

SOFTWARE ARCHITECTURES AND
TOOLS FOR COMPUTER AIDED
PROCESS ENGINEERING

COMPU FEH-AIDt::D CHEMICAL I-NGINI::I-HING

Advisory Editor: R. Gani

Volume 1:
Volume 2:
Volume 3:
Volume 4:

Volume 5:

Volume 6:
Volume 7:

Volume 8:

Volume 9:

Volume 10:

Volume 11:

Distillation Design in Practice (L.M. Rose)
The Art of Chemical Process Design (G.L. Wells and L.M. Rose)
Computer Programming Examples for Chemical Engineers (G. Ross)
Analysis and Synthesis of Chemical Process Systems (K. Hartmann and
K. Kaplick)
Studies in Computer-Aided Modelling. Design and Operation
Part A: Unite Operations (1. Pallai and Z. Fony0, Editors)
Part B: Systems (1. Pallai and G.E. Veress, Editors)
Neural Networks for Chemical Engineers (A.B. Bulsari, Editor)
Material and Energy Balancing in the Process Industries - From Microscopic
Balances to Large Plants (V.V. Ververka and F. Madron)
European Symposium on Computer Aided Process Engineering-10
(S. Pierucci, Editor)
European Symposium on Computer Aided Process Engineering- 11
(R. Gani and D.B. JQrgensen, Editors)
European Symposium on Computer Aided Process Engineering- 12
(J. Grievink and J. van Schijndel, Editors)
Software Architectures and Tools for Computer Aided Process Engineering
(B. Braunschweig and R. Gani, Editors)

C O M P U T E R - A I D E D C H E M I C A L ENGINEERING, 11

SOFTWARE ARCHITECTURES
AND TOOLS FOR
COMPUTER AIDED PROCESS
ENGINEERING

Edited by

Bertrand Braunschweig
Computer Science and Applied Mathematics Department
Institut Franqais du P~trole
1 & 4 avenue de Bois Pr#au
92852 Ruefl Malmaison C#dex
France

Rafiqul Gani
CAPEC, Technical University of Denmark
Department of Chemical Engineering,
Building 229, DK-2800 Lyngby,
Denmark

2 0 0 2
E L S E V I E R
A m s t e r d a m - B o s t o n - L o n d o n - N e w York - O x f o r d - Par is
S a n D i e g o - S a n F r a n c i s c o - S i n g a p o r e - S y d n e y - T o k y o

E L S E V I E R S C I E N C E B.V.

S a r a B u r g e r h a r t s t r a a t 25

P.O. B o x 211, 1000 A E A m s t e r d a m , T h e N e t h e r l a n d s

6"-3 2 0 0 2 E l s e v i e r S c i e n c e B.V. A l l r i gh t s r e s e r v e d .

T h i s w o r k is p r o t e c t e d u n d e r c o p y r i g h t by E l s e v i e r S c i e n c e , and the f o l l o w i n g t e r m s and c o n d i t i o n s a p p l y to its use:

Photocopying
Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission of the Publisher
and payment of a fee is required for all other photocopying, including multiple or systematic copying, copying for advertising or pro-
motional purposes, resale, and all forms of document delivery. Special rates are available for educational institutions that wish to make
photocopies for non-profit educational classroom use.

Permissions may be sought directly from Elsevier Science via their homepage (http:Hwww.elsevier.com) by selecting 'Customer
support" and then 'Permiss ions ' . Alternatively you can send an e-mail to: permissions@ elsevier.corn, or fax to: (+44) 1865 853333.

In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 Rosewood Drive,
Danvers, MA 01923, USA; phone: (+1) (978) 7508400, fax: (+1) (978) 7504744, and in the UK through the Copyright Licensing
Agency Rapid Clearance Service (CLARCS). 90 Tottenham Court Road, London W I P 0LP, UK; phone: (+44) 207 631 5555;
fax: (+44) 207 631 5500. Other countries may have a local reprographic rights agency for payments.

Derivative Works
Tables of contents may be reproduced for internal circulation, but permission of Elsevier Science is required for external resale or
distribution of such material.
Permission of the Publisher is required for all other derivative works, including compilations and translations.

Electronic Storage or Usage
Permission of the Publisher is required to store or use electronically any material contained in this work, including any chapter or part
of a chapter.

Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical , photocopying, recording or otherwise, without prior written permission of the Publisher.
Address permissions requests to: Elsevier Science Global Rights Department, at the fax and e-mail addresses noted above.

Notice
No responsibili ty is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, neg-
l igence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.
Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be
made.

First edition 2002

Library of Congress Cataloging in Publication Data
A catalog record from the Library of Congress has been applied for.

British Library Cataloguing in Publication Data

Software architectures and tools for computer aided process
engineering. - (Computer-aided chemical engineering ; ii)
l.Chemical process control 2.Computer integrated
manufacturing systems
I.Braunschweig, Bertrand II.Gani, R. (Rafiqul)
660.2'8155

ISB N: 0-444-50827-9

i ~ The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper).
Printed ill The Netherlands.

F o r e w o r d

Industrial production is a key area of human activity. Due to its multi-dimensional importance it is
strongly linked to the three pillars of Sustainable Development: economic competitiveness, social
importance (employment, quality of life), and environmental impact.

The future economic power of the European Union will depend on the capability of industry to
produce goods and services combining environmental awareness and competitiveness.

In their efforts to assist EU industry, European Research programs such as Brite Euram (FP4) and
GROWTH (FP5) have taken these concepts into consideration. The future of European Industry, in
particular within the framework of sustainable development, has to be prepared with an overall
vision, hence the importance of European Scientific and Technical cooperation.

To leave problems for the next generation to inherit is not acceptable. Indeed, sustainable
development encompasses the ability to produce goods that create jobs and guarantee quality of life,
without generating a negative impact on the environment.

The modernisation of the industrial processes and adaptation to change are achieved through
research activities that will develop new technologies and methodologies. They encompass process
modelling and simulation, management systems, process integration and intensification. Agility,
efficiency, safety and prevention of waste are considered as key goals.

Through European research programmes, industry and associated research organisations are guided
towards cost-shared research actions through a system-oriented approach in which chemistry,
physics, engineering, computer science or social sciences become essential and interdependent.

This publication is just one outcome of collaborative efforts undertaken by the projects CAPE-
OPEN and Global CAPE-OPEN. The need for CAPE tools is mostly found in the production of fine
chemicals and petrochemical products, but also for processes in traditional manufacturing sectors.

Establishing the latest state-of-the-art in CAPE will be of great interest to process engineers and
scientists, plant designers, software developers, teachers and students.

Fr6d6ric Gouard6res
Scientific Officer
European Commission
Research Directorate-General

This Page Intentionally Left Blank

vii

Preface

It has been a p leasure for us to contr ibute to this book as well as to edit it.
The idea of edit ing a book on modern software a rch i tec tu res and tools for
CAPE came while we were collaborating with several indus t r ia l and resea rch
organisa t ions t h rough the CAPE-OPEN initiative. We realised tha t we were
producing a weal th of useful mater ial and informat ion tha t deserved a
broader audience . Moreover, a l though there are n u m e r o u s books wri t ten by
leading a u t h o r s on various aspects of Computer-Aided Process Engineer ing,
we could no t find one single reference on the software side of it, t h a t is, how
CAPE software is designed and developed? After d i scuss ion with a n u m b e r
of colleagues and friends, we came to the conclus ion tha t s u c h a book could
be quite use fu l for the CAPE communi ty at large.

The book h a s benefited from m a n y con t r ibu t ions and suppor t from
individuals a n d inst i tut ions. The European Commiss ion funded the CAPE-
OPEN a n d Global CAPE-OPEN projects t h rough the Br i t e -EuRam
programme, and the GCO-Suppor t project t h r o u g h the Competi t ive and
Sus ta inab le Growth programme of the 5 th Framework. The Intell igent
Manufac tu r ing Sys tems programme s u p p o r t e d the in terna t ional activities of
Global CAPE-OPEN by endorsing the project and t h u s allowing col laborat ion
between Europe , J a p a n , USA and Canada .

We t h a n k all a u t h o r s for their cont r ibut ions and their wil l ingness to satisfy
our r equ i rements . Similarly, we are grateful to the a n o n y m o u s reviewers who
have provided valuable comments and suggest ions . We also t h a n k Elsevier
for their in te res t in the book and for publ i sh ing it. Finally, we hope tha t the
reader will find the subject mat te r of the book interest ing, the informat ion
conten t use fu l and the vision motivating. We hope this book will con t r ibu te
to the deve lopment of a new generat ion of software tha t will m a t c h the fu ture
needs of the CAPE communi ty and beyond.

Ber t rand B r a u n s c h w e i g
Rafiqul Gani

This Page Intentionally Left Blank

ix

List o f C o n t r i b u t o r s

R. Andrews

N. Arora

P. Banks

P. I. Barton

R. Batres

B. Bayer
J.-P. Belaud

L. T. Biegler

I. D. L. Bogle

B. Braunschweig

D. Cameron
I. T. Cameron

C. Clausen
P. Edwards
M. Eggersmann
T. I. Eikaas
E. S. Fraga

R. Gani

M. Graells

J. Hackenberg
G. Heyen

D. Hocking
K. Irons

M. Jarke

J. K611er

A. Kuckelberg

D. Leung

School of Chemical Engineering, University of Edinburgh, Edinburgh,
Scotland EH9 3JL
Chemical Engineering Department, Carnegie Mellon University,Pittsburgh,
PA 15213-3890, USA
Peter Banks Associates, Process Simulation Consultancy, 9 Emmets Park,
Binfield, Berkshire RG42 4HQ, UK
Department of Chemical Engineering, Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA
Tokyo Institute of Technology, Research Laboratory of Resources Utilisation,
4259Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Lehrstuhl fiir Prozesstechnik der RWTH Aachen, 52056 Aachen, Germany
Laboratorie de genie Chimique, INPT- ENSIGCT, 18 Chemin de la Loge, F -
31078 Toulouse Cedex 4, France
Chemical Engineering Department, Carnegie Mellon University, Pittsburgh,
PA 15213-3890, USA
Department of Chemical Engineering, University College London, Torrington
Place, London WC1E 7JE, UK
Computer Science and Applied Mathematics Department, Institut Frangais du
P6trole, 1 & 4 avenue de Bois Pr6au, 92852 Rueil Malmaison C6dex, France
Fantoft Process Technologies AS, PO Box 306, N-1301 Sandvika, Norway
Department of Chemical Engineering, The University of Queensland,
Brisbane, Queensland, Australia 4072
Statoil AS, Trondheim, Norway
Pete.Edwards@attglobal.net
Lehrstuhl fiir Prozesstechnik der RWTH Aachen, 52056 Aachen, Germany
Cyberlab AS, Trondheim, Norway
Department of Chemical Engineering, University College London, Torrington
Place, London WC1E 7JE, UK
CAPEC, Department of Chemical Engineering, Technical University of
Denmark, DK-2800 Lyngby, Denmark
Chemical Engineering Department, Universitat Polit6cnica de Catalunya.
E.U.E.T.I.B., Comte d'Urgell 187, 08011-Barcelona, Spain
Lehrstuhl f'tir Prozesstechnik der RWTH Aachen, 52056 Aachen, Germany
Laboratoire d'Analyse et Synth~se des Syst6mes Chimiques, Universit6 de
Liege, Sart Tilman B6A, B-4000 Li6ge, Belgium
Hyprotech Ltd., Calgary, Alberta, Canada
Engineering Sciences - Market Development, 1400 Building
The Dow Chemical Company, Midland, M148674, USA
Informatik V (Information Systems), RWTH Aachen, 52056 Aachen,
Germany
Informatik V (Information Systems), RWTH Aachen, 52056 Aachen,
Germany
Informatik V (Information Systems), RWTH Aachen, 52056 Aachen,
Germany
Chemical Engineering Department, The University of Sydney, Sydney, NSW,

T. I. Malik
W. Marquardt
K. W. Mathisen
W. Morton

R. Murris
J. M. Nougu6s
H. Okada

M. Pons
J. W. Ponton

L. Puigjaner

C. Quix.

G. V. Reklaitis

J. C. Rodriguez
J. A. Romagnoli

S. Sama
R. Schneider
M. Schoop

T. Shirao

V. Siepmann
B. J. Stenhouse

T. List

T. Teague

J. E. Tolsma

L. von Wedel
M. White
M. R. Woodman

2006, Australia
ICI Strategic Technology Group, Wilton, UK
Lehrstuhl fiir Prozesstechnik der RWTH Aachen, 52056 Aachen, Germany
Norsk Hydro ASA, Corporate Research Centre, Porsgrunn, Norway
School of Chemical Engineering, University of Edinburgh, Edinburgh,
Scotland EH9 3JL
Mi 2 B. V., The Netherlands
Hyprotech Europe S.L., Pg. Grhcia 56, 08007 Barcelona, Spain
Engineering & IT Department Engineering Division, JGC Corporation, 2-3-1,
Minato Mirai, Nishi-ku, Yokohama 220-6001, Japan
TotalFinaElf, CRDE, BP 61005, 57501 St Avoid Cedex France
School of Chemical Engineering, University of Edinburgh, Edinburgh,
Scotland EH9 3JL
Chemical Engineering Department, Universitat Polit6cnica de Catalunya.
E.T.S.E.I.B., Avda. Diagonal 647, 08028-Barcelona, Spain
Informatik V (Information Systems), RWTH Aachen, 52056 Aachen,
Germany
School of Chemical Engineering Department, Purdue University. West
Lafayette, IN 47907-1283, USA
Hyprotech Europe S.L., Pg. Grhcia 56, 08007 Barcelona, Spain
Chemical Engineering Department, The University of Sydney, Sydney, NSW,
2006, Australia
Hyprotech Europe S.L., Pg. Gr~cia 56, 08007 Barcelona, Spain
Lehrstuhl ftir Prozesstechnik der RWTH Aachen, 52056 Aachen, Germany
Informatik V (Information Systems), RWTH Aachen, 52056 Aachen,
Germany
Science & Technology Research Center, Mitsubishi Chemical Corporation,
1000, Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
Norsk Hydro ASA, Corporate Research Centre, Porsgrunn, Norway
BP Amoco, Research and Engineering Centre
Chertsey Road, Sunbury on Thames, Middlesex TW16 7LN, UK
Informatik V (Information Systems), RWTH Aachen, 52056 Aachen,
Germany
Protesoft Corporation, 10400 S. Post Oak Road, Suite E-PMB#300, Houston,
TX 77035, USA
Department of Chemical Engineering, Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA
Lehrstuhl f'tir Prozesstechnik der RWTH Aachen, 52056 Aachen, Germany
Salmon River Software, 301 Newbury Street, Danvers, MA 01923, USA
BP Amoco, Research and Engineering Centre
Chertsey Road, Sunbury on Thames, Middlesex TW16 7LN, UK

xi

Contents

Foreword

Preface

List of contributing authors

Part I
1.1 Introduction

B. Braunschweig and R. Gani

Part II: Visions & Needs for CAPE Tools
2.1 General User Needs for CAPE

P. Banks, K. Irons, M. R. Woodman and B. J. Stenhouse
2.2 Batch User Needs & Specialities Chemical Processes

T. I. Malik and L. Puigjaner
2.3 Life Cycle Needs

11. Okada and T. Shirao

Part III: Framework for CAPE tools
3.1 Modelling Frameworks

L. von Wedel, W. Marquardt and R. Gani
3.2 Numerical Solvers

J. E. Tolsma and P. 1. Barton
3.3 Simulation, Design & Analysis

D. Hocking, J. M. Nouguds, J. C. Rodriguez and S. Sama
3.4 Data Reconciliation Framework

N. Arora, L. T. Biegler and G. Heyen
Computer Tools for Discrete/Hybrid Production Systems
L. Puigjaner, M. Graells and G. K Reklaitis

3.5 Frameworks for Discrete/Hybrid Production Systems
L. Puigjaner, A. Espuffa and G. V. Reklaitis

Part IV: Making CAPE-Tools
4.1 Methods & Tools for Software Architecture

J. KOller, J.-P. Belaud, M. Jarke, A. Kuckelberg and T. Teague
4.2 PlantData XML

T. Teague
4.3 PI-STEP

R. Murris
4.4 The CAPE-OPEN Standard: Motivations, Development Process, Technical
Architecture and Examples

J.-P. Belaud, B. Braunschweig, and M. White

vii

ix

17
19

49

65

87
89

127

165

193

227
229

267

293

303

*The full version of this chapter is printed on pages 433-452.
**We regret that this chapter could not be placed in sequence.

The chapter is printed on pages 663-700.

xii

Part V: Using CAPE-Tools
5.1 Applications of Modelling: A Case Study from Process Design

M. Eggersmann, J. Hackenberg, W. Marquardt and 1. T. Cameron
5.2 CAPE Tools for Off-line Simulation, Design and Analysis

1. D. L. Bogle and D. Cameron
5.3 Dynamic Simulators for Operator Training

D. Cameron, C. Clausen and W. Morton
5.4 Computer Tools for Discrete/Hybrid Production Systems

L. Puigjaner, M. Graells, and G. E Reklaitis

Part VI: New Frontiers
6.1 Software Agents

R. Batres, B. Braunschweig
6.2 Tools Integration for Computer Aided Process Engineering Applications

E. S. Fraga, R. Gani, J. W. Ponton and R. Andrews
6.3 Web-Based Systems

1. T. Cameron and J. W. Ponton
6.4 Fault Diagnosis Methodologies for Process Operation

D. Leung and J. A. Romagnoli
6.5 Emerging Business Models
J. K6ller, T. List, C. Quix, M. Schoop, M. Jarke, P. Edwards and M. Pons

Part VII: Case Studies
7.1 Case Studies in Design and Analysis

B. Bayer, M. Eggersmann, R. Gani and R. Schneider
7.2 A Prototype for Open and Distributed Simulation with COM and CORBA

V Siepmann, K. W. Mathisen, and T.1. Eikaas

Glossary of Terms

Subject Index

Author Index

333
335

373

393

433

453
455

485

515

535

557

589
591

635

643

651

659

Corrigendum 661

P a r t I I n t r o d u c t i o n

1.1 Introduct ion
B. Braunschweig & R. Gani

This part consists of one chapter, which provides an introduction to the
book, the contents of the book as well as a road map for the reader.

Computer aided process engineering, CAPE, is briefly discussed together
with CAPE methods and tools from a software architecture perspective. A
brief overview on computers & software and software technologies is also
given.

This Page Intentionally Left Blank

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
Cr 2002 Elsevier Science B.V. All rights reserved.

C h a p t e r 1.1 I n t r o d u c t i o n

B. Braunschweig & R. Gani

1.1.1 SOFTWARE ARCHITECTURES & CAPE

Computer Aided Process Engineering (CAPE) implies the use of computers
and/or computer aided methods and tools in the solution of process and product
engineering problems. According to Perris and Bolton (2001), CAPE may be
defined as,

"The application of a systems modelling approach to the study of processes
and their control, safety, environmental protection and utility systems as an
integrated whole, from the viewpoints of development, design and
operation"

CAPE software, as for many other classes of software, is becoming increasingly
powerful, increasingly complex, increasingly better, increasingly used, and, last
but not the least, increasingly diverse. The range of applications of CAPE tools,
from simple database searches for retrieving reference properties of chemical
compounds, to complex plant-wide dynamic optimisation problems solved in real
time, is overwhelming. It calls for numerous methodologies, techniques, tools,
and algorithms in order to cope with increasing demands, users and applications.

On the other hand, software tools, architectures and technologies are evolving at
a very rapid pace. They are triggered by the constant need of software providers
for offering new commercial products; they are triggered by the constant need to
transform new CAPE methodologies, techniques and algorithms into more
versatile and powerful software; they are triggered by the opportunities offered
by more powerful hardware and faster networks (including the internet, of
course); and they are even more triggered by the growing demands of users for
more features, more user-friendliness, and more precise and reliable results.

In the text below, we first give our views on CAPE methods and tools from a
software architecture perspective, followed by a brief overview on computers &
software and software technologies before introducing the contents of this book.

1.1.1.1 CAPE m e t h o d s a n d too l s

CAPE methods refer to a collection of computer-aided methodologies, techniques
and algorithms that provide the framework for the CAPE tools. CAPE tools refer
to the software that have been developed by transforming CAPE methods for a
wide range of applications and uses. In this book we will refer to CAPE tools also
as software. The software may be a single software component or a collection of
software components integrated into one main software. A typical example of
CAPE methods are methodologies for modelling, numerical techniques and
equations solving approaches that provide the framework for CAPE tools such as
process simulators. Process simulators are therefore a collection of individual
software components put together through a defined architecture.

Differences in the available CAPE methods of a particular type, provides
distinguishing features to the corresponding CAPE tools or software components.
A process simulator based on a modelling methodology that employs predefined
steady state unit operation models and a sequential modular approach for solving
the model equations, is a CAPE tool for steady state process flowsheeting based
on the sequential modular approach (see chapters 3.3 and 5.2 for more details).

Differences in the types of CAPE methods lead to the development of different
types of CAPE tools or software components. For example, computer aided
molecular design techniques has led to the development of software for solvent
design (Harper and Gani, 2001) while knowledge-based techniques have lead to
the development of software for selection and design of equipments (Bfihner and
Schembecker, 2001). Some CAPE methods, such as methods for process/product
synthesis and design, data-reconciliation, real-time process optimisation, etc.,
need more than one CAPE tool or software component. Bayer et al. (2001) give a
good example of the need for different software tools for conceptual process
design (see also chapter 7.1). Efficient transformations of these CAPE methods
into useful tools need corresponding and appropriate software architectures.

New challenges and opportunities in CAPE indicate the need for integration of
CAPE methods. As in the case of software components or processes, the
integration of methods implies an overlap of activities (or work) and the sharing
of information (or data). Rather than apply the CAPE methods and the
corresponding software in a sequential manner and thereby repeat many of the
common computations, the challenge is to satisfy the workflow and dataflow
needs while performing the overlapping computations only once. In such
architecture, the common parts of the workflow are performed only once and the
common parts of the data are stored such that all other tools can access it. So, in
this case, we have integration of methods as well as tools, which in turn, may
involve integration of individual software components (see also chapter 6.2). Such
integration allows one to consider aspects of operation, environment, cost and
other process issues simultaneously, for example, in at the conceptual design

stages of the process/product development or for generation/evaluation of retrofit
alternatives for existing processes or products. The need for inte'grated CAPE
tools becomes clearer if lifecycle issues are also considered. Here, the challenge is
to also handle different scales of time and length. For example, the lifecycle
stages in synthesis and development of manufacturing processes need to consider
a number of concurrent CAPE issues or problems (Ng, 2001; Okada and Shirao,
2001). Software architecture therefore becomes an important issue in the
transformation of integrated CAPE methods into integrated CAPE tools.

In the text below, some of the issues with respect to making CAPE software more
powerful, increasingly complex, increasingly better, increasingly used, and
increasingly diverse is briefly discussed from a software architecture perspective.

i

M o d e l s v e r s u s s c o p e

All CAPE tools are model based, and therefore, models play a very important role
in defining the scope and significance of the software. The models, of course, can
be of different types and/or class (see chapters 3.1 and 6.1). Transformation of
CAPE methods into tools usually occur via models (or modelling systems), which
when solved, provides the information (knowledge) that is used elsewhere. For
example, a CAPE tool such as a process simulator may consist of a number of
steady state unit operation models with different degrees of complexity.
Application of the process simulator in this case, provides information about the
process streams through the solution of mass and energy balance equations
representing the process. So, in this case, the CAPE tool generates knowledge
about the steady state behaviour of the process. This knowledge may be used by
other tools to make decisions on the conditions of operation, to improve the
accuracy of the model and many more. Thus, at the core of most software
components, usually lies a model. Consequently, at the core of integrated
software components, the model component is usually in the inner core.
Therefore, the accuracy of the information generated by the model affects all
other software components. For similar reasons, the application range of the
model defines the scope of the integrated or individual software components.

The scope of CAPE tools may also be increased through multiscale and multilevel
modelling (see chapter 3.1). As pointed out by Pantelides (2001), significant
advances in process modelling can be achieved through multiscale modelling,
which also provides a framework for integrating aspects of process and product
design (where also questions of scales of size and time need to be considered).

The need for models at different lifecycle stages of the same process, on the other
hand, may be referred to the need for multilevel modelling, although, indirectly,
scales of time are also involved here.

Multilevel modelling may also mean different uses of the CAPE method through
different levels of model complexity or model type. For example, the transient
operation of a process may be studied by combining a dynamic process simulation
model with a process operation model (as in batch operations). Here, having the
dynamic simulation model is not enough, the operational (batch) procedure is
also needed. Also, if the generated operational information is to be used to make
business decisions, it can be argued that a business model also needs to be
considered. Therefore, adding different levels of models may help to increase the
scope and significance of the original software (or CAPE tool).

Flexible software architectures will allow the developer of CAPE methods and
tools to meet the demands discussed above with respect to models and their use
in software development. The architecture needs to allow the generation of
models according to the needs of the specific problem being solved (see also
chapters 5.1 and 6.1). Note that the CAPE method is transformed into software
through the model that also helps to define the framework for the architecture of
the software.

Complexi ty versus reliabil ity

Complexity and reliability are closely related to the model(s) that has been used
to transform the CAPE method into software. Complexity here also refers to the
ease of use, i.e., how easy is it to use the software? Thus, complexity and
reliability of the model determines, indirectly, the scope and significance of the
CAPE tool while complexity of parts of the software architecture dealing with the
user interface, determines the usability of the software. Naturally, the demands
for the software to become increasingly used, increasingly better, increasingly
diverse, and increasingly reliable can be addressed by considering the model
complexity-reliability, user-interface complexity, etc. in the early stages of the
software development. More precisely, during the definition of the framework for
the software architecture. Here, the objective of the software architecture could
be such that only those parts of the model and interface (from the total resident
system) that are needed are retrieved and used for the specific problem being
solved. This is similar to integrating individual software components of different
level and scale into problem specific software through intelligent software
architecture (the basis for which could be other CAPE methods). Increasing
reliability may mean the use of more complex models and/or larger computation
times while more features in the model may mean more flexibility. The
architecture needs to find an appropriate balance.

Examples of the use of models with increasing complexity or integration of
different levels of models can be found in applications where the capabilities of
CFD tools are combined with those of more conventional modelling technology
(see also chapter 7.2).

Integrated m e t h o d s versus in tegrated sof tware

This has been briefly addressed above (section 1.1.1.1). The text below further
adds to the discussion.

It is important to understand that just as individual software components may be
integrated together to form an integrated tool (software), different individual
CAPE methods may also be integrated to form an integrated CAPE method
(Bansal et al. 2001). For the integrated CAPE method to work, an integration of
the corresponding integrated tools (at the integrated software level) or an
integration of all the individual software components corresponding to all the
integrated tools (at the individual software component level). For integration of
CAPE methods, models (or model components or multilevel modelling) play a
very important role in transforming integrated methods into integrated tools and
define certain aspects of the software architecture. Integration between
integrated tools and/or software components need clear definition of the related
workflow and dataflow and their representation through activity models (see
chapters 2.3, 6.2 and 7.1). More integration will lead to software that is more
powerful, increasingly complex, increasingly better, increasingly diverse, and, if
all these demands are met, also increasingly used. For example, integration with
tools for data reconciliation (see chapter 3.4) and/or fault diagnosis systems (see
chapter 6.4) enhances the application and use of the software components.

For integrated software, the software architecture will need to consider how
much to involve the user in the various solution steps. For example, should all
the conceptual design steps be made automatic or should there be user
interaction at each step? Good resolution of these issues should lead to increased
application and/or use of the software.

Computer power versus p r o b l e m size

As computers become bigger (in memory), faster and better, the CAPE tools
taking advantage of these features will also become bigger, faster, better and
more powerful. To take advantage of the advances in computer science and
computers, software architecture will also need to address the hardware and
related issues (see also section 1.1.1.2). More computer power should not be the
only criteria to increase the problem size and solution speed. Appropriate
software architecture should try to optimise the size, speed, flexibility, and
efficiency of the software.

User product iv i ty versus appl icat ion

This topic brings us back to the question of the objectives of CAPE and CAPE
methods and tools. By providing a systematic computer aided approach to
problem solving, the CAPE tools indirectly contribute positively to the

productivity of the user. For example, if the user needs to spend less time to solve
a CAPE related problem, he/she will then have more time to solve other
important CAPE problems, assuming of course, tha t the CAPE tool is able to
solve these problems. The software architecture has an important role here. It
needs to consider the interaction between the user and the software (through the
computer) so tha t the user will spend very little time in defining the problem that
he/she needs to solve. The software (through the computer) should be able to
correctly interpret the user-given data, retrieve the necessary software
components, solve the problem, and generate the results report for the user. The
human (user) - c o m p u t e r relationship is important because both have roles in the
problem solution. The software architecture needs to make sure that both parties
play these roles efficiently. The ratio of computing time used (to get a solution)
divided by the total time used in the problem solution (including the time spent
by the user to generate and/or provide the necessary data and information, the
number of trials, etc.) could be used as an indicator to monitor user productivity.
Unless special or complex and/or large problems are being solved, usually, the
computer is able to solve the problem (for a successful convergence) at a very
small fraction of the time needed by the user to correctly set-up the problem. If
the user needs less time to set-up the problem and is able to obtain reliable
results within a few attempts, the productivity of the user will increase.

The other important aspect (also partially covered above) is the question of
application. It would be impossible to provide in single monolithic software all
the features needed for a wide range of applications. For example, from
conceptual design to on-line control and monitoring and diagnosis, from
continuous to batch and hybrid, from traditional sectors i.e. chemicals and
petroleum to food, pulp and paper, etc. However, with an integrated set of tools
(software) having the appropriate software architecture, better and more
powerful software can certainly be developed. In this way, the application range
of CAPE methods and tools can be significantly increased.

Finally, the use of a systems approach means that the experience gained from
one application area and]or industrial sector for one tool may be transferred to
another application area and/or industry sector for the same tool or another class
of tools. Software architecture will help to move the tools from one application
area to another without too much extra effort, as in many cases, the knowledge
structure is usually similar but the knowledge content is different. Having a
flexible architecture tha t can handle different knowledge content within similar
knowledge structures would reduce the time for software developers while at the
same time, increase the number of applications and software users.

1.1.1.2 Computers and Software Technolog ies 1

The computer and software industry has followed a pace of changes in the last
decades, with the most recent being the universal deployment of the Internet for
business and home activities.

N e t w o r k s

It is not possible to consider a computer as a standalone device, except in very
peculiar circumstances. Networks are everywhere, for both fixed and mobile
systems" one can count on a link to the Internet or to mobile communication
systems in almost any place of the world. For this reason, technologies that allow
software to take advantage of networks are gaining dominant position: this is the
case for distribution architectures such as Microsoft's DCOM and .NET, OMG's
CORBA, Sun's Enterprise Java Beans; this is also the case for the XML and
XML-based various standards for document and data sharing. The current trend
is to propose representations, which allow business systems to discover and
integrate web services components on the Internet on the fly, such as with the
UDDI initiative, or the various WSxL languages for interoperating web services,

Machines

Current desktop and laptop computers have more computing power, more
memory, and more disk space, than supercomputers used in the 1980s for the
most demanding scientific applications. A PC with a Pentium IV processor
clocked at 2GHz can be ten times more powerful than a Cray XMP, the
supercomputing reference system back fifteen years ago. Clusters of PCs running
under Linux or Windows NT give huge processing power at a reasonable price;
some companies have replaced their corporate supercomputers by clusters of
hundreds or thousands of low-cost PCs. Network bandwidth is growing at the
same rate, with the Ten-155 kernel at 622 Mbits/sec. deployed over all European
and developed countries, allowing to share complex data and information from
distant locations. GRID computing, that is, the distribution of computation over
the networks, is becoming a reality.

P r o g r a m m i n g languages

Programming languages evolve as well, with new languages appearing
periodically, able to take advantages of the new hardware and operating systems.
Object-oriented languages (e.g. C++, Smalltalk, Sun's Java, Microsoft's C#) almost
completely replaced the traditional procedural code that was the s tandard ten
years ago (i.e. Fortran and C). Developers of CAPE applications increasingly use
sophisticated development tools such as Microsoft's Visual Studio or Sun's J2EE

1 Editor 's note: For an explanation of the acronyms, please see the "glossary of terms" section after P a r t VII.

10

toolkit. Source code is often generated from higher-level or abstract models and
descriptions, and component libraries supplied with Application Programming
Interfaces (APIs) are used for several simple and not-so-simple tasks (handling of
lists and arrays, database handling, numerical processing, graphical user
interface widgets, etc.). We cannot leave this list without adding the many
languages used for the Internet, from the simple HTML static descriptions to the
CGI scripts for database access, and to the Javascript and Active Server Pages
dynamic systems, some of the most popular technologies in this field.

N e w A r c h i t e c t u r e s

New Architectures have been proposed for the development and deployment of
complex software. Middleware is playing an important role in these new
architectures as it brings the "software glue" that puts the pieces together. Three-
tiered architectures (with three layers: data, processing, interface) are standard,
and n-tiered architectures with several interacting layers are proposed for more
complex applications. Following this trend, the software industry designed
component-based architectures such as the ones presented in chapter 4.1, in
which middleware is acting as the "software glue" for putting pieces together.
Among these component architectures, of course, we must mention:

�9 OMG's CORBA and its many technologies, from the IIOP software bus for
interoperability of heterogeneous objects, to the high-level Meta Object
Facility for analysis and design, through the IDL neutral Interface
Description Language;

�9 Microsoft's COM and COM+ component architecture, which allow
Windows-based applications to interoperate, and the many development
tools able to use this technology; this technology is further developed in the
.NET architecture which uses the eXtensible Markup Language (XML)
and the Standard Object Access Protocol (SOAP) as core communication
tools;

�9 Sun's Enterprise Java Beans architecture, on top of the Java language,
which proposes complex and flexible arrangements of components written
in Java.

�9 Of course, XML itself, and its accompanying technologies (DTD, XSL, etc.)
now has a crucial role in e-business and e-work infrastructures, gathered
in what is now called EAI - Enterprise Application Integration;

�9 Agent and multi-agent architectures can provide opportunistic cognitive
distributed processing and take advantage of the network; the last chapter
of this book gives a few ideas on the development of such facilities;

�9 Other architectures for distribution of processing, using component
technology and transaction mechanisms, which will become important
when dealing with supply chain and e-commerce. We do not describe them

11

further in this book since there are no uses of such technologies in the
applications considered.

User Interfaces

User interfaces made huge progress in recent years. In terms of visualisation,
people do not speak of UIs anymore, but of GUIs, or Graphical User Interfaces.
Invented by Xerox at their Palo Alto Research Center in the 1970s, GUIs
involving desktops, windows, menus, mice etc. were made popular by Apple in
the 1980s with the advent of the Macintosh, the first graphical personal
computer. Since then, Unix workstations, Windows-based PCs, Personal Digital
Assistants and other equipment (including some mobile phones, Linux boxes,
etc.) were all equipped with graphical user interfaces. More advanced displays
make use of 3D visualisation such as in "reality centers", "immersive rooms" and
other virtual reality devices. On the other hand, interfaces used by humans to
drive the computers followed a similar evolution, moving from keyboard input, to
mice, touch-pads and touch-sensitive displays, voice-activated devices, virtual
reality sensors, eye movement tracking systems etc. Development tools are
available for all these technologies, from simple libraries with APIs to complete
GUI development systems.

Methods, methodologies, algorithms

Methods, methodologies and algorithms for software development and scientific
computing have been subject to step changes as well. Together with the
development of new tools, new languages, new architectures, methodologies and
methodological tools have been proposed, some of which gained enormous success
in the recent years. In terms of object-oriented software development, we moved
from a world of little know-how and of great confusion, to a world now dominated
by the standard and widely accepted UML (Unified Modelling Language)
notation and its accompanying design and analysis processes; design patterns
which capture re-usable elements of object-oriented software design were
developed and almost immediately exploited by the software community; a very
abstract system such as OMG's Meta Object Facility, which represents software
artefacts at the meta-meta level 2, was only understood by a handful of
researchers ten years ago, but is now used in daily practice by software designers
who exchange design models through the XMI (XML Metadata Interchange)
language. In the algorithmic domain, algorithms for software and for scientific
computing also followed a significant trend of evolution, allowing to tackle large
problems that could not be solved in the 1980s. We talk about numerical
algorithms, especially for solving and optimising large process models, in Section
3. Here, we mention other types of algorithms, such as the ones used for
statistical analysis, data mining, machine learning or stochastic global

2 Models of models of objects!

12

optimisation. In these fields as well, numerous improvements were proposed,
such as neural networks for learning nonlinear behaviours, fuzzy logic for
approximate reasoning, evolutionary (genetic) algorithms for global optimisation,
among others a.

In summary, computer and software technologies made such progresses in the
last decades that we cannot approach CAPE software development the same way
as we did even only ten years ago. This has significant consequences on the
organisation of work for providers of CAPE tools. People need to be trained, new
work processes must be put in place, and this takes even longer than developing
the technologies themselves. But it is a necessary step, and we hope that this
book can contribute to the process.

1.1.2 OBJECTIVES OF THIS BOOK

Scientific software, commercial or otherwise, is needed to solve CAPE related
problems by industry/academia, for research & development, for
education]training and many more. With increasing availability and use of
computers in industry/academia, at work and at home, the use of the appropriate
software together with their development and availability has become an
important issue. There are increasing demands for CAPE software to be
versatile, flexible, efficient, robust, reliable and many more. This means that the
role of software architecture is also gaining increasing importance. The software
architecture needs to reconcile the objectives of the software, the framework
defined by the CAPE methods, the computational algorithms, the user needs and
tools (other software) tha t help to develop the CAPE software. The objective of
this book is to bring to the reader, the software side of the story with respect to
computer aided process engineering.

The text below explains the contents of the book, which is divided into seven
parts plus a glossary of terms, a subject index and an author index. The contents
of each part are briefly described, followed by a road map for the reader in terms
of "who should read 9" what. , since all parts of the book may not be of interest to
every reader. The reader is, however, encouraged to read everything in order to
get a complete picture.

1.1.2.1 The content (themes , topics , s u m m a r y of sect ions)

The book tries to give a ra ther exhaustive view of the themes and topics of
relevance to CAPE applications over the lifecycle of processes. It addresses tools
for design, development and operation of continuous, batch and hybrid processes,

a All of these deserve much attention and much more ink, bu t since they are not in the focus of this book, and however
frustrating it is for the writer and for the reader, we only mention their existence. Another book is needed on this subject.

13

in the scope of CAPE as defined above. However it does not contain detailed
material on molecular modelling and simulation, on computational fluid
dynamics (CFD). These technologies are very relevant for the development and
operation of processes but deserve more attention than only a chapter in a book
on CAPE.

We wrote the book using our experience in the modelling of chemical,
pharmaceutical, petrochemical and oil processes (both refining and offshore
facilities). Some of the content can be applied to other process industries e.g.
polymers, agrochemicals, waste and water treatment, since some of the tools
share the same concepts. It would me more difficult to transpose the concepts in
quite different industries such as food, steel manufacturing, pulp and paper,
thermal and nuclear although some general ideas will probably apply.

The book starts with an assessment of the needs of the process industries in
terms of CAPE software. The three chapters in Part II, VISIONS AND NEEDS,
address these needs and include a general view, a view on the specifics of batch
processes, and the needs for lifecycle modelling, since it is now well accepted that
models should follow the lifecycle of processes from conceptual design to
operation and de-commissioning. Following this, we show what our medium term
vision is, taking into account the needs and what facilities the computer industry
will offer. Part II is mainly written by industrial users who are experienced with
CAPE tools and their utilisation in large and smaller corporations.

Part III, FRAMEWORK FOR CAPE TOOLS, introduces current architectures for
CAPE, as proposed by leading scientists and vendors of CAPE software. It gives
concrete examples on how these frameworks can help to solve problems expressed
in Part II. Its scope includes modelling, optimisation, monitoring, for continuous,
discrete and hybrid systems. It presents the state of the art of representations,
algorithms and architectures.

Part IV, MAKING CAPE TOOLS, show what are the current tools (component
software; objects, middleware, databases, XML..) and methods (data modelling,
UML ..) used by the CAPE software industry to develop the new frameworks
and tells about current standards projects and their status. Through examples
such as CAPE-OPEN, Plant Data XML, PI-STEP, the reader will get an insight
on how these standards are being developed and implemented. This part is
mostly written by software specialists and experienced CAPE tools providers.

Part V, USING CAPE TOOLS, highlights, through illustrative examples, the use
and/or application of the relevant frameworks (of Part III) and methods, tools &
standards (presented in Part IV) to the solution of interesting CAPE problems. It
also presents what are the current computer aided tools (process simulators,
databases, design, etc.) that are currently available in industry and academia.

14

The chapters in this part has been written by contributors from academia and
industry, all known as world experts in their field.

Part VI, NEW FRONTIERS, shows where we are going, through new technologies
and new potential areas of applications that make use of the advances in CAPE
and software technologies: e.g. agents, web-based systems, integrated
approaches, process monitoring and fault diagnosis systems. It starts by
discussing new business models made possible by current technologies
(collaboration frameworks, e-Work and e-Business models). Some of the
developments in this part are already available but not widely used yet; some
still involve significant research before being considered for applications.
Specialists at the forefront of CAPE research have written the chapters of this
part.

Part VII, CASE STUDIES, presents the modern use of CAPE tools and
architectures on representative process examples. The designers and developers
of these examples have written this part.

1.1.2.2 Who should read what?

We hope that the book will be of interest to a wide variety of readers. Here we try
to guide you through the book following a rough classification, with an aim to
help in making the best of it quickly, depending on your interest.

Managers of Process Engineer ing and related activit ies will be mostly
interested in the vision and needs Part II, in order to understand and share what
the medium and long term goals are; they will probably skip most of Parts III
and IV and find additional interest in Part V where we present applications of
modern CAPE tools. Enough curiosity will lead them to read bits and pieces of
Part VI, at least the Emerging Business Models chapter (6.5). They will also
appreciate the two examples of Part VII (chapters 7.1 and 7.2). Suggested order of
reading: II, VII, V, VI.

Users of computer-a ided process eng ineer ing software (mostly process
engineers) will easily understand the Vision and Needs part (Part II), as they
probably share many of the ideas expressed there. They will learn a lot by
reading Part III as an introduction to the methods and concepts implemented in
the tools that they are using for their daffy activities. They will also appreciate
the part on standards in Part IV, since it shows what facilities will be shortly
available with the future versions of their favourite tools. Some of the
applications shown in Part V and some of the New Frontiers developments will
be worth learning about. Finally, we expect that they will enjoy the two examples
in Part VII. Suggested order of reading: III, II, IV, V, VI.

15

Managers of CAPE s o f t w a r e deve lopment projects will, as all others, be
interested in Part II, Vision and Needs. They probably know already most of Part
III, and will find more "meat" in Part IV where we present methods and tools
tha t their development team will be using, and standards upon which they will
base some of their future activities. As for Part III, they will probably be already
familiar with application examples in Part V. They should definitely read Par t VI
for the new ideas for products that it brings. Suggested order of reading: II, IV,
VI.

Developers of CAPE s o f t w a r e will need to understand in depth the concepts
articulated in Part III, as it will be their final responsibility, to implement these
concepts in software. They are certainly familiar with some of Part IV, but
probably not at the same level of detail for all chapters of this part, so we suggest
tha t they spend some time on it. Then they could skip most of Par t V and spend
some time on Part VI, in the same spirit as for Part III, that is, to unders tand the
concepts before implementing them. Part VII will contribute to their motivation
for further developments. Suggested order of reading: III, VI, IV, VII, II.

Researchers in CAPE and in Process Engineer ing will probably like the
book as a whole; they will probably be experts in some of the chapters and will be
even able to comment, criticize or expand some of the ideas expressed, but
obviously not for all topics and issues. It is difficult for us to recommend a
selection, as it will mainly depend on their specialty. Suggested order of reading:
parts of II, VI, II, III, IV, V, and VII.

S o f t w a r e spec ia l i s t s f rom other domains will take the book as an example of
developments in a major application sector. They will need to gain some
familiarity with the domain from application examples from Parts VII and V,
completed by the vision offered in Part II. Then, they will be able to appreciate
the technical developments as presented in Part IV and the future trends of Part
VI. Suggested order of reading: VII, V, II, IV, VI.

I f you do not be long to any of these categories , please let us know. We
appreciate your feedback!

1.1.3 REFERENCES

Bansal, V., Pistikopoulos, E. N., Perkins. J. D., A unified framework for
flexibility analysis and design of nonlinear systems via parametric programming,
Computer Aided Chemical Engineering, Vol 9, Elsevier, (2001), pp961-966.
Bayer, B., Weidenhaupt, K., Jarke, M., Marquardt, W., A flowsheet centered
architecture for conceptual design, Computer Aided Chemical Engineering, Vol 9,
Elsevier, (2001), pp345-350.

15

Bfihner, C., Schembecker, G., Reactor selection and design for heterogeneous
reaction systems, Computer Aided Chemical Engineering, Vol 9, Elsevier, (2001),
pp357-362.
Harper, P. M., Gani, R., A multistep and multilevel approach for computer aided
molecular design, Computers and Chemical Engineering, 24 (2-7), (2001), pp677-
683.
Ng, K. M., A multiscale-multifaceted approach to process synthesis and
development, Computer Aided Chemical Engineering, Vol 9, Elsevier, (2001),
pp41-54.
Okada, H., Shirao, T., New chemical process economic analysis methods,
Computer Aided Chemical Engineering, Vol 9, Elsevier, (2001), pp1059-1064.
Pantelides, C. C., New challenges and opportunities for process modelling,
Computer Aided Chemical Engineering, Vol 9, Elsevier, (2001), pp15-26.
Perris T. and Bolton L. (2001), CAPE-21 Report, available from www.cape-
21.ucl.org.uk

Web-sites:
CO-LaN web site, http://www.colan.org

Microsoft COM Web-Site http://www.microsoft.com/c0m

OMG CORBA Web-Site http://www.omg.or~

CAPE-WP Web-Site http://www.cape-wp.kt.dtu.dk

17

P a r t II: V i s i o n s & N e e d s f o r C A P E T o o l s

2.1 General user needs for CAPE
P. Banks, K. Irons, M. R. Woodman & B. J. Stenhouse

2.2 User needs in b a t c h & spec ia l i ty c h e m i c a l processes
T. I. Malik & L. Puigjaner

2.3 Life cycle needs
H. Okada & T. Shirao

The objective of this part is to provide an assessment of the needs of the
process industries in terms of CAPE software. There are three chapters in
this part and they address these needs and include a general view, a view
on the specifics of batch processes, and the needs for lifecycle modelling,
since it is now well accepted that models should follow the lifecycle of
processes from conceptual design to operation and de-commissioning.
Together with an assessment of the needs, each chapter also highlights the
medium term vision, taking into account the needs and what facilities the
computer industry will offer. Industrial users who are experienced with
CAPE tools and their utilisation in large and smaller corporations are the
principal contributors to the chapters of this part.

Chapter 2.1 written by Banks et al. begins by reviewing the environment in
which modern CAPE professionals operate. It then considers the potential
benefits available from the application of advanced simulation techniques
in the different activity sectors and the issues involved in actually realising
these benefits. Finally, it looks at some of the implications of the adoption
of these techniques for the individuals and organisations involved.

In terms of CAPE, both the "batch' and 'speciality" characteristics influence
the needs for system software as well as the interfaces required between the
components of CAPE software. Chapter 2.2 (Malik and Puigjaner)
considers these issues in further details in terms of structural
characteristics of batch and speciality chemicals industries, management
requirements, examples of industries, information needed for decision
making and finally, characteristics needed for the supporting software.

Chapter 2.3 (Okada and Shirao) identifies the "life cycle" needs of process
industries who are going to use CAPE software as well as other tools
during process modelling, simulation, synthesis and process design. The
chapter discusses the issue of sharing of information between different tools
and the role of the data manager during project execution as they influence
the user's lifecycle expectations or needs, such as interfacing with different
design tools to keep information flow among different disciplines during
not only the process design phase which should be fulfilled by CAPE but
also across the lifecycle.

This Page Intentionally Left Blank

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
�9 2002 Elsevier Science B.V. All rights reserved. 19

C h a p t e r 2.1: G e n e r a l U s e r N e e d s f o r C A P E

P. Banks, K. Irons, M. R. Woodman & B. J. Stenhouse

2.1.1 OVERALL OBJECTIVE

CAPE has great potential to provide business benefits, but, in reality, only a
portion of these benefits is currently being delivered. We look at some of the
issues that cause this shortfall and establish the unsatisfied user needs
implied by each issue. We will be concentrating on industrial users, since
they are generally the most demanding, and we will highlight their needs,
rather than suggest specific solutions.

The diagram below summarises the scope of the chapter:

20

It shows the activities involved in the lifecycle of a plant and indicates the
full benefits that are available in each, if a way can be found through the
advanced simulation technology layer in between. We assume that users are
already receiving benefits from applying standard simulation techniques in
each activity sector, so we will focus on the user needs that arise in seeking to
move to the new benefits promised by advanced techniques.

The chapter begins by reviewing the environment in which modern CAPE
professionals operate. It then considers the potential benefits available from
the application of advanced simulation techniques in the different activity
sectors and the issues involved in actually realising these benefits. Finally, it
looks at some of the implications of the adoption of these techniques for the
individuals and organisations involved.

2.1.2 B U S I N E S S E N V I R O N M E N T I S S U E S

The modern corporation has changed significantly, and continues to change
rapidly, from the common model of the 1980s and before. With this ever-
increasing rate of change in the corporate environment, the ability to adapt
quickly is paramount. Arie DeGeus, formerly head of planning at Royal
Dutch Shell, has said "The ability to learn faster than your competitors is
your organization's only sustainable competitive advantage." Not quality, not
service, not technology, not price, not marketing, not patents, but the ability
to adapt more quickly than the competition. This is true across all industry
categories. It does not imply that speed is more important than other factors
(quality, cost, ease of use, safety, environment, etc.), but rather that any
competitive advantage can be copied by others in time. The rate at which an
organisation can implement its next competitive leap will determine how long
it can sustain its advantage. The key role of CAPE is in allowing the
organisation to develop and implement improvements in the design and
operation of its manufacturing plants as quickly as possible.

2.1.2.1 The N e e d for S p e e d

Mergers & acquisitions have resulted in a major change in the mix of
organisations participating in the bulk chemical, speciality chemical,
petroleum, petrochemical, pharmaceutical and agricultural chemical sectors.
Many companies that were major players only a few years ago have either
merged with others, split into separate entities, undergone major
divestitures, totally changed focus, or disappeared completely. New
companies have been formed, alliances and joint ventures abound, and new
business models are being tested.

21

The result of all this has been a rapidly changing mix of competitors, intense
competition and rapidly changing business priorities. With all of the shifts in
the structure of firms in a given market sector, companies find themselves
constantly facing new challenges from organisations that didn't exist a short
time ago. Many companies focus on market leadership as their strategic
intent, which requires them to compete on a number of levels: price, quality,
service, technology, product functionality, etc. Companies cannot only react
to this competition, they must determine how to remain a step ahead in at
least some of the elements. As each organisation looks for ways to gain
competitive advantage, many paths are pursued. The ability of a firm to act
quickly can make the difference between market leadership and failure. This
reaction speed must be supported in all activities of the organisation,
including CAPE.

CAPE practitioners have generally been seen as highly skilled technical
specialists, having built expertise over time and multiple project experiences.
However, with the factors noted above, there are increasing pressures on this
group of professionals. With mergers, acquisitions, joint ventures, etc., staff
changes more are far more common than was the case. The effect of these
changes is often less continuity in the technical community, whether this
means people moving between business units (and therefore between
technology areas) or between companies. In addition, technical professionals
are frequently asked to participate in diverse activities that are not core to
their CAPE role. While this results in a welcome broadening of perspective
for each individual, it also means that they become less-frequent users of
CAPE tools, resulting in a reduction of their specific CAPE expertise.

With increasing focus on business level objectives, CAPE technical staff can
find themselves with less focus on a single company agenda. At the least,
there can be difficulties in simultaneously meeting business unit objectives
(e.g. minimum capital investment for the next new plant or p lant expansion)
and corporate goals (e.g. minimum energy consumption, site integration,
emission reductions, etc.). This issue is complicated further when CAPE
activities involve contractors, whether they are contract engineers working
with company staff, or when entire projects are contracted. While project
objectives are always discussed as part of the negotiation, contracting, and
project management process, that is no guarantee that those objectives are
translated into desired individual behaviours when the CAPE work is
actually done.

The combined effect of rapid change and competitive pressures means an
increased emphasis on capital efficiency and pressure to build and operate
plants that reflect a shorter lifecycle for the products they manufacture.
These plants must also aid the goals of minimised working capital, asset

22

base, lost production and maintenance budgets, as well as maximum on-line
time. The goal here is minimum total cost of ownership. At the same time,
there is pressure to squeeze the maximum capability from existing assets,
which can actually decrease capital efficiency because older assets are used
when newer technology could be more efficient. This is often done when a
company seeks to avoid capital expenditure in an effort to increase its Return
On Net Assets or Return On Investment.

All of these objectives must be met with lean organisations and stretched
staff, who are working under all the constraints and external forces noted
here. One manifestation of this changing environment is the widespread
practice of outsourcing all or part of a firm's CAPE activities. The
outsourcing drivers are to reduce the costs of having a staff of internal
experts, to be able to respond to changes in demand for CAPE activities, and
to tap into increasingly specialised expertise available from firms who are
"full time" CAPE practitioners.

A final set of pressures on the CAPE community comes in the environment,
health, & safety arena. Process industry firms are faced with ever more
challenging environmental goals, driven by regulatory, corporate policy,
societal, and industry pressures. The growth of a litigious society brings
another element of pressure on the CAPE professional to deliver process
designs that are economic, flexible, capable of producing the required product
mix, and socially responsible. It also adds the need to be able to provide
evidence that due diligence was, in fact, practiced.

In this environment, it is clear that CAPE professionals will place heavy
demands on computing and CAPE software capabilities, as they strive to
deliver the speed of response being asked of them. We will look at these
demands, later in this chapter.

2.1.2.2 B u s i n e s s E n v i r o n m e n t N e e d s

CAPE activities need to be integrated with the larger business enterprise.
Easy incorporation of costing modules that are directly linked to the process
simulation will allow rapid convergence to business-optimal solutions, not
just engineering-optimal solutions. Such cost estimators need to be able to
access both general cost data sets as well as company or technology specific
cost information.

Along with cost estimation capability, the larger arena of project economics
must be readily integrated with process modelling. Changes in the process
design can have significant impact on overall project economics, and the
ability to see that impact quickly will result in more flexible and cost effective

23

plants. To be able to run multiple project economic scenarios with different
plant design bases quickly, process simulators must easily and intuitively
share data with project economics packages. S tandard interfaces between
process and economic models will give firms the ability to fully unders tand
their options, quickly achieving optimum solutions.

Long-term cost of ownership for any given process design can be heavily
influenced by maintenance costs. Maintenance cost data bases must be
readily available to process and project economic estimators, and so allow the
process design optimisation CAPE effort to truly identify lowest cost
solutions. For the same reasons, reliability modelling capability must be
linked to the overall project economic model, again using s tandard interface
specifications.

Business leadership needs to design company work processes with an
understanding of the strengths and limitations of CAPE. This includes
integrating CAPE capabilities into contracting and outsourcing strategies,
maintaining enough skill and experience in their staff to be "smart buyers" of
third party CAPE services, and recognising the limitations of process models.
This means that these staff members must be active, skilled practitioners,
otherwise they will be unable to fully unders tand the capabilities and
limitations of CAPE tools and the organisations using them.

Mergers and acquisitions impose a constant requirement for integration of
the CAPE activities of the new corporate entities that result. The adoption of
open interface s tandards and a "plug and play" architecture for process
simulators, commercial software components and proprietary in-house
software, would allow this integration to take place rapidly.

2.1.3 C O M P U T I N G E N V I R O N M E N T ISSUES

All would agree that the last 20 years have been a period of ever-greater
focus on IT (Information Technology). IT was once the province of a select
few operators of large-scale computers, but it now pervades every aspect of
corporate and academic life. IT is now so all-encompassing that it is assumed
to be a key leveraging capability, and obviously so in CAPE. Where
engineers once were restricted to remote access to mainframes, computers
are now generally available and typically reside on the desktop. When
corporate leaders see how much they invest in IT, and when they constantly
hear of the impact that they should be getting for that investment, they have
high expectations for CAPE.

24

The tremendous increases in computing power and availability have
undoubtedly created an environment in which these expectations can be met.
Models can now be created with sufficient scope and detail to have significant
business impact. However, such models are inevitably of great complexity; so
complex, perhaps, that they can actually lead to computer-aided mistakes!
These complex systems can be handled easily by state-of-the-art computing
equipment, but that equipment is not always available to each member of the
CAPE community. This can create an imbalance between the perceived need
for model complexity and the actual computing resources at hand for a broad
base of end users. Many in the technical specialist community hold the view
that their corporate IT organisations don't take these needs into account
when acquiring and distributing computing resources. For example, future
needs for computing power may well be met with parallel processing
capability and web sharing, but these are issues that have not been
addressed by most corporate IT organisations, or even the CAPE community.

2.1.3.1 Comput ing Env ironment Needs

In many cases, computing resource needs for CAPE exceed the "standard
desktop" computing capability as defined by IT organisations. Corporate IT
experts need to work closely with CAPE professionals in defining a computer
platform and capability that will effective support CAPE activities. This does
not normally mean something beyond a high-end desktop computer, but
usually that computer must have much more RAM, higher clock speed, and a
larger hard drive than are required for typical corporate computing.
However, in future it may mean parallel processing capability.

Corporate computer networks and Intranets must be capable of transferring
the large files associated with CAPE so that engineers can work
collaboratively on CAPE projects.

2.1.4 CAPE E N V I R O N M E N T ISSUES

Beginning in the 1980s, powerful simulation/calculation systems have
become generally available to the Process Engineering community. Put
another way, these process simulators have made it possible to practice
CAPE on a wide scale. Without these tools, engineers had to develop, debug,
and operate their own computer models. It is only with the advent of process
modelling tools that are user-friendly and broadly applicable that CAPE has
grown to be within reach of every practitioner. Heretofore, CAPE was
restricted to a very small number of engineers working on highly specialised,
long time frame projects. Costly and lengthy modelling efforts were only
under taken for the most demanding projects. Because many sophisticated

25

algorithms have now been incorporated in widely available, industry
standard CAPE tools, they are allowing practitioners to operate at the full
level of their engineering skills. The CAPE professional can make use of
state-of-the-art computing and modelling tools that would be far too difficult
and time consuming to implement, if the engineer had to write the equations
and the computer software "from scratch." Now an engineer can easily
perform calculations without having to painstakingly review the methodology
and procedures, making routine application of very sophisticated
computations the norm.

One significant challenge for any activity involving computers is that large
amounts of information can be easily generated and stored, but not easily
turned into knowledge. Such "lost knowledge" must be made accessible in
order to avoid unnecessary reinvention and the associated waste of scarce
resources. The ability to convert information into knowledge and to retrieve
it in a timely and efficient manor is a function of an organisations' work
processes and of the CAPE software used.

To deal with the challenge of increasing complexity and a more stringent
regulatory framework, many organisations have concluded that the ability to
develop an audit trail is an important component of their CAPE software.
However, auditing has its own problems of resource needs and time
requirements, and can be seen as a luxury in an environment where cost and
speed are ever more important. It is the other pressures of health, safety and
environment, personal liability and increased outsourcing that make the case
for documenting the audit details behind the "user friendly icons" of a process
simulator model . . It is particularly important in an open, plug and play
environment, such as that offered by CAPE-OPEN (CO) standards (see
www.cape-open.org for more information). Here, the modeller can make use
of multiple software components from diverse sources, so that a complex
model may not contain simply the process simulator supplier's unit operation
or data base components.

Audit documentation is especially key when a model is used for optimisation,
as this places maximum stress on the process model, and any anomalies must
be understood and corrected. Further, if a project suffers from any lack of
continuity of staff, or if a process model is used over a relatively long period of
time, the rationale behind design and modelling decisions can be lost. CAPE
tools that can easily capture the rationale for decisions and design bases,
making documentation "automatic," bring significant value to an
organisation and its projects. Without appropriate documentation, mistakes
can easily be made out of ignorance of the reasons for previous CAPE
decisions.

26

Given the time pressures that are inherent in CAPE activities, CAPE tools
with an intuitive user interface can reduce the time required to build,
document, and optimise a model, as well as the time to learn to use the tool.
Such systems obviously reduce the need for specialised training, but at the
same time, training will always be required to improve the productivity and
quality of work for CAPE practitioners. In the rush to bring new engineers
up to speed on a project, or convert an organisation to a newer version or a
different brand of CAPE tool, training sometimes manifests itself as a
combination of "sink or swim" and "ask the person down the hall". This
approach has many limitations compared to effective training programs and
tutorials.

2.1.4.1 CAPE E n v i r o n m e n t N e e d s

Model sharing methods are needed so that the effort put into developing and
refining models can be leveraged across a project team. This means making
the model available to plant, process R&D, process design, detailed design
and maintenance engineers, as well as plant operators. While the needs of
each of these groups are different, putting the results of the process model in
their hands will result in significant improvements in operating plant
performance.

Facilitating model sharing requires intuitive user interfaces, the ability to
store and retrieve modelling results, the ability to easily interpret those
results through graphical presentation, the ability to easily see and
understand the input data and underlying assumptions, and the ability to
easily compare multiple model cases. Visualisation of modelling data and
results, as well as the model's structure is required to best accomplish this
goal.

"Automatic" documentation of model structure, methodology, and the choices
made during model assembly and use is required. This will allow and require
users to communicate their thinking by documenting the decision process in
model assembly and use. This documentation then becomes the basis for any
required conformance audits and for ensuring that subsequent model users
and developers unders tand how and why the process model evolved. A
similar process should also be used to document the creation of the final
process design case.

Self-documentation requirements extend further when a model is used for
optimisation, whether off-line or on-line. Since optimisation involves a
number of trade-offs, documenting both the decisions and the rationale
behind them is key in capturing the value of the optimisation work. The
likelihood that a process model will be used by many CAPE practitioners over

27

several years makes such documentation all the more critical. The CAPE-
OPEN environment emphasises this need, as software components will have
multiple versions over time, and therefore must be documented fully with
each model implementation and upgrade.

The need for intuitive interfaces is obvious, but they do not reduce the need
for effective training. Whether this consists of on-line tutorials, classroom
sessions, imbedded help commands, or a combination of all three, rapid and
low cost training of everyone involved with model development and usage is
essential. The training must also be specific to the use, with CAPE experts
requiring a very different experience than plant engineers, or operators using
a t raining simulator.

2.1.5 POTENTIAL B E N E F I T S

There are many published examples that demonstrate tha t the appropriate
application of CAPE tools can deliver substant ial benefits across the process
industries. These examples cover the complete range of CAPE tools applied
in all the sectors identified in the diagram at the beginning of this chapter.
However, accurate numbers for the size of these benefits are hard to obtain
and even more difficult to attribute.

The main commercial simulation vendors routinely publish success stories for
their software, supported by anecdotal evidence from the relevant contractor,
or operating company, as to how the benefit was delivered. These are
published as a sales and marketing tool, so are obviously wri t ten with that in
mind, but, even so, they provide a useful indication of the type and scale of
benefits that can be achieved.

However, there are many potential benefits tha t can be obtained through the
application of CAPE that currently are not routinely captured. To illustrate
where these potential benefits can be achieved, it is necessary to look at the
process plant life cycle from process concept through to operations and
beyond. Some of the benefits described are already being obtained in a few
companies, but not uniformly across the process industries.

2.1.5.1 Design and Revamp

It is possible to deliver process designs that are cheaper to build or, more
exactly, capital efficient - i.e. that requires less capital, or use the same
capital more effectively. The potential for CAPE tools here is:

28

To enable leaner and more agile project teams to use con-current
engineering, in place of the traditional sequential design process.
To simplify the flowsheet for the plant (and hence remove equipment,
reducing the capital cost) through the use of formal process synthesis
techniques.

A recent publication by Shell Internat ional Chemicals and the Process Design
Centre (Harmsen, J et. al., AIChE Symposium Series No 323, Volume 96,
2000) describes capital cost reductions of up to 50% through the application of
process synthesis tools.

The same process synthesis tools can also be used to produce process designs
with improved operating costs. There is a common assumption that reducing
capital costs will lead to increased operating costs, but the same paper quotes
operating cost savings of up to 80%. Looking at the total annualised cost
(which combines both capital and operating costs), the savings quoted range
from 20 to 60%.

Formal optimisation methods and dynamic simulation are two available
techniques within CAPE that are not routinely used, but which offer
significant potential to deliver process designs which are safe to operate and
easy to control. Optimisation at the design stage offers at least two benefits:

�9 A formal approach to assessing the financial operational impact of process
constraints against the cost of removing them by equipment substitution.

�9 A framework within which to assess the robustness of the design to
uncertainty in the basic design parameters and economic assumptions.

Dynamic simulation offers the ability to:

�9 Integrate process and control system design, enabling the design to be
produced faster and with greater assurance that the process and control
schemes are optimised.

�9 Examine the dynamic behaviour of the plant and proposed control
scheme, thus ensuring the process will operate as intended and is
controllable.

Finally, all the techniques described above can also be used to produce
process designs that minimise impact on the environment. This can be
achieved not only through the reduction in energy usage, but also by giving
designs which minimise emissions and can cope with upset conditions in the
most environmentally-friendly way.

