear feedforward equalizer
LMS Least mean-square (algorithm)
LMSE Linear mean-square estimation (algorithm,

equalizer)
MC Monte Carlo (simulation)
MLSE Maximum-likelihood sequence estimation
MMSE Minimum mean-square error (algorithm)
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SSE Symbol-spaced equalizer
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ZFE Zero-forcing equalizer
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FIGURE 12.22 RLS performance with channels 1 and 2 and unknown parameters.
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PROBLEMS

1. Evaluate theMMSE for the optimum filter ho(t) developed
in Section 12.2 using the relationship εmin =E y−y y
expressed in (12.6). Express the result in terms of the
respective spectrums Sỹỹ(ω), Sxx ω , and Ssx ω . Note that
the Fourier transform of Rsx −τ is Ssx −ω .

2. Consider that the optimally sampled matched filter output
of an isolated symbol through a bandlimited channel is
characterized as

g jT = dncj j ≤ 1

where cj is the matched filter sample with c0 cj : j 0
and dn = ±1 is the isolated n-th source data symbol of dura-
tion T seconds, such that, E[dndm] = δnm where δnm is the
Kronecker delta function.

For the estimator shown in the following figure, deter-
mine the open-loop estimates Ek[•] : k = 1, 2, 3 considering
contiguous source data symbols corresponding to the
matched filter samples

g nT =
1

j= −1

dn− j−1cj n

Redraw the figure to include an ideal integrator following
the appropriate estimators and a transversal filterwith adjust-
able taps thatwill adaptively eliminate the ISI terms cj : j 0.

dn–1

dn–2

g(nT)Matched

filter

E1[•]

E2[•]

E3[•]

Received

data

dn

T
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13
SPREAD-SPECTRUM COMMUNICATIONS

13.1 INTRODUCTION

The original motivation for spread-spectrum (SS) communi-
cations [1–8] was to mitigate the effect of electronic counter
measures (ECMs), generally referred to as jamming signals
intended to disrupt the flow of information between cooperat-
ing terminals. Solutions to the ECM problem were so wide-
spread that the applications of SS to communication systems
became known as anti-jam (AJ) communications [9]. The
more general benefit is that SS techniques also provides
for more robust communications under a variety of condi-
tions including unintentional interference resulting from
the increased demand on the available frequency spectrum.
The key to successful SS communication systems is the
design of the transmitted waveform and the demodulator
matched filter. In effect, the relatively narrow information
bandwidth is spread over a much wider bandwidth and trans-
mitted. To provide an AJ capability, the transmitted wave-
form is spread in bandwidth using a unique code or
signaling technique known only by the intended receivers.
The receiver detection processing correlates or matched-
filters the desired waveform while decorrelating the jammer
or interfering signals at the detector output to provide reliable
detection of the information. Regardless of whether the jam-
ming signal is designed to concentrate the power in a narrow
portion of the SS bandwidth or over the entire bandwidth, the
jammer transmitted energy must be inordinately high to
retain the ECM effectiveness. The notion of SS also has its
roots in the design of radar signals referred to as pulse com-
pression (PC) waveforms. The principles of PC waveform

design are identical to those of SS waveform designs; how-
ever, in radar the emphasis is placed on the transmission of
wide-bandwidth low average power signals of duration Tpri
that, when matched filtered, retain the same detection capa-
bility and range resolution as radars that transmit short dura-
tion high peak-power pulses with a pulse repetition interval
(PRI) of Tpri seconds.

Another application of SS communications involves
covert communication between cooperating terminals
referred to as low probability of intercept (LPI) communica-
tions. In these cases, the requirement of the adversary’s ECM
equipment is not to overtly jam but to detect and exploit the
communications. In other words, instead of directing a radiat-
ing source at the communication receiver, the LPI ECM
threat directs a sensitive receiver toward the communications
transmitter. The definition of intercept includes signal detec-
tion and the ability to obtain information from the signal that
can be used to disrupt or exploit the communications
network.

Therefore, LPI communication requirements impose more
stringent system requirements on the waveform design than
does AJ. For example, the transmitted power is intentionally
kept as low as possible requiring power control and possibly
additional spectrum spreading. LPI includes the additional
system specifications involving: low probability of detection
(LPD) and low probability of exploitation (LPE). LPD tech-
niques are used to prevent the adversary from establishing the
existence of communication traffic, that is, detection of the
signal, that may be used to: obtain knowledge about the car-
rier frequency and waveform that would allow exploitation or
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better use of jamming capabilities. LPE techniques are direc-
ted toward denying the adversary the ability to determine
cryptographic security, deception, decoys, and any opera-
tional procedures which can be used to deny the enemy
knowledge of the system, its signal design, its use, and its
users. For example, the communication terminal locations,
the information flow that may lead to command and control
identification, and strategic and tactical information that may
lead to spoofing by injecting false information.

LPI communication systems may also require
cryptographic message or information security (INFOSEC)
involving: communication security (COMSEC) and trans-
mission security (TRANSEC). COMSEC is provided by
encrypting the baseband data using an authorized key gener-
ator that prevents an adversary from learning the message
content and TRANSEC uses an approved code for scram-
bling the transmitted signal to ensure, for example, that the
frequency hopping or message interleaving is not repetitive
and detectable. COMSEC and TRANSEC increase the wave-
form acquisition time and complexity.

The application of SS techniques is a natural fit for code
division multiple access (CDMA) communications [10],
where a number of users share the same bandwidth in a coop-
erative manner. The various users cooperate to the extent that
each uses a different spreading code selected from a set of
orthogonal or uncorrelated codes. For the most part, these
designs focus on the use of pseudo-noise (PN) sequences that
exhibit orthogonally and low correlation sidelobes such as
Gold codes [11] and Kasami codes [12]. As with AJ wave-
forms, the PN codes spread the information bits over a wide
instantaneous bandwidth. To communicate with a particular
user the receiver demodulates the waveform corresponding to
the selected PN code while the other user waveforms occupy-
ing the same bandwidth appear as additive low-power noise
sources. As the number of users increases the SS bandwidth
must also increase to maintain the specified demodulator per-
formance. CDMA took on a life of its own with the advance
of commercial digital communications and cellular phones in
the 1980s.

Normally, the application of SS techniques focuses on
waveforms with very large time-bandwidth products TbW
where Tb and W represent the respective user’s bit-duration
and instantaneous bandwidth. Typical TbW products range
from 100 : 1 to 1,000,000 : 1 (20–60 dB). However, less
demanding applications, requiring time-bandwidth products
on the order of 10 : 1 (10 dB), provide low power-density
transmissions to reduce spatial and adjacent channel interfer-
ence. The application of SS using a PN code will reduce the
power density by an amount equal to the time-bandwidth
product.

There are three basic forms of SS waveform designs:
direct sequence (DS), frequency hopping (FH), and time hop-
ping (TH). There are also a variety of hybrid combinations
[13] of these forms that offer additional performance

advantages at the expense of processing complexity. The
hybrid forms include: DS-FH, DS-TH, FH-TH, and DS-
LFM. The linear frequency modulation (LFM) is analogous
to the chirp radar PC waveform. The FH is typically gener-
ated using a digital frequency synthesizer (DFS) that can
provide wider bandwidth spreading than with the direct-
sequence spread-spectrum (DSSS) waveform. The various
forms of SS waveforms are all characterized by an underlying
PN random process that is known only by the intended com-
munication receivers—this is a fundamental requirement for
the waveform acquisition and subsequent data demodulation.

As discussed above, the time-bandwidth product of the SS
waveform is a measure of the AJ or LPI system performance.
The time-bandwidth product is also referred to as the proces-
sing gain of a SS waveform defined as the ratio of the band-
width W of the SS waveform to the communicators
information data rate Rb prior to application of the bandwidth
spreading code, that is,

Gp ≜
W

Rb
(13.1)

The bandwidth W is the bandwidth used to communicate
an information bit in Tb seconds. The selection of the band-
width Wj by the jammer is based on the jamming game and
energy allocation strategies of the jammer and communicator
[14]. These strategies are dependent on the communicators’
selected waveform modulation. For example, the optimum
communications bandwidth for a SS PN chip-rate* of Rc, cor-
responding to Nc chips-per-user bit Tb, is to selectW = Rc. So,
with Rb = 1/Tb, the processing gain isGp =Rc Rb = TbW =Nc.
Therefore, for this DSSS example, the processing gain can be
expressed in terms of the output-to-input signal-to-noise
ratios of a SS receiver, that is, Gp = γo γi. To demonstrate
this, consider the signal to noise-plus-jammer ratio (SNJR)
at the SS receiver input given by

γi =
Ps

N +PJ
(13.2)

where Ps and PJ are the respective received signal and jam-
mer signal powers and N is the receiver noise power meas-
ured in the bandwidth W = Rc. The noise is considered to
be white Gaussian noise with power density No watts/hertz.
For simplicity, it is also assumed that the jammer signal is
white Gaussian noise with power spectral density NoJ

watts/hertz. Substituting these results into (13.2) gives

γi =
Ps

No +Noj W
(13.3)

*The PN code interval Tc = 1 Rc is referred to as a chip in contrast to the bit
interval of Tb.
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Multiplying the numerator and denominator of (13.3) by
the user bit-rate Rb, or equivalently by Tb = 1 Rb, results in

γi =
PsTb

No +Noj TbW
=

γo
Gp

(13.4)

where γo is the SNJR defined by the bandwidth of the data
rate at the output of the SS processor. So, for DSSS the pro-
cessing gain is simply a measure of the improvement in
SNJR, that is, Gp = γo γi. Simon et al. [15] caution about
evaluating the processing gain in this way with frequency-
hopping spread-spectrum (FHSS) waveforms in favor of
the definition (13.1). However, they also favor using the
bit-error degradation as the AJ performance measure for a
specified waveform modulation and jamming scenario rather
than the processing gain. As mentioned above, the selection
of the optimum jammer bandwidth is dependent upon the
communication waveform modulation and this is examined
for the selected waveforms in subsequent sections.

In the following section, the modulation and demodula-
tion of DSFH, and time-hopping spread-spectrum (THSS)
waveforms are discussed. The acquisition of SS waveforms
is a time-consuming and processing intense undertaking
and is also discussed. In Section 13.3, the scenarios of an
intentional jammer and interceptor are described in terms
of their respective ranges to the communication receiver
and transmitter. This involves all of the elements of the
communication range equation discussed in Chapter 15.
Section 13.4 examines the characteristics of various commu-
nication interceptors. In Sections 13.5 through 13.9, the per-
formance of SS waveforms using a variety of waveform
symbol modulations and jammer strategies are discussed.
The chapter concludes with the case study of terrestrial jam-
mer link characterized by the link-standoff ratio (LSR).

13.2 SPREAD-SPECTRUM WAVEFORMS AND
SPECTRUMS

A major, processing intense and time-consuming, issue with
SS receivers and demodulators involves the waveform acqui-
sition and synchronization. The three critical pieces of infor-
mation required to facilitate these processes are: knowledge
of the underlying SS waveform modulation, knowledge of
the PN random process of the waveform, and knowledge
of the epoch time stamp (ETS) relative to the local
receiver/demodulator that identifies the starting conditions
of the random processes. In addition, knowledge of the direc-
tion, range, and frequency of the transmitter will reduce the
search time for authorized users.

Since the underlying SS waveform and PN random proc-
ess are known to the authorized system users, the local epoch
time is only known to be within the accuracy of the local

clock and the range accuracy to the SS transmitter. The accu-
racy of the local ETS must be within a fraction of the corre-
lation interval, Tcor, that is, δTepoch Tcor. Therefore, the
range accuracy must satisfy the condition δRrange ≤ cδTepoch,
where c is the propagation velocity through the media. Like-
wise, the local clock must maintain an accuracy much less
than the reciprocal of the bandwidth of the power spectral
density (PSD) of the SS waveform. For example, for DS
waveforms, the clock error must satisfy δTepoch Tcor and,
for TH waveforms, the requirement is δTclock Th, where
Tc and Th are, respectively, the chip and hop durations. If
these requirements are satisfied, the locally stored PN code
data are synchronized to the time-of-arrival (TOA) of the
received SS waveform to provide an acceptable correlation
loss, expressed as

Lcor dB 10log10 1−
δTepoch
NTc

−
δTclock
Tc

(13.5)

The use of cesium atomic clocks and global position sys-
tem (GPS) ranging provide the best capabilities for achieving
the accuracies; however, if the estimates result in excessive
correlator loss, the local-time base must be advanced by
the uncertainty in the TOA with sequential acquisition pro-
cessing performed in increments of δTepoch + δTclock until
acquisition is declared. In the following sections, the three
most basic forms of SS waveforms (DS, FH, and TH) are
discussed with example modulator and demodulator
implementations.

13.2.1 Direct-Sequence Spread-Spectrum

The DSSS waveform is the simplest to modulate; however,
the waveform acquisition is time-consuming and the tracking
is processing intensive. The modulator simply multiplies (or
exclusive ORs) the user bits by a sequence of randomly gen-
erated binary chips of duration Tc =Tb N, so the chip rate is
Rc = NRb. The chips are then used to modulate a carrier using
a variety of modulation techniques. If binary phase shift key-
ing (BPSK) modulation is used then the transmitted spectrum
has the form sinc(f Tc) where Tc is the transmitted symbol
duration and f = f − fc is the frequency relative to the carrier
fc. Although, in this case, the instantaneous bandwidth is
infinite, the instantaneous noise bandwidth is generally
taken to be Bn = Rc so the number of chips/bit is
N =Rc Rb =Bn Rb =Gp. If forward error correction (FEC)
coding with code-rate* rc < 1 is used, the code-bit rate is
Rcb =Rb rc corresponding to a decrease in the code-bit inter-
val such that Tcb <Tb. If the FEC code-rate is a rational num-
ber, the processing gain can be selected by using Nrc chips
during each code-bit. With N = Tb Tc >> 1 the parameters

*The FEC code-rate is denoted as rc and the chip-rate as Rc.
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N, Tc, Tb, Tcb, and rc, must be selected to result in an integer
number of chips in Tcb and Tb without altering the FEC code
decoding performance in an additive white Gaussian noise
(AWGN) channel. This definition of the processing gain
applies to the case where the jammer bandwidth is narrow
with respect to the chip rate Rc. The DSSS waveform results
in the instantaneous signal spectrum occupying the entire
spectrum bandwidth providing robust AJ performance. In
addition, because the power density is very low, there is an
inherent LPI capability. Figure 13.1 shows a typical DSSS
waveform with N = Tb Tc chips-per-bit and Table 13.1 lists
some of the advantages and disadvantages of the waveform.

Figure 13.2 shows the implementation of the DSSS sym-
bol modulators for BPSK, quadrature phase shift keying
(QPSK), offset QPSK (OQPSK), and minimum shift keying
(MSK) waveforms. The sample-and-hold (S/H) functions
correspond to respective hold durations of Tc and 2Tc for
BPSK/QPSK and OQPSK/MSK waveform modulations.
These quadrature phase-modulated waveforms have the same
Ec/No-dependent chip-error performance as BPSK with
AWGN. Although bandwidth conservation is not a prime

concern in SS applications, these modulations are attractive
because the modulation features are less detectable making
it more difficult for the jammer. The source data rate is Rb

bits-per-second with dn = ±1. Depending on the modulation,
the source data are mapped to dn = dIn and dn−1 = dQn as indi-
cated in Figure 13.2. The PN generator provides the random
chips, at the rate Rc chip-per-second, that are used for the
bandwidth spreading. By replacing the Ci chip multipliers
in Figure 13.2b with independent inphase and quadrature (I/
Q) channel chip multipliers with CIi and CQi, the bandwidth
spreading can be thought of as using two independent PN
generators on each quadrature rail. Although not depicted,
applying the same date dn on each with quadrature rail with
independent PN chip generation is advantageous with BPSK
waveform modulation and continuous wave (CW) tone
jamming.

The chip shaping function p(t) is a unit-gain rect(t/T) func-
tion except for MSK, in which case, p(t) is the unit gain cos
(ωmt) function with ωm = πRc 2. Following the mixing to the
carrier frequency ωc, the power amplifier (PA) produces the
transmitted signal with constant voltage level of 2P where
P is the carrier power.

To simplify the description of the processing require-
ments, the following example uses the BPSK DSSS wave-
form with symbol function p(t) equal to the unit gain rect
(t/T) function. The data transitions corresponding to dn occur
at t = nT and the PN chip transitions occur at t = iTc = iT N
corresponding to N chips-per-symbol; the DS chips, denoted
as Ci, are referenced to the ETS. The source data (dn) are also
synchronized to the ETS modulo N chips so that an author-
ized terminal with knowledge of the exact local time relative
to the chip ETS can identify the first chip associated the
N-chip spreading of the data dn.

The BPSK transmitted signal is expressed in terms of the
lowpass analytic function sT t , as

sT t =Re sT t ejωct (13.6)

where

sT t = dnCirectTc t, i rectTb t,n (13.7)

To emphasize the fundamental processing requirements,
the analysis does not consider channel noise or various
sources of signal distortion that only tend to obscure the fun-
damentals of the signal detection; however, the received
signal does contain a channel-induced phase ϕ. Also, to be
consistent with the simplicity, the rect(x) functions are not
carried forward in the following analysis. Following the sig-
nal acquisition processing, the channel phase is estimated and
removed through the baseband phaselock loop (PLL) acqui-

sition and tracking resulting in the phase error ϕε =ϕ−ϕ
where the phase estimate is ϕ. Therefore, in the following

TABLE 13.1 Comparison of DSSS Advantages and
Disadvantages

Advantage Disadvantage

Very large bandwidths Bandwidth limited by power
amplifies

sinc(fTc) frequency spectrum Difficult to obtain and
maintain synchronization

Low peak power density Processing intensive PN
correlators

Accurate range measurement Susceptible to channel
dispersion distortion

Inherently provides LPI Long acquisition times
Constant amplitude modulations:
MPSK, OQPSK, MSK,
and MFSK

Robust in multipath environment
Minimum effect on narrowband
co-channel receivers

Suitable for multiple access
applications (asynchronous)

(n + 1)Tb

V

s(t)

Tc

(n – 1)Tb nTb

t
...... ...

NTc NTc

FIGURE 13.1 DSSS baseband waveform characteristics.
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description, the phase error is equal to ϕ during the acquisi-
tion processing and results in a zero-mean phase function
after phase-lock is achieved. Consequently, noncoherent
processing must be used during acquisition. With these
caveats, the received baseband BPSK-modulated sampled
signal is described in terms of the sampling index i, with
t = iΔt, as

sr i = sT i ejϕε

= dnCi cos ϕε + jdnCi sin ϕε

(13.8)

The correlator-stored reference PN chips are denoted as

sref i =Ci 1 ≤ i ≤N (13.9)

Using (13.8) and (13.9), the PN chip correlator output for
a correlation lag τ = ℓΔt, with t−τ = i−ℓ Δt, is evaluated as

Rs ℓ =
N

i= 1

sT i sref i−ℓ

= dn
N

i= 1

CiCi−ℓcos ϕε + jdn
N

i= 1

CiCi−ℓsin ϕε

(13.10)

Recognizing that the summation over i for CiCi−ℓ =

δ N and CiCi =N, (13.10) is evaluated as

Rs ℓ =
δdn cos ϕε + jδdn sin ϕε ℓ 0

Ndn cos ϕε + jNdn sin ϕε ℓ = 0
(13.11)
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FIGURE 13.2 DSSS modulator implementations.
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The zero-lag correlation Rs(0) corresponds to the desired
response. The imaginary part of (13.11) is used as a discrim-
inator for phase tracking and the real part is used as the
received data estimate. The phase-lock condition results in
zero phase error corresponding to

Rs 0 =Ndn zero-lag phase-locked condition (13.12)

The demodulator processing represented by this BPSK
example is shown in Figure 13.3. The baseband received

signal is sampled by the analog-to-digital converter (ADC)
and passed through a rate reduction (RR) lowpass filter
(LPF) yielding two or four samples-per-chip. During acqui-
sition, the use of four samples-per-chip (Ns = 4) reduces the
scalloping loss of the PN correlator; however, after acquisi-
tion is declared, one-half chip early–late (E/L) gate correla-
tion samples are used to generate the discriminator
response for delaylock loop (DLL) chip tracking [16, 17].

The complex signal correlator details are shown in
Figure 13.3b with the I/Q samples of the baseband signal
shifted through the indicated NsN sample registers. The N-
chip PN sequenceCIi(Nk), stored in the registers, corresponds
to the number of chip intervals, Nchips, between the ETS and
the local time corresponding to Nk = ceiling Nchips N + 1.
The reference chips are stored as CIi = {±1} so the multipli-
cation simply involves changing the sign of the real and
imaginary signal samples. Returning to the description in
Figure 13.3a, because the received signal phase* is unknown,
noncoherent detection is used by forming the squared mag-
nitude, Mm(ℓ), of the correlator samples and shifting them
into the N-chip† storage register. If the initial frequency error
is unresolved to the extent that the correlation loss over the
entire N-chips is undetectable then multiple frequency
hypotheses correlations [18] must be performed.‡ The deci-
sion threshold, Thr, is computed using the two-parameter,
censored constant false-alarm rate (CFAR) and acquisition
is declared at the chip ℓmax corresponding to the largest
Mm(ℓ) that exceeds the threshold; this is expressed as§

ℓm = max−1

ℓ

Mm ℓ > Thr (13.13)

When acquisition is declared and coherent detection is
used, the phase discriminator error εϕ is established from
the imaginary part of (13.11) and the bipolar hard-limited real

part results in the received data estimates dn ±1 . The
early and late samples used for chip tracking are

Me =Mm ℓm +Δs (13.14)

and

Mℓ =Mm ℓm−Δs (13.15)

where Δs ≤Ns; Δs = Ns/2 is referred to as a one-delta loop.
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Continue search

endif

N-chip array Mm( ) 

FIGURE 13.3 BPSK DSSS acquisition processing.

*In general, the phase function is a time-varying function involving the
dynamics of the encounter.
†Since the Mm(ℓ) are generated sequentially in time, it is only necessary to
store enough samples to form a reliable two-parameter censored CFAR
threshold.
‡Refer to the discussed in Section 11.3.2.
§This notation picks ℓm corresponding to the location of the largest Mm(ℓ)
exceeding the threshold.
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13.2.1.1 DSSS Acquisition In the preceding description,
the correlator squared-magnitudes are denoted as Mm(ℓ) that
suggests more than one correlator response may be involved.
Each N-chip correlator response is referred to a dwell and the
acquisition algorithm may involve single-dwell (m = 1) or
multiple-dwells (m = 1,…,M) detections.

The single-dwell acquisition algorithm [19, 20] simply
relies on one correlation interval to declare a signal acquisi-
tion and typically requires a suitably high signal-to-noise
ratio and a nonfading channel. In this case, if a type II error
or false detection occurs the acquisition will fail over the
entire remaining search window before beginning a new
search. If, however, a correct detection is declared the
Ci(Nk+1) PN code is stored in the correlator array and the
process is repeated leading to a verification with two consec-
utive detections* or a false detection. The detailed perfor-
mance analysis of a serial search acquisition algorithm is
based on a Nu-state Markov process for which a state-
transition diagram is created with transition probabilities
associated with each transition [21]. Using this approach,
the mean and variance of the acquisition time for a single-
dwell acquisition algorithm, based on an initial time uncer-
tainty of Tu = NuTc seconds with estimates made at Tc/2 s
intervals† resulting in 2Nu estimations or cells, are given
by [22]

Tacq =
2−Pd 1 +KPfa

Pd
NuTdwell (13.16)

and

σ2Tacq = 2NuTdwell
2 1 +KPfa

2 1
12

+
1
P2
d

−
1
Pd

(13.17)

where Pd and Pfa are the correct acquisition detection and
false-alarm probabilities, Tdwell =NTc is the dwell time, and
K is the number of dwell intervals consumed as a result of
a false alarm. In consideration of the difference in the para-
meters Pd, Pfa, and Tdwell, (13.16) and (13.17) also apply
for coherent and noncoherent detection.

The false-alarm probability is usually given as a system
specification and the corresponding detection probability is
evaluated, assuming Gaussian distributed random variables,
as [23]

Pd =Q
β− NBγ

1 + 2γ
(13.18)

where Q(x) is the Gaussian probability integral, NB ≜
Tdwell Ts =BTdwell, Ts = 1/fs where fs = 2B, B is the noise

bandwidth of the predetection LPF, and the signal-to-noise
ratio is γ = A2 2 NoB . The parameter β is related to the
false-alarm probability and is expressed as

β =Q−1 Pfa (13.19)

The detection probability in (13.18) considers that the sig-
nal is contained in one chip interval or cell; however, with a
sampling resolution of one-half chip, the signal could strad-
dle two cells. Therefore, Simon et al. [6] outline a procedure
for modifying the calculation of Pd to account for this prac-
tical condition; they also outline modifications to account for
modulation distortion and the smearing effect of frequency
and frequency-rate errors.

With multiple-dwell processing the N-chip accumulator,
shown in Figure 13.3, makes detection decisions each
Mm ℓ m= 1,…,M or on shorter correlation intervals
Mm jℓ j= 1,…,J; ℓ < ℓ,Jℓ =NsN. A variety of strategies
have been examined for implementing multiple-dwell detec-
tion systems [24] with a net reduction in the acquisition time
relative to single-dwell detection systems. For example, using
a majority logic or an m-out-of-M decision criterion and
variable sub-correlation dwell intervals ℓ that reject incorrect
PN alignments sooner than with single-dwells of duration
NsN [25]; this can be viewed as a sliding-window correlator.
In addition to strategies involving the implementation of PN
correlation, search strategies that take advantage of nonuni-
formly distribution ETS over the search window reduces
the mean acquisition time. These and other multiple-dwell
acquisition search strategies are described and analyzed by
Simon et al. [26] and Peterson et al. [27].

The acquisition of the maximum chip correlator output, as
described above, can be viewed as a coarse chip alignment of
the locally stored reference with the chip-modulated received
signal. This coarse alignment is within ±Tc/2 of the true align-
ment and the error is eliminated using the DLL and the E/L
outputs as mentioned above. The chip timing error is com-
puted as

εt = Tc
Me−Mℓ

MeMℓ

DLL chip timing error (13.20)

Furthermore, the demodulator signal phase is acquired
and tracked using a PLL with the aid of the initial phase esti-
mate computed, using (13.11), as

ϕo = atan
−1 Im Rs ℓm

Re Rs ℓm
initial phase estimate

(13.21)

The E/L chip timing error expressed in (13.20) is used as
the input to a closed-loop tracking filter configuration; how-
ever, the implementation is relatively sensitive to the initial

*A detection may be declared based on m-out-of-M detections.
†The time estimation accuracy of ≤Tc/2 is typically required to initialize the
DDL for code tracking.
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frequency estimate and, if an all-digital implementation is
used, the chip sampling rate must be relatively high unless
a Farrow interpolation filter is used. The commonly used,
and extensively analyzed [28–30], implementation of PN
chip tracking in DSSS systems is the DLL shown in
Figure 13.4.* The DLL forms an E/L gate reference from
the last two chips of the PN reference sequence; these cor-
respond to the zero-lag or peak of the correlation output sim-
ilar to Me and Mℓ formed using (13.14) and (13.15).
However, the DLL also tracks the chip timing error
Tε = Td −Td between the received signal and the local refer-
ence and, ideally, zeros the mean tracking error. Alternate
implementations of the DLL are the tau-dither loop [31]
(TDL) and the double-dither loop [32] (DDL). The TDL
implementation involves alternating the early and late refer-
ences between successive chips thereby decreasing the pro-
cessing load and the DDL implementation resolves the E/L
channel gain unbalance sensitivity of the DLL and TDL
implementations. The DDL averages the E/L gate sample
unbalance by alternately associating the I/Q and Q/I samples
with the E/L gate loop filter input.

Figure 13.4 depicts the commonly analyzed DLL config-
uration involving the input signal derived from the final IF
stage and expressed as

sif t =Vm t−Td C t−Td cos ωot + θ t (13.22)

where V is the peak carrier voltage, Td is the received chip
timing delay relative to the demodulator reference PN
sequence, m t−Td = dnrect T −Td ,n is the data modulation
function, C t−Td =CirectTc T −Td , i is the chip modulation
function, ωo is the IF angular frequency, and θ(t) is the
received signal phase function that includes a constant phase
error. The early and late PN references are expressed as

sre t =C t−Td +ΔTc (13.23)

and

srl t =C t−Td −ΔTc (13.24)

Typically, the E/L gate offsets correspond to†Δ = 1/2 with
the early and late gate time difference of one-chip. The delay
in Figure 13.4 is ΔTc and the delay-corrected reference
sref t = sre t−ΔTc is used to recover the coherently

detected data dIn depicted in Figure 13.3. The bandpass
filters (BPFs) are centered at ωo with bandwidths much
narrower than the chip bandwidth and selected, in consider-
ation of the data and the input signal-to-noise ratio, to mini-
mize the mean-square tracking jitter. The discriminator
function formed by the difference in the E/L gate filters,
shown in Figure 13.4, results in a linear discriminator error,
Dε, as a function Tε = Td −Td, expressed as

Dε Tε = 2Tε Tε ≤
Tc
2

(13.25)

The equality limitation in (13.25) results in a quasi-
optimum solution, in that, it results in the maximum linear
range with the maximum peak response; smaller values result
in a narrower linear range with lower peak values. Larger
values tend to become increasingly nonlinear when
Tε =Tc resulting in zero discriminator gain at Tε = 0.
The bandwidth of the DLL baseband loop filter is also

mush less than the chip rate and removes the 2ωo frequency
term and PN self-noise generated by the squaring operations.
The acquisition performance of noncoherent DDL and TDL
PN code tracking loops is examined by Simon [28] under
linear and nonlinear conditions. The loop bandwidth and
squaring loss are examined and the performance is character-
ized in terms of the mean-square tracking jitter as a function of
the signal-to-noise ratio measured in the symbol bandwidth.

sif (t)
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–

sref(t)sre(t)srl(t)

BPF

BPF

Loop
filter

N – 1N

Reference PN generator
Ideal

integrator

Delay

( )2

( )2

FIGURE 13.4 DSSS DLL chip tracking.

*Spilker [16] was the first to analyze the DLL and Gill [29] used Spilker’s
results to compare the performance of several DLL applications. Nielsen
[30] contributed to improvements in Spilker’s implementation.

†As used here, 0 <Δ ≤ 1 and represents a fraction of Tc; however, many
authors refer to Δ as the chip interval, that is, Δ = Tc.
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13.2.2 Frequency-Hopping Spread-Spectrum

Spreading the bandwidth of the source data with bandwidth
Rb by randomly hopping the carrier frequency over a band-
width Wss Rb is another way to achieve coding gain in
the presence of a jammer. The FH is often applied to M =
2k-ary or multitone frequency shift keying (MFSK)-
modulated waveforms with k bits-per-symbol period, that
is, Ts = kTb, with the k bits taken from the M = 2k binary set
of symbols. In the following descriptions, the FH interval
Th is defined as the duration of one transmitted frequency
tone. There are two regimes of FH, identified as: slow fre-
quency hopping (SFH) and fast frequency hopping (FFH);
defined for the MFSK underlying modulation as

Th ≥Ts slow frequency hopping (13.26)

and

Th < Ts fast frequency hopping (13.27)

Therefore, SFH applies when a message of MFSK sym-
bols is hopped over the entire SS bandwidth Wss. For exam-
ple, the SFH strategy may hop a sequence of differentially
coherent multiphase shift keying (MPSK) (DCMPSK)modu-
lated symbols. However, FFH occurs when the messages
symbols are individually hopped.

The MFSK and DCMPSK waveforms are easily decoded
using robust noncoherent detection techniques. For example,
with MFSK the demodulator provides a bank of orthogonally
spaced symbol matched filters, perhaps generated using the

fast Fourier transform (FFT), and makes a maximum-
likelihood decision in estimating the correct symbol. For
the DCMPSK waveform, the modulator attaches a leading
phase reference symbol to a sequence of N information sym-
bols and the demodulator uses the reference symbol to
sequentially differentially detect the information symbols.
In this case, the SFH interval is Th = N + 1 Ts. Coherent
FH acquisition is achieved with slow hopping using a pream-
ble or midamble with known data for estimating signal phase
during each hop interval and estimating the frequency using
the known data from hop-to-hop.

Figure 13.5 illustrates the time and frequency characteris-
tics of FHSS and Table 13.2 lists some of the advantages and
disadvantages of the waveform.

Figure 13.6 shows the functional implementation of the
FHSS modulator and transmitter and the corresponding
receiver and demodulator. These implementations apply for
any waveform modulator and demodulator and the following
description is intended to be generic. To this extent the mod-
ulator maps the input source data to the unit-power modula-
tion functionMi(t). The modulator output is then mixed to the
carrier frequency (fc) of the local oscillator. The modulator
timing is established by the system clocks and timing function
that also synchronizes the PN code generator and the DFS to
the i-th FH interval Th. The resulting hopping frequency func-
tion 2cos ωmi t is weighted by the symbol function
p t− iTh = rectTh t, i , mixed with the modulated carrier fre-
quency, and passed through a highpass filter (HPF) yielding
the transmitted signal

sT t =VMi t cos ωc +ωmi t i−1 Th ≤ t ≤ iTh (13.28)

The received signal is characterized by a channel delay
and phase function as

sr t =VMi t−Td cos ωc +ωmi t−Td + θ t

i−1 Th ≤ t−Td ≤ iTh
(13.29)

where θ(t) contains the channel frequency-related errors and
a constant phase error θo. The received signal encounters the

fmi+1
fmi

s(t)

iTh

V

t

(i + 1)Th(i – 1)Th

...

FIGURE 13.5 FH spread-spectrum waveform characteristics
(0 ≤ fmi ≤Wss, fmi = f − fc).

TABLE 13.2 Comparison of FHSS Advantages and Disadvantages

Advantage Disadvantage

Very large bandwidths (limited by synthesizers) Discrete frequency occupancy
Discontinuous frequencies Synthesizer settling time overhead
Occupies continuous-time transmissions High instantaneous power density
More tolerance of channel distortions than DSSS Susceptible to detection and CW jammers
Constant amplitude MFSK waveform modulations Requires network timing for multiple access
Robust noncoherent detection Cost of digital synthesizers
Moderately robust in multipath environment when FEC is used
Moderate effect on narrow co-channel receivers
Suitable for multiple access applications
Relatively easy to obtain and maintain synchronization
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complementary functions in the receiver using the estimates

mi, Td and θ t . By virtue of the acquisition and synchroni-
zation processing, the timing delay and symbol frequency
errors are considered to be negligible. Although, the phase
error expressed as

θε i =ωmi Td −Td + θo (13.30)

is not negligible so noncoherent detection is used. The output
of the demodulator LPF is the reconstructed baseband mod-
ulation functionMi t, θε i from which the demodulated data

estimate is dn.

13.2.2.1 Slow Frequency Hopping Typically, the fre-
quency spacing between the MFSK symbol tones is chosen
to correspond to the minimum orthogonal tone spacing, that
is, Δfmin = 1 Ts, so that the spectrum corresponding to one

M-ary symbol is defined as Ws =MΔfmin = 2k Ts Hz. During
the i-th FH interval, the frequency is selected from the
M-ary set

fmi =miΔfmin mi M (13.31)

where fmi Ws. Considering that there are 2
L FH intervals, the

resulting SS bandwidth is Wss = 2LWs and the processing
gain is

Gp =
Wss

Ws
= 2L slow frequency hopping (13.32)

These relationships are depicted in Figure 13.7 for k bits-
per-symbol and 2L frequency hops over the SS bandwidth
Wss Hz.

An alternative slow FH strategy is to randomly hop each
of theM-ary tones over the entire spread bandwidth ofWss in
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FIGURE 13.6 Functional implementation of FHSS system.

494 SPREAD-SPECTRUM COMMUNICATIONS



increments of Δfmin = 1/Ts. This results in the instantaneous
symbol energy being confined to the narrow bandwidth
Δfmin. Although this strategy does not alter the SS processing
gain, it does provide a performance advantage with partial-
band jamming and fading channels when used with FEC
and frequency diversity combining (FDC).

13.2.2.2 Fast Frequency Hopping To generate a FFH SS
waveform, consider the MFSK example in the previous
section corresponding to one k-bit code word in each symbol
interval Ts = kTb and the associatedM-ary frequency tone fm1
shown in Figure 13.7. Instead of hopping the tones fmi, FFH
divides the symbol into Q frequency hopped increments of
duration Th = Ts/Q, that are independently hopped over the
bandwidth Wss using mi,q q = 1,…,Q generated by the PN
code generator, where i denotes the symbol interval iTs. In
this case, the processing gain is unchanged from the SFH
waveform; however, there is a performance improvement
with jamming because it is unlikely that all, or even a major-
ity, of the de-hopped symbols will be impacted by the jam-
mer. This concept is similar to repetition coding of DSSS
waveforms that results in significant performance improve-
ments against the worst-case pulsed jammers as discussed
in Section 13.5.4.

13.2.2.3 Frequency Hopping Acquisition The acquisi-
tion of the FHSS waveform is similar to that of DSSS acqui-
sition [33]. For example, the acquisition processing involves

two steps: FH acquisition and FH tracking. FH acquisition is
declared when the locally generated hopping sequence is syn-
chronized to the received signal sequence to within Th/2 and
FH tracking establishes the synchronization to within a frac-
tion of Th/2. The following description of the acquisition pro-
cessing applies to the serial search single-dwell algorithm
discussed in Section 13.2.1.1.

Consider the MFSK FFHSS waveform outlined in
Section 13.2.2.2, with the local-time base advanced by the
local-time error and range uncertainty relative to the PN
spreading code generator ETS. The synchronization proces-
sing identifies the FH code estimate mi,q in the symbol inter-
val iTs. Referring to Figure 13.8, the bank of M-ary
demodulator integrate-and-dump (I&D) matched filters,
separated in frequency by the tone spacing Δf, are used to
detect the presence of the DFS down-converted, or de-
hopped, received tones. However, prior to the arrival of the
transmitted hop code mi,q at the receiver, the down-converter
output, in the absence of a jammer, corresponds to the chan-
nel and receiver noise. The I&D matched filter sampling cor-
responds to the hop interval Th < Ts and the summation refers
to summing theQ frequency hops-per-symbol. When the sig-
nal is present, the selection of the maximum input corre-
sponds to the symbol energy* Ps(Ts − Tε) where Tε = Td is
the unknown signal delay error. During the symbol tracking

1 of 2L hop
locations 

iTh :
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Wss
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2ThTh0
t
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FIGURE 13.7 Data and frequency mapping for MFSK FHSS.

*Frequency synthesizer settling time and energy from adjacent de-hopped
signals is not included.
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the delay error is Tε = Td −Td where the demodulator delay
estimate is Td. Although this description focuses on FFH,
the acquisition processing also applies to SFH by simply let-
ting Q = 1. The function accumulate maximums provides for
post-detection integration of the individual hops prior to the
symbol acquisition decision based on a threshold Thr.

* If
acquisition is declared, the FH tracking mode is entered; oth-
erwise, the local epoch time is advanced in preparation for the
next sequential acquisition attempt.

13.2.3 Time-Hopping Spread-Spectrum

Figure 13.9 illustrates the time characteristics of the
time-hopping spread-spectrum (THSS) waveform and
Table 13.3 lists some of the advantages and disadvantages.
Relative to the DSSS waveform, the TH peak carrier voltage
(Vp) is increased by Gp = Tb Tp so that the transmitted pulse
energy in each bit interval is identical to that of the DSSS
waveform. Although there are fundamentally N pulse time-
slots associated with each information bit, the random TH
increment kn is based on a resolution of Δτ seconds where

kn is uniformly distributed over the range 0 ≤ kn ≤N Nr −1
and Δt = Tb NrN , when Nr = 1 the time-hopped pulse is
placed exactly in one of theN time-slots. Figure 13.10 depicts
a functional implementation of the THSS modulator.

13.2.4 Spectral Characteristics of DS, FH, and
TH Spread-Spectrum Waveforms

The spectral characteristics of each of the SS waveforms dis-
cussed above are shown in Figure 13.11; the spectrum of the
unspread waveform is shown in Figure 13.11a for comparison.
In these figures, the baseband frequency f = f − fc represents
the radio frequency (RF) shift from the carrier frequency.
Each waveform uses an underlying rect(t/T) modulation
function and the indicated processing gains. With a common
source data rate Rb and Tp = Tc, the processing gain is
Gp =RbTc =RbTp and the corresponding sinc(f Tc) and sinc
(f Tp) functions for the DSSS and THSS waveforms are
identical. Referring to Figure 13.11a, the sinc(f Tb) spectrum
of the unspread waveform has a first spectral null that
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FIGURE 13.8 FHSS waveform acquisition processing.
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FIGURE 13.9 THSS baseband waveform characteristics.

TABLE 13.3 Comparison of THSS Advantages and
Disadvantages

Advantage Disadvantage

Occupies large instantaneous
bandwidth

Discrete-time transmissions

Moderate effect on narrow
co-channel receivers

Requires network timing for
multiple access

Suitable for multiple access
applications

Difficult to obtain and maintain
synchronization

Good near/far performance Requires high peak power
Susceptible to detection

*The detection may also be based on a q-out-of-Q majority count.
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FIGURE 13.10 Functional implementation of THSS modulator.
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FIGURE 13.11 Illustration of SS spectral characteristics.
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corresponds to f Tb = 1 Gp = 0 0078. On the other hand, with
the FHSS waveform, the normalized frequency f /Bh is
hopped over the bandwidth −Bh 2 ≤ f ≤Bh 2 with Gp =
RbTc =Rb Bh so thatBh = 1 Tc. The time axes in Figure 13.11
are normalized by the simulation record duration of Tr
seconds where Tr =NsmTfft, Tfft is the duration of the FFT
window, and Nsm is the number of periodograms, described
in Sections 1.2 and 1.2.8, used in estimating the PSD.

Figure 13.12 shows the two-dimensional PSD of the
DSSS and FHSS waveforms in comparison to the unspread
BPSK waveform modulation using identical data rates. The
SS processing gains are Gp = 24 and 30 dB corresponding
to N = 256 and 1024 chips-per-bit and Nr = 8. The DSSS chip
and the THSS pulse durations are identical. The signal-plus-
noise plots, shown as the gray curves, is relative to the bit
energy with Eb/No = 6 dB* corresponding to an optimally

detected bit-error probability of about Pbe = 2 × 10−3; the
black curves represent the noise-free PSD of the waveforms.
Figure 13.12c and d demonstrate that, unlike the unspread
and THSS waveform, there is no visual evidence of their pre-
sents when looking and the noise level. A major distinction
between Figure 13.12a and b is the difference in bandwidth.
For example, the bandwidth of the THSS system isNRb so the
increase in the noise-floor of about 5 dB is spread over a
much larger bandwidth making it more difficult to detect.
The Dicke radiometer, discussed in Section 13.4.2, is
designed specifically for the purpose of detecting slight
increases in the noise-floor over large bandwidths.

The spectrum of the DSSS waveform, with p t =
rect t−Tc 2 Tc , is evaluated as

SDS f =VTce
− j2πfTc sinc fTc (13.33)

Similarly, the spectrum of the THSS waveform is evalu-
ated as

STH f =GpVTce
− j2πf τkn + Tc sinc fTc

=Gpe
− j2πf τknSDS f

(13.34)

Normalized frequency ( f Tb)

Unspread BPSK Waveform

–4 –3 –2 –1 0 1 2 3 4

Po
w

er
 s

pe
ct

ra
l d

en
si

ty
 (

PS
D

) 
(d

B
)

–40

–30

–20

–10

0

Normalized frequency ( f Tc) 

THSS (Gp = 24 dB)

–4 –3 –2 –1 0 1 2 3 4

Po
w

er
 s

pe
ct

ra
l d

en
si

ty
 (

PS
D

) 
(d

B
)

–40

–30

–20

–10

0

Normalized frequency (fTc) 

DSSS (Gp = 24 dB)

–4 –3 –2 –1 0 1 2 3 4

Po
w

er
 s

pe
ct

ra
l d

en
si

ty
 (

PS
D

) 
(d

B
)

–80

–70

–60

–50

–40

–30

–20

–10

0

Normalized frequency (fTc)

DSSS (Gp = 30 dB)

–4 –3 –2 –1 0 1 2 3 4

Po
w

er
 s

pe
ct

ra
l d

en
si

ty
 (

PS
D

) 
(d

B
)

–80

–70

–60

–50

–40

–30

–20

–10

0

(d)

(b)(a)

(c)

FIGURE 13.12 Comparisonof unspreadwithDSSSandTHSSwaveformspectrums (black, curveswithout noise; gray curveswithEb/No = 6 dB).

*The noise is also adjusted by the bandwidth into demodulator matched filter,
corresponding to a sampling rate of Ns = 8 samples/bit, resulting in Esamp/
No = −3 dB.
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so that

STH f =Gp SDS f (13.35)

The normalized squared magnitude of the spectrum S(f) is
defined as the periodogram that, when averaged, forms the
estimate the PSD of the waveform.

Hybrid SS waveforms are used to complement the under-
ling SS waveform by improving the AJ and/or LPD charac-
teristics. For example, the relatively low LPD characteristic
of FHSS and THSS waveforms can be improved using the
respective hybrid forms FHSS/DSSS and THSS/DSSS.
Referring to Figure 13.12b, a modest amount, 10 : 1 or so,
of PN chip spreading applied to each TH pulse will lower
the detestability.

13.3 JAMMER AND INTERCEPTOR
ENCOUNTERS

13.3.1 Anti-Jam Spread-Spectrum Communications

The effectiveness of AJ communication systems is maxi-
mized by maximizing the receiver antenna gain in the direc-
tion of the communication transmitter while minimizing the
receiver antenna gain in the direction of the jammer. The
application of adaptive antenna null steering for this purpose
may provide a 20–60 dB advantage in the presence of rela-
tively narrowband jammers. Increasing the transmitter power
and the antenna gain in the direction of the receiver is always
beneficial for AJ systems. An encounter with a jammer is
depicted in Figure 13.13 and the performance is evaluated
in terms of the communications range equation applied to
the jammer and communication paths.

The expression for the received signal power at the input
to the receiver at a range R from a transmitting source is

Pr =
PtGtGrλ

2

4π 2LsLpR2
(13.36)

where Pr represents the received power from the communica-
tion transmitter. The transmitter power into the transmit
antenna with gainGt is denoted as Pt so the transmitter system
losses are accounted for in Pt.Gr denotes the receiver antenna
gain in the direction of the communication transmitter. The
loss Ls represents the receiver system losses including those
associated with antenna pointing, tracking, and polarization
and the loss Lp represents the propagation losses associated
with the atmosphere, rain, and scintillation. In the following
analyses the losses listed in Table 13.4 are used with equal
propagation path and antenna losses for the communicator
and jammer, such that, Lp = Lpj =Latm + Lrain + Lscint =
2 5 dB and Lant = Lantj = Lpointing +Lpol = 1 dB. The communi-
cation system receiver and demodulator losses do not have
jammer counterparts and are defined as Lrd =Lrec + Lcomb +
Ltrk = 2 3 dB; in (13.36) Ls = Lant + Lrd. The numerical values
are considered to be generic losses; however, in practice they
are dependent upon a variety of operational design conditions
unique to each system. The receiver combining losses can be
significant if noncoherent combining is required. The demod-
ulator frequency, phase, and symbol time tracking losses are
dependent on the waveform and the dynamics of the channel.
The rain loss is typically characterized in terms of decibels/
meter so the total loss depends on the propagation path
through the region of rain; rain attenuation is strongly
dependent on the operating frequency. With these thoughts
in mind, the parameters listed in Table 13.4 might be better
thought of as place-holders for consideration in an actual sys-
tem design.

The ratio of the desired signal power to noise-plus-jammer
power is evaluated as

Pr

N +Prj
=

Pr

kToBnFns +Prj
(13.37)

where kToBn is the noise power and Fns is the receiver system
noise figure. Multiplying both sides (13.37) by the receiver
noise bandwidth Bn results in the expression for the receiver
signal to noise-density ratio C No, where C = Pr denotes
the desired received signal power and No =No +Prj Bn

denotes the Gaussian noise-plus-jammer power density with

C/No

Grj

Pj

Gtj

GtPt Gr

Lp

Jammer
transmitter

Communication
transmitter

Communication
receiver

Lpi

Range (R)

Range
(Rj)

FIGURE 13.13 Communications jammer scenario.

TABLE 13.4 Losses Associated with Range Equation

Parameter Value (dB) Description

Lpointing 0.5 Antenna pointing
Lpol 0.5 Antenna polarization
Lrec 1.5 Receiver RF losses
Lcomb 0.5 Integration loss
Ltrk 0.3 Demodulator tracking losses
Latm 0.5 Atmospheric absorption
Lrain 1.0 Rain loss
Lscint 1.0 Scintillation

JAMMER AND INTERCEPTOR ENCOUNTERS 499



dimension of watts/hertz, so C No has units of Hz. For suc-
cessful communications it is required that the received
C No ≥ Eb No reqdRb, where Rb is the communication data

rate and (Eb/No)reqd is the minimum energy-per-bit to
noise-density ratio required to satisfy the specified bit-error
probability performance of the demodulator. Developing
C No in terms of the rhs of (13.37) results in the expressions

C

No

=
BnPr

kToBnFns +Prj

=
Bn

1 + kToBnFns Prj

Pr

Prj

≥
Eb

No reqd

Rb

(13.38)

Referring toChapter 15and substituting the expressions for
the received power of the communication and jammer links
operating at the same carrier frequency λj = λ and using
the previously defined losses, then, upon rearranging terms,
the condition for a successful communication is expressed as

1

1 +
kToBnFns

Prj

EIRP
EIRPj

Gr

Grj

Lpj
Lp

Lantj
Lant

1
Lrd

Rj

R

2

≥
Eb

No reqd

Rb

Bn

(13.39)

Equation (13.39) delineates the influence of the commu-
nicator, jammer, and link geometry on the system perfor-
mance. Upon rearranging terms and using the processing
gain Gp = Bn/Rb and assuming that Prj >> kToBnFns, the
requirements for successful communications is expressed as

EIRP
EIRPj

Gr

Grj

Lpj
Lp

Lantj
Lant

1
Lrd

Rj

R

2

Gp =
Eb

No rec

≥
Eb

No reqd

successful communication

(13.40)

Defining the link margin (LM) as

LM≜
C No rec

C No reqd

=
Eb No rec

Eb No reqd

(13.41)

the LM is expressed in term of the link parameters as

LM=
EIRP
EIRPj

Gr

Grj

Lpj
Lp

Lantj
Lant

1
Lrd

Rj

R

2 Gp

Eb No reqd

≥ 1 successful communication

(13.42)

The LM is plotted in Figure 13.14 as a function of the pro-
cessing gain (Gp) for several values of the effective isotropic
radiated power (EIRP) and a required Eb/No of 6 dB. The
condition LM ≥ 1 (0 dB) results in successful link communi-
cations. From these results, it is seen that the EIRP increases
in direct proportion to the processing gain. In Figure 13.14,
the path loss ratio is 0 dB and the communication link has a
receiver gain advantage of 10 dB and range disadvantage of
6 dB. The LM performance for other parameter values is
readily determined with the understanding that the range ratio
is squared. For example, if the jammer range advantage
increases by a factor of two, the communication LM will
decrease by 6 dB.

13.3.2 Low Probability of Intercept Spread-
Spectrum Communications

The effectiveness of LPI communication systems is maxi-
mized by maximizing the transmitter antenna gain in the
direction of the communication receiver while minimizing
the transmitter antenna gain in the direction of the interceptor.
An encounter with an interceptor is depicted in Figure 13.15
and the performance is evaluated in terms of the communica-
tions range equation applied to the interceptor and communi-
cation paths.

The expression for the desired received signal power from
a distant transmitter at range R is given by (13.36) and the
received signal-to-Gaussian-noise power ratio at the commu-
nication receiver is expressed as

Pr

N
=

PtGtGrλ
2

4π 2kToBnFnsLpLantLrdR2
(13.43)
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where Fns is the receiver noise figure and Bn is the
communication SS bandwidth. In this case, the communica-
tor and interceptor propagation and antenna losses and the
communicator’s receiver and demodulator loss are the
same as with the jamming scenario in Figure 13.14; however,
the interceptors’ receiver and demodulator loss is
Lrdi = Lreci +Lcombi = 2 0 dB. The parameters in the following
examples are based on a DSSS, BPSK-modulated SS wave-
form with a chip rate of Rc chips-per-second.

The received carrier to noise-density ratio is
C No rec =BnPr N and the requirement to preserve the
communication performance is C No rec ≥ Eb No reqdRb.
The LM is defined as LM = C No rec C No reqd, so the

condition for successful communications with LM ≥ 1 is
C No rec = LM C No reqd. Using this result and solving

(13.43) for the required transmitter power gives

Pt =
4π 2kToFnsLpLantLrdR2

GtGrλ
2 LM

Eb

No reqd

Rb (13.44)

In terms of the interceptor, the received signal-to-noise
ratio is given by

Pr

N i

=
PtGtiGri λ

2
i

4π 2kToBnFnsiLpiLantiLrdi R
2
i

(13.45)

Substituting the transmitter power expressed in (13.44)
required to maintain the communication link into (13.45),
with λi = λ, results in

Pr

N i

=
GtiGri

GtGr

FnsLpLantLrd
FnsiLpiLantiLrdi

R

Ri

2

LM
Rb

Bn

Eb

No reqd

(13.46)

When attempting to detect a communication transmission,
the interceptor has a time advantage similar to that of the
communicator’s SS frequency advantage. For example, an

interceptor employing a total-energy radiometer detector
integrates the signal-plus-noise power in an RF bandwidth
W = Bn = Rc over the time interval TI and declares the pres-
ence of a signal when the integrated signal-to-noise ratio
exceeds a threshold γT. For the case of noncoherently inte-
grating a BPSK-modulated SS signal in additive noise over
the interval TI-seconds, the communications signal will be
detected if the interceptor output signal-to-noise ratio
exceeds the threshold, that is, γio ≥ γT . For the total-energy
radiometer, using the optimum RF bandwidth of W = Rc

and the optimum signal power factor* α = 0.773, the intercep-
tor output signal-to-noise ratio is given by

γio = 0 597
Eb

No

2

i

Gpi

Gp
< γT

undetected communications

(13.47)

where Gpi =RbTI is the interceptor processing gain; the com-
munication is undetected when (13.47) is satisfied. This ine-
quality can be rearranged to express the requirement for the
Eb/No at the interceptor input to remain undetected with the
result

Eb

No i

< 1 29
γTGp

Gpi
undetected communications

(13.48)

Recalling that (Pr/N)i is the received signal-to-noise ratio
measured in the bandwidth Bn, then (Eb/No)i is evaluated as

Eb

No i

=
Pr

N i

Bn

Rb

=
GtiGri

GtGr

FnsLpLantLrd
FnsiLpiLantiLrdi

R

Ri

2

LM
Eb

No reqd

(13.49)
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FIGURE 13.15 Communications intercept scenario.

*The interceptor power factor is discussed in Section 13.5.2.

JAMMER AND INTERCEPTOR ENCOUNTERS 501



Therefore, using the total-energy radiometer with RF
bandwidth B = Rc = Bn, the condition for undetected commu-
nications corresponds to

GtiGri

GtGr

FnsLpLantLrd
FnsiLpiLantiLrdi

R

Ri

2

LM
Eb

No reqd

< 1 29
γ
T
Gp

Gpi

(13.50)

For convenience in plotting, (13.50) is normalized by the
term on the right-hand-side (rhs) with the communication
intercept LMi defined as*

LMi ≜ 1 29
GtGr

GtiGri

FnsiLpiLantiLrdi
FnsLpLantLrd

Ri

R

2 γ
T

LM
Eb

No

−1

reqd

Gp

Gpi

> 1 undetected communications

(13.51)

Figure 13.16 is a plot of the communication margin,
expressed by (13.51), as a function of processing gain ratio
Gp/Gpi for various values of G/Gi =GtGr/(GtiGri) with the
remaining parameters as indicated. When plotted in dB,
positive values of the ordinate correspond to undetected com-
munication. The interceptor threshold γT = 18.58 and corre-
sponds to Pd = 0.995, Pfa = 10−3, and interceptor output
signal-to-noise ratio of γo = 17.8 dB. These values are deter-
mined using the chi-square distribution nomogram devel-
oped by Urkowitz [34] as described in Appendix C. The

processing gain ratio is subject to the competing interests
of increasing and decreasing the communication intercept
LMi. The performance is significantly influenced by the
antenna gain ratio G/Gi where the interceptor gain Gti is a
function of the interceptor location and the beam width of
the communication transmit antenna. To minimize the radio-
meters integration time, the interceptor receive antenna gain
must overcome the Gti loss and the free-space range loss cor-
responding to LSR = Rj/R; typically the communication sys-
tem is designed to operate with LSR ≥ 2.

The total-energy radiometer discussed above is optimum
in the sense that the optimum radiometer RF bandwidth for
the DSSS waveform isW = Rc. Normally, however, the com-
munication chip rate is unknown so the input RF bandwidth
must be somewhat wider giving suboptimal interceptor per-
formance. Also, when FHSS or frequency division multiplex
(FDM) waveforms are to be detected, the RF bandwidth of
the interceptor must be considerably greater than the instan-
taneous bandwidth occupied by the communication wave-
form. For example, with FHSS systems the interceptor
bandwidth must be on the order of the hopping bandwidth,
which is wider than the instantaneous signal bandwidth by
a factor equal to the SS processing gain. Therefore, a more
realistic interceptor encounter requires W >Wss where Wss

is the SS or FDM occupied bandwidth. In Section 13.4.1,
the interceptor excess bandwidth is defined as ρ =W/Wss

and the signal power factor is defined as α = Psi/Pri and cor-
responds to output-to-input power ratio of the radiometer RF
BPF. Referring to (13.59), the optimum intercept processing
gain is effectively altered by the changes in the factor α2/ρ.
For example, the optimum DSSS performance results in
Figure 13.16 correspond to ρ =W/Rc = 1 and α = 0.773. If
the interceptor power factor is reduced by 20%, the radiom-
eter output signal-to-noise ratio is reduced and the communi-
cation LM to interception is reduced by 0.97 dB. The
interceptor’s probability of detection and false alarm are
related to the input signal-to-noise ratio (SNR) and the thresh-
old γT. If the interceptor makes a decision regarding the pres-
ence of a signal at the end of each integration interval TI, the
average time between false alarms is given by Tfa = TI/Pfa.

13.4 COMMUNICATION INTERCEPTORS

Communication interceptors [35, 36] have a difficult job in
attempting to determine, not only the presence of a commu-
nication signal but also to extract as much information as pos-
sible from the signal [37], to accomplish the goals of the
interceptor. The goals of the interceptor may be well inten-
tioned, as in performing rescue missions; however, when
the communicator takes great pains to avoid being inter-
cepted, the goals of the interceptor are more adversarial
and may involve directing and optimizing jamming signals
or intercepting messages to defeat the plans of the
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FIGURE 13.16 Communication link intercept margin with
total-energy radiometer interceptor for Eb/No|reqd = 6 dB, LM = 0
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*The normalization is inverted to result in a positive dB margin to detection
by the interceptor; this is the same as normalizing by the lhs of (13.50).
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communicator. The subject of communication interceptor
design is as varied as is the subject of communication wave-
form designs and is made more difficult if little is known
about the communication waveform or its underlying charac-
teristics. Interceptors generally look for energy exceeding an
assumed background level or signal temporal and spectral
features characteristic of the waveform modulation. Intercep-
tors can be classified into several broad categories based on
the detection processing [38]: radiometers, binary sliding-
window [39], distribution free and nonparametric [40–42],
and filter-bank comparative detection. A summary of com-
monly encountered types of interceptors and their optimum
parameters is given by Ames et al. [13].

13.4.1 Total-Energy Radiometer

The total-energy radiometer [34] (TER) is the simplest inter-
ceptor to implement because it integrates the output of a
square-law detector and compares the output signal-to-noise
ratio based on a predetermined detection threshold.* With
very low input carrier-to-noise density ratios, it is difficult
to maintain a constant gain intercept receiver over the long
integration times required by TER. The functional diagram
of the total-energy radiometer is shown in Figure 13.17.
The input BPF establishes the signal-to-noise ratio into the
square-law detector with a sufficiently wide bandwidth to
capture the signal energy. There is, however, an optimum
input bandwidth that maximizes the signal detection in the
presence of AWGN. In Figure 13.17, the LPF is an integrator
with integration time of TI seconds that determines the inter-
ceptor processing gain. In theory the interceptor can make TI
as long as necessary to overcome the communicator’s SS pro-
cessing gain and thus detect the signal.

The following performance analysis of the total-energy
radiometer is based on a DSSS, BPSK-modulated waveform
with a chip rate of Rc = 1 Tc, given by

sr t =
i

s t rect
t− iTc
Tc

(13.52)

The underlying modulated signal, with carrier power A2/2
and data modulation di = ±1 , is

s t =Adi cos ωct (13.53)

The spectrum of this modulated waveform has the form
sinc(fTc) and, considering a perfectly rectangular BPF with
a RF bandwidth W = 2B, the signal power out of the BPF,
centered on the carrier fc, is given by Pso = αPri = αA2 2
where α is evaluated as

α= 2

B

0

S f 2df

=
2
Rc

B

0

sin π f Rc

π f Rc

2

df

(13.54)

Equation (13.54) is evaluated as

α=
2
π

Si
πB

Rc
−
sin2 πB Rc

πB Rc
(13.55)

where Si(x) is the sine integral [43]. Using these results, the
signal power out of the square-law detector is

Pso =P
2
si = α

2 A2

2

2

(13.56)

For white Gaussian input noise with one-sided power
spectral density No, the noise power out of the square-law
detector and integrator, ignoring the DC term, is evaluated
by Davenport and Root [44] as

Pno =W N2
oBI (13.57)

where BI = 1/TI and the output signal-to-noise ratio of the
total-energy radiometer is expressed as

γio =
Pso

Pno
= α2

A2 2
No

2
TI
W

= α2γ2ci
TI
W

(13.58)

where γci is equal to or exceeds the input carrier-to-noise den-
sity ratio. Multiplying the numerator and denominator of
(13.58) by the square of the communication data rate and
defining the communication and intercept processing gains
asGp = Rc/Rb andGpi = TIRb respectively with the interceptor
excess bandwidth defined as ρ =W Rc, results in the
expression

γio = α
2 Eb

No

2 Gpi

ρGp
≥ γT communications detected

(13.59)

Signal
detection>

Input
BPF

Sq-law
detector LPF

Threshold
(Th)

FIGURE 13.17 Total-energy radiometer functional diagram.

*Urkowitz [34] has developed a convenient nomogram for determining the
detection threshold corresponding to specified detection and false-alarm
probabilities.
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When γio exceeds the predetermined threshold γT, the
interceptor declares that the communication signal has been
detected. The optimum interceptor RF bandwidth occurs
whenW =Rc r = 1 which results in α = 0.773. As the excess
bandwidth increases (ρ > 1), α approaches unity resulting in
the maximum signal power; however, there is a dispropor-
tionate increase in the noise resulting in degraded detection.
With the excess bandwidths ρ < 1, the opposite result occurs,
still resulting in a net degradation in detection performance.

13.4.2 Dicke Radiometer

The Dicke [45] radiometer overcomes the sensitivity of the
total-energy radiometer to the receiver gain variations during
the long integration intervals. This is accomplished by
switching the receiver input between the antenna terminal
and a calibrated noise source. The switching rate is chosen
to be sufficiently high so as not to interfere with the integra-
tion sensitivity. The integrated product of the two switched
sources produces a DC voltage when the signal is present.
The DC voltage is integrated and compared to the detection
threshold. The original Dicke radiometer focused on square
wave switching; however, sinusoidal and saw tooth switch-
ing [46] are also used. The functional implementation of
the Dicke radiometer is shown in Figure 13.18.

Table 13.5 summarizes the parameters required for opti-
mum interceptor detection using the total-energy and Dicke
[47] radiometers. In this summary the interceptor perfor-
mance is based on the communication carrier-to-noise power
ratio (γio = Pso/Nno) at the output to the interceptor radiometer
with the threshold (Th) established from the specified detec-
tion and false-alarm probabilities.

13.5 BIT-ERROR PERFORMANCE OF DSSS
WAVEFORMS WITH JAMMING

In the following analyses, the communication performance
with jamming is based on the SSwaveforms occupying band-
widths much greater than the information bandwidth, that is,

Wss WwhereW is the symbol bandwidth; for binary antip-
odal signaling W is taken to be equal to the information
rate Rb. Furthermore, the analyses focus on the desired and
jamming signals that are transmitted through linear, nondis-
persive channels. The performance examples are based on
single-tone, multitone, and noise jammers; however,
Kullstam [48] discusses the performance with arbitrary inter-
fering signals. In Section 13.8, these assumptions and condi-
tions are also applied to the performance evaluation of FHSS
waveforms.

The SNJR ratio is defined as

γs+ j =
Eb

No +NoJ
(13.60)

where Eb = PsTb and No =NTb and NoJ =NJTc are the AWGN
densities of the receiver thermal and jammer noises respec-
tively; N and NJ are the respective noise powers. Dividing
the numerator and dominator of (13.60) by Eb results in
the expression

γs + j =
1

No Eb +NoJ Eb
(13.61)

The first term in the denominator of (13.61) is simply the
inverse signal-to-thermal noise ratio, defined as γb = Eb/No

and the second term is defined as the effective jammer-to-
signal power ratio, expressed as

ρJ ≜
PJ

PsGp
(13.62)

where Gp = Tb/Tc is the SS processing gain. Upon defining
the signal-to-jammer power ratio as

Jammer
detection>LPF

Threshold
(Thr)

Input
BPF

Noise
source

Receive
antenna

Switching
generator

Multiplier( )2

FIGURE 13.18 Dicke radiometer functional diagram.

TABLE 13.5 Summary of Optimum Interceptor Radiometer
Parameters (γc = Pc/No Hz; Pc Is Carrier Power)

Radiometer
Type Output SNR (γio) Comments

Total-energy α2γci
2TI/W DSSS:W = Bn = Rc; α = 0.773

Dicke 0.15α2γci
2TI/W DSSS: W = Rc

0.25α2γci
2TI/W FHSS and FDM
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γsj ≜
Eb

NoJ
=

1
ρJ

=
PsGp

PJ
(13.63)

and substituting (13.63) in (13.61) and rearranging terms, the
SNJR simplifies to

γs+ j =
γbγsj
γb + γsj

(13.64)

This expression is the parallel combination (see Problem
4) of the individual signal-to-noise ratios and, as one domi-
nates the other, the resulting signal-plus-jammer ratio
approaches the smaller of the two. This phenomenon results
in the flaring of the bit-error probability with increasing γb
when jammer power is added to the receiver thermal noise.

Equations (13.63) and (13.64) are used in the following
sections to characterize the bit-error performance and the
resulting Eb/No loss with jamming. The performance analysis
is based on the signal and jammer powers at the input to the
communication receiver and does not consider the transmitter
power necessary to overcome range, propagation and other
link losses as discussed in the preceding sections.

13.5.1 DSSS with BPSK and QPSK Modulation and
CW Jamming

The CW jammer signal is the easiest jamming waveform to
generate and the most effective CW jammer strategy is to
concentrate the jammer power at the carrier frequency of
the DSSS waveform; this is also the case for FHSS wave-
forms; however, locating the carrier frequency is more
improbable. Consider the received signal characterized as a
DSSS BPSK chip-modulated waveform at the carrier angular
frequency ωc radians-per-second and expressed in terms of
the analytic signal as

sr t = 2Psdk
N−1

i= 0

cie
jϕs signal only no jamming

(13.65)

where Ps is the signal carrier power, ci =
±1 i = 0,…,N−1 represents the PN chips of duration

Tc characterized as rect((t − Tc(1 + 2i)/2)/Tc), dk = {±1} is
the source data of duration Tb =NTc, synchronized with the
PN chips, and ϕs is the received signal phase resulting from
the channel. The analytic CW jamming signal is expressed as

sJ t = PJ ejϕJ + jejϕJ jamming signal (13.66)

The jammer power is distributed equally between the
quadrature jammer signals. The demodulator correlates the
received signal-plus-jammer using the locally generated ref-
erence signal, expressed as

sref t =
2
Tb

N−1

i= 0

cirect
t−Tc 1 + 2i 2

Tc
ejϕs

local reference signal

(13.67)

where the locally generated PN sequence ci is time synchro-

nized with the received PN chips and ϕs is the demodulator
estimate of the received signal phase. Using these functions,
the k-th real correlator output, corresponding to the bit inter-
val kTb, is evaluated as

yck =
1
2

Tb

0

sr t s∗ref t dt +

Tb

0

sJ t s∗ref t dt

=
1
2

4Ps

Tb

dk
N−1

i= 0

c2i

i+ 1 Tc

iTc

dtcos ϕs−ϕs

+
1
2

2PJ

Tb

N−1

i= 0

ci

i+ 1 Tc

iTc

dt 2cos θ

(13.68)

With ideal correlator phase tracking, the correction phase

corresponds to ϕs−ϕs = 0 and letting θ =ϕJ −ϕs +φ with φ =
π/4, and evaluating the correlator voltage outputs as

i
c2i =N and

i
ci = N,* (13.68) simplifies to

yk =
Ps

Tb

dkNTc +
PJ

Tb

NTc cos θ (13.69)

where the phase θ is unknown to the jammer; however, it can
be changed in an attempt to achieve the worst-case jamming
scenario. Using (13.69), the resulting signal-to-jammer
power ratio is computed as

γsJ =

Eb

PJTc
=
Eb

NJ
θ = 0; worst-case jammer

2Eb

PJTc
=
2Eb

NJ
independent of θ, best-case jammer

(13.70)

Simon et al. [49] use the notation in the second equality,
which results in antipodal bit-error signaling performance
when plotted in terms of Eb/NJ. Equation (13.70) can also
be expressed as

γsJ =

PsGp

PJ
= γsJ θ = 0

2
PsGp

PJ
= 2γsJ independent of θ

(13.71)

*These results are obtained using the Gaussian pdf approximation resulting
from the central limit theorem when summing over N 1.
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Equations (13.70) and (13.71) conform to (13.63) in the
preceding section. In general, the bit-error probability for
the CW jammer is evaluated as

Pbe =
1
2
erfc

γsJ
2cos2 θ

BPSK with CW jammer

(13.72)

Kullstam [50] analyzes the use of DSSS QPSK chip mod-
ulation with identical source data on each rail as a means to
minimize the impact of a CW jammer. For example, in the
analysis leading to (13.72), the jammer can adjust the phase
of the jamming signal to degrade the antipodal signaling per-
formance; however, with DSSS chips and identical source
data on each QPSK rail the performance corresponds to the
best case independent of the jammer phase.

13.5.2 DSSS with BPSK Modulation and Pulsed
Noise Jamming

With broadband noise jamming, the jammer power is
spread over the entire SS bandwidth of Wss Hz used by the

communication waveform and the bit-error performance is
evaluated as

Pbe =
1
2
erfc

γbγsj
γb + γsj

broadband noise jammer

(13.73)

Referring to (13.63),when thesignal-to-jammer ratio,defined
in decibels as JSR = 10log10(γsj), increases (13.73) approaches
the familiar expression for BPSK bit-error probability in the
AWGN channel, shown as the dotted curve in Figure 13.19a
and b. These figures also demonstrate the flaring in the bit-error
performance as the signal-to-jammer ratio decreases. In this
regime, as γb increases the performance asymptotically
approaches the bit-error performance based solely on γsj.
Figure 13.19c shows the loss in γb =Eb/No for various values
of the signal-to-jammer ratio (SJR); the loss is computed as

Loss γb = −10log10
γs+ j
γb

= −10log10
γsj

γb + γsj
dB

(13.74)
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FIGURE 13.19 BPSK performance with wideband noise jammer.
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The loss in γb expressed in (13.74) is identical to the
flaring loss in Figure 13.19a and b relative to the ideal
performance at a specified Pbe corresponding to SJR and
Eb/No.

For the narrowband noise jammer, the jammer noise
power is concentrated over the bandwidth Rb <Wss <Wss.
Furthermore, to achieve the greatest amount of peak power
the noise jammer must operate as a pulsed jammer with a duty
cycle of TJ/Tpri corresponding to an on interval with proba-
bility u = TJ Tpri and the off interval with probability
1−u 0 ≤ u ≤ 1. The time Tpri is the PRI and is equal to
the inverse of the pulse repetition frequency (PRF), that is,
fprf = 1 Tpri. The time TJ is the duration of the jammer-
transmitted noise pulse. In this case, PJ is related to the
average power that the noise jammer transmitter can sustain
without overheating; therefore, a much larger peak power is
achievable as long as the average power is not exceeded. The
relationship between the peak and average power is obtained
by the proportionality

PJpeak =PJ
Tpri
TJ

=
PJ

u
(13.75)

For example, with u = 0.0001 the jammer gains an instan-
taneous power advantage of 40 dB although only for 0.01%
of the time.

Applying these relationships to the pulsed noise jamming
of the DSSS BPSK-modulated waveform, the bit-error prob-
ability is given by

Pbe =
u

2
erfc

γbγsju

γb + γsju
+
1−u
2

erfc γb

pulsed noise jammer

(13.76)

In this expression, when u = 1 the performance reverts to
that of broadband jammer noise expressed by (13.73) and
when u = 0 the performance corresponds to the unjammed
BPSK waveform operating through an AWGN channel.
The increase in the jammer peak power, due to the prf, is
accounted for in the term γsj u as described above. For exam-
ple, referring to (13.63), γsju=PsGp PJ u and with u ≤ 1
the jammer peak power is increased thus decreasing γsj.
Figure 13.20 depicts the bit-error performance as a function
of Eb/No under various pulsed jammer conditions of u for spe-
cified values of SJR ranging from −300 dB, corresponding to
jammer-dominated performance, and increasing to 40 dB
with increasing communicator-dominated performance. For
example, with SJR = 10 dB the impact of all conditions is
slightly reduced; however, the constant Pbe = 0.5 correspond-
ing to u = 1.0 is significantly reduced with a flaring limit of
4e−6. With SJR = 22.5 dB the trend continues with the impact
of u = 1.0 nearly negligible and the impact of u = 0.04 and 0.1

significantly reduced. With SJR = 50 dB the impact of all of
the pulsed jammer conditions is significantly reduced with a
flaring limit of 4e−10 with u = 0.0001. These improvements
with increasing SJR are also depicted in Figure 13.19a and
b in the context of a broadband noise jammer as described
by (13.73).

13.5.3 Optimum Pulsed Noise Jammer Strategy
against DSSS Uncoded BPSK Modulation without
Side Information

Side information is used by the communicator to determine
the presence of a jammer to improve the link performance.
Side information is obtained from channel sensors not
directly related to the communication signal; perhaps
obtained from a sensor link or a network controller. The ben-
efit of side information is demonstrated in (13.76) with the
inclusion of the ideal unjammed bit-error performance and
when side information is not available the performance is
simply dependent on the signal-to-jammer ratio as expressed
by (13.77).

To determine the optimum pulsed noise jammer strategy,
the jammer focuses on the optimum choice of prf and the cor-
responding optimum value uo that maximizes the communi-
cator’s bit-error probability. The expression for the bit-error
probability with pulsed noise jamming without the benefit of
side information is* expressed as

Pbe γsj,u =
u

2
erfc γsju (13.77)

Equation (13.77) is plotted in Figure 13.21 as a function of
SJR = 10log10(γsj) with parametric dependence on u. With
u = 1 the performance corresponds to that of the BPSK bit-
error performance operating in a background of broadband
noise; however, as u is decreased the noise becomes impul-
sive with increasingly high peak powers levels. In this event,
for u ≤ 0.0005, the communicator must increase the signal
power, Ps, or the processing gain, Gp, by about 40–10.5 dB
= 29.5 dB to maintain Pbe = 10−6. Therefore, the pulsed noise
jammer is very affective in defeating a DSSS-uncoded BPSK-
modulated waveform.

Imagining the tangent to the performance curves in
Figure 13.21, the optimum jammer strategy is to determine
the value of uo that matches the slope and is tangent to the
extremes of the Pbe performance curves with pulsed noise
jamming. Consequently, the solution is to differentiate
Pbe(γsj,u) with respect to u and determine the conditions on
u and γsj that satisfy these conditions. The details in determin-
ing the function F γsj,u = dPbe γsj,u du are relegated to
Problem 6; however, the result is expressed as

*Note that (13.77) is the limiting form when γsj γb.
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FIGURE 13.20 BPSK performance with pulsed noise jammer.
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F γsj,u =
dPbe γsj,u

du

=
1
2
−

γsju

2 π
e−γsju−

1
4
erf γsju

(13.78)

Equation (13.78) is plotted in Figure 13.22 as a function of
SJR for various values of the parameter u.

Theoptimumjammer criteriadescribed above correspond to
the slope F(γsj,u) evaluated at uo = 1.0 and γsj = 0.709 (SJR =
−1.494 dB*) resulting in the product αo = uoγsj = 0.709; this
dependence on α = uγsj is not surprising since (13.78) can be

expressed as the function F(α). As seen from Figure 13.22,
the optimum value of αo = 0.709 applies for u ≤ 1 so that

uo =
0 709
γsj

(13.79)

Upon substituting (13.79) into (13.77) the theoretical bit-
error probability with optimum pulsed noise jamming corre-
sponding to γsj|u<1 > 1 and γsj > 0.709, is expressed as

Pbe =
0 709
2γsj

erfc 0 709 =
0 083
γsj

pulse noise jammer theory

(13.80)

An upper bound on Pbe, corresponding to u = 1 in (13.77),
is expressed as [51]

Pbe <
1

4πγsj
e−γsj upper bound u = 1 (13.81)

and, in terms of the optimum pulsed noise jammer, (13.81)
becomes

Pbe <
0 709

γsj 4π
e−0 709 =

0 117
γsj

pulse noise jammer bound

(13.82)

Equations (13.80) and (13.82) are plotted in Figure 13.23
which demonstrates the optimum jammer objective of max-
imizing the communicator’s bit-error performance. Other-
wise, with u = 1 or γsj ≤ 0.709, the bit-error performance is
given by

Pbe γsj,u= 1 =
1
2
erfc γsj unjammed performance

(13.83)
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*It may be of interest that, with uo = 1.0, the value of uγsj = 0.709000 is accu-
rate, with rounding, to six decimal places corresponding to SJR = −1.49354
dB and F(uγsj) = 0.191536.
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13.5.4 DSSS with BPSK Modulation and
Repetition Coding

In this section, the performance of DSSS BPSK-modulated
chips is examined using repetition coding as depicted in
Figure 13.24. The PN-coded chips are divided into m code
symbols each having N/m ≥ 1 PN chips with the same source
bit data dk. The repetition-coded interval is Trc =NTc/m. The
functional processing is shown in Figure 13.25. The interlea-
ver plays the fundamental role of scrambling the sourced
coded symbols so the correlated channel disturbances,
like fading and jamming, result in uncorrelated, or more
specifically independent, disturbances among the deinter-
leaved code symbols. That is, the m decision variables ykm
are all independent random variables. Interleavers are

recommended in all coding applications involving
channel burst-error events.* Interleavers are discussed in
Section 8.9 and are designed to ensure that channel errors
at the deinterleaver output are independent among the coded
symbols. In the following analysis, ideal interleavers and
deinterleavers are assumed to exit that provide for the theo-
retical statistical independence between the m deinterleaved
repetition codes regardless of the jammer correlation interval.

The following analysis of the repetition coding is based on
the work of Simon et al. [52], from which, the following
expressions are characterized for the bit-error probabilities

AWGN
jammer

Data
estimate

ˆ(dk)

(dk)

PN
correlator

PN
code
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data

Repeat
encoder Interleaver

PN
code

PN
modulator

Channel

PN 
demodulator

De-
interleaver

Repeat
decoder

Decision
(ykm)

FIGURE 13.25 DSSS with repetition coding and interleaving.
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…

FIGURE 13.24 Repetition coded waveform mapping.

*Reed–Solomon and other burst-error correcting codes are specialized for
specified burst-error patterns.
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under the indicated condition. These bit-error results are plot-
ted in Figures 13.26a, b and 13.27a, b in terms of the worst-
case performance using the pulsed noise jammer described in
the preceding section.

Pbe =
m

n= m+ 1 2

m

n
εn 1−ε m−n

ε= uQ
2Eb

mNJ
u

hard-decisions unknown jammer state

(13.84)

Pbe =
m

n= 0

m

n
un 1−u m−nQ

2mEb

nNJ
u

soft-decisions unknown jammer state

(13.85)

Pbe = um
m

n= m+ 1 2

m

n
εn 1−ε m−n

ε =Q
2Eb

mNJ
u hard-decisions known jammer state

(13.86)

and

Pbe = u
mQ

2Eb

NJ
u soft-decisions known jammer state

(13.87)

The hard-decision detection chooses dkm based on the
sign of ykm in accordance with the modulator mapping. An

error in the data estimate dk is based on having one-half or
more of the n-of-m decisions being in error so the probability
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FIGURE 13.26 Worst-case repetition code performance with unknown jammer states.
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of error involves the pdf of the binomial distribution [53] with
probability p = ε as expressed in (13.84).

The soft-decision detection sums the m repetition code

correlator outputs yielding yk = m
ykm and chooses dk

based on the sign of yk in accordance with the modulator
mapping. However, the probability that n-of-m repetitions
are jammed is characterized by the pdf of the bionomical dis-
tribution, with the probability p = u of being jammed, result-
ing in (13.85).

Knowledge of the jammer is applied to improve the com-
munication performance. For example, through the use of
channel monitoring, pulsed jammer transmissions can be
determined and applied to the demodulator processing to
excise their impact on the signal detection. In this event, a
bit-error occurs with probability um. With hard-decision
detection, the n-of-m decision rule applies and the jammer
is characterized by the bionomical pdf weighted by um,
leading to bit-error probability given by (13.86). With soft-
decision detection, since all repetitions with jamming are
ideally eliminated, a bit-error occurs when all ykm repetitions
are in error resulting in (13.87).

The assumptions involving ideal interleavers and knowl-
edge of the jammer conditions result in an overly optimistic
estimate of the performance. Furthermore, if practical statis-
tical models of a selected interleaver and channel monitoring
algorithm are included in the above bit-error analytical
expressions, a computer simulation is in order to confirm
or establish the actual bit-error performance.

Figure 13.26a and b show the worst-case bit-error
probability using the pulsed noise jammer with the
respective hard- and soft-decision detection algorithms
for m = 5, 9, and 15 repetition coding when the jammer state
is unknown. The results using hard-decisions show signifi-
cant improvement with increasing m; however, the soft-
decision case shows no improvement with repetition coding.
The poor performance of the soft-decision detection results
from summing all of the ykm in establishing the overall deci-
sion static yk and, with increasing jammer peak power, that is,
decreasing u, the jammer increasingly dominates each data

decision dk. Whereas, with hard-decision detection the deci-
sion is based on n-of-m hard-limited repetition code data

decisions dkm, with each of the repetition code decisions
equally weighted. Figure 13.27a and b show the comparable
performance when jammer state information is available. The
hard-decision detection with known jammer conditions
shows significant improvement over the unknown jammer
case; however, the soft-decision detection performance
exceeds that of the hard-decision detection with known jam-
mer states.

13.5.4.1 Comment on the Worst-Case Pulsed Noise Jam-
mer Performance The worst-case bit-error probability
performance, shown in Figure 13.23, is based on the

theoretical optimum jammer strategy corresponding to
the slope of Pbe(γsj(dB),u)|u=1 as demonstrated in
Figure 13.22. The worst-case performance in Figures 13.26
and 13.27 is based on a graphical assessment of the slope of
the Pbe(γsj(dB),u)|u=1 curve involving m repetitions of
hard or soft decisions with unknown or known jammer
states. The graphical procedure for determining the
worst-case performance with jamming is discussed in
Appendix 13A.

13.6 PERFORMANCE OF MFSK WITH
PARTIAL-BAND NOISE JAMMING

The error performance of MFSKwith partial-band noise jam-
ming is evaluated using the expression (7.21) with the inclu-
sion of the jammer pulsed noise duty factor u = Tp/Tpri. The
result is expressed as

Pe =
2k−1

2k −1
Pse

=
2k−1

2k −1
u
M−1

m = 1

M−1

m

−1 m+ 1

m+ 1
e−uγsjm m + 1

(13.88)

where k = log2 M is the number of source bits-per-symbol.
The signal-to-noise ratio in the bandwidth of the source bits is
γ
bj =Eb NoJ = γsj k, where γsj is the signal-to-noise ratio
measured in the symbol bandwidth. By pulsing the noise
power, the jammer creates a high peak power of duration
Tp resulting in a partial-band noise jammer. The bit-error per-
formance, characterized by (13.88), is plotted in Figure 13.28
for M = 8, 4, and 2.

The worst-case error performance, inflicted by the jam-
mer, corresponds to the common tangent to all of the perfor-
mance curves for u in the range of 0 ≤ u ≤ 1. The jammer
strategy is to use the optimum jamming parameter (uo) that
maximizes the communicator’s bit-error performance. This
worst-case condition for the communicator is determined
by differentiating (13.88) with respect to u, setting the result
equal to zero, and solving for uo. For k > 1, the resulting
solution involves a transcendental equation that can be
approximated analytically using the Newton’s method. An
alternate solution involves determining the function
F u = dPse u du, and noting that F u =F uγsj . Upon let-
ting x = uγsj, the function F(x) = 0 corresponds to the opti-
mum jammer condition xo = uoγsj. The maximum bit-error
probability, resulting from the jammers use of the optimum
pulsed jammer condition uo, is evaluated by substituting
u = uo = xo γsj in (13.88). For a given M = 2k, xo is a constant
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less than one,* so for jamming to occur the signal-to-jammer
ratio must satisfy the condition γsj > xo; otherwise, the ideal
bit-error probability, given by (13.88) with u = 1, is achieved.

The function F(x) is evaluated in terms of the derivative of
the error probability, dPe(u)/du, and is expressed as

F x =
2k−1

2k −1

M−1

m = 1

M−1

m

−1 m+ 1

m + 1
e−xm m+ 1 1−

xm

m+ 1

(13.89)

Equation (13.89) is plotted in Figure 13.29 using incre-
ments of Δx = 0.05 with xo determined using linear interpo-
lation of the neighboring the points around F(xo) = 0; the
results are summarized in Table 13.6 with xo = xo k = γbj
and γbjmin dB = 10log10 xo . The maximum bit-error pro-
bability of the communicator is determined by substituting
u = uo in (13.88) resulting in

Pe =
2k−1

2k −1

xo
γsj

M−1

m = 1

M−1

m

−1 m+ 1

m+ 1
e−xom m + 1

worst-case

(13.90)

The worst-case bit-error performance, described by
(13.90), is plotted as the dotted lines in Figure 13.28 as a
function of Eb/No in dB with the parameter k = 1, 2, and 3.

Table 13.6 is in excellent agreement with Simon et al.
[54], and the values of uo correspond to the points at which
the tangent of the unjammed Pbe performance curve (u = 1) is
equal to the slope of the linearly decreasing worst-case jam-
mer performance. The parameter xo = uγsj corresponds to u =
1 and the signal-to-noise ratio γsj is measured in the symbol
bandwidth, so xo = γbjmin = xo k is the signal-to-noise ratio
measured in the bandwidth equal to the bit-rate. The bit-error
probability Pbe(γbj min) corresponds to the unjammed perfor-
mance at γbj min and uo is computed as

uo = xoPbe γbjmin = γbjminPbe γbjmin (13.91)
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FIGURE 13.28 Noncoherent MFSK performance with partial-band noise jamming.

*Actually, uo ≤ 1; however, when uo = 1 the communicator is not jammed.
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In Figure 13.28 the point of intersection between the
unjammed and worst-case jammed performance occurs at
γbj = γbj min and for γbj < γbj min the performance corresponds
to the unjammed bit-error performance expressed in* (13.88)
with u = 1; otherwise, the performance corresponds to the
worst-case condition based on the linearly decreasing bit-
error probability with increasing γbj. These results are sum-
marized in (13.92) as

Pbe =

2k−1

2k−1

M−1

m= 1

M−1

m

−1 m+ 1

m + 1
e−kγbjm m+1 u= 1,γbj < γbjmin

uo
γbj

u< 1, γbj ≥ γbjmin

(13.92)

The preceding discussion concerning the evaluation
of γbj min, Pbe(γbj min), and uo is based on theory from which
Pbe is evaluated using (13.92) and plotted as in Figure 13.28
for various value of k. However, the performance para-
meters for the worst-case jamming can also be generated

graphically with remarkable accuracy as discussed in
Appendix 13A.

13.7 PERFORMANCE OF DCMPSK WITH
PARTIAL-BAND NOISE JAMMING

The bit-error performance of differentially coherent BPSK
(DCBPSK) with partial-band noise jamming is evaluated
using the bit-error probability expression (4.42) with the
inclusion of the jammer pulsed noise duty factor u = Tp/Tpri.
The bit-error probability is expressed as

Pbe =
u

2
e−uγbj (13.93)

where γbj =Ps NJ is the signal-to-jammer power ratio meas-
ured in the bandwidth equal to the bit-rate, that is,NJ =NoJRb.
By pulsing the noise power, the jammer creates a high peak
power of duration Tp resulting in a partial-band noise jammer.
The bit-error performance, characterized by (13.93), is plot-
ted in Figure 13.30 for various value of u.

The worst-case bit-error performance, inflicted by the
jammer, corresponds to the common tangent to all of the
curves for the range of 0 ≤ u ≤ 1. Upon differentiating
(13.93) with respect to u, setting the result equal to zero,
and solving for uo, the optimum jammer strategy is to use

uo =
1
γbj

optimum jammer strategy (13.94)

Equation (13.94) corresponds to γbj u<1 > 1 and the worst-
case communicator bit-error (BE) performance is evaluated
by substituting (13.94) into (13.93) resulting in

Pbe =
e−1

2γbj
=
0 184
γbj

γbj > 1, worst-case BE performance

(13.95)

Otherwise, u = 1 and the communicator’s BE performance
is given by the optimum or theoretical expression

Pbe =
1
2
e−γbj γbj ≤ 1, best-case BE performance (13.96)

Equation (13.95) is plotted as the dotted curve in
Figure 13.30.

The symbol-error probability for DCMPSK is expressed
by Simon [55] as

Pse =
sin π M

π

π 2

0

e−kγb 1−cos π M cos α

1−cos π M cos α
dα DCMPSK

(13.97)
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FIGURE 13.29 Determination of the jammer parameter xo = γsj min
for MFSK waveform modulation with u = 1.

TABLE 13.6 Summary of Optimum Jammer Parameter
against MFSK (M = 2k)-Modulated Waveform

k = log2(M) xo xo γbj min (dB) Pbe xo uo

1 2.000 2.000 3.010 0.1839 0.3679
2 2.383 1.191 0.761 0.1955 0.2328
3 2.783 0.927 −0.326 0.2106 0.1953
4 3.193 0.798 −0.979 0.2271 0.1813
5 3.613 0.723 −1.409 0.2433 0.1758

Note: xo corresponds to γbj min with u = 1.

*The bit-error performance is plotted as a function of γbj = γsj/k.
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where k = log2 M and γb =Eb No. The performance with
partial-band noise jamming is expressed using (13.97)* by
replacing γb with γbj = Eb/NoJ and then multiplying the inte-
gral and γbj by the parameter u. Upon making these modifi-
cations and converting from symbol-errors to bit-errors using
random bit-to-symbol mapping, the bit-error performance is
expressed as

Pbe =
2k−1

2k −1
γbj

−1 uγ
bj

sin π M

π

π 2

0

e
−kuγ

bj
1−cos π M cos α

1−cos π M cos α
dα

(13.98)

Equation (13.98) is placed in this form† to facilitate the
computation of the optimum jammer strategy uo that results
in Pbe(max). For example, the Pse expressed in (13.97) is
evaluated from Table 5.5 in Lindsey and Simon [56] using
various signal-to-noise ratios γb = uγbj; the resulting Pse is
multiplied by uγbj until Pse(max) is determined correspond-
ing to (uγbj)max. Therefore, using (uγbj)max, the optimum jam-
mer strategy is evaluated as

uo = γbj
−1 uγbj max

DCMPSK optimum jammer strategy

(13.99)

Based on (13.99), the worst-case communicator’s bit-error
(BE) performance is evaluated for γbj u<1 > uγbj max

, as

Pbe =
2k−1

2k −1
γbj

−1Pe max

DCMPSK worst-case BE performance

(13.100)

The error probability Pe (max) is determined from the
bracketed term {−} in (13.98) with uγbj = uγbj max

and is
expressed as

Pe max = uγbj max

sin π M

π

π 2

0

e−k uγbj max
1−cos π M cos α

1−cos π M cos α
dα

(13.101)

Otherwise, for γbj u=1 ≤ uγbj max
, the theoretical

unjammed bit-error performance expressed as

Pbe =
2k−1

2k −1
Pse DCMPSK best-case BE performance

(13.102)

is used where Pse is the unjammed symbol-error probability
expressed in (13.97).

13.8 FHSS WAVEFORMS WITH MULTITONE
JAMMING

The impact of a single-tone jammer on DSSS with BPSK and
QPSK waveform modulation is discussed in Section 13.5.1
and found to be most effective when the jammer tunes the
CW jammer signal to the communicator’s carrier frequency.
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FIGURE 13.30 DCBPSK performance with partial-band noise jamming.

*This expression does not have a closed-form solution and must be evaluated
using numerical integration.
†This method is proposed by Simon et al. [6], vol. II, pp. 326–329.
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However, with FHSS systems this becomes increasingly dif-
ficult as the FH rate is increased. Consequently, the jammer is
forced to use multiple jamming tones with the potential of
concentrating more jamming signal energy in the communi-
cator’s detection filter bandwidth than with partial-band
noise jamming.

The following analysis of multitone jamming of a FHSS
system with MFSK waveform modulation and noncoherent
detection is based on the work of Simon et al. [6].
Figure 13.31 depicts the parameters required to quantify
the performance analysis.

The total jamming power is denoted as PJT and the jammer
places Q equal power CW tones given by

Pj =
PJT

Q
equal power CW jamming tones (13.103)

spread over the SS bandwidth of Wss Hz. Each communica-
tionM-ary frequency hop (or slot) occupies an instantaneous
bandwidth ofW =MRcHz, where Rc is theM-ary symbol rate
corresponding to orthogonally spaced MFSK symbol tones.
In this characterization* of the FH structure, the number of
FH user carrier frequency locations available in the SS band-
width is Nt =M Wss W =Wss Rc and the fraction of the
available FH-user frequency locations that are jammed is
defined as

ρ≜
jammed tones
total tones

=
Q

Nt
(13.104)

where Q is the number of jamming tone locations used to
maximize the communicator’s bit-error probability. Typi-
cally Q M and, defining the number of user M-ary hops
asNt/Mwith n jammer tones per FH hop, theQ/n (Q/n inte-
ger) jammed hops available are randomly selected from
among the availableM-ary user hops. The preferred [57] def-
inition of the SS processing gain with FHSS is Gp =Wss/Rb,
where Rb is the information bit-rate. This definition is inde-
pendent of the bits-per-symbol and FEC code-rate; however,
the definition ofWssmay vary with the FH plan. Furthermore,
the fundamental measure of the SS waveform performance
is the bit-error probability dependence on the signal-to-noise
ratio (Eb/NoJ) measured in the bandwidth equal to Rb Hz
where the jammer noise density is defined as

NoJ ≜
PJT

Wss
(13.105)

A reasonable jammer strategy is to distribute the jammer
tones over the bandwidthWsswith n tones (1 ≤ n ≤M) in each
of the integer Q/n jammed hops available. For the Q/n hops
that are jammed, a jammer tone in any one of the M − 1 user
frequency locations not containing the transmitted symbol
energy may cause a symbol error if PJ +NJ >Ps +NJ , where
Ps is the M-ary carrier signal power and NJ and NJ are the
respective noise powers at the sampled output of the demod-
ulator matched filters. To simplify the following analysis, Ps

and PJ are considered to be much greater than the noise
powers so the noise is neglected. Another simplifying
assumption, which results in the worst-case communications
performance, is that each of the jamming tone locations in the
set {Q} must coincide exactly in frequency with one of the Nt

user carrier frequency locations. However, it is not necessary
that the jammer tone locations be synchronized with the user
FH transitions as long as the synchronization is commensu-
rate with the previous requirement that the jammer tones
always coincide with the Nt user carrier frequencies; in other
words, the jammer may assume the FH synchronization to
be Thsync = Thsync + ℓ Rc, where ℓ is an integer and Rc is the
M-ary symbol or chip rate.

The strategy discussed above, with the simplifying
assumptions, is referred to as band multitone jamming as
depicted in Figure 13.31 that uses the example for n = 1 jam-
mer tone in each of the Q/n jammed hops. The jamming tone
in each hop is randomly selected in the range 1 ≤ ℓ ≤M. The
left-most M-ary hop in Figure 13.31 is representative of the
(Nt −Q)/M hops not containing a jammer tone and the dotted
curve, in the expanded view, represents the spectrum of a
FH–MFSK data symbol. The figure is also specialized for
M = 4 user frequencies/hop. In general, band multitone jam-
ming usesM = 2k tones/hop with k bits perM-ary symbol and
exactly n jammer tones in each jammed hop.

For the general case of placing n (1 ≤ n ≤M) jamming
tones in each of the Q/n jammed hops, total number of

Symbol spectrum,

fmaxfmin

f

W = MRc

Wss = NtRc

f

Rc/2 Rc

M-ary FSK hop

Jammer tone

M-ary
FSK hop … …

Rc

FIGURE 13.31 Band multitone jamming strategy against FH
MFSK waveform (for e.g., M = 4 with n = 1 jammer tone/hop).

*Brief summary of notation: Nt = user carrier frequency locations, Nt/M =
user M-ary hops (or frequency hops) available, Q = CW jamming tone loca-
tions, and Q/n is the jammer hops available with n ≤M jammer tones/hop.
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jammed hops equal to Nt/M and the fraction of jammed hops
is defined as

u≜
jammed hops

total jammed hops
=

Q n

Nt M
=
MQ

nNt
=
M

n
ρ (13.106)

Upon defining the parameter α as

α≜
Ps

PJ
(13.107)

the jammer strategy optimizes parameter α by maximizing the
error probability Pe(α) resulting in the noise-free* worst-case
performance with α= α0 as characterized in (13.108).

Pe α =

0 anyα; under condition1

0 α> 1; under condition2

1 α ≤ 1; under condition3
1
π
cos−1 α 2 α< 4; under condition4

(13.108)

The conditions for the error probability associated with
(13.108) are:

1. The data symbol or any of the otherM − 1 symbol tone
locations are not jammed.

2. The data symbol is not jammed and any of the other
M − 1 symbol tone locations are jammed with PJ <Ps.

3. The data symbol is not jammed and any of the other
M − 1 symbol tone locations are jammed with† PJ ≥Ps.

4. The data symbol and any of the other M − 1 symbol
tone locations are simultaneously jammed, an error
with the indicated probability Pe(α) results if
cos ϕ < − α 2.

The third condition applies when the data symbol is not
jammed and any of the other symbol locations are jammed
with α in the range 0 ≤ α ≤ 1. The special case involving
the phase difference ϕ between the desired symbol frequency
and jammer tone frequency applies only when the data sym-
bol and any of the other M − 1 tone locations are simultane-
ously jammed. The phase difference is uniformly distributed
over the range 0 ≤ ϕ ≤ 2π. The impact of the jammer phase on
the detection filter is credited to Trumpis [58]; previously the
range was considered to be 0 < α ≤ 1.

Equation (13.106) can be thought of as the probability of a
symbol being jammed under condition 3 so the symbol-error
probability is expressed as

Pse = u
M−1
M

(13.109)

The bit-error probability, with random bit-to-symbol map-
ping, is expressed as

Pbe =
M

2 M−1
Pse =

u

2
(13.110)

The parameter u is evaluated by substituting Q=PJT PJ

from (13.103) with Nt =Wss Rc resulting in

u =
M

n

PJTRc

PJWss
=

M

n

NoJ Rb k

Ps α
=

Mα

nkγbj
(13.111)

The second equality in (13.111) results from using (13.105)
and (13.107) and recognizing that the bit-rate for the M-ary
symbol is Rb = Rc/k. The final result is based on the signal-
to-noise ratio, measured in the bandwidth Rb expressed as
γbj =Eb NoJ =PsTb NoJ . From (13.110), the resulting bit-
error probability under condition 3 is expressed as

Pbe =
αM

2nkγbj
band multitone jammer strategy,

1 ≤ n ≤M, 0 ≤ α ≤ 1

(13.112)

13.8.1 Single Jammer Tone in Each Jammed
M-ary Hop

With a single jammer tone (n = 1) assigned to each of the
Q FH jammed hops, the bit-error probability is expressed as

Pbe =
αM

2kγbj
n = 1, band multitone jammer strategy

(13.113)

In this case, finding the optimum jammer condition α0
that maximizes Pr J Q under the constraints‡ α ≤ 1 and
Pr J Q ≤ 1 is fairly straightforward because of the linear
relationship with α in (13.112). The result is the solution to
Pr J Q = α0M kγbj ≤ 1 with γbj =M k and, since α0 ≤ 1,
this requires that the multitone jammer select α0 according
to the following signal-to-jammer ratio conditions,

αo =

kγbj
M

γbj ≤
M

k

1 γbj >
M

k

(13.114)

*The noise-free condition simplifies the analysis by assuming that PJ

Pnoise.
†The case PJ =Ps is counted as an error. ‡The condition α = 1 is considered to result in an error.
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Substituting (13.114) into (13.113) results in the worst-
case communicator bit-error performance for n = 1 expressed
as

Pbe =

1
2

γbj ≤
M

k

2k−1

kγbj
γbj >

M

k

(13.115)

Equation (13.115) is plotted in Figure 13.32 as a function
of γbj for several values of k = log2(M). The dashed curves
represent the corresponding unjammed performance of the
MFSK waveform when NoJ is considered to be AWGN.
The worst-case results for k = 1 and 2 are identical because
the threshold M/k is the same for both cases; otherwise, the
loss increases with increasing k. As plotted in the figure,
the bit-error performance decreases linearly with increasing
signal-to-jammer ratio (γbj) above the break-points; defined
as the intersection of the linearly decreasing and constant
Pbe performance curves.

The worst-case band multitone jamming bit-error perfor-
mance given in (13.115) is significantly larger than that of
partial-band noise jamming expressed in (13.92). Using these
expressions, the signal-to-jammer ratio advantage of the band
multitone jammer for n = 1, over that of a partial-band noise
jammer is evaluated as

ΔdB= 10log10
2k−1

kuo
advantage of band multitone jammer n= 1

(13.116)

where uo is the optimum jammer constant used to maxi-
mize the communicators bit-error performance. Using the
relationship between k and uo in Table 13.6, the jammer

advantage of band multitone jamming is tabulated in
Table 13.7.

13.8.2 Multiple Jammer Tones in Each Jammed
MFSK Hop

The worst-case performance analysis for 1 < n ≤M, where one
of the jammer tones coincides with anMFSK data tone is con-
siderably more involved, in that, the phase difference, ϕ,
between the jammer andMFSKdata tones,must be considered.
The analysis in this case involves the probability of an error
event identified by the third and fourth conditions in
(13.108). The complexity in the analysis involves the
error probabilities Pe(α) = 1 in the range 0 < α ≤ 1 and
Pe α = arccos α 2 π conditioned on cos ϕ −
α 2 in the range 1 < α ≤ 4. As in the case for n = 1 this anal-

ysis follows that of Simon et al. [59]. In this case, the symbol-
error probability is expressed as

Pse =Pe
J

Q
1−

n

M
u 1−α +

n

Mπ
cos−1

α

2

(13.117)

where the unit step function u 1−α = 1 for α < 1 and 0 oth-
erwise. The bit-error probability is determined by substituting
Pe(J|Q) from (13.112) with uniform bit-to-symbol mapping
and then maximizing the Pbe with respect to α. The result
is expressed as

Pbe =
Mc

2γbj M−1
max
α = α0

α 1−
n

M
u 1−α +

n

Mπ
αcos−1

α

2

(13.118)

where c=M nk and the optimum jammer strategy is obtained
by maximizing Pbe over the range 0 < α ≤min 4, γbj c cor-
responding to α = α0. Both of the additive terms in the square
brackets of (13.118) increase monotonically for α < 1; how-
ever, for α ≥ 1 only the right-hand additive term applies,
reaching a maximum value at α = 2.52 corresponding to

α

π
cos−1

α

2 α = 2 52 = 0 525 maximum for 0 < α ≤ 4

(13.119)
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FIGURE 13.32 Worst-case performance of FH MFSK with band
multitone jamming (n = 1).

TABLE 13.7 FH MFSK Advantage of Band Multitone
Jammer over Partial-Band Noise Jammer (n = 1)

k uo ΔdB

1 0.3679 4.34
2 0.2328 6.33
3 0.1953 8.34
4 0.1813 10.43
5 0.1758 12.60
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Simon et al. [60] have developed the conditions under
which (13.118) is evaluated given the dependence of
the bit-error performance on the regions over which the
signal-to-jammer ratio (γbj) applies, the relative number
of jammer tones-per-symbol (ρ = n/M), and the applic-
able conditions 3 and 4 in (13.108). Based on these
dependencies and the conditions 1 ≤ n ≤M and c =M nk,
the bit-error probability is evaluated as follows [60]:

if (γbj ≤ c) then

αo =
γbj
c

(13.120)

Pbe =
M

2 M−1
1−

n

M
+

n

Mπ
cos−1

αo
2

(13.121)

u = 1; ρ = n/M ! Parameter values
else

! The following simplifies the maximization of (13.118),
! with the discontinuity at α = 1, by maximizing Pbe
! separately over the ranges 0 < α < 1 and 1 ≤ α ≤
! γbj /u and then choosing the greater of the two values:

! Pbe =
Mc

2 M−1 γbj
max 1−

2n
3M

,
βn

M
(13.122)

if (γbj ≤ 2 52c) then

β =
γbj
πc

cos−1
1
2

γbj
c

else

β = 0 525 ! Maximum value at α = 2.52

endif

γ =
1

β + 2 3
! Temporary constant

if n ≤ γM then

αo = 1 (13.123)

Pbe =
c M−2n 3
2 M−1 γbj

(13.124)

u=
c

γbj
; ρ =

1

kγbj
! Parameter values

else

αo =min 2 52,
γbj
c

(13.125)

Pbe =
Mβ

2k M−1 γbj
(13.126)

u =min 1,
2 52c
γbj

ρ =min
n

M
,

2 52

kγbj

! Parameter values

endif
endif

The conditions and algorithms described and outlined
above for the band multitone jammer are plotted in
Figures 13.33, 13.34, and 13.35 as a function of the
energy-per-bit to the jammer noise-density ratio for k = 2,
3, and 4 with the indicated ranges of the parameter n.
Starting in the vicinity of Eb/NoJ = 5 dB, there is an inverse
linear logarithmic relationship with Pbe as Eb/NoJ increases.
For a given k the jammer effectiveness decreases with
increasing n; however, there is slight jammer advantage
as k increases.

The jammer-to-signal power ratio (PJ/Ps) is also shown as
a function of Eb/NoJ corresponding to each figure. For nega-
tive values of 10log10(Eb/NoJ), there is an inverse logarithmic
relationship in 10log10(PJ/Ps) with increasing signal-to-noise
ratio up to about 0 dB. For positive values of the signal-to-
noise ratio, the power ratio saturates at 0 or −4.01 dB depend-
ing upon the value of M and n. For example, when n = 1 the
power ratio saturates at 0 dB and when n =M the power ratio
saturates* at −4.01 dB. This latter condition corresponds to
the jammer power operating 4.01 dB below signal power;
however, the condition n = 1 corresponds to the worst-case
jammer. For 1 < n ≤M − 1, the PJ/Ps ratio corresponds to
−4.01 dB for n in the vicinity of M otherwise the ratio satu-
rates at 0 dB. To quantify these relationships, the processing
for the worst-case band multitone jammer performance is
depicted in Figure 13.36 for 32FSK for various values of
n. For this case, it is seen from Table 13.8 that for values
of n ≥ 27 are observed to saturate at PJ/Ps ratios correspond-
ing to −4.01 dB over the indicated range of signal-to-noise
ratios. Similar evaluations were performed for the other
values of M and n and the results are summarized in
Table 13.8. Based on this analysis, the optimum jammer strat-
egy for band multitone jamming would most likely be to
choose n = 1.

Simon et al. [61] discuss and analyze the performance of
independent multitone jamming that randomly distributes the
Q jamming tones over the rangeNt FH-tone locations without
regard to the communicator’s M-ary symbol tone locations.
This jammer strategy also involves n over the range 0 <
n ≤M and the upper limit of α ≤ 4 as noted by Trumpis.
The independent multitone strategy performance is similar
to the band multitone strategy, in that, the performance is
upper-bounded by the piece-wise linear performance of the
multitone jammer on either side of the breakpoint.

The authors also analyze and discuss various jamming
counter measures including time-diversity repetition coding
and convolutional, Reed–Solomon, and concatenated cod-
ing. Coding and interleaving are essential to maintain reliable
communications with jamming and the theoretical results
should be used as benchmarks for computer simulation
of SS systems to verify the validity of the underlying

*This condition results from αo = 2.52 in (13.125) with PJ/Ps = 1/αo.
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FIGURE 13.35 Worst-case performance of FH MFSK with band multitone jamming (k = 4, 1 ≤ n ≤ 16).

Signal-to-noise ratio (Eb/NoJ) (dB)
0 5 10 15 20 25 30 35 40

B
it-

er
ro

r 
pr

ob
ab

ili
ty

 (
P

be
)

1e–5

1e–4

1e–3

1e–2

1e–1

1e+0

Signal-to-noise ratio (Eb/NoJ) (dB)
0–30 –20 –10 10 20 30 40Ja

m
m

er
-t

o-
si

gn
al

 p
ow

er
 (

P
J 

/P
S)

 (
dB

)

–5

0

5

10

15

20

25

n

1 

3 
4 

2 

Wideband
noise jammer

4

2
1
n

3

FIGURE 13.33 Worst-case performance of FH MFSK with band multitone jamming (k = 2, 1 ≤ n ≤ 4).

B
it-

er
ro

r 
pr

ob
ab

ili
ty

 (
P

be
)

1e–5

1e–4

1e–3

1e–2

1e–1

1e+0

n

1

2
4

8

6

Signal-to-noise ratio (Eb/NoJ) (dB)Signal-to-noise ratio (Eb/NoJ) (dB)

0 3010 20 40

Ja
m

m
er

-t
o-

si
gn

al
 p

ow
er

 (
P

J 
/P

S)
 (

dB
)

–5

0

5

10

15

20

25

30
n

0 5 10 15 20 25 30 35 40 –30 –20 –10

1 

2 

4 
6 
8 

Wideband
noise jammer

FIGURE 13.34 Worst-case performance of FH MFSK with band multitone jamming (k = 3, 1 ≤ n ≤ 8).

520 SPREAD-SPECTRUM COMMUNICATIONS



assumption of independence of the uncoded symbols or code
symbol when coding is used.

13.9 APPROXIMATE PERFORMANCE WITH
JAMMER THREATS

The simplified evaluation, using upper bounds on the perfor-
mance of various modulations and coding configurations in a
memoryless channel, is introduced in Section 3.4. The work
of Simon et al. [62] provides a comprehensive description of
the upper bound performance measures with tables summar-
izing the performance under a variety of communicator and
jammer conditions. In these cases, the analysis is based on
memoryless channels that are considered to exist by pro-
viding sufficient interleaving; in a practical design, this
assumption must be substantiated through simulations. Nev-
ertheless, the upper bound approximations are useful in pro-
viding estimates that are typically within a decibel of the
theoretical performance. The summary tables [62] include
the performance bounds for DSSS BPSK with CW jamming
and pulsed noise jamming as discussed in Section 13.9.1 and
for FH MFSK with partial-band noise jamming as discussed
in Section 13.9.2. Each of the tables provided by the authors
includes formulas for computing the upper performance
bounds with and without jammer state information and with

hard and soft demodulator detections. Knowledge of the jam-
mer state is typically available from other sensor systems and
is embodied in the analysis by including the unjammed or
ideal performance. In the following sections, a brief introduc-
tion to the procedure of evaluating the upper bound perfor-
mance is provided.

13.9.1 DS-BPSK with Pulsed Noise Jamming

In this case, the bit-error probability for DS-BPSK with
pulsed noise jamming is upper-bounded [63] by*

Pbe ≤
1
2
D DS –BPSK upper bound (13.127)

with the computational code-rate evaluated as

Ro = 1− log2
1 +D bits symbol (13.128)

The following two sections describe the parameters for
evaluating the performance of DS-BPSKwith pulse jamming
under the indicated conditions with M = 2. The expressions
for the bounded performance of MPSK are examined for
M = 2k with k > 1 (see Problem 9). The jammer condition
corresponding to u = 1 represents a continuous noise
jammer with the signal-to-jammer noise ratio expressed
as γsj = kEb NoJ = k Eb No No NoJ where No = k Tsys <<
NoJ is the receiver system noise power-density.† In this situ-
ation, γsj << γb and Pbe, when plotted in as a function of γb, is
degraded by log10(NoJ/No) dB.