29

2.1.5.2 Training

The main area of application for CAPE during plant start-up is through the
provision of a t raining simulator. This enables the operators and plant
engineers to be t rained in the operation of the process before it is
commissioned. It is then available during start-up, for troubleshooting and to
improve the unders tanding of the dynamics of the process.

The training simulator subsequently becomes a tool for training new
operators before they s tar t work on the actual plant, and to improve the
capability of the existing operators in situations of abnormal operations.

Although training simulators are becoming more common, they are still not
made available for every new plant. Furthermore, the most effective way of
generating a training simulator is to base it on the models used during the
design process. This is definitely not currently s tandard practice, with the
result that a great deal of rework is needed to generate an entirely new model
for the t raining simulator.

2.1.5.3 Operations

Once a process plant is operating there are many areas in which CAPE can
offer benefits.

Process troubleshooting is perhaps the most common application. Given the
low process engineering manning levels present on most process plants today,
this activity is most often associated with helping operations staff investigate
causes and possible solutions, when the plant is unable to deliver the
performance expected of it by the management team. Here, off-line models
are used to unders tand the process and the way in which the operating
equipment is under performing. Frequently this involves simulation followed
by detailed equipment rating calculations. Most industr ial companies
routinely use CAPE in this way and are undoubtedly generating benefits
from the process. Significantly, some companies are now using process
models in a more pro-active way to routinely monitor equipment
performance. The objective is to avoid problems before they occur or, at
worst, advise on an appropriate intervention strategy.

Going beyond performance monitoring and operational troubleshooting, there
is an opportunity to use process models to optimise plant performance to
generate increased profit for the business. The benefits of on-line model-
based optimisation have been robustly demonstrated in a number of areas,
for example ethylene plant optimisation. Here, technologies from a number of

30

suppliers have received wide application, often linked with proprietary
models developed by the operating company.

Typically, on-line optimisation is used on plants, which either have multiple
products, or where throughput is very large, so that there are large benefits
to be obtained by a very accurate optimisation of the plant around the
current operating point. Models are usually simplified, but continuously
tuned to the plant data, thus ensuring high accuracy in the current region of
operation.

Such on-line optimisation can be complemented in many cases by rigorous
off-line optimisation. Here the models need to be detailed and based on first
principles. All equipment constraints need to be explicitly included. Off-line
optimisation can be used to make step-out changes in the operation of the
plant, outside the current range of operation of the process. For example:

An unpublished Dow project involved the consistent application of an
in-house optimisation tool to a series of distillation columns. This has
resulted in an average 18% reduction in distillation energy
requirement and a comparable increase in tower capacity. These
towers represent a broad range of product types including speciality
chemicals and commodity hydrocarbons.

In BP, a 5% improvement in throughput was obtained at an oil production
site by optimisation of operational set-points. In addition, at the same site, a
significant summer production shortfall, caused by air cooler limitations, was
eliminated. In both cases, the operating strategies proposed by the
optimisation were counter to normal practice, but, after the event, fell firmly
into the category of"Why didn't I think of that?"

Finally, there are many plants for which neither off-line nor on-line
optimisation is necessary, typically because they are single feed / single
product processes. In these cases, the creation of high fidelity, rigorous off-
line models is often sufficient to provide significant process understanding
and thus improve the operation of the plant. An unpublished example from
the Chemicals Stream of BP describes the use of such models, which resulted
in $0.65 million operational savings per annum, whilst also reducing effluent
by up to 50%.

2.1.5.4 C o n t r o l

Although control is not strictly CAPE, there are many areas where CAPE can
be used to assist the control engineer. The use of dynamic simulation to aid

31

the control system design has already been described, but there are other
synergies to be obtained, especially in the area of Advanced Control.

The first of these is the re-use of the Process Engineering models in the
Advanced Control algorithms. Such re-use is almost certainly not "as-is",
because of the speed requirements for the models used in control, but
simplified models can be generated based on the Process Engineering models.

The second is the use of the Process Engineering models during the plant
trials ("step-tests") required to tune the Advanced Control. This can either be
by providing information as to which plant trials are required, thus avoiding
the need for unnecessary trials and minimising the risk of upset conditions
during the trials, or even by replacing some of the trials with off-line
modelling, in certain circumstances.

2.1.5.5 Decommissioning

The optimal decommissioning of plant is an area, often over-looked, where
CAPE tools can contribute significantly. The scenario is very common in the
oil industry, during the later stages of an oil or gas field's life. Production
rates begin to fall away from the design levels of the processing plant, so the
equipment items are required to operate below full capacity.

The most important issues concern the operation of rotat ing machinery:
compressors and gas turbine power generators. Low plant throughputs
either result in operation away from the peak efficiency point, or else require
recycle, with its associated increased energy consumption. Both compressor
and gas turbine efficiencies fall dramatically at operations significantly away
from the design point.

Where multiple trains exist, equipment can be decommissioned and load
transferred to the remaining machines. This can result in significant
benefits from reduced energy demand and environmental impact, which are
key issues for oil and gas stabilisation plants, part icularly with a gas
shortfall.

A closely related scenario occurs in oil stabilisation plants, where
hydrocarbon fluids from a large number of producing fields are processed
centrally. This can result in gas rates and compression requirements varying
throughout the year, according to the profile of production units feeding the
pipeline system. Appropriate decommissioning or re ins ta tement of
equipment offers significant benefits, but requires careful planning and
accurate simulation to allow operations staff to respond in a timely manner.

32

Of course, decommissioning may sometimes have disadvantages. For
example, there may be a loss of processing flexibility, which may affect the
ability to respond to plant upsets and equipment failures. Also safety must
be assessed, as with any process change. These complex issues all have to be
included in the optimal decommissioning study, which is really only feasible
with accurate, flexible process models.

These techniques are now beginning to be applied. Optimisation of plant
decommissioning has generated benefits for at least two on-shore oil and gas
stabilisation processes. Analysis, in these cases, was performed by a
combination of process engineering knowledge and the use of good, validated
process models, coupled with an element of formal non-linear optimisation.
However, the problem should really suit a robust mixed-integer, non-linear
optimisation approach, since it has clear!y defined limits. It is, in fact, a
particular type of process synthesis problem.

Although this topic is of most interest in the oil and gas sector, it could also
be applicable elsewhere, if, for example, throughputs are reduced, or there is
a cyclical demand.

2.1.6 DELIVERY OF ACTUAL BENEFITS

2.1.6.1 Overview

At its most fundamental level, an engineer uses process simulation to
understand his process better. With the aid of this increased understanding
the engineer can add value by improving the engineering design, by
responding to operational problems in a more informed way and by
establishing alternative modes of operation that offer improved performance.

The opportunity to add value from process simulation applies during both the
design phases of a project and during the operational phase of the associated
plant. It is worth discussing the issues arising from these two phases
separately.

2.1.6.2 Benef i t s dur ing Plant Des ign

Design moves through a number of phases from synthesis or conceptual
design, where models are traditionally relatively simple and the correct "big
picture" solution is identified, through to detailed design where flowsheet
topology is fixed and exact equipment performance is determined. To
facilitate this process the underlying synthesis and simulation software
needs to be sufficiently accessible to allow use by non-specialist technology

33

R&D or project development personnel, but able to grow with increasing
modelling fidelity into a full-scale detailed design model. In addition the
resulting detailed design model should be able to be taken forward by the
operational team as the "operational model," capable of accurately mimicking
the control and operation of the plant after start-up.

In summary:

We need intuitive flexibility in modelling software and presentat ion to
the user, so that the representation of the plant can be easily refined
as the design process proceeds.

Process Synthesis

Process synthesis technology has been developing as general simulation
package capabilities and hardware performance have improved. However, a
general process synthesis solver has not yet material ised and the full mixed-
integer, non-linear programming problem that comprises process flowsheet
design optimisation, has remained largely a problem for academic study.
Certain niche area synthesis programs _have matured, however, and found
their way into the commercial simulator market.

The desire for a generalised process synthesis package may be unrealistic,
given the range of fundamental issues to be addressed at this stage. For
example, in ups t ream oil processing, the key question is the robustness of the
design concept to the inherent uncertainty present in the design information;
for a new process on a chemicals plant, the key issue may be how best to
optimise design, given the integration of reactor and associated downstream
separation system. As an additional complication, process synthesis often
involves the t ransfer of proprietary technology from academic research into
industry.

The general industry need is for the design engineer to be able to use detailed
unit operation models at the heart of a robust synthesis process, such that
the resulting flowsheets are valid and can be taken on as the initial plant
design basis.

Initial synthesis studies can sometimes be performed with simple process
models, as long as more detailed models can be substi tuted as the process
develops. However, in other cases, especially in the chemicals industry,
rigorous models, often representing new processes, are required from the
start. Both of these situations demonstrate a clear need for easy plug and
play within the synthesis activity itself.

34

In s u m m a r y :

The use of computer-aided process synthesis tools is not widespread,
but emerging systems need to incorporate easy plug and play
capabilities. This will allow the transition from simple conceptual
models to rigorous representations for final flowsheet definition.

Detailed Design

In the ideal design process the simulation model lives and grows alongside
the development of the actual operating plant. It is true to say that this "life-
cycle vision" for simulation has been an aspiration of many operating
companies for a number of years. However, in most cases it has remained
more of an aspiration than a reality, despite some significant advances in the
under-lying technologies. The reasons for this are manifold, but relate
primarily to the ease of development and maintenance of the models and the
varying relationships involved through the asset life-cycle. Another factor is
that the design process often involves a number of different people, each of
whom is responsible for only one piece of the design, so that once that is
completed, they move away to the next project.

The vision is only likely to happen if the simulation model can be developed
without the need for continual re-working. A prime example of this concerns
the roles of steady-state and dynamic modelling. Typically the initial models
developed of a new process are steady-state to allow the basic design
parameters and overall economics of the system to be assessed. However,
t ransient effects can have a key role in the optimum process design; the
earlier in the design process these can be assessed, the better will be the
resulting design. This parallel role of steady-state and dynamic simulation in
the design process is greatly facilitated by easy movement from the steady-
state environment to dynamics and vice-versa. Typically, these modelling
tasks are conducted by different engineers, but the underlying requirement is
for them to share a common model and representat ion of the plant.
Management commitment to this process is essential for it to take place.

Many engineers are involved with process modelling during a plant's life
cycle. Operating companies have eventual ownership of the plant design and
responsibility for safe operation. However, contracting companies are
commonly involved in the detailed design specification of the plant. They are
also increasingly involved in the conceptual design phases, as operating
companies minimise internal engineering resources on projects. This means
the operating company must be able to rely not only on the abilities of the
staff in the contracting companies, but also on the design procedures used
and the accuracy and reliability of the recommended engineering design

35

tools. In particular thermodynamic methods, physical property correlations
and modelling assumptions need to be well documented and sufficiently
t ransparent to allow a high degree of technical assurance to be easily
established.

Design projects typically deliver a design package consisting of documen t s -
PFDs, PIDs, data sheets - that define the process design. These are normally
delivered electronically as a collection of unconnected design documents. A
much more effective project deliverable for the end-user/operator would be a
process design package in electronic format containing process graphics,
audit trails and automatic cross-referencing of design data.

Design inevitably involves trying to optimise more than one objective. A good
example of this is the requirement to design a plant that is the cheapest to
build, but also the most environmentally-friendly and profitable to operate.
Historically this has involved compromise based on engineering ingenuity
and the examination of a large number of design cases. Mathematical
optimisation at the design stages offers an improvement over this situation,
as sensitivity analysis can be used. However, with conventional optimisation
techniques, integer decisions can not easily be handled and multi-objective
optimisation can be handled only by expressing all but one of the objectives
as a constraint on the search space. Although useful, this approach can lead
to sub-optimal designs and there is a clear business need for true multi-
objective optimisation, if this can be delivered in a usable fashion.

In summary:

The concept of a model for life is now quite feasible, but will require
management commitment to deliver it.
The design package can be delivered electronically and should include
the model, supporting documentation and decision audit trail. This is
increasingly important as in-house engineering staff numbers diminish
and contractors deliver designs and projects.
Practical optimisation tools are available to improve design quality,
but real problems often require multi-objective optimisation, which is
still to be achieved.

2.1.6.3 Benef i ts during the Operational Phase

Once a plant is operating, benefits will only be delivered when an operator
changes control set-points on the plant and moves it to a new and better
operating position. Achieving this introduces a number of new issues related
to model development and usage.

36

Model Fidelity

Firstly, it should be possible to take the engineering design model forward as
the operational support model for the plant. Typically this will require some
re-configuration of the model, since design product specifications may well
need to be replaced by new specifications representing operational set-points,
in order to mimic the way the plant is operated and controlled.

Before an operations department will take action based on a model's
predictions, they require confidence that the model is a valid representation
of the plant. Usually this confidence is built up over time, based on repeated
evidence of the model's capabilities to predict and explain. In order to
reproduce operating plant behaviour, in particular, operation of the plant as
plant capacities are maximised, the fidelity of the process simulation model
generally needs to be increased. A particular example of this is to take
account of equipment hydraulic capacity limitations that would not normally
appear in the design model. In general, operational optimisation models
require all aspects of the mechanical design of the plant to be included, as it
is not possible to predict beforehand which constraints will be active at the
optimum solution. The implementation of such third-party capacity models
requires the simulation program to be open, with standardised interfaces, to
minimise software development requirements and to simplify maintenance
and upgrade capabilities.

It is worth stating at this stage, although it should be obvious to most people,
that high fidelity modelling must be underpinned by the availability of high
fidelity data. Detailed models require validation against plant performance
and this is reliant on the availability of good process measurements linked
into parameter estimation in the model. In fact, redundancy of data
measurements on the plant is extremely useful for model validation, which is
an iterative process, in practice. Initially the model is validated against data
taken from the plant, but once accepted as a faithful representation of the
operating plant, the model becomes capable of validating the plant data, by
highlighting where measurements are likely to be in error. Even off-line
operational models require convenient access to plant data. For instance,
every time a strategic optimisation is run, up-to-date information on
equipment performance must be fed into the model, so that effects like
exchanger fouling are correctly represented. If this is not easily achieved, the
model predictions are likely to be compromised.

In summary:
A design model must be extended significantly for use in operational
support. General unit operation models must be enhanced to turn
them into models of the particular pieces of equipment that have been

37

installed. An open plug and play architecture is essential for this to be
done with the minimum of effort.
Process models must have easy access to accurate plant data, so that
they can reflect actual equipment performance at the time of model
execution.

Using models to update operational guidelines

The techniques of offline simulation modelling and optimisation can be used
to develop improved operator guidelines on how to utilise spare degrees of
freedom to maximise plant performance. We can also use them here to
il lustrate the way in which user needs extend beyond the achievement of the
central technical prediction, in order to deliver actual benefits.

Typically, operator guidelines are developed from previous experience
coupled with knowledge of the design basis of the plant. Use of a high-fidelity
optimisation model can be very valuable to generate new insights into plant
operation and to challenge the accepted thinking of the best way to operate.
This is because an optimisation model can look at the simultaneous
interactions of many degrees of freedom on the plant. This can vary f rom4 or
5 degrees of freedom on a typical chemical plant to 20 to 30 on a large
refinery unit. Human operators can typically only cope with 2 to 3 variables
at a time. However, operations departments will normally be justifiably
resistant to implementing counter-intuitive solutions.

A good example of this situation came during a model-based optimisation
study of a complex crude/vacuum distillation unit in the UK, shown in Figure
1. It distils under vacuum the heavy atmospheric residue from 3 crude oil
distillation towers (COD 1, COD2, COD3) to recover further distillates to feed
refinery conversion processes. It is generally regarded as a straightforward
process, which is operated at the lowest possible pressure with base steam set
as a ratio to vacuum residue (TAR) yield. However, in this study, model
predictions suggested tha t optimum distillate recovery on the vacuum unit
would be achieved at an operating pressure some way above the current
operating point. This was clearly counter to the normal operational
philosophy of the unit and was greeted initially with considerable scepticism.
It was not until a convincing engineering explanation of the prediction was
developed, that plant trials were authorised and the benefit demonstrated.

38

c

I i - r ' I -I'~'PI VGO Drier

"- FEED Ell

L m

1 j>d
I I J

E, o3 ~ I E,o,~ T A R
H W D

_J 0verrlash recycle
Figure 1. Flow diagram of a complex crude~vacuum distillation unit

The eventual explanation was quite simple: Vapour induced flooding of the
vacuum tower packed beds was resulting in instability and loss of stable
operation at high vacuum. However, increased distillate yields could be
obtained at higher pressure by a corresponding increase in base stripping
steam, but without initiating column flooding. Although this was all quite
straightforward to understand, after the event, it took considerable tenacity
and ingenuity on the part of the engineers involved to turn the mathematical
messages from the optimiser into process engineering insights. This meant
that a long time elapsed between making the original prediction and
implementing it on the plant, during which considerable benefit was lost.
Although it did not happen in this case, there is always the further danger
that the longer this time delay is, the more likely it is tha t something else
will happen and the prediction will never get implemented. The key factor
that led to implementation was that the operations engineers were fully
involved with the CAPE engineers throughout. They understood the
capabilities of the model and had confidence in its predictions.

However, this is still not enough. Recommendations from an optimisation,
such as those above, can only be implemented on a plant that operators have
under good steady control and that they have the ability and confidence to
move away from the normal operating region. This introduces a number of
new issues, not least the safety impact of moving the plant to a new operating
point, particularly where the new point is outside of the operator's comfort

39

zone or region of past experience. It is worth stating that the specific insight
that led to the benefit described above was only true for this particular tower
with its interaction of feedstock, performance requirements and design
constraints. The conclusion ceased to be correct later in the tower's life, when
it was revamped to replace the packed beds that caused the hydraulic
limitation. Different physical limitations then constrained the plant, which
is why it is important to include all aspects of the mechanical design in the
optimisation model.

To summarise, we have shown that, although the primary requirement for
the generation of improved operating strategies is the availability of a
reliable optimisation system and a good model of the plant, there are several
other user needs that must be satisfied to deliver the final outcome. The
most important of these additional user needs, is the ability to extract a
convincing process engineering explanation for any counter-intuitive
predictions, quickly and systematically. A robust and fast optimisation model
will almost certainly be central to this process, as will some form of
visualisation software. Optimisation algorithms gather significant
information about the feasible operating region and the problem curvature,
both on route to the solution and at the optimum point. The challenge is to
extract this mathematical information in a form that provides physical
answers to the question "why is this operating point better than all the
others?" This question then rapidly leads to further questions about how
much better the optimum solution is over the next, say, haft-dozen best
solutions and which of these steady-state solutions is easiest for the operators
to implement from the current operating position. A lot of benefit can be lost
in moving from the current operating position to the new one, and some
degrees of freedom are more difficult to move than others. Again, tools to
help answer these questions quickly and systematically, will increase the
number of these studies that are carried through to actual benefit.

Other additional needs are links to the plant database and detailed heat
exchanger rating programs that enable fouling to be estimated and the
performance of all the exchangers in the simulation to be correctly
represented, in a convenient and consistent manner with a minimum of
manual intervention.

This has been a detailed look at only one possible application of advanced
simulation technology. The same holistic approach must be taken to the
others to ensure that all the steps needed to deliver the target benefit are
first identified and then facilities put in place to enable them to be carried out
conveniently. If this is not done, the benefits will almost certainly not be
delivered.

40

Thus:

New counter-intuitive operating strategies can be derived from off-line
optimising models. However, the benefits will only be delivered, if
tools exist to enable the engineering rationale and safety of the
predictions to be easily determined. This is true of any optimisation
application.
Links are required to the plant database and detailed equipment
rating programs.

2.1.6.4 L i n k i n g mode l s to A d v a n c e d Control

Modern, multi-variable controllers (MVC's) are capable of handling large-
dimensionality problems for control and optimisation, based on linear models
derived by plant step tests. This technology is essentially associated with
strategy enforcement. A number of the degrees of freedom available to the
controller are tied to regulatory control; the remainder can be used for
optimisation. However, due to the linear nature of its underlying model, the
controller generally requires a pre-defined strategy to be implemented for
these additional degrees of freedom, to ensure correct plant optimisation. An
off-line simulation/optimisation model, such as the one in the example above,
can be used in this role to define the strategy for the controller.

A key element here for developing acceptance of Advanced Control by
operations staff, would be the ability to utilise an off-line, non-linear dynamic
model to mimic the action of the MVC on the plant and to test and refine the
developed strategy logic. In addition, the step test derivation of the linear
model for the controller is a time consuming activity, which could be
minimised if a basic linear model could be readily created from the off-line
dynamic model.

In summary:

The implementation of Advanced Control underlines the need for
straightforward transition from steady-state to dynamic plant models.
It also indicates that the ability to be able to create a linear model from
the off-line dynamic model would help minimise the step tests needed
to create the controller model.

2.1.6.5 On-line mode l -based p a r a m e t e r e s t i ma t i o n and opt imisa t ion

Putting a model on-line for parameter estimation and optimisation, requires
a modelling architecture that allows flexible problem definition together with
robust and fast solution. Historically, an equation-based architecture has

41

been considered to be best suited for this task. However, if such models are
put on-line to optimise the process automatically, then the same models
should be usable off-line for engineering studies and wider-ranging, strategic
optimisations. It is in this role that equation-based models have fallen down,
in the past, in their ability to solve when not close to the solution, their
general robustness and the difficulty of diagnosis if they fail. The important
thing, for an operating company, is that only one model-based representat ion
of the plant should exist and need to be maintained. This means there
should be one set of equations and assumptions, which could be solved in
different ways in different circumstances. The method of solution should be
t ransparent to the user, so long as it works correctly and reliably.

In summary:

The model description, in terms of equations and assumptions, should
be separated from the solution method. This would simplify model
maintenance and allow the most appropriate mathemat ical techniques
to be used for the different functions in the lifecycle of the plant and
model.

2.1.6.6 Operator training systems

It should be possible to take a dynamic model developed at the design stages
of a project as the basis for an operator training system. Since these are used
to develop the skills of new operators and to provide training in the
management of unexpected situations, the models should represent the
plant 's performance a s closely as possible. Once the operator t ra iner is
commissioned, the underlying model should be the same as that used off-line
for process control support studies and operational troubleshooting. Apart
from minimising model re-working and development, the ability to use a
common modelling platform across the range of dynamic modelling
applications simplifies the training requirements for operational and process
support staff. This has often not happened in the past, because the reliability
and speed of solution of rigorous models has not been suitable for operator
training. These are issues that must be tackled in the future, to enable our
model for life requirement to be realised. It will probably require a
combination of hardware and software development.

In summary:

Operator training systems need high fidelity,
modelhng facilities that solve quickly and reliably.

non-linear dynamic

42

2.1.6.7 Equipment Maintenance

Traditionally, equipment maintenance is planned on the basis of regular
maintenance intervals during continuous operation, supported, in some
cases, by equipment performance monitoring. The availability of high fidelity
plant data together with high-fidelity plant models introduces the possibility
of moving to a regime where maintenance is planned on the basis of how hard
a piece of equipment has been operated, as well as for how long. Well-
validated process models are key to achieving this, as they can provide a
wealth of process information to add to the limited amount of available
measured data. Again, this information will need to be presented in way that
is intuitively clear to a maintenance engineer, but which is based on the same
underlying process models that are being used to operate the plant.

2.1.6.8 Use of tools by Process Engineer ing Special ists .

The delivery of operational benefits can best be achieved by engineers whose
primary responsibility and skill lies in utilisation and operation of the plant,
rather than the advanced use of simulation tools. Their role could be business
planning, based on a knowledge of what the operating plant is capable of
delivering, or short-term operational optimisation. However, to make good
use of a complex asset simulation model, these engineers will require the
simulation technology to be packaged in a way that allows them to focus on
their business tasks, rather than on the underlying technology. The user
interface required for each business user of simulation will, in general, be
different and related primarily to fitting simulation seamlessly into their
work tasks. This implies a certain degree of openness and plug-and play
capability for the interfaces themselves, as well as the technical components.

In summary:

The delivery of CAPE tools to process engineering specialists requires
the same flexibility and openness in user-interface systems as in
modelling systems. This will allow the underlying plant model to be
presented to each different category of user in a way that is tailored to
that category.

2.1.7 INDIVIDUAL RESPONSIBILITY

In most countries, professional activities are increasingly governed by
legislation, such as, for example, the UK Health and Safety at Work Act.
Although the details may differ from one country to another, what this
basically means is that whatever the sophistication of the computer programs

43

you may use, the responsibility for the decisions you finally make remains
firmly with you. We therefore need to examine the requirements that this
implies for common CAPE tools, such as flowsheet simulators and equipment
design tools, as well as considering if it suggests new tools that need to be
provided.

In the case of common tools, the guidelines developed by the UK Institution
of Chemical Engineers provide a useful discussion of the issues involved in
the responsible use of CAPE tools (see
http://cape.icheme.org/capeinfo/Guidelines/Good Practice_Section Menu Pag
e.html). These guidelines cover the checks necessary before using the results
of CAPE tools and hence imply the facilities that the tools need to provide to
allow this to happen conveniently. These facilities can be summarised as
follows:

Thermophysical d a t a - this is critically important to any simulation and
must be carefully selected. Openness is important so that the origin of the
data, its range of applicability, quality of fitted model and extrapolation
properties can all be assessed. This must be easy to do, as must the
application of Sensitivity Analysis.

Engineering m o d e l - it must be clear if there are any restrictions on
applicability of the model. If these are missing or well hidden, it will be a
major source of potential danger.

Input check ing - it must be simple to check input data to ensure the right
problem is being solved.

Results c h e c k i n g - it must be simple to check mass balances at overall,
component and atomic levels, depending on the context. It must also be
simple to check energy balances. Error messages must be clear and
unambiguous. Convergence criteria must be clear, as must the status of
convergence. However, reliable convergence is even more important.

The only certainty is that everything is u n c e r t a i n - this underlines the
importance of Sensitivity Analysis. It must be simple to apply to the overall
solution, so that you can easily bound the problem, determine the stability of
the solution and assess the allocation of design margins, if appropriate.

In addition to these general points, there is a further point associated with
advanced techniques, especially those involving optimisation. The power of
these techniques is that they are multi-dimensional and, hence, likely to
provide counter-intuitive solutions. This opens up access to benefits that
would otherwise be unknown and unattainable, but only if the user is

44

comfortable about implement ing the solution. As we have discussed earlier,
this means tha t the software must not only provide the solution, it must also
provide a means to unders tand the rationale behind the solution. In the
context of this discussion of individual responsibility, we need to focus on the
safety implications. Whilst, for example, the new operat ing point described
in "Using models to update operational guidelines" may be justified in
theoretical terms, it may not be a safe or stable operating point. This must
be checked first and then a safe trajectory from the current point to the new
one has to be established. In other words:

Projects tha t take advantage of counter-intuitive, mult i-dimensional
solutions must be provided with tools and procedures to assess the safety of
operation in unfamil iar regions.

In the business environment described earlier, one of the t rends that we have
noted is the likelihood tha t more changes of personnel will happen in the
course of a project and especially in the life of a plant, than used to be the
case. In addition, these people are likely to work for a wider variety of
companies than before, as outsourcing becomes more prevalent. One of the
consequences of this is that good "organic" documentat ion becomes essential
for any model/program/design tha t is likely to be used or modified by more
than one person. "Organic" documentation, in this context, means
documentat ion tha t is int imately associated with the model/program/design
and tha t is updated whenever anything changes. It will almost certainly be
different from formal project documentation, which tends to be ra ther more
static. It will, for example, record all changes and the reasons for the
changes and it will log the date and the person who made the change.
Without this information it is difficult to judge, at a later date, whether it is
safe to make changes, with the result tha t it is often regarded as easier to
s ta r t again, or just to leave things as they are. Neither of these options is
necessarily the best for the business.

Of course, it has long been the ambition of project managers to have such a
record available - and it has long been one of the first things to go when the
budget and timescales get tight. What has changed now is tha t the need has
become greater, for reasons discussed above, and the universal use of
computers has made it possible to envisage tools tha t could make it a
practical proposition. The sort of tool required will be a challenge to software
designers. It mus t be available on line in the background so that as, for
example, a model is being developed, or a plant being designed, the decision
points are recognised, the decision captured and the user prompted for the
rat ionale behind the decision. This must be a seamless activity, since any
complication or awkwardness will almost certainly result in lack of use. It,
therefore, implies tha t it can work in an intuit ive way with other tools, such

45

as flowsheet simulators, without affecting their user interfaces, in both
capture and retrieval modes. This provides us with the final user needs
bullet point of this section:

CAPE tools must provide the ability to record and retrieve decision points
and their rationale in an intuitive way during the creation or modification of
a model/program/design.

2 .1 .80RGANISATIONAL IMPLICATIONS

The most important organisational success factor in the application of CAPE
is management understanding and commitment. If management provide
clear guidelines on the degree of risk that is acceptable in the pursuit of
CAPE benefits, provide the resources and training needed to follow the
guidelines and maintain the policy in the medium term, then there is an
excellent chance that a large percentage of these benefits will be obtained.
However, a common scenario is for there to be a message about the pursuit of
technical excellence, but a stronger message about the need for cost reduction
and downsizing. Faced with the certainty of reducing costs by cutting
resources, the possibility of benefits from difficult and new CAPE activities
looks unattractive to many middle managers. This is hardly surprising, but
again not necessarily in the best interests of the business. Clearly, clarity of
purpose and good communication become even more important, as
outsourcing increases.

A second success factor needed to implement the issues discussed in the
preceding sections, is the management promotion of work practices that allow
individual engineers to exercise their individual responsibility effectively. An
important part of this is to encourage good networks of CAPE practitioners
across a corporation, or, where outsourcing is involved, across the relevant
technical community, to encourage best practice and the reinforcement of
skills. Thus the user needs in this section are:

Management should communicate a clear and consistent corporate policy on
acceptable risk in the pursuit of CAPE benefits.
Organisations should provide tools and promote work practices that assist
individual engineers to exercise their professional responsibility in pursuit of
these CAPE benefits.

46

2.1.9 S U M M A R Y

It is clear from the above discussion tha t the delivery of benefits from the
advanced use of CAPE tools is as much about the work process and the
people who execute it, as it is about technology. The technology must be
available and it mus t work, but tha t in itself is not a complete and sufficient
condition for success. Most of the user needs identified above arise from the
need to ensure tha t the people in the delivery loop are kept fully informed
and involved. Uncertaint ies create barriers tha t extend the elapsed time of a
CAPE project and increase the likelihood tha t the project will not be
under taken.

The current business climate is one of lean organisations, heavily-loaded
staff, frequent personnel changes, shorter timescales, increasing health,
safety and environmenta l regulation and a generally litigious society. In this
environment, it is clear tha t all categories of users require a full
unders tanding of the capabilities and l imitat ions of the tools they are using,
as well as the meaning of the results. This is part icularly true with
applications tha t involve optimisation techniques, since these promise new,
counter intuitive solutions that can lie outside the normal comfort zone. User
interfaces must be easily tailored to each category of user, so tha t information
from the same underlying model can be presented to all in ways that are
intuitively clear. Given the cost and complexity of a modern process model,
the concept of a "model for life" is economically attractive. However, to
provide the necessary user understanding, such a model will need to carry
around its life history in a convenient form. This means recording major
decision points, so tha t the model can be used and adapted with confidence,
as the plant proceeds through its lifecycle.

To build and operate a plant using process modelling, in today's short
timescales, requires an appropriate infrastructure to provide:

�9 Easy access to all required data, for instance:
�9 Cost data for design
�9 Comprehensive plant measurements for operations
�9 Effective process control systems to implement new strategies
�9 IT facilities capable of solving CAPE applications in a reasonable time
�9 A plug and play, open s tandard architecture for process simulation, such

as tha t provided by CAPE-OPEN.
�9 Corporate clarity on the level of technical r isk tolerated and consistent

management support for staff to pursue benefits within this risk scenario.

If all of the above are present, benefits from advanced CAPE tools will
certainly be delivered. As more of these elements are missing, the benefits

47

achieved will drop sharply. In the current pressur ised business environment,
it does not take much inconvenience to separate a busy engineer from a
CAPE application and hence its benefits.

So, to deliver benefits from advanced CAPE tools, you mus t first focus on the
end users; identify ALL the steps tha t mus t be taken; make sure tha t each
step can be easily achieved and tha t it flows seamlessly into the next one; and
then provide the appropriate intuit ively-packaged tools. Discontinuities or
confusion will rapidly destroy the process, no ma t t e r how good the underlying
technology may be. All this must be done within a supportive corporate
culture. It's not easy, but the benefits are real and subs tan t ia l - and if you
don't do it, one of your competitors undoubtedly will.

This Page Intentionally Left Blank

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
�9 2002 Elsevier Science B.V. All rights reserved. 49

C h a p t e r 2.2: U s e r N e e d s in B a t c h a n d S p e c i a l t i e s C h e m i c a l
P r o c e s s e s

T. I. Malik & L. Puigjaner

2.2.1 I N T R O D U C T I O N

2.2.1.1 Distinction between 'batch processes' and 'specialty products'

In expressing these needs, we should distinguish between what is meant by a
'batch' process and 'specialties' chemical processes and clarify where both terms
apply. By definition, a batch process occurs in a finite time span, having an
initial s tar t condition, a path of t ransformation (usually involving mater ia l and
energy transfers) and a final state. This is a definition based on type of
processing and does not necessarily reveal the classification of the product itself.
On the other hand, the word 'specialty' refers to the type of product being
manufactured irrespective of process used to make it. The name, 'specialty' arises
from the special functional properties that these products bring when added to
other 'bulk' materials. Examples are chemicals tha t impar t special fragrances or
flavours to their substrates or modify the rheological behaviour of (bulk) fuel (e.g.
diesel).

2.2.1.2 Different degrees

Of course, there are different degrees tha t can be applied to both terms. A batch
process can be totally batch or be part batch (where some aspect is continuous
e.g. the flow of feeds in case of fed-batch). There can also be a mix of batch and
continuous in different parts of a flowsheet. Often, for producing bulk chemicals,
the reaction and pr imary (fluid-fluid) separations may be carried out in
continuous units whereas the secondary (fluid-solid) separat ion (e.g. in
centrifuges), filling lines, palleting and packing may be carried out in batch units
(sometimes at such high frequency tha t we get the illusion of continuity). On-line
or off-line compositional measurements will be batch for both types of
manufactur ing operations. In terms of degree of 'specialty', some materials are
used in very minute and dilute quantit ies whereas others are the main
component in a given application albeit with tailored, 'special' properties.

50

2.2.1.3 W h e n are b a t c h p r o c e s s e s u s e d

The choice between a batch process or a continuous process for a given product
depends upon many factors including scale of operation, type of transformation
required, numbers of different products required from the same plant and
economics. Usually these factors conspire to make specialty processes mainly
batch based as they do to make them high value added.

2.2.1.4 I n f l u e n c e on CAPE n e e d s

In terms of CAPE, both the 'batch' and 'specialty' characteristic influence the
needs for system software as well as the interfaces required between the
components of CAPE software. This chapter will consider these issues in further
detail.

2.2.2 STRUCTURAL CHARACTERISTICS OF BATCH & SPECIALITIES
I N D U S T R I E S

2.2.2.1 V a l u e o f m a t e r i a l s p r o c e s s e d

The relative value of the materials processed vs. the plant used is much higher
for batch and specialties industries as compared to bulk chemical industries.
Whereas the bulk commodity chemicals are made in large quantities and usually
will be the only product made on a dedicated plant, often there are many related
but distinct specialty products that are made using the same equipment.

2.2.2.2 F l e x i b l e i n f r a s t r u c t u r e and sa fe ty

Thus the batch process plant needs to be sufficiently flexible to be able to
accommodate the variation of products as well as be able to cleanly separate one
product from the other. The safety characteristics (e.g. relief capacity) need to
cater for all the processes that are carried out. The sequence in which the
products are made can be important from the point of view of safety and product
quality (e.g. contamination).

2.2.2.3 Mix o f p l a n t a n d e q u i p m e n t

Often, the processes have evolved over a long period of time and the equipment
available has a large span in terms of age. (Usually the bulk of a continuous
plant is of the same age). Often the products are made in a number of countries
(at least for companies that are internationally established) and it is not
uncommon for there to be little standardisation between these. Thus the
efficiencies can vary quite significantly between different processes.

51

2.2.2.4 Life span of products

Often the life span of a product is less than in the commodity markets as
improved products with more special properties become available through
research and development. Thus, a company may have several new products in
the pipeline that it will make using the present equipment. Product scale-up is
quite an issue and often requires significant experimentation and pilot scale
work. These are bottlenecks to the development of new marketable products.

2.2.2.5 Leve ls of i n v e s t m e n t made

The investments made in plant and equipment are usually an order of magnitude
less than those in the bulk industries. The capital is spent in a more even
manner unlike in the bulk companies where a few projects each year may take
the bulk of investment.

2.2.2.6 I n t e r a c t i o n wi th regu la tory author i t i e s

As there are many more new products and as these are often used in contact with
man, the interactions with and the work of the regulatory authorities is much
more important for the introduction and safety classification of the new products.

2.2.3 MANAGEMENT REQUIREMENTS

2.2.3.1 Cost e f f i c i ency

From the point of view of management, it is desired to make the most efficient
use of the resources available at the least cost and to provide products of the
right quality to customers on demand (in a highly responsive manner with safety,
security and environmental considerations). In order to achieve these goals, it
will be required to tract all the materials and the status of any given order at a
given time. In order to minimise costs, the supply chain needs to be optimised
with inventories minimised. Actions such as maintenance can be implemented at
times of relatively lower demand on the equipment. From the point of view of the
product cross-contamination, there should be a compatibility matrix that says
what products can follow a previous batch.

2.2.3.2 B a l a n c e b e t w e e n batch f requency and batch s ize

There can possibly be some trade-off between the sizes of the batches used and
the batch cycle time although there will be a minimum batch cycle time even for
the smallest of batches. The optimal balance needs to be found as well as the
optimal trajectories through which the batches are passed.

52

2.2.3.3 Schedul ing

The best and optimal schedules in which to make the products need to be
available on a daffy basis. It should be possible to adjust these on the basis of
changes in demand or constraints e.g. as a result of equipment failure.

2.2.3.4 Effective R&D Capabil ity

As these industries are often characterised by rapidly shifting product portfolio,
it is par t of the management requirement to have an effective capability to
develop and scale-up new products, to be able to use the existing equipment
effectively for making new products.

2.2.3.5 Standardisat ion of best pract ice

Given forecasting and longer-term market demand, the management would like
to know what investments in which factories are the best ones to make and
indeed if new factories should be started. To what extent should production be
independent or inter-dependent between the factories, what strategy should be
used for longer-term standardisat ion of best practice between the factories?

As far as possible, management would like to have the information and make
decisions with the minimum expenditure of resources. This implies as much
reliance on existing information, data and models as possible in order to
minimise expenditure and avoid delays.

2.2.4 EXAMPLES OF INDUSTRIES

2.2.4.1 Relative size of the specialt ies sector

The total size of the chemical industry in year 2000 is est imated to be about
$1130 Billions. A little more than half of this is for basics and intermediate
chemicals. The size of the specialty products is about $330 Billions out of the
total and the areas in which ICI operates are shown in Figure 1 below:

53

Figure 1. The Global Chemical Industry, Specialty sector and ICI Operations Year
2000 (Original source ICI Presentation Pack 2000)

2.2.4.2 Example - Descr ipt ion of catalyst m a k i n g process

Here, for illustration an example of a catalyst making process is given as many
as 150 different products can be manufactured on the same plant.

The making of catalysts is quite individual in that no two catalysts are made in
exactly the same way but certain operations are common. In the 'wet process' the
basic liquid and solid components are mixed together using precision
measurements. Impurities are removed through filtration and drying where
purified solids are dried in high temperature ovens up to 1500 ~ Following this
the right shape of the catalyst is obtained in machines similar to those used in
the pharmaceuticals industry to make tablets. Shapes vary from thin tiny solid
pellets to larger complex geometric shapes. Finally the pellets are packed.

2.2.4.3 Examples of other special ty products requir ing react ion
chemis try

Examples of products that are made with reaction chemistry taking place in
batch reactors include manufacture of synthetic polymers, e.g. manufacture of
resin to be used in making paints, manufacture of surfactants, carrying out of the
esterification reactions. Sometimes the batch reactions are combined with batch
separation units e.g. in esterification reactions. Batch separation techniques

54

(distillation or other) are used for example in extracting flavours from natura l
products.

2.2.4.4 Other E x a m p l e s of S p e c i a l t y P r o d u c t s

Fur ther examples include adhesives, emulsifiers, dispersants e.g. for mineral oils,
de-watering or flocculation agents, biocides e.g. for use in pigment slurry
industry. There are products to control deposit formation and control in internal
combustion engines, wear reducing additives, additives for diesel e.g. Cetane
improvers, cold flow improvers and lubricity improvers. There are additives for
Gasoline e.g. anti knock agents and anti valve seat recession. There are additives
for lubricants e.g. anti-oxidants, viscosity modifiers, friction modifiers,
detergents.

Other examples include the manufacture of anti-foam or de-foaming agents, inks,
inhibitors and hydrophilicity agents, the manufacture of automatic gear
lubricants, automatic transmission fluids, gelling agents for greases, tackiness
agents. The extraction of starch from natural sources such as corn is carried out
at quite large scale but the process has significant batch elements.

2.2.4.5 E x a m p l e s of b a t c h p r o c e s s e s carr i ed out in bulk i n d u s t r i e s

The manufacture of pigments for paints are usually batch including the case for
TiO2 which is a bulk product but at least some of the process is carried out in the
batch mode. Most development work for continuous process industries is also
initially carried out in batch laboratory experiments before continuous pilot
plants may be used. Some processes used in continuous plants are cyclical e.g.
pressure swing adsorption and in terms of process modelling these will lead to
some of the similar issues as conventional batch processes e.g. connections
between steady state models and non steady state models.

2.2.5 I N F O R M A T I O N FOR DECISION MAKING

2.2.5.1 D e c i s i o n l eve l s

In order to respond to new forces on the competitive landscape, manufacturing
companies are incorporating the Computer Integrated Manufacturing (CIM)
model to meet today's market needs.

The levels of decision for decision-making of CIM architectures are described in
the Purdue Reference Model represented in Figure 2.

55

(LEVEL 4)

(LEVEL 3)

(LEVEL 2)

EVEL 1)

(LEVEL 0)

LEVEL 4B

MANAGEMENT
DATA

PRESENTATION

LEVEL 4A

OPERATIONAL AND
PRODUCTION
SUPERVISION

I i
SUPERVISOR'S i INTRA-AREA

CONSOLE ~ COORDINATION

I SUPERVISOR'S ~ SUPERVISORY
CONSOLE d"--- ' - - - - CONTROL

PLANT --
MANAGEMENT
INFORMATION "

PLANT PRODUCTION i
SCHEDULING AND i

OPERATIONAL
MANGEMENT

OPERATOR'S v DIRECT DIGITAL i
CONSOLE ~ CONTROL

!

SPECIAL~ED DEDICATED DIGITAL J
CONTROLLERS i

o

On"

8

8

~

8

a~

Figure 2. A hierarchical computer control system structure for an industrial plant.
From ISA-dS95.01-1999, Enterprise-Control System Integration. Part 1" Models

and Terminology.

2.2.5.2 Here and now d e c i s i o n s / w a i t and see d e c i s i o n s

One of the most widely used techniques for decision making under uncertainty is
two-stage stochastic programming. In this technique, the decision variables are
grouped in to two sets. The first-stage variables correspond to those decisions that
need to be made prior to resolution of uncertainty ("here and now" decisions).
Subsequently, based on these decisions and the realization of the random events
the second stage decisions are made subject to the constraints of the recourse
problem. Production decisions, because of their significant lead times, may be
contemplated in a here and now decisions scenario. Otherwise, supply-chain
decisions can be postponed on the basis of the production decisions and the
realization of the demand (wait and see).

2.2.5.3 D e c i s i o n m a k i n g and u n c e r t a i n t y

Uncertainty analysis might be incorporated at the different levels of decision-
making to improve the probability of performing the expected goals. Preventive

55

maintenance tasks may also be introduced to compensate the use of facilities
with low reliability indexes.

As for batch processes, the production schedule has to satisfy the production
requirements under certain constraints, and, optimising an objective function
usually based on the expected plant profitability. Preventive maintenance
increases the plant reliability and, as a consequence, the production robustness.
Therefore, batch processes require simultaneous maintenance and production
scheduling activity.

Basically, the evaluation of robustness of a schedule is based on the reliability of
the equipment unit assigned and of the possibility of finding an existing
al ternat ive unit in the case that the unit initially assigned to a task becomes
unavailable during the schedule execution.

2.2.6 REQUIRED CHARACTERISTICS ON THE SUPPORTING
SOFTWARE

2.2.6.1 CAPE Funct ional i ty R e q u i r e d - Medium Term Vision

There is a significant potential to improvements through systematic CAPE
applications in the batch and specialty industries. However, due to the
complexity and characteristics of these industries, the applications realised thus
far are not as extensive as those in bulk and continuous processing industries.
Some of the factors that have prevented applications can be circumvented
through open interfaces as these potentially allow the collective functionality of
several tools to be applied to given problems. Step changes to value generation
can be obtained through application of CAPE in the following areas as well as
effective, seamless integration between them:

�9 Modelling of batch/specialties processes.
�9 Scheduling/planning of batch/specialties processes.
�9 Information and data handling on batch/specialties processes.

Each one of the above areas is discussed below although the major emphasis is on
the modelling part.

2.2.6.2 Model l ing of Batch/Special t ies Processes

Specific modelling needs arise both due to the nature of the process (being
unsteady) and the characteristics and properties of specialty products that are
handled.

57

Use of b lock-modular p a c k a g e s

Given sufficiently long time scale so the variation of frequency of occurrence of
batches is masked, batch process flow sheets can be modelled with block-
modular, steady state packages. While such models do not reveal detailed time
behaviour within a single batch, they can give valuable mater ia l and energy
balance information. However, provisions are required within the package to
recognise tha t the plant may be utilised to make several products. The frequency
at which batches of a given product are made may vary; indeed different products
are included if there is interest in the same.

Inter faces for batch process m o d e l s

Firstly, the modelling package needs a capability to recognise if the process tha t
is being modelled is batch (both when time varying behaviour or t ime averaged
behaviour are considered). Further, additional functions can be activated and the
information about the batch stored in the correct manner for passing across
interfaces. The type of information that could be valuable (if available) would be
the time varying inputs to the batch, the material and energy balances, the
average size of the batch, the frequency of the batch, the utilisation of named
equipment for the batches. The package should recognise whether detailed
behaviour of a single batch or t ime-averaged behaviour over several batches is
being addressed.

Effect ive in ter fac ing w i th in a pa cka g e

Some block modular packages contain batch units in their libraries, thus
enabling time dependent behaviour to be modelled within a unit while time
averaged values are passed to the rest of the flowsheet. An example of this is
when a batch reactor is used connected to a continuous process. The user
interfaces in such connected simulators need to improve to more clearly
distinguish between time dependent and time averaged results. Also, the
s tandard interface for batch unit models could be utilised for connections of batch
units within a package, either with other batch units or with other continuous
units. For the first case, clearly, it would be beneficial to be able to pass time
dependent information between the units.

Use of a u t o m a t i c dy na mic mo de l genera tors

Commercial, state of the art, modelling packages presently allow automatic
generation of dynamic models from a base case steady state model providing
additional information required for dynamics is provided (sizes of equipment,
control scheme, controller parameters etc.). However, this functionality is
typically only available for normally continuous units within the base steady
state model and not for the batch models.

58

Representat ion of physical properties of complex molecules

Often batch and specialty processes are characterised by handling of materials
tha t incorporate complex or polymeric molecules. For example, the mixtures may
contain water, inert gases and condensed phases, associating vapours,
dissociating electrolyte species, surfactants, dissociating catalysts (initiators),
reacting species, macromolecules. There is a need to develop effective physical,
thermodynamic and t ransport property models for these types of mixtures that
can contain several phased (Vapour, Liquid 1, Liquid 2, Polymer particles, and
other solids).

As the availability of such properties is scant, often to solve a real problem, all
the resources need to be utilised simultaneously. Thus, parameters may come
from the databanks of one package, while the physical property models are built
and regressed in another package and linked to suitable process models
elsewhere. Thus s tandard interfaces that allow different modelling packages to
be linked with each other in this co-operative mode are needed.

Representat ion of the form of solids

Batch processes are often characterised by presence of solids, either on their own
or in slurries. Often continuous fluid processes culminate in batch solid processes
as we get closer to the final products. It is required to have s tandard methods to
represent the shapes and sizes of the solid particles and to be able to pass the
same information across interfaces (both for single solid phases and solids mixed
with fluids). The models and the interfaces should recognise the level of model
being used (e.g. use of average sizes, use of moments or full blown particle size
distributions).

Representat ion of molecular weights

Similar to Particle size, molecular weight can be expressed in many different
ways for complex materials (e.g. as average, moments or full-blown distributions).
These need to be recognised by the modelling package as well as s tandard
interfaces.

Initial Values for batch models

Help needs to be available to be able to set up initial values for batch models
without requiring a steady state run. Initial values are particularly important in
equation-based packages but for dynamic models, the initial values of the state
variables are important inputs that determine the results obtained.

59

D y n a m i c Opt imisa t ion

The optimisation functionality used needs to be aligned with the type of model
being used. If a time averaged model is used, steady state optimisation
algorithms may be used and a mix of batch and continuous units may be handled
simultaneously. Of course, the level of such optimisation could not consider the
dynamic profiles within a batch. In order to optimise the same, dynamic
optimisation algorithms are required so that trajectories can be adjusted to
optimise given objective functions. There needs to be recognition by the modelling
environment that a dynamic batch optimisation is requested. Standard interfaces
should be available to pass such information from one package to another.

Batch Des ign vs. Rat ing or S i m u l a t i o n

Batch design algorithms allow directly the design and sizing of equipment
without simulation at first. An example is the determination of the number of
stages required in a batch distillation column. The modelling environment needs
to provide these different functions and be able to distinguish between them and
provide standard interfaces for transfer of the information across the interfaces.

P r o v i s i o n of control
s y s t e m s

s c h e m e s and contro l ler p a r a m e t e r s for batch

Increasingly 'intelligent' modelling environments are proposing default control
schemes for continuous processes. The same should be available for batch
processes and the controller settings should take account of the part of the batch
cycle the given process is going through.

Batch Models that run in real t ime

It should be possible to adjust the rate at which the models can run and to be
able to link them through to DCS systems through standard interfaces. Such
systems can then be used for training in process operation, educational uses or
for possible on-line control.

Legal i ty of in ter faces

There is a need for recognition of batch scenario by inter-operability standards
and effective on-line help in interfacing (e.g. when interfacing large library based
packages in general, checking/expressing the viability/legality of connections
between modules).

6O

Computational Fluid Dynamics

There is a need for interfacing models at different length and time scales. For
example, a process model can pass important process variables (e.g. mass flow
rates) through to a Computational Fluid Dynamics (CFD) model tha t can re turn
values for heat and mass transfer coefficients or give insights into mixing. There
are a number of initiatives that aim to bring high volume fraction flows to the
domain of CFD (e.g. BRITE European Project).

Lab-scale to Manufacturing Scale-up, dynamic parameter estimation,
optimisation, experimental design

Tools are required tha t can absorb data generated at a lab scale and help in the
scale-up to manufactur ing scale for the new products (if possible avoiding but at
least minimising the intermediate semi-tech stage). This requires the use of
dynamic lab scale data to estimate parameters (interfaces to dynamic parameter
est imation tools) and subsequent t ranslat ion of the model to the manufacturing
scale utilising the equipment available the information on which should be
available on a databank. Conversely, these models can be used to guide the lab-
scale or semi-tech scale experimental work. There is a need to combine
mechanistic models with data models in helping and guiding experimental
design. A convenient way of interfacing the data collected (both off-line and on-
line) to the modelling tools is required and there need to be hooks through to the
hierarchical scheduling and control tools within the CIM environment mentioned
above. This will also allow more use of full-scale plant data to improve the
est imates of parameters .

Intelligent Formulation

Most of the end products are complex formulations of the key ingredients that are
manufactured and other manufactured or purchased ingredients. An example is
the area of Process Flavours where Block flavours are formulated together with
other ingredients to give the products that are sent to various customers in the
food industries. At present, there are not many tools available that relate
product properties to the formulation. This is a complex problem involving
several product properties (physical, objective and subjective) and a formulation
tha t will usually have multiple dimensions.

2.2.6.3 Scheduling/Planning of Batch/Specialties Processes

Both short-term (e.g. weekly scheduling linked to current stock and orders) and
long-term planning (linked to market forecasts) needs to be accommodated. The
la t ter requires an interface with the forecasting and accounting types of software
packages. At the shortest time scales, there is on-line scheduling/re-scheduling
tha t is adjusted immediately in response to new relevant information becoming

51

available. For the medium and longer-term, it should be possible to carry out
sensitivities with respect to key assumptions and variables and what-if scenarios.
Examples of questions that can be raised are what if the pump capacity from the
reactor is doubled so it can be emptied in half the time. What if additional
storage capacity is provided?

Clearly, it is beneficial to be able to pass information through from a modelling
package through to a scheduling package through a standard interface. However,
there should be good management of this information and only that is required
for a given scheduling problem should be passed on. It is important to keep
scheduling files to reasonable size as it may be required to distribute them from
planning to production and through to the plant level. The process models may be
helpful in determining the times that are set in the scheduling models. These are
usually based on exper iencebut may sometimes be conservative. Through
combined use of modelling and scheduling it should be possible to minimise the
equipment availability excess.

For multi-product, flexible plants, compatibility matrices between the different
products are worth developing and interfacing to the tools. These give rules on
the extent to which one product can follow from another with the minimum need
for cleaning.

2.2.6.4 In format ion and data on Batch /Spec ia l t i e s P r o c e s s e s

Presentation of the right information at the right place and time is key to
obtaining optimal development and operation of batch facilities. Some of the
techniques that can be used for improvement of operations e.g. SPC (Statistical
Process Control) rely on utilisation of data from previous batches. There is the
prospect to improve or prepare downstream batch operations dependent upon the
indicators upstream. This brings in the general point of interfaces and ease of
passing of information from CIM environment to modelling environment through
to statistical packages for analysis.

Further requirements for Information and data handling are presented
separately for an order driven production environment and made to stock
production environment. There is also a discussion on the retrofit and strategic
development of batch factories.

Spec ia l r e q u i r e m e n t s in an order-dr iven p r o d u c t i o n e n v i r o n m e n t .

An order-driven production environment is characterised by,

Customer order receipt triggers major components to be procured / fabricated
and assembled into the final product,

52

�9 Product lead time for satisfying a customer order equals the time required for
procurement, fabrication, assembly, packing, and shipping;

�9 Expensive components are purchased or manufactured for a specific customer
order,

�9 Supply orders are typically pegged to specific customer orders,
�9 Inexpensive common use items (fasteners, paint, etc.) may be inventoried

under reorder point,
�9 High volume operations with repetitive component use typically use standard

cost systems, and
�9 Low volume operations are most often seen using actual product costing.

Automobiles, s tamping presses, bass boats and special application motors are
examples of products manufactured in a make-to-order environment. In these
factories, all functions must be synchronised to serve many customers
simultaneously.

In a make-to-order environment, improvement comes from,

�9 Reducing the through-put time for components and finished goods to improve
inventory turns and lower costs,

�9 Reducing the number of SKUs (stockkeeping Units), that is, the number of
one specific product available for sale, without limiting customer selection,
and

�9 Reducing unfavourable material, labour, scrap and performance variances
measured by the costing system.

Specia l requ irements in an make-to-stock product ion env ironment

Make-to-stock represents a production environment in which,

�9 Finished goods are made and stocked in anticipation of customer orders,
�9 Demand to meet inventory stocking levels drives production,
�9 Time required to pick, pack, and ship product is the lead time quoted to the

customer,
�9 ROP software techniques typically maintain inventory levels for product not

subject to lumpy demand, and
�9 MRP techniques are used for component items and products subject to lumpy

demand.

Consumer products are usually manufactured in a make to stock environment. In
fact, anything tha t can be purchased off the shelf was probably produced in a
factory using make to stock manufacturing practices, i.e., toothpaste, power tools,
light bulbs, food products, fishing tackle. The only customer of these factories

53

production is the warehouse stocking levels. On the other hand the warehouse
may have many customers - distributors, dealers, consumers.

In a make to stock environment, improvement comes from,

�9 Reducing throughput time for finished goods to justify reducing the stocking
level.

�9 Reducing the lot sizes for manufactured and purchased components to reduce
inventory.

�9 Reduce lead times for manufactured and purchased components to reduce
throughput time and inventory.

�9 Reduce negative cost variances for material, labour, scrap, and everything
else measured by the standard costing system.

Strateg ic D e v e l o p m e n t of Batch Factor ies - S y s t e m Retrof i t t ing

Development of new products eventually requires plant capacity expansion,
which becomes a complex case of redesign of existing facilities (retrofitting).
Solution to the retrofit scenario involves strategic decisions with the necessary
trade-off between cost and plant capacity expansion requirements.

The problem of optimal retrofit design of multiproduct batch plants contemplates
the case of an existing plant with the sizes and types of its equipment already
given. Due to changing market conditions and external economical pressures, it
is assumed that new production targets and selling prices are specified for a
given set of products. The problem then consists in finding those design
modifications that involve purchase of new equipment for the existing plant to
maximise the profit.

Design options considered in the retrofit design of a multiproduct plant
contemplate the addition of new equipment in two ways; (1) operating in parallel
out-of-phase to ease bottleneck stages (thus decreasing the cycle time of a
product), or (2) operating in parallel and in-phase with the current equipment, to
increase the size of the present batches.

The retrofit design problem can be formulated as a mixed- integer-non-linear-
programming (MINLP) problem. Solution to this problem may require excessive
computing time when real cases are contemplated. The introduction of
appropriate heuristic rules should help to simplify the calculation procedure and
insure, at the same time, convergence within a reasonable time.

This Page Intentionally Left Blank

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
�9 2002 Elsevier Science B.V. All rights reserved. 65

C h a p t e r 2.3: L i f e C y c l e N e e d s

Hiroshi Okada & Tetsuo Shirao

2.3.1 I INTRODUCTION

The main purpose of this chapter is to identify "life cycle" needs of process

industries who are going to use CAPE software as well as other tools during

process modelling, simulation, synthesis and process design to achieve better

quality of the process design work for better, cheaper, faster and even greener

[1][2]. Recently a typical question such as how well systems employed are

integrated to share information once created at the upstream phase such that it

will flow through seamlessly and utilized many times is getting more attention. A

role of the data manager is getting important during the project execution. This

reflects the user's life cycle expectations or needs, such as interfacing with

different design tools to keep information flow among different disciplines during

not only the process design phase which should be fulfilled by CAPE but also

across the life cycle.

2.3.2 BACKGROUND

To look into life cycle needs, let's take a look at an example of Chemical industry

including organic and non-organic chemicals in the highly competitive market. It

has been providing the world with a wide range of products and services. As the

chemical market has globalised, selecting a product line and a suitable process,

and thereafter optimising the size and location of productions is becoming one of

demanded business concerns. Strategies and policies are put into action through

the development of programs, budgets, and procedures. Most important decision

on what sort of product lines are to be produced, together with issues such as

66

environmental protection, safety, trace ability, quality, productivity, life cycle cost

are the ones required keen focal point of the management from the origin of every

strategy.

2.3.2.1 T i m e to M a r k e t a n d Cos t P r e s s u r e

Time to market and cost pressure is becoming a serious issue of managements of

any indsusty. And process industries are not exception to this rule. There are two

potential issues involeved in here as shown below. One is efficient use of resources,

especially at R&D phase of the life cycle, particulaly faster developement time and

optimaized allocation of resources including cost reduction. Thus lifting the cost

curve upward. Another is invloved in how to deploy and penetrate the market

faster, cheaper, clearner, and even greener; thus, shifting sales cureve to the

leftward.

Sales

Cost

Time to k ..

......................

Figure. 1 Time to Market and Cost Pressure

Time

2.3.2.2 D r i v i n g F o r c e s

Meanwhile, process plant owner and operators, at the same time, are paying more

attention to concepts such as "Assets Life Cycle Management" and "Supply Chain

Management" for the better management of the business. Where "Assets Life

Cycle" is "Life Cycle Model" whilst "Supply Chain" is a Business Model that

consists of "Purchase", "Production", "Distribution" and "Sales". Both are actually

57

connected concepts. Beginning with Feasibility Study of the plant, Process Design

and Engineering, Procurement will be executed to Construct and Commission the

plant. This is called "Plant Asset Creation" in terms of Life Cycle Model, which has

been traditionally integrated into Supply Chain Management to perform a role of

Production. After the delivery of the plant, the process plant owner and operators

will use the process plant as a tool to produce the products and ship to the market .

This represents "Plant Asset Deployment". This is to say that "Operation and

Maintenance" of the process plant in terms of Assets Life Cycle is "Production" in

terms of Business Model where the two concepts are met.

To il lustrate this, a new chain of the Asset Life Cycle has to be introduced as

shown below:

Figure 2. Plant Asset and Supply Chain

The total picture of the process industries consists of "Assets Life cycle," "Supply

Chain" and "Business Management" as shown above Figure.2. Information

Framework of Plant Asset Creation and tha t of Supply Chain are to be integrated

at Production consists of Maintenance and Operation. IT increasingly provides a

strong driver to keep spinning the wheel of this chain. To increase the rotat ing

speed, factors have to be identified so that proper technology can be employed to

achieve this goal.

58

2.3.2.3 Gett ing things right in the first place: 80/20 rules

It is worth to note tha t the impact of Process Conceptual Design to Business

Decision as a whole to realize a Business Plan of constructing, maintaining, and

operating the process plant. Since, in this phase, a business strategic plan will be

deployed as the part icular product line releasing plan, a decision on what kind of

the process shall be designed first will determine the direction. This plan also

defines overall cost factors such as Plant Investment, Labour, Raw Material and

Fuel cost. It can be summarized that 80 percent of total predicted cost allocated to

this business plan has been already locked in this phase, which accounts only the

first 20 percent of the project duration. This is called the 80/20 rule, which will

often determine the fate of a business decision. Any errors made in the early phase

have to be taken care of before pursing into the later phase; otherwise, the greater

casualties will be counted in the later. This is the main reason why more attention

is given in process industr ies to the information created during the early phase of

the design activities such as process design activity such that the better

management of a life can be achieved to yield the fruits. Now with an advanced

computing capability emerging Computer-chemistry gives a bir th to a new field of

Chemistry, which enable to perform molecule level assumption, estimation, and

simulation to achieve higher level of results during Research and Development

phase. For instances, physical property estimation based on end-user

requirements can be performed. Environment impact can be also be calculated

based on digitised physical property database in terms of life cycle assessment.

End-user 's requirements can be studied thoroughly. User requirements as to

existing segment or new segment can be also predicated based on information

stored in digital reserves. The real contribution of IT is to improve the quality of

work such tha t embed errors can be removed or its effects on the later phase can be

minimized due to enemas calculating power covering every possible range of

analysis. Therefore "getting thing right at the first place" is what is required to

execute any project successfully, and IT is one of the tools to provide the practical

solution.

59

100

80

% Of Total

i
i
i

Process 20 ' i Detailed
I
I

Design , Engineering

TOTAL PREDICTED COST

% Of Work Completed

Fabricat ion

Figure 3. The 80/20 Rule

MONEY SPENT

I00
Construct ion

Primary concerns of engineers who are involved in the development projects in

terms of data management and control are summarized as follows:

(a)

(b)

(c)

Exchange and share of data between engineers: This demonstrates a

potential problem of coordination. Timely exchange and share of data

among part icipants is the pr imary concern since this will allow each to

proceed with respective scope of work without delay. Also distinguishing

between what to be exchanged and what to be shared is also important in

terms of data management .

Data consistency and integrity: The potential problems involve incorrect

data formats, different data models, not synchronized data turnovers,

ill-adherence to stated standards, and future maintainabil i ty of data.

Mid- or long-term achieve and retrieval: Availability of data for future

reference or modification as required is getting critical.

It should be noted that the above concerns are deemed to be unacceptable and

impediment to performance required task efficiency unless proper measurements

are taken. Also it should be understood that they would serve as mid- and

long-term vehicles for cost saving and not as added cost to the current design

practice. In order to ensure consistency, integrity, timeliness, and quality of data

70

as deliverables, a role of data manager should not under-estimated. Especially this

becomes a keen issue because internet technology allows one to access to any

information one needs, when one needs, to where one use and from where it is

stored.

2.3.3 LIFE CYCLE NEEDS

Three aspects of Life cycle Needs including Activity Model,

Requirement and CAPE software will be explored in this section.

Information

2.3.3.1 Life cyc le n e e d s - process i n d u s t r i e s - act iv i ty m o d e l

Life cycle models have been discussed in various fashions. Following six major

categories of activities are identified as the life cycle model of Global CAPE-OPEN

(GCO) project as a result of international harmonizing co-ordination work of GCO

activity [3] [4][5]. Descriptions of the respective activity as well as information

requirements can be summarized below:

(a) Business Planning: Selecting product lines in accordance with the business

strategic planning, quality target, sales volume, cost in consideration of

timing, investment target (including investment for development) of the

product line are the main concerns in this phase. Any interface has to be

capable to handle all of these relevant parameters including sales, target

cost, and investment criterion and basically BFD drawings so that

Business Planning can be fully executed.