13.9.1.1 DS-BPSK Performance with Jammer Informa-
tion and Hard-Decisions With the communicator’s knowl-
edge of the jammer state information and hard-decision
detection, the parameter D is evaluated as

D = u 4ε 1−ε jammer information hard-decisions

(13.129)

and, with γbj = Eb/NoJ, ε corresponds to the jammed demod-
ulator matched filter output error probability expressed as

ε =Q 2uγbj jammer information hard-decisions

(13.130)

Using (13.130), (13.129), and (13.127), the bit-error prob-
ability is upper-bounded by
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FIGURE 13.36 Limiting behavior of the PJ/Ps ratio for MFSK
with M = 32 and various n ≤M.

TABLE 13.8 Relationship between n and M and the Limiting
Behavior of the PJ/Ps Ratio

M 2 4 8 16 32 64
na =2 =4 ≥7 ≥14 ≥27 ≥54

aValue of n for PJ/Ps (dB) = −4.01 as γbj increases.

*The factor of 1/2 is included to compensate for the excessive over-bounding
of the Chernoff and union bounds when compared to maximum likelihood
demodulator detection.
†The parameter k is Boltzmann’s constant with units of watts/(hertz–degree
Kelvin) and Tsys is the receiver system noise temperature in degrees Kelvin.
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Pbe ≤
1
2
u 4Q 2uγbj 1−Q 2uγbj

1 2

jammer information hard-decisions
(13.131)

13.9.1.2 DS-BPSK Performance with Jammer Informa-
tion and Soft-Decisions In this case, the parameter of inter-
est is the upper bound on the demodulator matched filter
output bit-error probability and the channel and demodulator
detection metric is expressed as

D= ue−uγbj jammer information soft-decisions (13.132)

and the bit-error probability is upper-bounded by

Pbe ≤
1
2
ue−uγbj jammer information soft-decisions

(13.133)

The performance bounds in (13.132) and (13.133) can be
compared with the respective theoretical results expressed
in (13.86) and (13.87) with m = 1 (see Problem 11).

13.9.2 FHSS MFSK with Partial-Noise Jamming

The bit-error probability of MFSK, with partial-band noise
jamming and repetition diversity m, is upper-bounded by

Pbe ≤
MDm

4
M-aryFSK, upper bound (13.134)

and the computational code rate is

Ro = log2
M

1 + M−1 Dm
bits symbol (13.135)

The following two sections describe the parameters for
evaluating the performance of FHSS using MFSK with par-
tial-band jamming under the indicated condition. In these
cases, the signal-to-jammer noise ratio includes the bits-
per-symbol k and the number of symbol repetitions m and
is expressed as γsj = k Eb Noj m. With M = 2 and m= 1
these results correspond to FHSS BFSK waveform modula-
tion and can be compared to the upper bound performance of
DSSS BPSK discussed in the previous section.

13.9.2.1 FH MFSK Performance with Jammer Informa-
tion and Hard-Decisions With the communicator’s knowl-
edge of the jammer state information and hard-decision
detection, the parameter D is evaluated as

D= u
4ε 1−ε
M−1

+ u
M−2
M−1

ε

jammer information hard-decisions

(13.136)

where ε = Pse/u and Pse is evaluated as the symbol-error prob-
ability in (13.88).

13.9.2.2 FH MFSK Performance with Jammer Informa-
tion and Soft-Decisions With soft-decision detection, the
parameter D is evaluated as

D= min
0 ≤ λ ≤ 1

u

1−λ2
e−uγsjλ 1 + λ

jammer information soft-decisions

(13.137)

where λ is the optimization parameter used in determining the
Chernoff bound [51, 63, 64].

13.10 CASE STUDY: TERRESTRIAL JAMMER
ENCOUNTER AND LINK-STANDOFF RATIO

In this section, the jamming encounter shown in Figure 13.13
is examined for a specified LSR. The encounter corresponds
to a terrestrial link with the range loss modeled using the
Longley-Rice irregular terrain model (ITM) described in
Section 19.7. The LSR is defined as

LSR≜
Rj

R
≥
Rj thr

R
link standoff ratio (13.138)

where Rj(thr) is the minimum acceptable range between the
jammer and the communication receiver. For ranges Rj >
Rj(thr) the jammer threat is considered to be manageable
and for ranges Rj ≤ Rj(thr) the jammer is considered to be
an electronic or physical threat requiring counter measures.
The LSR threshold is defined in terms of the received jam-
mer-to-signal power ratio expressed as

γthr ≜
Prj thr

Pr
jammer detection threshold (13.139)

where Prj(thr) corresponds to the received jammer power at
the range Rj(thr). The details of the receiver and demodulator
jammer detection processing are dependent on the communi-
cation and jammer waveforms. These topics are beyond the
purpose of this case study which focuses on the signal power
levels, gains, and ranges encountered in the terrestrial envi-
ronment. Furthermore, the analysis considers noise-free
received signals so the impact of the jammer on the demod-
ulator bit-error probability is not evaluated. These subjects
are, however, discussed in various chapters, for example,
Section 13.3.1 for the formulation of the following link equa-
tions with noise, Sections 13.5, 13.6, 13.7, 13.8, and 13.9 for
the evaluation of bit-error performance with jamming, and
Sections 1.9 and 11.5 for the estimation of signals, signal
parameters, and noise.

Figure 13.37 shows the functional implementation of the
receiver and demodulator considered in the following analy-
sis of the terrestrial jamming encounter. The relevant obser-
vations are that the jammer range is established by the LSR
specification and the jammer received power Prj is detected
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using the threshold γthr. The impact of these parameters
on the link equation results in the received jammer power
Prj ≥ Prj(thr) required for detection by the communication
receiver. The jammer detection capability can be simplified
and improved by intermittently silencing the communication
transmitter at known intervals during which time, if the
threshold based on receiver noise is exceeded, the appropriate
counter measure procedures can be executed.

Referring to Figures 13.13 and 13.37, the link evaluation
is based on the communication range equations developed in
Chapter 15. With inclusion of the terrestrial loss (Lter), the
communication received power is expressed as

Pr =
PtGtGr

LatmLterLfsLrs
(13.140)

In (13.140), the total propagation loss is defined as
Lp = LatmLterLfs. The transmitter power required from the
high-power amplifier (HPA) is PPA = LtsPt, where Lts is the
transmitter system loss including the antenna and feed losses.
The expression for the jammer power at the communication
receiver is

Prj =
PtjGtjGrj

LatmjLterjLfsjLrsj
(13.141)

Expressing (13.141) in terms of the required jammer trans-
mitter power Ptj results in

Ptj =
PrjLatmjLterjLfsjLrsj

GtjGrj
(13.142)

The losses Lrs and Lrsj represent the receive system loss
including the antenna and the antenna feed to the receiver
low-noise amplifier (LNA); excluding the negligible effects
of small carrier frequencies differences, these losses are con-
sidered to be the same for each input signal. At this point in

the analysis, the free-space loss is expressed in terms of the
link range and carrier frequencies as

Lfs =
4πRfc
c

2

(13.143)

where R is the link range, fc the carrier frequency, and c is the
free-space velocity of light. The ratio of the jammer-to-
communication free-space loss is

Lfsj
Lfs

=
Rj

R

2 fcj
fc

2

(13.144)

LNA
Feed
loss 

Rx 
antenna

Comm.
transmitter

Jammer
transmitter

R

ϕ

Rj = (LSR)R 

Demod.
Rx

mixing

Counter
measures

γthr ≥ γthr

Prj / Pr

FIGURE 13.37 Communication receiver/demodulator functional
implementation.

TABLE 13.9 Case study of System Parameters

System Parameter Description

Communication Tx power (Pt) 1.76 dBW
Jammer Tx power (Ptj) Computed
Jammer detection threshold (γthr) 3 dB
Atmospheric loss ratio (Latmj/Latm) 0 dB
Range between communication Tx and Rx (R) (0.5–5 km)
Range between jammer and comm. Rx (Rj) R(LSR)
Terrain loss ratio (Lterj/Lter) Computeda

Carrier frequencies (fcj = fc) 0.1 and 1.0 GHz
Carrier frequency ratio (fcj/fc) 0 dB
Receiver system loss ratio (Lrsj/Lrs) 0 dB
Communication Tx antenna gain (Gt) 10 dB
Jammer Tx gain antenna (Gtj) 20 dB
Transmitter gain ratio (Gt/Gtj) −10 dB
Receiver antenna gain ratio (Gr/Grj) given link

angle ϕ
3 dB

Link-standoff ratio (LSR) 2.5 : 1 and 3 : 1

aLterj is interpolated given Rj = R(LSR) using the function Lter(r): 0.5 ≤ r ≤
5 km.

TABLE 13.10 Case study of Terrain Parameters for
Point-to-Point ITM Model

Terrain Parameters Description

Communication and jammer Tx antenna physical
heights (htie, hje)

10 m

Communication RX antenna physical height (hre) 1 m
Effective antenna heights he = hp
Antenna polarization 1-Vertical
Terrain elevation change (Tx to Rx) 0—Flat

terrain
Average elevation above sea level 0
Mean surface refractivity at sea level (Ns) 301
Climate code 5: continental temperate
Effective curvature of Earth 4/3
Surface dielectric constant (εs)

a 15 F/m
Surface conductivity (σs)

a 0.005 mho/m
Reliability 90%
Confidence 50%

aAverage ground conditions.
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The jammer received power is expressed in terms of the
jammer detection threshold and the communication received
power using Prj = γthrPr and Pr expressed by (13.140). Sub-
stituting these results with (13.144) and (13.138) into
(13.142), the jammer transmit power is expressed as

Ptj = γthr
Latmj
Latm

Lterj
Lter

fcj
fc

2 Lrsj
Lrs

Gt

Gtj

Gr

Grj
LSR 2Pt

(13.145)

The LSR parameter appears explicitly in (13.145) repre-
senting the free-space range loss in (13.144), it also appears
implicitly through the terrestrial loss ratio.

The parameters expressed in (13.145) are summarized
Table 13.9 and the ITM model link parameters are summar-
ized in Table 13.10. These results are used in a link simula-
tion program to evaluate the jammer transmitter power for
detection of Prj(thr) at the communication receiver. If the
jammer increases the transmit power above Prj(thr), the prob-
ability of detection increases with respect to the specification.
The results are shown in Figure 13.38a and b as the respective
dependence of Ptj/Pt (dB) and Ptj (dBW) on the communica-
tion link range R.

The preceding analysis corresponds to an unspread com-
munication waveform and when a SS waveform is used the
jammer must respond by increasing Ptj in the same proportion
asGp using the appropriate jammer strategy. The inclusion of
the spread-spectrum processing gain into the link equations
is discussed in Sections 13.3.1 and 13.3.2 for AJ and LPI
SS applications. The bit-error performance is dependent on

the output of the demodulator’s SS correlator (matched
filter) in the presence of the jamming waveform and the com-
municator’s AJ waveform, FEC coding, and interleaving pro-
cessing that must be examined as discussed in the preceding
sections.

ACRONYMS

ADC Analog-to-digital converter
AJ Anti-jam
AWGN Additive white Gaussian noise (channel)
BE Bit-error
BPF Bandpass filter
BPSK Binary phase shift keying
CDMA Code division multiple-access
CFAR Constant false-alarm rate (detection

algorithm)
COMSEC Communication security
CW Continuous wave
DCBPSK Differentially coherent BPSK
DCMPSK Differentially coherent MPSK
DDL Double-dither loop (PN sequence tracking)
DFS Digital frequency synthesizer
DLL Delaylock loop
DS Direct sequence (PN code)
DS-LFM Direct sequence with LFM chips
DS-FH Direct sequence FH
DSSS Direct-sequence spread-spectrum
DS-TH Direct sequence TH
E/L Early–late (sampling)
ECM Electronic counter measure
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FIGURE 13.38 Jammer power to achieve Prj(thr) corresponding to the LSR specification hte = htje = 10m, hre = 1m,Gp = 0 dB .
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EIRP Effective isotropic radiated power
ETS Epoch time stamp
FDC Frequency diversity combining
FDM Frequency division multiplex
FEC Forward error correction
FFH Fast frequency hopping
FFHSS Fast frequency hopping SS
FFT Fast Fourier transform
FH Frequency hopping
FHSS Frequency-hopping spread-spectrum
FH–TH Frequency hopping TH
FSK Frequency shift keying
GPS Global position system
HPA High-power amplifier
HPF Highpass filter
I&D Integrate-and-dump (filter)
I/Q Inphase and quadrature (channels or rails)
INFOSEC Information security
ITM Irregular terrain model
LFM Linear frequency modulation
LM Link margin
LNA Low-noise amplifier
LPD Low probability of detection
LPE Low probability of exploitation
LPF Lowpass filter
LPI Low probability of intercept
LSR Link-standoff ratio
MFSK Multitone frequency shift keying

(M-ary FSK)
MPSK Multiphase shift keying
MSK Minimum shift keying
OQPSK Offset QPSK
PC Pulse compression
PLL Phaselock loop
PN Pseudo-noise
PRF Pulse repetition frequency
PRI Pulse repetition interval
PSD Power spectral density
Q/I Quadrature and inphase (channels or rails)
QPSK Quadrature phase shift keying
RR Rate reduction
SFH Slow frequency hopping
S/H Sample-and-hold
SJR Signal-to-jammer ratio
SNJR Signal to noise-plus-jammer ratio
SNR Signal-to-noise ratio
SS Spread-spectrum
TDL Tau-dither loop (PN sequence tracking)
TER Total-energy radiometer
TH Time hopping
THSS Time-hopping spread-spectrum
TOA Time-of-arrival
TRANSEC Transmission security

Note: CHIRP is not an acronym: it is the name applied to a
linear frequency modulated waveform.

APPENDIX 13A
13A.1 GRAPHICAL DETERMINATION OF
OPTIMUM JAMMER

The optimum jammer strategy for band multitone jamm-
ing against a noncoherently detected MFSK-modulated
waveform is to choose an optimum jamming parameter, uo,
such that the communicator’s bit-error probability becomes

Pbe =
uo
γbj

forγbj ≥ γbjmin (13A.1)

The slope of the Pbe(u) versus γbj curves is selected as the
tangent to each of the theoretical performance curves for u =
1.0–0.0002 shown in Figure 13.28b for 4FSK (k = 2) and
duplicated in Figure 13A.1. The curves for u = 1.0 and
0.0002 are emphasized because the extreme cases are the
most important in constructing the desired response corre-
sponding to the dotted curve in (13A.1).

To begin the process of establishing the desired optimum
jammer strategy, select reasonable starting points corre-
sponding to γbj = 40 and 0 dB with the corresponding Pbe

values that would appear to yield the desired linear slope tan-
gent to each of the Pbe(u) responses. The points correspond-
ing to (40, log(2e−5)) and (0, log(2e−1)) are reasonable first
guesses. The two equations that must be solved correspond to

−4 699 = a 40 + b

−0 699 = a 0 + b
(13A.2)

from which b = −0.699 and a = (−4.699 + 0.699)/40 = −4.0.
The function

Pbe = −4γbj−0 0699 (13A.3)

is plotted, as in Figure 13A.1 and examined for satisfying the
condition of being tangent to each of the selected extreme
Pbe(u) curves; if the plotted function is tangent to the two
extreme cases it will also be tangent to the intermediate
curves. Usually, two adjustments are necessary to obtain
the desired function. First, the function can be made parallel
to the desired tangent function typically by a small adjust-
ment in the parameter a, with the second adjustment applied
to b to result in the desired tangent response.

The response in Figure 13.28b was established using this
procedure and it remains to determine γbj min and uo by
expanding the plot of Pbe (u = 1) in Figure 13A.1 as shown
in Figure 13A.2. Visual determination of the exact point of
tangency corresponding to γbj min is difficult to obtain, so,
in Figure 13A.2, the two extremes points at which the two
curves appear to diverge from one another are identified as
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γbj1 = −0 5 and γbj2 = 2 0. Using these results, γbj min is com-
puted as the average value

γbjmin dB =
γbj1 + γbj2

2
= 0 75 dB (13A.4)

with γbjmin = 1 188. The corresponding bit-error probability*

is Pbe(γbj min) = 0.1955 and the optimum jammer parameter uo
is computed as

uo = γbjminPbe γbjmin = 0 2323 (13A.5)

A similar analysis of Figure 13.28a, for k = 3, results
in γbj1 = −1.5, γbj2 = 0.7, and yields γbjmin = 0 912,

Pbe γbjmin = 0 2106, and uo = 0.1921. These values,

corresponding to k = 2 and 3, are in reasonable agreement
with those in listed in Table 13.6.

PROBLEMS

1. Referring to Figure 13.2, the expression for the received
analytic or baseband QPSK-modulated signal is

sr i = dnCi cos ϕ −dnCi−1 sin ϕ + j dnCi sin ϕ + dnCi−1 cos ϕ

where the constant phase angle ϕ is introduced by the
channel and the samples i correspond to the demodulator
sampling intervals t = iΔt. Evaluate the demodulator cor-
relator response

R ℓ = sr i s∗ref i−ℓ

for ℓ = 0 where sref i−ℓ =Ci−ℓ + jCi−1−ℓ is the N-chip
demodulator reference sequence. Note that the I and
Q correlator channels are each summed over the interval
0 ≤ i ≤N/2. To complete this problem draw the functional
implementation of the correlator for the quadrature-
modulated waveform, similar to that in Figure 13.3b
for BPSK modulation.

2. Given the MFSK SFH example in Section 13.2.2.1, sup-
pose that K contiguous FSK symbols correspond to one
hop interval of Th seconds and that the SS bandwidth cor-
responds to 2L frequency hops in increments correspond-
ing to the baseband noise bandwidth (Bn) of the
unhopped modulated waveform. Under these conditions,
determine the following in terms of the applicable para-
meters: the source data rate Rb, k = log2(M), K, and L.
(i) The baseband bandwidth Ws, (ii) the SS bandwidth
Wss, (iii) the processing gain, (iv) the FH interval (Th),
and (v) the hopping rate (Rh).

3. Referring to Figure 13.9, consider a processing gain of
Gp = 128 so that the pulse duration is Tp = Tb/Gp and con-
siderNsamp = 4 samples-per-pulse and an FFTwindow of
Tfft = 8Tp or eight bits. The modulated bits and pulses
have the respective forms rect(t/Tb) and rect(t/Tp). Under
these conditions, determine the numerical value of the
seven (7) parameters associated with the spectrum in
the following figure.
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FIGURE 13A.1 Establishing the worst-case inverse linear
performance (k = 2).
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FIGURE 13A.2 Expanded view of Figure 13A.1 for u = 1.

*As in Table 13.36, the value of Pbe(γbj min) is linearly interpolated between
the theoretically computed bit-error probabilities around γbj min; the theoret-
ically computed bit-error probabilities are based on uniform sampling of γbj
in increments of Δγbj = 0.05 dB.
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4. Consider a modulated signal with power Ps and modula-
tion bit-rate Rb is operating in an AGWN channel with
two additive noise sources with power spectral densities
No andNo. Determine the composite signal-to-noise ratio
γ in terms of the signal-to-noise ratios γ

b
=Eb No and

γ
b
=Eb No. Characterize γ for the cases: γb γb

and γb γb.

5. Referring to Problem 4, derive the expression for the loss
in the signal-to-noise ratio k = γ γb under the conditions
γ > γb and Pbe γ =Pbe γb . Since k ≤ 1, the signal-to-
noise ratio loss in dB is Loss (dB) = −10log10(k). Using
the expression for k, determine the Loss (dB)
when γb = γb.

6. Verify that F(u,γsj) is expressed as in (13.78). Hint: erfc

(z) = 1 − erf(z) and derf z dz = 2 π Ho z e− z
2
where

the Hermite function Ho(z) = 1 z.

7. Using the first equality in (13.68) and the definitions of
the received and jammer signals, and the demodulator
references given respectively in (13.65), (13.66), and
(13.67), show the details in arriving at the second equal-
ity in (13.68). Note that the received signal corresponds
to BPSK-modulated DSSS chips with chip weighting
p(t) = rect((t − Tc(1 + 2i)/2)/Tc) and the correlation inte-
gral has zero lag indicating ideal chip synchronization.

Also, defining MJ = 1 2 2PJ Tb

N−1

i= 0
ci

i+1 Tc

iTc
dt as

the magnitude of the jammer signal at the output of
the correlator, the expression for the equivalent inphase

jammer signal is NJc =MJ cos ϕJ −ϕs −sin ϕJ −ϕs ,

so shown that cos ϕJ −ϕs −sin ϕJ −ϕs = 2cos θ

with θ =ϕJ −ϕs + π 4.

8. Derive the expression for the correlator quadrature out-
put of the signal-plus-jammer using (13.65), (13.66),
and (13.67). In other words, evaluate the correlator quad-
rature output ysk corresponding to yck expressed
in (13.68).

9. For noncoherently detected BFSK with partial-band
noise jamming, discussed in Section 13.6, show the
detailed steps in verifying the parameters in the first
row of Table 13.6 corresponding to k = 1. Hint: The
unjammed bit-error performance of noncoherently
detected BFSK is Pbe = 0.5e−γbj/2.

10. Using the performance bound Pbe ≤MD 4, evaluate and
compare the Pbe versus γbj bounded performance of DS-
BPSK modulation described in Section 13.9.1 with k = 1
(M = 2). Repeat the above using the bounded perfor-
mance of FH-BFSK described in Section 13.9.2. Make
these comparisons using the hard and soft decisions.
Compare the DS-BPSK results with those in (13.86)
and (13.87) with m = 1.

11. Evaluate and compare the bounded Pbe versus γbj perfor-
mance of FH-BFSK using Pbe ≤MDm 4 as described in
Section 13.9.2. Make the comparisons using repetition
coding diversities of m = 1, 2, and 4. Repeat the above
using FH–MFSK for M = 4 and 8.

12. Under theconditions inProblems9and11, evaluateandplot
the computational cutoff rate Ro as a function of γsj in dB.
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14
MODEM TESTING, MODELING, AND SIMULATION

14.1 INTRODUCTION

Perhaps the most useful and certainly the most
ubiquitous tool for evaluating any communication system
is a good uniform number generator; a close runner-up is a
good Gaussian number generator. Once this tool is avail-
able, it is used in virtually every simulation program to
perform a variety of tasks. These tasks include: random
source-data generation, pseudo-noise (PN) sequence
generation, generation of various types of fading channels,
and additive white Gaussian noise (AWGN) generation.
Various methods of generating uniformly distributed ran-
dom numbers are discussed in the following paragraph.
With this background, the generation of other forms of
random variables is examined and subsequent examples
of system simulations focus on their applications in
accurately characterizing system performance.

In terms of network terminology, the communication link
is used here to include all of the functions of the physical
layer between a data source and a data sink as depicted in
Figure 14.1. In this context the channel may include, for
example, a satellite repeater or bent-pipe that does not proc-
ess the received uplink signal for information content. Also,
whenever there is a linear relationship between the transmit-
ter and channel filtering, it is often convenient to treat the
cascaded response as one filter. When this is done, however,
care must be taken in the manner that various noise sources
are added throughout the system. For example, if the uplink
includes adjacent channel interference, then the transmitter
and satellite filtering must be included as separate filters.

In general, it is necessary to model the system implementa-
tion as closely as possible to the real encounter.

Figure 14.1 is intended to aid in the description of the
functions involved in simulating the performance of a com-
munication system. The various seeds are typically used to
generate uniformly distributed random numbers from which
Gaussian, Rayleigh, and other random processes are gener-
ated. Using the same seeds for repeated simulations guaran-
tees that the random conditions are duplicated so that
performance variation can be attributed to changes in
various system parameters. The various functions shown in
Figure 14.1 provide inputs to the performance measure
function that computes and formats the desired outputs for
assessing the overall system performance. Example outputs
are: received signal-to-noise ratio, number of block or bit
errors, block and bit-error probability,* phase, frequency,
and symbol tracking loop conditions, matched filter sampled
outputs, and estimated parameter values.

Two significant advantages of system simulations are: the
ability to evaluate the system performance using parametric
condition to determine how gracefully the system degrades;
the ability to alter system parameters like: demodulator band-
widths, noise generator seeds, and interference and channel
conditions, and then perform otherwise identically repeated
simulations to attribute the performance variations to the
system parameter or changes in the random conditions.

*The bit-error probability as output from the simulation is more accurately
referred to at the bit-error frequency, or bit-error rate, defined as the received
bit-errors divided by the total number of received bits.

Digital Communications with Emphasis on Data Modems: Theory, Analysis, Design, Simulation, Testing, and Applications,
First Edition. Richard W. Middlestead.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/digitalcommunications



This latter advantage is also a major simulation software
debugging tool, in that, by repeating the same noise conditions
in the various simulation loops, if the performance measures
do not agree exactly then there is a problemwith the simulation
code. Typically this involves arrays or parameters not being
re-initialized properly between successive simulations.

14.2 STATISTICAL SAMPLING

The first consideration in any Monte Carlo simulation [1] is
to determine the number of Monte Carlo trials that are
required to achieve a specified accuracy in the performance
measure(s). Typically, the performance measure in a digital
communication system is the received bit-error probability;
however, symbol, character, and message-error probabilities
are also used. Each Monte Carlo trial or event is independent
of all others leading to the notion of Bernoulli trials [2].
Under these conditions, if the underlying probability of an
event is given by p, then the probability of an event occurring
k times in n independent trials is given by the binomial
distribution

P k =
n

k
pkqn−k (14.1)

where q = p − 1. The coefficient in (14.1) represents the num-
ber of possible combinations of n things taken k at a time. This
is referred to as the binomial coefficient and is evaluated as

n

k
=

n

k n−k
(14.2)

where x! is the factorial of x. The binomial distribution
characterizes the discrete random variable k as depicted,
for example, in Figure 14.2 for n = 5 and p = 1/2.

14.2.1 Fixed-Sample Testing Using
the Gaussian Distribution

Referring to Papoulis [2] it is shown that for large values of
n, such that npq 1, that (14.1) is approximated over the
region k−np npq by*

p k
1

2πnpq
e− k−np 2 2npq (14.3)

This is the DeMoivre–Laplace theorem [3] and the right-
hand-side is recognized as the Gaussian distribution with
mean value k = np and variance σ2k = npq. Upon defining
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FIGURE 14.1 Functional diagram of a typical communication systems simulation.
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FIGURE 14.2 Discrete binomial probability distribution (n = 5,
p = 1/2).

*In the remainder of this analysis the equality condition is used.
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the variable x = k n, the mean of the distribution p(x) is p and

the standard deviation is σx = pq n so that

p x =
1

2πσx
e− x−p 2 2σ2x (14.4)

Returning to the problem of determining the number
of Monte Carlo trials to perform in a system simulation,
consider the mean value p of the pdf p(x) to be the system
bit-error probability of interest. Then, after n trials or bits,
the standard deviation in the estimation of p will be

σ =
p 1−p

n
(14.5)

Because the underlying distribution is Gaussian, this
result states that after n Monte Carlo trials the estimate of
p will be within p ± σ with a confidence of 68.26%. Stated
another way, if repeated Monte Carlo simulations are per-
formed with independent underlying Gaussian random vari-
ables, then 68.26% of the measurements will be within ±σ of
the expected value p. Higher confidence levels are readily
determined by evaluating, for example, the ±2σ or ±3σ limits
that correspond to confidence levels of 95.45 and 99.93%
respectively.

It is often required to determine the number of trials, such
that, the resulting measurement error is within a specified
confidence level. Suppose, for example, that p is to be esti-
mated within a two-sigma (±kσ: k = 2) confidence level of
95.45% and with an accuracy of ≤10% (η = 0.1). In this case,
let 2σ = 1.1p and evaluate (14.5) for n with σ = 1.1p/2. In the
following section, the accuracy and confidence of a Monte
Carlo simulation are characterized in terms of the required
number of trials, n, and the number of observed errors, e,
in the simulation.

14.2.1.1 Number of Trials Based on Accuracy and
Confidence of Test When the system bit-error probability
is unknown it is reasonable to ask, “How many bits (trials)
must be simulated before the performance can be adequately
assessed?” The answer to this question is found in the context
of the sampling criterion discussed in the previous section. For
example, for a discrete randomly sampled process with all
events having equal probabilities of occurrence p, the probabil-
ity Po of observing k events in n trials is approximated by [4]

Po =Pr 0 ≤ i ≤ k =
k

i= 0

n

i
pi 1−p n− i

=
1
2
+
1
2
erf

k−np

np 1−p

(14.6)

where erf (x) is the error function defined in Section 3.5 as

erf x ≜
2

2π

x

0

e− y
2 2dy (14.7)

The mean value of the density function is np and the
parameter k is defined as k = np1 where p1 ≥ p is an upper
bound on p corresponding to a specified measurement accu-
racy of η= p1 p – 1. Using these results with p1 = p 1 + η , the
expression for Po in (14.6) becomes

Po =
1
2
+
1
2
erf

nηp

np 1−p
(14.8)

The parameter p1 upper bounds the true error probability
p. Using (14.8) the sample size, n, of the test can be evaluated
in terms of the specified accuracy (η) and confidence level,
Po. The unknown probability p is approximated by the fre-
quency interpretation p e/n, where e is the number of error
events after n trials. In the following analysis the argument of
the error function in (14.8) is defined as

x =
nηp

np 1−p
(14.9)

The value of x defined in (14.9) is evaluated for a specified
Po by applying Newton’s method [5] to determine the solu-
tion to f(x) = 0, where

f x =Po−
1
2
+
1
2
erf x (14.10)

The iterative solution is given by

xi+ 1 = xi−
f xi
f xi

(14.11)

where the iteration continues until an acceptable error in
(14.10) is achieved, for example, when f x < 0 0001. The
derivative of f(x) is evaluated as

f 1 x =
d

dx
erf x =

2
π
H0 x e− x

2
(14.12)

where Hn is the Hermite polynomial [5] and H0 x = 1
for all x. Having approximated the value of x, the number
of events required to satisfy the conditions of the test is
determined as

n =
x

η

2 1−p
p

x

η

2 1
p

(14.13)
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where the approximation applies when p 1 corresponding
to low error probabilities. Using e = np, the number of allow-
able errors during the test is

e=
x

η

2

1−p
x

η

2

(14.14)

Therefore, upon terminating the test after n events, the
test fails if the number of errors exceeds e otherwise the test
passes.*

As an example of the application of these results consider
simulating the performance of a modem detection algorithm
at a signal-to-noise corresponding to a bit-error probability
of p = 1 × 10−3 with a confidence of 99% (Po = 0.99) and
an accuracy of 5% (η = 0.05) corresponding to an upper
bound on the bit-error probability of p1 = 1.05p. Using
Newton’s method, the value of x is 2.326282 and the number
of bits required by the simulation is n = 2,162,471 and the
maximum number of allowable bit errors is 2,163.
Figure 14.3 shows the number of error events as a function
of the error probability Pe = p for various confidence levels
with a test accuracy of 5%, that is, the test determines that
the modem is operating with an error probability p with an
accuracy of 1.05p. This analysis leading to the number of
error events, shown in Figure 14.3, results in a measurement
accuracy of 5% regardless of the error probability; so, for
very low error probabilities, the accuracy is commensurately
low but the number of trials becomes very large. For exam-
ple, when trying to measure an error event with a probability
of p = 10−9 with 5% accuracy requires a sample size of more
than 1012 trials. These examples are based on extremely accu-
rate test requirements and more practical specifications may

require confidence levels on the order of 80–90% with
accuracies on the order of 10, 30, or even 100%.

In all of these tests, it is assumed that the signal-to-noise
ratio is established with sufficient precision so that the
modem is operating at the desired bit-error probability; how-
ever, the accuracy of the test is influenced by the ability to
accurately measure the signal-to-noise ratio. When examin-
ing modems with forward error correction (FEC) coding,
the decoded bit-error performance is very sensitive to the
signal-to-noise ratio. In these cases, it is often more practical
to first test the uncoded error performance. In addition, FEC
decoding results in bursts of errors that influence the test
accuracy; the preceding and following analysis assumes inde-
pendent random error events. In Section 14.2.2, the method
of sequential testing is discussed that terminates a test that is
bound to fail with considerably fewer trials.

The conditions in the preceding example ensure that the
simulated event error probability is less than 1.05p; however,
it may be desirable to have the measurement accuracy within
±0.05p. This additional precision will require simulating
more events resulting in longer simulation times. To assess
the impact of this requirement the probability

Po =Pr 0 ≤ i ≤ k1 −Pr 0 ≤ i ≤ k2 =

1
2
+
1
2
erf

k1−np

np 1−p
−

1
2
+
1
2
erf

k2−np

np 1−p

=
1
2
erf

k1−np

np 1−p
−
1
2
erf

k2−np

np 1−p

(14.15)

is evaluated with k1 ≥ k2. Substituting k1 = np1 = n 1 + η p and
k2 = np2 = n 1−η p results in

Po = erf x measurement accuracy ≤ η (14.16)

where x is given by (14.9). In this case the previous analysis
procedures can be used by computing an equivalent value of
Po given by

Po =
1
2

1 +Po measurement accuracy ≤ η (14.17)

where Po is the confidence level of the +xσ case correspond-
ing to (14.8). For example, with Po = 0 99 the equivalent
confidence level is Po = 0.995 and, using p = 1 × 10−3 and
η = 0.05, as in the previous example, the value of x is com-
puted as 2.573709 so the number of bits required by the sim-
ulation is 2,646,942 and the number of bit errors is 2647.†
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FIGURE 14.3 Required error events to achieve an error
probability with 5% accuracy.

*In practice, and in the examples, the actual number of events and event
errors is determined as Ntest = n and Etest = e .

†Formodem design engineering performance simulations, theseMonte Carlo
trials are simply guidelines; however, for modem contractual acceptance test-
ing, they attract considerably more attention.
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Returning to (14.5) and the following examples, the sam-
pling requirements can be easily characterized by using
tabulated confidence levels or probabilities Po(x) given the
scaled standard deviation x = koσ. Typically [6] Po(x) is
tabulated for a unit standard deviation with x = ko. The con-
fidence level is plotted in Figure 14.4 as a function of ko and
applies to the cases +koσ and ±koσ as discussed above. The
disadvantage in this approach is that these values must be
input from tables or interpolated from curves, whereas, in
the previous analysis they are computed based on a specified
confidence level.

Therefore, using a desired confidence level, ko is deter-
mined from Figure 14.4 and, following the above analysis,
the standard deviation is computed as

σ =
ηp

ko
(14.18)

Equating (14.18) and (14.5) and solving for the number of
trails yields

n=
ko
η

2 1−p
p

(14.19)

and, from (14.14), the number of errors is

e =
ko
η

2

1−p (14.20)

where the parameter ko is determined using standard proba-
bility tables or Newton’s method as discussed following
Equation (14.9).

Frequently error bars of length koσ or ±koσ about the
probability p are included to indicate the accuracy of the sim-
ulation; an example using error bars is shown in Section 14.6.
During the initial stages of the modem design and simulation,
rough estimates of the system performance are needed. In
this case, a test accuracy of 100% (η = 1.0) with ko = 2 or 3
is recommended to reduce the number of simulation trials
to k2o p. As the modem algorithms are debugged and opti-
mized, the accuracy and confidence level of the tests can
be tightened for the final performance evaluations. As a final
comment, the simulation or test time is a function of the
event-rate (R) events-per-second and is given by Ttest = n/R
seconds. It is very time-consuming to establish the number
of trials to satisfy the performance requirements at a specified
probability, say p = 10−5, and then run the simulation or test
for a range of probabilities, say for p = 10−1 to 10−5, using the
same number of trials. This results in unnecessarily high
accuracies at the lower error probabilities and can be avoided
by terminating the simulation at each probability (p) when the
number of event errors, as expressed in (14.14) and (14.20), is
exceeded.

14.2.1.2 Measurement Accuracy with Signal-to-Noise
Ratio Degradation A useful criterion, which results in
shorter simulation run-times, is to require that the corre-
sponding signal-to-noise ratio be within some specified accu-
racy Δγb(dB). In effect, this condition provides for a relative
measurement accuracy that increases as the error probability
decreases. For AWGN the bit-error probability for uncoded
antipodal signaling is related to the signal-to-noise ratio
γb =Eb No as

Pbe =
1
2

1−erf γb (14.21)

The variation in the bit-error probability is expressed as

ΔPbe =
δPbe

δγb
Δγb (14.22)

Letting x= γb, the derivative in (14.22) is evaluated as

δPbe

δγb
=

δx

δγb

δPbe x

δx
= −

e−γb

2 πγb
(14.23)

with the result

ΔPbe = −
e−γb

2 πγb
Δγb (14.24)
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Considering Δγb = γb−γb = γb γb−1 γb and γb γb =

10Δγb dB 10, (14.24) is expressed as

ΔPbe = −
γbe

−γb

2 π
10Δγb dB 10−1 (14.25)

Figure 14.5 is plotted ΔPbe/Pbe in percent as a function of
γb for various accuracies in the signal-to-noise ratio Δγb(dB).
The required number of trials is shown as the solid curves in
Figure 14.6 as a function of the bit-error probability for the
indicated confidence levels and decibel accuracy in the meas-
urement of Eb/No. For comparison, the number of trials asso-
ciated with achieving a fixed accuracy in Pbe is shown as the

dashed curves in Figure 14.6. For low error probabilities, a
saving of several orders of magnitude in test time is realized
by specifying a fixed error in Eb/No.

14.2.2 Fixed-Sample Testing Using the Poisson
Distribution

The preceding description using the Gaussian approximation
to the binomial distribution applies only when p1 = k/n is

in the vicinity of σ = p 1−p n around the mean value
p. These conditions require that n 1, p 1, with the prod-
uct np 1. In the preceding sections, it was assumed that
this vicinity extended over two or three standard deviations.
Furthermore, the Gaussian distribution extends over the
range p1 = (−∞,∞) that does not apply to the positive prob-
ability values and the finite sample size being considered. To
overcome the positive and finite limitations of the sample
variable k, the binomial distribution is approximated by the
Poisson distribution expressed as [7]

n

k
pk 1−p n−k np k

k
e−np (14.26)

This result applies for k on the order of np and does not
require that np 1. A formal proof of (14.26) is provided
by Feller [3]. The criterion for establishing the sample size
and the number of event errors is based on hypothesis testing
[8–10], where the hypothesis H0 corresponds to the event
probability p0 and the hypothesisH1 corresponds to the event
probability p1. In terms of the Poisson distribution, these
hypotheses correspond to the discrete density functions*

H0 p0 k =
np0

k

k
e−np0 (14.27)

and

H1 p1 k =
np1

k

k
e−np1 (14.28)

14.2.2.1 Single-Threshold Fixed-Sample Testing In this
section, the Poisson distribution is applied to a fixed-sample
test that determines the acceptance and rejection probabilities
of the system under test. This fixed-sample test is similar
to the Gaussian test, in that, the test is performed until all n
samples are completed before a pass–fail decision is made.
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*Strictly speaking the discrete probability density function is

p k =
i
piδ k− i , where pi is the probability of the ith event.
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The likelihood ratio (LR) for the Poisson distribution is
defined as

λP =
p1 k

p0 k
(14.29)

and the test threshold is established based on the log-likelihood
ratio (LLR) evaluated as

ln λP = ln
p1 k

p0 k

= k ln
p1
p0

−n p1−p0

(14.30)

The optimum threshold is determined by solving (14.30)
for k with λP = 1, yielding

Thk =
n p1−p0
ln p1 p0

(14.31)

The probabilities under the two hypotheses H0 and H1 are
depicted in Figure 14.7; where it is assumed that a modem is
being tested for a bit-error probability of p0. As previously
defined p1 = (1 + η)p0, where η is the accuracy of the test, that
is, for a test length of n-bits, the modem fails and is declared
bad if the number of bits-errors (k) exceeds the threshold Thk.
The various regions indicated in Figure 14.7 give rise to the
acceptance and rejection probabilities associated with the test
and two regions are identified for establishing the criterion
for the test, they are:

Pca = 1−α=Pr correctly accepting a good modem

= 1−
n

Thk + 1

p0 k H0

(14.32)

and

Pfa = β =Pr falsely accepting a bad modem

=
Thk

k = 0

p1 k H0

(14.33)

The probabilities Pca and Pfa are respectively referred to as
the confidence and significance levels of the test and are typ-
ically expressed in percent. In statistical parlance, the proba-
bility α is a type I error, or error of the first kind, that rejects
hypothesis H0 when H0 is true and the probability β is a
type II error, or error of the second kind, that accepts hypoth-
esis H0 when H1 is true.

For production testing the specification of Pca and Pfa, or
confidence and significance, depend upon the modem appli-
cation and are typically agreed upon through a written con-
tract. However, the respective values of 0.95 and 0.05 (95
and 5%) seem reasonable in noncritical applications or in
situations where the receiver signal-to-noise has a build-in
margin. In applications where the modem is costly it may
be re-worked and/or re-tested. Prior to performing production
testing, the modem must undergo extensive engineering test-
ing to demonstrate that the fundamental algorithms are work-
ing correctly. For example, experience has shown that a
modem can exhibit very infrequent bursts of errors that oblit-
erate the error probability over hours of testing that would not
be detected during a short test of n bits. These situations can
often be traced to algorithm designs and related signal proces-
sing issues like: overflow and truncation.

The single-threshold Poisson test described above is eval-
uated and the performance is characterized in Figures 14.8
and 14.9 as a function of the product np0 for various accura-
cies of the test expressed in percent. These results apply to
any value of p0 as long as the product np0 is held constant.

1–β = Probability of correctly rejecting a bad modem.   

1–α = Probability of correctly accepting a good modem (Pca).

p(k)

Thk0

H0:
p0(k)

H1:
p1(k)

k

1–α 1–β

β α

β = Probability of falsely accepting a bad modem (Pfa).

α = Probability of falsely rejectin g a good modem. 

FIGURE 14.7 Sequential test description.
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The irregular or scalloped appearance of these curves results
from the integer quantization of the threshold np0. To achieve
a confidence level of 95% and a significance level of 5%
requires an accuracy of 40% with an np0 product of 80; how-
ever, to achieve a significance level of 1%, a test accuracy
60% is required with about the same np0 product. In these
examples, the number of bits required in the test of a modem
bit-error probability is n = 80/p0, so with p0 = 1 × 10−3 the test
requires n = 80 K bits.

For test accuracies of about 10% and less, the underlying
distributions for p0 and p1 are so close together that it is
impossible to achieve confidence levels greater than about
90% and significance level less than about 20%; this is
depicted in Figure 14.10 with np0 = 300 with a 5% accuracy,
that is, np1 = 315, and an threshold of 307. In this case, the
maximum confidence level is about 80% and the minimum

significance is 19.7% and these represent limiting values as
np0 increases above 300.

14.2.3 Sequential Sample Testing Using
the Binomial Distribution

Sequential-sample testing [11, 12] makes a pass–fail decision
at each sample n 1 ≤ n ≤ n throughout the test. If at any sam-
ple, the number of errors crosses either of two thresholds the
system fails the test, otherwise, the test continues until all n
samples are completed; after the completion of the n samples,
the system is accepted as good. The sequential test has the
capability of rejecting bad systems early in the testing cycle
resulting in considerably shorter test times. Because pass–fail
decisions are made at each sample beginning at n = 1 the pre-
ceding approximations to the binomial distribution do not
apply and the exact expression, given by (14.1), must be
used. The two thresholds, Th0 and Th1, are depicted in
Figure 14.11 and computed using the bounded LR λB for
the binomial distributions; the conditions are:

β

1−α
≤ λB ≤

1−β
α

(14.34)

In this case, the LR, under the hypotheses H0 and H1, is
expressed as

λB =
P1 k

P0 k
=

pk1 1−p1
n −k

pk0 1−p0
n −k

=
p1q0
p0q1

k q1
q0

n
(14.35)

Upon substituting (14.35) into (14.34) and taking the
natural logarithm results in the bounded expression

ln
β

1−α
≤ k ln

p1q0
p0q1

+ n ln
q1
q0

≤ ln
1−β
α

(14.36)

Using the upper bound and solving for k leads to the
linear equation for the upper threshold as a function of n
expressed as

Th1 =An +B (14.37)

where

A= −
ln q1 q0

ln p1q0 p0q1
and B=

ln 1−β α

ln p1q0 p0q1
(14.38)

Similarly, using the lower bound results in the linear
equation for the lower threshold

Th0 =An +C (14.39)
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where

C =
ln β 1−α
ln p1q0 p0q1

(14.40)

These decision boundaries are depicted in Figure 14.12
where the abscissa and ordinate intercepts are evaluated as

no =
ln β 1−α
ln q1 q0

(14.41)

and

ko =
ln 1−β α

ln p1q0 p0q1
(14.42)

The average number of samples is [11]

n =
1−α ln β 1−α + α ln 1−β α

p0 ln p1 p0 + q0 ln q1 q0
(14.43)

It has been proven [11] that one or the other threshold will
be crossed with probability 1 as n ∞ . However, it is com-
mon practice to limit the sampling and terminate the test
when n = n where n, somewhat arbitrarily, is set equal to
n plus twice the size of the fixed-sample test, as determined
from Figure 14.6, with the same accuracy using either ΔPbe

or Δγb. The horizontal solid line in Figure 14.12 corresponds
to the average number of errors at the termination point n
under the two hypotheses, that is,

kn =
np0 + np1

2
(14.44)

If the test crossed the horizontal solid line, the modem
fails; however, if the test terminates at the solid vertical line
at n, the modem passes.

Table 14.1 summarizes the test requirements for an exam-
ple modem production acceptance test and the corresponding
sequential test parameters. This test requires a bit-error prob-
ability of Pbe = 10−3 at some specified signal-to-noise ratio.
The test parameters are used to establish the pass–fail bound-
aries as shown in Figure 14.12 and the number of bit errors is
recorded and plotted as a function of the number of received
bits. In this case, referring to Figure 14.6, the fixed sample test
under these conditions requires about 1.2 × 106 bits so the
sequential test is terminated after n = n +2 (1.2 × 106) =
4.557 × 106. If the recorded data crosses the lower boundary,
including the vertical boundary at n, the modem passes with
the prescribed confidence and significance levels otherwise
the modem fails the test.

14.3 COMPUTER GENERATION
OF RANDOM VARIABLES

The generation of various types of random variables is para-
mount in the performance simulation of modems and the
foundation of nearly all random variable generators is the

k
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FIGURE 14.12 Pass–fail decision boundaries for sequential test.

TABLE 14.1 Sequential Sample Test Requirements and
Parameters for Modem Testing

Test Requirements
p0 = 1 × 10−3 H0: specified bit-error probability
Confidence 95% H0

Significance 5% H0

η = 5% Test accuracy
p1 = 1.05 × 10−3 H1: p1 = p0 (1 + η/100)a

Test Parameters
A = 1.0252 × 10−3 Slope of decision boundaries
B = 60.287 Upper boundary constant
C = −60.287 Lower boundary constant
ko = 60.287 Upper boundary ordinate intercept
no = 5.881 × 104 Lower boundary abscissa intercept
n = 2.157 × 106 Average number of samples
n = 4.557 × 106 Test termination samples

aIf p1 is specified then compute the test accuracy.

1–β = Probability of correctly rejecting a bad modem.   

1–α = Probability of correctly accepting a good modem (Pca).

Th0
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H0:p0 H1:p1
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β α

β = Probability of falsely accepting a bad modem (Pfa).

α = Probability of falsely rejecting a good modem. 

FIGURE 14.11 Sequential test description.
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uniform number generator. The most ubiquitous of the ran-
dom variable generators is the Gaussian random number gen-
erator that is used to model receiver and modem input noise.
In this context, the Gaussian noise generator is used to estab-
lish the receiver or modem signal-to-noise ratio against which
the premier performance measures involving the modem
error probability are evaluated. During the modem develop-
ment it is a common practice to establish the modem perfor-
mance in a back-to-back mode, that is, without a channel,
where the modulator intermediate frequency (IF) output (or
transmitter radio frequency (RF) output) is coupled directly
to the demodulator IF input (or receiver RF input). In this
configuration the modem performance is compared to theo-
retical performance curves under relatively ideal conditions
like: oscillator phase noise, amplifier nonlinearities, inter-
symbol interference (ISI), and demodulator quantization
noise will result in somewhat less than idea performance.
With the exception of the quantization noise these transceiver
and modem noise sources are modeled using specialized ran-
dom number generators, for example, the ISI noise is influ-
enced by the randomization of the source data that is
generated using a binary uniform random data generator.
To examine the modem performance through a communica-
tion channel, the channel is frequently modeled using an
additive or multiplicative random number generator. For
example, additive co-channel or adjacent channel interfer-
ence is modeled using randomly modulated signals and the
implementation of a fading channel simulator is modeled
as a Rayleigh or Ricean random process.

In the following sections, computer implementation of
various random number generators is discussed. The ran-
dom variable Ui is used to denote uniformly distributed ran-
dom variables; Xi is used to denote Gaussian distributed
random variables, including correlated Gaussian variables;
Yi is used to denote other random variables and Zi is
used to denote the summation of independent iid random
variables. Additional insights regarding the generation
and testing of random numbers can be found in the literature
[13–15].

14.3.1 Uniform Random Number Generation

As mentioned above, the uniform random number generator
forms the foundation for the generation of nearly all other
random variables. The uniform number generator generates
a sequence of random numbers that are ideally* independent
and uniformly distributed over the period of the generator;
the period is determined by the computer’s internal proces-
sing size and the specific algorithm being used to generate
the uniform numbers. Ideally the uniform numbers are

characterized by the uniform pdf shown in Figure 14.13
where the range of the random numbers is a ≤ ui ≤ b with a
mean value of (a + b)/2.

Random numbers that represent a continuous pdf p(u)
with cumulative distribution 0 ≤P U ≤ 1 are generated using
uniformly distributed random numbers 0 ≤Ui ≤ 1, i = 0, 1, …
and the inverse function u = P−1(Ui). In these cases, the para-
meters a and b are: a = 0 and b = 1. To generate random bipo-
lar binary source data, d = {−1,1} the same procedure is used,
however, the cumulative distribution P(U) is a linear function
of U and, using the parameters a = −1/2 and b = 1/2, the
source data is generated as di = sign(1, Ui), where −1/2 ≤Ui ≤
1/2, i = 0, 1,… are uniformly distributed random numbers.
This description discusses the characteristics and application
of uniformly distributed random numbers; however, methods
for generating and testing them† [16] is the subject of the
remainder of this section.

Computer language software often includes a function
for generating uniformly distributed random numbers that
presumably has been tested for various properties of random-
ness. The congruence method [13] or algorithm is commonly
used for generating a sequence of random numbers 0 ≤Xi ≤C
where C is the magnitude of the maximum number as deter-
mined by the number of computer bits used to represent a
number. Uniformly distributed random numbers 0 ≤Ui ≤ 1
are determined as Ui =Xi C.

The congruence method [13] is expressed as‡

Xi+ 1 =AXi +B mod C i = 0,1,… (14.45)

where B is chosen to be relatively prime to C and the con-
stants A with B chosen to provide the desired random proper-
ties and the longest possible sequence of random numbers.
The initial value, X0, is the generator seed and is selected
to be relatively prime to C. Theoretically each seed produces
an independent random sequence and a unique seed is
assigned to the various simulation functions. For example,
unique uniform number generator seeds are assigned to gen-
erate: additive Gaussian noise, phase noise, desired and inter-
fering channel source data, and channel fading. Although the
congruence method described by (14.45) provides excellent

0

b – a

1

ba
u

p(u)

FIGURE 14.13 Uniformly distributed probability density
function.

*Computer-generated random numbers are often referred to as pseudo-
random numbers because they are subject to the idiosyncrasies of the selected
algorithm.

†Reference 16 includes an extensive list of references.
‡The xi+1 = yi mod(c) function denotes xi+1 = yi − int(y/c), where yi = axi + b
and int(z) denotes the integer part of z.
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random properties and adequate sequence lengths, it is rela-
tively slow compared to the implementation described by
Knuth [17].

Finite-length pseudo-random sequences generated using
maximal-length sequences exhibit excellent random proper-
ties and nearly ideal correlation responses; these are often
referred to as PN sequences or M-sequences. PN sequences
are introduced and discussed in Chapter 8.

Uniform random number generators andM-sequences can
be tested against several relatively simple criteria to verify
that their performance characteristics satisfy the independ-
ence and random properties. The first test involves the auto-
correlation response of the random sequence and the
resulting power spectral density (PSD). For a sequence of
length n, the autocorrelation response is a single sample with
amplitude n and sidelobe levels on the order of 1/n. The PSD
is determined by taking the Fourier transform of the correla-
tion function that ideally corresponds to white noise charac-
terized by a constant PSD frequency response. Correlation
and PSD responses expose non-random behaviors involving
initial seed repetitions and the existence of repeated patterns
that do not follow the definition of Bernoulli trials and the
underlying binomial distribution. This suggests a second test
involving the binomial distribution expressed by (14.1) with
p = q = 1/2, that is, each binary event occurs with equal prob-
ability. In this case, the binomial distribution becomes

p k =
n

k

1
2n

(14.46)

Considering a binary sequence of length n, consisting of
mark and space data bits* with respective probabilities p =
q = 1/2, the binomial coefficients represent the number of
times that k mark-bits will occur in the data sequence and
(14.46) is the corresponding probability of occurrence. For
example, using a binary sequence of length n = 3 bits the
binomial coefficients for k = 0, 1, 2, 3 are {1, 3, 3, 1} respec-
tively. The binary data patterns are listed in Table 14.2 with
the corresponding patterns containing k mark bits. The num-
ber of kmark-bit patterns is consistent with the binomial coef-
ficients and the corresponding probabilities of occurrence are
{1/8, 3/8, 3/8, 1/8}. The Bernoulli trial test is a relatively sim-
ple test to perform.

Other uniform number generator tests involve: examining
the repetition of seeds during the sequence generation;
sequence independence with different starting seeds; the
length of the sequence; the periodic generation of subse-
quences. For example, when different starting seeds are
applied to the generation of co-channel and adjacent channel
interference, it is important to ensure that the random proper-
ties of these channels are independent from each other and the

desired channel. Also, when simulating the performance of
modems using turbo-coded FEC, run lengths of millions or
perhaps billions of bits may be required so the length of
the random sequence generators becomes important. Addi-
tional tests, involving the generation of uniform random
numbers, must be performed to examine the generators’
ability to duplicate specific random processes within the
prescribed confidence levels; examples using the exponential
and Gaussian random processes are given in the following
sections.

14.3.2 Gaussian Random Number Generation

The generation of Gaussian random numbers is a close
runner-up to uniform number generators in terms of its utility
in modem performance simulations. Gaussian number gen-
erators use the inverse of the Gaussian cumulative distribu-
tion PG(X): 0 ≤ PG(X) ≤ 1 so, the uniformly distributed
random number Ui: 0 ≤Ui ≤ 1, forms the basis for the gener-
ation of Gaussian random numbers using Xi =P−1

G Ui . This
is depicted in Figure 14.14 for a zero-mean, unit standard
deviation Gaussian distributed random number. Gaussian
random numbers with mean (mx) and standard deviation
(σx) are simply obtained as

Xi = σxXi +mx (14.47)

TABLE 14.2 Binary Data Patterns in a Sequence of Length
n = 3

Data k

000 0
001 1
010 1
011 2
100 1
101 2
110 2
111 1

Xi

Ui

0.5

1

PG(X)

0
X

FIGURE 14.14 Generation of Gaussian random numbers using
inverse cumulative probability.

*Unipolar mark data is identified as a binary 1 and space data as a binary 0.
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Although the inverse mapping P−1
G Ui of the Gaussian

cdf describes the process for the generation of Gaussian ran-
dom numbers, fast and efficient methods for their generation
on computers are described by Muller [18]. The approach
used in most of the simulation results presented in this book
uses the approximation to the inverse function X =Q−1 U
0 <U ≤ 1 0 given by Hastings [19, 20], with an approxima-
tion accuracy of e U < 4 5 × 10−4. Hastings’ approxima-
tion for Gaussian number generation is given in Figure 14.15.

Gaussian random numbers can also be generated by sum-
ming independent random variables and recognizing that
the central limit theorem [21, 22] applies. One approach
is to sum uniformly distributed numbers Ui with the result

Z =
i
Ui where the distribution of Z approaches a Gaussian

distributed random number as the number of summations
approaches infinity. Another application of the central
limit theorem is the summation of sinusoidal functions
with uniformly distributed phase, that is, with −1 ≤Ui ≤ 1

and ϕi = πUi then Z =
i
cos ϕi and Z approaches a

Gaussian distribution as the summation index increases.
The utility of the Gaussian number generator in simulat-

ing the modem bit-error probability performance is deter-
mined by examining the number of simulation trials that
fall within the confidence and accuracy limits given the
required number of Monte Carlo samples-per-trial. The
number of samples-per-trial is determined using (14.13)
or the equivalent expression (14.19), repeated here as

n=
ko
η

2 1−p
p

(14.48)

where η is the specified confidence level of the Monte Carlo
simulation and, using Figure 14.4, ko is determined as the
corresponding standard deviation scale factor. This test is
examined in the case study in Section 14.6 where it is demon-
strated that the Gaussian random number generator, when used
as a Gaussian noise source, performs within the expected
statistical bounds of the bit-error probability p = Pbe.

14.3.2.1 Correlated Gaussian Random Number
Generation Correlated Gaussian random numbers can be
generated in several ways using Xi. For example, referring to
Papoulis [23], the conditional distribution of a correlated
Gaussian random variable Xi+1 with correlation coefficient ρ,
mean value ρXi, and variance σ2, for i = 0, 1, … and X0 = 0,
is expressed as

p Xi+ 1 Xi =
1

2π 1−ρ σ2
e− Xi + 1 −ρXi

2 2 1−ρ σ2 (14.49)

The various expectations of Xi are given by

E Xi+ 1Xi = ρσ
2 (14.50)

E X2
i + 1X

2
i = σ4 1−2ρ2 (14.51)

and

E Xi+ 1Xi =
2σ2

π
cos α + sin α (14.52)

where α = sin−1(ρ): −π/2 < α ≤ π/2. Upon generating a
sequence of correlated Gaussian random samples, the corre-
lation coefficient is computed from the normalized response
of the autocorrelation function.

The correlated Gaussian random variables are also gener-
ated using the autoregressive (AR) model [24] expressed as

Zi =
N

j= 1

wjZi− j +Xi (14.53)

This is an N-th order AR process where the current value,
Zi, of the processes is a linear combination of the past N
values plus an error term Xi characterized as independent
Gaussian noise samples. The weights wj are determined as
the solution to N simultaneous equations.

The method of generating correlated random variables
using a defined PSD is discussed in Chapter 20. A classical
method used to generate correlated random samples that char-
acterize the Doppler spread of the channel is Jakes’ PSD func-
tion given by [25]

S f
=

1

πfd 1− f fd
2

f ≤ fd

= 0 o w

(14.54)

if (U < 0.5)

t =

X = t –

U′ = 1 – U

X = –X

U′ = U

c0 = 2 . 515517, c1 = 0.802853,

d1 = 1.432788, d2 = 0.189269, d3 = 0 . 001308

c2 = 0.010328

+ e(U′)
1 + d1t + d2t2 + d3t3

ln(1/U′)2

endif

else

if (U > 0.5) then

0 < U ≤ 1.0

Initialize:

c0 + c1t + c2t2

FIGURE 14.15 ApproximateGaussian randomnumbergeneration.
Abramowitz [5, p. 933]. Courtesy of U.S. Department of
Commerce.
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where f is the frequency around fd. An application using the
phase PSD to generate inphase and quadrature samples for
a Rayleigh fading channel is given in Section 20.7.

14.3.3 Ricean and Rayleigh Random
Number Generation

Ricean random numbers Yi are generated using two zero
mean independent iid Gaussian random variables XIi and
XQi with standard deviation σr,

Yi = Vs +XIi
2 +X2

Qi Ricean random variable

(14.55)

where Vs represents the received peak signal level or specular
value of the received signal plus noise. Defining the specular
to random signal-to-noise ratio as

γsr =
V2
s

2 σ2r
(14.56)

and normalizing Yi by σr results in the normalized Ricean
random variables

Yi = 2γsr +XIi

2
+X2

Qi (14.57)

where XIi and XQi are zero-mean unit-variance Gaussian ran-
dom variables. Rayleigh random numbers result when the
specular to random power ratio approaches zero, that is, when
γsr 0 and, in the limit (14.55), becomes

Yi = X2
Ii +X

2
Qi Rayleigh random variable (14.58)

Examples of Ricean and Rayleigh pdfs generated using
(14.55) and (14.58) respectively are given in Section 18.2.
Correlated Ricean and Rayleigh random numbers are
obtained by using (14.49) in the generation of XIi and XQi.
An example of the correlation characteristics for the Ricean
random numbers generated with specular-to-random compo-
nent ratio of γsr = 12 dB is shown in Figure 14.16. These
results are obtained using a sequence of 5000 Ricean gener-
ated samples using (14.55) with the underlying correlated
Gaussian random variables generated using (14.49).

When these results are used in a system performance sim-
ulation, it is important to know the corresponding correlation
time associated with the specified correlation coefficient ρ.
The correlation interval is defined as correlation lag nowhere
the correlation response equals the normalized correlation
threshold of e−1. For example, for the case γsr = 12 dB, the
correlation lag no is determined from Figure 14.16 as a
function of correlation parameters ρ. The correlation lag

characteristics are summarized in Figure 14.17 for the indi-
cated values of γsr. The case γsr = −∞ corresponds to corre-
lated Rayleigh random variables and as γsr +∞ and the
random variable Yi approaches the constant signal amplitude
Vs. The decorrelation time is denoted as τo and is related
to the sampling interval, Δτ, associated with the random var-
iable Yi and is expressed as

τo = noΔτ (14.59)

Fast fading environments are associated with signal fluc-
tuations that are rapid relative to the transmitted symbol dura-
tion. Fast fading results in significant symbol distortion in the
demodulator matched filter. Considering that a minimum of
four samples-per-symbol is required to satisfy the Nyquist
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FIGURE 14.16 Correlation response for correlatedRicean random
numbers (γsr = 12 dB).
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FIGURE 14.17 Correlation interval for Ricean random numbers
generated using Equation 14.57.
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requirement with or without fading, the required sampling
frequency is expressed as

fs =max
Ns

T
,
no
τo

(14.60)

The application of these results to communication
system operating in a fading environment starts with the
specification of the parameters T, τo, ρ, and γsr. Using ρ
and γsr, the value of no is determined from Figure 14.17.
The de-correlation time is typically specified in terms of slow
fading (τo ≥ NT) or fast fading (τo < NT), where the selection
of N is somewhat subjective; choosing N = 1 results in a
matched filter distortion loss, so values of three or four are
preferable. Normally the specified range of τo is several
orders of magnitude. The selection ofNs depends on the sym-
bol spectral sidelobes and the specified aliasing distortion,
however, Ns = 4 is frequently used. Based on these observa-
tions, the sampling frequency is selected using (14.60).

14.3.4 Poisson Random Numbers

The generation of Poisson random numbers is based on the
pdf expressed as

pP k =
αk

k
e−α (14.61)

Expressing the parameter α as α= λτ, where τ ≥ 0 is the
time between the Poisson distributed events, then (14.61)
becomes

pP k,τ =
λτ k

k
e−λτ (14.62)

As seen in the following section, the time interval between
the Poisson distributed events is represented by the continu-
ous exponentially distributed random variable τ that is used
to generate the Poisson random variables.

14.3.5 Exponential and Poisson Random
Number Generation

The generation of exponentially distributed random numbers
uses the inverse probability mapping Yi =P−1

E Ui where
the cumulative distribution PE Y 0 ≤PE Y ≤ 1 and Ui: 0 ≤
Xi ≤ 1 is a uniformly distributed random number. Using the
exponential pdf, given in Table 1.8 and expressed as,

pY y = λe−λy (14.63)

the exponentially distributed random variables Yi are
computed as

Yi =
− ln 1−Ui

λ
exponentially distributed random variable

(14.64)

When simulating the performance of queuing systems
[26] the random variable y represents the random time inter-
vals Δτ between events in the queuing system and, in this
application (14.64), is used to generate the time between
the occurrences of events in the Poisson process. The expo-
nential distribution is memoryless, in that, the past occur-
rences Yn: n = 0,…, i − 1 do not influence the prediction of
Yi.

* Because Yi represents the interval between the occur-
rences of Poisson distributed events, the Poisson distributed
random events or numbers are generated as

Zk =
k

i= 0

Yi Poisson random variable (14.65)

Using k as the summation limit is significant, in that, this is
the same variable used in (14.62) to characterize the Poisson
distribution. Papoulis [27] shows that there are exactly k
events in the interval τ where, upon letting Yi =Δτi, τ = Zk.
Plots of the theoretical pdf for Poisson distributed random
variables are shown in Figure 14.18 for k = 0–4; it is left as
an exercise (see Problem 14) to plot the corresponding pdfs
for Poisson pseudo-random variables generated using (14.64)
and (14.65).
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FIGURE 14.18 Theoretical pdf for the Poisson distributed random
variables (λ = 1.0, k ≤ 4).

*Kleinrock [26], pp. 66–67, points out that the exponential distribution is the
only continuous distribution having this property.
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14.3.6 Lognormal Distribution

The lognormal distribution characterizes an impulsive
noise communication channel in terms of the received noise
amplitude x, expressed by

pX x =
1

2πxσ
e− ln x −m 2 2σ2 (14.66)

where x is a random variable for which the logarithm y = ln(x)
is a normally distributed random variable, with mean m =

E[ln(x)] = E[y] and variance σ2 =E ln x −m 2 . Using the
random variable y, (14.66) is expressed as the Gaussian or
normal distribution pY(y) given by

pY y =
1

2πσ
e− y−m 2 2σ2 (14.67)

The random variable x is exponentially related to y as*

x = ey and, unlike the Gaussian distribution, the lognormal
distribution is skewed so that high values of x occur with
relatively high probabilities as seen from the plots of
(14.66) in Figure 14.19.

Because of the impulsivity of the random variable x, the
lognormal distribution is used to generate impulse noise that
is characterized or measured in terms of the ratio of the rms
envelope to average envelope defined as

Vd ≜
E x2

E x
(14.68)

The sampled lognormal noise appears at the input to the
receiver and undergoes dispersion in the various receiver
and modem filters. The filtering broadens the impulse
response in time and simultaneously decreases impulsiveness
resulting in a smaller value of Vd. For example, the limiting
case of impulsive noise occurs when the noise energy, from
worldwide storm activity, is randomly added and filtered
resulting in Gaussian noise with a Vd value of 1.049 dB.
The lognormal pdf is encountered in Section 19.10 as it
relates to lightening-induced impulsive noise in the VLF
and LF communication channel.

14.4 BASEBAND WAVEFORM DESCRIPTION

With few exceptions,† the simulation of communication sys-
tems involves a baseband characterization of the signal and
channel. This characterization is embodied in the complex
envelope, also referred to as the analytic signal representation
of signals, channels, and various transmitter and receiver fil-
ters. The analytic signal representation is simply a baseband
description of the signal that is obtained by a linear transla-
tion of a carrier-modulated signal to baseband as found in
heterodyne or homodyne receivers. Typically, baseband
simulations are valid in situations involving low instantane-
ous bandwidths, B, relative to the carrier frequency ( fc) that
is, when B/fc 1. As in the case of establishing the Nyquist
bandwidth of a signal, the bandwidth Bmust be defined with
care. For example, with a rectangular modulated waveform
the signal bandwidth is typically defined in terms of the
equivalent noise bandwidth of the matched filter, that is,
1/T where T is the symbol duration. However, the resulting
sinc( f T ) spectrum has considerable energy for frequencies
f > 1/T so, for an acceptable ISI distortion loss, the bandwidth
B must be defined somewhat greater than 1/T.

In general, a modulated waveform can be expressed as

s t = sc t cos ωct + θ t −ss t sin ωct + θ t

= sc t cos θ t −ss t sin θ t cos ωct

− sc t sin θ t + ss t cos θ t sin ωct

(14.69)

where ωc is the carrier radian frequency, θ(t) is an arbitrary
signal phase function, and sc(t) and ss(t) are inphase and
quadrature functions describing the waveform modulation.
The time dependence of the arbitrary signal phase function
allows inclusion of frequency errors and frequency-rate as
might be encountered under dynamic channel conditions.
The second expression for s(t) in (14.69) simply isolates
the carrier frequency term from the modulation and phase
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FIGURE 14.19 Theoretical pdf for the lognormal distributed
random variables (mx = 0; σx

2 ≤ 1, 0.5, 0.1).

*In general, the exponential relationship x = ey characterizes a logarithmic
distribution; however, when y is normally distributed it is referred to as a log-
normal distribution.

†A notable exception is the evaluation of harmonic distortion resulting from
carrier-modulated signals and nonlinear power amplifiers.
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function terms. In practice, only real signals are encountered;
however, s(t) can be characterized as the real-part of a
complex signal representation given by

s t =Re sc t + jss t ej ωct + θ t

=Re s t ejωct
(14.70)

where s t is defined as the complex envelope or analytic sig-
nal characterized as

s t = sc t + jss t ejθ t

= sc t cos θ t −ss t sin θ t

+ j sc t sin θ t + ss t cos θ t

(14.71)

The relationship of the real and imaginary terms of s t to
the expression of the real signal s(t) given in (14.69) is evi-
dent, that is, the real part of s t is associated with the cosine
of the carrier frequency and the imaginary part is associated
with the sine of the carrier frequency.

It is instructive to relate these expressions to the baseband
output when using a heterodyne receiver as shown in
Figure 14.20. The zonal filters are simply ideal lowpass filters
with a linear phase response and are used to eliminate the 2ωc

terms resulting from the mixing operation. Typically, the low-
pass bandwidth of the zonal filters is considered to be ωc so
that negligible signal distortion is introduced when B fc.

Considering the input signal s(t) described by (14.69), the
baseband outputs shown in Figure 14.20 are evaluated as

sc t = s t cos ωct filtered

= sc t cos ωct + θ t −ss t sin ωct + θ t cos ωct filtered

=
1
2
sc t cos θ t −

1
2
ss t sin θ t

=
1
2
Re s t

(14.72)

Similarly, the quadrature output is given by

ss t = −s t sin ωct filtered

= − sc t cos ωct + θ t −ss t sin ωct + θ t sin ωct filtered

=
1
2
sc t sin θ t +

1
2
ss t cos θ t

=
1
2
Im s t

(14.73)

Therefore, there is simply a factor of 1/2 relating these out-
puts to their counterparts of the analytic signal. These results
have assumed that the zonal filter has filtered all vestiges
of the signal spectrum centered at 2ωc hence the restriction
on the signal bandwidth relative to fc stated previously as
B/fc 1.

With discrete-time sampled data the sampling frequency
is defined as the Nyquist frequency fs = 2fN, where fN is the
Nyquist bandwidth selected as fN ≥ B. In the following sec-
tions, computer simulation techniques are discussed to exam-
ine the impact of the sampling frequency selection on the
discrete-time digital signal processing (DSP) of the received
signal. The signal sampling requirements for software simu-
lations are identical to those for the DSP hardware implemen-
tations. For example, choosing the lowest possible sampling
frequency, commensurate with acceptable distortion, results
in the shortest simulation times and the most efficient use of
the DSP hardware capabilities.

The quadrature signals sc(t) and ss(t) are defined as

sc t ≜
V

2
uc t and ss t ≜

V

2
us t (14.74)

and

uc t ≜ dcpc t and us t ≜ dsps t (14.75)

In (14.74) V is the peak voltage of the carrier
frequency and in (14.75) dc, ds = {1,−1}. For quadrature
phase shift keying (QPSK) modulation pc t = ps t = p t
with p t = rect t−T 2 T .

Although it is convenient to describe the real transmitted
signal in terms of the quadrature carrier terms cos(ωct) and sin
(ωct), it is instructive to consider the polar form of (14.69)
expressed, with pc(t) = ps(t) = 1, as

s t =M t cos ωct +ψ t (14.76)

with magnitude and phase functions expressed as

M t = s2c t + s2s t =V (14.77)

s′c(t)

s′s(t)

s(t)

cos(ωct)

–sin(ωct)

Zonal
filter 

Zonal
filter 

FIGURE 14.20 Simplistic view of heterodyne or homodyne
receiver.
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and

ψ t = tan−1 sc t sin θ t + ss t cos θ t

sc t cos θ t −ss t sin θ t

= θ t + tan−1 ds
dc

(14.78)

where (14.77) results from noting that p2 t = 1 t and (14.78)
results from an arctan trigonometric identity. This result indi-
cates that the waveform has a constant envelope correspond-
ing to a peak carrier level of V volts. The data-dependent
phase term rests at nπ/2 radians during each symbol interval;
however, the results also apply to offset quadrature phase
shift keying (OQPSK) with a phase shift of ±π/2 every bit
interval. The modulated signal power is given by

Ps =
1
T

∞

−∞

s t 2dt =
1
2T

∞

−∞

s t 2dt (14.79)

and, for the QPSK waveform with M(t) = V, the carrier
power is Ps = V2/2.

14.5 SAMPLED WAVEFORM
CHARACTERIZATION

System performance simulations involve sampled descrip-
tions of the waveforms. In this section, the waveform descrip-
tions are re-written in terms of the Nyquist sampling
requirements and various parameters are normalized with
respect to the sampling frequency (fs) and symbol duration
(T). With the parameter normalization, the simulation results
can be applied to virtually any symbol rate provided the chan-
nel conditions are not restricted to channel time constraints,
that is, the channels are linear and time invariant. Under these
conditions, the baseband simulation performance results with
AWGN and linear filtering normalized to the signal
bandwidth can be applied to any carrier frequency. However,
other types of channels involving, for example, ocean waves,
atmospheric noise, and fading are dependent on time
constraints and carrier frequencies related to natural phenom-
ena. In these cases, the performance simulations can often be
performed at baseband; however, the results are specialized
to the channel and the carrier frequency.

The first step in the sampled waveform characterization is
to define the time variable (t) in terms of the sampling interval
ΔT as t = iΔT: i = 1, 2,…. The sampling frequency is related
to the sampling interval by fs = 1 ΔT and is conveniently
normalized by the symbol rate Rs = 1/T with the result
fs Rs = fsT =T ΔT = 1 Ns where Ns is the number of
samples-per-symbol. The time-varying phase function θ(t)
of the received signal is described by the frequency error

(fd), the frequency-rate f d , various higher order frequency
terms, and the constant phase term ϕo. These terms result
from the dynamics of the encounter and the propagation
through the channel.*

14.5.1 BPSK Waveform Simulation with AWGN

Considering a binary phase shift keying (BPSK)-modulated
waveform and the AWGN channel, the received signal is
expressed as

s t =Vdcℓrect
t−T 2−ℓT

T
cos ωc +ωd t +

ωd

2
t2 +φo

(14.80)

where ℓ = 0, 1, … represents the received data sequence and
dcℓ = {1,−1} where the mapping of the binary data b = {0,1}
is dc = 1 − 2b. Equation (14.80) is equated to (14.69) with
ss(t) = 0 and the equivalent analytic baseband signal is
obtained using (14.71) with the result

s t = sc t cos θ t + jsin θ t (14.81)

Substituting t = iΔT and using the simplified notation dcℓ
for the data sequence dcℓrect t−T 2−ℓT T ℓ = 0,1,…,
the normalized discrete-time sampled analytic baseband
waveform becomes

si = s iΔT

=Vdcℓ cos θi + jsin θi
(14.82)

where

θi = θ iΔT

= 2π fdT
i

Ns
+ πf dT

2 i

Ns

2

+ϕo

(14.83)

In this notation there are exactly Ns samples-per-symbol
so that ℓ and i are related by ℓ = [i/Ns]. This is not a restrictive
condition because rate conversion techniques are generally
applied to achieve a specified number samples-per-symbol
at the input to the receiver matched filter. The simulation
must also include the effect of the additive channel noise
and this is accomplished by computing the standard deviation
of the noise based on the specified signal-to-noise ratio γ. For
example, the signal-to-noise ratio measured in the bandwidth

*Frequency errors, phase shifts, and filter distortion also result from fre-
quency translations and filtering within the modulator/transmitter and
receiver/demodulator; however, these are typically combined with similar
affects arising from the channel.
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Rb = 1/Tb corresponding to the bit-rate is defined as
γb (dB) = Eb/No (dB) and the linear signal-to-noise ratio is
computed as

γb = 10
γb dB 10 (14.84)

Since the simulation processes the signal and noise using
the sampling frequency fs =NsRb, the signal-to-noise ratio γb
must be decreased by Ns so that*

γs =
γb
Ns

(14.85)

The standard deviation of the noise in the sampling band-
width is then computed as

σn =
Ps

γs
=

V

2γs
(14.86)

and the simulation includes the AWGN to obtain the received
analytic baseband signal plus noise expressed as

yi = si + ni (14.87)

where ni = nci + jnsi and nci, nsi ≡N 0, σn .
An important distinction involves the manner in which the

signal and noise are included in the simulation program in con-
sideration of the peak carrier frequency voltage V and the
standard deviation of the noise as calculated in (14.86). For
example, if the baseband signal is established as in (14.82)
and the noise standard deviation as in (14.86), then the quad-
rature noise samples must be generated using independent
Gaussian samples denoted as N(0,σn). This analytic signal
and noise generation results in the correct signal-to-noise ratio;
however, the signal and noise powers are a factor of two times
that of the true signal and noise powers. This discrepancy will
be problematic for automatic gain control (AGC) and in the
estimation of the signal and noise powers as discussed in
Section 11.5. On the other hand, if the signal is generated as
the quadrature baseband components of the real signal
expressed by (14.74), the quadrature noise samples must be
generated using the independent Gaussian samples denoted
as N 0, σn 2 (see Problem 17). This approach results in
the correct signal-to-noise ratio and the correct signal and
noise power levels. This issue is directly related to the factor
of two relating the real signals in (14.72) and (14.73) and the
analytic signals described in (14.71).

14.6 CASE STUDY: BPSK MONTE CARLO
SIMULATION

In this case study, the bit-error performance of a BPSK-
modulated waveform is evaluated using a Monte Carlo sim-
ulation. The emphasis in this case study is on the accuracy of
the simulation in predicting the known theoretical perfor-
mance given by

Pbe =Q
2Eb

No
BPSK theoretical performance

(14.88)

The error in the evaluation of Pbe is measured as the percentage
error relative to the theoretical value given a fixed number ofMonte
Carlo trials for each signal-to-noise ratio. Furthermore, because the
Q-function describes the theoretical performance under ideal con-
ditionsof frequency, phase andbit timing, these results are basedon
the conditions: fd= f d = 0 and ϕo = 0. In addition, the simula-
tion models the optimally sampled matched filter output so
the exact symbol timing is known. With these ideal condi-
tions, including the AWGN channel, it is convenient to use
only one sample-per-symbol, that is, by letting Ns = 1 the
simulation will run considerably faster and the performance
will be identical to that for Ns > 1. Based on these conditions,
the bit-error performance of the BPSK received signal plus
noise is evaluated using n = 1000 bits or Monte Carlo trials
for each signal-to-noise ratio. To examine the spread in the
bit-error estimates the simulation is repeated 20 times using
different noise generator seeds and the results are plotted in
Figure 14.21. From the discussion in Section 14.2.1, the
standard deviation in the estimation of Pbe is given by

σ =
Pbe 1−Pbe

n
(14.89)
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FIGURE 14.21 Fixed-length Monte Carlo simulation of BPSK
performance in AWGN channel (n = 1 K bits for each signal-to-
noise ratio with 20 independent repetitions).

*This example applies to uncoded BPSK; however, for MPSK modulation
with k = log2 M and rate rc FEC coding the signal-to-noise ratio in the sam-
pling bandwidth is determined as γs = krcγb Ns.
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and the error-bars, shown for signal-to-noise ratios of Eb/No =
2, 4, 6, and 8 dB, reflect this 1-sigma range. In this case, σ is
the accuracy of the test and the error-bars are computed as

P=Pbe ± σ (14.90)

With the exception of the 8 dB case, this corresponds to a
test confidence of 68.26%, that is, 68.26% of the simulations
at the corresponding signal-to-noise ratio will fall within
error-bars corresponding to (14.90). The 8 dB case is unique,
in that, the lower error-bar is negative so any estimate less
than the upper error-bar will pass the test; this is referred
to as a one-sided test for which the confidence (Po) is eval-
uated using (14.8) yielding a confidence of 84.13% as indi-
cated in Table 14.3. Conversion between the confidence of
the two-sided test, involving both upper and lower error-bars,
and the one-sided test is given by (14.17).

Table 14.3 summarizes the confidence testing results from
Figure 14.21 and compares the results with the theoretical
values discussed in Section 14.2.1. For a given Eb/No, the the-
oretical accuracy in the measurement of Pbe is determined by
the confidence level of the test; however, the accuracy can be
improved by averaging the number of error in repeated trails
at each Eb/No. Normally, it is desired to achieve the accuracy
in the simulations at the lowest error probability of interest,
for example, by requiring an accuracy of 5% (η = 0.05) at
p = Pbe = 10−5 with a 90% confidence level. Under these con-
ditions the accuracy of the test is 0.05 and, from Figure 14.4,
ko = 1.3 and using (14.19) the number of Monte Carlo for
each signal-to-noise ratio is computed as n = 67.6 M bits.

Typically, a simulation is executed to evaluate the perfor-
mance over a range of signal-to-noise ratios. However, it is
time-consuming and often unnecessary to evaluate the perfor-
mance at the lower signal-to-noise ratios with the same number
of Monte Carlo trials required to achieve a given accuracy at
the higher signal-to-noise ratios. For example, when using a
67.6M-bit Monte Carlo simulation the average number of
errors at Pbe = 10−5 is 676 and the average number of errors
at Pbe = 10−2 is 676K with a commensurate increase in the
estimation accuracy and confidence. However, the samemeas-
urement accuracy and confidence corresponding to the 10−5

simulation is achieved using a Monte Carlo simulation with
only 67.6 K bits at Pbe = 10

−2. Therefore, to preserve the same

accuracy and confidence for all signal-to-noise ratios the sim-
ulation can be terminated when a fixed number of errors have
occurred for each signal-to-noise ratio. This fixed-error crite-
rion is determined using Figure 14.3 or from (14.20) with
p = Pbe and is approximated as

e=
ko
η

2

1−Pbe
ko
η

2

(14.91)

Figure 14.22 shows the simulated bit-error performance
using a fixed number of bit errors e = 676 corresponding to
the above example. Two-sided error-bars are shown for sig-
nal-to-noise ratios of 2, 4, 6, 8, and 10 dB and are evaluated
using as P = Pbe ± koσ = Pbe (1 ± η) and, while the results of
only one Monte Carlo simulation is shown, it is claimed that
90% of the simulated bit-error results will fall within the error-
bars. The 5% accuracy corresponds to η = 0.05 and, from the
performance results in Figure 14.22, the simulation results are
seen to accurately represent the theoretical performance.

The normalized cumulative central processing unit (CPU)
time is summarized in Figure 14.23 for the fixed-error and
fixed-length criteria using the above example parameters with
n = 67.6M bits for each signal-to-noise ratio. The normaliza-
tion is based on the average of the fixed-length simulation time

TABLE 14.3 Monte Carlo Simulation Results for Confidence Testing (n = 1000 Samples/MC Simulation, 20 Independent
Simulations)

Eb/No (dB) Expected Pbe 1-Sigma Error Estimates Within Error Bars Confidence of Test (%) Theoretical Confidence (%)

2 3.75(−2) 6.01(−3) 13 65 68.26
4 1.25(−2) 3.51(−3) 14 70 68.26
6 2.3883(−3) 1.55(−3) 15 75 68.26
8 1.9091(−4) 4.37(−4) 18 90 84.13a

aBased on one-sided error bar.
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FIGURE 14.22 Fixed-error Monte Carlo simulation of BPSK
performance in AWGN channel (n = 67.6M bits for each signal-
to-noise ratio).
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for each signal-to-noise, denoted Tavg(SNR). The saving in the
simulation time for Eb/No = 0 through 10 dB in 1 dB steps
when using the fixed-error criterion is about 4000:1.*

14.7 SYSTEM PERFORMANCE EVALUATION
USING QUADRATURE INTEGRATION

The Monte Carlo approach to communication system perfor-
mance simulation discussed in the previous sections can be
applied to evaluate algorithms involving quantization, cod-
ing, tracking, and the modeling of real-world channels. How-
ever, Monte Carlo simulations are generally time-consuming
especially if accurate results are required at very low error
probabilities. Evaluation of the demodulator detection error
probability necessarily involves performing intricate integra-
tions defined over a range of the integration variable. An
alternative approach to the performance evaluation involves
using numerical analysis techniques referred to as quadrature
integration. Although limited to specific applications, these
numerical techniques provide rapid and accurate assessments
of the system performance and are useful in characterizing
the performance sensitivities to various anomalies in the early
state of the waveform selection and system design process.
The numerical analysis technique of interest involves

the approximate evaluation of integrals using quadrature inte-
gration [28].

The term quadrature integration results from the underly-
ing quadrature polynomials used in the approximate evalua-
tion of integrals of the form

b

a

w x f x dx
N

i= 1

Aif xi (14.92)

where w(x) is a weighting function satisfying the integral
equation

b

a

w x Φi x Φj x dx=
0 i j

ki i= j
(14.93)

In (14.93) Φn x n ≤ i represents a set of orthogonal
polynomials over the interval (a,b) with respect to the weight-
ing function w(x). The values xi correspond to the zeros of
the polynomial Φi(x) and the coefficients Ai are weights
determined as

Ai =

b

a

w x λ x

x−xi λ xi
dx (14.94)

where

λ x =
i

n = 1

x−xn (14.95)

The polynomials associated with various weighting func-
tions are identified in Table 14.4.

These relationships are developed by Krylov [28] includ-
ing the characterization of the error in the approximation
of (14.92) and tables of abscissa xi and coefficient values
Ai for the various quadrature integration approximations.
The Legendre polynomial results in Gauss-quadrature inte-
gration with w(x) = 1. In general, the integration limits are
finite with range (a,b). However, by changing the integration
variable to correspond to the range (−1, 1) the coefficients Ai

are symmetrical in ± xi as provided in most of tabulations.
The values of xi and Ai for the Chebyshev polynomials of
the first kind are easily calculated as

xi = cos
2i−1 π

2N
and Ai =

π

N

Chebyshev polynomial of first kind

(14.96)

where the coefficients Ai are constant, independent of i.
The topic of orthogonal polynomials is also discussed in
Chapter 22 of Abramowitz and Stegun [5] with extensive
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FIGURE 14.23 Monte Carlo simulation cumulative CPU time
(fixed-length = 67.6M bits, fixed-error = 676 bits).

*Monte Carlo simulation of error-probabilities terminated after a fixed num-
ber of errors typically do not result in visually appealing plots and for this
reason nearly all of the Monte Carlo error-probability plots in this book
use a fixed number of trials corresponding to the desired accuracy of the low-
est error probability of interest. Unavoidable outliers are adjusted by increas-
ing the number of trials or by manual adjustment equivalent to using a
French curve applied to the previous data points taking into consideration
possible flaring of the curve resulting from interference or channel
nonlinearities.
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tables of xi and Ai provided in Chapter 25. The tabulated data
are usually given with 15–20 decimal places so the numerical
evaluation should be used with a commensurate degree of
precision. The abscissas and weight values for the Hermite
integration used in the following case studies are listed in
Table 14.5.

14.8 CASE STUDY: BPSK BIT-ERROR
EVALUATION WITH PLL TRACKING

Based on the signal-to-noise ratio, the bit-error probability
of the BPSK-modulated waveform, conditioned on a phase
error, is given by

P error ϕ =
1
2
erfc∗ 2γbcos ϕ (14.97)

where γb = Eb/No is the signal-to-noise ratio in the bandwidth
equal to the bit rate Rb. The bit-error probability is then eval-
uated by removing the conditioning based on the pdf of the
random phase resulting in

Pbe =

φℓ

P error φ p φ dφ (14.98)

where the range of integration is φℓ ≤ π. The random phase
function at the output of a second-order phaselock loop is
characterized by the Tikhonov [31] pdf expressed as

p φ =
e σ−2

φ cos φ

2π Io σ−2
φ

φ ≤ π for BPSK (14.99)

where σ2φ is the phase variance and Io(x) is the zero-order
modified Bessel function of the first kind. Viterbi [32] also
derives (14.99) and discusses its applicability to the
second-order phaselock loop. The phase variance σ2φ is
related to the signal-to-noise ratio γL, measured in the phase-
lock loop bandwidth and the squaring loss SL by the
expression

σ2φ =
1

γLSL
(14.100)

The signal-to-noise ratio in the loop bandwidth is
computed as

γL = γb
Bb

BL
(14.101)

where BL is the phaselock loop bandwidth and Bb is the
bandwidth corresponding to the bit-rate Rb of the BPSK-
modulated waveform; the ratio BL/Bb is generally expressed

TABLE 14.4 Summary of Some Orthogonal Polynomials for Quadrature Integration (Page Numbers Refer to Reference 28)

Polynomial Φi(x) w(x) ki (a,b)

Legendre (Gaussian), p. 26 Pi x =
1

2ii

di x2−1
i

dxi
1

2
2i+ 1

(−1,1)

Chebyshev (first kind), p. 27
Ti x = cos iθ

θ = cos−1 x
1

1−x2

π

2
i 0

π i= 0

(−1,1)

Chebyshev (second kind), p. 29
Ui x =

sin i+ 1 θ

1−x2

θ = cos−1 x

1−x2 π/2 (−1,1)

Chebyshev–Hermite, p. 33 Hi x = −1 iex
2 di

dxi
e− x

2
e− x

2
2i π i! (−∞,−∞)

Chebyshev–Laguerrea, p. 34 L α
i x = −1 ix−αex

di

dxi
xα + ie−x xαe−x i Γ i+ α+ 1 (0,−∞)

aFor x ≥ 0.

TABLE 14.5 Abscissas and Weights for Hermite Integrationa

(Symmetrical Weightsb for N = 20)c

n Abscissa (±xi) Weights (wi)

1 0.24534 07083 009 4.62243 66960 06 (−1)
2 0.73747 37285 454 2.86675 50536 28 (−1)
3 1.23407 62153 953 1.09017 20602 00 (−1)
4 1.73853 77121 166 2.48105 20887 46 (−2)
5 2.25497 40020 893 3.24377 33422 38 (−3)
6 2.78880 60584 281 2.28338 63601 63 (−4)
7 3.34785 45673 832 7.80255 64785 32 (−6)
8 3.94476 40401 156 1.08606 93707 69 (−7)
9 4.60368 24495 507 4.39934 09922 73 (−10)
10 5.38748 08900 112 2.22939 36455 34 (−13)

aAlso referred to as Chebyshev–Hermite polynomial.
bAttributed to Salzer, Zucker, and Capuano [30].
cAbramowitz [29]. Courtesy of U.S. Department of Commerce.
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as the time-bandwidth product (BLT) of the loop where
T = 1/Rb for BPSK. The squaring loss of the phaselock loop
is associated with the removal of the biphase data modula-
tion. The phase distribution, expressed by (14.99), is based
on a continuous wave (CW) received signal with AWGN
and a second-order phaselock loop. However, inclusion of
the squaring loss in evaluating the phase variance, as in
(14.100), accounts for the loss associated with the binary
data modulation. The squaring loss for BPSK modulation
is discussed in Chapter 10 and, for matched filter detection,
is expressed as

SL =
1

1 + 2 3γb
BPSK (14.102)

14.8.1 BPSK Bit-Error Evaluation Using Tikhonov
Phase Distribution

Substitution of (14.97) and (14.99) into (14.98) with γ = γLSL
results in the bit-error expression

Pbe =
1
2

π

−π

erfc∗ 2γbcos φ
ecos φ γ

2πIo 1 γ
dφ (14.103)

This result can be put into the quadrature integration form,
using the Chebyshev polynomial of the first-kind, through
the variable substitution x = φ/πwith dφ = π dx. The resulting
expression is

Pbe =
1

4Io 1 γ

1

−1

f x

1−x2
dx

N

i= −N

Ai f xi (14.104)

where

f x = erfc∗ γbcos πx ecos πx γ (14.105)

The constants Ai and xi are evaluated using (14.96) with xi
evaluated over the range − N ≤ i ≤ N , where N = (N − 1)/2
for N = odd integer and N =N/2 for N = even integer.

14.8.2 BPSK Bit-Error Evaluation Using Gaussian
Phase Approximation

The Tikhonov phase pdf approaches a Gaussian distribution
as the input signal-to-noise increases resulting in

p φ
e−φ

2 2 σ2φ

2π σ2φ
σ2φ 0 or γL ∞ (14.106)

Using (14.106) and (14.97) with (14.98), the quadrature
integration using the Chebyshev–Hermite polynomial results
in the following expression for the bit-error probability

Pbe
1

2 π

∞

−∞

f x e− x
2
dx

1
2 π

N

i= 1

Ai f xi (14.107)

where

f x =
1

2 π
erfc∗ 2γbcos 2σφx (14.108)

The first approximation results because the range of p(φ)
is (−π,π) and the integration limits are (−∞,∞); this assumes
that p(φ) is essentially zero outside of the range (−π,π) which
is valid as σ2φ 0.

Using (14.108), Equation (14.107) is evaluated for
N = 20* abscissa and weight values for Hermite integration
are listed in Table 14.5 and the results are plotted in
Figure 14.24 as the solid lines for BLT = 0.5 and 0.1. The
dotted line represents the theoretical performance of antipo-
dal signaling and the circled data points are evaluated using
(14.107) with σφ = 0, independent of the signal-to-noise
ratio. The circled data points are a special case used to exam-
ine the performance of antipodal signaling using quadrature
integration and it is seen from the figure that the results are
identical.
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FIGURE 14.24 Performance of BPSK using Chebyshev–Hermite
quadrature integration (Gaussian phase approximation).

*The tabulated coefficient values are symmetrical about the N zeros xi of the
orthogonal Hermite polynomials.
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14.9 CASE STUDY: QPSK BIT-ERROR
EVALUATION WITH PLL TRACKING

Based on the signal-to-noise ratio out of each baseband
channel, the symbol-error probability conditioned on the
phase error for QPSK modulation is given by

P error φ =
1
2
erfc∗ 2γb cos φ −sin φ

+
1
2
erfc∗ 2γb cos φ + sin φ

(14.109)

The symbol-error probability is evaluated by removing
the conditioning as expressed by (14.98), substituting Pse

for the QPSK waveform in place of Pbe, and using either
the Tikhonov phase pdf for QPSK expressed as

p φ =
2ecos 4φ 4 σ2φ

πIo 1 4 σ2φ
φ ≤ π 4 for QPSK (14.110)

or the high signal-to-noise ratio Gaussian approximation
of (14.106).

14.9.1 QPSK Bit-Error Evaluation Using Tikhonov
Phase Distribution

In this case quadrature integration using the QPSK
Tikhonov’s phase pdf is performed using Legendre polyno-
mials with weight w(x) = 1.0 and integration limits (−1,1).
Upon making the substitution of variable x= 4ϕ π this
approach results in Gaussian integration, using the Legendre
polynomial, expressed as

Pse =
1
4

1

−1

fa x fc x dx+

1

−1

fb x fc x dx

1
4

N

i= −N

fa xi + fb xi fc xi Legendre polynomial

(14.111)

where

fa x = erfc∗ 2γb cos
πx

4
−sin

πx

4
(14.112)

fb x = erfc∗ 2γb cos
πx

4
+ sin

πx

4
(14.113)

and

fc x =
ecos πx 4 σ2φ

Io 1 4 σ2φ
(14.114)

In evaluating these integrals, or summations, the phase
variance for the QPSK phaselock loop is given by

σ2φ =
1

γLSL4
(14.115)

where γL is the signal-to-noise ratio in the loop bandwidth,
BL, and SL4 is the squaring loss resulting from the processing
required to remove the quadrature phase modulation for the
carrier recovery. For QPSK, the signal-to-noise ratio in the
loop bandwidth is expressed as

γ
L
=

P

NoBL
=

Es

NoBLT
(14.116)

where Es is the symbol energy and T is the symbol duration.
The squaring loss for QPSK is discussed in Chapter 10.

The abscissa and coefficient values are tabulated [33] for
N = 2 through 96 corresponding to symmetrical summations
on xi from −N/2 ≤ i ≤N/2 for N = even integer and −(N − 1)/
2 ≤ i ≤ (N − 1)/2 for N = odd integer.

14.9.2 QPSK Bit-Error Evaluation Using Gaussian
Phase Approximation

With this approximation the integral for the QPSK symbol
error is approximated using the Chebyshev–Hermite polyno-
mial integration as in Section 14.8.2. For this evaluation, let
x =ϕ 2σϕ and evaluate the integral as

Pse
1

2 π

∞

−∞

fα x e− x
2
dξ +

1
2 π

∞

−∞

fβ x e− x
2
dx

1
2 π

N

i= 1

Ai fα xi + fβ xi

Chebyshev-Hermite polynomial

(14.117)

where

fα x = erfc∗ 2γb cos 2σφx −sin 2σφx

(14.118)

fβ x = erfc∗ 2γb cos 2σφx + sin 2σφx

(14.119)

The standard deviation of the phase is evaluated from
(14.115) using the signal-to-noise ratio in the phaselock loop
bandwidth γL and the squaring loss SL4 as discussed in the
preceding section. The abscissa and coefficient values for
the Chebyshev–Hermite polynomial integration are tabulated
[32] for N = 2–20.
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ACRONYMS

AR Autoregressive (model)
AWGN Additive white Gaussian noise
BPSK Binary phase shift keying
CPU Central processing unit (computer)
CW Continuous wave
DSP Digital signal processing (processor)
FEC Forward error correction
IF Intermediate frequency
ISI Intersymbol interference
LR Likelihood ratio
LLR Log-likelihood ratio
OQPSK Offset quadrature phase shift keying
PN Pseudo-noise
PSD Power spectral density
QPSK Quadrature phase shift keying
RF Radio frequency

PROBLEMS

1. Show that Equation (14.15) leads to (14.16) under the
conditions k1 = n 1 + η p and k2 = n 1−η p.

2. Derive equation (14.17).

3. For a correct-acceptance criteria of 95%, the single-
threshold Poisson test results in an accuracy of 40%with
npo = 80. Determine the npo product for the single-
threshold Gaussian test under the same conditions, that
is, a test confidence of 95% and accuracy of 40%.
Assuming a bit-error probability test with a bit-rate of
75 bits-per-second and po = 10−3, what is the test time
in minutes for each test?

4. Derive the optimum single-threshold for deciding
between hypothesis H0 and H1 using the binomial
distribution.

5. Using the binomial coefficient nCk, derive the recursive
relationship for nCk + 1.

6. Using the binomial density function p(k), derive the
recursive relationship for p(k + 1).

7. Design a sequential sampling test involving the flipping
of a coin that is known to be either balanced with a prob-
ability of heads of p0 = 0.5 under hypothesisH0 or unbal-
ance with a probability of heads of p1 = 0.7 under
hypothesisH1. The coin is to be tested with a confidence
level of 95% and a significance level of 5% underH0. To
complete this problem fill out Table 14.1 with the test
requirements and parameters for this test.

8. For the test designed in Problem 7, sketch the test bound-
aries as in Figure 14.12 and flip a coin a number of times,

indexing k by one if a tail appears and plotting the results
on the sketch.

9. Express the mean value of the uniform distribution
shown in Figure 14.13 in terms of the probability
0 ≤ p ≤ 1 and q = 1 − p.

10. Plot or sketch the binomial distribution for a sequence of
length 4 using the Bernoulli random number generator
with p = 0.2, 0.5, and 0.8.

11. Write a computer code to implement the congruence
method for generating uniformly distributed random
numbers given by (14.45) using A = 9, B = 25853, and
C = 32768. Replace the coin flipping example in Prob-
lem 10 with your random number generator code with
binary 1 = heads and −1 = tails and repeat the sequential
test procedure as outlined in Problem 10 under the fol-
lowing conditions:

a. Using a balanced binary generator.

b. Using an unbalanced binary generator with Pr

(tails) = 0.6.

Note: For the unbalanced binary generator, referring
to Figure 14.13, shift the mean value of the uniform dis-
tribution between a and b to −0.1.

12. Applying the convolution integral to the uniform proba-
bility density function of Figure 14.1 with a = −1 and
b = 1, form the pdf of the sum of three uniformly distrib-
uted probability random variables. Plot the resulting dis-
tribution and compare it with the Gaussian distribution
with variance σ2 = 3σ2u where σ2u is the variance of the
uniform distribution.

13. Using the uniform random number generator code in
Problem 11 with p = 1/2, form the summation

Yj =
3

i= 1

Xi

for j = 1,1000 and plot a histogram of the occurrences of
Yj ranging in amplitude from −3 to 3 in steps of 0.1.
Compare the resulting histogram plot with the distribu-
tions in Problem 12.

14. Using the uniform random number generator code in
Problem 11 generate simulated Poisson random vari-
ables for k = 3 and 0 ≤ τ ≤ 10 and plot the resulting pdf.
To plot the pdf use a histogram with 101 bins (including
the τ = 0 bin), a bins size corresponding to τ/10 and a
sample size of 10,000 trials. Compare the simulated
pdf with the corresponding theoretical pdf shown in
Figure 14.18.

15. Referring to the (14.74) and (14.75) express the magni-
tude and phase functions in (14.77) and (14.78)
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respectively in terms of the MSK-modulated waveform
with pc t = cos ωmt and ps t = sin ωmt . Noting
that fmT = 1/2, dci = rect((t − iT)/T), and dsi = rect((t − T/
2 − iT)/T) evaluate and plot the phase function for
dci,dsi = 1, −1, 1, −1 , that is, the dci and dsi correspond,
respectively, to constant mark and space data.

16. Evaluate the carrier power Ps given by (14.79) for QPSK
modulation waveform using the real signal s(t) and the
analytic signal s t . Repeat this evaluation for the
MSK-modulated waveform. In each case, state the rela-
tionship between the true or actual signal power based on
the real signal and that corresponding to the analytic
signal.

17. Referring to the discussion following (14.87) consider a
simulation program that implements a transmitted signal
with independent inphase and quadrature data modula-
tion functions mc(iTs) and ms(iTs) with Ns samples-per-
symbol and a sampling interval of Ts seconds. The trans-
mitted signal is implemented as

st iTs =Vmc iTs + jVms iTs

where V is the peak voltage of an equivalent modulated
carrier frequency. The signal is passed through an
AWGN channel and the resulting received signal is

sr iTs =Vmc iTs + jVms iTs + nc iTs + jns iTs

where nc(iTs) and ns(iTs) are iid Gaussian random vari-
ables characterized by N(0,σn) where the noise standard
deviation is computed as σns =V 2γs where γs = γb/
Ns = 10γb(dB)/10/Ns. The corresponding carrier modulated
power is Ps =V2 2 and the noise power and signal-to-
noise ratio in the bandwidth equal to bit rate Rb are
σ2n =Ps γb and γb respectively. Considering that
mc(t) = dc rectT(t − T/2 −mT) and ms(t) = ds rectT(t − T/
2 −mT) with dc,ds = {±1}, determine the signal and noise
powers and the signal-to-noise ratio at the output of the
demodulator matched filter.

Replace V with V 2 and the Gaussian noise N(0,σn)
with N 0, σn 2 and repeat this problem.

18. Given the Gaussian random variable x described by
N(0,σ), set-up the problem to evaluate the mean value
of g(x) using quadrature integration where

g x =
aex

1 + aex

Identify the underlying orthogonal polynomial.
Hint: The mean value of g(x) is evaluated as

E g x =
1

2πσ2

∞

−∞

g x e− x
2 2σ2dx

19. Using the Tikhonov phase pdf for BPSK and (14.105),
evaluate (14.104) and plot the bit-error probability ver-
sus γb using the Chebyshev polynomial of the first-kind
using coefficients Ai and zeros xi given by (14.96). Note:
The results should compare favorably with Figure 14.24.

20. Show that the Tikhonov phase pdf given by (14.99) is
approximated by the zero mean Gaussian pdf of
(14.106) as the phase variance σ2ϕ approaches zero.

21. Derive (14.108) for the evaluation of Pbe with BPSK
modulation given by (14.107) using Gaussian approxi-
mation to the Tikhonov phase pdf.

22. Evaluate the bit-error probability for QPSK modulation
using the Gaussian approximation to the Tikhonov
phase pdf.
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15
COMMUNICATION RANGE EQUATION AND
LINK ANALYSIS

15.1 INTRODUCTION

This chapter deals with numerous issues related to the
design of the data modulator, transmitter, antennas, receiver,
and demodulator subsystems as they relate establishing
the system performance over a communication link.
A communication link, as defined here, involves issues
related to the transmission of data from one point to another
and, in addition to the various systems, includes the transmis-
sion channel. The focus is on the received signal and noise
powers and the resulting signal-to-noise ratio required to
meet the overall system performance specification. The chan-
nel is generally viewed as the transmission medium between
a transmitter and receiver location and the emphasis in this
chapter is on wireless channels involving transmissions
through the atmosphere and ionosphere. The link might
include, for example, a satellite relay with unique uplink
and downlink channels. The satellite relay may be thought
of as a “bent pipe” with frequency translation and power
amplification or a full processing satellite in which the data
is demodulated and then remodulated for transmission on
an independent downlink. The emphasis in this chapter is
on the application of the communication range equation in
analyzing the system performance over wireless channels.
Chapter 18 introduces the subject of fading channels. Chap-
ters 19 and 20 focus is on the impact of atmospheric and
ionospheric propagation on the communication performance
and discusses mitigation techniques to maintain reliable
communications.

The communication range equation is reviewed in the
remainder of this introductory section highlighting the major
parameters regarding the transmitter, antenna, and receiver
designs. In this characterization the impact of the channel
is identified by the free-space signal loss Lfs and the atmos-
pheric loss, Latm. Sections 15.2–15.10 review a variety of sys-
tem issues related to establishing the link budget, including
antenna gains and patterns, and losses involving rain, polar-
ization, multipath, component interfaces, and miscellaneous
system losses. Section 15.11 discusses various aspects of sys-
tem nonlinearities including solid-state power amplifiers
(SSPAs) and traveling wave tube amplifiers (TWTAs) and
their impact on the system performance. Sections 15.12
and 15.13 outline the modeling of the nonlinearities for com-
puter simulations and Section 15.14 provides a case study of
the impact of a SSPA on the bit-error performance of a com-
munication link. This chapter concludes in Section 15.15
with an example link budget highlighting the various para-
meters involved in the link evaluation and their impact on
meeting the system performance specification.

The following analysis makes extensive use of the various
subsystem temperatures in degrees Kelvin ( K) and
Table 15.1 provides conversion formula for degrees Celsius
(Centigrade) and Fahrenheit. The standard noise temperature
To = 290 K is defined as the temperature at the input of a
device or subsystem that corresponds to a standard noise
power based on the bandwidth and noise figure as character-
ized, for example, by a receiver noise figure Fn and band-
width B expressed in (15.11).

Digital Communications with Emphasis on Data Modems: Theory, Analysis, Design, Simulation, Testing, and Applications,
First Edition. Richard W. Middlestead.
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Consider a transmitter that delivers a power of PPA watts
from the high-power amplifier (HPA) to an antenna having a
peak gain of Gt in the direction of a receiver. The power den-
sity of the transmitted signal at a range R meters is given by

PD =
PPAGt

4πR2
W m2 (15.1)

where the factor of 4π radians accounts for the solid angle of
the spherical radiation pattern of an ideal dipole antenna in
free space. A receiver located at a range R from the transmit-
ter will intercept a fraction of the incident energy. The
received power intercepted by the antenna is simply the
power density times the effective area, Ae, of the receiver
antenna. The antenna effective area is defined as the physical
area Aa of the antenna aperture times the aperture efficiency
ηa, so the power intercepted by the receive antenna is

Pra =PDηaAa

=
PPAGtAe

4πR2

(15.2)

The antenna gain is related to the physical and effective
areas of the antenna by*

G=
4πηaAa

λ2
=
4πAe

λ2
(15.3)

Upon substituting ηaAa =Ae =Grλ
2 4π into (15.3), the

received power becomes

Pra =
PPAGtGrλ

2

4π 2R2
=
PPAGtGr

Lfs
(15.4)

The second expression in (15.4) is a convenient form and
results from using the free-space loss expressed as

Lfs =
4πR
λ

2

(15.5)

Although (15.4) is a concise expression for the
received power, additional insight into the system design
is obtained by including three additional sources of
power loss. These losses account for transmit and receive
system radio frequency (RF) losses (Lts, Lrs) and the
losses associated with atmospheric absorption (Latm).
Generally, the transmitter power is specified in terms
of the HPA output power PPA; however, there are trans-
mitter and receiver antenna losses associated with wave-
guide feeds, rotary joints, radomes, and so on, that must
also be considered. Eventually all of the losses will be
accounted for; however, currently the losses of interest
are as follows: Lts, Latm, Lfs, and Lrs and the received
power at the receiver low-noise amplifier (LNA) input
is expressed as

Pr =
Pra

LtsLatmLrs
=

PPAGtGr

LtsLatmLfsLrs
=

PtGtGr

LatmLfsLrs
(15.6)

where Pt is the power into the transmit antenna. The atmos-
pheric absorption loss is a function of range and is normally
specified in terms of the attenuation-per-kilometer (α dB/
km), for which, the atmospheric loss is given by

Latm = 10α 10
R 1000

= 10αRkm 10 (15.7)

where Rkm is the range extent through the atmosphere in
kilometers. For terrestrial links there is also a frequency-
dependent terrain loss (Lter) associated with terrain
fluctuations, foliage, surface dielectric constant, and con-
ductivity; for ELF through LF frequencies this loss is often
denoted as a ground loss Lgnd. Terrestrial links are dis-
cussed in Chapter 19. A number of contributing sources
to the system losses are identified in the following sections
and, when included with the RF losses, provide further
fidelity to the communication range equation in predicting
the overall system performance. There are also several
contributing sources to the atmospheric loss and, when
taken collectively, these losses comprise the system loss
budget.

Equation (15.6) is often used to determine the received
signal power at various points throughout the receiver to
evaluate the dynamic range requirements and possible satu-
ration, especially at the input to the analog-to-digital con-
verter (ADC). The ADC has an instantaneous dynamic
range of about 6 dB/bit and is often designed to saturate or
clip with input levels on the order of milli-watts. Therefore,
with the aid of (15.6) the specification of the receiver
dynamic range and AGC requirements can be identified.
There are a number of variations in the communication range
equation that are useful in predicting the system performance
under different circumstances and these are introduced in the
following sections.

TABLE 15.1 Commonly Used Temperature Conversion
Formulas

deg-K = deg-C + 273.15 Celsius Kelvin
deg-K = deg-F + 459.67 Fahrenheit Kelvin
deg-C = (deg-F − 32)(5/9) Fahrenheit Celsius

*The antenna efficiency is defined as ηant = ηrad ηa where ηrad is the antenna
radiation efficiency. In this context, the antenna gain is also expressed as
G= ηradGD where GD is defined as the directive antenna gain; this character-
ization is discussed subsequently.
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15.1.1 EIRP and Power Aperture

Commonly used performance measures for the transmitter
system are the effective isotropic radiated power (EIRP)
and power aperture. The EIRP is defined as the product of
the power into an isotropic antenna and the antenna gain in
a given direction relative to the isotropic antenna gain. Usu-
ally the EIRP is specified in the direction of the maximum
antenna gain. The power aperture is defined as the product
PPAAta of the transmitter power and the transmit antenna area.
The maximum gain along the antenna boresight axis corre-
sponding to Gt =Gt max =Gt 0, 0 and the EIRP* is
defined as

EIRP≜PtGt max =
PPA

Lts
Gt max (15.8)

To express the communication range equation in terms of
the EIRP, the transmitter loss (Lts) is removed from the link
RF losses resulting in the communication range equation

Pr =
EIRPGr

LatmLfsLrs
(15.9)

The communication range equation is expressed in terms
of the power-aperture product, PPAAta, by substituting for Gt

using (15.3), with the result

Pr =
4πηta PPAAta Gr

λ2LtsLatmLfsLrs
(15.10)

In this expression Ata = Aa is the physical area of the trans-
mit antenna. The power-aperture product is used as a perfor-
mance measure of the transmitter when the physical size of
the antenna is an important consideration, for example, when
the transmit power and physical size of the antenna tend to
dominate the cost of the transmit system.

15.1.2 Signal-to-Noise Ratio

Expressing the range equation in terms of the signal-to-noise
ratio, γ, is necessary when relating the system performance to
the signal detection and false-alarm probabilities or the acqui-
sition and bit-error probabilities. The noise floor at the input
to the receiver is characterized in terms of the thermal noise
power in the receiver noise bandwidth Bn and is given by

Nt = kToBnFn (15.11)

where k = 1 38 × 10−23 W/s- K is Boltzmann’s constant, To =
290 K is the standard temperature,† Bn is the noise bandwidth
in Hertz, and Fn is receiver noise figure. The receiver noise
figure accounts for the additional noise contributed by the
receiver relative to the intrinsic kTBn thermal noise. The noise
bandwidth, as used here, is related to the RF bandwidth at the
input to the LNA with prefiltering frequency response H(f)
and is defined as

Bn =

∞

−∞
H f 2df

H fo
2 (15.12)

where fo is the frequency corresponding to the maximum of
H(f).‡ This definition of the noise bandwidth corresponds to
an ideal unit amplitude rectangular noise filter having
the same area as |H(f)|2. Using these results and (15.6), the
communication range equation is used to express the
received signal-to-noise ratio as

γ =
Pr

Nt
=

PtGtGr

kToBnFnsLatmLfsLrs
(15.13)

where Fns is the system noise figure that is somewhat higher
than that of the receiver because of receiver antenna related
noise sources as discussed in Section 15.2.3.

15.1.3 Maximum Range

Themaximum range of a communication link is defined as the
range beyond which the signal-to-noise ratio falls below the
value required to maintain the specified system performance;
typically this is viewed as the signal-to-noise ratio corre-
sponding to the specified bit-error probability; however, a
more stressful requirement might be the signal-to-noise ratio
required to support the waveform acquisition probability. In
any event, using (15.5) to express the free-space loss in terms
of the range, (15.13) is then used to evaluate the maximum
range to achieve the specified performance criteria in an addi-
tive white noise environment with the result

Rmax =
λ

4π
PtGtGr

kToBnFnsLatmLrsγmin

1 2

(15.14)

*The effective radiated power (ERP) is defined as the radiated power relative
to an antenna source other than an ideal isotropic radiator. For example, a
half-wavelength dipole reference antenna has a gain that is 2.15 dB greater
than an ideal isotropic radiating antenna. ERP may also be interpreted as the
radiated power in an arbitrary direction so that ERP=PtG θ,ϕ where θ and
ϕ are the antenna azimuth and elevation angles relative to boresight.

†The IEEE has defined the standard temperature as a reference for measuring
thermal noise. Degrees Kelvin and Celsius are related as T K = T C + 273;
therefore, 17 C (62.6 F) corresponds to 270 K.
‡The noise bandwidth is generally dominated by the received IF filtering and,
with additive white noise, the noise power is reduced in direct proportion to
the reduction of the noise bandwidth.
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where γmin is the minimum received signal-to-noise ratio cor-
responding to the system performance specifications.

15.2 RECEIVER AND SYSTEM NOISE FIGURES
AND TEMPERATURES

The noise figure of a receiver [1] is defined as the ratio of the
input and output signal-to-noise ratio as

Fn ≜
γin
γout

(15.15)

In this section the noise figure of a receiver comprising a
cascade of amplifiers, mixers, and attenuators is examined in
terms of the noise characteristics of the individual compo-
nents or devices. For all of the major components in the
receiver, the key parameter used to characterize the noise
is the effective noise temperature. For devices that contribute
to the receiver gain, the effective noise temperature is deter-
mined from the device noise figure as defined in (15.15);
however, for lossy devices it is determined from the physical
temperature of the devise and the loss. The analysis that fol-
lows is primarily based on the work of Charton [2].

15.2.1 Receiver Noise Figure

The receiver noise figure is developed in terms of the effec-
tive noise temperatures of the individual components of the
receiver starting with those that contribute to the system gain.
In these cases the input and output signal-to-noise ratios are
defined by

γin ≜
Ps

kToBn
(15.16)

and

γout ≜
GiPs

GikToBn +ΔPni
(15.17)

where PS is the signal power, To = 290 K is the standard tem-
perature, Bn is the noise bandwidth, Gi is the gain of the
device, and k is Boltzmann’s constant. The term GikToBn is
the output noise power resulting from the input noise power
kToBn and ΔPni is the output noise power contributed by the
device.* Using these results and (15.15), the noise figure of
the device is expressed as

Fni =
ΔPni

GikToBn
+ 1 (15.18)

Upon defining the effective noise temperature as Ti K the
device contribution to the output noise is defined as
ΔPni =GikTiBn so, in terms of the effective noise tempera-
ture, the device noise figure becomes

Fni =
Ti

To
+ 1 (15.19)

Charton points out that this characterization of the noise
figure applies to a heterodyned receiver where the signal
image is blocked or filtered and when the image is not
blocked (15.19) is expressed as Fni = Ti To + 2; the factor
of two results when the image power equals the desired signal
power.

Because the noise figure of a device is usually specified by
the manufacturer, the effective noise temperature is com-
puted as

Ti = Fni−1 To (15.20)

The interpretation of the effective noise temperature is
depicted in Figure 15.1 in terms of noisy and noiseless
devices both with gain Gi. In Figure 15.1a the output temper-
ature is computed as Tout = Fni−1 ToGi, whereas, in the
noiseless representation of Figure 15.1b, the output temper-
ature is computed as Tout =TiGi. Therefore, using the equiv-
alent noise temperature, the output temperature is obtained
simply by multiplying the input temperature by the device
gain. It will be seen that this also applies for lossy devices
when the gains are replaced by the reciprocal of the losses,
that is, for a lossy device with gain Gi ≤ 1 the gain is
replaced by Li = 1 Gi ≥ 1 so the output temperature becomes
Tout =TiLi.

Using these results, a cascade of successive amplifiers,
such that i = 1, 2, 3,…, with different gains and noise figures,
results in an overall receiver noise figure given by

Fn =Fn1 +
Fn2−1
G1

+
Fn3−1
G1G2

+ (15.21)

Ti
Tin =
0°K

Tout(Fni, Gi) Tout(Gi)

Noisy amplifier Noiseless amplifier

(a) (b)

FIGURE 15.1 Comparison of noisy amplifier with equivalent
noiseless amplifier.

*In the context of the receiver noise figure, the device corresponding to the
subscript i = 1 is the input high-gain LNA that generally establishes the
receiver noise figure. This is evident from (15.21) when G1 Fn2−1.
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or equivalently in terms of the effective noise temperatures

Fn =
T1

To
+

1
G1

T2

To
+

1
G1G2

T3

To
+ + 1

=
Trec
To

+ 1

(15.22)

where Trec is the effective receiver noise temperature
given by

Trec = T1 +
T2

G1
+

T3

G1G2
+ (15.23)

From these results it is apparent that the input device
should be a high-gain, LNA, in which case it essentially
determines the receiver noise figure. For this reason, LNAs
with high gain are typically used at the receiver input.

The noise figure of a lossy device, such as an attenuator, is
evaluated in a similar way; however, there are two major dif-
ferences to consider: the gain of the lossy device is less than
unity so the loss is given by Li = 1 Gi ≥ 1, the second consid-
eration is that the physical temperature (Tpi) of the lossy
device is typically used to characterize the effective noise
temperature performance instead of the noise figure.* The
equivalent noisy and noiseless attenuators are shown in
Figure 15.2 in terms of the physical and effective tempera-
tures. For the noisy attenuator, the output temperature is
given by Tout = Tpi Li−1 Li and, for the equivalent noiseless
attenuator, the output temperature is Tout = Ti Li so, upon
equating these results, the equivalent noise temperature for
a lossy device is

Ti = Li−1 Tpi (15.24)

Applying these results to a cascade of N attenuators i = 1,
2, …, N, as shown in Figure 15.2c, each with loss Li and
physical temperature Tpi, the effective noise temperature of
the cascaded attenuators is

T = L1−1 Tp1 + L1 L2−1 Tp2+ + L1L2…LN−1 LN −1 TpN

= T1 +L1T2 + + L1L2…LN−1TN

(15.25)

and the output temperature is computed as

Tout =
T

L1L2…LN
(15.26)

Usually the cascade of receiver devices alternates between
amplifiers and passive filters or attenuators as shown in
Figure 15.3. In this context, evaluation of the overall system
noise temperature and noise figure involves the appropriate
application of the results in this section.

15.2.1.1 Example: Evaluation of Receiver Noise Figure
and Temperature As an example application of the results
in Section 15.1.2, consider a receiver as shown in Figure 15.3
having a 20 dB gain LNA with a 2 dB noise figure. The LNA
is located as close to the receive antenna output as possible,
typically it is attached directly to the antenna waveguide, so
that the loss prior to the LNA is associated directly with the
antenna. The output of the LNA is coupled to the receivers
first RF mixer, usually by a short length of coaxial cable.
In the following example, the coaxial cable is assumed
to have a physical temperature of Tp2 = 290 K and a loss
of L2 dB.

Cascade of noiseless
attenuators

Tin =
0°K

Tout(Tpi, Li) Ti Tout(Li)

Noisy attenuator Noiseless attenuator

T T′out(L1 L2…)

(a) (b) (c)

FIGURE 15.2 Comparison of noisy attenuator with equivalent noiseless attenuators.

To
demodulator

Amplifier
(Fn5, G5)

Amplifier
(Fn3, G3)

From
antenna

LNA
(Fn1, G1)

Lossy
device

(Tp2, L2)

Lossy
device

(Tp4, L4)

FIGURE 15.3 Receiver configuration.

*The noise figure of a lossy device with loss L and temperature Tp is defined
as Fn = (L − 1)Tp/290 + 1 or, in terms of the effective temperature of the
device, Fn = Tp 290 + 1.
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In examining this example, L2 is considered to be the AGC
control parameter. The signal from the coaxial cable is then
input to the second amplifier with a gain of G3 = 25 dB and a
noise figure of Fn3 = 10 dB. This is in turn followed by an
AGC gain control attenuator with L4 = 0–70 dB of gain con-
trol and a physical temperature of Tp4 = 290 K. Finally, the
output of the gain control is amplified by a G5 = 40 dB gain
amplifier with a noise figure of Fn5 = 10 dB. The receiver
noise figure for this configuration is shown in Figure 15.4
for LNA gains of 20 and 40 dB as a function of the AGC
attenuator setting (L4) for various conditions of loss (L2)
between the LNA and the second amplifier.

In this example, the system noise figure for an LNA gain
of 20 dB and low values of AGC attenuation is degraded from
the 2 dB LNA noise figure by 0.25–0.95 dB for feed losses
(L2) between 0 and 6 dB. These low AGC attenuation levels
are associated with very weak signals relative to the thermal
noise floor (kToBn) at the receiver input. As the input signal
becomes stronger the AGC lowers the overall gain of the
receiver by increasing the AGC attenuation to keep the output
level constant. However, in spite of the increasing receiver
noise figure, the resulting impact on the system performance
is not significant because of the correspondingly high output
signal-to-noise ratio associated with the higher input signal
levels.

For example, consider the case with L2 = 3 dB, a minimum
detectable signal with the AGC attenuation L4 = 0 dB, and a
system requirement that the minimum output signal-to-noise
is γo = 6 dB. Under these conditions the input signal-to-noise
ratio is γi = γoFn or 6 + 2.5 = 8.5 dB. When the input signal
level increases by 20 dB the ideally adjusted AGC attenua-
tion becomes 20 dB and the receiver noise figure is about
2.6 dB. Under these conditions the corresponding output sig-
nal-to-noise ratio is γo = γi Fn or 8.5 + 20 − 2.6 = 25.9 dB. As
the input signal continues to increase another 20 dB the AGC
attenuation becomes 40 dB and the receiver noise figure
increases to 9 dB. In this case, the output signal-to-noise ratio
is 39.5 dB. Therefore, in spite of the dramatic increase in the
receiver noise figure from 2.5 to 9 dB, the system require-
ment that γo ≥ 6 dB is more than satisfied.

The curves in Figure 15.4 for the 40 dB LNA gain dem-
onstrate how the sensitivity of the system noise figure is
reduced by increasing the LNA gain. Furthermore, with the
higher gain LNA the system noise figure is hardly degraded
for AGC attenuations up to 20 dB even with a feed loss of
6 dB following the LNA. The higher LNA gain also provided
for a wider dynamic range which may be desirable if the feed
loss L2 becomes excessive. From these examples it is clear
that the loss between the LNA and the second amplifier plays
a significant role in determining the receiver noise figure;
however, the focus should be on impact of the receiver noise
figure with the minimum detectable input signal, that is,
when the AGC attenuation is 0 dB. For example, when the
loss L2 decreases to 0 dB the effective noise temperature

becomes T2 = 0 K even though the device remains at the
physical temperature of Tp2 K. Therefore, the lossless feed
does not influence the receiver noise performance. In this
case, the receiver noise figure is influenced by the noise fig-
ure of the second amplifier, that is, Fn3, and, as the LNA gain
is increased, this influence is diminished providing improved
system performance with the minimum input signal power.

15.2.2 Antenna Temperature

With the evaluation of the receiver noise figure and tempera-
tures in hand, the focus is turned to the antenna temperature
Ta which is the remaining unknown parameter required to
evaluate the system noise temperature and noise figure.
The antenna temperature is characterized at the output of
the antenna subsystem as indicated in Figure 15.5. The
antenna is depicted as having a radome and a radiating dish
with a feed horn as shown in Figure 15.5a. The feed horn is
located at the focal point of the dish and, in the receive mode,
is used to collect the incident electromagnetic wave energy.
A short length of waveguide associated with the feed horn
provides a flange for connecting the feed horn to the receiver
subsystem. The radome protects the reflecting or radiating
surface of the antenna from the elements of weather.
Although the radome is optional, in Figure 15.5a the radome,
reflecting dish, and antenna feed are considered to be an inte-
gral part of the antenna subsystemwith their associated losses
and physical temperatures. The overall antenna efficiency is
made up of the aperture efficiency and the radiation effi-
ciency. The radiation efficiency includes the spillover loss
of a reflecting antenna, the reflector and feed ohmic losses
and, if used, the radome loss [3]. These losses are included
in the antenna gain and sidelobe measurements and are only
used here to characterize the noise introduced by the antenna
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FIGURE 15.4 Example evaluation of receiver noise figure.
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subsystem. Combining the antenna reflector loss with the
antenna feed loss as the product of their individual losses, that
is, Larf = LarLaf is valid only if the reflector and feed are at
the same temperature (see Problem 2). As indicated in
Figure 15.5a, the external noise sources that are within the
field of view of the antenna, including the antenna sidelobes,
also contribute to antenna temperature. These noise sources
include discrete sources (ds) such as stars and our Sun and
Moon and background (bck) or distributed noise sources
such as stellar gas, our galaxy, the Earth’s surface and thermal
noise resulting from atmospheric absorption.

To begin the evaluation of the antenna noise temperature,
the noise temperature of all external noise sources is charac-
terized at the input to the antenna as Tain = Tb + ρlslTgnd +
ρuslTatm + Trad. These noise sources are indicated in
Figure 15.5b and are identified as follows: Tb is the noise
temperature of distant noise sources entering through the
main antenna beam, ρlsl is the fraction of the ground noise
temperature seen by the lower sidelobes (lsl) of the antenna,
ρusl is the fraction of the atmospheric noise temperature Tatm
seen by the upper sidelobes (usl) of the antenna, and Trad is
the effective noise temperature of the antenna radome. The
notations Tatm and Tgnd represent the respective physical
temperatures of the atmosphere and ground. With the

exception* of Trad, all of the temperatures at the antenna
radome are dependent on the grazing (or elevation) angle
and the antenna beamwidth. For example, as the antenna
viewing angle is changed the temperature Tb will change
as different noise sources come into view. Also, as the graz-
ing angle decreases the factor ρlsl increases with a commen-
surate increase in the ground noise at the antenna radome; the
factor ρuslwill also fluctuate impacting the atmospheric noise
at the radome. The factors ρlsl and ρusl are evaluated by inte-
grating the appropriate noise temperatures over the sidelobes
of the antenna beam in consideration of the attenuation with
range. At the elevation angle θm, corresponding to the max-
imum ground noise temperature seen by the lower sidelobes,
the ground temperature contribution factor to the antenna
temperature is approximated as

ρlsl
1

Gr max

ϕm + π

ϕm −π

Gr θm,φ dφ (15.27)

Ta
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FIGURE 15.5 Contributors to antenna temperature.

*The radome or reflector physical temperature will be impacted by the view-
ing angle relative to the Sun.
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where Gr(θm,φ) is the antenna gain corresponding to θm
relative to the peak gain Gr(max). Example values are [2]:
ρlsl = ρusl = 0.1 for grazing angles above 15 with ρlsl = 0.49
and ρusl = 0.1 for angles below 15 . The link analysis pro-
gram discussed in Section 15.15 uses (15.27) with Gr(θ, ϕ)
evaluated using the circular aperture antenna described in
Section 15.3.2.

Referring once again to Figure 15.5b, the antenna temper-
ature is characterized using the relationships developed in the
preceding sections and is evaluated as

Ta =
Tb + ρlslTgnd + ρuslTatm +Trad

LradLarf
+
Tarf

Larf

=
Tain

LradLarf
+
Tarf

Larf

(15.28)

where Tain is the temperature of the external noise sources.
Evaluation of Tb is discussed in the following two sections
and the culmination of the general case is expressed in
(15.36) in Section 15.2.2.2. Section 15.2.3.1 provides an
example involving the computation of the antenna
temperature.

15.2.2.1 Contribution of a Single Sky-Noise Source to the
Antenna Temperature The analysis of the antenna temper-
ature is simplified by considering one external noise source.
In the context of Figure 15.5, Tb is defined as the temperature
of either a distributed or a single discrete noise source, that is,
Tb = Tbck or Tds. In evaluating the antenna noise temperature
due to a distant radiating source, the radiation intensity or
brightness (b) of the source is characterized by the Ray-
leigh–Jeans approximation [4] of the radiated flux density
per steradian, expressed as*

b
2k Tb
λ2

W Hz-m2-steradian ,

Rayleigh-Jeans approximation (15.29)

where k is Boltzmann’s constant. The approximation in
(15.29) is valid if the ratio f Tb not to large which is the case
for most applications. For example, the error is about 1% for
f = 150 GHz and Tb = 300 K; if the error is unacceptable then
Planck’s law must be used, for which the brightness is
expressed as [5]

b =
2hf 3B

c2 ehf k Tb −1
W Hz-m2-steradian , Planck’s law

(15.30)

where h = 6.63e−34W-s2 is Planck’s constant, c = 3e8 m/s is
the free-space speed of light, the bandwidth B f, and k =
Boltzmann’s constant, previously defined along with the
remaining parameters. The factor of two in (15.29) and
(15.30) results from the Omni polarized electrometric waves
emitted from the radiating source; for a linearly polarized
receiver antenna these results must be divided by two.

Considering a lossless path, corresponding to Latm = 1 in
Figure 15.5, with an effective aperture of Ae m2 and one
polarization, the total power density at the receiver antenna
is evaluated as

kTb =
bΩsAe

2
W Hz (15.31)

Upon substituting (15.29) into (15.31), the temperature of
the source at the antenna input becomes

Tb =
ΩsAe

λ2
Tb =

Ωs

Ωa
Tb Ωs <Ωa, single polorization lossless

(15.32)

where Ωs is the solid angle of the sky-noise source and
Ωa = λ2/Ae is the solid angle of the received antenna beam.
Equation (15.32) applies for an antenna using single polari-
zation; with dual polarization this result must be doubled.
Also, as indicated, it applies when the solid angle of the
source is less than that of the antenna, that is, Ωs <Ωa; when
Ωs ≥Ωa the result is

Tb =Tb Ωs ≥Ωa, single polorization lossless (15.33)

If the medium between the radiation source and the
antenna exhibits a loss, for example, when Latm > 1 with an
effective temperature Tatm, then, using the previous results,
the contribution of this external noise source at the antenna
input is

Tb=

Tatm

Latm
+

1
Latm

Ωs

Ωa
Tb Ωs <Ωa

Tatm

Latm
+

1
Latm

Tb Ωs ≥Ωa

single polarization lossey

(15.34)

15.2.2.2 Contribution of Multiple Sky-Noise Sources to
the Antenna Temperature When all of the sky noise
sources shown in Figure 15.5 are considered, the brightness
temperature is evaluated by summing the background tem-
perature with the temperatures of the discrete sources in con-
sideration of overlapping regions as viewed by the antenna
beam. To simplify this evaluation it is assumed that, except
for the Sun, all of the discrete sources are completely within
the antenna beam and do not overlap each other or the Sun.

*The electromagnetic radiation intensity of a hot blackbody at a temperature
Tb is based on Planck’s radiation law. The radiation intensity is also referred
to as the brightness of the blackbody.
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Evaluating spaced-based cross-links where the Sun may
occupy a significant portion the beam area is a special case.
Encounters involving the Moon simply involve replacing the
Sun’s noise temperature with that of the Moon. With these
considerations the brightness temperature of the noise
sources with no atmospheric affects is computed as

Tb = Tsun
Ωsun

Ωa
+

i

Tsi
Ωsi

Ωa

+ Tbck 1−
Ωsun

Ωa
−

i

Ωsi

Ωa
Ωsi,Ωsun <Ωa

(15.35)

and, by analogy with (15.34), when atmospheric affects are
involved this result becomes

Tb =
Tatm

Latm
+

1
Latm

Tsun
Ωsun

Ωa
+

i

Tsi
Ωsi

Ωa

+ Tbck 1−
Ωsun

Ωa
−

i

Ωsi

Ωa
Ωsi,Ωsun <Ωa

(15.36)

The noise power of the Sun varies approximately as the
inverse square of the frequency. The piecewise linear
dependence of a quiet Sun’s noise temperature on frequency
is described by the approximate relationship

Tsun K

1× 106 0 04 ≤ fg < 0 4

−0 21525 fg + 1 0861 × 106 0 4 ≤ fg < 5

1 × 104 5 ≤ fg
(15.37)

where fg is the frequency in GHz. Equation (15.37) is based
on the results of Kuiper [6] and Blake [5]. During sunspot
activity, the noise temperature of the Sun may be 102–104

times higher than indicated by (15.37) lasting for several sec-
onds followed by temperatures about 10 times higher lasting
several hours.

The noise power from cosmic sources, such as our galaxy
and interstellar gases, varies approximately as the inverse
square of the frequency and the frequency dependence of
the noise temperature varies approximately as [7] 1/f 2.5.
For example, denoting the galactic noise temperature at
100MHz as T100, the galactic temperature at another fre-
quency is expressed as [8]

Tgal = T100
100
fMHz

2 5

(15.38)

Approximate maximum and minimum values of T100 are
given by Brown and Hazard [9] as 18,650 and 500 K with a

geometric mean value of 3,050 K. The dependence of cosmic
noise sources on frequency is discussed in more depth by
Hogg and Mumford [10], Ko [11], Smerd [12], and Strum
[13]. The inclusion of other discrete sources depends upon
the knowledge of their noise characteristics and location rel-
ative to the receiver antenna beam pointing coordinates.

The antenna noise temperature is also a function of the
loss through the atmosphere as characterized by the atmos-
pheric noise temperature which is dependent on the elevation
or grazing angle of the antenna, the temperature, T(r), and the
absorption coefficient, α(r), at a range r from the antenna.
The effective temperature of the atmosphere is evaluated
using the relationship [14]

Tatm =

∞

0

α r T r exp −

r

0

α ℓ dℓ dr (15.39)

A simplified evaluation of (15.39) results by using the
average temperature and Gardner [15] has reported that this
average temperature is approximately 84% of the Earth’s
surface temperature (Tgnd) so that Tatm 0 84Tgnd.

15.2.3 System Noise Figure

The preceding analysis of the receiver and antenna subsys-
tems, in terms of their noise temperatures and the receiver
noise figure, was undertaken so that the system noise temper-
ature and noise figure can be established to evaluate the per-
formance of the entire receiver system. If the antenna is
connected to the receiver input through the antenna to
receiver feed subsystem, then the antenna temperature is
transferred to the receiver input using the concepts developed
in Section 15.2.1. In this case, the system noise figure at the
receiver input is defined in terms of the corresponding system
temperature so the sensitivity of the overall receiver perfor-
mance is easily determined from knowledge of the antenna
noise temperature and the antenna feed temperature and loss.

Consider the antenna and receiver system shown in
Figure 15.6, where the antenna is connected to the receiver
input amplifier or LNA using a coaxial cable or waveguide
with a loss Lar and physical temperature Tpar K. Using the
antenna noise temperature (Ta) and the receiver noise figure
(Fn), the receiver system temperature Trs and the correspond-
ing system noise figure Fns at the input to the receiver are
related as indicated in Figure 15.6. The relationship between
Trs and Fns is similar to that expressed by (15.19), that is,

Fns =
Trs
To

+ 1 (15.40)

Therefore, upon evaluating the system noise temperature
at the receiver input it is a simple matter to compute the sys-
tem noise figure.
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The evaluation of Trs follows the procedures discussed in
the preceding section with the result

Trs =
Ta + Tar

Lar
+ Trec (15.41)

where the effective noise temperature of the antenna-to-
receiver feed is evaluated as

Tar = Lar−1 Tpar (15.42)

The receiver noise temperature is evaluated using (15.23)
or, more directly, in terms of the receiver noise figure Fn

using (15.22) as

Trec = Fn−1 To (15.43)

Using (15.43) and (15.42) to compute Trs, the system
noise figure is evaluated using (15.40) and is plotted in
Figure 15.7 as a function of the feed loss Lar for several
antenna temperatures. In this plot a receiver noise figure of
2 dB (1.58:1) is used and the physical temperature of the feed
network is assumed to be Tparf = 290 K.

The asymptotic value of the system noise figure as Lar
approaches infinity is evaluated as Fns =Fn + Tpar To =
4.12 dB so the system noise figure is degraded by the phys-
ical temperature of the feed; this is of academic interest
because the received signal power also experiences this loss
and approaches zero as the feed loss increases. A more infor-
mative plot is the loss in the receiver noise figure as a function
of the antenna noise temperature; this is shown in Figure 15.8
for various losses in the antenna-to-receiver feed with Fn = 2
dB and Tpar = 290 K.

The receiver noise figure loss is characterized by substitut-
ing (15.42) into (15.41) and recognizing that the increase in
the receiver temperature relative to Trec is

ΔTrec =
Ta + Lar −1 Tpar

Lar
(15.44)

The resulting loss in the receiver noise figure is defined as

LFn ≜
Fns

Fn
=
ΔTrec
ToFn

+ 1 (15.45)

Equation (15.45), expressed in decibels, is plotted in
Figure 15.8 with (15.44) substituted for ΔTrec.

A receiver noise figure loss of 2.12 dB is incurred for all
feed losses when the antenna temperature is equal to the
physical temperature of the feed, that is, Ta = Tpar. Further-
more, as the feed loss increases, ΔTrec approaches Tpar inde-
pendent of the antenna temperature so the noise figure loss
corresponds to a constant loss given by

LFn Lar = ∞ =
Tpar
ToFn

+ 1 (15.46)

This result verifies the system noise figure in Figure 15.7,
in that, as Lar ∞Fns =Fn + 2 12 = 4 12dB. Figures 15.7
and 15.8 are based on the unique condition that Tpar =To.
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FIGURE 15.6 Antenna and receiver interface configuration.
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On occasions it is useful to refer the system noise temper-
ature, as computed by (15.41), to the antenna input using the
relationship

Tas = LarTrs (15.47)

This section concludes by characterizing the gain temper-
ature ratio (G/T) of the receive antenna under several condi-
tions. The G/T ratio is a measure of the quality of the receive
system much like the EIRP is a quality measure of the trans-
mit system. The antennaG/T gain temperature figure of merit
is typically expressed in units of dB/ K.

One application of the antenna system noise temperature
referred to the antenna is to use the specification
G T =Gr Tas. This definition characterizes the antenna per-
formance under operational conditions including various sky
and ground noise sources and is used in the design and eval-
uation of the antenna subsystem. Another definition is
G T =Gr Ta when Tain = 0. This definition provides a figure
of merit for the antenna subsystem with no external noise
sources as might be required for a performance acceptance
test of the antenna.

15.2.3.1 Example: Evaluation of Antenna Temperature
and Receiver G/T and C/No Ratios Consider an Earth sta-
tion antenna with a gain of Ga = 55 dB and a spot beam with
beamwidth θB = 1 (0.0174 rad) viewing a satellite at a low
elevation angle. The antenna does not use a radome; however,
the reflector and feed losses are assumed to be Larf = 0.5 dB
with a physical temperature of Tparf = 290 K. The Sun, at a
temperature of Tsun = 500,000 K, is totally within the satellite
beamwidth and is viewed against cosmic background noise at
a temperature of Tbck = 40 K. The ground temperature in the
vicinity of the antenna is Tgnd = 290 K and Gardner’s approx-
imation to the atmospheric temperature is used. The atmos-
pheric loss is 2 dB, that is, Latm = 1.585, and the lower and
upper antenna sidelobe contribution factors to the ground
and atmospheric noises are ρlsl = ρusl = 0.1. Furthermore, the
antenna is connected to the receiver LNA through a feed with
a physical temperature of Tar = 290 K and a loss of 1 dB, that
is, Lar = 1.26; this loss results from a coaxial cable with an
impedance mismatch. Applying the feed loss, gain, and
AGC conditions used in the example in Section 15.2.1.1, with
L2 = 3 dB, LNA gain = 20 dB, and an AGC attenuation of
10 dB, the receiver noise figure is 2.5 dB.

Based on these conditions the antenna temperature (Ta),
the antenna system noise temperature (Tas), and the receiver
G/T ratio are evaluated. Some necessary constants are Sun’s
radius is rs = 6 96 × 105 km and the Sun’s distance from Earth
is Rs = 1 495 × 108 km.

The first task is to determine the contribution of the sky
noise temperature Tb at the antenna input. The solid angles
of the Sun and antenna are

ΩSun =
Area Sun
Range

=
π r2s
R2
s

= 6 8 × 10−5 (15.48)

Ωa =
Area beam

Range
=
π D2

B 4
R2
s

=
π

4
θ2B = 2 4 × 10−4 (15.49)

where DB =RsθB is the diameter of the beam at a range of Rs;
a spot beam has a circular pattern normal to the pointing
direction. Because Ωsun Ωa = 0 28 and Latm = 1.585, the
sky and atmospheric noise temperatures at the antenna input
are computed using (15.36). In this computation, the effective
atmospheric noise temperature, based on the ground noise, is
approximated as

Tatm = 84Tgnd = 244 K (15.50)

These results are used to compute the background noise
temperature at the antenna input as

Tb =
Tatm

Latm
+
TSun
Latm

ΩSun

Ωa
+
Tbck
Latm

1−
ΩSun

Ωa

= 88,556 K

(15.51)

The ground and atmospheric noise temperature entering
through the antenna sidelobes are ρlslTgnd = 27 K and
ρuslTatm = 66 Kwhere Tatm = 660 K is the computed physical
temperature of the atmosphere. From these results and
(15.28) the total temperature at the antenna input is Tain =
88,649 K.

Since there is no radome, only the effective antenna reflec-
tor and feed temperatures are involved in referring the
antenna input temperature to the antenna output. Given the
combined reflector and feed loss (Larf) and physical temper-
ature (Tparf), the effective antenna reflector and feed temper-
ature is computed as

Tarf = Larf −1 Tparf = 35 K (15.52)

Using (15.52) with Tain = 88,469 K and (15.28) with
Lrad = 1.0 the antenna temperature is computed as

Ta =
Tain + Tarf

Larf
= 79,040 K (15.53)

To determine the antenna system noise temperature the
receiver noise temperature is required and, using (15.22) or
(15.43) and the specified receiver noise figure, the result is

Trec = Fn−1 To = 226 K (15.54)

Using (15.53), (15.54), and (15.41), with a feed loss
of 1 dB, temperature Tpar = 290 K, Lar = 1.26 and, from
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(15.42), Tar = 75.4 K, the receiver system temperature is
evaluated as

Trs =
Ta + Tar

Lar
+ Trec = 63,016 K (15.55)

The Sun has significantly degraded the system sensitivity
as seen from the increase in the system noise figure Fns =
23.4 dB. The system temperature referenced to the antenna
input is computed using (15.47) with the result Tas =
79,400 K and, using this result, the antenna-receiver system
G/Tas ratio is found to be

G T dB =Ga dB −10log10 Tas = 6dB K (15.56)

This example demonstrates the procedures in the evalua-
tion of the antenna G/T ratio as seen at the receiver input;
it also demonstrates the horrific impact on the system perfor-
mance when the antenna is pointed directly at the Sun. Prob-
lem 3 examines the impact of the Sun’s temperature when the
antenna beam is partially illuminated by the Sun.

The receiver carrier power-to-noise density ratio, C/No,
is an important receiver parameter, in that, the demodulator
Eb/No performance is determined as Eb/No|dB = C/No|dB −
10log10(Rb) where Rb is the user data rate. From the view-
point of the link budget, Eb/No includes the theoretical value,
corresponding to a specified Pbe, and includes the demodula-
tor losses. Based on (15.13) theC/No ratio for a point-to-point
link is expressed in decibels, using previously defined para-
meters, as

C No dB=EIRPdB+
Gr

Trs dB

−10log10 LatmLfsLrs −10log10 κ

(15.57)

where κ = k To Tas RbFns.

15.2.4 Remarks on the System Noise Figure

Often the minimum received power at the input to the LNA is
specified along with a corresponding system performance
requirement, for example, the bit-error probability at a given
Eb/No(req’d) signal-to-noise ratio. This defines the required
receiver sensitivity and allows for the design and development
of the receiver and demodulator to proceedwithout the antenna
subsystem. Defining the minimum received power as

Pr min =
PPAGtGr

LtsLatmLfsLrs
(15.58)

the minimum signal-to-noise ratio is evaluated using (15.13)
and is expressed as

γmin =
Pr min
kToBnFns

(15.59)

In this computation Fns is the system noise figure so a
specification of the system antenna temperature Ta must be
provided. The temperature of the feed or cable required to
connect the antenna to the LNA must also be considered in
the computation of Fns. With these caveats and the bandwidth
expressed in terms of the bit rate Bn = Rb, and No = kToFns,
(15.59) specifies the minimum (or theoretical) signal-to-
noise ratio Eb/No(min) that is achievable based on the
receiver sensitivity. Therefore, using these results, the
receiver and demodulator design margin is

Eb

No
margin =

Eb

No
req d −

Eb

No
min (15.60)

If the specified Eb/No corresponds to the theoretical value
of Pbe based on the selected waveform modulation and cod-
ing, then this margin must include all receiver and demodu-
lator losses and hopefully some to spare. Examples of various
receiver and demodulator losses are given in Sections
15.4–15.10 and the magnitude of the demodulator losses is
identified in the simulations discussed in Section 15.14.

15.3 ANTENNA GAIN AND PATTERNS

This discussion of antennas is intended to provide insight into
the antenna patterns used in the evaluation of the communi-
cation link performance and, as such, draws upon the
volumes of literature [3, 16–18] on the subject of antenna the-
ory and performance. Because antennas that produce spot
beam radiation patterns are in such widespread use in terres-
trial and satellite communications, the circular aperture
antenna pattern is of particular interest. The antenna effi-
ciency (ηant) includes the following efficiencies: the aperture
efficiency (ηa), the spillover efficiency (ηs) of the reflector,
and the antenna reflector surface and feed efficiency (ηarf).
The aperture efficiency is defined as the ratio of the effective
aperture to the physical aperture, such that, Ae = ηaAa, and is
dependent on weighting function w(x) that is applied to the
aperture illumination. The weighting function can signifi-
cantly reduce the sidelobes at the expense of producing a
wider beamwidth and reduced aperture efficiency. Uniform
aperture weighting results in the highest aperture efficiency
and lowest half-power beamwidth; however, the sidelobes
are only 13 dB below the main lobe. The radiation efficiency
is defined as the product of the antenna spillover efficiency
and the antenna reflector surface and feed efficiency, that
is, ηr = ηsηarf. The reflector surface and feed efficiencies are
related to the antenna ohmic loss, denoted as Larf. The spill-
over efficiency is associated with the loss when the antenna
feed pattern is not completely concentrated on the reflecting
surface. The spillover loss accounts for a large part of the
radiated energy behind the reflector. Blocking of the aperture
by the antenna feed and support structures lower the gain and
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raise the sidelobes of the antenna pattern. The offset-feed
antenna configuration eliminates aperture blocking.

In the previous sections, the antenna gain is related to the
physical and effective antenna area by the relationships

G=
4πηaAa

λ2
=
4πAe

λ2
(15.61)

The antenna gain is defined in terms of the directive
antenna gain by the relationship

G= ηrGD (15.62)

where GD = 4π Ωa andΩa is defined as the solid angle of the
antenna beam, expressed as

Ωa =
P θ,ϕ dθdϕ

P 0, 0
(15.63)

The angles θ and ϕ represent the orthogonal azimuth and
elevation 3 dB beamwidth angles of the antenna pattern and
the 3 dB beam area is approximated asΩa θBϕB. Using this
relationship with GD as given earlier, the antenna gain is
expressed as

G= ηr
4π
θBϕB

(15.64)

15.3.1 Rectangular Aperture Antenna Pattern

The antenna pattern for a linear one-dimensional aperture of
length La is characterized in terms of the far-field electric
intensity as

E ϕ =

La 2

−La 2

W ℓ ej2π ℓ λ sin ϕ dℓ (15.65)

where, in general, W(ℓ) is the complex aperture weighting
function and λ is the wavelength of the radiating frequency.
The far field occurs when the range r λ and is formally
characterized by the Fraunhofer region where the received
electric field is represented by a plane wave; typically, the
far field is considered to be r ≥ 2L2a λ. Under this condition,
the phase error at the 3 dB points of a uniformly illuminated
aperture antenna corresponds to λ/16 wavelength. Upon
defining the spatial frequency as ξ = sin(ϕ)/λ, (15.65) is
recognized as the inverse Fourier transform so the weighting
function can be determined by taking the Fourier transform of
a specified electric field intensity with respect to the differen-
tial dξ = dsin(ϕ)/λ.

Evaluation of the electric field pattern for a uniformly illu-
minated aperture with constant phase, such that, W(ℓ) = 1/La,
results in the sin(x)/x electric field intensity pattern given by

E ϕ =
sin π La λ sin ϕ

π La λ sin ϕ
uniform aperture; w ℓ = 1 ℓ

(15.66)

The magnitude-squared |E(ϕ)|2 of the electric field inten-
sity results in the pattern of the radiated power that is used to
characterize the antenna gain. The solid curve in Figure 15.9
is a plot of (15.66) in terms of |E(ϕ)|2 in decibels and is the
familiar sinc2(x) response function.* The antenna gain is
normalized for unit amplitude at ϕ = 0 so the peak gain is
0 dB. The abscissa is plotted as the normalized angle
θn = Lλ sin ϕ where Lλ = La/λ; however, the antenna beam
angle is ϕ, evaluated as

ϕ = sin−1 θn
Lλ

θn
Lλ

(15.67)

where the approximation applies when Lλ 1, that is, for
large apertures.

The cosine weighted aperture function is expressed as

W ℓ =
2

La
cos

πℓ

La
ℓ ≤

La
2

(15.68)

where the factor 2 results in the same aperture power as in
the uniformly weighted case. Using (15.68) in the evaluation
of (15.65) and defining Lλ = λ/La results in the electric field
intensity pattern

E ϕ =
2 2
π

cos πLλ sin ϕ

1− 2Lλ sin ϕ 2 cosine aperture

(15.69)

Equation (15.69) is normalized by 2 2 π and plotted as
the dashed curve in Figure 15.9. The response is identical to
the previous applications of the cosine weighting function
with a first spatial sidelobe level of −23 dB and null at
Lλsin(ϕ) = 1.5.

The final antenna aperture to be considered is the triangu-
lar aperture with the weighting function given by

W ℓ =
3

La
−
2
La

ℓ + 1 ℓ ≤
La
2

(15.70)

where, in this case, the 3 results in the same aperture energy
as the uniformly weighted aperture. Upon evaluation of
(15.65) for the triangular aperture results in the electric field
intensity given by

*This radiation pattern, when looking or pointing normal to the array, is sim-
ilar to that of a large one-dimensional array of N radiation elements with spa-
cing d = λ/2; in this case La =Nd.
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E ϕ =
3
2

sin2 π
2 Lλ sin ϕ

π
2 Lλ sin ϕ 2 triangular aperture

(15.71)

This result is plotted in Figure 15.9 as the dotted curve.
For the uniformly illuminated aperture antenna, the first

spatial sidelobes are 13 dB below the main lobe; the distance
between the first nulls, on either side of the main lobe, is
λ/La radians; and the 3 dB beamwidth is 0.89λ/La radians
(51 ). These characteristics are summarized in Table 15.2
along with those of the cosine and triangular weighted
apertures.

15.3.2 Circular Aperture Antenna Pattern

The circular aperture is evaluated by converting the aperture
weighting function to polar coordinates with the result that
the electric field intensity pattern is expressed as

E ϕ =

2π

0

D 2

0

W r,θ ej2π r λ sin ϕ cos θ rdrdθ (15.72)

Normally the aperture weighting is independent of the
angle θ, that is, the illumination amplitude is constant around
the aperture for 0 ≤ r ≤D/2, and (15.72) simplifies to

E ϕ = 2π

D 2

0

W r ej2π r λ sin ϕ rdr

= 2π

D 2

0

W r Jo 2π
r

λ
sin ϕ rdr

(15.73)

where Jo(x) is the zero-order Bessel function of the first kind.
Evaluation of this result for a uniformly illuminated aperture
of diameter D results in the expression [18]

E ϕ =
2J1 πDλ sin ϕ

πDλ sin ϕ
(15.74)

where J1(x) is the first-order Bessel function of the first kind
andDλ =D λ. This result is normalized by πD2/4 to yield unit
gain at E(ϕ = 0). The normalized radiated pattern for the uni-
formly weighted circular antenna is shown as the solid curve
in Figure 15.10. This pattern is used in the link evaluation
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FIGURE 15.9 Normalized radiated power pattern for weighted
linear (one-dimensional) aperture antenna.

TABLE 15.2 Antenna Pattern Characteristics for Several Aperture Weighting Functions

Aperture
Aperture
Weight W ℓ ℓ ≤ La 2

Angle Between First
Nulls (rad)

3 dB Beamwidth
θB (rad)

First Sidelobe
Level (dB)

Gain
Loss (dB)

Uniform 1.0 2.0/Lλ 0.89/Lλ −13.26 0.000
Cosine 2

La
cos

πℓ

La

3.0/Lλ 1.19/Lλ −23.0 0.912

Triangular 3
La

−
2
La

ℓ + 1
4.0/Lλ 1.27/Lλ −26.52 1.25
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program to determine the ground noise dependence on
the antenna elevation angle as discussed in Section 15.2.2.
The 3-dB beamwidth of this antenna is approximately
1.02/Dλ radians (58.4/Dλ degrees) and the first sidelobe
is 17.6 dB below the peak gain. The aperture efficiency rel-
ative to the uniformly weighted linear aperture is 0.865
(−0.63 dB).

Silver [17] has developed expressions for the circular
aperture electric field intensities using an aperture weighting
function described by

W r = 1−4
r

D

2 p

(15.75)

where p ≥ 0 with the result

E ϕ =
2pp Jp+ 1 πDλ sin ϕ

πDλ sin ϕ p + 1 (15.76)

This result is normalized by πD2/4 so the value at E(ϕ = 0)
is relative to the uniformly weighted aperture. Table 15.3
summarizes the approximate antenna characteristics for the
circular aperture weighting functions considered.

15.4 RAIN LOSS

Signal propagation through rain can result in a significant
loss depending on the rain rate, usually measured in

millimeter per hour; the system carrier frequency; and the
propagation path through the rain region. The propagation
path is influenced by the antenna elevation angle. This sub-
ject has received considerable attention over the years [19,
20] and has been reduced to several models that characterize
the rain attenuation as a function of environmental and oper-
ational parameters. The Crane model [21] is the first compre-
hensive characterization of rain attenuation based on
empirical worldwide rain statistics. Arnold and Kao [22] pro-
vide a summary of four models*: the Crane model, two CCIR
models [23, 24], and the simple attenuation model (SAM)
[25]. The link evaluation program discussed in
Section 15.15 uses the SAM rain attenuation model† with
the communication link geometry shown in Figure 15.11.
This geometry is used to compute the path length L(R)
through the rain region, with rain rate R millimeter per hour,
where L(R) is given by

L R =min r1,r2 (15.77)

The slant ranges r1 and r2 are shown in Figure 15.11; all
distances are in kilometer. This characterization assumes that
the slant range between the communication platforms is
greater thanmax(r1, r2) as encountered in satellite links; how-
ever, for terrestrial links, that may involve short ranges, L(R)
must be computed as L R =min r1,r2,ro where ro is the

Expanded view
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Elev. angle – θ

θ

Effective rain

Height – He

Earth station:
Latitude – ϕ
Altitude – H0
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Re + H0 Re + He

• θ

ϕ

φ

FIGURE 15.11 Communication link geometry used to evaluate rain attenuation.

TABLE 15.3 Approximate Antenna Pattern Characteristics for Several Circular Aperture Weighting Functions

Aperture
Aperture Weight
w r 0 ≤ r ≤D 2

Angle Between
First Nulls (rad)

3 dB Beamwidth
θB (rad)

First Sidelobe
Level (dB) Gain (dB)

Uniform 1.0 2.42/Dλ 1.02/Dλ −17.6 0.00
Silver, p = 1 1−4 r D 2 3.28/Dλ 1.27/Dλ −24.6 −1.25

Silver, p = 2
1−4 r D 2

2 4.02/Dλ 1.48/Dλ −30.6 −2.52

*The system designer must select the appropriate model and verify the cur-
rent specifications for the rain attenuation.
†The SAM model results in the same or slightly better predictions [25] than
the CCIR models.
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link range. The range r1 is the propagation range from the
ground station through the rain region to the effective height
of the rain and is evaluated using the law of sines as

r1 = Re +He
cos θ +φ
cos θ

(15.78)

where θ is the ground antenna elevation angle,He is the effec-
tive rain height, related to the 0 C isothermal height (H)
relative to the Earth’s surface, as

He =
H R ≤ 10mm h

H + log R 10 R > 10mm h
(15.79)

and

φ= arcsin
Re +Ho

Re +He
cos θ (15.80)

The isothermal height is a function of the latitude of the
Earth station and is computed by Crane [26] as

H =
4 8 ϕ ≤ 30

7 8−0 1ϕ ϕ > 30
(15.81)

The range r2 is evaluated as r2 =E cos θ where E is the
empirically derived horizontal extent of the rain region given
by [27, 28]

E = 41 4−23 5log10 p (15.82)

In (15.82), E is in kilometers and p is the rain rate in mil-
limeter per hour. Using the path length L, in kilometers, the
attenuation is computed in decibels as

A dB =

aRbL R R ≤ 10mm h

aRb1−exp −bλln R 10 L R cos θ

bλln R 10 cos θ
R > 10mm h

(15.83)

where the constant λ = 1/14 results in the best fit to the data;
R is the rain rate, in millimeter per hour, along the commu-
nication path L(R) in the selected rain region; and the con-
stants a and b are frequency- and temperature-dependent
constants, approximated as [20]

a= 4 21 × 10−5f 2 42 2 9 ≤ f < 54GHz (15.84)

and

b =
1 41 f −0 0779 8 5 ≤ f < 25GHz

2 63 f −0 272 25 ≤ f ≤ 164GHz
(15.85)

The rain rate used by this model is associated with a world
rain rate map and is identified by the geographic region of
interest using a letter/number designation [29]. Table 15.4
shows the association of the letter designations of the geo-
graphic regions. For each geographic region, the selected rain
rate is associated with a percent of time (PCT) that the atten-
uation will exceed the computed value. Table 15.4 also
shows a similar correspondence between the PCT designa-
tions. For example, in the rain rate region A, a PCT of
0.001% will result in a computed rain attenuation that will
be exceeded by only 0.00001T, where T is in units of time
representing 1 year [20]. That is, in this example, the atten-
uation will exceed the computed value no more than 5.24
min in 1 year. Figure 15.12 identifies the rain rate regions
in the continental United States, Alaska, and Hawaii.

TABLE 15.4 Correspondence Between Rain-Rate Regions and PCTa

PCT

Climate Region Rain Rates (mm/h)

A B1 B2 C D1 D2 D3 E F G H

0.001 28.5 45.0 70.0 78.0 90.0 108.0 126.0 165.0 66.0 185.0 253.0
0.002 21.0 34.0 54.0 62.0 72.0 89.0 106.0 144.0 51.0 157.0 220.5
0.005 13.5 22.0 35.0 41.0 50.0 64.5 80.5 118.0 34.0 120.5 178.0
0.01 10.0 15.5 23.5 28.0 35.5 49.0 63.0 98.0 23.0 94.0 147.0
0.02 7.0 11.0 16.0 18.0 24.0 35.0 48.0 78.0 15.0 72.0 119.0
0.05 4.0 6.4 9.5 11.0 14.5 22.0 32.0 52.0 8.3 47.0 86.5
0.1 2.5 4.2 6.1 7.2 9.8 14.5 22.0 35.0 5.2 32.0 64.0
0.2 1.5 2.8 4.0 4.8 6.4 9.5 14.5 21.0 3.1 21.8 43.5
0.5 0.7 1.5 2.3 2.7 3.6 5.2 7.8 10.6 1.4 12.2 22.5
1.0 0.4 1.0 1.5 1.8 2.2 3.0 4.7 6.0 0.7 8.0 12.0
2.0 0.1 0.5 0.8 1.1 1.2 1.5 1.9 2.9 0.2 5.0 5.2
5.0 0.0 0.2 0.3 0.5 0.0 0.0 0.0 0.5 0.0 1.8 1.2

aIppolito [20]. Courtesy of the National Aeronautics and Space Administration (NASA).
Notes: Region B is the average of B1 and B2 rounded up to one decimal place and region D =D2.
Polar (A, dry; B, moderate), temperate (C, maritime; D, continental), subtropical (E, wet; F, arid), tropical (G, moderate; H, wet).

572 COMMUNICATION RANGE EQUATION AND LINK ANALYSIS



Figure 15.13 shows some examples, based on the SAM
model, of the rain attenuation as a function of the elevation
angle for an Earth–satellite communication link operating
at 10 and 20 GHz. For these plots, the geographic region is
D2 and the PCTs, 0.01, 0.1, and 0.5, correspond to respective
rain rates of 49, 14.5, and 5.2 mm/h.

15.5 ELECTRIC FIELD WAVE POLARIZATION

Orthogonal antenna polarization provides for communication
diversity without the need for bandwidth expansion. In gen-
eral, the polarization of a wave in space is characterized as
being elliptical in the plane normal to the direction propaga-
tion; linear polarization (LP) and circular polarization (CP)
are special cases of elliptical polarization (EP) having wide-
spread applications. Orthogonal linear polarized (LP) anten-
nas transmit vertical polarized (VP) and horizontal polarized
(HP) electric fields and CP antennas transmit either right-
hand circular (RHC) or left-hand circular (LHC) electric
fields depending upon parameter selections. The right- and
left-hand rules apply to the direction of the circular rotation
of the electric field, that is, when the right- or left-hand thumb
points in the direction of the propagation, then the curl of the
fingers, as viewed from the receiver, indicates either counter-
clockwise or clockwise rotation, respectively. Under ideal
conditions, when the receiver antenna and electric field are
polarized in the same manner the maximum signal power
is received and the orthogonally polarized electric-field
results in zero cross-polarization interference. Unfortunately,
there are a number of practical issues that work against this
ideal behavior, for example, in the case of LP it is difficult
to keep the transmitter and receiver antennas exactly aligned
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FIGURE 15.12 U.S.A. rain-rate climate regions. Ippolito [20]. Courtesy of National Aeronautics and Space Administration (NASA).
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and the channel introduces polarization rotation along the
propagation path. The most deleterious propagation affects
are multipath interference, Faraday rotation, especially at
HF and VHF frequencies, and atmospheric polarization
resulting from various forms of water content, for example,
rain, hail and, to a lesser extent, snow.

The electric fields of a wave propagating in the z-direction
with Poynting vector* P are shown in Figure 15.14 with the
time- and range-dependent orthogonal electric fields given
by [30]

Ex =Mx sin ωt−βz (15.86)

and

Ey =My sin ωt−βz + δ (15.87)

where Mx and My are the magnitudes of the electric fields,
ω is angular carrier frequency of the wave, β = 2π/λ is the
phase-per-carrier frequency wavelength, and δ is the phase
of the y-electric field relative to the x-electric field. The argu-
ment ωt − βz is derived from the delayed carrier ω(t − to)
where to = z/c is the range delay and c = velocity of light.
The instantaneous electric field intensity, expressed as func-
tions of the parameters t and z, is given by

E t,z =Ex t,z + jEy t,z (15.88)

Kraus [30] shows that (15.86) and (15.87), evaluated at
z = 0, can be formulated into the expression of an ellipse
given by

1

M2
x sin

2 δ
E2
x −

2cos δ

MxMysin
2 δ

ExEy

+
1

M2
y sin

2 δ
E2
y = 1

(15.89)

The orientation of the ellipse relative to the x, y axes is
shown in Figure 15.15.

An important parameter in characterizing the polarization
is the axial ratio (AR), defined as the ratio of the semimajor
to semiminor axes of the ellipse. The polarization ellipse is
completely defined by the tilt angle τ, the sense of the rota-
tion of the electric field, and the AR. For the ellipse shown in
Figure 15.15 the AR is

AR=
xo
yo

axial ratio (15.90)

and Kraus has characterized the tilt angle in terms of the para-
meters Mx, My, and δ as

τ =
1
2
tan−1 2MxMy cos δ

M2
x − M2

y

tilt angle (15.91)

This expression for the tilt angle is relative to the x-axis
and applies to either the major or minor axis of the ellipse;
the last condition occurs if the ellipse in Figure 15.15 is
rotated by π/2 radians.

The parameters Mx, My, and δ are used to characterize LP
and CP. For example, referring to (15.86) and (15.87), when
δ = 0 and π the linear polarized waves are characterized as
shown in Figure 15.16. The tilt angle represents the slope
of the polarization. The vectors in Figure 15.16 are actually
sinusoidal time and range varying functions as given by
(15.86) and (15.87) with magnitudes Mx and My; these mag-
nitudes vary with range based on the free space and other
propagation losses. The double tipped vectors suggest the
sinusoidal variations. The AR for VP and HP waves is
infinite.

Circular polarization occurs when δ = ±π/2 andMy =Mx =
M in which case (15.86) and (15.87) become

Ex =M sin ωt−βz circular polarization (15.92)

and

Ey = ±M cos ωt−βz circular polarization (15.93)

and (15.89) reduces to the equation of a circle, that is,

E2
x +E

2
y =M

2 (15.94)
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FIGURE 15.14 Wave electric fields along propagation path.
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FIGURE 15.15 Polarization ellipse.

*The Poynting vector represents the power density along the propaga-
tion path.
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The plus and minus sign in (15.93) represents the sense of
the CP rotation when viewed toward the Poynting vector. For
example, the phase of the composite sinusoidal E-field wave
rotates clockwise as time advances when δ = π/2 correspond-
ing to the plus sign and counterclockwise when δ = −π/2 cor-
responding to the negative sign. These definitions correspond
to those of conventional positive and negative frequencies
with respective positive and negative phase advances with
increasing time. Applying the right- and left-hand thumb
rules, described earlier, δ = π/2 corresponds to left-hand
CP (LHCP) and δ = −π/2 corresponds to right-hand CP
(RHCP). The AR for CP waves is unity.

15.5.1 Antenna Polarization Loss and Isolation

In this section, the analysis of the antenna power loss and the
isolation of an orthogonally polarized interfering signal are
examined based on the work of Ippolito [31]. In this analysis,
the polarization state of the received wave at the input to the
receiver antenna, that is, after propagation over the range dis-
tance zmax between the transmitter and receiver, is specified
together with the receive antenna polarization state. The
interaction of the received wave and the antenna is based
on their polarization states* and the ARs as characterized
by the polarization mismatch factor 0 ≤mp ≤ 1. For arbitrary
EP or LP states of the received wave and the receiver antenna,
the polarization mismatch factor is given by

mp w,a =
1
2
+
4rwra + r2w−1 r2a −1 cos 2 τa−τw

2 r2w + 1 r2a + 1

mismatch factor

(15.95)

where rx is the AR and x = (w,a) refers to the received wave or
antenna, respectively. The sign of the AR is negative for
right-hand polarization and positive for left-hand polariza-
tion. For LP, the sign is always positive. The rotation of
the polarization axis is π/2 radians for VP and zero radians
for HP and right- and left-hand polarizations. The AR is
expressed in decibels as

rx dB = 20log10 rx (15.96)

The power at the output of the receive antenna is evalu-
ated as

Pr =PDAemp w,a (15.97)

where PD is the received power density and Ae is the effective
area of the receive antenna normal to the Poynting vector.
The antenna polarization power loss, in decibels relative to
an ideally matched antenna, is expressed as

Loss dB = 10log10
1

mp w,a
(15.98)

The polarization mismatch factor for an elliptically polar-
ized received wave with RHCP copolarization state and a
vertically polarized receive antenna is shown in
Figure 15.17 for wave ARs rw = −1, −1.5, and −5 (0, 3.52,
40 dB). This example is not representative of an ideal situa-
tion, in that, a vertically polarized received wave† is required
to match the vertically polarized receive antenna. Referring to
Figure 15.17, it is seen that a RHCP received wave rw = −1
and |mp(w,a)| = 0.5 results in a power loss of 3 dB and, as
rw becomes larger, the minimum loss approaches 0 dB and
corresponds to the vertical y-axis thus matching the vertically

τ

δ = π δ = 0

Ex

y

x

Linear polarization
(Mx, My ≠ 0)

EyEy

(b)

Vertical polarization
(Mx = 0, δ = 0)

Ex

(c)

Horizontal polarization
(My = 0, δ = 0)

(a) 

FIGURE 15.16 Linear polarizations viewed toward the Poynting vector.

*The polarization state of the receive antenna is the same as that of the trans-
mit antenna but the time is reversed.

†With an ideal channel and with stable antenna orientations, the received
wave polarization is identical to the transmit antenna polarization.
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polarized receive antenna. An ideal circularly polarized
antenna has an AR of ra = 1 (0 dB) and a well-designed
antenna will have an AR of ra = 1.19 (1.5 dB) and an ideal
LP antenna has an AR of ra =∞ (∞ dB) with practical values
ranging from ra = 17.8 to 31.6 (25–30 dB).

The solid lines in Figure 15.18 show the maximum and
minimum polarization losses as a function of the wave
AR; the losses corresponding to the polarization mismatch
factors in Figure 15.17 shown as the circled data points.
These losses are orthogonal to each other with the minimum
loss corresponding to the VP or the copolarized state and the
maximum loss corresponding to the cross-polarized state.

The antenna isolation is defined as the ratio of the power at
the antenna copolarized output ac and the power at the cross-
polarized output ax. Given the total received signal power
density PDw the isolation is expressed as

Iisol =
AePDwmp w,ac
AePDwmp w,ax

(15.99)

Because any wave can be resolved into two orthogonal
polarized states, denoted as w and wo, (15.99) is rewritten as

Iisol =
Ae PDwmp w,ac +PDwomp wo,ac
Ae PDwmp w,ax +PDwomp wo,ax

=
xpd mp w,ac +mp wo,ac
xpd mp w,ax +mp wo,ax

(15.100)

where the second equality is obtained in a straightforward
way with the constant xpd defined as the cross-polarization
discrimination, expressed as

xpd≜
PDw

PDwo

=
PDwmp w,w
PDwmp w,wo

=
mp w,w
mp w,wo

(15.101)

Referring to (15.100) an ideal antenna occurs when all of
the antenna co- and cross-polarized outputs are equal to the
respective co- and cross-polarized inputs, such that,
mp w,ac =mp wo,ax = 1; this also leads to the conditions
mp w,ax =mp wo,ac = 0 with the result that the isolation
for an ideal antenna is

Iisol = xpd ideal antenna (15.102)

The antenna mismatch factor, cross-polarization discrim-
ination, and isolation are examined in the following case
study for an elliptical received wave with copolarization state
LHCP and a receive antenna with a LHCP polarization state.

15.5.2 Case Study: Polarization Characteristics for a
LHCP Antenna

This case study examines the antenna mismatch factor, the
corresponding polarization loss, the cross-polarization dis-
crimination, and the isolation for a LHCP antenna with an
elliptical received wave with a copolarization state that
is matched to the receive antenna. The antenna is not ideal
so the isolation asymptotically approaches the cross-
polarization discrimination function xfd for low values of xfd.

The antenna mismatch factor is evaluated using (15.95)
for a specified ra and parametric values of rw with τa = 0
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radians and variable angular displacements τw = θ*: 0 ≤ θ ≤ 2π
radians. The results are plotted in Figures 15.19 and 15.20
corresponding to ra = 1 and 1.5, respectively. With ra = 1
the antenna mismatch factor appears as circles with radius
≤1. The case having unit radius corresponds the received
wave being matched to the antenna with rw = ra = 1; the other

cases result in a mismatched antenna and lower values of mp

corresponding to higher polarization losses. The results in
Figure 15.20 represent a nonideal antenna with ra = 1.5
and, although the mismatch factor for rw = 1 is a circle it does
not have unit magnitude and results in a polarization loss. The
case with rw = ra = 1.5 is matched in the horizontal direction
with increasing loss in the vertical direction. As the parameter
rw continues to increase the antenna mismatch factor
decreases along both axes resulting in increasing polarization
loss. The salient point is that the antenna mismatch factor
results in zero loss when the received wave AR is equal to
the antenna AR. The losses are shown in Figure 15.21 as a
function of rw, expressed in decibels, for ra = 1 and 1.5.
The circled data points represent the losses for the corre-
sponding ra and rw conditions in the range of the abscissa.

Evaluation of the isolation of an ideal LHCP antenna
involves evaluating the cross-polarization discrimination
xpd as expressed in (15.101) as a function of the wave axial
rw. The numerator of (15.101) is the copolarized antenna mis-
match factor corresponding to wave AR ra = 1 and the
denominator corresponds to the cross-polarized or orthogo-
nal antenna mismatch factor with ra = −1. In these evalua-
tions, the antenna mismatch factors are independent of τa
and τw and the resulting ideal antenna isolation is plotted
in Figure 15.22 with the xpd(dB) = 10log10(xpd) and the
abscissa plotted in terms of the common logarithm as
20log10(rw). From this result it is seen that the isolation
increases as the wave AR approaches 0 dB or rw = 1. The
value of xpd, plotted in Figure 15.22, is used to evaluate
the isolation of a nonideal antenna using (15.100). In evalu-
ating (15.100), the choice of the antenna copolarized and the
cross-polarized ARs rc and rx are based on the antenna
design; the nonideal antenna isolation plotted in
Figure 15.23 corresponds to rc = 1.122 (1 dB) and various
values of rx in decibels. The selected values of the nonideal
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*The parameter θ is used with the x,y axes for plottingmp(w,a) in polar form.
When ra or rw = 1,mp(w,a) is a constant independent of the τa and τw and θ is
used to generate a circular polar plot.
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antenna ARs result in constant values of the antenna mis-
match factors: mp(w, ac), mp(wo, ax), mp(w, ax), and mp(wo,
ac). These factors influence the asymptotic convergence of
the antenna isolation relative to that of the ideal antenna iso-
lation. As rx approaches 0 dB in Figure 15.23, the isolation is
ultimately limited by the selection of rc. The value of rc =
1.122 results in a copolarization loss of 0.014 dB and a
cross-polarization loss of 48.8 dB.

15.6 PHASE-NOISE LOSS

Phase noise results from intrinsic noise in the transceiver and
modem signal sources typically from oscillators and fre-
quency synthesizers used for frequency translation. The
phase noise is characterized in terms of the phase-noise

power spectral density (PSD) in dBc/Hz where the decibel
level is relative to the signal carrier power. Typically the
specification applies to all oscillators in a cascade of subsys-
tems; for example, in a cascade of two subsystems with equal
phase-noise specifications the overall phase noise is
increased by 3 dBc/Hz. For higher order modulations, like
multiphase shift keying (MPSK) and quadrature amplitude
modulation (QAM), the oscillator phase noise is a dominant
source of performance loss over the AWGN channel and
results in an irreducible error probability with increasing
Eb/No.

There is a wealth of information [32–38] on the theory,
design, and applications of oscillators with an emphasis on
understanding and minimizing the impact of phase noise
on communication systems. The phase-noise variance is
the principal performance measure and is defined as the inte-
gral of the phase-noise PSD. In the following sections, the
characteristics of the phase-noise PSD are reviewed and,
based on an acceptable phase-noise variance specification,
the subsystem phase-noise density is established. In
Section 15.6.2 the phase-noise variance is determined from
a specification of the spectral density and the resulting perfor-
mance loss is given for the MPSK-modulated waveform.

15.6.1 Phase-Noise Characterization

Oscillator phase noise [37, 39, 40] is characterized in terms of
a log–log plot of the relative phase-noise* PSD (S(f)) as a
function of the frequency deviation f from the oscillator fre-
quency fo. The power density Noϕ is defined relative to the
oscillator carrier frequency power C and plotted with the
ordinate specified as 10log(Noϕ/C) dBc/Hz. The PSD is sym-
metrical about fo and, normally, only the positive frequency
portion is shown. A generic plot of a phase-noise PSD spec-
ification Ss(f) is shown in Figure 15.24 indicating distinct line
segments with frequency dependence km/f

m corresponding to
amplitude roll-offs of 10m in decibels per decade. The
parameter km is a scaling factor that determines the dBc/Hz
level for each segment. The lowest frequency contained in
Ss(f) is typically 1–10 Hz because accurate measurements
below 1 Hz are difficult to obtain and the phase noise in these
ranges is generally removed in the demodulator by the pha-
selock loop (PLL) filter. The upper frequency of interest in
the phase-noise PSD is determined by the intermediate fre-
quency (IF) filter bandwidth and ultimately by the symbol
matched filter bandwidth.

Barnes [33] characterizes a low frequency segment for
m = 4; however, this is seldom considered in applications
involving a demodulator PLL.†The phase noise corresponding
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*In the following discussions, a distinction is made between the phase-noise
PSD S(f) and the spectral density specification denoted as Ss(f).
†Gardner [38] indicates that the m = 4 noise term appears to be associated
with precision cesium clocks.
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to m = 3 is referred to as flicker noise and is related to abrupt
phase changes associated with the oscillators inherent feed-
back circuit as it attempts to control the phase of the oscillators
carrier frequency. The phase noise associated with m = 2
results from white and flicker noise sources within the oscilla-
tor. The phase noise associated with m = 1 is high frequency
flicker noise and influences the m = 3 and m = 2 phase-noise
segments. The phase noise associated with m = 0 results from
the receiver white noise density No and is the underlying noise
term associated with the demodulators Eb/No ratio.

Typically, a coherent communication demodulator applies
the received carrier-modulated waveform to a PLL for phase
and frequency tracking [41] that also tracks and removes the
lower frequencyphase-noise terms that arewithin the loopband-
widthBL. ThePLLclosed-loop frequency response is character-
ized by the low-pass function H(f) and the output phase noise
results from the equivalent high-pass response given by*

T f = 1−H f (15.103)

In the following analysis, the closed-loop response for a
second-order loop, with damping factor ς = 1 2, is used
resulting in

T f =
f 2

f 2− f 2n − j 2fnf
(15.104)

Referring to (10.38) the natural resonant frequency of the
closed-loop response is related to the loop bandwidth BL as

fn =
ωn

2π
=

BL

π ς+ 1 4ς
Hz

=
0 94281BL

π
ς=

1

2

(15.105)

The response |T(f)|2 is shown as the dotted curve in
Figure 15.24 with a band-reject frequency of BL Rs Hz.
Therefore, for low symbol rate modems the phase noise pos-
sesses a more severe performance issue. Typical values of the
loop bandwidth are BL = Rs/10 and Rs/100 for binary phase
shift keying (BPSK) and quadrature phase shift keying
(QPSK) modulations, respectively.

The variance of the phase noise is computed as

σ2Nϕ =

∞

0

S f df

= σ23 + σ
2
2 + σ

2
1 + σ

2
0

(15.106)

where the individual noise variances are computed as

σ2m = km

∞

0

T f 2

fm
df (15.107)

The integral in (15.107) is evaluated for m = 3 and 2 using
the integral formula given by Gradshteyn and Ryzhik [42]
and using (15.105), with fn evaluated in terms of the symbol
rate and the time-bandwidth product ρL =BLT =BL Rs, the
noise variances are evaluated as

σ23 =
0 28125π2k3

ρ2L R
2
s

(15.108)

σ22 =
0 375π2k2

ρLRs
(15.109)

The integrals involving m = 1 and 0 with an infinite inte-
gration limit result in infinite variances so the integration
must be performed over a finite bandwidth B ≥ Rs/2 Hz where
the equality corresponds to the Nyquist bandwidth. In this
evaluation the integral in (15.107) is defined as†

Im
B

fn
=

B

0

T f 2

fm
df (15.110)

with the integration limit B = Rs corresponding to the band-
width of an integrate-and-dump (I&D) symbol detection
filter. Therefore, for m = 1 and 0, (15.110) is evaluated
using Mathcad‡ symbolic processing and the results are
expressed as
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FIGURE 15.24 Generic phase-noise spectral density.

*T(s) is defined as the phase-error transfer function in (10.7).

†The designation Im(B/fn) suggests that the integration in (15.110) is over the
finite normalized bandwidth B/fn.
‡Mathcad and Mathsoft are registered trademarks ™ of Mathsoft Engineer-
ing & Education, Inc., January 2006.
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I1
B

fn
=
1
4
ln

B

fn

4

+ 1 (15.111)

and

I0
B

fn
=

B

fn
−

2
8

ln
B fn + 2 B fn + 1

B fn − 2 B fn + 1

−
2
4

tan−1 2 B fn

1 + B fn
2

(15.112)

Using (15.105), the dependence on the normalized band-
width B/Rs for ς= 1 2 is obtained by substituting

B

fn
=
1 06066π

ρL

B

Rs
ς=

1

2
(15.113)

into Equations (15.111) and (15.112). The results are plotted
in Figure 15.25 as a function of B/Rs for ς= 1 2 and
ρL = 0 1, 0 01. The numerical solutions to (15.110) for
B/Rs = 0.5, 1, 4, and 8 are listed in Table 15.5.

Using these results, the phase-noise variances for m = 1
and 0 are expressed as

σ21 = k1I1
B

Rs
(15.114)

and

σ20 = k0I0
B

Rs
(15.115)

The unknown parameters in these relationships are the
scale factors km; however, with knowledge of the breakpoints
and the additive constant phase-noise PSD, the piecewise
linear PSD shown in Figure 15.24 can be constructed. In
the following section, these results are applied to a system
specification of the phase noise and the results are used to
evaluate the impact on the bit-error probability of the commu-
nication link. The resulting performance loss is then used in
establishing an overall link budget which is essentially the
purpose of this chapter.

15.6.2 Phase-Noise Evaluation Using System
Specifications

The phase noise is frequently specified as part of an overall
system requirements specification as in Figure 15.26.* The
specification discussed in this section is intended to represent
the demodulator heterodyning to baseband and is 10 dB
lower than that specified for the receive terminal which has
multiple heterodyning stages. Because the received and
demodulator subsystems are typically developed by different
contractors, separate subsystem phase-noise specifications
are required to provide for independent subsystem testing.
The demodulator phase noise is intended not to impact the
more sensitive phase noise of the receiver oscillators and fre-
quency conversion stages.

These specifications apply to the 1/f 3 and 1/f frequency
dependencies so the composite linear spectral density is
expressed as

S f =
k3
f 3

+
k1
f
+ k0 (15.116)

The constants km, required for the evaluation of (15.116),
are determined from the specifications as follows. Consider-
ing the specification shown in Figure 15.26 and repeated in
Figure 15.27 as the solid lines; each linear segment

ℓ =
km
f m

(15.117)

is plotted in terms of the common logarithm
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FIGURE 15.25 Integration results for m = 1 and 0.

TABLE 15.5 Selected Integration Values Im(B/fn) for m = 1
and 0

B/Rs

ρL = 0.1 ρL = 0.01

m = 1 m = 0 m = 1 m = 0

0.5 2.8125 16.5915 5.1151 166.508
1 3.5056 33.2728 5.8082 333.025
4 4.8919 133.204 7.1945 1332.11
8 5.5851 266.418 7.8877 2664.22

*The phase-noise specifications characterize the single-sideband phase-noise
PSD relative to the carrier power and have units of dBc/Hz.
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Lm = 10log ℓ = 10log km −10m log f

=Km−10mF
(15.118)

where Km = 10log km and F = log f are used as the
abscissa in the spectral density plots. Therefore, using these
results with m = 3, k3 is evaluated by solving for K3 in
(15.118) under the condition F = 1. The corresponding values
of L3 and K3 are −32 dBc/Hz and −2 dBc-Hz

2; in general Km

has units of dBc-Hzm−1. In a similar manner K1 is found to be
−42 dBc and K0 = −112 dBc/Hz corresponding to the con-
stant white noise spectral density. The corresponding values
of km are as follows: k3 = 6 3095734 −1 , k1 = 6 3095734

−5 , and k0 = 6 3095734 −12 . The composite phase-noise
PSD, shown in Figure 15.27 as the dashed curve, is a plot of
(15.116) using the computed values of km. The dotted curves
represent the computed line segments based on Km plotted
over the range of abscissa values 1 ≤ F ≤ 8 with portions of
these line segments corresponding to those of the
specification.

Referring to (15.116) and evaluating the phase-noise var-
iances σ2m in (15.108), (15.114), and (15.115) with the values
of km computed earlier for the receiver specification, the total
untracked phase-noise variance σ2Nϕ is evaluated using

(15.106) with σ22 = 0. The resulting untracked phase noise
is plotted in Figure 15.28 with ρL = 0 1 and 0.01 for the
indicated normalized bandwidth ratios B/Rs. Figure 15.29
shows the untracked phase-noise variance when B = Rs cor-
responding to the bandwidth of the I&D symbol detection
filter.
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15.6.3 Case Study: BPSK and QPSK Performance
with Phase Noise

The performance of BPSK and QPSK waveform modula-
tions is examined using the phase-noise characteristics devel-
oped in the preceding section for the receiver subsystem
phase-noise PSD. The modulated waveforms are generated
using the rect(t/T) weighting functions and detected using
an I&Dmatched filter. The upper integration limit in the eval-
uation of the phase-noise variance σ2Nϕ is B = Rs, where Rs

corresponds to the noise bandwidth of the demodulator
matched filter. The lower integration limit is determined by
the high-pass PLL transfer function T(f) expressed in
(15.104). The low-pass band-reject bandwidth of T(f) is
dependent on the loop time-bandwidth product ρL =BLT
where BL is the closed-loop noise bandwidth. For BPSK
and QPSK modulation, typical values* of ρL are 0.1 and
0.01, respectively; these values are used in the following per-
formance evaluations.

In addition to the phase-noise variance σ2Nϕ resulting from
the receiver heterodyning operations, the PLL introduces
phase jitter that is characterized by the phase variance σ2ϕ
expressed as [44]

σ2ϕ =
1
2γL

=
ρL
2γb

(15.119)

where γL is the signal-to-noise ratio in the PLL bandwidth
and γb = Eb/No is the signal-to-noise ratio in the matched filter
bandwidth of Rs hertz. From this discussion two factors are in
play that influence the performance of the BPSK and QPSK
modulations. The first is that, for a given symbol rate, the
lower integration limit in determining the phase-noise vari-
ance is decreased by ρL. For a given bit rate, this is exacer-
bated with QPSK modulation since Rs = Rb/2. These
factors become less significant as the data rate is increased
and the phase noise is eventually influenced solely by the
oscillator white noise density corresponding to k0. The sec-
ond factor influencing the performance is that the PLL phase
noise is decreased by ρL with the advantage going to QPSK.
In consideration of these issues, the total phase-noise power
measured in the matched filter bandwidth is given by

σ2φ = σ
2
Nϕ + σ

2
ϕ (15.120)

Because the oscillator phase is influenced by several
phase-noise sources, as indicated by terms giving rise to
the km/f

m spectral density response, the phase-noise random
variable φ is generally characterized by the Gaussian
distribution

p φ
1

2π σ2φ
e−φ

2 2σ2φ φ ≤ π (15.121)

This approximation and the limits require that σφ 1. The
bit-error probability performance conditioned on the phase
error φ for BPSK and QPSK is expressed, respectively, as

Pbe γb;φ =
1
2
erfc γbcos φ BPSK (15.122)

and

Pbe γb;φ =
1
4
erfc γb cos φ −sin φ

+
1
4
erfc γb cos φ + sin φ QPSK

(15.123)

Using (15.121) with either (15.122) or (15.123) the result-
ing bit-error probability is expressed as

Pbe γb

π

−π

Pbe γb,φ p φ dφ (15.124)

The bit-error probability expressed in (15.124) is evalu-
ated using a 96-term Gauss-quadrature integration and the
results are depicted in Figure 15.30. The robustness of BPSK
modulation is evidenced by a loss of less than 0.1 dB even for
data rates as low as 150 bps. For the 1024 kbps data rate, the
QPSKmodulation has a maximum loss of about 0.1 dB; how-
ever, the sensitivity to the phase noise is evident at 150 bps
with a maximum loss of about 0.3 dB for the range of
signal-to-noise ratios considered.
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FIGURE 15.30 Performance of BPSK and QPSK modulations
using the receiver subsystem phase-noise specification.

*The selection of ρL is largely dependent on the dynamics of the communica-
tions platforms and the channel.

582 COMMUNICATION RANGE EQUATION AND LINK ANALYSIS



Figure 15.31 depicts the performance sensitivity when the
phase noise results from the cascade of three subsystems: a
transmitter, satellite repeater, and receiver, each with a
phase-noise specification corresponding to receiver subsys-
tem. In effect, the phase noise is increased by 4.77 dB from
that used in Figure 15.30. In this case, the BPSK performance
for the 1024 kbps data rate is essentially unchanged; how-
ever, the QPSK performance is degraded by about 0.2 dB
at Pbe = 10−5 for 1024 kbps (512 ksps) and by about 0.5 dB
for 150 bps (75 sps).

This procedure can be applied to higher orderMPSKmod-
ulations (M > 4) with anticipated increases in the perfor-
mance loss. In this regard, Baker [45] has analyzed the
performance of 256-ary and 1024-ary QAMwith phase noise
in terms of the standard deviation σφ of the phase and, for
σφ = 0 3 , the losses at Pbe = 10−8 are about 0.6 and 5.5 dB,
respectively.

15.7 SCINTILLATION LOSS

The losses due to signal scintillation are examined in detail in
Chapter 20 and the results in a natural environment are

summarized in Table 15.6 in terms of the loss factor Lf.
The loss factor allows for determining the loss at any carrier
frequency f > 2MHz* according to

La fMHz =
Lf
f 2MHz

dB (15.125)

where fMHz is carrier frequency expressed in MHz. The
dependence of the loss on latitude results from the different
electron density profiles in the three regions corresponding to
equatorial (±15 ), mid to low (15 –60 ), and polar (>60 )
latitudes. The loss factors correspond to the worst-case mean
electron densities and variations under turbulent conditions in
the natural environment. For example, the loss corresponding
to a 90% confidence level at 500MHz in the equatorial
region is determined as La(500) = 2.85e5/(500)2 = 1.14 dB.
This example is shown in Figure 15.32 where the transitions
between the latitude regions are plotted as 5 centered on the
transitions at 15 and 60 . Figure 15.33 shows the scintilla-
tion losses at 250MHz for the indicated confidence levels.

15.8 MULTIPATH LOSS

The maximum and average single-reflection multipath loss is
defined in terms of the multipath factor and the results are
plotted in Figure 15.34 for a low Earth orbit (LEO) 200 km
altitude satellite receiver and a ground station with antenna
height of 30 m. The ground station and satellite use uniformly
weighted antennas; the satellite antenna gain is 10 dB and
the transmitter antenna gain is varied as indicated in
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TABLE 15.6 Absorption Loss Factors Lf (dB) in Natural
Environment

Confidence (%)

Latitude

Equatorial Mid to Low Polar

50a 5.75e4 9.50e3 5.100e4
90 2.85e5 1.08e4 1.957e5
95 3.50e5 1.11e4 2.375e5
99 4.72e5 1.18e4 3.143e5

aMean or average electron densities.
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*This condition is based upon a maximum electron collision frequency of
v = 1.25e6 rad/s and the requirement that ω v.
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Figure 15.34. The description of satellite link encounter with
example multipath losses is given in Section 19.4. The impact
of the antenna gains is evident, in that, multipath losses
greater than 1 dB occur with transmit antenna elevation
angles less than about 14 , 4 , and 1.5 for respective antenna
gains of 20, 30, and 40 dB. These gains correspond to 3-dB
transmitter antenna beam widths of 16.2 , 5.2 , and 1.64 . It
is assumed that the ground station and satellite beams are ide-
ally tracking each other along the line of sight (LOS) or direct
signal path. A word of caution is in order regarding the inclu-
sion of the multipath losses shown in Figure 15.34 directly
into the link budget. The reason is that waveform designs
and signal processing techniques can effectively mitigate
the multipath losses. These techniques include forward error
control (FEC) coding and interleaving, optimal combining

techniques with data repetition, data equalization, and adapt-
ive antenna null steering.

15.9 INTERFACE MISMATCH LOSS

The losses associated with the termination of connecting
cables and devices within a transmitter or receiver are eval-
uated in terms of the voltage standing wave ratio (VSWR)
or the voltage reflection coefficient (ρr) as measured at the
interface between the components. These losses must be
added to the measured or specified device losses that are nor-
mally determined under ideal termination conditions.

The VSWR is defined as [46] the ratio of the maximum-
to-minimum voltage of the standing wave expressed as

VSWR≜
Vmax

Vmin
(15.126)

The standing wave ratio (SWR) is simply the VSWR
expressed in decibels, that is,

SWR= 20log VSWR (15.127)

The voltage reflection coefficient is defined as [46] the
ratio of the reflected-to-incident voltages across the termina-
tion or load impedance ZL and is expressed as

ρ
r
≜
Vr

Vi
=
ZL−Zo
ZL +Zo

(15.128)

where Zo is the characteristic impedance of the cable or the
source impedance of the device. In general, ρr is a complex
quantity, such that, 0 ≤ ρr ≤ 1.

The relationships between VSWR and ρr are:

VSWR=
1+ ρr
1− ρr

(15.129)

and

ρr =
VSWR−1
VSWR+1

(15.130)

The return loss is defined as

Lr ≜
1

ρr
2 (15.131)

Defining the incident power as Pi = Vi
2 and the reflected

power as Pr = Vr
2 the power delivered to the load is

PL =Pi –Pr and, using these relationships together with
(15.128) and (15.131), the loss at the termination is
computed as
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Lt =
Pi

PL
=

1

1− ρr
2 =

Lr
Lr −1

(15.132)

The loss Lt is typically included in the device losses in the
computation of the receiver noise figure discussed in
Section 15.2.1.

15.10 MISCELLANEOUS SYSTEM LOSSES

If the component loss of a device at a frequency f1 is known to
be L1 then the loss at another frequency can often be approxi-
mated simply by frequency scaling. For example, the loss at
frequency f2 is approximately

L2
f2
f1

2

L1 (15.133)

15.10.1 Antenna Shaping Loss

Antenna shaping loss is based on aperture weighting function
and is included in antenna gain.

15.10.2 Antenna Scallop Loss

Antenna scallop loss is associated with antenna beam loss
during spatial antenna acquisition. Site loss is the antenna
gain loss at a site location removed from the center of the
beam. For Earth coverage fixed satellite beams, the site loss
is compensated through beam shaping to ensure equal returns
from all locations.

15.10.3 Frequency Scallop Loss

Frequency scallop losses are associated with frequency
acquisition using discrete frequency scanning or a Fourier
transform.

15.10.4 Signal Processing Loss

Signal processing losses are associated with discrete ampli-
tude and time sampled quantization losses. Discrete ampli-
tude sampling losses are minimized by using the maximum
number of bits to describe the signal amplitude at various
points along the processing path and the discrete-time
sampling losses are minimized through filter design and
sampling frequency selection. Other sources of signal pro-
cessing loss are associated with the limitation of various
algorithms that approximate theoretical models; for exam-
ple, the computation of decision thresholds based on a lim-
ited sample size.

15.11 NONLINEAR POWER AMPLIFIER
ANALYSIS AND SIMULATION

The following discussions and analysis refer to an amplitude-
modulated (AM) and/or phase-modulated (PM) carrier sig-
nal. When a continuous wave (CW) carrier is applied to a
nonlinear power amplifier (PA) the output will contain AM
and possibly AM and PM distortion which is the subject of
this section [47]. The intermodulation noise produced by a
TWTA or SSPA nonlinearity is related to the input AM car-
rier signal level and the AM-to-AM (AM-AM) and AM-to-
PM (AM-PM) characteristics of the amplifier. The operating
point, or input drive level, of a TWTA is relative to the sat-
uration level. For a SSPA, the operating point is relative to the
1 dB gain compression level. The input backoff (IBO) corre-
sponds to the input power backoff from the saturation or the
1 dB gain compression powers of the respective devices
required to achieve the specified system performance. As
IBO is increased the devices approach the linear operating
region resulting in decreasing levels of intermodulation noise
and improved system performance. However, lowering the
input power level also results in less efficient use of the over-
all power capabilities of the devices. Constant envelope-
modulated waveforms, like BPSK and the various forms of
QPSK, are more tolerant to lower IBO levels than waveforms
with inherently large peak-to-rms levels, like QAM, fre-
quency division multiplex (FDM), and orthogonal frequency
division multiplexing (OFDM).

The intermodulation noise is characterized in terms of the
carrier-to-intermodulation noise (C/I) ratio or as the carrier-
to-intermodulation noise density (C/Io) ratio. The intermodu-
lation noise density is related to the intermodulation noise by
the users channel bandwidth B Hz as Io = I/B W/Hz. The C/I
performance parameter is discussed in the following sections
in the context of the device AM-AM and AM-PM character-
istics. In addition to the single-channel intermodulation
noise, the nonlinear PA output will include the signals of
other users in frequency division multiple access (FDMA)
applications. This situation occurs, for example, when the
PA is operating as a multichannel satellite relay downlink
transmitter, in which case, the receiver and intermodulation
noise from all of the channels influences the amplifier output
level. The desired signal will include some degree of signal
suppression depending upon the severity of the nonlinearity.

As a consequence of the nonlinear device transfer function
and the various noise terms, the output backoff (OBO) con-
ditions are defined in terms of the level of the desired signal
saturation point or the 1 dB gain compression point as
described earlier. The following example focuses on the sat-
uration point of the TWTA, for which, the OBO is character-
ized as

OBO=
Psat

GtotPtot
(15.134)
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The parameter Ptot in (15.134) is the total power into the
amplifier and Gtot is the corresponding gain. The gain Gtot is
the input-to-output signal gain of the TWTA as determined
by the input signal operating point defined by the IBO level.
In the following sections, several methods of evaluating the
intermodulation noise are examined and compared. These
comparisons are characterized by C/I and OBO and their
dependence on the input operating levels as defined by IBO.

15.11.1 Characterizing the TWTA Transfer
Function

The characteristics of three TWTAs are examined with vary-
ing degrees of nonlinear signal distortion as identified by
Saleh [48, 49]. The characteristics of interests are the AM-
PM transfer function in which the AM carrier input signal
results in a nonlinear PM output signal; and the AM-AM
transfer function in which the AM carrier input signal results
in a nonlinear AM output signal. These nonlinear transfer
functions result in varying degrees of harmonic distortion
at the output of the TWTA that cause co-channel and adjacent
channel interference (ACI). For clarity the three TWTAs,
characterized by Saleh, are denoted as: TWTA No. 0 that
is the least severe with zero AM-PM phase distortion; TWTA
No. 1 that exhibits a moderate AM-PM phase distortion; and
TWTA No. 2 that has severe AM-PM phase distortion. All
three result in nearly identical nonlinear AM-AM distortion.

The comparison of the three traveling wave tube ampli-
fiers is based on Saleh’s two-parameter in-phase and quadra-
ture (I/Q) (or real and imaginary) curve-fit functions
expressed as

P r =
αpr

1 + βpr2

Q r =
αqr3

1 + βqr2
2

(15.135)

where αp, βp, αq, and βq are the curve fitting coefficients given
in Table 15.7 for the three representative traveling wave tube
(TWT) characteristics. The parameter r is the composite input
signal level and determines the operating point on the TWT
transfer function. In terms of the amplitude and phase

responses, the corresponding I/Q components are expressed
as P r =A r cos Φ r and Q r =A r sin Φ r .

Plots of the curve fit results for the quadrature functions
expressed in (15.135) are converted to the amplitude and
phase functions and shown in Figure 15.35 using the param-
eter values listed in Table 15.7.

15.11.2 Evaluation of C/I and OBO

The evaluation of C/I and OBO discussed in this section is
applied to a FDMA satellite communication system and
follows the work of Saleh [49] using the I/Q responses for
TWTs 0, 1, and 2 discussed earlier. The input signal is con-
sidered to be the sum of n independent phase-modulated
signals expressed as

x t =
n

i= 1

Vie
j ωi t +φi t (15.136)

where ωi represents carriers in different FDMA bandwidths
(B) occupying a total bandwidth of W= nB Hz. The output
of the TWTA when operating in a FDMA network
[50–52] is composed of distinct intermodulation tones with
angular frequency k1ω1 + k2ω2 + + knωn; the restriction
k1 + k2 + + kn = 1 ensures that all of the intermodulation
products (IMPs) fall in the first spectral zone of each
frequency band. The order of the IMP is given by
m= k1 + k2 + + kn = 1,3,5,…, that is, only odd order
IMPs are present. The value m = 1 represents the desired car-
rier term at the output of the nonlinear amplifier and all of the
other terms, m = 3, 5, … are representative of output distor-
tion tones in the users bandwidth. In the following analysis,
the input carriers are assumed to have equal amplitudes with
Vi = V : i and n m.

TABLE 15.7 Two-Parameter Curve-Fit Values from Saleha

TWT

P(r) Q(r)

αp βp αq βq

0 2.0 1.0 0.0 0.0
1 1.90947 1.07469 4.35023 2.33525
2 2.11075 2.22764 7.33959 2.11475

aSaleh [49]. Reproduced by permission of the IEEE.
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Based on this brief introduction, the C/I ratio at the output
of the TWTA is given by

C I ν =
P2
1,n + Q2

1,n

m= 3,5,…
Nm,n v P2

m,n + Q2
m,n

(15.137)

where v = 0 corresponds to the C/I ratio at the center of the
users band and v = ± 1 2 is the ratio at either edge of the users
band. The parameter Nm,n(v) is the number of dominant m-th
order IMPs falling at location v and is given by [53]

Nm,n ν =
nm−1

m+ 1 2 m−1 2 m−1

m 2−ν

k = 0

−1 k
m

k

m

2
−k−ν

m−1

v ≤
m

2

(15.138)*

Where N1,n ν = 1 for v = 1, ± 1 2 and Nm,n ν = 0 for
v >m 2. The terms Pm,n and Qm,n represent the I/Q compo-
nents of the m-th order IMP, for which, Saleh developed the
expressions

Pm,n =
αp
βpnm 2

m−1 2

k = 0

Ak,mX
2k + 1

−
m−1 2

k = 0

Bk,mX
2k + 3 e

X2

E1 X2

(15.139)

Qm,n =
αq

β3q n
m 2

m+ 1 2

k = 0

Ck,mY
2k + 1

−
m+ 1 2

k = 0

Dk,mY
2k + 3 eY

2
E1 Y2

(15.140)

where

X = U βp
−1
, Y = U βq

−1
, U = nV (15.141)

and

Ak,m = −1 k m + 1
2

m−1 2

l= k

−1 l
m+ 1
2
l

l−k

l+ 1

(15.142)†

Bk,m =
m+ 1 2
k + 1

m−1
2
k

(15.143)†

Ck,m = k + 1 Ak,m +Bk−1,m (15.144)†

Dk,m = k + 2 Bk,m +Bk−1,m (15.145)†

with Ak,m = 0 for k = m+ 1 2 and Bk,m = 0 for k = −1 or
m + 1 2. The parameter U is equal to the square root of
the total average input power and the function E1(z) is the
exponential integral [54]

E1 z =

∞

z

exp −u

u
du argz < π (15.146)

Saleh [49] provides an appendix that outlines a method for
the numerical computation of (15.139) and (15.140) that
avoids computational roundoff errors for large values of m.
The solution involves rewriting the respective summations
in the brackets { } of (15.139) and (15.140) as follows:

m−3 2

k = 0

Ak,m−Bk,m X2k + 1 +
m−1 2

k = 0

Bk,mX
2k−1 F X2

(15.147)

and

m−1 2

k = 0

Ck,m−Dk,m Y2k + 1 +
m + 1 2

k = 0

Dk,mY
2k−1 F Y2

(15.148)

with the respective limit on m≌ 82/X + 4.4 and 96/Y − 2.6.
The F(z) is expressed as

F z =

∞

0

uexp −u

1 + u z
du (15.149)

and can be evaluated numerically using Laguerre–Gauss
quadrature integration.

The OBO is defined as

OBO=
max P2 r +Q2 r

n P2
1,n r + Q2

1,n r
(15.150)

where P(r) and Q(r) are the nonlinear output values corre-
sponding to the operating point r of the input composite sig-
nal. These values are computed as given in Section 15.11.1
using the appropriate αp, βp, αq, and βq values from
Table 15.7.

*Saleh [49] provides solutions to (15.138) for m = 1, 3, 5, 7 and for v = 1,
±1/2.
†Saleh [49] provides solutions to these equations for m = 1, 3, 5, 7
and k = 0–4.

NONLINEAR POWER AMPLIFIER ANALYSIS AND SIMULATION 587



These relationships are evaluated for the TWTs 0, 1, and 2
and the results are shown in Figure 15.36 which relate the
OBO dependence on C/I for the indicated IBO operating
points. As the IBO increases the TWTs operate more in the
linear region and away from saturation resulting in a higher
C/I ratio. Figure 15.37 characterizes the OBO level as a func-
tion of the IBO for the three TWTs under consideration.

15.12 COMPUTER MODELING OF TWTA AND
SSPA NONLINEARITIES

The nonlinear amplifier is generally characterized in terms of
the devices AM-AM and AM-PM transfer functions. These

transfer functions are typically available from the manufac-
turer as the measured output power and phase vs. the input
power or the measured output voltage and phase vs. the input
voltage. The manufacturers may also provide information on
the bandwidth and temperature sensitivities.

The following examples involve the modeling of two
SSPAs having slightly different transfer characteristics.
These models serve to highlight some significant perfor-
mance differences concerning the specified output power
and the OBO required to achieve a specified performance
measure. The performance measure may be the spectral
regrowth or the degradation in the bit-error probability given
as adjacent channel. This latter situation can also be charac-
terized in terms of the ACI specification. Although these
examples focus on the modeling of SSPAs, the techniques
apply equally well to TWTAs with the primary exception
being the definition of the maximum output power. The max-
imum output power of a SSPA is defined as the power cor-
responding to the 1-dB gain compression point, referred to as
P1, whereas, for the TWTA the maximum output power is the
saturation power, referred to as Psat. SSPA and TWTA ampli-
fiers are referred to as soft limiters and are contrasted with the
hard limiters discussed in Section 10.2. Soft limiters are char-
acterized as having an output that is differentiable with
respect to the input and approaches a constant value or limit
as the input increases. The soft limiter response is modeled by
various forms of sigmoid functions of which the error and
arctan functions are commonly used examples.

15.12.1 SSPA with Soft Saturation Response

In this example, the SSPA transfer function is characterized
as having AM-AM that is characterized in terms of the peak
output voltage (Vpo) as a function of the peak input voltage
(Vpi). Because the AM-PM response is zero the SSPA is con-
sidered to be ideal. The dashed curve in Figure 15.38 shows
the measured voltage transfer function and the solid curve is
based on a seventh-order polynomial that is curve fit to the
Vpo vs. Vpi response. The modified response results in a con-
stant gain over the linear range of the SSPA and a monoton-
ically decreasing gain as the input signal level increases
through the nonlinear range. The actual gain of the device
is not important insofar as the performance simulation is con-
cerned so the gain of the soft saturation response is purposely
low to avoid dealing with large signal levels in the simulation
program. The curve-fit transfer function is expressed as

Vpo 0 898407Vpi−155 24V3
pi + 17552 5V5

pi−751241V
7
pi

(15.151)

with the corresponding gain evaluated as 20log10(Vpo/Vpi).
Using (15.151), the third-order IMPs are characterized by
the cubic term as
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Vpo3 −155 24V3
pi (15.152)

With the input power expressed asPi =V2
pi 2, Figure 15.39

shows the input–output power characteristics including the
third-order intermodulation power. The term P1 =V2

po1 2 is
the output power corresponding to the 1-dB gain compres-
sion identified in Figure 15.38, P0 =P110− OBOdB 10 is the
primary output power corresponding to the carrier power
Pi of the input signal under test, IP3 is the third-order inter-
cept output power, and IM3 is the ratio of the test signal car-
rier power to the third-order intercept power resulting from
the nonlinearity. Using the linear approximations to these
power transfer functions, the third-order intermodulation
power ratio is defined as ratio Po/Po3 and is expressed in dec-
ibels as

IM3 dB ≜Po dB −Po3 dB

=P1 dB −OBO dB −Po3 dB
(15.153)

Equation (15.153) is plotted in Figure 15.40 as the dotted
theoretical curve for various OBO levels based on the SSPA
characteristics described in Figures 15.38 and 15.39. The
simulated intermodulation distortion discussed in Sections
15.13 and 15.14 is evaluated using a slightly different SSPA
model and the theoretical and simulated intermodulation dis-
tortion are also shown in Figure 15.40 as the solid curve and
the circled data points, respectively. Therefore, Figure 15.39
and Equation (15.153) serve as a general description for the
evaluation of intermodulation distortion.

15.12.2 TWTA with Gain Compensated Response

The TWTA often use gain and phases compensation circuits
to extend the linear range of the device. The resulting gain
response rises to a slight peak before decreasing monotoni-
cally. The goal is to extend the 1 dB gain compression point
and thereby extend the linear range. The gain compensated
curve-fit response for a TWTA is expressed as

Vpo 1 04172Vpi + 116 862V3
pi−53103 4V5

pi (15.154)

and the phase transfer function is approximated as

θo 33 5914Vpi + 7009 96V3
pi−340831V

5
pi (15.155)

It is left as an exercise (see Problem 13) to plot these
responses and determine the peak input and output voltages
that correspond to the 1 dB gain compression point.
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15.13 ESTABLISHING SIGNAL LEVELS FOR
SIMULATION MODELING

Consider the soft limiter modeled by curve fitting a fifth-
order polynomial to the measured AM-AM gain characteris-
tic of a nonlinear device. For this example, the polynomial
coefficients are as follows: Cm = (0.0, 0.687834, 6.070865,
−190.532776, 2729.8845, −8057.7788) and the peak output
voltage (Vpo) is expressed in terms of the peak input voltage
(Vpi) as

Vpo =
5

m = 0

CmV
m
pi (15.156)

This voltage gain characteristic is shown in Figure 15.41.
The magnitude of the voltage levels and the limiter gain are
not important for the purpose simulation. However, it is
important to map the voltage level of the composite input sig-
nal to the specified operating range of the nonlinear model
and, in turn, to map the limiter output level back to the levels
used in the simulation program. The importance of the input
mapping is to ensure that the signal is operating at the input
level corresponding to a specified IBO. Similarly the impor-
tance of the output mapping is to ensure that the limiter output
is mapped back to the expected simulation level. This proce-
dure allows for the addition of postlimiter noise based on the
known signal power level. Throughout this section the focus
is on the modeling of a HPA for use in a performance simu-
lation program with an emphasis placed on the HPA nonlin-
earity. In this regard, the HPA gain is only used to establish
the received signal-to-noise ratio specified in the simulation
program.

Before establishing the mapping, the operating point
through the limiter must be identified. Referring to
Figure 15.41, the maximum output is denoted Vpo(max) =

0.03055 mV and the corresponding maximum input is
Vpi(max) = 0.08 mV. The output operating point (Vpo) is
defined in terms of the output power backoff relative to
Vpo(max) and the corresponding input operating point is
Vpi. The OBO in decibels is: OBO(dB) = 20log(Vpo(max)/
Vpo) and Vpi is determined as the inverse of the polynomial
expression in (15.156). The voltages Vpi and Vpo apply to
the single-carrier operation discussed in the following
section and the voltages Vpi(no) and Vpo(no) apply to the mul-
tiple-carrier operation discussed in Section 15.13.2.

15.13.1 Single-Carrier Simulations

With a single carrier per channel (SCPC) simulation the lim-
iter may occur in the transmitter HPA of a single-channel-
modulated waveform or with multiple data channels that
are time division multiplexed (TDM) onto a single carrier.
The SCPC waveform also applies to a satellite HPA; how-
ever, the satellite often combines many carriers to form a
FDM downlink.

Consider the SCPC-modulated waveform is expressed as

s t =Vsim t cos ωct + θ t (15.157)

The HPA or limiter operating points are characterized by
(Vpi, Vpo) and the mapping from (and to) the simulation signal
levels is determined as shown in Figure 15.42. The limiter
operating points are determined using the maximum peak
output voltage of the limiter Vpo(max) and a specified
OBO level such that

Vpo =Vpo max 10− OBO dB 20 (15.158)

The corresponding input Vpi is determined using the
inverse of the polynomial expression of the limiter transfer
function as indicated in Figure 15.41.

With the modulation function m(t) normalized to result in
a unit power level, the power of the simulated waveform is
simply the power in the carrier signal with peak voltage
Vsi, that is,

Psi =
V2
si

2
(15.159)
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FIGURE 15.41 Soft limiter voltage gain characteristic.
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The mapping to the limiter input is determined by the volt-
age gain, expressed as,

Gvi =
Pi

Psi
=
Vpi

Vsi
(15.160)

Similarly, the output of the limiter is mapped back to the
simulation signal level using the voltage gain

Gvo =
Pso

Po
=
Vso

Vpo

(15.161)

It is convenient in the simulation to let the input and output
signal levels be equal so that Pso = Psi. That is, when the lim-
iter is not used, the HPA appears as an ideal unit gain ampli-
fier. Neglecting the various propagation and channel
distortion losses, the received signal-to-noise ratio (γb) is
established at the limiter output and the received noise power
is computed as

σ2n =
V2
so

2γb
(15.162)

15.13.2 Multiple Carrier Simulations

Multiple carrier simulations will occur in the transmitter HPA
when several modulated carriers are combined at the IF to
form a FDM waveform; this is also typical of multichannel
satellite repeater downlinks. In these cases, the simulation
is generally focusing on the performance of a particular car-
rier or signal and the limiter operating point must be estab-
lished for the signal of interest.

Consider the composite signal described as

s t =
n

s t;n (15.163)

where

s t;n =Vsi n m t;n cos ωc n t + θ t;n (15.164)

Considering s(t;no) to be the desired signal with the mod-
ulation term m(t;no) normalized to result in unit power, the
desired signal power is then the carrier power

Psi no =
V2
si no
2

(15.165)

The limiter operating point Vpi,Vpo for the composite

signal is established as described earlier with the input power
given by

Psi =
V2
si

2
=
1
2 n

V2
si n (15.166)

However, the operating point for the desired signal is

Vpi no ,Vpo no so the input signal mapping to the limiter

is determined by the voltage gain

Gvi =
Pi no
Psi

=
Vpi no

n
V2
si n

=
VpiGvn

n
V2
si n

(15.167)

where the voltage gain is

Gvn =
Vpi no
Vpi

(15.168)

Equation (15.168) maps the limiter composite input signal
to the desired signal as indicated in Figure 15.41. The limiter
output is mapped back to the simulation signal levels using
the voltage gain

Gvo =
Pso

Po no
=

Vso

Vpo no
(15.169)

where the desired output signal voltage Vpo(no) is determined
directly from the limiter transfer function using the input volt-
age Vpi(no). In this case, the signal-to-noise ratio (γb) for the
desired signal is established at the limiter output using the
noise power

σ2n =
V2
so

2γb
(15.170)

where

Vso =GvoVpo no (15.171)

The previous steps, required to setup and initialize the lim-
iter processing, are summarized as follows:

• Given Vpo(max) determine the composite signal operat-
ing point Vpo at the limiter output using the speci-
fied OBO

• Determine the output voltage gain Gvo that maps Vpo to
the simulation voltage Vso

• For single-carrier operation, compute the noise power
σ2n for the specified signal-to-noise ratio γb

• Determine the corresponding composite signal operat-
ing point Vpi at the limiter input

• Determine the input voltage gain Gvi that maps the sim-
ulation voltage Vsi to the limiter operating point Vpi
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For multiple carriers, the following additional steps are
required:

• Determine the voltage gain Gvn between the signal of
interest Vsi(no) and the composite signal Vsi

• Using Gvn and Vpi determine the limiter input operating
point Vpi no for the desired signal

• Determine the limiter output voltage Vpo no corre-
sponding to the input Vpi no

The final step involves computing the noise power using
either (15.162) or (15.170) for a desired signal-to-noise
ratio γb.

15.14 CASE STUDY: PERFORMANCE
SIMULATION OF SRRC-QPSK WITH SSPA
NONLINEARITY

In this case study, three major impacts of the HPA on the sys-
tem performance are examined and related to the OBO of an
SSPA.The three systemperformancemeasures are intermodu-
lation (IM) noise, spectrum degradation, and ACI. The two-
tone third and fifth-order intermodulation distortion terms
are examined for variousOBOconditions using computer sim-
ulation of the SSPA discussed in Section 15.12. The goal is to
achieve the theoretical intermodulation IM performance
shown as the solid curve in Figure 15.40. The circled data
points in Figure 15.40 are based on the simulated IM perfor-
mance and are used in this section. Following the description
of the IM noise impact on the systemperformance, the spectral
degradationof the spectral root-raised-cosine offset quadrature
phase shift keying (SRRC-QPSK) modulated waveform is
examined for various amounts of OBO. In the concluding

section of this case study, the bit-error performance is exam-
ined for the output power backoff with and without adjacent
channels. The results suggest that, to avoid significantly
degrading the performance due to the ACI with Nyquist chan-
nel spacing, the OBO should be greater than 6 dB.

The mapping of the simulated signal levels into, and out
of, the SSPA device is based on the descriptions given in
Section 15.13. The waveforms used in examining the IM per-
formance are based on SRRC-QPSK modulation with an
excess bandwidth of (1 + α) where α is the SRRC excess
bandwidth parameter; α = 0.4 is used in these evaluations.
The simulation program generates the desired modulated
waveform at baseband with SRRC-QPSK modulated upper
and lower adjacent channels. The data rates, amplitude levels,
carrier frequencies, and excess bandwidth for each of the
channels are specified with the sampling frequency computed
to satisfy the Nyquist criterion for the composite FDMA
waveform. The spectrum plots in Figure 15.43 are examples
of the three channels operating with symmetrical and asym-
metrical adjacent channels. The asymmetrical adjacent chan-
nel spectrums, shown in Figure 15.43b, operate with symbol
rates Rs four times the desired channel symbol rate of Rs. In
this case, the adjacent channel levels are decreased by
10log10 Rs Rs = 6 dB; although the level can be arbitrarily
specified in the simulation.

The fundamentals of the signal processing are as follows:
The desired (or center) channel waveform is centered fc =
0 Hz and is sampled using 128 samples per symbol, so the
Nyquist sampling frequency is fs = 128Rs. The adjacent chan-
nel carrier frequencies are located at

fc =
1+ α Rs + Rs

2
(15.172)

and the maximum occupied bandwidth is
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FIGURE 15.43 Spectrum of SRRC-QPSK waveforms (linear PA).
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fmax = 1+ α
Rs

2
+Rmax +Δfmax (15.173)

where Rmax is the maximum of the upper and lower adjacent
channel symbol rates and Δfmax is used, if necessary, to pro-
vide additional frequency separation to improve the system
performance. Based on these conditions the Nyquist sam-
pling criterion requires that fs ≥ 2fmax. The SRRC waveform
is generated using a uniformly weighed span of 13 symbols
with 6 leading and trailing symbols. On the other hand, the
receiver matched filter is based on a total span of seven sym-
bols; this results in a theoretical detection loss of less than
0.01 dB.

15.14.1 Simulation of Third- and Fifth-Order
Intermodulation Distortions Terms

The two-tone intermodulation noise terms, resulting from the
SSPA nonlinearity as characterized by (15.151), are evalu-
ated as a function of OBO using the SSPA computer model-
ing described in Section 15.13. The third- and fifth-order
intermodulation noise terms are evaluated by applying two
CW signals to the SSPA and examining the spectrum of
the SSPA output. The simulation uses a received rms carrier
signal level of 1 V that is mapped through the nonlinearity
and back to the simulation level of 1 V rms.

The simulation uses a rectangular windowed SRRC fre-
quency response with the QPSK-modulated waveform oper-
ating at a baseband data rate of 4.8 K symbols per second
with the adjacent channel at 19.2 Ksps. The adjacent channel
is located at a positive carrier frequency in accordance with
(15.172) using α = 0.4. The received CW tones for the inter-
modulation evaluation are obtained by using mark-hold data

on the I/Q rails. The intermodulation tones are clearly dis-
cernable in the inherently harmonic-filled spectrum.

The spectrums are generated using an equivalent of Ns =
128 samples per symbol and averaging 20 spectrums with a
cosine windowed fast Fourier transform (FFT) size of Nfft =
16,384 samples; the corresponding frequency resolution is
0.0375 Hz. The results depicted in Figure 15.44 are obtained
using a linear PA and show the spectral content using the
mark-hold SRRC-QPSKwaveform to generate the two tones.
Figure 15.45 shows the resulting two-tone intermodulation
performance for various OBO conditions; these results are
plotted as the circled data points in Figure 15.40.

15.14.2 Spectrum Degradation with SSPA OBO

The spectrum of the SRRC-QPSK-modulated waveform is
shown in Figure 15.46 for various OBO levels; the linear
channel spectrum corresponds to an essentially infinite
OBO condition. The spectrum results apply to an arbitrary
symbol rate as suggested by the normalized abscissa. The
OBO is defined relative to the 1 dB gain compression point
of the SSPA and the 0 dB backoff case results in the peak
carrier voltage being compressed by 1 dB with the average
carrier voltage being 3 dB below the peak level. Therefore,
a −3 dB OBO results in the average carrier voltage being
compressed by 1 dB; this causes considerable compressing
or clipping of the peak voltage. The increase in the modula-
tion one-sided spectral bandwidth beyond the specified limit
of 1.4Rs/2 (α = 0.4) is influenced by the SRRC modulator
weighted window duration that spans 12 symbols as dis-
cussed in Section 4.4.4.1. The impact of the OBO level on
the performance with the adjacent channels is examined in
the following section; however, it appears as though the
OBO should be greater than 6 dB to preserve the excellent
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Nyquist bandwidth properties of the SRRC-modulated
waveform.

15.14.3 Bit-Error Performance with OBO and
Adjacent Channels

In the final section of this case study, the bit-error performance
of a SRRC-BPSK-modulated waveform is examined with and
without adjacent channels. In this case the desired channel is
centered at baseband with a symbol rate of Rs = 32 ksps and
the adjacent channels are centered above and below the desired
channel in accordance with (15.172) using α = 0.4. Two adja-
cent channel symbol rate conditions are examined, one with
symmetrical adjacent channels with Rs =Rs = 32ksps and
the other with asymmetrical adjacent channels with
Rs = 4Rs = 128ksps. The Monte Carlo simulations are based
on using 100K symbols for each signal-to-noise ratio ≤6 dB,
otherwise, 1M symbols for each signal-to-noise ratio is used.
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On occasions, when the Monte Carlo results appear inconsist-
ent with the expected performance curve, 10M symbols are
used to establish the data point.

The performance in Figure 15.47 corresponds to the desired
channel bit-error performance without the adjacent channels.
The dotted performance curve represents ideal antipodal sig-
naling and is shown as a reference point when using a linear
PA; the performance with 12 dB OBO is nearly the same as
the ideal curve. The performance with OBO = 0 dB is only
degraded by 0.2 dB at Pbe = 10−5. The severe limiting with
OBO = −3 dB is very much like that of an ideal hard limiter,
in that, theSRRCAMisessentially removed, resulting in a per-
formance degradation of about 0.9 dB.

In the performance evaluation with adjacent channels,
each channel is generated using a separate transmitter with
identical SSPAs and the channels are combined to form a
FDMA channel; the SSPAs operate with identical OBO con-
ditions. With this understanding, Figure 15.48 shows the per-
formance with symmetrical adjacent channels with the 12 dB
OBO condition having a negligible effect on the desired
channel performance. The degradations with 0 and −3 dB
OBO are about 0.5 and 1.8 dB, respectively.

The performance with asymmetrical adjacent channels
with Rs = 4Rs is evaluated under the conditions of constant
Eb/No and C/No. If the higher data rate channels are
modulated on a carrier with the same power as the desired
channel, then the channel spectrum will be as shown in
Figure 15.43 with the adjacent channel spectral levels
10log10 Rs Rs = 6dB lower than the desired channel spec-
tral level. This corresponds to the constant C/No case that
results in 6 dB less Eb/No than is available for the desired
channel. This results in degradation of the bit-error perfor-
mance with low levels of OBO, although, the impact on
the desired channel performance is less severe. On the other

hand, if the adjacent channel carriers are increased by
10log10 Rs Rs = 6dB, then the spectrums in Figure 15.43
all have the same level and correspond to the constant Eb/
No case. The increase in the carrier power results in a greater
loss in the desired channel performance with low levels of
OBO. The performance results for these two cases are shown
in Figure 15.49 as the dashed and solid curves corresponding
to the constant Eb/No and C/No cases, respectively. The per-
formance difference in the degradations is about 2 and 1 dB
for OBO = −3 and 0 dB, respectively, and is negligible for an
OBO of 12 dB. Furthermore, the absolute performance
loss decreases with increasing OBO and is negligible for
OBO = 12 dB. The best performance for all channels is
obtained when operating in the linear range of the SSPA
under the constant Eb/No condition. The performance
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degradation can also be reduced, for a given OBO, by
increasing the channel separation by Δfmax as indicated in
(15.173). Therefore, there is a trade-off between power and
bandwidth.

15.15 LINK BUDGET ANALYSIS

In this concluding section of Chapter 15 the previous results
are brought into focus by completing a link budget to deter-
mine if the modem and transceiver designs are capable of
establishing or closing the link in view of the system para-
meters and the communication channel characteristics. The
examples in this section involve the link budget for a commu-
nication link between a ground terminal and a satellite and
Table 15.8 lists the ground station’s location, the satellite’s
orbit, and location in the orbit at an arbitrary initial time.
The ground station and the satellite geometry change
throughout the satellite orbit period in consideration of the
rotating Earth and orbit dynamics as discussed in
Chapter 16. The examples are specialized for an uplink signal
that is received by the satellite.