(b) Research and Development(R&D): The purpose of this activity is to

establish a process by the Process Development. At this stage of the life

cycle, a process simulator will be used to study the process behaviour such

that sufficient information will be created to produce a Block Flow

Diagram (BFD) drawing and its related data. Economic Analysis in terms

of business justification mainly based on raw material and fuel costs will

be conducted here. It is very important that every single related at tr ibute

data including material safety has to be extracted to hand-over to the next

stage of the life cycle. Also managing lessons learned type information

such as unsuccessful case studies is important to be achieved for future

reference.

71

(c)

(d)

(e)

(f)

Process Design: Conceptual Process Design phase includes activities such

as Process Selection, Process Synthesis, Process Analysis and Evaluation.

Process Decision will be performed in this phase such that optimised and

safe guarded process will be selected though Conceptual and Detail

Process Design work with the help of engineering design disciplines.

Economic Analysis at this stage will be mainly utilized raw material and

fuel costs and plant costs based on earlier process design and case study.

CAPE tools are available at this stage.

Commercialisation Decision" The decision will be made based on the

analysis of return on investment, profitability, risks in terms of quality,

safety and other aspects including the plant location based on off-site

conditions and physical distribution, plant safety and reliably. User

requirement specifications will be issued after Commercialisation Decision,

such that Engineering Design will be started. User requirement

specifications will be including Pre-P&ID, Equipment Functional Design,

Control and Operability Study, Safety & Health & Environmental Study

and Economic study. During this stage, it is essential to bring an idea

developed in terms of BFD representation into Preliminary Piping and

Instrument Diagram (P&ID) representation. This bridging between them

should reflect conversion of functional requirements into mechanical

specifications so that the actual plant can be operated as designed.

Engineering design and construction: At this engineering design stage,

P&ID will be fixed based on information received from process design and

the resulting work of Engineering Design. Material, Equipment and Plant

Safety will be built into the actual plant at this stage. Seamless transition

of Process Design information to Engineer Design tools is a must.

Operation and maintenance: (Production): After Construction and

Commissioning, actual Operation and Maintenance will be applied to

maintain the optimum production in response to changing environmental

conditions for the process and plant. Handing over all engineering

documentation and data to owner and operator is important in terms of

data owner ship and responsible for any updates and resulting integration

of the system. Especially, data integration of all related data is critical for

smooth transition and reuse of them. Change control and revision control

of information as changes are made is also important during day-to-day

operation.

72

Life Cycle Model Framework
Business
Plan

Research
and
Development

Process
Design

Commerciali
sation
Decision

Engineering
Design and
Construction

Operation
and
Maintenance

Figure 4: Life Cycle Activity

This activity model will provide a whole framework of the process plant life.

Fur ther refinement can be done to break into individual work packages, such that

typical workflow can be schemed.

2.3.3.2 Life cyc le n e e d s - process I n d u s t r i e s - in format ion r e q u i r e m e n t s

Based on understanding the needs of the market, a market development plan will

be launched and potential demand will be estimated. Then information including

process, process material, equipment, cost, safety is processed in every business

aspect throughout a life of the process plant engaged by different disciplines using

different tools [5]. The below table has been developed to summarize the life cycle

requirements of engineers. Process Representation Methods describes the typical

drawings used to convey the information graphically. Raw Material Cost and

Plant Investment Cost represent typical costing items to be considered at each

activity. Operation Methods describe the main focus point in terms of plant

operation at each stage. As you will see from Table 1, required granularity of

information will be different from phase to phase.

Process Representation Methods represent basic functionality of required

operations; thus, they imply different meanings to different disciplines across the

life cycle. Table 2 is formulated to illustrate information requirements of process

engineers. Plant Function represents various class of equipment concept providing

specific service of operations together with respective attributes. Items to be

concerned during Equipment Concept development are those used to define

specific type of equipment for a given operation.

73

Business
Plan

Process
Representatio
n
Methods

Raw Material
Cost

Plant
Investment
Cost

Table 1. Information requirements of engineers
Business Research &
Planning Develop-

ment
Pre-BFD

i

Pre-BFD

Estimation
using Alike
process or
Literature or
Experiment

Estima-
tion using
Alike
process or
Literature

Estim- Estimation
ation using
using Alike
alike process
process or or Cost DB
Cost DB

Process
Conceptual
Design
BFD
Pre-P&ID
Framework

Process
Detailed

, Design
i BFD,
Pre-P&ID

l
I
i

J
Simulation Simulation
using using Mass /
Rough mass/ heat balance
heat balance (Experiment)
(Experiment)

Simulation Simulation
using using
Alike Cost DB or
process Estimation
or Cost DB

Engineer- Operation
ing Maintenance
Design ,
BFD, BFD, P&ID
P&ID Actual
(AP221, Figure
etc)

Simulation
~ using
Mass/heat
balance or
Actual data

, (Experiment)
Simul- Simulation
ation using
using Cost DB or
Cost DB Actual data
or
Estim-
ation

Operation Conceptual Process Plant SOP
Methods operation control & Control Actual

:Operability system operation

BFD: (Block Flow Diagram); P&ID: (Piping and Instrument Diagram); PFD: (Process

Flow Diagram) is to be realized as Pre-P&ID; Pre-P&ID Framework indicate P&ID before

equipment functional design; Pre indicated preliminary.

Table 2 Information requirements during Process Design Phase
Plant
Funct ion

Reactor
sys tems

Column
(Tower)

Attributes

Reaction Heat , Stoichiometry
Mater ia l Conversion Formula ,
Composition, Tempera tu r e
profile, Pressure profile, adiabat ic
t empera tu re increase, Catalyst ,
Void ratio, Holding t ime
S u m m a r y data (Column data,
Number of t rays, Inside diameter ,

Items to be concerned
during Equipment
Concept deve lopment
Tower, Drum, Hea t
Exchanger , Piping type.
Interior, Abnormal react ion
scenario

Identif icat ion of Condenser/
re la ted equ ipment

sys tems Liquid load, Vapour load),
Composition/
Tempera tu re profile, P ressure
profile

Selection of In ter ior such as
Distiller, Absorber,
Extractor ,
Empty /Packed /Trayed
column, In t e rna l
Construction: Tray type,

74

i

Storage
Equipment

Heat
Equipment

Packing, Spray
'Vapour/Liquid " separation, ' Selection of Drum, Tank,
Liquid/Liquid separation, Process Silo, Vertical/Horizontal,
Information and Holding time to Vertical Tank: Selection of
design Interior (Agitator/ Baffle type(Corn roof, Dorm roof,
plate/Demister etc) Floating roof etc)
Inlet and outlet, Outlet

!vapor/liquid, Drain based on
, Process Information provided ,

Transfer Process Information to design Consideration on Heatup or
Heating or cooling curve, Heat cooldown: Heat source,
duty, Heat exchanger(Water coolant
cooler, Steam cooler, Process) Selection of Tubular/Spiral/
selection, Phase changes(Total Plate/Double pipe/Air fin
condense, Partial condense, Total type,
vaporize, Partial vaporize) based Tube side/Shell side fluid
on Process Information available

Transfer Process
Equipment Suction

pressure,
Liquid, Liquid based on Process
Information
*Special Equipment including
Ejector, Solid transfer equipment:

, To be set separately
Special Equip. / To be set for each type
Utility service

. systems .

Information: Driver, Selection of Equipment
pressure, Discharge type, NPSH avail, Spare
Head, Phase: Solid, equipment,

Vertical/Horizontal and
Driver, Gravity (Pump)

Piping Systems Stream Information
]

Selection of Line Number,
Size, Pressure/temperature
class, Parts: Valve/
Insulation

The following table (Table 3) illustrates a proposed mapping between Process

Function in terms of Blocks represented by various Simulation Packages and

Plant Function represented on P&ID. This will help translating an idea of Process

Function into Plant Function so that Detailed Engineering can be expanded to

provide services required by Process Function for a real world application. As a

result, the Conceptual Process Design is conducted solely to create the information

to conceptualise a process for producing a certain product line as indicated in

Business Plan.

75

Table 3. Mapping from Block to Equipment Concept
P l a n t F u n c t i o n A s p e n B lock HYSYS B l o c k PRO2 B l o c k

Reactor Systems
Column Systems
Drum / Tank

RSTOIC, RCSTR, PFR, CSTR PFR, CSTR
qr

FLASH3,
COLUMN
3 phase separator,

COLUMN
i FLASH

DECANTER Tank
Heat exchanger
Heater/Cooler

HEATX, HEATER Heat exchanger,
Reboiler, Heater,
Condenser, Cooler,
Air Cooler

HX

:Pump PUMP Pump , PUMP
Compressor COMPR/Expander

Other transfer
equip

Compressor/Expand COMPRESSOR/
er Expander

I
i

Special Equipment i * Cyclone
Piping Systems

Utility service

FSPLIT, VALVE, * Tee, Valve, * PIPE, FSPLIT,
�9 VALVE, *

qr qr qr

Systems
* indicates that special rules are required as suggested below:

FLASH2 Block-) Heater/Cooler or Drum or Piping Systems (VALVE: 1 input and

1 output) ; MIXER Block --) Drum or Piping Systems

RADFRAC Block --) include Column, Drum, Heat exchanger, etc

SEP Block-) Special Equipment, etc

The following diagram (Figure 5) illustrates the basic idea behind this mapping:

]
I

I

I

U n i t

Oloera t icms

PFD
I

Plm~t

C o n c e p t

I
E~u~pm~t

Cor~celot

P~t ID

I

IOl m,~ t

I

Figure 5. Mapping between Process Functions and Diagrams

The value of information generated during the Process Design phase is always

76

verified and evaluated in terms of the contribution to firm business decisions to

produce specific products based on the process designed as shown in Figure 6.

Information should be well-measured one so the result will be constructive that

the business decision can be profitably made and executed.

Process]~---J
Simulation

Dynamic Simulation [

~ [3DModels]

IP DI-
Economic Analysis I [Equipment Selectio_____~n

Distributed Parameter

Control

Detail Eng'g
Construction

Operation
Management

Physical Properties [Operation
Design

Mechanical
Integrity

Intelligent
Database

Figure 6. Process Engineering Activity

The information once created should be shared through interfaces among

activities consisting the life, including Business Plan, Research & Development,

Process Design, Commercialisation Decision, Engineering Design and

Construction, and Operation and Maintenance. Therefore, Life cycle is a collection

of phases of the life that divides a management effort into several more

manageable subordinate efforts and management loop to conduct the business

perpetually.

2.3.3.3 Life cycle needs- process industries- CAPE software

Almost every activity will create new information after having been processed.

The use of the information is not restricted to the activity that creates and

processes it. It is used in other activities in a chain to carry on a business plan e.g.

to delivery a new product line. Moreover, it is very important to note that

information on the product created has to outlive the life of the product per se. For

example, information generated, integrated and archived during the process

design will be used to generate all sorts of other information through the life of the

77

process, which are typically twenty to thirty years. This is the major reason why

managing the information throughout the life is becoming important issue.

To manage information in order to cope with business requirements, the CAPE

systems used must be capable of,

(a) Knowing what information they have, and what it is about,

(b) Interfacing information between organisations and systems without

degrading the contents,

(c) Integrating and storing information from different systems,

(d) Sharing the same information among different systems with different users'

needs,

(e) Managing the information, including history, for a life.

Of course, any software that is designed to fit the needs of process engineers is no

exception to this. To share the earnings among the participants of process design

activities depends on how well a system employed is integrated to flow the

information once created at the upstream phase of the entire design activities

despite of different formats each system uses. Often this shows a bottleneck since

availability and grade of the information has been very limited inside the

boundary of the application systems used. Most of process engineers have to spend

their significant time just to re-key in the information provided at the upstream

design activities and at the same time, most importantly, keep track of

configuration of each information as each revision is made. One of the solutions to

this will be replied by CAPE software by proposing the interface standards among

the components of simulation software such as Solver Package, and Unit

Operations. Use of such components will promote standard mechanisms for

various applications to inter-operate and facilitate the sharing of information

between applications. CAPE software will provide various services to the process

engineering related activities during the early phase of the conceptual process

design thus to reach new quality and productivity levels.

It is worth mentioning the following concerns of the business so that CAPE

software to be more sufficient to fit the needs of the business. Differentiation

between Engineering/product definition and Product should be noted. Too much

focus on engineering/product definition may lead to the conclusion that production

78

is being supported insufficiently. Also actual life means that history is involved.

Dealing with organizations and processes already in-place and new paradigm and

transition as to where and how business goes forward should be concerned.

Change management opportunities and requirements and data ownership are the

real issues to be concerned.

2.3.4 GENERAL & SPECIALIZED NEEDS OF LIFE CYCLE SUPPORT

BY CAPE SOFTWARE

To match market requirements for a new product line required functionality to be

designed based on information available at that time. Completeness and accuracy

of information is the key concern of process engineers. To avoid the risk of

non-rigidity and degraded decision, information management using various

software tools has been schemed and devised. However islands of software tools

causing such a greater communication problem, when the management of

information is concerned. Bridging the isolated systems through standard

interfaces will be one of solutions where great improvement on overall

performance is expected based on implied 80/20 rule. It is always suitable to

consider the way to leverage the emerging information technology solution to gain

the improvement therefore to gain competitive advantages. This is the reason why

CAPE Software based on a common understanding of the industry work process

and information requirements is becoming important to be explored. In term of life

view, general needs, as well as specialized needs will be elaborated as follows.

2.3.4.1 G e n e r a l N e e d s

In this section general needs will be elaborated. Due to the latest development in

IT industry, what engineers want to accomplish can be achieved. Once upon a time

when capability provided by IT has been far less than what engineers requested.

What can IT or a computer to be more specific, be used type question was the main

topic; therefore only the IT layer consists of IT components such as COBOL,

Mainframe computers has been discussed. Power of IT has been improved, then

solution layer obtained such attention that utilization of the particular application

system such as Data Base Management System, CAD system CIM composed of IT

components has been focussed. Nowadays, Business Planning based on the

79

strategic decision makes clear the demand of integrating proper application

systems into the designed business process. It is important to note that each

activity of business process consisting Life cycle Model mentioned utilizes some

sort of system components to process data represented by its own data model.

Through a set of externally accessible operations, interfaces are so defined to

bridge between different system components accordingly to t ransmit data

required. Basic idea of CAPE software set interoperability s tandards for

communication between system components in process design shall provide a

solution to overcome interfacing problems of exiting proprietary systems so that it

shall be able to improve the efficiency and speed of the whole throughput.

Business
Plan

Research
and
Development

Process
Design

Commerciali
zation
Decision

Engineering
Design and
Construction

Operation
and
Maintenance

Life Cycle Model Framework

System System System System System System

Comoo_nent Component Component Component Component Component

I - I I T

I I I I I - I I I I I

T , T I DlataTod!lM T T "[
~Data MoJel l~ata Model ~ata Mod!l ~ata Mod!l ~ata Model]

Figure 7: Life Cycle Model Framework

What industries have seen as a change will be represented as the way how each

computer aided system is used and integrated to create data and manage

information. A critical issue tends to be whether or not different systems are able

to communicate each other. This means at the information technology level, data

is exchanged and/or shared when it is created and used by different computer

systems, disciplines, or even different organizations sometimes. For instance, all

the engineering related data, which is hand over to the owner and operator is used

to feed the systems such as a maintenance system or an even to accounting system

to keep track of the life of each equipment as the vital asset. This is becoming more

80

important when Information Technology becomes far much advanced and is to be

utilized to perform more efficiently than the past.

It is also worth noticing that life of computer system is much shorter than that of

process plant per se so that solution may work at that point of time, but may not

necessarily work at the different point of time as the life passes by. For instance,

CAD systems, which are commonly used during the design work phase of the

process plant projects, were once running on mainframe computers with various

operating systems, then work stations including UNIX systems, now some of them

running on PCs with Windows operating systems. Yet the process plant is still

standing, but the hardware of the system has been replaced with the successors

with different operating systems. When the CAD system itself becomes obsolete, it

has to be replaced with the new model. In order to cope with this situation, not

only the application system but also data may also have to be converted. This is

the reason why managing the "life" is becoming the key issue among process

industries.

Process Design is an activity whose mission is to design functional requirements to

meet the market needs. Especially Process Synthesis is the key activity to

dominate the result of 80/20 rule according to standardization work of MITI

funded GCO project [4]. The following addresses Process Design phase specific

needs in terms of information requirements:

(a) Evaluation based on data created by various process designs tools is

very essential at the early design phase. Interfacing with simulation

applications, equipment design applications such as various sizing

packages or in-house engineering calculation software of any equipment,

as well as down-stream engineering design packages, especially costing

applications to provide quantitative analysis of various design

alternatives is required to perform any activity with less interference.

Performing the complete analysis at the earlier stage as possible will be

a key to succeed determining the fate of the business plan as shown in

80/20 rule.

(b) Leveraging process data having been available from the simulation

results to generate conceptual process design level as well as conceptual

engineering design level of details and representations is one of the

sought achievements at process design phase. By bridging between

81

process function and plant function to generate automatically Pre-P&ID

from BFD using standard design best practices requires

standardization on the mapping and interface between functional

components of the process resulting from process design and physical

components of the plant resulting from engineering design.

Exchanging and sharing information among existing software, which constitutes

the elements of this integrated environments, has been recently taken up as the

subject for standardization such as ISO, ISA, IEC, etc., but the available scope is

still very rigid and limited to cover the whole life cycle per se. And significant

efforts including those for standardization are required for the construction of the

integrated environment. In real practice, each application tends to be customized

to reflect the individual needs of the users. Moreover, each project may use a

different set of the software to solve the project specific needs. Therefore, it is

important to consider one overall concept so that difference among user of the

systems and procedures of the systems including CAPE software are well

considered and seamless flow of information can be secured.

2.3.4.2 S p e c i a l i z e d n e e d s

In this section, specialized needs of process engineers will be elaborated. When a

process design was first developed, its deliverable will be graphically represented

as a BFD. The main interest is to visualize the sequence of operation and to list

some attributes such as heat balance and mass balance. Evaluation based on raw

material cost and plant investment cost, which is estimated, based on similar

process, literature, and experiment sources will be performed to seek the best

solution at this stage. It is worth doing at this stage of Life cycle Model to archive

not only the base case but also every single case with relevant information into

digital storage that has been considered during the design phase. Later phase of

the development, the information can be shared and exchanged based on this

repository. Information such as why this value of the parameter has been used

over the other type information will become vital in the later days when a similar

study has to be conducted, which normally lost. This can be treated as a case

library that can be data mined later. Super class - Sub class and inheritance and

derivative type relationship can be used to implement this library in

object-oriented manner so that emerging new technology can best make use of it as

82

described in other capture.

When the process design finalized, an engineering design will be developed.

Drawings such as P&ID and completed datasheets and lists would be issued. Then

more detailed cost estimate can be also calculated at that stage since more specific

consideration has been identified. Again well-managed digital storage can play a

critical role to maintain integrity of the information.

For instance, during Process Design phase, various emerging computer based tools

such as simulators, analysis tools, design tools, CAD systems, various data base

management systems, spread-sheet applications, word processors are commonly

used to generate, store and manipulate necessary electric data as shown below in

Table 4 [5]:

Table 4. Design Tools, Data and DB

! Desig
n
Tools

Data &
DB
Others

Busin
e s s

P lann
ing

Linear
Progra
mming
softwa
re

Market
data

Cost &
SHE
DB

Research Process
& Conceptu
Develop al
ment

Simulator
(Material,
Reaction,
etc)
Fluid
dynamics

Reaction
DB
Material
DB
Experiment
DB Cost &
SHEDB

Simulator
(Process)
Pinch &
Residue
Curve
Analysis
Fluid
dynamics

Thermo.DB
Experiment
DB
Cost & SHE
DB

Process
Detai led

Enginee Operatio
ring n
Des ign Mainten

ance

Simulator
(Facility)
Fluid
dynamics
HTRI,
HTFS
Hazop, FTA
AXSYS,
Zyqad
2D-CAD

Experiment
DB

AD

Plant Simulator
design (Process)
(System Pinch-Ana
& lysis
Mechanic Fluid
al) dynamics

Hazop,
HTRI, FTA
HTFS 2D/3D-CA
2D/3D-C_ [D

Analyzer
Actual
Plant Data
Cost &
SHE DB

Cost & SHE Cost
DB &SHE DB

2D/3D-CAD systems are, for examples, Micro Station, PDS, PDMS, Plant Space.

Cost DB: SRI, CHEM SYSTEMS, In house data includes Cost Estimation Tool (IPE,

ICARUS2000, etc), SHE: Safety, Health and Environmental issues

83

Bridging between Process Representation and Economic Analysis reflecting

required graininess of information is therefore summarized below in Table 5:

Table 5. Mapping between Cost Estimate and Design Representations

In order to assure the seamless flow of information, an experimental integrated

environment for process designing as shown below is schemed for Chemical CALS

project in Japan, which intended to demonstrate the power of the seamless

interfaces among design tools. The project reported the significant improvement

in quality of work done:

The success of the project relies on integrating simulation tools, Costing tools for

Feasibility Study, Rough Costing tools for early process design phase, construction

phase, various design tools, and database management and CAD system;

therefore, the concept of the integrated system has been proved. Next step would

be to break the integrated system into functional components such that each

component can be plug and play, as it is needed for the project execution.

84

Simulation

Tools

FS Costing

Tools

CAPE

Framework

CAPE

DBMS

~-

%

%
%

s

1

I
Rough Costing

Tools

i
Design

Tools

l] Construction

Costing Tools

t "'X Downstream

Design Tools

Figure 8: An experimental integrated

environment

2.3.5 M E D I U M T E R M & L O N G T E R M V I S I O N - W H E R E A R E WE

G O I N G F R O M H E R E ?

It is very important to identify the proper seeds of a business opportunity.

Especially the industry who is specialized in producing basic material to other

industries facing big challenges such as Market Analysis, Quality Assurance,

Environment Protection, Recycling Resources. Everyday various simulations are

conducted to define the products to meet the needs based on Market Analysis.

Changing the brand mixture, shorter delivery time, and providing customer

satisfaction are the key words playing important roles of the industry. Business

justification is taking account of market development, pros and cons of business

planning, risks vs. growth decision. But none of systems employed today can

handle this situation seamlessly. For instance, a commodity product vs.

specialized products is a typical issue, but no clear answer can be prepared by the

existing system. As time to market and cost pressure is building up, production

systems of specialized products are getting attention. An unique idea such as

85

making use of multi-purpose equipment to produce the specialized product instead

of designing specific equipment designed for the product is worth attempting since

it will reduce the whole time to produce. Whilst commodity type, which possesses

longer life, may utilize the specially designed equipment to reduce the overall cost

and assure the quality. One concern here is that none of vendors is ready to accept

the challenge since it has not yet armed with models capable to handle required

simulation. Another growing concern shown in the business is Life Cycle

Assessment, which requires process design to consider the environmental impacts.

Precise calculation of the impact is getting more attention since sustainability is

becoming the hot topic. CAPE software has been demonstrating opportunities,

which can be gained from standard interfaces for process simulation components.

It is an enabler integrates simulation into the process design such that enhanced

competitive and environmental advantages can be obtained. Specialization of

general needs is gaining popular votes among the industry. One such example is to

bridge between Research & Development and Process Design since

Computer-chemistry is getting more attention. CAPE software will give birth to a

standard body, internationally supported and recognized, as well as to a network

of integration laboratories for process simulation. Furthermore, the specifications

should cover Computer Aided Process Engineering, and not just process

simulation. Within this framework, existing ISO standards that cover parts of

Process Design, Plant Design, and Plant Operation and Maintenance fields, have

to be harmonized, in order to avoid duplication and ~inconsistencies among

recognized standards. Whilst another bursting area of concern is Demand Chain

Management where the business is required to shift its business paradigm

requiring agile and flexible processing. Solution to these should enable CAPE

software to contribute to achieve business excellence better, cheaper, and faster
even greener than ever.

2.3.6 R E F E R E N C E S

[1] Proceedigns ESCAPE-9 & PRES'99 May 31-June 2, 1999, Budapest, Hungary.

[2] Bertrand L. Braunschweig, C. Pantelides, Herbert I. Britt and Sergi Sama:

Open Software Architectures for Process Modelling, Proceedings FOCAPD'99,
CACHE Publications, (1999).

[3] Henriksen, J.P., Russel, B.M., Static and Dynamic Optimisation of CAPE

85

Problems using a Model Testbed, Computer Aided Chemical Engineering, Vol. 9,
Elsevier, (2001) pp1009-1016.
[4] Hiroshi Okada (JGC), Tetsuo Shirao (MCC), New Chemical Process Economic

Analysis Methods, Computer Aided Chemical Engineering, Vol. 9, Elsevier, (2001),
pp1059-1064.
[5] Hiroshi Okada (JGC), Tetsuo Shirao, Naoki Dohi (MCC), Chemical Process

Analysis Methods, Proceedings of Conference of Japan IMS Research Results,
Julyll-12 (2001), pp 173-176.

87

P a r t III: F r a m e w o r k for C A P E t o o l s

3.1 Modelling frameworks
L. von Wedel, W. Marquardt & R. Gani

3.2 Numerical solvers
J. E. Tolsma & P. I. Barton

3.3 Simulation, design & analysis
D. Hocking, J. M. Nouguds, J. C. Rodrfguez & S. Sama

3.4 D a t a reconciliation framework
N. Arora, L. T. Biegler & G. Heyen

3.5 Computer tools for discrete/hybrid production systems
L. Puigjaner, M. Graells & G.V. Reklaitis

The chapters of this part introduce some of the CAPE methods that provide
the framework for CAPE tools. There are five chapters, each dealing an
important topic with respect to current and future CAPE tools. Although
many topics could have been chosen, the particular selection has been made
based on their use in current CAPE software. The chapters, covering
modelling, numerical methods, simulation, design/analysis, data
reconciliation and computer tools for discrete~hybrid systems, present the
state of the art of representations, algorithms and architectures. They give
concrete examples of how these frameworks can help to match the needs
expressed in Part II.

Models are considered to be valuable assets for engineering and decision-
making processes because they are not just data but embody a lot of
knowledge about the process studied and can be used to generate
information about it. The purpose of modelling as a work process is to
transform the perception of reality or an idea into a symbolic language,
which consists of a set of well-defined concepts with an agreed
understanding. Starting with an overview on the modelling process,
Chapter 3.1 written by yon Wedel et al. provides a review of modelling
concepts and languages followed by discussions on modelling tool
functionality and modelling tool architecture.

Typical process modelling activities involve the use of a number of different
numerical algorithms (solvers). Chapter 3.2 (Tolsma and Barton) briefly
describes several common numerical activities and some of the algorithms
applied. In particular, the information that must be supplied in addition to
the model equations is emphasised.

Process simulation, design and analysis are some of the most common
activities in computer aided process engineering. Process simulators are
used daily by engineers and scientists almost on a daily basis to solve
various CAPE related problems (such as process design) by generating

88

process information through process simulation and then by analysing the
generated results. Chapter 3.3 written by Hocking et al., provide the
software side of the story with respect to simulation, design and analysis.
Definitions and explanations of the important terms are provided and
discussions on problem definitions and the framework requirements for the
corresponding software are presented together with examples from
commercial simulators.

Data reconciliation and parameter estimation are important components of
model fitting, validation, and real time optimisation in chemical
industries. In its most general form, data reconciliation is a minimization
of measurement errors subject to satisfying the constraints of the process
model. Parameter estimation is the step after data reconciliation in which
the reconciled values of the process variables are used to set values for the
model parameters. Chapter 3.4 (Arora et al.) discusses optimisation
strategies that deal with data reconciliation and gross error detection.
Included in this study are two case studies, a comprehensive steady state
example and a small dynamic example. Both illustrate these strategies and
issues related to this task.

The software tools for batch processes may be classified in two broad
classes. The first class involves modelling, simulation, and analysis of the
physico-chemical processes that take place during batch operations. The
second class is designed to support the decision processes at the different
managerial and operational levels of the plant operational hierarchy. In
chapter 3.5, Puigjaner et al. review a representative set of tools from the two
classes of tools that are available commercially. While there is much
innovative research and development in both academic and industrial
groups in this domain, experimental software and prototypes have not been
considered in the discussion.

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
�9 2002 Elsevier Science B.V. All rights reserved. 89

Chapter 3.1: Model l ing F r a m e w o r k s

L. von Wedel, W. Marqua rd t & R. Gani

3.1.1 I N T R O D U C T I O N

Process Systems Engineering, PSE, has gained an impor tan t s ta tus for a broad
range of chemical engineering activities. A basic requ i rement for applying the
techniques provided by this ra ther young discipline is based on the notion of a
model. For the purpose of the chapter, a (limiting) character iza t ion of a model as
a formal system is made. As a requirement , the model represents re levant prop-
erties (s t ructural and behavioural) of the system under consideration. The essen-
tial feature of a model (with respect to PSE) is tha t it can be formally evaluated
to make s ta tements about a system. This feature allows the use of digital com-
puters, which have become an essential tool for many tasks in process systems
engineering tha t are now character ized by the te rm computer-aided process en-
gineering. Models mus t be considered valuable assets for engineer ing and deci-
s ion-making processes because they are not just data but embody a lot of knowl-
edge about the process studied and can be used to generate information about it.
Models allow vir tual experiments th rough process s imulat ion and/or optimisation
tha t would be costly or even impossible to perform otherwise.

Modelling activities consider a variety of chemical engineer ing e lements on dif-
ferent scales of complexity (Marquardt , et al., 2000; Pantel ides, 2001). Model-
based studies cover a range from designing molecules (Harper et al. 1999; Menial
et al. 1998) on one end of a size scale as well as studies of the supply chain be-
tween different plants or even sites on the other end (Backx, et al., 1998). The
relevant t ime scales range from microseconds to months or even years, respec-
tively. Between these two extremes, the most commonly employed models today
represent thermodynamic phases, single uni t operations, or (usually only a par t
of) a chemical process. Besides modelling physical processes, models of operation
modes (especially of batch processes) are also of in teres t for s imulat ion and opti-
misat ion applications.

3.1.1.1 Modelling Process O v e r v i e w

The purpose of modelling as a work process is to t ransform the perception of real-
ity or an idea into a symbolic language, which consists of a set of well-defined

90

concepts with an agreed understanding. There are many possible models of a cer-
tain perception, but only few of them qualify as being useful to answer the ques-
tions relevant in the current modelling context (where a context is understood as
a current situation and a desired goal). A modelling process should thus system-
atically lead to a useful model and discriminate those irrelevant. In the reverse,
however, a specific model may be needed for several model-based applications
such as identification, simulation and optimisation during the plant development
process.

The modelling work process is also important with respect to developing support-
ing tools for model development because any software tool must focus on the
work processes it is intended to support. Modellers are generally unwilling to
change the work processes that they have successfully performed for a number of
years. Further, a weak focus on the work process is likely to miss the important
requirements where support is needed most. Therefore, this chapter briefly
summarizes the work of Foss et al. (1998), which presents a field study about the
modelling process as it is conducted in chemical industries (cf. Figure 1). Several
issues including documentation, conceptual modelling, model implementation,
and model application have been considered in this field study. A lot of detailed
information about various facets of modelling processes can also be found in Han-
gos, Cameron (2001b).

Figure 1. Mode l l ing as an i terative work process

D o c u m e n t a t i o n is described as an important means of preserving and communi-
cating informal knowledge about the models being developed. The modelling
process should therefore start with some sort of initial problem specification, re-

91

flecting the modeller 's initial ideas, requirements , and assumpt ions on the model
to be built. Among these, the purpose of the model should be specified a-priori, for
example as a ta rge t against which simplifications can be evaluated. This docu-
ment can fur ther contain any existing information about process, equipment, or
mater ia l under consideration. A fur ther step towards a good documentat ion is to
trace decisions tha t have been made during the modelling process.

The interviewees consulted by Foss et al. (1998) s tate tha t a conceptual model of
the chemical process to develop a model for is (at least) helpful (if not essential)
for discussing with domain experts. This conceptual model specifies the model in
terms of the chemical engineering domain together with its assumpt ions ra the r
than as a set of equat ion or even a chunk of a p rogramming language. Ideally, a
conceptual model could be defined without wri t ing any equations, but, as we will
reveal later, current modelling languages do not fulfil this goal. The fact tha t
there is more to a model than just its equations has been fur ther elaborated by
e.g. S u b r a h m a n i a n et al. (1993) or Marqua rd t (1996). The conceptual model can
be considered as independent of a real izat ion in a par t icu lar simulator, it is
r a the r the model the engineer would sketch on paper before actually using a tool
to implement the model.

Given the conceptual model, an implementation in a specific numeric application
must be developed in order to analyse the model. Different tools may be chosen
for this task, depending on the context, their capabilit ies and the experience of
the modeller. Engineer ing concepts must be t r ans la ted into the concepts provided
by the tool in an appropriate and systematic manner . It is likely tha t differences
in expressiveness between the representa t ion for the conceptual model and the
chosen tool may require extra work during the implementa t ion step. The model
implementa t ion should be wri t ten wi th respect to numerical performance and ro-
bustness (e.g. by reordering equations or scaling variables, cf. Chapter 3.2). Such
issues are best considered during model implementa t ion r a the r t han on a concep-
tual, domain-centred level. As an example, a spatial ly dis t r ibuted model should
be developed using par t ia l differential equations on a conceptual level. If imple-
mented in FORTRAN for example, a discretisat ion of the model becomes neces-
sary because FORTRAN does not support any par t ia l derivatives.

Often, the development of a conceptual model is skipped and an existing imple-
menta t ion of some model is reused, leading to a potent ia l source of errors and in-
consistencies in the overall model if the under lying assumpt ions are not quite
appropriate in the modelling context. Inconsistencies can be avoided or, a t least,
model debugging can be simplified if a conceptual model and documenta t ion of a
model implementa t ion are available because reasoning can then be performed on
a physical level ins tead of a level of ma themat ics or even source code.

Modelling is a highly i terat ive process where each model developed must be vali-
dated agains t the actual plant behaviour to check whether the modelling as-

92

sumptions made are a useful abstraction of the reality. If this is not the case, one
will have to improve the model or use different techniques to tackle a problem
(Figure 1).

Once implemented and validated, the model can be used in a model-based appli-
cation. Degrees of freedom and inputs to the process have to be specified. Depend-
ing on these specifications different problem types result, such as simulation, de-
sign, or optimisation problems. However, there is no solver package of commer-
cial s trength that is able to carry out the full range of model-based applications
that are employed during the plant development lifecycle. Also, in general, model
implementations of different software packages are incompatible. This makes
frequent reimplementations of the models necessary, a costly but unproductive
step that can be facilitated if a conceptual model has been developed from the
outset.

From an organizational point of view, the modelling process is often carried out
by a number of people, contributing to different parts of the model (such as a dis-
tillation specialist) or they are active in different modelling activities (such as pa-
rameter identification). Hence, the modelling process in such a group must also
support coordination of the joint effort on the one hand and sharing/distributing
relevant information on the other. Often, the developers and the users of a model
are distinct persons, leading to further complications. First, the developer of the
model must ensure that the user (who is less familiar with the model and its
limitations) must be able to understand and employ it. Further, different people
from different domains have diverse understandings of concepts so that a control
engineer would probably prefer a view on a reactor model as a transfer function
relating measurements and actuators, for example, while the reaction expert is
most likely interested in the reaction kinetics and thermophysical properties of
the material system.

The discussion above has revealed that a single piece of process equipment (such
as a reactor or distillation column) will be modelled for a number of different
purposes during the plant development and operation lifecycle. These models are
often coded in incompatible tools, which implement different model-based studies
that are required in the design lifecycle. These incompatibilities are a major ob-
stacle on the path towards an efficient use of model-based techniques.

3.1.1.2 Mult i facet ted and Lifecycle Process Mode l l ing

A systematic approach to an understanding of the above issues of process model-
ling was first undertaken by Stephanopoulos, Henning, Leone (1990b). The term
multifacetted modelling was characterized by considering process models being
developed on different levels (multilevel modelling), for different modelling con-
texts (multicontext modelling) and are being considered from different perspec-
tives of interest (multiview modelling). During the past decade, those considera-

93

tions have evolved into what is nowadays called lifecycle process modelling,
where not only the different facets of process models (in the sense of data) are
considered, but also their relat ionships and the evolution of these artefacts in the
sense of a work process (Marquardt , et al., 2000).

A lifecycle-centred view on the modelling process focuses on t racking the evolu-
tion of a model from its initial creation, th rough a number of application and
modification cycles. It makes explicit tha t different versions and views of a model
are by no means independent because they describe the same physical piece of
equipment so tha t we can ta lk about a family of models r a the r t h a n about a sin-
gle model.

Such an inclusive representa t ion of information about models enables to capture
also the negative experiences (what bet ter not to do), whereas the final outcome
of an engineering design process only covers the decisions finally taken, and
these are not even made explicit. Fur ther , a comprehensive representa t ion of
mathemat ica l models together with the work processes involved is an indispen-
sable contribution to model reuse and unders tanding, even after a long period of
time. These large time scales occur frequently in engineer ing where a phase of
intense design work is followed by a r a the r long phase of operation. In subse-
quent reengineer ing phase (such as a capacity extension of a plant), accumulated
knowledge (such as mathemat ica l models) is often lost because design team
members have changed their positions or left the company or it cannot be under-
stood because the rat ionale behind it has not been documented.

3.1.1.3 Requirements for Modell ing Frameworks

Summar iz ing the above s ta tements , the requirements on computer-aided support
for chemical process modelling are means to,

�9 Provide a rich set of concepts to describe models using chemical process
engineering terms without being tailored to specific s imulat ion applica-
tions or even tools,

�9 Turn domain knowledge into functionality to effectively speed up the de-
velopment of models for a certain purpose,

�9 Capture informal information belonging to the model and its development
process to improve the communicat ion of and about models in a t eam of
process developers,

�9 Ease the t rans i t ion to/between different model-based applications, and
�9 Make the evolution of model artefacts and the modelling work process ex-

plicit to provide a bet ter unders tand ing over the long-term.

Given these requirements , the remainder of this Chapter will review existing
modelling frameworks, which are popular in chemical process industr ies and
academia. As the te rm of a modelling f ramework is not precisely defined other-

94

wise, we will use the generic definition of a framework from Merriam Webster's
Dictionary as a basic conceptual structure, which here refers to modelling tool ar-
chitectures. Such a framework must cover:
A set of concepts tha t can be used to construct chemical process models,

�9 One or more representations of these concepts suitable for communication
among humans and/or between tools,

�9 Functionality to automate parts of the modelling process, and
�9 An architecture that exploits the model representat ion and organizes rood-

elling functionality in a tool implementation.

Section 3.1.2 will provide an overview of modelling concepts and languages as
concrete realizations of the first two issues, whereas the third will be the topic of
Section 3.1.3, discussing modelling tool functionalities. Modelling tool architec-
tures to organize the functionality and respective implementat ions in state-of-
the-art tools are discussed in Section 3.1.4. Finally, Section 3.1.5 will pick up the
requirements and identify future directions and potentials.

3.1.2 M O D E L L I N G C O N C E P T S AND LANGUAGES

A process model can have a wide variety of representations. The general repre-
sentation must be considered with respect to two independent coordinates. Pri-
marily, the model is built using a set of modelling concepts each of which must
have an agreed unders tanding among the users of the model. As an example, the
concepts unit operation and stream can be used to describe the structure of a
chemical process. These concepts can be considered the semantics of the model.
Further, these concepts must be notated in an unambiguous language to enable
the concepts of the model to be communicated. The concepts employed to describe
a process model can be used to distinguish the large set of existing approaches
into three groups. As programming languages we cover those where a model is
directly implemented into the solver, e.g. as a subroutine. These are not dis-
cussed any further because they do not provide any specific means for model rep-
resentations. Generic modelling languages are those tha t do not provide domain-
specific concepts but concentrate on a mathematical (or systems) level whereas
domain-oriented (process) modelling languages provide modelling concepts, which
correspond to domain-specific concepts (Marquardt, 1996).

3.1.2.1 Generic modell ing languages

From a mathematical point of view, models employed in CAPE can use a con-
tinuous or a discrete representat ion of system states and time, respectively. Rig-
orous modelling based on physical insight natural ly leads to models, which are
continuous with respect to states and time. However, many applications require
simpler models, for example to increase robustness or speed up calculations per-

95

formed with the model. These requirements are often addressed by discretising
the model in time or states. The remainder of the chapter will focus on quantita-
tive models as they are obtained from first principles modelling methodologies
(Hangos, Cameron, 2001b; Marquardt , 1996).

Mathematical modelling languages

In a mathemat ica l modelling language, the simplest model is represented as a set
of variables x and equations f. Whereas the variables represent system states, in-
puts, and outputs, the equations constrain possible values of the variables and
thereby represent knowledge on the domain of interest:

f(x) = 0 (1)

An equation system like (1) if often used to represent a system in its steady state.
The equations f constitute of balance equations of the chosen balance envelope,
constitutive equations describing equilibrium states (e.g. physical and chemical
equilibrium) or non-equilibrium processes such as diffusion or reaction. Further,
mater ia l properties must relate intensive quanti t ies such as specific enthalpy
with pressure, temperature , and composition.

The simulat ion of a model represented in such a way is then essential ly a process
of finding the roots of these equations (cf. Chapter 3.2). However, the equation
system result ing from the modelling process may contain more variables than
equations necessitat ing additional specifications for a number of unknown vari-
ables in order to achieve a consistent mathemat ica l formulation. Since the for-
mulat ion (1) of the model does not indicate which of the variables are considered
as inputs to the model, it is also referred to as an open form model. On the con-
trary, in a closed form model the selection of inputs and outputs are fixed and in-
tegrated to a solution algorithm (Marquardt, et al., 2000; Biegler, et al., 2000).

In addition to the steady state, one is often interested in trajectories, which result
from a t ransi t ion of a system from one steady state to another, for example, due
to a change in a plant 's feed streams. This class of models dynamic models is of-
ten represented as a differential-algebraic equation system:

dx
x,t) = 0 (2a)

Such an equation system describes the change of balanced quant i t ies (e.g. mass,
energy, or momentum) with time as a result of fluxes enter ing or leaving the bal-
ance envelope and sources in the envelope's interior. The solution of such a sys-
tern consists essentially of finding the integral

!

96

As symbolic solutions of (2a), (2b) are almost always impossible to find for rele-
vant engineering applications, a numerical integration algorithm has to be pur-
sued, s tar t ing from (consistent) initial conditions (Pantelides, 1988; Unger, e t a l . ,

1995)

t=O

and recursively determining a series of states x(tn) (cf . Chapter 3.2).

With increasing detail, spatial coordinates are of potential interest to the model-
ler as well. Then, the model must be able to represent the changes of the state
quanti t ies with respect to a change in space. In these equation systems, a vari-
able occurs in derivative terms with respect to three independent spatial coordi-
nates r = [rx, r2, r3] w. Hence, part ial differential operators instead of the total dif-
ferential in Eqn. 2 must be employed so tha t the model can be formulated as a
part ia l differential-algebraic system equation (PDAE) system:

f(x, otq-7 ' ar, ' ar 2 ' ar 3 ' t ' r " r z ' r 3) = 0 (3)

Note, tha t any formulation with less coordinates (even Eqns. 1) can be derived
form equations (3) by a formal integration over the coordinates, which shall be
excluded from the model (Gerstlauer, e t a l . , 1993). In contrast to DAE models,
consistent initial and boundary conditions have to be provided which is a non-
trivial task (Martinson, Barton, 2000).

Distributions of a state quant i ty are not only of interest with respect to spatial
coordinates but sometimes also with respect to substantial coordinates .i such as
the size of particles in a particulate phase. In this case, not only partial deriva-
tives occur, but also integrals that correspond to closing constraints over the dis-
t r ibuted quantities. Hence, integro-partial differential-algebraic equation
(IPDAE) system are obtained:

~x ~x ~x ~x i xdrp , r rl , r2 , rs) = O .
f(x' ~ ' ~)r, ' ar= ' ar 3 '

(4)

A further level of complexity is added when the systems considered no longer
have a fixed structure but the equations used to describe them change during the
solution process. There are many examples in process engineering applications
exhibiting such behaviour, such as phase changes as a function of tempera-
ture/pressure or flow pa t te rn changes as Reynold's number increases. To describe

97

the different modes of a system, the overall horizon of the s imulat ion is consid-
ered to be par t i t ioned into N subintervals. A different set of equat ions f i as e.g. in
(2) or (4) holds in each mode i (Barton, Pantelides, 1994):

f~(...) = O, i = 1. . . N . (5a)

Each of those equat ion sets fi can have its own set of variables. The boundaries of
the N intervals are not fixed a-priori but must be de termined during the simula-
tion itself by means of monitoring so-called t rans i t ion conditions L. These are as-
sociated to a state i and describe the condition for a t rans i t ion to state j to occur:

d x i
L,,j (x,,--z,,t) = 0, i= 1...N, j = 1.. .N. (5b)

a t

These can be logical conditions involving logical operat ions such as AND, OR,
and NOT. Each interval can be considered as a s tandalone s imulat ion process,
and mus t be init ial ised as such so tha t initial conditions for in terval boundaries
mus t also be computed during the s imulat ion process. In a general formulation,
this would involve equations tha t hold at the in terval boundar ies to relate quan-
tities before and after the switching event to e . g . specify tha t the mass content of
a t ank is continuous over the transit ion:

dx j dx~.
x, 0 (5c) T,,j(xj, d t ' ' - - ~ -) = "

Initially, equat ion systems (1)-(5) had to be coded directly into the solver frame-
work and no other modelling facility t han a p rogramming language such as
FORTRAN was available. Languages such as GAMS (Brooke, e t a l . , 1998) or
MathML (Ausbrooks, e t a l . , 2001) simplify the specification of the mathemat ica l
formulat ion but do not provide means for s t ruc tur ing the possibly large set of
equations.

Systems modell ing languages

Systems-oriented modelling language use some sort of a s y s t e m m o d e l as a basic
concept. Such a system model can be connected to other models to yield a model
s tructure. According to systems theory, a model is usual ly regarded as
decomposable into a number of subordinate models, so tha t aggregat ion hierar-
chies of a rb i t ra ry depth can be developed. The main advantage of such a repre-
senta t ion is, t ha t the modeller can limit the complexity of the modelling effort by
focussing on individual par ts of the overall model. Fur ther , par t s of a model can
be reused as such. Each system model contains a set of equat ions of type (1)-(5)
and can be connected to others by specifying connection equat ions of the form

X l -" X k

98

These denote that an output of some model is equal to the input of another one.
Modelling languages that simplify the development of large-scale models have
been available since 1967 and have improved since then. Starting with CSSL
(Continuous systems simulation language, Augustin et al., 1967), and its deriva-
tions like ACSL (Advanced Continuous Simulation Language, Mitchell and
Gauthier Ass., 1992), Omola (Nilsson, 1993) and Dymola (Elmqvist, et al., 1996)
were important stages particularly well known in the control engineering com-
munity.

These domain-independent (also called multi-domain) modelling languages have
resulted in a standardization effort called Modelica (Modelica Association, 2000).
Modelica aims at providing a standard language that is based on object-oriented
concepts to simplify model development and reuse. The basic element in Modelica
is a class definition, which may occur as e.g. a model class, a variable class (a
type), or a module for structurization purposes. These facilities can be used to in-
troduce domain-specific models, as shown in the example (Figure 2).

p a r t i a l model SeparationStage
MaterialFlow phase 1 in, phase 1 out;
MaterialFlowphase 1 in, phase 1 out;

e q u a t i o n
end SeparationStage;
pa r t i a l model StagedSeparationApparatus

p a r a m e t e r Integer no_stages "the number of stages";
SeparationStage stages[no_stages] "the stage models";

e q u a t i o n
end StagedSeparationApparatus;
pa r t i a l model CountercurrentStagedSeparationSection

ex tends StagedSeparationApp aratus
e q u a t i o n

/! connect the phase_l ports
for i in 1:(no_stages- 1)

connect(s tage [i] .phase 1 out, stage [i+ l] .phase 1 in);
end for;

/! connect the phase_2 ports in countercurrent direction
for i in 1:(no_stages-I)

connect(s tage [i] .phase 2 in, stage [i+ l] .phase 2 out);
end for;

end CountercurrentStagedSeparationSection;

Figure 2. Example of reusable models formulated in Modelica

99

This Modelica fragment shows an abstract definition of a separation stage that
has simply inlets and outlets for two phases. These are represented by special
connector classes (not shown for the sake of brevity). The coupling of connectors
is achieved by the connect statement as shown in the CountercurrentStagedSepa-
rationSection model. On the other hand, we define a model for a staged appara-
tus by specifying a fixed number of stages. For a staged separation model with a
countercurrent flow pat tern an abstract topology can now be modelled without
specifying what the individual pieces are. The model of the countercurrent sepa-
ration apparatus inherits from the more general staged apparatus model using
the extends keyword. Note, that all of these models have been declared using the
Modelica keyword partial, which specifies that these models have to be further
extended to be used in a concrete model. This is shown in a further example of
Modelica :

m o d e l VLTray e x t e n d s SeparationStage
. o o

equation
/ /adds two phases in equilibrium

end VLTray;
m o d e l DistillationColumn

extends CountercurrentStagedSeparationApparatus
(no_stages=no_trays, stages=VLTray [no_stages])

Rea l reflux_ratio;
I n t e g e r no_trays "the number of trays of column";
Condensor condensor;
Reboiler reboiler;

equations
//connect tower with condensor and reboiler

end DistillationColumn;

Figure 3. Extending generic models in Modelica

A vapour-liquid separation tray is described as a special kind of a general separa-
tion tray, again employing Modelica's inheritance mechanism using extends. A
distillation column model is then defined as a staged apparatus with a counter-
current flow pat tern where the individual stages are two-phase systems. By
separating the flow pat tern (concurrent, countercurrent) from the actual separa-
tion phenomena (VL/LL equilibrium) a number of different separation models
can be rapidly built without specifying identical information over and over. This
way of modelling demonstrates the power of the two orthogonal concepts of an
aggregation and a specialization hierarchy for the reuse of models, here in the
chemical engineering domain. Further, it can be seen tha t the definition of new
constructs such as variable and model types can be used to develop libraries for a
particular domain, so that the language can be tailored at least for the mathe-
matical representation of process models. A formal specification of non-

100

mathemat ica l properties such as a geometric description of the model has not
been achieved so far. The process engineering community also produced model-
ling languages, which were more or less tailored to par t icular requirements in
chemical process modelling and simulation, but have been used in other domains
as well. SpeedUp (Aspentech, 1997) as an early instance introduced an interface
to a physical properties calculation engine, which relieved the modeller of the
burden to code physical property models in the form of equations shown above.
Further, this interface allowed to include models which were coded as algorithms
ra ther than equations which enabled the inclusion of e.g. local property models or
phase stability tests which are impossible to code in an equation-oriented form
shown above.

Ascend (Allan, et al., 1996), although offering mostly generic modelling concepts
has primari ly been used in the chemical engineering domain. It offers a powerful,
object-oriented modelling language together with interest ing documentation fea-
tures (Allan, 1997). AspenTech's Custom Modeler (Aspentech, 2001), a follow-up
product to SpeedUp has improved on the modelling language of SpeedUp, e.g. by
adding object-oriented features such as hierarchical decomposition. So far,
gPROMS (Process Systems Enterprise, 2000) is probably the only known lan-
guage, which supports all of the domain-reliant features mentioned above and is
also available as a commercial product. Besides the specification of model equa-
tions (1)-(5) gPROMS also allows the specification of an operation model, which is
needed to represent external actions imposed on a process model during its op-
erations. This so-called task language has made gPROMS a popular tool for de-
tailed batch process modelling where the batch recipes can be represented by
such an operation model. A task is composed of e lementary tasks and timing
structures. Elementary tasks describe single actions imposed on the process
(changing a valve position, specifying changes in the variables), whereas the tim-
ing structures can be used to position the elementary tasks with respect to time,
specifying sequential or parallel execution, for example. Finally, elementary
tasks and timing structures can be assembled to a task, a complex operation pro-
cedure, which allows the reuse of an operation procedure in different contexts of a
model. The following example shows how a continuously stirred tank reactor
(CSTR) can be modelled together with its operating procedure. It is operated in
plain batch mode, where each batch consists of a phase where two reactants are
fed in sequence, and, after a subsequent reaction phase, the product is drained
from the tank again.

MODEL Cstr
not shown

END
TASK FeedReactant

PARAMETER
Reactor AS MODEL Cstr
Inlet AS INTEGER

101

FeedRate AS REAL
FinalVolume AS REAL

SCHEDULE
SEQUENCE

RESET Reactor.Fin(Inlet):=FeedRate; END
CONTINUE UNTIL Reactor.TotalVolume > FinalVolume
RESET Reactor.Fin(Inlet):=0; END

END
END
TASK Drain

analogous
END

Figure 4. Operation model specified in gPROMS

The FeedReactant task basically sets the reactor feed s t ream specified by the
variable Inlet to the desired FeedRate and continues the (dynamic) simulation
until a FinalVolume has been reached. Then, the feed s t ream into the reactor is
switched off again simply by setting the feed rate to zero. The task description to
drain the product from the reactor again is very similar and therefore not shown
here.

TASK DoReactionBatch
P A R A M E T E R

Reactor AS MODEL Cstr
S C H E D U L E

S E Q U E N C E
FeedReactant(Reactor IS R1, Inlet IS 1, FeedRate IS 0.1,

TerminationVolume IS 2.5);
FeedReactant(Reactor IS R1, Inlet IS 2, FeedRate IS 0.2,

TerminationVolume IS 4);
CONTINUE UNTIL (R1.X(3) > 0.25)
DrainProduct(Reactor IS R1);

END
Figure 5. Aggregation of operation models in gPROMS

Performing a reaction in batch mode is then described by reusing the more
granular tasks FeedReactant and DrainProduct defined above. The batch time is
determined by the concentration of product 3, which has to reach a certain level.
Obviously, the DoReactionBatch task could be further aggregated with other
tasks, e.g. for a subsequent separation of the products in semi-batch or batch
mode. In addition to the reuse for Models, gPROMS provides reuse also for task
descriptions based on object-oriented descriptions.

102

3.1.2.2 Domain-oriented Modelling Languages

A natural modelling approach for a chemical engineer is to represent his/her per-
ception of the process in terms of concepts for communication among engineers
instead of directly using mathematical equations as shown above. Such a model-
ling process allows the modeller to stay close to his/her mental model of the proc-
ess so that it is easy for a domain expert to express this knowledge through a
suitable modelling language. With respect to the modelling process overview
sketched in the introduction, the modeller would ideally be able to directly repre-
sent the conceptual model in a tool, abstracting from mathematical details pre-
sented in the former sections.

Flowsheeting tools/languages

The most prominent instances of the class of commercial process modelling tools
are flowsheeting tools such as Aspentech's Aspen Plus (Figure 6), Hyprotech's
Hysis.Plant, or Simsci's Pro II. All of these offer a library of precoded models on
the granulari ty of a unit operation. These models can be configured through a
limited set of choices, but the underlying phenomena and the incorporated
chemical engineering knowledge are fixed and cannot be inspected or even modi-
fled from the outside.

In the chemical engineering domain, the structure of a conceptual model of a
plant can be found by selecting the balance volumes and the streams connecting
them, first. Usually, these are chosen identical or at least close to the physical
equipment boundaries so that the reuse of models for common pieces of process
equipment is simplified. On this coarse level the process is described in terms of
e.g. unit operation models and stream models. This correspondence between the
mental model and the modelling concepts offered by the tool is probably an ira-
portant reason for the success of flowsheeting tools.

After choosing a suitable model structure, the behaviour of each balance volume
must be specified. On a conceptual level this can be done by choosing equilibrium
and non-equilibrium phenomena, the coarse behaviour of the materials proc-
essed, and a suitable geometry. Flowsheeting tools offer a set of fixed choices for
those items, thereby hiding a lot of mathematical and physical complexity from
the user at the cost of reduced flexibility. Although suitable for process simula-
tion and/or optimisation, this type of tools/languages cannot be used for efficient
solution of process synthesis problems involving structural optimisation, for ex-
ample, the determination of the optimal process flowsheet.

103

Figure 6. Aspen+ user interface with modell ing concepts on a flowsheet level

Process modelling languages

A broad range of process modelling languages on a more granular level of detail
with increased flexibility has been a topic of interest to several academic groups
throughout the 90s (Stephanopoulos, et al., 1990a; Marquardt, 1992; Drengstig,
et al., 1997;, Jensen, Gani, 1999). In these languages, modelling concepts are pro-
vided on varying level of granularity (multilevel modelling), usually ranging from
individual phenomena such as diffusion and reaction up to models of unit opera-
tions and their connections to a plant model. This level of versatility is primarily
achieved by a hierarchical decomposition approach, which allows the specifica-
tion of models not only in terms of flowsheet elements, but on arbitrary levels be-
low. As an example, a large plant model could be broken down into a reaction and
a separation section together with their recycle structure. Each section can be
further decomposed into logically coherent models, e.g. a distillation column with
its boiler and condenser or a reactor with a pre-heater would be found on this
level. Going further, the distillation column will be refined into a set of trays and
each tray is in turn decomposed into a liquid and a vapour phase model, for ex-
ample.

As an example, M O D E L i A (Stephanopoulos et al., 1990a) introduces the generic
process unit as a central modelling element and various subtypes thereof to span
modelling contexts concerning different levels of granularity. These range from
the plant level down to the sub-unit level, where the latter represents e.g. indi-

104

vidual phases within a unit operation. For representing the process structure,
MODEL.LA offers ports, which denote connection points between models and
streams, which connect them. The process behaviour can be modelled using vari-
ables and constraints. Finally, MODEL.LA provides the notion of the modelling
scope, i.e. through a set of conditions which must hold for the modelling context
in which the model shall be used, thus supporting multifacetted modelling of
processes by providing different models to be used in different modelling contexts
(Stephanopoulos, et al., 1990b). This language features also a par t ia l support for
documenting the model. From a formal point of view, MODEL.LA is strongly
based on the notion of semantic networks, which were early approaches in
knowledge representat ion (Russel, Norvig, 1994). A fragment of MODEL.LA de-
scribing a continuously stirred tank reactor is shown in Figure 7.

((JACKETED-CSTR IS-A UNIT)
(THE COMPONENTS OF JACKETED-CSTR IS VESSEL)
((VESSEL IS-A SUB-UNIT)
(THE PURPOSE OF VESSEL IS "...")
(...)
ENDMODEL)

(THE COMPONENTS OF JACKETED-CSTR IS JACKET)
((JACKET IS-A SUB-UNIT)
(THE TYPE-OF-MODEL OF JACKET IS LUMPED)
(THE COMPOSITION-CHARACTERISTICS OF JACKET IS HETEROGENEOUS-

COMPOSITION)
(THE PHASES OF JACKET IS LIQUID-I)

(THE PRESSURE-CHARACTERISTICS OF JACKET IS
(SET.OF (HOMOGENEOUS-PRESSURE ISOBARIC)))

(THE THERMAL-CHARACTERISTICS OF JACKET IS
(SET.OF (HOMOGENEOUS-TEMPERATURE NON-ISOTHERMAL)))
(...)

(THE OUTPUT-CONVECTIVE-PORTS OF JACKET IS JACKET-OUT)
((JACKET-OUT IS-A CONVECTIVE-PORT) ENDMODEL)
(THE PHASES OF JACKET-OUT IS LIQUID-1)

(THE INPUT-CONVECTIVE-PORTS OF JACKET IS JACKET-IN)
((JACKET-IN IS-A CONVECTIVE-PORT) ENDMODEL)
(...)
ENDMODEL)

ENDMODEL)
Figure 7. CSTR description in MODEL.LA

VeDa (Verfahrenstechnisches Datenmodell) used a frame-based notation to rep-
resent process engineering models from a system-theoretic perspective
(Marquardt, et al., 1993). VeDa uses several meta layers (Baumeister, 2001) to
achieve a flexible model representat ion and builds on devices as major processing
compartments and connections which denote the flows between devices. Recently,
VeDa has become par t of CliP (Bayer, et al., 2001), extending the scope to process

105

design in general. The concept of using meta layers to organize the data model
has been further extended and the extensibility has been taken care of by intro-
ducing so-called part ial models (sort of modules in the data model). CliP cur-
rently comprises part ia l models for mathemat ica l modelling, a function-oriented
view of the process, the realisation of the process, economics and cost engineering
as well as control engineering concepts.

Another approach, based on a graphical notation, has been presented by Dreng-
stig, et al. (1997). TRAV (Transport, Reaction, and Accumulation View) uses a
graphical notation of not only the process structure (or topology), but also of the
phenomena related to energy and chemical species. Different symbols are avail-
able for accumulation, t ransport and reaction/generation and related by arrows
indicating flows among these effects.

D i s c u s s i o n

In the field of software engineering and construction, object-oriented information
modelling (Alhir, 1998) turned out to be a useful technique to represent domain-
specific concepts and their relationships. Although all of the languages men-
tioned have an implicit information model, few development efforts were explic-
itly based on such an implementat ion independent description of the process en-
gineering domain. Rather, the preferred approach was to directly define a hu-
man- and machine-readable representat ion as text, usually defined by some
grammar (Aho et al., 1986), along a part icular tool being developed. This has led
to a variety of languages which do all express tool-specific concept in one or an-
other way and are thereby insufficient to use for communicat ing models across a
broad range of model-based applications. Recent s tandardizat ion efforts such as
Modelica or MathML aim at a completely tool-independent representat ion of
models so tha t they offer the potential to integrate a large number of applications
for modelling and simulation.

Figure 8. Relationships of conceptual models and languages

106

In the future, we would favour that a three-level information model together with
a suitable set of model representation languages emerges (cf. Figure 8). This vi-
sion encompasses a mathematical base layer, which provides a rich set of generic
mathematical modelling concepts on the lowest level. The systems engineering
layer introduces the systems-oriented concepts decomposition and coupling based
on object-oriented principles. On top of these, domain-specific extensions such as
a chemical engineering layer are to be defined on the highest level by introducing
specific concepts (e.g. for phenomena or unit operations) using the object-oriented
principles defined on the layer below.

A domain model for the concepts on these layers proposed could be specified us-
ing UML. For each level, standardized representations suited to different per-
spectives can then be defined as representations to facilitate tailored exchange of
information among humans or tools, textual as well as graphical ones. Using
XML, the MathML standard could become a s tandard representation of the
mathematical view of a model. Modelica could serve as a s tandard representation
for a systems-based, multi-domain modelling approach offering rich capabilities
of object-oriented principles. Finally, a family of languages tailored to individual
domains is required to enable an efficient model development in any of these do-
mains. An XML-based approach towards such a body of standards with a focus on
process engineering models called CapeML.Model is currently undertaken as
part of the Global CAPE-OPEN project (Braunschweig, et al., 2000).

Whereas the process flowsheeting languages and corresponding concepts are in
widespread use today, the more academic process modelling languages have not
found much interest in industrial applications so far. Two important possible
drawbacks are that

�9 although focusing on process engineering concepts, a good mathematical
understanding of modelling is still required because a complete generation
of a process model from a specification of physical and chemical concepts
has not been achieved up to date, and

�9 implementations of these languages (see further below) have not been
available in industrial strength software.

More recent approaches still have to prove their theoretical advantage as opposed
to generic modelling languages. Generic modelling languages such as gPROMS,
ACM, or GAMS have proven to be powerful, flexible tools besides the more easy
to use flowsheeting process modelling tools.

3.1.3 MODELLING TOOL FUNCTIONALITY

Rapidly, computer-aided support has been identified as an important means to
speed up the modelling process. The intention of a chemical process modelling

107

tool is to support a certain modelling methodology, where a methodology in gen-
eral is commonly understood as a combination of a certain work process and a no-
tation of domain-specific concepts as introduced above (Oliver, et al., 1997; Jarke,
Marquardt, 1995). Both, process and notation should be tailored to each other,
the process describing when to use which concept for which purpose.

However, as of today it is impossible to automate the complete modelling process.
Instead, some parts of the modelling process are formally understood, whereas
others must be considered as a creative activity and therefore require user inter-
action (Jarke, Marquardt, 1995; Lohmann, Marquardt, 1996). Hence, it is impor-
tant to identify those parts of the process, which can be automated in order to
formalize and implement them. As an example, finding the balance volumes in a
chemical process is an activity, which requires a bit of experience and an under-
standing of the model. On the other hand, setting up the balance equations given
the balance envelopes, the phenomena occurring in them, and their interconnec-
tions is a pretty straightforward task, which can easily be automated (Gerstlauer
et al., 1993; Jensen, Gani, 1999).

The following sections present an overview of those parts of the modelling proc-
ess, which are well understood so that they could be formalized, making them
well-suited for implementation in a tool. We structure the functionality of a mod-
elling tool according to its support to create and manipulate conceptual and/or
mathematical models, to analyse them for e.g. correctness and solvability, and to
finally translate them into an efficient representation suitable for the solver.
These issues will be discussed in more detail in the subsequent sections.

3.1.3.1 Mode l Crea t ion and M a n i p u l a t i o n

Functionality to actually perform the creation of the model and certain modifica-
tions of it are very interesting as they do not just automate some tedious task but
actually introduce domain knowledge as part of the modelling tool functionality.
Hence, tools relying on such a paradigm can be classified as knowledge-based.
The knowledge-based systems are those that in addition to the features found in
the generic modelling languages, contain "built-in rules" that assist in setting up
model equations. Thus, the goal of the knowledge-based systems is to let the user
describe new models either through phenomena-based information and/or
through experimental data and let the "built-in rules" abstract this description
into a set of equations. In the development of the model equations, several types
of knowledge bases may be used, such as:

�9 Fundamenta l model objects
�9 And-Or graphs
�9 Algorithms that screen for closure constraints
�9 Algorithms that assist in the development of new empirical/semi-empirical

models

108

Also, other knowledge representat ion mechanisms can be used to aid the model
construction step such as an expert system. However, few of those have actually
been applied to chemical process modelling. Sorlie (1990) for example employed a
blackboard architecture in order to assist the modelling process by a predefined
set of rules which are supervised by a scheduler.

F u n d a m e n t a l mode l objects

Fundamental modelling objects represent core concepts from the application do-
main of chemical engineering. In many knowledge-based process modelling tools,
these objects are associated with algorithms tha t assist the user in performing a
phenomena-based description of a new model. This phenomena-based description
may either be used by searching for model equations that match the specified de-
scription (search-based methodology) and/or it may be used to eliminate parts of
a reference model tha t is stored in a model library, thereby, incorporating the
concepts of model reuse and model transformation.

Fundamenta l modelling objects can be classified in terms of fundamental region
objects and fundamental connection objects, similar to devices and connections
introduced by Marquardt (1996). This classification is based on the concept of di-
viding the model equations into those that represent a defined boundary (region)
in terms of balance equations, constitutive equations and constraint (or condi-
tional) equations. Also, two or more boundaries or regions may be interconnected
through connection equations. New fundamental objects can be derived from
equations tha t are related to objects belonging to an existing set of reference
(fundamental) model objects. Ideally, these fundamental modelling objects may
also be predefined in terms of a library. The elements of this library, fundamen-
tal modelling templates, can control the addition of user-defined equations, for
example, when the library (or reference) constitutive equations belonging to a
reference model object are not suitable. A set of rules is therefore necessary to
generate (retrieve) the necessary equations from the reference model objects and
to check for consistency between boundary (mathematical /phenomena) descrip-
tion and generated/retrieved equations. A "search-based" methodology therefore
need to be applied to assist the user in locating and retrieving the most appropri-
ate reference fundamental objects among the feasible al ternatives available in
the library. Figure 9 shows the classification of the model equations belonging to
a fundamenta l model object.

109

Figure 9. Classification of fundamental modelling object equations

A new model can be generated by following the inheri tance pa th for each class of
equations (balance, constitutive and constraint) according to the boundary de-
scription. The end of each path is connected to a reference model object. If the
reference model object matches the boundary description, it is retrieved, other-
wise, it must be modified or a user-defined reference model object has to be intro-
duced.

And-Or graphs

A similar, yet fundamental ly different approach, is the representat ion of process
modelling knowledge using an And-Or graph (Bogusch, Marquardt , 1997).
Whereas the approach presented in the previous section uses a specialization hi-
erarchy to represent knowledge of the process engineering domain, And-Or-
Graphs use a composition approach to represent the relationships of variables
and equations. Such a graph is part i t ioned into a set of variable type nodes and a
set of equation type nodes (Figure 10). Directed edges from variables to equation
describe al ternative refinements for a variable type (Or-edges). One of these
equations has to be selected as par t of the process model. As an example, a diffu-
sive mass flow J can be refined by a variety of phenomenological relations such
as Fick's law of diffusion, Stephan-Maxwell equations, etc. Direc tededges from

110

equat ions to variables describe which variables are constrained by an equation.
Each of the variables in an equation occurring in a process model must either be
fur ther refined using the And-Or graph or it mus t be specified as a fixed parame-
ter of the model. Based on such a representa t ion of domain knowledge, model de-
velopment can be seen as an activity of finding a suitable pa th through an And-
Or-Graph, where a decision according to modelling assumpt ions and objectives
mus t be made at each Or-branch. In addition to the specification of the graph, a
set of pruning rules can be useful in order to el iminate choices, which are not
suitable in the current modelling context. The choice of geometric relations
should be constrained by the choice of the chosen geometry, for example.

Figure 10. Part of an And-Or-Graph representing domain knowledge

S c r e e n i n g for c losure cons tra int s

Such algori thms screen the developed equat ion system for variables that should
be constrained with closure equations. That is, if all the variables within a clo-
sure equat ion are in the equat ion system, then this kind of algori thm should add
the closure equation to the equation system in order to indicate tha t the variables
wi thin the constraints are not independent.

�9 Development of new empirical/semi-empirical models
�9 The following algori thms may be used to assist in the development of new

empirical]semi-empirical models:
�9 Reference constitutive relations - used to create a new phenomena model
�9 Dimension a n a l y s i s - the new set of equations need to be mathematical ly

consistent

111

Statistic/plotting tools that assist in analysing experimental data in order
to determine an empirical constitutive relation (phenomena model)
Model analysis - identify linear equations, decompose equations into a set
of summation terms, identification of terms through intensive variables,
etc.

3.1.3.2 Model A n a l y s i s

Model analysis is of high interest during model development. Model analysis
tasks can be distinguished in mathematical criteria (which are derived e.g. from
solvability criteria and therefore partially depend on the solver type being cho-
sen) and domain-specific criteria, which are relevant in a physical or chemical
context.

A number of those criteria have been listed by Jensen (1998), Bogusch et al.
(2001), or Piela (1989). Starting with physically motivated criteria, there is the
analysis of physical dimensions of the variables occurring in an equation. Obvi-
ously, the domain of the terms on the left and right hand side must be identical,
i.e. mass per time for a mass balance. Further, the list of substances within each
balance volume can be constructed by propagating them along the structural
connections in the model if permeability of walls etc. is provided by the modeller
(Bar, Zeitz, 1990). Several mathematical problems can already be identified on a
process engineering level. If e.g. too many balance equations/closure equations
are set up, the resulting model will have a rank deficiency because two equations
will be linearly dependent.

The analysis features which fall into the mathematical domain a far more com-
prehensive. Here, degree of freedom analysis, s tructural solvability and index
analysis (Jensen, 1998; Bogusch et al., 2001; Russel & Gani, 2000; Unger, et al.,
995) have been developed and implemented in several chemical process modelling
tools.

3.1.3.3 Model T r a n s f o r m a t i o n

All of the model formulations presented above need an additional solution algo-
r i thm to actually find a solution from some given input such as the parameter
values for an algebraic equation system and the initial conditions in case of a dif-
ferential-algebraic equation system. Without the solver algorithm, the model as
formulated above can only be used to check whether a given state is among the
possible states of the system under consideration. This functionality of the model
is used by the solver to iteratively determine a solution of the model, together
with derivatives of the model equations f with respect to the states x in order to
guide the iteration process. In order to connect the model to such an algorithm,
the model equations and derivatives must be available as an executable piece of

112

code. Such a model representation is also referred to as procedural model repre-
sentation, as opposed to a declarative model representation where the model is
given as data, which does not exhibit any functionality. We call the transition
from the declarative to the procedural representation a model transformation (of
a specific kind).

The model resulting from the modelling process is often not well suited to be used
by the solver directly. A number of simplifications and optimisations are usually
applied to the model as it is transformed. For example, a discretisation based on
the method of lines approach can be employed to make PDAE systems solvable by
s tandard DAE solvers (Pfeiffer, Marquardt, 1996). Optimisations of the equation
structure can be performed, e.g. by reordering equations, eliminating explicit
equations, or factoring out common equation structures or subexpressions (Car-
panzo, Maffezoni, 1998; Allan, Westerberg, 1999; Morton, Collingwood, 1998).
The final step of a modelling tool is to transform such a declarative model into a
procedural representation to be used by the solver. Generally, there are two dis-
tinct approaches.

First, the model can be translated into some programming language (e.g.
FORTRAN or C++), effectively generating the procedure to be used by the solver
(R~iumschi&ssel, 1997). During this step, automatic derivative techniques
(Bischof, et al., 1997; Grievank, et al., 1996) can be used to supply Jacobian and
sensitivity information required for the solution step. The resulting code must
then be compiled and linked together with the solver or it is transformed into a
reusable software component. Ideally, such a component is equipped with stan-
dard interfaces according to the CAPE-OPEN standard so that it can be used in
combination with any standard-compliant solver in a plug-and-play manner.

An alternative approach to achieve a procedural model representation is to trans-
form the model into a computation tree, where the operations are represented as
nodes and the variables are represented as leaves of the tree (Keeping, Pan-
telides, 2000). This tree can then be evaluated in depth-first or breadth-first
manner resulting in values of the residual expressions. Additionally computing
the chain rule along the computation of the tree also yields Jacobian information.
A possible advantage of this approach is that domain-specific knowledge can be
taken into account in order to speed up the transformation process. This is par-
ticularly important as process models quickly grow into sizes where generic com-
piler optimisation capabilities get stuck due to the sheer size of the model (Allan,
Westerberg, 1999). Further, it does not require the user to have a particular
compiler installed on his/her machine.

The MoT modelling toolbox (Russel and Gani, 2000) also provide feature to trans-
late a model into a programming language such as C++ according to a specified
format and/or direct solution of the model equations without the need for a par-
ticular compiler installed on the machine.

113

3.1.4 MODELLING TOOL A R C H I T E C T U R E S

A set of concepts useful for chemical process modelling has been presented and
functionality, which is suitable for an implementation has been discussed above.
This section will now concentrate how these two can be successfully used in a
modelling tool implementation.

The coarse organization of the required functionalities into a software tool is gen-
erally called architecture. Architecture of a software system is a term on which
most people have an agreed understanding until it comes to a precise definition.
There seems to be a common understanding of architecture as a blueprint of a
software system, a description that facilitates the construction and understand-
ing of software artefacts. Further important objectives to be achieved by an archi-
tecture are the management of change and the mediation of different views of the
stakeholders involved in a software project (Buschmann, et al., 1996; Kruchten,
1995). By common sense, architectures consist of building blocks (called modules
or components), their interfaces, and the relationships between the building
blocks (Alhir, 1998). Here, the limit of common agreement is reached. There are
ongoing debates about whether an architecture is conceptual (providing a basic
understanding of a possible realization of the system) or implementational (de-
scribing a concrete implementation of the system). Also, it is not agreed whether
an architecture also describes the control flows within the systems or distin-
guishes different roles of its building blocks.

As it is impossible to describe a modelling tool architecture in detail without a
concrete example, we will focus here on the properties of architectural patterns.
Such a (architectural) pat tern addresses a recurring design problem that arises in
specific design situations, and presents a solution to it (Buschmann, et al., 1996;
Gamma, et al., 1994). Being a generic rather than a specific solution makes pat-
terns interesting to discuss and compare modelling tools apart from specific ira-
plementations. Here, we will focus on general properties in terms of functionality,
integration aspects and extensibility, which emerge from these patterns.

In general, two broad classes of modelling tool architectures can be distinguished.
The first class is batch-oriented and requires a complete problem specification
from the beginning and a description what to do with it. All remaining activities
will be performed automatically without further user interaction. On the con-
trary, the interactive modelling tool aids the user in constructing the model and
specifying the description of what to do with the model. Open process modelling
tools finally are tailored towards integration tasks and easily fit into engineering
environments.

I14

3.1.4.1 B a t c h - o r i e n t e d Mode l l ing Tool A r c h i t e c t u r e s

A batch-oriented modelling tool can be character ized as a single tool that reads a
model definition from some input file (which is usually wr i t t en using some text
editor). Then, a sequence of steps with this model input is performed until the fi-
nal goal, a solvable model formulation, is achieved. Often, the final solution step
is even in tegra ted into the tool itself. Such an archi tectura l pat tern , where data
is processed in a number of stages, one after the other, is commonly called a pipes
and filters archi tectural pa t t e rn (Buschmann, et al., 1996). Each processing step
for da ta is called a filter because it consumes input data and enriches, refines, or
t ransforms it, and finally outputs the modified data again. Further , so-called
pipes are established; they are responsible to establ ish a communicat ion link be-
tween filter components and to synchronize the execution of active filters.

A pipes and filters archi tectural pa t t e rn for process modelling and simulation
tools is depicted in Figure 11 and will be explained subsequently. A tool, which
unders tands a textual model representa t ion (e.g. in Modelica or gPROMS lan-
guage), requires a pair of a scanner and parser at the beginning of a suitable
pipes and filters combination. These tools stem from the compiler construction
domain (Aho, 1986). In fact, many batch-oriented process modelling tools have a
lot in common with a compiler. The scanner is required to separa te the input lan-
guage into syntactical elements, such as keywords, symbols, etc. Based on this
syntax tree, the parser recognizes constructs defined in the language and assem-
bles a token tree to describe the input in terms of the grammat ica l elements of
the modelling language tha t are usually described in extended Backus-Naur form
(EBNF) (e.g. Modelica Association, 2000). Although scanner and parser could be
assembled in a pipes and filter manner as well, compiler construction has opti-
mised the interact ion of these two tools so well, tha t they can be considered as a
single uni t wi thin the overall architecture.

Figure 11. Pipes and filters architecture of modelling tools

The token tree obtained from the parser is usual ly fur ther analysed for semanti-
cal correctness, this can be considered as a first analysis step. The parser only
verifies tha t the language elements are used in a proper configuration (e.g. an
operator must occur between two variables), but does not check e.g. whether
variable names being referred to are actually defined. This is accomplished by a
separa te module, a semantic analyser as shown in Figure 11. Afterwards, modifi-
cations such as symbolic discretisation can be performed and the resulting code
can be optimised with respect to numerical performance and robustness. Then, a
model t ransformat ion in the sense of a code generat ion step (similar to a com-

115

piler) can be applied. The final code generation filter could e.g. output the con-
tents of a Modelica model e.g. as a set of C++ class definitions which can then be
compiled into an executable chunk of code or a CAPE-OPEN compliant compo-
nent (Geffers et al., 2001) to be evaluated by the solver. In terms of compiler con-
struction the final stage where code is generated would be referred to as a back
end.

An interesting property of such an architectural style is that it is often possible to
reuse individual filter components or to reconfigure them in different ways. As an
example it is common in compiler construction to use different back ends for dif-
ferent target formats. Using this approach, one could build a batch-oriented rood-
elling tool tha t can, given a model in a certain input representation, output the
model in a variety of different target platforms. Figure 12 shows an extended
modelling tool architecture according to the pipes and filters architecture which
uses different back ends to generate code not only for C++ but also for GAMS and
Modelica. Also, different analysis and/or optimisation stages may be employed,
depending on the problem to be solved.

Figure 12. Pipes and filters architecture with different back ends

Tools using an architecture resembling the pipes and filter structure are often
developed along a particular modelling language, such as gPROMS or SpeedUp.
This language is implemented in the scanner/parser module and describes the
interface of the tool to the user. With respect to the functionality classification
mentioned above, the pipes and filters architecture focuses on the aspects of
model analysis and model transformation but usually provides only weak support
for model creation and manipulation.

3.1.4.2 Interact ive Model l ing Tools

Interactive modelling tools on the other hand work quite differently. The main
difference is tha t they do not require the user to specify the full model right from
the start, but they support him/her also during the model creation and manipula-

116

tion process. Hence, an interactive modelling tool can be applied to a process
where generat ive functionality can be applied only par t ia l ly to the overall model-
ling process. This feature makes interactive modelling tool architectures particu-
larly well suited for the use of process modelling languages. As already men-
t ioned above, process modelling languages often require fur ther user input since
it is impossible to generate complete process models from a simple domain speci-
fications.

An interactive modelling tool frequently switches be tween a user-driven and an
au tomated mode. As long as user input is required, the user drives the modelling
process. Then, he/she can launch au tomated functions, which can make quick
progress along the modelling effort. These au tomated functionalities usually
cover model analysis and the t ransformat ion of the model into a form suitable for
the solver. If any of those steps fail, the modeller will have to go back into the
model manipula t ion mode to correct any problems reported by the tool. Also, a
failing solution process might force the modeller to reconsider his model.

In recent times, also the actual generat ion of model equat ions has been fur ther
e laborated (cf. Section 0). Fur ther , it is impor tan t to note tha t an interactive tool
can provide analysis functionality also in the user-driven mode. The tool can re-
spond to any user input and provide immediate feedback if any incorrect infor-
mat ion has been entered, such as a reference to a variable unknown so far. AI-
though a tool may not now how to write correct equations on its own, it can very
well identify equations, which are incorrect with respect to their physical or
ma themat ica l dimensions.

Figure 13. Document-view architecture of a modelling tool

A useful archi tectural pa t t e rn to describe an interactive modelling tool is the so-
called document-view architecture (Buschmann, 1996) as shown in Figure 13. It

117

consists of a central storage of the data being manipulated by the tool called a
document and one or more views which offer representation and manipulation
facilities of the data. The model document is usually an implementation of a set
of modelling concepts as presented above. Views for the model aspects structure,
behaviour, or documentation are often implemented using a graphical user inter-
face and a graphical language to represent the modelling concepts employed.
These view/manipulation modules can be distinguished into model manipulation,
analysis and model transformation features according to section 3.1.3.

It should be further noted that the implementation of an interactive modelling
tool is far more complicated because analysis steps have to be applied potentially
after each user interaction and things analysed to be correct may be no longer
correct after the next mouse click, whereas in a batch-oriented tool correctness
needs to be verified only once.

A further difficulty in the development of interactive modelling tools arises in the
integration with a simulator. In terms of the~pipes and filters architecture pre-
sented above, the interactive modelling tool could assume the role of a data
source for the subsequent simulation tool, thereby integrating the pipes and fil-
ters architecture. In practical applications, the interactive modelling tools rely on
the generation of a model as a text file, which is then used in a batch-oriented
tool for model transformation and simulation. Many of the academic initiatives in
developing interactive modelling tools work this way, i.e. ModDev (Jensen &
Gani, 1999), the recent work around MODEL.LA (Bieszczad, 2000), or ModKit
(Bogusch, et al., 2001) which are all able to output a model definition file by
means of a code generation step which is suitable for use in e.g. SpeedUp or
gPROMS. But when the simulator flags a difficulty or error (such as a numerical
singularity during the integration of a dynamic model), it is difficult for the in-
teractive modelling tool to take over control again and support the user in cir-
cumventing the problem.

Interactive tools are usually developed as monolithic applications, e.g. the inter-
actions between the different view modules are implicitly coded into the tool.
Hence, it is impossible for others to extend the tool or to use it as a part of some
automated process in a larger software environment. In terms of lifecycle inte-
gration aspects, where such tool integration challenges arise frequently, it would
be favourable if the model data and the control over the tool could be accessed
from the outside (Nagl, Marquardt, 2001; Wasserman, 1990).

ModDev (Jensen, 1998) is a knowledge-based modelling system that is integrated
with ICAS (Gani et al. 1997) and is able to generate process models based on the
description given above. It employs a graphical user-interface to convert the
modeller's perception of the process in terms of phenomena, accumulation, and
constraints, and aggregates them to form models of the unit operation defined in
terms of a boundaries, connections, and states. In ModDev, fundamental model-

118

ling objects (as explained in section 0) are used to create generic building blocks.
The fundamental modelling objects and the generic building blocks are then ag-
gregated to form the desired process model. The equation set representing the
process model is then analysed and translated for integration with a solver. The
t ranslated model may be used as an equation set in equation-oriented simulators
or as a block in a flowsheeting system.

ModKit (Bogusch, et al., 2001) is an interactive modelling tool based on the proc-
ess modelling language VeDa (Marquardt, et al., 1993) tha t specifies relevant
domain knowledge. In ModKit several interactive tools contribute to supporting
the modeller in setting up the model equations. These tools comprise editors for
the model structure, for properties such as geometry or phenomena, for model
equations and variables, and for the model documentation. In addition, analysis
tools such as structural solvability and index analysis are made available includ-
ing a graphical representation of the equation system structures (incidence ma-
trices) involved. Besides these tools to manually enter the model topology or
equations, ModKit offers a so-called guidance mode, where predefined parts of
the modelling process are used by the tool to guide the modeller through the
modelling process, proposing him creation, modification, and analysis steps
wherever suitable. The model resulting from the modelling process can be ex-
ported in gPROMS and SpeedUp formats.

Fur ther academic initiatives to be mentioned are Model.La (Bieszczad, 2000) or
Design-Kit (Stephanopoulos et al., 1990a) - these are also knowledge-based tools
that assist the user to generate/develop models based on a description of the
process, boundary, phenomena and so on.

On the commercial side, interactive modelling tools have not attracted too much
attention so far. Aspen Custom Modeler (AspenTech, 2001) is one of the few com-
mercially available modelling tools, which offers interactive functionality to
specify and analyse a process model. However, no actual functionality to generate
any kind of model equations (apart from connection equations describing the
process topology) has been made available on a commercial basis.

Open modelling tools

As a consequence open architectures are a current topic in the development of
modelling tools (Braunschweig et al., 2000). Such environments provide rich in-
terfaces to enable external pieces of software to be plugged in to allow a flexible
configuration of the tool according to the user's needs. Further, these tools often
provide their functionality to the outside through a so-called application pro-
gramming interface so that they can be used as a part of an integrated engineer-
ing process where models are involved as shown by Gani et al. (1997) or Hacken-
berg, et al. (2000). Middleware such as databases access technology (e.g. ODBC,
ODMG, or JDBC standards) or distributed object computing (such as DCOM and

119

CORBA, cf. Chapter 4) have proven an important means to provide functionality
across the boundaries of tools, enabling modelling tools to be tightly integrated
with other engineering processes as part of a software environment.

Figure 14. Client~server and multi-tiered architectures

The resulting architecture resembles (in its simplest form) a client-server struc-
ture, where e.g. a set of client programs share information through a central
server (Figure 14). Often, the server provides only data access (as it is the case
using ODBC) so that clients must implement everything ranging from presenta-
tion to business logic. As a client can in turn provide services to other modules,
such an architecture can be further structured into several layers (also called
tiers), where each layer should provide a well defined abstraction of some service.
Separating e.g. the presentation services, business (modelling) logic, data main-
tenance, and persistence leads to a multi-tiered architecture. A simple client-
server relationship is also referred to as a two-tier architecture.

As an example, the model repository Rome (von Wedel, Marquardt, 2000) offers
its functionality to maintain and manipulate process models to its environment
based on a two-tier architecture. The bottom layer uses an object-oriented data-
base for persistence, whereas the business model layer presents modelling con-
cepts to the environment via a comprehensive set of CORBA interfaces.

In order to gain more flexibility within such a layered architectural model, a
component architecture can be employed (Mowbray, Malveau, 1997). The building
blocks of this architecture are smaller-grained components (as compared to the
layered architecture) with well-defined but limited functionality, which exhibit
client/server relationships among each other. These services ideally share a stan-
dardized interface definition that allows a reconfiguration of the system. The set
of services (e.g. model analysis functionality) can be extended in a simple manner
and services can be exchanged for better or cheaper alternatives. The flexibility
of such a component architecture is leveraged by the dynamic reconfiguration
possibilities provided through the component software techniques.

120

The recent implementation of ModKit uses such a component architecture to pro-
vide a set of editors to the modeller which can be flexibly extended or reconfig-
ured without further modifications of the remainder of the modelling environ-
ment (Marquardt, et al., 2000). ModKit uses the model repository Rome for per-
sistence and basic model manipulation functionality and is being controlled by a
modelling process guidance system so that a four-tier architecture results, where
the interactive layer can be described in terms of a component architecture.

Such an architectural model fully satisfies the requirements on open modelling
system with respect to flexibility, extendibility, and information sharing among
modellers. The dynamic flexibility of components allows to tailor the system to
the particular needs of its users and the networking capabilities of recent soft-
ware technologies provide an essential basis for connecting modellers and model
users working remote from each other. Hence, the modern software technologies
must be considered as a key enabling technology towards the development of an
open model server as suggested by Britt and Pantelides (1994).

3.1.5 S U M M A R Y OF P R O B L E M S & C H A L L E N G E S

Compared to the first implementations of tools for process modelling and simula-
tion an enormous amount of progress has been achieved. Today's modelling tools
provide modelling languages, either based on process engineering concepts or
mathematical perspectives that are suited to represent s tructural and phenome-
nological aspects of chemical process engineering. With respect to the require-
ments sketched above, a number of issues must be considered still open today.

The set of modelling concepts should be improved towards a formal theory to
automatically generate, manipulate, and reason about models. Such a theory will
have a strong impact on the capabilities of modelling tools, but is still an open re-
search issue. It will enable inexperienced modellers to effectively use model-
based techniques for a wide range of applications. A step forward towards such a
theory has been proposed by Hangos and Cameron (2001a) very recently.

Informal documentation about the rationale and intention of models is not satis-
factorily maintained and exploited by modelling tools. All the modeller can do is
attach some comments to his model. Using some sort of methodology such as
IBIS (Rittel, Kunz, 1970) would be at least desirable, but is not sufficient. In the
long term, it must become comprehensible why modifications of a model have
been made. Further, it must be specified whether the expected outcome from
these modifications has been met.

Regarding modelling functionality, improvements must be made by formalizing
the modelling process and identifying further parts to be supported by tools in an
automated manner (Lohmann, Marquardt, 1996; Marquardt, Jarke, 1995). This

121

will lead to a reuse of modelling knowledge, based on experience made in other
modelling contexts.

The vision of a model server (Britt, Pantelides, 1994) mus t be fur ther refined to
provide shared access to models between modellers as well as to enable a model
to be obtained in different representa t ions automatically. Modern software tech-
nologies can be considered sufficiently mature to implement such an environment
complying with a model server architecture. However, this requires a major con-
t r ibut ion from software vendors.

One of the major problems to be tackled on the way to a model server will be the
maintenance of reusable process model libraries. Frequen t modifications neces-
sary due to the i terat ive engineering processes employed in process design and
retrofit lead to a large number of models, which differ only slightly. All of these
must be made available in a comprehensible manne r and s t ruc tured properly in a
l ibrary so tha t they are available for reuse on demand of the modeller. This re-
quires on the one hand powerful algori thms to systematical ly deduce the struc-
ture of the model l ibrary based on the information specified in the models as well
as useful search mechanisms, which find a model, tai lored to the current model-
ling context.

Open standards such as Modelica and CAPE-OPEN are impor tan t means to
achieve an economic implementa t ion of a model server and to enable its interop-
erabili ty wi th a wide range of clients, such as s imulators and interactive or
batch-oriented modelling tools. Customers can more easily plug in their own solu-
tions and research results can be in tegra ted and assessed more quickly.

3.1.6 R E F E R E N C E S

Aho, A.V.: Compilers- Principles, Techniques, and Tools. Addison-Wesley, 1986.
Alhir, S. S.: UML in a Nutshell. O'Reilly, 1998.
Allan, B. A., A. W. Westerberg: Anonymous class in declarat ive process modeling.
Ind. Eng. Chem. Res. 38, 692-704, 1999.
Allan, B.A.: A More Reusable Modeling System. Ph.D. Thesis, Carnegie Mellon
University, Pi t tsburgh, PA (USA), 1997.
Allan, B.A., V. Rico-Ramirez, M. Thomas, K. Tyner, A. Westerberg: ASCEND IV:
A portable Mathematical Modeling Environment. Carnegie Mellon University,
ICES Technical Report, October 1996.
Aspentech: Aspen Modeler 10 .2 - Reference. Aspen Technology, Inc., Cambridge,
MA (USA), 2001.
Aspentech: SpeedUp User Manual. Aspen Technology, Inc., Cambridge, MA
(USA), 1997.

122

Augustin, D., J. Strauss, M. Fineberg, B. Johnson, R. Linebarger, F. Sansom: The
SCi Continuous System Simulation Language (CSSL), Simulation, Vol. 9, No. 6,
December 1967.
Ausbrooks, R., S. Buswell, S. Dalmas, S. Devitt, A. Diaz, R. Hunter, B. Smith, N.
Soiffer, R. Sutor, S. Watt: Mathematical Markup Language (MathML) - Version
2.0. Available online at: http://www.w3.org/TR/MathML2l, 2001.
Backx, T., O. Bosgra, W. Marquardt: Towards Intentional Dynamics in Supply
Chain Conscious Process Operations. Contr. To: FOCAPO '98, Snowbird, Utah, 5-
10.7., 1998.
Barton, P.I., C.C. Pantelides: Modeling of combined discrete-continuous proc-
esses. AIChE Journal 40,966-979, 1994.
B~ir, M.; M. Zeitz: A knowledge-based flowsheet-oriented user interface for a dy-
namic process simulator. Computers and Chemical Engineering, 14, 1275-1283,
1990.
Baumeister, M.: Ein Objektmodell zur Modellierung und Wiederverwendung
verfahrenstechnischer Prozessmodelle. Dissertation, RWTH Aachen, 2001.
Bayer, B., C. Krobb, W. Marquardt: A Data Model for Design Data in Chemical
Engineering. Technical report LPT-2001-15, Lehrstuhl fiir Prozesstechnik,
RWTH Aachen, Available online at: http ://www.lfpt.rwth-
aachen.de/Publication/Techreport/2001/LPT-2001-15.html, 2001.
Biegler, L.T., D. Alkaya, K. Anselmo: Multi-solver Modeling for Process Simula-
tion and Optimization. In: M.F. Malone, J.A. Trainham, B. Carnahan (Eds.):
Foundations of Computer-Aided Process Design, AIChE Symp. Ser. 323, Vol. 96,
125-137, 2000.
Bieszczad, J.: A Framework for the Language and Logic of Computer-Aided Phe-
nomena-Based Process Modeling. PhD Thesis, Massachusetts Institute of Tech-
nology, 2000.
Bischof C., L. Roh, A. Mauer-Oats: ADIC: An extensible automatic differentiation
tool for ANSI-C. Software-Pratice & Experience, 27, 1427-1456, 1997.
Bogusch, R., B. Lohmann, W. Marquardt: Computer-aided process modeling with
ModKit. Computers and Chemical Engineering 25, 963-995, 2001.
Bogusch, R., W. Marquardt: A Formal Representation of Process Model Equa-
tions. Computers and Chemical Engineering 21, 1105-1115, 1997.
Braunschweig, B., C.C. Pantelides, H.I. Britt, S. Sama: Process modeling: The
promise of open software architectures. Chemical Engineering Progress 96, 65-
76, 2000.
Britt, H.I., Pantelides, C.C.: Multipurpose process modeling environments. Proc.
Conf. on Foundations of Computer-Aided Process Design '94, 128--141. CACHE
Publications, 1994.
Brooke, A., D. Kendrick, A. Meeraus, R. Raman: G A M S - A User's Guide. GAMS
Development Corp., 1998.
Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, M. Stal: Pattern-oriented
Software Architecture- A System of Patterns. John Wiley, 1996.

123

Carpanzano, E., Maffezoni, C.: Symbolic manipulation techniques for model sim-
plification in object-oriented modelling of large scale continuous systems.
Mathematics and Computers in Simulation 48, 133-150, 1998.
Drengstig, T., S.O. Wasbo, B.A. Foss: A formal graphical-based process modeling
methodology. Computers and Chemical Engineering 21 (suppl.), $835-$840, 1997.
Elmqvist, H., D. Briick, M. Otter: Dymola- User's Manual. Dynasim AB, Lund
Sweden, 1996.
Foss, B., B. Lohmann, W. Marquardt: A Field Study of the Industrial Modeling
Process. Journal of Process Control 8, 325-337, 1998.
Gamma, E.: Design Patterns- Elements of Reusable Software. Addison Wesley,
1994.
Gani, R., G. Hytoft, C. Jaksland, A. K. Jensen: An integrated computer-aided sys-
tem for integrated design of chemical processes. Computers and Chemical Engi-
neering 21, 1135-1146, 1997.
Gerstlauer, A., M. Hierlemann, W. Marquardt: On the Representation of Balance
Equations in a Knowledge-Based Process Modeling Tool. Contr. to CHISA '93,
Prag, September, 1993.
Geffers, W., L. von Wedel, J. Wyes, W. Marquardt: Integration von deklarativen
und ausfiihrbaren Modellen in offenen Simulationsumgebungen. In: K. Panreck,
F. DSrrscheidt (Eds.): Frontiers in Simulation: 15. Symposium Simulationstech-
nik, Society for Modeling and Simulation International, 2001.
Griewank, A., D. Juedes, J. Utke: ADOL-C: A package for the automatic differen-
tiation of algorithms written in C/C++. ACM Transactions on Mathematical
Software 22, 131-167, 1996.
Hackenberg, J., C. Krobb, G. Schopfer, L. von Wedel, J. Wyes, W. Marquardt: A
Repository-based Environment for Lifecycle Modeling and Simulation. Contr. To:
JSPS International Workshop on Safety-Assured Operation and Concurrent En-
gineering, Yokohama, 3-5.12., 2000.
Hangos, K.M., I.T. Cameron: A formal representation of assumptions in process
modeling. Computers and Chemical Engineering 25, 237-255, 200 la.
Hangos, K.M., I.T. Cameron: Process Modelling and Process Analysis. Academic
Press, 200 lb.
Harper, P. M., R. Gani, P. Kolar, T. Ishikawa: Computer-aided molecular design
with combined molecular modelling and group contribution, Fluid Phase Equilib-
ria, 158-160, 337-347, 1999.
Jarke, M., W. Marquardt: Design and Evaluation of computer-aided modeling
tools. In: J.F. David, G. Stephanopoulos, V. Venkatasubrahmanian (Eds.), Intel-
ligent Systems in Process Engineering. AIChE Symposium Series 312 Vol. 92, 97-
109, 1995.
Jensen, A.K.: Generation of Problem Specific Simulation Models within an Inte-
grated Computer Aided System. PhD Thesis, Department of Chemical Engineer-
ing, DTU Lyngby, 1998.
Jensen, A. K., R. Gani: A Computer Aided Modelling System, Computers and
Chemical Engineering, 23 (suppl.), 673-678, 1999.

124

Keeping, B., C.C. Pantelides: Novel methods for the efficient evaluation of stored
mathematical expressions on vector computers. In: S. Pierucci (Ed.): European
Symposium on Computer Aided Process Engineering 10, Elsevier, 2000.
Kruchten, P.: Architectural blueprints - The "4+ 1" view model of software archi-
tecture. IEEE Software 12, 42-50, 1995.
Lohmann, B., W. Marquardt: On the Systematization of the Process of Model De-
velopment, Computers and Chemical Engineering 21, Suppl., $213-$218, 1996.
Marquardt, W., A. Gerstlauer, E.D. Gilles: Modeling and Representation of Com-
plex Objects: A Chemical Engineering Perspective. Proc. 6th Int. Conf. on Indus-
trial and Engineering Applications of Articifical Intelligence and Expert Systems,
Edinburgh, Scotland, 219-228, 1-4.6.1993.
Marquardt, W.: An object-oriented representation of structured process models.
Computers and Chemical Engineering 16 (suppl.), $329-$336, 1992.
Marquardt, W.: Trends in computer-aided process modelling. Computers and
Chemical Engineering 20, 591-609, 1996.
Marquardt, W., L. von Wedel, B. Bayer: Perspectives on Lifecycle Process Model-
ing. In: M.F. Malone, J.A. Trainham, B. Carnahan (Eds.): Foundations of Com-
puter-Aided Process Design, AIChE Symposium Series 323, Vol. 96, 2000, 192-
214.
Martinson, W.S., P.I. Barton: A differentiation index for partial differential-
algebraic equations. SIAM Journal on Scientific Computing, 21, 2295-2315, 2000.
Meniai, A.-H., D. M. T. Newsham, B. Khalfaoui, Chemical Engineering Research
& Design, 76(All), 942-950, 1998.
Mitchell and Gauthier Ass.: Advanced Continuous Simulation Language (ACSL).
Beginner's Guide. Mitchell and Gauthier Ass., 1992.
Modelica Association: Modelica - A Unified Object-Oriented Language for Physi-
cal Systems models. Language Specification. Available online at
http://www.modelica.org, 2000.
Morton, W., C. Collingwood: An equation analyser for process models. Computers
and Chemical Engineering, 22, 572-585, 1998.
Mowbray, T.J., R.C. Malveau: CORBA Design Patterns. John Wiley & Sons, 1997.
Nagl, M., W. Marquardt: Tool integration via cooperation functionality. Contr. To:
ECCE 3, 3rd European Congress of Chemical Engineering, Nuremberg, 26-
28.6.2001.
Nilsson, B.: Object-Oriented Modeling of Chemical Processes. Dissertation, Lund
Institute of Technology, Schweden, 1993.
Oliver, D.W., T.P. Kelliher, J.G. Keegan: Engineering complex systems with mod-
els and objects. McGraw-Hill, 1997.
Pantelides, C.C.: The consistent initialization of differential-algebraic systems.
SIAM Journal of Scientific Computing 9, 213-231, 1988.
Pantelides, C.C.: New challenges and opportunities for process modelling. In: R.
Gani, S.B. Jorgensen (Eds.): European Symposium on Computer-Aided Process
Engineering - 11, Elsevier, 2001.

125

Pfeiffer, B.M., W. Marquardt: Symbolic Semi-Discretization of Partial Differen-
tial Equation Systems. Mathematics and Computers in Simulation 42, 617-628,
1996.
Piela, P.C.: Ascend: An object-oriented computer environment for modeling and
analysis. PhD thesis, Carnegie-Mellon-University, Pittsburg, USA, 1989.
Process Systems Enterprise: gPROMS Introductory User Guide. London, UK,
1997.
R~iumschiissel, S.: Rechnerunterstiitzte Vorverarbeitung und Codierung
verfahrenstechnischer ModeUe fiir die Simulationsumgebung DIVA. Dissertation,
University of Stuttgart, 1997.
Rittel, H., W. Kunz: Issues as elements of information systems. Working Paper
No. 131, Univ. of California, Berkeley (CA), 1970.
Russel, B. M., R. Gani: MoT - A modelling test bed, In: ICAS Manual (CAPEC
report), Technical University of Denmark, 2000.
Russel, S., P. Norvig: Artificial Intelligence - A Modern Approach. Prentice-Hall,
1994.
Subrahmanian, E., S.L. Konda, S.N. Levy, Y. Reich, A.W. Westerberg, and I.
Monarch: Equations aren't enough: Informal modeling in design. Artificial Intel-
ligence in Engineering Design, Analysis, and Manufacturing 7, 257-274.
Stephanopoulos, G.; G. Henning, H. Leone: MODEL.LA- A modeling framework
for process engineering- I. The formal framework. Computers and chemical en-
gineering 14, 813-846, 1990a.
Stephanopoulos, G.; G. Henning, H. Leone: MODEL.LA- A modeling framework
for process engineering- II. Multifacetted modeling of processing systems. Com-
puters and chemical engineering 14, 813-846, 1990b.
Unger, J., A. Kr5ner, W. Marquardt: Structural Analysis of Differential-Algebraic
Equation Systems - Theory and Applications. Computers and Chemical Engineer-
ing 19, 867-882, 1995.
Von Wedel, L., W. Marquardt: ROME: A Repository to Support the Integration of
Models over the Lifecycle of Model-based Engineering Processes. In: S. Pierucci
(Ed.): European Symposium on Computer Aided Process Engineering-10, Elsevier,
535-540, 2000.
Wasserman, A. I.: Tool Integration in Software Engineering Environments, In: F.
Lang (Ed.), Software Engineering Environments, Springer, 138-150, 1990.

This Page Intentionally Left Blank

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
�9 2002 Elsevier Science B.V. All rights reserved. 127

Chapter 3.2 Numerica l Solvers

J. E. Tolsma & P. I. Barton

3.2.1 INTRODUCTION

Typical process modeling activities involve the application of a number of
different numerical algorithms. For example, steady-state simulation of a
process flowsheet involves the solution of a system or systems of nonlinear
equations. Dynamic simulation of a process transient involves numerical
integration of a dynamic system, represented by a system of ordinary
differential equations (ODEs) or differential/algebraic equations (DAEs). If
the model is a DAE or an ODE started from steady-state then the modeler
must provide consistent initial conditions also obtained by solving a
system of nonlinear equations. If the modeler is interested in the influence
of time invariant parameters in the model on the state variable
trajectories a parametric sensitivity analysis may be performed.
Optimization typically follows simulation and requires the application of a
suitable optimization algorithm. The modeler may be interested in steady-
state or dynamic optimization.

Most numerical activities involve the application of a number of different
solvers. In addition, the numerical algorithms themselves may be further
decomposed into a set of elementary algorithms. For example, iterative
methods for solving systems of nonlinear equations often require the
solution of a linear equation subproblem, predictor-corrector methods for
solving nonlinear stiff ODEs and DAEs involve the solution of systems of
nonlinear equations during the corrector phase, and control
parameterization strategies for dynamic optimization involve numerical
integration and parametric sensitivity analysis subproblems.

This chapter briefly describes several common numerical activities
andsome of the algorithms applied. In particular, the information that
must be supplied in addition to the model equations is emphasized.

128

3.2.2 S O L U T I O N O F N O N L I N E A R S Y S T E M S O F E Q U A -
T I O N S

A common problem in CAPE, as well as essentially every discipline in sci-
ence and engineering, is finding a solution to a system of nonlinear equations.
Examples include steady-state simulation of a process flowsheet and compu-
tation of consistent initial conditions for dynamic simulation.

A large number of algorithms and numerical codes exist for this task.
An appropriate algorithm depends both on the nature of the problem being
solved and whether additional information concerning the system of equa-
tions is available. For example, whether or not partial derivatives of the
system of equations are readily available may have a large impact on the
selection of the algorithm used to solve that problem.

We consider the following system of n nonlinear equations in terms of n
variables:

f (x) = 0 (1)

for which we desire a solution x*. A common method for solving this system
is to replace equation (1) at some approximation to the solution, x k, with
the affine equation:

L k (x) - - A k (x - x k) + f(xk), (2)

where A k is some suitable matrix, which may be the same for all k [43]. We
can easily compute a solution of (2), provided A k is nonsingular, for a new
approximation to x*. Repeating this procedure yields the iteration formula:

x k+l = x k - (A k) - l f (x k) k = 0, 1 ,2 , . . . (3)

which will converge to a solution of (1), with appropriate selections for A k,

provided x ~ is "sufficiently" close to x*. How close depends of the nature of
f and choice of A k

Choosing A k to be Vf(xk), the Jacobian matrix of f evaluated at the
current approximation x k, yields the n-dimensional Newton's method with
iteration formula:

x k+~ - x k - V f (x k) -~ f (x k) k - O, 1, 2 , . . . (4)

The advantage of Newton's method is that it has q u a d r a t i c c o n v e r g e n c e prop-
erties when x k is sufficiently close to the solution. Quadratic convergence of

129

the sequence of iterates implies that the following inequality holds at each
iteration:

Ilx k+l - x*ll < K I I x k - x*ll 2, (5)

where K < c~. The error at the (k + 1)-th iteration is proportional to the
square of the error at the k-th iteration, indicating convergence is rapid when
near the solution. However, Newton's method is not likely to even converge to
a solution if a good initial approximation is not available. This issue may be
addressed through a line search approach. Given the search direction from
Newton's method at step k, pk _. _V f (xk) - l f (xk) , a line search strategy
at tempts to find some scalar c~ k > 0 such that

I I f (x k + kpk)ll < IIf(xk)ll,

where I1" II denotes some norm. A number of different line search strategies
exist ranging from the minimization of the norm of f in the Newton direction
to simply selecting an c~ k such that inequality (6) holds (such a scalar can
always be found since pk is a descent direction in the norm of f) .

The advantage of Newton's method is the excellent convergence proper-
ties when the initial approximation is close to the solution. The disadvantage
is that the method requires the Jacobian matrix, which may be difficult to
obtain analytically. Alternatively, the Jacobian matrix may be approximated
with finite differences. For example, using the forward finite difference for-
mula, the Jacobian entry Of~/Oxj may be approximated by:

Ofi ,.., f i (x y + 57) - f i (x j) (7)
0 ~ ~ 5j '

where the perturbation, 5j, is selected based on the behavior of f evaluated
at the current point. Selecting appropriate values for 5 7 is often difficult; too
large of a perturbation results in significant truncation error and a value too
small results in excessive round-off error. Without any additional informa-
tion, the approximation of the Jacobian matrix with forward finite differences
requires n + 1 function evaluations. This may be too costly in many applica-
tions. The cost of the finite difference approximation may be reduced if the
sparsity pattern of the Jacobian matrix is available explicitly. The sparsity
pattern, which indicates the dependence of the equations on the variables,
may be represented by an incidence matrix containing entries equal to zero or

130

unity. If the i-th equation depends on variable j then the i, j - th entry of the
incidence matrix is unity, otherwise it is zero. Given the incidence matrix of
a system of equations, structurally orthogonal columns for the J acobian ma-
trix may be identified [20]. Two columns are structurally orthogonal if they
do not contain nonzero entries in the same row. The cost of evaluating the
Jacobian by finite differences may be reduced by simultaneously computing
multiple structurally orthogonal columns of the Jacobian matrix [21]. If the
matrix is large and sparse then this saving is often significant. In addition to
reducing the cost of finite difference approximation of the J acobian matrix,
an explicit representation of the sparsity pattern allows sparse linear alge-
bra techniques to be employed in computing the direction of the step [24].
Exploiting sparsity in the linear algebra (e.g., only performing mathematical
operations on the nonzero entries of the Jacobian matrix) not only reduces
memory requirements and computational cost, but also allows the engineer
to solve readily problems that otherwise would be exceedingly difficult or
impossible to solve.

Obtaining the Jacobian matrix is not an issue if a symbolic representa-
tion of the system of equations is available, as is the case within modern
equation-oriented modeling environments. In this case, the partial deriva-
tives are readily computed via symbolic differentiation or through automatic
differentiation (AD) techniques applied to the equation graphs. The latter
approach has been shown to offer significant advantages over symbolic dif-
ferentiation both in terms of speed and memory requirements [55]. If the
system of equations are formulated as a computer program, then AD may be
applied to the source code to obtain the desired derivatives [10, 56, 31]. In
contrast to symbolic differentiation, which is applied to a symbolic represen-
tation of the system of equations, automatic (or algorithmic) differentiation
has been designed to differentiate algorithms represented by computer code,
such as C or Fortran. The actual statements in the code representing the
system of equations are differentiated to produce the desired derivative in-
formation. A number of variants of AD have been developed to accumulate
the partial derivatives within the code. However, a detailed description is
beyond the scope of this chapter. The code may be differentiated by either
using the operator overloading features of some modern programming lan-
guages (e.g., C + + and Fortran-90) or through the construction of new code.
In the latter approach, new source code is constructed automatically from
the original source to compute the desired derivative information. This is
called an automatic code transformation technique. It should be noted that

131

AD is designed to differentiate algorithms. For example, it can differentiate
codes containing IF statements, DO loops, iterative procedures, and com-
plex hierarchies of subroutine and functions calls. In addition, the codemay
depend in complex ways on user supplied parameters, but the automatically
generated derivative code is still able to adapt to changes in the parameter
values and compute correct derivative information.

Sometimes a model is composed of a hybrid of equations formulated sym-
bolically, and equations that are evaluated by procedure calls to external
code. For example, external physical property packages are often interfaced
to equation-oriented simulators via such procedure calls. In this case, J a-
cobians may be assembled by differentiating the symbolic equations, and
applying finite differences to the equations evaluated by procedure calls. On
the other hand, AD techniques may be applied to the external procedures
to generate derivative code. Then appropriate calls to these new procedures
can furnish analytical partial derivatives. In conjunction with differentiation
of the symbolic equations, this yields an analytical J acobian for the entire
model. An implementation of this is described in [58].

Even if analytical derivatives are readily available, the cost associated
with evaluating and LU factoring the Jacobian in Newton's method may be
reduced by not evaluating and factoring the Jacobian at every iteration. The
cost saving associated with this deferred-update Newton's method is offset
by weaker convergence properties. However, this approach is often attractive
if a good initial approximation to the solution is available. Alternatively,
the matrix A k in recursion (3) may be some derivative-free approximation,
for example the secant-update formulas of Broyden [14] and Schubert [52].
Although convergence is weaker than Newton's method, not having to pro-
vide numerical values for the J acobian matrix is advantageous in some cases.
This is particularly true when solving flowsheeting problems with a sequen-
tial modular simulator where finite difference derivative evaluation may be
prohibitively expensive. The advantages of applying AD techniques to codes
representing unit operation models in order to obtain the derivative values
efficiently is described in [2].

The line search strategies mentioned above are attempts to increase the
convergence region of Newton's method. Alternatively, this problem may be
addressed with a trust region strategy. The Levenberg-Marquardt method
[36, 39] computes search directions defined by the following optimization

132

problem:

min IIf(x k) + V f(xk)pll2 (8)
p

s.t. Ilpll < (9)

where A k is called the trust region radius which limits the size of the step.
The solution to this optimization problem is obtained by solving

(V I (x k) T V I (x k) + AkI)pk __ _ V I (x k) T I (x k) , (10)

where A k is determined by some strategy. This method has proven to be quite
robust. However, since the step is obtained by solving a linear least-squares
problem and A k is determined by some iterative procedure, the method can be
costly. In addition, any sparsity that may be present in V f (x k) is lost through
fill-in when the search direction is computed. Consequently, the approach is
not suitable for the large-scale systems common in process modeling.

Powell's "dog-leg" strategy avoids some of the costs of the Levenberg-
Marquardt method by restricting x k + pk to lie on the "dog-leg" consisting
of the straight line from x k to the minimum point of [If(x k) + Vf(xk)pk[I 2 in
the direction of the steepest decent of I]f(x k) + Vf(xk)pkll2 and the straight
line from this point to the point obtained from a Newton step [48]. The
trust region in this approach is readily identified, making the approach more
efficient than the Levenberg-Marquardt method though not as robust.

Similar to the trust region approaches described above, the successive
linear programming approach [23] solves the following minimization problem:

min [If(x k) + Vf(xk)pl[1 (11)
P

s.t. I]P]lo~ -< Ak- (12)

This choice in norms for the objective function and constraints results in the

min
p,q ,r

s.t.

linear program [8]"

E (q, + r,) (13)
i

V f (xk)p + q -- r -- -- f (x k) (14)

q, r > 0 (15)
p >_ - A k (16)

p < A k. (17)

133

The advantage of this approach is that sparsity can be fully exploited and
physical bounds on the variable values may be easily incorporated into this
framework.

Compared to Newton's method, these trust region strategies have a larger
region of convergence, but are computationally more expensive. They also
suffer from the fact that they may converge to stationary points in the norm
chosen for the system of equations, which are not necessarily the solutions
we desire.

Continuation methods are also often used in an attempt to widen the
region of convergence of an iterative method. In this approach, the system
of equations to be solved is "embedded" within another mapping and an
additional variable is introduced [43]. This new mapping has the general
form:

h(x, A) = 0 , (18)

where h : lI~ ~ x IR ~ IR ~, x E IR ~, and A E 11~. The mapping has the following
properties:

=

h(x, l) = f(x).
The system of equations g(x) is chosen such that a solution x ~ to g(x ~ - 0
is easily determined. The basic idea of continuation methods is to s tart
at h(x ~ - g(x ~ = 0 and follow the path defined by h(x,A) = 0 to
h(x*, 1) = f(x*) = 0, a solution we desire, by varying A. Certain restric-
tions must be placed on h(x, A) for this path to exist, and even if it does
exist, additional restrictions, exceedingly difficult to verify in general, must
be placed on h(x, A) to ensure the path followed passes through ~ • 1 [1].
Nevertheless, continuation methods have been successfully applied in many
cases. In particular, the approach is often successful when the solution is
near singularities, that is, points where the J acobian matr ix is not invertible.

In all of the approaches described above there are no theoretical guaran-
tees a solution will be found. Techniques based on interval Newton/generalized
bisection, on the other hand, guarantee solutions will be found in some re-
gion defined by bounds on the variables, if a solution exists [40]. There are a
number of variants of interval Newton methods, though they all require the
evaluation of the interval extension of the system of equations and Jacobian
matrix. An interval in this context is simply a closed, connected region on

134

the real line defined by upper and lower bounds on the variable. For example,
let X E I[IR denote an interval, then

x = [x ,x = e < �9 <_ (19)
An interval vector from the set]Ilia" is a vector where each of the n elements
are intervals in lII~. Given a function f (x) , the interval extension of the
function, denoted by F(X) , has the following property:

f (X) = { f (x) : x e X } C F (X) . (20)
That is, the interval extension of a function evaluated on X contains the im-
age set of the function on X. The construction of the interval extension from
a function is not unique and may be performed in several ways, each produc-
ing a tighter or looser approximation of the image set. A common approach
is the natural interval extension where each of the elementary mathematical
operations involved in the computation of f are replaced by the correspond-
ing elementary interval extension of the operation. For example, let o define
some elementary binary operation (e.g., + , - , /) , the interval extension of o
is defined by

X o Y = { x o y : x e X , y ~ Y} . (21)

The interval extensions for unary operations and "elementary" functions such
as sin and log are defined in a similar manner. The code for evaluating the
function may be readily converted to code evaluating the natural interval
extension, albeit with significant effort in many cases. However, this con-
version may be automated using the operator overloading features in some
languages (e.g., Fortran 90 and C++) or through automatic code transfor-
mation techniques [56].

There are a number of variants of the interval Newton/generalized bisec-
tion approach and a detailed description is beyond the scope of this chapter.
The disadvantages of these approaches is that they are typically quite compu-
tationally expensive and are thus not suitable for larger systems of equations.
Furthermore, they require the user to provide interval extensions of the sys-
tem of equations and Jacobian matrix. This, of course, is mitigated through
the use of the automated techniques mentioned above, provided the user has
access to the code evaluating the function of interest.

Several algorithms for finding solutions of nonlinear systems of equations
are described in this section. Each of these methods are appropriate for cer-
tain types of problems and thus the user may have to select different solvers

135

based on the particular problem at hand. The following section describes
structural techniques that may be employed to further assist the user in
solving a system of equations.

3 .2.3 S T R U C T U R A L A L G O R I T H M S

As mentioned above, the availability of an explicit representation of the spar-
sity pattern of the system of equations may be used to reduce the cost of finite
difference approximation of the Jacobian matrix. ' In addition, the sparsity
pattern allows sparse linear algebra techniques to be employed, dramatically
increasing the size of problems that may be solved. Automatic code transfor-
mation techniques, similar to those employed for derivative evaluation, can
be employed to generate automatically code to evaluate the sparsity pattern
for an arbitrary user-supplied code [56]. This section describes other struc-
tural techniques that can be applied to this information in order to assist
the modeler in constructing a valid model and in subsequently solving the
model.

Given the sparsity pattern (or incidence matrix) for a system of nonlin-
ear equations, it is possible to find row and column permutations such that
the permuted incidence matrix is in block lower triangular form (provided
the matrix is not irreducible). Using the concept of matchings in a bipartite
graph, Dulmage and Mendelsohn developed a canonical form of the block
lower triangular decomposition [25]. The permuted incidence matrix is de-
composed into a set of diagonal blocks. Nonzero entries may appear below the
diagonal blocks, but only zeroes lie above the diagonal blocks. Three types of
blocks appear on the diagonal in this decomposition: over-determined blocks
which have more rows than columns, structurally fully-determined blocks
which have the same number of rows and columns, and under-determined
blocks which have more columns than rows. The diagonal block information
may be used by the user to identify subsets of equations that must be deleted
from the model to make it well-posed (from the over-determined blocks) and
subsets of variables that require additional specifications or equations (from
the under-determined blocks). With this. information, the modeler is given a
tremendous amount of information about how to modify an ill-posed prob-
lem. Algorithms to determine the Dulmage-Mendelsohn decomposition are
described in [47].

Once a well-posed problem has been formulated, all diagonal blocks will

136

be structurally fully-determined. When permuted in this form, the overall
system of equations may be solved by solving sequentially the subsets of
equations associated with the diagonal blocks. Not only is this more efficient
(for example, the sum of the cost of the linear algebra required for each of
the smaller blocks is much smaller than the cost associated with solving the
full system of equations), but experience has shown this to be a more reliable
approach than solving the entire system simultaneously [45]. Furthermore,
each of the algorithms described in the previous section may not be suitable
for every system of equations. By solving the overall system as a sequence
of smaller subsets of equations and variables, an appropriate solver may be
selected for each block based on its size and difficulty to converge.

Structural techniques may also be used to identify high index DAEs.
Before numerically integrating a DAE, the user must provide a consistent set
of initial conditions (this is explained in more detail in the following section).
A high index DAE contains implicit constraints on the state variables that a
consistent set of initial conditions must satisfy. These additional constraints
may be uncovered by differentiating subsets of the equations in the DAE.
The algorithm described in [44] uses structural criteria to identify subsets
of the equations that must be differentiated in order to obtain constraints
that must be satisfied by a consistent set of initial conditions. However, the
approach described in [44] may indicate too few or too many equations must
be differentiated, resulting in an incorrect determination of the index of the
DAE [49]. Nevertheless, this algorithm has proven to be quite successful,
particularly when applied to the DAEs that arise in process modeling. In
our experience, this information is very useful in suggesting how a modeler
might reformulate a model to make it low index.

The discussion above illustrates many uses for the sparsity pattern of the
system of equations. If the equations are available in symbolic form, then
the sparsity pattern may be readily generated and exploited. Otherwise,
the sparsity pattern may be constructed by hand by the user or through
automatic code transformation techniques [56].

137

3 .2 .4 N U M E R I C A L I N T E G R A T I O N O F D I F F E R E N T I A L
A N D A L G E B R A I C E Q U A T I O N S

Studying the transient behavior of a batch process or the startup, shutdown,
or effect of a disturbance in a continuous process requires the numerical
integration of a nonlinear dynamic process model. In this situation, the
process model consists of a system of ODEs or DAEs. Since many dynamic
process models encountered in CAPE are most naturally described by DAEs,
the solution of these dynamic systems will be described here. The general
form of a DAE is:

f(s z, t) = O, (22)

where f :~n x IR n •]R ~ li ~, t is the independent variable (usually time)
and z and ~ are the state variables and their derivatives with respect to t.
The states z and derivatives ~ are functions of t in an n-dimensional function
space.

Before numerically integrating the DAE, the user must provide a set of
consistent initial conditions, which satisfy:

to) = o. (23)

This is a system of n algebraic equations in terms of 2n variables (to is
known). In order to compute the consistent initial conditions, equation (23)
is augmented with additional algebraic equations defining the initial condi-
tions and the resulting system is solved, possibly using one of the algorithms
described previously. The number of additional equations that must be in-
troduced is equal to the number of dynamic degrees of freedom, rid. For most
index 1 DAEs [12], nd is equal to the number of time derivatives of the state
variables that appear explicitly in the DAE. Hence, it is only necessary to
solve for n + nd unknowns, using the n DAEs and the nd additional equa-
tions defining the initial conditions. If the index is greater than unity, then
as described above, additional implicit constraints appear in the DAE that
may be uncovered through differentiation [44]. These additional constraints
reduce the dynamic degrees of freedom.

It may be necessary to compute consistent initial conditions even in the
case of an ODE. For example, often it is necessary to study the response of
a process at steady-state to a disturbance. The consistent initial condition

138

of steady-state is computed by solving the following system of nonlinear
equations:

 (to) = g(z(to) , to) (24)
 (to) = O. (25)

This is identical to a steady-state simulation.
Several methods have been developed for numerically integrating DAEs

and there are a number of powerful codes developed based on these methods
[9, 32, 13, 4]. Linear multi-step methods, specifically, the methods based on
backward differentiation formulas (BDF), are the most popular and will be
described here. Many of these codes are restricted to index-1 DAEs or higher
index systems with special structure [12].

The q-step BDF consists of replacing the time derivatives, ~., by polyno-
mials which interpolate the previous q + 1 computed solutions:

f(-~ ~zk-, , zk, tk) = 0, (26)
i = 0

where subscript k denotes the current time step and q is the integration order.
The method reduces to the implicit Euler method when q = 1. The BDF
method advances the time trajectories using a predictor-corrector approach:
a predictor polynomial is used to obtain an estimate for the next point on
the trajectory, followed by the iterative solution of equation (26), where the
time derivatives have been replaced by corrector polynomials. Typically, a
deferred-update Newton's method is employed during the corrector phase,
using the LU factored iteration matrix from some previous time step. Mod-
ern codes attempt to balance the cost associated with the iteration matrix
evaluation/factorization with the reduced order and time stepsize caused by
using an outdated iteration matrix.

Several implementations of the BDF method are available, each with dif-
ferent heuristics for order and stepsize selection. The codes available attempt
to make the stepsize large enough for efficient integration while still main-
taining accuracy and stability [12].

In addition to the linear multi-step method described above, one-step
methods are often used for the numerical integration of dynamic systems. In
particular, the implicit Runge-Kutta (IRK) methods have been successfully
applied to DAEs. An M-stage IRK method applied to DAE (22) has the

139

following form:

M

f(Z, , zk-1 + h ~ a~,j2j, tk-1 + c,h) = 0 i = 1, 2 , . . . , M (27)
j = l

M

= + h) S (28)
i=1

where h = tk--tk-1, Z~ are the stage derivatives, and ai,j, bi, ci, i, j = 1 , . . . , M
are the constants associated with the method [12]. The stage derivative Zi is
an estimate for ~.(tk-1 + cih). Although BDF methods tend to perform bet-
ter on average than IRK methods, these one-step methods can potentially
have an advantage if there are frequent discontinuities along the integration
domain. Unlike the BDF method which uses a small stepsize and low inte-
gration order after each discontinuity, the IRK method can be started at a
higher integration order, resulting in faster restarts.

3.2.4.1 Hybrid Discrete/Continuous Systems

The section above describes the numerical integration of DAEs. This dis-
cussion assumed that DAE was a smooth function throughout the entire
integration domain. A common situation for interesting and realistic prob-
lems, however, is where the functional form of the DAE changes during the
course of a dynamic simulation. These type of models are referred to as
hybrid discrete/continuous systems.

Hybrid discrete/continuous systems (or simply hybrid systems) are dy-
namic systems that exhibit both discrete and continuous behavior. The
continuous behavior of the model is usually described by one or more ODE
or DAE systems. The discrete behavior, which occurs at particular points
in time known as events, includes phenomenon such as nonsmooth forcing,
switching of the vector field, and jumps in the state. We can broadly dis-
tinguish between two types of events: time events and state events. A time
event is an event where the time of occurrence is known a priori. In con-
trast, a state event occurs when some condition involving the state variables
is satisfied (e.g., the level in a tank reaches a certain height) and the time of
occurrence is in general not known a priori.

Hybrid system models appear in a wide variety of disciplines. They ap-
pear directly when modeling discrete control actions imposed on a system

140

(e.g., a safety interlock system), disturbances introduced into a continuous
system and sequence controllers. In addition, state events are typically in-
troduced by modeling abstractions (e.g., physical properties of fluids are of-
ten represented by piecewise smooth semi-empirical relationships), physical
phenomenon such as irregularities in vessel geometry that can cause discon-
tinuities in the relationship between holdup and level, and changes in the
number of thermodynamic phases present. Within a code these may appear
as nonsmooth intrinsic functions, such as MIN and MAX, as well as the more
obvious IF statements.

It is well known that numerically integrating systems containing hidden
discontinuities is inefficient and sometimes results in integration failures [33].
In the worst case, ignoring discontinuities can lead to incorrect results that
may escape the modeler's attention [19].

A number of approaches have been developed to handle properly the dis-
continuities that occur during the numerical integration of a hybrid system.
These approaches range from replacing the discrete aspects with a smooth
approximation, to modifying the integrator itself to attempt to identify and
handle the discontinuities. Replacing discontinuities with smooth approx-
imations is laborious and error prone, particularly when modifying legacy
code, and the modified model may not capture properly the dynamics of in-
terest. A better alternative is to handle the discontinuities explicitly during
numerical integration [18, 46]. To perform the state event handling correctly,
a significant amount of additional information must be made available by the
user. This additional information is described below.

The following hybrid system formalism, adopted from [5, 28], will be
used in the remainder of this section to highlight additional information that
must be provided by the user for proper state event handling. State space is
divided into a set of modes, S = Uk= I Sk where each mode Sk is characterized
by:

1. A set of variables {dc(k)(p, t), x(k)(p, t), y(k)(p, t),p, t} where x(k)(p,t),
2(k)(p, t) are the differential variables and their derivatives, which are

functions of p and t in an n(k)-dimensional function space, y(k)(p,t)
are the algebraic variables, which are functions of p and t in an n (k)-
dimensional function space, p E R np are the time invariant parameters,
and t E IR is time, the independent variable,

2. A set of equations f(k)(~(k) X(k) y(k) p,t) 0, where f(k) iRn~ k) ~ ~ ~ - - - " ~ X

141

R,,(?) ~,,(,?) :R n(2) x R"(,, k) x Rn , ' x]R , x ,

3. A set of transitions from one mode to another (possibly the same mode),
j(k), where each transition is characterized by:

(a) Transition conditions L~ k)(~(k), x(k), y(k)p, t), j 6 j(k), defining
the transition times and

(b) Transition functions T (k) (~(k+l), x(k+l), y(k+l), ~(k), x(k), y(k), p, t) =
O, j 6 j(k), a system of equations that maps the final values of
the variables in the current mode to the initial values in the next
mode. (Initial conditions are a special case of these transition
functions.) The number of transition functions is determined by
the dynamic degrees of freedom of the DAE in the new mode.

Notice that the state variables are partitioned based on whether or not the
corresponding time derivative appears explicitly in the DAE. It is assumed
that the transition conditions, L~.k)(fc(k),x(k),y(k),p,t), are logical expres-
sions composed of one or more real-valued relational expressions involving
relational operators <, <, >, or >. For example, the logical expression
(X 1 ~_~ 5) V (X 2 > 2 /~ X 2 <~ 5) c o n t a i n s the relational expressions xl _> 5,
x2 > 2, and x2 _< 5. Putting these relational expressions into the form

g _> (>)0 (29)

defines discontinuity functions. In a code these state conditions are typically
represented as IF statements. The discontinuity functions associated with
the state condition represented by the following Fortran IF statement"

IF (LEVEL > I0.0 .AND. DELTAP > 0.0) THEN

END IF

are the expressions:

LEVEL - I0.0
DELTAP.