The various parameters that makeup the link budget focus
on the communication range equation as discussed in the
introduction to this chapter. Since an ideal demodulator is
used Table 15.9 focuses on the transceiver and channel char-
acteristics; however, to satisfy the requirements of the entire
communication system, the modem characteristics shown in
Tables 15.10 and 15.11 must be included as part of the link
budget. Identifying the modem characteristics separately
from those of the transceiver and channel is convenient
because the interface between the receiver and demodulator
is often at an IF, as discussed in Chapter 2, and these subsys-
tems are generally designed, built, and tested independently
before the final system integration. In this regard,
Tables 15.10 and 15.11 form the basis of an independent
modem specification. The principal modem parameters

TABLE 15.8 Example Ground Terminal and Satellite
Parameters

Parameter Value Units Comments

Satellite
Longitude ascending
node

180 Degrees Input (east is positive)

Argument of perigee 0 Degrees Input (north is positive)
Satellite orbit angle — Degrees Computed
Inclination 7 Degrees Input
Eccentricity 0.003 — Input
Ground Terminal Location
Latitude 33 Degrees Input (north is positive)
Longitude −120 Degrees Input (east is positive)
Elevation 0 Meters Input

TABLE 15.9 Satellite System Link Budget (Ideal
Demodulator)

Parameter Value Units Comments

Data rate Rb 19.2 kbps Input
Uplink frequency 2.0 GHz Input
Link margin 2.0 dB Input
HPA power 4.6 dBW Input
Antenna feed loss 0.0 dB Input
Antenna gain 10.0 dB Input

Reflector loss 0.0 dB Input
Radome loss 0.0 dB Input
Wet antenna loss 0.0 dB Input

Polarization — — Input (LVP:
AR =∞)

EIRP 14.6 dBW Computed
Channel

Path loss 0.214 dB Computed (less Fs

loss)
Atmosphere 0.014 dB Input
Rain 0.2 dB Input
Antenna tracking 0.0 dB Input
Multipath 0.0 dB Inputa

Scintillation 0.0 dB Inputa

Polarization rotation 0.0 Degrees Input
Sky temperature 20.0 K Inputb

Receiver
Antenna gain 30.0 dBi Input

Radome loss 0.0 dB Input
Temperature 290 K Inputb

Reflector loss 0.2 dB Input
Temperature 290 K Inputb

Polarization — RHC Input
Axial ratio 0.0 dB Input

Polarization loss 3.0 dB Input RHC: AR =
0 dB

Antenna system
temperature

506.8 K Computed

Receiver G/T 3.75 dB/ K Input
Feed loss 0.0 dB Input

Temperature 290 K Inputb

Rx noise figure — dB Inputc

Receiver system
temperature

506.8 K Computed

Receiver C/No 50.8 dB-Hz Computed
Rx phase noise loss 0.2 dB Input
Rx ISI/IF filter loss 0.1 dB Input

Channel bandwidth W 4 MHz Input
Receiver/user bandwidth 30.0 kHz Input
Received Eb/No (req’d) 8.0 dB Computed
Specified Eb/No 6.0 dB Input
Margin 2.0 dB Computed

aBased on waveform and demodulator algorithm analysis and simulation.
bThese parameters are used to compute the system noise temperatures when
antenna gain and G/T is not provided as input.
cThe receiver noise figure is not needed when antenna gain and G/T is pro-
vided, otherwise, it is used as the starting point for computing the system
noise temperatures.
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needed to establish the link budget are the required signal-to-
noise ratio (Eb/No) and the user data rate (Rb). Eb/No is the
required signal-to-noise ratio, measured in a bandwidth equal
to Rb and is selected to achieve a specified bit-error probabil-
ity based on the waveform modulation. The required or spe-
cified carrier-to-noise density ratio is computed as

C

No reqd

=
Eb

No
Rb
reqd

=
Eb

No
Rb

theory
LM (15.174)

Where LM ≥ 1 is the selected link margin and is a significant
specification. The link is established, or closed, when the
received C/No satisfies the condition

C

No rec

≥
C

No reqd

(15.175)

The channel bandwidth W must support the transmitted
symbol rate which may be significantly wider than the data
rate with FEC coding and spread-spectrum processing. Dur-
ing acquisition the channel bandwidth may be selected to
support the frequency uncertainty range of the received
signal.

The modem link budget typically focuses on the message
detection requirements as shown in Table 15.10. However,
an equally important consideration is the modem acquisition
link budget shown in Table 15.11. In both of these modem link
budgets, the selection of the link margins is established; how-
ever, the theoretical Eb/No specification for acquisition may be
selected one or two decibels lower than for data detection; an
alternatemethod is to choose the acquisition linkmargin some-
what less than that selected for the modem detection budget.*

The acquisition processing must detect the presence of the
received signal and estimate the necessary parameters with
sufficient accuracy to provide for the message detection.
The link acquisition budget requirements include scallop
losses associated with antenna scanning, symbol time and
frequency uncertainties, and other modem-related losses as
shown in the acquisition loss budget. During the initial search
for signal detection, the carrier frequency and phase are
unknown and noncoherent integration may be required to
establish an adequate signal-to-noise ratio tomeet the specified
correct acquisition probability.

The channel scintillation and fading losses are influenced
by the waveform design and the demodulator algorithms used
to mitigate these losses. Therefore, although these losses are
included as channel loss, they are established by analysis and
simulation of the degradation in the bit-error performance for
the selected waveform. For example, the channel may result
in a scintillation or multipath fading loss of 10–20 dB; how-
ever, properly designed and analyzed waveforms, using var-
ious combinations of FEC coding, data interleaving, and
frequency and spatial diversity, will very likely result in a loss
of 1–2 dB. Similarly, the receiver intersymbol interference
(ISI) loss is evaluated based on the waveform modulation
and is typically determined by evaluation of the sensitivity

TABLE 15.10 Modem Detection Budget

Parameter Value Units Comments

Modulation 1 Bits/symbol BPSK
Data rate Rb 19.2 kbps Specified
Theoretical Eb/No

a,b 2 dB Input
Bandwidth Bcb

b 57.6 kHz Baseband
Link margin 1 dB Input
Implementation loss 1.4 dB Computed
Demod phase noise 0.2 dB Input
PLL tracking 0.4 dB Input
Symbol tracking 0.2 dB Input
ACI/CCI 0.2 dB Input
MF detection 0.1 dB Input
Quantization 0.1 dB Input
Signal processing 0.2 dB Input

Modem spec. Eb/No 4.4 dB Computed
Modem spec. C/No|reqd 47.2 dB-Hz Computed

aAt Pbe = 10−5.
bRate 1/3 turbo code.

TABLE 15.11 Modem Acquisition Budget

Parameter Value Units Comments

Data rate Rb 19.2 kbps Specified
Theoretical Ecb/No

a −2.8 dB Input
Bandwidth Bcb

b 57.6 kHz Baseband
Link margin 0 dB Input
Implementation lossc 2.6 dB Computed

Channel fading 0.4 dB Input
ACI/CCI 0.2 dB Input
Interference 0.2 dB Input
Antenna scalloping
Frequency scalloping 0.25 dB Input
Time scalloping 0.25 dB Input
NonCoh integration 1.0 dB Input
Quantization 0.1 dB Input
Signal processing 0.2 dB Input

Acquisition spec. Pacq 0.95 — Probability
Modem spec. Ecb/No −0.2 dB Computed
Modem spec. C/No 47.4 dB-Hz Computed

aThis is 0.8 dB lower than detection budget.
bRate 1/3 turbo code.
cNoncoherent integration losses are overcome with increased acquisi-
tion time.

*The intent is that the acquisition processing should be more robust than the
data detection processing; however, this may occur naturally due to the
uniqueness of an acquisition preamble. As long as the specified correct
and missed acquisition probabilities are satisfied the link will behave as
designed. This is the major responsibility during the design and simulation
of the demodulator.

LINK BUDGET ANALYSIS 597



of the modulated waveform to the filter bandwidth, amplitude
ripple, and phase linearity. The performance loss of ACI and
co-channel interference (CCI) is usually determined by anal-
ysis and verified by simulation of the improvements attaina-
ble through the use of adaptive canceling algorithms.

ACRONYMS

ACI Adjacent channel interference
ADC Analog-to-digital converter
AM Amplitude modulation
AM-
AM

Amplitude modulation to amplitude modulation
(conversion)

AM-
PM

Amplitude modulation to phase modulation
(conversion)

AR Axial ratio
BPSK Binary phase shift keying
C/I Carrier-to-intermodulation noise (ratio)
C/Io Carrier-to-intermodulation noise density (ratio)
CCI Co-channel interference
CCIR Consultative Committee on International Radio
CP Circular polarized (polarization)
CW Continuous wave
EIRP Effective isotropic radiated power
EP Elliptical polarization
ERP Effective radiated power
FDM Frequency division multiplex
FDMA Frequency division multiple access
FEC Forward error correction
FFT Fast Fourier transform
G/T Gain-temperature ratio (receive antenna)
HP Horizontal polarized (polarization)
HPA High-power amplifier
I&D Integrate-and-dump
I/Q In-phase and quadrature (rails)
IBO Input backoff
IF Intermediate frequency
IM Intermodulation
IMP Intermodulation product
ISI Intersymbol interference
LEO Low Earth orbit (satellite)
LHC Left-hand circular
LHCP Left-hand circular polarized (or polarization)
LNA Low-noise amplifier
LOS Line of sight
LP Linear polarization
MPSK Multiphase shift keying
OBO Output backoff
OFDM Orthogonal frequency division multiplex
OQPSK Offset quadrature phase shift keying
PA Power amplifier
PCT Percent-of-time
PLL Phaselock loop

PM Phase modulation
PSD Power spectral density
QAM Quadrature amplitude modulation
QPSK Quadrature phase shift keying
RF Radio frequency
RHC Right-hand circular
RHCP Right-hand circular polarized (polarization)
SAM Simple attenuation model
SCPC Single carrier per channel
SRRC Spectral root-raised-cosine
SSPA Solid-state power amplifier
SWR Standing wave ratio
TDM Time division multiplex
TWT Traveling wave tube
TWTA Traveling wave tube amplifier
VP Vertical polarized
VSWR Voltage standing wave ratio

PROBLEMS

1. Given a receiver antenna with a physical temperature of
Ta = 15 C, Tain = 0, and a gain ofG = 50 dB. The antenna
is connected to a receiver (with a noise figure Fn = 6 dB)
through a lossy 1 dB cable at a physical temperature of
15 C. Determine the antenna G/T ratio in dB/ K. Repeat
this problem using Tain = 1000 K and, using (15.13),
determine the increase in the received signal-to-noise
ratio required to maintain system performance.

2. Derive the expression of the output temperature Tout for a
cascade of two noisy filters shown in the following fig-
ure. Use the indicated losses and physical temperatures
of the noisy devices; all of the temperatures are in K.
With Tin = 0, the effective input temperature of the two
cascaded devices is defined as T =L1L2Tout. Evaluate
the effective input temperature of the cascaded devices
and express the result in terms of the effective tempera-
tures T1 and T2 of the two equivalent noiseless devices.

Cascade of two noisy filters.

ToutTin Filter 1
(L1, Tp1)

Filter 2
(L2, Tp2)

3. Write a general simulation program for the example
in Section 15.2.3.1 to evaluate the antenna G/T as
expressed in (15.56). The program is to provide for
inputting all of the parameter values and outputting
data files of Ta, Trs, Fns, and G/T(dB) for 0 ≤ TSun ≤
100,000 K in steps of 500 K; create the plots parametri-
cally with Ga and θB. The decreasing Sun temperatures
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reflect the percentage of the Sun’s area in the antenna
beamwidth for a given ratio ΩSun/Ωa.

4. Referring to the antenna gain (G) as expressed in
Equation 15.3, derive expressions for: (A) the diameter
D of a circular (dish) antenna as a function of the gain
G; (B) the 3-dB beamwidth θB for a uniformly weighted
circular aperture as a function of G; (C) plot D in meters
and θB in degrees as a function of the gain G in dB for
carrier frequencies of 100 and 500MHz.

5. Using the general expression for the elliptically polar-
ized wave given by (15.89), derive the expression for
Ex as a function of Ey and the parameters Mx and My

for the LP, that is, for δ = 0 and π.

6. For ideally polarized received waves and antennas with
the indicated polarizations, determine the polarization
mismatch factor and the polarization loss, expressed in
decibels, for the following cases:

a. LHCP received wave and RHCP receiver antenna.

b. RHCP received wave and RHCP receiver antenna.

c. LHCP received wave and LP receiver antenna.

d. LP received wave and LP receiver antenna.

e. Elliptically polarized received wave and LP receiver
antenna.

7. Develop a computer program and evaluate the cross-
polarization discrimination, xpd, and the isolation Iisol
for a nonideal VP antenna using a linearly polarized
received wave with a VP copolarization state. This
involves evaluating (15.100) using (15.101) and
(15.95). Start by generating the ideal xpd vs. τw curve
using ARs of r = 104 for the received wave and ideal
VP antenna. Then evaluate the nonideal antenna isola-
tion under the four conditions: rax = rac = 300, 100, 30,
and 10 for an ideal received wave using rw = rw = 104;
these ARs are linear values, not in dB. Plot the Iisol vs.
xpd in decibels with each axis ranging from 0 to 50 dB.

Hints: For VP polarization the antenna and the VP
copolarized wave the tilt angles are τw = τac = 90 so
τwo = τax = 0 . Also, in generating the ideal xpd curve use
tilt angles τw = 0(0.125)180 , that is, 0 to 180 in incre-
ments of 0.125 ; this will result in a good quality plot.

8. Develop a computer program and evaluate the cross-
polarization discrimination, xpd, for an ideal VP antenna
using an ideal linearly polarized received wave with a VP
copolarization state under the conditions described in
Problem 7. (This part is complete if Problem 7 was
examined.) Now develop the expression for the theoret-
ical xpd for the same VP wave and antenna and compare
with the earlier computer-generated xpd by plotting both
curves on the same graph.

9. Derive the expression for the noise figure of a cascade of
N linear amplifiers with individual noise figures Fni,
gains Gi, and effective temperatures Ti, i = 1, …, N.

10. Derive the expression for the effective noise temperature
of a cascade of N lossless attenuators each having phys-
ical temperature Tpi and loss Li, i = 1, …, N.

11. An antenna with effective temperature Ta is covered by a
radome with a loss Lrad and effective temperature Trad.
The antenna output is connected to an antenna feed with
loss Lrfd and effective temperature Trfd. Express the
effective temperature of a single equivalent device, with
loss L = Lrad Lrfd, in terms of the temperatures: Trad, Ta,
and Trfd. Hint: Compute Tc in the following figure.

Trad Ta Tout

Lrad Lrfd

Tc Tout

Lc

Antenna
configuration

Equivalent 
configuration

12. Consider that the antenna feed, described in Problem 11,
is connected to the input of an LNA with a receiver sys-
tem noise temperature Trs. If the antenna gain is 60 dB
derive the expression for the antenna system temperature
and the antenna G/T ratio and indicate the units for each
result.

13. For the gain compensated TWTA described in
Section 15.12.2, plot the principal signal linear response
and the third- and fifth-order intermodulation responses.
Then identify the intercept points IP3 and IP5 and deter-
mine the intermodulation distortion terms IM3 and
IM5 for two values of the OBO. Express all results in
decibels.
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16
SATELLITE ORBITS

16.1 INTRODUCTION

The analysis and characterization of satellite orbits consid-
ered in this chapter are based entirely on Newton’s laws of
motion, his law of universal gravitation, and Kepler’s laws
of planetary motion. Briefly stated, Newton’s laws of motion
are as follows: a body will remain in its present state until
influenced by an outside force; the rate of change of angular
momentum of a body is proportional to and in the direction of
an applied force; and every action has an equal and opposite
reaction. Newton’s law of universal gravitation states that the
force of attraction between two bodies is proportional to
the product of their masses and inversely proportional
to the square of the distance between them. Similarly,
Kepler’s laws are summarized as follows: the planetary orbit
is an ellipse with the Sun at one focus; for all of the planets,
the line between the planet and the Sun sweeps through equal
areas in equal time intervals; and the square of the orbital
period is proportional to the cube of the mean distance to
the Sun.

This chapter applies these laws to the Earth’s elliptical sat-
ellite orbitswith theEarth at one focus; thecircular orbit beinga
special case. The emphasis is on characterizing communica-
tion links between the Earth and various satellites and cross-
links between satellites. In addition to elliptical satellite orbits,
the results also apply to ballistic missile trajectories. Parabolic
and hyperbolic orbits are involved more with interplanetary
travel and transfer betweenorbits asmaybe required, for exam-
ple, to establish an elliptical or circular Earth orbit. Although
these are important transitional orbit maneuvers, requiring

communication links tobe established andmaintained, the sys-
tem requirements and their impact on the communication links
are significantly different from the established Earth satellite
orbits and ballistic missile trajectories; therefore, parabolic
and hyperbolic orbits are not considered. Furthermore, the
gravitational attraction of the Moon and Sun and neighboring
planets, the influence of the Earth’s magnetic field and interior
composition, solar radiation, charged and uncharged particles,
and atmospheric drag are all ignored; however, these subjects
are addressed by Roy [1].

In this chapter, the range, range-rate (velocity), and accel-
eration along the line of sight (LOS) between a satellite and
ground station are evaluated and, based on the results, the
range, Doppler, and Doppler rate are characterized. The fol-
lowing analysis focuses on Earth satellites and therefore
applies to elliptical orbits defined in terms of the six funda-
mental orbital parameters (Ω, i,ω, T, ε, and τ) as shown in
Figure 16.1. Alternative sets of orbital parameters can be cho-
sen with a straightforward rearrangement of the equations;
for example, on occasions it is more convenient to replace
the orbit period (T) with the semimajor axis length (a) of
the ellipse. The development of the relationships discussed
in this chapter draws upon the works of Roy [1] and Bate,
Mueller, and White [2]. Furthermore, the analysis assumes
many ideal conditions embodied in the basic assumptions:
two-body conditions, point masses, and free space. The first
assumption ignores the influences of neighboring bodies like
the Sun and Moon and other satellites. The second assump-
tion ignores the influence on the orbit trajectories of the
Earth’s interior and nonspherical shape. The third assumption
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ignores the influence of atmospheric drag on the satellite tra-
jectory. The elliptical shape and rotation of the Earth is, how-
ever, considered in determining the range and range-rate
between satellites and the ground stations. Although the fol-
lowing analysis focuses on establishing the orbit for a single
satellite, many applications involve several orbital planes
with one or more satellites in each plane. In these cases, it
is assumed that the mutual gravitational forces between the
satellites is negligible and communication cross-links are
used for relaying information from various Earth locations
for which there is no direct LOS link. Roy [3] discusses
the influence of the many-body problem when the mutual
gravitational forces are not negligible, for example, in the
case of an artificial satellite transitioning from an Earth-to-
Moon orbit.

The analysis that follows focuses on Earth satellites and
the xy-axes of the reference coordinates lie in the plane of
the celestial equator, that is, the projection of the Earth’s
equator to the great circle on the celestial sphere, and the pos-
itive z-axis points northward through the North Pole. The
positive x-axis passes through the vernal equinox also
referred to as the First Point of Aries as shown in
Figure 16.1. The satellite orbit plane is an ellipse with the
focus located at the center of mass of the Earth. Table 16.1
provides a convenient reference for various constants and
parameters used in this chapter.

The distinction between the sidereal and solar day is based
on the celestial point of reference that is used to establish the
time interval between two successive reference-point cross-
ings of the observer’s meridian. The sidereal day uses a dis-
tant celestial star and the solar day uses the Sun. The period of
a satellite in a circular orbit in the plane of the Earth’s equator
is approximated as [4]

T 2π
a3

u
1−

3
4

Req

a

2

J2 circular equatorial orbit

2π
a3

u
seconds

(16.1)

where a = Req + A and J2 = 1082.86e−6 ± 10−7 is a constant
that accounts for the second-order effect of the Earth’s asym-
metry between the Northern and Southern Hemispheres. The
term inside the square bracket of (16.1) is approximately
unity so the second approximation is typically used even
for satellite orbit altitudes as low as A = 180 km. Using the
equatorial Earth radius and satellite altitudes listed in
Table 16.1, the satellite orbit period, based on a sidereal
day, is about 4.023 min shorter than that of the 24 h solar day.

For an elliptical orbit with an arbitrary inclination, the
orbit period is approximated as [4]

T 2π
r3

u
1−

Req

r

2 3
2
J2 +

ω2
eR

3
eq

2GM

1 2

elliptical orbit

2π
r3

u
seconds

(16.2)

where, referring ahead to Figure 16.2 and (16.8), the magni-
tude of the satellite radius vector at perigee,* corresponding

Vernal

equinox 

Ω

Ω : Longitude of 

      ascending node

Perigee 

Celestial 

equator 

x0

z z0 y0

y 

i

x 

Satellite 

orbit plane 

x, y, z : Reference plane 

coordinates 
(x0, y0, z0) : Orbit plane 

coordinates i  : Orbit plane inclination

ω

ω : Argument of perigee

FIGURE 16.1 Satellite orbit plane, reference coordinates, and parameter definitions.

*When referring to Earth-satellite (Sun–Moon) orbits, perigee (perihelion)
and apogee (aphelion) refer to the orbits location nearest and farthest, respec-
tively, from the Earth (Sun).
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TABLE 16.1 Earth and Satellite Orbit Constants

Constant Value Description

Re 6,378.28 km Earth’s radius (average)
Req 6,378.145 km Earth’s radius (equator)
Rep 6,356.74 km Earth’s radius (polar)
εe 0.08183 Earth’s eccentricity
ε Selectable Orbit eccentricity
G 6.66560515 × 10−8

dyne-cm2/g
Constant of gravitation

Me 5.98 × 1027 g Mass of Earth
Ms Negligible Mass of satellite
u 398,603.188 km3/s2 Gravitational constant GM =G(Me +Ms) GMe

ωe π/1,800 rad/s Angular rotation of Earth
Ageosidereal 35,784.334 km Geostationary satellite altitude (sidereal day)
Rgeosidereal 42,162.479 km Radius of geostationary satellite (Req + Ageosidereal)
Ageosolar 35,863.047 km Geostationary satellite altitude (solar day)
Rgeosolar 42,241.192 km Radius of geostationary satellite (Req + Ageosolar)

E 

Perigee 

(t = ґ)

Satellite 

location 

Center of 

Earth 

y0

x0

r 
f 

Elliptical 
orbit 

Circumscribed 

circle

y0

x0

r f 

V 

𝜙

r 

Ar

Vny0

x0

f 

Vr

V = Vrur+Vnun  :  Velocity vector r  : Magnitude of satellite location vector 

Vr : Radial component of velocity f   : Satellite location angle (true anomaly) 

Vn : Normal component of velocity E  : Eccentric anomaly 

a  : Semi major axis of elliptical orbit 

a 

FIGURE 16.2 Satellite orbit, reference coordinates, and parameter definitions.
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to t = τ, is r = a 1−ε for which the second approximation in
(16.2) is expressed as

T 2π
a3 1−ε 3

u
elliptical orbit (16.3)

These considerations of the satellite orbit time lead to another
important distinction in the application of the satellite orbits
discussed in this chapter. The satellite orbit time is related to
the time starting at t = 0 corresponding to the geocentric lon-
gitude of the ascending node* as indicated in Figure 16.1.
This satisfies the objective of evaluating satellite communi-
cation systems and link performance. However, it does not
include the impact of the planets, the Moon, Sun, stars,
and other galactic noise sources as they would appear in
the antennas’ field of view (FOV) based on data from the
American Ephemeris and other almanacs. These effects,
however, can be artificially inserted in the FOV and the sys-
tem performance evaluated parametrically. The Satellite
Orbit Analysis Program (SOAP) [5] includes celestial back-
grounds in the FOV and other useful features for communi-
cation systems’ performance evaluation, including data files
and three-dimensional displays of the encounter throughout
the orbit period.

The satellite orbit is shown in Figure 16.2 with the coor-
dinate system and essential parameters appropriately defined.
The Earth is located at the focus point of the ellipse and the
satellite is located on the elliptical orbit at a distance r and the
angle f, called the true anomaly, as shown. The true anomaly
is determined with the aid of the eccentric anomaly, E, estab-
lished using the intersection of the circumscribed circle of
diameter 2a with the vertical line through the satellite loca-
tion and perpendicular to the x0-axis. The satellite velocity
vector, the normal or tangential velocity component, and
the radial velocity and acceleration components are shown
in the two detailed depictions.

In the following evaluations, the orbit eccentricity is
denoted as ε and the parameter u is defined as
u=G Me +Ms where G is the constant of gravitation and
Me and Ms are the masses of the Earth and satellite, respec-
tively. When ε < 1, the orbit is an ellipse as shown in
Figure 16.2, ε = 1 corresponds to a parabolic orbit and
ε > 1 corresponds to a hyperbolic orbit. This chapter focuses
exclusively on Earth satellites in elliptical orbits; however,
the performance of ballistic missile communication and
mono- and bi-static radar [6] systems has been examined
using elliptical and parabolic trajectories.

16.2 SATELLITE ORBITS

Based on the geometry in Figure 16.2, the position, velocity,
and acceleration of the satellites are evaluated using the
expression for the semimajor axis of the ellipse expressed as

a=
T

2π

2

u

1 3

km (16.4)

The mean angular velocity

n=
2π
T

=
u

a3
rad s (16.5)

is used to compute the mean anomaly as

M = n t−τ = 2π
t−τ

T
rad (16.6)

The mean anomaly is the orbital angle of the satellite from
perigee. For example, ifK satellites are spaced at equal angles
in the same orbit, then Mi = 2πi K: i = 0, 1,…, K − 1. The
eccentric anomaly, E, is determined as the solution to
Kepler’s equation expressed as the transcendental equation

E−εsin E =M = n t−τ rad (16.7)

The solution to Kepler’s equation is accomplished using
Newton’s rule [7], and the result is used to compute the mag-
nitude of the satellite location and velocity vectors as follows.
The magnitude of the location vector is

r = a 1−εcos E km (16.8)

and the true anomaly or satellite location angle is deter-
mined as

f = 2tan−1 1 + ε
1−ε

tan
E

2
rad (16.9)

These relationships are all that is necessary for locating the
satellite along the orbit path at any instant in time. Although
not explicitly required in the following analysis, the angle ϕ,
shown in Figure 16.2, is computed as

ϕ =
π

2
+ cos−1

a2 1−ε2

r 2a−r
= sin−1 a2 1−ε2

r 2a−r

(16.10)

The velocity vector, V=Vrur +Vnun, is tangent to the
orbit path and is characterized in terms of the velocity com-
ponents radial and normal to the satellite location vector.
These velocities are given by

Vr = r =
naε

1−ε2
sin f km s (16.11)

*In Figure 16.1, the ascending node is labeled the vernal equinox, also
referred to as the First Point of Aries. This is the point in the Earth’s orbit
nearest to the Sun. When referring to planetary orbits, this point is called
“perihelion.”
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and

Vn = rf = nr
a

r

2
1−ε2 km s (16.12)

Equation (16.12) uses the expression for the angular velocity
of the satellite location vector given by

f = n
a

r

2
1−ε2 rad s (16.13)

The magnitude of the velocity vector V = V is

V = u
2
r
−
1
a

km s (16.14)

Similarly, the components of the acceleration vector
A=Arur +Anun are evaluated as

Ar = r −rf
2
= −

u

r2

= −
G Me +Ms

r2
−
GMe

r2
km s2

(16.15)

and

An =
1
r

d

dt
r2f = 0 (16.16)

Equation (16.16) is based on Kepler’s second law requir-
ing that

r2f = h = ua 1−ε2 = constant (16.17)

These relationships must be expressed in terms of the orbit
coordinates (x0, y0, z0). In this regard, the satellite location is
expressed as the satellite range vector R as

Ros = rcos f uox + r sin f uoy (16.18)

and the velocity and acceleration vectors are expressed as

Vos = Vr cos f −Vn sin f uox + Vr sin f +Vn cos f uoy
(16.19)

Aos =Ar cos f uox +Ar sin f uoy (16.20)

Finally, the transformation of these vectors in the orbit
coordinates to the reference coordinates of Figure 16.1 is
accomplished using Euler’s transformation, Tu, as

Rs =TuRos ; Vs =TuVos; As =TuAos (16.21)

where the Euler transform is expressed in terms of the Euler
angles (Ω, ι, ω) as

Tu =

cos Ω cos ι + sin Ω sin ω sin ι sin Ω sin ω cos ι −cos Ω sin ι sin Ω cos ω

cos ω sin ι cos ω cos ι −sin ω

cos Ω sin ω sin ι −sin Ω cos ι cos Ω sin ω cos ι + sin Ω sin ι cos Ω cos ω

(16.22)

In the following analysis, the computations involving the
range, velocity, and acceleration vectors of the satellites and
Earth stations are performed in the Earth-fixed coordinates
so the satellite vector data must be transformed to this
system. Therefore, the following additional transformations
will place the satellite data in the desired Earth-fixed
coordinates.

Res =TRs ; Ves =TVs; Aes =TAs (16.23)

where the transformation is given by

T =

cos ωet −sin ωet 0

sin ωet cos ωet 0

0 0 1

(16.24)

16.3 EARTH STATIONS

TheEarth stations are defined in termsof their latitude and lon-
gitude with respect to the Earth-centered Earth-fixed coordi-
nate system (xe, ye, ze) as shown in Figure 16.3. Only fixed
Earth sites are considered in the following discussions; how-
ever, the inclusion ofmobile sites (ships, airplanes, etc.) can be
included with appropriate modifications. The xy-plane con-
tains the Earth’s equator and the positive x-axis is alignedwith
the Greenwich meridian with the z-axis passing through the
North Pole. The Earth-fixed coordinates rotate with respect
to the fixed reference coordinates (x, y, z) at an angular rate
of ωe = 2π 3600 rad s or one revolution in a 24 h period.

The location of the Earth station is shown in Figure 16.3 at
point P. A more detailed depiction is shown in Figure 16.4
that explicitly shows the local altitude ap of the Earth station
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and the resulting distance Rp from the Earth’s center.
Figure 16.4 also shows the elliptical shape of the Earth in
the xp– zp plane containing the Earth station. To express
the results in terms of the Earth-fixed coordinates, the (xs,
ys, zs) coordinates are simply rotated through the angle θp
as indicated in Figure 16.3.

The vector Rp is the sum of the position vectors ρ and ap.
The vector ρ is determined from the distance ρ, latitude ϕp,
and longitude θp where positive latitudes are north from
the equator and positive longitudes are measured east from
the Greenwich meridian.

The Earth is elliptical, with eccentricity εe = 0.08183, so
the astronomical zenith angle is a function of the latitude
of the Earth station and is computed as

ϕp = tan
−1 tan ϕp

1− ε2e
(16.25)

The radial distance ρ is also related to the latitude of the
Earth station and is expressed in terms of the astronomical
zenith angle as

ρ =Re

1− 2 ε2e − ε4e sin2 ϕp

1− ε2esin
2 ϕp

1 2

(16.26)

Using these results, the vector ρ in Earth-fixed coordinates
is given by

ρ = ρcos ϕp cos θp uex + ρcos ϕp sin θp uey + ρsin ϕp uez
(16.27)

and similarly the altitude vector ap is given by

ap = ap cos ϕp cos θp uex

+ ap cos ϕp sin θp uey + ap sin ϕp uez
(16.28)

From these results the distance from the Earth’s center to
the Earth station at altitude ap is expressed in Earth-fixed
coordinates by the range and velocity vectors

Rep = ρcos ϕp + ap cos ϕp cos θp uex

+ ρcos ϕp + ap cos ϕp sin θp uey + ρsin ϕp

+ ap sin ϕp uez

(16.29)

Vep = − ρcos ϕp + ap cos ϕp ωe sin θp uex

+ ρcos ϕp + ap cos ϕp ωe cos θp uey + 0uez

(16.30)
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FIGURE 16.3 Earth station locations, reference coordinates, and parameter definitions.
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FIGURE 16.4 Elliptical Earth model to Earth coordinates.

608 SATELLITE ORBITS



where the z-axis component of the velocity is zero because
the Earth rotates about the z-axis and the Earth stations are
considered to be fixed sites. Also, because the Earth is rotat-
ing at a constant angular velocity, the acceleration of the
Earth station is zero, that is, Aep = 0, for the fixed sites being
considered.

16.4 PATH LOSS, DOPPLER, AND
DOPPLER-RATE

To determine the free-space path loss, Doppler, and Doppler
rate encountered by a communications receiver, it is first nec-
essary to compute the ground station-to-satellite range and
the corresponding range-rate (velocity) and acceleration
along the range vector. These parameters are evaluated in
the Earth-fixed coordinates using the satellite and Earth sta-
tion range, velocity, and acceleration vectors established in
Sections 16.2 and 16.3.

The Earth station-to-satellite range is simply the magni-
tude of the range vector and is computed as

Rps = Res−Rep (16.31)

The cosine of the angle between these vectors is
expressed as

cos θps =
Res•Rep

Res Rep
(16.32)

The velocity and acceleration along the range vector are
computed as follows:

Vps = Ves−Vep cos θrv (16.33)

and

Aps = Aes−Aep cos θra (16.34)

Here, θrv and θra are the angles between the Earth station-to-
satellite range vector and the corresponding velocity and
acceleration vectors, respectively. These angles are evaluated
using the relationships

cos θrv =
Res•Vep

Res Vep
(16.35)

and

cos θra =
Res•Aep

Res Aep
(16.36)

From these results, the free-space loss, Doppler, and Dop-
pler rate along the propagation path are readily determined
to be

Lfs =
4πRpsfc

c

2

(16.37)

and

fD =
Vps

c
fc (16.38)

and

f D =
Aps

c
fc (16.39)

where c = 3 × 108 m/s is the speed of light in free space and fc
is the carrier frequency of the communication link.

16.5 SATELLITE VIEWING

For arbitrary satellite orbits, the satellite is not always in view
of the Earth station, and it is useful to determine when this
condition exists. Also, when the satellite is in view, it is help-
ful to determine the viewing angle of the satellite from the
position of the Earth station. These topics [8] are addressed
in this section.

To determine whether the satellite is in view of the ground
station the computations are simplified by assuming a spher-
ical Earth to determine the observer’s horizons as shown in
Figure 16.5. Since the Earth is very nearly spherical, this
assumption has little loss in significance unless it is necessary
to determine very accurately the viewing horizons. Referring
to Figure 16.5, the viewing angle of the local observer is
±(90 + α) degrees where the angle α is given by

α= 90−
180
π

sin−1 Re

Re + ap
degrees (16.40)

Astronomical

(local) zenith
zs, zp

α

xpRe

90°Earth

surface 

Observers 

horizon 

Earth 

station 
P 

Rp

FIGURE 16.5 Satellite viewing—spherical Earth.
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The Earth station-to-satellite range vector in the Earth
coordinates is Rps =Res−Rep. However, the vector Rps is rel-
ative to the Earth-fixed coordinates and must be transformed
to the vector Rps with respect to the Earth station coordinates

defined in Figure 16.6. The vector Rps is computed as

Rps =

−sin ϕp 0 cos ϕp

0 1 0

cos ϕp 0 sin ϕp

cos θp sin θp 0

−sin θp cos θp 0

0 0 1

Rps

(16.41)

where Xps and Yps are aligned with the local south and east
directions, respectively, and Zps is aligned with the local
zenith.

The vector Rps is the satellite position vector as viewed
from the Earth station and Rep represents the observers local
zenith, so the angle betweenRps andRep is the local observers
viewing angle of the satellite given by

Θv = cos
−1

Rps•Rep

Rps Rep
(16.42)

Therefore, the satellite is in view as long as the following
condition is satisfied

Θv ≤ 90 + α= 180−
180
π

sin−1 Re

Re + ap
degrees

(16.43)

The location of the satellite is expressed in terms of the
observer’s north–south viewing angle ϕv and east–west view-
ing angle θv from the Earth station. When looking at the sky
through these angles, the satellite is in view of the Earth sta-
tion. Using the notation xux + yuy + zux for the range vec-
tors, the observer viewing angles are given by

ϕv = tan
−1

Xps

Zps
north-south (16.44)

θv = tan
−1

Yps
Zps

east-west (16.45)

where positive viewing angles represent north and east,
respectively, from the Earth station location.

16.6 SATELLITE ORBIT SELECTION

The selection of the satellite orbit depends upon the intended
mission of the satellite, and these generally fall into a few spe-
cial categories or type of orbits. The period of an elliptical
orbit follows directly from Kepler’s third law and, referring
to (16.1) and (16.3), is approximately expressed as

T 2π
a3 1−ε 3

u
(16.46)

This result and a specification of the eccentricity ε are all
that is necessary to characterize the orbit in the obit plane.
The various orbit types and the parameter values required
to establish them are discussed in Sections 16.6.1
through 16.6.4.

16.6.1 Geosynchronous and Geostationary Orbits

Geostationary orbits (GEOs) are characterized as circular
orbits with ε = 0 and a 24 h period equal to that of the Earth’s
rotation. In practice, ε 0 and newly established and well-
maintained orbits will result in ε ≤ 0.0008; with deteriorated
orbits ε ≤ 0.03. GEO orbits with zero inclination result in a
satellite orbit plane that coincides with the Earth’s equatorial
plane and the satellite appears stationary when viewed from
the Earth. The satellite orbit in this special case plays an
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FIGURE 16.6 Earth station coordinates.
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important role in satellite communications. In theory the
inclination (ι) of a GEO satellite orbit is zero degrees,
however, in practice ι 0. Typically, a good GEO will result
in ι ≤ 1.5 and for a deteriorated orbit ι ≤ 3 . Geosynchronous
orbits (GSOs) with inclinations much greater than three
degrees are used for high latitude and polar coverage. With
GSO orbits, reliable coverage at higher latitudes, that is, obit
planes with inclinations greater than about 30 is possible,
however, a single Earth station cannot continuously view
the satellite and must rely on satellite cross-linking for cov-
erage. In general, on successive satellite orbits the longitude
of the ascending node will drift due to the Earth’s rotation.

In the preceding analysis, a GEO can be specified by sim-
ply letting ε = 0, which defines the circular orbit. In this case,
because a circle has only one focal point, the mean orbit
radius must also be specified as a = Rgeosolar = Re + Ageosolar.
A more direct and accurate approach is to specify a 24 h syn-
chronous orbit period corresponding to T = 86,400 s and use
(16.46) to solve for the orbit radius a = 42,241.192 km; this
agrees with the value a = Rgeosolar in Table 16.1.

16.6.2 Medium Earth Orbits

Medium Earth orbits (MEOs) range in altitude between low
Earth orbits (LEOs) and GEO altitudes, typically from
2,000 km to below 35,784.334 km.

16.6.3 Low Earth Orbits

The LEO is a low-altitude orbit, typically circular, often used
to provide coverage for communications, global positioning
and navigation, space exploration, environmental monitor-
ing, and intelligence gathering. For example, the National
Astronautics and Space Administration (NASA) Space Shut-
tle is used for space exploration and other scientific studies,
and the Global Positioning System (GPS) is used for preci-
sion location and navigation using multiple LEOs with differ-
ent inclinations to provide worldwide coverage. Due to
atmospheric drag, LEOs are limited to a minimum altitude
of about 180 km and, for safety reasons, involving space
debris and Van Allen belt radiation, long-term manned space
flights are limited to a maximum altitude of about 560 km;
however, LEO altitudes may extend to 2000 km.

To specify the circular LEO, simply choose ε = 0 and
determine the desired value of the mean distance as a = Re +
As = 6378.28 + As where 180 km ≤ As ≤ 560 km; this upper
limit is imposed for long-term manned space flight. From
the value of a, the orbit period is computed using (16.46)
and the other characteristics of the orbit plane are determined
as described in the Introduction and Section 6.2.

16.6.4 Highly Elliptical Orbits

The highly elliptical orbit (HEO) is used for environmental
monitoring and intelligence gathering. It has the advantage

over LEOs, in that, the satellite hovers over an area of interest
for a long period of time around the point of apogee gathering
data from various sensors. Upon approaching the point of
perigee, the information is downlinked to an Earth station
and the satellite moves on to repeat the process. Although
the viewing time is relatively long near apogee with long
ranges to Earth, the transition through perigee is very fast
involving relatively short ranges. So the satellite gathers
information over a long period of time and downlinks the
information rapidly over a short interval of time.

16.6.4.1 Molniya Orbits The Molniya orbit is a HEO
with an inclination of 63.4 and a period of 12 h. It was orig-
inally developed to provide high elevation angle visibility of
a satellite over the Soviet Union for a period of 8 h every sec-
ond revolution. A constellation of three Molniya satellites
provides constant coverage. With the orbit apogee strategi-
cally located over Russia, the high elevation viewing angles
avoid multipath interference caused by signal reflections
from the Earth’s surface. Furthermore, the 63.4 inclination
of the orbit plane, theoretically, results in zero drift of the
argument of perigee with time due to the oblate Earth.

16.7 SATELLITE ORBIT POSITION
ESTIMATION FROM PARAMETER
MEASUREMENTS

The location of a satellite in its orbital is determined using the
six orbital parameters as discussed in Sections 16.1 and 16.2.
However, in reality, the knowledge of these parameters is
only approximated from observations of the satellite position
over long periods of time. The computed positions of a sat-
ellite are typically available in table form, referred to as
ephemeris data that is published periodically with the latest
satellite information.* The focus in this section is on the
range, velocity, and time errors that impact the satellite’s abil-
ity to acquire and track a received signal.

Consider that a large ground terminal is tracking and mea-
suring a satellite’s position in its FOV. Referring to
Figure 16.2, the measurements, when referred to Earth-
centered coordinates, are used to estimate satellite range r,

velocity magnitude V , velocity angle ϕ, and the orbit time
t relative to perigee. These parameters form the parameter
set† required to determine the satellite’s position in the orbit
plane. The gravitational constant u is known. The raw mea-

surements involve estimating the radial velocity Vr = r and

the angular rate f of the true anomaly, from which the normal

*For example, International Satellite Directory is published annually by
Design Publishers and contains details of satellite orbits and operational
parameters.
†Roy [1] (Chapter 4) discusses the application of the parameters set (a, ε, τ) to
determine the satellite position in the orbit plane.
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velocity estimate is computed as Vn = rf . Using these mea-
surements, the velocity magnitude and angle are computed as

V = r2 + rf
2

(16.47)

and

ϕ = sin−1 r

rf
(16.48)

With this information, the satellite orbit parameters are
computed as follows:

• Compute the semimajor axis â using (16.14) as

a =
1

2 r−V
2
u

(16.49)

• Compute the mean angular velocity n using (16.5) as

n =
u

a3
(16.50)

• Compute the eccentricity ε using (16.10) as

ε= 1−
r 2a−r

a2
sin2 ϕ (16.51)

• Compute the eccentric anomaly Ê using (16.8) as

E = cos−1
1−r a

ε
(16.52)

• Compute the true anomaly f using (16.9)

• Compute the mean anomaly M using the first equality
in (16.7)

• Compute the τ using n, M, and (16.6) as

τ = t−M n (16.53)

These computed orbital parameters, including the time
estimate, are then used to establish the estimated satellite
position in the orbital plane. The range and timing errors
are based on the true satellite position and orbit time. The esti-
mated orbit inclination is not included in these measure-
ments, so the impact of the inclination on the range and
timing errors can be evaluated parametrically. Roy [9] dis-
cusses the theory of orbit determination based on the methods
of Laplace and Gauss, and Ash [10] discusses the orbit fitting
computer program Planetary Ephemeris Program (PEP)
developed at Lincoln Laboratory and theMassachusetts Insti-
tute of Technology. These methods use three-dimensional
spatial observations over time that characterizes the satellite
orbit plane in geocentric coordinates with the satellite loca-
tion identified in the inclination of the orbit plane.

16.8 CASE STUDY: EXAMPLE SATELLITE
ENCOUNTERS

In this section, the Doppler, Doppler rate, and ground station
satellite viewing angles are examined for communication
links involving two satellite orbits; the parameters for the
two satellite orbits are summarized in Table 16.2. The details
regarding the computation of these parameters are discussed
in Sections 16.4 through 16.6 and Figure 16.7 summarizes
the geometry of the encounters. The satellite orbit angle is
determined as ϖ = ω+ f modulo-2π; however, because
the GEO is essentially circular the argument of perigee is
used to identify the satellite orbit time.

The salient satellite orbit parameters are the range, the
LOS velocity, and acceleration, respectively, that are used
to determine the signal free-space loss, Doppler frequency,
and Doppler rate. The satellite orbit simulation code, devel-
oped from the results in this chapter, is integrated into the
overall link budget and performance simulation code dis-
cussed in Section 15.15. Figure 16.8a and b show the uplink
and downlink Doppler and Doppler rate for the case 1
encounter listed in Table 16.2. Figure 16.8c shows the ground
terminal satellite viewing requirements in terms of the local
azimuth and elevation angles. These local viewing angles
determine the antenna pointing requirements necessary to

TABLE 16.2 Summary of Ground and Satellite Parameters

Case

Ground Station Satellitea Orbitb

Lat. (deg)
Lon.
(deg) Elev. (Ft) Uplink Freq (GHz)

Lon.
(deg)

Downlink
Freq (GHz) Period (h)

Incl.
(deg) Ecc.

1 0 −120 0 2.3 −120 16 24 7 0.003
2 33 −120 0 2.3 170 16 24 7 0.003

Positive longitudes and latitudes are E and N.
aLongitude of ascending node.
bSatellite orbit angle = 0 at time zero.
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FIGURE 16.7 Satellite and ground station geometry.
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FIGURE 16.8 Earth station and satellite case 1 encounter.
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maintain the satellite centered on the uplink antenna beam.
The numerical values on the curve correspond to the orbit
time in hours relative to the satellite orbit angle of zero
degrees; the orbit period is 24 h. Similarly, Figure 16.9a
and b show the uplink and downlink Doppler and Doppler
rate for the case 2 encounter listed in Table 16.2, and
Figure 16.9c shows the corresponding ground terminal satel-
lite viewing angles.

ACRONYMS

FOV Field of view
GEO Geostationary orbit
GPS Global positioning system
GSO Geosynchronous orbit
HEO Highly elliptical orbit
LEO Low Earth orbit

MEO Medium Earth orbit
NASA National Aeronautics and Space Administration
PEP Planetary Ephemeris Program
SOAP Satellite Orbit Analysis Program

PROBLEMS

1. Determine the mean eccentric anomaly (E) and the true
anomaly (f) of a satellite, located at the longitude of
the ascending node, in a circular orbit. Use the Earth
radius Re = 6,356.74 km and gravitational constant u =
398,603.188 km3/s2.

2. For a satellite in a circular LEO orbit at an altitude of
650 km, determine the orbit parameters: orbit period (T)
in hours, the magnitude of the location vector (r), and
the radial and normal velocities (Vr and Vn) and
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FIGURE 16.9 Earth station and satellite case 2 encounter.
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accelerations (Ar and An). Use the Earth radius and grav-
itational constant given in Problem 1.

3. For a satellite in an elliptical orbit with a perigee altitude of
350 km and eccentricity ε = 0.2, determine following para-
meters: the orbit period (T) and the velocities (Vr and Vn) at
perigee and apogee. Use the Earth radius and gravitational
constant given in Problem 1.

Hint: Use Newton’s method for solving Kepler’s equation
for the eccentric anomaly.

4. Show that π/2 − cos−1(ϕ) is equal to sin−1(ϕ).
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17
COMMUNICATIONS THROUGH BANDLIMITED
TIME-INVARIANT LINEAR CHANNELS

17.1 INTRODUCTION

In this chapter, the analysis and simulation of bandlimited
time-invariant linear communication channels is discussed.
The channel is viewed in broad terms and may include the
transmitter and receiver filtering as well as the transmission
medium. The linear time-invariant channel is frequently
encountered in practice and is relatively easy to analyze
and simulate. Since these channels are often related to clas-
sical filter theory, the analysis and application of linear filters
draw on the abundance of time-tested work related to filter
theory and design.

In communication systems, the channel distortion man-
ifests itself in two distinct ways: the transmitted waveform
is distorted in such a way that the received symbol energy
within the symbol interval is reduced leading to a loss in
signal-to-noise ratio (SNR); the channel distortion results
in dispersion of the symbol energy into adjacent symbols
resulting in noise-like terms referred to as intersymbol
interference (ISI). The channel distortion results from
the amplitude and phase responses of the channel that
becomes increasingly severe as the waveform bandwidth
approaches the channel bandwidth. The ISI results in
the closing of the demodulator eye-opening at the sampled
matched filter output that reduces the probability of a cor-
rect decision. It also impacts the symbol timing and carrier
phase tracking functions of the demodulator that often take
advantage of distinct spectral properties of the modulated
waveform.

Because the ISI under consideration results from a linear
time-invariant channel, it is deterministic with respect to a
known symbol; however, it appears to be random because
of the randomly modulated stream of contiguous symbols.
ISI cancellation is embodied in the subject of equalization
that is based upon this deterministic nature of the ISI.
Although the statistical distribution characterizing the ISI
is not generally known by the demodulator, estimates, based
on the demodulated data,* are formed to cancel the ISI,
thereby, improving the system’s performance [1].

In this chapter, the channels are characterized in the fre-
quency domain in terms of amplitude and phase responses
that can be arbitrarily specified. Typical channel characteri-
zations include classical filters like the Butterworth and Che-
byshev designs and dial-up wireline channels [2, 3] with or
without various degrees of conditioning, for example, C1
and C2 designated conditioning. The phase response can
be specified independently of the amplitude response and
transmissions through phase-equalized channels demonstrate
a marked improvement in performance. Although the
analysis permits applying arbitrarily specified modulation
functions, examples involving rectangular modulated wave-
forms applied to channels with quadratic and cubic phase
responses are examined to demonstrate the effects of channel

*Message preambles or midambles and periodic insertion of known data
sequences are often used to aid in the equalizer learning.

Digital Communications with Emphasis on Data Modems: Theory, Analysis, Design, Simulation, Testing, and Applications,
First Edition. Richard W. Middlestead.
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distortion. The analysis is based on the work of Sunde [4] and
Urkowitz [5]; in that, the inphase and quadrature (I/Q)
responses of the low-pass equivalents of bandpass filters
are developed.With digital signal processing, the lowpass fil-
ter is a computationally efficient way to perform bandpass
filtering; however, in most applications, the lowpass or base-
band filtered output is used directly for subsequent signal
processing and matched filter detection. The analysis also
highlights the use of complex notations, in which the I/Q
components are the real and imaginary parts of complex
functions referred to as pre-envelopes [6].

In Section 17.2, some basic filter concepts are estab-
lished to generate real carrier and baseband modula-
ted outputs based on an arbitrary input signal. In
Section 17.3, an input carrier modulated signal is filtered
using a baseband filter with appropriate frequency hetero-
dyning. Sections 17.4 and 17.5 characterize a rect(t/T)
input signal and develops the output response for an arbi-
trarily specified filter. The filter is expressed in terms of
the I/Q amplitude and phase impulse responses. The para-
meters of the signal and filter response functions are then
conveniently normalized for computer evaluation. In Sec-
tions 17.6 and 17.7, the responses of an ideal rect(u/B)/B
filter and a single-pole bandpass filter are examined using
the computer model. The chapter concludes with com-
puter simulated examples relating the characteristics
of the ISI to various channel phase and amplitude
characteristics.

17.2 INPHASE AND QUADRATURE CHANNEL
RESPONSE

In this section, generalized expressions for the bandpass
channel impulse response are developed in terms of the I/Q
responses of the equivalent lowpass filter. Expressing a ban-
dlimited channel impulse response in this form provides con-
siderable insight into the channel characteristics. Consider
the time-invariant linear channel having a transfer function
or frequency response given by H(ω). Because only real
impulse responses are of interest, the transfer function exhi-
bits an even real part and odd imaginary part in frequency.*

The channel transfer function, expressed in terms of real and
imaginary parts, is

H ω =Hr ω + jHi ω (17.1)

and the impulse response is defined as the inverse Fourier
transform, expressed as

h t =
1
2π

∞

−∞

H ω ejωtdω=
1
2π

∞

−∞

Hr ω + jHi ω ejωtdω

(17.2)

Because only real impulse responses are of interest, the
functions Hr(ω) and Hi(ω) must be, respectively, even and
odd functions of frequency. ExpressingH(ω) in terms of pos-
itive and negative frequency functions, (17.1) is rewritten as

H ω =Hc ω−ωc + jHs ω−ωc ω> 0

=Hc ω+ωc − jHs ω+ωc ω< 0
(17.3)

where ωc is any convenient reference frequency for H(ω);
usually ωc is chosen as the mid-band or the arithmetic
mean of the upper and lower channel cutoff frequencies.
Defining the lowpass frequency as u =ω−ωc, the positive
and negative frequency functions in (17.3) have equiva-
lent lowpass functions centered at ±ωc as depicted in
Figure 17.1.

Rewriting (17.2) in terms of the lowpass frequency
u =ω−ωc with du= dω results in

h t =Re
1
2π

∞

−∞

H u ejutdu ejωct

=Re
1
2π

∞

−∞

Hr u + jHi u ejutdu ejωct

(17.4)

Equating the equivalent lowpass expressions for the real
and imaginary parts Hr(u) and Hi(u) of (17.3) results in
Hr u =Hc u +Hc −u and Hi u =Hs u −Hs −u . Upon
using the even or odd symmetry property then either
Hr(u) = 2Hc(u) or Hi(u) = 2Hs(u), so that (17.4) becomes

Phase

Amplitude 

u

H
–
(ω) H

+
(ω)

Lowpass equivalent filter 

Bandpass filter 

0

H(u)

0
ω–ωc ωc

H(ω)

FIGURE 17.1 Channel filter characteristics.

*The property corresponds to H(−ω) =H∗(ω) and is referred to as conjugate
symmetry.
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h t =Re
1
π

∞

−∞

Hc u + jHs u ejutdu ejωct

= hc t cos ωct −hs t sin ωct

(17.5)

where

hc t =
1
π

∞

−∞

Hc u cos ut du−
1
π

∞

−∞

Hs u sin ut du (17.6)

and

hs t =
1
π

∞

−∞

Hc u sin ut du+
1
π

∞

−∞

Hs u cos ut du (17.7)

The functions hc(t) and hs(t) are, respectively, the
lowpass I/Q impulse responses of the bandpass channel
filter H(ω). In general, Hc(u) and Hs(u) will not possess
either even or odd symmetry; however, if even or
odd symmetry does exist, then either hc(t) or hs(t) will
be zero.

The magnitude and phase functions of the baseband filter
output are computed, respectively, as

A u = 2 Hc u 2 +Hs u
2 (17.8)

and

ϕ u = tan−1 Hs u

Hc u
(17.9)

Using (17.8) and (17.9), the lowpass frequency response
is expressed as

H u =A u ej ϕ u (17.10)

Substituting (17.10) into (17.5), the quadrature responses
in (17.6) and (17.7) are evaluated as

hc t =
1
2π

∞

−∞

A u cos ut +ϕ u du

−
1
2π

∞

−∞

A u sin ut +ϕ u du

(17.11)

and

hs t =
1
2π

∞

−∞

A u sin ut +φ u du

+
1
2π

∞

−∞

A u cos ut +φ u du

(17.12)

The lowpass equivalent filter, characterized in this section,
is used in Section 17.3 to describe the lowpass filtering of an
arbitrary carrier modulated input signal.

17.3 INPHASE AND QUADRATURE CHANNEL
RESPONSE TO ARBITRARY SIGNAL

In Section 17.2, the impulse response of a bandpass channel,
centered at an angular frequency of ωc, is expressed in terms
of I/Q lowpass channel functions. In this section, the lowpass
channel response is examined for an arbitrary real input
signal in terms of the equivalent lowpass filter functions.
Figure 17.2 shows the functional implementation with the
channel’s lowpass impulse response functions, hc(t) and
hs(t), developed in Section 17.2.

The arbitrary carrier modulated input signal s(t) is
expressed as

s t = sc t cos ωst −ss t sin ωst (17.13)

where ωs is the signal angular carrier frequency and sc(t) and
ss(t) are the quadrature components that characterize the
baseband modulation. The input carrier frequency is inten-
tionally offset from the channel frequency so that the impact
of the frequency error Δω=ωs−ωc can be examined in the
subsequent example applications.

A completely analogous but considerably easier imple-
mentation to analyze and less prone to analysis errors is based
on the analytic or complex signal representations shown in
Figure 17.3. The input carrier frequency of ωs is offset from
the channel filter’s center frequency by Δω and must be

s(t)

sin(ωct)

cos(ωct)
+

–
gc(t)

gs(t)

hc(t)

h
s
(t)

hs(t)

hc(t)
+

+

FIGURE 17.2 Lowpass filtering of carrier modulated signal.
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considered in evaluating the output of the lowpass filter,
defined by the convolution integral

g t ≜
∞

−∞

s t−λ ejΔω t−λ h λ dλ

= ejΔω t

∞

−∞

s t−λ h λ e− jΔωλdλ

(17.14)

The integral in the second equality of (17.14) is defined as

g t , such that,

g t ≜
∞

−∞

s t−λ h λ e− jΔωλdλ (17.15)

Using these relationships, the composite lowpass filter is
described as shown in Figure 17.3.

The final up-conversion to the output frequency ωo may
represent an intermediate frequency (IF) of a linear hetero-
dyning receiver. In this case, all of the intervening filtering
of the linear receiver must be included in the lowpass filter
function h t . If the lowpass channel filter includes the entire
receiver and demodulator filtering prior to the baseband con-
version in the demodulator, then no up-conversion is neces-
sary. However, the coherent demodulator Costas phaselock
loop must remove the frequency errorΔω. On the other hand,
if the receiver expects the received signal frequency to be ωs,
using the up-conversion frequency ωs, instead of ωo −Δω,
results in the receiver input frequency ωs +Δω, in which
case, the frequency error must be removed by the coherent
demodulator phaselock loop.

In the following evaluation of the filter output, the analytic
functions x t and g t are defined as

x t ≜ s t e− jΔω t (17.16)

and

g t ≜ x t ∗h t = g t ejΔω t (17.17)

where the asterisk denotes the convolution of x t and

h t that follows directly from (17.14) with g t defined
in (17.15).

Therefore, expressing the analytic functions x t ,h t , and
g t in terms of their respective quadrature components, hav-
ing the form z t = zc t + jzs t , the analytic lowpass filter

output function, g t , is evaluated using (17.14) and
(17.15), and the result is expressed as

g t =

∞

−∞

sc t−λ hc λ −ss t−λ hs λ cos Δωλ dλ

+

∞

−∞

sc t−λ hs λ + ss t−λ hc λ sin Δωλ dλ

+ j

∞

−∞

sc t−λ hs λ + ss t−λ hc λ cos Δωλ dλ

− j

∞

−∞

sc t−λ hc λ −ss t−λ hs λ sin Δωλ dλ

(17.18)

The second and fourth terms in (17.18), that is, the terms
involving sin(Δωλ), correspond, respectively, to the quadra-
ture components of the third and first terms. For coherent
demodulation, these terms are eliminated by the demodulator
phaselock loop tracking prior to data detection. The quadra-
ture components, gc t and gs t , correspond, respectively, to

the real and imaginary parts of g t and, upon substitution
into (17.18), the complex lowpass filter output is expressed as

g t = gc t + jgs t ejΔωt

= gc t cos Δωt −gs t sin Δωt + j gc t sin Δωt
+ gs t cos Δωt

(17.19)

The real part of (17.19) simplifies to

g t = gc t cos Δωt −gs t sin Δωt (17.20)

and, when the transmitted signal carrier frequency is equal to
ωc with Δω = 0, (17.20) simplifies to

g t =

∞

−∞

sc t−λ hc λ −ss t−λ hs λ dλ Δω= 0

(17.21)

However, when the output is mixed to the carrier fre-
quency ωo, as shown in Figure 17.3, the received signal is
characterized as the real signal given by

Lowpass 

filter 

s~(t)
e 

e 
j(ωo– ∆ω)te

–
 
jωct

g~′(t)
e 

g~(t)x~(t)
h
~

(t)

s~(t)
e s~

o
(t)

e
jω

s
t j∆ωt j∆ωt

 
jω

o
t

FIGURE 17.3 Analytic lowpass filtering of carrier modulated
signal.

620 COMMUNICATIONS THROUGH BANDLIMITED TIME-INVARIANT LINEAR CHANNELS



g t = gc t cos ωot −gs t sin ωot filter output atωo

(17.22)

where

gc t =

∞

−∞

sc t−λ hc λ −ss t−λ hs λ dλ (17.23)

and

gs t =

∞

−∞

sc t−λ hs λ + ss t−λ hc λ dλ (17.24)

17.3.1 Frequency Domain Characterization of
Lowpass Filter Output

In this section, the lowpass channel filter response is
described in terms of the frequency domain representation
of the lowpass signal and the channel filter. The simulation
processing discussed in Section 17.5 and the simulation
results discussed in Sections 17.6 and 17.7 use the frequency
response functions. In this description, the signal phase ϕ and
the frequency errorΔω are introduced to characterize the rect
(t/T) modulated signal phase at the input to the channel filter.
This signal phase and frequency error are used in
Section 17.4 in describing the signal.

For the linear filtering operations being considered, the
spectrum of the lowpass filter output (G u ) is the product
of the signal and channel filter spectrums, expressed as

G u =X u H u (17.25)

where the signal spectrum is based on the Fourier transform
of x t expressed as

X u =

∞

−∞

s t ej Δω t +ϕ e−utdt

= ejϕ
∞

−∞

sc t + jss t e− j u−Δω tdt

= ejϕ Sc u−Δω + jSs u−Δω

(17.26)

Substituting (17.26) into (17.25) with the channel filter
spectrum equal to H u = 2 Hc u + jHs u , as developed
in Section 17.2, results in the channel filter spectrum

G u = 2ejϕ Sc u−Δω Hc u −Ss u−Δω Hs u

+ j Sc u−Δω Hs u + Ss u−Δω Hc u
(17.27)

The channel output is evaluated as the inverse Fourier
transform of (17.27) and is expressed as

g t = gc t + jgs t (17.28)

where

gc t = ej Δω+ϕ 1
π

∞

−∞

Sc u Hc u+Δω

−Ss u Hs u +Δω ejutdu

(17.29)

and

gs t = ej Δω +ϕ 1
π

∞

−∞

Sc u Hs u +Δω

+ Ss u Hc u +Δω ejutdu

(17.30)

17.4 PULSE MODULATED CARRIER SIGNAL
CHARACTERISTICS

In this section, a binary phase shift keying (BPSK) modulated
carrier signal is characterized by the rect(t/T) modulation
function with amplitude A volts, binary data dc = ±1,
and angular carrier frequency ωs. An isolated symbol is
expressed as

s t =Adcrect
t

T
cos ωs +ϕ

= sc t cos ωst −ss t sin ωst

(17.31)

Because BPSK modulation is being considered, the quad-
rature data ds = 0, so the quadrature signal term ss(t) in
(17.31) corresponds to the quadrature component of the
inphase modulated symbol resulting from the signal phase
error ϕ.

When the signal s(t) is mixed to baseband, using the chan-
nel carrier frequency, ωc, the resulting baseband symbol is
expressed as

x t =Adcrect
t

T
ej Δω t +ϕ

= xc t + jxc t

(17.32)

The spectrum of the baseband signal x t is evaluated
using the Fourier transform and is expressed as
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X u =Adce
jϕ

T 2

−T 2

x t e− j u−Δω tdt

=ATdce
jϕ sin u−Δω T 2

u−Δω T 2

(17.33)

and is shown in Figure 17.4.
Using this ideal, infinite bandwidth, form of the transmit-

ted symbol does not detract from the generality of a perfor-
mance simulation because the bandwidth limiting
characteristics of a practical transmit filter can often be
included as part of the underlying channel filter. However,
without a transmit filter to contain the transmitted signal
spectrum, the time–frequency product fsTwould have to meet
the condition fsT 1 in order to contain the signal spectrum
fold-over about the zero-frequency axis.*

In Section 17.5, these relationships, describing the signal,
are combined with those describing the channel to character-
ize the channel output response under a variety of conditions.

17.5 CHANNEL RESPONSE TO A PULSED
MODULATED WAVEFORM

The channel response to the pulse modulated carrier signal
described in Section 17.4 is characterized in this section. If
the receiver filtering functions are included in the channel
description along with the transmitter filtering functions, as
mentioned in Section 17.1, then the response can be viewed
as the input to the demodulator detection filter. If the demod-
ulator matched filter response is also included in the channel
description, then the response to the modulated waveform
can be optimally sampled for subsequent data decision

processing. The lowpass channel output is evaluated using
(17.28), repeated here as

g t = gc t + jgs t (17.34)

For the BPSKmodulated signal described in Section 17.4,
the quadrature components of (17.34) are evaluated using
(17.29) and (17.30) with Ss(u) = 0. The resulting expressions
are

gc t = ej Δω +ϕ 1
π

∞

−∞

Sc u Hc u+Δω ejutdu

BPSKmodulation

(17.35)

and

gs t = ej Δω +ϕ 1
π

∞

−∞

Sc u Hs u +Δω ejutdu

BPSKmodulation

(17.36)

These relationships are evaluated in Sections 17.6 and
17.7 to characterize the channel output for the pulse modu-
lated symbol spectrum as described in Section 17.4. The
amplitude and phase descriptions of the channel, as described
by (17.8) and (17.9), respectively, are useful; in that, the mag-
nitude and phase responses can be independently changed to
examine the response under various channel conditions.
When applied to the signal spectrum, the phase response
can be altered to examine the effect of frequency errors
and signal delays.

17.5.1 Normalized Channel Impulse Response

There are a number of advantages to normalize the channel
response expressions for computer simulations. For example,
the normalized expressions often apply to any system regard-
less of the carrier frequency or bandwidth.† The use of very
large or small numbers is avoided making input easier and
less prone to errors, and the parameters are combined result-
ing in fewer parametric results required to characterize the
system performance. For these reasons, the preceding rela-
tionships involving the channel response are evaluated in
normalized form for subsequent computer programming
and performance evaluation.

In this section, the channel impulse responses expressed
by (17.5), (17.6), and (17.7) are normalized for computer

u 

Xc(u) 

Xs(u) 

0 
Δω

ϕ

FIGURE 17.4 BPSK symbol baseband spectral characteristics
(ϕ > 0).

*The spectral fold-over can be viewed as the negative frequency signal spec-
trum appearing in the positive frequency range. The spectral control provided
by the transmitter filter does not preserve the sinc(fT) spectrum or the con-
stant signal amplitude characteristics. With any time-limited modulation
symbol, this is an issue; however, it is particularly pronounced with the
sinc(fT) function because of the 1/f 2 power roll-off (20 dB/decade) of the
spectral sidelobes.

†This statement applies to time-invariant channels with AWGN; there are
also many conditions in which this advantage does not apply, most notably
with time-varying channels and multiplicative noise. In these cases, the sym-
bol modulation and carrier frequency must be normalized to the dynamics of
the channel.
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simulation. The signal sampling rate must be selected to sat-
isfy the Nyquist sampling criteria, so it is necessary to inte-
grate the frequency over an adequate number of channel
bandwidths relative to the center frequency. Although the
baseband channel simulation is the primary interest, the sim-
ulation also characterizes the carrier modulated input and out-
put signals which require satisfying the Nyquist bandpass
sampling criterion. Defining the lowpass or one-sided base-
band channel bandwidth as B, the normalized frequency var-
iable is defined as X = u 2πB= f − fc B; the normalized
dependent variable is defined as Y = tB. With these normal-
izations the differential of u is du= 2πBdX. The normalized
parameters Fk and ρ are defined as Fk = fc/B and ρ = BT. Sub-
stituting these parameters into the impulse response expres-
sion given by (17.5) results in

h Y = hc Y cos 2πρFkY −hs Y sin 2πρFkY (17.37)

where

hc Y = 2B

∞

−∞

A X cos 2πρXY +ϕ X +ϕc dX (17.38)

and

hs Y = 2B

∞

−∞

A X sin 2πρXY +ϕ X +ϕc dX (17.39)

17.5.2 Normalized Symbol Pulse Response

The parameter normalization is the same as for the channel
filter defined in Section 17.5.1; however, in this case, there
are two additional normalizations to consider. The normal-
ized signal delay is defined as Yd = τ/T and the normalized
signal frequency shift is defined as Xd = (fs− fc)/B. The iso-
lated symbol pulse is considered to have a positive amplitude
with dc = 1. The parameter normalizations are summarized in
Table 17.1.

For the pulsed carrier modulated signal, the channel
responses in (17.34), (17.35), and (17.36) are expressed in
normalized form as

g Y = gc Y cos 2πFk Y −Yd −ϕ

−gs Y cos 2πFk Y −Yd −ϕ
(17.40)

where

gc Y =

∞

−∞

Sc X A X cos 2π X +Xd Y −Yd +ϕ X +ϕ dX

(17.41)

and

gs Y =

∞

−∞

Sc X A X sin 2π X +Xd Y −Yd +ϕ X +ϕ dX

(17.42)

with

Sc X =A
sin π X +Xd

π X +Xd
(17.43)

Defining the lowpass frequency variable u =ω−ωc with
respect to the signal frequency, the translation between the
channel and signal frequencies is simply u= u − ωs−ωc

or, in normalized form, X =X −Xd.

17.6 EXAMPLE PERFORMANCE
SIMULATIONS

In this section, the channel output is examined under several
conditions using computer simulations and the normalized
parameters defined in Table 17.1. Figure 17.5 shows the var-
ious parameters relative to the signal and channel implemen-
tation. The signal delay τ results in a propagation phase of
φ = −2πfsτ radians that is included in the signal phase ϕ. In
the frequency domain, the delay is evident as a linear phase
function with frequency. In these evaluations, the simulation
program performs a numerical integration over a finite num-
ber of channel bandwidths covering the frequency range kB.
Since the signal bandwidth is less than the channel band-
width, the frequency sampling resolution of δf = 1/k1T is
used. The total number of frequency samples is Nf = ρkk1
where ρ = BT is the number of signal bandwidths contained
in the bandwidth of the filter. The sampling resolution and
the total number of samples are chosen simply to provide
for a high fidelity plot of the respective signal and filter

TABLE 17.1 Normalized Parameter Definitions

Parameter Definition Normalized Description

Y t/T Time
Yd τ/T Symbol delay
X (f − fc)/B Frequency, u/2πB
Xd (fs− fc)/B Signal frequency shift
dX Δf/B Differential frequency, Δu/2πB
Fk fc/B Channel frequency
Fk fs/B Signal frequency
ϕ (X) — Frequency-dependent phase
ρ BT Channel-to-signal bandwidth
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spectrums and generally exceed the minimum sample rate
required by the Nyquist criterion. If the carrier frequency is
under sampled, because the time sample increment Δt is
too large for the specified carrier frequency, the simulation
outputs only the baseband responses gc(Y) and gs(Y).

17.7 EXAMPLE OF CHANNEL AMPLITUDE
AND PHASE RESPONSES

In this section, several channel amplitude and phase functions
are considered and example responses for the pulse modu-
lated carrier input are examined. First, an ideal bandpass
channel having constant amplitude and linear phase is con-
sidered, and the Gibbs phenomenon [7] is demonstrated in
the computer simulation results. The Gaussian channel is
then examined followed by a single-pole bandpass filter rep-
resentation of the channel. The single-pole filter is represen-
tative of the antenna response for very-low-frequency (VLF)
through high-frequency (HF) systems, and the resulting ISI is
characterized for various filter (antenna) bandwidths. The
final simulation examines the amplitude and phase response
of a dial-up voice grade telephone circuit with and without
delay equalization. In this case, several interesting character-
istics of the ISI are examined. An example list of simulation
conditions is provided in Table 17.2.

17.7.1 Ideal Bandpass Channel

The ideal bandpass channel is examined to demonstrate the
nature of channel distortion under ideal conditions. The ideal
bandpass channel is characterized as having a constant ampli-
tude over the entire bandwidth with zero response otherwise.
The phase function of the ideal bandpass channel is linear
and results in a constant signal delay. In terms of the low-
pass frequency variable u =ω −ωc the amplitude and phase
responses are expressed as

A u = rect
u

B
(17.44)

and

ϕ u = −uτ +ϕc (17.45)

where ϕc is the channel phase shift at the channel frequency
and the frequency dependent phase function, previously
defined as ϕ (u), is given by ϕ u = −uτ. The normalized
expressions used in the simulation are

A X = rect
X

ρ
(17.46)

and

ϕ X = −2πYdX (17.47)

where Yd = τ/T is the normalized channel delay.
The response to a pulse modulated carrier is shown in

Figure 17.6 for the conditions listed in Table 17.2.
Figure 17.6a shows the channel and signal spectral character-
istics, and Figure 17.6b and c shows the respective carrier and
baseband responses. The oscillations in the responses about
the pulse edges result from the Gibbs phenomenon and are
caused by the finite number of terms in the Fourier expansion
of the output resulting from the finite channel bandwidth.
The normalized signal delay of 1.5 will normally center
the response about Y = 1.5. However, the normalized channel

Signal spectrum 
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s(t)

Lowpass channel 
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u
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(b)
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τ

Δω=ωs–ωc

Δω

Lowpass channel characteristics Signal function 

FIGURE 17.5 Signal and channel parameter descriptions.

TABLE 17.2 Example Conditions for Channel Response

Parameter Value Description

fc 2.4 kHz
B 1.2 kHz
Yd 1.5 Signal delay
fs 2.4 kHz
Rs 0.15 ksps
Fd 0.075 Constant delay
ϕ (X) — Frequency-dependent phasea

ϕc 0.0 Carrier phase (degrees)
Fd1 0.0 Linear delay coefficienta

Fd2 ±5.0 Quadratic delay coefficienta

aSee Sections 17.8.2 and 17.8.3.
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delay of 0.075 associated with the slope of the phase func-
tions results in the center of the response corresponding to
Y = 1.575. The quadrature response in Figure 17.6c is zero
because the channel is symmetrical with respect to the signal
spectrum.

17.7.2 Single-Pole Channel Filter

Amplitude functions characterized as single-pole filters are
often useful in characterizing channels modeled as VLF
antennas. The response for a single-pole filter with a zero
at the origin of the s-plane is given by

H ω =
Ks

s−so s− s∗o s = jω

(17.48)

where the poles are located at so = −α± jωc. By letting

K = 2α 1 + α ωc
2, the positive frequency spectrum,

expressed in terms of the lowpass frequency u =ω−ωc, is
evaluated as

H
+
u =

α

α2 + u2
ej ϕ u +ϕc (17.49)

where the frequency-dependent phase is ϕ u =
− tan−1 u α and the channel constant phase shift is
ϕc = tan

−1 α ωc . The 3 dB bandwidth is readily evaluated
as B = α/2π and the resulting normalized form of the ampli-
tude and phase responses are given by

A X =
ρ

X2 + ρ2
(17.50)

and

ϕc = tan
−1 ρ

Yd
(17.51)
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FIGURE 17.6 Response to ideal bandlimited channel.
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ϕ X = − tan−1 X

ρ
(17.52)

The normalized channel delay is defined as the slope of
the phase function at u = 0 and is evaluated as

Fd = −
dϕ X

dX
=
1
ρ

(17.53)

Various responses to the single-pole channel model are
shown in Figure 17.7 for the conditions listed in Table 17.2
with the following exceptions: the channel phase ϕc is com-
puted using (17.51), ϕ (X) is computed using (17.52), and
the channel bandwidth is B = 150 Hz so the BT product is
unity. Figure 17.7a shows the channel and signal spectral
characteristics, and Figure 17.7b and c show the carrier and
baseband responses, respectively. Under ideal conditions,
the channel responses are symmetrical about Y = 1.5 with
the energy essentially confined to the interval |Y − 1.5| < 0.5.
However, because of the channel amplitude and phase func-
tions, the responses are asymmetrically distorted with

considerable signal energy exceeding Y = 2. In the case of a
continuous stream of information symbols this distortion or
dispersion results in predominately postsymbol interference
and degraded performance in the information recovery proc-
ess because of the ISI. In Section 17.8.2 the channel character-
istics resulting in predominately pre- and postsymbol
interference are examined. As in the case of the ideal channel,
the quadrature response in Figure 17.7c is zero because the
channel is symmetrical with respect to the signal spectrum.

The demodulator matched filter response can also be
included in the channel characterization. In an additive white
Gaussian noise (AWGN) environment, the frequency response
of thematched filter is the amplitude scaled complex conjugate
of the transmitted signal spectrum with an associated arbitrary
delay. Considering the transmitted signal described in
Section 17.4, the demodulator matched filer is characterized as

F u =KS∗r u e− juTo (17.54)

where K is an arbitrary scale factor and To is an arbitrary filter
delay. Incorporating this matched filter response as part of the
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FIGURE 17.7 Response to single-pole channel model (BT = 1).
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overall channel response, the demodulator baseband output
for BT = 0.5 is shown in Figure 17.8. Aside from these
changes, the channel conditions used in Figure 17.7 are iden-
tical. The optimally sampled matched filter output in
Figure 17.8 corresponds to Y = 1.715. In a sequence of con-
tiguous received symbols, the demodulator symbol synchro-
nization processing must sample the matched filter at 1.715 ±
n, for n = 0, 1,…. The sampled output for BT = 0.5 is 0.788,
which represents a loss in the SNR of 2.07 dB relative to the
sampled matched filter output with an ideal channel. In addi-
tion to a loss of symbol energy, the channel distortion also
results in a loss because of the ISI that appears as an interfer-
ence noise source in random data. For the isolated symbol
shown in Figure 17.8, the ISI level for values of n 0 are
listed in Table 17.3 for several values of the BT parameter.
These results indicate that the pre- and postsymbol ISI, cor-
responding to n = −1 and 1, respectively, are appreciable but
diminish as the channel bandwidth is increased. As BT ∞,
the ideal matched filter response to an isolated symbol is a
triangular function with a maximum value at n = 0 and zero
response for n 0.

17.8 EXAMPLE CHANNEL AMPLITUDE,
PHASE, AND DELAY FUNCTIONS

17.8.1 Dial-Up Telephone Channel

The dial-up telephone channel* of interest is the former Bell
Telephone Company’s 3002 channel [8, 9] which is charac-
terized by prescribed boundaries for the amplitude and delay

responses. The 3002 channel is also provided with various
amounts of amplitude and delay conditioning denoted as
C1, C2, and C4. The line conditioning allows the channel,
originally designed for voice grade communications, to be
used for data rates up to 9600 bps. However, equalization
is generally required for good performance above 2400
bps. An arbitrarily accessed dial-up channel will have a
one-sigma attenuation response and a two-sigma delay
response roughly equivalent to the respective 3002 line spe-
cifications. The response specifications are usually normal-
ized to a 1700 Hz carrier and the total dial-up connection,
including the local loops, can be modeled as a bandpass filter
with a 5 dB bandwidth ranging between 300 and 2800 Hz.
Usually, the modulated data is applied to carriers ranging
between 1600 and 1800 Hz.

The amplitude and delay responses are of special inter-
est for two reasons: they always exist to some extent on all
connections, and therefore must be dealt with in one way
or another. Because the amplitude and delay functions are
time invariant for a given connection, the degradation
caused by ISI can be minimized using fixed or adaptive
equalizers. Medium-speed modems operating between
1200 and 2400 bps can use fixed or statistical equalizers,
also called compromise equalizers, to compensate for the
mean channel distortion. For these lower data rates, fixed
equalizers operate quite well over the dial-up channel. On
the other hand, high-speed modems operating greater than
2400 bps must look to more sophisticated adaptive equal-
ization techniques to preserve the performance over the
dial-up channel.

In this section, the response of a typical 3002 channel to a
pulse modulated carrier is examined and the resulting ISI is
quantified. The amplitude and delay boundaries for the basic
3002 dial-up line are shown in Figures 17.9 and 17.10,
respectively. The C1 and C2 line conditioning specifications
are also indicated in these figures.

The one-sigma amplitude and delay for the dial-up chan-
nel corresponds approximately to the 3002 channel so that
about 84% for the dial-up connections are within the 3002
channel boundaries. In the following computer simulation
examples, a fifth degree polynomial is curve-fit to the C1-
conditioned amplitude boundaries and the resulting response
is considered to be representative of a randomly selected C1-
conditioned channel. The phase response used in the simula-
tions is based on a quadratic delay characteristic as discussed
in Section 17.8.2.

17.8.2 Quadratic Delay (Cubic Phase) Function

The expression for the cubic phase function centered about
the center frequency of the channel is given by

ϕ u =ϕc−Tcu−
ρ

2
u2−

ρ

3
u3 (17.55)
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FIGURE 17.8 Response to single-pole channel and matched filter
(BT = 0.5).

*This analysis was performed in the 1960s and is included for its technical
insights and historical interest. In the mid-to-late 1970s, with the advance-
ment of commercial cable, satellite, and wireless communications, conven-
tional wireline communications came to an end.
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and the corresponding quadratic delay function is given by

T u = −
dϕ u

du
=Tc + ρu + ρ u

2

= Tc +T1 u + T2 u

(17.56)

The constants ρ and ρ are defined in terms of a specified
delay at the channel band edge, B, so that

T1 B = 2πB ρ; T2 B = 2πB 2ρ (17.57)

and

ρ=
T1 B

2πB
=

Fd1

2πBT
T2 s2 rad (17.58)

ρ =
T2 B

2πB 2 =
Fd2

2πBT 2T
3 s3 rad2 (17.59)

where Fd1 and Fd2 are the normalized delays at the band edge
for the quadratic and cubic phase terms, respectively. Substi-
tuting these results into the channel phase and delay functions
and recalling that uT = 2πX, results in the following normal-
ized expressions

ϕ X =ϕc−2π FdX +
Fd1

2BT
X2 +

Fd2

3 BT 2X
3 (17.60)

T X

T
=Fd +

Fd1

BT
X +

Fd2

BT 2X
2 (17.61)

Computer simulations are used to demonstrate the distor-
tion associated with the C1 line characteristic, using the
pulsed modulated carrier input signal. The conditions are
identified in Table 17.2 with the following exceptions: fc =
fs = 1.7 kHz, Fd = 0, and Rs = 1.0 ksps. The signal distortion
through an all-pass filter with a linear phase response is
examined in Problem 4. The various responses to the
pulse modulated carrier are shown in Figure 17.11.
Figure 17.11a shows the curve-fit amplitude and the quad-
ratic channel delay responses relative to the signal spectrum.
Figure 17.11b shows the carrier modulated response and the

TABLE 17.3 Sampled Matched Filter Output Results for the Single-Pole Channel

BT

n

Loss (dB)a−1 1 2 3 4 0

0.25 0.093 0.217 0.044 0.010 0.003 0.632 3.98
0.5 0.058 0.147 0.007 — — 0.788 2.07
1.0 0.032 0.077 — — — 0.891 1.00
1.5 0.021 0.052 — — — 0.927 0.65

aLoss in the symbol interval T excluding ISI.
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corresponding magnitude function, and Figure 17.11c shows
the I/Q responses. The concave upward, or smiling, charac-
teristic of the quadratic delay distortion results in predo-
minately post ISI terms. Figure 17.12 shows the same
sequence of plots for a concave downward, or frowning,
quadratic delay distortion. It is seen that the frowning quad-
ratic delay distortion simply flips the response in time with
the distortion appearing as mostly presymbol interference.
Channel equalizers must be capable of equalizing both pre-
symbol and postsymbol interference.

17.8.3 Practical Interpretation of the Phase Function

The phase functions used for the dial-up channels are repre-
sentative of the physical channels over certain regions of
the frequency response. Suppose, for example, the actual
phase function of the channel is similar to that shown in

Figure 17.13. This satisfies the condition that the phase func-
tion has odd symmetry in frequency.

Suppose now that this phase function is expressed as

ϕ ω = −boω+ b1 sin ωTo (17.62)

Expanding (17.62) in a Taylor series about ωc gives

ϕ ω =ϕ ωc +ϕ ωc ω−ωc +
ϕ ωc

2
ω−ωc

2 +

(17.63)

where

ϕ ωc = −boωc + b1 sin ωcTo (17.64)

and
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FIGURE 17.11 Response to C1 conditioned channel (Fd2 = 5.0).
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ϕ ωc = −bo + b1To cos ωcTo (17.65)

and

ϕ ωc = −b1T
2
o sin ωcTo (17.66)

and

ϕ ωc = −b1T
3
o cos ωcTo (17.67)

When these results are expressed in terms of the lowpass
argument u =ω−ωc the phase function becomes

ϕ u =ϕ u +ϕc (17.68)

with

ϕc =ϕ ωc (17.69)

and

ϕ u =ϕ ωc u +
ϕ ωc

2
u2 + (17.70)

Upon substituting (17.64) through (17.67) into (17.70),
the phase function is expressed as
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ϕ u = bo−b1To cos ωcTo u +
b1 T

2
o

2
sin ωcTo u2

+
b1T3

o

3
cos ωcTo u3 +

(17.71)

and the corresponding delay function is

T u = bo−b1To cos ωcTo + b1T
2
o sin ωcTo u

+
b1T3

o

2
cos ωcTo u2 +

(17.72)

As an example of the cubic phase function, let ωc = 2π To
and neglect powers of u greater than three so that (17.71)
becomes

ϕ u bo−b1To u +
b1 T3

o

3
u3 (17.73)

Upon equating coefficients and considering Fd1 = 0, this
result is identical to the cubic phase function used in
Section 17.8.2. In a similar manner, the quadratic phase func-
tion is obtained when ωc = π To. Therefore, the phase char-
acteristics outlined in Section 17.8.2 can be approximated
by considering selected regions of a realizable channel phase
function. In general, more complex phase functions can be
realized using a Fourier series representation involving more
terms.

ACRONYMS

AWGN Additive white Gaussian noise
BPSK Binary phase shift keying
HF High frequency
I/Q Inphase and quadrature phase
ISI Intersymbol interference
VLF Very low frequency

PROBLEMS

1. Referring to (17.4), show that Hr(ω) and Hi(ω) must be,
respectively, even and odd functions of ω for h(t) to be
a real function.

2. Referring to (17.6) and (17.7) show the even and odd con-
ditions of Hc(u) and Hs(u) with respect to their arguments
that result in either hc(t) = 0 or hs(t) = 0.

3. Show that the integration in (17.5) results in the I/Q low-
pass filter functions hc(t) and hs(t) as expressed in (17.6)
and (17.7). Then, using these results, show that the second
equality in (17.5) applies.

4. For a pulse signal input expressed as s(t) = Arect(t/T),
compute the output response of a unit-gain all-pass filter
with a linear phase response ϕ ω =ωτ. Does the out sig-
nal experience any distortion?

5. Part 1: Derive the expression for the spectrum of the signal
in (17.31) at the output of a unit-gain all-pass channel with
the phase function expressed as ϕ ω =ωτ.

Part 2: Sketch the three-dimensional spectrum (see
Figure 17.4) of the filtered signal obtained in Part 1. Show
the horizontal ω axis and the orthogonal axes Re{S(ω)}
and Im{S(ω)}. Label all pertinent parameters including
A, T, ωs, τ, and ϕ.

Part 3: Evaluate the expression for the equivalent lowpass
signal sc(t).

6. Given the complex frequency translation of the channel
input shown in Figure 17.3, express the frequency trans-
lated baseband signal x t in terms of the quadrature com-
ponents sc(t) and ss(t) for the BPSK modulated input
signal s(t) expressed in (17.31). Using the expression
for x t in terms of sc(t) and ss(t) that you have just devel-
oped, show that the first equally in (17.32) applies.

7. Repeat Problem 5 for the QPSK modulated signal using
the isolated symbol with ds = 1.
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18
COMMUNICATIONS IN FADING ENVIRONMENTS

18.1 INTRODUCTION

The fading channel is characterized as a multiplicative distur-
bance in which the signal amplitude fluctuates with time
depending upon the temporal characteristics of the channel.
The term “channel” is used somewhat broadly in the sense
that the amplitude fluctuations often result from many signal
paths that appear as a signal with random phase variations at
the receiver terminal. These multipath signals combine in
such a way that the phases constructively and destructively
combine resulting in random variations of the received signal
amplitude. The amplitude of the received signal is often
dominated by a direct or line of sight (LOS) path and the
received signal amplitude fluctuations are related to
the direct-path signal amplitude. The signals arriving at the
receiver over direct and indirect paths are, respectively,
referred to as the specular and random components of the
received signal. The specular component corresponds to
the received signal over the path without fading.

An important aspect of the fading environment is the tem-
poral characteristic of the amplitude fluctuations. For exam-
ple, if all of the signal paths through the channel were fixed or
unchanging, the received signal amplitude would be a con-
stant random variable independent of time. However, real
channels are seldom stationary but fluctuate with time due
to natural disturbances, such as atmospheric and ionospheric
turbulence, Doppler velocities, Faraday rotation, and changes
in ground reflection coefficients. An interesting phenomenon
in the satellite channel is that the fluctuations or scintillations

are a result of the diurnal changes in the electron density of
the ionosphere, which are more severe in the equatorial and
polar regions than at midlatitudes. The temporal fading is also
sensitive to the motion of the transmitter and receiver term-
inals. Slow fading results when the channel correlation time
is much greater than the symbol rate or the fundamental time
constants of the receiver and demodulator. On the other hand,
rapid fading results when the channel correlation times are
less than the symbol durations or the system time constants.

Another important aspect of the fading environment is the
frequency bandwidth over which the amplitude fading char-
acteristics remain constant or correlated. For example, when
the entire radio frequency (RF) bandwidth occupied by the
communication signal fades identically, the signal level
changes; however, the signal is undistorted; in this case,
the fading is referred to as frequency nonselective fading,
or simply nonselective or flat fading. When the channel
coherence bandwidth is less than the occupied bandwidth,
then frequency selective fading occurs resulting in independ-
ent fading over portions of the bandwidth resulting in severe
signal distortion. Mobile radio communications [1, 2] in
urban and rural areas with indoor and outdoor cell phone
communications encounter small-scale fading effects leading
to rapidly changing Rayleigh fading with large Doppler shifts
and signal dispersion. These environments also encounter
man-made interference [3] that compounds the system com-
plexity in providing reliable communications.

Based on these introductory comments, the communica-
tion systems designer can generally improve the performance
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by applying robust waveforms, coding, interleaving, diver-
sity combining,* and automatic repeat request (ARQ) proto-
cols. Diversity combining is a technique of making the most
of a bad situation, in that, the received waveforms to be com-
bined must be separated by more than the fading correlation
intervals either in time or frequency, resulting in increased
data throughput and/or RF bandwidth. Several forms of
diversity combining to improve the system performance
are temporal, spatial, frequency, angle-of-arrival, and polar-
ization diversity. These topics are also examined in Chapters
19 and 20.

18.2 RICEAN FADING CHANNELS

The Ricean fading model characterizes the statistical fluctua-
tions in the received signal amplitude in terms of the specular
and random components. The analysis is based on examining
the envelope of a sinusoidal signal and narrowband Gaussian
noise as shown in Figure 18.1 where the signal is
expressed as

s t =Vs cos ωct +φs (18.1)

with peak voltage level Vs, carrier frequency fc =ωc 2π Hz,
and arbitrary signal phase ϕs. The peak voltage of the input
sinusoidal signal represents the specular component of the
received signal power given by Ps =V2

s 2 watts. The expres-
sion for the statistics of the signal envelope random variable r
is the Ricean probability density function (pdf) that plays a
dominate role in evaluating the system performance in a
fading environment. The specular component in the Ricean
model is the signal voltage, Vs, and the random component
is characterized in terms of the standard deviation, σr, of
the narrow band Gaussian noise. When the specular compo-
nent is zero, the amplitude fading is characterized by the
Rayleigh pfd.

The derivation of the Ricean distribution is developed in
Section 1.5.5.1, and the result is expressed as

pR r =
r

σ2r
e− r2 +V2

s 2σ2r Io
rVs

σ2r
(18.2)

where Io(x) is the modified Bessel function of order zero [4].
It is useful to express the Ricean distribution in normalized
form by letting x = r σr and xs =Vs σr with the result

pR x = pR r
dr

dx

= xe− x2 + x2s 2Io xxs

(18.3)

This normalized expression for the Ricean pdf is plotted in
Figure 18.2 with xs =Vs σr as a parameter. The specular-to-
random noise power and the additive white noise-to-random
noise power ratios are defined as

γsr ≜
Ps

σ2r
and α≜

σ2n
σ2r

(18.4)

18.2.1 Rayleigh Fading Channels

When the specular component of the Ricean pdf is zero, the
resulting distribution for the envelope r is the Rayleigh pdf
expressed as

Specular

Signal

s(t)

Random

envelope
r

n(t)
Gaussian noise

N(0, σr)

Narrowband

filterΣ
Envelope

detector

FIGURE 18.1 Ricean model: envelope of signal and narrowband Gaussian noise.

r/σr

0 1 2 3 4 5 6 7

p(
r/

σ r
)

0.0

0.2

0.4

0.6

0.8

Vs/σr = 0
(γsr = –inf dB) 

1
(–3) 2

(3)
3

(6.5)
4

(9)
5

(11)

FIGURE 18.2 Normalized Ricean probability density function.

*Diversity combining involves the selection of one of several independently
received signals or the selection of an optimally combined output.
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pR r =
r

σ2r
e− r

2 2σ2r (18.5)

18.2.2 Gaussian Limit

At the other end of the spectrum from the Rayleigh distribu-
tion, that is, as Vs approaches infinity, such that Vs σr; the
modified Bessel function is approximated as

Io
rVs

σ2r

e−rVs σ2r

2πrV σ2r
(18.6)

Substitution of (18.6) into the Ricean pdf described by
(18.2) and completing the square in the exponent results in
the expression

pR r
1

2πσ2r

r

Vs
e− r−Vs

2 2σ2r

1

2πσ2r
e− r−Vs

2 2σ2r

(18.7)

Where the last approximation in (18.7) applies for values of
r within several standard deviations of Vs, that is, for
r =Vs + kσr or r Vs = 1+ kσr Vs. Therefore, based on the
condition Vs σr, it follows that r Vs 1 for reasonably
small values of k. Consequently, as the specular component
approaches infinity, the Ricean pdf approaches the Gaussian
pfd with mean value Vs and standard deviation σr.

18.3 RICEAN CUMULATIVE DISTRIBUTION

It is informative to examine the cumulative distribution func-
tion (cdf) of the Ricean pdf so that the probability of the
received signal exceeding a specified level can be deter-
mined. The cdf is defined as

Pr r ≤ rT =

rT

0

pR r dr (18.8)

However, it is convenient to examine the probability that
r > rT corresponding to Pr r > rT = 1−Pr r ≤ rT . Using the
normalized parameters introduced in Section 18.2, the nor-
malized threshold is xT = rT mr and (18.8) becomes

Pr x > xT = e−x
2
s 2

∞

xT

xe− x
2 2Io xxs dx (18.9)

Equation (18.9) is numerically integrated and the results
are shown in Figure 18.3 for several values of the specular

signal-to-noise ratio (SNR). As the specular component
becomes large, the median value, Med[x] corresponding to
Pr x > xT = 0 5, approaches the specular SNR. For example,
in Figure 18.3, when γsr = 11dB, the abscissa, corresponding
to Pr x > xT = 0 5, is approximately 11 dB. This occurs
because, for large values of γsr, the Ricean distribution
approaches the Gaussian distribution in which case the
median and mean values are equal.

The mean value of the Ricean distribution, used as the nor-
malizing value in Figure 18.3, is evaluated as

E r =
e−V

2
s 2 σ2r

σ2r

∞

0

r2e− r
2 2σ2r Io

rVs

σ2r
dr (18.10)

or, in normalized form

E x = σre
−x2s 2

∞

0

x2e− x
2 2Io xxs dx (18.11)

The normalized mean value, E[x]/σr, is plotted in Figure 18.4.
The straight-line plot assumes the relationship E r =Vs and
this appears to be a good approximation for specular SNRs
exceeding about 3 or 4 dB. For a zero specular component,

that is, for Vs = 0, the normalized mean value is π 2, which
is simply the mean of the Rayleigh distribution.

18.4 APPLICATION OF RICEAN
CHANNEL MODEL

18.4.1 Slow Fading

To apply the Ricean distribution to the slow fading channel,
the received signal power is viewed as the random variable
Pr = r2 2 and, considering zero-mean additive white
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FIGURE 18.3 NormalizedRicean cumulative distribution function.
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Gaussian receiver noise (AWGN) with power σ2n, the average
receiver SNR is γ = γr + γs. In addition, the random and spec-
ular SNRs are defined as γr =Pr σ2n and γs =V

2
s 2σ2n =Ps σ2n,

respectively. Substituting these SNRs into the Ricean pdf
results in the distribution of the received SNR in a Ricean
fading environment, given by

pR γ = pR r
dr

dγ

= e− γr + γs Io 2 γrγs

(18.12)

Theperformanceof acommunication system isusually char-
acterized in terms of the bit-error probability, that is, expressed
as a function of, or conditioned on, the receiver SNR as

Pbe γ =Pr bit-error γ (18.13)

In a nonfading channel, the SNR is not a random number
but is constant so that Pbe =Pbe γ ; however, in a fading envi-
ronment, the SNR is a random variable and the conditioning
on γ must be removed using the pdf of the fading SNR. In
general, the result is

Pbe = Pr bit-error γ p γ dγ (18.14)

where the integration is over the applicable range of γ.

18.4.2 Fast Fading

In the fast fading environment, the temporal correlation
of the fading is much faster than the minimum system
time-constant, which is typically the bit or symbol duration
of the transmitted waveform.* In this situation, the random
component of the fading channel is considered to be additive
noise, so the received SNR is defined as the ratio of the

specular component to the random component plus receiver
noise, that is,

γ =
Ps

Pr + σ2n
=

γs
γr + 1

(18.15)

Expressed in terms of the average signal-to-noise ratio
γ = γs + γr with β≜ γs γr, (18.15) becomes

γ =
βγ

γ + β + 1
(18.16)

Using (18.14) and (18.16) the bit-error probabilityPbe = Pr (γ)
is unique to the underlying modulation, for example, for
CBPSK modulation the bit-error probability is expressed as

Pbe =Pbe γ

=Pbe
βγ

γ + β + 1
CBPSK; Fast Ricean fading

(18.17)

18.5 PERFORMANCE OF SEVERAL BINARY
MODULATION WAVEFORMS WITH
RICEAN FADING

In this section, the bit-error performance of coherent binary
phase shift keying (BPSK), (CBPSK), differentially coherent
BPSK (DCBPSK), and noncoherent (NC) binary frequency
shift keying (BFSK) (NCBFSK) are examined in slow
Ricean fading (SRF) and fast Ricean fading (FRF) environ-
ments. Noncoherent or NC refers to noncoherent detection
processing in the demodulator.†

18.5.1 CBPSK with Slow Nonselective Ricean
Fading

The bit-error probability of CBPSK, conditioned on the
SNR is

Ps bit-error γ =
1
2
erfc γ (18.18)

where γ =Ps σ2n =Eb No is measured in the data rate band-
width of 1/Tb. Eb = PsTb is the energy-per-bit and No is the
receiver noise power density. Using the concepts discussed
in Section 18.4, the demodulated bit-error probability is eval-
uated as

Specular signal level Vs or Vs / σr
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FIGURE 18.4 Mean value of Ricean pdf.

*With FEC coding, the symbol duration is based on the code-bit and, with
tracking, the system time-constant is limited by the tracking bandwidth.
†R.L. Bogusch, Ionospheric Scintillation Effects on Satellite Communica-
tions: Interim Technical Note, MRC-N-139, pp. 60–96, Mission Research
Corporation, Santa Barbara, CA, June 1974.
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Pbe =
1
2γr

∞

0

erfc γ e− γ + γs γr Io
2 γγs
γr

dγ (18.19)

It is convenient to evaluate (18.19) in terms of the average
SNR γ = γs + γr with the ratio of the specular-to-random
signal components defined as β = γs γr. Substituting these
results with x = γ γr into (18.19), the bit-error probability is
expressed as

Pbe =
1
2

∞

0

xerfc xγ 2 β + 1 e− x2 + 2β 2Io 2βx dx

(18.20)

Equation (18.20) is plotted in Figure 18.5 for various
values of the parameter β. The case β =∞ corresponds to
the Gaussian channel with no fading and β = 0 results in
the slow fading Rayleigh limit (SFRL) channel performance.
The closed-form expression for the bit-error probability for
β = 0 is evaluated using the integral (Reference 4, p. 303,
Integral No. 7.4.19), resulting in the expression

Pbe=
1
2

1−
γ

γ + 1
β = 0,CBPSK slow fading Rayleigh limit

(18.21)

18.5.2 Coherent BPSK with Fast Nonselective
Ricean Fading

The performance of CBPSK in the fast fading Ricean channel
is evaluated as

Pbe =Pr bit-error γ

=
1
2
erfc

βγ

γ + β + 1

(18.22)

Equation (18.22) is plotted in Figure 18.6. When β =∞,
the result is simply the performance of ideally demodu-
lated CBPSK; however, when β = 0, the bit-error probabil-
ity is 0.5 corresponding to the fast fading Rayleigh
limit (FFRL) with no information being conveyed by
the signal.

Pbe =
1
2

β = 0, CBPSK fast fading Rayleigh limit (18.23)

18.5.3 Differentially Coherent BPSK with Slow
Nonselective Ricean Fading

The bit-error probability performance of DCBPSK in an
AWGN channel is given by

Pbe =
1
2
e−γ (18.24)

and, in keeping with the previous discussions, the perfor-
mance in the slow fading Ricean channel is evaluated as

Pbe =
1
2γr

∞

0

e−γe− γ + γs γr Io
2 γγs
γr

dγ

=
e−γs γr

2γr

∞

0

e−γ γr + 1 γr Io
2 γγs
γr

dγ

(18.25)

Substituting the variable x = γ γr + 1 γr results in the
expression
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Pbe =
e−γs γr

γr + 1

∞

0

xe− x
2
Io bx dx (18.26)

where b = 2
γs

γr γr + 1
. Performing this integration [5]

yields

Pbe =
1

2 γr + 1
e−γs γr + 1 (18.27)

and substituting for the previously defined parameters γ and
β results in

Pbe =
β + 1

2 γ + β + 1
e−βγ γ + β + 1 (18.28)

Equation (18.28) is the bit-error performance of DCBPSK
in a slow fading Ricean channel and is plotted in Figure 18.7.
The SFRL is evaluated with β = 0 and is

Pbe =
1

2 γ + 1
β = 0, DCBPSK slow fading Rayleigh limit

(18.29)

18.5.4 Differentially Coherent BPSK with Fast
Nonselective Ricean Fading

The performance of DCBPSK in the fast fading environment
simply attributes the received noise as being the sum of the
thermal noise and the random component of the channel
noise resulting in the bit-error probability expression

Pbe =
1
2
e−γs γr + 1 (18.30)

or, in terms of the parameters γ and β,

Pbe =
1
2
e−βγ γ + β + 1 (18.31)

Equation (18.31) is the bit-error performance of DCBPSK
in a fast fading environment and is plotted in Figure 18.8. The
FFRL is evaluated with β = 0 and is

Pbe =
1
2

β = 0, DCBPSK fast fading Rayleigh limit

(18.32)

18.5.5 Noncoherent BFSK with Slow Nonselective
Ricean Fading

The bit-error performance of NCBFSK in an AWGN channel
is given by

Pbe =
1
2
e−γ 2 (18.33)

and, in keeping with the previous discussions, the perfor-
mance in the slow fading Ricean channel is evaluated as

Pbe =
1
2γr

∞

0

e−γ 2 e− γ + γs γr Io
2 γγs
γr

dγ

=
e−γs γr

2γr

∞

0

e− γ γr + 2 2γr Io
2 γγs
γr

dγ

(18.34)

Substituting the variable x= γ γr + 2 2 results in the
expression

Average signal-to-noise ratio (Eb/No) (dB)

0 5 10 15 20 25 30 35 40

B
it

-e
rr

o
r 

p
ro

b
ab

il
it

y
 (

P
be

)

1e–8

1e–7

1e–6

1e–5

1e–4

1e–3

1e–2

1e–1

1e+0

10

5
0

15

β =
–inf (dB)

β =
inf 

FIGURE 18.7 DCBPSK with slow nonselective Ricean fading.
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Pbe =
e−γs γr

γr + 2

∞

0

1
γr
e−x γr Io

2
γr

2γsx
γr + 2

dx (18.35)

The integrand in (18.35) can be expressed in terms of the
pdf pR(x), in the form of (18.12), by substituting
b= 2γs γr + 2 in the argument of the Bessel function and
adding and subtracting b to the exponent. The result is

Pbe =
e− γs −b γr

γr + 2

∞

0

1
γr
e− x + b γr Io

2 xb

γr
dx

=
e− γs −b γr

γr + 2

∞

0

pR x dx

(18.36)

The integral in (18.36) is equal to unity, so the expression
for the bit-error probability becomes simply

Pbe =
e−γs γr + 2

γr + 2
(18.37)

and, upon substituting for the previously defined parameters
γ and β (18.37), results in

Pbe =
β + 1

2 γ 2 + β + 1
e−

βγ 2
γ 2+ β + 1 (18.38)

Equation (18.38) represents the performance of NCBFSK
in a slow fading Ricean channel and is plotted in Figure 18.9.
The SFRL limit is evaluated with β = 0 and is

Pbe =
1

γ + 2
β = 0, NCBFSK slow fading Rayleigh limit

(18.39)

18.5.6 Noncoherent BFSK with Fast Nonselective
Ricean Fading

The bit-error performance of NCBFSK in an AWGN channel
is given by

Pbe =
1
2
e−γ 2 (18.40)

Because the result is very similar to the performance for
DCBPSK, the performance for NCBFSK in the fast fading
Ricean channel is readily evaluated as

Pbe =
1
2
e−γr 2 γr + 1 (18.41)

or, in terms of the parameters γ and β,

Pbe =
1
2
e−βγ 2 γ + β + 1 (18.42)

Equation (18.42) is the bit-error performance of NCBFSK
in a fast fading environment and is plotted in Figure 18.10.
The FFRL is evaluated with β = 0 and is

Pbe =
1
2

β = 0, NCFSK fast fading Rayleigh limit (18.43)

18.6 GENERATION OF RICEAN RANDOM
VARIABLES

Ricean distributed random variables are easily generated by
using the expression for the magnitude of a narrowband sig-
nal plus AWGN given by
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r = Vs + nI cos ϕ 2 + nQ sin ϕ 2 (18.44)

where nI and nQ are iid Gaussian random variables N(0, σr)
and ϕ is a uniformly distributed random phase over ±π.
The signal or specular value Vs is determined from the
signal-to-noise specification, γsr, as

Vs = σr 2γsr (18.45)

Figure 18.11 shows the pdf for the normalized random
variable r/σr formed using 100K Ricean random variables
r corresponding to SNRs γsr = −∞, −3, 3, 6.5, and 9 dB. Con-
sidering that the responses represent a single record, or
ensemble of a stochastic process, the plots are in reasonable
agreement with the corresponding theoretical results shown
in Figure 18.2.

Correlated Ricean random variables can also be generated
based on the conditional pdf* expressed as

p ni ni−1 =
1

2π 1−ρ2 σ2r
e−n

2
i 2 1− ρ2 σ2r (18.46)

Where ni and ni−1 are the underlying zero-mean iid Gaussian
random variables and ρ is the correlation coefficient. Using
(18.46), the magnitude of the correlated random variables,
corresponding to (18.44), is computed as

ni = Vs + nIi cos ϕi
2 + nQi sin ϕi

2−ρni−1

i= 1,2,… (18.47)

where the initial conditions correspond to nI0 = nQ0 = 0. The
quadrature variables nIi and nQi can be thought of as the dis-
crete-time wss stochastic process n(ti,ζ) with ζ representing
the quadrature outcomes. The received signal plus noise com-
plex random process is characterized as

ni =Vs + nIi cos ϕi + jnQi sin ϕi (18.48)

where ϕi is a uniformly distributed random variable over ±π
with pdf p(ϕ) = 1/2π. The complex random variables ni are
discrete-time Ricean distributed random variables with t =
iΔt corresponding to the sampled wss random process n(t)
with autocorrelation response given by

Rn t =

∞

0

n t n∗ t − t dt (18.49)

The range of the integration in (18.49) can be limited to TI
corresponding to a negligible correlation response. The nor-
malized correlation response is expressed as

ρn t =
Rn t

σ2n
(18.50)

The sampling interval Δt is established by the channel
bandwidth Bch necessary to support the modulated wave-
form, such that, Δt ≤ 1/2Bch.

18.6.1 Multipath Rayleigh Fading Simulator

A multipath Rayleigh fading simulator for mobile radio
applications is described by the functional diagram in
Figure 18.12 [6]. The quadrature noise generators provide
zero-mean iid Gaussian random samples† denoted as N
(0,σn). The sampled output sT(t), in Figure 18.12, represents
a real carrier-modulated waveform; however, the following
analysis is based on the complex envelope given by

sT t = h t n t− t dt (18.51)
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FIGURE 18.11 Normalized Ricean probability density functions
(based on 100K computer-generated samples).
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FIGURE 18.12 Multipath Rayleigh fading simulator.

*See section “LINKThe Bivariate Distribution—An Example of Conditional
Distributions.” †The author’s implemented an analog simulator using a Zener noise diode.
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In this context, the baseband signal is identical to (18.48)
with Vs = 0 resulting in Rayleigh fading. The movement of
the mobile radio results in a Doppler frequency shift with
the envelope of the received signal fluctuating about the local
mean of the Rayleigh distribution and a uniformly distributed
random carrier frequency phase. The characterization of the
frequency response of the shaping filters is the principal fac-
tor in the design of mobile radio channels.

The shaping filter spectrum is dependent on the directive
gain of the mobile radio antenna pattern and can be designed
to accommodate any directivity characteristic [7]. However,
for the commonly used omnidirectional antenna, the theoret-
ical spectral density of the complex envelope of the received
signal is expressed as [8]

S f =
E2

2πfd
1− f fd

2 f ≤ fd

0 o w

(18.52)

where E is the rms value of the signal envelope and fd is the
Doppler frequency given by

fd =
V

λ
=
V

c
fc (18.53)

where V is the mobile vehicle velocity, λ = c/fc is the wave-
length of the carrier frequency fc, and c is the speed of light.
The theoretical Doppler frequency is evaluated by defining
the n-th moment of the spectrum, bn, as

bn =
Δ

2π n

∞

0

S f f ndf (18.54)

Upon substituting (18.52) into (18.54), the Doppler fre-
quency is evaluated as

fd =
1
2π

2b2
b0

(18.55)

The theoretical filter spectrum has an infinite response at fd
and zero response at higher frequencies and the practical or
simulated filter spectrum, S(f), is designed to increase to a
normalized peak of 6 dB at fd with a roll-off of 18 dB/octave
above fd. The moments of the simulated spectrum are denoted
as bn and the simulated Doppler, f d, is computed using

(18.55) with b2 and b0. The simulated vehicle speed

is V = λf d.
Using this approach the simulated fade rate is related to the

theoretical fade rate by equating second moments of the
respective spectrums. The authors report that the measured
Rayleigh envelopes are within 3 dB of the theoretical envel-
opes down to nearly 40 dB below the rms level. The fading

level crossing rate and average fade duration were also com-
pared to the respective theoretical values, expressed as [9]

NΓ = 2πfdΓe−Γ
2

theoretical positive crossings-per-second

(18.56)

and

τΓ =
eΓ

2
−1

2πfdΓ
theoretical fade duration ms (18.57)

where Γ is the fade level relative to the rms level of the
Rayleigh pdf. The authors report excellent agreement with
theory in both of these performance measures when normal-
ized by fd and f d.

18.7 RELATIONSHIPS BETWEEN FADING
CHANNEL PARAMETERS

For multipath channels with N discrete paths, the multipath
delays are denoted as τn and the channel baseband impulse
is expressed as the summation [10, 11]

h t;τ =
N−1

n= 0

an t,τ ejθn t,τ δ τ−τn t (18.58)

where an(t, τ) is the multipath time-dependent amplitude
function and the corresponding phase function is

θn t;τ = 2πfcτn t +ϕn t,τ (18.59)

where fc is the carrier frequency. Considering the analytic
baseband transmitted signal sT t , the received baseband sig-
nal is described as the convolution

r t;τ =

∞

−∞

h t ,τ sT t− t dt (18.60)

In the expressions h(t; τ) and r t;τ , the parameter
t represents the time variation of the channel resulting from
the relative motion between the transmitter, receiver, multi-
path points of reflection, and the multipath delay τ = τn(t)
at time t corresponding to each reflection path. For the
time-invariant channel, or a channel that is relatively constant
over a period of time, the channel impulse response in (18.58)
simplifies to

h τ =
N−1

n= 0

an τ ejθn τ δ τ−τn (18.61)
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with

θn τ = 2πfcτn +ϕn τ (18.62)

These relationships and their impact on wireless commu-
nications in urban and rural environments play an important
role in the understanding and application of cellular commu-
nication technologies. Because of the complexity in analyz-
ing the link performance, a common practice is to perform
in situ measurements using test signals to evaluate the signal
losses in the various environments, including indoor applica-
tions. Chapter 19 reviews the conditions and results for var-
ious in situ link models.