142

The logical proposition of the transition condition may switch value when
one or more discontinuity functions cross zero. A switching event is defined
by the earliest time at which one of the transition conditions becomes true.
Many modern state event location algorithms identify the events by moni-
toring the discontinuity functions associated with state conditions for these
zero crossings.

By monitoring discontinuity functions for zero crossings, state events may
be identified. The various algorithms available for state event location dif-
fer in how this monitoring is performed, ranging from simply examining the
logical value of transition conditions at mesh points during the numerical in-
tegration, to rigorously identifying the earliest (and thus correct) zero cross-
ing of the discontinuity functions at each time step throughout the entire
integration [46]. Once the state event is identified, the precise event time is
computed. At this point the integration is stopped, the DAE is reinitialized
in the new discrete mode using the transition functions and the integration
is continued. Obviously, in order to perform properly the hybrid numerical
integration, the user must provide a substantial amount of additional infor-
mation, including the state conditions, the discontinuity functions, and the
transition functions. If the hybrid DAE is available in symbolic form then
this information may be readily identified, extracted, and utilized within a
proper state event location algorithm. Recently, this capability has been ex-
tended to hybrid DAEs represented as complex codes written in computer
languages such as Fortran [57]. This is important even within an equation-
oriented environment where some of the model equations are computed by
calls to external code (e.g., physical property libraries).

3 .2 .5 P A R A M E T R I C S E N S I T I V I T Y A N A L Y S I S

The previous section describes some algorithms and solvers used to inte-
grate numerically systems of ODEs and DAEs. Often the next step after
numerical integration is parametric sensitivity analysis. This calculation is
performed to examine the effects of infinitesimal perturbations in the param-
eters of interest on the state variable trajectories. These parameters may be
constants within the model or initial conditions. Parametric sensitivities are
often useful themselves, for example for experimental design and process sen-
sitivity studies. Sensitivities are also important within the context of other
calculations, including parameter estimation and control parameterization

143

approaches for dynamic optimization.
Given a DAE containing np parameters, p,

f(~, z, t; p) - 0, (30)

the forward sensitivities may be obtained through numerical integration of
the following augmented system of n(np + 1) DAEs:

f(2, z,t;p)
Of i)~ Of Oz Of

J §
0~ 0p1 Oz Opi 0pl

= 0

= 0

Of O~ Of Oz Of
t = O,

o ~ op~ O z Op.~ Op~

where n is the dimension of the DAE. Efficient algorithms are available for
computing the forward sensitivities [38, 27]. These algorithms exploit struc-
ture in the augmented DAE. How the sensitivity residuals (the additional
equations appended to the original DAE) are evaluated can have a signif-
icant impact on the performance of the calculation. When the number of
parameters is small compared to the number of state variables, then using
the seed matrix option of AD [10] is quite efficient. In this mode, the product
of the Jacobian and a vector (in this case, the sensitivity vector) is computed
efficiently at a cost bounded above by three times the cost of a DAE residual
evaluation. If the number of parameters is large and the Jacobian matrix is
sparse, then it is often beneficial to evaluate the sparse Jacobian then per-
form sparse Jacobian-vector products to compute the sensitivity residuals.
The sensitivity residuals may also be computed via finite differences, however,
the lower accuracy can often severely impact the quality of the results.

The cost and memory requirements for computing the forward sensitiv-
ities scales with the number of parameters of interest. However, a common
situation is where the number of parameters is extremely large and the user
is only interested in the derivatives of a few outputs. This is often the case
when the sensitivities are required within control parameterization strategies
for dynamic optimization. In these types of situations, a better alternative
to computing the desired derivatives is by integrating the adjoint (or re-
verse) sensitivity system. Consider the following nonlinear ODE and initial
condition:

= 9(x, t ;p) (31)

144

x(to, to;p) = xo(p) (32)

Suppose we are interested in the derivative of the scalar-valued function
r to),p) with respect to p at time t/, where the dimension of p is very
large. This sensitivity may be computed by the formula:

0r or 0r
_ ~ (x (t , , to; p), p) = o~ op (t,, to; p) +

TOXo 0(~
= ~(to, t , ; ;) ~ +

j(tl s P)TOg (T; + A(T, tI; , Op" p)d~', (33)

where the vector of adjoints, A, is obtained by integrating numerically the
following system backwards from t / t o to:

Of) T
= - ~xx '~ (34)

(~ ~ ,~(tf, tf;p) = 7zz " (35)

The advantage of the adjoint approach for derivatives is that the cost of
the backwards integration of the adjoints does not scale with the number
of parameters. However, this is offset by the fact that both a forward and
backward integration are required to obtain the desired derivatives. Also,
adjoints only give information about derivatives at one point in time for
a single dependent function. The intermediate values of the A's have no
interpretation as derivative information, and a new adjoint system has to be
solved for each dependent function. These adjoint sensitivity results have
been recently extended to DAEs [17, 16].

3.2.5.1 Hybrid Discrete/Continuous Parametric Sensitivity
Analysis

As mentioned above, discontinuities embedded within the model often cause
adverse effects in the numerical integration, including inefficient integration
and sometimes failures. The situation is far worse when performing para-
metric sensitivity analysis of a model that contains discontinuities. Because

145

the sensitivities will often jump at the discontinuities, if the numerical in-
tegration is not stopped and the jump computed explicitly, the computed
sensitivity trajectories will generally be incorrect [28]. Furthermore, if the
calculation does not fail, the user is given no indication about the correctness
of the computed sensitivities [57].

As with proper hybrid system numerical integration, performing properly
the hybrid sensitivity analysis requires a substantial amount of additional
information from the user. The remainder of this section uses the hybrid
system formalism described in Section 4.1. The sensitivity of the transition
time with respect to parameter p~ is given by

agk+ 1 Ot

gk+l ~(k) ~](k) Ot agk+ 1 agk+ 1 0 t
Oy(k) %,i + + Op~ -~ Ot Op~ = 0 , (36)

where z(k) is the discontinuity function that triggers the event. The equation t/k+l
above is solved for Ot/Opi. This quantity indicates how the event time is
changes with small perturbations in the parameter p~. The required elements
of 5, y, and/~ in the equation above can be computed from the first and
higher order derivatives of the DAE. The remainder of this section assumes
the following condition holds:

(Of(k) o f (k)) = n (k) + n (k) (37)
rank \ 05(k) Oy(k)

for all k. This condition is sufficient for the DAEs on each of the discrete
modes to be index 1. The jump in sensitivities can then be computed by
solving the following linear system:

0~(k+l) Ox(k'k'l) 'Oy(k+l) 0X(~1)
0f(k+l) of(k+ 1) 0f(k+l) 0 i - -
0x(k+l) Ox(k+i) 0Y(k'k'l) 0pi

k+l k+l k+l Ox~kt+l) ~ O~(k+l) Ox(k+~) Oy(k+~) Ot
Of(k+x) 0f(k+l) O[(k+x) t Op~
0~: (k+ 1) Ox(k+l) bv(k+l) 0y '~'k" 1)

ot

(38)

146

~ (k) 0 T C k) ~ (k) OT(k) OT(k)
" k + l k+~. " k + l k+~ kt-!
0~(k) Ox(k) Oy(k) Op~ Ot

of(k+~) o/(k+,~)
0 0 0 ow ot

0~(k) 0~(k) Ot
-g~w + ot op~
Ox(k) Ox(k) Ot
-~p H at op~
~ + o_~ o~
Opi Ot Opi

I
o_.A_t

Opi

Performing the hybrid sensitivity analysis properly requires not only the
transition conditions, transition functions, and discontinuity functions, but
also the derivatives of these expressions with respect to the state variables,
time derivatives, parameters, and time. This burden is mitigated if the model
is available symbolically. Recently, it has been shown that this additional
information can be generated from the Fortran code of a hybrid system [57].
An adjoint formulation for hybrid dynamic systems is described in [51].

3.2.6 O P T I M I Z A T I O N A L G O R I T H M S

The numerical algorithms described previously are used to examine the be-
havior of a process under a fixed set of operating conditions or examine the
effect of infinitesimal perturbations on the response. In this capacity, the
model is used to understand and predict the quantitative behavior of the
process. Often, however, an engineer desires to improve the operation or de-
sign of a process with respect to some criterion. Optimization algorithms may
be employed to adjust systematically the degrees of freedom in the problem
to meet these objectives. As with simulation, the modeler may be interested
in steady-state and dynamic optimization. The former case involves finding
values for the time invariant parameters of a steady-state model to improve
the objective. The latter case, where the embedded model is a dynamic sys-
tem, not only includes adjustment of time invariant parameters but may also
include the determination of optimal profiles for the time varying controls.
The decision variables in the optimization problem may take continuous or
discrete values. Discrete valued variables may be used to represent quantities
such as the optimal number of trays in a distillation column or whether or
not a a piece of equipment is required. The optimization problems may be
classified by the decision variable types and the embedded process model.
Table 1 contains a summary of different optimization problems commonly
encountered.

147

Table I: Classification of common optimization algorithms.

Name]Characteristics

LP Linear Program
Linear algebraic objective function and constraints.
All variables are continuous valued.

MILP Mixed Integer Linear Program
Linear algebraic objective function and constraints.
Both continuous and discrete valued variables.

NLP Nonlinear Program
Nonlinear algebraic objective function and constraints.
All variables are continuous valued.

MINLP Mixed Integer Nonlinear Program
Nonlinear algebraic objective function and constraints.
Both continuous and discrete valued variables.

DO Dynamic Optimization
Nonlinear algebraic objective function with possible integral
terms. Nonlinear differential and algebraic constraints.
All variables are continuous valued.

MIDO Mixed Integer Dynamic Optimization
Nonlinear algebraic objective function with possible integral
terms. Nonlinear differential and algebraic constraints.
Both continuous and discrete valued variables.

Optimization has a number of applications within CAPE. For example,
during process design, the problem may be formulated and solved as an
MINLP. The objective function in this case may be to minimize operating
costs and capital expenditure for new equipment while satisfying production
rates and purity. During batch process design, dynamic optimization may
be employed to determine optimal control profiles to maximize selectivity
or minimize waste. In addition, steady-state and dynamic optimization al-
gorithms may be used for parameter estimation. A complete discussion of
the algorithms required to solve all of the types of optimization problems
described in Table 1 is beyond the scope of this chapter. The remainder of
this section describes several approaches for solving common optimization

148

problems that arise in practice, NLP and dynamic optimization.

3 .2 .6 .1 S t e a d y - s t a t e O p t i m i z a t i o n

This section describes two algorithms for solving the NLPs that arise during
steady-state optimization. Efficient algorithms for solving NLPs are also
important due to the fact that NLPs often arise as subproblems of other
optimization algorithms, e.g., dynamic optimization and MINLP problems.
Consider the following NLP:

min / (x) (39)
x

s.t. g(x) < 0

h(x) = 0
x L <_x<_x U,

where f �9 lit n - II~ is the objective function, g �9 IR n ~ IR TM are the in-
equality constraints, h �9 IR n - II~ TM are the equality constraints, x E It(~
are the variables, and x L, x U ~_ II~ n are the variable lower and upper bounds,
respectively. In process optimization, f is typically an economic objective
function, h includes the model equations (such as mass and energy balances),
and g represents design constraints such as product purity or waste produc-
tion. One popular algorithm for solving (39) is successive (or sequential)
quadratic programming (SQP). In this approach, a sequence of search direc-
tions are generated by solving quadratic program (QP) subproblems. A QP
is an optimization problem where the objective function is quadratic and the
constraints are linear. At iteration k, the following QP is solved for a search
direction dk:

1)TBkdk mindk I (xk) + V f (xk)dk + -2 (dk (40)

s.t. g(z k) + Vg(zk)d k _< 0
h(x k) + V h (z k) d k = 0

X L < X k Jr-d k < x u.

The next approximation to the solution is simply

x k + 1 = X k Jr- d k. (41)

149

The quadratic objective function in (40) is more than simply a second-order
Taylor series approximation of f (x) at point k. The matrix B k approximates
the Hessian of the Lagrange function:

L(x, u, u) = f (x) + uTh(x) § b'Tg(x). (42)

Using an approximation of VxxL(x k, u k, uk), rather than V2f (xk) , includes
information about the curvature of the constraints in the objective function
of (40). In order for the d k generated in (40) to be descent directions and
thus converge to a local minimizer of (39), the matrix B k must be positive
definite. This may be achieved by using a positive definite approximation
for B k, such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update [30].
Not only does the positive definite update ensure that descent directions
will be generated, it also avoids the need to compute second-order derivative
information. However, the disadVantage is that the convergence is superlinear
rather than quadratic and the update is dense.

As with Newton's method for solving systems of nonlinear equations,
convergence for SQP is only guaranteed if the initial guess is sufficiently close
to the solution. The algorithm can be made globally convergent through the
use of a merit function [6]. A common example is the la merit function:

r [Z max{0, gi(x)} + ~ ,h~(x),] , (43)
i j

where # is selected such that the computed d k is a descent direction of r At
each major iteration of the SQP algorithm, the new approximation to the
solution is now

x k+l = x k + Akdk. (44)

Choosing A k such that r k + Akd k) is minimized, ensures global convergence
of the SQP method.

The fact that the BFGS update used in (40) is dense limits the size
of problems that can be solved with the SQP algorithm described above.
However, many problems in practice may be large but have few degrees of
freedom. That is, the difference between the number of variables and number
of active constraints is relatively small. This observation may be exploited
in range and null space decomposition strategies for SQP [30, 59, 60]. In
this reduced-space SQP approach, the QP subproblem is solved in the null

150

space of the active constraints (which has dimension equal to the number of
degrees of freedom). Linear algebra is used to compute search directions in
the range space. Since sparse linear algebra techniques may be employed,
the size of problems that may be handled is substantially larger.

Another popular algorithm for solving NLPs is that implemented in the
Minos package [41]. When using Minos, variables that appear linearly in the
model are distinguished from variables that appear in nonlinear expressions.
In this case, the NLP (39) is rearranged to: .

min f~ + cTxz (45)
z

s.t. f (x~) + Axl = ba
Bx~ + Cxt = b2

L < x ~ < V
X n X n

where xz denote the subset of variables that appear linearly in the objec-
tive function and constraints and xn are all other variables. The objective
function and constraints have also been partitioned into linear and nonlinear
terms. Notice that the inequality constraints have been converted to equali-
ties by introducing slack variables. At the k-th major iteration, the following
problem is solved:

' (46) min f~ --[- c T x l - ikT(f(xn) --](xn; x,.)) +
z

L <_x~_< u
X n X n

�9 < x l <

where](x~; x~) - f (x~)+ V f (x ~) (z ~ - x k) denotes the linearized constraints
k The scalar p > 0 is chosen to improve convergence at the current point xn.

when the initial point is far from the solution and the problem is highly
nonlinear. The value of p is reduced to zero when near the solution. This
linearly-constrained subproblem is typically solved through an unconstrained
optimization procedure in the space of the linearized active constraints (the
minor iterations).

151

A full optimization in the space of active constraints is performed at each
major iteration in Minos. Consequently, Minos typically requires more func-
tion evaluations than SQP and is better suited to process models which are
mostly linear. SQP tends to perform better than Minos when the constraints
are highly nonlinear. In addition, since fewer function evaluations are typi-
cally required with SQP, this approach is often preferable when the function
evaluations are expensive.

3 .2 .6 .2 D y n a m i c Optimization

The section above described two common approaches for solving NLPs, op-
timization problems where the underlying model is algebraic. Dynamic opti-
mization, where the underlying model is a system of differential and algebraic
equations, involves computing control trajectories that optimize some crite-
ria. Consider the following dynamic optimization problem:

min J = r , t:; p) + L(z, u, t; p)dt (47)
u~p

s.t. f(2, z, u, t; p) = 0

h(z, u, t; p) = 0

g(z, u, t; p) < o

r z(to), ~(to), to;p) = 0
r z(t~), ~(ts), t~; p) = o

where J is a scalar performance measure, containing a scalar function and
integral term to be minimized. The constraint f is the embedded dynamic
system, h are equality path constraints, g are the inequality path constraints,
and r and Cf are constraints at the initial and final time, respectively. Note
the presence of control profiles, u(t), as decision variables. These are elements
of function spaces.

One approach for solving dynamic optimization problems is to parame-
terize both the control and state variable trajectories, u(t) and z(t), using a
finite set of basis functions, converting the dynamic problem into an NLP.
This approach is called the collocation or simultaneous method. The resulting
NLP may be solved using an appropriate algorithm, such as those described
above. The decision variables are now the coefficients used in the discretiza-
tion, the size of the subintervals in the discretization (often the time domain

152

is split into a series of subintervals, and separate basis functions are used on
each subinterval), and the original time invariant parameters in the model.
The advantage of this approach is that path constraints (i.e., constraints
that must be satisfied at points along the trajectory) are readily incorpo-
rated into the formulation. On the other hand, it is only guaranteed that the
path constraints are satisfied at the mesh points of the discretization. The
disadvantage is that very large optimization problems are produced from rea-
sonably sized problems. Further, the number of degrees of freedom is quite
large. This reduces the effectiveness of the range and null space strategies
for SQP.

Alternatively, only the control profiles can be parameterized. The dy-
namic optimization problem is then converted into an NLP where the ob-
jective function and constraints are obtained by integrating the embedded
dynamic system, and gradient and J acobian values are obtained via the chain
rule and a parametric sensitivity analysis or adjoint analysis. In this con-
trol parameterization approach, the decision variables are the coefficients of
polynomials used to discretize the controls, the size of the subintervals in
the discretization, and the time invariant parameters originally in the model.
Although initial and end-point constraints are readily incorporated into this
method, complications arise if there are path constraints. Equality path con-
straints may be handled in a number of ways. They may be included in the
objective function as a heavily weighted integral term, relying on the opti-
mizer to minimize constraint violations [15]. Similarly, they may be converted
to end-point constraints by replacing them with integrals of the constraint
violation. Also, equality constraints may be appended to the DAE model, f.
This will require some of the controls to be treated as unknowns determined
by the numerical integration. However, these additional constraints may re-
sult in a high index DAE. An approach for handling this case is described
in [26]. Inequality path constraints may be handled in a manner similar to
the integral violation methods for equality path constraints. Often, the in-
equality path constraints are also enforced as regular inequalities at the time
subdomain boundaries.

3 .2.7 U S I N G S O L V E R S

The previous sections describe several numerical algorithms used to solve a
variety of problems commonly encountered during process modeling activi-

153

ties. This section briefly highlights some of the ways these solvers are actually
used within an application. Specifically, the form the solvers are made avail-
able to the user is discussed. Three approaches are described, procedure
libraries, object-oriented libraries, and component libraries. These three li-
brary representations closely match the evolution of programming practices
within the software development community.

3.2.7.1 P r o c e d u r e L ib ra r i e s

Traditional scientific computing has been implemented by calling numeri-
cal routines in a well-defined order. These numerical routines are typically
made available in the form of procedure libraries, containing synchronous,
local-address-space functions written in a procedural language such as C or
Fortran. A very large number of procedure libraries are available, many in
the public domain. A brief list includes BLAS [35], Linpack [22], Eispack
[53], Lapack [3], Odepack [34], and the Sarwell Subroutine Library (HSL)
[37].

The Basic Linear Algebra Subroutine (BLAS) library is a collection of
Fortran subroutines and functions for performing basic linear algebra tasks,
including computation of norms, inner products, and other basic vector oper-
ations. The computations performed by the BLAS routines are typically key
micro-kernels within other calculations and the performance of these routines
can often dramatically effect the performance of the overall calculation. Con-
sequently, BLAS libraries are available for specific computers, compiled for
optimal performance. The Linpack library, developed in the 1970s and early
1980s, is a collection of Fortran subroutines for performing higher level lin-
ear algebra calculations, but rely on the BLAS routines for vector operations.
Some numerical algorithms provided in the Linpack library include dense and
banded matrix LU factorization and backsubstitution, condition number es-
timation, and computation of the determinant of a dense or banded matrix.
The Eispack library is similar to the Linpack library, but provides a collection
of subroutines for eigenvalue and eigenvector computation. The Lapack li-
brary also provides a set of Fortran subroutines for performing linear algebra
computations. Many of the subroutines contained in the Linpack and Eis-
pack libraries are superseded by those in the Lapack library. An advantage of
the~Lapack library is the use of Level-3 BLAS routines. Linpack and Eispack
exploit Level-1 BLAS routines for performing optimized vector operations.
However, with the advent of more sophisticated computer architectures (e.g.,

154

vector processors) much of the computational overheads associated with al-
gorithms employing Level-1 BLAS routines involve the wasteful moving of
data from one memory location to another. Level-3 BLAS are available which
eliminate much of this cost by tailoring the algorithms for specific computer
architectures. Another Fortran library readily available is Odepack. Odepack
provides a set of Fortran subroutines for the numerical integration of stiff and
nonstiff ODEs. The subroutines in Odepack exploit both the BLAS routines
and linear algebra routines described previously. Another subroutine library
is the Harwell Subroutine Library (HSL). The HSL provides a large collec-
tion of Fortran subroutines for performing tasks from sparse linear algebra
to nonlinear optimization. The numerical algorithms employed in all of these
libraries illustrate a common trait in numerical library design: more complex
numerical algorithms are built on top of optimized lower level computational
kernels. This set of libraries is by no means exhaustive, but does illustrate
the availability of a number of procedural libraries available to the engineer
for performing routine tasks within an overall numerical application.

The advantage of the procedural library is that quite efficient code may
be produced, without any of the additional overheads associated with the
other approaches described later. In addition, the use of procedure libraries
is familiar to many computational scientists trained in the use of proce-
dural programming techniques and not familiar with modern programming
paradigms. Consequently, there is essentially no learning curve that must be
overcome when using most procedure libraries.

There are a number of disadvantages to using solvers in the form of a
procedure library. In typical procedure libraries, each solver has a specific
interface (i.e., argument list and return value). This fact makes it somewhat
difficult to swap between different solvers within an application (e.g., switch-
ing from an explicit to an implicit ODE solver). This problem is somewhat
mitigated if a variety of solvers are provided from a given library and in-
terface conventions are adopted. In addition, the varying calling standards
between different languages (even different compilers for the same language)
make mixed-language programs difficult to create, debug, and port to other
computers. Tight coupling and high cohesion between subprograms often
associated with procedural programs makes the evolution and maintenance
of software difficult. Even minor changes in one section of an overall ap-
plication (e.g., swapping between two different classes of solvers) can have
rippling effects that propagate throughout the entire application. As software
systems become more complex, they involve the contributions of multidisci-

155

plinary teams of experts. This problem is exacerbated by the use of more
sophisticated computer architectures (e.g., parallel computers). The char-
acteristics of procedural programming techniques make it very difficult to
manage complexity of large and evolving software applications. Neverthe-
less, the performance possible with optimized procedure libraries will make
this approach necessary for some time, particularly for key computationally
intensive kernels.

3.2.7.2 O b j e c t - o r i e n t e d L ibra r ies

As stated above, as scientific computations become more complex, they typ-
ically involve the contributions of a multidisciplinary team of experts. The
increasing complexity of the application is coupled with performing the com-
putations on more sophisticated computer architectures. Procedural pro-
gramming languages provide little language support for managing this com-
plexity. Consequently, new programming paradigms have evolved in the com-
puter science community. Specifically, there has been a move from procedural
based languages, such as C, Fortran, and Pascal to object-based and object-
oriented languages, such as Ada, Object Pascal, C++, and Smalltalk. In
object-oriented design, the program is not thought of as the application of a
set of algorithms performed in a well-defined order, but rather the interaction
of objects. These objects, which encapsulate data and algorithms applied to
the data, enable a higher level of abstraction in order to manage complexity.
A growing number of object libraries are available, including Blitz++, Diff-
pack, ISIS++, POOMA, Overture, OPlus, and Lapack++. Several of these
libraries are designed for applications on parallel computers.

As stated above, the use of objects rather than algorithms enables a
higher level of abstraction, reducing the complexity of the overall application.
Properly designed, these objects hide implementation details (referred to
as data hiding or encapsulation). The engineer is able to focus on what
transformation the object performs on the data rather than the specifics of
how this transformation is performed. By hiding the implementation details
properly, modifications can be made internal to the object with minimal
impact to the overall application. This capability makes it much easier to
reuse, extend, maintain, and evolve an application, particularly when several
programmers are involved.

A price is paid for this flexibility. It is well known that code exploiting
many of the features of an object-oriented language is less efficient than what

156

is possible with code written in a procedural language. Second, well-designed
objects require more than simply the use of an object-oriented language.
They require the user to change the way they think about programs and
how they are initially designed and implemented. Since most computational
scientists are not trained in the use of object-oriented programming tech-
niques, there is a substantial learning curve that must be overcome before
object-oriented libraries may be designed and used effectively.

3 .2 .7 .3 C o m p o n e n t L i b r a r i e s

Arguably, for large-scale, complex applications, object-oriented programming
techniques have made a substantial impact. The decomposition of programs
into loosely coupled objects, with proper data hiding, dramatically facilitates
the collaboration of teams of programmers and the evolution and mainte-
nance of the software application. However, complications still arise, par-
ticularly when using commercial or other third-party codes. Furthermore,
the advent of heterogeneous computing environments, where different por-
tions of a program may be running on entirely different computers, possibly
with different operating systems, pushes the limit on what is possible with
object-oriented programs. A common scenario is a physical property server
running on one computer, the calculation engine running on another, and
a visualization package running on a third. Component-oriented program-
ming approaches address many of these issues. According to [54], "software
components are binary units of independent production, acquisition, and
deployment that interact to form a functioning system." Components en-
able an even higher level of abstraction than objects. Proper component
design involves well-documented contracts explicitly stating what informa-
tion the component will receive and what transformation on the data will
be performed. More complete contracts indicate computation complexity as-
sociated with the transformation. With a well-defined contract, the user of
a component need not focus on the operations being performed, but simply
the results of the operations. Several component frameworks are available,
including CORBA [42], the Microsoft COM family [11], Sun's JavaBeans
[7]. As stated above, heterogeneous computing is addressed within many
component frameworks.

In contrast to procedure and object-oriented libraries, where different pro-
gramming techniques are employed for the construction of the elements of
the library (i.e., the use of procedure-based languages versus object-oriented

157

languages), component libraries are based on frameworks which describe how
the individual components are interfaced and linked to each other. By adher-
ing to these standards, several different components maybe readily combined
into an overall application, regardless of the origin of the components.

Several initiatives based on component frameworks have emerged for sci-
entific computing. Three of these are the DOE Common Component Archi-
tecture Forum, the ALICE Project of the MCS Division of Argonne National
Laboratory, and CAPE-OPEN, described in this book.

Similar to objects, additional overheads accompany the flexibility possi-
ble with components, particularly communication between components. In
addition, many issues addressed by components are often not necessary for
scientific computing. Components have been used to a greater extent within
the business community where security is a serious concern. For many sci-
entific applications, this is not a major requirement and the overheads are
largely unnecessary.

Despite these disadvantages, components will play an important role in
the design and implementation of large-scale scientific computing applica-
tions. Areas that will benefit from the use of components are higher level
coordination tasks, monitoring, steering of the calculation, coordination be-
tween different aspects of an overall calculation, visualization, communica-
tion between different platforms.

The availability of these different programming techniques require the
designer and user of a solver library to pay close attention to the struc-
ture of the overall library and individual solvers within the library. The
three approaches described in this section are complementary: components
frameworks for high level tasks, objects-oriented design of complicated com-
ponents, and procedures for low level, computationally intensive kernels.

3 .2 .7 .4 A u t o m a t i c C o d e G e n e r a t i o n

The first part of this section describes several library formats through which
numerical solvers are made available to the user. With these libraries, the
solvers may be readily linked into the overall application. However, often in
practice, much of the time and effort expended when performing numerical
calculations is spent providing additional symbolic information required by
the solver. As mentioned several times in this chapter, the user must often
provide analytical derivatives, sparsity patterns, and other information re-
quired by the solver. This additional information is provided in a number

158

of ways, determined by the actual solver being used and the type of library
containing the solver. For example, procedure libraries typically require the
user to provide model equation residuals, derivative evaluations, etc, in the
form of external procedures. Whereas, when using component libraries, the
natural choice is models in the form of components which export all of the
necessary information. Regardless of how this information is provided, the
underlying computed quantities are the same. The remainder of this section
describes automated code generation techniques that may be used to provide
this additional symbolic information with minimal user intervention.

The use of automated code generation techniques to construct deriva-
tive information from computer programs has been around for some time.
This effort has largely taken place within the automatic differentiation (AD)
community where a number of algorithms and codes have been developed
[10, 31, 50, 29]. These AD techniques operate on source code of computer
programs and provide code for computing analytical derivatives by either
generating new source code that may be compiled and linked to provide
the derivative values or by using the operator overloading features of many
languages (e.g., C++ and Fortran 90) to make the compiler generate the
additional instructions within the object code for computing the derivatives.
Recently, these code generation techniques have been extended to automati-
cally construct a much broader class of information [56]. For example, given
the code for evaluating the model equations, new code can be automatically
constructed for determining analytical derivatives, sparsity patterns, discon-
tinuity information, interval extensions, and others. In general, most or all
of the additional information required by the solvers can be generated au-
tomatically from the original model code. These automatic code generation
techniques typically apply to procedural code. However, the procedural code
can the be embedded in any format required by the solver being used.

3.2.8 C O N C L U S I O N S

This chapter highlights several numerical algorithms used to solve common
problems that arise during process modeling, including solution of systems of
nonlinear equations, numerical integration and parametric sensitivity anal-
ysis of hybrid discrete/continuous systems, and optimization. The actual
algorithm selected for a particular application depends both on the nature of
the problem being solved and the availability of additional information con-

159

cerning the model equations. If the model equations are available in symbolic
form then much of this information is be readily available, removing many of
these constraints. Further, recent developments in automatic code transfor-
mation techniques offers these same benefits when the model equations are
available as code in a programming language such as C or Fortran.

3.2.9 R E F E R E N C E S

[1] E. L. ALLGOWER AND K. GEORG, Numerical Continuation Methods:
An Introduction, Springer-Verlag, Berlin, 1990.

[2] K. ALLOULA AND J.-P. BELAUD, Applying automatic differentiation
to computer aided process engineering software, presented at AD 2000,
Nice, France, June 2000.

[3] E. ANDERSON, Z. BAI, C. BISCHOF, S. BLACKFORD, J. DEMMEL,
J. J. DONGARRA, J. D. CROZ, A. GREENBAUM, S. HAMMARLING,
A. MCKENNEY, AND D. SORENSEN, LAPACK Users' Guide, SIAM,
Philadelphia, PA, 1999.

[4] U. M. ASCHER AND L. R. PETZOLD, Computer Methods for Oridi-
nary Differential Equations and Differential-Algebraic Equations, SIAM,
Philadelphia, 1998.

[5] A. BACK, J. GUCKENHEIMER, AND M. MEYERS, A dynamical simu-
lation facility for hybrid systems, in Hybrid Systems, R. L. Grossman,
A. Nerode," A. P. Ravn, and H. Rischel, eds., vol. 736 of Lecture Notes
in Computer Science, New York, 1993, Springer-Verlag.

[6] M. S. BAZARAA, H. D. SHERALI, AND C. M. SHETTY, Nonlinear
Programming: Theory and Applications, John Wiley and Sons, Inc.,
New York, 1993.

[7] C. J. BERG, Advanced Java 2 Development for Enterprise Applications,
Prentice-Hall, Englewood Cliffs, N.J., 2000.

[8] D. BERTSIMAS AND J. N. TSITSIKLIS, Introduction to Linear Opti-
mization, Athena Scientific, Belmont, MA, 1997.

160

[9] M. BERZINS, P. M. DEW, AND R. M. FURZELAND, Developing soft-
ware for time-dependent problems using the method of lines and differ-
ential algebraic integrators, Appl. Numer. Math., 5 (1989), pp. 375-397.

[10] C. BISCHOF, A. CARLE, G. CORLISS, A. GRIEWANK, AND P. HOV-
LAND, ADIFOR - Generating derivative codes from Fortran programs,
Scientific Programming, 1 (1992), pp. 11-29.

[11] D. Box, Essential COM, Addison-Wesley, Menlo Park, CA, 1998.

[12] K. E. BRENAN, S. L. CAMPBELL, AND L. R. PETZOLD, Numerical
Solution of Initial Value Problems in Differential-Algebraic Equations,
SIAM, Philadelphia, PA, 1996.

[13] P. N. BROWN, A. C. HINDMARSH, AND L. R. PETZOLD, Using
Krylov methods in the solution of large-scale differential-algebraic sys-
tems, SIAM J. Sci. Comput., 15 (1994), pp. 1467-1488.

[14] C. G. BROYDEN, A class of methods for solving nonlinear simultaneous
equations, Math. Comp., 19 (1965), pp. 577-593.

[15] A. E. BRYSON AND Y.-C. Ho, Applied Optimal Control, Hemisphere,
Washington, 1975.

Y. CAO, S. LI, AND L. PETZOLD, Adjoint sensitivity analysis for
differential-algebraic equations: Part II, numerical solution, submitted,
SIAM Journal on Scientific Computing, 2000.

[17] Y. CAO, S. LI, L. PETZOLD, AND R. SERBAN, Adjoint sensitivity
analysis for differential-algebraic equations: Part I, the adjoint DAE
system, submitted, SIAM Journal on Scientific Computing, 2000.

[is] M. B. CARVER, Efficient integration over discontinuities in ordinary
differential equation simulations, Mathematics and Computers in Simu-
lation, XX (1978), pp. 190-196.

[10] F. E. CELLIER, Combined Continuous/Discrete System Simulation by
Use of the Digital Computer: Techniques and Tools, PhD thesis, Swiss
Federal Institute of Technology, Zurich, 1979.

161

[20] T. F. COLEMAN AND J. J. MORt~, Estimation of sparse Jacobian ma-
trices and graph coloring problems, SIAM Journal on Numerical Analy-
sis, 20 (1983), pp. 187-209.

[21] A. R. CURTIS, M. J. D. POWELL, AND J. K. REID, On the estimation
of sparse Jacobian matrices, J. Inst. Maths. Applics., 13 (1974), pp. 117-
119.

[22] J. J. DONGARRA, J. R. BUNCH, C. B. MOLER, AND G. W. STEW-
ART, LINPACK Users' Guide, SIAM, Philadelphia, PA, 1979.

[23] I. S. DUFF, J. NOCEDAL, AND J. K. REID, The use of linear pro-
gramming for the solution of sparse sets of nonlinear equations, SIAM
Journal on Scientific and Statistical Computing, 8 (1987), pp. 99-108.

[24] I. S. DUFF AND J. K. REID, MA48, a FORTRAN code for direct solu-
tion of sparse unsymmetric linear systems of equations, Technical Report
RAL-93-072, Rutherford Appleton Laboratory, Oxon, UK, 1993.

[25] A. L. DULMAGE AND N. S. MENDELSOHN, Two algorithms for bipar-
tite graphs, J. Soc. Indust. Appl. Math., 11 (1963), pp. 183-194.

[26] W. F. FEEHERY AND P. I. BARTON, Dynamic optimization with equal-
ity path constraints, Industrial and Engineering Chemistry Research, 38
(1999), pp. 2350-2363.

[27] W. F. FEEHERY, J. E. TOLSMA, AND P. I. BARTON, Efficient sensi-
tivity analysis of large-scale differential-algebraic systems, Applied Nu-
merical Mathematics, 25 (1997), pp. 41-54.

[28] S. GAL~.N, W. F. FEEHERY, AND P. I. BARTON, Parametric sensitiv-
ity functions for hybrid discrete/continuous systems, Applied Numerical
Mathematics, 31 (1999), pp. 17-47.

[29] R. GIERING AND T. KAMINSKI, Recipes for adjoint construction, ACM
Transactions on Mathematical Software, 24 (1998), pp. 437-474.

[30] P. E. GILL, W. MURRAY, AND M. H. WRIGHT, Practical Optimiza-
tion, Academic Press, New York, 1981.

[31] A. GRIEWANK, Evaluating Derivatives: Principles and techniques of
algorithmic differentiation, SIAM, Philadelphia, PA, 2000.

162

[32] E. HAIRER AND G. WANNER, Solving Ordinary Differential Equations
II: Stiff and Differential-Algebraic Problems, Springer, New York, 1991.

[33] J. L. HAY AND A. W. J. GRIFFIN, Simulation of discontinuous dynam-
ical systems, in Proceedings of the 9th IMACS Conference on Simulation
of Systems, 1979, L. Dekker, G. Savastano, and G. C. Vansteenkiste,
eds., North-Holland, 1980.

[34] A. C. HINDMARSH, ODEPACK, a systematized collection of ODE
solvers, in Scientific Computing, R. S. S. et al., ed., Amsterdam, 1983,
North Holland, pp. 55-64.

[35] C. L. LAWSON, R. J. HANSON, D. KINCAID, AND F. T. KROGH,
Basic linear algebra subprograms for Fortran usage, ACM Transactions
on Mathematical Software, 5 (1979), pp. 308-323.

[36] K. LEVENBERG, A method for the solution of certain nonlinear problems
in least squares, Quart. Appl. Math., 2 (1944), pp. 164-168.

[37] H. S. LIBRARY, Specifications, Tech. Rep. Release 11, AEA and SERC,
1993.

[38] T. MALY AND L. R. PETZOLD, Numerical methods and software for
sensitivity analysis of differential-algebraic systems, Applied Numerical
Mathematics, 20 (1996), pp. 57-79.

[39] D. W. MARQUARDT, An algorithm for least squares estimation of non-
linear parameters, J. Soc. Indust. Appl. Math., (1963), pp. 431-441.

[40] R. E. MOORE, Methods and Applications of Interval Analysis, SIAM,
Philadelphia, 1979.

[41] B. A. MURTAGH, On the simultaneous solution and optimization of
large-scale engineering systems, Computers and Chemical Engineering,
6 (1981), pp. 1-5.

[42] OMG, The Common Object Request Broker: Architecture and spec-
ifications, Tech. Rep. Release 2.0 July 1995, Update July 1996,
Object Management Group, 1997. Formal document 97-02-25,
(http://www. omg. org).

163

[43] J. M. ORTEGA AND W. C. RHEINBOLDT, Iterative Solution of Non-
linear Equations in Several Variables, Academic Press, Inc., New York,
1970.

[44] C. C. PANTELIDES, The consistent initialization of differential-algebraic
systems, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 213-231.

[45] ~ , Symbolic and Numerical Techniques for the Solution of Large Sys-
tems of Nonlinear Algebraic Equations, PhD thesis, University of Lon-
don, London, U.K., May 1988.

[46] T. PARK AND P. I. BARTON, State event location in differential alge-
graic models, ACM Transactions on Modelling and Computer Simula-
tion, 6 (1996), pp. 137-165.

[47] A. POTHEN AND C. J. FAN, Computing the block triangular form of a
sparse matrix, ACM Transactions on Mathematical Software, 16 (1990),
pp. 303-324.

[48] M. J. D. P OWELL, A hybrid method for non-linear equations, in Nu-
merical Methods for Non-linear Algebraic Equations, P. Rabinowitz, ed.,
New York, 1970, Gordon and Breach, pp. 87-114.

[49] G. REISZIG, W. S. MARTINSON, AND P. I. BARTON, Differential-
algebraic equations of index 1 may have an arbitrarily high structural
index, SIAM Journal on Scientific Computing, 21 (2000), pp. 1987-1990.

[50] N. ROSTAING, S. DALMAS, AND A. GALLIGO, Automatic differentia-
tion in Odyssee, Tellus, 45A (1993), pp. 558-568.

[51] A. I. RUBAN, Sensitivity coefficients for discontinuous dynamic systems,
Journal of Computer and Systems Science International, 36 (1997),
pp. 536-542.

[52] L. K. SCHUBERT, Modification of a qn method for nonlinear equations
with a sparse jacobian, Math. Comp., 24 (1970), pp. 27-30.

[53] B. T. SMITH, J. M. BOYLE, J. J. DONGARRA, B. S. GARBOW,
Y. IKEBE, V. C. KLEMA, AND C. B. MOLER, Matrix eigensystem
routines - EISPA CK guide, Lecture Notes in Computer Science, Berlin,
1976, Springer-Verlag.

164

[54] C. SZYPERSKI, Component Software: Beyond Object-Oriented Program-
ming, ACM Press, New York, NY, 1998.

[55] J. E. TOLSMA AND P. I. BARTON, On computational differentiation,
Computers and Chemical Engineering, 22 (1998), pp. 475-490.

~ , DAEPACK: An open modeling environment for legacy models,
Industrial and Engineering Chemistry Research, 39 (2000), pp. 1826-
1839.

[57] ~ , Hidden discontinuities and parametric sensitivity calculations, sub-
mitted, SIAM Journal on Scientific Computing, 2000.

[58] ~ , Process simulation and analysis with heterogeneous models, in
preparation, 2001.

[59] S. VASANTHARAJAN AND L. T. BIEGLER, Large-scale decomposition
for successive quadratic programming, Computers and Chemical Engi-
neering, 12 (1988), pp. 1087-1101.

[60] S. VASANTHARAJAN, J. VISWANATHAN, AND L. T. BIEGLER, Re-
duced successive quadratic programming implementation for large-scale
opimization problems with smaller degrees of freedom, Computers and
Chemical Engineering, 14 (1990), pp. 907-915.

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
(t~ 2002 Elsevier Science B.V. All rights reserved. 165

Chapter 3.3: Simulat ion, Design & Analysis

D. Hocking, J. M. Nougu~s, J. C. Rodriguez & S. Sama

3.3.1 Simulation

Simulation is today a well-known subject. It is nevertheless useful to get back to
the basics and describe briefly what is understood as simulation.

Himmelblau and Bischoff define simulation as 'The s tudy of a system or its parts
by manipulat ion of its mathematical representation or its physical model '1.
Encarta provides another definition: 'The imitation of a physical process or object
by a program that causes a computer to respond mathemat ical ly to data and
changing conditions as though it were the process or object i tself 2.

The first definition outlines the relationship between simulation and modelling.
While modelling is the construction of a (more or less simplified) mathemat ica l
representat ion of a system, s imulat ion consists in the use of such model to study
the system. For all but the most trivial models, simulation will require a non-
trivial solving of the model. In spite of this distinction, modelling and simulation
are increasingly been used as synonyms, on the basis tha t the modelling activity
is almost always a pre-requisite for simulation.

There is, therefore, a strong relationship between the modelling and the
simulation activities. In fact, in order to simulate a system, a model is needed.
Moreover, the same system may have several models (possibly, with different
levels of fidelity) tha t can be used for similar simulation purposes (leading to
answers of varying degrees of quality).

The lat ter definition of simulation is interest ing in the sense tha t it is implicitly
restricted to computer simulation, leaving all other types of simulation outside of
its scope. This is another example of how the computer revolution is influencing
the meaning of words. The solution of any mathemat ical model tha t represents a
physical process is a form of simulation, regardless of the number of equations or
the method of solution. The generally accepted interpreta t ion of simulation is the
solution of a model of a system with a computer.

166

Simulation has a key role in the system design and analysis, especially in those
systems where their intrinsic complexity makes analytical study impractical or
infeasible. From this perspective, simulation is a tool for the system design and
analysis activities. In these two contexts, simulation is used in different ways:

1. For the design process, where the objective is to develop a system that
satisfies a specified set of requirements, simulation is used as an aid for
the design through the prediction of the system behaviour.

2. For analysis purposes, the real system already exists (at least its
representat ion - the model) and the objective is to use its model in order to
analyse how that system behaves under a given set of conditions.

In both of the above mentioned activities, simulation aims at replacing with
advantage experimentation. The cost-effectiveness of simulation is a function of
the following factors:

1. The cost of performing an experiment, that is, interrogating the real
physical system to measure its behaviour.

2. The quality of the information obtained in the above mentioned
experiment.

3. The cost of building the mathematical model of the system.
4. The cost of simulating the system using its mathemat ical model to

calculate its behaviour.
5. The quality of the information obtained from the simulation.

Progress in a number of dimensions is steadily pushing forward the advantages
of simulation over experimentation:

1. Hardware. Moore's law states that computer speed approximately doubles
every 18 months, which equates to three orders of magnitude increase in
the last ten years. Simulation scale and speed have followed this trend. In
addition, the cost per MHz of processor speed has decreased enormously.
This has increased the application of simulation by making it more
accessible and cost-effective and it is now often considered a real-time
activity.

2. Software. Software Engineering has followed the evolution of the
hardware, becoming more advanced and efficient. This in turn has driven
a software revolution that has made the process of making the hardware
perform useful work much more straightforward.

3. Engineering. Our understanding of the underlying principles and
phenomena in physical processes continually increases. The accuracy and
applicability of the corresponding simulations also increases.

167

4. Numerical methods. The scale of mathemat ica l s imulat ion problems
solvable on a desktop terminal has increased from a few tens of equations
thir ty years ago to a few million today. The enormous increase in scale has
forced the development of more efficient, stable and fast algorithms, such
as representat ion and solution of large sparse matr ix problems.

3.3.1.1 G e n e r a l a p p r o a c h e s to s i m u l a t i o n

Simulation tools have broadly followed one of the following approaches:

Some of them are simulation-specific programming languages, such as
Simnon from SSPA Marit ime Consulting AB (Goteborg, Sweden) or Advanced
Continuous Simulation Language (ACSL) from MGA software (Concord,
Mass.).

Other tools are graphical tools where the user builds and connects blocks
through the inputs and outputs of each block. The type of information flowing
through these connections is not pre- defined but is defined in each case. Some
examples of this type are Simulink from Mathworks or VsSim from Visual
Solutions.

Other tools are domain specific simulators such as HYSYS from Hyprotech 3,
Aspen plus from Aspen Technology 4 or ProII from Simulat ion Sciences 5, in the
field of process simulation. These type of tools is specifically tailored for a
certain domain: process simulation. These specificity leads to ease of use,
albeit at the expense of a certain loss of generality.

The field of process simulation is to a large extent dominated by this lat ter type
of software tools. Since the early works in the computer application to chemical
process by L. Lapidus 6 (1962), E.M. Rosen 7 (1962), Rvicz and Norman s (1964) and
other authors, over the past thir ty years a significant advance was made in these
area and several software packages have been developed. HYSYS 3, HYSIM 3,
ASPEN 9, PROII 5, SpeedUp 1~ DIVA 11, gPROMS 12, ABACUSS 13 are just some
examples of products designed to free engineers from the burden of having to deal
with numerical algorithms and allow them to focus instead in the model
formulation and application.

3.3.1.2 C h e m i c a l P r o c e s s S i m u l a t i o n

In the field of CAPE, the systems under consideration are physical and chemical
processes, ranging from simple systems (e.g. vapour-liquid equilibrium
calculations) to complete dynamic plant simulations suitable for training
operating staff.

168

Steady-state simulation

Steady-state is defined as a mathematical condition whereby the properties of a
system at each point are constant with time. This condition very rarely happens
in real life. Why is then steady-state simulation so popular? The steady-state
assumption removes time derivatives by setting them to zero. This provides a
simpler mathematical model that is easier to understand and more adaptable to
custom solution techniques.

It is worth mentioning at this point that it is often said tha t steady state is the
state to which a system converges when t~r162 but this is incorrect. Some systems
do not converge to any steady state and may only be described by their dynamic
behaviour.

To illustrate a non-steady-state system, consider a pipeline in severe slugging
conditions. The system exhibits changing behaviour (liquid flow rate/vapour flow
rate) at each point in time, as shown in Figure 1.

Figure 1. Evolution of gas and liquid mass flows at the exit of a pipeline
showing severe slugging behaviour

Dynamic simulation

Dynamic simulation describes the time-dependent behaviour of a system.
Dynamic simulation is not as widely applied as steady-state simulation. The two
main reasons are the engineering complexity and the much greater
computational load. As computing power increases and simulation software
interfaces improve, dynamic simulation is rapidly becoming an effective tool.
Some useful fields of application include:

169

�9 Dynamic studies. Steady-state simulation will provide the basic operating
conditions for the plant. Dynamic simulation can provide further
information on how to transition the plant between modes or hold it at a
particular set of conditions.

�9 Control system design and validation studies. The dynamic behaviour of a
process is dependent on the control scheme. Different control strategies will
result in different behaviours. Dynamic simulation is required to determine
which scheme is optimal and provides the advantage that the investigation
is off-line. Dynamic models have a central role in model predictive control
(MPC) applications. In this technology usually a black box identified models
is used in the controller. The modelling and identification is the most time-
consuming task during the implementation of a MPC in the industry ~4. The
dynamic simulation of complete flowsheet can help in more effective
deployment of the MPC applications, as this type of control usually involve
plant wide control problems and/or strong interacting systems. MPC
employs a simulation model of the plant to predict how the plant will
behave in time with manipulation of the control variables. A MPC solves an
optimisation problem at each control cycle, attempting to minimize the
deviation from the setpoint(s) by manipulating the control variables. The
MPC may predict several steps into the future to refine the optimisation.
MPC permits a shift from feedback control that is reactive, to predictive
control that is proactive.

�9 OTS (Operator Training Systems). OTS brings the concept of a flight
simulator into the process plant. The goal is to train the plant operators in
the use of the real plant by using a simulation model. The simulation model
must be very detailed to replicate the real plant exactly.

Optimisation

Optimisation determines the values of a set of independent variables (e.g.
temperatures and pressures) that minimize a real-valued objective function that
is usually based on cost. Other optimisation applications are described below:

�9 Mixed-integer optimisation. In this technique, the independent variables
are a combination of real-values (e.g. the reflux ratio) and integer-values
(e.g. feed tray). The optimisation determines the best integer and real
values for the problem, for example the feed tray location for the lowest
reflux ratio. Heat exchanger network synthesis is another mixed-integer
problem.

�9 Dynamic optimisation. This is similar to steady-state optimisation except
that the objective function is also time-dependent in some way. Dynamic
optimisation is computationally demanding. The MPC application
described above is a form of dynamic optimisation. The objective function is

170

the weighted sum of the setpoint deviations. The assumption is that the
setpoints are themselves optimal.
Real-Time Optimisation (RTO). This is the direct application of a steady-
state optimisation to a plant control system. On a suitable time cycle (every
few minutes or so), the steady-state simulation is updated with appropriate
plant conditions and optimised. The optimal control values are then fed to
the plant control system and the process continues. This is effectively a
dynamic optimisation with a steady-state model. To be effective, the
optimisation time cycle must be considerably smaller than the time
constants of the plant being controlled.
Data reconciliation and parameter estimation. Data reconciliation uses
statistical techniques and a simulation model to identify errors in plant
measurements . Parameter estimation uses reconciled data and the
simulation model to determine accurate equipment parameters such as
heat transfer coefficients (fouled/not-fouled etc). The equipment parameters
may be used for dynamic control studies, optimisations, fault identification
and determination of maintenance cycles.

3.3.1.3 S i m u l a t i o n and mode l f idel i ty

It was mentioned earlier tha t the size of simulation problem we are able to solve
increases with computing power. This has a significant impact on the level of
detail in the simulation model. As more detail is incorporated, the computational
load increases. The extreme example is CFD (Computational Fluid Dynamics),
where the number of equations can be in the millions.

Traditional simulation models are based on lumped first-principles analyses,
employing mass and energy balances across pieces of equipment with a
thermodynamic characterisation, usually based on equilibrium. Basic equipment
information and geometry is incorporated if required. Recently, neural net
applications have been embedded into simulation packages to enable
parameter isa t ion of complex, computationally-expensive models for high-speed
execution. These models have the same fidelity as first-principles models, but
they trade off the first-principles extrapolation capability for speed.

At the other end of the spectrum, a high-fidelity CFD model requires detailed
geometry, mater ial properties and flow paths to be truly effective. Anomalies
such as hot spots, s tagnation points and high-shear conditions may be
determined with CFD modelling. The associated computational cost is high.

Longer-term, a component-based architecture is the only way to provide a variety
of model fidelities in simulation. A generic framework tha t permits a calculation
granular i ty much finer than a macro unit operation is required. A particular
vendor might provide an exceptional heat-transfer correlation, but a mechanism
to deliver tha t calculation is required to make it globally beneficial.

171

3.3.2 DESIGN

A design problem exists when the desired end result is known, but the means or
process leading to the end is not. Simulation is usually an integral part of the
design process, in fact it is difficult to imagine a design process tha t does not
incorporate simulation at some point. Traditionally the design work-process
progresses linearly through conceptual, process, detailed and costing. Recent
advances in CAPE software promote the concept of moving through the work
process as requirements dictate ra ther than restricting the workflow to a linear
progression.

3.3.2.1 Conceptua l des ign

This is the first step in the design process, where the major process units
required to achieve the end result are selected, e.g. reaction, separation,
compression etc. Basic thermodynamic information is required to determine
approximate operating conditions. Several al ternatives may be screened at this
point to determine candidates to move forward into process design. Conceptual
design is a steady-state simulation process.

3.3.2.2 Process des ign

Process design occurs after the conceptual design. The major process units are
decomposed into smaller groups of units with more equipment and detail.
Reasonably precise operating conditions are determined. This is predominantly a
steady-state simulation process with some optimisation. However, there are great
advantages to performing dynamic simulations at this stage to design the basic
control scheme for the plant, as rework is minimised and control-specific issues
such as time constants may be identified early on.

3.3.2.3 Deta i led Des ign

Detailed design completes the equipment specifications and 3-D layout for the
plant. Complete PFDs, PIDs and construction diagrams are developed here.
Simulation at this stage can form the basis for operator training, plant
commissioning and online applications.

3.3.2.4 Cost Es t imat ion

Cost est imation aims at producing an est imate for all the costs involved in a
plant construction and operation. Obviously, the cost est imation can be
performed with different levels of fidelity, as a function of the availability of
information.

172

3.3.2.5 Impact of the Web in Des ign Act ivi t ies

A detailed analysis of the impact of the web on the above described activities is
beyond the scope of this article. Nevertheless, this section will mention a number
of changes that the web may be introducing in the way these activities are
carried out today.

As a general principle, the Web has greatly reduced the transaction times
between the different stages in the value chain of most activities. In the field of
CAPE, the Web has extended the reach of the C in the word CAPE: computers
are not anymore restricted to one single stand-alone computer or to an intranet
network, but they can now automate processes across companies. The impact of
these automation of processes is very relevant in a number of design activities.
The viability of these improvements is heavily dependent on the availability of
robust standards that enable CAPE software tools to work across the internet
(and therefore across companies).

Model l ing complex processes

There are many process units such as cat crackers, reformers, and ethylene
furnaces that require complex models. These models are often available
commercially, but are generally not integrated into an overall simulation
package. Someone wishing to incorporate such a process unit into his design
must either develop his own model or integrate a commercial model into the
simulator, either alternative will take significant time and effort.

The availability of standards such as CAPE-OPEN can alleviate such problems.
The individual model vendors can provide their equipment models with an
appropriate interface. The process engineer can then download the models he
needs to complete his design. This concept extends beyond equipment models.
Models for proprietary processes or materials could also be downloaded.

Equipment se lec t ion

The availability of standards also makes possible the very appealing scenario
described hereinafter.

The process engineer works in the process design, which consists of a number of
ideal building blocks (unit operations). At that stage, aspects like the need of
some ancillary pieces of equipment (e.g. pumps to lift fluids to the top of a
column) are not considered. At the detailed design activity, this ancillary
equipment is incorporated into the process design. Next comes the equipment

173

selection, which consists of replacing the abstract pieces of equipment by real
models available in the marketplace.

The equipment selection, once the detailed design is available, is a task that
usually involves contacting a number of equipment providers. Conjunction of the
web and s tandards such as CAPE-OPEN make it possible, at least in theory, tha t
the process of equipment selection be automated through the use of equipment
selection agents.

Equipment selection agents would take care of replacing a flowsheet composed of
models of abstract unit operations by one (or more) flowsheets composed of
models of real pieces of equipment (that is, pieces of equipment available in the
marketplace). The agent would communicate the requirements of the equipment
to the equipment provider server. The process would end up (hopefully) with a
number of al ternatives fulfilling the requirements set up by the detailed process
design activity. Those alternatives would differ in aspects such as the capital
expenditure vs. operating expenditure tradeoff, safety, reliability, etc.

The usefulness of the s tandards becomes apparent when considering that
equipment providers may decide to make available detailed simulation models of
their pieces of equipment. The equipment selection agent would then be able to
download a number of such simulation models, all of them meeting the
requirements defined by the detailed design abstract model. A generic (abstract)
unit operation is then instant ia ted in a number of (alternative) models of real
unit operations provided by the equipment manufacturer . Standards like CAPE-
OPEN ensure tha t the abstract simulation model can be seamlessly replaced by
one of a set of alternative concrete simulation models.

The replacement of an abstract unit operation simulation model by a real,
concrete one enables the process designer to rerun the simulation model with a
more accurate description of the plant and thus identify effects tha t didn't show
up with the abstract model.

While the practical implementat ion of the above described scenario is not
available yet, it is thought to happen in the near future.

As a consequence of the equipment selection process, cost est imation can become
cost calculation, as simulations are based on models of physical equipment with a
defined purchase price.

174

3.3.3 ANALYSIS

Once one or more plant designs are available, simulation allows the engineer to
perform a number of analysis activities. These analysis activities share the goal
of testing the behaviour of the virtual plant for a number of parameters:

�9 Controllability. It is well-known that a good process design from a steady-
state perspective is not necessarily controllable.

�9 Start-up and shutdown operations. A dynamic model of the plant is
required for the analysis of start-up and shutdown operations.

�9 SHE studies. CAPE tools are extremely useful for performing Safety,
Heal th and Environmental studies, such as:

HAZOP/HAZAN. A s tandard process design activity is a
HAZOP/HAZAN studies on the plant equipment. A CAPE tool is
very useful in simulating the equipment behaviour under the
conditions determined by the HAZOP/HAZAN studies.
Emission studies. In some cases, a number of tools are used co-
operatively in order to analyse, for example, the evolution of a toxic
cloud caused by a leak in the plant. Typically this problem is
analysed by using a combination of process simulator and CFD tool,
such as in Figure 2 below.

Figure 2. A dynamic model of a steam reforming plant demonstrates the
behaviour of the plant during an upset. The feed and feed preheat system are
modelled using first principles models for all the equipment. The reactor is

implemented with a l-dimensional pseudo homogeneous model of the reactor tube
and uses an approximated model for the furnace side. It takes into account the
radiation heat transfer, the furnace wall thermal lag and the combustion of the

fuel gas. The control system reproduces the actual plant control system. The plot

175

shows the impact of a sudden 10% increase in feed rate on the reactor temperature
profile. The X-axis represents time, the Y-axis represents the length of the reactor
and the Z-axis shows the deviation of temperature from the nominal conditions.

3.3.4 SYSTEM FRAMEWORKS

3.3.4.1 Bus ines s requ irements

The scenarios described above require realistic mathematical models and
software tools that make constructing and using the models a cost-effective
process. Modern system frameworks aim at achieving such cost-effectiveness,
almost without exception, by being designed allowing for reuse. Reuse needs to be
enabled in two fundamental, complementing areas:

Model reuse. Usually companies will have invested important resources in
building the model of the system under study. It is expected that several
simulation tools will be able to use the same model, even if they will make
different use of it.

Simulation tool reuse. Similarly, companies may have invested important
resources in the development of a special-purpose simulation tool. It is also
a reasonable expectation that such special-purpose tool can be re-used in
the context of a variety of more general-purpose simulation tools. As an
example, a specialised reactor model could be used inside a conceptual
design tool or inside an optimisation tool.

The above high-level reuse requirements become more specific depending on the
following factors.

Model reuse throughout engineering disciplines. The tools need to allow
each engineering discipline to work co-operatively, ideally to add
knowledge into a common model. Examples of such engineering disciplines
are:

o Thermodynamics
o Process design
o Costing
o Equipment selection
o Control engineering

Activity sector. Process licensors, engineering, procurement and
construction (EPC) companies and operating companies pose completely
different requirements on the tools and their models.

176

�9 A process licensor may be interested in using modelling tools both
internally and as an additional, differentiating item in its product
portfolio whereby the process model would be provided to their
customers. For this latter application a restricted version of the
model may be required, so that the end user does not have access to
information that is considered as confidential by the process
licensor. In addition, process licensors will usually have their own
special-purpose in-house simulation software and will require them
to be plugged in the simulation tool.

�9 An EPC company may be particularly concerned about workgroup
capabilities in the modelling tools they use. Among other aspects,
this may pose versioning, auditing trail, etc, requirements on the
tools. EPCs will often have as well in-hose software that is expected
to interact efficiently with the main simulation tool.

�9 An operating company may make a variety of uses depending on the
department. Operating units in such companies are usually resource
constrained and may value robustness and ease of use of the
simulation tool over flexibility and complex features. These latter
capabilities may, on the contrary, be the preferred ones by central
engineering departments in order to allow them assessing
innovative, non-standard, design alternatives.

Industrial sector. While each industrial sector has different needs, it is
impractical to build specific tools from scratch that will address just one
sector's needs. Modern system framework architectures may support the
creation of specific purpose tools built on top of general purpose ones by
providing them with a number of additional features. The following is a
list of industry sectors briefly mentioning their specific needs.

o Upstream Oil & Gas. This sector is particularly demanding for
dynamic simulation and for the simulation of complex hydraulic
systems such as pipeline networks.

o Refinery. The refinery sector requires capabilities for the
characterisation of different crude oil types and also modelling
capabilities for a number of specific reactor types
(hydrodesulphurization, fluid catalytic cracker,...). As above, the
basic simulator's architecture may address these challenges by
allowing for plugging-in specific modules to address these needs.

o Petrochemicals. The petrochemicals sector has specific requirements
for modelling some types of petrochemical reactors (e.g. ethylene
crackers). These requirements may be handled similarly.

o Chemicals. The chemicals sector has a very wide variety of
requirements, among them, and just to mention a few, it requires
electrolyte modelling capabilities and similarly batch processes
modelling capabilities. These requirements are not trivial to fulfil:

177

issues such as electrolyte s imulat ion capabilit ies may require in
some cases serious re-engineering of the simulator.

Stages in the life cycle. Different stages in the process life cycle pose
different requirements on the model and its s imulat ion tool. Modern
system frameworks share the common goal of allowing seamless porting of
the model from one stage to the following one:

�9 Conceptual design.
�9 Front-l ine engineering.
�9 Detai led engineering.
�9 Equipment selection and costing.
�9 Operabil i ty analysis.
�9 Operator training.
�9 Performance monitoring, main tenance
�9 Revamp studies, optimisation

Rigor. The required level of model fidelity is not uniform in all the
activities, but depends to a large extent on a number of factors. Some
operational problems, in particular, may require the use of complex
mathemat ica l techniques such as computat ional fluid dynamics, while in
other applications (like the prel iminary screening of distil lation sequences)
a much lower model fidelity is perfectly acceptable. The architecture of the
modern system frameworks needs to be able to accommodate different
levels of model rigor and to allow the smooth t rans i t ion between these
different rigor levels.

The above ment ioned requi rements are reflected in the following dimensions tha t
s imulat ion system frameworks must address satisfactorily:

1. Fidelity. Fidelity is the amount of equipment and process detail in a model.
A quali tat ive assessment of a separat ion process requires relatively little
detail; an operator t ra iner requires a higher level of detail; the detailed
analysis of a mixing process requires yet addit ional level of detail.

2. Scale. The scale of a model is a significant factor. A small-scale model
might only model one section or unit of a plant. A large-scale model might
cover an entire plant or many plants. While it is clear the impact of the
scale in the computat ional requirements , often the scale of the problem
also impacts radically the suitability of the whole s imulat ion methodology.

3. Performance. The performance is a function of the scale and fidelity of the
model. The software must support the engineer ing activity in the time
horizon tha t makes the activity useful. It is in teres t ing to note here tha t
the whole concept of time horizon that makes the activity useful is in some
cases an absolute one but in some other cases a relative one. Quite

178

.

logically, an operator training application will be required to execute at
least at real-time speed, which constitutes the perfect example for an
absolute performance requirement. On the other side, in many other
applications, it is the market forces of both competition and supply of
better and faster tools that continuously raises the expectations and
requirements of the engineering community, what provides a relative
performance level. The qualitative separation assessment mentioned above
is a small-scale, low-fidelity model tha t is today expected to solve quickly
(in the order of seconds). Similarly, an on-line optimisation usually must
be solved in the order of minutes in order to be useful, but for the (off-line)
analysis of a mixing process, longer computation times (of the order of
hours, or even days in some cases) may be acceptable. As can be inferred,
the evolution in the computing power is continuously pushing the
expectations of the engineering community towards shorter response times
and/or more complex applications.
Interface, communication and usability. The software tools used for
modelling applications now operate within a complex corporate
environment of software systems. Modern tools are expected to
communicate with complementary applications and provide extension
capabilities. In addition, software tools are expected to be straightforward
to use and support the engineer as they work.

3.3.4.2 Bas ic t echn ica l approaches

The most important task in process simulation is the solving of the large set of
equations tha t represents the flowsheet. For all the existing solving methods the
initial point is the block diagram of the model. Taking into account the approach
used to solve the set of equations, all the current process simulators fall into the
following categories.

�9 Sequential/Modular approach. In this approach each unit operation is
represented by a set of equations grouped into a block (or module) and the
whole flowsheet is solved one a module-by-module basis (in sequential way).
Aspen, Process and FLOWTRAN are examples of the application of this
approach.

�9 Simultaneous/Modular or Two-Tier Approach. The basic idea of this approach
was first developed by Rosen 7 and is based on a simplified, linearised set of
equations for each unit operation, allowing the solution of interconnected unit
operations simultaneously.

�9 Simultaneous Solution or Equation Oriented approach. The main idea of this
approach is to collect all the equations and solve them as a large system of
non-linear algebraic equations. QUASALIN and SpeedUp are examples of the
application of this approach.

�9 Non sequential modular approach. This approach combines the sequential
modular approach with bi-directional information flow and degree of freedom

179

monitoring techniques, allowing the interactive construction and solution of
the flowsheets16.

Modular Process Modeling
Ex[eiutive [[Graph

Analysis
Tool

Ui t Unit Unit ,[
1

Oper tion Operation Operation [" , 1

1[t -it
Physical P

Properties [[PProhpy:irCt?~s [1 Propertiales I

Figure 3. Architecture of a sequential~modular simulator ~7

Equation-Orientated Process L

Unit Unit I Unit I I i

i IT
I Physical P " I

Properties Ii I

Numerical [
Solver

Numerical]
Solver

Figure 4. Architecture of an equation oriented simulator ~7

Traditional software architectures relied heavily on the use of monolithic
software applications that tried to address all requirements from within a single-
source application. Modern software architectures have become focussed on
delivering functionality through the combination of software components from
different sources.

Many software tools provide some of the capabilities mentioned above but not all
of them. There are two broad categories of CAPE software. The first one delivers
narrow, well-defined functionality, such as the computation of physical
properties, the simulation of a particular unit operation, or the numerical
solution of certain types of mathematical problems. These may be described as
Process Modelling Components (PMC). The second category of tools provides an
environment that supports the construction of a process model from first
principles and/or libraries of existing models. The user may then perform a
variety of different tasks, such as process simulation or optimisation, using this
single model of the process. This type of tool is a Process Modelling Environment

180

(PME) and is usually composed of many smaller PMCs working together co-
operatively ~7.

Enabling technologies such as COM or CORBA define a low-level communication
mechanism tha t is software-independent. Good software design principles,
systems analysis and s tandards such as CAPE-OPEN define domain-specific,
granular interfaces for software tools. The combination of these makes it easier to
develop portable PMCs tha t are reusable within different PMEs and provide a
portal for third-party development of PMCs.

The interoperabili ty between PMEs and PMCs is made possible by a set of
enabling standards. Even after due simplification, at least two levels of standards
need to be distinguished:

1. The binary layer, e.g. CORBA, COM.
2. The domain layer, e.g. CAPE-OPEN, pDXI.

While the first, lower-level layer, is a general purpose one required for enabling
component-based software (and is therefore used by literally thousands of
software products), the second layer, built on top of the first one, provides the
domain-specific s tandards that make it possible meaningful communication
between software components.

The first layer provides the fundamental means of communication between the
software components. A physical analogy would be the telephone, which
facilitates communication between people. Such communication is useless if the
participants do not speak the same language, however. This is the purpose of the
second layer, which provides the semantics so tha t pieces of software can
exchange information meaningfully.

The meaning of the above may be clarified with the following example. COM
defines programmatic s tandards so that a certain property residing in a server
software component can be accessed from a client component is. CAPE-OPEN (or,
for the same purpose, pDXI) may state tha t Fugacity is one such property that a
certain component needs to be able to recognise.

3.3.4.3 The prob lem of the degree of s tandard iza t ion

The domain-specific s tandards described above need to be carefully designed with
two apparently opposed criteria in consideration:

�9 They need to be as easily applicable to each specific existing software
product as possible.

�9 They must have as wide applicability as possible.

181

The first criterion calls for simplicity while the second one calls for complexity.
Using a mathematical analogy, while on one hand a least common multiple of the
existing software is ideal to suit meet the first of the criteria, on the other hand, a
greatest common divisor approach is better in order to meet the second criterion.

For example, some thermodynamic components do support and expose for access
by their clients the property Fugacity while some others do not. A naive
interpretat ion of the first criterion would recommend that the domain-specific
s tandard does not mention such property. Similarly, a naive interpretat ion of the
second criterion would indeed recommend Fugacity is a recognised property by
all the standard-compliant thermodynamic components.

The solution to the above apparent incompatibility resides in the s tandard taking
a pragmatic approach:

Recognising the fact that some thermodynamic components may not expose
some properties such as Fugacity (be it because they do not use such
properties at all, be it because the authors have decided not to make them
available to the outside world), the s tandard may state that some properties
do not necessarily need to be supported by a certain standard-compliant
component.
Recognising the fact that some pairs of client and server components may
benefit from using such properties, the s tandard defines some mechanisms for
handshaking, that is, mechanisms so that such Fugacity-aware client and
server can recognise such Fugacity-awareness in their counterparts and make
use of the Fugacity property. Among other things, this requires:

o Uniqueness. Fugacity needs to be a universally recognised unique
tag name for the property meant. That is, there shouldn't be
interfering varieties of the same property name such as fugacity
(lower case initial letter).

o Fault tolerance. A component that does not support Fugacity need to
fail gracefully when asked for such property by a client. The
meaning of failing gracefully needs to be specified by the s tandard in
order for the above mentioned handshaking to be possible.

o Extensibility. The s tandard needs to recognise the fact that the
wealth of human knowledge is an ever-increasing one, and thus it
needs to define the mechanisms so that the s tandard can be evolved
and extended in order, for instance, to accommodate new properties
(such as FugacityCoefficient) that may come up after the s tandard
was initially established.

Fortunately, the above problems are common place in today's software and are
not restricted by any means to the world of process simulation. An excellent
example of a similar situation can be found in the rise of XML versus htmllT, m, 20.
While html was planned as an all-inclusive standard, and thus required a

182

number of updates in order to adapt such s tandard to new findings or
requirements , XML was designed as intrinsically extensible. XML's de-coupling
of s t ructure (the DTD file) and contents (the XML file) allows for self-
documentat ion of the lexicon being used.

The techniques outlined above tackle the issue by requir ing a minimum set of
services in order for a component to become standard-compliant , but also
allowing the component to exceed such min imum set and also allowing its client
to make use of such extra capabilities. Following with the mathemat ica l analogy,
the s t andard requires the least common multiple but allows the use of the
greates t common divisor if two interact ing components so decide.

3.3.4.4 The Prob lem of Granular i ty

The concept of granular i ty is one tha t is gaining relevance as component-based
software archi tectures become popular. In essence granular i ty consists in the
level of aggregat ion exposed by a component to other external collaborating
pieces of software. A thermodynamic calculation component may be designed in
order to allow a programmat ic client full access to detailed configuration features
such as binary interaction parameters . This would constitute an example of fine
granular i ty . Alternatively, the same component may be designed to restrict the
interact ion with external programmat ic clients to the use of just a few methods,
explicitly prevent ing such client from accessing information considered as private
such as the mentioned binary parameters . This would be a case of coarse
granular i ty .

The level of granular i ty of a software component is the resul t of a number of
factors:

�9 Existing technology on which the component is built upon. Some
archi tectures natura l ly allow for finer levels of granulari ty, while
monolithic architectures usually allow only for coarse granular i ty levels.

�9 In tended interaction with clients. Even if the archi tecture allowed for fine
granulari ty, it may be a conscious decision to implement a component in a
coarse granular i ty fashion in order to steer the interact ion between client
and component through a relatively small number of well-controlled
methods.

�9 Confidentiality issues. Coarse granular i ty may be the preferred option
when the developers of the component aim at providing their clients with
some useful functionality and yet want to keep confidentiality on some
aspects tha t a finer granular i ty choice would effectively disclose.

In practice, apparent ly minor differences in the levels of granular i ty may lead to
very different use cases supported by the components involved. Following the
example of the thermodynamic component above mentioned, while the fine

183

granulari ty one may support entirely programmatic configuration by a client
component using the standard, the coarse granular i ty one may only support
programmatic execution. While this may seem as a minor difference, it has
several practical implications:

�9 In the fine granulari ty case a thermodynamic package may be created from
scratch and fully configured (i.e. compound slate selection, single
component parameters, binary parameters,. . .) and used programmatically
using the standard. In the coarse granular i ty case, though, either human or
non-standard interaction (i.e. through proprietary means) will be required
for the same purpose. When this is considered in the context of support for
automating tasks (e.g. a situation where an executive program is
dynamically reconfiguring such thermodynamic component), the difference
in capabilities' consequences become clear beyond the apparently minor
differences.

�9 As a consequence, some applications are just not supported by a coarse
granulari ty component. Optimisation of the binary parameters in order to
meet some experimental results, for instance, would only be possible with
the fine granulari ty component.

The flexibility introduced by a fine granular i ty architecture brings some
additional problems, though. In particular, as mentioned above, the developers of
a component may consciously decide to provide only a coarse level of granulari ty
in order to ensure adequate use of the component. Finer granular i ty may provide
the client of the component with so many use options that would make the
component, in practice, very difficult to use or maintain.

Following the example above, a fine granulari ty component providing access to
the binary interaction parameters has a number of requirements that the coarse
granulari ty one does not have. In particular, and to s tar t with, the level of
documentation required by the fine granulari ty one is much more detailed, not
just regarding the description of how to use the interfaces in order to access the
mentioned parameters , but also in order to describe exactly what equation of
state the binary parameters are regressed for. Even the smallest differences
between the form of the equation of state actually implemented by the component
and the one assumed by the client may lead to completely wrong results.

The situation is even more complex when the fine granular i ty component allows
not just for access but also for mix-and-match replacement of some of its built-in
sub-components by external ones. The same example of the thermodynamic
component is also suitable to illustrate this situation. A fine granulari ty
implementat ion may allow the replacement of the individual properties
calculation engines (methods, subroutines,...) by external ones. But in the field of
thermodynamics it is well-known that some properties are theoretically related,
and replacing the calculation of one of them without adequate replacement of

184

also the other one may lead to serious inconsistency, as both quantit ies are
strongly coupled (heat capacity, enthalpy and entropy provide one of the best
examples).

3.3.4.5 Example 1: Hyprotech

Hyprotech's engineering f ramework is focused on the model-centric approach. In
this paradigm, the different engineering activities use different views of a
common model. Moreover, different engineering activities (e.g. conceptual design,
dynamic simulation,...) use different software tools around the same basic model.
These software tools work co-operatively on tha t common model, for example:

�9 A conceptual design tool is used to select a process topology from a number
of design al ternatives.

�9 A steady-state s imulator is used to tune the basic process model to the
desired process conditions and to assess the flexibility of the process.

�9 An optimiser is used to find the best operating conditions.
�9 A dynamic s imulator is used to perform controllability studies on the

process model.
�9 Links to DCS's and to real-time databases are used for applications such as

Operator Training Systems (OTS) and Performance Monitoring.

Hyprotech's products support the above mentioned business requirements
through a variety of techniques:

�9 Model reuse throughout engineering disciplines. This business requirement
is directly addressed by the model-centric approach. Each engineering
discipline adds knowledge to a common model, which is therefore being
refined with more detail.

�9 Activity sector. The product can be adapted, depar t ing from a common base
product, by extension with special-purpose modules. A process licensor may
add to the basic s imulat ion its own proprietary model for a certain reactor,
for instance. The architecture allows for such reactor to hide confidential
information to the final user.

�9 Indust r ia l sector. Similarly as above, the basic means for addressing the
variety of needs throughout different sectors is by allowing the basic
process s imulator to be customised for each sector by adding relevant
features. In this context, for instance, a specific product for refineries,
called HYSYS Refinery, is nothing more than the customisation of the basic
HYSYS with a number of refinery reactor models developed in co-operation
with a domain expert partner .

�9 Stages in the life cycle. Once more, a set of optional capabilities, engineered
as optional components compatible with the basic simulator, addresses the
needs of the different stages in the lifecycle. It is worth mentioning that in

185

some cases, such as performance monitoring, the whole simulator acts as a
component itself embedded in an executive system that uses simulation in
co-operation with a real-time process database.
Rigor. The requirement of scaleable rigor requires a finer granulari ty level
than the above other requirements. In practice, scaleable rigor means that
a certain model, at the unit operation level, can be replaced by a higher or
lower fidelity one, usually keeping the rest of the flowsheet unchanged. In
practice this requires the unit operation model to have been engineered for
such underlying variety of rigor levels. This is achieved in HYSYS by
decoupling the common aspects that all unit operations need to support, no
mat te r how rigorous the model is (e.g. interaction with the rest of the
flowsheet) from the model internals.

The model-centric approach is possible only if the different tools can work co-
operatively by interacting with the model from different perspectives. The
Hyprotech architecture delivers this functionality by building process models
from interconnected granular pieces that interact with each other.

Some of the key pieces involved in the above describe scenario for Hyprotech's
products are:

�9 Common persistence layer. A common layer is used in order to grant access
to the model information to the different clients. Such layer allows clients
to use persistence features without explicit knowledge of the low-level
implementat ion details.

�9 Thermodynamic engine. Hyprotech's thermodynamic engine is designed to
provide common services to all the applications so requiring, both internal
applications and also external ones. It has been chosen to provide fine
granular i ty in order to allow users to have full configuration capabilities,
including overriding some of the built-in methods. XML technology is used
in order to define the run-time configuration of the engine, tha t is, what
methods should be used for the calculation of each property.

�9 Hydraulics engine. Hydraulic effects are present in most unit operations. A
component providing its clients with such hydraulic steady-state and
dynamic simulation capabilities is available.

�9 Mathematical component. A component based on, but not restricted to, the
Harwell Subroutine Library, is available for clients requiring mathemat ical
services.

�9 Optimiser. A component providing optimisation and data reconciliation
capabilities (which, in turn, makes use of the mathemat ica l component), is
available.

Apart from these components supporting the above mentioned requirements, the
different products are engineered not just by using existing components, but also
so that they themselves become components. From this perspective, for instance,

186

HYSYS, which is engineered using the above ment ioned components, is in itself
another component tha t can be used inside other types of applications such as
performance monitoring.

3.3.4.6 Example 2: CAPE-OPEN

In this section, CAPE-OPEN is used to i l lustrate a process modelling s tandard
tha t helps alleviate the problems mentioned above 2~.

The process leading to the design of such a s t andard is also described. Since it is
not the aim of this work to describe in detail the CAPE-OPEN project, only two
examples will be considered here. The first one concerns Unit Operation blocks
and the second one deals with a thermodynamic server, here te rmed as Property
Package.

The key point of component-ware process modelling is abstracting the behaviour
of the different packages part icipat ing in the system. This implies identifying the
behaviour tha t is common to a class of packages (e.g. the class of unit operations)
and their relat ionships with the other packages (e.g. a uni t operation is a client
for a thermodynamic server).

This abstract ion exercise will allow part i t ioning a monolithic simulation tool into
smaller entit ies with similar behaviour. This, in the end, can be used to replace
these entities with others of the same class to achieve customisation.

The abstract ion begins by simply put t ing on paper the list of requirements (i.e.
the functionality) tha t a class of components needs to fulfil. An exhaustive list of
requirements will allow creating a "class diagram" of the component (i.e. a
picture of the functionality of the component, in terms of actions that the
component is able to perform).

A fur ther simplification of the "class diagram" will discard all internal actions of
the component. This will be considered as model details, and represents the
functionality tha t clients of the component do not need to be aware of. The result
of this simplification is called "interface diagram".

An interface diagram reflects what happens in the boundaries between modelling
components. An interface diagram is the final result of the abstraction process
and 1) gives a clear indication of the common functionality of a class of
s imulat ion components and 2) establishes the rules of how the other components
have to communicate with the component exposing the interface.

Once the information to be exchanged in the boundaries of the various
components has been defined in terms of the component interfaces, this can be
expressed in terms of software artifacts tha t will be used by programmers to

187

create an s t andard simulat ion component or to re-engineer and existing model.
In ei ther case, the final goal is to achieve "plug-and-play" of these components to
create a composite modelling environment respecting a set of agreed s tandards.

E x a m p l e 2.1 - U n i t O p e r a t i o n s

The CAPE-OPEN abstract ion process for s teady state sequent ia l /modular unit
operations resul ted in a design similar to the one represented in Figure 5, which
i l lustrates how a FORTRAN reactor model is re-engineered to follow the CAPE-
OPEN standard. There is a main entity here called Unit Operation tha t contains
the engineering code (i.e. encapsula ted as FORTRAN code). Unit Operation
exposes a set of CAPE-OPEN interfaces tha t are common to all uni t operation
components (interfaces are represented by lollypops).

Figure 5. Structure of a unit operation component created according to the
CAPE-OPEN standard

Unit Operat ion uses other smaller aggregate entities; such as port and pa ramete r
collections, ports and parameters . Ports implement the connectivity, while
pa ramete r s are the way Unit Operat ions use to expose their variables (in the
reactor example, these are number of reactor tubes, length of the tubes, wall
t empera tu re and tubes radii).

Figure 6 shows how this simulation component can be used within a commercial
s imulat ion package tha t is aware of the CAPE-OPEN standard. The PME and
the PMC are independent entities working co-operatively in a customised

188

environment. Both can have their own configuration or reporting mechanisms
(e.g. graphical interfaces). The information that has to be t ransmit ted between
them in order to carry out the simulation is defined by the s tandard interfaces.

Figure 6. Using a CAPE-OPEN component within a commercial simulation
package.

3.3.4.7 T h e P r o m i s e o f I n n o v a t i v e S o f t w a r e A r c h i t e c t u r e s

Initiatives such as the CAPE-OPEN standards are designed in such a way that
parallel developments in software technology can be easily leveraged. As a
consequence, internet-based technologies are opening up several important
opportunities, some of which have already been outlined in the previous sections
in this paper. In this section some of the anticipated short-term improvements
will be outlined from the technical perspective.

The implications of the so-called internet revolution in all types of activities has
today been recognised by most companies. Software tools that simplify the
development of internet-aware software applications are becoming common
place. In particular, Microsoft is endorsing the .NET framework as the preferred
architecture for web-based applications 22. The promise of .NET is similar to the
promise that operating systems such as Windows made in the past: providing a
unified framework for the development of applications. While in the case of
Windows, the developers were suddenly freed from the need of designing from
scratch user interface tools, in the case of .NET the promise is that developers
will have a framework of reference so that they will not need to solve web-related
architectural issues by themselves, but they will just have to follow the relatively
easy-to-follow rules of such .NET architecture.

Clearly, from the development perspective, what these novel architectures will
bring is replacement technologies for the binary layer of standards mentioned

189

above. S tandards such as COM or CORBA are to evolve into new s tandards tha t
specifically provide support for web-based tools, allowing for the next step in
component software, namely, true local/remote t ransparency.

Web-based local/remote t ransparency will allow different software components to
be executed from different computers connected via web. The implications of
these new possibilities have been briefly outlined in this paper. Everything will
be a web service, including PMCs and PMEs.

A description of one sample scenario may help get an accurate idea of the
implications.

As ment ioned in this paper, the world of s imulat ion has evolved into PMEs and
PMCs. The combination and inter-operabil i ty be tween them is providing value
beyond the possibilities of one PME or PMC in isolation. The current s tandards
(e.g. COM/CORBA in co-operation with the CAPE-OPEN ones) allow for PMCs
and PMEs to be developed separately and then installed on the same computer
and used in co-operation.

In the forthcoming architectures, the step of instal la t ion is completely skipped, as
in order for a PME to use a set of PMCs, physical instal lat ion will be irrelevant:
the PME will be able to access the co-operating PMCs through the web in a
seamless manner , as if the mentioned PMCs reside on the same computer.

Moreover, a scenario where the PMCs suitable for a certain application are
decided at s imulat ion time is conceivable. Such applications could be, for
example, equipment selection as outlined elsewhere in this document.

Obviously the practical implementa t ion of this vision will not be free from
difficulties (e.g. software licensing, confidentiality issues, etc.), but there is little
doubt in the potential of these new archi tectural frameworks.

3.3.5 A C K N O W L E D G E M E N T S

Figure 3 & 4 have been extracted from the reference E r r o r ! B o o k m a r k n o t
de f ined . . The authors wish to t hank its authors and the editor. Also, this paper
uses information obtained from the Global CAPE-OPEN project.

3.3.6 R E F E R E N C E S

1. Himmelb lau D. M. and K. B. Bischoff "Process Analysis and Simulation" J
Willey and Sons, New York, (1968).

190

2. Microsoft Press| Computer and Internet Dictionary �9 & 1997, 1998 Microsoft
Corporation. All rights reserved. Portions, The Microsoft Press| Computer
Dictionary, 3rd Edition, Copyright �9 1998 by Microsoft Press. All rights
reserved.

3. http ://www.hyprotech.com
4. http ://www.aspentech.com
5. http://www.simsci.com
6. Lapidus L., "Digital Computation for Chemical Engineers" McGraw Hill, New

York, (1962).
7. Rosen E.M., "A Machine Computation Method for Performing Material

Balances", Chem. Eng. Prog. 69 October (1962).
8. Ravicz A. E., R. L. Norman, "Heat and Mass Balancing on a Digital

Computer", Chem. Eng. Progr. 60,9, p70 (1964).
9. Gallier, P.W., L.B. Evans, H. I. Britt, J. F. Boston, and P. K. Gupta, "ASPEN:

Advanced Capabilities for Modeling and Simulation of Industrial Processes"
Computer Applications to Chemical Engineering, ACS Symposium Series N ~
124 edited by R.G. Squires and G.V. Reklaitis, 293, (1980).

10.Perkins, J. D. and R.W.H. Sargent, "SPEEDUP: A Computer Program for
Steady State and Dynamic Simulation and Design of Chemical Processes",
AIChE Syrup. Ser., 78 (1982).

11.Marquardt W., P. Holl, D. Butz and E.D. Gilles, " DIVA A flowsheet Oriented
Dynamic Process Simulator", Chem Eng Technol. 10, 64 (1987).

12.Barton P.L. and C. Pantelides " Modeling of Combined Discrete/Continuous
Processes" AIChEJ. 40, 966 (1994).

13.Allgor, R. , M. Becerra, L. Evans and P. L. Barton, "Optimal Batch Process
Development", Comput. Chem. Eng., 20 885 (1996).

14.Zhu, Y.C. and T. Backx (1993). "Identification of Multivariable Industrial
Processes: for Simulation, Diagnosis and Control", Springer-Verlag, London.

15.Evans L. B . , "Advances in Process Flowsheeting Systems", Foundations of
Computer-Aided Chemical Process Design, AIChE Meeting, Henniker, New
Hampshire July 6-11, II pp 425-469 (1980).

16.Morris, C.G., A. Vysniauskas, W.D. Sim, "An Iterative Approach to Process
Simulation", Chem Eng. Prog. (1985).

17.Braunschweig, B. L., Pantelides, C.C., Britt, H.I., Sama, S., "Process
Modeling: The Promise of Open Software Architectures", Chem. Eng. Prog., 96
(9), pp. 65-76 (Sept. 2000)

18.Sama, S., Cebollero, S., Rodriguez, J.C., "The CAPE-OPEN Standard:
Towards the Future in Process Simulation", contribution to Chemputers 9,
Budapest (May 99).

19. http ://www.w3.org/xml!
20.Walsh, N., "A technical introduction to XML", http://www.xml.com/xml/pub
21.http://www.global-cape-open.org/. CAPE-OPEN and Global CAPE-OPEN are

funded by the European Community under the Industrial and Materials
Technologies Programme (Brite-EuRam III), under contracts BRPR-CT96-
0293 and BPR-CT98-9005. In addition, Global CAPE-OPEN follows the

191

Intelligent Manufacturing Systems initiative promoting collaboration between
six international regions.

22. http://www.microsoft.com/net. See, in particular,
http://www.microsoft.com/net/define net.asp and
http://www.microsoft.com/business/articles/net/netvision.asp

This Page Intentionally Left Blank

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
�9 2002 Elsevier Science B.V. All rights reserved. 193

Chapter 3.4 : Data Reconci l iat ion F r a m e w o r k

N. Arora, L. T. Biegler & G. Heyen

Data reconciliation and parameter estimation are important components of model fitting,
validation, and real time optimization in chemical industries. In its most general form, data
reconciliation is a minimization of measurement errors subject to satisfying the constraints of
the process model. Parameter estimation is the step after data reconciliation in which the
reconciled values of the process variables are used to set values for the model parameters. The
most commonly used formulation of both problems is to minimize the sum of squares of the
measurement corrections subject to model constraints and bounds. This formulation is based
on the assumption that measurements have normally distributed random errors, in which case
least squares is the maximum likelihood estimator. However, the data reconciliation problem
is compounded when gross errors or biases are present in the data, as these can lead to
incorrect estimates and severely biased reconciliation of the other measurements. This paper
discusses optimization strategies that deal with data reconciliation and gross error detection.
Included in this study are two case studies, a comprehensive steady state example and a small
dynamic example. Both illustrate these strategies and issues related to this task.

3.4.1 INTRODUCTION

Efficient and safe plant operation can only be achieved by monitoring key process variables,
which contribute to the process economy (e.g. yield of an operation) or are linked to
equipment quality (fouling in a heat exchanger, activity of a catalyst), safety limits (departure
from detonation limit) or environmental considerations (amount of pollutant rejected).
Measurements of these variables are needed to monitor process conditions and also to ensure
that operating conditions remain within acceptable quality and safety ranges. These
measurements are never error free and some reconciliation of the data is a necessary condition
for estimating the condition of the plant.

Recent progress in automatic data collection and archiving has raised an awareness of
estimation, at least for modem, well-instrumented plants. Operators are now faced with a lot
of data, but they have little means to extract and fully exploit the relevant information it
contains. Furthermore, most performance parameters are often estimated and not directly
measured. As a result, random errors on measurements also propagate in the estimation of
performance parameters.

Data reconciliation, also called validation, allows state estimation and measurement
correction problems to be addressed in a global way. The aim of validation is to remove any
error from available measurements, and to yield consistent and complete estimates of all the

194

process state variables as well as unmeasured process parameters. Data reconciliation is based
on measurement redundancy. This concept is not limited to replicate measurements of the
same variable by separate sensors; it includes the concept of spatial redundancy, where a
single variable can be estimated in several independent ways, from separate sets of
measurements. Moreover, the plant structure yields additional information, which is exploited
for correct measurements. Variables describing the state of a process must be reconciled to
consistency constraints representing basic laws of nature, such as mass and energy balances
and equilibrium constraints. Data reconciliation uses information redundancy and
conservation laws to correct measurements and convert them into accurate and reliable
knowledge. As a result, the reconciled values exhibit a lower variance compared to original
raw measurements; this allows process operation closer to limits (when this results in
improved economy).

Current developments in the field aim at combining online data acquisition with data
reconciliation. Reconciled data are displayed in control rooms in parallel with raw
measurements. Departure between reconciled and measured data can trigger alarms and
analysis of time variation of those corrections can draw attention to drifting sensors that need
recalibration. Data reconciliation can also be viewed as a virtual instrument where key
process variables are estimated from variables that are directly measured on-line. Finally,
current commercial software aims at easing the development of data reconciliation models as
follows: use of libraries of predefined unit operations, automatic generation of equations for
typical measurement types, analysis of redundancy and observability, analysis of error
distribution of reconciled values, interfaces to on-line data collection systems and archival
databases, and the development of specific graphical user interfaces.

The benefits derived from data reconciliation in chemical processes are numerous. They
include improvement of measurement layout, fewer routine analyses, reduced frequency of
sensor calibration (only faulty sensors need to be calibrated), removal of systematic
measurement errors, systematic improvement of process data, a clear picture of plant
operating condition, and reduced measurement noise for key variables. Moreover, monitoring
through data reconciliation leads to early detection of sensor deviation and equipment
performance degradation, actual plant balances for accounting and performance follow-up,
safe operation closer to the process limits and improved quality and performance at the
process level.

The next section presents the mathematical structure of the data reconciliation problem along
with various statistical choices for objective functions. A comprehensive case study that
illustrates the use of this structure is provided in Section 3.4.3. The case study also motivates
the treatment of gross errors and Section 3.4.4 provides a discussion of this treatment through
mathematical programming formulations that involve the Akaike Information Criterion and
robust statistics. A small case study on dynamic data reconciliation and gross error detection
is provided in Section 3.4.5. Section 3.4.6 then briefly describes the tasks, software
components and their interactions for data reconciliation. Finally, Section 3.4.7 summarizes
the paper and outlines areas for future work.

195

3.4.2 M A T H E M A T I C A L STRUCTURE OF DATA R E C O N C I L I A T I O N P R O B L E M S

The data reconciliation problem is formulated from data collected at sampling times i. If we
assume these data sets to be independent of each other, then the data reconciliation and
parameter estimation problem can be stated as the following nonlinear programming (NLP)
problem"

Min Zi Fi(xMi, xi)
s.t. h(xi, ui, p) = 0 for all i
x L s x i < x U (1)
u L _< ui < u u
p L < p < p U

where Fi(xMi, xi) is some objective function that depends on a difference between the
measurements and their reconciled values, x M is the set of measurement data of the
corresponding variable x, p is the set of parameters, u is the set of unmeasured variables, h is
the set of model equations and the subscript i refers to the i th measurement set. In (1), we
assume that all variables are identified with a particular data set and the problem is an errors
in variables measured (EVM) problem. On the other hand, one can also have multiple
measurements of each variable, such as in problems with moving horizons [16,22]. The
problem is then formulated more generally as:

Min F(x M, x)
s.t. h(x, u, p) = 0
X L < X ~ X U (2)
u L < u < u u
p L < p < p U

where the symbols mean the same as in (1) but now x and u are concatenated vectors. In this
case the reconciled values of variables would lie somewhere in between their successive
measurements. This leads to a smaller variance of the reconciled variables and also reduces
their sensitivity to any gross error detection tests. Finally, if the model comes from a
discretized differential algebraic equation (DAE) system, then time is generally incorporated
into the constraints and the objective function. The constraints, discretized successively in
time, can be written as in (1) but the equations do not decouple easily. This coupled structure
can be a significant issue if the dynamic data reconciliation problem is itself large.

Problems (1) and (2) are usually formed with objective functions derived from maximum
likelihood [3]. Here a number of specializations can be made for data reconciliation. In
particular, if we assume data snapshots i are independent and all data have errors from similar
sources, we can simplify the error structure. An objective function in (1) derived from a log-
likelihood estimator with a known covariance matrix leads to:

Fi(xMi, Xi) = �89 (xMi - Xi) T V -I (xMi - Xi) (3)
where V is the covariance matrix, assumed to be the same for all data sets. In addition, if we
assume that the elements of each data vector are independent of each other, then (3) simplifies
to

F~(xMi, x0 = '~ Zj ((xMij - xi0mj) = = ~ Zj (<j)2 (4)

196

w h e r e (yj2 is the variance of element j and eij is the studentized residual. However, outliers in
the data can strongly bias the reconciled data if least squares forms (3,4) are used. Instead to
reduce the effect of these biases we also consider functions based on M-estimators (related to

maximum likelihood) for the objective function in (1) or (2). Here]~i Fi(xMi, Xi) =]~ij Pij is
defined by an overall M-estimator and Pij is the estimator associated with the each data
element. Two particular M-estimators include the fair function, a Huber estimator [15], and
the redescending estimator proposed by Hampel [13]. These are defined as:

Least squares estimator." p Lij = 1//2 Eij 2 (5)

Fair function: pvij "- C2 [I Eijl/C - log [1 + I Eijl/C]] (6)

Three part redescending estimator."
2 0 <1 ~j I-<a �89

PH~J = 2 a levi I -a2/2 a <l ~;~j I < b
ab - a /2 + �89 - b)a[1 - { (c - I ~;ij I)/(c - b) } 2], b < e~j 1< c

ab + �89 - b - a)a c <1 ~;ij [

(7)

Here least squares is the only non-robust estimator. For the fair function, C is the tuning
constant, which has a direct relation to the efficiency of this function. Also, a, b, and c (with c
> b + 2a) are the tuning constants for the redescending estimator. Figure 1 shows these M-
estimators as a function of the studentized residual. Note that the fair function increases only
linearly for large residuals and this gives it some robustness compared to the least squares
estimator. The redescending estimator becomes constant for large observations; thus large
residuals have no influence on the reconciled data. Both the fair function and the
redescending estimator approximate the least squares function for small residuals and these
estimators have high efficiency for data derived from Gaussian distributions.

Once formulated, problems (1) or (2) can be solved with a number of efficient approaches, as
follows:

�9 Problems (1) or (2) can be solved with any NLP solver. Often SQP is the method of
choice as it requires the fewest function evaluations.

�9 In the absence of variable bounds, Newton's method could be applied directly to the
KKT conditions of (1) and (2). Normally this requires first and second derivatives of
the objective function and the model equations. With a quadratic objective function
and linear constraints, the KKT system is just a set of linear equations. Normally one
would not expect variable bounds to be active.

�9 If the model fits the data well (and gross errors can be eliminated or ignored through
M-estimators), the Lagrange multipliers for the equality constraints vanish. As a
result, Newton-like behavior is still maintained without requiring second derivatives
from the model equations.

More detail on these simplifications can be found in [27, 2, 3].

19'/

Finally, before solving the NLP problem, some variable classification and pre-analysis is
needed to identify unobservable variables and parameters, and non-redundant measurements.
Stanley and Mah [26] and later Crowe [9] proposed observability and redundancy tests for
steady state data reconciliation. Albuquerque and Biegler [2] extended these to dynamic
systems and applied a sparse LU decomposition rather than a QR factorization. Measured
variables can be classified as redundant (if the measurement is absent or detected as a gross
error, the variable can still be estimated from the model) or nonredundant. Likewise,
unmeasured variables are classified as observable (estimated uniquely from the model) or
unobservable. The reconciliation algorithm will correct only redundant variables. If some
variables are not observable, the program will either request additional measurements (and
possibly suggest a feasible set) or solve a smaller sub-problem involving only observable
variables. The preliminary analysis should also detect overspecified variables (particularly
those set to constants) and trivial redundancy, where the measured variable does not depend
at all upon its measured value but is inferred directly from the model. Finally, it should also
identify model equations that do not influence the reconciliation, but are merely used to
calculate some unmeasured variables. Such preliminary tests are extremely important,
especially when the data reconciliation runs as an automated process. In particular, if some
measurements are eliminated as gross errors due to sensor failure, non-redundant
measurements can lead to unobservable values and non-unique solutions, rendering the
estimates and fitted values useless. As a result, these cases need to be detected in advance
through variable classification. Moreover, under these conditions, the NLP may be hard to
converge and stronger globalization strategies, such as trust regions [8] need to be applied.

3.4.3 STEADY STATE DATA R E C O N C I L I A T I O N CASE STUDY

There are few data reconciliation case studies of significant size in the literature. The one
proposed here is provided so that it can be used to benchmark different solution strategies,
and to illustrate what can be achieved by data reconciliation tools. Actual plant data are not
used here because they are difficult to obtain and actual processes are much more complex,
with details that require more space than available. Instead the process information used here
was generated from a steady state simulation model with random noise with zero mean and
normal distribution added to the measurement variables, we consider a simplified flowsheet
of an ammonia synthesis loop (Figure 2) modeled with the BELSIM VALI III software [5];
this is a typical state of the art commercial application.

As seen in Figure 2, synthesis gas is available as stream 1 at 30 bar pressure. It is brought to
synthesis pressure (195 bar) using a 3-stage compressor with intermediate cooling. Unreacted
synthesis gas (stream 15) is recycled with the feed of the last compression stage. Compressed
reactants are brought to reaction temperature in a product-to-feed heat exchanger E-103. A
waste heat boiler E-104 recovers part of the reaction heat to raise steam. To recover ammonia,
the reactor effluent is further cooled in the chilling train E-105 (with water) and E-106
(ammonia vaporizer). Condensed ammonia is separated in B-101. The liquid is flashed to
moderate pressure in B-102, while a purge (stream 16) allows the inert components (Ar and
CH4) to leave the loop. Physical properties and phase equilibrium calculations were estimated
using Soave-Redlich-Kwong model.

Table 1u : Memured und reconciled values for streurns

Tag name
1-MASSF
1-MFAR
1-MFC1
1-MFH2
1-MFN2
1-MFNH3

1-p
1-T
2-p
2-T
3-T
4-p
4-T
5-T
6-p
6-T
7-p
7-T
8-MFNH3

8-p
8-T

15-MASSF
16-MASSF
16-MFAR
16-MFC1
16-MFH2
16-MFN2
16-MFNH3
16-P

16..T
18-MASSF
18-MFAR
18-MFC1
18-MFH2
18-MFN2
18-MFNH3
18-P
19-MASSF
CW1-P
m1-T
CW2-P
CW2-T
CW3-P
CW3-T
CWR1-T
CWR2-T
CWR3-T
AM1-P
AM1-T
AMR1-T
BFW-MASSF
BFW-P
BFW-T
STM-P
STM-T
WCOMP POWER

Measured
85.0

0.970
0.950
74.70
24.10
0.00
29.9
39.4
75.1
165.0
39.1
183.6
167.9
40.4
181.1
5.9

188.3
10.9
2.80
191.2
329.3
14.60
195.6
502.8
186.4
408.4
192.4
84.4
39.1
-5.8

182.0
-3.9

293.1
18.40
5.20
4.80
66.7
22.3
3.90
181.9
-6.9
0.80
4.90
9.40
32.4
11.60
40.4
10.1
62.7
3.0

20.2
3.0
20.7
2.9
22.8
30.8
30.2
31.4
2.0

-19.1
-17.2
40.8
40.4
24.3
39.3
247.9
21471

Accuracy
2.0%
0.05
0.05

1
1

CST
2.0%
1.00
2.0%
2.00
1.00
2.0%
2.00
1.00
2.0%
1.00
2.0%
1.00
0.20
2.0%
2.00
0.20
2.0%
3.00
2.0%
3.00
2.0%
2.00
1.00
1.00
2.05-
1.00
2.0%
3.0t
3.0%
3.0%
1.00
1.00
3.0%
2.0%
1.00
5.0%
3.0%
3.01
1.00
3.0%
1.00
2.0%
1.0%
2.0%
1.0

2.0%
1.0

2.0t
1.0
1 0
1.0
1.0

2.0%
1.00
1.00
2-02
1.0%
1.00
2.01
2.00
5.0%

Validated
82.4

0.978
0.900
73.66
24.38
0.00
29.9

39.416
75.1

164.93
39.128
183.8
167.8

40.547
101.0
5.5

190.4
11.1
2.89
189.9
327.8
14.61
191.6
505

191.3
409.5
191.3
82.7
39.1
-5.2

181.0
-5.45
294.7
18.51
5.03
4.86
65.38
20.87
3.85
181.0
-5.45
0.83
5.01
9.15

33.61
11.64
40.59
10.1
63.1
3.0
20.2
3.0
20.7
2.9
22.8
30.8
30.2
31.4
2.0

-19.1
-17.2
40.3
40.3
24 .3
39.5
247.8
21745

Accuracy
0.8%

0.025
0.025
0.082
0.084

Penalty
2.31
0.02
0.36
1.08
0.08

Unit -
t/h
1
%
%
1
%
bar
C
bar
C
C
bar
C
C
bar
C
bar
C
%
bar
C
%
bar
C
bar
C
bar
C
C
C
bar
C
t/h
t/h
t
%

t
%

%
bar
C
t/h
%
%
%
%
%

bar
t/h
bar
C
bar
C
bar
C
C
C
C
bar
C
C
t/h
bar
C
bar
C
kW

199

Table 1 b �9 Measured and reconciled values for unit parameters

Tag name Measured Accuracy Validated Accuracy
C-101EFFIC 0.75 0.15 0.756 0.03
C-102EFFIC 0.75 0.15 0.721 0.03
C-103EFFIC 0.75 0.15 0.728 0.13
B-102DP 170 100 170.9 1.74
R-101DTEQI 0.0 100 0.28 3.08
E-101A 500 CST 500
E-101DPI 0.5 1.00 0.5 1.00
E-101DP2 0.i 1.00 0.114 1.00
E-101U 0.35 1.00 0.325 0.01
E-102A 500 CST 500
E-102DPI 0.5 1.00 0.5 1.00
E-102DP2 0.i 1.00 0.094 1.00
E-102U 0.35 1.00 0.323 0.01
E-103A 3000 CST 3000
E-103DPI 0.5 1.00 0.433 0.98
E-103DP2 0.1 1.00 0.025 0.98
E-103U 0.35 1.00 0.437 0.01
E-104A 200 CST 200
E-104DPI 0.5 1.00 0.825 0.66
E-104DP2 0.1 1.00 0.370 0.98
E-104U 0.35 1.00 0.476 0.01
E-105A 2500 CST 2500
E-105DPI 0.5 1.00 0.5 1.00
E-105DP2 0.I 1.00 0.ii0 1.00
E-105U 0.35 1.00 0.194 0.02
E-106A 1500 CST 1500
E-106DPI 0.5 1.00 0.5 1.00
E-106DP2 0.I 1.00 0.Ii0 1.00

Penalty Unit
0.00 -
0.04 -
0.02 -
0.00 bar
0.00 K

m2
0.00 bar
0.00 bar
0.00 kW/m2/K

m2
0.0 0 bar
0.0 0 bar
0.00 kW/m2/K

m2
0.00 bar
0.01 bar
0.01 kW/m2/K

m2
0.11 bar
0.07 bar
0.02 kW/m2/K

m2
0.00 bar
0.00 bar
0.02 kW/m2/K

m2
0.00 bar
0.00 bar

The problem is formulated by specifying two models: the process model and the measurement
model. Measurements, x M, are identified by a tag name and data for each measurement
includes the measured value, the expected standard deviation, o (either a constant value or a
percentage of the measurement), and a measurement type. Lower and upper bounds may also
be provided for all measured variables. Further, nonstandard measurements can be defined by
adding the corresponding linking equations to the process model. Process parameters, p, such
as heat transfer coefficients or compressor efficiencies also fit easily in such a framework.
They can be bounded appropriately to enforce some physical constraints or assigned a
constant value. This is the case for some equipment parameters (e.g. area of a heat exchanger)
or variables whose value must remain fixed (e.g. nitrogen content in atmospheric air, or
absence of reaction product in the feed). Measured values in this study, their standard
deviations and validated results are displayed in Tables 1 a and 1 b.

For the case examined here, the objective function is the weighted sum of squares of
measurement corrections and the program generates 123 model equations. These include mass
and energy balances, pressure drop equations, vapor-liquid equilibrium constraints, and
definitions for isentropic compressor efficiency and heat transfer coefficients and linking
equations to relate the measured quantities (e.g. mole fractions or mass flowrate) to the state
variables (e.g. partial molar flowrates). The reconciliation problem involves 89 measurements
and 84 unmeasured state variables, 10 variables set as constants (e.g. area for all heat
exchangers), and thus 40 redundancies. Solution of this NLP can be obtained in a few seconds
on a personal computer. Two different solution algorithms have been tested and perform
equally well on the proposed problem. The first one solves the KKT conditions of (2) as a set
of algebraic equations using a dogleg method. In the absence of bound constraints, this
method is the fastest for large well-behaved problems. As an alternative, the NLP was also

200

solved with a large scale SQP solver, which is somewhat slower, more robust, and can handle
bounds on the variables.

At the solution the weighted least squares objective function has a value of 24.5035 and the
measurements appear to be acceptable; none is corrected by more than twice the assumed
standard deviation, as shown in the results (Tables l a and 1 b). After convergence is attained,
a global Chi-square test is performed (with a value of 54.58) which confirms that
measurement corrections stay within the acceptance range of the assumed error distribution.
The equality constraints are satisfied to within a tolerance of 10 .6 and no variable lies on a
bound, although eleven are near their bounds. Table 2b also shows that the available
measurement set allows process parameters to be identified with acceptable accuracy. For
instance, the isentropic efficiency of compressor C101 was guessed at 0.75 with a standard
deviation of 0.15. The new estimate is 0.756 with a standard deviation of 0.03.

In addition, a sensitivity analysis provides measured and reconciled values of each
measurement as well as its specified standard deviation and a posteriori variance of the
reconciled value. These are reported in relative (relative accuracy) and absolute (absolute
accuracy) terms below. Also, state variables depending on a given measurement are listed,
along with the weight factor (contribution) indicating the contribution of the measurement
variance to the variance of the reconciled value. For instance, for the efficiency of C101
compressor, the sensitivity report indicates:

Measurement Tag Name Value Absolute Relative Unit

accuracy accuracy

EFFIC U C-101 Reconciled 0.75573 0.28988E-01 3.84% -
C-101EFFIC 0. 75000 0. 15000 20.00% -

Variable Tag Name Contribution d/d meas d/d sigma Unit

P S 1 iP 36.75% -0. 29387E-01 0.72% bar
P S 2 2P 36.31% 0. I1630E-01 i. 36% bar
T S 2 2T 14.99% -0. 56122E-02 1.17% C
T S 1 IT 7 . 26% 0 . 78132E-02 0 . 35% C
EFFIC U C-101 C-101EFFIC 3.73% 0.37347E-01 80.67% -

Note that the uncertainty on the C-101 efficiency can be decreased mainly by improving the
accuracy of pressure measurements for streams 1 and 2, and, to a lower extent, by improving
temperature measurements. The initial guess of efficiency has little impact on the final value:
the derivative of the result with respect to the guess is 0.037. This sensitivity analysis detects
the importance of all measurements on the identification of process states and parameters.
Some measurements might appear to have little effect on the result, and might thus be
discarded from analysis. For instance, adding a measurement of ammonia concentration in
stream 19 is almost useless; the process is designed so that stream 19 is almost pure ammonia
and its purity is fixed mainly by the flash pressure and temperature.

The data reconciliation program can also identify the influence of measurements on
reconciled state variable values. As an example, consider the reactor productivity, where one
might expect the reactant flow rate and ammonia fractions in the reactor inlet and outlet
streams to be the most influential measurements. Instead, the sensitivity report below shows
that the major source of uncertainty is due to the flowrate of the pure ammonia product
(stream 19). Process feed (stream 1) also contributes to a lower extent, as well as the boiler
feed water flowrate, indicating that the energy balance of the synthesis loop also provides
information about the reaction rate.

201

Variable Tag Name Value Absolute Relative Unit
accuracy accuracy

EXTENT1 U R-101 Computed 1896.2 15.161 0.80% kmol/h

Measurement Tag Name Contribution d/d meas d/d sigma Unit
M~SF R 19 19MASSF 66.42% 19.707 18.30% t/h
MASSF R 1 IMASSF 9.88% 2.8031 59.59% t/h
MASSF R BFW BFWMASSF 4.92% 4.1220 25.42% t/h
MASSF S 15 15MASSF 4.66% 0.55857 24.65% t/h
T S ii lIT 2.75% 1.2560 26.07% C
MASSF R 18 18MASSF 1.73% 49.897 57.38% t/h
MFN2 R 18 18MFN2 1.34% -5.0349 30.02% %

These examples show that some measurements can have a very high impact on the validated
variables and on their variance. These measurements should be carried out with special
caution, and it may prove wise to duplicate the sensors. More examples of such analysis are
discussed in Heyen et al [14].

Finally, we examine how data reconciliation can be used as a fault detection framework. Here
we generate another data set that assumes an internal leak in the heat exchanger E-103. A
fraction (10%) of stream 7 is directly mixed with stream 11 and part of the flow bypasses the
reactor section and cycles in the compressor and the cooling section. This is obviously a waste
of energy. Solving the data reconciliation problem leads to an objective function of 42.8857
and a Chi-square of 55.76. Compared to the previous case, the objective function is definitely
larger, although the Chi-square test is still satisfied. On the other hand, one measurement
(flow rate of stream 15) is corrected by more than 3 standard deviations, and is flagged as
suspect. Other measurements in the reaction loop (streams 6, 9, 16, 18, 19) are also corrected
by more than one standard deviation.

Here, one may suspect that something is wrong, but there is no direct evidence about the
cause. Instead, we modify the flowsheet and the reconciliation model to assume that an
unknown fraction of stream 7 bypasses E-103 and is transferred directly to stream 11.
Rerunning the data reconciliation problem with a very small initial guess (10 -4) for the bypass
fraction, leads to an objective function value of 35.721 and a Chi-square value of 55.76. The
objective function is now reduced, and the largest variable correction is less than 2 o. The
bypass fraction is estimated as being approximately 0.06, with a standard deviation of 0.021.

Variable Tag Name

FRAC2 U S-I Reconciled
S-IFRAC2

Value Absolute Relative Penalty Unit
accuracy accuracy

0.60335E-01 0.21536E-01 35.69%
0.10000E-03 0.50000 ******% 0.01 -

Measurement Tag Name Contribution
MASSF S 15 15MASSF 34.90%
MFNH3 R 9 9MFNH3 18.91%
T S II lIT 14.22%
MASSF R BFW BFWMASSF 6.00%
T S 8 8T 5.O6%
. . .

d/d meas Rel.Gain Penalty Unit
0.12808E-02 16.94% 2.92 t/h
0.46826E-01 20.48% 0.i0 %

-0.40610E-02 18.61% 3.95 C
-0.67275E-02 20.10% 2.03 t/h
-0.24211E-02 16.45% 0.19 C

As shown above, the sensitivity report for this parameter indicates that better estimation of the
bypass fraction requires improved accuracy (or additional measurements) of the flow rate for
stream 15 and, to a lesser extent, the ammonia concentration in stream 9 and the temperature
of stream 11. As a final check, we consider the bypass model with our original (leak-proof)

202

data. Here we obtain the same objective function value (24.5035) as for the base case and the
estimated leak fraction is correctly estimated as being zero.

3.4.4. O P T I M I Z A T I O N STRATEGIES FOR GROSS E R R O R D E T E C T I O N

In the previous section the comprehensive case study indicates the usefulness of data
reconciliation for obtaining accurate states, assessing the sensitivity of measurements and
their uncertainties on estimated parameters, and in providing a tool for fault detection. In this
section we focus in more detail on efficient strategies for handling gross errors in data
reconciliation.

As seen in Section 3.4.2, the least squares objective function can be severely biased leading to
incorrect reconciliation and estimation. As indicated in the case study a common procedure
identifies the measurements that suffer from gross errors and eliminates them in a sequential
procedure. Early papers on the subject describe tests based on Chi-square statistics as the
criteria for identifying outliers [11]. In addition, Crowe et al. [12] used matrix projection to
reconcile process flows. They devised a Chi-square test based on the inverse of the reduced
Hessian. Madron [18, 19] proposed a Chi-square test based on the squared studentized
residuals following a non-central Chi-square distribution. He also provided methods for gross
error detection and the concept of measurement credibility. Kao et al. [17] proposed a Chi-
square test for gross error detection in serially correlated process data. They also compared
this with three other tests for outlier detection.

Serth and Heenan [24] devised a combinatorial strategy called the screened combinatorial
method which uses standard normal deviates calculated for each measured stream; they
reduce the size of the combinatorial problem by identifying the smallest complete subset of
biased measurements. Narasimhan and Mah [20, 21] tested their generalized likelihood ratio
method against the results of Serth and Heenan [24] and reported that their method was able
to identify a wide variety of gross errors. This is also a combinatorial strategy that uses the
normal distribution for outlier identification. Crowe [10] devised a maximum power test by
which he tested constraint residuals for normality and identified suspect balances. More
recently, Rollins et al. [23] derived a linear combination technique which is a combinatorial
technique based on the chi-square test that identifies equivalent gross errors. Bagajewicz and
Jiang [4] performed gross error detection on models characterized by differential equations
by fitting polynomials to the differential variables and solving the resulting linear system.
They used concepts from graph theory for their combinatorial strategy. However, all of the
above methods were derived only for linearly constrained problems and are multi-step
processes that use a sequential scheme for reconciliation and gross error detection.

On the other hand, the estimators derived from robust statistics can be used as objective
functions in data reconciliation problems. These estimators put less weight on large residuals
corresponding to outliers. As shown in Section 3.4.2, this leads to less biased parameter
estimates and reconciled values. Tjoa [27] used the contaminated normal distribution to
derive the objective function and used this to simultaneously identify outliers. Albuquerque
and Biegler [2] used the fair function (6), to reduce the effects of gross errors. Finally, Arora
and Biegler [3] used the redescending M-estimator (7). Here a key advantage for outlier

203

detection is simultaneous data reconciliation and gross error detection, and an elimination of
the combinatorial procedure.

The presence of so many different methods for data reconciliation raises the question of
whether there is a common statistical framework in which both combinatorial and robust
methods can be interpreted. Here we employ the Akaike Information Criterion (AIC) to
provide a general framework for data reconciliation. Yamamura et al. [28] applied the AIC
to identify biased measurements in a least squares framework for gross error detection. Due to
the combinatorial nature of the problem attempted, they suggested a branch and bound
method to solve the problem. This approach can be automated by mixed integer programming
techniques (see e.g. [25,3]) However, this can be computationally expensive, as it requires a
discrete decision for each measurement and problems become even more difficult when the
model is nonlinear. Nevertheless, in the remainder of this section we will explore the AIC
framework for simultaneous gross error detection and data reconciliation. In particular, we
will derive a mixed integer approach as well as a robust approach where the constants in the
M-estimator are tuned using AIC.

3.4.4.1 Data Reconciliation with the Akaike Information Criterion

Data reconciliation and gross error detection can be addressed as a model discrimination and
parameter estimation problem, where multiple models correspond to the partitioning of
random and gross errors. If more than one of these models can be fitted to the data under
consideration, it becomes necessary to identify which model to use. To this end, one is
interested in obtaining the most likely model (which gross errors are identified) and its
parameters. Since maximum likelihood estimators are asymptotically efficient under certain
conditions [1], the likelihood function is a very sensitive criterion of deviation of model
parameters from their true values. For data reconciliation, the Akaike Information Criterion
(AIC) can be written as:

AIC = ~ij eij 2 + 2 dim(q) (8)

where eij is the studentized measurement error obtained after reconciliation, and dim(q) is the
number of independently adjusted model parameters given by: dim(q) - dim(p) + nout, where
dim(p) is the number of model parameters and nout is the number of outliers. Here variables
with outlying measurements are treated as parameters because their reconciled values are
determined only from measurements without gross errors.

3.4.4.2 Mixed Integer Approaches for Data Reconciliation

The AIC estimate includes both cominuous and discrete variables and in the context of data
reconciliation, each potential gross error is represented by a binary (0-1) variable. The
resulting problem can be translated into a mixed integer non linear program (M1NLP) with
binary variables identifying faulty sensors as follows:

Min]~ij (eij + laij) 2 + 2 ~ij yij
s.t. h(x, p) = O, eij = (xMij - xij)/cyj (9)

L Yij <---[gij[--< U Yij
Yije [0, 1] , x > 0

204

where yij is a binary variable denoting existence of bias in element j of data vector i , , laij is
the magnitude of bias in this variable, and L and U are lower and upper bounds on the bias
variable. If the model equations are linear, they can be replaced by Ax = 0, where A is the
coefficient matrix of linear balance constraints. Due to the presence of the absolute value
operator in the bound constraints of (9), this problem is reformulated by adding additional
binary and nonnegative continuous variables. In addition, mixed integer linear programming
(MILP) approaches were derived [25, 3] where the quadratic term in (9) is replaced by a
linear objective function related to AIC. Here, the advantage of an MILP is that it eliminates
the nonlinear programming subproblem associated with M1NLPs that have only quadratic
objectives. Both MINLP and MILP formulations were compared [3] on a steam metering
example solved in a moving horizon framework (3).

However, mixed integer formulations can be expensive to solve on-line, particularly for
(EVM) problems (2). As an alternative, one can also consider the AIC in the context of robust
M-estimators. Here the tuning parameters of the M-estimators (6, 7) can be chosen for the
NLP formulation to reduce the AIC. Although this criterion is not minimized directly as in
(9), the robust approach has the advantage of solving only continuous variable optimization
problems. In the next section we present a small case study, with a dynamic data
reconciliation model, that illustrates the use of M-estimators with AIC tuning.

5. DYNAMIC DATA RECONCILIATION CASE STUDY

In this section we compare data reconciliation strategies derived from M-estimators on a
small dynamic process problem. This problem has been taken from Albuquerque [2] and
deals with two stirred tanks connected by a valve; liquid flows into the first tank, from the
first tank into the second tank, and out of the second tank. The three flows, F0, F~, and F2, and
the heights L1 and L2 are measured at 12 second intervals. The areas of the tanks, A1 and A2
are estimated as unknown parameters. The process is shown in Figure 3 and the system is
described by the following index-2 DAE system (10):

A1 dLl/dt = F0-Fl
A2 dL2/dt = F l - F2

F2 - A2 (2g L2)1/2= 0
LI- L2=0

(10)

Measurement data is simulated as in [2]. All of the flowrates and levels are measured; they
have independent Gaussian distributions, with a variance of 0.01. In addition, a large number
of gross errors are introduced into the system by assuming that sensors for F2 and L1 fail at
their lower bounds at the second time instant and remain there. The DAE system is discretized
by an implicit Euler scheme to form the set of model equations in (1); measurements are taken
at each interval of discretization. Thus this problem is an EVM problem with coupling in
successive constraints for each set of measurements. Also, because of the large amount of
data and gross errors, the problem cannot be considered with the MINLP formulation in (9).

All measurements except F0 are redundant and the parameters l/A1 and l/A2 are observable
and are bounded between 0.25 and 0.55. Here the resulting data reconciliation problem is
solved with the least squares estimator, fair functions (6) at 95%, 80%, and 70% asymptotic

205

efficiencies (see [3]), and the redescending estimator (7) with an AIC tuning. All cases were
solved with the reduced Hessian Successive Quadratic Programming (rSQP) algorithm [6].
Results for estimation of 1/A~ and l/A2 have been summarized in Table 2. Note that the least
squares estimator performs very poorly because the estimates of both parameters go to their
lower and upper bounds respectively. This behavior is expected because the least squares
estimator is heavily biased by the gross errors; relaxing the parameter bounds would lead to
even worse estimates. The fair function at various tuning levels performs somewhat better but
still the estimate of l/A1 converges to the lower bound; the estimate of 1/A2 becomes better as
the fair function becomes more robust. In contrast, the redescending estimators perform much
better. For tuning parameters given in the experiments M2 to M6, the estimates of 1/A~ and
l/A2 are very close to their true values. For the redescending M-estimator, Table 2 also lists
the number of outliers along with the AIC. From Table 2, the scaled AIC objective indicates
that the best estimator lies close to Ms. Upon tuning the parameters in (7) to minimize the
AIC, we find this to be indeed the case. Here the estimates of l/A1 and l/A2 are almost at
their true values.

Figures 4 and 5 show the fitted values of L1 and F2 when estimation is performed by the least
squares estimator, the fair function (efficiency=70%), and the tuned redescending estimator.
In addition, we have also plotted the original noisy data (with a variance of 0.01) and the
gross errors. Here the poor performance of least squares is clearly observed, as its fitted
values have been grossly underestimated. The fair function underestimates L1 but fits F2 quite
closely. This is due to the effect of l/A1 at its lower bound. Finally, in both plots the tuned
redescending estimator ignores the noise and fits L1 and F2 at very close to their true values.

Experiments
True Values

Table 2: Dynamic Data Reconciliation Results

Least Squares
Fair Function (Eff. = 95%)
Fair Function (Eff. = 80%)
Fair Function (Eft. = 70%)
M1 (a=8, b = 16, c=32)
M2 (a=4, b=8, c=l 6)
M3 (a=2, b=4, c=8)
M4 (a=2, b=2, c=4)
M5 (a=0.5, b=l, c=2)
M6 (a=0.1, b=0.2, c=0.4)
Iterative Tuning (a=0.362, b=0.724,
c=1.449)

1/A1 1/Al
m

0.500 0.500
0.25* 0.55*
0.25* 0.320
0.25* 0.388
0.25* 0.439
0.308 0.391 48
0.454 0.485 49
0.484 0.498
0.485 0.499
0.498 0.499
0.492 0.495
0.502 0.499

nou t A I C

24.855
36.647

95 1.409
95 1.078
103 1.048
163 1.303
105 0.974

3.4.6. SOFTWARE ARCHITECTURE

So far, we have considered the formulation, solution algorithms and analysis of data
reconciliation problems for both steady state and dynamic processes. In this section we
consider the software components and their interactions needed to perform these activities for

206

data reconciliation. For these data reconciliation studies, several tasks need to be performed,
each requiring access to one or several software components, as shown in Figure 6.

1. A process model has to be defined. This can be done either by using a graphical user
interface to assemble process building block (heat exchangers, mixers, splitters, reactors,
etc) as shown in Figure 2, or by explicitly defining all the constraints equations (mass and
energy balance, constitutive equations, etc). This definition phase is similar to the set up
phase of a simulation problem. Reference can be made to a library of custom models (e.g.
unit operations, physical properties) and to a data bank of model parameters (e.g. pure
component and mixture parameters).

2. The process description and its parameters must be stored in an appropriate data structure,
usually a process database.

3. A measurement model has to be defined; this requires the declaration and description of
all available measurements : a name, an identification (e.g. the tag name of the sensor in
the DCS system), the default value, the error distribution (e.g. standard deviation if a
Gaussian error distribution is assumed), possibly rules used for gross error detection (in
the simplest case, lower and upper bounds for the measured value, outside which the
measured value will be flagged as erroneous and discarded). When the measured value is
not a state variable, link equations must be added to relate it to the process state variables.
Access to a database of sensor properties can also provide some help.

4. The measurement model must be stored in an appropriate data structure that can be part of
the process database or kept separate. Measurements can be obtained in real time from the
DCS interface.

5. The first step in the solution of the data reconciliation problem is to detect and isolate
gross errors, to verify the redundancy, and to classify variables. This problem analysis
phase relies on the analysis of the incidence matrix of the equation system. A library of
modules allowing a graph analysis and/or equation and variable ordering is needed.
Feedback is provided to the user, in the form of advice on additional measurements to add
in case the problem is underspecified.

6. The problem solution makes use of some solver" it can be a linear or non-linear equation
solver, or an optimizer (typically large-scale SQP). In the solution phase, residuals of the
energy balance equations and equilibrium constraints must be evaluated, which requires
access to a physical property package. Feedback is provided to the user, in case of any
convergence problem, or with a display of reconciled values through the GUI and the
process database.

7. Reconciled values can also be transferred back to the DCS for archival, or for use in the
supervisory control system or the on-line optimizer.

8. Sensitivity analysis, statistical inference and assessment of the accuracy of the reconciled
values can be obtained by post processing the Jacobian matrix of the constraint equation
system. This requires access to linear algebra and statistical packages. Feedback is
provided to the user, in the form of advice on measurements to add or to improve in order
to reduce the uncertainty on key process parameters.

Data reconciliation can be run under control of a user, who enters measurement values in the
measurement database or modifies the model in order to carry out a performance study or to
design a measurement system. It can also run under the control of a real time executive, to
process routinely all measurements gathered by the DCS, and to provide reconciled values for
the real time optimizer. This is why a typical data reconciliation software is composed of

207

several applications: graphical user interface, database systems, expert systems and a run time
solver.

3.4.7. CONCLUSIONS

Data reconciliation and parameter estimation is a widely used technology that has become an
important component in model fitting, validation, and real time optimization for chemical
processes. Most of the applications are for processes operated at steady state, and for which a
model based on steady state conservation laws is adequate. However, careful attention must
be paid to the optimization formulation. Here commonly used data reconciliation formulations
that use least squares objective functions can lead to severely biased reconciliation of the state
variables in the process. To deal with these issues, this paper discusses optimization strategies
for data reconciliation and gross error detection. Moreover, their application is illustrated
with a comprehensive steady state case study and a small dynamic example.

Despite advances in the development and application of data reconciliation strategies, there
are a number of ongoing developments in several areas. First, most implementations of data
reconciliation assume that measurement errors follow a Gaussian distribution with zero mean
and known covariance (usually diagonal covariance is assumed); the implications of those
assumptions and the benefit expected from more complex hypothesis still deserves some
attention. Preliminary work along these lines includes the use of Bayesian and M-estimator
formulations which allow for more general distributions as well as robustness to deviations in
the assumed error distribution [27, 3].

Second, model based data reconciliation ignores any model uncertainty. However some
constraint equations (e.g. energy balances) involve empirical relationships, such as the
physical property models, that are not totally accurate; a data validation framework
accounting for model uncertainty is still to be developed. Some interesting work along these
lines relates to model discrimination. Although applied to off-line problems, Bayesian
approaches can provide additional information on the suitability of competing process
models. In addition, model discrimination algorithms, that detect failing sensors(in order to
ignore them) and distinguish between process upsets and perturbed measurements, need to be
improved.

Third, data reconciliation is useful for process monitoring, but it could be used also for the
rational design of measurement systems. This includes questions on where to locate sensors,
when to make them redundant, how to minimize measurement cost for a prescribed accuracy,
or how to maximize accuracy for a given measurement cost.

Fourth, on-line data reconciliation based on steady state models involves the solution of a
large NLP or a large set of nonlinear equations. Here a robust solution is usually obtained by
using the previous solution as the initial guess for the next problem. However, this strategy
can fail when the process structure or the measurement set changes (e.g., shutdown or start up
of a unit, failing sensor, measurement result available only after a long delay). Moreover, the
presence of gross errors can lead to nonunique solutions and convergence failure. More
efficient and robust nonlinear programming strategies are needed for these situations [8].

208

Finally, the on-line application of dynamic data reconciliation (during process transients, or
for batch processes) is only in its infancy. A number of challenges include an increase in
model complexity as well as the optimization of large-scale differential-algebraic systems. In
addition, the choice of a suitable horizon for the observations that are taken into account in the
analysis has to be a compromise between precision and computation time. One way to explore
this trade-off is the application and refinement of wavelet approximations over time [7].

3.4.8 REFERENCES

[1] Hirotugu Akaike. A New Look at the Statistical Model Identification, IEEE Transactions
on Automatic Control, AC-19(6):716, 1974.

[2] Joao S. Albuquerque and Lorenz T. Biegler. Data Reconciliation and Gross-Error
Detection for Dynamic Systems. AIChE J., 42(10):2841, 1996.