Although (18.60) is dependent on the discrete multipath
though the implicit delta function δ τ−τn t , the expressions
r t;τ and h(t; τ) are considered to be continuous in τ by
applying the impulse δ t−τ to the channel response [12];
this simplifies the characterization of the underlying multi-
path parameters. In the following descriptions, the channel
is considered to be wss with autocorrelation response
X(t; τ1) with the corresponding two-dimensional Fourier
transform* H fd; fc . These functions are expressed, respec-
tively, as

X t;τ1 =

∞

−∞

h t ,τ1 h∗ t − t,τ2 dt δ τ1−τ2

=X t;τ1,τ2 δ τ1−τ2

(18.63)

and

H fd; fc =

∞

−∞

∞

−∞

X t,τ1 e− j2π fd t− fcτ1 dtdτ1 (18.64)

where the delta function δ(τ1 − τ2) is used to denote that the
multipath reflections are uncorrelated.

18.7.1 Channel Coherence Time and
Doppler Spread

The channel coherence time, Tc, is characterized by the cor-
relation response X(t; 0) and is defined, by the normalized
form, as X(Tc; 0)/X(0; 0) = k where 0 < k < 1. The value of
k is selected based on an acceptable decorrelation point in
the response, for example, k = e−1 = 0.368. However, Tc
can also be determined from theDoppler spread as described
in the remainder of this section.†

The Fourier transform, H(fd; 0), of the correlation
response X(t;0) characterizes the Doppler frequency corre-
sponding to the time varying channel. This is consistent with
the notion that the time dependence of the channel is the
result of the changing path lengths due to the relative motion
between the transmitter, receiver, and reflecting surfaces. The
underlying principle is that the Doppler frequency is related
to the velocity along the propagation path as

fd =
v

c
fc (18.65)

where fc is the carrier frequency, c is the free-space speed of
light, and v =Δd/t is the velocity, normal to the plane of the
receiver antenna. The velocity results from a change in the
propagation path length Δd that, in turn, results from varia-
tions in the multipath reflections. Based on the Fourier trans-
form relationship, Tc and Bd are inversely related as

Tc
1
Bd

(18.66)

where Bd is the bandwidth beyond which the Doppler spread
in H(fd; 0) is negligible. In practice it is found that (18.66)
results in considerable signal decorrelation and intersymbol
interference (ISI) and selecting Tc, such that X(Tc; 0) = 0.5
results in the approximation [13]

Tc
0 18
Bd

Bd = fd max (18.67)

where fd(max) is the maximum Doppler expressed in (18.65).
However, Rappaport [14] points out that the coherence time
in (18.67) is too restrictive and suggests a rule of thumb
given by

Tc =
0 423
Bd

Bd = fd max , rule of thumb (18.68)

The coherence time is an important system design param-
eter, in that, it represents the time over which contiguous
received modulated symbols are correlated and is a principal
channel parameter because data symbols separated by more
than Tc seconds are affected independently by the channel.
Therefore, Tc influences the selection of the forward error
correction (FEC) coding, the span of data interleavers, and
the type of noncoherent combining.

As discussed in this section, fast and slow fading are char-
acterized by the Doppler spread in terms of the dynamics of
the channel. However, in Sections 18.4 and 18.5, fast and
slow fading are characterized in terms of the coherence time
relative to the symbol rate, for example, if the coherence time
is less than (or comparable to) the symbol duration, then fast
fading occurs. Because of the inverse relationship between Tc
and Bd, these parameters impact the system performance in

*The notations fd and fc represent independent variables corresponding,
respectively, to the Doppler and the channel coherence frequencies.
†The notation used for the coherence time and Doppler spread varies in the
literature and Tc and Bd are adopted here. Propagation through the severely
disturbed ionosphere is discussed in Chapter 20 where the decorrelation time
is denoted as τo.
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the same way, that is, high Bd and low Tc result in fast fading
and vice versa.* In either event, to improve the system perfor-
mance, some combination of FEC coding, interleaving, com-
bining, or other mitigation technique as outlined in
Tables 20.13 and 20.14 is most likely required. The use of
higher symbol rates to avoid the fast fading regime has its
limits as discussed in Section 18.7.2.

18.7.2 Channel Coherence Bandwidth and
Time Dispersion

The channel multipath spread is characterized by the corre-
lation response X(0; τ) and is defined in the normalized form
using τ = Tm and expressed as X(0; Tm)/X(0; 0) = k where
0 < k < 1. The parameter k is selected as a suitable decorrela-
tion point in the response, for example, k = e−1 = 0.368.

The Fourier transform, H(0; f), of the multipath spread
correlation response X(0; τ) characterizes the channel coher-
ence bandwidth, Bc.

† This is consistent with the notion that
the time dispersion of a signal can be characterized as delayed
signal replicas‡ corresponding to the channel multipath
delays [15]. Based on the Fourier transform relationship,
Tm and Bc are inversely related as

Bc
1
Tm

(18.69)

The bandwidth Bc is the bandwidth beyond which the
Doppler spread in H(0; f) is negligible. For example,
H 0;Bc = 0 368; however, Rappaport [16] quantifies the
delay dispersion for wideband wireless systems in terms of
the mean and second moment of the excess delay and the
rms delay spread of the power delay profile, defined, respec-
tively, as

τ = n
a2nτn

n
a2n

, τ2 = n
a2n τ

2
n

n
a2n

(18.70)

and

στ = τ2 −τ2 (18.71)

where n corresponds to the number of signal paths arriving at
the receiver, an is the power of the n-th multipath received
signal, and the excess delays are measured relative to the first
received signal. The maximum excess delay corresponds to

the delay of the last multipath signal that exceeds a defined
threshold relative to the maximum of the multipath levels;
an example threshold is −10 dB. The power delay profile
can be generated by examining the return of a narrow pulse,
wide bandwidth test signal.

Defining the coherence bandwidth as the frequency for
which H 0;Bc = 0 9, then (18.69) is approximately related
to the rms delay spread as [17]

Bc
1

40στ
H 0;Bc = 0 9 (18.72)

and with H 0;Bc = 0 5 the approximate relationship is

Bc
1
4στ

H 0;Bc = 0 5 (18.73)

The results vary widely and the impact of the time-varying
multipath on a particular waveform demodulator must be
examined by simulation [13, 18, 19] using accurate multipath
channel models [20, 21].

The coherence bandwidth is an important system design
parameter, in that, modulated waveforms with bandwidths
greater than the coherence bandwidth will experience severe
delay dispersion distortion requiring processing intense
equalizers. It is also used to limit the chip rate of spread-
spectrum pseudo-noise (PN) codes in code division multiple
access (CDMA) systems if equalization is to be avoided. The
coherence bandwidth is the frequency domain equivalence of
the coherence time. For example, the frequency-hopping
spread-spectrum (FHSS) and frequency diversity (FD) sys-
tems must use carrier frequencies separated by at least the
coherence bandwidth to provide a combining gain and a
net improvement in performance.

18.8 DIVERSITY TECHNIQUES FOR FADING
CHANNELS

As mentioned in the introduction, diversity combining is an
important aspect in providing robust communications in fad-
ing environments. The various forms of diversity, for exam-
ple, temporal, frequency, spatial, angle-of-arrival, and
polarization, are typically combined in the communication
receiver or demodulator using time and frequency domain
processing based on estimates of relative power levels and
SNRs. Temporal diversity includes a variety of techniques
including channel coding, involving FEC coding, data inter-
leaving, message repetition, and various methods of ARQ
[22] involving error detection and correction (EDAC) cod-
ing. In many applications, the diversity combining takes
place between multiple or parallel receivers and demodula-
tors that are dedicated to an independent diversity channel
or communication link. In these applications, smart transmit

*The system performance in fast and low fading is also impacted by the more
restrictive bandwidths of the tracking loop, and for this reason noncoherent
and differentially coherent detection is preferred in fast fading channels with
commensurably low symbol rates.
†For propagation through the severely ionized ionosphere, discussed in
Chapter 20, the decorrelation frequency is denoted as fo.
‡See, for example, the paired-echo analysis in Sections 1.3.2 and 1.3.3.
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and receive antennas [23] play an essential role in the diver-
sity combining. Therefore, because of the common time and
frequency domain processing, diversity techniques are gener-
ally applicable to a variety of fading channel conditions. In
the slow nonselective Rayleigh and Ricean fading regimes,
diversity combining is the most effective method of improv-
ing the system performance, providing significantly
improved bit-error performance and a reduction in message
throughput under severe time and frequency fading
conditions.

In Sections 18.8.1 and 18.8.2, diversity combining is
described in terms of the number, N, of independently
received signals that are available. The basic concept
involves choosing an appropriate system performance
parameter and then determining the best diversity selection
algorithm based on combining signals or selecting one of
N signals. The system performance parameters and the diver-
sity selection options are apparent in the following discus-
sions of the commonly used forms of diversity combining
[12, 24, 25]. The diversity performance is based on the under-
lying Rayleigh channel fading, described in terms of the SNR
using (18.12) with γs = 0 and the average SNR γ = γr. The pdf
of the instantaneous SNR (γ) is expressed as

p γ =
1
γ
e−γ γ (18.74)

The diversity selection algorithm must form the estimates
of γ in the time equal to the reciprocal of the fade rate and,
because of the relative short estimation times, the estimate
is typically evaluated in terms of the signal-plus-noise to
noise ratio or simply the signal-plus-noise. The automatic
gain control (AGC) of each of the N receivers must establish
identical receiver estimates for the diversity combining.

18.8.1 Frequency Nonselective (Flat) Fading

In this section, diversity selection techniques are discussed
that are applicable to either frequency nonselective fading
or frequency selective fading. In the former case, the combin-
ing interval must exceed the decorrelation time, whereas,
with frequency selective fading the combining bandwidth
must exceed the channel decorrelation frequency. The com-
monly used diversity techniques are selection diversity (SD)
or switching diversity, maximal ratio combining diversity,
and equal gain diversity. The diversity performance is based
on the underlying SFRL, that is, the fading is slow relative to
the transmitted symbol duration, and the reduction in the
required Eb/No ratio to achieve a specified bit-error probabil-
ity is examined for several waveform modulations.

18.8.1.1 Selection Diversity SD is the simplest type of
diversity, in that, the demodulator uses the received signal
with the largest estimate of the SNR. When the largest

SNR is selected from among theN independent Rayleigh fad-
ing received signals, the underlying Rayleigh random varia-
ble (r) is transformed to the random variable r . With the SNR

of r defined as γ = r 2 2σ2n, the probability density function of
the transformation is expressed as [26]

p γ =Nγ 1−e−γ γ
N−1

e−γ γ γ ≥ 0, selection diversity

(18.75)

where γ is the average SNR of the Rayleigh pdf in (18.74).
The derivation of (18.75) is rooted in the concept of order sta-
tistics discussed in Section 1.5.8.

SD Performance in a SFRL Channel The performance of
SD in a SFRL channel is examined in terms of the bit-error
probability of the DCBPSK and NCBFSK waveform modu-
lations. The performance is based on (18.14) with Pr (bit-
error|γ) equal to the underlying bit-error probability of the
modulation, given, respectively, by (18.24) and (18.33),
and p(γ) is the channel SD pdf expressed by (18.75). Upon
performing the integration in (18.14) over the range 0–∞,
the resulting bit-error probability for each of the modulations
is evaluated (see Problem 4) as

Pbe=

N

2
Γ γ + 1 Γ N

Γ γ +N + 1
DCBPSK SFRL

N

2
Γ γ 2 + 1 Γ N

Γ γ 2 +N + 1
NCBFSK SFRL

(18.76)

where γ = γb =Eb No and Γ(x) is the gamma function. The
bit-error performance for these modulations with SD is
shown in Figure 18.13 for various values of N. For N = 1,
(18.76) is simply the expression of the SFRL channel corre-
sponding to β = 0 in Figures 18.7 and 18.9. The bit-error
results corresponding to the dashed curve represents the
ideal AWGN performance of the respective underlying
modulations.

18.8.1.2 Maximal Ratio Combining Diversity The max-
imal ratio combining diversity (MRCD) algorithm generates
a composite envelope based on the summation of the N gain-
weighed and phase-adjusted individual received signals and
is expressed as

rN =
N

n = 1

Gnrn (18.77)

In (18.77), the phase of each received signal is adjusted to
zero so the summation represents a coherent integration.
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If each receiver has the same average noise power σ2n, the
SNR in each receiver is γn = r

2
n 2σ2n. Consequently, the com-

posite noise and signal powers are σ2T = n
σ2n and

PT =Nr2n 2 corresponding to the SNR γT =PT σ2T . Upon
defining the gain as Gn = rn/N, Couch [27] shows that the
maximum SNR occurs when

γ =
N

n= 1

γ
n

maximum signal-to-noise ratio (18.78)

and that the corresponding pdf of γ is expressed as

p γ =
γN−1e−γ γ

γN N−1
γ ≥ 0, maximal ratio combining

(18.79)

where γ is the average SNR of the Rayleigh pdf expressed by
(18.74). The individual channel SNRs (γn) are estimated
using independent quadrature Gaussian samples character-
ized as N(m, σn). Therefore, based on the summation of N
independent SNR estimates, expressed by (18.78), the distri-
bution in (18.79) describes the chi-square pdf with 2N
degrees of freedom as discussed in Section 1.5.7.1.

Maximal Ratio Combining Diversity Performance in SFRL
Channel The performance of MRCD in a SFRL channel
is examined in terms of the bit-error probability of the
DCBPSK and NCBFSK waveform modulations. The perfor-
mance evaluation follows that described in Section 18.8.1.1
for SD; however, in this case, the maximal ratio combining
pdf expressed by (18.79) is used. Therefore, with these sub-
stitutions, (18.14) is integrated over the range 0–∞ and the

resulting bit-error probability for each of the modulations
with MRCD is evaluated (see Problem 5) as

Pbe =

1

2 γ + 1 N DCBPSK SFRL MRCD

2N−1

γ + 2 N NCBFSK SFRL MRCD

(18.80)

where γ = γb =Eb No. The bit-error performance for these
modulations with MRCD is shown in Figure 18.14 for vari-
ous values ofN. ForN = 1, (18.80) is simply the expression of
the SFRL channel corresponding to β = 0 in Figures 18.7 and
18.9. The bit-error results corresponding to the dashed curve
represents the ideal AWGN performance of the respective
underlying modulation.

18.8.1.3 Equal Gain Diversity Equal gain diversity
(EGD) is similar to MRCD with Gn = 1 n, that is, equal
gains for each receiver, so it is easier to implement. However,
the phase of each received signal is adjusted so that (18.77)
represents a coherent integration. There is no known closed-
form solution for the resulting pdf p(γ); however, through
testing and numerical evaluations, the performance is better
than SD and slightly worse than that of MRCD [24].

18.8.2 Frequency Selective Fading

As mentioned previously, when the bandwidth of the modu-
lated symbol is close to or exceeds the coherence bandwidth
of the channel the received signal encounters a delay spread
resulting in ISI distortion. In the absence of mitigation tech-
niques, an irreducible degradation or flaring of the bit-error
performance occurs as the Eb/No is increased. To mitigate
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FIGURE 18.13 Performance of DCBPSK and NCBFSK with SD and SFRL.
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the performance degradation, the receiver or demodulator
must use processing intense symbol equalization as discussed
in Chapter 12. In urban wireless communication environ-
ments, the distortion appears as interfering signals from dis-
crete multipath reflections. The reflections are characterized
by the power delay profile with multipath delays τn: n = 1,…,
N ranging over the multipath delay spread of Tm measured in
μs. The impulse response of the discrete multipath channel is
modeled as a tapped delay line as characterized by (18.61).
For example, an average delay spread of 2 μs results in a
coherence bandwidth of Bc 500 kHz and, operating under
this condition, the American Digital Cellular (ADC) system
uses a distortion-free symbol rate of 48.6 ksps, approxi-
mately Bc/10, whereas, the Global System for Mobile Com-
munications (GSM) signaling rate is 271 ksps and requires a
26-bit equalizer training sequence [28].

Another important aspect of signaling in a frequency
selective channel is the use of direct-sequence spread-
spectrum (DSSS) and CDMA modulated waveforms. These
modulations divide the bit interval into N PN code chips of a
duration of Tch = Tb/N and use a correlator or matched filter
sampled at the peak or zero lag of the correlator output to
detect the received bit. The sampled correlator output

corresponds to a processing gain of Gp = 10log10(N) dB rel-
ative to the correlation sidelobes so correlation lags in excess
±Tch are essentially uncorrelated for sufficiently large values
of N. Under these conditions, a DSSS or CDMA waveform
will resolve multipath delayed reflections as long as Tch <
Δτn = min(τn−1,τn). The RAKE* correlator [29–31] or
matched filter is the optimum demodulator detection filter
for wideband PN spread signals. The processing involves
L ≤N parallel correlators to resolve the largest L uncorrelated
multipath delay returns that span the multipath spread
interval Tm. The functional implementation is shown in
Figure 18.15. Each RAKE correlator is implemented to
locate and track an independent correlated multipath compo-
nent of the received signal. This is accomplished by assigning
a different and adjustable time-shifted reference sequence
from that of the known PN code. The parallel correlators out-
put the optimally sampled multipath responses corresponding
to the peak of the respective RAKE correlator responses.

r(t, τ)

X(t1, τ1)

…

…

…

X(tL, τL)

L time-shifted

reference PN

codes

Bank of L
correlators

Amplitude

and delay

processing

Symbol

detection

processing

FIGURE 18.15 RAKE correlator processing of signals in frequency selective fading channels.
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FIGURE 18.14 Performance of DCBPSK and NCBFSK with MRCD and SFRL.

*The RAKE receiver is based on a correlator used for the detection and com-
bining of multipath returns in spread-spectrum systems. It is not an acronym
and refers to the similarities of a tapped delay line correlator to the common
garden rake (see Reference 30, Vol. II, Chapter 1, p. 46 and Reference 31).
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Defining the PN code chip bandwidth asW = 1/Tch Bc, the
minimum number of correlator taps required to span the mul-
tipath spread is Ntaps = ceiling(TmW) or ceiling(W/Bc).

The multipath components and the L correlator outputs
represent weighted signal powers or SNR estimates and are
combined to form an MRCD receiver as described in
Section 18.8.1.2. The pdf of the combined multipath compo-
nents is the chi-squared distribution described by (18.79)
with 2L degrees of freedom.

ACRONYMS

ADC American digital cellular
AGC Automatic gain control
ARQ Automatic repeat request
BFSK Binary frequency shift keying
BPSK Binary phase shift keying
CBPSK Coherent binary phase shift keying
CDMA Code division multiple access
DCBPSK Differentially coherent binary phase shift keying
DSSS Direct-sequence spread-spectrum
EDAC Error detection and correction
EGD Equal gain diversity
FD Frequency diversity
FEC Forward error correction (coding)
FFRL Fast fading Rayleigh limit
FHSS Frequency-hopping spread-spectrum
FRF Fast Ricean fading
GSM Global System for Mobile Communications
ISI Intersymbol symbol interference
LOS Line of sight
MRCD Maximum ratio combining diversity
NC Noncoherent (detection)
NCBFSK Noncoherent binary frequency shift keying
PN Pseudo-noise
RF Radio frequency
SD Selection diversity
SFRL Slow fading Rayleigh limit
SRF Slow Ricean fading

Note: RAKE is not an acronym; it is the name applied to a
wide bandwidth multipath correlator.

PROBLEMS

1. Consider the analytic description of the baseband signal
s t with amplitude Vs, phase ψ , and additive narrowband
zero-mean Gaussian noise ñ(t) with uniformly distributed
phase ϕ over ±π. Show that the magnitude of the signal
plus noise can be expressed by (18.44).

2. Write a program to compute correlated Ricean samples as
described by (18.46) and (18.47) and compute and plot
the normalized correlation responses Rr(t) and ρr(t)

expressed, respectively, in (18.49) and (18.50) and deter-
mine the value of Tc corresponding to ρr Tc = 0 368. Use
an underlying correlation of ρ = 0.8 and unit standard
deviation σr = 1 in (18.46). Also, use a channel bandwidth
of Bch = 100 kHz and compute Vs using (18.45) for SNRs
of γsr = 0 (−∞ dB) corresponding to the Rayleigh fading
channel. Note: Once the program is completed, it is a sim-
ple matter to evaluate the performance under a variety of
conditions.

3. Evaluate the Fourier transform of the correlation response
Rr(t) in Problem 2 and determine the Doppler spread
based on the spectral response Hr(Bd) = 0.368 and 0.1.
What are the corresponding channel coherence times?
What are the corresponding maximum symbol rates that
the channel will support without distortion? In each case,
what percentage of the symbol rate is the Doppler spread?

4. Evaluate the solution for DCBPSK waveform modulation
with SD and the SFRL channel as described by (18.76).
Hints: Perform a transformation of variables using
x = γ γ, then use the solution to the following integral
and the definition of the beta function given by [32]

∞

0

e−ux 1−e−x β
ν−1

dx= βB βu, ν u,β,ν> 0

where the beta function is defined as

B a, b ≜
1

0

ta−1 1− t b−1dt =
Γ a Γ b

Γ a + b

The solution to the beta function in terms of gamma func-
tions is found in Korn and Korn [33].

5. Evaluate the solution for DCBPSK waveform modulation
with MRCD and the SFRL channel as described by
(18.80). Hint: Use the following integral solutions given
by Korn and Korn [34].

∞

0

xbe−ax
2
dx=

1∗3 b−1 π

2 b 2 + 1a b+ 1 2
a> 0, b = 0,2,4,…

b−1 2

2a b+ 1 2
a> 0, b = 1,3,5,…
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19
ATMOSPHERIC PROPAGATION

19.1 INTRODUCTION

Communication links that propagate through the atmosphere
encounter a number of effects that distort the received signal
making detection and parameter estimation difficult and
prone to errors. The signal distortion results because the
atmosphere is an inhomogeneous medium with spatial and
temporal variations that result in random behavior leading
to: absorption or signal attenuation, inter- and intra-symbol
distortion due to symbol dispersion, variations in range-
delay, Doppler spreading, polarization rotation, and signal
amplitude and phase fluctuations resulting from multipath
interference. The principal regions of the atmosphere that
impact electromagnetic wave propagation are the tropo-
sphere, and ionosphere, and the principal parameter that char-
acterizes the performance in each region is the index of
refraction.

The lower region of the atmosphere is the troposphere
extending to about 30 km in altitude and the upper region
is the ionosphere extending to several thousand kilometers.
The troposphere is essentially an ion-free region consisting
of about 99% oxygen with nitrogen and water vapor at the
lower altitudes. In this region electromagnetic wave propaga-
tion characteristics are determined by the refractive index
which is a function of pressure, temperature, and water vapor;
other natural phenomena like dust, rain, and clouds must also
be considered. Propagation in the ionosphere is influenced
primarily by free-electrons and characterized by the electron
content, the Earth’s magnetic field, and diurnal variations
influenced by the Sun. Variations in the atmosphere are

influenced by location, season, weather, and the time-of-
day (TOD). Typically, the mean and stand deviation of the
influential parameters are given for a specified season and
location.

The impact of these natural occurrences in the atmos-
phere on the communication signal is dependent upon
the carrier frequency and bandwidth of the communication
link as well as the antenna beamwidth, height, and the ele-
vation angle of the encounter. The various phenomena
resulting from the encounter with the atmospheric channel
are characterized in terms of the operating modes as
shown in Figure 19.1. The effective Earth radius re is cho-
sen to be (4/3)Re, where Re = 6371 km is the average Earth
radius. This selection of re provides for line of sight (LOS)
radio frequency coverage to locations that would other-
wise be over-the-horizon. This LOS condition applies
for altitudes less than about 4 km and is discussed in more
detail in the following section. The factor of 4/3 is com-
putationally convenient because it is based on a linearly
decreasing index of refraction with height, whereas, an
exponentially decreasing function with height is in more
agreement with in situ measurements and is discussed in
Section 19.5.

In Section 19.3, the impact of multipath reflections from a
smooth Earth is examined followed by a case study in
Section 19.4. Signal refraction in the troposphere and iono-
sphere is discussed in Section 19.5 and diffraction from irreg-
ular surfaces is discussed in Section 19.6 with examples of
irregular terrain and urban propagation losses given in Sec-
tions 19.7 and 19.8.

Digital Communications with Emphasis on Data Modems: Theory, Analysis, Design, Simulation, Testing, and Applications,
First Edition. Richard W. Middlestead.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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19.2 COMMUNICATION LINK GEOMETRY
FOR CURVED EARTH

The geometry for determining the propagation paths for LOS
and multipath rays has been modeled under various simplify-
ing assumptions involving a flat-Earth approximation and a
spherical Earth with receivers at sufficiently long ranges such
that the direct and reflected waves are assumed to be parallel.
Although there is no known exact solution to the general case
involving unrestricted ranges, transmitter, and receiver
heights, Fishback [1] provides a solution involving a spher-
ical Earth model, with effective Earth radius re to account for
refraction and unrestricted transmitter and receiver heights.
Fishback’s analysis assumes the transmitter and receiver
heights, h1 and h2, are given along with the length of the
ground range,G, between the two points. Fishback’s solution
is somewhat restricted by assuming small grazing angles.
Instead of following Fishback’s solution, the relationships
developed by Blake [2] are discussed because they are less
prone to numerical and computational inaccuracies due to
rounding and because Blake’s solution simply requires the
specification of h1, h2 and the LOS range, Rd, between the
transmit and receive points and there is no restriction on
the grazing angle. The geometry of the encounter is shown
in Figure 19.2.

The following analysis outlines the procedures for the
solution of the reflected wave at the receiver terminal in terms
of R1, R2, and ψ . With these parameters, the amplitude and
delay of the interfering signal can be determined relative to
the LOS signal. To begin, the angle θd is computed as

θd = arcsin
−1 2re h2−h1 + h22− h21− R2

d

2 re + h1 Rd

arcsin−1 h2−h1
Rd

−
Rd

2re

(19.1)

As shown in Figure 19.2 the angle θd corresponds to a
negative angle, that is, when the transmitter is looking below
the local horizon. The approximation in (19.1) applies when
h1, h2 re. The ground path, as derived by Blake, is deter-
mined using the direct path length Rd and is computed as

G= 2re arcsin
R2
d − h2−h1

2

4 re + h1 re + h2

R2
d − h2−h1

2

1 + h1 + h2 re

(19.2)

The ground range G is defined as G =G1 +G2 and Fish-
back has shown that G1 is the solution to a cubic equation
involving G, h1, h2, and re. When h1, h2 re, the solution is

G1 =
G

2
−psin

ξ

3
(19.3)

where

p =
2

3
re h1 + h2 +

G

2

2

(19.4)
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FIGURE 19.1 Various propagation modes depending on atmospheric conditions, frequency, and geometry.
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and

ξ= arcsin
2reG h2−h1

p3
(19.5)

The angles ϕ1 and ϕ2 are then determined as

ϕ
1
=
G1

re
(19.6)

and

ϕ
2
=
G2

re
=
G−G1

re
(19.7)

from which the ranges R1 and R2 are determined as

R1 = h21 + 4re re + h1 sin2
ϕ1

2
(19.8)

and

R2 = h22 + 4re re + h2 sin2
ϕ2

2
(19.9)

Using the range R1, the depression angle of the reflected
wave is determined as

θr = arcsin
2reh1 + h21 + R2

1

2 re + h1 R1

arcsin
h2−h1
Rd

−
Rd

2re

(19.10)

and the grazing angle is determined as

ψ=arcsin
2reh1 + h21− R2

1

2reR1
=arcsin

2reh2 + h22− R2
2

2reR2

arcsin
h1
R1

−
R1

2re
= arcsin

h2
R2

−
R2

2re
(19.11)

Referring to Figure 19.2, the grazing angle is also
expressed as ψ = θr −ϕ1. The approximations in (19.10)
and (19.11) apply when h1, h2 re. Using these relation-
ships, the difference between the direct path Rd and the
reflected path R1 + R2 is determined as

δR=R1 +R2−Rd

=
4R1R2sin

2ψ

R1 +R2 +Rd

(19.12)

The second of these solutions [3] is preferred because it is
not subject to numerical errors encountered when performing
the subtraction in the first solution. Referring to Figure 19.1,
the LOS criterion corresponds to a zero degree grazing angle
or the equivalent requirement that Rd = R1 + R2. Therefore,
using (19.11), the LOS criterion, involving h1 and h2, is eval-
uated as

R= 2reh1 + h21 + 2reh2 + h22 LOS criterion

2reh1 + 2reh2

(19.13)
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FIGURE 19.2 Spherical-earth encounter geometry.
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Therefore, when Rd > R the LOS path will exhibit ground
reflections, otherwise, the over-the-horizon reception occurs
from diffraction or refraction as depicted in Figure 19.1.

Although the analysis of the geometry in this section is
correct for Rd ≤ R1 + R2, the application to multipath interfer-
ence based on reflections strictly applies for LOS paths a few
degrees above the radio horizon such that δR λ/4. For
lower elevation angles, θd, an intermediate region is entered
between the reflection and diffraction regions. When the
Earth is modeled with a smooth surface, the region below
the radio LOS, shown as the heavy dashed lines in
Figure 19.1, is the diffraction region; however, the interme-
diate region just above and below the radio LOS requires spe-
cial consideration as described by Fishback. Fishback’s
solution is outlined by Blake [4] for the first diffraction mode,
that is, when δR ≤ λ/4 and the solution of Burroughs and
Atwood [5] is outlined by Barton [6]. In the following sec-
tion, the impact of reflections from a smooth Earth is exam-
ined followed by a case study in Section 19.4 involving a low
Earth orbit satellite.

19.3 REFLECTION

Electromagnetic wave propagation is characterized by
Huygens’ principle [7] which states that points along the
wavefront depicted in Figure 19.3 behave like secondary
sources of wavelets that spread out in all directions with
velocities that are functions of the propagation medium. This
principle provides for the analysis ofwave reflectionwhen the
wavefront is incident to a reflecting surface. It also provided
for the analysis of refractive wave bending and propagation
beyond LOS conditions as discussed in Section 19.5.

Consider the incident wave shown in Figure 19.4 having
uniform phase along the wavefront represented by the
straight line intersecting the reflecting surface with an

angle-of-incidence ϕ1. The incident wave is traveling in
the medium above the reflecting surface at a velocity
v = 1 με, where u and ε are the permeability and permittiv-
ity of the medium. The angleϕ2 of the reflected wave is deter-
mined using Huygens’ principle recognizing that the velocity
of the reflected wave is also equal to v. For example, when a
wavelet of the incident wave travels the distanced d = vt and
intersects the surface, the reflected wave t seconds earlier has
traveled the same distance describing the reflected wavefront
at the angle of reflection ϕ2. Upon application of elementary
geometry, it is found that the angle of reflection is equal to the
angle of incidence, that is, ϕ2 = ϕ1. In many practical appli-
cations, the reflecting surface is not an ideal reflector and
wave refraction occurs resulting in the incident wave propa-
gating through the surface into the second medium with dif-
ferent electromagnetic properties; wave refraction is
discussed in Section 19.5. In general, both wave reflection
and refraction occur at the surface between two different
medium.

19.3.1 Reflection from Earth’s Surface

Signal reflection occurs when an incident electrometric wave
intersects a large surface with dimensions much greater than
the carrier wavelength. In long-distance communication
links, signal reflections from the Earth’s surface will combine
with a direct path signal resulting in received signal variations
referred to as multipath fading. On a smaller scale, signals in
a mobile communication system will reflect off of building
and other structures often without an identifiable direct signal
path. In these situations, the received signal will fluctuate
rapidly with the dynamics of the mobile unit. Signal reflec-
tions are characterized in terms of the complex reflection
coefficient

Γ = ρejΦ (19.14)

where ρ = |Er/Ei| is the magnitude of the reflected-to-incident
electric field ratio and Φ is the corresponding angle of Er/Ei.
The ranges of ρ and Φ are: 0 ≤ ρ ≤ 1 and |Φ| ≤ π and when
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FIGURE 19.3 Huygens’ principle for advancing wavefront.
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FIGURE 19.4 Wave reflection from a surface (application of
Huygens’ principle yields: ϕ2 = ϕ1).
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Φ > 0 then the reflected electric field lags the incident electric
field. Ramo and Whinnery [8] provide a detailed discussion
of the reflection of electromagnetic wave forming the basis of
the following results.

The reflection coefficient also depends on the grazing
angle and polarization of the incident electric field and for
horizontally and vertically polarized waves the results are
expressed as [9]

Γh = ρhe
− jΦh =

sin ψ − εc−cos2 ψ

sin ψ + εc−cos2 ψ
(19.15)

and

Γv = ρve
− jΦv =

εc sin ψ − εc−cos2 ψ

εc sin ψ + εc−cos2 ψ
(19.16)

where εc is the complex dielectric constant given by

εc = εr − jεi (19.17)

where εr is the ordinary dielectric constant and εi is given by

εi = 59 9584916λσ 60λσ (19.18)

where λ is the carrier wavelength and σ is surface conductiv-
ity.* When λ is in meters then σ has units of mhos per meter;
values of εr and σ for various types of surfaces are given in
Table 19.3.

The reflection coefficient for the vertically polarized wave
is examined by substituting (19.17) into (19.16) and the
resulting amplitude and phase functions are plotted in
Figures 19.5 and 19.6 for the indicated conditions. The graz-
ing angle corresponding to the minimum magnitude of the
reflection coefficient in Figure 19.5 is referred to as the
pseudo-Brewster angle. With a perfect dielectric, the mini-
mum magnitude of the reflection coefficient is |Γv| = 0, that
is, no reflection occurs, and the corresponding grazing angle
is referred to as the polarizing angle or, in geometrical optics,
the Brewster angle. The Brewster angle occurs only with a
vertically polarized wave. With horizontal polarization, the
reflection coefficient decreases slowly with grazing angle
and the angle Φh is very close to π radians over the entire
range of grazing angles.

Circularly polarized waves are described in terms of hor-
izontally and vertically polarized waves that are in quadrature
with one another. Right-hand circular polarization occurs
when the horizontal polarized wave lags that of the vertically
polarized wave, that is, when ϕh − ϕv > 0 and left-hand

circular polarization occurs when ϕv − ϕh > 0. For right-hand
or left-hand circularly polarized incident waves, the reflec-
tion coefficient with the same-sense as the incident wave is
expressed as [2, 11]

Γcs =
1
2
Γv +Γh (19.19)

and the reflection coefficient with the opposite-sense as the
incident wave is

Γco =
1
2
Γv−Γh (19.20)

Therefore, in general, both senses of the incident circular
polarized wave appear at the receiver from the reflecting
surface.
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*Equation (19.18) is inmks units and the constant k is evaluated as 1/(2πεoc),
where εo = 8.854187817 × 10−12 F/m is the free-space electric constant and
c = 2.99792458 × 108 m/s is the velocity of light in free space; the product
εi = kλσ is unit less. In optics the units of k are 1/Siemens.
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19.4 CASE STUDY: LEO SATELLITE
MULTIPATH PROPAGATION

Under ideal conditions, a signal transmitted along a noise-
free direct propagation path is received with a constant signal
amplitude and phase. However, with multipath propagation
there are one or more signal propagation paths that result
from reflections that interfere with the direct path signal caus-
ing amplitude and phase fluctuations. This scenario is
depicted in Figure 19.7 for a communication link between
a ground terminal and a satellite with a single-point reflection
from the Earth’s surface. The description of the various para-
meters and additional geometrical details regarding this
encounter are identified in Figure 19.2.

The description of the spherical Earth geometry given in
Section 19.2 uses the LOS range Rd as the independent var-
iable; however, in this case study, the independent variable is
the transmitter elevation angle θd. Using the parameters h1
and h2, the direct path range is computed as a function of
θd using the following relationship

Rd = re + h2
2− re + h1

2 1−sin2 θd − re + h1 sin θd

(19.21)

The transmitter beam depression angle θbt between the
elevation angle and the reflection path R1 is also required
to determine the antenna sidelobe level in the direction of
the reflection; this angle is simply computed as

θbt = θr + θd (19.22)

A similar angle is required to evaluate the receiver beam
depression angle θbr to determine the antenna sidelobe level
in the direction of the reflection along the path R2 and, refer-
ring to Figure 19.2, this angle is computed as

θbr = cos
−1 R2

d + R2
2− R2

1

2RdR1
(19.23)

In the following analysis, the ground and satellite terminal
antennas are modeled as uniformly weighted circular aper-
ture antennas as described in Section 15.3.2 with specified
gains Gt and Gr respectively. The antenna gains are related
to the antenna area Aa or the effective area Ae = naAa, where
na is the antenna efficiency, and the gain is computed using
(15.61) with the area for the circular aperture antenna
given by

Aa =
π

4
D2 circular aperture (19.24)

where D is the antenna diameter. From Table 15.3, the
antenna beamwidth is given by

θB =
1 02λ
D

(19.25)

where λ is the wavelength of the carrier frequency.
Neglecting channel and receiver noise, the signals sd(t)

and sr(t) are the received signals at the satellite from the direct
and reflected paths respectively. These signals are combined
at the receiver to form the received signal s(t) expressed as

s t = sd t + sr t

= Ptfde
jωc t−Td + PtfrΓejωc t−Tr

(19.26)

where Pt is the transmitted signal power at the antenna input,
ωc is the carrier angular frequency, Td, Tr and fd, fr are the
delays and propagation factors along the respective paths
and Γ is the complex reflection coefficient given by
(19.14). Referring to (15.6), the propagation factors are eval-
uated as

fd =
Gt θt Gr θr
LatmdLrsLfsd

e− jβt (19.27)

and

fr =
Gt θbt Gr θbr
LatmrLrsLfsr

e− jβr (19.28)

The antenna beam angles θbt and θbr are in the direction of
the transmitted and reflected waves along the respective paths
R1 and R2 and the angles βt and βr are the corresponding
antenna-dependent signal phase along these paths; typically
βt and βr are either 0 or π radians depending on the sign of
the antenna sidelobes. As depicted in Figure 19.7, ideal beam
tracking corresponds to θt, θr = 0. Upon substituting (19.27),
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FIGURE 19.7 Communication link with single ray reflection
from the Earth’s surface.
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(19.28), and (19.14) into (19.26) and factoring out the direct
path received signal, the satellite received signal is
expressed as

s t = Prfde
jωc t−Td 1 + ρ

fr
fd

e− j ωc Tr −Td −Φ− βr + βt

(19.29)

The magnitude of the additive term is evaluated as

ρ
fr
fd

= ρ Gtn θt Grn θr
LatmtLfst
LatmrLfsr

(19.30)

In (19.30), the subscript “n” on the antenna gains indicate
normalized gains with unit peak gain. The free-space loss
ratio is given by

Lfst
Lfsr

=
Rd

R1 +R2

2

(19.31)

Also, the carrier frequency phase term is expressed as

ωc Tr −Td = 2π
δR

λ
(19.32)

This phase term results in large, frequency-dependent,
amplitude fluctuations as the range difference between the
direct and reflected wave change. The magnitude of the term
in the square brackets in (19.29) is defined as the multipath
factor Fm given by

Fm ≜ 1 + ρ
fr
fd

e− j 2πδR λ−Φ + βr −βt (19.33)

To demonstrate the severity of the multipath on the desired
or direct path signal sd(t), the multipath factor is plotted in
Figure 19.8 for a satellite in a LEO circular orbit, coplanar
with the Earth terminal and using ideal omnidirectional
antennas, that is, the gains are assumed to be identical in
all directions. In this and the remaining plots, vertical antenna
polarization is used, the atmospheric loss along each path is
assumed to be identical, that is, Latmr = Latmt and the param-
eter values listed in Table 19.1 are used.

Three things are noteworthy in Figure 19.8: the effect of
the multipath loss is about the same over all elevation angles
θd; the maximum level of the received signal is 6 dB*; the
lower limit of received signal is between −42 and −43 dB.
The upper and lower limits, corresponding to the solid
black curves, result from the constructive and destructive

interference of the two received signals based on the phase
term in (19.33). When Fm is plotted as a function of the
antenna elevation angle, as in Figure 19.8, the phase term var-
ies more slowly at the higher elevation angles where δR
changes slowly†; this is evident in Figure 19.7 when θd > 80 .

Figure 19.9 shows the impact of the multipath interference
using a transmitter antenna gain of 20 dB; this gain corre-
sponds to a 16.4 antenna beamwidth. The variation in the
upper and lower limits of the multipath factor is significantly
reduced for elevation angles greater than about 10 . This
multipath improvement results from the increasing attenua-
tion of the multipath signal by the antenna sidelobes as the
elevation angle increases.
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TABLE 19.1 Parameter Values for Multipath Factor (Fm)
Evaluation

Parameter Value Comment

Re 6371 Earth radius (km)
re 8494.66 4/3 Earth radius (km)
h1 30 Transmitter antenna height (m)
h2 200 LEO circular orbita altitude (km)
Gt Variable Transmit antenna gain
Gr 10 Receiver antenna gain (dB)
ηat 80 Transmit antenna efficiency (%)
ηar 80 Receiver antenna efficiency (%)
fc 500 Carrier frequency (MHz)
σ 0.005 Conductivity (mho/m)
εr 15 Dielectric constant (F/m)

aCo-located with the plane of the ground terminal.

*The maximum level will be less than 6 dB because of R1 + R2 > Rd and ρ < 1.

†This received signal phase variations with θd are influenced to a lesser extent
by the phase of the complex reflection coefficient.
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By eliminating the dependence of Fm on the phase func-
tion in (19.33), the upper and lower limits on the multipath
factor are evaluated as

Fm max = 1+
fr
fd

ρ and Fm min = 1−
fr
fd

ρ (19.34)

The squared inverse of the lower limit is defined as the
multipath loss and is expressed as

Lm ≜F−2
m min multipath loss (19.35)

The average multipath loss within the transmitter antenna
beamwidth corresponding to a specified θd is denoted as Lm.
Equations (19.34) and (19.35) are used in Chapter 15 to
establish the system link loss budget. The multipath loss
can be effectively mitigated through the system and wave-
form designs and demodulator signal processing.

Figure 19.10 compares the maximum and minimum mul-
tipath factors for transmitter antenna gains of 20, 30, and
40 dB; the 20 dB gain case corresponds to Figure 19.9.
The improvements are significant and are accompanied by
a lower link power requirement; however, the cost and com-
plexity associated with antenna beam pointing and tracking
must be taken into account.

19.5 REFRACTION

Signal refraction occurs when an incident electrometric wave
intersects irregularities in the transmission media. Refraction
results in electromagnetic wave bending and allows for com-
munications into the shadow region beyond the LOS. For
example, wave refraction occurs in regions behind hills,

mountains, and other obstructions that are impenetrable by
a direct path link. Long-distance communications experience
refraction due to varying dielectric constant in the atmos-
phere. As in the case of wave reflection, wave bending due
to refraction is characterized by Huygens’ principle that is
introduced in Section 19.3.

Application of Huygens’ principle together with Snell’s
law is used to describe the bending of a plane wave as it pro-
pagates through the atmosphere with different refractive indi-
ces. This phenomenon is depicted in Figure 19.11 for an
abrupt change in the index of refraction. Snell’s law states
that when a plane wave propagating in a medium with refrac-
tive index n1 intersects a second medium at an angle of inci-
dence ϕ1 with refractive index n2 then the sine of the angle of
refraction, ϕ2, is related to the sine of the angle of incidence
ϕ1 by the relationship

n2 sin ϕ2 = n1 sin ϕ1 Snell’s law (19.36)
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The angles ψ i, i = 1, 2, are the grazing angles of the plain
waves and are related to the incident angles as ψ i = π/2 − ϕi

radians.
Figure 19.11 is suggestive of uplink propagation with the

angle of refraction shown to be greater than the angle of inci-
dence. This corresponds to decreasing electron densities with
altitude, that is, n2 < n1, and a bending of the wave that tend to
follow the curvature of the Earth giving rise to range delay
and angle errors. When the angle of refraction satisfies the
condition ϕ2 > π/2 radians, the incident wave is not propa-
gated forward but reflected back through the medium
containing the incident wave. Using the angle ϕ2 = π/2
radians, the critical angle of incidence for reflection is deter-
mined as

ϕc = sin
−1 n2

n1
critical angle of incidence (19.37)

19.5.1 Tropospheric Refraction

Because the troposphere does not contain free-electrons, sig-
nal propagation in the troposphere is influenced principally
by water vapor content, air temperature, and pressure. Based
on the standard atmosphere described by Kerr [1], the index
of refraction in the troposphere is given by

n = 1 +
a

T
p+

be

T
10−6 (19.38)

where a and b are constants equal to 79 K/mb and 4800 K
respectively; the respective values of a and b as determined
by Smith andWeintraub [12] are 77.6 K/mb and 4810 K and
by Campen and Cole [13] are 74.4 K/mb and 4973 K. The
parameter T is the air temperature in K, p is the air pressure
in millibars (mb) and e is the partial pressure of water vapor in
millibars.

Based on the analysis of Campen and Cole as outlined by
Millman [14] the parameters describing the standard atmos-
phere are expressed as a function of altitude or height h in
kilometers for h ≤ 10 km as

T = 288−6 5h (19.39)

p= po 1−0 02257h 5 2561 (19.40)

and

e = eo 1−0 064h 6 (19.41)

where po = 1013 mb is the standard temperature at sea level
and eo is the partial pressure of water vapor at the Earth’s
surface in mb. These expressions are essentially independent

of frequency. The normalized form, (n − 1)106, of the refrac-
tive index is valid to within 0.5% for frequencies below
about 30MHz.

Upon curve fitting these results using a polynomial in h
with units of km, Campen and Cole express the refractive
index as a function of h through the troposphere for a com-
pletely wet environment with 100% relative humidity as

n= 1 + 338−50 9h+ 4 39h2−0 245h3 + 0 0071h4

−0 00006h5 10−6 wet, h ≤ 10 km

(19.42)

and for a completely dry environment with 0% relative
humidity at refractive index is expressed as

n= 1 + 262−25 1h + 0 92h2−0 016h3 + 0 0001h4 10−6

dry, h ≤ 10 km

(19.43)

Equations (19.42) and (19.43) apply for heights up to 10
km and decay exponentially from 10 km to the upper limit of
the troposphere at about 30.5 km according to the
relationships

n = 1 + 338e−h 82 0210−6 wet, h > 10 km (19.44)

and

n = 1+ 262e−h 82 0210−6 dry, h > 10 km (19.45)

These results are plotted in Figure 19.12 in terms of the
parameter N = (n − 1)1e6 referred to refractivity.

Millman uses these results to evaluate the refractive bend-
ing along the propagation path using direct integration and
ray tracing. In his analysis the troposphere is divided into
spherical 30.48 m layers of constant refractive index up to
3.048 km and 3.048 m layers up to 30.48 km; the refractive
index above 30.48 km is unity. The refractive bending of
the propagation path gives rise to antenna pointing errors,
range delay errors, and Doppler frequency errors. An encoun-
ter between a ground terminal and an aircraft is depicted in
Figure 19.13. The refraction angle and range errors are shown
in Figures 19.14 and 19.15 respectively. These errors
increase with increasing height and decreasing antenna graz-
ing or apparent elevation angle. For example, with receiver
heights above 1853.2 km and zero degree grazing angle the
maximum refraction angular errors are 0.799 and 0.049
for the wet and dry conditions respectively. For the wet
and dry conditions, the corresponding maximum range errors
are about 381 and 290 ft (116 and 88.4 m).
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The Doppler frequency is dependent on the angle ψ
between the receiver terminal velocity vector and the direct
propagation path to the receiver and is expressed as*

fd = −
Vfc
c
cos ψ (19.46)

where V is the magnitude of the receiver terminal velocity
and fc is the carrier frequency, and the free-space speed of
light c = 3e8 m/s. Referring to Figure 19.13, the velocity error
is the difference between apparent path velocity (Vo) and the
ray path velocity (Vr) and is evaluated as

ΔV =Vo−Vr =V cos ψ cos Δαo −V cos ψ +Δαt (19.47)

where Vo =Vd cos Δαo , Vd =V cos ψ , and Vr =V cos ψ +
Δαt . After separating terms and applying small argument
approximations, Millman arrives at the following approxima-
tion to (19.47):

ΔV V sin ψ Δαt + cos ψ
Δ α2t
2

−
Δ α2o
2

(19.48)

The angle Δαt is determined based on the refractive indi-
ces ng and nt computed using the appropriate equations
(19.42) through (19.45). The indices are used in the spherical
earth model of the atmosphere that provides for evaluating
Δαt using the geometry of the encounter and Snell’s law
expressed as the ratio ng/nt. Millman ([14], pp. 326–328,
346) characterizes the evaluation of Δαt as

Δαt = cos−1
Re

Re + h
cos αo−Δαo

−cos−1
ngRe

nt Re + h
cos αo

(19.49)

The angle αo is measured at the ground terminal and is
expressed in terms of the an angle θ as

Δαo = αo−α= αo−cos−1
Re + h
R

sin θ (19.50)

The angle αo is the apparent ground antenna elevation angle
observed at the ground terminal; however, the angle θ is
unknown so Millman’s profiles in Figure 19.14 must be used
to determine refraction angle errorΔαo at the ground terminal.

Based on the velocity error in (19.48), the one-way
Doppler frequency error is expressed as

Δfd =
fcΔV
c

fcV

c
sin ψ Δαt + cos ψ

Δ α2t
2

−
Δ α2o
2

(19.51)

As an example application in the determination of the
Doppler frequency and the corresponding Doppler frequency
error using (19.46) and (19.48), consider the following
encounter conditions: Earth radius is Re = 6378.28 km, h =
12 km, αo = 5 , ψ = ±90 , fc = 100MHz, V = 0.3 km/s, and
c = 3e8 m/s is the free-space speed of light. The results are
also to be calculated with 100 and 0% humidity correspond-
ing wet and dry conditions. To begin the solutions, the
Doppler velocity can be computed using the specified para-
meters and (19.46). The next step is to use Figure 19.14 and
verify that the values of Δαo are: 0.15 and 0.104 respec-
tively for 100 and 0% relative humidity. With these para-
meters and the specified data, compute the values of ng
and nt using (19.42) through (19.45) under the appropriate

Height (h) km

0 5 10 15 20 25 30T
ro

p
o

sp
h

er
ic

 r
ef

ra
ct

iv
e 

in
d

ex
 (

n
–

1
)
×

1
0

–
6

0

100

200

300

400

Dry
Wet

FIGURE 19.12 Refractive index in troposphere using the
standard atmosphere.

Earth

center

V
ψ

θ

Aircraft

Tangent

0

Vd

Vr

nt

ngRe
Re

Apparent

ray path

Ray

path

Direct 

path
Refractive

index

profile

(n)

hh

Tangent

Constant

h profile

Ground

terminal

Vo

Δαt

Δαo

αt

αo
α

FIGURE 19.13 Tropospheric wave bending encounter. Millman
[15]. Reproduced by permission of John Wiley & Sons, Inc.

*In radar applications, the Doppler frequency is a factor of two higher
because of the two-way range measurement.
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humidity and height conditions. The next step involves eval-
uating Δαt using (19.49) from which the velocity error is
determined using (19.48). The final evaluation involves the
determination of the one-way Doppler frequency error
(Δfd) using (19.51). The maximum Doppler error occurs
when ψ = 90 and, based on this example, the wet and dry
conditions correspond to

Δfd max =
0 170 Hz αo = 5 , h= 12 km wet

0 122 Hz αo = 5 , h= 12 km dry

(19.52)

Because the tropospheric parameters are independent of
the carrier frequency, (19.52) can also be formulated as

Δfd max =
0 00170fc MHz Hz αo = 5 , h = 12 km wet

0 00122fc MHz Hz αo = 5 , h = 12 km dry

(19.53)

This example uses a relatively slow airplane and with
higher speeds, lower elevation angles, and higher operating
frequencies increased Doppler frequency errors will be
encountered. The two-way Doppler frequency error is of
interest in radar applications that simply requires doubling
the one-way results in this example. Additional reading on
the subject of refraction is also provided by Skolnik [17]
and Barton [18].
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19.5.2 Ionospheric Refraction

Electromagnetic propagation through the ionosphere is influ-
enced by two key parameters: the electron density, ne, and the
rms fluctuation in the electron concentration defined in terms
of the parameter σe. Therefore, before the performance of a
communication system can be evaluated, it is necessary to
quantify these parameters throughout the ionosphere. The
characterization of the ionosphere and its impact on communi-
cation link performance is discussed in Chapter 20. However,
by way of introduction, the electron density profiles in the nat-
ural environment are characterized as a function of height using
Chapman’s analytic model. In a nuclear-disturbed environ-
ment, the electron densities are determined from experimental
measurements and computer simulations. Ray bending in the
ionosphere is not explicitly addressed in Chapter 20; however,
an analysis is provided byMillman [14] and follows that given
for troposphere in the preceding section.

19.6 DIFFRACTION

Diffraction of an electromagnetic signal is the process of con-
structive and destructive interference of signals or wavelets
radiated, for example, from an antenna or an interfering
object. By controlling the phase and amplitude of the radia-
tion, as in the aperture design of an antenna, the wave inter-
ference results in a prescribed antenna pattern. The antenna
pattern is the result of the combination of numerous wavelets
and is described as a plane wave at a distance d ≥D2/λ, were
D is the size of the aperture and λ is the wavelength of the
carrier frequency. However, diffraction resulting from the
scattering of electromagnetic energy by interfering objects
is not controlled and results in a distortion and bending of
the electric field. Mountains, hills, and buildings are exam-
ples of obstructions that result in shadows and blind spots
in communication links. Fortunately, however, diffractive
ray bending provides some measure of communication visi-
bility in the shadow regions as analyzed in the following
section where the obstruction is characterized as a knife-edge.

19.6.1 Knife-Edge Diffraction

When an incident wave is obstructed by a knife-edge conduc-
tor, shown in Figure 19.16, secondary wavelets result in signal
diffraction in the shadow region behind the knife-edge. The
transmitted ray that just intersects the top of the knife-edge
and all lower angle rays are blocked from the receiver. How-
ever, the higher angle rays result in secondary wavelets, some
ofwhich are directed behind the knife-edge providing coverage
in the shadow of the obstruction. The direct path of length d1 +
d2 is obstructed; however, for path lengths greater than
the refraction path D1 +D2 an electric field is produced in the
shadow region of the obstruction. The height h, shown as the

heavy solid line in Figure 19.16, is the effective height of the
knife-edge between the direct and minimum refraction path;
the total height of the obstruction is defined as ho = h + h .

The electric field strength at a point in the shadow region
is the sum of all the secondary wavelets and is computed
as [19]

E v

Eo
=

1+ j
2

∞

v

e− jπ t
2 2dt (19.54)

where Eo is the electric field that would be produced at the
receiver over a free-space path equal to the direct path length.
The lower integration limit in (19.54) is the Fresnel–Kirchoff
diffraction parameter expressed as

v = 2
Δk

λ
(19.55)

where λ is the carrier frequency wavelength and Δk is the
differences between the direct path and the refraction path
and is evaluated as

Δk =D1 +D2− d1 + d2

h2 d1 + d2
2 d1d2

(19.56)

The approximation in (19.56) is based on the conditions:
λ h d1 and d2.

Evaluation of the integral in (19.54) is performed in
Section 20.6.2 involving the Fresnel integrals [20] C(z) and
S(z) with the result

E v

Eo
=
1
2

1−C
πv

2
−S

πv

2
− j

1
2

C
πv

2
−S

πv

2
(19.57)
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The magnitude of (19.57), expressed in decibels, is plotted
in Figure 19.17 as a function of the diffraction parameter v.
When v ≤ 0 there is a direct path of length d1 + d2 between
the transmitter and receiver and the electric field variations
can be thought of as resulting from knife-edge reflections.
However, when v = 0 the peak of the knife-edge just inter-
sects the direct path and the received electric field strength
is reduced by 6 dB. For v > 0, the signal reception is due to
diffraction into the shadow region.

The function plotted in Figure 19.17 is called the Fresnel
diffraction pattern and the peaks and troughs of the ripples
result from successive constructive and destructive interfer-
ence from the received secondary wavelets shown in
Figure 19.16 and identified for k > 0. These peaks and
troughs occur because of path differences given by Δk =
kλ/2 for k = even and odd respectively. The plane perpendic-
ular to Figure 19.16, that is, through the page and containing
the knife-edge, contains unique secondary wavelets that
intersect the plane forming annular rings with radius hk
that identify Fresnel zones. The Longley-Rice propagation
model, discussed in Section 19.7, makes extensive use of
reflection and knife-edge diffraction in the evaluation of
signal loss over various terrain conditions.

19.7 LONGLEY-RICE PROPAGATION
LOSS MODEL

The propagation loss resulting from transmissions through
the troposphere and over rough terrain has been modeled
by Longley and Rice [21] and the irregular terrain model
(ITM) simulation program is used to evaluate the losses
under a variety of user specified conditions. Two distinct
modes of the program are available: the point-to-point mode
and the area prediction mode. The point-to-point mode allows
for user-specified two-dimensional terrain variations between
the transmitter and receiver sites; whereas, the area prediction
mode allows for three-dimensional topographical maps to be
used with the transmitter and receiver sites identified on
the selected map. These modes are selected by the user along
with other application-specific inputs. The program first con-
ditions the input parameters for the user-specified environ-
ment, then computes the propagation losses between the
transmitter and receiver locations. The computer code also
provides for user-specified reliability and confidence specifi-
cations that are applied to the resulting loss computations;
these statistical measures are based on the assumed normal
distribution of the losses resulting from the central limit theo-
rem involving various random processes used in the computa-
tions. The point-to-point mode corresponds to a fixed
communication link and the reliability represents the time
availability. The area prediction mode allows for four types
of communication serves: single-message, individual, mobile,
and broadcast. In these cases, the reliabilities correspond to
time and location availability.

A typical point-to-point mode scenario is shown in
Figure 19.18 where the terrain is specified by an array of
height-range parameters (hi, ri) between the transmitter and
receiver sites.

The terrain profile is entered using equal range increments
Δr = ri+1 − ri: i = 1, …, np with (ho, ro) corresponding to the
transmit site and (hnp, rnp) corresponding to the receive site;
the maximum range is then r(max) = npΔr. In addition to the
height-range parameters the user-specified parameters listed
in Table 19.2 are also required. Table 19.3 provides numer-
ical values for the dielectric constants and conductivities at
the Earth’s surface under various conditions.

The physical height of the antenna is simply the length of
the antenna structure and the center-of-radiation is the
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radiation height above the base of the antenna. The effective
antenna height is defined as the height of the antenna
center-of-radiation above the effective radiating plane that
is determined by the intermediate foreground in the radial
direction of the antenna. For the most part, the loss computa-
tions are based on the effective antenna height, so establishing
the effective height is an important consideration. Guidelines
[10] for establishing the effective antenna height are based on
the antenna siting criteria as follows. A very good siting is one
in which every attempt is made to provide a strong radiating
signal as, for example, on high ground. In this case, the effec-
tive height should not exceed the physical height bymore than
10 m. A good siting is one in which an attempt is made to

locate the antenna on elevated sites, but not on hilltops or loca-
tions that would result in the strongest radiating signal. In this
case, the effective height should not exceed the physical
height by more than 5 m. The greatest benefit with very good
and good sitings is that low physical antenna heights of less
than about 10 m can be used. A random siting is one in which
the siting is selected on factors other than signal strength,
with the stipulation that there is no deliberate concealment,
and there is an equal chance of having good or poor
performance. In this case, this effective height should be equal
to the physical height. When the antennas are concealed, a spe-
cial loss factor based on site measurements must be included.

When the antenna is placed on the top of a cliff or mesa, or
high on the side of a mountain, the question arises about the
correct physical height of the antenna. Three rules have been
suggested in answering this question [10]: The federal com-
munication commission (FCC) uses a rule that any height at
the base of the antenna greater than the average ground ele-
vation measured 2–10 miles from the antenna along the direc-
tion of propagation is to be included as physical height of the
antenna. The second rule is that ground elevations are not to
include any ground viewed by the antenna exceeding a
depression angle of 45 from the antenna boresight. The third
rule, suggested by the authors [10], is that the evaluation of
ground elevations should start at a point greater than 15 times
the antenna physical height from the base of the antenna. In
these special cases, the implication of the last two rules is that
the ground height under the physical antenna exceeding the
average ground level is to be included in the physical height
of the antenna.

Hufford, Longley, and Kissick [10] suggest the following
limitations on the application of the ITM model.

• Antenna height limits: 0.5 m to 3 km.

• Maximum range limits: 1–2000 km.

• Carrier frequency limits: 20–100MHz ≤ fc ≤ 2–20 GHz;
the lower limits are imposed because of possible dom-
inate reflections from the ionosphere and the upper lim-
its are imposed because of losses resulting from water
vapor absorption.

TABLE 19.2 User Input Parameters for the Point-to-
Point Modea

Parameter Description

Tx and Rx antenna heights htp and hrp
Effective antenna heights hte and hre
Terrain elevation change (Tx to Rx) hi (m) [10]

0-Flat terrain or water
30-Plains
90-Hills (average)
200-Mountains
500-Rugged mountains

Range between Tx and Rx r(max)
Carrier frequency fc (MHz)
Average elevation above sea levelb zsys (m)
Mean surface refractivity at sea
levelc

Eno

Antenna polarization 0-Horizontal, 1-vertical
Surface dielectric constant εs (F/m) (see Table 19.3)
Surface conductivity σs (mho/m) (see

Table 19.3)
Reliability 0.1–99.9%
Confidence 0.1–99.9%
Effective curvature of Earth kd

Climate Codes Surface Refractivity (Ns) [10]

1-Equatorial 360
2-Continental subtropic 320
3-Maritime subtropic 370
4-Desert 280
5-Contental temperate 301 averaged

6-Maritime temperate (overland) 320
7-Maritime temperate (oversea) 350

aFor a complete list of parameters with various precautions, including those
for the area prediction mode, refer to user manual. More details and ordering
information for the Longley-Rice ITM program are available online at:
elbert.its.bldrdoc.gov and softwright.com.
bzsys is only used to adjust eno to determine the surface refractivity of the
atmosphere (ens).
cWhen zsys = 0 then ens is determined directly as ens = eno.
dThe surface refractivity impacts the amount of ray bending and the effective
Earth curvature. The average value Ns = 301 results in the effective Earth
radius re = 4/3Re corresponding to k = 4/3 (see Section 19.1).

TABLE 19.3 Electrical Constants for Earth Surface [10]

Condition

Surface or Ordinary
Dielectric Constant
(εs,εn F/m)

Conductivity
(σs,σ mho/m)

Polar ice 1 0.0001
Poor ground (dry)

and sea ice
4 0.001

Average ground 15 0.005
Good ground (wet) 25 0.020
Fresh water 81 0.010
Sea water 81 5.000
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• The model can be used for evaluating the loss from a
ground site to an aircraft for aircraft altitudes ≤1 km
(3290 ft).

Application of the model is not appropriate for examining
the propagation losses for:

• LOSmicrowave links that are usually sited onmountain
tops where there is little interaction with the terrain.

• Propagation paths involving the Ionosphere.

• Propagation paths with severe ducting.

• Urban and heavily forested environments; models for
these environments are discussed in Section 19.8.

Figure 19.19 shows the propagation loss using a flat ter-
rain, that is, with hi = 13 m: 0 ≤ i ≤ 156 and for three scenarios
involving the transmitter and receiver antenna heights. In
these cases, the effective antenna height is equal to the phys-
ical height. The simulation parameters are summarized in
Table 19.4. The propagation losses in Figure 19.19 do not
include the free space loss; the propagation loss is often plot-
ted as a percentage of the free space loss (see, e.g., Problem
9). The free space loss is included in the ITM model.

19.8 URBAN, SUBURBAN, AND RURAL
ENVIRONMENT PROPAGATION LOSS MODELS

In this section, the propagation losses in urban, suburban, and
rural areas are discussed focusing on applications involving
mobile communications. There is a wealth of information in

the literature on this subject and, although only a few prop-
agation models are discussed in the following sections, the
models and results of other researchers can be found in addi-
tional references at the end of this chapter. Rappaport [22]
provides an in-depth discussion on the theoretical aspects
of mobile radio propagation including various multipath fad-
ing models. In the following descriptions, the free space loss
is computed as

Lfs dB = 20log10
4πd
λ

(19.58)

where d is the distance between the transmitter and receiver
antennas and λ is the carrier frequency wavelength measured
in the same units as d. Typically, the models are based on
continuous wave (CW) data collected using omnidirectional
antennas.

Examples of the losses for each of the following models
and loss comparisons under similar condition are included
in the problems at the end of this chapter.

19.8.1 Okumura Model for Urban Environments

The Okumura model [23] is based on curves that are fit to
measured signal losses taken in an urban environment over
frequency (fc) and distance (d) ranges: 150MHz ≤ fc ≤
1920MHz, 1 km ≤ d ≤ 100 km respectively and apply for
transmitter effective antenna heights: 30 m ≤ hte ≤ 1000 m
and effective receiver antenna heights: hre ≤ 30 m. The result-
ing median signal loss is expressed as
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TABLE 19.4 Example ITM Program Parameters Used with
Figure 19.19 (Point-to-Point Mode)

Parameter Description

Tx and Rx antenna physical heights 1 and 1 m
1 and 10 m
10 and 10 m

Effective antenna effective heights he = hp
Terrain elevation change (Tx to Rx) 0—Flat terrain
Range between Tx and Rx 0.5–5 km
Carrier frequency 100, 400, 700MHz
Average elevation above sea level 0
Mean surface refractivity at sea level (Ns) 301
Antenna polarization 1-Vertical
Surface dielectric constant (εs) 15 F/m
Surface conductivity (σs) 0.005 mho/m
Reliability 90%
Confidence 50%
Effective curvature of Earth 4/3
Climate codes Surface refractivity (Ns)
5-Contental temperate 301
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L dB =

Lfs +Amu fc, d −20log10
hte
200

−10log10
hre
3

−Ge hre ≤ 3 m

Lfs +Amu fc, d −20log10
hte
200

−20log10
hre
3

−Ge 3 m< hre ≤ 10 m

(19.59)

where Lfs is the free-space signal loss, Amu(fc, d) is the median
excess propagation loss determined from Figure 19.20, and
Ge is a frequency-dependent environmental gain factor deter-
mined from Figure 19.21. To attach a level of confidence to

these measured values, the estimated standard deviation
about the median losses varies between 10 and 14 dB.

19.8.2 Hata Model for Urban and Suburban
Environments

The Hata model [24] is derived from measured path loss
data and applies over the frequency range: 150MHz ≤ fc ≤
1500MHz and for transmitter effective antenna heights:
30 m ≤ hte ≤ 200 m and effective receiver antenna heights:
1 m ≤ hre ≤ 30 m. There is no specified limit on the distance
d; however, for reasonable agreement with the Okumura
model requires that d > 1 km. The median loss for the urban
environment is expresses as

Lu dB = 60 55 + 26 16log10 fc

+ 44 9−6 55log10 hte log10 d

−13 82log10 hte −a hre

(19.60)

The correction factor a(hre) is a function of the cell area
and for small to medium cities is given by

a hre = 1 1log10 fc −0 7 hre− 1 56log10 fc −0 8

small-medium cities (19.61)

and for large cities

a hre =
8 29 log10 1 54hre

2−1 1 fc ≤ 300 MHz,

3 2 log10 11 75hre
2−4 97 fc > 300 MHz

large cities (19.62)

For suburban and open rural areas, the correction fac-
tors are

L dB = Lu dB −2 1 1log10
fc
28

2

−5 4 suburban

(19.63)

and

L dB = Lu dB −4 78 log10 fc
2 + 18 33log10 fc −40 94

open rural (19.64)

19.8.3 Erceg Model for Suburban and Rural
Environments

The Erceg model [25] characterizes the loss for wireless
mobile communication in suburban and rural areas. The
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results are based on curve-fit plots of loss vs. distance derived
from 1.9 GHz experimental data collected in 95 macro cells
across the United States. In this case, the data was collected
using omnidirectional azimuth antennas with transmit and
receive gains of 8.14 dB and 2.5 dB respectively. The
receiver antenna height was fixed at hr = 2 m.

This model is directed toward applications, like personal
communication services (PCS) that involve smaller cells,
lower transmit antenna heights and higher frequencies. The
path loss applies for transmitter effective antenna heights:
10 m ≤ hte ≤ 80 m and distances in the range: 0.1 m ≤ d ≤ 8
km. The three environments include various terrain
hill conditions and tree densities. The Erceg model loss is
expressed as

L dB = 20log10
4πdo
λ

+ 10γlog10
d

do
+ s d ≥ do

(19.65)

where do = 100 m is the minimum close-in distance. The
exponent γ is a Gaussian random variable expressed as*

γ = a−bht + c ht + xσγ 10 m ≤ ht ≤ 80 m (19.66)

where, the term in brackets, and σγ are the mean and standard
deviation of γ respectively. The parameter x is a normalized
Gaussian random variable characterized as N(0,1).† The
s term in (19.65) is a zero-mean Gaussian random shadow
fading term characterized as N(0,σ) and expressed as

s= yσ = y μσ + zσσ (19.67)

where y = N(0,1), z =N(0,1), and σ is a Gaussian random var-
iable characterized by N(μσ,σσ). The variables x, y, and z are
independent random variables. The constants a, b, c, σγ, μσ,
and σσ are listed in Table 19.5 for each terrain category.

19.9 LAND MOBILE SATELLITE
PROPAGATION LOSS MODELS

Land mobile communications through a satellite must con-
sider the loss from the terrain surrounding the mobile loca-
tion. For example, in suburban and rural areas, when
traveling along roads or walking in forested regions, foliage
attenuation from trees and vegetation may result in signifi-
cant signal losses. Link margins of 20–25 dB are recom-
mended at ultra-high frequency (UHF) for satellite viewing
at elevation angles on the order of 20 or less.

Several link loss models for the suburban and rural areas
are examined in the following sections. The underlying mod-
els are based on the modified exponential decay (MED)
model introduced by Weissberger [26] with variations based
on the recommendations of the Consultative Committee on
International Radio‡ (CCIR) [27]. Barts and Stutzman [28]
have also proposed modification to the MED model. The
CCIR link margin model [29] for urban, suburban, and rural
areas is also given in Section 19.9.4. Moraitis, Milas, and
Constantinou [30] compare these and other land mobile sat-
ellite channel models.

In the following loss models the distance Dn is the prop-
agation path length through the foliage, measured in meters,
with the restriction Dn ≤ 400 m. Furthermore, the frequency f
is the carrier frequency in megahertz in the range
200–95,000MHz. The loss for each of the models is evalu-
ated at 400, 1,200, and 16,000MHz corresponding to the
UHF, L, and Ku bands. The link margin evaluation in
Section 19.9.4 is characterized in term of the elevation angle
θ from the mobile site to the satellite. In this case, the fre-
quency is denoted in gigahertz and the elevation angle in
degrees. The models are based on in situ measured data with
regression curve fitting applied to evaluate various parameter
coefficients.

19.9.1 Modified Exponential DecayModel Link Loss

The MED model applies to suburban and rural environments
consisting primarily of trees and vegetation. The total loss
through the foliage is evaluated as

Ln = anDn dB (19.68)

TABLE 19.5 Numerical Values for Model Parametersa

Parameter

Terrain Categoryb

A B C

a 4.6 4.0 3.6
b (m−1) 0.0075 0.0065 0.005
c (m) 12.6 17.1 20.0
σγ 0.57 0.75 0.59
μσ 10.6 9.6 8.2
σσ 2.3 3.0 1.6

aErceg et al. [25]. Reproduced by permission of IEEE.
bA, hilly with moderate to heavy tree density; B, hilly with light tree density
or flat with moderate to heavy tree density; C, flat with light tree density.

*In this model the antenna heights are not characterized as effective heights
so the physical height is assumed.
†The generation of Gaussian or Normal random variables characterized by
N(m,σ), with mean m and standard deviation σ, is discussed in Chapter 14.

‡The CCIR is currently referred to as the International Telecommunication
Union-Radio (ITU-R).
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where an is the specific attenuation expressed as

an = 0 187f 0 284D−0 412
n dB m (19.69)

The losses are shown in Figure 19.22 for the indicated
frequencies.

19.9.2 CCIR Link Loss Model

The CCIR model is a modification of the MED model with
the total loss given by

Ln = anDn dB (19.70)

and the specific attenuation expressed as

an = 0 187f 0 3D−0 4
n dB m (19.71)

The loss using the CCIR model is shown in Figure 19.23
and is somewhat higher than that predicted by the
MED model.

19.9.3 Barts and Stutzman Link Loss Model

The Barts and Stutzman model is also a modification of the
MED model for distances ≤14 m; otherwise, the loss predic-
tions are identical to the MED model. The total loss through
the foliage is evaluated as

Ln = anDn dB (19.72)

and the specific attenuations for the different ranges are
expressed as

an = 0 063f 0 284 dB m forDn ≤ 14 m (19.73)

and

an = 0 187f 0 284D−0 412
n dB m for 14 <Dn ≤ 400 m

(19.74)

The loss for the Barts and Stutzman model is shown in
Figure 19.24.

19.9.4 CCIR Link Margin Model

The CCIR link margin model [29] data were collected in
urban, semi-urban, suburban, and rural areas at 860MHz
and 1.55 GHz for elevation angles [31] ranging from 19
to 43 . In the following relationships, the angles are entered
as degrees and the frequency as gigahertz. The link margin
applies for a percentage availability of Pa = 90%, that is,
the received signal power exceeds the detection threshold
90% of the time; however, other percentages of availability
can be evaluated by subtracting the loss L = 0.1(90 − Pa)
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dB from the derived link margins.* The range of Pa is
50–90%. Furthermore, a factor K is included that relates
the percentage of the surrounding locations or area (area
%) for which the received power is expected to exceed the
detection threshold; the values of K for area% are tabulated
in Table 19.6.

The link margin, in dB, for the urban, suburban, and rural
models are expressed as

M = 17 8 + 1 93f −0 052θ +K 7 6 + 0 053f

+ 0 040θ −L urban (19.75)

and

M = 12 5 + 0 17f −0 17θ +K 6 4−1 19f

+ 0 05θ −L suburban rural (19.76)

Equations (19.75) and (19.76) are plotted in Figure 19.25
as a function of θ for various carrier frequencies in gigahertz
with the indicated conditions of: link availability, percent of
area, and L = 0 dB. With Pa = 90%, area%= 50%, and K = 0,
the link is available 90% of the time and in 50% of the sur-
rounding area the received power is expected to exceed the
detection threshold. If the availability is decreased to 50%
then L = −4 dB and the link margin can be decreased by
4 dB. On the other hand, if the detection threshold is to be
exceeded in over 99% of the surrounding area then K =
2.35 and the link margin must be increased by the additive
term involving K in (19.75) and (19.76). Note that the range
of the elevation angle in Figure 19.25 exceeds the stated
range of the model by about 5 on each end of the abscissa.
The frequency translations method of Goldhirsh and Vogel
[32] is recommended to evaluate the link margin require-
ments at other frequencies.

19.10 IMPULSIVE NOISE CHANNEL

19.10.1 Introduction

Impulsive noise occurs from thunder storm activity around
the world and is present in most regions as the energy from
lightning flashes or strikes propagates through the natural
wave guide between the earth surface and the ionosphere.
The severity of the storm activity varies with geographic
regions and seasons; however, the worldwide average rate
of lightning strikes is on the order of hundreds-per-second.
In regions near active storm centers the noise spikes are most
pronounced, characterized as short high-energy pulses that
disrupt communications. As the impulsive energy propagates

farther from the storm center the wide bandwidth pulses
undergo attenuation and dispersion and combine with simi-
larly filtered impulses from storm centers in other regions
of the globe. The global effects of lightning strikes resulting
from storm activity are most evident at the lower frequencies,
typically in the low frequency (LF) region and below. These
effects become less troublesome at frequencies in the high
frequency (HF); however, the HF region has unique issues
[33] to contend with including time-varying multipath, duct-
ing, and Faraday rotation.

The impulsivity measure Vd is introduced in Chapter 14 as
the parameter that characterizes the severity of the impulsive
noise and is defined as the ratio of the rms noise envelope to
the average noise envelope. The Vd measure is expressed in
decibels with the minimum value of 1.049 dB corresponding
to minimum storm activity; larger values indicate increased
storm activity. As the storm energy from around the globe
is combined, the noise addition is subject to the central limit
theorem and the impulsive noise approaches white Gaussian
noise with the correspondingVd = 1.049 dB. This condition is
observed during periods of relatively calm worldwide storm
activity and will change suddenly as a result of a distance*The loss L is included in the link margin equation.

TABLE 19.6 Values of the Factor K
Given area%

area% K

50 0
90 1.3
95 1.65
99 2.35
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storm. The impulsivity is also characterized by the amplitude
probability distribution (APD), defined as the probability that
the noise envelope exceeds the abscissa [34]. The worldwide
characterization of impulsive noise due to storm activity is
published by the International Telecommunication Union
(ITU) through the CCIR Report 322 [35] and associated
reports [36]. These reports characterize the APD based on
impulsive noise measurements corresponding to the Vdmeas-
ure. The impulsive noise from lightning strikes is character-
ized as a nonstationary random process and the APD data are
based on the ensemble average of recorded time sequences.

19.10.2 Lognormal Impulse Noise Model

To the casual observer, a lightning strike appears as a single
flash of light; however, in many events each flash is actually
composed of multiple strokes separated typically by 50–
100 ms. The multiple strokes following the initial lightning
strike are referred to as return strokes. The number and inter-
val between the return strokes is modeled statistically based
on observations [37]. Uman and Krider [38] have summar-
ized the phenomenon of lightning strikes and, based on the
studies of Mackerras [39], conclude that the number of return
strokes is typically distributed between 2 and 8 resulting in a
mean value of 5 return strokes for each lightning flash.
Figure 19.26 shows Mackerras’ results in terms of the prob-
ability that the number of return stokes exceeds the abscissa;
the dashed curve represents the piece-wise linear approxima-
tion to the data expressed in (19.77) and is used in the com-
puter simulations. Beach and George [40] and Uman [41]
report on the time between return strokes based on the data
collected by Schonland in South Africa. Figure 19.27 charac-
terizes Schonland’s data in terms of the probability that the
time interval between return strokes exceeds the abscissa;

the dashed curve corresponds to a piece-wide linear approxi-
mation in (19.78) used for computer simulations. Beach and
George observed that the time between stokes corresponding
to Schonland’s data can be approximated using the Gamma
pdf with α = 2 and mean value α/β = 55. This approximation
is also applied to the data of Kitagawa, Brook, and Workman
[42] for cloud-to-ground lightning using a mean value of
α/β = 35. Although these Gamma function pdf approximations
are good fits to the data over regions about the mean values,
over regions several standard deviations removed from the
mean they are not as accurate, so the piece-wise linear approx-
imations are used in the computer simulations.

The piece-wise linear approximations for the simulated
probabilities are

Pr strokes j> n

−0 1354n+ 1 1354 1 ≤ n ≤ 7 5

−0 0184n+ 0 2579 7 5 < n ≤ 14

0 o w

(19.77)

and

Pr tj > tn

−0 01292tn + 1 1486 11 5 ≤ tn ≤ 68

−0 004524tn + 0 5776 68 < tn ≤ 110

−0 001379tn + 0 2317 110 < tn ≤ 147

−0 000429tn + 0 0916 147 < tn ≤ 200

−0 000105tn + 0 0267 200 < tn ≤ 254

0 o w

(19.78)

where j and n are integers and the time is in milliseconds.
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The impulse noise for lightning strikes is modeled as shot
noise [43] and expressed as the summation

np t =
i

Np t δ t− ti (19.79)

where Np(t) represents the main lightning stroke with the
associated return strokes, Np t , and is expressed as

Np t =Ap t cos φ t + jsin φ t +
j

Np t δ t− tj

(19.80)

with

Np t =Ap t cos φ t + jsin φ t (19.81)

The functions Np(t) and Np t represent complex impulse
noise processes with lognormal distributed amplitudes
Ap(t), Ap t and uniformly distributed phases, φ(t), φ (t),
respectively.

From the discussions in Section 14.3.6, the lognormal
amplitude is Ap = ex, where x is a normally distributed random
variable with mean m0, variance σ20, and phase φ uniformly
distributed between −π and π. A zero mean Gaussian back-
ground noise term, ng(t), with variance σ21 is added to the
impulsive noise; the background noise results from quiescent
worldwide thunder storm activity. Therefore, the total atmos-
pheric noise at the input to the receiver antenna is
described as

n t = ng t + np t (19.82)

Substituting (19.80) and (19.81) into (19.79) the total
atmospheric noise at the receiver antenna input, characterized
by (19.82), becomes*

n t = ng t +
i

Api cos φi + jsin φi δ t− ti

+
n

j= 1

Apij cos φij + jsin φij δ t− ti− tj

(19.83)

The most commonly observed lightning strike or flashes
occur as intra-cloud, cloud-to-cloud, and cloud-to-ground.†

To the casual observers the cloud-to-ground lightning is
the most spectacular. In cloud to ground flashes the first or
main strike is preceded by a stepped leader that is followed
by dart leader that propagates from the cloud to ground. The

dart leader is immediately followed by a return stroke that
propagates from ground to cloud and results in the visible
lightning flash. Depending on the remaining charge and
the electric field intensity, additional dart leaders followed
by return strokes may occur resulting in a multiple-stroke
flash. In the communication performance simulation pro-
gram, the parameter λ is input to establish the mean lightning
flash-rate. The time intervals Δti = ti − ti−1 between multiple
return strokes are randomly distributed according to
(19.78). As discussed in Section 19.10.3, the number of
strokes and flashes over a recorded ensemble of atmospheric
noise is adjusted to match the APD corresponding to the
selected Vd (dB).

Two points are noteworthy regarding the noise description
in (19.83). The implied bandwidth of the noise impulses is
infinite and in areas of intense storm activity the parameter
λ may be sufficiently high so that return strokes from several
main strokes overlap. The bandwidth issue is handled by
passing the impulse noise through the receiver intermediate
frequency (IF) filter with one-sided bandwidth denoted by
B. The resulting received atmospheric noise at the output
of the IF filter is then evaluated as

n t = n t ∗h t (19.84)

where h(t) is the impulse response of the IF filter where the
asterisk (∗) denotes convolution. Regarding the second point,
parameter λ is selected to conform to measured data to result
is the prescribed APD.

19.10.3 Fitting the Noise Model to Measured Data

In a simulation model the required sampling frequency fs is
chosen to conform to the receiver Nyquist sampling criterion.
For example, when simulating the performance of a commu-
nication system using analytic signal representations, the
sampling frequency is selected such that fs ≥ 2B, where B is
the bandwidth of the received signal. In this regard, the sam-
pling frequency is selected to result in an acceptably low loss
resulting from the detected symbol energy and aliasing dis-
tortion. The received samples are processed in the demodu-
lator for waveform acquisition and subsequently symbol
and carrier tracking and data detection. In this context t =
kTs: Ts = 1/fs and (19.84) is the narrowband analytic represen-
tation of the received atmospheric noise. For evaluating the
communication performance, the modulation symbol rate
and the sampling frequency are related to the anti-aliasing fil-
ter bandwidth B as shown in Figure 19.28.

In the following evaluation of the impulse noise model, a
minimum shift keying (MSK)-modulated waveform is used
with a symbol rate of Rs = 25 sps, B = 800 Hz, fs = 2B, and
Ns = 32 samples-per-symbol. Because λ has units of impulses
per second, the impulse rate is restricted to λ ≤NsRs so the
parameter Ns can be adjusted as necessary to fit the noise

*To avoid confusion the bold j is used to denote the complex root of unity.
†Uman’s book [41] Lightning is suggested for additional reading.
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model to the measured data. These relationships are scaled to
accommodate specific waveform modulations and data rates
as discussed in the case study in Section 19.10.5.

Lightning strikes are characterized by the impulsivity
measure Vd defined in (14.67) as

Vd ≜
E nk2

E nk
(19.85)

where nk represents the narrowband time-sampled receiver
analytic noise. The system performance is typically charac-
terized for a specified value of Vd; however, the APD for each
Vd must conform to the corresponding measured APD in the
ITU publication CCIR 322 [35]. To this end, the measured
APD results are shown in Figure 19.29 for several values
of Vd; these results are adapted from Gamble [44] and plotted
using Rayleigh coordinates that result in a linear APD curve
with slope −1/2 for Gaussian noise. The CCIR APD results
are measured at the output of a receive antenna modeled as
a single-pole filter with a noise bandwidth of Bn = 243 Hz.
Therefore, when specifying Vd in (19.85) the parameters
σ21, σ

2
0, m0, and λ of the filtered noise process characterized

by (19.83) and (19.84) must be chosen to conform to the cor-
responding APD curve. The parameter λ is implicit in (19.83)
through the random distribution of the time between the log-
normal impulses. The parameters m0 and σ20 are implicit in
the normally distributed random variable x denoted as
x =N(m0,σ0).

An analytic closed-formsolution forVd in terms of themodel
parameters is intractable because of the denominator term in
(19.85) involving the expectation of the magnitude of the
received noise. Therefore, Vd is evaluated numerically in terms
of σ21, σ

2
0, m0, and λ with the background noise power based

on a specified receiver signal-to-noise ratio* γb = Eb/No as

σ21 =
V2
r 2
γb

(19.86)

where Vr is the peak voltage of the carrier-modulated
received signal. Upon specifying σ21, λ, and m0, (19.85) is
evaluated by indexing σ20 = nΔσ20: n = 1, …, N until the com-
puted value of Vd just exceeds the specified value. Each eval-
uation involves a time series of one million samples to
compute the expectations required in (19.85).† The starting
value of σ20, denoted as σ20 start , is chosen to minimize the
search time and Δσ20 = 0 2 was found to provide sufficient
coarse resolution to match the desired APD curve. However,
to improve the estimation accuracy, a fine resolution interval
of Δσ20 10 is used with the indexing restarted at the previous
value and continuing with σ20 = σ

2
0 previous + n Δσ20 10:

n = 0,…, 10 until the computed value of Vd again exceeds
the specified value. Upon completion, the value σ20 is linearly
interpolated between the ending and previous values and the
simulation is run once again to verify the evaluation of the
desired APD curve using the four parameter values.

The final simulation run uses the interpolated value of σ20
and the numerically computed error in Vd in decibels is typ-
ically less than 0.1%. The final parameter sets for several Vd

values are summarized in Table 19.7. The results of the Vd

and APD evaluations are shown as the data points in
Figure 19.30 for Vd values of 1.049, 2, 6, and 14 dB; the solid
curves are taken from Figure 19.29 and represent the corre-
sponding measured APD curves.

Figures 19.31, 19.32, and 19.33 show typical recordings
of the sampled magnitude, nk , of the lognormal impulse
noise for Vd = 1.049, 2.0, and 14.0 dB, respectively. These
recordings are representative of the filtered samples at the
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FIGURE 19.28 Relationship between fs, B, and Rs for MSK
modulation.

–20log(ln(1/P(ro)))

–20–15–10 –5 0 5 10 15 20 25 30 35 40

2
0
lo

g
(r

o
/s

q
rt

(2
)σ

1)

–40

–30

–20

–10

0

10

20

30

40

50

Vd (dB)

1.049
1.5

2
4

6
101420

FIGURE 19.29 APD curves corresponding to CCIR-322
measured Vd values (243 Hz receive filter noise bandwidth).

*The receiver Eb/No includes the receiver kTB noise and the power associated
with the impulsive channel noise.

†The nonstationary characteristic of the channel noise is not an issue because
the model is being fit to measure data that is based on the ensemble averages.
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output of the 243 Hz noise bandwidth receive antenna used
to collect the CCIR-322 noise data.

The value of Vd will change as the filter bandwidth
is changed but the CCIR-322 results apply only to the
243 Hz noise bandwidth filter [45]. Spaulding, Roubique,
and Crichlow [46] have evaluated the conversion of Vd with

bandwidth and their results are shown in Figures 19.34 and
19.35 for decreasing and increasing bandwidths respectively.
Bi = Bn = 243 Hz is the noise bandwidth in which Vdi is meas-
ured and Bo is the noise bandwidth of the desired filter.

TABLE 19.7 Lognormal Parameter Sets Corresponding to Selected Vd Values

Vd (dB) λ m0 γb σ21 σ20 σ2ch σ2mf
a

1.049 — — Any Any — — —

1.5 1150 0 36.5 1.120(−4) 0.2074 0.0163 0.0035
2.0 300 0 28.0 7.920(−4) 0.7625 0.1000 0.0212
6.0 3000 0 15.0 0.01581 2.218 2.0500 0.4400
14.0 1500 3 −30.0 500.00 4.726 5.483(3) 1.354(4)

aApplies to MSK matched filter.
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FIGURE 19.30 Simulated APD characteristics for several values
of Vd using lognormal model (parameter sets from Table 19.7).
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The case study in Section 19.10.5 uses Bi = Bn = 243 Hz with
Bo = Bn so no bandwidth conversion is necessary.*

19.10.4 Impulsive Noise Mitigation Techniques

Modem performance improvements can be achieved through
the use of various impulsive noise mitigation techniques like:
clipping [47], limiting [48], excision, and hole-punching
[49]. These techniques are applied in the receiver or

demodulator signal path prior to the matched filter detection;
however, at the outset of the modem design, the proper selec-
tion of the waveform modulation and forward error correc-
tion (FEC) coding will result in significant performance
advantages. When FEC is applied to the waveform, the use
of interleaving is also an effective mitigation technique for
impulsive noise. Gamble [44] provides a review of these sub-
jects and summaries the performance results of various
authors for constant amplitude waveform modulations:
PSK, MSK, and continuous phase frequency shift keying
(CPFSK). In Section 19.10.5, the performance improvement
using clipping is examined using the MSK-modulated wave-
form. Time domain clipping is most effective when applied at
a high IF frequency before significant pulse dispersion
occurs; this can be achieved for constant envelope wave-
forms with bandpass limiting followed by narrowband
filtering.

19.10.5 Case Study: Minimum Shift Keying
Performance with Lognormal Impulse Noise

This case study involves simulating the performance of MSK
operating as a bit-rate of Rb = 50 bps in lognormal noise rep-
resentative of lightning strikes fromworldwide storm centers.
In the preceding sections, the parameter Vd is used to charac-
terize the receiver noise described by (19.84). The application
of (19.84) involves generating noise samples nk = n kTs ,
where Ts is the sampling interval, and combining the noise
samples with the sampled signal (si) as shown in
Figure 19.36. The sampling frequency fs = 1/Ts must be cho-
sen to satisfy the Nyquist sampling condition.

The receiver filter in Figure 19.36 represents the cas-
cade of receiver and demodulator IF filters with a compos-
ite noise bandwidth of B Hz. The bandwidth of the
single-pole filter following the impulse noise generator
establishes the impulsivity measure Vd and the correspond-
ing APD for the system evaluation. For example, suppose
that the receiver being evaluated has an antenna noise band-
width of 486 Hz, referring to Figure 19.35 with Bo/Bi = 2, a
value of Vd = 6 dB in 243 Hz corresponds to Vd = 8 dB in
the receiver noise bandwidth. Therefore, the system perfor-
mance is evaluated using Vd = 8 dB with the corresponding
APD response. However, in this case study, Bi = Bn =
243 Hz with Bo = Bn, so the measured Vd values can be used
without applying bandwidth conversion. This avoids the
uncertainty introduced in the bandwidth conversion proces-
sing [46].

The signal must be passed through the equivalent receiver
filters and the signal and intersymbol interference (ISI) dis-
tortion losses must be considered. Although the simulated
signal is characterized as an analytic signal, the modulated
signal at the filter output has an equivalent carrier-modulated
peak level of Vr volts corresponding to the signal power

*The ratio of the noise bandwidth to 3 dB bandwidth for a single-pole filter
is 1.57.
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Ps = V2
r /2. Similarly, the power of the zero mean sampled

noise is computed as

σ2ch =
1
N

N

k = 1

nk
2 (19.87)

This power is measured in the bandwidth of the sampling
frequency and the signal-to-noise ratio in the sampling band-
width isNs = fs/Rs times higher than Eb/No. In an environment
involving white noise the channel power can be scaled by the
bandwidth ratio and adjusted to correspond to a specifiedEb/No

ratio. However, because the impulse noise does not have a con-
stant power spectral density (PSD) the signal will necessarily
involve the channel noise power (σ2mf ) at the output of the sym-
bol matched filter. For MSK modulation, the matched filter
noise bandwidth is

Bmf =
π2

8
RS MSKmatched filter bandwidth (19.88)

The noise powers σ2ch and σ2mf are listed in Table 19.7 for
the indicated values of Vd. The performance simulation eval-
uates the bit-error probability as a function of the signal-to-
noise ratio, γb = Eb/No measured in the bandwidth to the data
rate Rb, that is,

γb =
Ps

σ2b
(19.89)

Upon expressing (19.89) in terms of the noise power
σ2mf measured in the bandwidth Bmf and solving for σ2mf
results in

σ2mf =
Ps

γ
b

π2

16
(19.90)

Using (19.90) the voltage gain required to bring σ2mf up to

the level σ2mf for a specified γb = Eb/No is

Gn =
σ2mf
σ2mf

=
π

4
Ps

γb σ
2
mf

(19.91)

This gain is applied to the simulated impulse noise as
shown in Figure 19.36. As stated above, in the following
simulations the input filter is the single-pole filter with a noise
bandwidth of Bi = 243 Hz used to characterize the CCIR-322
data collection hardware.

Following the impulse noise gain adjustment, the received
signal, receiver thermal noise, and impulsive channel noise
are added and passed through the receive filter, the optional
nonlinearity, and the MSK matched filter. The demodulator
data estimates are determined from the optimally sampled
matched filter and the errors are counted to determine the
bit-error probability. The hard limiting (HL) is ideal, in that,
it normalizes the complex baseband signal plus noise (srk) as

srk =
srk
srk

Vr (19.92)

When clipping is used, the clipping threshold is defined
relative to the channel noise power σ2ch and, because the
received signal power is held constant, the clipping level
(CL) relative to the received signal voltageVr is also constant.
The matched filter is a complex inphase and quadrature (I/Q)

jTb
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nk
Vd
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σ0
2

m0
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dĵ
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filter

Receiver
non-
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FIGURE 19.36 Application of impulse noise for modem performance evaluation.
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filter with quadrature cosine weighed symbol integrators off-
set by the bit duration Tb = T/2, where T is the MSK symbol
duration. Ideal symbol timing is used, however, the perfor-
mance using ideal frequency and phase tracking is compared
to the performance using a second-order Costas phaselock
loop with various time-bandwidth products.

The following figures characterize the performance of the
MSK-modulated waveform for various Vd values as described
above. The modulation symbol rate of Rs = 25 sps has negligi-
ble distortion when passed through the single-pole equivalent
receiver antenna filter. The receiver bandwidth of B = 800Hz
is sufficiently wide to provide for effective clipping of the
impulse noise peaks and the associated reduction of the Vd

through clipping, HL, or bandwidth reduction is reflected
in the performance results.

Gamble [44] has evaluated the theoretical performance of
coherently detected binary phase shift keying (BPSK) with a
linear receiver for various values of Vd. Gamble also provides
comparisons of the theoretical performance with published
experimental results for PSK [50] with Vd = 3.75 dB meas-
ured in 33.3 Hz and for MSK [51] with Vd = 5 dB measured
in 40 Hz. These comparisons indicate the Gambles theoreti-
cal results provide a lower-bound to the experimental results
by 2–3 dB; however, the differences may be accounted for by
measurement accuracies, tracking losses and other hardware
anomalies. The simulation results in the following
section focus on MSK modulation and compare reasonable
well with Gambles results.

19.10.5.1 Simulated MSK Performance with Vd = 1.5 dB
The simulated performance of MSK in atmospheric noise
with Vd = 1.5 dB and ideal symbol and phase tracking is
shown in Figure 19.37. The performance using a linear
receiver is compared to a HL receiver and a receiver with var-
ious CLs ranging from 0 to 21 dB. The Monte Carlo simula-
tions use 1M bits (500K symbols) for each signal-to-noise
ratio and, because the channel noise does not have a constant
power spectral density, the abscissa is defined more generally
as Ps σ2n.

* The dotted curve is the theoretical performance of
MSK in additive white Gaussian noise (AWGN) and the
circled data points (see Figure 19.38) result from the corre-
sponding simulated performance. These ideal tracking per-
formance results are provided as a baseline for comparison.
The modem performance with impulsive noise is degraded
from the AWGN performance by about 3.5 dB at Pbe =
10−5 with the linear receiver and an additional 0.2 dB with
the HL receiver. The performance with CLs ranging from
0 to 21 dB fall between HL and linear performance.

The CL is defined in terms of the clipping threshold Tcl
and the channel noise power σ2ch as

CL =
T2
cl

σ2ch
(19.93)

The clipping threshold is related to the received signal
power as

T2
cl

Ps
=CL

σ2ch
Ps

(19.94)

The signal power in the simulation is constant with Ps = 0.5
and, using the computed noise power from Table 19.7, σ2ch =
0.0163, the clipping threshold relative to Ps in decibels is
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T2
cl

Ps dB

=CL dB −14 87 Vd = 1 5 dB (19.95)

Figure 19.37 also shows the performance with phaselock
loop tracking using the time-bandwidth product BLTb and
lock detector BLDTb products of 0.025 and an initial phase
error of 10 with zero frequency error. The critical phaselock
loop signal-to-noise ratio of the linear receiver is about 8 dB
and for the HL receiver it is about 14 dB. Clipping levels ran-
ging from 0 to 21 dB were examined and the phaselock loop
never achieved phase-lock for CLs ≤ 18 dB.With CL = 21 dB
phase-lock was achieve with a critical signal-to-noise ratio of
about 6 dB. Considering the CL relative to the signal power,
as given by (19.95), the 21 dB CL corresponds to a clipping
threshold relative to the signal power of 6.13 dB, whereas,
CLs ≤ 18 dB correspond to clipping thresholds ≤3.13 dB rel-
ative to the signal power. These results indicate that an opti-
mum clipping threshold exits with phase tracking. In all
cases, once phase-lock is achieved the performance loss is
less than about 0.25 dB with tracking.

19.10.5.2 Simulated MSK Performance with Vd = 6 dB
The simulated MSK results for Vd = 6 dB are shown in
Figures 19.38, 19.39, and 19.40. In these figures, the dotted
curve is the theoretical performance of MSK in AWGN and
the circled data point corresponded to the simulated MSK
performance. The Monte Carlo simulations use 1M bits
(500K symbols) for each signal-to-noise ratio. The results
in Figure 19.38 compare the performance of a linear receiver
with one using HL and various CLs; all of these results use
ideal symbol time and phase tracking. As predicted by Gam-
ble the performance of the linear receiver is severely
degraded; however, HL and CLs ≤ −6 dB provide significant
improvements.

Referring to (19.94) and Table 19.7, σ2ch = 2.05 and the
clipping threshold relative to the signal power, Ps = 0.5, is
expressed in decibels as

T2
cl

Ps dB

=CL dB + 6 13 Vd = 6 dB (19.96)

Therefore, a CL of −6 dB corresponds to a clipping thresh-
old of relative to the signal power level of 0.13 dB. The CLs
of −3 and 0 dB, shown in Figure 19.38, also exhibit consid-
erable improvement relative to the linear receiver. These CLs
correspond to the respective clipping thresholds of 3.13 and
6.13 dB relative to the signal power.

The simulation results in Figure 19.39 show the perfor-
mance of the linear receiver and the HL receiver with phase
tracking indicated by the dash-dot-dot curves. The phaselock
loop (PLL) BLTb and lock detector BLDTb products are 0.025
and the initial phase error is 10 with zero frequency error.
The critical signal-to-noise ratio for phase-lock is about
14 dB for the linear system and 6 dB for the HL receiver.

Figure 19.40 shows the phase tracking performance with
clipping. With CL = 0 dB phase-lock is achieved for signal-
to-noise ratios less than 0 dB and with CL = −3 dB the critical
signal-to-noise ratio is about 8 dB. For signal-to-noise ratios
below about 6 dB the PLL never achieved phase-lock. With
CLs ≤ −6 dB phase-lock was never achieved for any signal-
to-noise ratio; this in contrasted with HL that did achieve
phase-lock as mentioned above. The loop bandwidth is
directly related to the signal level into the PLL and, because
the receiver gain following the limiting and clipping is not
adjusted, the low signal level associated with low CLs may
be attributed to the failure to achieve phase-lock. In any
event, the performance at lower signal-to-noise ratios is an
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important consideration with the use of FEC coding. In all
cases, once phase-lock is achieved the performance loss is
less than about 0.25 dB with tracking. The phaselock perfor-
mance can be improved by reducing the time-bandwidth pro-
ducts at the expense of less tolerance to the dynamics of the
encounter.

19.11 OCEAN WIND WAVE CHANNEL

19.11.1 Introduction

When communicating with submarines in deep ocean envir-
onments, the distortion introduced by surface waves driven
by wind is a major factor that degrades the system perfor-
mance. The impact of wind waves on the signal amplitude
and phase is severe at very low frequency (VLF) and LF fre-
quencies and in this section the signal distortion is analyzed
and quantified in terms of the sea-state conditions. The per-
formance degradation is examined in a case study in
Section 19.11.5 and signal processing techniques to mitigate
the impact of the wave distortion are discussed.

In the real-world environment, the received signal is cor-
rupted by additive atmospheric noise as discussed in the pre-
ceding sections; however, the impulsivity of the atmospheric
noise is decreased because of the narrowband filtering
through the sea water. As the water depth increases, the Vd

measure of the atmospheric noise approaches 1.049 dB cor-
responding to Gaussian noise. In addition to the filtered
atmospheric noise, the noise at the receiver consists of addi-
tive thermal noise and man-made interference noise from
equipment that falls within the bandwidth of the receiver
IF stages. In these cases, the performance loss is mitigated
through the use of robust symbol modulations, FEC coding,
interleaving, and adaptive interference cancellation techni-
ques [52].

A theoretical characterization of wind waves is given by
Kinsman [53] where, in Chapter 8, the Pierson-Neumann the-
ory is discussed leading to the Neumann wave-height energy
spectral density (EDS) characterization. An alternate expres-
sion of the wave-height spectral density is based on the
Pierson-Moskowitz theory and the two spectrums are com-
pared. These energy spectrums characterize the wave height
for a fully developed sea after a period of sustained winds and

that is not influenced by the ocean floor or surrounding shore
lines. In other words, the sustained winds are over deep
oceans with a large surface area or fetch. In addition to the
introduction given by Kinsman, the U.S. Navy [54] provides
a description of the growth and decay of waves. The wind
wave characteristics are identified in terms of a sea-state
number [55, 56] as given in Table 19.8. In the following sec-
tions, the Neumann wave-height energy EDS is used to com-
pute random wave-height temporal records; these records are
seamlessly linked in a computer simulation program and used
to distort the amplitude and phase of the communicationwave-
form for the purpose of evaluating the communication link
performance under various sea-state conditions.

19.11.2 Neumann Wave-Height Energy Spectrum

The EDS of wave height in a fully developed sea of unlimited
depth, fetch, and time is characterized by Neumann [57] as

S ϖ =
4 791
ϖ6

e−2
g
uϖ

2

ϖ ≥ 0 Neumann

0 o w
(19.97)

where g is the gravitational acceleration at sea level, found
from experimental data to be 9.8106 m/s2, u is the wind veloc-
ity in meter per second, andϖ is the angular frequency of the
energy spectrum in radian per second. The constant 4.791 is
determined from experimental data and has dimension of
m2/s5. S(ϖ) has dimensions of square meter-second and is
plotted in Figure 19.41 in terms of the frequency f =ϖ/2π.
The severity of the sea condition is designated by the sea-state
number and the corresponding wind velocity as indicated in
Table 19.8. Figure 19.41 clearly demonstrates the impact of
the wind velocity with an increase of five decades in the peak
energy spectrum between sea-states 1 and 8. The alternate
wind wave spectral density is based on the Pierson-
Moskowitz wave theory [58] and expressed by (19.98) and
shown in Figure 19.42.* The Neumann characterization is

TABLE 19.8 Sea-State Number and Wind Wave Parameters

Parameter

Sea-State Number

1 2 3 4 5 6 7 8

Wind velocity (knots) 5 12 16 18 24 28 34 42
Average wave height (ft) 0.18 1.4 2.9 3.8 7.9 11 19 31
Average wave length (ft) 6.7 40 71 90 160 212 322 492
Average wave period (s) 1.4 3.4 4.6 5.1 6.8 7.9 9.7 12

*The U.S. Navy HIDRAS simulator uses the Pierson-Moskowitz spectral
density.
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less intense at the higher frequencies with a net shift in energy
to the lower frequencies.

S ϖ =
0 081g2

ϖ5
e−0 74 g

uϖ

4

ϖ ≥ 0 Pierson-Moskowitz

0 o w

(19.98)

The integral of the wave-height EDS is the wave energy
and, for the Neumann spectral density, is evaluated as

E =

∞

0

S ϖ dϖ = 4 791

∞

0

e−2
g
uϖ

2

ϖ5
dϖ

= 0 3176 π
u

g

5

(19.99)

Commonly used statistical measures of the wave height
are [59]: the average height H, the average of the 1/3 highest
wave H1 3, and the average of the 1/10 highest wave H1 10.
Expressed in terms of the wave energy, these average wave-
height measures are given by

H = 1 77 E (19.100)

H1 3 = 2 83 E (19.101)

and

H1 10 = 3 60 E (19.102)

The constant 4.791 in (19.99) applies for wave heights
betweenH1 3 andH1 10. The wave energy and corresponding
wave heights are listed in Table 19.9 for the sea-state
conditions.

19.11.3 Wave-Height Generation Using Neumann’s
Energy Density Spectrum

In this section, the received signal phase and amplitude char-
acteristics are examined at a point beneath the ocean’s surface
under various sea-state conditions using Neumann’s wave-
height EDS. The approach is similar to that described in
Chapter 20 for the generation of Rayleigh fading signals
and involves the uniform sampling of the wave-height
EDS and then using the inverse Fourier transform (IFT) to
generate discrete-time sampled wave data. The resulting rec-
ord of finite wave data samples is extended to an arbitrary
length by joining independently generated records in a seam-
less manner.*

The sampling conditions are depicted in Figure 19.43
using an Nfft − point radix-2 fast Fourier transform (FFT).
The wave EDS is bandlimited to B Hz and sampled at the
sampling frequency fs =NfftΔf Hz with N samples over the
EDS response, that is, B =NΔf. The temporal response of
the sampled EDS is shown as the sampled wave record in
Figure 19.43b. TB = 1/B is defined as the time-constant of
the wave temporal response and is related to the correlation
time of the wave; there are N time-constants for each record.

The parameter N is chosen such that there are about four
samples within the 3-dB bandwidth (B3) of the EDS so the
frequency increment is Δf B3/4. The parameters B3 and
B are determined from Figure 19.41 and the value of Δf is
chosen to satisfy the condition
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FIGURE 19.41 Neumann wave-height energy spectrums.
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FIGURE 19.42 Pierson-Moskowitzwave-height energy spectrums.

*The HIDRAS channel simulator generates random time-varying stochastic
signal representations by summing 26 sinusoidal signals with amplitude and
phase functions dependent upon the wind wave height fluctuations. To avoid
periodicities in the received signal, the frequency of each sinusoidal signal is
randomly adjusted at 1 s intervals corresponding to a total repetition time of
26 s.
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N =
B

Δf int

=
B

B3

B3

Δf int

= 2m m = 1,2,…

(19.103)

where B is chosen so that integrated alias distortion is more
than 25 dB below the EDS in the bandwidth B. Using these
results, the record duration Trec is computed as Trec = 1/Δf.

Referring to Figure 19.54a, the sampling frequency is
selected to satisfy the Nyquist criteria fs = kB with k ≥ 2.
Using this result and (19.103), the size of the FFT is deter-
mined as

Nfft =
fs
Δf int

= k
B

Δf int

= kN int = 2
m+ n (19.104)

where k = 2n: n ≥ 1. The minimum value of k results in the
smallest FFT size of 2m+1 samples and selecting larger values
of k increases the size of the FFT by decreasing size
sample interval Δt, however, Δf and Trec remain unchanged.

Therefore, for a given number of samples-per-symbol,
increasing k results allows for more user symbols-per-record
with fewer records required for the Monte Carlo performance
simulations.* These relationships are dependent on the modu-
lated symbol duration T = 1/Rs that is typically less than TB.
Table 19.10 identifies the selected parameters that are used
for the various sea-state conditions in the case study of
Section 19.11.5 and Table 19.13 identifies the common sym-
bol rate of 32 symbols-per-second used for each sea-state
condition.

The complex samples of S(f) are generated using identi-
cally distributed zero-mean independent complex Gaussian
random variables b(nΔf): n = 0, …, N − 1 with variance
σ2s nΔf = S nΔf . Although S(f) extents over all positive fre-
quencies, the maximum frequency (N − 1)Δf is selected to
result in negligible distortion due to aliasing. The sampling
frequency increment Δf determines the record length given
by Trec = 1/Δf. To simplify the notation, the complex samples
b(nΔf) are defined in terms of bn as

b nΔf ≜ bn = bnI + jbnQ (19.105)

and, letting i = {I,Q}, the pdf of the independent quadrature
samples bni are characterized by N(0,σs). The discrete-time
samples of the wave-height data h(t), t =mΔt, are obtained
using the radix-2 inverse fast Fourier transform (IFFT) with
M = 1/(ΔtΔf) and are evaluated as

h mΔt ≜ hm =Δf
N−1

n = 0

bne
j2πnm M m= 1,…,M (19.106)

Because the wave function is real-valued, the negative fre-
quency response, that is, the response from fs/2 to fs =MΔf, is
the complex conjugate of the positive frequency response;
this property simplifies the evaluation of (19.106).

TABLE 19.9 Wave Energy and Average Wave Heights for Neumann EDS

Sea-State uk (knots)
a E (m2) Hb H1 3

b H1 10
b

1 5 0.0007 0.047 0.075 0.095
2 12 0.056 0.419 0.668 0.849
3 16 0.235 0.858 1.373 1.746
4 18 0.423 1.151 1.840 2.340
5 24 1.783 2.363 3.778 4.806
6 28 3.854 3.475 5.550 7.070
7 34 10.173 5.645 9.025 11.480
8 42 29.262 9.575 15.307 19.472

aIn (19.99) wind velocity u is meter per second so u = 0.5148 uk.
bMeters.
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FIGURE 19.43 EDS sampling characteristics.

*This is a natural application for using a discrete Fourier transform (DFT)
with unrelated frequency and time domain samples; however, the computa-
tional efficiency of the FFT is preferred.
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Figure 19.44 shows a typical wave-height record. The M-
sample record describing the wave heights hm is concatenated
with other independently generated records to create arbitrar-
ily long temporal wave-height conditions for Monte Carlo
performance simulations. The record concatenation uses a
third-degree polynomial in t, such that, the amplitudes and
slopes are equal at the record boundary points. The boundary
points are separated by the wave-height correlation interval
τc. The normalized correlation response is evaluated as

ρ τ =
R τ

R 0
(19.107)

and the correlation time is defined as the time at which

ρ τc = e−1 = 0 368 (19.108)

With τ = ℓΔt and S nΔf = Sn the discrete-time correlation
function is evaluated as

R ℓΔt =Rℓ =Δf
N−1

n = 0

Sne
− j2πnℓ N

ℓ = 0,…,N−1 (19.109)

Using (19.107) through (19.109) to determine the correla-
tion time, the number of interpolation samples required to
concatenate the wave-height records is Nc = τc Δt .

Figure 19.45 shows a typical correlation response for sea-
state 6.

To demonstrate the fidelity of the wave-height generation,
the Fourier transform of the sea-state 6 wave correlation
response in Figure 19.45 is compared to the theoretical
Neumann EDS. The results are shown in Figure 19.46 where
the triangular data points represent the re-constructed EDS
for an average of 1000 ensembles or records. Figure 19.47
shows the reconstructed EDS with different sampling condi-
tions for an average of 20 ensembles. Although a single
ensemble will differ distinctly from the theoretical EDS,
this is the nature of statistical sampling ensemble records as
required for communications system performance evaluation.

19.11.4 Signal Generation using Temporal
Wave-Height Records

Having characterized the wave height for different sea-state
conditions, it is now necessary to solve for the sampled
received signal with amplitude and phase temporal fluctua-
tions [60] influenced by the changing height of the wind-
driven waves. The solution is found in the characterization
of an electric field traversing the surface of a conducting
medium expressed as [61]

TABLE 19.10 Wave Energy Density Spectrum Sampling

Sea-State B3 (Hz) B (Hz)a Δf (Hz) N Trec (s) Nfft

1–3 0.150 2.0 1/32 64 32 4096
4–5 0.100 2.0 1/32 64 32 4096
6–8 0.043 0.5 1/64 32 64 8192

aChosen for aliased distortion greater than 25 dB below the integrated EDS over B Hz.
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FIGURE 19.44 Sea-state 6 wave-height record (N = 32,
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E t,ωc =Eo t,ωc e− jμσωc h t (19.110)

where μ is the permeability and σ is the conductivity of the
medium and ωc = 2πfc, where fc is the carrier frequency of
the incident electric field Eo(t,ωc) in hertz. Typical values
of μ and σ for sea water are: 4π10−7 H/m and 4 mho/m respec-
tively; values of sea water conductivity range between 2 and
8 mho/m. Equation (19.110) is used to evaluate the fluctua-
tions in the received signal with changes in the water depth
due to the wave-height variations h(t), described by
(19.106). By noting that j= ejπ 4, the exponent in
(19.110) is expressed as

jμσωch t = αh t + jβh t (19.111)

where*

α= β =
μσωc

2
m−1

= 3 974 × 10−3 fc

(19.112)

The last equality in (19.112) is based on the above typical
parameter values with fc expressed in hertz. Using (19.110)
through (19.112), the temporal expression of a CW signal is

g t =A t e−θ t (19.113)

where A(t) and θ(t) are the wind wave-dependent amplitude
and phase functions given by

A t = e−αh t (19.114)

and

θ t = −βh t (19.115)

The attenuation A(t) results from the variation in the signal
level due to the wave-height temporal variations, however,
(19.114) also expresses the static loss as the water depth
(d) increases beneath the surface of the sea. This static atten-
uation or loss, expressed in decibel per meter, is given by

L d

d
=

μσωc

2
dB m (19.116)

Equation (19.115) is plotted in Figure 19.48 as a function
of the carrier frequency for various sea water conductivities.
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FIGURE 19.46 Re-constructed Neumann wave-height energy
spectrum (SS-6, N = 250, M = 512, 1000 ensemble average).