[3] Nikhil Arora and Lorenz T. Biegler, "Redescending Estimators for Data Reconciliation
and Parameter Estimation," Computers and Chemical Engineering, accepted for publication,
2001.

[4] Miguel J. Bagajewicz and Qiyou Jiang. Gross Error Modeling and Detection in Plant
Linear Dynamic Reconciliation. Computers Chem. Engng., 22(12)" 1789, 1998.

[5] Belsim s.a. Vali III Users's Guide, version 9.05, Belsim, Rue G. Berotte 29a, B Saint-
Georges-sur-Meuse (Belgium), 2001

[6] Lorenz T. Biegler, Jorge Nocedal, and Claudia Schmid. A Reduced Hessian Method for
Large-Scale Constrained Optimization. SIAM J. Optimization, 5(2):314, 1995.

[7] T. Binder, L. Blank, W. Dahmen and W. Marquardt, "On the Regularization of Dynamic
Data Reconciliation Problems," Journal of Process Control, to appear (2001)

[8] Richard H. Byrd, Mary E. Hribar, and Jorge Nocedal. An Interior Point Algorithm for
Large Scale Nonlinear Programming. Technical report, Optimization Technology Center,
Northwestern University, 1997.

[9] Cameron M. Crowe. Observability and Redundancy of Process Data for Steady State
Reconciliation. Chemical Engineering Science, 44(12):2909, 1989.

[10] Cameron M. Crowe. Test of Maximum Power for Detection of Gross Errors in Process
Constraints. AIChE J., 35(5):869, 1989.

[11] C. M. Crowe, Data reconciliation - Progress and challenges, J. Proc. Cont., (6) 89-98,
(1996)

[12] C.M. Crowe, Y.A. Garcia Campos, and A. Hrymak.
Rates by Matrix Projection. AIChE J., 29(6):881, 1983.

Reconciliation of Process Flow

209

[13] Frank R. Hampel. The Influence Curve and its Role in Robust Estimation. Journal of
the American Statistical Association, 69(346):383, Jun., 1974.

[14] G. Heyen, E. Mar6chal, B. Kalitventzeff, Sensitivity calculations and variance analysis in
plant measurement reconciliation, Computers and Chemical Engineering, vol. 20S, pp 539-
544 (1996).

[15] Peter J. Huber, Robust Statistics, John Wiley and Sons, New York, 1981.

[16] S.S. Jang, B. Joseph, and H. Mukai, Comparison of two approaches to on-line parameter
and state estimation of nonlinear systems, Ind. Eng. Chem. Process Des. Dev., 25:809, 1986.

[17] Chen-Shan Kao, Ajit C. Tamhane, and Richard S.H. Mah, Gross Error Detection in
serially Correlated Process Data. 2. Dynamic Systems, Ind. Eng. Chem. Res., 31:254, 1992

[18] F. Madron, A New Approach to the Identification of Gross Errors in Chemical
Engineering Measurements, Chemical Engineering Science, 40(10): 1855, 1985

[19] Madron, F., Process plant performance : measurement and data processing for
optimization and retrofits, Ellis Horwood, London (1992)

[20] S. Narasimhan, C. Jordache, " Data Reconciliation & Gross Error Detection ", Gulf
Publishing Company (2000)

[21] S. Narasimhan and R.S.H. Mah, Generalized Likelihood Ratio Method for Gross Error
Identification, AIChE J., 33(9):1514, 1987.

[22] Douglas G. Robertson, Jay H. Lee, and James B. Rawlings, A Moving Horizon-Based
Approach for Least-Squares Estimation, AIChE J., 42(8):2209, 1996.

[23] Derrick K. Rollins, Yisun Cheng, and Sriram Devanathan, Intelligent Selection of
Hypothesis Tests to Enhance Gross Error Identification, Computers Chem. Engng, 20(5):517,
1996.

[24] R.W. Serth and W.A. Heenan, Gross Error Detection and Data Reconciliation in Stream-
Metering Systems, AIChE J., 32(5):733, 1986.

[25] Tyler A. Soderstrom, David M. Himmelblau, and Thomas F. Edgar, A Mixed Integer
Optimization Approach for Simultaneous Data Reconciliation and Identification of
Measurement Bias, Control Engineering Practice, to appear, 2001

[26] G.M. Stanley and R.S.H. Mah, Observability and Redundancy in Process Data
Estimation, Chem. Eng. Sci., 36:259, 1981.

[27] I.B.F. Tjoa, Simultaneous Solution and Optimization Strategies for Data Analysis, PhD
thesis, Carnegie Mellon University, 1991.

210

[28] K. Yamamura, M. Nakajima, and H. Matsuyama. Detection of gross errors in process
data using mass and energy balances, International Chemical Engineering, 28(1):91, 1988

Figure 1." Comparison of M-estimators

Figure 2." Sample flowsheet for data reconciliation case study
A simplified ammonia synthesis loop

211

F o

L 1

A 1

t~ L2

L _
F

1

F,)

Figure 3." Dynamic Example- Connected Tanks

Figure 4: Fitted Values for L ~ in Tank Example

212

a,i~

~ ' sii

~iil o

ili
2 !!

1,-

1 3. 4 5 6 7 1~ 9

�9 i',
~,=.,: :~i: ~.:i~i '.~;!: :i~! !~i :~:: ~ i~ ~ :~ '~ :~: ~ ~ :~ ~: ~; ~ ~ ~i ;~ ii!i: ~: ~i i~ ~ ~ i~ ~ ~ :~: :~ i~i ~ :~ i~; i~ ~ ~ ..~i~.:~i:~

0 i
.i~: ~. ~ ~..~ ~ ~ .~..~ ~., f ~..~ ~..r .., ~ ~...r .,. +...,..., ;,.

4

........... : ~ ~ . . i .~? ! !~ . ! i ;~ " . - t . i {927~ ! "f

i
i

Figure 5: Fitted Values for Fe in Tank Example

Senso r ~
p r o p e r t i e ~ / ~

models \

Phys k~a I ~
propertie~

\

! Incidence matrix analysis I - - I ~ l

ISolver (Unear, NLEq, SQPt ~ l l , i

I Thermo Package J t '~ '

I Sensitivity, linear algebra I --I~J

. Io ' roO o o'n"onl
I \ \ ,

Process \ data / i i l
. \ base / I ' F e e d b a c k I

data J z / l e x p e r t s y s t e 4
base / / ~l~ ," ,' i

/ I \ , '
'V I ' \ , /

P r o b l e m a n a l y s i s ,

g r o s s e r r o r d e t e c t i o n

\
' \

...... DCS
V interface

S o l u t i o n a n a l y s i s I

Figure 6 �9 Data flow in a typical data reconciliation package

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
~ 2002 Elsevier Science B.V. All rights reserved. 213

Chapter 3.5: Computer Tools for Discre te /Hybr id
Produc t ion Sys tems

L. Puigjaner, M. Graells & G.V. Reklaitis

The software tools for batch processes may be classified in two broad classes.
The first class involves modelling, simulation, and analysis of the physico-
chemical processes that take place during batch operations. These tools can
be associated with the process simulation methodology that constitutes the
core of the first Cape Open project. The second class is designed to support
the decision processes at the different managerial and operational levels of
the plant operational hierarchy, which are the topics included in the scope of
the follow-up, Global Cape Open Project. This class of tools may be further
classified on the basis of the planning, scheduling, monitoring, and control
tasks, which they support, specialized to the batch processing case. In this
chapter we review a representative set of tools from these two classes that
are available commercially. While there is much innovative research and
development in both academic and industrial groups in this domain, we have
excluded experimental software and proto-types from our discussion.

3.5.1 PROCESS SIMULATION & ANALYSIS

3.5.1.1 Continuous Process Simulation

Process simulation systems were initially conceived to allow modeling of
continuous steady-state process flowsheets, as represented by classical
petrochemical processes such as the hydrodealkylation of benzene or the
production of ethylbenzene. The process flowsheet model generally consisted
of models of the unit operations present in the flowsheet that were linked
through the process streams which constituted the external input and output
variable sets for these models. The solution of the flowsheet model was
complicated by the presence of recycle streams, which created linkages
between the unit models. To solve the resulting large scale coupled algebraic
equation systems a natural decomposition strategy called the sequential
modular approach was widely adopted. Under this approach unit models
where executed in a serial fashion in the direction of the principal process
streams with the recycle stream, or more precisely, tears streams serving as
iteration variables. AspenPlus (Aspen Technology.), HYSIM-HYSYS

214

(Hyprotech/AEA) and PRO/II (Simulation Sciences) remain the most
significant examples of this type of simulation technology. These tools
gradually evolved to contain substantial libraries of unit operations modules,
including some which involved models consisting of differential equations, as
well as extensive physical property estimation capabilities and supporting
properties constant databases. Because of the desirability of allowing the
easy addition of new process specific unit operations models or modifications
of existing models, the need soon arose to allowing linkage or insertion of
user-added FORTRAN subroutines. In recent years, this in part served to
stimulate the idea of COSE (Cape Open Simulation Executive). In due
course, with advances in efficient methods for the solution of large-scale
algebraic systems, these methods were adopted to solve the entire set of
flowsheet model equations simultaneously, resulting in the so-called equation
oriented flowsheet simulation architecture.

A natural next step for flowsheet simulation was to provide the capability to
model the dynamics of the process. Again the solution of such dynamic
simulation models was initially approached using sequential modular
strategies but contemporary systems have emphasized simultaneous solution
methods. Tools such as DYNSIM (Simulation Sciences), HYSYS
(Hyprotech/AEA) and AspenDynamics (Aspen Technology) embodied these
architectures. Ideally such tools offer a consistent set of steady state and
dynamic models of the same unit operations, allowing the user the
convenience of ready transition from steady state to dynamic simulation of a
given process. The DynaPLUS system marketed by Aspen Technology is
intended to achieve precisely that aim.

3.5.1.2 B a t c h P r o c e s s S i m u l a t i o n Too l s

Since batch operations are inherently dynamic, one would not expect steady
state flowsheet methodology to be applicable to batch process simulation. On
the other hand, one might well assume that dynamic simulation systems
would be extensible to handle batch processes. While this is the case for
individual operations, it is not when one seeks to model the entire network of
batch operations typical in batch chemical processing. The complicating
factors include the need to handle the discontinuities inherent in the start
and stop of the tasks which comprise a batch process and the fact that with
batch processes the description of the set of chemical-physical tasks which
must be executed to manufacture a given product (the recipe) is distinct from
the set of equipment which are used to perform these tasks. Since the
equipment items are generally multipurpose, the definition of the flowsheet
for a batch process requires a series of task to equipment assignment
decisions which may be governed by equipment availability, the availability
of resources such as feedstock's, catalysts, and hold tanks, product priorities,

215

and other state dependent or even economic factors. Thus, in the batch case,
the flowsheet is in effect defined dynamically as the recipe is executed. These
additional numerical and decision aspects are not accommodated by
conventional dynamic flowsheet simulation systems.

Of course, simulations of individual batch operations, such as batch reaction
and batch distillation, can be modeled and solved within the framework of
dynamic simulation methodology. These simulations are most commonly
structured as stand-alone modules or programs, which either share the
physical properties estimation features of an associated process simulation
system or employ an independent physical properties package. BATCHFRAC
and BatchCAD are examples of these types of commercial systems. Other
examples of programs of this kind include Batch Colonne, Batch R~acteur
(ProSim) and BDIST-SimOpt (Batch Process Technologies). Such systems
may offer additional features such as operating profile optimization or
parameter optimization to fit empirically observed operating profiles.

To facilitate the simulation of processes involving a mix of continuous and
batch operations, as might arise in single product plants in which some of the
operations must necessarily be of a batch nature, several of the process
simulators do allow use of batch reactor and batch distillation modules, of the
type noted above, within a continuous steady-state model of the process. As is
the case with a plug flow reactor model, the integration of the batch operation
model is carried out internal to the module and averaged output streams are
computed for use by the downstream continuous unit operation.
Conceptually, this can be viewed as following the batch operation with one or
more implicit holding tanks, which at the termination of the batch effectively
provide the averaged output stream or streams, which feed the succeeding
continuous unit. This type of linkage of steady state and dynamic model types
can readily be accommodated in the sequential modular architecture since all
unit operations models are treated as closed procedures. It can also be
handled within equation-oriented systems provided such system also
accommodates closed procedures. Although the AspenTech and SinSci steady-
state products thus do permit interfacing of batch and continuous operations
in this fashion, the entire process model remains effectively steady state.

As noted earlier, the effective simulation of batch processes requires
representation of the dynamics of the individual batch operations, the
decision logic associated with the start and stop of operations, as well as the
decisions associated with the assignment of equipment and other resources to
specific operations as defined through the product recipe. Some conventional
dynamic simulators (e.g., HYSYS) do offer tools for programming the
decision logic associated with a series of events to be executed at specific
points during the execution of a simulation run. In this way it is possible to

216

simulate certain classes of batch processes. However, this type of adaptation
of the dynamic simulation executive only address part of the requirements for
the simulation of typical multiproduct batch processes. The more advanced
capabilities of a combined continuous-discrete simulation architecture are
required to accomplish this in a general fashion. The BATCHES (Batch
Process Technologies) simulation tool does accommodate the above mentioned
batch process features and uses advances in combined discrete-continuous
dynamic simulation methodology to follow the progress of the batch plant
over time.

A BATCHES simulation model consists of three main building blocks: a
recipe network, an equipment network and a set of processing directives. The
equipment network defines the equipment specifications and the connectivity
or transfer limitations between the equipment. The recipe for the
manufacture of a product is modeled as a network of tasks and each task as a
sequence of subtask. A task consists of all of the operations performed in a
single item of equipment: a subtask consists of a model of one of these
operations. Tasks have associated with them requirements of specific types of
equipment and selection priorities. BATCHES provide a library of models of
various types of operations (heating, cooling, decanting, batch reaction, etc.).
Subtasks may have associated with them additional requirements for
resources types and levels such as operator types and utilities as well as
definition of conditions under which the subtask is to be terminated. These
may be state dependent (a specific temperature or composition level is
achieved) or directly specified (completion time or duration). Processing
directives consist of information that drives the execution of the process over
time. These include information such as the amounts and sequences in which
the various products are made, the due date and amount for finished product
delivery, or the amounts and frequency of raw materials deliveries or other
resource releases.

BATCHES uses a dynamic solution strategy under which the dynamic
models associated with all of the subtasks that are active in a given time
period are solved simultaneously using a DAE solver. As the solver advances
through time, the occurrence of subtask termination or s tar t events is tested
at each solver time step. As events are identified and occur, the set of active
subtask models is reconfigured and the solution process continued. This
computational approach is effectively a decomposition strategy as only the
models of the subtasks active at a given point in time are actually included in
the integration step executed. To accommodate stochastic parameters,
BATCHES allows Monte Carlo sampling of simulation parameters from a
library of distributions using established techniques from the discrete event
simulation literature. It also provides linkages to physical properties
estimation capabilities. More complex decision processes, such as solution of

217

an assignment or scheduling model, can be accommodated by defining event
conditions under which the simulation is interrupted, the information
necessary to execute the decision model is assembled, the decision model
solved, and the simulation of resulting actions t ransferred back to the
simulation executive.

3.5.1.3 General Purpose Modeling Languages

In BATCHES non-standard subtask models as well as unusual decision or
event logic can be accommodated using the vehicle of user-supplied models
writ ten in conventional programming languages. This is a limitation, which
the tool shares with conventional steady state and dynamic simulators that
do not provide a higher level modeling language. That limitation is mitigated
by general-purpose process modeling and simulation software such as
Speedup, gPROMS and Abbacus. gPROMS is a successor to Speedup and is
in turn superceded in part by the academic package, Abbacus. gPROMS does
accommodate the full range of model types, from purely batch to purely
continuous. It allows model developers to write models of the most complex
processes and their operating p r o c e d u r e s - from the detailed mathematical
equations for individual components, to the structure and operation of large
complex systems composed of many such components - using a sophisticated
natura l language. The complexity of the processing of the result ing equations
and the solution methodology are handled through system utilities and thus
can largely be hidden from the user. gPROMS offers extensive facilities for
linking to external software across a range of hardware and software
platforms. It also provides advanced features such as dynamic optimization of
continuous dynamic models thus allowing simultaneous optimization of the
parameters of equipment and operating procedures. Of course, since it is a
modeling system, it leaves to the user the definition and formulation of the
models and part icular decision processes of batch operations.

3.5.1.4 Batch Process Development and Information Management

An alternative approach to supporting the development and operation of
batch processes is to offer a software package that provides the capabilities of
organizing and managing recipe information together with a suite of tools for
operating on that information, including a rudimentary recipe simulation
capability. Linkage to more detailed tools such as stand-alone batch reactor
and batch distillation packages can also be provided. This is the approach
that has been used in two of the packages described in this section. The
additional functionalities not provided by these tools, namely the generation
of operating procedures and the execution of batch process hazards analysis,
are available from IPS. We describe these developments in the third part of
this section.

218

Batch Plus (Aspen Technologies) is a general-purpose system designed to
model the complex, recipe-based processes found in the batch process
industries. The key design concept is the representation of a batch process
using the multilevel "process recipe" metaphor. Based on the recipe
description of the process, software allows design, engineering, and scale-up
to be performed. Among features provided is the AspenTech electronic Batch
Record System (AeBRS) which is designed to address manufacturers ' needs
in the areas of work orders management, procedure management and
documentation management.

The BaSYS system of software is designed to help batch processing
companies improve communication between chemists and engineers, perform
faster process scale-ups and more efficiently allocate existing equipment.
BDK, the core of BaSYS, is an integrated batch process development and
design environment that helps companies accelerate many aspects of batch
process development, from route synthesis to implementation. BDK offers
tools for enabling the rapid selection from among alternative synthesis route
for manufacturing, improving waste processing and facility utilization, and
providing a "knowledge warehouse" that documents the development process.
Neither of these systems are intended to provide rigorous process simulation
capability but could in principle be interfaced to a simulator, given that much
of the recipe and other data required for a simulation is contained in the
information base that these systems maintain.

Two critical tasks in the development cycle of a batch process are the
synthesis of operating procedures given basic recipe information and the
analysis of the operating procedure to identify, evaluate and mitigate
potential operating hazards. These two functionalities are not provided by
the systems described above. However, the generation and validation of
operating procedures for new processes constitute time-consuming and error
prone activities that lend themselves to computer support. Moreover, with
the increasing complexity of operating procedures and governmental and
social pressure to reduce safety and environmental incidents, there is strong
incentive to conduct process hazards analysis and mitigation for all new and
existing processes. Since considerable portions of this activity are also
repetitive and very labor intensive, there is an opportunity for intelligent
tools to support process hazards analysis. PHASuite, a system initially
developed at Purdue University to support this task, is now available from
IPS. PHASuite consists of two closely integrated components, iTOPs and
Batch HAZOPexpert. The former component serves to synthesize the detailed
sequence of instructions an operator in a chemical plant needs to follow in
order to manage a process safely and optimally. BHE serves to systematically
analyze the process in question to identify, assess, and mitigate the possible
hazards that can occur.

219

PHASuite follows ISA $88 batch standards for modeling batch process
information. In iTOPS, Graf chart-based concepts are used to represent the
batch process and a hierarchical planning technique is employed together
with information about the process materials, equipment, and chemistry to
synthesize procedures at the phase level. BHE uses a logical separation of
process information into specific and generic components, qualitative causal
digraph models and a two-layered Petri-net based model of the process to
systematically identify possible hazardous situations that can arise in a
chemical process. The two PHASuite components are fully integrated,
including the creation of the various representations of the process recipe and
logic. The user inputs batch process i n f o r m a t i o n - the materials, the
chemistry, and the e q u i p m e n t - through a top-level interface. PHASuite
returns a complete batch record documents, including safety instructions and
a list of potential hazards classified by severity. The systems has been tested
extensively in pharmaceutical applications, resulting in documented
substantial savings in engineer time, and considerable improvements in
accuracy of the resulting operating procedures and completeness in hazards
identification.

3.5.2 PROCESS PLANNING & SCHEDULING

3.5.2.1 P l a n n i n g

Production planning for individual batch plants and planning for entire
supply chains consisting of multiple interacting batch plants can in principle
be performed using generic planning tools. Thus, generic linear programming
(LP) and mixed integer programming (MILP) packages such as CPLEX
(ILOG) can be used providing that the user is prepared to develop the case
specific formulation and provide the appropriate data interfaces.
Alternatively, if manufacturing recipe details are aggregated and thus the
plant treated as a black box, then various capacity planning tools offered by
ERP vendors can be applied. However, in batch manufacturing applications,
the details of the batch operations often prove to be important because
equipment and other limited resources are shared among the various
products under consideration, thus production capacity is constrained.
Unfortunately, at the present time there are no commercial tools which can
accommodate this level of detail without explicit user developed models. Such
a suite of tools is available for petroleum refinery planning and supplies
chain applications in the form of Aspen Technology's PIMS and Ref-Sked
packages, which are based on LP methodology.

220

3.5.2.2 Schedul ing

As at the planning level, scheduling applications for batch operations can be
developed using general purpose scheduling toolboxes such as Scheduler
provided by ILOG. Aspen Technology's MIMI system also falls into this
category. However, the use of these toolboxes to batch processing problems
requires knowledge of the strengths and limitations of the individual tools
and experience in scheduling application formulation. This is a level of
expertise beyond that of plant engineers. However, several tools do exist that
have been developed specifically for batch processing applications, two of
which, gBBS and Virtecs, are described in this section.

Available through Process Systems Enterprise (PSE) Ltd, gBBS is the
outcome of extensive research conducted at the Centre for Process Systems
Engineering at Imperial College, London. It is a scheduling tool designed for
multi-purpose process production, from purely batch to purely continuous.
Process specific issues such as cleaning, recycling and intermediate materials
that are also final products can all be treated. A complete gBSS application is
composed of data such as product demands and inventory, product recipes,
plant resources, staff and maintenance schedules and the current status of
plant equipment. The user's data is checked for consistency and converted
automatically into one of three MILP (mixed integer linear programming)
formulations. Specialised MILP algorithms requiring little or no user
intervention are used to find the solution which is guaranteed to be optimal if
allowed to run to convergence and the results are then processed and
presented in an engineering form. When solving especially large problems,
gBSS breaks them down into several smaller ones and combines the results
into a final solution. Recipes and processes are modelled using the State-Task
Network representation and the modelling language is designed to express
complex plants in a simple and flexible way. Established models can be
accessed from a 3rd-party front-end such as MS Excel.

gBSS can be configured to solve three types of scheduling problem
formulations: Short-term scheduling, Campaign planning, and Scheduling for
Design. In short-term scheduling, the plant layout, processes and products
are known and change infrequently. Other data may change with each run of
gBSS - demand, deadlines, availability of equipment and staff. Transport
costs and times can be included so that multi-site production and distribution
can in principle be accommodated, at the cost of increased computational
burden. The campaign planning form is appropriate for applications in which
product demands are stable or may be forecast accurately thus allowing
longer production horizons to be divided into a number of campaigns. The
Scheduling for Design option is used to find the optimum plant resources
given a fixed set of demands and their deadlines, gBSS can take account of
both capital and running costs and find the ideal plant for a minimum initial
cost or a minimum lifetime cost. It is also suitable for designing extensions to

221

existing plants. This facility is available for plants operated in either
campaign or short-term scheduling mode.

Advanced Process Combinatorics, Inc. (APC) has developed Virtecs for
process scheduling and planning. Virtecs is based on Mixed Integer Linear
Programming (MILP) technology and offers the ability to model processes at
a high level of detail including constraints on limited material shelf life,
process vessel storage, shared storage, labor, utilities, minimum/maximum
inventory levels, complex bill of materials, piping connectivity, equipment
downtime, multiple stages of production, parallel equipment, and process
changeovers. The MILP based scheduling tool can provide solutions in fully
automatic mode and a user can readily make process changes. APC has
recently released Virtecs v5.0 that includes support for Internet based use
and publication of schedules, developing schedules from previous schedules
and efficient human override of automated scheduling capability so that the
tool can be used anywhere from a fully manual to fully automatic mode.
Previous versions of Virtecs have been successfully used in the
pharmaceutical, specialty chemical, food and beverage, consumer products,
lubricant, and retail industries. The MILP based solver behind Virtecs is
highly customized and routinely solves scheduling problems involving
hundreds or thousands of tasks in one or two minutes on a desktop personal
computer. While MILP scheduling technology is in its infancy and will
continue to grow in capability, the existing advantages include explanations
of why demands cannot be met on time, lower consulting costs for installing
and supporting tool use, ability to support engineering applications such as
expansion studies or debottlenecking, online applications that can be readily
extended by the user to support new products or process equipment changes.

Because of reliable and accurate automated solution capability, Virtecs can
be used in a distributed fashion to integrate and mediate detailed
coordination between multiple facilities. Because of the versatility afforded
by their solution technology, APC has also applied Virtecs technology to
warehouse management applications and integrates them with upstream
production and downstream distribution activities. APC also uses their
MILP solver underneath a tool that selects and schedules projects in research
and development pipelines. The main components of the Virtecs tool are a
natural modeling language for describing processes, reporting system,
database for managing multiple scenarios, graphical user interface with
readily extensible Gantt Chart, and a highly engineered MILP solver based
on implicit formulation generation. Because of the extensibility of APC's
MILP approach, their tools can be used in conjunction with simulation
capability to analyze the impact of uncertainty on the performance of
solutions and manage risk in high-level applications such as pricing studies,
mergers and acquisitions, and supply chain design/operations. Because of

222

close ties with Purdue University, APC has world-class research and
development capability and has demonstrated significant functionality gains
with each new product release.

3.5.3 S C H E D U L I N G - C O N T R O L INTERFA C E

Once a scheduling solution is developed using one of the tools described
above, it must be implemented in the production environment and executed
through the batch control system. At the level of process detail represented in
scheduling applications, operational details such as valve opening and closing
are normally not taken into account. Moreover, it is usually inefficient to
rerun the scheduler with every modest process variation or delay that is
encountered. Thus, there is a practical need for either manual or automatic
conversion, if necessary, readjustment, and execution of the scheduling
solution. The S U P E R B A T C H package, offered by PSE Inc and prototyped at
Imperial College, offers the ability to work on-line, in conjunction with
s tandard batch control systems, and to automatically update schedules as
small delays and process variations occur. The TotalPlant Batch system
offered by Honeywell provides the interface for the user to execute batches
manually following a schedule created off-line and to manually readjust
timing as needed, with all of the recipe and equipment details,
communications with the control system, and handling of alarms and
messages handled automatically. In this section we briefly describe the
functionalies of these two systems. The reader should note that these
functionalities are to varying degrees provided by other commercial batch
automation systems.

Designed for embedding within manufacturing execution systems (MES) or
linkage to a scheduling product, SUPERBATCH provides the capabilities for
static off-line short-term schedule readjustment as well as for on line
schedule correction, with changes broadcast once a minute to screens in
departments throughout the factory. It uses a modeling language which
conforms to ISA $88.01 to describe the plant, the materials, recipes and
ancillary procedures (such as changeovers and cleaning suitable for hygienic
industries) as well as the production batches themselves. For off-line
scheduling applications, once embedded within a graphical user-interface to
present the schedule, SUPERBATCH will find the earliest possible time for
each batch, subject to the constraints of the model. Equipment allocations
may be pre-defined or picked by the user from the feasible set which
SUPERBATCH offers. SUPERBATCH also delivers the profiles of each plant
item as needed to draw a graphical schedule. For on-line schedule
adjustments, SUPERBATCH provides an on-line monitor, which executes the
schedule, and a versatile interface, which accesses control systems (and

223

simulators) usually across a network. Once a minute, the current status of
the plant is read from the control system and the schedule is updated to
match. In this fashion, delays and stoppages can be accommodated
automatically. SUPERBATCH then initiates execution of any operations due
by sending the appropriate commands and parameters to the control system.
The system also issues alert messages, which provide advance warning of
impending events requiring operator attention. SUPERBATCH is written in
object-oriented C++ adhering to the ANSI draft standard, using rpc for it's
networking, and is portable to a wide variety of environments and control
systems.

The TotalPlant Batch systems provided by Honeywell is an open, object-
oriented software application for modular batch automation. Developed
around ISA $88.01 it provides batch recipe and equipment management,
batch management and execution, an integrated operator interface, easy to
use graphical configuration tools, and rudimentary batch simulation
capability. The assignment of units can be done dynamically at run time or
batch creation time. Implemented to run under Windows NT, it is designed to
operate with Honeywelrs TotalPlant and the PlantScape control systems.
The major components of TotalPlant Batch and their functionalities are the
following:

�9 B a t c h V i e w allows the user to create batches, execute them, review
batch related information and respond to alarms and messages.

�9 B a t c h S e r v e r monitors and controls execution of batch procedures and
displays batch execution information

�9 B a t c h D a t a S e r v e r communicates and between the Batch Server and
the phase logic sequences in the control system

�9 B a t c h R e c i p e E d i t o r allows the user to specify recipe parameters and to
graphically construct the recipe sequence using sequential function
charts and tables

�9 B a t c h E q u i p m e n t E d i t o r allows the user to configure and maintain the
physical plant model used by the other components

The system also provides customizable event archiving and batches report
generation utilities.

3.5.4 C O N C L U D I N G R E M A R K S

As should be evident, the suite of functionalities provided by existing
software tools for batch process systems engineering is quite broad but as yet
far from complete. While there is much exploratory research conducted
within the academic community, commercial developments seem to be

224

lagging. For instance, with the exception of BATCHES there is limited
recognition in the existing software of the highly stochastic nature of the
operation of most batch processes. Issues of robustness and risk are simply
not addressed. Also missing is the capability to perform batch optimization
through the optimal selection of recipe parameters such as conversions, batch
times, separation fractions, a capability that is generally available with
steady state flowsheet simulation systems. Systematic tools for batch
monitoring and fault diagnosis are notably absent: a combination of trend
analysis and predictive dynamic models would appear to be required.

Integration of the existing tools is as yet a distant dream. For instance, the
seamless linkage of planning and scheduling tools or of scheduling and
simulation tools is not available. Furthermore, at present there clearly are no
standards that would facilitate the integration of these tools through suitable
common date structures. The $88 standard for representing batch recipes
and equipment could well serve as the heart of such a common data
structure. Indeed a number of the tools have used the recipe structure and
naming conventions promulgated under that standard in defining their input
data structures. However, this structure must be further elaborated to
encompass all of the information associated batch product and process design
and batch plant operations.

The batch operations domain evidently offers great opportunities both for
methodology research and for commercial software development.

3.5.5 CONTACT INFORMATION

The following list provides contact information for the products and tools
cited in this chapter. The reader is invited to pursue the latest developments
through these electronic sources.

Advanced Process Combinatorics, Inc.
Products: Virtecs
Information: www.combination.com

AEA Technology Engineering Software
Products: BaSYS, BDK, HYSIM, HYSYS
Information: www.hyprotech.com info@hyprotech.com

Aspen Technology, Inc.
Products: AeBRS, AspenDynamics, AspenPlus, BATCHFRAC, Batch
Plus, DynaPlus, Mimi, PIMS, Re-Sked
Information: www.aspentech.com info@aspentech.com

225

BatchCAD Ltd
Products: Batch CAD
Information: sales@batchcad.com

Batch Process Technologies, Inc
Products: BATCHES, BDIST-SimOpt
Information: www.bptech.com sales@bptech.com

ChemEng Software and Services
Products: BATCHDIST

Information: ChemEng@BTinternet.com

Honeywell, Inc.
Products: TotalPlant Batch
Information: www.iac.honeywell, corn

ILOG, Inc
Product: CPLEX, Solver, Scheduler
Information: www.ilog.com info@ilog.com

Integrated Process Solutions, Inc.
Products: BatchHAZOPexpert, iTOPS, PHASuite
Information: www.ipsol.com

Process Systems Enterprise. Ltd.
Products: gBBS, gPROMS, SUPERBATCH
Information: www.psenterprise.com

Simulation Sciences, Inc.
Products: DYNSIM, PRO/II. PRO/II Batch Module
Information: www.scimsci.com

This Page Intentionally Left Blank

227

P a r t IV: M a k i n g C A P E - T o o l s

4.1 Methods & tools for software archi tecture
J. K6ller, J.-P. Belaud, M. Jarke, A. Kuckelberg & T. Teague

4.2 P lantData XML
T. Teague

4.3 PI-STEP
R. Murris

4.4 The CAPE-OPEN standard: Motivations, deve lopment process ,
t echnica l archi tecture and examples

J.-P. Belaud, B. Braunschweig & M. White

Part IV shows what are the current tools (component software, objects,
middleware, databases, XML...) and methods (data modelling, UML ...)
used by the CAPE software industry to develop the new frameworks and
tells about current standards projects and their status. Through examples
such as CAPE-OPEN, PlantData XML, PI-STEP, the reader will get an
insight on how these standards are being developed and implemented. This
part is mostly written by software specialists and experienced CAPE tools
providers.

Chapter 4.1, by K6ller et al., gives an in-depth assessment of some of the
technologies: middleware, COM and CORBA, XML, application
integration. In addition, it introduces the UML notation and the Unified
development process, which are now widely recognized as standard
techniques for specifying, designing and developing object-oriented systems.

Chapters 4.2 and 4.3 present two approaches to developing standardized
data models for the process industries. In 4.2, Teague develops his Plant
Data XML standard for data exchange, which is based on the eXtensible
Markup Language (XML); XML is a core technology of the World-Wide Web
and of Microsoft's .NET architecture; it is the key to web services and to the
future semantic web, and is used as well for supporting data
communication between heterogeneous platforms; chapter 4.2 shows the use
of XML for unit operation data, with an emphasis on heat exchangers;
then, chapter 4.3 by Murris summarizes several years of efforts put into the
development of the PI-STEP (STEP for the Process Industries) standard;
these efforts led to the definition of the IS0-10303 Application Protocol 221,
which uses the EXPRESS formalism. API 221 is interesting as it defines a
data metamodel (a model of data models), which has been further
developed into the STEPLib dictionary of process plant classes.

Finally, Chapter 4.4 by Belaud et al. presents the CAPE-OPEN (CO)
standard, developed in two successive international projects, CAPE-OPEN

228

and Global CAPE-OPEN. As we wrote in our introductory chapter (part 1),
CAPE-OPEN and Global CAPE-OPEN motivated us to prepare this book,
and therefore the CO technologies and development process are evoked in
several chapters; however, Chapter 4.5 is the only chapter totally devoted to
CO; the chapter gives an overview of it and looks into parts of the standard,
in order to give a basic understanding; the interested reader will find a lot
of additional information on the CAPE-OPEN Laboratories Network
website, www.colan.org.

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
�9 2002 Elsevier Science B.V. All rights reserved. 229

Chapter 4.1: Methods & Tools for Sof tware A r c h i t e c t u r e

J. KSller, J.-P. Belaud, M. Jarke, A. Kuckelberg, & T. Teague

4.1.1 I N T R O D U C T I O N

It is an obvious t rend that software systems, especially the ones used in an
enterprise environment, have become more and more complex in recent years.
Applications have changed from simple stand-alone batch programs running on
mainframes to complex, highly integrated, and distributed systems. The recent
t rend of building internet-enabled systems brings even more problems into the
game. For example, large enterprise resource planning (ERP) systems such as
SAP R3 can now be found in every major company. They consist of many
functional modules tha t have to interact and must have the ability for
integration with other external systems such as databases or e-commerce
solutions.

Unfortunately, many of the existing systems tha t were not designed to run in
such an environment and are still in use in many companies (often performing
mission critical tasks) do not fit into that picture. They are closed, monolithic
applications, which are inflexible and not easy (if at all) to integrate with other
software systems. Additionally, maintaining these programs is very expensive
especially in the case of non-modular systems tha t were implemented in 'ancient'
languages such as FORTRAN, COBOL or even Assembler.

These problems apply to the CAPE domain as well. Many different tools are
needed throughout the design and operation of a chemical plant. The systems
employed for tha t task range from computer-aided design tools (CAD) over
process simulators and optimisers to costing and ERP systems. But nowadays all
of these systems are mostly stand-alone tools, which offer no direct integration
among each other.

To change this si tuation for the CAPE domain and for software development and
design in general new paradigms, systematic approaches and flexible technical
solutions are needed. New paradigms (compared to the ones used for creating the
existing monolithic systems) are mainly based on object-oriented and component-
based modelling of a software system. These approaches facilitate the design and
implementat ion of loosely coupled systems. These systems are ra ther flexible and

230

easy to integrate with other pieces of software writ ten following the same
paradigm. More on the idea of object-oriented design is presented in the following
sections. Additionally, methods for using these paradigms to develop well-
designed software systems are shown. We also discuss several technical
approaches and frameworks, which support the software developer in
transforming a good and flexible design into running software, including
application integration via standardised data exchange and middleware
solutions.

If you a look at many large-scale up-to-date enterprise applications in industry,
you can easily recognize that the employment of the frameworks and techniques
presented here facilitates the development of reliable and flexible software
systems. Additionally, most of the approaches shown in the following sections
have been used for the development of the CAPE-OPEN standard (see Chapter
4.3) and the implementation of CAPE-OPEN compliant software. This is a good
example of how state-of-the art software development techniques are used to
create high quality software in the CAPE domain.

Of course, only a very brief introduction to all these issues can be given in this
book. For a deeper understanding of the methods, frameworks and techniques,
the resources listed in this chapter are recommended many of which are
available online.

4.1.2 BASICS OF SOFTWARE E N G I N E E R I N G

This section gives a brief overview of some basic principles of software
engineering. A short history of the development of programming and design
principles is given to motivate why a change of the paradigms in software
engineering has taken place. This will make clear why legacy software systems
are causing so many problems and how they can be avoided. Among other issues
the following subjects are addressed: A brief sketch of object-oriented
development and design; concrete object-oriented specification methods are
presented in sections 4.1.5.2 and 4.1.4.1, namely the Unified Modelling Language
(UML) and the Unified Process (UP). Next, the ideas of component-based
software and middleware are presented. Again, technical implementations such
as COM and CORBA will be discussed later (Section 4.1.5.1). Because the
migration of old software to new standards (e.g. transforming FORTRAN77 code
to an object-oriented design) is an important issue, some introductory material on
that is shown. This section concludes with some general thoughts on systems and
data modelling as well as data representation. As an application, the universal
data representation format XML is presented in Section 4.1.5.3.

231

4.1.2.1 Evolut ion of Programming Principles

The architecture of CAPE software follows the mains t ream of software
development and programming principles [21,34,35]. Therefore, CAPE software
has changed as well. This is one reason for the difficulties arising when legacy
CAPE software is to be integrated with other software systems. To unders tand
the problems arising with the evolution of software development paradigms it is
helpful to summarize this development in brief.

In general the evolution can be divided in five principles: l inear procedural
programming, s tructured procedural programming, event-driven programming,
object-oriented programming and component-based architectures. The
programming languages themselves can follow different programming paradigms
such as imperative, functional or logic programming, but are not of deeper
interest in our context because most problems in developing modern (CAPE)
software architectures result from the changing programming principles, not
from the paradigms.

- Linear procedural programming: Initially, programs were wri t ten as
monolithic command sequences. Even if basic program structuring techniques
were available, the program was developed linearly in an imperative manner
using programming languages like Assembler, COBOL, ALGOL60 and early
versions of FORTRAN. Main control structures used within the programs are
jumps (GOTO), jumps with conditions (IF-THEN-ELSE) and loops (FOR-
NEXT/WHILE-DO/REPEAT-UNTIL) which were usually combined to one
huge block of code and data. Therefore, such software systems were often
comprehensible only by a small group of involved developers.

- Structured procedural programming: The next wave of programming
principles in the middle of the 1960's was strongly influenced by C.A.R. Hoare
and E.W. Dijkstra. The programs were structured into functional units or sub-
procedures. These procedures were identified and coded as independent units.
The data was encapsulated, or hidden, from the calling procedure, and the
programming languages got a theoretical foundation comprising syntactical
specification of the language and compiler theory to qualify them for universal
problem solving. This is likely to be the principle used by most current
(legacy) CAPE systems because current CAPE software is often descended
from this era. Popular languages were FORTRAN77, ALGOL68, PASCAL, C,
PL/1, al though languages with other programming paradigms like LISP or
PROLOG were also used. The programs themselves remained monolithic
procedural constructs, some with module concepts allowing an extension or
replacement of functional program units.

- Event-driven programming: Event-driven programming approaches were
needed for computer-based process control applications, where a closed
procedural approach is inadequate. In event-driven programs, the main
program is a simple routine, which is essentially a t imer loop, waiting for

232

events to happen. When events are detected, an interrupt-driven event-
handling subroutine is called to handle the event, before returning control to
the main program.
Object-oriented programming: Object-oriented programming, introduced in
the 1980's, uses an event-driven approach of cooperating objects, rather than
a monolithic, beginning-to-end procedural paradigm. This approach focuses on
how to map real-world, user-controlled, event-driven scenarios, such as mouse
clicks or keystrokes, into the program. Objects are identified as entities
similar to those in the real world with properties (encapsulated data) and a
behaviour (encapsulated procedural methods). This ability to hold both the
procedure and the data in the object is conceptually very different from
procedural approaches in which data are held in (potentially large) data
structures separate from the procedural code. Programming languages such
as C++, JAVA, and SMALLTALK provide language constructs to reflect the
object-oriented view [24].
Component-based systems: Component-based systems can be thought of as
pre-built collections of objects that exist independently of any single main
application program, whereas in "just object-oriented" systems the objects are
typically created and used in the context of a single specific application
program. In component-based systems, applications can be built from pre-
assembled components, which may be provided by multiple, independent
supplier companies. To facilitate this, standardized frameworks to access the
components programming interfaces are required. In component-based
systems, some of these components are "servers" for other components who
are "clients". Often the client components and the server components are on
the same computer, but in general, they can be located on different computers
communicating over a network. The only important thing for a client
component is to know how to communicate with the server component. To
achieve this implementation and location independence of components, a
middleware layer is needed which covers the technical details of the
communication and which provides a common and standardized interface to a
components. Current examples of middleware solutions are CORBA, (D)COM
or EJB but also distributed and client-server systems which use (system-
specific) standardized communication protocols [24,25,37].

Considering the very different programming paradigms of legacy software, which
uses structured procedural programming, and modern software systems, which
use object-oriented and component-based architectures, we can see that it is not
easy to evolve legacy software for use in modern software systems. We will come
back to this issue in Section 4.1.2.3.

4.1.2.2 Middleware Principles

Component-based applications consist of several pieces of software, which are
executed independently and may reside on the same host or on remote host over

233

a network (such as intra-/extra-/internet). For such a component-based
application to work, the components must be able to interoperate, i.e. to exchange
data and issue method calls to each other via the component's defined interface.
The technology that implements an infrastructure for component communication
is called middleware. A middleware solution provides standardized mechanisms
for the definition of component functionality and communication as well as
additional services easing the use and implementation of component-based
software. Currently, the most prominent object middleware solutions are
(D)COM from Microsoft, CORBA from OMG and Enterprise Java Beans from
SUN to all of which we will re turn in Section 4.1.5.1.

The middleware described so far is called object middleware, as it is an
intermediary for components, which have interfaces following the object-oriented
paradigm. There are two other kinds of middleware, which should be named but
will not be discussed here: remote procedure calls (RPC) and message-oriented
middleware (MOM). Fur ther information about these approaches as well as a
good general introduction to middleware principles can be found in [33]

Basically, a middleware framework consists of four parts: an interface definition
language (IDL), an interoperability protocol, an object request broker (ORB), and
additional supporting services. The IDL is a language, which describes all
accessible data and methods of a component. It is very similar to a programming
language but contains method headers only, no implementations. Most IDLs
follow the object-oriented paradigm. The interoperability protocol defines how the
components communicate which each other. It defines valid message types and
formats and how their content should be interpreted. One of the most important
aspects of the interoperability protocol is the definition how the data structures
defined in terms of IDL (e.g. a string or integer) are t ranslated into network
messages and vice versa. This process is called marshall ing (resp.
unmarshalling).

Having defined the IDL and the low-level communication, an entity is needed for
coordinating component communication. Direct point-to-point communication
between components would be possible but is very inflexible in multi-component
applications. Therefore, most middleware frameworks include an object request
broker (ORB), which is responsible for directing messages to and from different
components throughout the network. It is the central piece of software in every
advanced middleware because it is the logical backbone for all component
communication. Additional supporting services are defined in most middleware
systems for making the system more efficient and easier to use. Examples of such
services are naming or persistence services and might be implemented as
components themselves.

Figure 1 illustrates the use of a middleware infrastructure for component
communication. A client application uses some server functionality. The IDL is

234

used to define the interface that a server implements, i.e. the set of services that
clients may request. The IDL interface specifications are compiled into client and
server stubs. The client application calls a client stub to request a service. The
client stub interfaces to the runtime system of which the ORB is a part and
which invokes server code that implements the requested service through the
appropriate server stub. The transmission of service requests and responses
between clients and servers is handled by the runtime system of the middleware
platform. Thus, applications need not deal with concerns such as: location of
clients and servers on the network, differences between hardware platforms and
operating systems, and implementation languages (e.g. data formats and calling
conventions).

Figure 1 Middleware Approach

The example shows that client and the server can be located on different
computers, based on different operating systems, and different hardware
platforms (e.g. a Windows PC and a SUN Solaris machine). Additionally,
different programming languages can be used on client and server side (e.g. C++
and Java). This integration aspect is one of the most important advantages of
component and middleware technology. However, because most middleware
frameworks follow the object-oriented approach, non-object-oriented languages
(e.g. FORTRAN77) might not be suitable for use in a middleware environment or
may require additional effort for integration. Furthermore, a hard problem is the
integration of components that use different middleware platforms (e.g. one using
COM, the other CORBA). We will come back to these issues in the next section.
See also [6,12,33,37].

4.1.2.3 Migrat ion of Legacy Software

In the last section we have presented the principles of component-based systems,
which integrate components via middleware technology to form a complex

235

distr ibuted software system. Unfortunately, a lot of existing software was not
designed using a component-based approach or was wr i t ten before these concepts
even existed. These systems are called legacy systems. In many C, COBOL or
FORTRAN legacy systems, the implementa t ion history may reach back several
decades. Migrat ing these systems to a component-based envi ronment is a non-
trivial but nevertheless very useful task. By migra t ing these systems they are
opened up to other applications and can be in tegra ted with them. This exposes
their functionality to the outside world, which would not be possible otherwise,
and avoids wast ing the money spent on designing and implement ing those
systems.

There are many approaches how to migrate a legacy system. None of them is
really easy. Which way of migrat ion is the best depends on how your legacy
system is s t ructured and what information about it still exists. The worst case for
migrat ion is a system tha t has no or only useless documentat ion and where all
developers knowing the system are gone. Then the options for real migrat ion are
very limited. A complete re- implementat ion of the whole system may be the only
choice. But things often look better. In most cases, source code is available along
with some documentat ion. Depending on what language was used for the
implementa t ion there are several options. If a s t anda rd language such as
COBOL, FORTRAN, C or C++ was used, there are several ways to move to a
component-based system. We present two small scenarios in which the original
code is completely preserved. Other solutions may include par t ia l re-
implementa t ion and re-design of the system but will not be discussed here.

Migrat ing an object-oriented legacy system is r a the r easy. If the system was
designed well it a l ready encapsulates objects and da ta tha t can be directly re-
used in a component-based environment such as COM or CORBA. The only thing
tha t remains to be done is the connection to the middleware system. If the
interfaces of the components directly correspond to the interfaces of the legacy
objects, you need only a thin wrapper doing the t rans la t ion from middleware
calls to calls to the legacy objects. If the interfaces differ, the wrapper (in this
case sometimes called mediator) must provide a t rans la t ion between the
component and the middleware interfaces.

If a non-object-oriented language such as FORTRAN77 was used, things are a
little more complicated. In this case, a wrapper mus t accomplish two things.
First, it must provide an object-oriented view to the non-object-oriented legacy
code. This is a problem whose complexity strongly depends on the s t ructure of the
underlying system. For example, it may be necessary to extract code segments
from monolithic code and res t ructure the data interface to fit an object-oriented
approach. Because the wrapper usually will be in a different language t han the
legacy system, some kind of bridge between those languages is necessary. There
are products able to solve this problem by cross-compilation or other bridging
strategies. Second, the wrapper must provide a connection to the middleware

236

system as in the first scenario. A case study of a migration of a FORTRAN77
thermodynamics package to the CAPE-OPEN standard can be found in the
Migration Methodology Handbook from the CAPE-OPEN formal documentation
set [11].

This can only be a short introduction into the wide area of software migration.
But it is important to know that there are strategies for moving from legacy
systems to component-based architectures without throwing away all the code
that has been wri t ten and proven useful for a long period of time. [8] describes a
systematic approach for migrat ing mission critical enterprise systems whereas
[28,42] discuss general strategies for opening up legacy systems.

4.1.2.4 Modell ing Systems and Data

The quality of software systems is strongly influenced by their architecture.
Quality aspects include e.g. the clear separation of functional units and their
encapsulation in components, methods or subsystems; a well documented
program code with agreed layout, interfaces and documentation of the systems;
effectiveness and efficiency of the system which often is strongly influenced by
the basic architecture; the size and resources needed for system execution etc.
Various metrics have been developed to measure software quality.

An important step in developing well-designed systems is a clear a-priori
architecture and a modelling of the system, which can be refined in a top-down
manner. Different modelling approaches for software systems and the data,
communication or control flow within the systems have been developed as well as
modelling techniques for specifying how systems are used. In general two
modelling s treams can be distinguished: system modelling and data modelling.
While data modelling is of big interest when dealing with large amounts of data
(data organization, storage, and retrieval) system modelling is important when a
complex system with functional units and behaviour is designed [31,34,48].

System modelling: A software system consists of multiple parts, which
usually interact and are related in a complex manner. As mentioned in
section 4.1.2.1 the development and programming principles for software
systems have changed and therefore requirements to system modelling have
changed, too. Current systems mostly follow the object-oriented or the
component-based approach which raises different requirements for system
modelling:

Component modelling: Which components or objects are part of an
overall system, and what is their behaviour? What are their characteristics
and how are they related?
System usage modelling: How can a system be used, what API's are
supported and what user interface is offered? What interactions are

237

necessary for which task and how can system components be used and
coupled together for overall tasks?

- Con t ro l a n d m e s s a g e f l o w m o d e l l i n g : Which message flow between
different parts of the system does exist? Which actions are started by what
components, what is the calling sequence of components respectively
objects? Which actions interact in which way with system interfaces and
system users?
S y s t e m s t a t e m o d e l l i n g : What states can a system be in? What action
can have which effects? What state transitions are allowed?

Tools for system modelling have to consider as many of these requirements as
possible. A popular approach is the Unified Modelling Language (UML)
described in section 4.1.5.2. More information about system architecture and
modelling can be found in [9].

�9 D a t a m o d e l l i n g : A system cannot do anything without data in multiple
forms, e.g. persistent data, runtime system data, or data communicated
throughout different parts of the system. Especially where data is to be
exchanged between components, the data representation and semantics must
be clear for all participating components. An introduction to data
representation is given in the next section. For data semantics various
modelling methods have been developed for different purposes. One of the
most important tasks is the definition of data models for databases holding
persistent system data and making it accessible in different ways. A popular
data modelling approach is the entity-relationship model based on data
entities and relations between entities. More about data modelling can be
found in [41].

4.1.2.5 Data R e p r e s e n t a t i o n

When modelling a system the data within is important, too. The control and
information flow within the system and through the interfaces relies on
communication data, which can be modelled as well. From an abstract
perspective, data can be classified as structured, semi-structured and data
without fixed format.

�9 S t r u c t u r e d d a t a : Structured data is data that fits a predefined schema. It is
known in advance what the type of data is, how different parts of the
managed data are interrelated, and which data fields are mandatory and
optional. The data of a relational database is an example of structured data
with a well-understood theory behind it. Normally, using structured data has
the best performance considering data storage and retrieval but limits the
flexibility of the system. Examples for structured data are the predefined
relational schema, fixed communication protocols or system-dependent
memory organisation.

238

�9 S e m i - s t r u c t u r e d d a t a : Semi-structured data is getting very popular. For
example, XML is a widely accepted and used data representation for semi
structured data. The power of semi-structured data is its flexibility. In
contrast to structured data, no schema is needed in advance to handle the
data. The only concept is the entry, which can have any arbitrary content
(even entries again) and certain characteristics (e.g. attributes in XML). In
XML and some other frameworks for semi structured data these entries are
organised in a hierarchy. Techniques for storage and retrieval of semi-
structured data (esp. XML) are evolving rapidly but there are still limitations
concerning this functionality because semi-structured data usually don't fit
directly to underlying system hardware, structure or architecture.

�9 F r e e d a t a s t r u c t u r e s : The most flexible approach concerning the data format
is the usage of free data structures without any given schema or restrictions.
This leads to data management where all data is interpreted as binary
objects. The most important disadvantage is the limited functionality in
querying the data because no structures are given and therefore it is very
difficult to implement powerful algorithms for searching certain data within a
(large) collection of binary data.

Even if the different data representation approaches are of interest within
applications and for internal component communication the data representation
is important for interactions between a system and a system user. Therefore, the
question of data representation is mainly an issue when defining system or
component interfaces, which are published for further "external" use.

For better management of semi-structured data, most prominently XML,
different approaches exist to restrict the complete freeness of data structure.
Document Type Definitions (DTDs), in general, define a filter for semi-structured
data and restrict data acceptance to specified classes of data. Multiple DTD
specifications for various areas of application such as CML, MathML (all
presented in [44]) or XMI [23] exist. A more detailed introduction XML is given in
Section 4.1.5.3. More information about data, data management and
representation can be found in [29,35,40].

4.1.3 SOFTWARE INTEGRATION A R C H I T E C T U R E S & STANDARS

This section introduces key concepts and issues related to software integration
architectures and the need for industry standards to make these integration
architectures practical and cost-effective. First, the industry need for software
integration architecture is reviewed in the context of process engineering work
processes. Then, the two major approaches to software integration architectures
- loosely-coupled, asynchronous architecture and tightly-coupled synchronous
architecture - are reviewed along with background information on the process
industry standards efforts related to both styles of software integration.

239

Figure 2. Traditional Software Integration

4.1.3.1 The indus try need for sof tware in tegra t ion a r c h i t e c t u r e s

In the process industry, software applications have been built to solve specific
problems associated with a highly complex technical work process involving
many people, disciplines and companies. Typical examples from the process
engineering problem domain are shown in Figure2 and are summarized in the
next paragraph [5,38,49,50].

A data regression tool is used to evaluate thermodynamic experimental data
obtained from a thermo database in order to construct an accurate
thermodynamic prediction model to use in a process simulator, which is used to
simulate steady-state process behaviour. Dynamic simulators simulate dynamic
process response and evaluate control systems. Fluid flow simulators predict
pressure drops in piping systems. Equipment design tools size and rate process
equipment performance and produces mechanical designs. Cost estimating tools
are used to estimate equipment capital costs. Various tools including
spreadsheets and engineering databases are used to produce engineering
documents such as equipment data sheets, equipment lists, line lists, utilities
lists and various other engineering documents associated with design reports.
Intelligent diagramming programs are used to produce engineering drawings
such as process flow diagrams (PFD's), piping and instrumentation diagrams
(P&ID's), isometric drawings and plot plan equipment layouts. Computer Aided
Design (CAD) systems are used to built virtual 3D plant models. Plant in-
formation systems that are integrated with real-time process control systems and
maintenance management systems are used to track, maintain and improve
plant performance.

240

Of course, these are just the technical software applications. There are many
other software applications used by engineers in a process industry enterprise,
including office automation software, multiple technical and business database
systems, e.g., Enterprise Resource Planning (ERP) systems. To compound this
already complicated software integration problem, the work process is a complex,
team-oriented work activity with many people and disciplines spanning multiple
enterprises, including owner-operators, technology licensors, engineering-
procurement-construction (EPC) companies, and equipment suppliers. In general,
these various companies who partner for particular projects, do not use the same
software applications. Because of this inherently complex work process and the
multi-company, multi-software vendor environment, software integration to
support the process engineering work process has traditionally been
accomplished by using people to do the software integration, as illustrated in
Figure 3 [39].

Figure 3. Manual Software b~tegration

Each application manages its own data files and interacts with users through
normal interfaces (either displays or printed reports). Typically a subset of either
common input or output data from Application 1 is needed as input to
Application 2 or vice-versa. There is one overriding key requirement software
integration: In translating data from one application to another, a translation
table, or "map," is always needed to decide the meaning of data in one application
and how that data maps onto data used in the other application. As we shall see,
the cost of this data map is the key to achieving practical software integration
architectures.

While labour-intensive, manual software integration is the primary approach to
software integration today, the drawbacks are significant, including higher costs,
longer schedules, and occasionally, lower quality due to inevitable human errors
escape detection and correction. Practical and widespread automation
approaches to software integration could have a dramatically beneficial impact
on the process industry, estimated to be on the order of hundreds of millions to
billions of dollars annually.

4.1.3.2 Loose ly-coupled , or a s y n c h r o n o u s approaches to software
in tegrat ion

241

The earliest (and still used) approach to software integration is to build point-to-
point software interfaces from one application to another (Figure 4) [39].

Figure 4. Point to Point Software Integration

In this approach, because input processing is usually more costly than producing
specialized output reports, the data maps are often embedded into the
application as a specialized output report to map the report-producing
application's data onto the other application's input file format, or some easily
parsed (computer-, but not human-readable) alternative input file format.
Manual editing and merging of these special transfer files may still be needed for
these interfaces to work. While this approach automates manual software
integration, it is still a very expensive approach because custom software
interfaces must be built for every application pair in the work process and
maintained each time a new version of one of the applications is released. If you
have more than just a few applications, the number of potential required
interfaces required becomes very large, (N2-N) interfaces, where N is the number
of applications. Further, with this approach, each application owner is faced with
developing and supporting N independent interfaces, and sometimes directly
with competing software packages and vendors. In the process engineering
domain, N is typically on the order of 10-30 or more applications across multiple
software vendors, making point-to-point software integration impractical for
process engineering.

Figure 5. Common File Format and Database Integration

A major improvement on the point-to-point architecture is to use an industry-
standard common data definition and file format, which may be either fiat files
(for paired application data exchanges) or databases (for multi-application data
sharing) as illustrated in Figure5 [39]. The major advantage of this approach is
reducing the potential number of application interfaces and associated maps from
N2-N to a much more manageable 2N interfaces. Furthermore, for any single
application owner, support for only one interface mapping is required, regardless
of how large N becomes. This is a major advantage for software owners.

242

However, a major challenge for this software integration architecture is
obtaining consensus and agreement from the multiple companies and software
vendors who own and use the applications to agree upon the common data
definition and software implementation architecture to become a widely accepted
industry standard.

4.1.3.3 Process industry efforts to develop a s y n c h r o n o u s ISO
s tandards

The ISO 10303 (STEP) standard [17] started in the 1980's and was largely driven
by the need to exchange product information and detailed geometry and CAD
information across multiple industries including the aerospace, automotive,
electronics and, since the mid-1990's, for the process industry. In order to
accommodate a multi-industry standard while still using a common data model
and instantiation of data at the physical level, the STEP architecture employs a
two-layer data mapping architecture, which is shown in Figure 6.

Figure 6. STEP Architecture for Software Integration

In the STEP approach, the application interface map consists of two-layers: (1)
the application domain layer, which in STEP terminology is called the
Application Resource Model (ARM) and (2) the general layer, which in STEP
terminology is called the STEP Integrated Resources model. The physical
instantiation of a STEP-compliant intermediate file or database is required to be
compliant with the STEP Integrated Resources model so that physical
instantiations will be independent of industry and problem domain. In each
Application Protocol (AP) document, a document that describes each domain-
specific part of the STEP standard, there is an explicit mapping of the domain
(ARM) level data model to the general STEP Integrated Resources. The map from
the ARM to the STEP Integrated Resources is called the Application Interpreted
Model (AIM). The ARM and the AIM together comprise a STEP Application
Protocol (AP).

Starting in the mid-1990's process industry consortia sponsored the development
of three STEP Application Protocols:

o AP 221: Functional Data and Schematic Representation for Process Plant
(sponsored by USPI-NL, PISTEP and EPISTLE in Europe, [3]. See
Chapter 4.2 for more information)

243

AP 227: Plant Spatial Configuration (sponsored by the US-based
PlantSTEP consortium) [4]

o AP 231: Process Engineering Data: Process Design and Process
Specifications for Major Process Equipment (sponsored by pdXi. See
Chapter 4.2 for more information.)

By 2001, AP 221 and AP 231 have reached Committee Draft status, while AP 227
has reached International Standard status. More information about AP 221 is
presented in 4.2, additional background information about AP 231 is included in
Chapter 4.2.

There is an interesting contrast to note in the above three efforts. AP 227 and AP
231 followed a traditional STEP approach of developing explicit engineering
domain object models using process and plant engineering terminology at the
domain (ARM) level, and then mapping these to the STEP Integrated Resources
model in the AIM. In contrast, AP 221 effort defined the plant engineering
problem domain using another general abstract model (called the EPISTLE data
model) at the domain (ARM) level, which then needed to be mapped to the
general abstract STEP Integrated Resources level. To make software
implementations possible, an instantiation of the AP 221 generic ARM model is
required that maps engineering data from software applications. To meet this
need, another modelling level was added on top of the ARM model, called the
Reference Data Library (RDL). Therefore, to implement STEP AP 221 in
software interfaces, three mapping layers are r e q u i r e d - Application to RDL,
RDL to EPISTLE/ARM, and EPISTLE/ARM to STEP Integrated Resources.

An alternative ISO standards effort, ISO 15926, [18] which is sponsored by the
POSC-CAESAR consortium, emerged in the late 1990's in parallel to AP 221 to
address the needs of data warehouses (databases) for oil and gas production
facilities. ISO 15926 uses the generic, conceptual data model developed by
EPISTLE [14] for AP 221 and, in cooperation with EPISTLE/AP 221 has
developed an extensive Reference Data Library (RDL) to support the draft
standard. Using the ISO 15926 standard allows the application interface maps to
become similar to the STEP standards, where the RDL serves as the engineering
domain level model and the EPISTLE/AP221 general model serves the same
function as the STEP Integrated Resources model.

Both the STEP or ISO 15926 two-layered mapping approach to software
integration make it possible to have multi-industry, multi-domain data exchange
or data repository architectures using the same physical data instantiation in
databases. This is an advantage for software owners, such as CAD vendors or
vendors of data warehouse repositories, whose customers span multiple industry
groups and the same basic database can be customized to different industry
groups. One feature (some would say advantage, others would say disadvantage)
of the AP221/EPISTLE/ISO15926 approach is that each time the standard is

244

used, the two parties in the data exchange must first agree on the version of the
RDL tha t they will use. This offers flexibility (advantage), but incurs extra cost to
implement (disadvantage). One general disadvantage of the two-layered mapping
approach to software integration, whether STEP or ISO 15926, is that, overall, it
becomes very complex, difficult and costly for most software application owners,
at least in the process industry, to unders tand and implement software
application maps and interfaces. This high complexity and high cost of building
software interfaces presents a high activation energy barrier for most software
vendors to achieve fully STEP-compliant, or ISO 15926-compliant commercial
software implementat ions in process industry software.

The ISO standards have been a long time in development and are generally
expensive to implement in process industry software due to the high cost of
building the application data maps to the highly abstracted general data models
(STEP integrated resources model or EPISTLE model). This high
implementat ion cost has been an inhibitor to their widespread use in commercial
software.

4.1.3.4 Proces s indus try efforts to deve lop a s y n c h r o n o u s XML
s tandards

The eXtensible Markup Language (XML) has recently emerged as an important
Internet s tandard for electronic commerce and is introduced in more detail in
Section 4.1.5.3. At this point, suffice it to say tha t XML is an Internet s tandard
file format for the common data file format software integration architecture
shown in Figure7.

However, by itself, XML is not sufficient to constitute a practical software
integration architecture for the process industry. To achieve value and practical
software integration architectures, the process industry still needs to reach
consensus on a s tandard process industry XML vocabulary. Efforts in the process
industry to develop XML standards have just begun to emerge. One of these
efforts is aecXML [1]. aecXML was originally organized by Bentley Systems and
now operates under the auspices of the Internat ional Alliance for Interoperability
(IAI) [16]. The aecXML effort is largely oriented towards buildings and building
construction projects, but does have a small Plant Working Group. The Plant
Data XML effort [27], building on the previous ISO standards work on AP 231, is
described further in Chapter 4.2.

4.1.3.5 T ight ly -coupled or s y n c h r o n o u s a p p r o a c h e s to sof tware
in tegra t ion

An alternative approach to software integration is needed when two applications
need to execute synchronously in a collaborative way. This concept is i l lustrated
in Figure 7.

245

Figure 7. Tightly coupled synchronous integration

In contrast to the asynchronous, loosely coupled style of integration, there is no
physical instant ia t ion of data in separate files in synchronous integration. As
with asynchronous integration approaches, each application remains responsible
for its own data. In the synchronous architecture, one application program
(client) requests services from the other application (server). The most common
example of this style of software integration are the client-server architectures
implemented in shared database systems, where Application 1 may be a problem-
domain oriented program, perhaps wri t ten in Visual Basic or web client script,
and Application 2 is a server-resident database program, which may be servicing
many applications at the same time. Typically the client program makes a
request and waits while the server program fulfils the request. In this
synchronous architecture, as with the asynchronous architecture, it is possible
for the applications to reside either on the same hardware or on different
hardware.