Wave frequency (Hz)

E
n
er

g
y
 d

en
si

ty
 s

p
ec

tr
u
m

0

2

4

0.00 0.05 0.10 0.15 0.20 0.25 0.30

6

8

10

FIGURE 19.47 Re-constructed Neumann wave-height energy
spectrums (SS-6, N = 32, M = 8192, 20 ensemble average).

Carrier frequency ( fc) KHz

A
tt

en
u
at

io
n
 (

d
B

/m
)

0
0 20 40 60 80 100

2

4

6

8

Conductivity
mho/m

4

2

8

FIGURE 19.48 Static signal attenuation through sea water.

*The depth of penetration or skin depth is defined as δ = (μσωc/2)
−1/2 m.
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The theoretical characteristics of the signal phase function
are evaluated in terms of the derivatives of θ(t) using (19.115)
with the result

δnθ t

δtn
= θ n t (19.117)

The phase derivatives represent stochastic processes with

correlation functions R n
θ (τ) and corresponding phase energy

EDSs are expressed as

S n
θ ω =

μσωc

2
S n ω (19.118)

where

S n ω =ω2nS ω (19.119)

The phase variance is defined as

σ2
θ n ≜

∞

0

S n ω dω=
μσωc

2
E n (19.120)

where E(n) is the energy of the derivatives of the wave height.
Using (19.119) E(n) is evaluated as

E n =

∞

0

ω2nS ω dω (19.121)

Performing the integration in (19.121) using the Neumann
EDS and substituting the result into (19.120) gives the stand-
ard deviation of the phase derivatives expressed as

σθ n = 1 0944
Γ 5 2−n μσωc

25 2−n

u

g

5 2−n

(19.122)

The theoretical standard deviations expressed by (19.122)
are listed in Table 19.11 for n = 0, 1, and 2 and Table 19.12
lists some corresponding results based on Monte Carlo sim-
ulation of the phase function as expressed by (19.115). The

simulation results are based on eight wave-height samples
within the wave time-constant TB depicted in Figure 19.43
with samples taken over 5N time-constants. Using a first-
order polynomial to link the records, the simulated results

for σ 2
θ resulted in discontinuities at the record boundaries.

These discontinuities degrade the performance of PLL track-
ing with coherent demodulation; however, they can be elimi-
nated by using a higher order polynomial for linking the
records.*

The application of the wave amplitude and phase fluctua-
tions, expressed in (19.114) and (19.115), respectively, to the
received signal in a communication link is expressed in terms
of the analytic signal representation as

sr t = st t g t

= 2PsA t m t e− j ϕm t + θ t
(19.123)

where the transmitted analytic signal is expressed as

st t = 2Psm t ejϕm t (19.124)

with

st t =Re st t e
jωct (19.125)

In these expressions, m t = m2
c t +m2

s t and ϕm t =
tan−1 ms t mc t are the modulation-dependent amplitude
and phase functions and Ps is the transmitted signal power.

TABLE 19.11 Theoretical Signal Phase Characteristics with Sea-Statea

Parameter

Sea-State Number

1 2 3 4 5 6 7 8

σθ 0 (degrees) 1.04 9.31 19.11 25.65 52.66 77.42 125.8 213.4
σθ 1 (deg/s) 4.59 17.07 26.28 31.36 48.28 60.84 81.42 111.8
σθ 2 (deg/s2) 35.00 54.22 62.61 66.40 76.68 82.83 91.27 101.4

aNeumann spectrum corresponding to fc = 30 kHz.

*The performance simulations, discussed in Section 19.11.5, use a third-
order polynomial to concatenate multiple records.

TABLE 19.12 Simulated Signal Phase Characteristics with
Sea-Statea

Parameter

Sea-State Number

2 4 6

σθ 0 (degrees) 11.26 20.54 37.98
σθ 1 (deg/s) 16.87 14.10 31.85

aNeumann spectrum corresponding to fc = 30 kHz.
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The correlation response of a typical record of g(t) for sea-
state 6 is shown in Figure 19.49. Polar plots of the amplitude
and phase fluctuations, in decibels and degrees, are shown
in Figures 19.50, 19.51, and 19.52 for sea-states 6, 4, and
2 respectively. Along the polar trajectory there are numerous
phase reversals that are not apparent, for example, the occur-
rence of the first four phase reversals is indicated by the
labeled arrows in Figure 19.50; the label 0 represents the rec-
ord starting position. These phase reversals occur in the
first quarter of the record and the entire record has 12-phase
reversals.

19.11.5 Case Study: Differentially Coherent BPSK
Performance with Sea-State

This case study examines the performance of differentially
coherent BPSK (DCBPSK) waveform modulation with sea-
state distortion resulting from wind waves. The transmitted
message is preceded by a single phase reference symbol that
is used to detect the information bits. The ideal performance of
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FIGURE 19.49 Sea-state 6 signal correlation characteristics (N =
32, M = 8192, fc = 30 kHz).
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FIGURE 19.50 Sea-state 6 channel amplitude/phase characteristics
for 64 second record (N = 32, M = 8192, fc = 30 kHz).
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FIGURE 19.51 Sea-state4 channel amplitude/phase characteristics
for 64 second record (N = 32,M = 4096, fc = 30 kHz).
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for 64 second record (N = 32,M = 4096, fc = 30 kHz).
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DCBPSK in an AWGN channel is shown in Figure 19.53 and
compared to the performance of coherent BPSK (CBPSK).
The circled data points correspond to Monte Carlo simulated
performance using 1Mbits for each signal-to-noise ratio. The
following performance simulationswith sea-state examine the
probability of receiving a 16-bit word correctly so the word-
error probability is also plotted in Figure 19.53 under the ideal
conditions involving AWGN. FEC coding is not used. These
performance plots using the ideal AWGNchannel are used for
subsequent comparisons with the performance under various
sea-state conditions. The sea-state simulations correspond to a
carrier frequency of fc = 30 kHz.

The criteria for the sampling of the temporal wave-height
records are outlined in Section 19.11.3 and the results are
summarized in Table 19.10. Implicit in these requirements
is the sampling of the communication waveform as deter-
mined by the selection of the FFT size. The most important
consideration is that the selected sampling frequency results
in an acceptable aliasing distortion loss. This condition
requires that fs ≥ fN = 2(ρRs + |fe|) where fN is the Nyquist fre-
quency, Rs is the transmitted symbol rate, fe is the maximum
received carrier frequency error, and ρ is the number of spec-
tral sidelobes permitted in the principal bandwidth |f| < fN/2.
The aliased spectrum is depicted in Figure 19.54 as the
dashed curves for the signal spectrum Ss(fT) = sinc(fT) with
ρ =Ns = 4 and fe = 0.* Although the FFT size is identified
in Table 19.10 for the generation of the wave-height samples,
the selection criteria involve the symbol rate and the number
of samples-per-symbol as characterized by

Nfft =NsRsTrec (19.126)

where the record length Trec = 1/Δf is determined in
Section 19.11.3. Table 19.13 summarizes the selected FFT
sizes for the various sea-state conditions and the correspond-
ing symbol rates with Ns = 4 samples-per-symbol. With these
sampling conditions, the following bit-error performance
comparisons with sea-state use identical symbol rates. Using
4 samples-per-symbol, as in this case study, the symbol rate
can be increased by increasing the FFT size; however, this
requires generating a new set of data records. On the other
hand, the symbol rate can be decreased by simply increasing
the samples-per-symbol without having to generate new
sea-state data records.† The use of an integer number of sam-
ples-per-symbol is simply for convenience and avoids the
necessity of rate conversion in the demodulator processing.
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TABLE 19.13 Sampling Requirements and Modulation
Symbol Rates

Sea-State Trec (s) Ns Rs (sym/s) Nfft

1–3 32 4 32 4096
4–5 32 4 32 4096
6–8 64 4 32 8192

*These conditions are used in this case study and allowances for larger values
of ρ and |fe| > 0 are accommodated by appropriate increases in the sampling
frequency.

†Unlike the memoryless AWGN channel, the symbol interval (T) is depend-
ent on the channel time constant (TB) requiring that the performance simu-
lation to be re-run for each change in the ratio T/TB.
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Figures 19.55 and 19.56 show the error performance for a
DCBPSK-modulated waveform with sea-states 2, 4, and 6.
Figure 19.55 corresponds to bit-error probability using 1M
bits for each signal-to-noise ratio. The performance of antip-
odal and ideal DCBPSK operating in the AWGN channel are
included for reference. When the waveform amplitude distor-
tion, given by (19.114), is removed in the simulation, it is
found that the performance is essentially unchanged indicat-
ing that the differentially coherent detection is predominantly
impacted by the sea-state phase distortion. The simulation
conditions result in RsTB = 16, 32, and 64 symbols for each
sea-state time-constant so increasing the symbol rate by about
8 : 1 or (32 : 1) should not result in a significant performance
loss due to the phase distortion. The use of FEC coding and
bit interleaving, with an interleaver span comparable to TB,
will mitigate the performance loss resulting from wave fluc-
tuations. Figure 19.56 shows the performance of DCBPSK-
coded message words with 8 and 16 bits-per-word.

19.12 LASER COMMUNICATIONS USING
PHOTOMULTIPLIER DETECTOR

19.12.1 Introduction

A laser detector using a photomultiplier tube (PMT) [62] is
shown in Figure 19.57. The collimated incident light waves
(or photons) from the transmitter source are focused on the
optical frequency filter and the desired filtered output illumi-
nates the photosensitive surface of the photomultiplier tube
releasing elections. The electrons are attracted to the photo-
multiplier anode by an electric field, created using the
photomultiplier prime power, resulting in a current (is) through
the load resistor RL. The current fluctuates with the source
modulation as does the voltage across RL which is used to
demodulate the source information. The gain of the photomul-
tiplier is related to the number of free electrons at the anode
relative to the energy of the incident light wave and gains
on the order of 103 to 104 are not uncommon. The spatial filter
eliminates light waves, entering the optical detector from direc-
tions other than from the communication transmitter [63, 64].
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The equivalent received signal power at the input to the
PMT is denoted as Ps (Watts) and the current created by
the PMT is determined as

is =PsGS (19.127)

whereG is the gain of the PMT and S is the responsivity of the
PMT defined as

S≜
qη

hν
A W (19.128)

where q is the electron charge = 1.602 × 10−19 C, η is the effi-
ciency of the PMT, h is Planck’s constant = 6.62 × 10−34 J-s,*

and ν is the frequency in hertz.
The received signal power at the output of the PMT is the

power delivered to the load resister and is computed as
PL = i2s RL. Substituting (19.127) for is results in the received
power

PL = PsGS
2RL W (19.129)

19.12.1.1 Photomultiplier Tube Noise Sources The
noise developed across the load resister results from several
noise sources as described in this section.

DC or non-fluctuating noise is defined in terms of the
noise current idc =PdcGS; therefore, the DC power into the
load resistor is

PLdc = PdcGS
2RL W (19.130)

that behaves like the received signal power.
Thermal noise is determined by the system temperature Ts

and is unaffected by the PMT gain; the two-sided noise power
density of the thermal noise is

Not = 2kTs W Hz (19.131)

Signal-induced noise is shot-noise resulting from the ran-
dom release of electrons from the PMT optical surface. The
shot-noise is excited by the incident signal photons and
results in the two-sided noise power density expressed as

Nos = qPsG
2SRL W Hz (19.132)

Background-induced noise results from background light
energy seen by the optical receiver. It consists of the Sun,
Moon, bioluminescence, and other sources that are within
the optical field of view (FOV); the two-sided background
noise power density is

Nob = qPbG
2SRL W Hz (19.133)

Dark current noise results from shot-noise caused by the
random release of photoelectrons from the PMT optical sur-
face due to the surface temperature. Although dark current
noise encounters the gain of the PMT and it is usually negli-
gible compared to the background induced noise and is often
neglected. The dark noise power density is denoted as Nod.

19.12.1.2 Demodulator Signal-to-Noise Ratio The fol-
lowing description is based on theM-ary pulse position mod-
ulation (PPM) waveform format as shown in Figure 19.58.
The symbol frame consists of a synchronization slot, con-
taining the shaded transmitted laser pulse, followed by a
dead-time to provide for laser recharging, shown as the
cross-hatched interval, and M symbol slots that are selected
based on the unique (log2M)-bit data symbol. The transmitted
laser pulses encounter dispersion through the channel and are
depicted as the dotted received pulses. Selecting the slot dura-
tion of Ts seconds involves a tradeoff between several system
design considerations. For example, in consideration of the
pulse dispersion, increasing the slot duration increases the
average received pulse energy capability at the detriment
of the frame efficiency and message throughput. The dead-
time (Td) determines the pulse repetition frequency (prf) of

t 
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MTfTs + Td

m(Ts + Td)Ts0 

2nd symbol 

1st slot

Sync 

slot 

1st symbol 

mth slot 

2TfTf

Sync 

slot 
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Tf + Ts + Td

Td = Dead time Tp = Rx laser pulse Tp = Tx laser pulse , 

FIGURE 19.58 M-ary PPM waveform symbol frame.

*Note: 1 C = A-s and 1 J =W-s.
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the laser and is a major contributor to the frame overhead.*

The PPM parameters are examined in more detail in
Section 19.12.3.

The demodulator post-detection bandwidth is the recipro-
cal of the slot duration, that is, Bs = 1/Ts. The demodulator
signal-to-noise ratio is defined in terms of the pulse energy,
Ep = PLTs, as

γslot =
PLTs
No

(19.134)

The noise density is the sum of the noise sources discussed
above, excluding the DC noise that is removed by the post-
detection filter, so the noise density is expressed as

No =Nos +Nob +Not +Nod (19.135)

Upon substituting (19.129) for PL, neglecting the dark
and thermal noise sources, and substituting (19.135) with
(19.132) and (19.133) into (19.134) results in

γslot =
P2
s S

2Ts
q PsS +PbS

W-s W Hz (19.136)

The responsivity (S) has units of amperes-per-watt, so the
units of the product PS are amperes or coulombs-per-second.
Therefore, since q is the electron charge with units of cou-
lombs-per-electron, the quantity PS/q has units of elec-
trons-per-second. In the following, the notation λ = PS/q is
used and (19.136) simplifies to

γslot =
λ2s Ts
λs + λb

=
N2
s

Ns +Nb
(19.137)

where the second equality results by multiplying the numer-
ator and denominator by Ts and recognizing that N = λTs
is the number of photoelectrons in Ts seconds. Equation
(19.137) is expressed in terms of the signal-to-noise ratio
in the bandwidth equal to the bit-rate, Rb = 1/Tb, using
γslot = ργb, where

ρ=
Ts

Tblog2 M
(19.138)

Upon solving (19.137) for Ns and expressing the result in
terms of γb, the signal photoelectron count is evaluated as

Ns =
ργb
2

1 + 1 +
4Nb

ργ
b

(19.139)

These parameters are exactly those required to character-
ize the bit-error performance of the demodulator in terms of
the Poisson distribution as discussed in the following case
studies [65, 66]. The photoelectron counting is also modeled
using the Nakagami m-distribution [67].

19.12.2 Pulse Dispersion in the Atmosphere

Based on experimental results [68–70], the generally
accepted shape of a pulsed laser after emerging from clouds
is shown in Figure 19.59 and characterized as

pr t = te−αt (19.140)

In the following analysis, the PPM slot duration, measured
in microsecond, is selected to satisfy two conflicting require-
ments: increase Ts to capture more received signal energy
(Es) for detection or decrease Ts to provide the shortest
PPM frame. The second of these options is dominated by
the peak-to-average power ratio and the resulting duty cycle
[71] of the laser transmitter. The laser pulse dispersion† in the
atmosphere results from the propagation path length (Lcp)
through clouds and is characterized principally by the geo-
metric thickness (Lcg) and the mean scattering angle (θcs)
of the cloud. The delay (Tfd) and width (Tfw) of the
integrate-and-dump (I&D) detection filter must be selected
to maximize the signal-to-noise ratio at the optimum sample
time of the detection filter. Communication links from the
atmosphere to underwater links encounter additional disper-
sion that is dependent on the geometry of the encounter and
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FIGURE 19.59 Received pulse shape through clouds.

*To simplify the demodulator time synchronization, the dead time is often
defined as an integer number of slot time intervals.

†Dispersion occurs in any medium in which the velocity of a wave varies
with wavelength.
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the water type [72], for example [73], Jerlov II and III water*

and bioluminescence is a major source of background noise.
Stotts [74] has developed a closed-form expression for

laser pulse dispersion through clouds, for which, the pulse
dispersion is expressed as

Tcd=
Lcp
c

0 3 1+2 25ωoτc θ
2
cs

1 5
−1

ωoτc θ
2
cs

−1 τc>10,pulse dispersion

0 o w

(19.141)

where c = 3e8 m/s is the free-space speed of light, ωo > 0.999
is the cloud albedo† (in the following analysis ωo = 1.0), τc is
the optical thickness of the cloud,‡ and Lcp and θcs are in
meters and radians respectively. The relationship between
the geometric cloud thickness (Lcg) and the optical cloud
thicknesses is defined as

Lcg ≜
τc
σc

(19.142)

where σc is defined as the average extinction (or attenuation)
coefficient of the cloud with dimensions of meters−1. The
extinction coefficient is a measure of absorption of light in
the cloud. In the following analysis σc = 0.04 m−1 which
results in Lcg having dimensions of meters. The optical thick-
ness of various types of clouds [75, 76] is listed inTable 19.14.

Figure 19.60 is a plot of (19.141) showing the dependence
of the pulse dispersion on the propagation path Lcp for the
indicated mean scattering angles and average extinction of
the cloud.

The pulse dispersion is measured as the pulse duration
between the half-power points of the pulse relative to the peak
powerPpk that occurs at t = Tpk = 1/α. Defining the half-power
points of the pulse as occurring at T1 and T2, the pulse disper-
sion, expressed in (19.141), is Tcd = T2 − T1. Referring
to Problem 23, T1 and T2 are related to the parameter α as
T1 = 0.232/α and T2 = 2.677/α. Using these relationships,
the pulse is completely characterized in terms of the dispersion
through the cloud by the parameter α expressed as

α=
2 445
Tcd

pulse parameter dependence on cloud dispersion

(19.143)

Figure 19.61 shows the received pulse responses for the in-
dicated values of the parameter Lcp, in kilometer, correspond-
ing to the mean scattering angles used in Figure 19.60. In
these plots, the received pulses are normalized by the total
pulse energy Ep = 1/α2 resulting in unit energy pulses for each
condition. Therefore, the integral

E Tcd =

T2

T1

te−αtdt (19.144)

and E(Tcd)/Ep represents the normalized received pulse
energy in the interval Tcd. Conversely, 1 − E(Tcd)/Ep repre-
sents the loss of energy in decibels.

Evaluating (19.144) over the range t = 0 to Ts, the received
pulse energy in the PPM slot is determined as Es and is plot-
ted in Figure 19.62 as a percent of the total received pulse
energy. Figures 19.61 and 19.62 or Table 19.15 show that
there is a large variation in Ts to cover the conditions; how-
ever, with θcs = 40 a slot duration of 23.3 μs will capture
95% of the pulse energy with Lcp = 1 km, whereas, a slot
duration of 100 μs is required with θcs = 40 and Lcp = 2 km

TABLE 19.14 Optical Thickness of Cloudsa

Cloud Type

Optical Thickness

Range Average

Cirrus, Altocumulus, Cumulus 0–3.6 1.3
Cirrostratus, Altostratus, Stratocumulus 3.6–23 9.4
Deep Convection, Nimbostratus, Stratus 23–379 60

aInternational Satellite Cloud Climatology Project (ISCCP) 1983–2010 [76].
Courtesy of National Aeronautics and Space Administration (NASA).
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FIGURE 19.60 Laser pulse dispersion in clouds (σc = 0.04 m−1).

*Among other characteristics, the Jerlov water types include the optical back-
scatter and attenuation.
†Albedo is the ratio of the reflected to the incident radiant power falling on
the surface of the cloud.
‡The optical thickness is equal to ln(T), where T is the transmittance of the
cloud defined as the ratio of the incident to transmitted radiant power through
the cloud. The notations τ, τc, or τopt are often used to denote the cloud optical
thickness.
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capture the same energy. If the transmitter can estimate the
cloud conditions then Ts can be minimized and the receiver
can form an estimate of the received slot duration during
the waveform acquisition processing.
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TABLE 19.15 Slot Width to Capture Percent of Total Pulse
Energy

Es/Ep

(%)
Loss
(dB)

Ts (μs)

Lcp = 1 km Lcp = 2 km

20a 30 40 20 30 40

80 0.97 6.1 10.3 14.7 19.1 31.6 44.2
85 0.71 6.8 11.6 16.6 22.1 35.5 49.8
90 0.45 7.9 13.4 19.1 24.9 41.0 57.4
95 0.22 9.6 16.3 23.3 50.0 50.0 70.0

aThis row is θcs in degrees.
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19.12.3 Pulse Position Modulation Waveform

The transmission ofM-ary coded data [77, 78] using a pulsed
laser power source is often transmitted using PPM as
described in Figure 19.58. The slot synchronization pulses
are shown to occur prior to eachM-ary symbol location; how-
ever, for covert synchronization, they may occur at predeter-
mined random locations known by the demodulator. Using
periodic synchronization pulses simplifies the synchronize
processing through the use of a narrowband bandpass filter
centered at the synchronization pulse repetition rate; how-
ever, the use of FEC coding improves the bit-error perfor-
mance at the expense of increased complexity [79, 80].
Example FEC configurations are: a rate rc convolutional code
with a prescribed constraint length, a Reed–Solomon code,
for example a concatenated code with a constraint length K
convolutional inner code and anM-ary Reed–Solomon outer
code withM = 2k bits per Reed–Solomon symbol. Data inter-
leavers should also be used with FEC coding; especially
between concatenated codes.

The source bit-rate (Rb) ofM-ary PPM, without FEC cod-
ing, is expressed in terms of the bits-per-pulse (k) as

Rb =
k

1 + 2k Ts +Td
(19.145)

where k = log2(M). Equation (19.145) is plotted in
Figure 19.63a and b as a function of k for Td = 5 and 1 ms
respectively with the slot duration (Ts) as the parametric
parameter. The laser dead-time and the slot duration are
seen to have a significant impact on the maximum data rate
that also dictates the selection of k. The PPM waveform
design, including the selection of the slot duration, bits-
per-slot, and maximum user bit-rate, are established using

Figure 19.63. For example, using the 5 ms dead-time shown
in Figure 19.63a, and selecting k = 7 and Ts = 10 μs results in
a 128-ary PPMwaveform with a maximum uncoded user bit-
rate of 1.113 kbps.

Defining the slot duration as in Figure 19.59, the total
received pulse energy in the slot and the percentage of pulse
energy is determined from Figure 19.62 or Table 19.15. The
optimum I&D detection filter delay and duration, shown in
Figure 19.59, must be determined in the context of the statis-
tical characterization of the PMT noise and other noise
sources as discussed in Sections 19.12.1.1 and 19.12.1.2.

19.12.4 Differential Pulse Interval Modulation
Waveform

With differential pulse interval modulation (DPIM) [81], the
pulse intervals are synchronized to the transmission of an ini-
tial synchronization pulse followed by M-ary coded pulses
based on the differential change in the time slots relative to
the preceding pulse. DPIM modulation is depicted in
Figure 19.64 using the M-ary coded waveform with symbol
sequence (m, 5, 2, …). In this example, the DPIM-coded
waveform transmits the first information pulse in slot m fol-
lowing the reference pulse and the associated dead-time, the
second pulse is transmitted in slot five following the laser
recovery of the first pulse, and the third pulse is transmitted
in slot two following the laser recovery time. Therefore, the
three information pulses are transmitted in a time equal to
(m + 8)Ts + 3Td μs; whereas, the PPM-modulated waveform,
shown in Figure 19.58, transmits the first three information
pulses in (3M + 1)Ts + 4Td μs. The average time to transmit
a frame of M-ary coded random data using the DPIM-
modulated waveform is
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FIGURE 19.63 PPM bit-rate.
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Tf =
M

2
Ts + Td μs (19.146)

compared to Tf =MTs + Td μs for the PPM-modulated
waveform.

Figure 19.65 shows the bit-rate of DPIM as a function of
the bits-per-slot under similar conditions for the PPM modu-
lation shown in Figure 19.63. The average bit-rate for DPIM
is expressed as

Rb =
k

2k−1Ts + Td
DPIMmodulation (19.147)

19.12.5 Case Study: PMT Demodulator
Performance Using OOK Modulation

In this case study, the laser transmitter is either on-off key-
ing (OOK) resulting in the binary hypothesis in which a
binary zero (b0) is represented by no signal energy being
transmitted and a binary one (b1) is represented by transmit-
ting a signal energy of Es. Under the maximum-likelihood
(ML) decision rule, the a priori probabilities are represented
by P(b0) = P(b1) = 1/2 and the decision rule is expressed
in terms of the transition probabilities using the likelihood
ratio as
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FIGURE 19.64 M-ary DPIM waveform symbol modulation.

B
it

 r
at

e 
(K

b
p
s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

30

Ts (μs) Ts (μs)
3

10

100 B
it

 r
at

e 
(K

b
p
s)

0
1 3 5 7 9 111 3 5 7 9 11

1

2

3

4

5

6

30

3

10

100

Bits-per-pulse (k)Bits-per-pulse (k)

Td = 5 ms Td = 1ms 

(a) (b)

FIGURE 19.65 DPIM average bit-rate.

690 ATMOSPHERIC PROPAGATION



Λ p =
p y b1
p y b0

> 1 choose b1

o w choose b0
(19.148)

The transition probabilities are characterized in terms of
the Poisson distributions [82]

p y bi =
λiTs

k

k
e− λiTs =

Nk
i

k
e−Ni (19.149)

where λi is the photoelectron rate and Ts is the interval in
which the photoelectrons are counted, so Ni is the number
of photoelectrons in Ts seconds. Under the conditions b1
and b0, the respective notations for the photoelectron counts

are Nk
1 =N

k
s and Nk

1 = Ns +Nb
k. Ts is the reciprocal of the

receiver post-detection bandwidth and typically Ts Tb to
allow for dispersion of the bit energy through the optical
channel. Substituting (19.149) into (19.148) and rearranging
the terms of the log-likelihood ratio (LLR), the log-likelihood
ratio test (LLRT) is expressed, in terms of the threshold kT, as

kT
>

Ns

ln Ns +Nb Nb
choose b1

o w choose b0

(19.150)

This threshold is the optimum threshold for making the
decision that minimizes the bit-error probability, evaluated as

Pbe =
e−Nb

2

∞

k = kT

Nk
b

k
+
e− Ns +Nb

2

kT

k = 0

Ns +Nb
k

k
(19.151)

Pbe is evaluated in terms of γb by specifying the back-
ground photoelectron count Nb, and using (19.139) to deter-
mine Ns. The resulting bit-error performance is shown in
Figure 19.66 under ideal channel conditions with Ts = Tb
and the indicated values of background noise. The bit-error
performance for Nb = 0 results in kT = 0 so Pbe simplifies to
Pbe = 0 5e−Ns . The slight ripple in the Nb = 1 curve results
from the integer summations involving the Poisson distribu-
tions; for threshold levels exceeding 14 the Gaussian approx-
imation to the Poisson distributions is use to evaluate Pbe.
The noncoherent OOK performance with AWGN is dis-
cussed in Chapter 6.

19.12.6 Case Study: PMT Demodulator
Performance of M-ary PPM Waveform

In this case study, the bit-error performance is examined
for the M-ary PPM waveform [77] as characterized in
Figure 19.58 with k = log2M bits transmitted in one ofM time
slots during each symbol frame of duration Tf =MTs + Td sec-
onds. The laser pulse contained in the interval Tsync is used for
frame synchronization and tracking. In this case, the ML
decision rule uses equal a priori probabilities for each symbol
with Pm = 1/M: m M. The rule that minimizes the symbol-
error probability selects the time slots having the largest
post-detection filter output when the post-detection filter is
matched to the received pulse. An upper bound on the symbol
error is given by Bucher [83] as

Pbe ≤ M−1 e−NsEc Ns Nb (19.152)

where the exponent term Ec(Ns/Nb) is equal to

Ec
Ns

Nb
=

1+Ns Nb−1
2

Ns Nb
(19.153)

Solving (19.137) for Ns/Nb and substituting the result into
(19.153) results in

Ec
Ns

Nb
=

Ns−γslot
γslot

Ns

Ns−γslot
−1

2

(19.154)

As in the preceding binary example, the following perfor-
mance is characterized in terms of the background noise
count Nb; however, in this case, the independent variable will
be the signal-to-noise ratio as measured in the slot bandwidth.
Referring to (19.139), the parameter Ns is expressed in terms
of Nb with the signal-to-noise ratio (γsym) measured in the
symbol bandwidth equal to 1/T. Therefore, the signal
photoelectron count, measured in the slot bandwidth, is
computed as
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Ns =
ρ γsym
2

1 + 1 +
4Nb

ρ γ
sym

(19.155)

where ρ =Ts T converts the signal-to-noise ratio from the
symbol bandwidth to the signal-to-noise ratio in slot
bandwidth.

TheM-ary PPM performance is shown in Figure 19.67 as
a function of γs for various values the background noise count
Nb. The symbol-error results are based on the union-bound
[84] which is a loose upper bound on the performance; how-
ever, for a fixed M, the union-bound becomes increasingly
tighter as γs increases. Figure 19.68 shows the union-bound
symbol-error performance for the indicated values of k =
log2(M) using a background photoelectron count ofNb = 200.

ACRONYMS

AGU American Geophysical Union
APD Amplitude probability distribution
AWGN Additive white Gaussian noise
BPSK Binary phase shift keying
CBPSK Coherent BPSK
CCIR Consultative Committee on International Radio
CL Clipping level
CPFSK Continuous phase frequency shift keying
CW Continuous wave
DCBPSK Differentially coherent BPSK
DFT Discrete Fourier transform
DPIM Differential pulse interval modulation
EDS Energy density spectrum
FEC Forward error correction (coding)
FFT Fast Fourier transform
FOV Field of view
HF High frequency
HL Hard limiting
I/Q Inphase and quadrature (channels or rails)
IF Intermediate frequency
IFFT Inverse fast Fourier transform
IFT Inverse Fourier transform
ISCCP International Satellite Cloud Climatology

Project
ISI Intersymbol interference
ITU International Telecommunication Union
ITU-R International Telecommunication Union-Radio
LF Low frequency
LLR Log-likelihood ratio
LLRT Log-likelihood ratio test
LOS Line of sight
MED Modified exponential delay (loss model)
ML Maximum-likelihood (decision rule)
MSK Minimum shift keying
NASA National Aeronautics and Space Administration
PCS Personal communication services
PMT Photomultiplier tube
PLL Phaselock loop
PPM Pulse position modulation
TOD Time-of-day
UHF Ultra-high frequency
VLF Very low frequency

PROBLEMS

1. Establish the geometry for a ground-to-ground com-
munication link using a flat Earth model with transmit
and receive antenna heights ht and hr respectively. (a)
Evaluate and plot the resulting received signal power
density in terms of microwatts per square meter as a
function of range for: ht = hr = 3 m, transmitter power
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FIGURE 19.67 Symbol-error performance of 256-ary PPM
optical detector (Ts = T).

k

6
4

8
10

Signal-to-noise ratio (γs) dB

S
y

m
b

o
l-

er
ro

r 
p

ro
b

ab
il

it
y

 (
P

se
)

1e–8

1e–7

1e–6

10 12 14 16 18 20

1e–5

1e–4

1e–3

1e–2

1e–1

1e+0

FIGURE 19.68 Symbol-error performance ofM-ary PPM optical
detector (Nb = 200).

692 ATMOSPHERIC PROPAGATION



Pt = 10W, Gt = 3 dB and fc = 1 GHz. (b) Compare
the results using the spherical Earth model in
Figure 19.2 using the effective Earth radius re =
(4/3)Re; assume that the Earth reflected multipath
ray is negligible.

2. Referring to Figures 19.1 and 19.2, given a transmitter
height of h1, determine the minimum elevation angle
θd(min) for a radio line-of-light path.

3. Derive the expression for the average multipath loss Lm
defined in Section 19.4 in terms of the parameter
x = ρ fr fd . Express the result as a function of x.

4. Using the geometry shown in Figures 19.2 and 19.7 for a
circular LEO satellite orbit with altitude h2 = 200 km and
a ground antenna height of h1 = 30 m, derive an expres-
sion for the antenna elevation angle θd as a function of
the satellite orbit angle θs.

a. In Figure 19.2 consider the satellite to be at the height
h2. At what angle, θd(min), will the satellite be in view
of a ground antenna with h1 = 0?

b. Using (16.3), with ε = 0 for a circular orbit, compute
the satellite orbit time rate in second per degree. What
is the viewing time of the satellite by the ground
antenna over the interval θs(min) ≤ θs ≤ 90 ?

c. Plot the satellite viewing time as a function of the sat-
ellite orbit angle θs.

5. By applying Huygens’ principle to Figure 19.4 use
geometry to prove that the angle of reflection ϕr is equal
to the angle of incidence ϕi.

6. Evaluate the expressions (19.46), (19.48), and (19.52)
for 0 and 100% relative humidity using an apparent ele-
vation angle of αo = 15 , ψ = 120 with hg = 0 and ht =
50 K ft. Using hg and ht compute the corresponding
refractive indices ng and nt using (19.42) through
(19.45) and then compute the refraction angle error
Δαo corresponding to the apparent elevation angle αo
using Figures 19.14 and 19.15. Using these newly com-
puted parameters determine the refractive angle error
Δαt using (19.49); Δαt must be in radians. The final
steps involve computing the Doppler frequency and fre-
quency Doppler frequency error using (19.46) and
(19.48). The Doppler frequency error is also to be
expressed in the normalized form of (19.52) using the
normalizing parameters fco = 100MHz, Vo = 6.096 km/
s. Note that these Doppler frequency expressions are
what the aircraft terminal would encounter when
attempting to receive a communication message; how-
ever, in a radar application the ground terminal radar
would, because of reciprocity, experience twice these
values over the two-way path. Additional parameters
necessary to complete this problem are: Re = 6378 km
and c = 3 × 108 m/s.

7. Using the differential path length Δk = kλ/2 and the
approximation given in (19.56): (a) derive the expression
for the Fresnel zone radius hk and (b) show that the max-
imum Fresnel zone radius occurs when d1 = d2.

8. For a knife-edge obstruction with h1 = h2 = 30 m and a
carrier frequency of 500MHz, determine: (a) the dif-
fraction loss for h = 12.76, 4.26, 0, −2.13, and −4.26 m,
(b) in each case determine the Fresnel zone, k, of the
obstruction, (c) comment on the significance of the
Fresnel zones for h = 4.26 and −4.26 being identical
given that the losses diffraction losses are significantly
different.

9. Using an effective transmit and receive antenna height of
1 and 10 m and a carrier frequency fc = 100MHz, plot the
normalized propagation loss in percent (100 Lp/Lfs) as a
function of the range r = (0.5, 1, 2, 3, 4, 5) where Lp is the
propagation loss computed using the Longley-Rice
Model and Lfs is the corresponding free space loss. For
each range r use the following values of Lp correspond-
ing to 100MHz from Figure 19.19:

Lp(he = 1 m) = (30.4, 37.7, 41.7, 45.7, 49.0, 51.7)

Lp(he = 10 m) = (16.1, 21.2, 26.5, 29.8, 32.4, 34,5)

10. Choose realistic heights for the transmit and receive
antennas for a wireless mobile link and, using a base-
station or transmitter power of Pt = 10W, and antenna
gain Gt = 3 dB, compute, plot, and compare the received
power density in microwatts per square meter as a func-
tion of distance d for the Okumura and Hata models
described in Sections 19.8.1 and 19.8.2 using the subur-
ban environments; for the Hata model use (19.63) for the
suburban environment. Repeat the comparison using the
open area environment; for the Hata model use the open
rural environment loss expressed by (19.64).

11. Choose a realistic transmit antenna height (ht) for a PCS
link and use the ETALmodel with a transmitter power of
Pt = 10W, antenna gain of Gt = 8.14 dB to evaluate and
plot as a function of range the received signal power den-
sity in terms of microwatts per square meter for all three
terrain categories listed in Table 19.5. Note: This model
applies for a carrier frequency of fc = 1.9 GHz and a
receiver antenna height of hr = 2 m.

12. Show that the Rayleigh distribution p(r) results in a
straight line with slope of −1/2 when plotted as log(ro/
2σo) as a function of −log(−ln(P(r > ro))).

13. Compute Vd for Gaussian noise.

14. Using the equation forGn, determine the clipping thresh-
old voltage, Vth, relative to the received signal voltage Vr

given that the clipping threshold relative to the channel
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noise standard deviation, σch, is k = Vth/σch, that is, deter-
mine k = Vth/Vr.

15. Determine the noise bandwidth of the MSK matched
filter.

16. Evaluate the wave energy of the Pierson-Moskowitz
energy density function for sea-states 1 through 8 and
compare with that of the Neumann energy density func-
tion in Table 19.9.

17. Beginning with equation (19.106) in the text, derive
Equation (19.109).

18. Show that uσωc has dimensions of meters−1.

19. Starting with the function θ(n)(t), defined in (19.117),
express the autocorrelation Rh n τ in terms of the auto-
correlation function Rθ n τ .

20. Using the results of Problem 19, derive expression
(19.119) in the text for the EDS S(n)(ω).

21. Evaluate E(n) by performing the integration in (19.121)
and using the result, verify the expression for the stand-
ard deviation σθ n given by (19.122) in the text.

22. Derive the coefficients for a second-degree record
linking polynomial y(xi) spanning m samples, such that
i = 0, …, m with boundary conditions: y 0 = yo,
y 0 = yo where yo and yo are the magnitude and slope
of the last samples of the previous record and
y xm = ym, y xm = ym where ym and ym are the magni-
tude and slope of the first samples of the next record.

23. Part a: Determine the time (Tpk) and the corresponding
peak value pr(Tpk) of the received laser pulse expressed
by (19.140). Part b: Determine the times T1 and T2, in
terms of the parameter α, corresponding to the half-
power points pr(T1) and pr(T2) respectively.

Hint: Evaluate the resulting transcendental equation f(x):
x = αt, for the two solutions using Newton’s method
using initial guesses to the solution of x1(guess) < 1
and x2(guess) > 1.

24. Show that the Poisson distribution approaches the
Gaussian distribution as M ∞.
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20
IONOSPHERIC PROPAGATION

20.1 INTRODUCTION

The amplitude variations of a signal propagating through the
ionosphere [1] result from the destructive and constructive
interaction of the signal phase resulting from the numerous
signal paths through the nonhomogeneous medium; this phe-
nomenon is referred to as scintillation. In addition to scintil-
lation, signal propagation through the ionosphere is subjected
to anomalies characterized by time delay variations, angular
errors caused by refractive bending, frequency shifts, disper-
sion, polarization rotation, and absorption that must be
accounted for in the communication link budget. Refractive
bending affects azimuth and elevation measurement accura-
cies while time delay and frequency variations result in range
and velocity estimation errors. Dispersion gives rise to sym-
bol broadening and intersymbol interference (ISI) that
degrade the symbol-error performance while polarization
rotation and absorption can significantly degrade the availa-
ble link margin. These errors also impact antenna, symbol,
and carrier tracking loops contributing to degraded commu-
nication performance.

Signal propagation through the ionosphere is character-
ized by the refractive index. The refractive index and its influ-
ence on the various aspects of a received signal is the subject
of this chapter. The significant parameters that influence the
signal propagation through the ionosphere are the electron
density ne ℓ with units of electrons per cubic-centimeter
and the total electron content (TEC or NT) along the propa-
gation path of length ℓ. The electron density is generally

specified in terms of electrons/cubic-centimeter; however,
the following analysis uses the mks system of units with
the TEC specified in terms of electrons/square-meter. The
TEC is computed as

NT =

Lp

ne ℓ dℓ electrons m2 (20.1)

where ne ℓ = ne ℓ × 106 electrons/m3.
In Sections 20.2 and 20.3 the electron densities in the ion-

osphere are characterized for the natural andnuclear-disturbed
environments and the influence of the electron densities on
signal propagation is discussed in Section 20.4 in terms of
the refractive index. With this background material the
electron density is used to characterize signal scintillation in
Section 20.5 in terms of the signal decorrelation time τo,
frequency-selective bandwidth fo, dispersion, and absorption.
Although the focus in this section is on the nuclear environ-
ment, the results are also applicable to electron densities
occurring naturally. In Section 20.6 the Rayleigh fading
channel is described and the results are used to outline the
development of a computer simulation program for simulating
the performance of a communication link with various wave-
form modulations, forward error correction (FEC) coding,
combining, and interleaving techniques. The chapter
concludes with a case study of a scintillation scenario using
a differentially coherent modulation with interleaving and
combining.

Digital Communications with Emphasis on Data Modems: Theory, Analysis, Design, Simulation, Testing, and Applications,
First Edition. Richard W. Middlestead.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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20.2 ELECTRON DENSITIES: NATURAL
ENVIRONMENT

The electron density content of the natural ionosphere has
been modeled by Chapman [2] as*

ne h = ne hm e 1−Z−sec θ e−Z 2 (20.2)

where h is the vertical height above the Earth’s surface,
ne hm is the maximum electron density where hm is the
height of maximum electron density, θ is the solar zenith
angle, and Z is a normalized height parameter expressed as

Z =
h−hm
H

(20.3)

where H is a scale height given by

H = 0 10197
kT

mag
m (20.4)

Using the mks system of units, k = 1.372 × 10−23 J/ K is
Boltzmann’s constant, T is temperature in degrees Kelvin,
ma is the mean mass of an air molecule, and g = 9.7538 m/s2

is the gravitational acceleration at the Earth’s surface. The
productmag = 4.8 × 10−26 kg is themeanweight of an air mol-
ecule and the factor 0.10197 converts joules to kilogram-
meters. Using these parameters the scale height H given by
(20.4) is in meters at the Earth’s surface and, upon conversion
to kilometers, is evaluated asH = 0 029146T km or 8.452 km
when T = 290 K. However, the parameters ma, g, and T are
functions of height and Davies [3] provides an approximation
to (20.4) at a height h given by

H 0 848 1 +
h

Re

2 T

M
km (20.5)

where h is in kilometers, Re 6370 km is the Earth’s radius,
and M is the molecular weight in grams/mole. The depend-
ence of the parameters T and M on h is tabulated in
Table 20.1 for the 1959 Air Research and Development Com-
mand (ARDC) model atmosphere [4]. The 1959 ARDC
model atmosphere is a revision of the 1956 model atmos-
phere that includes new rocket and satellite data; the data
up to 53 km is the same in each model. Additional details
and various assumptions are also provided by Davies [3].

The following evaluations using the Chapman model are
based on Millman [5] where H, hm, and ne hm are character-
ized as daytime and nighttime parameters as shown in
Table 20.2. Using these results, the electron density profiles
for daytime and nighttime conditions are shown in
Figure 20.1.

TABLE 20.1 Dependence of the Parameters T and M on
Height ha

h (km) T (K) M (g/mol)

0 288 28.966
10 223 28.966
20 217 28.966
30 231 28.966
40 261 28.966
50 283 28.966
60 254 28.966
70 210 28.966
80 166 28.97
90 166 28.97
100 200 28.90
120 477 28.71
140 850 28.45
160 1207 28.04
180 1371 27.36
200 1404 26.32
300 1423 21.95
400 1480 19.56
500 1576 18.28
600 1691 17.52
700 1812 17.03

aDavies [3]. Courtesy of the U.S. Department of Commerce.

TABLE 20.2 Chapman Model Electron Density Parametersa

hm (km) H (km) ne hm (electrons/cm3)

Daytime
100 10 1.5e4
200 40 3.0e5
300 50 12.5e5

Nighttime
120 10 0.8e4
250 45 4.0e5

aMillman [6]. Reproduced by permission of John Wiley & Sons, Inc.
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FIGURE 20.1 Chapman electron density profiles.*This model uses the cgs system of units.
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The electron density profiles described earlier are typical
densities that apply to daytime and nighttime conditions;
however, during periods of sunrise and sunset the concentra-
tion of electrons generally increases due to the Sun–Earth
solar activity. This increase is most notable in the polar region
between latitudes of 60 and 70 and in the equatorial region
between latitudes of ±15 .

Bogusch [7] and McClure and Hanson [8] have analyzed
the results of various experiments to characterize the mean
and variation of the electron densities in the ionosphere.
The wide ranges in the parameters portray diurnal and sea-
sonal variations as well as positional or longitude and latitude
variations. In arriving at the inferred electron density profiles,
Bogusch presents data based on agreement with observed
scintillation results around the world. The approach in arriv-
ing at the inferred data is to adjust the mathematical model
parameters, principally the electron density ne, to match the
statistical characteristics of the amplitude and phase of the
model to those observed from test signals. For example,
based on the tactical satellite (TACSAT) tests data taken in
the equatorial zone at 250MHz, the model infers that the
electron density fluctuation is 104 electrons/cm3. This is
reported [9] to be a severe scintillation condition lasting
1.5 h/day during which normal communications were dis-
rupted. An earlier test [10], using the same satellite, resulted
in an inferred fluctuation of 2.5 × 104 electrons/cm3. Wittwer
[11] reports on electron density fluctuations ranging between
30 and 90% of the mean value as being typical in the Equa-
torial and Polar Regions. Also, inferred data taken from the
INTELSAT network at 6 GHz and reported by Taur [12]
indicated electron densities ranging between 4 × 104 and
105 electrons/cm3 in the equatorial region. Because of the
higher carrier frequency, measurable scintillation was
observed only about one percent of the time. Figure 20.2 is
a regional depiction of the electron densities and the corre-
sponding standard deviations with numerical values provided

for moderate and turbulent conditions listed Table 20.3. The
results for the electron density fluctuations are based princi-
pally on the analysis of Bogusch in establishing inferred
quantitative agreements between data obtained from radar
observation throughout the world and computer models.
Application of the mean and standard deviation of the
electron densities listed in Table 20.3 to the Chapman model
profiles provides a measure of confidence in the system per-
formance parameter being examined. However, caution must
be used when considering a particular satellite-to-Earth link
that intersects a wide range of latitudes and the assumed
underlying Gaussian statistics based on the mean and stand-
ard deviation.

The in situ data taken with the orbiting geophysical
observatory (OGO) OGO-6 satellite [7] provides electron
density data taken in the upper portion of the F-region and
the magnitude of the inferred fluctuations resulting from
the model fall within the range of the in situ data.*
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FIGURE 20.2 Characterization of regional electron density profiles.

TABLE 20.3 Regional Variations in Electron Density
Concentrations

Region
ne
(electrons/cm3)

σe
(electrons/cm3) Condition

Polar (p) 6.2e5 2.5e4 Moderate
1.0e6 3.0e5 Turbulent

Mid-to-low
latitude (m)

8.0e5 1.0e4 Moderate

Equatorial (e) 5.0e5 2.5e4 Moderate
1.0e6 3.0e5 Turbulent

*This discussion concentrates on the accuracy of the mathematical model
based on agreement between the inferred and in situ electron density fluctu-
ation data. Bogusch presents data supporting the agreement based on the sta-
tistical characteristics of the received signal amplitude and phase. The Ricean
channel model is in excellent agreement from both points of view.
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The retarding potential analyzer can measure changes in ion
concentration as small as 0.03% and, therefore, the large
ranges presented in Figure 20.2 represent realistic variations
over time and position. A quiet atmosphere exhibits electron
density fluctuation less than about 0.2% and a moderate
atmosphere will range as high as 2 or 3%, while in a turbulent
atmosphere the fluctuations range up to about 30%. It is sug-
gested that within a given evening the entire range may be
encountered under turbulent conditions. The electron density
characteristics in the F2-region, more specifically in the alti-
tude range from 300 to 600 km, are the most variable and tend
to dominate the scintillation characteristics of the Earth/satel-
lite communication channel. For these reasons, most of the
emphasis is placed on characterizing the electron density in
the upper F-region. The electron density profiles for each
of the regions, shown in Figure 20.2, are summarized in
the following sections. It should be kept in mind that the
results in Figure 20.2 are based on normal or average condi-
tions and geomagnetic storms, ionospheric disturbances such
as solar flares, and nuclear detonations will result in much lar-
ger variations in the ionospheric structure and considerably
higher electron density concentrations.

20.2.1 Equatorial Region

The equatorial region ranges roughly between ±15 latitude
and is characterized by increases in electron content during
local sunrise and sunset. Although scintillation is generally
encountered in this region, severe scintillation occurs
between 6 p.m. and 1 a.m. local time with the most severe
conditions occurring at the equinoxes. The extremely high
longitudinal gradients that exist during these periods result
in variations with short correlation times that correspond to
sudden changes in conditions. Considerably more variations
in the electron density occur in this region than in the mid-to-
low latitude region. Extrapolation of scintillation data for
evaluating communication links in the equatorial region is
restricted because of the limited land masses where data
can be collected. The equatorial electron density profile,
based on Wittwer’s model ionosphere [13], is given in nor-
malized form in Table 20.4.

20.2.2 Mid-to-Low Latitude Region

The mid-to-low latitude region is generally quiet and allows
for reliable communications. Detailed studies [14] have
shown the hour-to-hour variations in the electron density
are highly correlated which results in a relatively time-
invariant channel. The mid-latitude region has a relatively
high mean electron density; however, the low k-sigma varia-
tions result in reasonably predicable scintillation in this
region. Taylor [15] presents data showing the seasonal vari-
ation of the noon-time TEC (NT), at mid-latitude on quiet
days. The results indicate that NT reaches a maximum near

periods of sunspot activity and this maximum is somewhat
worse during the winter months (8 × 1017 electrons/cm2)
when compared to the summer months (5 × 1017

electrons/cm2).

20.2.3 Polar Region

The lower edged of the polar region is characterized by the
aurora region where the most severe polar scintillation
occurs. The aurora region drifts south from that shown in
Figure 20.2 by about 10 between 9 a.m. and 9 p.m. local
time with greater drifts occurring during geomagnetic storms.
Because of the concentration of the Earth’s magnetic field
lines, the polar region results in the most severe signal polar-
ization rotation.

The equatorial and polar electron density profiles, based
onWittwer’s model ionosphere [13], are given in normalized
form in Table 20.4 where ne max = 4.5e5 electrons/cm3 in
the equatorial region and 3.1e5 electrons/cm3 in the polar
region.

The variations of the electron densities result in an
inhomogeneous medium that gives rise to the signal scintil-
lation and anomalies involving time delay, angular errors,
frequency shifts, dispersion, polarization, and absorption.

Signal loss in the ionosphere results from the collision of
free electrons with ions and neural particles resulting in a loss
of energy or absorption of the signal as it propagates through
the ionosphere. The parameter of interest in evaluating the
loss is the electron collision frequency (v) with units of
radians per second. The collision frequency is also a function
of the height as expressed by [5]

v h = vme
hvm −h Hv (20.6)

where hvm is of the height of the maximum collision
frequency vm in each homogeneous region and Hv is a
corresponding scale factor applied to each region.

TABLE 20.4 Normalized Equatorial and Polar Ionospheric
Electron Density Profiles

Equatorial Polar

h (km) ne ne max h (km) ne ne max

135 0.03 130 0.04
250 0.24 160 0.16
278 0.67 285 0.35
290 1.00 300 1.00
345 1.00 325 1.00
425 0.67 380 0.65
470 0.45 413 0.35
520 0.24 475 0.17
580 0.11 600 0.08
600 0.09 — —
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These parameters are quantified by Millman in Table 20.5
and the resulting electron collision frequency is shown in
Figure 20.3. In Section 20.5.2 the collision frequency,
expressed by (20.6), is included in the integrand of
(20.39). So the absorption loss is determined by integrating
over the communication link path through the ionosphere.
The evaluation of (20.39) also includes the electron density
characteristics given in Table 20.3 and the carrier frequency,
so the absorption loss is quantified as a function of the colli-
sion frequency, TEC, and the operating frequency.

20.3 ELECTRON DENSITIES:
NUCLEAR-DISTURBED ENVIRONMENT

The phenomenon of high concentrations of elections is not
limited to the ionosphere, in that, free electrons resulting from
a nuclear detonation are forced far into space above the ion-
osphere forming an ionized plume that follows the Earth’s
magnetic field lines. These extra-ionospheric plumes result
in severe disruptions to otherwise benign satellite links
including cross-links [17]. From the initial forces within a
nuclear detonation the electron plume forms rapidly, within
several minutes, resulting in a time-varying inhomogeneous
medium. As the impact of the initial detonation diminishes

the electrons recombine slowly, over many hours,
within the ionosphere. In addition to the time variations
resulting from the initial blast and subsequent electron
recombination, the plume will move or drift due to normal
atmospheric winds resulting in additional random time fluc-
tuations. These natural effects and the dynamics of the com-
munication platforms result in signal scintillation with
varying correlation time and coherence bandwidth that
require uniquely designed waveform for reliable communica-
tions. Signal scintillation resulting from a high-altitude
nuclear detonation and the parameters that impact signal
reception are discussed in Section 20.5 and waveform
designs techniques that provide reliable communications
are discussed in Section 20.8.

Example electron density profiles resulting from high-
altitude nuclear detonations are shown in Figure 20.4 for time

TABLE 20.5 Chapman Model Electron Collision Frequency
Parameters

hvm (km) Hv (km) vm (rad/s)

100 10 3.0e5
134 45 1.0e4

Millman [16]. Reproduced with permission of John Wiley & Sons, Inc.
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after blast (TAB) corresponding to 30 s and 2 min. The plots
are based on data from published contours based on weapon
characteristics, location of the detonation, and environmental
conditions. In these figures the high-altitude detonation
occurs at ground range zero and the electron densities repre-
sent electrons/cubic-centimeter with the solid lines corre-
sponding to ne = 1 × 10

n electrons cm3 and the dashed
lines corresponding to ne = 3× 10

n electrons cm3 for n = 4
through 9.

The profiles in Figure 20.4 represent a two-dimensional
macro view of the electron densities; however, a three-
dimensional electron profile is necessary to determine the
TEC along the path of a communication link with an arbi-
trary antenna pointing angle. Because the electron concen-
trations form along the geomagnetic field lines, the electron
profiles in geomagnetic coordinates provide the necessary
source data for determining the profile along an arbitrary
path in geographic coordinates; the coordinate transforma-
tions are described in Section 20.5 and APPENDIX 20A.
The total electrons along the communication path, as
expressed by (20.1), provide an important measure of the
static propagation disturbances that change relatively
slowly with the mean electron density. However, the tubular
striations formed by electron clusters around the geomag-
netic field lines result in irregularities as depicted in

Figure 20.5 that result in small-scale size spatial variations
in the electron concentrations. The dimension Lo is the outer
scale size of the striation along the axis parallel to the mag-
netic field lines ranging between 1 and 10 km. The orthog-
onal dimensions ls and lr represent the inner scale sizes of
the striations normal to the magnetic field lines with typical
values ≤1 km. These small-scale size electron density varia-
tions give rise to dynamic disturbances or scintillation
resulting from constructive and destructive signal phase
combining as the signal propagates through the inhomoge-
neous medium. The static and dynamic propagation distur-
bances are listed in Table 20.6 and characterized in Sections
20.5 and 20.5.2 in terms for the mean and variation of the
electron densities.

20.4 THE REFRACTIVE INDEX AND SIGNAL
PROPAGATION

A fundamental consideration in analyzing the propagation of
a radio wave through the ionosphere is the characterization of
the index of refraction under the system operating conditions,
principally the carrier frequency and instantaneous band-
width. The following analysis focuses on relatively high fre-
quency communication links corresponding to carrier
frequencies greater than about 1 GHz. The applications
involve communications between ground and airborne term-
inals and satellites, including satellite cross-links [17].
Appleton’s formulation of the refractive index [3, 18–22]
is expressed as

Magnetic
field lines 

Altitude
contours

s

r

Lo

FIGURE 20.5 Irregularities formed by electron clusters around
geomagnetic field lines.

TABLE 20.6 Static and Dynamic Signal Propagation
Disturbances

Static Dynamic

Absorption Amplitude scintillation
Noise Phase scintillation
Dispersion Angular scattering
Phase shift Time delay jitter
Time delay

n2 = 1−
ωp ω

2

1− i v ω −
1
2
eBT m ω 2 1− ωp ω

2
− i v ω

−1
±

1
4
eBT m ω 4 1− ωp ω

2
− i v ω

−2
+ eBL m ω 2

(20.7)

where ωp is the plasma frequency given by

ωp =
nee2

m εo
rad s (20.8)

Figure 20.6 is a plot of the plasma frequency; fp =ωp 2π,
dependence on the electron density; and Table 20.7 tabulates
and describes the parameters.

The refractive index is also characterized in terms of the
complex quantity
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n= μ− jχ (20.9)

Application of the index of refraction to a communication
link yields the influence of the ionospheric propagation on
the received signal. Consider, for example, a transmitted
communication waveform expressed as eT(t) and after propa-
gating a distance ℓ through a striated region of the ionosphere
of path length L, the signal experiences an absorption and
phase shift and is expressed as

e t = eT t ejω t−nℓ c

= eT t e−ωχ ℓ cej ω t−ωμℓ c
(20.10)

The absorption coefficient κ is defined as

κ =
ω

c
χ Np m (20.11)

or, expressed in decibels, the absorption coefficient is 8.686κ
dB/m. The signal phase shift introduced by the striated region
gives rise to signal dispersion that is characterized by the
channel phase constant denoted as β(ℓ) and expressed as

β ℓ = μℓ
ω

c
(20.12)

The dependence of the phase constant on the communica-
tion path length ℓ is explicitly shown for a constant electron
density. However, as will be seen in Section 20.6, the fluctua-
tions over the path through the striated region are character-
ized by the range-dependent refractive index u(ℓ).

A general evaluation of the real and imaginary parts of
Appleton’s expression is difficult; however, several simplify-
ing assumptions provide insight into the channel behavior as
well as practical characterizations of the received signal. The
first of these assumptions is that the electron collision fre-
quency is negligible, that is, ν/ω 1, and the second is that
magnetic field effects are negligible, that is, B = 0.

20.4.1 Magnetic Field and No Electron Collisions

In this case it is assumed that the electron collision frequency
is much less than the carrier angular frequency so the imag-
inary term jν/ω in Appleton’s expression is neglected leading
to the result
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FIGURE 20.6 Dependence of plasma frequency on electron
density.

TABLE 20.7 Ionospheric Channel Parameters and Constants

Parameter Value Unitsa Description

N(ℓ) Computed Electrons/m3 Electron density
ℓ Computed Meters Distance along propagation path
ω, ωc System parameters Radians/second Angular frequencyb

e 1.602 × 10−19 Coulombs/electron Electron charge
εo 8.854 × 10−12 Coulomb2second2/(Kg-m

3) Free-space permittivity (dielectric constant)
m 9.109 × 10−31 Kg/electron Electron mass
ne Channel parameter Electrons/m3 Electron density
ne Channel parameter Electrons/cm3 Electron density
c 2.997925 × 108 Meters/second Free-space velocity
v 6.06 × 106 at 50 km Radians/second Electron collision frequencyc

1.75 × 103 at 100 km
BT Computed Gauss Transverse magnetic induction
BL Computed Gauss Longitudinal magnetic induction
B 0.5 Webers/m2 Magnitude of magnetic inductionc

amks system of units.
bIn the following f denotes the frequency in hertz and fc denotes a selected carrier frequency.
cNumerical values based on the 1959 ARDC model atmosphere.
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μ2 = 1−
2 1− ωp ω

2
ωp ω

2

2 1− ωp ω
2

− eBT m ω 2 ± eBT m ω 4 + 4 1− ωp ω
2 2

eBL m ω 2

χ = 0

v ω 1 (20.13)

Although this is a realistic result for satellite links operating
above about 1 GHz, it is difficult to evaluate, in part, because
the ± term in the denominator leads to ordinary and
extraordinary waves, respectively, which are, to varying
degrees, dependent on the strength and orientation of the
magnetic field and the direction of propagation. A convenient
expression results if the influence of the magnetic field is
ignored as indicated in the following two sections.

20.4.2 No Magnetic Field and No Electron Collisions

If the magnetic field is neglected if BT = BL = 0 and the index
of refraction reduces to the simplest form given by

n = μ = 1−
ωp

ω

2
v ω 1, BT =BL = 0 (20.14)

20.4.3 No Magnetic Field with Electron Collisions

When the electron collisions are ignored the imaginary part of
the index of refraction is zero so the absorption cannot be
characterized in terms of the physical characteristics of the
channel. However, to provide some insight into the absorp-
tion characteristics, it is convenient to ignore the effects of
the magnetic field while permitting electron collisions. These
conditions lead to the result

n2 =
1− ωp ω

2
+ ν ω 2

1 + ν ω 2 − j
ωp ω

2
ν ω

1 + ν ω 2 BT =BL = 0

= μ2−χ2 − j2μχ

(20.15)

and equating the real and imaginary parts of these expres-
sions yields

μ2 =
1− ωp ω

2
+ ν ω 2

1 + ν ω 2 + χ2 (20.16)

and

χ =
ωp ω

2
ν ω

2μ 1 + ν ω 2
(20.17)

Solving for μ, using (20.16) and (20.17) under the condi-

tion v ω 2 1 results in the approximate expression

μ 1−
ωp

ω

2
+ + 1 +

1
4

ωp

ω

4
+

v

ω

2
+

(20.18)

The ellipsis in (20.18) represents neglected terms invol-
ving powers of (ωp/ω) and (v/ω) greater than four and two,
respectively. The approximation applies when v ω which
is a reasonable approximation when f > 100MHz. Substitut-

ing (20.18) into (20.17), under the condition v ω 2 1, the
signal absorption term is approximated as

χ ≡
1
2

ωp

ω

2 v

ω
1 +

1
2

ωp

ω

2
+ −

1
2
+
3
4

ωp

ω

2
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17
16
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ω

4
+

v

ω

2
+

(20.19)

20.5 SIGNAL PROPAGATION IN SEVERE
SCINTILLATION ENVIRONMENT

The principal parameters associated with scintillation in an
ionized or striated channel are listed in Table 20.8.

The most commonly used measure of signal fading is the
S4 scintillation index defined as*

S4 ≜
V4 − V2 2

V2 2 (20.20)

where V is the instantaneous rms signal voltage and the aver-
aging time is much greater than the signal fade duration. The
S4 scintillation index saturates at unity corresponding to
severe scintillation with Rayleigh signal amplitude fading;
but S4 index may exceed unity prior to saturation under some
conditions. As discussed in Chapter 1, the Rayleigh ampli-
tude pdf is characterized by independent quadrature Gaussian
signals, N(0,σn), with a uniform phase pdf over 2π radians.
Rayleigh scintillation may persist for many hours affecting

*The S4 scintillation index is also described (Reference 23, pp. 230–238) in
terms of the parameters of the striated region.
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communications over large geographical regions with longi-
tude ground ranges listed in Table 20.9; the EHF band is sen-
sitive to parameter uncertainties and may be less than
indicated.

Because of the severity and extent of the scintillation, a
robust communication system design must be capable to
operating under severe scintillation conditions and, for this
reason, the analysis, design, and system performance evalua-
tions in Section 20.7 and following are based on a Rayleigh
fading received signal. For S4 > 0.4 the Nakagami pdf* is a
good approximation to the amplitude fading statistics which
is, theoretically, equal to the Rayleigh pdf when S4 = 1.0;
however, S4 > 0.4 corresponds to severe scintillation and it
is recommended that system designs be based on Rayleigh
fading statistics when S4 > 0.4. As the scintillation index
decreases the scintillation diminishes with S4 ≤ 0.4 corre-
sponding to weak scintillation and, when S4 = 0, the received
signal does not exhibit scintillation; however, the signal prop-
agation is influenced by phase distortion-related effects as
discussed in Section 20.6.

The Rytov parameter is defined in terms of the parameters
of the striated region and is approximated as [24]

χ2 1 138 × 10
−32 Lz L2p

LxLy

σ2e
f 3g

(20.21)

where the scale sizes (Lz, Lx, Ly) form an orthogonal coordi-
nate system that is dependent on the geomagnetic field lines,†

Lp is the propagation path length through the striated region,
and fg is the carrier frequency in gigahertz. The parameter
σ2e =Var NT is the variance of the TEC (NT) expressed
in (20.1). In the absence of an accurate estimate of the
phase standard deviation, it is reasonable to use σe =NT.

The condition χ2 > 0 1 results in severe scintillation so
Rayleigh fading statistics are to be applied under this
condition.

In view of the uncertainty of parameters available in the
open literature, the system design must be based on paramet-
ric performance evaluations. The uncertainties include the
time-dependent electron density profiles; the computation

of the scintillation index S4 or χ2 ; the parameters σ2e , σ
2
θ,

ℓo, τo, fo, and the signal losses Lscat, and La (described later).
However, the recommendation that antiscintillation (AS) sys-
tems be designed to operate in the Rayleigh fading regime
allowing the system design and performance evaluation to
proceed based on specifications identifying the range of sev-
eral parameters; most notability the electron density fluctua-
tions, the channel decoration time (τo), and the frequency
selective bandwidth (fo). Waveform and system mitigation
techniques are described in Section 20.8.

In the following descriptions, the communication link is
modeled as a one-way path between a transmitting and
receiving terminal with an ionized medium characterized
as a plume of elections forming striations along the Earth’s
magnetic field lines. The terminals are typically thought to
be Earth or airborne terminals communicating with a satellite
or satellites communicating over cross-links. In general, the
geometry is depicted as shown in Figure 20.7. In the evalu-
ation of the communication link characteristics, the uplink
and downlink asymmetry associated with Rgs Rss is impor-
tant. The following description considers a nearly vertical
communication link between a ground terminal and a geo-
synchronous satellite with altitude or range R = 35,784 km.
The communication link passes through a striated medium
resulting from a nuclear detonation at an altitude (range) of
Rs = 400 km having an extent along the line of sight (LOS)
path of Rse = 1000 km. Rse is considered to be symmetrical
about Rs. Furthermore, consider that the lower altitude of
the striated region is Rgs = 150 km. If the communication link
corresponds to an uplink, the parameters in Figure 20.7

TABLE 20.8 Principle Scintillation Dependent Parameters

Parameter Name Description

S4 Scintillation parameter Typically: 0 ≥ S4 ≤ 1

χ2 Rytov parametera χ2 ≥ 0
σ2e Electron variance Over propagation path

σ2ϕ Signal phase variance Over propagation path

σ2θ Energy angle-of-arrival
variance

Results in antenna loss

ℓo Decorrelation length Spatial correlation
parameter

τo Signal decorrelation time Temporal correlation
parameter

fo Signal decorrelation
bandwidth

Frequency-selective
bandwidth

aThis notation should not be confused with the imaginary part of the refrac-
tive index.

TABLE 20.9 Ground Range Extent Affected by Severe
Scintillation

Frequency Band Longitude Ground Range (km)

EHF 480
X 1600
S 2400
L 2570
UHF 3200

High altitude detonation, TAB = 30 min.

*The Nakagami pdf in Table 1.8 corresponds to pY(y) with the Nakagami
parameters m = S−2

4 , y = x2, and Ω = 1.

†Appendix 20.A describes the transformation between geomagnetic and geo-
graphic coordinates.
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become: Gt = Gg, Rt = Rgs = 150 km, Gr = Gs, and Rr = Rss =
R − Rgs − Rse = 34,634 km. Conversely, the communication
downlink is evaluated by reversing the roles of the transmitter
and receiver gains and ranges so that: Gt = Gs, Rt = Rss =
34,634 km, Gr = Gg, and Rr = Rgs = 150 km. These examples
will be used to emphasize the impact of the direction of trans-
mission on various design parameters.

For strong localized scattering* the square of the spatial
decorrelation distance, ℓo, is expressed as [25]

ℓ
2
o =

2 L 2
o Rt +Rr

2

ln Lo ℓi R2
t σ

2
ϕ

(20.22)

where the parameters Rt = Rgs and Rr = Rss are depicted in
Figure 20.7 and σ2ϕ is the variance of the carrier frequency
phase over the range Rse through the striated region. In
(20.22) the parameters Lo and ℓi represent the outer and inner
scale sizes, respectively, normal to the propagation path
through the striated region. These scales sizes are obtained
through coordinate transformations from the geomagnetic
field lines as described in APPENDIX 20A; the scale sizes
in geomagnetic coordinates are depicted in Figure 20.5. Typ-
ically Lo ranges from 1 to 10 km and ℓi is about 1/15-th of
Lo. In addition to the coordinate transformations resulting
in Lo and ℓi, (20.22) implicitly includes the transformation
from the magnetic field coordinates to the LOS vector con-
taining propagation path Lp that is used in the computation
of σ2ϕ. The implicit transformation factor K(Φ) is based on
the penetration angle Φ between the geographic LOS path
and geomagnetic field at the altitude of the strong localized
scattering and is expressed as

K Φ = cos2 Φ + 15sin Φ 2 (20.23)

The relationship to the signal phase variance is
σ2ϕ 1 K Φ . The expression (20.22) for ℓo strictly applies
for unit-gain omnidirectional transmit and receive antennas,

in which case, the variance of the signal energy angle-of-
arrival is expressed as

σ2θ ≜
λ2

2π2 ℓ2o
(20.24)

where λ is the wavelength of the signal carrier frequency. The
angle σθ is a measure of the angular deviation of the received
multipath signal rays from the LOS path.

It is evident from (20.22) that ℓo is dependent upon the
direction of transmission. For example, referring to
Figure 20.7 and the conditions of the previous example, sup-
pose that Rt = Rss = 34,634 km with Rt + Rr = 34,784 km corre-
sponding to a downlink transmission. In the case of an uplink
transmission Rt + Rs remains the same however Rt = Rgs = 150
km so the value of ℓo increases by a factor of about 232 : 1.

The signal decorrelation time is given by

τo =
ℓo

V
(20.25)

where V = Vpr + VT. The velocity Vpr is the velocity of the
plasma or striated region and VT is the terminal velocity con-
tributions, where both are in the plane of the receive antenna.
The plasma velocity is computed as

Vpr =
Rt +Rr

Rt
VM (20.26)

where VM is the magnitude of the plasma velocity normal to
the LOS propagation path and aligned with the plane of the
receiver. Considering the plasma velocity vector in the mag-

netic field plane (MFP) to beVpm = Vpmux +Vpmuy +Vpmuz ,
the plasma velocity normal to the LOS is computed as

Vpx

Vpy

Vpz

=

Transformation

to propagation

coordinates

cos ϕ cos λ 0 0

0 cos ϕ sin λ 0

0 0 sin ϕ

Vpmx

Vpmy

Vpmz

(20.27)
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FIGURE 20.7 Communication link encounter through striated region.

*The striated region is relatively localized in altitude and is isotropic in the
plane perpendicular to the LOS path.
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Typically the magnitude of the plasma velocity in the
MFP is VM = 1–20 km/s. The first transformation in (20.27)
is evaluated in APPENDIX 20A and results from the
transformation of the geomagnetic polar coordinates (Φ,Λ)
to the geographic polar coordinates (ϕ, λ) of a point in space
Px. The second transformation is required to rotate
geographic coordinates of point Px into alignment with the
propagation path.

Using the expression (20.22) for ℓo and neglecting the ter-
minal velocity, the decorrelation time is evaluated as

τo =
2 Lo

ln Lo ℓi VMσϕ
neglecting terminal velocity VT

(20.28)

From (20.28) it is evident that τo is independent of
the direction of transmission. The frequency-selective
bandwidth is also dependent on ℓo through the following
relationship [26]

fo =
π ℓ2oRt f 2c

cRr Rr +Rt 1 + C2
1

0 97π ℓ2oRt f
2
c

cRr Rr +Rt

(20.29)

The last expression results with the constant C1 = 0.25;
this is a practical constant bound for the relatively small effect
of the time delay jitter and results in the scintillation being a
function only of τo and fo [27]. Upon substituting (20.22) for
ℓ
2
o into (20.29) the frequency-selective bandwidth is
expressed as

fo =
2π L 2

o f
2
c Rt +Rr

c ln Lo ℓi 1 + C2
1RrRt

1 94π L 2
o f

2
c Rt +Rr

c ln Lo ℓi RrRt

(20.30)

From (20.29) and (20.30) it is seen that fo is dependent on
the direction of transmission.

Estimates of reasonable worst-case ranges [23] of the sig-
nal decorrelation time and decorrelation bandwidth are
shown, respectively, in Figures 20.8 and 20.9 as a function
of the carrier frequency. The shaded areas correspond to
the most severe or Rayleigh scintillation that transitions
through Ricean scintillation to the channel conditions prior
to the nuclear detonation. Depending on the geometry of
the encounter, a blackout regime may be encountered prior
to the Rayleigh regime. The blackout regime is generally
defined as the time following the detonation when the
received signal level is greater than 3 dB below the mean
level of the Rayleigh fading signal. The signal decorrelation

time and the frequency decorrelation bandwidth are defined
as the point that the respective normalized correlations fall to
e−1 of the peak correlation; these correlation responses are
also referred to as the channel correlation responses.

The channel decorrelation time τo and the decorrelation
bandwidth (or frequency-selective bandwidth) fo are the
two most influential channel parameters in the selection of
the waveform and the system designs. For example, the
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channel fade rate is defined as Rf = 1/τo and slow and fast fad-
ing corresponds to large and small values of τo, respectively.

*

For reliable communications the communication systems
must operate over the entire range of τo at the specified carrier
frequency as shown in Figure 20.8. The range of decorrela-
tion times places an increasingly heavy burden on the wave-
form selection and design of FEC coding, interleaving, and
combining as the information rate increases; in some cases
it may be prudent to use message repetition and combining.

If the instantaneous bandwidth of a transmitted symbol
exceeds the decorrelation frequency fo the signal will experi-
ence frequency-selective fading in which regions of the signal
spectrum become uncorrelated resulting in severe signal dis-
tortion. However, if the signal bandwidth is sufficiently less
than fo, the entire spectrum is affected in the same way result-
ing in frequency-nonselective fading. With frequency-
nonselective fading, signal FEC coding, interleaving, and
combining are effective mitigations techniques.† Although
it is always prudent to verify the performance using computer
simulations, they are particularly important when the channel
fading lies between frequency selective and nonselective
regimes.

20.5.1 Impact on Directive Antenna Gain

The previous expression for ℓo and consequently those for τo
and fo are based on an ideal unit-gain isotropic radiator. When
practical antennas are considered, that is, antennas exhibiting
a directive gain, the expression for the correlation distance at
the output of the receiver antenna is evaluated as [28]

ℓo = ℓo 1 +
Gr

2π 2

λ

ℓo

2

+
Gt

2π 2

Rr

Rt

2 λ

ℓo

2

(20.31)

where Gt and Gr are the gains of the transmit and receive
antennas and the factor (Rr/Rt)

2 projects the aperture of the
transmit antenna onto the plane of the receive antenna. The
gain is given by G= 4πAe λ2 and, for a parabolic dish
antenna with radius r and efficiency ηa, the effective antenna
aperture is given by Ae = πηar

2. The designation ℓo is used to
denote the correlation distance at the output of the receive
antenna. The energy angle-of-arrival is defined as the angle,
relative to the receiver antenna LOS axis, of the received
signal emerging from the striated region. The standard
deviation of the energy angle-of-arrival is given by

σθ =
1

2π

λ

ℓo
(20.32)

Using this result, ℓo is expressed in terms of the variance of
the energy angle-of-arrival as

ℓo = ℓo 1 +
Gr σ2θ
2

+
Rr

Rt

2Gt σ2θ
2

= ℓo 1 +
Gr σ2θ
2

+
Gt σ

2
θ

2

(20.33)

where σ 2
θ is defined as the energy angle-of-departure from

the transmit antenna and is given by

σ 2
θ =

Rr

Rt

2

σ2θ (20.34)

The signal decorrelation time and bandwidth and the
antenna loss are impacted by the antenna directional gain
in a similar manner. Upon substituting the channel
decorrelation length ℓo into expressions (20.22) and
(20.25) for τo and fo, respectively, the corresponding expres-
sions for τo and f o at the receiver antenna output terminals are
evaluated as

τo =
ℓo

V

=
ℓo

V
1 +

Gr σ2θ
2

+
Gt σ

2
θ

2

(20.35)

and

f o
0 97π ℓ2oRt f 2c
cRr Rr +Rt

1 +
Gr σ2θ
2

+
Gt σ

2
θ

2

= fo 1 +
Gr σ2θ
2

+
Gt σ

2
θ

2

(20.36)

Although τo is not dependent on the direction of transmis-
sion, because of the different antenna gains and the asymme-
try of the striated region along the transmission path, τo is
dependent on the direction of the transmission.

The antenna loss at the receiver, resulting from the
Gaussian distributed ray scattering through the medium, is
expressed as [26]

Lscat = 1 +
Gr σ2θ
2

+
Rr

Rt

2Gt σ2θ
2

= 1 +
Gr σ2θ
2

+
Gt σ

2
θ

2

(20.37)

Equation (20.37) is defined as the antenna scattering loss
and must be combined with the absorption loss along the
propagation path.

*Chapter 18 characterizes the bit-error probability of various waveformmod-
ulations with fast and slow fading channels in the Rayleigh and Ricean
regimes.
†Mitigation techniques for these disturbances and others are discussed in
Section 20.8.
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20.5.2 Ionospheric Absorption

The signal absorption loss through the ionosphere is
evaluated using (20.10) as

La = e
−ωcχℓ c (20.38)

or, upon substituting for χ using (20.19), which applies for
v ω, and expressing the absorption loss in terms of
decibels, the signal absorption loss is evaluated as

La fc dB = 8 686
1

2ω2
cc

L

ω2
p ℓ v ℓ dℓ

= 1 0858
e2

π2 f 2c mcεo L
N ℓ v ℓ dℓ

=
1 1677 × 10−6

f 2c L
N ℓ v ℓ dℓ

(20.39)

where* the second expression uses (20.8) to substitute for
ω2
p ℓ and the last expression substitutes the constant values

from Table 20.7. Upon expressing the electron collision
frequency profile in (20.6) in terms of the height h above
the Earth’s surface, (20.39) becomes

La fc dB =
1 1677 × 10−6

f 2c
H

N h v h f h dh (20.40)

where f(h) is a unit-less function of the height dependence on
the antenna elevation angle θe as expressed by [5]

f h =
Re + h

Re + h
2− Re cos θe

2
(20.41)

The total signal loss due to the medium and the antenna
scatter power losses is

LT dB =Lscat dB +La fc dB (20.42)

The absorption loss in the natural environment, based
on the Chapman electron density profiles, is given in
Table 20.2. The electron collision profiles are listed in
Table 20.5 and plotted in Figure 20.10 for carrier frequen-
cies of 100 and 500 MHz under daytime and nighttime con-
ditions. The loss is negligible at nighttime for frequencies
greater than 100 MHz and at daytime for frequencies greater
than 500 MHz.

The mean electron densities (ne) given in Table 20.3 are
used to evaluate the losses and the corresponding variations

(σe) are used to compute the associated confidence levels
based on the Gaussian distributed loss variations denoted
as N(ne,σe). The losses at a carrier frequency of 100MHz
and corresponding confidence levels are tabulated in
Table 20.10 for the equatorial, mid-to-low latitude, and Polar
Regions. A major source of uncertainty in computing the
absorption loss is determining the value of the collision fre-
quency. The greatest impact of the collision frequency on the
absorption loss is in the lower ionospheric regions from about
50 to 120 m and, as the altitude increases, the collision fre-
quency has a diminishing effect on absorption.

Referring to (20.40), the absorption loss scales inversely
proportional to the square of the frequency; therefore, defin-
ing the losses in Table 20.10 as La(100MHz)dB, the loss at an
arbitrary frequency, expressed in megahertz, is determined as

La fMHz dB =
104La 100 MHz dB

f 2MHz

(20.43)

20.5.3 Receiver Noise

The receiver noise is impacted by the increase in the receiver
antenna noise temperature as a result of the fire ball from the
detonation. The antenna noise is dependent beam width and
the propagation LOS relative to the location of the detonation
and is expressed as [29]

TΔA = TFB 1−10−La fc dB 10 K (20.44)

where TFB is the fireball temperature on the order of 1000 K
and La fc dB is the propagation loss over the path between the
fireball and the receiver.
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FIGURE 20.10 Absorption loss in natural environment
(Chapman model with solar zenith angle = 0 ).

*The carrier frequency f is explicitly denoted as fc in this section.
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20.6 PROPAGATION DISTURBANCES
FOLLOWING SEVERE ABSORPTION

The initial impact of a nuclear detonation on a communica-
tion link is a severe signal attenuation that may exceed sev-
eral minutes in duration depending upon the operating
frequency and the link path relative to the fireball of the det-
onation. This is referred to as the signal blackout regime and
the only effective mitigation techniques are spatial diversity
that uses another link path that is not impacted by the fireball.
However, increasing the carrier frequency is only advanta-
geous because of the lower absorption loss and susceptibility
to scintillation following the severe fireball temperatures. As
the blackout regime subsides, the signal level begins to
recover and enters the scintillation regime. During the scin-
tillation regime, the signal absorption has essentially dimin-
ished so that communications can resume if the underlying
communication waveform is properly designed to mitigate
the signal scintillation. In the scintillation regime, the
received signal level fluctuations, or fading, results from car-
rier frequency phase constructive and destructive interference
that cannot be overcome by increasing the power. This is an
especially important concept in the design of frequency and
time diversity waveform mitigation techniques. Therefore,
because it is impractical to increase the signal power to over-
come the increase in the system noise temperature resulting
from the fireball or to overcome the signal phase cancellation
effects, it is recommended that a 3 dB link margin be pro-
vided to aid in the link recovery during the transition to the
scintillation regime with the principal mitigation techniques
embodied in the network protocol and waveform design as
discussed in Section 20.8.

Therefore, in this section, severe signal absorption is
assumed to have subsided and the electron density of the ion-
osphere is considered to have a slowly varying average value
with a diminishing, electron density variation about the mean
value. In this regime the signal scintillation is referred to as
resulting from phase-only affects; however, the signal ampli-
tude continues to fluctuate about the mean value of the
Rayleigh distribution with a uniformly distributed phase.

By considering the time dependence of the TEC either result-
ing from changes in the communication path or the electron
density fluctuations along the path, the impact of time-
varying ISI on the communication system performance is
evaluated. In this context, the channel impulse response is
examined and the resulting ISI is characterized in terms of
the modulated waveform symbol rate. Based on these consid-
erations, the analysis in this section involves traditional mul-
tipath phenomenon using the parameters identified in
Table 20.11.

For this analysis the channel frequency response is char-
acterized as

H ω = ejΦ ω (20.45)

where ω is the instantaneous angular frequency. Considering
the length of the communication path through the striated
region of the ionosphere to be L meters, the channel phase
function is evaluated as

Φ ω =

L

β ℓ dℓ (20.46)

where β ℓ =ωμ ℓ c is the channel phase constant. For the
previous simplifying assumptions, the real part of the refrac-
tive index is expressed by (20.14) as

TABLE 20.10 Absorption Losses (dB) in Natural Environment at 100MHz

Latitude

Equatorial Mid-to-Low Polar

Confidence (%) Turbulent Moderate Turbulent Turbulent Moderate

50a 5.75 2.88 0.95 5.10 2.55
90 28.52 4.77 1.08 19.57 3.76
95 35.10 5.32 1.11 23.75 4.11
99 47.19 6.33 1.18 31.43 4.77

aFor mean or average electron density.

TABLE 20.11 Multipath Related Parameters

Parameter Name Description

Td Free-space delay
td Delay through

striated region
Additional delay to free-space
delay

Td1 Quadratic delay
distortion

Dispersion delay causing signal
distortion

Td2 Cubic delay
distortion

Dispersion delay causing signal
distortion

fd Doppler Doppler spread
La dB Absorption loss (dB) Path loss through striation region
Ta Antenna

temperature
Increase due to elevated
temperature of plasma

θf Faraday rotation Linear polarization phase change
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μ ℓ = 1−ω2
p ℓ ω2 (20.47)

The change in the channel phase relative to that of free-
space propagation, that is, for N ℓ = 0, results in the phase
function

Φ ω =Φo + Φ ω −Φo

=Φo +ϕ ω
(20.48)

where Φo = −ωLp c and Lp is the undisturbed propagation
path length. The phase function through the disturbed region
with path length L is expressed as

ϕ ω = −
ω

c
L

1−
ωp ℓ

ω

2

−1 dℓ (20.49)

Expanding the radical in the integrand of (20.49) in terms
of a power series with ω >ωp results in the approximation

ϕ ω
1

2cω
L

ω2
p ℓ dℓ (20.50)

This approximation ignores the higher order terms: −(ωp/
ω)4/8 − (ωp/ω)

6/16 − . Expanding the function f(ω) = 1/ω
in (20.50) using a Taylor series about the carrier frequency
ωc results in

ϕ ω
1

2cωc
1−

ω−ωc

ωc
+
2 ω−ωc

2

ω2
c

−
6 ω−ωc

3

ω3
c +

L

ω2
p ℓ dℓ

(20.51)

Referring to (20.8), the integral in (20.51) is evaluated as

L

ω2
p ℓ dℓ =

L

n ℓ e2

mεo
dℓ ω2

pL (20.52)

where the dimension of ω2
p is expressed in radians2/second2.

The last approximation assumes that the electron density is
the average (or a weighted average) over the path length L.
This is a reasonable assumption over short time intervals
since there are no electron collisions and the electron plume
is expanding from the force of the detonation and later con-
tracting through electron recombining in the troposphere and
lower ionosphere. Both of these events occur over relatively
long periods of time compared to the typical communications
message duration and snapshots of the electron profiles can
be predicted. It is recommended that AS systems are to
be designed for the worst-case scenario which favors the
weighted average being biased toward the worse-case
electron density. However, laying these details aside, in the
following analysis the performance of the communication
system is evaluated parametrically in terms of the plasma
frequency ω2

p.

Substituting (20.52) into (20.51) results in the
approximate channel phase expression

ϕ ω
ω2
pL

2cωc
1−

ω−ωc

ωc
+
2 ω−ωc

2

ω2
c

−
6 ω−ωc

3

ω3
c

+

(20.53)

Referring again to (20.8), characteristic frequency of the
plasma is evaluated as

fp =
1
2π

nee2

m εo
= 8 9779 ne Hz (20.54)

Using these results, the phase function in (20.48) is
expressed as

Φ ω =Φo+
ω2
pL

2cωc
1−

ω−ωc

ωc
+
2 ω−ωc

2

ω2
c

−
6 ω−ωc

3

ω3
c

+

+ higher order distortion terms

(20.55)

It is convenient to characterize the phase function about
the carrier frequency by defining* u =ω−ωc and, upon sub-
stitution into (20.55), the low-pass phase function is
expressed as

Φ u = −
ωcLp
c

−
ω2
pL

2cωc
−

ωcLp
c

+
ω2
pL

2cωc

u

ωc

+
ω2
pL

cωc

u

ωc

2

−
3ω2

pL

cωc

u

ωc

3

+ higher order distortion terms
(20.56)

where Φo is evaluated using the relationship
Φo = −ωLp c= − ωcLp c + uLp c . The linear phase term
in u simply represents a constant delay and the higher order
terms contribute to the signal distortion.

20.6.1 Signal Delay and Dispersion

Considering the channel phase function Φ(u), the resulting
signal delay function is given by

Td u = −
∂Φ u

∂u

=
Lp
c
+

ω2
pL

2cω2
c

−
2ω2

pL

cω3
c

u +
9ω2

pL

cω4
c

u2−

(20.57)

The constant delay, resulting from the LOS path, is given
by To = Td + td where Td = Lp/c is the delay from the

*The use of the parameter uwith dimensions of radians/second should not be
confused with the real part of the refractive index as expressed in (20.18).
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undisturbed channel and, with TL = L/c, the delay over the
path L through the disturbed channel is evaluated using

td =
ω2
pTL

2ω2
c

= 40 302
neTL
f 2c

plasma dependent delay in seconds

(20.58)

These delays do not result in signal distortion; however,
the quadratic and higher order frequency-dependent delay
terms result in signal distortion. The linear and quadratic
delay terms are evaluated as

Td1 = −4td
u

ωc
linear delay (20.59)

and

Td2 = 18td
u

ωc

2

quadratic delay (20.60)

Expressing the frequency deviation from the carrier as
Δf = u/2π Hz and normalizing these delays by the symbol
duration, the normalized delay distortion terms become

Td1
T

= −4
td
T

Δf
fc

(20.61)

and

Td2
T

= 18
td
T

Δf
fc

2

(20.62)

20.6.2 Example of Signal Delay Distortion

In this example, the delay terms through the linear distortion
term are considered, that is, the higher order distortion terms
are neglected, so the channel frequency response is character-
ized as

H u = ej Φo +ϕo +
ρ
2ωc + −To + ρωc u + ρ

2 u
2

(20.63)

where u =ω−ωc is the angular frequency about the carrier
frequency. Referring to (20.48) the phase ϕo is evaluated as

ϕo = −
ωcLp
c

−
ω2
pL

2cωc
= − ωcTp−

ω2
pTL
2ωc

rad

(20.64)

and from (20.57) To is evaluated as

To =
Lp
c
+

ω2
pL

2cω2
c

=Tp +
ω2
pTL
2ω2

c

s (20.65)

ρ =
ω2
pL

cω3
c

=
ω2
pTL
ω3
c

s2 rad (20.66)

The channel impulse response is evaluated using the
inverse Fourier transform as

h t =
ej Φo +ϕo +

ρ
2ωc

2π

πW

−πW

ej −To + ρωc u+ ρ u2 2 ejutdu (20.67)

where W is the radio frequency (RF) bandwidth centered on
the carrier frequency fc. In this analysis the magnitude of the
channel impulse response is evaluated in terms of Fresnel
integrals as [30]

h t =
1
2

2fc
TL

ωc

ωp
C z 2 + S z 2 (20.68)

The upper and lower integration limits z2 and z1 of the
Fresnel integrals are expressed as

z2

z1
=

2fc
TL

ωc

ωp
t−To + ρωc ±

TL
2fc

ωp

ωc
W (20.69)

These results are normalized by letting y = tW,
yo = ToW −ρωcW , and x = u W . Using these results the mag-
nitude of the channel impulse response is evaluated in terms
of the normalized parameters as

h y =
W

2
2fc W

TLW

ωc

ωp
C z2 +C z1

2 + S z2 + S z1
2

(20.70)

and the normalized arguments of the Fresnel integrals are
expressed as

z2

z1
=

2fc W

TLW

ωc

ωp
y−yo ±

TLW

2fc W

ωp

ωc
(20.71)

The channel impulse response simulation results,
shown in Figure 20.11, correspond to yo = 0, a path length
of L = 1 km through the ionized medium, a carrier
frequency of fc = 10 GHz, and a normalized bandwidth
parameter of W/fc = 2e−7, which corresponds to a channel
symbol rate of Rs = 2k symbols/s. The nonideal impulse
response depicts the pulse dispersion caused by the
quadratic phase distortion that is a direct result of the
TEC (electrons/m2) through the disturbed region. The
results apply to noncoherent (NC) symbol detection and
the range 1e11 ≤ TEC ≤ 1e12 corresponds to those found
in the natural environment. By way of comparison, for car-
rier frequencies of 60 and 300 GHz the respective TEC
ranges are 1e13 ≤ TEC ≤ 1e14 and 6e15 ≤ TEC ≤ 1e16.
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The ISI must be evaluated further by examining the
correlation response of the detection filter; however, the
impact on the symbol-error performance must be examined
using additional analysis or Monte Carlo simulations.
These evaluations should include mitigation techniques
including adaptive ISI cancellation and FEC. In this regard,
this analysis has limited utility and may be considered as a
first step in characterizing the impact of the TEC on the
communication link performance. Although considerably
more involved, this analysis can also be extended to ini-
tially examine the impact of the TEC on coherent detection
and phaselock loop tracking.

20.7 RAYLEIGH SCINTILLATION
CHANNEL MODEL

The amplitude variations or scintillation of a received signal
propagating through a heavily ionized region of the iono-
sphere is the result of the constructive and destructive inter-
action of the signal phase resulting from numerous signal
paths through the media. The phenomena of scintillation
are described in Sections 20.2 and 20.3 that includes example
electron density profiles for natural and nuclear-disturbed
environments. In addition to the electron density concentra-
tions, the dynamics of the channel and communication sys-
tem will further influence the scintillation characteristics of
the received signal.

Because the predominant influence of the media is upon
the signal phase, the channel is characterized in terms of a
phase power spectral density (PPSD) function. The analysis
described in this section to characterize the received signal
scintillation was proposed by Wittwer [31] and provides a
relatively straightforward way to generate receiver amplitude
and phase perturbations in a Rayleigh environment corre-
sponding to severe scintillation. An alternate approach to that

presented in this section is discussed by Knepp [32]. Using
the PPSD also allows for generating receiver amplitude
and phase fluctuations having correlation properties directly
related to the physical parameters of the environment. The
PPSD of interest, obtained from extensive research involving
the modeling of observed phenomena [33], is expressed as

Φ Ω =
σ2ϕLo

2 1 + ΩLo 2
3 2

(20.72)

The variable Ω= 2π λ = 2πξ is the spatial angular fre-
quency and λ represents the spatial wavelength. The param-
eter ξ is the spatial frequency having units of cycles/meter
and Lo is referred to as the outer scale size and represents
the length of the electron homogeneity in the structured ion-
osphere. This scale size ranges from 1 to 10 km and, as will be
seen, is related to the spatial correlation length ℓc in the plain
of the receiver.

The parameter σ2ϕ is the signal phase variance and is

related to the electron density fluctuation [34] σ2Ne. However,
because the present analysis is concerned with Rayleigh
amplitude statistics, the intensity fluctuation is, in a sense,
saturated and σ2ϕ simply becomes a scale factor. Expressed
as a function of the spatial frequency ξ, the PPSD is given by

Φ ξ =
σ2ϕLo

2 1 + 2πξLo
2

3 2
(20.73)

The electric field fluctuation in the plain of the receiver* is
obtained by taking the inverse Fourier transform of the zero-
mean complex Gaussian random variable

b ξ = bI ξ + jbQ ξ (20.74)

where the quadrature components i = {I,Q} are distributed as

pbi ξ bi =
1

2πσϕ ξ
e−b

2
i 2σ2ϕ ξ (20.75)

with variance σ2ϕ ξ Φ ξ . The components b i(ξ) are statis-
tically independent in i and ξ.

Based on these characterizations, the received spatial elec-
tric field strength is given by

ε ℓ =
1
2π

∞

−∞

b ξ ej2πξℓdξ (20.76)
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FIGURE 20.11 Ionospheric channel impulse response
characteristics (L = 1 km, fc = 10 GHz, Rs = 2k symbols/s).

*The plane of the receiver is defined as the plain normal to the receiver
antenna pointing vector.
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To generate receiver sample functions or sequences for
use in subsequent system simulations, the inverse FFT is used
and the discrete form of (20.76) is expressed as

εm ℓ =
Δξ
2π

N−1

n= 0

bn ξ ej2πnm N (20.77)

where the n and m indices are defined as ℓ =
mΔℓ m= 1,…,N and ξ = nΔξ : n = 1,…,N. Furthermore,
using a radix-2 FFT of length N samples such that N is a
power of two, results inΔξΔℓ = 1 N. The quadrature compo-
nents of the complex function εm = εIm + jεQm are also iid
zero-mean Gaussian random variables.

The 3-dB spatial frequency of the PPSD, normalized to
Φn 0 = σ2ϕ 2, is evaluated as ξo = 0 122 Lo and the spatial
sampling frequency is ξs =Kξo, where K is selected to satisfy
the Nyquist criterion. Figure 20.12 shows the sampling char-
acteristics of the three functions of interest with the abscissa
expressed in terms of the outer scale size Lo. Figure 20.13
shows a typical computed spatial sequence (or record) for
Lo = 3 km, σϕ = 1 , with K = 64 and N = 4096.

20.7.1 Spatial Correlation of Receiver
Electric Field Strength

The correlation distance ℓo of the receiver electric field is a sig-
nificant parameter and is used to determine the required sep-
aration between receiver terminals for spatial combining
diversity. It is also used to determine the scintillation decorr-
elation time τo used to determine FEC code length, interleaver
length, and repeat message intervals for temporal combining.
The correlation distance is defined in terms of the normalized
autocorrelation coefficient ρc ℓ = R ℓ R 0 such that

ρc ℓ
ℓo
= e−1 = 0 368 (20.78)

The correlation function R(ℓ) is evaluated as

R ℓ =E εk + ℓε
∗
k (20.79)

Evaluation of (20.79) using the expression for εk proceeds
as follows:

R ℓ =
Δξ2

2π 2

N−1

n= 0

N−1

m = 0

E bnb
∗
m ejn k + ℓ Ne− jmK N (20.80)
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FIGURE 20.12 Representations of spectral and spatial
functions.
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Because bn and b∗m are orthogonal, that is, are independent
normal random variables, E bnb∗m =Cδnm, where δnm is the
Kronecker delta function. Using this result the correlation
function becomes

R ℓ =
Δξ
2π

N−1

n = 0

E bnb
∗
n ejnℓ N (20.81)

Using the expression for the complex iid zero-mean sam-
ples bn results in

E bnb
∗
n =

σ2ϕLo

1 + 2πnΔξLo 2 3 2
(20.82)

and the desired expression for the correlation function
becomes

R ℓ =
Δξ σ2ϕLo

2π

N−1

n= 0

ejnℓ N

1 + 2πnΔξLo 2
3 2

(20.83)

Equation (20.83) is evaluated numerically to determine
the correlation distance ℓo or by changing the integrand to
a continuous function, normalizing by R(0) and evaluating
the resulting integral yields the normalized solution

ρ x =
x

Lo
K1

x

Lo
(20.84)

where K1(–) is the modified Bessel function of order one.
Evaluation of this result at the decorrelation value of e−1

results in the correlation distance

ℓo = 1 65Lo (20.85)

To check the fidelity of the simulation code in generating
the sampled received electric field sequences, the correlation
responses of the sequences shown in Figure 20.13 are eval-
uated and the results are shown in Figure 20.14 with the
abscissa plotted in terms of the spatial distance
ℓ =mLo 0 122K, m = 1,…, N − 1. From these results and
using the decorrelation value of 0.368 defined earlier, the cor-
relation distance for both the in-phase and quadrature chan-
nels are nearly the same and equal to ℓo = 4 61 km. The
theoretical value, derived earlier is ℓo = 1.65(3 km) =
4.95 km so the simulated results are within 7.4% of the the-
oretical value. As the number of independently generated
received sequences increases the average correlation
response converges to the theoretical response expressed
by (20.83).

As a further verification of the simulation code, the power
spectral density of the received field strength is computed and
shown in Figure 20.15. The circled data points represent the
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PPSD based on the simulation results in Figures 20.13 and
20.14; the solid curves in Figure 20.15 are the theoretical
PPSD. To obtain a quantitative measure of the simulated
PPSD results a linear mean-square regression analysis is
computed for the samples in Figure 20.15b in the range
0.2 ≤ ξ ≤ 2.17. This analysis indicates that slope of the PPSD
curve and 3 dB intercept point are within 3.6 and 4.5% of the
respective theoretical values.

20.7.2 Concatenation of Computer-Generated
Scintillation Records

In this and the following section, the independently generated
orthogonal receiver electric field strength sequences
described in the preceding section are stored as data records
and used as required in a system simulation. Typically a sys-
tem simulation will require the concatenation of many data
records over the time spanned by the communication data
or message. Each data record is generated using different
noise seeds so the in-phase and quadrature scintillation sam-
ples in each record and between the records are independent.
To concatenate data records in a seamless manner without
severe amplitude and phase discontinuities, the records to
be joined are separated in distance by one correlation interval
(ℓo) and interpolation is used to generate additional samples
to fill-in the gap of length ℓo. The interpolation is based on a
third-degree polynomial in ℓ with coefficients computed
based on the boundary conditions yielding equal amplitude
and slopes of the two records being joined. This is equivalent
to solving the equation

1 0 0 0

1 ℓc ℓ
2
c ℓ

3
c

0 1 0 0

0 1 2ℓc 3ℓ2c

co

c1

c2

c3

=

εo

ε1

εo

ε1

(20.86)

where εo is the last data point in the current record, assumed
to be at ℓ = 0 and ε1 is the first data point in the new record,
assumed to be at ℓ = ℓo. The primed values are the slopes of
the corresponding data points that are computed using the
next to the last and the second data point in the respective
records. The number of data points used to span the correla-
tion interval ℓo is Nc = ℓo Δℓ = 0 2013 K .

20.7.3 Spatial-to-Temporal Conversion
of Computer-Generated Data Records

In this section, the application of the spatial data records to
the received signal data-modulated waveform is described.
The first step involves the conversion of the spatial sequences
to temporal sequences based on the knowledge of the dynam-
ics of the electron plume and the communication platform.
If the encounter were completely stationary, that is, the

communication platforms were fixed in position and the
Earth’s rotation and electron plume were frozen in place, then
the received signal amplitude would be based on a random
selection from the Rayleigh amplitude distribution. If, how-
ever, the selected amplitude resulted in a deep amplitude null,
exceeding the available link margin then communications
would be impossible. In this situation if, for example, the
receiver were to move by about one spatial correlation inter-
val ℓo, then it would be likely that the resulting signal ampli-
tude would be high enough of to establish communications.
The phenomena of this idealized example is exactly what is
taking place; however, the Earth and electron plume is con-
tinually moving and the communication platforms them-
selves exhibit velocity components that contribute to the
Rayleigh received signal amplitude fluctuations. During
the time immediately following the detonation, the electron
plume will exhibit extremely high velocity components
due to the forces of the initial blast. Following the initial det-
onation, the energy dissipates resulting in less dynamic inter-
actions and lower velocities. During this period of electron
recombining in the ionosphere and troposphere much longer
lasting scintillation effects continue due to the influence of
wind and other natural dynamic forces that influence the
direction and velocity of the electron plume.

The velocity of interest is the velocity vector in the plane
of the receiver that results from all of the relative motions of
the encounter. For example, consider that the resulting veloc-
ity in the plane of the receiver is V = ℓ t, where ℓ is the dis-
tance that a point on the received spatial sequence moves in
t seconds. As mentioned previously, the time for this ficti-
tious point to move one correlation interval of length ℓo is
defined as the temporal decorrelation time τo, so that, the
velocity is described as

V =
ℓ

t
=
ℓo

τo
(20.87)

Using the right-hand equality in this expression and sub-
stituting for the correlation distance in terms of Lo results in
the normalized expression

t

τo
=

ℓ

ℓo
=

ℓ

1 65Lo
(20.88)

The maximum time spanned by a computer-generated
sequence is determined from the maximum length ℓmax

and, referring to Figure 20.12, ℓmax = 1 Δξ=NLo 0 122K
so that

tmax
τo

=
ℓmax

1 65Lo
=

N

0 2013K
(20.89)

Using the example parameters: N = 4096, K = 64 and Lo =
3 km, the number of decorrelation time constants spanned by
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a computer-generated record is tmax τo = 317 9. This is an
important consideration, in that, the accuracy and resulting
confidence of a Monte Carlo performance simulation must
take into account the relatively long times involved in char-
acterizing the impact of the channel fluctuations. The corre-
sponding sampling interval of the computer-generated
records is

Δts =
tmax
N

=
τo

0 2013K

=
ℓo

0 2013KV
=
8 1967Lo

KV

(20.90)

where the link between τo and ℓo is through the velocity, that
is, V = ℓo τo. In terms of the computer-generated records,
referring to Figure 20.12c, the sample interval is

Δℓ =ΔtsV =
Lo

0 122K
(20.91)

Consider that a modulated symbol of duration T seconds
(Rs = 1/T symbols/s) is received and sampled using Ns sam-
ples per symbol. Under these conditions, the required
receiver sampling interval is

ΔTs =
T

Ns
(20.92)

Except for the unique case when ΔTs =Δts, it will be nec-
essary to interpolate between the scintillation record samples
and the required receiver sampling instant. To aid in the
description of the sampling, Figure 20.16 shows the temporal
samples (gk) that have been transformed from the spatial sam-
ples (εm) as described earlier. For convenience gk is consid-
ered to be a real signal and it is implicit that sampling and
interpolation is applied to both the real and imaginary parts
of the complex scintillation process. The interpolation of
the symbol sample is based on linear interpolation. For exam-
ple, considering kΔts ≤ iΔTs ≤ (k + 1)Δts the symbol sample
gi corresponding to iΔTs is computed using the nearest record
samples kΔts and (k + 1)Δts as

gi = gk +
gk + 1−gk

Δts
iΔTs−kΔts

= gk + gk + 1−gk i
ΔTs
Δts

−k

(20.93)

The slow and fast scintillation conditions are defined in
terms of the decorrelation time relative to the symbol
duration. For the slow fading condition shown in
Figure 20.16a, there are typically many symbol samples rel-
ative to the record samples and the parameters of the interpo-
lation gk and gk+1 are not updated very often. For very slow

scintillation, the record samples or symbol amplitudes are vir-
tually constant over many symbols leading to a considerable
saving in simulation time. In the case of fast scintillation, the
record sampling must ensure that the symbol sampling does
not result in aliasing. This can be accomplished by selecting
the symbol sampling frequency fs such that fs =max(1/Δts,
1/ΔTs) where ΔTs = T Ns and Ns is the required samples
per symbol to satisfy the Nyquist sampling frequency in
the additive white Gaussian noise (AWGN) channel. Using
this and the previous results the required sampling frequency
with scintillation can be expressed as

fs =max
0 2013K

τo
,
Ns

T

=
1
T
max

0 2013K
τo T

,Ns

(20.94)

Although not necessary, it is often convenient to choose
the number of samples per symbol to be an integer in which
case the condition fs =Ns T applies and

Ns =max
0 2013K
τo T

,Ns (20.95)

where signifies the ceiling or the smallest integer greater
than the argument and, in this case, is the required samples

ΔTs
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(a)

(b)

FIGURE 20.16 Temporal scintillation record sampling (solid
lines) and interpolated samples (dashed lines).
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per symbol to satisfy the Nyquist condition with channel
scintillation. For a given scenario the ratio ΔTs/Δts in the
interpolation equation is a constant and, in view of the pre-
ceding comments, is generally expressed as

ΔTs
Δts

=
1

fsΔts

=

0 2013K
Ns

T

τo
slow and moderate scintillation

1 fast scintillation

(20.96)

In the last equality of (20.96), the symbol sampling
frequency is equal to the scintillation record sampling
frequency and no interpolation is necessary. In this case,
the channel symbol sampling frequency must be increased
so that ΔTs =Δts and rate conversion or downsampling in
the receiver processing may be applied to result in a conven-
ient number of samples per symbol for demodulation and
tracking. Of course, the rate conversion must satisfy the
Nyquist sampling criterion in consideration of the received
signal and channel bandwidths.

20.7.4 Additional Simulation Considerations

Upon inclusion of the signal scintillation data records
described earlier into a simulation program, it is necessary
to establish and verify various operational conditions to
ensure reliable and accurate results. Several parameters
requiring calibration and verification are discussed in this
section.

20.7.4.1 Establishing the Receiver Signal-to-Noise
Ratio The Rayleigh fading channel introduces absorption
and other losses that result in a net loss in the received signal
power relative to the AWGN channel. The simulation code,
however, does not need to account for these detailed losses as
long as the received signal-to-noise ratio is properly estab-
lished. In fact, because of various normalizations, the Ray-
leigh fading records result in a net channel gain that must
be determined to establish the received signal-to-noise ratio.
The power gain through the Rayleigh fading channel is sim-
ply the second moment of the Rayleigh pdf and is given by

E εm
2 = 2σ2ϕ (20.97)

where σ2ϕ is the variance of the underlying Gaussian noise
process used to generate the Rayleigh samples. For a
finite-length record, the channel power gain will vary from
record to record and Table 20.12 lists the statistical para-
meters associated with five records each with 2048 complex

samples εm. The received signal-to-noise ratio in an AWGN
channel is computed as γn =P σ2n where P is received signal
power and σ2n is the AWGN power. Therefore, the received
signal-to-noise ratio from the scintillating channel is
determined as

γc =
ρP

σ2n
(20.98)

where ρ= E[|εm|
2] = 504.607 is the average of five independ-

ently generated scintillation data records* as listed in
Table 20.12.

20.7.4.2 Generating Uncorrelated Samples When per-
forming a simulation it may be necessary to evaluate the
received symbols under independent or uncorrelated fading
conditions. This requirement applies, for example, with fre-
quency hopping where groups of transmitted symbols are
associated with each hop interval and the frequency hopping
is greater than the channel correlation bandwidth fo. In these
situations the scintillation record is run-up or advanced by
one correlation interval between each frequency hop thus
simulating an uncorrelated scintillation condition from hop
to hop. To achieve this result the scintillation record must
be advanced by Nso samples where

Nso =
ℓo

Δℓ
= 0 2013K (20.99)

For the example records discussed previously K = 64 so
Nso = 13.

20.7.4.3 Verifying Record Generation As in all simula-
tions, it is necessary to evaluate the simulation code before
committing to lengthy system performance runs. A conven-
ient check of the channel sampling relative to the modulated
symbol is to choose the number of channel samples to be

TABLE 20.12 Computed Parameters for Five Typical
Rayleigh Scintillation Records

Record E[|εm|
2] E[|εm|] σ[|εm|]

1 463.47 19.116 9.902
2 502.793 19.892 10.349
3 555.349 20.850 10.983
4 489.232 19.448 10.536
5 512.193 20.234 10.138
Composite results
All 504.607 19.908 10.383

*Averaging additional data records resulted in a difference of less than 0.1 dB
in the Eb/No performance specification; however, the averaging of different
record sizes and scintillation parameters should also be examined.
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equal to the Nyquist samples that are required to avoid alias-
ing in the AWGN channel. That is, by choosing

0 2013K
τo T

=Ns (20.100)

Or alternately by choosing

τo
T
=
0 2013K

Ns
(20.101)

the symbol samples will correspond to the scintillation record
samples which are easily verified.

20.8 SCINTILLATION MITIGATION
TECHNIQUES

The techniques used to mitigate communications signal scin-
tillation involve the system operating conditions, medium
access control (MAC) protocols, and waveform design.
The applicable mitigation techniques depend on the system
mission requirements, for example, multiple links and satel-
lites, selection of satellite orbits, ground support systems,
communication networks and protocols, long transmissions
involving video and mapping data, and short emergency
action messages (EAMs). The waveform mitigation techni-
ques include time diversity, FEC coding, data interleaving,
and a form of robust symbol modulation like noncoherent
or differentially coherent. Table 20.13 summarizes the

system mitigation techniques to provide reliable communica-
tions through a scintillating channel.

Increasing the EIRP has a limited effect on the link margin
because the signal variations result from phase cancellations.
Typically a 3 dB link margin is provided to assist the link
recovery as the absorption recovers from a sudden loss of sig-
nal due to a blackout event or deep fade condition. Increasing
the EIRP by increasing the antenna gain is limited by acqui-
sition and beam tracking issues and angular scattering
through the channel. From a system point of view spatial
diversity is effective, however, is problematic with geosta-
tionary orbits (GEOs) in terms of networking and protocol
requirements for systems operating at lower frequencies.
For example, if an ultra-high frequency (UHF) GEO satellite
link to a ground site is affected by severe scintillation it will
most likely remain so for several hours. Relay links through
neighboring satellites or ground stations separated in distance
greater than 2ℓo is effective but requires robust and flexible
protocols. The geosynchronous orbits (GSOs), low Earth
orbits (LEOs), and highly elliptical orbits (HEOs) inherently
provide spatial diversity by virtue of the satellite motion rel-
ative to fixed earth coordinates. An issue with these orbits is
reacquiring the satellite emerging from a severely stressed
region and providing protocols that handle lost data such
as ARQ and BCI. BCI requires that demodulator symbol tim-
ing and carrier tracking states be preserved during a loss-of-
signal condition, keeping an accurate count of lost bits when
signal detection is resumed. Links that can be switched to
other satellites not affected by the stressed environment are
effective in preserving communications but require robust
and flexible protocols. Increasing the carrier frequency is
arguably the single most effective system mitigation
technique.

Table 20.14 summarizes waveform and demodulator mit-
igation techniques that provide reliable communications
through a scintillating channel.

Robust waveform modulations include noncoherent
M-ary frequency shift keying (NC M-ary FSK), alternately
referred to as NC multifrequency shift keying (NCMFSK)
and differentially coherent multiphase shift keying
(DCMPSK); however, to minimize the matched filter detec-
tion loss, the symbol duration must be less than the minimum
channel decorrelation time, that is, T < τo(min); for differ-
ently coherent modulation T < τo(min)/2. Coherent modula-
tion requires that the carrier tracking phaselock loop
bandwidth be much greater than the reciprocal of minimum
channel decorrelation time, that is, BL ≥ 10/τo(min). As dis-
cussed in Chapter 10, the symbol rate for phaselock loop
tracking must satisfy the requirement Rs > BL/k where k 1
is dependent on the waveform modulation. Suppose, for
example, that a message consists of Ns symbols; in this case,
the entire message can be coherently tracked during the chan-
nel decorrelation time if the symbol rate satisfies the condi-
tion Rs > 10Ns/(kτo(min)). The probability of a correct

TABLE 20.13 System Scintillation Mitigation Techniques

Mitigation
Technique Comments

Increase link
margin

Increase EIPR
Decrease the system noise figure
Decrease the data rate
Increase FEC coding and interleaving
Increase antenna gain (limited by ℓo)

Frequency
selection

Increasing frequency is an effective way to
mitigate scintillation

Spatial diversity Multiple satellites
Satellite cross-links
Multiple antennas

Network
protocols

Full or partial satellite processing
Satellite up and downlink switching
Network timing
Data priorities
Bit count integrity (BCI)
Automatic repeat request (ARQ)

Satellite orbit
selection

GSO, LEO, and HEO nonstationary satellites
Satellite orbit control provides spatial diversity
and survivability
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message reception and delivery time depends on the commu-
nication protocol and the statistical characteristics of τo.
During deep signal fades the signal-to-noise ratio will be
degraded resulting in degraded detection and tracking;
however, the noncoherent and differentially coherent modu-
lations will inherently recover from these deep fades,
whereas, coherent modulation may require reacquisition
processing to resume detection. With the aid of signal-to-
noise ratio estimation algorithms the tracking loops can be
locked during deep fades and unlocked as the signal level
recovers. Differentially encoded coherent modulation has
the advantage of resolving phaselock ambiguities that may
occur during phase acquisition and tracking. The most sensi-
tive demodulator issues in a scintillation environment are
related to the antenna, symbol, and carrier tracking loops.

Bit interleaving provides a measure of time diversity and is
necessary with random error correcting FEC coding; however,
interleaving over the maximum channel decorrelation time
τo(max) results in long delays and large data storage require-
ments. Burst-error correction convolutional codes and Reed–
Solomon block codes provide robust error correction perfor-
mance with scintillation. Frequency diversity is effective as
long as the frequency separation exceeds the frequency-
selective bandwidth, that is,Δf > fo(max). Because of the large
frequency shifts required to satisfy this condition, noncoherent
frequency combining is often impractical. The use of spread-
spectrummodulated waveformswith RAKEdemodulator pro-
cessing is an effective mitigation in multipath environments.
Spatial diversity is discussed earlier, in the context of system
operations; the use of multiple receiver antennas or antenna
steering is also applicable to the receiver and demodulator

processing. For example, the application of MIMO antenna
structures [35–38] with multiple-receiver signal combining is
an effective implementation of spatial diversity.

20.9 CASE STUDY: BPSK AND DCBPSK
PERFORMANCE IN RAYLEIGH FADING
CHANNEL

In this case study, the performance of several robust
waveform modulations is examined using Monte Carlo
simulations and computer-generated Rayleigh channel scin-
tillation records as described in Section 20.7. Based on the
Rayleigh model, the channel fading conditions correspond
to slow and fast Rayleigh fading that are defined in terms
of the modulated symbol rate. For example, when the channel
decorrelation time is much greater than the symbol duration
then slow fading occurs and when it is much less than the
symbol duration then fast fading is encountered. A major
advantage of performing Monte Carlo simulations is that
the system performance can be evaluated in the intermediate
range involving T/k1 ≤ τo ≤ k2Twhere k1 and k2 depend on the
modulation with typical values of k1 = 10 and k2 ranging from
ten to several hundred; in this region analytical models are, at
best, questionable. Robust waveform modulations, without
FEC and interleaving, that offer the least complexity and per-
formance degradation in a severely fading channel* are dif-
ferently encoded binary phase shift keying (DEBPSK),
DCMPSK, and NCMFSK. As a point of reference, the bit-
error performance of these waveform modulations, operating
in the AWGN channel without FEC coding and combining, is
depicted in Figure 20.17; in this context, the most useful

TABLE 20.14 Waveform and Demodulator Scintillation
Mitigation Techniques

Mitigation
Technique Comments

Modulation
selection

Noncoherent
Differentially coherent
Differentially encoded coherent

Time diversity Time diversity ≥τo, bit interleaving, message
repetition, message piecing

Adaptive
processing

Decision feedback equalization (DFE)

FEC coding Block coding (BCH or RS coding)
Convolution coding
Turbo, turbo-like, and LDPC coding
Data randomizers and interleavers

Diversity
combining

Selection diversity (SD)
Maximum ratio combining diversity (MRCD)
Equal gain diversity (EGD)

Frequency
diversity

Requires frequencies ≥fo

Spatial
diversity

Multiple antennas with beam steering multiple-
in multiple-out (MIMO) antennas
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FIGURE 20.17 AWGN performance of several robust waveform
modulations.

*A severely fading channel is a channel that experiences the range of τo or fo
shown in Figures 20.8 and 20.9.
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implementation of DCMPSK is DCBPSK. The dotted perfor-
mance curves represent coherently detected binary phase
shift keying (BPSK) and quadrature phase shift keying
(QPSK) modulations and are shown only as a point of refer-
ence; these modulations do not perform well in severe chan-
nel scintillation due the phase tracking requirement. In
Section 20.9.1, the performance of these modulated wave-
forms is evaluated with slow fading channels using Monte
Carlo simulation under various conditions of the normalized
channel decorrelation time τo/T and, in the case of DEBPSK,
the phaselock loop time bandwidth products BLτo and BLT.

20.9.1 Performance of Robust Modulations
in Rayleigh Fading Channel

The simulated bit-error performance of DEBPSK and differ-
ently coherent binary phase shift keying (DCBPSK) in a
severe Rayleigh channel with slow fading is shown in

Figure 20.18. In this example, the channel corresponds to fre-
quency nonselective or flat fading. The performance depicted
by the solid curve is the theoretical performance of DCBPSK
with slow fading Rayleigh limit (SFRL) from Figure 18.7.
The dashed curves show the Monte Carlo simulated perfor-
mance under the indicated normalized channel decorrelation
times. FEC coding, interleaving, or combining is not used in
these examples and the received signal frequency error is
zero. The Monte Carlo simulations involve a minimum of
100 channel decorrelation intervals for each Eb/No. The
DEBPSK waveform requires phase tacking in the demodula-
tor. However, the π radian ambiguity, that may result after the
tracking loop recovers from the channel fading, does not
result in catastrophic errors but an error multiplication results
due to the differential bit-to-bit phase decoding.

Figure 20.18a–c shows the impact on the performance of
DEBPSK for the indicated conditions of normalized loop
bandwidth (BLT) of the second-order, hard-limiting, Costas
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FIGURE 20.18 Performance of DEBPSK and DCBPSK in a slow Rayleigh fading channel (β = 0).
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phaselock loop. The DCBPSK demodulator performance is
shown in Figure 20.18d. In this case, a first-order frequency
tracking loop is used that recovers rapidly from a severe
channel fade. In general, Figure 20.18 shows that the bit-error
performance approaches an irreducible error rate with
increasing Eb/No and, with decreasing Eb/No, the bit-error
performance approaches the theoretical SFRL bit-error prob-
ability asymptotically from above.* Furthermore, as the
normalized channel decorrelation time (τo/T) increases
the bit-error probability becomes asymptotically closer to
the theoretical SFRL performance with a correspondingly
lower irreducible bit-error probability with increasing Eb/
No. The impact of the SFRL channel on the phaselock loop
tracking is evident; however, it is complicated by the influ-
ence of the random data and Rayleigh channel fluctuations
on the hard-limiting phaselock loop and the manner in which
the differentially encoded data recovers from deep fades.
Figure 20.18b and c demonstrates performance symmetry
in terms of τo/T about the selection of BLT = 0.1 shown in
Figure 20.18a. However, in terms of the product BLτo, using
BLT = 0.044 is preferred because of the tolerance to lower
channel decorrelation times.

Figure 20.19 compares the performance of these wave-
forms, including the 8-ary noncoherently detected FSK
waveform, under the indicated conditions. Part a is similar
to the performance in Figure 20.18 and part b shows the
dependence of Eb/No on the normalized decorrelation time
τo/T corresponding to a bit-error probability of Pbe = 0.02.
The rapid increase in the required Eb/No ratio as τo/T
decreases results from the fast fading Rayleigh limit

(FFRL) relative to the symbol duration. These results indicate
that DCBPSK and 8-ary FSK have similar performance
characteristics; however, the 8-ary FSK provides three
bits per symbol at the expense of a wider transmission
bandwidth.

20.9.2 Performance of Frequency Hopped DCBPSK
with Combining in Rayleigh Fading Channel

In this section the performance of DCBPSK is examined in a
frequency-hopping application with a hopping capability that
exceeds the decorrelation bandwidth fo. In this case, 10 differ-
entially coherent information bits are appended to a reference
bit and a guard interval Tg = 0.1Tb is used to provide for fre-
quency synthesizer settling. The hopping format, of duration
Th = 11.1Tb, is shown in Figure 20.20.

To realize a combining gain with nonselective frequency
fading, the information bits are repeated with the synthesizer
frequency exceeding the previous hop frequency by the dec-
orrelation bandwidth fo.

†
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FIGURE 20.20 Frequency-hopped DCBPSK modulated
information bits.

*The curves are labeled SRF; however, since β = 0 the channel corresponds
to the SFRL condition.

†In a baseband simulation, this simply requires that the simulated fading rec-
ord be advanced by one decorrelation interval to encounter an independent
hoping interval.
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The resulting demodulator performance is shown, as the
dashed curves, for the SFRL channel in Figure 20.21 using
SD with Nc = 2 and 3. This corresponds to the nonselective
frequency combining of two and three hops with repeti-
tions of the information bits. These results are based on
Monte Carlo simulations with a minimum of 1000 inde-
pendently fading hops at each signal-to-noise ratio using
the simulation and hop combining techniques discussed
in Sections 20.7.2 through 20.7.4. The theoretical aspects
of diversity combing techniques are discussed in
Section 18.8 and the simulated performance results are
in good agreement with the theoretical results shown in
Figure 18.13. The circled data points correspond to the
SFRL and AWGN channels and demonstrate the accuracy
of the DCBPSK waveform simulation under these respec-
tive channel conditions.

20.9.3 Performance of Convolutional Coded
DCBPSK with Interleaving in Rayleigh
Fading Channel

This example uses FEC coding, data interleaving, and
DCBPSK waveform modulation as shown in Figure 20.22.
The details of the FEC coding, interleaving, and modulation
are given in Table 20.15. The output of the convolutional
coder is used to fill the block interleaver column by column
and, when the interleaver is filled, the row-by-row output is
sent to the differentially coherent modulator following the
initial reference bit. On average, the errors are separated by
Tsep = Trow + 1 = 32 bits. In terms of the channel decorrelation
time τo/Tsep = 34/32 = 1.0625 so the interleaver spans about
one decorrelation interval. The bit-error performance in the
SFRL channel for this coding configuration is shown as
the dashed curve in Figure 20.23. The solid curves with
the circled data points represent, respectively, the theoretical
and simulated performance in the SFRL and AWGN chan-
nels without coding. The solid curve, labeled coded, is the
simulated performance of the convolution coded waveform
in the AWGN channel. The solid curves are included as a ref-
erence or performance goal. This coding andmodulation con-
figuration performs somewhat better, at the expense of
bandwidth and complexity, than the Nc = 3 SD combining
performance shown in Figure 20.21.

20.9.4 Performance of Concatenated Convolutional
and Reed–Solomon Block Codes with DCBPSK and
DCQPSK in Rayleigh Fading Channel

The code concatenation in this example uses the rate 1/2 con-
volutional inner code, as described in the preceding section,
with a rate 1/2, 6-symbol-error correcting (24,12) 64-ary
shortened Reed–Solomon outer code [39]. The intent is to
examine the capability of the 6-symbol (6-bits/symbol)
burst-error correction capability of the Reed–Solomon block
code without using an interleaver between the codes. The
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performance of this configuration is characterized as con-
tours of Eb/No versus τo for constant block-error probabilities
of Pe(Blk) = 1/3, 1/30, and 1/300 as shown in Figure 20.24 for
DCBPSK and differentially coherent QPSK (DCQPSK)

modulations. These plots are obtained by plotting families
of Pe(Blk) versus Eb/No, similar to the Pbe versus Eb/No in
Figure 20.23, for a number of channel decorrelation times
and then plotting Eb/No versus τo that intersect the selected
constant Pe(Blk) condition. These plots reveal some interest-
ing characteristics concerning the performance in the fading
channel. For example, as τo decreases the signal-to-noise
ratio approaches the FFRL and as τo increases the signal-
to-noise ratio approaches the SFRL of the coding configura-
tion. The region exhibiting a relatively constant signal-to-
noise ratio is the range over which the Reed–Solomon code
is effective in correcting the errors from the convolutional
inner code.

The influence of τo is dependent on the symbol rate, so the
performance curves in Figure 20.24 will shift left or right cor-
responding, respectively, to higher or lower symbol rates.
The symbol rate is also a function of the FEC code rate, in
that, Rs = rcRb. However, for a given symbol rate, the region
of constant signal-to-noise performance can be expanded to
the right, accommodating larger decorrelation times, by
increasing the span (N) of the block interleaver for a
given K, thus increasing the parity bits, of the (N,K) Reed–
Solomon code.

20.9.5 Performance of Uncoded Noncoherent M-ary
FSK Modulation with Rayleigh Fading Channel

An upper bound on the bit-error performance of uncoded
noncoherently detected M-ary FSK with diversity ℓ is given
by [40, 41]

Pbe ≤ 2
k−1pℓ

ℓ−1

i= 0

ℓ−1 + i

ℓ
1−p i (20.102)

TABLE 20.15 FECCoding, Data Interleaving, andWaveform
Parameters

Function Characteristics

FEC coding Rate rc = 1/2, constraint length K = 7 outer
convolutional code

Generators: g1 = 1111001, g2 = 1011011
Viterbi 64 state trellis decoder with: 3-bit soft

decisions and 32-bit depth
Data interleaving (M,N) block interleaver: M = 31, N = 56
DCBPSK τo/Tb = 34
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where k = log2(M) is the number of bits per symbol and the
probability p is given by

p = 2 +
k

ℓ

Eb

No

−1

(20.103)

Evaluation of (20.102) is shown in Figure 20.25 for var-
ious values of ℓ. The average received signal-to-noise ratio
from the fading channel is <Eb/No>. For bit-error probabil-
ities above about 10−5 there is a performance loss between
ℓ = 16 and 20 and further increases in diversity only provide
performance gains at bit-error probabilities less than about
10−5. Upon comparing the uncoded 8-ary FSK diversity per-
formance with that of the dual-3 convolutional coded 8-ary
FSK performance in Figure 8.50, the dual-3 code perfor-
mance for ℓ = 1 and 2 is about the same as the respective

uncoded performance for ℓ = 6 and 12. Although the perfor-
mance of the dual-3 code is significantly better with diversi-
ties of 3 and 4, the decision influencing the choice between
the two approaches may involve the computational
complexity.

APPENDIX 20A GEOGRAPHIC AND
GEOMAGNETIC COORDINATE
TRANSFORMATIONS

This appendix outlines the geometry required to convert a
point described in the geographic coordinate system to the
geomagnetic coordinate system and vice versa. The points
are described in terms of the respective latitude and longitude
polar angles (ϕ, λ) and (Φ, Λ). Positive latitudes correspond
to the northern hemisphere and positive longitudes corre-
spond to degree east of the Greenwich Meridian; negative
longitudes are measured to the west. The geographic system
axes are defined as (x, y, z) where the positive z-axis in
the direction of the North Pole and the positive x-axis inter-
sect the Greenwich Meridian at the geographic equator and
the positive y-axis corresponds to 90 east longitude.
A spherical Earth with radius R is assumed and the polar
angles of the geomagnetic system are defined in terms of
the geographic system as (ϕm, λm) where ϕm = 78.6
and λm = −69.8 . The geomagnetic system axes are defined
as (xm, ym, zm). These relationships are depicted in
Figure 20A.1 where the spherical triangle [42] (P, Pm, Px)
is used to evaluate the transformation between the polar coor-
dinates as described in the following sections.

The location of the point Px with geomagnetic polar coor-
dinates (Φ, Λ) is transformed into geographic coordi-
nates using
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x

y

z

=

cos ϕ cos λ 0 0

0 cos ϕ sin λ 0

0 0 sin ϕ

xm

ym

zm
(20A.1)

where the geographic polar coordinates (ϕ, λ) are computed
as described in Section 20A.2 and the geomagnetic location
of Px is determined as

xm

ym

zm

=R

cos Φ cos Λ 0 0

0 cos Φ sin Λ 0

0 0 sin Φ
(20A.2)

The transformation from geographic-to-geomagnetic
coordinates is accomplished by the appropriate interchange
of the axes and polar angles.

20A.1 GEOGRAPHIC-TO-GEOMAGNETIC
COORDINATE TRANSFORMATION

In this case the geographic coordinates (ϕ, λ) are known and
the geomagnetic coordinates (Φ, Λ) are to be computed. Re-
ferring to the spherical triangle in Figure 20A.1 and applying
the law of cosines* results in the expression

cos 90−Φ = cos 90−ϕm cos 90−ϕ

+ sin 90−ϕm sin 90−ϕ cos λ−λm

(20A.3)

that simplifies to

sin Φ = sin ϕm sin ϕ + cos ϕm cos ϕ cos λ−λm
(20A.4)

Using (20A.4) the geomagnetic latitude is determined as

Φ = arcsin sin ϕm sin ϕ + cos ϕm cos ϕ cos λ−λm
(20A.5)

The geomagnetic longitude is determined using the law of
sines for spherical geometry that results in the expression

sin 180− Λ
sin 90−ϕ

=
sin λ−λm
sin 90−Φ

(20A.6)

When simplified and rearranged (20A.6) results in the
expression for sin(|Λ|)

sin Λ =
cos ϕ sin λ−λm

cos Φ
(20A.7)

Equation (20A.7) can be used to solve for Λ by using the
trigonometric identity

cos Φ = 1−sin2 Φ (20A.8)

Substituting (20A.4) to eliminate the dependence on Φ
results in an involved expression and using (20A.7) results
in a quadrant or sign ambiguity that needs to be resolved.
A more satisfying approach is to use the law of cosines invol-
ving the longitude angle Λ expressed as

cos 90−ϕ = cos 90−ϕm cos 90−Φ
+ sin 90−ϕm sin 90−Φ cos 180− Λ

(20A.9)

Upon simplifying (20A.9), solving for cos(|Λ|), then elim-
inating the dependence on sin(Φ) by substituting (20A.4),
and performing some additional simplifications results in
the desired expression

cos Λ =
sin ϕm cos ϕ sin λ−λm −cos ϕm sin ϕ

cos Φ
(20A.10)

Equations (20A.7) and (20A.10) are now used to compute
the magnetic longitude using the atan2(y, x) function with the
result

Λ = atan2 cos ϕ sin λ−λm , sin ϕm

cos ϕ sin λ−λm −cos ϕm sin ϕ
(20A.11)

The dependence onΦ in (20A.11) is eliminated by the for-
mation of the ratio sin(|Λ|)/cos(|Λ|) inherent in the atan2( )
function. The advantage in using the atan2( ) function is that
the angles are computed in the range 0 to ±180 † so that
angles 0 ≤Λ ≤ 180 correspond to east longitudes or
0 ≥Λ ≥ −180 correspond to west longitudes.

20A.2 GEOMAGNETIC-TO-GEOGRAPHIC
COORDINATE TRANSFORMATION

In this case the geomagnetic coordinates (Φ, Λ) are known
and the geomagnetic coordinates (ϕ, λ) are to be computed.
The analysis follows similar lines of reasoning as in the pre-
ceding section so only the principal equations are given.

*There are two law-of-cosine formulas, one involving the solution of a side in
terms of the adjacent sides and opposite angle and the other involving the
solution of an angle in terms of the adjacent angles and opposite side; in this
analysis the former solution is used.

†The atan2( ) function in FORTRAN returns the angle in radians that must be
converted to degrees to be consistent with units used in this appendix.

728 IONOSPHERIC PROPAGATION



Using the law of cosines the geographic latitude is
evaluated as

ϕ = arcsin sin ϕm sin Φ −cos Φ cos ϕm cos Λ
(20A.12)

Using the law of sines sin(λ− λm) is evaluated as

sin λ−λm =
cos Φ sin Λ

cos ϕ
(20A.13)

Applying the law of cosines cos(λ − λm) is evaluated, after
substitutions and simplifications similar to those described in
arriving at (20A.10), as

cos λ−λm =
sin Φ cos ϕm + sin ϕm cos Φ cos Λ

cos ϕ

(20A.14)

Using (20A.13) and (20A.14) and the atan2 sin
λ−λm , cos λ−λm function, the geographic longitude is
computed as

λ= λm + atan2 cos Φ sin Λ , sin Φ

cos ϕm + sin ϕm cos Φ cos Λ
(20A.15)

ACRONYMS

a.m. Before noon
ARDC Air Research and Development Command
ARQ Automatic repeat request
AS Antiscintillation
AWGN Additive white Gaussian noise
BCI Bit count integrity
BPSK Binary phase shift keying
DCBPSK Differentially coherent BPSK
DCMPSK Differentially coherent multiphase shift keying
DCQPSK Differentially coherent QPSK
DEBPSK Differentially encoded BPSK
EAM Emergency action message
EGD Equal gain diversity
FEC Forward error correction (coding)
FFRL Fast fading Rayleigh limit
GEO Geostationary orbit
GSO Geosynchronous orbit
HEO Highly elliptical orbit

INTELSATa International telecommunications satellite
ISI Intersymbol interference
LEO Low Earth orbit
LOS Line of sight
MAC Medium access control (protocol)
NC
M-ary FSK

Noncoherent M-ary frequency shift keying or
NCMFSK (detection)

MFP Magnetic field plane
MIMO Multiple-in multiple-out (antenna)
MRCD Maximum ratio combining diversity
NC Noncoherent (detection)
NCMFSK Noncoherent multifrequency shift keying or

NC M-ary FSK (detection)
OGO Orbiting geophysical observatory
p.m. After noon
PPSD Phase power spectral density
QPSK Quadrature phase shift keying
RF Radio frequency
SD Selection diversity
SFRL Slow fading Rayleigh limit
TAB Time after blast
TACSAT Tactical satellite (UHF)
TEC or NT Total electron content (electrons/m2)
UHF Ultra-high frequency

Note: RAKE is not an acronym; it is the name applied to a
wide bandwidth multipath correlator.
aINTELSAT© Corporation is a communications satellite ser-
vices provider.

PROBLEMS

1. Consider the inverse Fourier transform of the filter func-
tion H(u) expressed in the indefinite form

h t =
1
2π

H u ejutdu=
1
2π

ej ρ 2 u2 −Tou+φ ejutdu

=
1
2π

ej ρ 2 u2 + t−To u +φ du

=
1
2π

ej au2 + 2bu+ c du

The general solution, expressed in terms of the para-
meters a, b, and c and the Fresnel integrals, is [30]

h t =
π

2a

cos
b2−ac

a
C

2
aπ

au+ b + sin
b2−ac

a
S

2
aπ

au+ b

+ jcos
b2−ac

a
S

2
aπ

au+ b − jsin
b2−ac

a
C

2
aπ

au+ b
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Considering the definite integral with lower and upper
integration limits −πW and πW and noting that a = ρ 2,
b = t−To 2, and c=φ:

a. Derive the expression for the magnitude of h(t) and
express the result in terms of the Fresnel integrals
and the parameters ρ, t, To, φ, and W.

b. Derive the expression for the phase of h(t) and express
the result in terms of the Fresnel integrals and the para-
meters ρ, t, To, φ, and W.

2. Using the spherical triangle in Figure 20A.1 write the
expression for the law of cosines for determining the geo-
graphic latitude ϕ and write the simplifying equations
leading to (20A.12).

3. Using the spherical triangle in Figure 20A.1 write the
expression for the law of sines for determining sin(λ − λm)
and write the simplifying equations leading to (20A.13).

4. Using the spherical triangle in Figure 20A.1 write the
expression for the law of cosines for determining cos(λ
− λm) and write the simplifying equations and manipula-
tions leading to (20A.14).

Hint: Use the trigonometric identity cos ϕ =

1−sin2 ϕ .
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APPENDIX A
CLASSICAL FILTERS AND APPLICATIONS

A.1 INTRODUCTION

In this chapter, the application of analog filter designs in the
evaluation of systems involving discrete-time sampled data
simulations is described. This approach is straightforward,
in that, the use of the impulse-invariant z-transform is used
in the system simulation where z = esTs and Ts is the sampling
interval. The parameter s = σ + jω is the Laplace transform
variable. The filter designs are sufficiently band-limited
and the system simulation sampling frequency is sufficiently
high so that aliasing is negligible. This is the case in
system simulations where the sampling frequency is gener-
ally several times the symbol rate to provide for frequency
error and receiver timing resolution during acquisition and
tracking.

The analog filter designs used in this chapter are clas-
sical and appear in a number of references [1–8], so the
derivation of the filter design details are not examined.
However, the results presented are intended to document
the implementation details as embodied in filter and sys-
tem simulation programs. The filters examined in this
appendix are the Butterworth filter with maximally flat
amplitude (Section A.2.1), the Bessel filter with maxi-
mally flat delay (Section A.2.3), the Chebyshev filter
with equal passband ripple (Section A.2.2), and the
Elliptic filter with equal passband and stopband ripple
(Section A.2.4).

A.2 CLASSICAL FILTER POLE LOCATIONS

This section reviews and documents the s-plane pole and
zero locations for the filters indentified in Section A.1. In
Section A.3, the frequency domain characteristics are used
in a simulation program to examine the amplitude and phase
responses. The resulting impulse responses are then generated
for inclusion in various communication system simulation
programs. Performance characteristics regarding the filtered
symbol and intersymbol interference distortion attributed to
the phase and amplitude responses are examined. The filter
characteristics, including those described in Appendix B, are
used throughout this book in simulation performance evalua-
tions involving the generation and demodulation of a variety of
communication waveforms through various channels.

A.2.1 Butterworth Filter Pole Locations

The Butterworth filters are characterized as having equally
spaced poles on a unit circle in the s-plane as shown in
Figure A.1.

For an N-pole filter, the pole locations are computed for
n = 0, 1, 2, …, 2N − 1 as

sn =
ej 2n + 1 π 2N N = even

ejnπ N N = odd
(A.1)
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The radius of the unit circle determines the normalized
cutoff frequency Ωc, so a unit radius results in a cutoff
frequency of 1 rad/s.

A.2.2 Chebyshev Filter Pole Locations

The Chebyshev filter is characterized as having equal ampli-
tude ripple in the passband with a monotonically increasing
attenuation in the stopband. The ripple is characterized by the
parameter ε and is related to the ripple specification RdB as

ε= 10RdB 10−1. The Chebyshev poles are related to the
Butterworth pole locations as characterized in Figure A.2
and are described in the following text.

The Chebyshev poles are located on an ellipse [9] with
semimajor and semiminor axes given by

a= sinh
1
n
sinh−1 1

ε
(A.2)

and

b = cosh
1
n
sinh−1 1

ε
(A.3)

Equations (A.2 and A.3) represent the radius of two con-
centric circles as shown in Figure A.2. The angles of the
radial lines correspond to the angles of the Butterworth pole
locations. The intersections of the equally spaced radial lines

with the two concentric circles (denoted by the dotted lines)
are used to determine the Chebyshev pole locations. The
real part of a Chebyshev pole is equal to the real part of
the radial vector to the inner circle, and the imaginary part
of a Chebyshev pole is equal to the imaginary part of the
radial vector to the outer circle.

For an N-pole Chebyshev filter, the pole locations are
computed for n = 0, 1, 2, …, 2N − 1 as

sn = sinh
1
n
sinh−1 1

ε
Re sn

+ jcosh
1
n
cosh−1 1

ε
Im sn

(A.4)

where sn are the pole locations for the Butterworth filter. For
this characterization of the Chebyshev filter the attenuation at
Ωc = 1 is equal to the specified ripple. To adjust the cutoff
frequency to correspond to the 3 dB attenuation point, the
frequency must be scaled as

Ωc =Ωc cosh
1
n
sinh−1 1

ε
(A.5)

with the result thatΩc = 1 corresponds to the 3 dB attenuation
point. The normalized bandwidth can be altered by scalingΩc

as discussed for the Butterworth filter.
For these filters, the left-half-plane (lhp) poles give rise to

the realizable filter frequency transfer function expressed as

F ω =
1

N

n= 1
jω−sn+ N−1 2

=

1
N 2

n = 1
jω−sn + N−1 2 jω− s∗n + N−1 2

N = even

1

jω−sN
N 2

n= 1
jω−sn+ N−1 2 jω− s∗n + N−1 2

N = odd

(A.6)

When the right-half-plane (rhp) poles are multiplied by
minus one, they are then identical to the desired lhp poles,
in which case, the frequency transfer function is expressed as

F ω =

1
N 2

n= 1
jω+ sn−1 jω+ s∗n−1

N = even

1

jω+ so
N 2

n= 1
jω+ sn jω+ s∗n

N = odd

(A.7)

S2

S1

x

x

…

jω

σ

FIGURE A.1 Butterworth s-plane poles (shown for N = even).

jω

S2

S1

x

σ

x

FIGURE A.2 Chebyshev s-plane poles (shown for N = even).
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In terms of the real and imaginary components of the
complex pole locations sn = σn + jωn, the frequency transfer
function becomes

F ω =

1
N 2

n= 1
σ2n + ω2

n−ω
2 + j2σnω

N = even

1

σo + jω
N 2

n= 1
σ2n + ω2

n−ω
2 + j2σnω

N = odd

(A.8)

Using (A.8), the expressions for the magnitude, phase, and
delay functions are evaluated as

F ω =

1
N 2

n= 1
σ2n + ω2

n−ω
2 2

+ 2σnω
2

N = even
1

σ2o +ω
2

N 2

n= 1
σ2n + ω2

n−ω
2 2

+ 2σnω
2

N = odd

(A.9)

Φ ω =

−
N 2

n= 1
tan−1 2σnω

σ2n + ω2
n−ω

2
N = even

− tan−1 ω

σo
−

N 2

n = 1
tan−1 2σnω

σ2n + ω2
n−ω

2

N = odd

(A.10)

and

T ω = −
dΦ ω

dω

=

N 2

n= 1

2σn σ2n + ω2
n +ω

2

σ2n + ω2
n−ω

2 2
+ 2σnω

2

N = even

σo
σ2o +ω

2
+

N 2

n = 1

2σn σ2n + ω2
n +ω

2

σ2n + ω2
n−ω

2 2
+ 2σnω

2

N = odd

(A.11)

An important consideration in a communication simulation
program is the requirement to adjust the receiver timing to
match the received bit or symbol timing, that is, the receiver
timing must be synchronized to the received waveform to
properly detect the data. In this regard, the filter delay, result-
ing from a cascade of transmitter and receiver filters and the

communication channel, will result in unnecessary simulation
processing to search for the optimum matched filter sampling
and subsequent bit-error performance evaluation. For exam-
ple, if the filters and channel result in a delay, relative to the
demodulator symbol timing of (N + δ)T, where |δ| < 1 and T
is the symbol duration, the demodulator simulation must
resolve the timing error prior to the performance evaluation.
This may involve using rate conversion to resolve the timing
error if δT is not integrally related to the sampling interval Ts.
This additional simulation complexity is not necessary if the
filter phase delay* is removed or compensated in the filter
design. A major advantage in providing phase delay compen-
sation is in implementing a delay to capture the lead-in transit
response resulting in a causal response; if the delay compen-
sation is chosen as an integer number of symbols, then the sim-
ulated demodulator optimum matched filter timing is easy and
accurately determined.

Using (A.11), the zero-frequency delay is readily deter-
mined as

T 0 =

N 2

n= 1

2σn
σ2n + ω2

n

N = even

1
σo

+
N 2

n= 1

2σn
σ2n + ω2

n

N = odd
(A.12)

The constant delay term, expressed by (A.12), is charac-
terized by a linear-phase function with frequency, so that
the delay corrected phase response of the filter is

Φ ω =Φ ω + T 0 ω (A.13)

and the delay compensated filter delay response becomes

T ω = T ω −T 0 (A.14)

These filter characteristics are examined in Sections A.3
and A.4 with an emphasis on the application of the filtering
functions in communication systems performance simulation
programs.

A.2.3 Bessel Filter Pole Locations

The Bessel filter is a variation of the Butterworth filter, in
that, it provides maximally flat delay response. For example,
the delay response of the Bessel filter is essentially constant
over the entire 3 dB bandwidth and increases beyond the 3 dB
bandwidth in proportion to the number of poles. Amajor con-
tributor to signal distortion is the nonlinear phase response,
which is directly related to the deviation from a constant

*The filter phase delay is expressed in the frequency domain as a linear phase
function with frequency. The linear phase function results in a delayed and
undistorted replica of the filter input.
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delay. For the Butterworth and Chebyshev filters, the delay
response fluctuates substantially within the 3 dB bandwidth
resulting in signal distortion even for relatively narrowband
signals. It is not uncommon to provide additional all-pass fil-
ters to compensate or equalize the delay responses of these
filters. The advantage of providing a filter with an inherent
maximally flat delay response is of interest in many practical
applications; however, the Bessel filters are not without their
drawbacks, in that, the attenuation beyond the 3 dB band-
width is not very sharp which results in wide transition bands
compared to other filter types. Also, the passband amplitude
roll-off is more severe. For example, an amplitude loss of
0.5 dB occurs at about 40% of the 3 dB bandwidth.
Because of these trade-offs, the signal distortion must be
examined and compared with other filter types for a particular
application.

The ideal delay transfer function for the Bessel filter is
given by [10]

T s = e−s =
1

cosh s + sinh s
(A.15)

It is desirable to approximate (A.15) by a Hurwitz polyno-
mial* with a specified number of poles. Simply expanding e−s

in a Maclaurin series does not result in a Hurwitz polynomial
forN > 4, so another approach must be used. The method out-
line by Balabanian [11] recognizes that the denominator in
the second expression for T(s) involves even and odd func-
tions in s, so the ratio cosh(s)/sinh(s) is expanded about the
origin using a Taylor series. The result is then expanded in

an infinite continued fraction that is then truncated to N terms
resulting in the approximation

cosh s

sinh s

m s

n s
=
1
3
+

1
3
s
+

1
5
s
+

+
1

2N−1 s

(A.16)

With this expansion, the sum m s + n s is a Hurwitz pol-
ynomial, so the ideal Bessel transfer function is approximated
by the realizable function

T s
1

m s + n s
(A.17)

Balabanian recombines the expansion in (A.16) and
shows that†

T s
bo

bo + b1s+ + bNsN
(A.18)

where

bn =
2N−n

2N−n N−n n
(A.19)

Equations (A.18 and A.19) are used to determine the
Bessel poles in the lhp as shown in Table A.1 for N ≤ 10.
Normalizing factors are used to scale the poles so that the
resulting 3 dB bandwidth of the filter occurs at unit

TABLE A.1 Left-Half-Plane Bessel Pole Locations

Poles (N) Pole Locations Normalizing Factor

1 −1.0 + j0.0 1.0
2 −1.101598 ± j0.636008 1.361658
3 −1.322656 + j0.0 −1.047393 ± j0.999249 1.755699
4 −1.370078 ± j0.410253 −0.995216 ± j1.257115 2.113902
5 −1.471989 + j0.0 −1.353001 ± j0.703417 2.477423

−0.938344 ± j1.441427
6 −1.571492 ± j0.320897 −1.381860 ± j0.971473 2.703392

−0.930658 ± j1.661865
7 −1.684893 + j0.0 −1.612541 ± j0.589428 2.950802

−1.379333 ± j1.191938 −0.910151 ± j1.837024
8 −1.757420 ± j0.272869 −1.636950 ± j0.822801 3.179596

−1.373850 ± j1.388366 −0.892876 ± j1.998339
9 −1.856491 + j0.0 −1.807064 ± j0.512354 3.391893

−1.652299 ± j1.031329 −1.367508 ± j1.567641
−0.878348 ± j2.149674

10 −1.927545 ± j0.241614 −1.842125 ± j0.727230 3.59119
−1.661746 ± j1.221053 −1.360640 ± j1.733439
−0.865724 ± j2.292516

*A Hurwitz polynomial has all of its zeros in the lhp including the jω axis.

†The resulting denominator polynomial PD(s) is related to the Bessel poly-
nomial PB(s) as PD s = sNPB 1 s , hence the filter name.
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frequency, that is, at Ωc = 1. The pole locations listed in
Table A.1 are included in a software program for evaluation
of the amplitude, phase, and delay responses of the Bessel
filter. For more than 10 poles, the software program uses
the approximation ofWilliams [12] that involves equally spa-
cing the imaginary parts of the poles such that

Im sn =

2n
N

N even

2 n−1
N

N odd

(A.20)

and, upon scaling to provide a unit magnitude, the real part is
evaluated as,

Re sn = 1− Im sn
2 (A.21)

These relationships are also included in a filter simulation
program that applies additional scaling to result in the 3 dB
amplitude response at Ωc = 1.

A.2.4 Elliptic Filter Pole Locations

The bandpass response of an elliptic filter [13, 14] is similar
to that of the Chebyshev with the amplitude ripple parameter
(ε) defined as

ε = 10RdB 10−1 (A.22)

where RdB is the bandpass ripple specification in decibels.
However, the elliptic filter, unlike the Chebyshev filter,
places zero in the stopband that results in a minimum stop-
band attenuation of AdB and rapid attenuations above the
normalized cutoff frequency Ωc = 1; this results in very low
transition bands.* The cutoff frequency corresponds to the
RdB attenuation filter bandwidth. The amplitude response,
in decibels, is expressed in terms of ε and the nth order
elliptic function Zn(Ω) as

F Ω dB = 10log10 1 + ε2Z2
n Ω (A.23)

The elliptic function characterizes the location of the n
poles and zeros as

Zn Ω =
Ω a22−Ω

2 a24−Ω
2 a2m−Ω

2

1− a22Ω
2 1− a24Ω

2 1− a2mΩ
2

n odd, m=
n−1
2

(A.24)

and

Zn Ω =
a22−Ω a24−Ω

2 a2m−Ω
2

1− a22Ω
2 1− a24Ω

2 1− a2mΩ
2

n even, m=
n

2

(A.25)

The poles and zeros corresponding to A.24 and A.25
are difficult to determine; however, Zverev [15] provides
extensive tables of the pole and zero locations for filters of
complexity (or order) n ranging from three to seven. Given
the specified filter parameters RdB, AdB, and Ωs, the elliptical
filter is completely characterized for the normalized cutoff
frequency Ωc = 1. Based on these parameters, the elliptical
filter frequency response is shown in Figure A.3.

By convention, the elliptical filter is specified by the
parameter set C(n, ρ, θ) where C denotes the Cauer filter, after
Wilhelm Cauer,† and ρ is the reflection coefficient given by

ρ =
ε2

1 + ε2
(A.26)

and

RdB = −10 log10 1−ρ2 (A.27)

The angle θ determines the location of the stopband fre-
quency given by

Ωs =
1

sin θ
θ < 90 odd order (A.28)

The relationship between Ωs and θ for even-order filters is
tabulated in Zverev’s tables. The passband ripple and stop-
band attenuation can be independently specified, and as θ
approaches 90 the stopband frequency approaches the cutoff
frequency resulting in a narrower transition bandwidth; how-
ever, for a given n, the stopband attenuation |AdB| decreases as
Ωs Ωc. On the other hand, for a specified θ and n, as the

–AdB

0 Ωc Ωs
Ω

0

–RdB

|F(Ω)|dB

FIGURE A.3 Magnitude of elliptic filter frequency response.

*No other filter of the same order can have a narrower transition bandwidth
than the elliptical filter.

†The elliptical filter is also referred to as the Cauer or Cauer–Chebyshev
filter.
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passband ripple increases, the stopband attenuation |AdB|
increases.

From the specified set of design parameters (RdB, AdB, Ωs),
the order of the filter can be approximated by examining
Zverev’s tabulated results. The plots in Figures A.4 and A.5

are based on Zverev’s data and the approximate filter order
is chosen based on the best match to the three design para-
meters. For example, usually the inband ripple and stopband
attenuation are specified, and the filter order is selected
based on the maximum allowable transition band. Therefore,
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considering the design parameters (0.1, 60.0, <1.7), the filter
order that satisfies these conditions with minimum complexity
is n = 6.

The elliptic filter pole and zero locations for third- and
sixth-order elliptic filter designs, based on the work of
Zverev, are given in Tables A.2 and A.3. The filters are cate-
gorized in terms of the order (n) of the polynomial, which
also corresponds to the number of poles in the transfer func-
tion, and the reflection coefficient (ρ) in percent. For each of
these two filter categories, the modular angle (θ) in degrees,
the normalized stopband frequency (Ωs), the minimum stop-
band attenuation (Amin) in dB, and the corresponding pole
and zero locations are specified. In all of the designs, the
normalized cutoff frequency corresponds to Ωc = 1. The
dependence on the reflection coefficient of the inband

ripple (ε) and ripple attenuation (R) in decibels are deter-
mined from (A.26) and (A.27) and are shown in Figure A.6.

For each filter order, Zverev provides the data for reflec-
tion coefficients ρ = 1 through 5, and 8, 10, 15, 20, 25, and
50%; however, Tables A.2 and A.3 contain the data corre-
sponding to the conditions ρ = 5, 10, 15, 25, and 50%.
Although Zverev limits the filter order to n ≤ 7, filters for
orders 6, 7, 8, 9, 10, and 11 for ρ = 20% are characterized
by Saal and Ulbrich [16]; their results are also provided by
Williams and Taylor [17]. Golden and Kaiser [18] also pres-
ent the pole and zero locations for an 11-order elliptic low-
pass filter for ρ = 33% corresponding to the parameter set
(0.5, 76.5, 1.066). The frequency responses of the elliptic
filters with order n = 3 and 11 are plotted and compared in
Section A.3.

TABLE A.2 Selected Third-Order Elliptical Filter Poles and Zerosa

θ (degrees) Ωs Amin Poles Zeros

ρ = 5%
2 28.6537 85.50 −1.56503 −0.78023 ± j1.60733 ±j33.0839
5 11.4737 61.61 −1.57370 −0.77256 ± j1.60793 ±j13.2424
8 7.1853 49.33 −1.59006 −0.75840 ± j1.60887 ±j8.2868
11 5.2408 41.00 −1.61458 −0.73784 ± j1.60986 ±j6.0377
16 3.6280 31.14 −1.67561 −0.68984 ± j1.61037 ±j4.1688
23 2.5593 21.53 −1.81308 −0.59641 ± j1.60383 ±j2.9256
ρ = 10%
3 19.1073 80.98 −1.17362 −0.58425 ± j1.33427 ±j22.0595
7 8.2055 58.88 −1.18218 −0.57713 ± j1.33524 ±j9.4661
10 5.7588 49.55 −1.19326 −0.56807 ± j1.33636 ±j6.6370
14 4.1336 40.72 −1.21468 −0.55108 ± j1.33817 ±j4.7552
20 2.9238 31.29 −1.26269 −0.51532 ± j1.34065 ±j3.3505
30 2.0000 20.40 −1.39666 −0.43027 ± j1.33901 ±j2.2701
ρ = 15%
3 19.1073 84.56 −0.97343 −0.48502 ± j1.20800 ±j22.0595
8 7.1853 58.96 −0.98143 −0.47863 ± j1.20922 ±j8.2868
11 5.2408 50.63 −0.98986 −0.47201 ± j1.21042 ±j6.0377
16 3.6280 40.77 −1.01038 −0.45636 ± j1.21296 ±j4.1688
23 2.5593 31.13 −1.05443 −0.42488 ± j1.21687 ±j2.9256
34 1.7883 20.53 −1.17044 −0.35393 ± j1.21947 ±j2.0199
ρ = 25%
4 14.3356 81.67 −0.74475 −0.37060 ± j1.07941 ±j16.5483
9 6.3925 60.50 −0.75052 −0.36626 ± j1.08071 ±j7.3700
13 4.4454 50.86 −0.75848 −0.36038 ± j1.08243 ±j5.1166
19 3.0716 40.84 −0.77640 −0.34752 ± j1.08593 ±j3.5224
28 2.1301 30.44 −0.81884 −0.31909 ± j1.09248 ±j2.4231
41 1.5243 19.88 −0.92480 −0.25887 ± j1.10072 ±j1.7044
ρ = 50%
5 11.4737 82.84 −0.45426 −0.22589 ± j0.95127 ±j13.2424
12 4.8097 59.95 −0.45928 −0.22246 ± j0.95340 ±j5.5386
17 3.4203 50.78 −0.46555 −0.21826 ± j0.95597 ±j3.9277
25 2.3662 40.50 −0.48069 −0.20841 ± j0.96178 ±j2.6999
36 1.7013 30.51 −0.51387 −0.18827 ± j0.97268 ±j1.9165
51 1.2868 20.41 −0.59255 −0.14753 ± j0.99074 ±j1.4137

aZverev [15]. Reproduced by permission of John Wiley & Sons, Inc.
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TABLE A.3 Selected Sixth-Order Elliptical Filter Poles and Zerosa

θ (degrees) Ωs Amin Poles Zeros

ρ = 5%
16 3.751039 100.33 −0.1608733 ± j1.1494074 ±j5.452491

−0.4551016 ± j0.8582356 ±j3.888329
−0.6439170 ± j0.3205477

23 2.642462 81.05 −0.1519894 ± j1.1441778 ±j3.800865
−0.4466624 ± j0.8724571 ±j2.735370
−0.6571745 ± j0.3332466

28 2.196422 70.43 −0.1438020 ± j1.1392246 ±j3.128134
−0.4383048 ± j0.8857904 ±j2.270699
−0.6699592 ± j0.3457954

33 1.890370 61.43 −0.1341590 ± j1.1332159 ±j2.660243
−0.4276726 ± j0.9017789 ±j1.951268
−0.6857864 ± j0.3617553

40 1.597615 50.63 −0.1183982 ± j1.1229522 ±j2.203049
−0.4081924 ± j0.9285830 ±j1.644814
−0.7137060 ± j0.3911003

47 1.399891 41.24 −0.1003316 ± j1.1104248 ±j1.883335
−0.3819741 ± j0.9603185 ±j1.436822
−0.7495140 ± j0.4310823

10%
16 3.751039 106.39 −0.1287903 ± j1.0862083 ±j5.452491

−0.3626602 ± j0.8073507 ±j3.888329
−0.5106815 ± j0.3001183

26 2.353536 80.50 −0.1194234 ± j1.0821294 ±j3.366027
−0.3540182 ± j0.8246522 ±j2.434463
−0.5252927 ± j0.3148009

31 2.000308 70.93 −0.1131204 ± j1.0792925 ±j2.829163
−0.3477100 ± j0.8365374 ±j2.066092
−0.5356186 ± j0.3254371

37 1.708362 61.10 −0.1041827 ± j1.0751337 ±j2.377602
−0.3380039 ± j0.8537396 ±j1.760893
−0.5510221 ± j0.3417186

45 1.449216 49.87 −0.0900608 ± j1.0682079 ±j1.964398
−0.3205571 ± j0.8817939 ±j1.488829
−0.5774697 ± j0.3708879

52 1.296076 41.17 −0.0758386 ± j1.0607352 ±j1.708356
−0.2997691 ± j0.9111777 ±j1.326965
−0.6073282 ± j0.4057781

ρ = 15%
19 3.174064 100.87 −0.1085781 ± j1.0549572 ±j4.595218

−0.3086973 ± j0.7866868 ±j3.288476
−0.4389051 ± j0.2934291

28 2.196422 80.07 −0.1011126 ± j1.0525534 ±3.128134
−0.3018417 ± j0.8021407 ±j2.270699
−0.4509322 ± j0.3062188

33 1.890370 71.06 −0.0957513 ± j1.0507639 ±j2.660243
−0.2965234 ± j0.8134652 ±j1.951268
−0.4599693 ± j0.3160388

39 1.632449 61.70 −0.0881974 ± j1.0481473 ±j2.258218
−0.2884052 ± j0.8297591 ±j1.681350
−0.4733341 ± j0.3309038

47 1.399891 50.87 −0.0762933 ± j1.0437773 ±j1.883335.
−0.2738962 ± j0.8562900 ±j1.436872
−0.4961281 ± j0.3572451

55 1.244853 41.23 −0.0624534 ± j1.0382660 ±j1.618888
−0.2537453 ± j0.8885543 ±j1.272479
−0.5259504 ± j0.3937182
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TABLE A.3 (continued)

θ (degrees) Ωs Amin Poles Zeros

20%
20 3.020785 100.72 −0.0953830 ± j1.0360245 ±j4.366743

−0.2718256 ± j0.7725704 ±j3.129050
−0.3873832 ± j0.2881628

29 2.126320 80.73 −0.0888491 ± j1.0345596 ±j3.021559
−0.2658847 ± j0.7874644 ±j2.197588
−0.3980997 ± j0.3002073

35 1.793769 70.37 −0.0831672 ± j1.0332226 ±j2.510774
−0.2602723 ± j0.8007063 ±j1.850277
−0.4078732 ± j0.3114315

41 1.564662 61.42 −0.0764372 ± j1.0315581 ±j2.150602
−0.2530228 ± j0.8167609 ±j1.610227
−0.4200613 ± j0.3257616

50 1.334577 49.73 −0.0644331 ± j1.0283499 ±j1.774078
−0.2381839 ± j0.8464780 ±j1.367782
−0.4437381 ± j0.3547149

57 1.214564 41.52 −0.0536101 ± j1.0251582 ±j1.564571
−0.2221885 ± j0.8745806 ±j1.240135
−0.4677485 ± j0.3856848

ρ = 25%
21 2.882384 100.16 −0.0851298 ± j1.0228980 ±j4.160091

−0.2433104 ± j0.7630799 ±j2.985065
−0.3477418 ± j0.2847363

30 2.061105 80.92 −0.0792423 ± j1.0220953 ±j2.922133
−0.2379847 ± j0.7777435 ±j2.129549
−0.3575389 ± j0.2963942

36 1.749781 70.84 −0.0741577 ± j1.0213515 ±j2.442321
−0.2329898 ± j0.7906943 ±j1.804254
−0.3664041 ± j0.3071573

42 1.533460 62.08 −0.0681492 ± j1.0204083 ±j2.100682
−0.2265582 ± j0.8063633 ±j1.577454
−0.3774193 ± j0.3208259

51 1.314859 50.56 −0.0574350 ± j1.0185369 ±j1.740561
−0.2134172 ± j0.8353762 ±j1.346891
−0.3987646 ± j0.3482958

59 1.187032 41.31 −0.0462836 ± j1.0162932 ±j1.514011
−0.1968618 ± j0.8672164 ±j1.210630
−0.4239216 ± j0.3824605

50%
16 3.751039 121.57 −0.0553928 ± j0.9898055 ±j5.452491

−0.1549694 ± j0.7309754 ±j3.888329
−0.2167725 ± j0.2699331

24 2.537873 100.00 −0.0530381 ± j0.9904476 ±j3.643786
−0.1530115 ± j0.7395913 ±j2.626475
−0.2207029 ± j0.2762365

34 1.840548 81.01 −0.0487356 ± j0.9915926 ±j2.583292
−0.1491489 ± j0.7556703 ±j1.899195
−0.2281772 ± j0.2883904

41 1.564662 70.45 −0.0448057 ± j0.9926048 ±j2.150602
−0.1452634 ± j0.7707651 ±j1.610227
−0.2353704 ± j0.3003021

47 1.399891 62.48 −0.0408237 ± j0.9935952 ±j1.883335
−0.1409304 ± j0.7864940 ±j1.436822
−0.2430637 ± j0.3132867

57 1.214564 50.55 −0.0329166 ± j0.9954440 ±j1.564571
−0.1308980 ± j0.8191971 ±j1.240135
−0.2598029 ± j0.3424698

aZverev [15]. Reproduced by permission of John Wiley & Sons, Inc.
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A.3 COMPUTER SIMULATION RESULTS
AND APPLICATIONS

The filter pole-zero locations discussed in Section A.2 are
programmed in a filter simulation, and evaluation program
and several examples of the filter characteristics are discussed
in this section. The filters are represented as discrete-time and
discrete-frequency sampled digital filters. Consider the
sampled frequency response F(iΔω), i = 1, 2, …, M where
the simulation sampling frequency is fs =MΔω 2π. Further-
more, consider the normalized frequency function
F iΔω ωc =F iΔΩ so that iΔΩ =Ωc = 1 corresponds to
the 3 dB attenuation point of the lowpass filter. Under this
condition, there are Mc =Ωc ΔΩ samples over the filter
bandwidth. Suppose now that the normalized sampling
frequency is* Ωs = 4Ωc, that is, the simulation sampling fre-
quency is four times the filter cutoff frequency or twice the
Nyquist frequency yielding a total of M = 4Mc frequency
domain samples. In the computer simulations, the expres-
sions for the amplitude and delay functions are normalized
by substituting the normalized angular frequency Ω for ω
and using Mc = 100 corresponding to ΔΩ = 0.01. The result-
ing responses are shown in Figures A.7 and A.8 for the But-
terworth and Chebyshev filters, respectively. In these figures,
Ωc = 1 and the normalized sampling frequency corresponds
to Ωs = 4.

Considering the four-pole filters in these examples, at the
folding point, corresponding to the Nyquist normalized band
ΩN = 2, the aliasing is about 25 and 35 dB below the peak
value for the Butterworth and Chebyshev filters, respectively.
The distortion caused by the aliasing is an important consid-
eration in the selection of the number of filter poles, and the
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FIGURE A.8 0.5 dB Ripple Chebyshev lowpass responses.

*The sampling frequency is denoted asΩs and is distinguished from the stop-
band frequency Ωs.

†The delay response in the simulation program is normalized as τf3 = τw3/ 2π,
so a factor 2π is removed in Figures A.7 – A.9.
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sampling frequency and attenuations greater than or equal to
25 dB at the folding point are generally considered to be
acceptable.

The sampled responses must be mirrored about the
Nyquist band, so the sampled analog responses must be mod-
ified to reflect the required mirroring as follows. For M
even, the M/2 samples obtained directly from the analog
expressions are mirrored as

F M 2− i+ 2 ΔΩ =F iΔΩ i= 2,3,…,
M

2
(A.29)

and for M odd, the index i extends to i = 2, 3,…, M/2 + 1.
The mirroring obtained in this way is ideal, in that, the filter
responses are implicitly predistorted to compensate for the
aliasing. If the aliasing is included in the mirroring or folding
process, the analog expressions must be evaluated for all M
samples and the samples corresponding to i >M/2 (orM/2 + 1
for M odd) must be included in Equation (A.29). In this
case, the magnitude of the response at ΩN will be increased
by 3 dB, and the 3 dB cutoff frequency of the filter will be
altered slightly depending upon the amount of aliasing
occurring at Ωc.

It is evident from the preceding discussion that the nor-
malized 3 dB bandwidth of the filter can be increased or
decreased for a fixed sampling frequency simply by choosing
larger or smaller values ofMc. Similarly, a bandpass or high-
pass filter can be realized by simply shifting the normalized
frequency scale. For example, a bandpass filter centered at
ΩN/2 is obtained by letting

F iΔΩ =F i−MN 2 ΔΩ (A.30)

and a highpass filter is obtained as

F iΔΩ =F i−MN ΔΩ (A.31)

Examples of these filters are shown in Figure A.9. Nor-
mally, the gain of the bandpass filter will be 3 dB lower than
the equivalent sampled lowpass or highpass filters; however,
in these results the gains are all normalized to unity.

The following examples of elliptic filter responses corre-
spond to the third-order filter of Table A.2 using the set of
design parameters (0.1, 50.63, 5.2408) with ρ = 15% and
the 11-order filter of Table A.4 using the set of design para-
meters (0.5, 76.504, 1.066) with ρ = 33% (Figures A.10 and
A.11). Upon comparison with the theoretically expected
frequency response in Figure A.3, these responses are in
remarkable agreement with the specified design parameters.
These two examples show the wide range of frequency
responses achievable with elliptic filters; of special interest
is the very narrow transition bands compared to the other
filters.

A.4 CASE STUDY: FILTER APPLICATION

In this case study, the response of a five-pole, 0.05 dB ripple
Chebyshev filter* is characterized in terms of the in phase and
quadrature responses. The filter response is examined using
the unit-impulse and rectangular pulse inputs. The evaluation
program provides for zeroing the intrinsic phase response of
the filter and inserting an equalized quadratic phase function
with a prescribed band-edge phase error. The quadratic phase
function is expressed as

ϕ ω =ϕs
ω

ωm

3

(A.32)
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FIGURE A.9 Simulated three-pole Butterworth bandpass and
highpass responses.

TABLE A.4 An Eleventh-Order Elliptical Filter Poles and
Zeros (Ripple = 0.5 dB, Amin = 76.504 dB, and Transition
Ratio = 0.937917)a

θ
(degrees) Ωs Amin Poles Zeros

ρ = 33%
69.7 1.066 76.504 −0.0069130 ± j1.0010752 ±j1.0695414

−0.0257616 ± j0.9756431 ±j1.1009005
−0.0615122 ± j0.9063786 ±j1.1946271
−0.1269215 ± j0.7504391 ±j1.4652816
−0.2142976 ± j0.4483675 ±j2.5031313
−0.2611853 + j0.

aGolden and Kaiser [18]. Reproduced by permission of Alcatel-Lucent
USA, Inc.

*This filter model is used to characterize the amplitude response of a satellite
channel based on the average 3-dB bandpass bandwidth of several measured
channel filters. The filters are phase equalized with a phase of 6 at a speci-
fied frequency deviation from the carrier.
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where ϕs is in radians and, in this example, corresponds to a
6 phase error at the frequency ωm = 2πfm where fm = 10 kHz
is the frequency corresponding to the specified phase error.
Using this result, the phase error at the 3 dB band-edge
frequency f3 = 15 kHz is ϕbe = 20.25π/180 rad and (A.32)
is expressed as

ϕ ω =ϕbe
ω

ω3

3

(A.33)

The group delay of the equalized filter is defined as*

τg ω = −
dϕ ω

dω
(A.34)

and the resulting normalized group delay, expressed in Hz, is

τg f f3 =
3ϕbe

2π
f

f3

2

(A.35)

The filter impulse responses are shown in Figures A.12,
A.13, andA.14 forB/Rs ratios of 2.0, 1.5, and 1.0, respectively.
The evaluation of the response uses 16 samples per symbol
and, to capture the entire impulse response, that is, for a causal
response, the responses are delayed by two symbols or 32 sam-
ples except for the B/Rs = 1 case that uses a delay of three
symbols or 48 samples. The pulse responses represent the filter
response to a unit amplitude symbol pulse of duration T = 1/Rs
seconds. The filters are symmetrical in amplitude and asymmet-
rical in phase about zero frequency so the quadrature response is
zero. The pulse responses shown in these figures correspond to
an isolated rect((t − Td)/T) input symbolwith normalized delays
of Td/T = 2.5, 2.5, and 3.5. The filters are considered to be
demodulator matched filters.
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FIGURE A.10 Third-order elliptic filter frequency response.
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FIGURE A.11 Eleven-pole elliptic filter frequency response.

*The quadratic phase error is negative for positive frequencies, so this defi-
nition results in a positive delay error.
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When the matched filter impulse responses are convolved
with an isolated symbol of duration T seconds, the losses at
the optimum sampling times for the three filters are 0.434,
0.58, and 0.89 dB, respectively. These losses represent the
loss in symbol energy over the symbol duration with ideal
symbol timing and do not reflect the effects of intersymbol
interference (ISI) with a contiguous sequence of randomly
modulated symbols. The total loss including the ISI loss
is typically characterized in terms of the Eb/No loss at a pre-
scribed bit-error probability as evaluated using Monte Carlo
simulations [19, 20].

In general, the signal and filter functions described in this
chapter are represented as lowpass equivalents of bandpass
functions as characterized by the analytic functions s i

and h i where t = iTs and Ts is the sampling interval. The
computation of the filter response g i to the input signal
s i is characterized by the convolution sum given by

g i =
NT −1

j= 0

h j s i− j (A.36)

where NT is the total number of filter samples. The time
reverse of the signal is realized by simply shifting the signal
samples as they are generated through a weighted tapped
delay line filter as shown in Figure A.15.

PROBLEMS

1. Using the three sample real filter responses h(0) = 1,
h(1) = 0.5, and h(2) = 0.25 and the three sample unit pulse
responses s(0) = 1, s(1) = 1, and s(2) = 1, determine the
response g(i) using the convolution sum expressed
by (A.36).

2. Show that the solution to Problem 1 is identical to the
implementation using Figure A.15.

3. Show that the solutions to Problems 1 and 2 are identical
to the alternate form of the convolution sum given

by g i =
NT −1

j= 0
s j h i− j .
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APPENDIX B
DIGITAL FILTER DESIGN AND APPLICATIONS

B.1 INTRODUCTION

In this appendix, several methods for the design of digital
filters are reviewed. Typical applications involve rate conver-
sion filtering, transmitter waveform filtering for spectral con-
trol, demodulator filtering for coherent and noncoherent
data detection, image rejection filtering following receiver
heterodyning, and a variety of bandpass and lowpass filter
applications involved in waveform detection, acquisition,
and verification. The two fundamental types of digital filters
considered are characterized as infinite impulse response
(IIR) and finite impulse response (FIR) filters. The IIR filters
involve feedback in which the output is the summation of
the input with weighed samples of previous outputs; whereas,
the FIR is strictly a feedforward implementation in which the
output is the summation of a finite number of weighed input
samples. The FIR implementation is also referred to as a
transversal filter (TF), tapped delay line (TDL) filter, and
sequential filter (SF) in which the input signal samples are
sequentially stored in the memory of a TDL.

These filters exhibit a unit sample response h(n) that is
linear and shift-invariant [1] and, for an input x(n), the
response y(n) is characterized by the convolution sum

y n =
∞

k = −∞
x k h n−k (B.1)

The condition for a linear shift-invariant filter to be causal
requires that h(n) = 0 for n < 0 and the condition for stability
requires that

∞

n = −∞
h n 2 < ∞ condition for filter stability (B.2)

It is often desirable that the filter has unit gain which
requires

∞

n= −∞
h n 2 = 1 condition for unit gain response (B.3)

In these expressions, the filter response may be complex
valued. In many applications, the linear shift-invariant
property is characterized by the Nth-order linear constant-
coefficient difference equation given by [1]

N

k = 0

aky n−k =
M

r = 0

brx n−r (B.4)

Equation (B.4) has a unique solution under the
condition of causality with x(n) = y(n) = 0: n < no, in which
case, the linear constant-coefficient difference equation
corresponds to a linear shift-invariant filter and (B.4) pro-
vides a unique relationship between x(n) and y(n). Under
the causality condition, solving (B.4) for y(n) results in
the expression

y n = −
1
a0

N

k = 1

aky n−k +
1
a0

M

r = 0

brx n−r IIRfilter

(B.5)
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The first term of (B.5) describes an IIR filter and, when
N = 0, the response is that of a FIR filter of length M
described as

y n =
1
a0

M

r = 0

brx n−r FIR filter (B.6)

Typically, the filter response samples h(n) are derived
from the description of the desired filter frequency response
using the inverse discrete Fourier transform. The Fourier
transform, applied to discrete-time linear shift-invariant
sampled functions, is referred to as the z-transform* with
the complex frequency variable z= rejωTs with |z| = r ≤ 1.
The sampling duration Ts is often normalized to the unit
interval of 1 s. Describing the sampled sequence as the
desired impulse response h(n) of the filter, the z-transform
is defined as

H z ≜
∞

n = −∞
h n z−n (B.7)

With z= rejωTs and r = 1,† (B.7) is expressed as

H ejω ≜
∞

n= −∞
h n e− jωnTs (B.8)

The frequency response H(ejω) is a periodic function in
ω and can be described in terms of a Fourier series‡ with
the coefficients h(n) evaluated as

h n =
1
2π

π

−π

H ejω ejωnTsdω (B.9)

The discrete Fourier transform relationship between
H(ejω) and h(n) is based on the linear shift-invariant property
of h(n). These relationships form the basis of the following
digital filter design techniques. A more in-depth discussion
of these relationships is given by Oppenheim and Schafer.

B.2 DIGITAL FILTER DESIGN USING s-PLANE
POLE–ZERO LOCATIONS

As discussed in Appendix A, analog filters are characterized in
terms of their s-plane poles and zeros, and these filters can be
implemented as sampled digital filters by expressing the equiv-
alent z-plane pole and zero locations [2]. Stable s-plane filter
designs require that all poles are in the left half of the s-plane
corresponding to sp = −σp ± jωp. The condition σp = 0 repre-
sents a constant amplitude continuous wave (CW) frequency
at ±jωp; zeros may be located in either half of the s-plane
and on the jω axis. The mapping to the z-plane results in the
poles within the unit circle described by z = ejωTs with Ts =
1/fs where fs is the sampling frequency fs =ωs/2π and ωsTs =
2π represents a complete revolution about the unit circle. The
Nyquist frequency band fN = fs/2 corresponds to z= ejπ = −1;
consequently, the entire filter frequency response is con-
tained within the angular range 0 to ±π.

There are several methods of mapping the s-plane poles
and zero to the z-plane. The bilinear transform [3, 4] mapping
from the s- to z-plane is expressed as

s=
2
Ts

1−z−1

1 + z−1
(B.10)

and H(z) is obtained by substituting (B.10) into H(s). The
bilinear transform maps the entire left half of the s-plane, that
is, the entire region of s-plane stability, into the unit circle of
the z-plane resulting in a stable digital filter that is completely
contained within the principal Nyquist frequency band.

A much simpler transformation, and the one used in most
of the narrowband filter designs used in the preceding chap-
ters, is the impulse-invariant transformation (IIT) expressed
as zk = eskTs where sk = −σk ± jωk represents an s-plane pole
or zero. A shortcoming of the IIT method is that the filter
is not uniquely contained within the Nyquist frequency band
fN = fs/2, which results in spectral aliasing about fN. This ali-
asing can be reduced to an acceptable amount by selecting
a filter with a monotonically increasing stopband loss with
frequency using a low transition bandwidth with a high
stopband attenuation and/or by selecting a high sampling
frequency, such that, fs B where B is the lowpass filter
bandwidth.

As discussed in Section B.2, for a realizable and stable
filter design [5], the complex s-plane poles and zeros
appear as complex conjugates. Figure B.1 depicts the poles
in the left half of the s-plane, with the poles and zeros
expressed as

sxk ,sxk = −ϖxk cos φxk ± jϖxk sin φxk x= p,z (B.11)

where x = p and z denote, respectively, poles and zeros, and
ϖxk is the magnitude pole or zero vector as shown.

*The z-transform is contrasted to the Laplace transform, which applies to
continuous-time functions and is defined in terms of the complex frequency
variable s = α + jω.
†The summation in (B.8) determines the region of convergence in the
z-plane. The sampled data filters discussed in this appendix are based on
poles within the unit circle of the z-plane or sampled sequences that are
known to converge. On the important topic of convergence regions for other
sequences, refer to Oppenheim and Schafer [1] (Chapter 2, “The
Z-Transform”).
‡The Fourier series representation of a periodic function in ω is discussed in
Chapter 1.
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In this notation, the complex conjugate locations, sxk = s
∗
xk
,

correspond to the negative sign of the imaginary part in
(B.11) and the angular locations are relative to the negative
σ-axis as shown in the figure. Using the IIT, the correspond-
ing z-plane pole locations are evaluated as

zpk ,zpk = e
−ϖpk

Ts cos φpk e ± jϖpk
Ts sin φpk (B.12)

and the z-plane zero locations are evaluated as

zzk , zzk = e
−ϖzk

Ts cos φzk e± jϖzk
Ts sin φzk (B.13)

Using the notation N2p and N2z for the number of pole and
zero pairs, N1p and N1z for the number of single poles and
zeros, and N0z to represent the number of zeros at the
origin of the s-plane, the s-plane transfer function F(s) is
expressed as

F s =

N2z

k
s−szk s−szk

N1z

k + 1
s−sz1k

N0z

k + 1
s

N2p

k
s−spk s−spk

N1p

k + 1
s−sp1k

(B.14)

Using the IITs (B.12) and (B.13), the corresponding
z-plane transfer function is expressed as

F z =

N2z

k
z−zzk z−zzk

N1z

k + 1
z−zz1k

N0z

k + 1
z−1

N2p

k
z−zpk z−zpk

N1p

k + 1
z−zp1k

(B.15)

A typical z-plane complex pair of roots is evaluated as

z−zxk z−zxk = z2− zxk + zxk z + zxk zxk

= z2−2cos ϖxkTs sin φxk e−ϖxk
Ts cos φxk z

+ e−2ϖxk Ts cos φxk

(B.16)

and a pair of real roots is evaluated using (B.16) with φxk = 0
so that

z−zx1k
2 = z−e−ϖx1k Ts

2

= z2−2e−ϖx1k Ts z+ e−2ϖx1k Ts
(B.17)

A single real root is evaluated as z−e−ϖx1k Ts . When each
of these roots or root pairs are substituted into (B.15), the
transfer function becomes

F z =

N2z

k
z2−akz+ bk

N1z

k + 1
z− ak

N0z

k + 1
z−1

N2p

k
z2−ckz+ dk

N1p

k + 1
z− ck

(B.18)

where the coefficients ak and bk are associated with those in
(B.16) and (B.17) corresponding to the zeros (x = z) and the
coefficients ck and dk are associated with those in (B.16) and
(B.17) corresponding to the poles (x = p). Defining N as the
order of the denominator polynomial in (B.18) and multiply-
ing the numerator and denominator by 2−N, the filter transfer
function is expressed in terms of the unit delay operator z−1.
This characterization of the transfer function provides for a
causal implementation of the sampled linear shift-invariant
filter corresponding to (B.5).

As an example, consider the single-pole bandpass filter
with a zero at the origin of the s-plane described, respectively,
as sp, sp = −σ ± jωc and sz = 0 with the transfer function
expressed as

H s =
s−sz

s−sp s−sp

=
s

s+ σp− jωc s+ σp + jωc

(B.19)

The z-plane pole and zero roots are evaluated as discussed
in Section B.2 and the resulting transfer function correspond-
ing to (B.19) is

F z =
z−zz

z−zp z−zp

=
z−1

z2−cz + d

(B.20)

where c and d are evaluated as

c = 2cos ϖpTs sin φ e−ϖpTs cos φp

= 2cos ωcTs e
−σpTs

(B.21)

d = e−2ϖpTs cos φp

= e−2σpTs
(B.22)
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X O

O

spk szk

spk

X

jω jω

s-Plane poles s-Plane zeros

φpk
φzk

ωpk ωzk
ωzkωpk

–σpk –σzk
σ σ

X O

FIGURE B.1 s-Plane poles and zeros.
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and the angle φp is

φp = tan
−1 ϖp

σp
(B.23)

Using (B.19) and (B.20), the respective pole-zero plots in
the s-plane and z-plane are shown in Figure B.2.

From the mapping of the poles in Figure B.2, it can be
seen that the poles will cluster in the vicinity z = 1 as the
sampling frequency fs = 1/Ts is increased and the band-
width is decreased [6]; the filter bandwidth is directly
proportional to σp.

Multiplying the numerator and denominator of (B.20) by
z−2 results in the filter transfer function

H z =
Eo z

Ei z
=

z−1 1−z−1

1−cz−1 + dz−2
(B.24)

Equation (B.24) can be used to determine the filter
response as a function of the normalized frequency fTs =
ωTs/2π by substituting z−1 = e− j2πfTs with the result

H fTs =
e− j2πfTs 1−e− j2πfTs

1−ce− j2πfTs + de− j4πfTs
(B.25)

Filters described in the form of rational functions, as in
(B.24), result in sampled inputs and outputs related by the
convolution sum or the difference equation, as expressed,
respectively, in (B.1) and (B.4). Therefore, the difference
equation corresponding to (B.24) is expressed as

2

k = 0

akeo n−k =
2

r = 0

brei n−r (B.26)

where (a0, a1, a2) = (0, 1, −1) and (b0, b1, b2) = (1, −c, d).
Using (B.26) to solve for the output eo(n), as in (B.5), results
in the expression

eo n = ei n−1 −ei n−2 + ceo n−1 −deo n−2 (B.27)

Equation (B.27) is implemented as shown in Figure B.3.
The first input delay simply delays the entire filter output;
however, it provides an exact match in the delay, following
the transient response, between an input CW tone at the cen-
ter frequency fc and the corresponding output. The subtrac-
tion of the adjacent delay outputs in the FIR section results
in a zero output for a constant input; this is a result of the
z-plane zero at z = 1, which blocks the direct current (DC)
input. The implementation of the IIR section is typical for
complex conjugate poles and can be replicated for multiple
complex poles using the appropriate pole location coeffi-
cients. The implementations of the FIR and IIR sections in
Figure B.3 are referred to as direct-form implementations.
Other implementations and the impact of coefficient quanti-
zation on the filter response and stability are discussed in the
literature [7–13].

B.2.1 Cascade of N Synchronously Tuned
Single-Pole Filters

This analysis involves the cascade of N synchronously tuned
single-pole lowpass filters with the s-plane transfer function
for the cascaded filters given by

H s =
G s

E s
=

a

s + a

N
(B.28)

The s-plane and z-plane poles and zero are shown in
Figure B.4.

This filter has unit gain and the 3-dB angular frequency,
ω3, is determined from the solution to the magnitude-squared
response of (B.28) with s = jω, that is, the solution to

H ω3
2 =

1

ω3 a 2 + 1
N =

1
2

(B.29)

Solving (B.29) for the parameter a results in

a =
ω3

2 1 N −1
(B.30)
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FIGURE B.2 s- and z-plane poles and zeros for example single-
pole BPF.
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FIGURE B.3 Implementation of example single-pole BPF.
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The parameter a is the 3-dB frequency for a single filter.
Considering a sampling frequency of fs = 1/Ts and using the
impulse-invariant z-transform z = esTs , the z-plane filter coef-
ficient for a single-pole filter with an s-plane pole at s = −a is

α= e−aTs

= exp
−ω3Ts

2 1 N −1

(B.31)

For a unit gain response, the gain of each single-pole filter
is G = 1 − α. The cascade of N identical synchronously tuned
filters is shown in Figure B.5. The filter attenuation increases
at the rate of 6N dB/octave.

A cascade of two synchronously tuned filters is used in
Chapter 10 as the lock-detection filter for the phaselock loop.
For a unit-step input, e(t) = u(t), the filter output response is
expressed as

g t = u t 1−e−at (B.32)

and the time to reach an output level g(to) = V volts (V < 1) is

to =
− 2 1 N −1

2πf3
ln 1−V (B.33)

B.3 DIGITAL FILTER DESIGN USING
WINDOWS

A variety of window functions are discussed in Section 1.11,
and their application in the design of digital filters [14] is dis-
cussed in this section. Several examples are given that dem-
onstrate the design procedures and provide insight into the
resulting filter responses. The filters are implemented using
FIR filters, that is, finite-length transversal filters that
exhibit a linear-phase response. The focus of this section is
on lowpass filter designs.

The design procedures involve selecting a window func-
tion that satisfies the attenuation requirements in the stopband
and then determining the required number of filter taps based
on the specification of the sampling frequency, the cutoff fre-
quency, and the transition band frequency. Using these basic
parameters, the filter design is completed by evaluating the
number of filter taps and the tap values are described in
the following.

The design procedure begins by establishing a target
frequency response for the desired digital filter and, for this
purpose, the ideal linear-phase filter with amplitude response
given by

H f =
1
2fB

rect
f

2fB
ideal target freqeuecy response

(B.34)

is selected. In this evaluation, fB is the one-sided baseband or
lowpass bandwidth. The corresponding impulse response of
the target frequency function is described as the sinc(2fBt)
function. Considering discrete-time sampling at the sample
frequency fs = 1/ΔT with t = nΔT, the sampled impulse
response corresponding to the target frequency response is

h n = sinc
nfB
fs

(B.35)

Equation (B.35) extends over the infinite range of n and is
unrealizable; however, by applying a finite durationwindow to
h(n), a practical implementation can be achieved that results in
an acceptable approximation to the ideal target frequency
response. Therefore, using a finite sampled window w(n),
the target frequency response (B.34) is approximated by

H f =ΔT
N

n= −N

w n h n e− j2πnΔTf (B.36)

In terms of discrete frequency, domain sampling withΔf =
fs/M, where M is the number of discrete Fourier transform
(DFT) samples and (B.36) is expressed as

H m =ΔT
N

n= −N

w n h n e− j2πnm M (B.37)

N–repeated poles
N–repeated poles

N-zeros at infinity
s-Plane

N-zeros at origin
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FIGURE B.4 s-Plane and z-plane poles and zeros.
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FIGURE B.5 Cascade of N synchronously tuned single-pole
filters.
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Based on these results the FIR filter tap weights are
given by

h n =w n h n n ≤N (B.38)

Several methods for the selection of N are described in
Section 2.8.2; however, in the following examples Harris’
method is used. Given the sampling frequency, fs, the transi-
tion bandwidth, fT, and the stopband attenuation, AdB, the
approximate number of taps is expressed as

Ntaps
fs
fT

AdB

22
(B.39)

For an odd number of taps, N = (Ntaps − 1)/2.

B.3.1 Example of Digital Filter Designs Using
Hamming Window

Three FIR filter responses are evaluated using the Hamming
window and Harris’ approximation to the number of taps
expressed by (B.39). The ideal sinc(nfb/fs) target frequency
impulse response is used where fB is the baseband band-
width and fs is the sampling frequency. The three filters
use a common normalized cutoff frequency of fc/fs = 0.02
and a minimum stopband attenuation of 50 dB. Two com-
ments are worth noting: first, the baseband bandwidth is
the cutoff frequency of the target filter, that is, fc = fB, which
is also used as the 3 dB cutoff frequency of the FIR filter;
second, the inherent minimum attenuation of the Hamming
window sidelobes is about 45 dB; however, when con-
volved with the ideal target filter the resulting stopband
attenuation is about 53 dB so the 50 dB specification is a
reasonable requirement.

The FIR filter responses are evaluated for three conditions
of the normalized transition bandwidth fT/fs = 0.004, 0.02,
and 0.04, and the results are shown in Figure B.6 with the
resulting conditions listed in Table B.1. The DFT is used
to evaluate the spectrums and, for the Ntaps = 568 filter, the
normalized frequency resolution is 1.25e−4.

PROBLEMS

1. The four-pole Butterworth lowpass filter with band-
width fB =ϖ 2π has two complex s-plane pole pairs cor-
responding to the lhp angular locations φp1 = ±π/8 and
φp2 = ±3π/8 as defined in Figure B.1. The s-plane pole
locations are:

sp1, sp1 = −ϖ cos φp1 ± jϖsin φp1

= −0 383ϖ ± j0 925ϖ

and

sp2, sp2 = −ϖ cos φp2 ± jϖsin φp2

= −0 925ϖ ± j0 383ϖ

Determine the corresponding impulse-invariant z-plane
poles under the conditions fB = 1 with fs = 10 and 100.
Repeat the computation of the z-plane locations using
the bilinear transformation given in (B.10). Sketch or plot
the z-plane pole locations for each transformation. Note:
The units of the frequencies may be Hz, kHz, and so
on, as long as fB and fs have the units.

2. Express the z-plane transfer function H(z) using the
z-plane pole locations found in Problem 1; and sketch
the implementation of each filter, corresponding to the
case fs = 10; and identify the coefficients as in Figure B.3.

3. Using the filter coefficients c and d expressed in (B.21)
and (B.22) with σp = 1.0 and ωc = 2πfc with fc = 30 and
Ts = 1/fs with fs = 200, evaluate and plot the filter fre-
quency response expressed in (B.25) in terms of the nor-
malized frequency, fTs.
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FIGURE B.6 Simulated hamming window FIR filter responses
(fc/fs = 0.02).

TABLE B.1 Summary of Simulation Conditions and Results
(fc/fs = 0.02, AdB = 50)

Conditions Simulated Results

(fT/fs) (Ntaps) fc/fs f50/fs fT/fs

0.004 568 0.0201 0.0237 0.0036
0.02 114 0.0215 0.0395 0.018
0.04 57 0.0195 0.0555 0.036
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4. For the cascade of N synchronously tuned single-pole
baseband filters, plot or sketch the function tof3, expressed
using (B.33), as a function of N = 1 through 5 with the
parameter values V = 0.99, 0.98, 0.95, and 0.9.
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APPENDIX C
DETECTION OF SIGNALS IN NOISE

C.1 INTRODUCTION

This appendix evaluates the detection and false-alarm charac-
teristics for the reception of single and multiple pulses using
coherent and noncoherent processing techniques. The perfor-
mance of the square-law envelope detector is contrasted with
that of the linear detector, and it is shown that the detection
characteristics of the two techniques are nearly the same for
sufficiently high signal-to-noise ratios (SNRs). The practical
result of this observation is that the relatively straightforward
analysis involving square-law detection can be used to estab-
lish the performance of linear detectors under a wide variety
of applications involving combining several received pulses.
The classical work of Marcum and Swerling is used to
characterize the detection and false-alarm performance with
multiple-pulse combining in slow and fast fading Rayleigh
environments. Although this appendix derives most of the
results from radio detection and ranging (radar) signal detec-
tion applications, the analysis and statistical characteristics
are directly applicable to communication systems analysis
involving signal presence detection, waveform acquisition,
diversity combining, and spread-spectrum signal detection.

In Section C.2, the statistical performance is examined
for coherent pulse integration and detection. In radar applica-
tions [1–3], coherent combining is referred to as predetection
integration and generally applies to the combining of
multiple returns at an intermediate frequency (IF) where
the signal phase is preserved. The coherent combining must

be performed over an interval of time in which the desired
signal returns are correlated, and for a scanning radar, this
corresponds approximately to the time that a target appears
in the antenna beam width during one scan of the antenna.
In Section C.3, noncoherent detection is examined using
the square-law and linear detectors. In Section C.3.1, postde-
tection square-law combining is examined for constant and
fluctuating signals with multiple-pulse combining. The fluc-
tuating signals are characterized by slow and fast Rayleigh
fading. The slow fading corresponds to Swerling’s case 1
in which the received pulse amplitudes are constant during
each antenna scan but fade independently from scan to scan.
The fast fading corresponds to Swerling’s case 2 in which the
received pulse amplitudes fluctuate from pulse to pulse.
Swerling’s cases 3 and 4 are characterized by chi-square fad-
ing with four degrees of freedom. Case 3 corresponds to a
constant received signal with complete correlation, and case
4 corresponds to pulse-to-pulse fluctuations that are com-
pletely uncorrelated. In Section C.3.2, linear detection is
examined for a constant signal and Rayleigh fading signal
in Gaussian noise.

C.2 COHERENT DETECTION

Conceptually, coherent detection involves the matched
filter detection of a single pulse. In this situation, the matched
filter performs a coherent integration and a decision

Digital Communications with Emphasis on Data Modems: Theory, Analysis, Design, Simulation, Testing, and Applications,
First Edition. Richard W. Middlestead.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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regarding the presence or absence of the pulse is based upon
the SNR of the optimally sampled matched filter output.
In the radar case, the single-pulse SNR must be increased
by coherently combining several pulses to improve the
SNR for a reliable detection. However, because the range
is unknown the coherent integration must be performed over
all unambiguous range cells of interest as determined by the
pulse repetition frequency (PRF). In effect, the received sig-
nal power will increase by N2, while the noise power will
increase by N with a net improvement in the SNR of
10log10(N) dB. Perhaps, the closest analogy in communica-
tions is the acquisition processing required to detect the
presence of a frequency-hopped signal where the receiver
synthesizer is fixed at a known future hop frequency and
coherent integration is performed at successive time hypoth-
eses looking for a signal detection. Although coherent inte-
gration can be performed over a received pulse interval, if
the signal phase is unknown, an IF or baseband envelop
(or video) detector is required to make a decision. However,
with coherent detection the signal phase is known leading
to an improved detection or coherent predetection pulse-to-
pulse combining.

In the context of these introductory comments, the
coherent detection performance involves two detection
hypotheses: noise only and signal plus noise. With additive
white Gaussian noise (AWGN), these choices are depicted
in Figure C.1. The two underlying Gaussian distributions
are characterized as

pn x =
1

2πσn
e− x

2 2σ2n noise only (C.1)

and

psn x =
1

2πσn
e− x−A 2 2σ2n signal plus noise (C.2)

where A is the peak carrier signal voltage level and σ2n is the
noise power such that the SNR is defined as γ =A2 2σ2n.
Because the a priori probabilities Pn and Psn of noise only
and signal plus noise only are unknown, the optimum [4]
detection criterion is based on the Neyman–Pearson criterion
[5] that establishes a threshold xT to realize a specified

false-alarm probability.* The corresponding detection proba-
bility is then based on the decision statistic x exceeding the
threshold as indicated in Figure C.1.

C.2.1 False-Alarm Probability

Based on the Neyman–Pearson criterion or test, the false-
alarm probability is computed as

Pfa =
1

2πσn

∞

xT

e− x
2 2σ2ndx=

1
π

∞

xT

e− y
2
dy

=
1
2
erfc

xT
2σn

(C.3)

where the normalized variable y = x 2σn is used for nota-
tional convenience. The false-alarm probability is shown in
Figure C.2 as the dot–dashed curve corresponding to the
right-side ordinate with the abscissa representing the normal-
ized threshold.

C.2.2 Detection Probability

In a similar manner, the detection probability is computed as

Pd =
1

2πσn

∞

xT

e− x−A 2 2σ2ndx=
1
π

∞

xT −A

2σn

e− y
2
dy

=
1
2
erfc

xT −A

2σn

(C.4)

PdPfa

papn

x
xT A0

FIGURE C.1 Coherent detection of signal with additive noise.
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FIGURE C.2 Coherent detection performance (constant signal,
single pulse). Solid—odd; dashed—even SNR.

*The Neyman–Pearson criterion or test is considered to be optimum regard-
less of the actual values of the unknown a priori probabilities.
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where the change in variables y= x−A 2σn is made for
notational convenience. The detection probability is com-
puted using (C.4) and is plotted in Figure C.2 in terms of
the missed detection probability Pm = 1 –Pd as the left-side
ordinate for a family of even and odd SNR-dependent dashed
and solid curves.

Using the fixed threshold, corresponding to the specified
false-alarmprobability, theminimumSNR, required to achieve
a desired detection probability Pd = 1 –Pm, is established as
the intersection of Pm and the fixed threshold. The receiver
operating characteristic (ROC) plot, shown in Figure C.3,
is a standard way of showing the dependence of the detection
on the false-alarm performance. The thresholds required to
achieve the detection and false-alarm results are implicit,
and the corresponding SNR must be interpolated.

With coherent detection combining of N pulses, the SNR
increases by a factor of N so the detection results can be
viewed as the performance corresponding to the output
SNR after combining. For example, if the results in
Figure C.2 correspond to combining N pulses, then the
SNR of a single pulse is 10log10(N) dB lower than the
SNR obtained from Figure C.2 as described in Section C.2.

C.3 NONCOHERENT DETECTION

When a sinusoidal signal plus narrowband Gaussian noise is
applied to a linear envelope detector, the probability density
function or pdf of the detector output is characterized by the
Ricean pdf, expressed as

pR r =
r

σ2n
e− r2 + A2 2σ2n Io

rA

σ2n
U r (C.5)

where A is the peak voltage of the carrier, σ2n is the noise
power in the bandwidth B at the input to the detector, and
Io(x) is the modified Bessel function of order zero. The step
function U(r) is used to emphasize that the distribution
applies for r ≥ 0 and is zero otherwise. The SNR at the input
to the detector is γi =A

2 2σ2n. This result is used in the follow-
ing analyses to evaluate the probability of a false alarm and
detection with various degrees of noncoherent combining.

There are two fundamentally different forms of noncoher-
ent detection: linear detection and square-law detection. Lin-
ear detection is characterized by the direct application of
(C.5), whereas the square-law detector applies the transfor-
mation y= r2 or, in normalized form y= r2 2σn. The linear
detector is more difficult to analyze; however, for modest
amounts of post detection combining, the false-alarm and
detection probabilities are very nearly identical.

In the following analysis, the characteristic function of the
pdf is defined as

C1
R p = pR r eprdr (C.6)

where p = jυ* is used extensively. The superscript 1 indicates
that a single random variable is involved in the detection
process. When N random variables are summed, as in the
case of noncoherent combining, the random variable w is
formed as

w=
N

i= 1

yi (C.7)

where yi is a normalized form of the iid random variables
ri. The resulting characteristic function for w is then
expressed as

CN
W p = pW w epwdw= C1

R p
N

(C.8)

The following descriptions are based on the original work
of Marcum in his classic RAND memorandum [7] and the
associated mathematical appendix [8]. The analysis invol-
ving a fluctuating or fading signal is based on the original
work of Swerling in his classic RAND memorandum [9].
Marcum and Swerling’s work has been published in a special
monograph issue of the Institute of Radio Engineers (IRE)
transactions on information series [10]. In addition, many
references are made to the work of Meyer and Mayer [11],
the mathematical functions given by Abramowitz and Stegun

False-alarm probability (Pfa)
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FIGURE C.3 ROC performance for coherent detection (constant
signal, single pulse). Solid—odd; dashed—even SNR.

*Determination of the characteristic function C(v) of p(r) is similar to taking
the Fourier transform if the integration variable is v = −ω. Therefore, the
characteristic functions are evaluated using the Fourier transform pairs given
by Campbell and Foster [6] by substituting the variable p= − jωor – jv in
their transforms.
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[12], the Fourier transform pairs of Campbell and Foster [6],
and the work of Urkowitz [13].

The false-alarm number is used as a convenience param-
eter in identifying the underlying false-alarm probability
associated with each ROC plot. With multiple-pulse combin-
ing, the ROC plots presented by Meyer and Mayer are char-
acterized as plots of detection probability (Pd in percent)
versus the number (N) of pulses combined with the family
of cures identified by the SNR parameter; in this case, each
ROC plot is identified by a specific false-alarm number.
For N = 1, the abscissa in the ROC plot is the false-alarm
number that identifies the false-alarm probability; this is more
consistent with the usage in Figure C.3. Meyer and Mayer
[14] review several definitions of the false-alarm number
including those of Marcum (nm) and Fehlner (nf) [15]. Meyer
and Mayer exclusively use Fehlner’s definition expressed as

nf =
ln 2
Pfa

(C.9)

This is related to Marcum’s definition as nm =Nnf .
Table C.1 relates the false-alarm probability and Fehlner’s
false-alarm number; the third column is included as a conven-
ient parameter used in subsequent plots.

C.3.1 Signal Detection Using Square-Law Detector

This section focuses exclusively on nonlinear square-law
envelope detection with constant and fading signals. Signal
detection using linear envelope detection is discussed in
Section C.3.2.

C.3.1.1 Constant Signal in Gaussian Noise (Case 0) In
this case, the square-law detector is based on the condition
y= r2 or the normalized condition y= r2 2σ2n where r is the
output of the linear detector having a Ricean pdf as described
in Section C.3.1. The performance of the square-law detector
is characterized in terms of the false-alarm and false-

detection probabilities and the number of noncoherent post-
detection outputs N ≥ 1 that are combined before making a
final decision. In this section, the characteristics are exam-
ined for a constant or nonfluctuating signal, that is, the carrier
amplitude A is constant and, in Section C.3.1.2, the charac-
teristics of a fluctuating signal are examined.

a. Single-pulse false-alarm probability With noise
only, the Ricean distribution reduces to the Rayleigh
distribution given by

pR r =
r

σ2n
e− r

2 2σ2n U r (C.10)

Using the square-law detector decision statistic y as
defined in Section C.3.1, the pdf of y is determined as

pY y = pR y
dr

dy
= e−y U y (C.11)

The normalized detection threshold is yT = rT 2σ2n,
and the false-alarm probability is related as

Pfa =

∞

yT

pY y dy= e−yT single pulse (C.12)

Normally the false-alarm probability is specified and
then the detection probability is computed based on
the corresponding threshold. For the single pulse, the
threshold is easily determined from a given false-alarm
probability as

yT = ln
1
Pfa

C.13

The dependence of the false-alarm probability is plot-
ted in Figure C.4 as a function of the normalized thresh-
old using (C.12).

The analysis of the performance with noncoherent
integration of N pulses uses the characteristic function
of pY(y) evaluated as

C1
Y p =

∞

0

e−yepydy=
1

1 + p
(C.14)

b. Single-pulse square-law detection probability
(case 1) Normalizing the Ricean pdf for the decision
statistic y defined in Section C.3.1 and defining the
input SNR as γ =A2 2σ2n, where the signal power is
Ps =A2 2, the normalized pdf for the square-law detec-
tor output becomes

pY y = e− y + γ Io 2 yγ U y (C.15)

TABLE C.1 False-Alarm Number and Probabilities.

nf Pfa Log10(nf)

10 6.931e−2 1.0000
12 5.776e−2 1.0792
20 3.466e−2 1.3010
40 1.733e−2 1.6020
100 6.931e−3 2.0000
120 5.776e−3 2.0792
200 3.466e−3 2.3010
400 1.733e−3 2.6021
1K 6.931e−4 3.0000
10K 6.931e−5 4.0000
100K 6.931e−6 5.0000
1000K 6.931e−7 6.0000
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Using this result, and the threshold yT evaluated
using (C.13), the detection probability is evaluated as

Pd = e−γ
∞

yT

e−yIo 2 yγ dy

single pulse constant signal

(C.16)

Equation (C.16) is evaluated for various false-alarm
probabilities using numerical integration, and the
results are shown in Figure C.5 as a function of the
SNR.

The characteristic function corresponding to pY(y)
is determined using integral pair No. 655.1 from
Campbell and Foster with the result

C1
Y p;γ = e−γ

eγ p+ 1

p+ 1
constant signal (C.17)

c. Multiple-pulse false-alarm probability (case 0) The
random variable w is formed by summing N of the
noncoherently detected pulses, and the resulting pdf
is determined from the characteristic function

CN
W p = C1

Y p
N
=

1

p + 1 N (C.18)

Using the integral pair No. 431 from Campbell and
Foster, the desired pdf is found to be

pW w =
wN−1e−w

N−1
U w (C.19)

The probability of a false alarm is determined as
follows:

Pfa =

∞

wT

wN−1e−w

N−1
dw (C.20)

Upon making the substitution ξ=w−wT , (C.20)
becomes

Pfa =
e−wT

N−1

∞

0

ξ+wT
N−1e−ξdξ (C.21)

The first term in the integrand of (C.21) is expanded
using binomial coefficients and is expressed as

ξ+wT
N−1 =

N−1

i= 0

N−1

i
ξN−1− iwi

T (C.22)

and upon substitution into (C.21) results in

Pfa =
e−wT

N−1

N−1

i= 0

N−1

i
wi
T

∞

0

ξN−1− ie−ξdξ (C.23)

Recognizing that the integral in (C.23) is equal to the
gamma function Γ N− i and combining this result
with the binomial coefficient, the false-alarm probabil-
ity is expressed as

Pfa = e
−wT

N−1

i= 0

wi
T

i
multiple pulses (C.24)
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Marcum [16] expresses this result in terms of Pearson’s
incomplete gamma function as [17, 18]

Pfa = 1− I wT N,N−1 (C.25)

where Pearson’s form of the incomplete gamma func-
tion is defined as

I u,a =
1

Γ a + 1

u a + 1

0

e− t tadt (C.26)

The false-alarm probability is evaluated using (C.24)
and plotted in Figure C.6 as a function of the normalized
thresholdwT. In this evaluation, the summation in (C.24)
is performed using logarithms to increase the computa-
tional precision (see Problem 1). For large values of N, a
threshold value equal to N results in a false-alarm prob-
ability of about 50%, and as N increases the slope of the
curves increases dramatically. The false alarm corre-
sponding to N = 1 is the same as that shown in
Figure C.4 for a single received pulse.

d. Multiple-pulse detection probability For the multiple-
pulse detection case, it is necessary to sumN iid random
variables yi to form the new random variable w. The pdf
forw is most easily determined by taking theN-th power
of the characteristic function (C.17) with the result

CN
W p;γ = C1

Y p;γ
N

= e−Nγ
eNγ p+ 1

p+ 1 N

(C.27)

Using pair No. 650.0 of Campbell and Foster, the
inverse transform is found to be

PW w = e−Nγ
w

Nγ

N−1 2

e−wIN−1 2 Nγw U w

(C.28)

The detection probability for the threshold corre-
sponding to a specified false-alarm probability is

Pd = e
−Nγ

∞

wT

w

Nγ

N−1 2

e−wIN−1 2 Nγw dw (C.29)

Upon letting ξ =w−wT and rearranging terms, (C.29)
becomes

Pd =
e− wT +Nγ

Nγ N−1 2

∞

0

ξ+wT
N−1 2e−ξIN−1 2 Nγ ξ+wT dξ

(C.30)

Marcum [19] expresses (C.30) in terms of the incom-
plete Toronto function* as

Pd = 1−T wT
2N−1,N−1, Nγ (C.31)

where the incomplete Toronto function is defined as
[20, 21]

TB m, n, r = 2rn−m + 1e− r
2

B

0

tm−ne− t
2
IN 2rt dt (C.32)

In terms of the parameters N, γ, and wT, the detection
probability, expressed in terms of the incomplete
Toronto function, becomes

Pd = 1−2 Nγ − N−1 2e−Nγ
wT

0

tNe− t
2
IN−1 2 Nγt dt

(C.33)

The following detection performance is evaluated by
solving (C.30) using 32 abscissa values and weights
for Gaussian–Laguerre quadrature numerical integra-
tion [22], which provides excellent agreement with
the results of Swerling for values of N up to 200 before
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FIGURE C.6 False-alarm probability versus normalized
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*Marcum [19] provides graphs of detection probability (Pd) versus threshold
(wT) with parameter Nγ based on the incomplete Toronto function for
selected values of N ranging from N = 1 to 3000.
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arithmetic precision* errors occur resulting in degraded
performance.† The results are plotted in Figure C.7 for
a false-alarm probability of Pfa = 6.931e−4, which cor-
responds to a false-alarm number of nf = 1000; the
detection results for N > 200 are based on the central
limit theorem leading to the Gaussian distribution;
the mean and variance are determined from the corre-
sponding characteristic functions.
Figure C.7 represents the noncoherent detection

probability for a false-alarm probability of 6.93e−4;
the false-alarm probability determines the detection
threshold wT based on the solution of (C.20). Meyer
and Mayer have published extensive curves of the
detection probabilities for the Swerling’s case 0 two-
parameter chi-square signal and noise model. These
curves cover 92 pages and apply for false-alarm prob-
abilities ranging from 6.93e−2 to 6.92e−11, N ranging
from 1 to 10,000 and SNRs ranging from −20 to
+15 dB in 2 dB steps. The detection performance is
plotted byMeyer andMayer as a function ofN for each
SNR and, by way of comparison, the performance
in Figure C.7 covers only a fraction of two of the
92 pages.
An important consideration regarding the noncoher-

ent integration of multiple pulses is the correlation
loss relative to coherent integration. The worst-case
noncoherent integration loss is 10log10 N dB that

occurs as the linear SNR approaches zero. The integra-
tion loss, in decibels, is defined as

LN ≜ 10 log10 N − SNR1−SNRN dB (C.34)

where SNR1 and SNRN are the SNRs in decibels cor-
responding, respectively, to the integration of a single
pulse and N pulses at a given detection probability.‡

For example, referring to Figure C.7, for N = 100
and Pd = 0.8, the corresponding values of SNR1 and
SNR100 are −3.26 and 10.12 dB, respectively, so the
noncoherent combining loss is Li(100) = 6.62 dB. This
procedure is followed using the Swerling’s case 0 plots
in Meyer and Mayer, and the results are shown in
Figure C.8. The integration loss is independent of
the false-alarm probability.

C.3.1.2 Rayleigh Fading Signal in Gaussian Noise
(Case 1) The Rayleigh fading described in this
section corresponds to the chi-square pdf with two degrees
of freedom.

a. Single-pulse false-alarm probability Because a fad-
ing signal in a constant noise background is being
considered, the false-alarm probability is the same as
expressed in Equation (C.12) for the constant sig-
nal case.

b. Single-pulse detection probability (case 1 or 2) In
this section, the signal fluctuations are characterized

Signal-to-noise ratio (dB)

D
et

ec
tio

n 
pr

ob
ab

ili
ty

 (
P

d)
0.999
0.990
0.980

0.960

0.930

0.900

0.880

0.860

0.830

0.800
–20 –15 –10 –5 5 10 150

N : 1101001 00010 000

3

5

20

30

50

2200

FIGURE C.7 Noncoherent detection (constant signal, multiple-
pulse, nf = 1000).

Non coherent integration (N)
1 10 100 1 000 10 000

In
te

gr
at

io
n 

lo
ss

 (
L

N
) 

(d
B

) 

0

2

4

6

8

10

12

14

16

18

20 0 2
4 6
8 10
12

14

SNRN(dB) 

sqrt(N)
–inf(dB) 

FIGURE C.8 Noncoherent integration loss (constant signal,
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*The numerical precision used in the computations is approximately 33 dec-
imal digits based on the kind type parameter 16 with range: 10−4931 to 104932.
†For N > 250, Urkowitz[13] suggests using the Gaussian approximation for
the central and noncentral chi-square distributions denoted, respectively, as

N N, 2N and N N + γ, 2 N + 2γ . The Gaussian notation used here
is N(0, σ); however, Urkowitz uses the notation N(0, σ2) where σ is the noise
standard deviation.

‡Skolnik (Reference 1, pp. 35–38) also outlines a procedure for evaluating
the noncoherent integration loss.
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by Rayleigh fading so that the instantaneous signal
amplitude a is characterized by the Rayleigh* pdf

pA a =
a

σ2a
e− a

2 2σ2a U a (C.35)

The mean signal power is evaluated as Ps =
E a2 = 2σ2a so the mean SNR is γ =Ps 2σ2n. In terms
of these parameters, the Rayleigh distribution is
expressed as

pA a =
a

σ2nγ
e− a

2 2σ2nγ U a (C.36)

In the following analyses, it is assumed that the signal
amplitude changes slowly so that a is constant during
the detection interval TI. In general, slow fading corre-
sponds to the case where a is considered constant over
the detection interval TI =NT where T is the pulse dura-
tion and N is the number of pulses combined, otherwise
fast fading occurs. With this understanding, the single-
pulse case being considered corresponds to slow fading.
Furthermore, a is considered to be independent from
one detection interval to another. This situation is rea-
sonable for radar applications where individual pulses
are separated by the pulse repetition interval (PRI) or
the scan duration. However, for communication sys-
tems, where the detections are based on a contiguous
sequence of independently modulated data symbols,
the distinction between fast and slow fading and inde-
pendence is based on the modulated symbol interval.
Defining the instantaneous SNR as γ = a2 2σ2n, the

received Rayleigh fading signal can be expressed in
terms of the instantaneously received SNR as

p γ =
1
γ
e−γ γ U γ (C.37)

For the constant signal case, (C.15) is used to
expressed the pdf of the normalized variable y in terms
of the SNR as

pY y γ = e− y+ γ Io 2 yγ U y (C.38)

where the conditional dependence on the SNR is
explicit in (C.38). The average probability density
function, pY y , is defined as the marginal pdf

pY y ≜Eγ p y γ =

∞

−∞

p y γ p γ dγ (C.39)

The characteristic function for pY y is evaluated as

C1
Y p,γ =

∞

−∞

p y epydy

=

∞

−∞

∞

−∞

pY y γ p γ dγ epydy

=

∞

−∞

C1
Y p,γ p γ dγ

(C.40)

Using the previously computed characteristic function
expressed in (C.17) for the constant signal single-pulse
case, the characteristic function for the fluctuating
signal is evaluated as

C1
Y p,γ =

1
γ p + 1

∞

0

e−γ γ e−γeγ p+ 1 dγ

=
1

γ p + 1

∞

0

e
−γ

p γ + 1 + 1
γ p+ 1 dγ

slow or fast Rayleigh fading

=
1

p γ + 1 + 1

(C.41)

Using transform pair No. 438 from Campbell and
Foster, the single-pulse fluctuating signal pdf becomes

pY y =
1

γ + 1
e−y γ + 1 U y (C.42)

Upon specifying a false-alarm probability, the single-
pulse threshold wT is determined as the solution to
(C.24) and letting yT =wT the single-pulse detection
probability is evaluated as

Pd = e
−yT γ + 1 single pulse slow fading (C.43)

Equation (C.43) is plotted in Figure C.9 as a function of
the average SNR for various thresholds corresponding
to the indicated false-alarm probabilities.

C.3.1.3 Slow Rayleigh Fading Multiple-Pulse Detection
Probability (Swerling’s Case 1) The multiple-pulse detec-
tion discussed in this section corresponds to the nonco-
herent integration of N square-law detected pulses. The
characteristic function of the multiple-pulse pdf is simply
the Nth power of the characteristic function of the

*Because a single pulse is being detected, this analysis also applies to Swer-
ling’s fast fading case 2.
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single-pulse case, so, referring to (C.17) and (C.37), the char-
acteristic function for this case is expressed as

CN
Y p =

∞

−∞

C1
Y p,γ

N
p γ dγ

=
1

γ p+ 1 N

∞

0

e−NγeNγ p + 1 e−γ γdγ

=
1

1 +Nγ
1

p + 1 N−1 p + 1 1 +Nγ

(C.44)

Using Campbell and Forster’s transformation pair No.
581.7, the pfd is found to be

pY y =
1

1 +Nγ
1

Γ N−1 1−1 1 +Nγ N−1 e
−y 1 +Nγ

γ N−1,
Nγy

1 +Nγ
U y

=
1

1 +Nγ
1 +Nγ
Nγ

N−1 e−y 1 +Nγ

Γ N−1
γ N−1,

Nγy

1 +Nγ

U y
(C.45)

where γ( ) is the incomplete gamma function defined as

γ α,x =

x

0

e− t tα−1dt α> 0 (C.46)

This function is evaluated using several relationships found
inAbramowitz and Stegun [12, 17]. First, using (Equation 6.5.3,
p. 260) [12], the incomplete gamma function is expressed in
terms of the gamma function as

γ α, x =Γ α −Γ α, x (C.47)

For integer values of α, such that α= n+ 1, the gamma
function Γ(α,x), using (Equation 5.1.46, p. 230) [12], is
expressed as

Γ n + 1, x =
αn x

x−n−1
n > 0 (C.48)

where αn(x) is defined as the exponential integral (Equa-
tion 5.1.5, p. 228) [12]

αn x =

∞

1

tne−xtdt n = 0, 1, 2,…; x > 0 (C.49)

Using (Equation 5.1.8, p. 228) [12], αn(x) is evaluated in
terms of the finite sum

αn x = n x−n−1e−x 1 + x +
x2

2
+ +

xn

n
(C.50)

Combining these results yield the relatively straightfor-
ward solution to (C.47)

γ n+ 1, x =Γ n−1 1−e−x
n

i= 0

xi

i
(C.51)

Equation (C.51) follows directly from (C.47), (C.48), and
(C.50); the ratio γ n+ 1,x Γ n−1 is recognized as Pear-
son’s form of the incomplete gamma function. Substituting
(C.51) into (C.45), with n + 1=N – 1, b =Nγ 1 +Nγ , and
x = by, the expression for pY(y) is evaluated as

pY y =
1

1 +Nγ
1 +Nγ
Nγ

N−1

e−y 1 +Nγ 1−e−by
N−2

i= 0

by i

i

U y

(C.52)

The detection probability is now evaluated as

PdN =
1

1 +Nγ
1 +Nγ
Nγ

N−1
∞

yT

e−y 1 +Nγ 1−e−by
N−2

i= 0

by i

i
dy

=
1

1 +Nγ
1 +Nγ
Nγ

N−1
∞

yT

e−y 1 +Nγ dy−

∞

yT

e−y 1 +Nγ e−by
N−2

i= 0

by i

i
dy

=
1

1 +Nγ
1 +Nγ
Nγ

N−1

1 +Nγ e−yT 1 +Nγ −

∞

yT

e−y
N −2

i = 0

by i

i
dy

(C.53)
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FIGURE C.9 Single-pulse noncoherent detection characteristics
for slow Rayleigh fading signal. The curve labels are identical to
those in Figure C.5.
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The threshold yT is determined from the false-alarm prob-
ability as expressed in Equation (C.13) or (C.25).

The detection probability is shown in Figure C.10 for
selected values of N, and the results indicate that a substan-
tially higher SNR is required to achieve the same detection
performance using the nonfading signal. For example, for
Pd = 0.9 and N = 100, 10, and 1, the Rayleigh fading signal
requires an 8 dB higher SNR to achieve the same detection
probability. The performance in Figure C.10 strictly applies
for the false-alarm number nf = 1000.

Using (C.34) and the associated procedures for determin-
ing the noncoherent combining loss for constant signals,
the noncoherent combining loss for Rayleigh fading signals
is shown in Figure C.11. In this case, the improvement

in the combining loss diminishes significantly for SNRs
exceeding 8 dB.

C.3.2 Signal Detection Using Linear Detector

In this case, the output of the demodulator linear detector
is described by the Ricean pdf expressed in (C.5) and
repeated here as

pR r =
r

σ2n
e− r2 + A2 2σ2n Io

rA

σ2n
U r (C.54)

where r is the output of the linear detector. It is convenient
to use the normalized transformation of (C.54) by letting
y = r σn and defining the SNR as γ =A2 2σ2n. The resulting
normalized pdf is expressed as

pY y = ye− y2 + 2γ 2Io 2γy U r (C.55)

The performance of the linear detector is characterized in
terms of the false-alarm and false-detection probabilities and
the number of noncoherent postdetection outputs (N ≥ 1)
that are combined before making a final decision. In
Section C.3.2.1, the characteristics are examined for a constant
or nonfluctuating signal, that is, the carrier amplitude A is con-
stant. The intent of this section is to demonstrate that the detec-
tion performance of a signal with AWGN using a square-law
detector approaches that of a linear detector as the SNR
increases. Because the SNR increases with noncoherent com-
bining of N pulses, it is only necessary to demonstrate that the
performance difference between the square-law and linear
detectors diminishes with increasing SNR with N = 1, that
is, without noncoherent combining.

C.3.2.1 Constant Signal in Gaussian Noise The solu-
tions to the false-alarm and detection probabilities
discussed in Section C.4 involve Marcum’s Q-function
defined in Sections 5.3 and 5.5.3.

a. Single-pulse false-alarm probability With noise
only, the Ricean distribution reduces to the Rayleigh
distribution expressed in the normalized form of
(C.55), with the normalized decision statistic y = r σn
and γ = 0, the noise only pdf is expressed as

pR r = ye− y
2 2 U r (C.56)

The false-alarm probability is computed as

Pfa =

∞

yT

ye− y
2 2dy

=Q 0, yT = e−y
2
T 2

(C.57)
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where yT = rT σn is the normalized false-alarm thresh-
old. The false-alarm probability is plotted as a function
of yT = xT σn in Figure C.12.

b. Single-pulse detection probability In a similar man-
ner, the probability of detection is evaluated using
(C.55) with the normalized decision statistic y= r σn
and the result is

Pd =

∞

yT

ye− y2 + 2γ 2Io 2γy dy

=Q 2γ,yT

(C.58)

The Q-function in (C.58) is not nearly as easy to
evaluate as the expression in (C.57) for the linear
false-alarm probability or the square-law detection
expression in (C.16). However, Johansen [23] has
developed computer algorithms for the general solu-
tion to Marcum’s Q-function that have been pro-
grammed, and the results are plotted as the solid
and dashed curves in Figure C.13; these curves have
the same labels as used for the square-law detection
curves in Figures C.5 and C.9. Figure C.14 com-
pares the detection performance of the linear (solid
curves) and square-law (dashed curves) detectors.
For a given SNR, linear detection performs better;
however, there is very little performance difference
with increasing SNR and false-alarm number.

C.4 EVALUATION OF THE DETECTION
PROBABILITY AND FALSE-ALARM
THRESHOLD FOR CHI-SQUARE DISTRIBUTED
RANDOM VARIABLES

In this section, the detection probability is evaluated for
the chi-square probability distribution* function given the
degrees of freedom (2WT), the desired SNR (γo) at the
detector output, and the false-alarm probability (Pfa).
The procedure [24] is based on the nomogram, developed
by Urkowitz [25], and is shown in Figure C.15.

The application of the nomogram is described using the
following example parameters: 2WT = 10,γo = 60 17 8dB ,
and Pfa = 1e−3. There are two passes through the nomogram,
the first pass connects the point corresponding to 2WT and
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FIGURE C.12 Linear detector false-alarm performance.
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*The chi-square distribution function is introduced in Section 1.5.7.
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Qo =Pfa with a straight line passing through and identifying
the threshold VT . The parameters D and G are computed as

D =
2WT + γo

2

2WT + 2γo
degrees of freedom (C.59)

and

G=
2WT + 2γo
2WT + γo

threshold adjustment gain (C.60)

For the second pass through the nomogram, a new
threshold is computed as

VT =
V

G
(C.61)

and connecting the new degrees of freedom D and threshold
VT with a straight line extending to Qd that identifies the
probability of detection Pd = Qd . For the set of example

parameters, the desire parameters are found to be VT = 30,
D = 37.7, G = 1.86, VT = 15.8, and Pd = 0.9989. The thresh-
old VT = 30 is used as the detection threshold in the subse-
quent demodulator processing.

For larger degrees of freedom, that is, values of 2WT >
250, the chi-square distribution is approximated by the
Gaussian distribution and Pfa and Pd are computed as

Pfa =
1
2
erfc

VT −2WT

2 2 WT
for distribution N 2WT , 4WT

(C.62)

and

Pd = 1−
1
2
erfc

VT − 2WT + γo
2 2 2WT + γo

for distribution N 2WT + γo, 4 WT + γo
(C.63)
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FIGURE C.15 Nomogram of the chi-square probability function.Urkowitz [26]. Reproduced by permission of the IEEE).
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PROBLEMS

1. The following are example applications in the use of the
characteristic function. The characteristic functions are
based on a received signal with zero-mean additive
Gaussian noise with variance σ2n. In each case, evaluate
the mean value E(x), the second moment E(x2), and
the variance σ2x where x = y without combining (N = 1)
or = w with N pulse integration.

a. Using the characteristic function C1
Y p , expressed

by (C.14)

b. Using the characteristic function C1
Y p, γ , expressed

by (C.17)

c. Using the characteristic function CN
W p , expressed

by (C.18)

d. Using the characteristic function CN
W p, γ , expressed

by (C.27)

e. Using the characteristic function CN
Y p, γ , expressed

by (C.41), for a Rayleigh fading signal

2. Using the results inProblem1DandE, express the detection
probabilityPd in terms of the error function erf( ) and plotPd

as a functionof theSNRforN= 100andcompare the results
with those in Figures C.7 and C.10, respectively.
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All-pass filter see filters
AM-AM transfer function, 585–586, 588, 590
American Ephemeris Almanac, 606
American Standard Code for Information Interchange (ASCII)

(start/stop bits), 81, 280
Amplitude modulation (AM) see modulations
Amplitude probability distribution (APD) see distributions
Amplitude PSK (APSK) see modulations
Amplitude resolution see sampling
Amplitude response, 19, 212–213, 733, 737, 744

Digital Communications with Emphasis on Data Modems: Theory, Analysis, Design, Simulation, Testing, and Applications,
First Edition. Richard W. Middlestead.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/digitalcommunications



Amplitude shaping function, 228
Amplitude shift keying (ASK) see modulations
AM-PM transfer function, 585–586, 588
Analog filter, 24, 733
Analog quadrature mixers, 92, 99
Analog-to-digital converter (ADC), 82–88, 93, 95–96, 98, 102–103,

133, 137, 416–420, 432, 448–449, 475, 490, 524, 558, 646
Analytic function, 438, 488, 512, 547, 620, 667, 746
Analytic modulated waveform, 228
Analytic signal, 4, 5, 45, 99–100, 209, 211, 228, 376, 378, 410, 416,

418, 438, 503, 545–548, 619–620, 641, 647, 669–670, 672, 681
Analytic signal (Complex envelope), 546, 619
Angle-of-arrival diversity see diversity combining
Angle-of-arrival variance, 707
Angle-of-incidence, 652
Antenna beam angle, 569
Antenna boresight see Longley-Rice
Antenna efficiency see antennas
Antenna feed see antennas
Antenna mismatch factor see antennas
Antenna noise temperature see antennas
Antenna pointing error, 657
Antennas
antenna efficiency, 562, 568, 654–655
antenna feed, 523, 568, 596
antenna mismatch factor, 576–578
antenna noise temperature, 562–568
antenna system temperature, 596
aperture efficiency, 558, 562, 568, 571
aperture illumination, 568
axial ratio, 574, 576–578, 596
boresight, 559, 662
circular aperture patterns, 564, 568, 570–571, 654
copolarization loss, 578
cosine weighted aperture, 569
cross-polarization discrimination, 578
cross-polarization loss, 578
cross-polarized state, 576
directive antenna gain, 569, 710
dual polarization, 564
effective antenna feed temperature, 567
effective antenna reflector temperature, 567
effective aperture, 564, 568
effective area, 558, 575, 654
effective isotropic radiated power (EIRP), 500, 559, 567–568,

596, 721
effective noise temperature (antenna feed), 566
elliptical polarization, 573
far field, 569
feed temperature, 567
field of view (FOV), 606, 685
gain, 499, 502, 523, 558–559, 562, 568–571, 583–585, 596,

654–656, 693, 710, 721
gain-temperature ratio (G/T) (receiver), 567
horizontal polarization (HP), 575, 662–663
ideal dipole antenna, 558
isotropic antenna, 559
isotropic antenna gain, 559

isotropic radiated power, 559
left-hand circular polarization, 653
linear polarization, 573, 575, 712
offset-feed, 569
omnidirectional antenna, 655, 663
orthogonal polarized states, 576
physical aperture, 568
polarization ellipse, 574
polarization isolation, 578
polarization loss, 574–578, 596
polarization mismatch factor, 575–576
power-aperture, 559
radiation efficiency, 562, 568
radome loss, 562, 596
reflector surface and feed efficiency, 568
right-hand circular polarization, 653
scallop loss (SL), 585
shaping loss, 585
single polarization, 564
spillover efficiency, 568
spillover loss, 562, 568
spot beam radiation patterns, 568
tilt angle, 574
triangular weighted aperture, 570
uniform aperture weighting, 568
vertically polarization (VP), 575, 662–663

Antenna sidelobes, 472, 567, 655
Antenna system temperature see antennas
Anti-aliasing see filters
Anti-jam, 23, 149, 485–488, 499, 524
Anti-jam (AJ) communications, 23, 270, 449, 485, 499
Antipodal bit-error performance, 165
Antipodal signaling, 137, 156, 161, 189, 201, 207, 209, 228, 230, 243,

280–281, 297, 504, 535, 552, 595, 674
Anti-scintillation (AS) systems, 713
Aperture efficiency see antennas
Aperture illumination see antennas
Aphelion, 604
Apogee, 604, 611
A posteriori pdf, 48, 49
A posteriori probability (APP), 26, 47, 135–136, 139, 311
A posteriori probability (APP) algorithm, 304
Appleton’s index of refraction (or refractive index), 704
Application-specific integrated circuits (ASICs), 299, 325
A priori knowledge, 47–49, 136
A priori mark and space source data, 230–231
A priori pdf, 77
A priori probability (probabilities), 26, 46, 48, 135–137, 140, 143,

228, 397, 690, 756
ARDC model atmosphere, 700, 705
Area prediction mode, 661 see also Longley-Rice
Arithmetic mean, 73, 618
Ascending node, 596, 604, 606, 611–613
Astronomical zenith angle, 608
Asymmetrical sampling see sampling
Asynchronous randomizer, 276
Atmospheric noise, 547, 567, 669, 674–676
Atmospheric noise temperature (effective), 565, 567
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Atmospheric turbulence, 633
Atmospheric winds, 703
Attack time (AGC), 419
Autocorrelation processing (function), 40, 42–43, 68–69, 183
Autocorrelation response, 6, 40, 46, 541–542, 640, 642
Autocovariance, 20, 41, 42
Automatic gain control (AGC), 23, 82, 85, 133, 276, 378, 414,

416–420, 548
Automatic gain controlled power, 474
Automatic repeat request (ARQ), 2, 55–57, 273, 431, 634,

643, 721
Auxiliary random variable, 31
Average distortion, 144
Average Earth radius, 649
Average excess mean-square error (MSE), 469
Average mean-square error (MSE), 468, 469
Average mutual information, 140–141, 143–144, 148
Average sampling see sampling
Average self-information or source entropy, 140, 141
Average signal power, 233–234
Average wave height, 676, 678
Axial ratio see antennas

Background-induced noise see photomultiplier tube
Background noise temperature, 567
Backoff, 82, 178, 182, 362, 369
input,output, 585, 588–590, 592–593
power, signal, 169, 175, 227

Backoff loss, 154
Backward indexing, 470
Backward linear prediction (BLP) see adaptive processing
Backward recursion, 306–309
Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm, 304
Ballistic missile
communication, 606
trajectories, 603

Band-edge phase error, 743
Bandlimited channel, 625
Band-limited region, 228
Band multitone jamming see jamming
Bandpass impulse response, 418
Bandpass limiter, 377–378, 390, 672
Bandpass sampling see sampling
Band-reject frequency (PLL loop filter), 579
Bandwidth efficient modulations, 179, 189
Bandwidth limited regime capacity, 144
Barker codes, 415, 432, 434–435
Bartlett’s procedure, 15, 370
Bartlett (triangular) window, 58–61 see also windows
Barts and Stutzman see mobile radio propagation models
Baseband filters, 38, 208–209, 474, 618–619
Baseband sampling see sampling
Baseband (analytic) signal, 99, 211
Bayes criterion (Bayes rule), 26, 46–49, 136, 139, 282, 396
BCH generator polynomials, 318, 329
Berlekamp’s iterative algorithm, 324
Bernoulli trials, 532, 541
Bessel filter see filters

Bessel functions, 3, 18, 30–31, 34, 36, 65, 187, 215, 551, 570,
634vb–635, 639, 717

Bessel transfer function, 736
Bias (known), 48
Bias (unknown), 48
Bias of estimate, 48, 50 see also estimation
Bilinear transform, 748
Binary antipodal ASK modulation see modulations
Binary cyclic codes see channel coding
Binary hypothesis test, 137
Binary minimum distance (Hamming), 290
Binary notation, 272, 364
Binary phase shift keying (BPSK) see modulations
Binary source data see random number generation
Binary symmetric channel (BSC), 140–145, 147–149, 274, 314,

325–326
Binomial coefficients, 71–72, 142, 255, 292, 532, 541, 759
Binomial distribution see distributions
Binomial theorem, 2, 71
Bioluminescence, 685
Biorthogonal M-ary coded waveform see modulations
Biphase (Biφ-L,-M,-S) (PCM) see modulations
Bipolar, 240, 242, 247, 288
Bipolar NRZ-L (PCM) see modulations
Bipolar return to zero (RZ-L) (PCM) see channel coding
Bi-static radar, 606
Bit count integrity (BCI), 452, 721
Biternary coding (PCM) see modulations
Bit-error probability bounds on memoryless channel, 298, 312,

521–522, 533, 542
Bit-mapping conventions, 252
Bit rate estimation see estimation
Bits and nats, 140, 151
Bit-to-symbol mapping, 515, 517–518
Bivariate distribution see distributions
Blackman-Harris window see windows
Blackman window see windows
Blackout regime, 709, 712
Blind (self-recovering) equalizer see adaptive processing
Blind spots (shadow region), 251, 262, 283, 314–315, 336,

722, 725
Block codes see channel coding
Block (row-column) interleavers see interleavers
Boltzmann’s constant, 559, 564
Boresight see antennas
Bose-Chaudhuri-Hocquenghem (BCH) codes (binary, nonbinary)

see channel coding
Bounded bandwidth, 192
Bounded likelihood ratio, 538
Branch metric, 307–308
Brewster angle, 653
Brightness (radiation intensity), 564
Brightness temperature, 564–565
Broadband noise jamming see jamming
Bumped oscillator, 400
Burst-error correcting codes see channel coding
Butterfly element, 426
Butterworth filter see filters
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Canceler step-size, 466–468, 471, 474, 477, 479
Capacity of constrained M-ary coded waveform modulation, 143,

144, 147
Carrier frequency error estimation see estimation
Carrier leakage, 96, 99, 128, 425, 442
Carrier phase tracking (PLL), 157, 160–161, 253
Carrier-to-noise density ratio, 503
Cascaded impulse response, 470
Cascaded integrate and comb (CIC) filter see filters
Cascade of noiseless attenuators, 561
Cascade of synchronously tuned single-pole filters, 386, 418,

750–751
Case Studies
ADC quantization of direct-sequence spread-spectrum

waveform, 83–87
16-ary QAM performance evaluation, 236–237
bandpass sampled AGC performance evaluation, 418–420
bit-error performance with baseband mixer imbalance, 105–106
BPSK and DCBPSK performance in rayleigh fading channel,

722–723
BPSK and QPSK performance with phase-noise, 582–583
BPSK and QPSK phaselock loop performance, 408–410
BPSK bit-error evaluation with PLL tracking, 551–552
BPSK monte carlo simulation, 548–550
BPSK phase tracking performance of a disadvantaged transmit

Terminal, 410
coherent and noncoherent BFSK performance simulation, 211–214
DCBPSK performance with sea-state, 682–684
detection, bit-rate, and frequency estimation using BPSK, 439–445
discriminator frequency estimation, 427–432
example satellite encounters, 612–614
FFT signal detection and frequency estimation, 422–424
Filter application, 743–746
2-h 4-ary 1REC CPM, 350–362
Hilbert filtering, 97–98
LEO satellite multi-path propagation, 654–656
LMS linear feedforward equalization, 474
minimum shift keying (MSK) performance with lognormal impulse

noise, 672–676
narrowband interference cancellation, 474–479
performance simulation of SRRC-QPSK with SSPA nonlinearity,

592–593
performance using independent signal and noise power estimation,

456–458
PMT demodulator performance ofM-ary PPMwaveform, 691–692
PMT demodulator performance using OOK modulation, 690–691
polarization characteristics for a LHCP antenna, 576–578
QPSK bit-error evaluation with PLL tracking, 553
recursive least squares processing, 480–482
sample-rate conversion filter design, 111–112
second and fourth order moments (M2M4) SNR estimator,

454–456
spectral and bit-error performance of SRRC, 200–202
4-State 8PSK-TCM performance over satellite repeater, 367–371
terrestrial jammer encounter and link standoff ratio, 522–524

Catastrophic error propagation, 165, 239, 269, 289
Cauchy’s inequality, 72
Cauer (or elliptic) filter see filters

Causal impulse response, 44
Causality, 73, 111, 238, 747
CCIR model see mobile radio propagation models
Celestial equator, 604
Celestial point-of-reference, 604
Cell under test, 422
Celsius (Centigrade) (degrees conversions), 557–559
Center-of-radiation height (antenna) see Longley-Rice
Central chi-square distribution see distributions
Central limit theorem, 1, 28, 35–36, 455, 505, 542, 661, 667, 761
Central moment (k-th order), 24, 36
Central, or main, lobe, 58
Channel burst-error length, 274
Channel capacity, 139–145, 147–148, 302, 314, 362–363

BSC channel, 140–141, 143–145, 147–149
Channel capacity for constrained data source, 143
Channel coding, 133–136, 143–144, 146, 149, 155, 157, 251,

261–262, 274–275, 304, 306, 309, 434, 532, 643
binary cyclic codes, 261, 273–274, 315
bipolar return to zero (RZ-L) (PCM), 264–265
block codes, 251, 262, 283, 314–315, 722, 725
Bose-Chaudhuri-Hocquenghem (BCH) codes (binary, nonbinary),

261–262, 315–319, 323, 329, 722
burst-error correcting codes, 510, 722, 725
code concatenation, 134
concatenated convolutional (CC) codes, 296
converse noisy-channel coding theorem, 143–144
convolutional codes, 262, 283, 289, 292
cyclic code-block, 284–285, 291
cyclic codes, 261, 273–274, 315
cyclic redundancy check (CRC) codes, 55–56, 264, 273–276, 311
delay modulation (DM) or miller code (DM-M,-S) (PCM), 266
differential coding, 168, 240, 244, 247, 261, 269–270, 280
double serial concatenated convolutional code (DSCCC), 261, 303
dual code, 274, 314
dual-k, dual-3 convolutional codes, 293, 295–296
error detection and correction (EDAC), 262, 643
forward error correction (FEC) coding, 144, 147–148, 270, 315,

434, 548, 597, 636, 643, 676, 683–684, 689, 710, 721–722,
725–726

frank codes (polyphase, nonbinary), 433
Frequency modulated (FM) PCM (PCM/FM), 267–268
gray coding, 156, 166–167, 236, 261, 268–270, 285
Hadamard sequences (or Walsh codes), 251, 258
Huffman codes (polyphase, nonbinary), 433
hybrid codes, 261, 304, 486, 499
hybrid concatenated convolutional codes (HCCC), 261, 303
low-density parity-check (LDPC) (regular, irregular), 144, 147,

261, 313–315, 722
Manchester coded PCM, 265, 267
non-return to zero (NRZ) (NRZ-L,-M,-S) (PCM), 179, 243–244,

247, 262–268
parallel concatenated convolutional codes (PCCCs), 261, 302, 306
parity-check codes, 144, 261, 313–315
phase modulated (PM) PCM (PCM/PM), 366–367
product, turbo product (TP) codes, 261, 313–315
pseudo-random noise (PRN) codes, 83, 127, 251, 259, 261,

270–271, 276, 541
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rate 1/3 PCCC (turbo code) performance, 285, 290–291, 295, 309,
311–313, 410, 597

Reed-Solomon (RS) codes, 261–262, 271, 277, 296, 315, 317–328
Reed-Solomon Viterbi (RSV) codes, 261, 299, 327–328
repetition coding, 495, 510–512, 519
self-concatenated codes (SCCs), 261, 302, 304
serially concatenated convolutional codes (SCCCs), 261–262, 299,

303–305, 308–309, 311–313
t-error correcting code (RS code), 318, 321, 326
turbo code (TC), 144, 146–147, 261–262, 299–300, 304, 309–311,

313, 315, 410, 448, 597
unipolar return to zero (RZ) (PCM), 262, 264–265, 267
Wagner coding, 261–262, 279–283
Walsh codes (or Hadamard sequences), 251–252, 259, 433
Williard codes, 432–433

Channel coherence bandwidth, 633, 643, 645–646, 703
Channel conditioning, 617, 627–628
Channel dispersion, 480, 488
Channel efficiency, 145–146, 156–157
Channel frequency response, 96, 216, 247, 629, 641, 712
Chapman electron density profiles, 700, 711
Chapman’s analytic model, 660
Character-error probability, 280–283
Characteristic function, 1, 28, 31–38, 220, 757–763
Characteristic values (or eigenvalues), 69, 470
Characteristic vectors (or eigenvectors), 68–69, 479
Chebyshev filter see filters
Chebyshev-Laguerre polynomial, 551
Chebyshev polynomial of the first kind, 550–551
Chebyshev polynomial of the second kind, 551
Chernoff bound, 521–522
Chi-square characteristic function, 38
Chi-square distribution see also Distributions
nomogram, 766

Chi-square fading, 755, 761
Chi-square random variable, 38, 765
CIC filter decimation, 107–108, 112–115
CIC filter gain compensation, 115
Circular aperture patterns see antennas
Circularly polarized waves, 573–577, 653
Classical filter theory, 617, 733
Clipping (mitigation) see Lognormal impulse noise
Clock accuracies, 413
Closed-loop frequency response (PLL), 376
Closed-loop noise bandwidth (PLL), 582
Closed-loop response, 380, 390–392, 579
Closed-loop tracking, 157, 410
Closed-loop transfer function, 380, 382–383, 390, 392
Cloud albedo, 687
Cloud extinction coefficient, 687
Cloud geometric thickness, 687
Cloud mean scattering angle, 687
Cloud optical thickness, 687
Cloud pulse dispersion, 687
Coarse-frequency estimation see estimation
Coarse synchronization, 41, 56, 241, 253, 280, 315, 345, 358, 375,

414–416, 420, 431–435, 438–439, 443–446, 448–452, 487, 493,
496, 672, 685, 689, 691

Co-channel interference (CCI), 540, 541, 586, 598
Code concatenation see channel coding
Code concatenation (inner and outer codes), 296, 302
Code division multiple access (CDMA), 433, 486
Code puncturing, 285, 296
Code rate, 147–149, 283, 285, 287, 296. 298–299, 301, 303–304,

306, 308–310, 312–314, 317, 319, 322, 326–329, 365, 420,
522, 726

Code synchronization, 258, 287
Code tree decoding structure, 283, 287
Coding gain, 146, 153, 251, 282, 285–286, 296, 299–300, 311, 313,

326, 339–341, 351–352, 358, 362–363, 366, 370–371, 493
Coding interval (block code length), 283–284
Coding theorem, 143–144, 253
Coherence bandwidth, 633, 643, 645–646, 703
Coherence time, 642–643
Coherent BPSK (CBPSK) (detection) see modulations
Coherent carrier tracking, 263, 408–410, 416, 450, 669, 721–722
Coherent combining (or pre-detection integration), 755
Coherent integration loss, 445
Co-located terminals, 368, 655
Comb filter, 112–115
Combining gain see diversity combining
Common logarithm, 74, 577
Communication link budgets, 413, 597
Communication platform motion, 633, 641–642, 718, 721
Communication range equation, 2, 557, 559
Communication security (COMSEC), 486
Compatible shift keying (CSK) see modulations
Complementary error function, 139, 151, 209, 257
Complementary orthogonal (CO) see modulations
Complement of the probability integral, 231
Complex conjugate

pair, 6, 75
symmetry, 466
transposition, 66, 466

Complex dielectric constant, 653
Complex envelope see analytic signal
Complex Gaussian random variable, 678, 715
Complex number relationships, 73
Complex reflection coefficient, 652, 654–655
Component interface loss, 557
Computational complexity, 14, 41, 147, 299, 727
Computational cutoff rate, 22, 149–150
Computer generated scintillation records, 718, 720, 722
Concatenated convolutional (CC) codes see channel coding
Concave downward (frowning) characteristic, 126
Concave upward and downward (parabola), 126
Concave upward (smiling) characteristic, 126, 466
Conditional.cdf, 23–24
Conditional distribution see distributions
Conditional entropy, 141–143
Conditional-error probability, 138, 233
Conditional expectation, 24–25, 27
Conditional Gaussian distribution see distributions
Conditional joint distribution, 281
Conditionally stable (PLL), 269
Conditional mean, 49
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Conditional or transition probabilities, 46–47, 135, 141, 148, 150,
491, 690–691

Conditional pdf, 23, 25, 640
Conditional.pmf, 26
Conditional probability, 23, 26–27, 139–140, 241, 398
Conditional random variable, 407–408
Conditions for stationarity, 43
Confidence level(s), 17, 39, 433, 452, 533–538, 542, 583, 711
Congruence method, 540
Consistent estimate, 15
Constant-coefficient difference equation, 747
Constant false alarm rate (CFAR), 41, 415–416, 420, 422–425,

449–452, 490
Constant of gravitation, 605–606
Constant-parameter estimation in Gaussian noise, 50
Constellation decision matrix, 234
Constraint length (convolutional code), 149, 283–285, 287, 289–297,

299, 301, 311, 327–329, 341, 346, 354, 356, 363–364, 366, 368,
420, 689, 726

Consultative Committee for Space Data Systems (CCSDS), 179
Continues-phase frequency modulation (CPFM) see modulations
Continuous joint.cdfs, 23
Continuously variable digital delay (CVDD), 118
Continuous phase BFSK (CPBFSK) see modulations
Continuous phase FSK (CPFSK) see modulations
Continuous phase modulation (CPM) see modulations
Continuous random variables, 20–24, 26–28
Continuous-RQ, 55
Continuous-time, 133, 251, 382, 493, 748
Continuous wave (CW), 39, 207, 359, 472, 488, 552, 663, 748
jamming (see jamming)
oscillators, 52, 95, 99, 106, 127, 208, 375, 388, 396, 399, 410,

413–414, 417, 420, 426, 448, 452, 489, 493–494, 496–497, 540,
578–580, 582

Convergence in probability, 42
Convergence time, 469, 473, 477
Converse noisy-channel coding theorem see channel coding
Convex upward function, 470
Convolutional codes see also Channel coding
constraint length, 283–284, 287, 289, 291–293, 296–297, 299, 301,

311, 341, 346, 354, 356, 366, 368, 420, 426
state diagram, 294
transfer function, state diagram, 294

Convolutional interleaver see interleavers
Convolution, convolution integral, 4, 15–16, 18, 28, 32, 34–35,

40–41, 43, 46, 73, 77, 87, 89–92, 169, 196
Convolution sum, 746–747, 750
Coordinate transformations (geographic and geomagnetic), 704,

708, 727
Copolarization loss see antennas
Correct acquisition probability, 597
Correction matrix, 100
Correct message detection probability, 433
Correct synchronization probability, Pc(sync), 448
Correlated channel errors, 277
Correlated Ricean random variables, 543
Correlation (lag-correlator), 217, 437
Correlation coefficient, 25, 40–41, 139, 252, 542–543, 640, 716

Correlation despreading, 85
Correlation distance (), 710, 717–718
Correlation functions (properties), 20, 40–41
Correlation lag, 41, 43, 433, 435–436, 446, 489, 543
Correlation matrix, 68–69, 466–469, 473, 479
Correlation processing, 19, 40, 85, 348, 356, 415, 445, 447, 450, 452
Correlation sidelobes, 415, 432–435, 486
Correlative coding, 238–239
Cosine-squared (or Hanning) window (k = 2) see windows
Cosine weighted aperture see antennas
Cosine window see windows
Cosine window (k = 1) see windows
Cosine window (k = 3 and 4) see windows
Cosmic noise power, 565, 567
Costas phaselock loop, 620, 674
Cost functions, 46, 49
Counter jamming strategies, 149
Covert communication, 432, 485
Cramér-Rao bound, 49–50
Cramér-Rao equality condition, 49–50
Cramér-Rao inequality, 48
Crane model (rain), 517–572
Critical angle of incidence, 657
Critical signal-to-noise ratio, 389, 431, 675
Cross-channel distortion, 100
Cross-correlation vector, 19–20, 40–41, 46, 251, 292, 466
Cross-polarization discrimination see antennas
Cross-polarization loss see antennas
Cross-polarized state see antennas
Cryptographic security, 486
Cubic phase (quadratic delay) function, 361, 370, 617, 627, 631
Cumulative distribution function (cdf) see distributions
Cutoff frequency (Ωc), 96, 184, 238, 734, 737, 739, 742–743, 752
Cycle skipping, 387, 389, 414–415, 448
Cyclic code-block see channel coding
Cyclic codes see channel coding
Cyclic correlation response, 433
Cyclic redundancy check (CRC) codes see channel coding

Damping factor (PLL), 359, 361, 377, 382–388, 579
Dark noise see photomultiplier tube
Dart leader see Lightning strikes
Data compression, 133, 261
Data encryption, 276
Data interleavers see interleavers; Rayleigh fading
Data randomizing, or scrambling (synchronous, asynchronous),

276–277
Data sink, 98, 139–140, 531–532
Data source (source data), 139–140, 142–143, 147, 241, 245, 247,

320–321, 531–532
DCBPSK see modulations; Rayleigh fading
DCQPSK see modulations; Rayleigh fading
DEBPSK see modulations; Rayleigh fading
Decay time (AGC), 417, 419
Decimation (down-conversion) see sampling
Decimation-in-time, 10–11
Decision directed equalizer see adaptive processing
Decision directed phaselock loop, 396
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Decision-directed synchronization, 450
Decision feedback equalization (DFE) see adaptive processing
Decision threshold, 46, 138, 229, 490, 585
Decoding with erasures (RS decoding), 319, 322–325, 452
Degrees of freedom, 36–38, 145, 147, 645, 647, 755, 761, 765–766
Delay dispersion, 643
Delay estimation error based on effective bandwidth, 51
Delay estimation error of DSSS Waveform, 53
Delay function, 627–628, 631, 713, 735, 742
Delaylock loop (DLL), 490–492
Delay measurement accuracy, 51
Delay modulation (DM) or Miller code ( DM-M,-S) (PCM) see

channel coding; modulations
Delay rate (Doppler frequency), 413
Delay spread, 19, 643, 645–646
Delta function, 8–9, 22, 26, 87–90, 222, 271, 642
Delta function sifting property, 89
Demodulator DC Offset Measurement, 104, 105
Demodulator decision metric, 149
Demodulator down-conversion imbalance, 104–105
Demodulator gain imbalance measurement, 103
Demodulator phase imbalance measurement, 103–104
DeMoivre-Laplace theorem, 532
DEQPSK see modulations
Derandomizer, 276–277, 332
Detection probability, 44, 236, 415, 430–431, 433–434, 452, 491,

756–763
Determinant and matrix inverse, 66–67, 69
Deterministic block (non-random) interleaver see interleavers
Deterministic signals, 40
Dial-up telephone (wireline) channels, 627
Dicke radiometer, 498, 504
Differential coding, 168, 240, 244, 247, 261, 269, 280 see also

channel coding
Differential comparison (detection), 165
Differential encoding, 165, 170, 245, 269–271, 280
Differentially coherent demodulation, 166
Differentially coherent MPSK (DCMPSK) see modulations
Differentially coherent PSK (DCPSK) see modulations
Differential PSK (DPSK) see modulations
Differential pulse interval modulation (DPIM) see modulations
Differentiation rules (applications), 2, 15, 68, 71, 72, 350, 468
Diffraction parameter, 661
Diffraction region, 652
Diffractive ray bending, 660
Digital frequency synthesizer (DFS), 486, 493, 495
Digital signal processing (or processor) (DSP), 81. 93, 127, 134, 299,

325, 393, 546
Digital-to-analog converter (or conversion) (DAC), 83, 99–100, 127,

133, 170, 262, 418–419, 643
Direct current (DC), 183, 264, 750
loop gain, 376
offset, 92
offset distortion, 102, 105
offset imbalance, 99, 105

Direct-form implementation, 750
Directive antenna gain see antennas
Direct path, 633, 650–651, 654–655, 658, 660–661

Direct probabilities, 47
Direct-sequence spread-spectrum (DSSS) see modulations
Disadvantaged terminals, 154, 339
Discrete-amplitude (quantization), 81, 83, 121–122, 133, 585
Discrete amplitude sampling, 81, 83–85
Discrete Fourier transform (DFT), 9, 240, 433, 678, 748, 751
Discrete-frequency sample, 1
Discrete memoryless channel (DMC), 139–140, 151
Discrete memoryless source, 144
Discrete noise background, 563
Discrete noise sources, 563
Discrete random variables, 1, 20–22, 25–26
Discrete-time Ricean distributed random variables, 18
Discrete-time sampled data, 546, 733
Discrete-time sampling see sampling
Discriminator function, 121, 357, 437, 492
Discriminator S-curve, 418
Distributed noise sources (background noise sources), 156, 563
Distribution-free (nonparametric) see distributions
Distributions

amplitude probability distribution (APD), 668–672, 692
binomial distribution, 280, 532, 536, 538, 541, 554
bivariate distribution, 25, 640
central chi-square distribution, 761
chi-square distribution, 36–38, 502, 645, 761, 765–766
conditional distribution, 25, 28, 232, 542, 640
conditional Gaussian distribution, 25, 542
cumulative distribution function (cdf), 23–24
distribution-free (nonparametric), 1
distributions (relationships between), 36
exponential distribution (exponentially distributed), 38, 544
Gaussian distribution, 25, 30, 35–36, 39, 75–76, 138, 150–151,

230, 253, 505, 532, 536, 542, 552, 582, 635, 766
generalized distribution, 38
Hancock distribution (or phase function), 39–31, 154, 156
lognormal distribution, 545
marginal distribution, 28, 30
Nakagami m-distribution, 37, 686, 707
n-distribution, 39
non-central chi-square distribution, 38, 761
normal distribution, 1, 137, 173, 282, 545, 661
Poisson distribution, 49, 536–538, 544, 686, 691, 694
Rayleigh distribution, 30, 38, 210, 635, 712, 758, 762, 764
Rayleigh power distribution, 38
Ricean cumulative distribution (cdf), 635
Ricean or Rice distribution, 30, 210, 255, 634–635, 758, 764
Tikhonov phase distribution, 551–553
uniform distribution, 21, 32–33, 278, 540
uniform phase pdf, 30, 706
Weibull distribution, 40

Distributions (relationships between) see distributions
Diversity combining

angle-of-arrival diversity, 634, 643
combining gain, 643, 724
equal gain diversity (EGD), 645, 722
frequency diversity, 722
maximal ratio combining diversity, 644–645
polarization diversity, 634
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Diversity combining (cont’d)
selection diversity combining, 644, 722
spatial diversity, 712, 721–722
temporal combining, 716

Doppler frequency, 52, 107, 413, 421, 426, 433, 612–614,
641–642, 658

Doppler frequency error, 658–659
Doppler rates, 380, 390, 603, 609, 612–614
Doppler shift, 197
Doppler spread, 642–643, 649, 712
Double-dither loop, 492
Double serial concatenated convolutional code (DSCCC) see

channel coding
Double sideband (DSB) see modulations
Downlink amplifier, 358, 361
Down sampling, 360, 451
Dual code see channel coding
Dual-k, dual-3 convolutional codes see channel coding
Dual polarization see antennas
Duobinary modulation see modulations
Duty cycle, 507, 686
Dynamic range, 41, 82–86, 110, 121, 209, 377, 416, 558

Early-late (E/L), 91, 119, 121, 157, 207–209, 422–423, 425,
450–452, 490–492

estimation, 119, 157, 424, 451, 491–492
interpolation, 422–423, 425, 450
processing (tracking), 91, 157, 207–209, 450–451, 490, 492

Earth-fixed coordinate system, 607
Earth’s equator, 604, 610
Earth’s magnetic field, 649, 702–703, 707
Earth stations, 607, 609
Eccentric anomaly, 605
Effective antenna feed temperature see antennas
Effective antenna reflector temperature see antennas
Effective aperture see antennas
Effective area see antennas
Effective bandwidth (SRRC and SRC Waveforms), 51, 53–55
Effective Earth radius, 23, 649, 662
Effective height (antenna), 523, 572, 660, 662–663, 665
Effective isotropic radiated power (EIRP) see antennas
Effective noise temperature
antenna feed (see antennas)
receiver, 560–561

Efficient estimate, 49
Efficient spectrum utilization, 463
Eigenvalues, 64, 467–469, 479
Eigenvalue spread, 467, 469
Eight phase shift keying (8PSK) trellis coded modulation (TCM ) see

modulations
Electric field intensity, 569–570, 574, 669
Electric field wave polarization (effective), 573, 575, 577
Electromagnetic wave propagation, 649, 652
Electron collision frequency, 583, 702–703, 705, 711
Electron content, 699, 702
Electron density, 633, 699–703, 705, 707, 711–713, 715
equatorial and polar regions, 701–702
mid-to-low latitude region, 702

Electronic counter measures (ECM), 485
Elementary symmetric function (RS decoding), 322, 324
Elliptical polarization see antennas
Elliptical satellite orbit see satellite orbits
Elliptic filter see filters
Ending edge (trellis diagram), 306, 313
End-to-end transmission efficiency, 55
Energy angle-of-arrival, 707–708, 710
Energy angle-of-departure, 710
Ensemble average, 668
Ephemeris data, 413
Epoch time stamp (ETS), 487–488, 490–491, 495
Equal gain diversity (EGD) see diversity combining
Equalized delay response, 744
Equalized phase function, 185, 187, 267, 361, 475–476, 617,

743–744
Equatorial region, 583, 701–702
Equivalent lowpass filter see filters
Equivalent noiseless attenuator, 561
Erceg model see mobile radio propagation models
Ergodicity of the autocorrelation function, 42
Ergodicity of the mean (theorem), 42
Ergodic random process, 42
Error bars, 535, 549
Error detection, 223, 261–262, 265, 643
Error detection and correction (EDAC) see channel coding
Error floor, 311, 314
Error-free transmission, 144
Error function, 106, 138–139, 150–151, 209, 215, 257, 533
Error function (polynomial approximation), 151
Error location calculations (RS decoding), 319
Error location numbers (RS decoding), 322–324
Error location polynomial (RS decoding), 318–319, 323
Error of the first kind (Type I error), 537
Error of the second kind (Type II error), 491
Error syndrome calculations (RS decoding), 318–319
Error syndromes, 322–325, 364, 366
Error value(s) (RS decoding), 318–319, 322–324
Estimation

accuracy of estimate, 51–52, 55, 82, 231, 421–422, 429, 448, 491
bias of estimate, 6, 15, 48–50, 60, 217, 451, 453–455
bit rate estimation, 441–442
carrier frequency error estimation, 420
coarse frequency estimation, 415–416, 420, 422, 432, 437, 445
fine frequency estimation, 415
frequency estimation, 51–53, 168, 217, 389, 420–429, 431, 435,

439–443, 448
instantaneous estimation error, 465
maximum a posteriori probability (MAP) estimation, 48–49, 349,

357–358, 396–407, 409
maximum likelihood estimation, 48–50, 452–454
maximum likelihood sequence estimation (MLSE), 174–175, 243,

247, 345, 372, 471
MS and MAP parameter estimation, 49
parabolic interpolator estimation, 121
parameter estimation, 2, 40, 47, 49–51, 53, 57, 66, 100, 413–414,

432, 438, 445, 452, 482, 649
range-delay estimation, 52–53
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second and fourth order moments (M2M4) estimation (algorithm),
452–457

signal power estimation, 454
signal-to-noise ratio (baseband M2 estimators) (algorithm), 453,

456–458
signal to variation ratio (SVR) estimation (algorithm), 453–454
split-symbol moments estimator (SSME) (algorithm), 453
squared signal-to-noise variance (SNV) estimation (algorithm),

453–454
start-of-message (SOM) estimation, 276, 287, 358, 414–416,

432–435, 446–452
symbol frequency error estimation, 494
symbol rate estimation, 438, 442
symbol time error estimate, 357, 360, 450
symbol timing estimation, 358, 414, 448
unbiased estimate, 217, 451

Estimation error, 51–53, 55, 77, 82, 230, 400, 405, 427, 441,
455–457, 464–465, 474, 699

Estimation variance, 48
Euclidean distance, 341–344, 348, 354, 356, 362
Euler angles, 607
Euler’s integral, 74
Euler’s phi function, 272
Euler’s transformation, 607
Event probabilities, 25
Exact sampling see sampling
Exact sampling with finite window see sampling
Excess bandwidth, 63, 111, 116, 502–504, 592
Excess bandwidth (factor or parameter), 54–55, 63, 111, 116, 177,

181–182, 196, 199–202
Excess delay, 643
Excision (mitigation) see Lognormal impulse noise
Exclusive-or, 269–270, 273, 284
Expected value, 533
Exponential distribution see distributions; random number generation
External observations (or inputs), 304, 306
Extra-ionospheric, 703
Extremely high frequency (EHF), 2, 417, 707, 709
Extrinsic information, 303–304
Eye opening, 243

Factorial, 36, 74, 532
Fade level, 641
Fading channels, 25, 30, 157, 277, 298–299, 491, 495, 540, 543, 557,

634–636, 641, 643–646, 699, 710, 720, 722–727
Fahrenheit (degrees conversions), 557–558
False-alarm number, 758, 761, 764–765
False-alarm probability (Pfa), 756
False-decoding probability (RS decoding), 325
False-detection, 40, 421
False-lock condition, 269–270
False message acceptance probability, 311
Faraday rotation, 574, 667, 712
Far field see antennas
Farrow filter see filters
Fast amplitude quantization, 121–122
Fast Fourier transform (FFT), 1, 9, 70, 91, 188, 493, 593, 677, 678
Fast Fourier transforms (FFT)

window, 10, 12, 14, 58, 420–423, 442, 498
100% zero padding, 120–121, 127, 425

Fast frequency hopping (FFH) see modulations
Fast FSK (FFSK) see modulations
Fast Rayleigh fading, 722, 724, 755
Fast Ricean fading (FRF), 636
Feedback tracking loop, 121
Feed temperature see antennas
Fehlner’s false-alarm number (nf), 758, 761, 764
Fetch, 676
Field elements in GF(2m), 273, 317, 320, 323
Field of view (FOV) see antennas
Field programmable gate arrays (FPGAs), 299
Fifth-order intermodulation distortion, 592–593
Filter designs

using hamming window, 752
using s-plane pole and zero, 748
using Windows, 751

Filtered BPSK (FBPSK) see modulations
Filtered MSK (FMSK) see modulations
Filters

all-pass, 628, 728, 736
anti-aliasing, 96, 669
Bessel, 733, 735–737
Butterworth, 93, 184, 187, 211–212, 218–219, 267, 406, 617,

733–736, 742–743
cascaded integrate and comb (CIC), 22, 81, 107–108, 112–116, 201
Cauer (or elliptic), 737
Chebyshev, 93, 351, 361, 369–370, 474, 550–553, 617, 733–734,

736–737, 742–743
elliptic, 733, 737, 739–740, 743
equivalent lowpass, 211–212, 618–619, 746
Farrow filter, 119
finite impulse response (FIR), 96, 107–108, 110–112, 115, 118,

122, 185, 188, 283, 302, 463, 465, 467–468, 470–474, 476–477,
479, 747–748, 750–752

FIR adaptive filter, 465, 467–468
first-order filter (PLL), 380
half-band (FIR) decimation filter, 111
Hilbert filter, 4–5, 93, 95–99, 122–123, 244
ideal bandlimited filter, 43
image reject filter, 107, 109–110
infinite impulse response (IIR) filter, 111, 202, 340, 473,

747–748, 750
integrate-and-dump (I&D) filter, 91, 163–164, 174, 188, 191,

370–371, 406, 474, 495–496, 579, 581–582, 686, 689
linear shift-invariant filter, 747, 749
lowpass, 5, 96, 98, 169–170, 207, 209, 211–212, 214–217, 228,
246–247, 400, 417–418, 490, 546, 618–624, 739, 742–743,
746–747, 750–752

Mth order CIC filter, 113–116
Matched filter, 2, 13–14, 44–46, 53–55, 115–118, 176–177, 180–

181, 199–203, 209–212, 229–230, 236–237, 239–242, 245–247,
257–258, 306–308, 399–403, 405–406, 453–454, 471–474,
479–481, 521–522, 543–545, 547–548, 626–628, 755–756

Nyquist filter, 111, 180, 238–239, 247
phase-equalized channel or filter, 267, 475–476, 617
polyphase filter, 81, 108, 110, 115–117
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Filters (cont’d)
rate conversion filter, 22, 110–111
sequential filter (SF), 747
single-pole lowpass filter (PLL), 750
sliding window (filter), 188, 200, 431, 445
symmetry property, 618
synchronously tuned filters (PLL), 386, 418, 750–751
tapped delay line (TDL) filter (or FIR filter), 11–12, 747, 751
transversal filter (TF) (or FIR filter), 12, 111, 747, 751
Wiener estimation filter, 388, 390, 463–465
Wiener FIR adaptive filter, 468
zonal bandpass filter, 377
zonal filter (or ideal filter), 5, 229, 358, 361. 377, 546

Filter simulation, 737, 742
Final value theorem, 383
Fine-frequency estimation see estimation
Finite and Infinite Sums, 2, 8, 71, 763
Finite geometric series, 113
Finite impulse response (FIR) filter see filters
Finite sample population size, 422
Finite-state trellis detector, 190
FIR adaptive filter see filters
Fire-ball, 711–712
First and second moments, 25, 33–35, 76
First diffraction mode, 652
First-order CIC filter, 113
First-order filter (PLL) see filters
First-order phaselock loop, 380
First-order recursive filter response, 466
First point of aries (Vernal Equinox), 604, 606
Fixed radix-r FFT, 9
Fixed-sample test, 532, 536, 539
Fixed step-sizes, 467
Flaring (irreducible degradation), 190, 305–307, 312–313, 507,

550, 645
Flat-Earth, 650
Flat (nonselective frequency) fading, 633, 644
Flicker noise, 579
Floor function, 94, 174, 190–191, 311
Flush bits (convolutional code), 284, 291, 301, 306
Folded spectral sidelobes, 60
Forward and backward iterations (recursions), 299
Forward-backward linear prediction (FBLP) see adaptive processing
Forward error correction (FEC) see channel coding
Forward indexing, 470
Forward linear prediction (FLP) see adaptive processing
Forward recursion processing, 307
Fourier coefficient, 75, 748
Fourier series, 1, 19, 748
Fourier transform, 5–11, 14–16, 36, 40, 43, 45, 60, 87, 88, 90, 91, 173,

183, 187, 196, 200, 238, 345, 439, 493, 541, 595, 621, 642, 643,
677, 679, 714, 748, 757, 758

Fourier transform (time-frequency duality), 88
Fourier transform pairs, 16, 32, 36, 77, 87, 758
Fractional delay, 118
Fractionally spaced equalizer (FSE) see adaptive processing
Frame check sequence (FCS), 275–276
Frame synchronization, 278, 691

Frank codes see channel coding
Fraunhofer region, 569
Free-distance, 362
Free-electrons, 649, 657
Free-space loss, 558, 612
Frequency and time estimation errors using DSSS waveform, 52
Frequency band designations, 2
Frequency discriminator, 210, 214, 217, 219, 420, 427, 429, 431
Frequency diversity see diversity combining
Frequency division multiple access (FDMA), 93, 127, 179, 184, 202,

416, 585–586, 592, 595
Frequency division multiplex (FDM), 95, 168, 502, 585
Frequency domain sampling see sampling
Frequency estimation see estimation
Frequency estimation error based on effective signal duration, 51
Frequency hopping, 486, 495, 720
Frequency-hopping spread-spectrum (FHSS) see modulations
Frequency interpolation, 14, 127
Frequency modulated (FM) PCM (PCM/FM) see channel coding
Frequency modulation (FM) see modulations
Frequency-nonselective fading, 633, 644, 710
Frequency precorrection, 413–414
Frequency-ramp, 380, 384–385, 394
Frequency-rate, 361, 382, 389–390, 427–428, 445, 491, 545, 547
Frequency resolution, 10, 57, 60, 91, 121, 127, 421–423, 425, 435,

440–442, 448, 593, 752
Frequency selection see sampling
Frequency-selective bandwidth (fo), 707, 709
Frequency selective fading, 471, 644–646
Frequency shifts, 219, 702
Frequency-step, 384–389, 394
Frequency tracking, 107, 199, 256, 276, 414, 425, 432,

452, 579, 724
Frequency transfer function, 736
Frequency uncertainty range, 93, 415, 449
Fresnel diffraction pattern, 661
Fresnel integral, 660, 714, 729
Fresnel-Kirchoff diffraction parameter, 661
Fresnel zones, 661
Full-duplex, 55–56
Full response, 339–341, 345, 351, 453
Full response CPM see modulations
Functions of one random variable, 27
Functions of two or more random variables, 27
Fundamental theorem (Papoulis), 27

Gain see antennas
Gain compression

point, 585, 589, 593
power, 585

Gain roll-off, 115
Gain-temperature ratio (G/T) (receiver) see antennas
Galois field: GF(2), GF(2m), 261, 271–273, 283–284, 315–321,

323–324
Gamma function, 31, 36, 668

Integer argument, 36
Gardner’s approximate atmospheric noise temperature, 567
Gaussian approximation to Tikhonov phase distribution, 552
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Gaussian distribution see also Distributions; Random number
generation

ray scattering, 710
Gaussian fading channels, 25
Gaussian minimum shift keying (GMSK) see modulations
Gaussian number generator, 324, 531
Gaussian phase function, 169, 187
Gaussian random variables, 25, 29, 31, 36, 38, 397, 453, 533,

542–543, 555, 640, 678, 716
Generalized distribution see distributions
Generating uncorrelated record samples, 720
Generator matrix (coding), 291, 364
Generator polynomials, 273, 277, 311, 318, 324
Geocentric longitude, 606
Geometric mean, 73
Geometric series (finite and infinite), 71, 113
Geostationary orbit (GEO) see satellite orbits
Geosynchronous orbit (GSO) see satellite orbits
Global positioning system (GPS), 487, 611
Global system for mobile communications (GSM), 646
Go-back-N protocol (ARQ), 35
Gold codes, 432–433, 486
Gram-Schmidt orthogonalization, 251
Gray coding see channel coding
Grazing angle, 563–564, 650–651, 653, 657
Greatest common divisor (GCD), 70, 74, 107
Greatest common factor (GCF), 2, 70
Greenwich meridian, 607–608, 727
Ground noise temperature, 563, 567
Ground reflections coefficient, 633, 652
Guaranteed minimum distance, 315

Hadamard matrix, 252, 256, 259, 433
Hadamard sequences (or Walsh codes) see channel coding
Half-band (FIR) decimation filter see filters
Half-band sampling see sampling
Half-duplex, 21, 55
Hamming distance, 288, 292–294, 296
binary, 290
maximum, 362
minimum, 314, 362
nonbinary, 291

Hamming weight, 274
Hamming window see windows
Hancock distribution (or phase function) see distributions
Hanning (or Cosine k = 2) window see windows
Hard decision detection (hard-limiting), 156, 314
Hardlimiter (HL), 185–186, 351, 361, 369, 407, 588
Hardlimiting channel, 153, 339
Hardlimiting PA, 178, 183, 386
Heaviside’s expansion theorem, 393
Hermite integration, 407–408, 531, 551–552
Hermite polynomial, 533, 551–553
Hermitian matrix, 66, 69, 466–467
Hermitian transposition, 66, 466
Heterodyning, 1, 4–5, 42, 157, 208, 357, 403, 580, 582, 618, 620, 747
HF fading, 38
High-altitude nuclear detonation, 703

Highly elliptical orbit (HEO) see satellite orbits
High-power amplifier (HPA), 23, 523, 558, 590–592, 596
Hilbert filter see filters
Hilbert transform, 1, 2, 4–5, 75, 81, 93, 95–99, 122

coefficients, 122
sampling (see sampling)

Histogram, 424, 430, 554
Hole-punching (mitigation) see Lognormal impulse noise
Homodyne, 42, 545–546
Horizontal eye opening, 243
Horizontal polarization see antennas
Huffman codes see channel coding
Hurwitz polynomial, 736
Huygens’ Principle, 652–653, 656, 693
Hybrid codes see channel coding
Hybrid concatenated convolutional codes (HCCCs) see

channel coding
Hybrid (DS/FH/TH) spread-spectrum (DSSS,FHSS,THSS)

see modulations
Hypothesis testing, 135
Hysteresis, 418, 451

I channel (or rail), 165, 169, 203, 402
Ideal bandlimited filter see filters
Ideal delay transfer function (Bessel filter), 736
Ideal dipole antenna see antennas
Ideal sampling see sampling
Identically distributed, 29, 35, 281, 678
Identically distributed (id) (random variables), 32, 35, 678
Idle repeat request (Idle-RQ), 55–57, 265
Image reject filter see filters
Implementation efficiency, 107
Impulse-invariant transformation (IIT), 748–749
Impulse-invariant z-transform, 109, 381, 733
Impulse spread, 480
Impulsive noise channels, 150, 667, 671, 673–675
Impulsivity, 545, 668, 676
Impulsivity measure Vd, 667, 670, 672 see also lognormal

impulse noise
Incident light waves, 684
Incomplete gamma function, 231, 760, 763
Incomplete Toronto function, 760
Independent Gaussian noise random variable, 288, 548
Independent-identically-distributed (iid) (random variables), 28,

31, 33–34, 36, 40, 46–47, 55, 252–253, 257, 281, 357, 377,
397, 400, 402, 406–407, 453, 540, 543, 555, 640, 716–717,
757, 760

Independent random variables, 23–24, 29, 38, 510, 542, 665
Indeterminate form(s), 71, 177
Index of refraction, 649, 656–657, 706
Indirect path, 633
Inequalities, 2, 73
Infinite impulse response (IIR) filter see filters
Information bandwidth, 93, 95, 485, 504
Information security (INFOSEC), 486
Information sink, 133–134
Information source, 133–134, 261
Inhomogeneous medium, 649, 702–704
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Inphase and quadrature (I/Q) (channels or rails), 2, 93, 97, 99–102,
105–106, 145, 153, 159, 169–171, 187, 227–228, 258, 352, 434,
488, 490, 492, 586–587, 593, 618–619, 629, 673

Input signal operating point, 586
Insitu measurements, 642
Instantaneous estimation error see estimation
Integrate-and-dump (I&D) see filters
Integration rules, 2, 72
INTELSAT satellite network, 701
Interceptor excess bandwidth, 502–503
Interceptor threshold, 502
Interleaver length, 285, 299, 301, 303, 306, 309, 311, 313, 315, 716
Interleavers
block (row-column) interleavers, 31, 278, 302, 642
convolutional interleaver, 278–279
data interleavers, 133, 261, 277–278, 302, 597, 642–643, 721,

725–726
deterministic block (non-random) interleaver, 31, 278, 302, 642
JPL interleaver, 301
JPL spread interleaver (semi-random or S-interleaver), 300, 309
Ramsey interleavers, 278–279
random (non-deterministic block) interleaver, 278
row-column (block) interleaver, 31, 278, 302, 642
semi-random (JPL spread) interleaver, 300, 309
turbo interleaver, 300
Welch-Costas interleaver, 301

Interleaver span, 684, 725
Intermediate frequency (IF), 92, 97, 133, 166, 170, 215, 267, 369,

377, 540, 578, 620, 669, 755
Intermediate frequency (IF) detection, 267, 325
Intermodulation distortion, 589, 592–593, 599
Intermodulation noise, 585–586, 593
Intermodulation product (m-th order), 586
International Satellite Directory, 611
International Telecommunication Union (ITU), 331, 692
Interpolation (parabolic), 120–121, 126–127, 423–424, 442, 445
Interpolation (up-conversion) see sampling
Intersymbol interference (ISI), 16, 17, 53, 55, 57, 63, 144, 174–176,

180, 181, 188, 190, 238, 368–370, 463, 469, 471, 473, 540, 617,
618, 624, 627, 629, 645, 712, 715, 733, 746

Intersymbol interference loss, 185, 188, 474, 672
Inverse correlation matrix, 474
Inverse discrete Fourier transform (IDFT), 10, 111, 748
Inverse distortion matrix, 100
Inverse fast Fourier transform (IFFT), 11, 678, 716
Inverse Fourier transform (IFT), 4, 5, 8, 11, 18, 19, 43, 45, 173, 177,

196, 203, 569, 618, 621, 677, 714, 715
Inverse interleaver, 303
Inverse Laplace transform, 380, 381, 383, 384, 393, 394
Inverse probabilities, 47, 544
Ion-free region, 649
Ionized plume, 703
Ionosphere, 557, 633, 642–643, 649–650, 660, 663, 667, 699–705,

711–713, 715, 718
Ionospheric turbulence, 633
Irreducible bit-error probability, 190, 724
Irreducible degradation (flaring), 645
Irreducible polynomial, 272–273, 317

Irreducible primitive polynomial, 272–274, 277
Irregular surface, 649
Irregular terrain model (ITM) see Longley-Rice
Isothermal rain height, 572
Isotropic antenna see antennas
Isotropic antenna gain see antennas
Isotropic radiated power see antennas

Jacobian, 29, 31
Jakes’ multipath model (mobile radio) see mobile radio propagation

models
Jammer criteria, 509
Jammer detection threshold, 524
Jammer encounters, 499–500
Jammer objective, 509
Jammer standoff ratio (or range), 487, 522
Jammer strategy, 486–487, 505, 507, 509, 512, 514–519, 524–525
Jamming

band multitone, 516–520
broadband noise, 506
continuous wave (CW), 505, 516, 521
multitone, 515, 516
partial-band noise, 512–515, 522
pulsed noise, 506–512, 521, 522
single-tone, 504–506
upper bound performance DS-BPSK, 521–522
upper bound performance FH-MFSK, 522

Jerk, 385, 388, 393–396
Jerlov II and III water, 387
Jitter (or dither), 82–83, 85, 87, 492, 582, 704, 709
Joint cdf, 22–23, 28
Jointly continuous random variables, 23
Jointly Gaussian distributed random variables, 24–25
Jointly stationary random variables, 42
Joint probability density function (multiple continuous random

variables), 23, 48
JPL interleaver see interleavers
JPL spread interleaver (semi-random or S-interleaver) see interleavers

Kaiser-Bessel (or Kaiser) window see windows
Kaiser (or Kaiser-Bessel) window see windows
Kasami codes (or sequences), 432–433, 486
Kelvin (degrees), 521, 557–559, 700
Kepler’s equation, 606
Kepler’s laws of planetary motion, 603
Kepler’s second and third laws, 603
Knife-edge diffraction, 660–661
Kronecker delta function, 483, 717

Lagrange interpolation, 117–118
Land mobile satellite propagation (mobile radio) see mobile radio

propagation models
Laplace transform, 109, 380–381, 383, 393–384, 733, 748
Laser dead-time, 689
Latus rectum (Parabola), 126
Law of sines, 572–729
Law of universal gravitation, 603
Lead-in correlation, 433, 435, 452
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Least common multiple (LCM), 2, 70, 318
Least mean-square (LMS) (algorithm) see adaptive processing
Least significant bit (LSB) see sampling
Left-half-plane (lhp), 392–393, 734, 736
Left-hand circular polarization see antennas
Leibniz’s theorem, 73
L’Hospital’s rule, 9, 71, 146
Lightning strikes
dart leader, 669
multiple-stroke flash, 669
return strokes, 668–669
stepped leader, 669
time between return stokes, 668

Likelihood function, 48, 51, 349
Likelihood ratio (LR), 2, 47, 137, 537, 690
Likelihood ratio test (LRT), 137
Limiter signal suppression factor, 650
Limiting (mitigation) see Lognormal impulse noise
Linear detector, 215, 217, 254, 755, 757, 764–765
Linear feedback shift register (LFSR), 271, 408
Linear feedforward equalizer (LFFE) see adaptive processing
Linear frequency modulation (LFM) or CHIRP spread spectrum (SS)

see modulations
Linear interpolation, 60, 513
Linear mean-square estimation (LMSE) see adaptive processing
Linear mean-square regression, 718
Linear phase function, 187, 735
Linear phase response, 111, 628
Linear phase shaping, 175, 192–196, 368, 371
Linear polarization see antennas
Linear shift-invariant filter see filters
Line of sight (LOS), 23, 584, 603, 612, 649–650, 652, 656, 708,

710–711
Line of sight criterion, 651
Line of sight link, 604
Line of sight path, 584, 613, 633, 650, 652, 707–708, 713
Line of sight range, 413, 650, 654
Link budget(s), 2, 202, 359, 413, 557, 568, 580, 584, 596–597,

612, 699
Link budget and performance simulation code, 612
Link margin, 500, 596–597, 665–667, 669, 712, 718, 721
Link standoff ratio (LSR), 487, 502, 522–524
Local observer viewing angle, 609
Location vector, 605–607, 614
Lock-in frequency, 387–388, 409, 415, 524, 650
Lock-in time, 359, 387–388
Logarithm: base-2, 140
Log-likelihood function, 349
Log-likelihood ratio (LLR), 2, 46–47, 137, 314, 537, 691
Log-likelihood ratio test (LLRT), 137, 396, 691
Lognormal distributed amplitudes, 669
Lognormal distribution see distributions
Lognormal impulse noise
clipping (mitigation), 672–675
excision (mitigation), 672
hole-punching (mitigation), 672
impulsivity measure Vd, 670, 672
limiting (mitigation), 672–675

Lognormally distributed see random number generation
Longley-Rice propagation models

antenna boresight, 662
area prediction mode, 661
center-of-radiation height (antenna), 661–662
irregular terrain model (ITM), 522–524, 661–663
physical and effective height (antenna), 523, 662,–663, 665
point-to-point mode, 661, 663
reliability and confidence, 523, 661–663
time and location availability, 661

Loop bandwidth, 359, 377, 380, 382–383, 386–389, 392–393, 409,
492, 551, 553, 579, 675, 721, 723

Lossy devices, 560
Low-density parity-check (LDPC) codes (regular, irregular) see

channel coding
Low Earth orbit (LEO) see satellite orbits
Low-noise amplifier (LNA), 417, 494, 523, 525, 558–562, 565,

567–568
Low-noise power amplifier (LNPA), 133, 208
Lowpass see filters
Lowpass band-reject bandwidth (PLL), 542
Lowpass bandwidth, 2, 44, 54, 243, 246, 751
Lowpass phase function, 630, 713
Low probability of detection (LPD), 485, 499
Low probability of exploitation (LPE), 485–486
Low probability of intercept (LPI), 485–486, 488, 500, 524
Low-rate FEC coding, 434
Low signal-to-noise ratio (conditions), 327, 402, 441

Maclaurin series, 736
MacWilliams’ theorem, 274
Majority logic (m-of-M), 491
Manchester coded PCM see channel coding
Man-made interference, 633, 676
Many-body problem, 604
Marcum’s Case 0 (constant amplitude pulses no fading), 758–760
Marcum’s false-alarm number (nm), 758
Marcum’s Q-function, 211, 217, 231–232, 764–765
Marginal distribution see distributions
Markov process, 184, 491
M-ary coded waveforms (biorthogonal), 144, 251–252, 256
M-ary FSK (or MFSK) (NC detection) see modulations; Rayleigh

fading
M-ary FSK or multitone FSK (MFSK) see modulations
M-ary multi-h CPM see modulations
M-ary PAM see modulations
M-ary pulse position modulation (PPM) (M-ary PPM) see

modulations
M-ary QAM see modulations
M-ary source data, 141
M-ary symbol messages, 136
Matched filter see filters
Matched filter application, 45, 115
Matched filtering and correlation, 46
Matrices, definitions and types, 66
Matrices, Vectors, and Related Operations, 66
Matrix inversion lemma, 473
Matrix product, 101
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max(a,b) algorithm, 287
Maximal free distance (dfree), 289
Maximal length sequences, 251
Maximal linear PRN sequences (m-sequences), 83, 251, 261,

270–271, 276–277
Maximally flat delay response, 735
Maximal ratio combining diversity see diversity combining
Maximum a posteriori probability (MAP), 48, 49, 304, 357, 396
detection (decoding, decision), 136–137, 303–304, 396, 404
estimation, 50, 349, 357, 396–397, 406 (see also estimation)
phase detector, 396, 409

Maximum average mutual information (or maximum entropy),
140–141

Maximum communication range, 559, 661
Maximum excess delay, 643
Maximum-likelihood (ML) estimate
decision/detection, 138–139, 149, 174–175, 180, 188–191,

243, 371
decision rule, 136, 690–691
decoding, 149, 286
estimation (see estimation)
Schwarz’s equality condition, 49
standard deviation of carrier frequency (Hz), 50–52
standard deviation of carrier phase (radians), 50–52
standard deviation of frequency rate (Hz/sec), 50–52
variance evaluation, 50–52

Maximum likelihood sequence estimation (MLSE) see estimation
Mean angular velocity, 606, 612
Mean anomaly, 606, 612
Mean-square error (MSE), 48, 444, 452, 464, 466–469, 479
Mean tap weight values, 469
Mean value, 20, 24, 31, 35–36, 38–39, 42, 48, 150–151, 215, 253,

255, 282, 400, 437, 455, 465, 532–533, 536, 540, 542, 635–636,
668, 701, 712

Measurement accuracy, 51, 101, 103, 105, 202, 533–535
and confidence, 549

Median excess propagation loss, 664
Median signal loss, 663
Medium Earth orbit (MEO) see satellite orbits
Memoryless AWGN channel, 190, 683
Memoryless transition probability diagram, 150
Message header detection, 414
Message piecing, 722
Message preamble, 414, 420
Message repetition, 643, 710, 722
Message synchronization, 134
Method of steepest-descent, 466, 468
Metric accumulation overflow, 289, 307, 347, 356
Metric quantization, 201
Midamble, 375, 493, 617
Mid-to-Low latitude region, 583, 701–702, 712
Miller code or delay modulation (DM), 266
Minimum and maximum sampling frequency see sampling
Minimum distance, 189, 228–229, 234, 239, 289, 314–315, 318–319,

348, 354, 363, 366
Minimum distance (restricted, unrestricted), 289
Minimum free distance (dfree), 289, 296, 299
Minimum mean-square error (MMSE) see adaptive processing

Minimum polynomial, 272, 318
Minimum received power, 568
Minimum root-mean-square (rms) error, 51
Minimum shift keying (MSK) see modulations
Minimum squared decision distance, 228
Minimum stopband attenuation (Amin), 110, 739, 752
Misadjustment parameter, 469, 474
Miscellaneous system losses, 557, 585
Mixed radix FFT, 9, 12, 70, 421, 423, 445
Mixed random variables, 22, 27
Mobile radio communications, 633
Mobile radio propagation models

Barts and Stutzman, 556–666
CCIR model, 666–667
Erceg, 664–665
Jakes multipath model, 542
land mobile satellite propagation, 663–665
modified exponential decay, 665–666
Okumura, 663–664
percentage availability, 666
rural, 633, 642, 664–667
suburban, 644, 664–667
urban, 633, 642, 646, 649, 663–667

Modem acquisition link budget, 597
Modem configurations, 55
Modem detection link budget, 597
Modem link budget, 359, 596, 597
Modified Bessel function, 30–31, 34, 36, 65, 551, 634–635,

717, 757
Modified duobinary see modulations
Modified exponential decay see mobile radio propagation models
Modulation efficiency, 284, 301
Modulation index (or indices), 2–3, 153, 162–163, 165, 169–171,

207, 211, 216, 218–223, 339–347, 351–355, 358
Modulations

amplitude modulation (AM), 2, 154, 207
amplitude PSK (APSK), 227
amplitude shift keying (ASK), 227–228, 232
binary antipodal ASK modulation, 232
binary phase shift keying (BPSK), 13, 45, 52, 54–55, 82, 145–149,

153–161, 168–169, 175, 178, 183–186, 209, 257, 263, 270,
288–290, 294, 306, 309, 325–327, 386, 390, 396–410, 414, 415,
418, 422–424, 434–435, 438–439, 445–448, 453–454, 470–479,
487–490, 498, 501–510, 515, 521, 548–550, 585, 597,
621–622.722–725

biorthogonal M-ary coded waveform, 256–258
biphase (Biφ-L,-M,-S) (PCM), 265
bipolar NRZ-L (PCM), 244. 249, 263–264, 267–268
Biternary coding (PCM), 238
cl carrier modulation, 1–4, 379
coherent BPSK (CBPSK) (detection), 167, 636–637
compatible shift keying (CSK), 165, 280
complementary orthogonal (CO), 256
continues-phase frequency modulation (CPFM), 153–154
continuous phase BFSK (CPBFSK), 222, 672
continuous phase FSK (CPFSK), 340
continuous phase modulation (CPM), 163, 170, 172, 222, 277,

339, 340
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DCBPSK modulation, 159, 167–168, 178, 200–201, 514–515,
636–639, 644–646, 682–684, 722–725

DCQPSK modulation, 161, 168, 725–727
DEBPSK modulation, 159, 165–167, 269–271, 722–724
Delay modulation (DM) or Miller code (PCM), 266
DEQPSK modulation, 161, 270–271
differentially coherent MPSK (DCMPSK), 166, 721
differentially coherent PSK (DCPSK), 165–166
differential PSK (DPSK), 165
differential pulse interval modulation (DPIM), 689–690
direct-sequence spread-spectrum (DSSS), 35, 52–53, 83–87, 127,

133, 471, 486–499, 501–512, 521–522, 646
double sideband (DSB), 3
duobinary modulation, 238–239, 243–247
eight phase shift keying (8PSK) trellis coded modulation (TCM ),

139, 180, 363–364, 366–371
fast frequency hopping (FFH), 493, 495–496, 504
fast FSK (FFSK), 493, 495–496
filtered BPSK (FBPSK), 54
filtered MSK (FMSK), 186–187
frequency-hopping spread-spectrum (FHSS), 23, 487, 493–499,

502–505, 515–517, 519, 522, 645, 693
frequency modulation (FM), 3
full response CPM, 339, 343, 350, 355
Gaussian minimum shift keying (GMSK), 153, 169–172, 174–175,

181, 183, 187–191, 277, 340
hybrid (DS/FH/TH) spread-spectrum (DSSS,FHSS,THSS), 261,

304, 486, 499
linear frequency modulation (LFM) or CHIRP spread spectrum

(SS), 486
M-ary FSK (or MFSK) modulation (NC detection), 12, 488,

493–495, 512, 514, 516, 518, 520–522, 721–722, 726
M-ary FSK or multitone FSK (MFSK), 12, 187, 460, 488, 493–495,

510, 512–514, 516, 518, 520–522, 526, 721, 726
M-ary multi-h CPM, 170, 339, 340
M-ary PAM, 227–228, 233–234
M-ary pulse position modulation (PPM) (M-ary PPM), 252,

685–691
M-ary QAM, 4, 144, 148, 227, 234–235, 296, 578
minimum shift keying (MSK), 58, 118, 153, 161, 281, 375, 488,

669, 672
modified duobinary, 243–244, 247
multilevel duobinary, 22, 244–247
multilevel pulse amplitude modulation (MPAM), 144, 146–147
multilevel quadrature amplitude modulation (MQAM), 144,

146–147
multiphase shift keying (MPSK), 145, 269, 339, 362–365, 375,

493, 578
multitone FSK (MFSK) or M-ary FSK, 12, 493, 504, 516, 726
noncoherent (NC) binary frequency shift keying (NCBFSK)

(detection), 721–722, 726
non-return to zero (NRZ) (PCM), 179, 243–244, 247,

262–265, 267
offset QPSK (OQPSK) or staggered QPSK (SQPSK), 13, 153, 159,

161–163, 165, 169, 175, 178, 183–186, 190–191, 196, 200, 281,
375, 389, 396–398, 402–404, 488–489, 547, 593

OOK (coherent detection), 229–232
OOK (NC detection), 229–232

orthogonal M-ary coded modulation, 252–256, 258
orthogonal pulse amplitude modulation, 235
partial response CPM, 339–340
partial response modulation (PRM), 180, 237–244,

277, 340
phase-shaped BPSK (S-BPSK), 153, 175, 184, 192–193
phase-shaped M-ary MSK, 171
phase-shaped MPSK (S-MPSK), 153, 170, 183, 190–191
π/2-BPSK modulation, 157–160
π/4-QPSK modulation, 160–161
polar NRZ (PCM), 243, 263–264
polybinary (or biternary) (PCM) coded modulation, 238
pulse amplitude modulation (PAM), 144, 146–148, 227–228,

232–235, 237, 245–246
pulse code modulation (PCM), 140, 179, 237, 243, 246–247,

261–268
pulse compression (PC) modulation, 485
pulse position modulation (PPM), 252, 685–687, 689–692
quadrature amplitude modulation (QAM), 4, 148, 227, 234–235,

296, 578
quadrature phase shift keying (QPSK), 13, 99, 134, 145, 147, 153,

156, 195–106, 237, 257, 375, 414, 488, 546, 579, 723
serial MSK, 171
sinusoidal FSK (SFSK), 170–172, 187–188
sinusoidal MSK (SMSK), 153, 169–173, 175, 183, 187–188
spectral root-raised-cosine (SRRC), 53–55, 63, 116–119, 154,

175–178, 180–183, 189, 196–201, 589, 592–595
spread spectrum (SS), 51, 133, 146, 416, 433, 445, 485, 487, 499,

524, 597, 646, 755
SRRC-BPSK, 178, 196, 200–202, 594–596
SRRC-QPSK, 178, 196, 200–202, 589, 592–594
tamed frequency modulation (TFM), 277, 346
time-hopping spread-spectrum (THSS), 487, 496, 498–499
trellis coded modulation (TCM), 180, 311, 313, 339, 362–371
unbalanced QPSK (UQPSK), 406
unipolar non-return to zero (NRZ) (NRZ-L,-M,-S) (PCM),

263–264
Modulator DC offset measurement, 101
Modulator gain imbalance measurement, 101, 103
Modulator phase imbalance measurement, 101, 103
Modulo function, 11, 74, 121, 240, 246, 300, 320, 340, 345, 347, 354,

366, 488, 612
Modulo two addition (summation), 239, 244, 279–280, 283, 318, 332,

345, 364, 371
m-of-n decision rule or criterion (majority logic), 512
Molniya orbit see satellite orbits
Moment generation (or generating) function, 24, 38
Moment theorem, 24
Mono-static radar, 606
Monte Carlo trials, 191, 409, 431, 441, 532–533, 548–549
Most significant bit (MSB) see sampling
MS and MAP parameter estimation see estimation
M-sequences: maximal length sequences, 251, 271–273, 277, 415,

433, 541
MSK performance with lognormal impulse noise, 674–675
Mth Order CIC filter see filters
Multilevel duobinary see modulations
Multilevel pulse amplitude modulation (MPAM) see modulations
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Multilevel quadrature amplitude modulation (MQAM)
see modulations

Multipath communication links, 39
Multipath delays, 19, 461, 467, 641, 643, 646
Multipath delay spread, 467
Multipath factor, 583, 655–656
Multipath fading, 82, 597, 652
Multipath interference, 30, 471, 574, 611, 649
Multipath loss, 583–584, 656
Multipath reflections, 642, 646
Multipath signal rays, 708
Multipath signals, 633
Multipath spread, 643, 646–647
Multiphase shift keying (MPSK) see modulations
Multiple carrier simulation, 591
Multiple-dwells, 491
Multiple hypotheses testing, 135
Multiple iteration decoding, 303
Multiple pulse integration (combining), 445, 755, 760–761
Multiple pulse threshold (wτ), 760
Multiple-stroke flash see Lightning strikes
Multiplicative APP algorithm, 304, 306
Multiplicative disturbance, 633
Multirate signal processing and interpolation, 81, 106–107
Multistate symbol decoding, 283
Multi sub-channel demodulator, 97
Multitone see jamming
Multitone FSK (MFSK) or M-ary FSK see modulations
Mutual gravitational forces, 604
Mutual information, 140–141, 143–144, 148
Mutually disjoint sets, 39

Nakagami, 39
Nakagami-m distribution see distributions
Nakagami parameters, 37, 707
Narrowband Gaussian noise, 41, 43, 154, 348, 634
Narrowband interference cancellation, 474
Narrowband noise process, 43
Narrowband random process (narrowband process), 28
Nats and bits, 140
Natural bit mapping or natural order, 140
Natural channel disturbances (environments), 633, 660, 699–700,

703, 711–712, 714–715, 718
Natural logarithm, 47, 74, 140, 304, 538
Natural numbering (notation or ordering), 117, 159
Natural resonant frequency (PLL), 382, 385, 579
n-distribution see distributions
Nearest neighbors, 236, 248, 439
Near/far interference, 496
Necessary bandwidth, 179–181, 184, 223
Negative acknowledgement (NAK), 55–57
Network configuration management, 47, 452
Network entry protocol, 414, 438
Neuman-Hofman codes, 415, 432–433, 435–436, 460
Neumann energy density spectrum, 676, 681
Newton’s laws of motion, 603
Newton’s method, 70, 512, 533, 535
Newton’s rule, 606
Neyman-Pearson criterion (test or observer), 756

Noble identities, 108
n-of-decision rule, 512
Noise bandwidth, definition, 7
Noise figure (receiver), 23, 419, 499, 501, 557, 559–563, 565–568,

585, 596, 721
Noise figure (system), 562, 565, 568, 721
Noise floor, 315, 498, 559, 562
Noise-free worst-case jamming performance, 517
Noise jammers, 504
Noise power spectral density (PSD), 144, 363, 453
Noise temperature

antenna, 563, 565–567
atmospheric, 563, 567
receiver, 521, 561, 567
standard, 559
system, 521–562, 565, 596

Noisy attenuator, 561
Nomogram (chi-square probability function), 502–503, 765–766
Nonbinary, high rate (n-1)/n, convolutional codes:, 291
Nonbinary minimum distance, 291
Nonbinary PRN generators, 276
Non-central chi-square distribution see distributions
Noncoherent (NC) binary frequency shift keying (NCBFSK)

(detection) see modulations
Noncoherent combining, 445, 448, 642, 757, 764
Noncoherent detection, 166, 207–208, 210, 211, 214, 230, 253,

255–256, 293, 434, 445–447, 450, 490–491, 493, 516, 755,
757, 761

Noncoherent integration loss, 597, 761, 764
Non-constant envelope PSK waveforms, 175–178, 196–202
Nonfluctuating noise see photomultiplier tube
Nonfluctuating signal, 758, 764
Nonhomogeneous medium, 699
Non-ideal demodulator corrections, 99, 102–105, 105–106
Non-ideal modulator corrections, 99–102, 105–106
Non-ideal time-domain sampling, 88–91 see also sampling
Nonlinear amplifier modeling, 557, 588–590, 590–592
Nonlinear decision directed equalizer, 471 see also adaptive

processing
Nonlinear power amplifiers, 161, 369, 545, 585–589
Nonrecursive convolutional (NRC) codes, 299, 302, 304, 310
Nonrecursive encoders, 302, 306
Non-return to zero (NRZ) (NRZ-L,-M,-S) (PCM) see channel coding
Non-return to zero (NRZ) (PCM) see modulations
Nonselective frequency (flat) fading, 633, 636–639
Nonstationary random process, 668, 670
Nonsystematic codes, 284, 306, 312, 364–367

binary codes, 284, 286, 289–291, 301
nonbinary codes, 291–292, 301

Normal distribution see distributions
Normalized correlation response (coefficient), 40, 139, 252, 434, 679
Normalized cross-correlation, 251

coefficient, 41
Normalized gain, 392, 395, 570, 655
Normalized second moment, 51–52
Normally distributed random variable, 36, 545, 670
North American direct sequence CDMA (DS-CDMA), 289
North Pole, 604, 607, 727
Nuclear-disturbed environment, 660, 699, 703–704, 715
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Nyquist band, 42, 112, 115, 244, 428, 440
Nyquist bandwidth, 60, 112, 115, 144–145, 154, 176, 181,

211–213, 465, 545–546, 579, 594
Nyquist channel spacing, 592
Nyquist criterion, 89, 114–115, 182, 204, 212, 244, 247, 392, 624
Nyquist filter see filters
Nyquist impulse response, 144, 176, 238
Nyquist sampling frequency see sampling
Nyquist signaling, 180, 182

Occupied bandwidth, 189, 192, 268, 340, 502, 592, 633
Octal notation, 272, 275–277, 289, 292–293, 310, 312, 318, 328–329,

332, 363
Offset-feed see antennas
Offset QPSK (OQPSK) or staggered QPSK (SQPSK) see

modulations
OGO-6 satellite, 701
Okumura see mobile radio propagation models
Omnidirectional antenna see antennas
One-dimensional CFAR, 452
OOK (coherent detection) see modulations
OOK (NC detection) see modulations
Open loop (OL), 415
pole, 413
precorrection, 413
transfer function, 376

Optical frequency (filter), 684
Optimum decision rule, 135–137
Optimum filter, 117, 134, 464–466
Optimum jammer parameter (uo) (graphical method), 512,

514, 524
Optimum matched filter sampling see sampling
Optimum threshold (fixed-sample testing), 537
Orbital parameters, 603, 612
Ordered sample, 39
Order statistics, 39–40
Ordinary and extraordinary waves, 706
Ordinary dielectric constant, 653, 662
Orthogonal Gaussian distributed noise, 156
Orthogonality principle, 463–464, 466
Orthogonal M-ary coded modulation see modulations
Orthogonal polarized states see antennas
Orthogonal polynomials, 550–551
Orthogonal pulse amplitude modulation see modulations
Orthogonal random variables, 24
Orthogonal tone spacing (signaling), 14, 211–213, 494
Orthonormal vectors, matrices, signals, 69, 251
Oscillator accuracies, 413–414, 420, 426, 448, 452,

578–580, 582
Oscillator phase noise, 540, 578
Outer scale size, 715
Out-of-band spectral energy, 158, 161, 163, 196, 207, 369
Output noise power, 13, 44, 560
Overdamped, 467
Oversampling see sampling
Over-the-horizon, 649, 652

Paired echoes, 17–19
Papoulis’ most important example, 28

Parabolic E/L interpolation, 120–121, 126–127, 423–424,
442, 445

Parabolic interpolator estimation see estimation
Parallel concatenated convolutional codes (PCCCs) see channel

coding
Parameter estimation see estimation
Parameter normalization, 547, 623
Parity-check

calculations, 322
codes (see channel coding)
coefficients, 363–364, 366
equation, 364
matrix, 363–364
vector, 366
bits, 251, 273, 284–285, 301–302, 313–314,

318, 322, 328, 366
Parseval’s theorem, 5, 15, 57, 73
Partial-band noise see jamming
Partial derivatives, 29, 50, 349
Partial fraction expansion, 394–395
Partial pressure (water vapor), 657
Partial response CPM see modulations
Partial response modulation (PRM) see modulations
Passband (inband) ripple, 110–111, 733–734, 737–738, 744
Pass-fail decision, 536, 538–539
Path history storage (trellis), 289
Peak distortion, 470

error, 122
Peak-to-average power ratio, 228, 234
Peak-to-rms level, 585
Peak-to-sidelobe ratio, 85–86
Pearson’s incomplete gamma function, 760, 763
Penetration angle, 708
Percentage availability see mobile radio propagation models
Perigee, 596, 604–606, 611
Perihelion, 604, 606
Periodic function(s), 5, 439, 748
Periodogram (spectral estimation), 6. 15, 190, 201, 370, 498
Permeability, 652, 680
Permittivity, 652, 705
Personal communications service (PCS), 299, 665
Phase-comparison detection, 165
Phase constant, 705, 712
Phase constellation, 133, 146, 155, 158, 269, 285
Phase delay compensation, 735
Phase detector, 166, 349, 357, 375–376, 379, 385,–386, 389, 396,

399–403, 405–409
Phase detector constant, 376
Phase distortion, 1, 18–19, 122, 184, 340, 586, 684, 707, 714
Phase-equalized channel or filter see filters
Phase-error transfer function, 383–384, 579
Phase imbalance, 99–101, 103–106
Phaselock detector, 349, 357, 386
Phaselock loop (PLL), 102, 107, 164–166, 208–210, 223, 229, 236,

269–270, 358–359, 375, 378–381, 383, 385, 387–391, 393, 395,
408–410, 414, 488, 551–553, 578, 620, 674–675, 692, 721,
723–724

Phaselock loop (tracking), 157, 166, 408–410, 414, 715, 721
Phase modulation (PM) PCM (PCM/PM) see channel coding
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Phase-noise, 578–583
loss, 578
oscillator, 375, 388, 396, 410, 413–414, 426, 448, 452, 540,

578–580, 582
PSD, 578–579, 581
specifications, 540, 578–583, 596–597
variance, 578, 580–582

Phase-only affects (following severe scintillation), 712
Phase power spectral density (PPSD), 715–718
Phase response, 16, 110–111, 341, 370, 384, 392, 474, 586, 617, 622,

624–625, 628, 733, 735–736
Phase rest-states, 186
Phase-shaped BPSK (S-BPSK) see modulations
Phase-shaped M-ary MSK see modulations
Phase-shaped MPSK (S-MPSK) see modulations
Phase-step, 359, 380, 384–387, 394
Phase-to-amplitude converter (PAC), 169–170, 208
Photoelectron count see photomultiplier tube
Photomultiplier tube
background-induced noise, 685
dark noise, 685
nonfluctuating noise, 685
photoelectron count, 686, 691–692
responsivity, 685–686
thermal noise, 685–686

Physical and effective height (antenna) see Longley-Rice
Physical aperture see antennas
Physical temperature, 560–563, 565–567
π/2-BPSK modulation see modulations
π/4-QPSK modulation see modulations
Pierson-Moskowitz theory, 676
Pierson-Neumann theory, 676
Pipeline FFT, 1, 11, 12, 424, 425, 429
Pipeline Fourier transform, 12
Planck’s constant, 564, 685
Planck’s law, 564
Planetary Ephemeris Program, 612
Plasma frequency, 704–705, 713
Plasma velocity, 708–709
Point-to-point link (C/No), 658
Point-to-point mode see Longley-Rice
Poisson distributed see random number generation
Poisson distribution see distributions
Polarization, 112, 499, 523, 557, 564, 573–578, 596, 634, 643, 649,

653, 655, 662–663, 699, 702
atmospheric, 574
Omni, 564
wave, 573–578, 653, 699, 702, 712

Polarization diversity see diversity combining
Polarization ellipse see antennas
Polarization isolation see antennas
Polarization loss see antennas
Polarization mismatch factor see antennas
Polarization rotation, 374, 396, 649, 699, 702
Polarizing angle (Brewster angle), 653
Polar NRZ (PCM) see modulations
Polar region, 701–702, 711
Polar region (electron density), 701–702, 711
Pole locations (filters), 733–737, 749, 752

Polybinary (PCM) coded modulation see modulations
Polyphase codes, 433
Polyphase down-sampled sequence, 116
Polyphase filter see filters
Polyphase interpolation, 115
Polyphase representations, 108
Polyphase timing adjustment, 117
Post-detection filter, 691
Post-detection integration, 496
Post-symbol interference, 473
Power amplifier (PA), 133, 147, 153–154, 161, 175, 182, 184, 227,

488, 523, 545, 557, 585
Power-aperture see antennas
Power backoff, 154, 169, 585, 590, 592
Power control, 416, 418, 485
Power delay profile, 643
Power density, 44, 164, 175, 192–195, 233, 264–266, 486, 488, 493,

499, 558, 564, 574, 576, 578, 637, 685
Power density (receiver antenna), 564
Power efficient (efficiency), 99, 169, 175
Power gain, 114, 407, 720
Power limited regime (capacity), 144–145
Power limit for constrained coded waveform modulation,

143–144, 147
Power limit for unconstrained coded waveform modulation,

143,–145
Power series, 33–35, 381, 713
Power spectral density (PSD), 6, 14–15, 40, 44, 179, 181, 183–190,

196–198, 200, 215, 222, 237–238, 244, 262–268, 343, 345, 487,
498–499, 541–543, 578, 580–582, 673

Poynting vector, 574–575
PPM frame, 686
PPM slot duration, 685–687, 689
Pragmatic trellis codes, 296
Preamble, 414–416
Preamble segments

continuous wave (CW), 414–432
start-of-message (SOM), 414, 432, 452
symbol synchronization, 432–452

Precorrection, 413–414
open loop (OL), 413
pseudo-closed loop (PCL), 413, 414
pseudo-open loop (POL), 413, 414

Predetection integration (coherent combining), 755
Predistortion, 99, 743
Pre-envelopes, 618
Presymbol interference, 629
Primary input signal, 469, 472
Prime Factorization, 70
Primitive element, 272, 301, 316–318, 320
Primitive polynomial: code generators, 272–274, 276–277, 300,

317–318, 320
Principal diagonal, 66–67
Principal Nyquist frequency band, 748
Principal spectral lobe, 114
Probability density function (pdf), 28, 48, 634, 757
Probability function, 20–22, 766
Probability integral, 30, 138, 150–151, 173, 231, 241,

282, 491
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Probability integral complement, 151, 231, 241, 266
Probability mass function (pmf), 21
Probability of correct signal detection, 422
Probability space, 24, 141
Probability state transition diagram, 26
Product, turbo product (TP) codes see channel coding
Propagation delay, 55–57, 413
Propagation factors, 654
Prototype filter, 111–112
Pseudo-Brewster angle, 53
Pseudo-closed loop (PCL), 413–414
Pseudo-noise (PN) sequence, 52, 270, 414, 486, 531 see also random

number generation
Pseudo-noise (PN) spread-spectrum coding, 133, 643
Pseudo-open loop (POL), 413
Pseudo-random noise (PRN)
codes (see channel coding)
sequences (binary, nonbinary), 270–273, 276

Pull-in range, 345, 358, 375, 409, 415, 450
Pull-in time, 387
Pull-out frequency, 380–381, 387–388
Pulse amplitude modulation (PAM) see modulations
Pulse code modulation (PCM) see modulations
Pulse combining, 755–756
Pulse compression (PC) modulation see modulations
Pulsed noise see jamming
Pulse position modulation (PPM) see modulations
Pulse repetition frequency (PRF), 507, 685, 756
Pulse repetition interval (PRI), 9, 485, 507, 762
Pulse-to-pulse fluctuations, 755
Punctured codes, 296, 328
Push-broom acquisition, 424

Q-ary symbols, 315, 317
Q channel, 2, 147, 159, 270, 352
Q-function, 150, 219, 231, 243, 548
Q-function (Marcum), 211, 217, 231–232, 764–765
Quadratic delay (cubic phase), 624, 627–629, 712
Quadratic equation (solutions), 57, 74
Quadratic phase function, 383, 743
Quadratic transformation, 68
Quadrature amplitude modulation (QAM) see modulations
Quadrature baseband sampling see sampling
Quadrature baseband signals, 99
Quadrature Gaussian random variables, 29
Quadrature integration, 550–553, 555, 582, 587
Chebyshev-Hermite polynomial, 551
Gauss, 550, 582
Laguerre-Gauss, 550–551, 587, 760
Legendre polynomial, 551

Quadrature integration using Chebyshev-Hermite polynomial, 551
Quadrature integration using Legendre polynomial, 551
Quadrature phase shift keying (QPSK) see modulations
Quadrature rail DC offset imbalance, 105
Quadrature rail gain and phase imbalance, 99
Quantization noise power (or variance), 83
Quasi bandpass filter, 247
Queueing line, 49
Queueing theory, 49

Radiated flux density per steradian, 564
Radiation efficiency see antennas
Radiation intensity (Brightness), 564
Radio line of sight, 650
Radix-2 FFT, 9–10, 41, 91, 421–422, 440, 716
Radome loss see antennas
Rain attenuation (exceedance percent-of-time), 572
Rain attenuation models, 571, 573
Rain height (effective), 571–572
Rain loss, 499, 523, 558, 571
Rain models, 571
Rain-rate, 572–573
Rain rate map, 572
Raised-cosine (phase shaping), 170, 175, 192–196
RAKE correlator, 646
Ramsey interleavers see interleavers
Random-bit mapping conversion, 253
Random chips, 35, 488
Random event, 20, 42, 544
Random (non-deterministic block) interleaver see interleavers
Random number generation

binary source data, 540
exponentially distributed, 544
Gaussian distributed, 541
lognormally distributed, 545
Poisson distributed, 544
pseudo noise (PN) sequence, 540
Rayleigh distributed, 543
Ricean distributed, 543
uniformly distributed, 540

Random processes, 1, 41–43, 400, 531, 541
Random scatter returns, 30
Random signal component, 637
Random variables and probability, 20–39
Range-delay detection, 54
Range delay error, 657
Range-delay estimation see estimation
Rate conversion see sampling
Rate conversion filter see filters
Rate conversion filter specifications see sampling
Rate-distortion function, 144
Rate-distortion theory, 143
Rate down-conversion (decimation) see sampling
Rate-matching, 284–285, 301–302, 312
Rate 1/3 PCCC (turbo code) performance see channel coding
Rate reduction (RR), 91, 107, 109, 114–115, 209,

237, 490
Rate up-conversion (interpolation) see sampling
Rational numbers, 341, 352
Ray bending see diffractive ray bending
Rayleigh distributed see random number generation
Rayleigh distribution see distributions
Rayleigh fading, 293, 298, 543, 634, 640–641, 677, 699, 707, 709,

720, 722–727, 729, 755, 761–764 See also Interleaving
DCBPSK (see modulations)
DCQPSK (see modulations)
DEBPSK (see modulations)
M-ary FSK (or MFSK) (NC detection) (see modulations)
Reed-Solomon Viterbi (RSV) (see channel coding)
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Rayleigh fading multipath, 640
Rayleigh fading regime (scintillation), 707
Rayleigh-Jeans approximation, 564
Rayleigh power distribution see distributions
Rayleigh scintillation, 706, 709, 715–720
Real number, 20
Real random process, 42
Receiver antenna, 133, 410–499, 523, 558, 564–565, 573, 575, 596,

642, 655, 663–665, 669, 674, 715, 722
Receiver antenna loss, 558
Receiver degradation with matched filter quantization, 150
Receiver noise, 82, 418–419, 450, 474, 486, 499, 501, 557, 559–562,

565–567, 585, 596, 636, 672, 711
Receiver operating characteristic (ROC), 757–758
Receiver signal-to-noise ratio, 47, 670, 720
Receiver system temperature, 565, 568
Rectangular decision matrix, 234
Rectangular (or rect(t/Tw)) window see windows
Recursive encoders, 302, 306
Recursive least-squares (RLS) (algorithm) see adaptive processing
Recursive systematic convolutional (RSC) constituent codes, 299
Redundant phase states, 339
Reed-Solomon (RS) code see channel coding
Reed-Solomon Viterbi (RSV) coding see channel coding; Rayleigh

fading
Reference input, 418, 469, 472, 477
Reflected wave, 652
Reflection coefficient (ρ), 584, 652–654, 737, 739
Reflection region, 652
Reflector surface and feed efficiency see antennas
Refractive bending, 657, 699
Refractive index, 649, 656–658, 699, 704–705, 707, 712–713
Rejection probability, 536–537
Reliability and confidence see Longley-Rice
Reliability input, 304, 307
Remez algorithm, 111
Repeat message intervals, 716
Repeat request, 2, 35, 55, 273, 431, 634, 721
Repetition coding see channel coding
Responsivity see photomultiplier tube
Rest-points, 232, 234–236, 248, 277, 470
Return loss (mismatch loss), 584
Return strokes see Lightning strikes
Ricean cumulative distribution (cdf) see distributions
Ricean distributed see also Random number generation
integrated distribution, 255
random variable, 639, 640

Ricean fading, 30, 636–639, 644
Ricean or Rice distribution see distributions
Ricean random variable generation, 543, 639–640
Ricean scintillation, 709
Right-and left-hand thumb rules, 575
Right-half-plane (rhp), 734
Right-hand circular polarization, 575–576, 653 see also antennas
Ripple attenuation (R), 739
Risk minimization, 48, 135
Robust symbol modulations, 676, 721
Root-locus plot, 376–377, 380–381, 391–392

Root raised-cosine (RRC), 111, 154, 180, 416, 450, 453
Root-sum-square (RSS), 52
Round-off errors, 255, 381, 467
Row-column (block) interleaver see interleavers
Rule of thumb, 310, 416, 642
Run length properties (random sequences), 271
Rural see mobile radio propagation models
Rytov parameter, 707

Sample-and-hold (S/H), 64, 488–489
Sampled Population, 2, 70
Sampled waveforms, 10, 93, 547
Sample rate conversion, 106–108, 416
Sampling

aliasing distortion, 88, 93, 107, 409, 544, 669, 683
amplitude resolution, 99
asymmetrical sampling, 58
average sampling, 88–90
bandpass sampling, 81, 92–97, 209, 623
baseband sampling, 92
decimation (down-conversion), 109
discrete-time sampling, 8, 41, 57, 81, 87–91, 99, 367, 381, 585, 751
exact sampling, 88–91
exact sampling with finite window, 91
frequency domain sampling, 10
frequency selection, 10, 134, 546, 721
half-band sampling, 181
Hilbert transform sampling, 81, 95
ideal sampling, 87–89, 91
interpolation (up-conversion), 109
least significant bit (LSB), 83, 85, 269, 274, 284, 289, 292–293,

310, 312, 320, 352, 366
minimum and maximum sampling frequency, 95
most significant bit (MSB), 82, 180, 284–285, 293, 303, 366, 407
non-ideal time-domain sampling, 88
Nyquist sampling frequency (criteria), 50, 60, 87, 110, 185, 547,

593, 623, 672, 719–720
optimum matched filter sampling, 163
oversampling, 91, 94, 112, 116–117, 417
quadrature baseband sampling, 44, 82, 92, 99, 117, 396, 548
rate conversion filter specification, 110–112, 449
rate conversion sampling, 106–107, 113, 416, 547, 683, 720, 735
rate down-conversion (decimation), 107–109
rate up-conversion (interpolation), 99, 102–103, 107–110
sampling frequency selection, 10, 50, 87–89, 92–97, 99, 106–107,

110, 112, 114–115, 122, 170, 209, 211–213, 405, 409, 416,
421–425, 428, 431, 440–441, 443, 459, 465, 544, 546–548, 585,
669, 672–673, 677–678, 683, 719–720, 733, 742–743, 748,
750–752

Shannon’s sampling (theorem, theory), 10, 87–88, 91
sign-magnitude (amplitude sampling), 81, 83, 121–122
sub-carrier sampling, 81, 93–95
time interpolation, 107
uniform sampling, 83, 87, 381, 526, 677
up-converter imbalances, 100

Sampling frequency see sampling
Satellite links, 179, 413, 703, 706
Satellite Orbit Analysis Program (SOAP), 606
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Satellite orbit position estimation, 611
Satellite orbits
elliptical orbit, 603–606, 610
geostationary orbit (GEO), 611, 721
geosynchronous orbit (GSO), 610, 721
highly elliptical orbit (HEO), 611, 721
low Earth orbit (LEO), 56, 583, 611, 654–655, 721
medium Earth orbit (MEO), 611
Molniya orbit, 611

Satellite orbit selection, 610–721
Satellite orbit simulation code, 612
Satellite system link budget, 956
Satellite viewing, 609, 612, 614, 665
Saturation level, 297
Saturation point, 585
Scallop loss (frequency), 57–58, 585
Scallop loss (SL) see antennas
Scallop sidelobe, 585
Schwarz inequality, 49
Scintillation, 277, 499, 583–584, 596–597, 663, 699, 701–707. 709,

711–712, 715–723
Scintillation index, 706–707
Scintillation loss, 583–584
Scintillation mitigation techniques, 721
Scintillation record
sampling frequency, 719–720
signal-to-noise ratio, 720
verification, 720

Sea-state conditions, 676, 678–679, 683–684
Sea-state number, 676, 681
Second and fourth order moments (M2M4) estimation see estimation
Secondary wavelets see knife-edge diffraction
Second central moment, 24, 36
Second-order phaselock loop, 223, 381–390
acquisition, 388–389
loss, 389–390

Selection diversity combining see diversity combining
Self-concatenated codes (SCCs) see channel coding
Self-information, 139–142
Self-recovering (blind) equalization see adaptive processing
Self-synchronizing (decoder, data randomizer), 276
Semi-major axis (ellipse), 603, 605–606, 612
Semi-random (JPL spread) interleaver see interleavers
Sequential decoding, 283, 299
Sequential filter (SF) see filters
Sequential test, 537–539
Serially concatenated convolutional codes (SCCCs) see channel

coding
Serial MSK see modulations
Set partition, 363, 366, 368
Shadow region (blind spots), 656, 660–661
Shannon capacity curve, 228
Shannon’s capacity curve ( power-limited region), 146, 251
Shannon’s capacity limit (or theorem), 144–145, 147, 253, 299, 302
Shannon’s error-free coding limit, 146, 254, 299
Shannon’s sampling (theorem, theory) see sampling
Shannon’s unconstrained maximum capacity, 143–145
Shaping loss see antennas

Shortened RS codes, 322
Side information, 507
Sidereal or Solar Day, 604–605
Sigmoid functions, 405–406, 409–410, 588
Signal acquisition, 6, 10, 41, 51, 107, 134, 360, 425, 446, 448–449,

456, 491
Signal amplitude quantization (overflow saturation, underflow

rounding), 83, 121–122, 537
Signal constellations, 146, 234–236, 269, 363
Signal decorrelation, 642, 699, 707–710
Signal decorrelation time (τo), 699, 708–709
Signal delay (time) estimation, 51–53, 55, 60, 121
Signal dispersion, 633, 705
Signal fading, 419, 452, 706
Signal frequency estimation, 51–53, 75, 168, 217, 389, 420–429, 431,

435, 439–443, 448
Signal-plus-noise power, 82, 456, 501
Signal power estimation see Estimation
Signal presence detection, 23, 41, 414, 755
Signal processing losses, 87–121, 585
Signal reconstruction, 91–92
Signal refraction, 649
Signal-to-interference ratio, 19
Signal-to-noise ratio, 13, 30, 44–45, 146, 547–548

baseband M2 estimation (see estimation)
error-free limit, 146
minimum, 145

Signal to variation ratio (SVR) estimation see estimation
Sign(a,b) function, 8, 74
Significance levels, 539
Sign-magnitude sampling see sampling
Simplex, 21, 55
Sinc(x) function, definition, 7, 8
Sine integral, definition, 17
Single-and multiple-pulse thresholds, 758–761
Single carrier per channel (SCPC), 21
Single-dwell, 491
Single-point reflection, 654
Single polarization see antennas
Single-pole lowpass filter (PLL) see filters
Single-sideband, 244, 580
Single-sided noise density (No), 42–43, 406
Single-symbol detection filter, 183, 188, 190
Single-symbol I&D (detection), 188, 371
Single-tone see jamming
Sinusoidal FSK (SFSK) see modulations
Sinusoidal MSK (SMSK) see modulations
Sky-noise sources, 564
Slant range, 571
Sliding window, 188, 200, 431, 445 see also filters
Slow and fast fading scintillation records, 719
Slow frequency hopping (SFH), 493–496, 526
Slow Rayleigh fading (SFRL), 638–639, 644–645, 723,

762, 764
Slow Ricean fading (SRF), 636, 644–645, 723–726
Small-scale fading, 633
Smooth Earth, 649, 652
Snell’s law, 656, 658
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Soft-decision
decoding, 362, 452
detection, 149, 512, 522
estimation, 157

Soft-decisions, 280, 511, 522
Soft-in soft-out (SISO) decoding module, 299, 302–309, 313
Soft limiter model, 590
Solar or Sidereal Day, 604–605
Solid angle, 564, 567, 569
Solid-state power amplifier (SSPA), 161, 557, 585, 588–589,

592–594
Source coding techniques, 261
Source entropy, 139, 141–143
Source state (trellis), 287–288, 292, 307, 346–349, 354, 356, 366
Spatial correlation, 707, 716, 718
Spatial correlation parameter, 707
Spatial diversity see diversity combining
Spatial electric field strength, 716
Spatial frequency, 569, 715–717
Spatial sampling frequency, 716
Spectral aliasing, 87, 93–94, 748
Spectral containment, 8, 153–154, 170, 178, 189, 191–195, 268, 340,

353–354, 368
Spectral containment (efficiency), 189, 192–195, 353
Spectral estimation, 14, 353
Spectral folding, 60
Spectral mask, 178–184, 186–189, 196–197, 200, 268
Spectral raised-cosine (SRC) window see windows
Spectral re-growth, 153, 158, 160, 175, 179, 183–186
Spectral root-raised-cosine shaping, 144 see also modulations
Spectral shaping (factor), 12, 63, 154, 200, 369
Spectral sidelobes, 8, 10, 60–61, 114, 154, 168, 174–176, 183,

185–188, 190, 196–197, 213, 236, 421–422, 544, 622, 683
Spectrum aliasing, 88, 95
Specular signal, 634–636
Specular-to-random signal power ratio, 637
Spherical Earth, 571, 609, 654, 658, 727
Spillover efficiency see antennas
Spillover loss see antennas
S-plane, 380–381, 391–392, 625, 733–734, 748–752
transfer function, 749

Split-symbol moments estimation (SSME) see estimation
Spot beam radiation patterns see antennas
Spread spectrum (SS) see also modulations
signal detection, 755

Squared Euclidean distance (), 343, 348
Squared signal-to-noise variance (SNV) estimation see estimation
Square-law detector, 216–217, 254, 503, 757–758, 764
Square-law envelope detector, 214, 216
Squaring loss, 406–408, 532, 551–553
SRRC-BPSK see modulations
SRRC-QPSK see modulations
S4 scintillation index, 706
Standard atmosphere, 657–659
Standard deviation (sampled population), 2, 70
Standard frequency functions (dφ/dt) (CPM), 340
Standard noise power, 559
Standard temperature, 559–560, 657

Standing wave ratio, 584
Starting edge (trellis), 306
Start-of-message (SOM) estimation see estimation
State metric quantization, 201
States (trellis), 286, 289, 292, 306, 341, 346, 354–355
State transition (trellis), 238, 286–289, 292, 332, 346–348, 354–356,

362, 366
State transition diagram, 26
State vectors, 287
Stationarity, 42–43, 464, 466, 471
Statistical (fixed) equalizers, 627
Statistical independence, 25–26, 510
Steady-state tracking error, 121
Stepped leader see Lightning strikes
Step-size parameter (u), 466–467
Stochastic process(es), 6, 20, 40–42, 69, 640, 681
Stopband attenuation (AdB), 92, 112, 737–739, 748, 752
Stopband frequency (Ωs), 112, 737–739, 742
Strict-sense stationary, 471
Sub-carrier sampling see sampling
Subgenerators, 284, 286, 289–293, 295–296, 309–310
Suburban see mobile radio propagation models
Sufficient statistic, 46–47, 136, 306
Summation of independently distributed random variables, 35
Sun’s noise power, 565
Sun’s noise temperature (dependence on frequency), 565, 568
Superbaud timing, 358
Suppressed carrier modulation see modulations
Surface conductivity, 523, 662–663
Surviving metrics, 289
Swerling’s Case 0 (Constant signal in Gaussian Noise), 755, 758–761
Swerling’s Case 1 (scan-to-scan slow Rayleigh fading), 755, 758,

761–762, 764
Swerling’s Case 2 (pulse-to-pulse fast Rayleigh fading), 755,

761–762
Swerling’s Case 3 (scan-to-scan slow chi-square fading), 755
Swerling’s Case 4 (pulse-to-pulse fast chi-square fading), 755
Symbol alphabets, 325, 340, 346
Symbol dispersion, 649
Symbol energy loss, 55, 107
Symbol erasures (RS decoding), 319
Symbol frequency error estimation see estimation
Symbol rate estimation see estimation
Symbol shaping function, 4, 58, 171, 176–177, 180, 183, 196,

236, 454
Symbol spaced equalizer (SSE) see adaptive processing
Symbol-spaced linear equalizer see adaptive processing
Symbol synchronization segment, 415, 432, 438
Symbol time error estimation see estimation
Symbol timing adjustment, 117, 361
Symbol timing estimation see estimation
Symbol tracking, 60, 91, 99, 107, 134, 158, 191, 351, 358–362, 432,

435, 450, 454, 495, 497, 597
Symmetry property see filters
Synchronization, 41, 56, 134, 240, 253–254, 270, 280, 315, 345, 356,

358, 373, 375, 414–416, 420, 428–429, 431–432, 434–435,
437–439, 441–452, 487, 493, 496, 516, 627, 685, 689, 691

Synchronization slot, 685–686, 689
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Synchronous and asynchronous data randomizers, 276–277
Synchronously tuned filters (PLL) see filters
Systematic code(s), 273, 274, 284–285
Systematic cyclic codes, 273
System clock(s), 413–414. 423, 450, 452, 489, 494, 496–497
System error probability, 136
System noise figure, 559–562, 565–568
System noise temperature, 565, 567, 596
System nonlinearities, 557
System oscillator, 106, 413–414, 448
System performance specification(s), 1, 41, 557, 560

TACSAT (tactical satellite), 701
Tamed frequency modulation (TFM) see modulations
Tapped delay line (TDL) filter see filters
Tap weight convergence, 469, 479
Target filter, 752
Tau-dither loop, 492
Taylor series, 629, 713, 736
T1-Carrier System, 265
Temporal combining see diversity combining
Temporal raised-cosine window (TRC) see windows
Terminal velocity, 658, 709
Termination state (trellis), 305–307, 354, 356–357, 366, 386–388
t-error correcting code (RS code) see channel coding
Test statistic, 136–137
Thermal noise see photomultiplier tube
Thermal noise floor (receiver), 562
Third-order phaselock loop, 390–395
Threshold closed-loop transfer function, 391
Threshold factor, 422–424
Throughput delay (latency), 44, 278, 285, 289, 294, 415, 431
Tikhonov phase distribution see distributions
Tilt-angle see antennas
Time after blast (TAB), 703–704, 707
Time and location availability see Longley-Rice
Time-bandwidth product (PLL), 51, 65, 112, 174, 360, 390, 414, 486,

552, 582, 674–675
Time between stokes see lightning strikes
Time delay variations, 699
Time division multiple access (TDMA), 414, 416
Time division multiplex (TDM), 590
Time-domain symbol shaping, 153
Time hopping spread-spectrum (THSS) see modulations
Time interpolation see sampling
Time invariant, 627
Time-invariant linear channels, 19, 464, 617–630
Time-of-arrival (TOA), 487
Time precorrection, 413
Time-varying channels (fading), 467, 622, 641, 703
Time-varying inhomogeneous medium, 703
Time-varying multipath, 643, 663
Total electron content (TEC or NT), 699, 702–704, 707, 712,

714–715, 764
Total-energy radiometer, 501–503
Total-error probability, 138, 241
Total probability law, 24, 136, 140, 232, 397
Total-to-average power ratio, 177

Trace-back (trellis decoding), 289
Training sequence, 463, 472, 474, 480–481, 646
Transient behavior, 467
Transition bandwidth, 88, 93–94, 110–112, 184, 440, 737, 748, 752
Transition probability, 47, 140, 144, 150
Transmission efficiency, 55–57
Transmission security (TRANSEC), 486
Transmitter antenna, 584, 655–656
Transmitter symbol span, 200
Transparent convolutional codes, 289
Transversal filter (TF) see filters
Traveling wave tube (TWT), 358, 361, 586, 588
Traveling wave tube amplifier (TWTA), 161, 368–369, 557,

585–587, 588–592
Trellis coded modulation (TCM) see modulations
Trellis decoder, 174, 286–289, 292–293, 296, 299, 303, 312–313,

341, 346–347, 351–352, 362, 368, 725–726
Trellis flushing, 287
Trellis state decoder, 243
Triangle inequality, 73
Triangular weighted aperture see antennas
Trigonometric functions, 3, 6, 43
Trigonometric identities, 72
Tri-level code, 263
Troposphere, 649–650, 657–658, 660–661, 713, 718
Tropospheric refraction, 657–659
True anomaly, 605–606, 612
True minimum distance, 315
Truncation errors, 381
Turbo code (TC) see channel coding
Turbo decoder input, 46
Turbo interleaver see interleavers
Turbo-like codes, 144, 261, 277, 296, 299, 301–303
Two-dimensional CFAR, 449
Two parameter censored CFAR threshold, 422
Two-sided noise bandwidth, 95
Two-tone intermodulation noise, 593
Type I error (error of the first kind), 491
Type II error (error of the second kind), 537

Unbalanced QPSK (UQPSK) see modulations
Unbiased estimate see estimation
Unconditionally stable, 380–381, 392
Uncorrelated random variables, 24–25
Underdamped, 467
Undetected-error probability, 274–276
Uniform aperture weighting see antennas
Uniform distribution see distributions
Uniformly distributed see also Random number generation

phase, 28, 30, 34, 542, 669, 712
random variables, 32, 540

Uniform phase pdf see distributions
Uniform sampling see sampling
Unimodal function, 49
Union bound, 294, 521, 692
Unipolar non-return to zero (NRZ) (NRZ-L,-M,-S) (PCM)

see modulations
Unipolar return to Zero (RZ) (PCM) see channel coding
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Unipolar-to-bipolar mapping, 288
Unit circle, 363, 733–734, 748, 750–751
Unit delay operator, 273, 364, 749
Unit gain response, 82–83, 114, 360, 392, 451–452, 488, 518, 570,

591, 708, 747, 750
Unit pulse (input), 115, 283, 743
Unit sample delay, 273, 300, 321, 364, 465, 749
Unit-step function, 22, 393, 518, 751
Unknown parameters, 47–48, 481–482, 580
Up-converter imbalances see sampling
Upper bound, 149, 155, 180, 257, 293, 343–344, 483, 509, 521–522,

533–534, 538, 726
Upper bound performance DS-BPSK see jamming
Upper bound performance FH-MFSK see jamming
Urban see mobile radio propagation models

Varying step-sizes, 467
Vector channel, 137
Vector operations, 2, 67
Vectors, definition and types, 67
Vector transpose (column), 68, 292
Vernal Equinox (First Point of Aries), 604, 606, 608
Vertical eye opening, 243
Vertical polarization (VP), 653 see also antennas
Very low frequency (VLF), 2, 134, 219, 345, 624–625, 676, 692
Viterbi decoding algorithm, 283, 287, 289, 307, 310
Voice-coding algorithm, 133
Voltage controlled amplifier, 417
Voltage controlled oscillator (VCO), 163–164, 375–376, 391,

398–400, 417
Voltage reflection coefficient, 584
Voltage standing wave ratio, 584
Voltage transfer function, 82–83, 588

Wagner coding see channel coding
Walsh codes (or Hadamard sequences) see channel coding
Wave energy, 562, 677–679
Waveform acquisition, 2, 40, 106, 345, 358, 375, 389, 413–452, 486,

496, 559, 669, 688, 755
Waveform equalization, 643
Waveform identification, 470, 486, 643
Wave height energy density spectrum (EDS), 677–680
Wave reflection, 652, 656
Weak scintillation, 707
Weak stationarity, 42, 69
Weibull distribution see distributions
Weight error, 479

Weighting function, 90, 157, 159–161, 165, 170, 180, 378, 396, 406,
409, 550, 568–571, 582

Weight precision, 467
Welch-Costas interleaver see interleavers
Welch’s method (spectral estimation using modified periodograms),

15, 353
Wide-sense stationary (WSS), 42–43, 471
Wiener estimation filter see filters
Wiener filter criterion, 388, 390
Wiener FIR adaptive filter see filters
Wiener-Khinchin theorem, 43
Williard codes see channel coding
Windows

Bartlett (triangular), 58–61
Blackman, 58–59, 63–64
Blackman-Harris, 58–59, 64, 168
cosine, 58, 61–62, 159, 354, 593
cosine (k = 1), 61–62
cosine (k = 3 and 4), 62
cosine-squared (Hanning) (k = 2), 62, 188, 423–425
Hamming, 58–59, 65, 752
Kaiser (or Kaiser-Bessel), 65–66, 111–113, 129
rectangular (or rect(t/Tw)), 57, 60–61, 197–198,
422–424, 593

spectral raised-cosine (SRC), 53,–54, 63, 176
temporal raised-cosine (TRC), 62–63, 196–197

Wind velocity, 676, 678
Wind waves, 676, 682
Wireless communications, 463, 627, 642
Wireline channels, 617
Wireline telephone networks, 463
Wittwer’s model ionosphere, 702
Woodward’s repetition function, 438
Worst-case ranges (τo and fo), 709

Zero-forcing equalizer see adaptive processing
Zero-lag correlation, 41, 83, 490
Zero locations, 391, 393, 733, 737, 739, 742, 748–750
Zero-mean Gaussian pdf, 36, 253
Zero-mean Gaussian phase pdf, 31
Zero-order modified Bessel function, 30, 351
Zero padding, 121, 422–425, 441
Zonal bandpass filter see filters
Zonal filter see filters
Z-plane, 381, 748–752
Z-plane transfer function, 113, 748–749
Z-transform, 381, 748
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