However, the synchronous architecture need not be limited to "data only" clients
and services. In the late 1990's and early 2000's, the process industry, through
the CAPE-OPEN and Global CAPE-OPEN research consortia, has been
developing synchronous data integration architectures for integrat ing
synchronous calculations among separate applications through a s tandard
programming interface called CAPE-OPEN (CO) [11]. For integrated
calculations, synchronous integration approaches are required because the
performance penalty of instant ia t ing physical files in a loosely coupled approach
is too severe to make loose coupling practical for this application. To summarize
the approach in the context of software integration architectures, one application
(e.g., a "client" process simulator which supports CAPE-OPEN "socket"
interfaces) calls a second application (for example, a third-party thermodynamic
properties "server" which supports a CAPE-OPEN "plug" interface) in real-time
to converge a process simulation model. In this way, user companies who have
proprietary thermodynamic properties calculation or unit operation software, can
write "plug" server modules and plug them into their preferred commercial
process simulator, which provides the "socket" interface. Details about the CAPE-
OPEN s tandard will be presented in section 4.3.3 and chapter 4.4

246

4.1.4 P R O C E S S E S FOR D E V E L O P I N G C OMPONENT-BASED
SOFTWARE

The alarming reality is tha t about one-half of the es t imated 300,000 software
projects in the United States in 2001 will fail due to poor planning, inexperienced
project managers, or inept project teams. This section discusses the project
management , method and process for building software system especially based
on object-oriented components. Our objective here is only to introduce this subject
and demonstrate to what extent this aspect is fundamental . This section
addresses principally the processes.

Project management faces the challenges of producing top-quality software on
time and within budget. As with many industries, managers in software
development must keep their staff motivated, cost-justify their strategies, beat
deadlines and balance budgets. But this becomes all the more challenging in an
industry where terms, technologies and processes shift rapidly. To plan and
execute a successful software project, some managers rely on a method.

A notation/language and a specific process define a method. Accompanying the
success of the object development, we can count more than 50 object methods and
we cannot find one rule, which is very formal and relevant to the different
business domains. The UML language opened the unification field in merging the
notations and in defining thoroughly the concepts. However, many organisations
use the UML as a common language for their project artefacts, but they will use
the same UML diagram types in the context of different processes. As a mat ter a
fact, the UML is intentionally process independent, and defining a s tandard
process was not a goal of the UML. The UML language is presented in Section
4.1.5.2.

Therefore, the remaining challenge is to unify the software development process.
To specify one universal process would be very perilous. Indeed, experience has
shown that different organisations and problem domains require different
processes. For example, the development process for shrink-wrapped software is
vastly different from building hard-real-t ime avionics systems upon which lives
depend. Even in a single domain such as CAPE, to build a complete environment
for process simulation and to build a thermodynamic library for electrolytes
require different processes. In fact, the UML authors do not really unify the
process but ra ther collect best practices of object-oriented software (component or
not) development. In the future, we should find a family of processes coming from
this work, grouped under the term Unified Process.

4.1.4.1 T h e u n i f i e d p r o c e s s

As the strategic value of software increases for many companies, the industry
looks for techniques to automate the production of software and to improve

247

quality and reduce cost and time-to-market. The development for the World Wide
Web, while making some things simpler, has exacerbated the problem. A well-
defined process is a central element on the road of the success.

A process defines a set of partially ordered steps intended to reach a goal. In
software engineering the goal is to build a software product or to enhance an
existing one. A unified process (UP) [20] is a software development process that
uses the UML language to represent models of the software system to be
developed. It is iterative, architecture centric, use case driven and risk
confronting. It derived primarily from the three market leading methods (Booch,
Objectory and OMT) with ideas drawn from many other methods and input from
many other parties. Ivar Jacobson, the principal developer of the UP, defines it
as: "...a generic process framework that can be specialised for a very large class of
software systems, for different application areas, different types of organisations,
different competence levels, and different project sizes." [20]

Figure 8 summarises the overall structure of the UP. The process has two
dimensions"

�9 The horizontal dimension represents time and shows the lifecycle aspects of
the process (phases) as it unfolds.

�9 The vertical dimension represents core process disciplines (workflows), which
logically group software engineering activities by their nature.

The four phases are"

Figure 8. Structure of the unified process

248

�9 Inception: defines the scope of the project and develop business case.
�9 Elaboration: Plan project, specify features, and baseline the architecture.
�9 Construction: Build the product.
�9 Transition: Transition the product to its users.

The horizontal dimension represents the dynamic aspect of the process expressed
in terms of cycles, phases, iterations, and milestones. A software product is
designed and built in a succession of incremental iterations. This allows testing
and validation of design ideas, as well as risk mitigation, to occur earlier in the
lifecycle. The vertical dimension represents the static aspect of the process
described in terms of process components: activities, disciplines, artefacts, and
roles.

The UP is a process framework that can be adapted and extended to suit the
needs of an adopting organisation which can modify, adjust, and expand the
process to accommodate the specific needs, characteristics, constraints, and
history of its organisation, culture, and domain.

As main examples of unified process, we can cite the Two Tracks Unified Process
(2TUP) [30] and the Rational Unified Process (RUP) [22]. The RUP, which is a
commercial product from Rational, is defined as a more specific instance, or
specialisation, of the more general UP. As with UML, the UP was created and
promoted by Rational, but entered the public domain, so that now Rational is
just one of many organisations with competence in its use.

It is worth noting that although there is nothing unique in the UP that can not
be found in other modern development processes, it organises high-impact best-
practices in a cohesive, thorough, and well-documented presentation.
Nevertheless we should notice the critical review of the UP [2] that presents a
survey of the alternate software processes, and synthesises a "more" robust
process that addresses the complete breadth of real-world development and
production needs.

4.1 .4 .2 CAPE-OPEN w o r k p r o c e s s

The CAPE-OPEN work process is dedicated to the CAPE-OPEN standard and
aims at delivering standard interface specifications and prototypes. In some way,
this interface development process is a unified process even though it does not
formalise clearly the different phases. It is iterative, relies on the object-oriented
modelling and component technology, creates and manages a UML model, pays
ongoing intensive attention to the definition and management of end-user
requirements. It adapts the UP process workflows and consequently defines the
analysis, design, specifications, implementation and test steps. More information
can be found in section 4.3.3 and chapter 4.4.

249

4.1.5 S E L E C T E D STATE-OF-THE-ART T E C H N O L O G I E S

This section provides an overview of approaches, technical solutions, and tools for
dealing with the issues presented in the previous sections. Three middleware
approaches (COM, CORBA, and Enterprise Java Beans) for synchronous
software integrat ion will be discussed and briefly compared. Subsequently, the
Unified Modelling Language will be presented as a means for object-oriented
systems design. An introduction to XML as a universal data interchange format
as a means of asynchronous software integration and its practical application
concludes this section.

4.1.5.1 M i d d l e w a r e s o l u t i o n s

The following section gives a short introduction to the three most popular
middleware approaches: CORBA from the Object Management Group, COM from
Microsoft, and the Java 2 Enterprise Edition (J2EE) technology from SUN. We
also discuss their s trengths and weaknesses and point out some middleware
interoperability issues. The Cetus website [9] gives on-line resources for all
technologies mentioned here. It also contains some tutorials on various issues.

CORBA

The Common Object Request Broker Architecture (CORBA) is an open
middleware s tandard facilitating broad interoperabili ty between object-oriented
distributed components in highly heterogeneous environments [23]. It was
developed by the Object Management Group (OMG), which represents a wide
community of software vendors, developers, and users. The OMG specified the
Object Management Architecture (OMA), which includes CORBA as a key part.
It is important to know tha t the OMA and CORBA are just open specifications
and no implementations. The implementat ion of these s tandards is left to the
software vendors.

The OMA comprises an Object Model tha t defines how objects distributed across
a heterogeneous environment can be described, and an architectural Reference
Model tha t characterises the interaction between those objects. These models
also include the definition of the Internet Inter-Orb Protocol (IIOP), which sets a
s tandard for internet-based communication between software components for
transferring messages and data. It also defines marshal l ing procedures on a
binary level. This enables CORBA implementat ions from different software
vendors to communicate with each other. The OMA Object Model defines an
object as an encapsulated entity, which offers services tha t can only be accessed
through well-defined interfaces. Clients send requests to objects to perform
services on their behalf. An overview of the OMA Reference Model is given in
Figure 9.

250

The central par t of the OMA is the ORB, a kind of distributed object bus that is,
as explained in Section 4.1.2.2, mainly responsible for facilitating communication
between client and server objects through their interfaces. Several ORBs in the
network from different vendors may communicate via IIOP, thereby maybe
connecting different hardware platforms or operating systems. Additionally,
several s tandardized services are part of the OMA, which are defined using the
CORBA interface definition language (IDL). These services can be grouped in the
following categories [43]:

Figure 9. OMA Reference Model: Interface Categories

Object Services: These interfaces define the system-level object frameworks that
extend the CORBA object bus. They are used by many application programs and
provide services that are almost always necessary regardless of the application
domain. Two examples are Naming Service, which allows to locate objects based
on names, and the Trading Service -- a kind of yellow pages that enables to find
objects based on their properties.

Common Facilities: Like Object Services these interfaces are horizontally
oriented, i.e. independent of the application domain, but they are more oriented
towards the end-user application. For example database services could be found
here.

Domain Interfaces: These interfaces are vertically oriented and focus on specific
application domains such as manufacturing, telecommunications, medical, and
financial domains. These s tandard interfaces as well as the Common Facilities
are designed by special task forces of the OMG.

Application Interfaces: These interfaces are specifically developed for applications
and thus not standardized by the OMG.

251

The IDL used for defining these standard services and for all components
developed outside the OMG is fully object-oriented and supports multiple
inheritances of interfaces. To use these IDL definitions, the CORBA standard
includes language bindings, which are translation rules from IDL to real
programming languages. Therefore, it is possible to connect components
developed in different programming languages using these standardized
mappings and the other CORBA mechanisms. Additionally, the language
bindings facilitate the development of IDL compilers, which can automatically
generate all necessary code for the communication between the component
implementation and the ORB. Currently, official standardized bindings are
available for C, C++, COBOL, Java, Smalltalk, Ada, Python, and Lisp. There are
also some bindings available for other languages (e.g. FORTRAN, Visual Basic)
which have not been standardized by the OMG so far. Hybrid approaches can be
used for integrating languages that no mapping exists for. For example, one
could provide a C++ wrapper for a FORTRAN program and then use the wrapper
to access CORBA.

Due to its strengths in the integration of software in heterogeneous environments
and its robustness, CORBA has gained growing importance in large enterprise
applications. It has proven useful for complex and mission critical applications
and is therefore employed in many e-commerce applications as well as in the
banking sector. The importance and maturity of CORBA is stressed by the fact
that a wide range of stable and high-performance commercial (e.g. IONA Orbix,
Borland VisiBroker) and non-commercial (e.g. OmniORB, Mico) CORBA
implementations is currently available. There are also integrated tools in the
market supporting rapid prototyping with CORBA (e.g. JBuilder, Delphi and C++
Builder from Borland)

COM

Microsoft's Component Object Model (COM) [47] and its distributed version
DCOM are the foundation of Microsoft's compound document technology OLE
(Object Linking and Embedding). In the beginning, OLE was a proprietary
integration solution for Microsoft Office products, but now it has become very
popular. Based on OLE there is another Microsoft component standard which has
become very popular recently especially in the area of web-based applications:
ActiveX. Many tools available today are based on these technologies, which
allows them to integrate with each other seamlessly on the GUI level. Moreover,
the next generation COM+ has been made available in Windows 2000, which
offers advanced object services and targets the integration of systems developed
in different programming languages.

In contrast to CORBA, COM is not an open specification but a binary interface
standard that is directly connected to the Windows operating system. This makes

252

COM and its derivatives a platform dependent technology not very suitable for
heterogeneous environments. However, there are some DCOM implementations
available for other operating systems but these products have not gained much
acceptance in the market so far. On the other hand, their strong relation to
Windows has facilitated a quite efficient implementat ion for reasons that are
explained below.

Figure 10: COM Objects and Interface References

The central idea of COM is to construct a binary interface (see Figure 10) using a
data s tructure called virtual function table, or v-table (vTbl). This v-table
contains pointers to the functions within the COM object. A reference to a COM
interface implies tha t you have a pointer to a pointer to a v-table. Since COM
provides no language mappings, the developer of a component is responsible for
providing these tables. They match very closely with v-tables known from Visual
C++, but it can be very difficult if not impossible to directly implement COM
interfaces in other languages such as FORTRAN. However, Visual Basic, Visual
C++, Visual J++, Delphi and others offer powerful tools that support COM such
that less effort is required for these languages. Regarding FORTRAN, a hybrid
can be built by wrapping FORTRAN with Visual C++ or Visual Basic. In this
implementat ion model, there is no explicit piece of software handling all object
requests as in CORBA. All the COM ORB functionality is built into the Windows
operating system. Obviously, this kind of implementat ion is quite efficient but
very proprietary.

On a higher level, the functionality of a COM component is described by the
Microsoft IDL (MIDL). The MIDL whose syntax strongly resembles C++, is an
object-oriented language which features single inheritance only. But in contrast
to CORBA, a componen~ is allowed to implement several interfaces, which can be
used for simulating multiple inheritances.

Microsoft already defines many s tandard COM interfaces, which can be used to
provide s tandard behaviour of application components. Most of them are closely

253

related with OLE and define common services such as Structured Storage or
compound document facilities. For application development it is necessary to
create custom interfaces to define the services a component wants to provide.

In spite of some conceptual weaknesses, COM plays a very important role in
purely Windows-based environments. Strong tool support is offered by various
vendors hiding the inherent complexity of COM to a developer. Especially with
Visual Basic, COM component development is very easy. No additional software
is needed for using COM as it is shipped as par t of the Windows operating
system. But when choosing COM as a technology one should keep remember that
there are ra ther limited options for interfacing non-Windows systems.

Java 2 Enterpr i s e Edi t ion

The Java 2 Enterprise Edition (J2EE) [36] is a platform designed for
implementing distributed and web-enabled large-scale enterprise applications.
The J2EE consists of a set of specifications for components and various
component related services. Additionally, the J2EE contains a reference
implementat ion of the specifications and a testing environment for application
developers. Similar to CORBA, several commercial implementat ions of the
specifications are available (e.g. Inprise Application Server, Bea Weblogic Server,
IBM Websphere Application Server).

Par t of the J2EE is the specification of the Enterprise Java Beans (EJB), which is
Java-based component architecture. Other specifications, which are parts of the
J2EE cover other areas of component-based applications such as naming and
directory services (JNDI), and a basic infrastructure for inter-component-
communication (RMI and RMI over IIOP). The J2EE goes one step beyond the
COM and CORBA middleware architectures. It does not only offer a wide range
services for handling components such as the basic communication infrastructure
or object services but also contains a framework for c r e a t i n g dynamically
extensible application servers into which EJB components can be plugged.

An application server is a piece of software, which can handle software
components and their data. It is responsible for activating components, making
them and their data persistent in a database, handling load balancing issues,
t ransaction management , and many additional services. This dimension of
working with components is only part ial ly addressed in COM and CORBA even
though there are some activities in tha t direction regarding COM+ and the latest
CORBA 3.0 specification.

As J2EE and the EJBs are Java frameworks, all object-oriented concepts of Java
are available for the EJB components. Therefore, all inheri tance mechanisms are
available and regular Java interface definitions are used for specifying
components. But this Java focus is also a drawback. The only language tha t can

254

be used for implementing J2EE components is Java itself. In contrast to COM or
CORBA, it is not possible to integrate components writ ten in different languages
directly. Fortunately, the J2EE framework integrates with CORBA quite well
thereby opening up itself to everything that is available on a CORBA basis.
Additionally, the J2EE offers connections to COM exposing EJBs to the COM
world and connector interfaces to existing legacy systems.

Middleware interoperabil ity

As discussed above, COM, CORBA and J2EE have their specific strengths and
weaknesses. COM is a good choice in a purely Windows-based non-distributed
environment. It offers good tool support for different programming languages and
is efficient. But it is not as clearly structured and as well designed from an
object-oriented standpoint as the two other approaches. CORBA has its strengths
in the integration of very heterogeneous IT-landscapes as it is available for most
operating systems and many programming languages. It is clearly designed and
can be used for mission-critical enterprise systems. On the other hand, it does not
integrate as seamlessly as COM into the Windows environment, making it less
runtime efficient. The J2EE combines the advantages of CORBA with additional
support for many component services needed in an enterprise environment such
as transaction handling or persistence of components and data. Web-based
systems are also directly supported. But although there are connections to COM
and CORBA, J2EE is strongly focussed on Java as the implementation language,
which is unsuitable in domains where just raw computational power is required
(i.e. number crunching).

For CAPE, the best solution seems to be a hybrid strategy, which combines the
best of all worlds. To reach such a solution, so-called bridging software is needed
exposing a component writ ten for a specific middleware system to another system
(e.g. make a CORBA component available to COM or vice versa). As mentioned
above, CORBA and J2EE integrate very well and there is no additional software
needed. On a conceptual level, the integration of these systems is also
manageable because the principles do not differ widely. COM integration to
J2EE or CORBA is not tha t easy because the systems differ conceptually. There
are some products available (e.g. Iona Orbix COMet) which offer bridging
capabilities for that area. COM-CORBA bridging is tackled extensively in [15].
The J2EE already includes specifications that define bridges to COM.

4.1.5.2 The Unified Modelling Language (UML)

Developing a model for an industrial-strength software system prior to its
construction or renovation is as essential as having a blueprint for a large
building. Good models are crucial for communication among project teams and to
assure architectural soundness. As the complexity of systems increases, so does
the importance of good modelling techniques. There are many additional factors

255

of a project's success, but having a rigorous modelling language s tandard is one
essential factor.

In the face of increasingly complex systems, visualisation and modelling become
essential. The UML is a widely accepted response to tha t need. It is the visual
modelling language of choice for building object-oriented and component-based
systems. A vast amount of l i terature is now available on this language; we only
cite here the books by the UML authors [31, 32].

I n t r o d u c t i o n to the UML

The UML is a graphical language for visualising, specifying, constructing, and
documenting the artefacts of a software-intensive system. The UML represents a
collection of best engineering practices in the modelling of large and complex
systems. The UML focuses on a s tandard modelling language, not a s tandard
process. Although the UML must be applied in the context of a process,
experience has shown tha t different organisations and problem domains require
different processes. Therefore, the efforts concentrate on a common meta-model
(which unifies semantics) and on a common notation (which provides a human
rendering of this semantics). However, the UML authors promote a development
process tha t is use-case driven, architecture centric, i terative and incremental.
The main goals in the design of the UML were as follows:

�9 Provide users with a ready-to-use, expressive visual modelling language so
they can develop and exchange meaningful models.

�9 Provide extensibility and specialisation mechanisms to extend the core
concepts.

�9 Be independent of part icular programming languages and development
processes.

�9 Provide a formal basis for understanding the modelling language.
�9 Encourage the growth of the object-oriented tools market .
�9 Support higher-level development concepts such as collaborations,

frameworks, pat terns and components.
�9 Integrate best practices.

Prior to the UML, there was no clearly leading modelling language. Users had to
choose from many similar modelling languages with minor differences in overall
expressive power. Most of them shared a set of commonly accepted concepts tha t
were expressed slightly differently in these notations. These differences did not
greatly expand the power of modelling, but threa tened to fragment the object-
oriented industry, and sometimes discouraged new users from learning visual
modelling. Users longed for the industry to adopt one broadly supported
modelling language suitable for general-purpose usage. They wanted a lingua
franca for modelling. Thus UML is the result of collaboration and merging of

256

three major object-oriented methodologies, namely the Booch method, OMT and
the OOSE.

This unification started in 1994 and the OMG (Objects Management Group)
acceptance was reached in 1997. Now, the open OMG process manages the UML
that is becoming a worldwide standard for meta modelling and notation. The
current version of this de-facto standard is 1.3 [23]. The complete UML version
1.3 specifications is provided as a single downloadable file and contains UML
summary, UML semantics, UML notation guide, UML extensions, UML CORBA
facility interface facility, UML XMI DTD specification and Object Constraint
Language specification. For more information on what is XMI DTD, see Section 0
XML Tools. The following companies submitted or supported this OMG
technology adoption: Rational Software, Microsoft, Hewlett-Packard, Oracle,
Sterling Software, MCI Systemhouse, Unisys, ICON Computing, IntelliCorp, i-
Logix, IBM, ObjecTime, Platinum Technology, Ptech, Taskon, Reich Technologies
and Softeam.

UML does not guarantee project success but it does improve many things. For
example, it significantly lowers the perpetual cost of training and retooling when
changing between projects or organisations. It provides the opportunity for new
integration between tools, processes and domains. But most importantly, it
enables developers to focus on delivering business value and provides them a
paradigm to accomplish this.

Logical mode l of the UML

The architecture of the UML is based on a four-layer meta-model structure,
which consists of the following layers:

�9 user objects,
�9 model,
�9 meta-model,
�9 meta-meta-model.

This section is primarily concerned with the meta-model layer, which is an
instance of the meta-meta-model layer. For example, Class in the meta-model is
an instance of MetaClass in the meta-meta-model. The primary responsibility of
the meta-model layer is to define a language for specifying models. Meta-models
are typically more elaborate than the meta-meta-models that describe them,
especially when they define dynamic semantics. Examples of meta-objects in the
meta-modelling layer are: Class, Attribute, Operation, and Component. The
complexity of the UML meta-model is managed by organising it into logical
packages. These packages group meta-classes that show strong cohesion with
each other and loose coupling with meta-classes in other packages. The meta-
model is decomposed into the top-level packages Foundation, Behavioural

257

Elements and Model Management. Note tha t the Foundation and Behavioural
Elements packages are further decomposed.

O v e r v i e w of the UML

Without respecting the formal structure of the three top-level packages
mentioned in the previous section, we only introduce four concepts" the elements,
the relationships, the extensibility mechanisms and the diagrams.

Modelling elements: The elements are fundamental abstractions of a model. We
can identify four types of elements in UML:

�9 Structural elements tha t enclose class (see Figure 11),
collaboration, use-case, active class, component and node.

�9 Behavioural elements that enclose interaction and state machine.
�9 Grouping elements tha t enclose package
�9 Other elements that enclose notes.

name

L UnitOperation

name : string

+ initialise () :void

+ calculate () : void

+ validate () : boolean

- setMode (in m : Mode) : void
visibil i ty

~ s ignature

Figure 11. Class

attr ibutes

__J
operat ions

j J

interface,

Relationships: The relationships form the glue between the modelling elements.
There are four types of relationships in UML: dependency, association (see
Figure 12), generalisation and realisation.

name

"-o has 0..1 1..*
>

\
multiplicity ~ role name

Figure 12. Association

258

Extensibility mechanisms: The UML provides a rich set of modelling concepts and
notations tha t have been carefully designed to meet the needs of typical software
modelling projects. However, users may sometimes require additional features
and /o r notations beyond those defined in the UML standard. Extensibility
mechanisms allow model elements to be customised and extended through
stereotypes, tagged values and constraints.

Diagrams: A diagram is a view into a model presented from the aspect of a
part icular stakeholder. It provides a part ial representat ion of the system and is
semantically consistent with other views. In the UML, there are nine diagrams
as i l lustrated in the next figure (Figure 13).

Figure 13. Model, View and Diagram

You can graphically depict an overview of the behaviour of your system with a
use-case diagram. The collaboration diagram shows object interactions organised
around objects and their links to one another. The state chart diagram provides
additional analysis techniques for classes with significant dynamic behaviour. A
state chart diagram shows the life history of a given class, the events that cause
a transi t ion from one state to another, and the actions tha t result from a state
change. Activity diagrams provide a way to model a class operation or the
workflow of a business process.

The system's logical architecture is captured in class diagrams that contain the
classes and relationships tha t represent the key abstractions of the system under
development. The component architecture is captured in component diagrams
that focus on the actual software module organisation within the development
environment. The deployment architecture is captured in deployment diagrams
tha t map software to processing nodes, showing the configuration of run-time
processing elements and their software processes.

259

You can view examples of UML diagrams in other parts of this book especially
chapter 4.4.

Visual modell ing tools

Visual modelling is the mapping of real world processes of a system to a
graphical representation. Standardising a language such as UML is a necessary
foundation for tools. Many visual modelling tools supporting the UML standard
are available on the market. You can find from [9] the object-oriented analysis
and design tools web page provided by the OMG. From this page you can access a
list of products. These tools allow the visual modelling using UML language
through object-oriented analysis and design. One interesting feature is that they
facilitate code-generation from object models and vice-versa. This forward and
reverse engineering is intended to allow software engineers to keep their designs
up to date even when they are at the implementation phase.

Below, we provide some basic information on two specific tools; please note that
the authors of this section do not recommend any modelling tool. Their features
are given only in order to illustrate what these kinds of products are capable of.

Rose from Rational: Rational Rose is a visual modelling software solution that
lets you create, analyse, design, view, modify, and manipulate components. You
can graphically depict the system through the use-case analysis and object-
oriented modelling. The Rose family includes Model, Professional, Enterprise and
Real Time versions. It provides the following features to facilitate the analysis,
design, and iterative construction of applications: user-configurable support for
UML, COM, OMT, and Booch'93; semantic checking; support for controlled
iterative development; round-trip engineering (code generation and reverse
engineering); parallel multi-user development; documentation generation;
integration with data modelling tools; scripting for integration and extensibility.

The add-in feature allows customising the product environment depending on
your development needs. There are two types of add-ins, non-language (version
control, web publisher, XMI, ..) and language (C++, CORBA, Java, Visual Basic,
Ada, ..).

Objecteering from Softeam: Objecteering is a sophisticated object-modelling
workshop, offering significant modelling support especially through the nine
UML diagrams. It guarantees model consistency and has considerable capacity
for generating code. The different versions are Personal, Open, Enterprise and
Project edition. A university package is available. In the Enterprise version it is a
multi-project and multi-user services tool. This tool offers advanced generation,
modelling services and is destined for team application development. It allows
the documentation generation and supports model exchange through XMI. It

260

provides a universal model element identification mechanism and interbase
model exchange services, as well as group work functions. This version also
allows workshop parameter isa t ion, both at the UML level and at the generation,
model t ransformat ion and model request or operation levels, due to its specific
UML Profile Builder module. Objecteering/Enterprise is an expandable tool.
These modules, such as Java, C++ or SQL and CORBA , can be supplied and
added at any time to any Enterpr ise site.

C A P E - O P E N s t a n d a r d a n d U M L

Models are useful for unders tanding problems, communicat ing with everyone
involved with the CAPE-OPEN (CO) development, modelling complex systems,
prepar ing documentation, and designing CO interfaces. Modelling promotes
bet ter unders tand ing of requirements , cleaner designs, and more maintainable
systems. The CO s tandard adopts the UML and uses extensively its capabilities.
In chapter 4.4 you can find an introduction to the CO S tandard and its use of
UML. Par t icular ly the following concepts are employed:

�9 Use-case: It is a description of one par t icular usage of a par t of the system. It
captures the CO system functionalities as seen by users. A complete analysis
requires many different use-cases, for example there are close to 30 use-cases
for the CO unit operat ion interface alone. A use-case involves an actor who
can be a person or another piece of software. An actor performs some
interact ion with the system being described. It is a specific generic description
of a use of the system. The use-case is a t tempt ing to capture the functional
interact ions ra the r t han the physical appearance of the system.

�9 Sequence diagram: It shows a specific scenario th rough the sequence of events
in a use-case. It captures t ime-oriented dynamic behaviour. It shows the
objects involved as vertical lines. The messages passing between the objects
are shown as horizontal lines. The Y-axis represents time, s tar t ing from the
top and moving downwards.

�9 Interface diagram: It is similar to the class d iagram except tha t it shows
interfaces. An interface is somewhat like a class except tha t it presents areas
of functionality to the user grouped in a logical "lump". An interface is a
collection of possible uses in order to specify through its operations the service
of a class. The functions in an interface can be implemented by many different
objects or no objects at all, just normal subroutines. In the CO context these
interface definitions capture the vocabulary of the CO software s tandard.

4 .1 .5 .3 The e X t e n s i b l e M a r k u p L a n g u a g e (XML)

The eXtensible Markup Language (XML) emerged as a key enabling technology
and In te rne t s t andard for electronic commerce around the turn of the
millennium. Similar to HyperText Markup Language (HTML), XML is an
In te rne t s t andard published by the World Wide Web Consort ium (W3C) [44] and

261

is derived from the Standard Generalized Markup Language (SGML), which
became the ISO 8879 international s tandard [19] in 1986. HTML, XML and
SGML are all text-based "tag" languages where information is enclosed inside
the markup tags. For example, Bolded Text is a markup language
representation of Bolded Text. The primary advantage of the text-based
approach of these languages is the ability of these languages to work on virtually
any computer hardware/operating system platform and virtually any application
program. This computing platform neutrality has been a major factor
contributing to the success of HTML on the Internet.

SGML has been around since the mid-1980's, and its application in commercial
applications has been successful, but because of its complexity it has been
relatively limited in scope and impact.

In the 1990's, HTML, a very small subset of SGML that is primarily oriented to
describing text formatting and display, was used to build most of the Internet
that exists today. HTML has the key advantage of being very simple to use with
a very limited set of markup tags, which provide adequately powerful formatting
capabilities especially with Cascading Style Sheets (CSS) [44]. As a result, it has
been very widely used in today's Internet with millions of web sites and hundreds
of millions to billions of web pages.

However, the same simplicity that makes HTML ideal for quickly developing web
site content, limits its use as an intelligent software development platform.
HTML pages are "dumb" in the sense that there is no mechanism to describe the
semantics of the information contained on these millions of web sites. There is no
way to intelligently handle data. Therefore, HTML is unsuited for "intelligent"
document/data exchange over the Internet.

In the late 1990's XML was standardized as a larger subset of SGML, chosen to
streamline SGML usage in the Internet environment. The key feature XML
offers beyond HTML is semantic information embedded in text files through
customisable markup tags. Because of this ability, XML will be the key enabling
technology to build the next generation "intelligent" Internet. Consider the
following simple example contrasting HTML and XML:

In HTML:
<p>Centrifugal pump

Model P280

ABC Pumps

$3,480

In XML:
<pump>

<type>Centrifugal</type>
<model>Model P280 </model>
<supplier>ABe Pumps </supplier>
<price>$3,480 </price>

</pump>

262

The HTML version offers a way to format and display the information. The XML
tags can also be used for formatting and display, but offer the additional feature
tha t inexpensive software can be writ ten to make intelligent use of the semantic
information contained in the same text data.

Because of this inherent flexibility for describing data, the next incarnation of
the Internet, based on XML, will provide much more intelligent web sites and
agents than are possible in today's Internet using HTML. XML will enable
intelligent business-to-business (B2B) e-commerce, accommodating common
things such as electronic catalogues and purchase orders between companies, but
also more complex things such as equipment data sheets, which can be used for
the complex e-procurement processes in the process industry. XML usage
conventions such as ebXML [13] and BizTalk [7] will enable applications to send
intelligent messages (requests and replies) across the Internet. XML enables a
vendor-neutral, software neutral, version-neutral ways of storing information.
This will enable data archiving spanning many years and software versions.
Summarizing, XML offers a technology that allows cross-platform, synchronous
or asynchronous application integration across the Internet and across firewalls
and data archival across many years of time and software versions. This opens
up an expansive range of opportunities for technical software integration, e-
commerce, business to business collaboration and long-term archival of technical
data.

P r a c t i c a l a p p l i c a t i o n of X M L - the need for layers on top of XML

By itself, XML is just a file syntax for developing platform-neutral text files. It is
possible to construct "well-formed" XML files just by complying with the syntax
rules, e.g., the text information is enclosed between beginning and ending tags
such as <pump> </pump>.

Figure 13. XML Usage Convention Layers

263

In order to be more useful, several layers need to be added to XML and
eventually standardized, as shown in Figure 13.

In the first layer above the base XML syntax, it is better to construct "valid" XML
files. Valid XML files conform to a Document Type Definition (DTD). A DTD is
simply a means to tell an XML parser what the valid tag names are in a given
document. For example a DTD may specify that <pump> is a valid tag, but that
<PUMP> is not. Valid XML files are therefore self-describing files, because the
markup tags they conform to in a valid XML file conforms to the set of rules
defined in the included DTD.

Even with DTD's it is possible for everyone to define their own DTD files and
construct valid XML files. Therefore, additional layers are needed to make XML
a technology for software integration. For example, it would be helpful to have a
standard way of describing standard data structures and data types, such as
integer, real, text, date, etc. XML Schema is an emerging s tandard [44] to
describe data types in s tandard ways.

With XML Schema, we have reached the point where describing data with rich
data type semantics and data structures is possible, but we still have complete
freedom to define the tag labels themselves. For example, someone may choose to
define an XML Schema or DTD tags in German, while another may construct
them in French and still another in English. Even in a single language such as
English, it would be possible to use different tag labels to mean the same thing,
for example, <T>, <Temp>, <Temperature> and <temperature> are all
acceptable and valid tags for temperature. To get the most value out of XML, the
process industry needs a s tandard set of internationally recognized standard
XML tags to describe process engineering data. This is the focus of the Plant
Data XML effort, further described in chapter 4.2. Other domain-specific XML
vocabularies include Chemical Markup Language (CML) [10], Mathematics
Markup Language (MathML) [44] and XML Metadata Interchange (XMI)
sponsored by the Object Management Group [23]. Each of these domain-specific
vocabularies are needed to facilitate industry-wide integration of software
applications using common terminology.

Finally, to enable cross-platform, application integration across the Internet,
s tandard messaging protocols need to be developed, ebXML [13], organized under
OASIS [26] is one such example. BizTalk [7] and SOAP [44], organized by
Microsoft are other examples, ebXML has recently adopted SOAP has part of
their standard, so convergence of these messaging standards is likely over the
next year or so.

There are many other technologies related to XML, including XML Stylesheet
Language (XSL) to enable translation from one XML schema to another and to
display of XML files in browsers. Other XML technologies include XLink,

264

XPointer, etc. Please refer to the World Wide Web Consortium (W3C) web site
[44] and the OASIS [26] web site for more details about this fast-moving
technology development. In addition, there are many good books available on
XML.

XML Tools

There are many tools available for working with X M L - far too numerous for any
sort of exhaustive review here. Some of these tools are free. Others are
commercial products. Rather than list them and describe them here, we will just
list the types of tools that are available and web site resources to learn more
about them. The types of tools that are available include XML Browsers, XML
Editors, XML Parsers, XML/DTD Schema editors, XML serialization tools, XSLT
editors, XSL formatters, XML and XSL utilities. Some resources for finding out
more about these tools include [45] and [46].

4.1.6 R E F E R E N C E S

[1] aecXML web site : www.aecXML.org
[2] S. W. Ambler, L. L. Constantine, The unified process construction phase, Mc
Graw Hill, 2000
[3] AP 221 web site : www.stepcom.ncl.ac.uk/epistle/ap221/ap221.htm
[4] AP 227 web site http://cic.nist.gov/plantstep/plantstp/ap227/ap227.htm
[5] J. T. Baldwin, T. L. Teague, and W. D. Witherell, "Info Transfer: An Emerging
ChE Discipline," AIChE CAST Newsletter, Summer, 1998
[6] P. Bernstein, Middleware: A Model for Distributed Services. Communications
of the ACM 39, 2 (February 1996): 86-97.
[7] BizTalk web site : www.biztalk.org/home/default.asp
[8] M. Brodie, M. Stonebraker, Migrating Legacy Systems. Gateways, Interfaces
& the Incremental Approach, Morgan Kaufmann, 1995
[9] Cetus web site, www.cetus-links.org
[10] Chemical Markup Language (CML) web site : www.xml-cml.org
[11] CO-LaN web site www.colan.org, 2001
[12] D. D'Souza, A.C. Wills, Objects Components and Frameworks with UML:
The Catalysis Approach, Addison Wesley, Reading, MA, 1999
[13] ebXML web site : www.ebxml.org
[14] EPISTLE web site : www.stepcom.ncl.ac.uk/epistle/epistle.htm
[15] R. Geraghty et al., COM-CORBA Interoperability, Prentice Hall, 1999
[16] International Alliance for Interoperability (IAI) web site :
http://iaiweb.lbl.gov/
[17] ISO 10303- Standard for the Exchange of Product model data, web site:
www.nist, gov/sc4/www/stepdocs.htm
[18] ISO 15926 web site : www.nist.gov/sc4/www/oil_.gas.htm

265

[19] ISO Standards Catalog (purchase) �9 http ://www.iso.ch/cate/d 16387.htm.1
[20] I. Jacobson, G. Booch, J. Rumbaugh, The unified software development
process, Addison & Wesley, 1999
[21] J.H. Kingston, Algorithms and Data Structures �9 Design, Correctness,
Analysis (International Computer Science Series) Addison-Wesley Pub Co, 2nd
edition (November 1997)
[22] P. Kruchten, The Rational unified process" An introduction, Addison &
Wesley, 2000
[23] OMG web site: www.omg.org , 2001
[24] Orfali, Harkey, Edwards, The Essential Distributed Objects Survival
Guide,Wiley, 1996
[25] Orfali, Harkey, Edwards, Client/Server Survival Guide, third edition, Wiley
1999
[26] Organization for the Advancement of Structured Information Standards
(OASIS) web site: www.oasis-open.org
[27] Plant Data XML web site �9 www.plantdataxml.org
[28] R. Richardson et al., A Survey of Research into Legacy system Migration,
External Technical reports, Trinity College Dublin Computer Science
Department, 1997
[29] Rauh, Stickel, Konzeptuelle Datenmodellierung (in German), Teubner 1997
[30] P. Roques, F. Vall~e, UML en action, Eyrolles, 2000
[31] J. Rumbaugh, I. Jacobson, G. Booch, Unified modelling language user guide,
Addison & Wesley, 1998
[32] J. Rumbaugh, I. Jacobson, G. Booch, Unified modelling language reference
manual, Addison & Wesley, 1999
[33] D. Serain, Middleware, Springer, 1998
[34] A. Solvberg, D.C. Kung, Information Systems Engineering, Springer 1993
[35] T.A. Standish, Data Structures, Algorithms, and Software Principles,
Addison-Wesley Pub Co
[36] Sun Miscrosystems web site www.java.sun.com, 2001
[37] C. Szyperski, Component Software: Beyond Object-Oriented Programming,
Addison Wesley Longman Ltd. 1998
[38] T. L. Teague and J. T. Baldwin, "The Emerging Discipline of Info Transfer,"
Proceedings of the Foundations of Computer Aided Process Design Conference
(FOCAPD99), July, 1999
[39] T. L. Teague, "Using XML for Electronic Process Data Exchange,"
presentation to the South Texas Section CAST meeting, December, 2000
[40]T.J. Teorey, Database Modeling & Design: the fundamental principles,
Morgan Kaufmann Publisher 1994
[41] B. Thalheim, Entity-Relationship Modeling" Foundations of Database
Technology, Springer Verlag
[42] A. Umar, Application (Re)Engineering" Building Web-Based Applications
and Dealing With Legacies, Prentice Hall, 1997

266

[43] S. Vinoski CORBA: Integrating Diverse Applications Within Distributed
Heterogeneous Environments. IEEE Communication Magazine, Vol. 14, No. 2,
1997
[44] World Wide Web Consortium (W3C) web site www.w3c.org
[45] XML commercial resources site : www.xml.com
[46] XML commercial resources site : www.xmlsoftware.com
[47] Microsoft COM web-site www.microsoft.com/com, 2001
[48] J.W. Moore, Software Engineering Standards, IEEE Computer Society
[49] W. Marquardt, M. Nagl, "Tool Integration via Interface Standardisation? ",
Dechema Monographie 135, 95-128, Weinheim: VCH, 1998
[50] M. Nagl, B. Westfechtl (Hrsg.), ,,Integration von Entwicklungsumgebungen
in Ingenieuranwendungen - Substantielle Verbesserung der
Entwicklungsprozesse", Berlin, Springer, 1999 (in German)

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
�9 2002 Elsevier Science B.V. All rights reserved. 267

Chapter 4.2: P lantData XML

T. Teague

4.2.1 INTRODUCTION

PlantData XML is an effort originally conceived in 1999, with work now starting
in 2001, to combine existing process industry international data exchange stan-
dards and eXtensible Markup Language (XML) Internet standards to create a
practical and easy to use electronic data exchange s tandard for the process indus-
try. The PlantData XML standards, similar to many XML standards, are freely
available to encourage widespread adoption and use in the process industry. The
intention of creating PlantData XML standards is to enable both synchronous
and asynchronous software integration architectures to be built that work both
within and across companies in a vendor-neutral way.

The key ideas behind PlantData XML are to (1) develop a process-industry spe-
cific XML markup tag vocabulary that leverages a n d unlocks the value of the
previously developed process industry ISO 10303 STEP standards by making
these standards easier and less expensive to use and to (2) deploy the PlantData
XML vocabulary in commercial software implementations to ensure that value
can be obtained from the industry s tandard at a reasonable cost.

The key benefits of PlantData XML to the process industry include:

�9 Significantly improving the cost-effectiveness of engineering work proc-
esses through vendor-neutral electronic data exchange.

�9 Providing vendor-neutral technical data archival and reuse over the plant
life cycle.

�9 Enabling more effective procurement and business-to-business (B2B) e-
commerce in the process industry.

In this chapter, we first elaborate further the motivations for developing Plant-
Data XML in the context of software integration architectures and previous
standards work, which were described in more detail Chapter 4.1, section 4.1.3.
Next, we discuss a software integration architecture using XML. In that section,
we further elaborate the introductory material on XML presented in Section
4.1.5.3 to discuss the parts of XML software integration architecture related to

268

creating application interfaces and use of XML parsing tools. We next review
the potential scope and utility of PlantData XML using common industry work
processes. Then, we describe a software development methodology for creating
PlantData XML that adopts the iterative, incremental unified software develop-
ment model advocated by Jacobson, Booch and Rumbaugh, and following this, we
present a worked out initial example of PlantData XML. We conclude the chap-
ter by discussing the initial application of PlantData XML in commercial soft-
ware packages, which is anticipated to occur in the second half of 2001.

4.2.2 M O T I V A T I O N FOR D E V E L O P I N G P l a n t D a t a XML

In Chapter 4.1, section 4.1.3 the general approaches to software integration ar-
chitectures were reviewed and the process industry efforts to develop process in-
dustry standards were summarized for both synchronous and asynchronous soft-
ware integration architectures. The initial focus for PlantData XML is to de-
velop a standard to accomplish widely and easily implemented, asynchronous
electronic data exchange among software applications. Potential other future
uses for PlantData XML are discussed in section 4.3.1.8.

As illustrated previously in section 4.1.3 (see Figure 4.1.3.1), technical software
applications in the process engineering domain include (at least) the following
types of software applications:

~

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Thermo Database
Data Regression (Thermo model parameter fitting)
Process Simulation (steady-state & dynamic)
Fluid flow hydraulics
Equipment design and rating
Detailed mechanical design
Cost estimating
Engineering Documents (e.g., equipment data sheets, summary lists, etc.)
Intelligent Diagramming (PFD's, P&ID's, isometrics, layouts, etc.)
CAD models (3-dimensional geometry, visualization, etc.)
Plant Information Systems (operational and market data)
Maintenance Management Systems
Supply Chain Management Systems
ERP systems
Spreadsheets (used for many special purposes)

The engineering work processes that employ the above tools is a complex one that
involves team efforts across multiple companies- owner operator companies, en-
gineering-procurement-construction (EPC) companies and process industry sup-
plier companies such as equipment manufacturers. Particular combinations of
multiple companies collaborate for a given project, and then new sets of project

269

team companies are assembled for other projects. In general, the various differ-
ent companies use a mixture of commercial and internal software application
programs, and, in general, the tools tha t are used in one company are not the
same as those used by the companies tha t come together for a part icular project.

Unfortunately, because the multiple companies involved use different software
packages, labor-intensive, manual software integration is the pr imary approach
to software integration today and the drawbacks are significant, including higher
costs, longer schedules, and occasionally, lower quality due to inevitable human
errors escape detection and correction. Practical and widespread automation ap-
proaches to software integration could have a dramatical ly beneficial impact on
the process industry, est imated to be on the order of hundreds of millions to bil-
lions of dollars annually.

Both the STEP architecture and the ISO 15926 s tandard employ a two-layer data
mapping architecture, which is shown in Figure 4.3.1-1. The application inter-
face map consists of two-layers (1) the application domain layer and (2) the gen-
eral abstract data model layer. In the case of STEP, this two-layer architecture

was developed to enable
multiple application do-
mains to share a single
physical implementat ion
format. In the case of ISO
15926, the two-layer ar-
chitecture was developed
to allow high flexibility in
defining the domain layer.

Figure 4.3.1-1 STEP Architecture for software integration One general disadvantage

of the two-layered mapping approach to software integration, whether STEP or
ISO 15926, is that, overall, it is a very complex, difficult and costly approach for
most software application owners in the process industry to unders tand and im-
plement software application maps and interfaces. This is due largely to the
highly specialized knowledge of the general data model and the custom mapping
that is required from the domain level to the general layer. Only a few hundred
people worldwide have the expertise to build software implementat ions in STEP.
This high complexity and specialized nature of the mapping interface results in a
high cost to build software interfaces. For example, building one application in-
terface for this style of architecture for the STEP AP 231 s tandard was est imated
in 1999 to cost between 0.5 to 1 million US Dollars. The cost of building applica-
tion maps is therefore a prohibitively high activation energy barrier for most
software vendors to achieve current s tandards-compliant commercial software
implementat ions in process industry software.

270

As shown in Figure 4.3.1-2 the PlantData XML standard uses a single layer
mapping approach to a standard format XML file. The XML file employs a data

schema that directly
uses familiar process
engineering terminol-
ogy. Specifically,
PlantData XML starts
with the domain level
data model from the AP
231 STEP standard and

Figure 4.3.1-2 PlantData XML file format integration uses i t to define a proc-

ess industry XML vocabulary. Further, since the PlantData XML standard is be-
ing developed with software vendors and users to meet the needs of commercial
software applications, practical validation of the XML vocabulary is achieved,
where practical implementation of the AP 231 standard itself was never demon-
strated in commercial software. The cost of building application maps using
PlantData XML is one to two orders of magnitude less expensive than building a
STEP implementation, making standards-based electronic data exchange practi-
cal and affordable.

4.2.3 XML SOFTWARE INTEGRATION A R C H I T E C T U R E

A foundation to effective industry-wide software integration is the adoption of a
Process Industry vocabulary as described in section 4.1.5.3. But equally impor-
tant are the software components that make XML based software integration a
practical reality.

To integrate applications XML interfaces must enable two data flows as shown in
Figure 4.3.1-3:

Figure 4.3.1-3 XML interface data flows

The "To XML" step, consisting of writing text in a format specified in a DTD or
schema, is easy. The "From XML" step, consisting of parsing the XML text, is
much more complex. There are currently two popular Application Programming
Interfaces (APIs) that support the "From XML" process and to some extend, the
"To XML" process. These are the Document Object Model (DOM) [1] and the
Simple API for XML (SAX) [2].

271

DOM is an interface description being developed by the World Wide Web Consor-
t ium (W3C) of which Level 1 is currently a recommended standard. It can be im-
plemented on any platform in any programming language. DOM presents XML
data as a hierarchical tree of nodes based on the structure of the XML. SAX is an
interface for event-based XML parsing and presents the XML data as a stream of
events.

Both interfaces have their strengths and weaknesses. DOM is particularly ap-
propriate when access and manipulation of all the data is required. DOM, being
developed by the W3C, is mostly likely to become a widely accepted standard that
will be fully supported on all platforms. SAX is a good candidate for handling
large amounts of data that you do not want held in memory and which will be
processed once through, such as feeding data to a database.

Freely available software already supports both DOM and SAX to varying de-
grees. Microsoft's MSXML Parser version 3.0 [3] provides a DOM interface with
Microsoft specific extensions and a SAX like interface. MSXML is easily used
from MS Visual Basic. The Apache XML Project [4] provides open source XML
parsers for C++, Java and Perl available for a number of platforms, which, be-
sides supporting DOM and a SAX like interface, also provides validation against
schema.

So, with freely available PlantData XML Schema and freely available parser
software, XML software interfaces become open for anyone with the proper skills
and enough time to build a PlantData XML software interface.

While this single-layer map to XML architecture il lustrated in Figure 4.3.1-2 is
substantially less expensive to implement than the STEP architecture shown in
Figure 4.3.1-1, there are some additional, substantial improvements and cost-
reduction benefits that can be made by adopting a component-based architecture
shown in Figure 4.3.1-4.

The general pur-
pose XML inter-
faces and the avail-
able software that
implements them
are oriented for
software engineers'
use on a wide range

Figure 4.3.1-4 Component Architecture for XML software integration of non-engineering

applications. There are additional issues that anyone building a process
engineering XML interfaces will have to cope with. Examples of these include
handling units of measurement and viewing the data objects in an XML file to-
gether in a more easily used engineering view of the data that aligns well with

272

in a more easily used engineering view of the data that aligns well with the way
current applications view the data. This reduces the cost of building the applica-
tion maps by an additional substantial amount.

Another advantage of this component-based approach to data integration is that
it allows direct synchronous data integration across applications using the com-
mon XML component. In this way the XML component can provide for both syn-
chronous and asynchronous software integration architectures, depending on the
needs of the users of the applications involved.

A process industry XML software component encapsulates the complexities of
reading and writing the process industry XML file format, handling units of
measure conversions and updates to the XML file format. The work to enable any
application to be integrated with others is reduced to writing a small extension to
the application that transfers the data between the application's internal data
structures and a well defined, easily used, engineering oriented interface sup-
plied by the XML component. In the Microsoft Windows' environment the process
industry XML software component is most conveniently a COM/OLE object that
can be used from Visual Basic, C++ or even Excel or Visio via Visual Basic for
Applications.

A process industry focused XML software component acts as a catalyst to lower
the activation energy barrier to implementing XML based software integration
solutions and makes building application maps rapid, practical and cost effective
(see Figure 4.3.1-4). Rather than every application owner having to face and deal
with these common issues, there is an advantage to having a reusable process
engineering XML component that hides the complexity of dealing with XML and
dealing with the special process engineering data mapping issues.

An example of such a component is the ePlantData Software [5] COM XML gate-
way for parsing and writing process data. The component fully supports units of
measurement and extensibility. It provides an interface designed for Process
Engineers but also a fully W3C compliant DOM interface. The component uses a
SAX like event-based parser to provide "load on demand" capabilities to preview
data before loading required sections. The full ePlantData Software includes
Excel based datasheets for easy viewing and editing Process Industry XML data
in familiar data sheet formats that may be customized by end-users to match
their own internal layout and format.

273

To summarize the problems and potential solutions to software integration and
the benefits of various software integration architectures, we can draw an anal-
ogy to the energy levels associated with an exothermic chemical reaction, shown

in Figure 4.3.1-4.
There are very large

"e ne rgy-re lease"
economic benefits to

Cost of STEP Interface be obtained by the

process industry by
moving from the
current, highly la-

Cost of standard XML Interface bor-intensive work

Cost of component XML Interface process to a stan-
Current Work dards-based elec-

Process tronic data exchange
work process that is
much less labor-
intensive. In the

Benefits of electronic
data exchange case of a two-layer

STEP architecture,
the benefits are
high, but so are the
costs to implement
interfaces. This

Work~rocesswith places too high of
Electronic Data Exchange activation energy

barr ier for most
Figure 4.3.1-4 Energy activation barriers for electronic data exchange process industry

companies to actu-
al ly use STEP. Adopting a single-layer engineering oriented XML standard ap-
proach is a good catalyst, which reduces the activation energy barr ier signifi-
cantly. However, there is still a higher than necessary cost in terms of XML tech-
nology learning curves and duplication of effort across many companies on com-
mon issues such as units of measurement handling and engineering-oriented
data mapping. Adopting a component-based approach is a better catalyst, offer-
ing the lowest cost approach of all, enabling s tandard XML data exchange to be
widely achieved across the industry at lowest cost. Common industry-oriented
XML software components such as ePlantData software that solve common ap-
plication interfaces issues and implement industry s tandard XML vocabularies
such as P lan tData XML provide an effective solution to simplify and reduce the
cost of integrat ing process industry software.

274

4.2.4 POTENTIAL SCOPE FOR P R O C E S S E N G I N E E R I N G DATA
EXCHANGE

One of the challenges for standardizing process engineering data exchange is the
immense scope of technical data that could be exchanged. This immense breadth
of scope was one of the difficulties for the previous STEP and ISO 15926 standard
development activities, which contributed to the complexity and the length of
time required to develop the standards. AP 227, which is the only process indus-
try STEP standard that successfully reached the status of International Stan-
dard, had the narrowest scope of the all. The scope of AP 227 was confined to
s tandard 3D representations of piping systems.

For AP 221 and AP 231, in international review of the scope of the draft stan-
dards, there was a strong pressure to expand the scope. For example, consider
one of the key usage scenarios described in the AP 231 standard - that of ex-
changing an entire process design package from an owner-operator company who
has developed the initial conceptual design to an engineering-procurement-
construction (EPC) company to carry out a detailed design. Another scenario is
to transfer the entire "as-built" facility data from the EPC contractor back to the
owner-operator upon commissioning the facility. The amount and variety of
process engineering technical information in such design packages is very broad.

Yet to achieve the very large promising benefits of electronic data exchange, this
broad scope must eventually be achieved. So the practical question, if we are go-
ing to make progress on this immense problem becomes, "How do you eat an ele-
phant?" The only practical answer to this question is "One slice at a time over
some period of time."

The PlantData XML standard is being developed to cover the immense scope of
process engineering data exchange by attacking it one slice at a time. One possi-
ble arrangement of slices is shown in Table 4.3.1-1. In this table the phases of
the life cycle are shown horizontally, while the major subsets of process engineer-
ing data are listed vertically. The initial scope of PlantData XML is highlighted
in Table 4.3.1-1

There are two areas of scope being addressed by PlantData XML in the initial fo-
cus of work. These are:

1. Process Materials
2. Equipment data sheets for shell and tube heat exchangers.

In the process materials area, PlantData XML is being developed to describe en-
gineering aspects of process material data, in conjunction with the Design Insti-
tute for Physical PRoperties (DIPPR), which is a long-standing joint industry
consortium organized under the AIChE. The DIPPR 991 project is currently un-

275

dertaking an effort to harmonize and standardize the way process mater ial data
is described not only for its own databases, but for other important process indus-
try consortia and data suppliers as well. These other sources of data include
Dechema, NEL PPDS, API, TRC and the recent efforts by the IUCOSPED project
to standardize electronic reporting of process mater ia l properties data in scien-
tific and technical journals.

The second major focus area for PlantData XML is to develop and support elec-
tronic data sheets for shell and tube exchangers. The equipment data sheet was
chosen precisely because it covers each phase of the life cycle from initial concep-
tual design through detailed design, procurement, construction and operation.

Table 4.3.1-1 Potential Scope of Data Exchange for Process Plants

276

> shell and tube
- Mass transfer
- Instrumentat ion

Engineering Doc's
- Equipment lists
- Data sheets
- PFD's
- P&ID's

PlantData
- Site data

Project Data

]P lan t Data XML and ePlantData Sheet (i n i t i a l) :

I Plant Data XML and ePlantData Sheet (init ial) i

Plant Data XML and ePlantData Sheet (i n i t i a l)
Plant Data XML and ePlantData Sheet (initiaI) i

As can be seen from Table 4.3.1-1, equipment data sheets cover a number of plant
data sub-areas, including stream properties, unit operation data, equipment de-
sign data, engineering documents, site data and project data. Shell and tube ex-
changers were chosen because they are very common items of equipment in proc-
ess plants and the design work process for these equipment items is sufficiently
complex with multiple software packages by multiple vendors to where there will
be large benefits achieved through electronic data exchange throughout conceive,
design, procure, construct operate life cycle.

The initial scope of PlantData XML was deliberately chosen to be of limited scope
so that beneficial results would be obtained quickly and delivered to users
through commercial software. As user companies derive significant business
value from applying the initial version of the standard, the PlantData XML stan-
dard will eventually be broadened in scope, in business-driven ways, to meet the
entire scope of data that users collectively believe is cost-justified.

4 . 2 . 5 D E V E L O P M E N T M E T H O D O L O G Y F O R P l a n t D a t a X M L

4 . 2 . 5 . 1 L e s s o n s l e a r n e d f r o m t h e S T E P m e t h o d o l o g y

The ISO STEP methodology for developing standards is very rigorous and com-
prehensive, eventually resulting in highly reviewed standards documents. In
this process the sponsor technical team produces a succession of draft standards
documents, which are used to help define scope, which in the case of process in-
dustries were generally very broad scopes. The document is successively refined
and reviewed in stages from Working Draft to Committee Draft, then to Draft In-
ternational Standard and then to International Standard. At each stage, the
draft documents are subjected to very extensive technical working committee re-
views, independent international technical reviews and an international ballot-
ing process to gain international approval to move the draft s tandard to the next
stage. Commercial software implementations are generally not done until the

277

standard reaches the International Standard stage.
must remain static for at least 3 years.

International Standards

Unfortunately, at least in the experience of the Process Data eXchange Institute
(pdXi) in developing the STEP AP 231 Committee Draft s tandard for conceptual
process engineering data, there are several weaknesses in the STEP methodology
as follows:

1. There is inadequate attention at the very beginning of the s tandard devel-
opment process to ensure that the detailed work processes and usage sce-
narios are well understood and documented in depth and that economic
benefits for each included data exchange scenario can be readily recognized
and justified.

2. Building of demonstration software implementations by commercial soft-
ware vendors is postponed until very late in the standards development
process: it is not a requirement until the development of the Draft Interna-
tional Standard stage. If demonstration software implementations were
required earlier in the standards development process on a very small sub-
set of scope, such as a single usage scenario, then the difficulty of the two-
layer STEP implementation architecture would have been uncovered much
earlier in the development process.

3. The length of time and amount of effort required to produce and review the
required documents at each stage is very long and costly, which tends to
encourage sponsor groups to identify broad scopes so that they only have to
go through these review cycles once. These broad scopes further aggravate
the scope, schedule and complexity problem. The problem is further ag-
gravated by the fact that the speed of standards development effort is
largely governed by the availability of domain experts, who are usually
participating on a volunteer basis.

4. The STEP architecture and methodology are very complex and was not
well understood, at least by the AP 231 sponsor companies, until many
years into development process. For example, when work started in 1991,
pdXi sponsor companies required that the work be done in a manner suit-
able to build a STEP standard, but imposed this requirement without a
full understanding the cost and complexity of the two-layer application
mapping approach required by STEP. As early as 1994 pdXi built trial
software implementations assuming that the data model could be ex-
pressed in physical files at the engineering domain level, and later discov-
ered that these were not standards-compliant interfaces after all. It was
not until 1998, 7 years after the pdXi effort s tarted and 3 years after the
AP 231 standard development effort started, when it was recognized that a
STEP-compliant software implementation was required to work at the ge-
neric, STEP integrated resources level. Once the high cost of STEP soft-
ware implementation was recognized, work stopped on continuing the
s tandard development.

278

These were difficult, expensive lessons for pdXi and the AP 231 development
team to learn about developing and implementing STEP standards. However,
the technical work and the extensive internat ional review of the engineering
level data model are still a very worthwhile piece of technical work reflecting an
investment of $1-2 million by the process industry companies tha t developed the
draft s tandard. All tha t is needed now is a more cost-effective approach to soft-
ware implementation. Implementing the engineering level data model using
XML offers such an approach.

4.2.5.2 Methodo logy for Deve lop ing P lantData XML Standard

The methodology for developing the PlantData XML standard reflects the lessons
learned from the STEP development process and adapts key ideas from the Uni-
fied Software Development process described in section 4.1.4. A key piece of the
process is to use the engineering domain data models developed by the STEP
standards to take advantage of the good technical work tha t has already been
done.

The major tasks in developing PlantData XML are listed below:
1. Describe task-oriented work flows, use cases and data flows
2. Identify reusable subsets of process engineering data tha t participate in

the data flows. Exclude any data tha t does not directly participate in a
commercially important work process and data flow.

3. For a single identified subset of data, s tar t with the draft ISO standards
and develop a UML object data model for the reusable subsets of data that
match the identified tasks, use cases and data flows.

4. Develop XML schema from UML object model, organizing the logically re-
lated reusable subsets of data into XML namespaces.

5. Define engineering-oriented application programming interfaces that sup-
port the engineering view of the data used in the identified data flows.

6. Develop a reusable software component tha t uses the engineering-oriented
application programming interfaces to read and write XML files that con-
form to the defined XML schema.

7. Develop software implementations that use the XML software component
for the identified tasks, use cases and data flows.

8. Repeat steps 3-7, incrementally adding data scope as needed to meet the
needs of the identified tasks, use cases and data flows.

9. Publish the resulting XML schema as a s tandard that has been proven and
used by commercial software implementations.

At the time of this writing (early 2001), P lantData XML development is just
starting. In the following sections we include some initial prototype examples to
show how PlantData XML is being developed using the above work process. For

279

the most up to date versions of PlantData XML, consult the ePlantData web site
[5].

4.2.6 P R O C E S S E N G I N E E R I N G WORK FLOW & DATA FLOW

The first task in developing PlantData XML is to describe the work process,
tasks, tools and data flows to understand where the economic opportunities are
for automating the technical data exchange. A portion of the process engineering
work process including major roles, tasks, tools and data flows, which are being
developed for the PlantData XML, are shown in Figure 4.3.1-5.

/• Evaluated Thermo/Reaction Evaluated Thermo/Reaction 1/1 I~\ Mo~el Parameters I P,,~,,,,,,n~n III
~ Model Parameters / ~ ~ 4 - - a ~ j

Proces:Matenal Process [Designer .. j " Task 2.1, 2.2, 2.3, 2.4 ~'rocess t Properties
Simulation ! Calculation / Equipment ~'rog~am I Program ~ Size & (3 o n f i g u r a t i o n ~

I ~ IEquipmen~ Stream Properities I ~ ' ~ ~ . ~ ~ " Design
Property Curves Program

Unit Operation Data

~r I :al~~~eit 4
Equipment] JTa,, . - .

ngmeenng ~ -' Data Sheet LE;gitabedngj ('] (spreadsheet) ~-'~ ~ Cost
[- - J ' "~--~), Iv----~ Estimation

"~ Program (~'~ Equipment U~_~
Procurement Design Cost Estimator

Purchase I / ~ Quotation ~ Task 4.1
Order i_., uI i~ J t ~ , -" ~ Detailed System ! -/A l ~. / ~ I I /_/ ~ "/ , I v ~'1 Design

Purchaser /_//~_.~ I PrOgram
Purchase Order Equipment - ~. Manufacturer

Task 3.5, 3.6

Figure 4.3.1-5 Process Engineering Roles, Tasks and Data Flows

The detailed task descriptions referred to by number in Figure 4.3.1-5 are shown
in an accompanying set of tables, such as the one shown in Table 4.3.1-2.

280

Table 4.3.1-2 Work tasks associated with a portion of the process engineering work
process

ID
T a s k I n p u t

T a s k D o n e I n p u t D a t a F r o m
, by ,

3.1 Specify
process
specifica-
tion data
for proc-
ess equip-
ment
item, e.g.,
S&T heat
exchanger

To T a s k
A p p l i c a t i o n

T a s k
Output Data

Owner-
opera-
tor
or EPC

Material Process
streams equipment
Stream prop- simulation
erties program
Stream Prop-
erty curves Process
Unit Opera- Simulation
tion program

Equipment
data sheet pro-
gram (e.g.,
spreadsheet)

Front-end en-
gineering da-
tabase

Data Sheet
information
Project infor-
mation
Equipment
Item Data
Unit Op Data
Material
Stream and
Stream Proper- i
ties
Stream Prop-
erty curves

3.2 De-
sign/size
process
equip-
ment,
e.g., heat
exchanger

Owner-
opera-
tor
or EPC

Material
streams
Stream prop-
erties
Stream prop-
erty curves
Unit Opera-
tion

Equipment
data sheet
Equipment
simulation
program
Process
Simulator

Equipment
Design Pro-
gram, e.g.,
S&T ex-
changer design
program

Equipment size
and configura-
tion data, e.g.,
for S&T ex-
changers

3.3

3.4

Rate p roc-
ess equip-
ment per-
formance,
e.g., heat
exchanger

Owner-
opera-
tor,
EPC or
equip-
ment
manufa
cturer

Unit Op Data
Material
Stream Prop-
erties
Property
curves
Equipment
size and con-
figuration data

Specify
size and
configura-
tion speci-
fication
data for
process
equip-
ment
item, e.g.,
S&T heat
exchanger

Owner-
opera-
tor
or EPC

Material
stream(s)
Stream prop-
erties
Stream prop-
erty curves
Unit Opera-
tion(s)
Equipment
size and con-
figuration

Equipment
data sheet

Front-end
eng data-
base

Equipment
Design Pro-
gram

Equipment
i Design Pro- i
I gram

Process Simu-
lation program

Equipment size
and configura-
tion data (re-
vised)

Equipment
Design Pro-
gram

Equipment
data sheet
program

Equipment
data sheet pro-
gram

Front-end en-
gineering da-
tabase

Data Sheet
information
Project Infor-
mation
Equipment
Item Data
Unit Op Data
Material
Stream Proper-
ties
Property curves
Equipment size
and configura-
tion
Material of
Construction

281

A work flow narrative can be developed corresponding to the diagrams and ta-
bles. For the work flow diagram shown in Figure 4.3.1-5, we can write the follow-
ing narrative.

A process designer sets up a process simulation for the process being studied. Al-
ternatively, the process designer may set up and use a material properties simu-
lator for a single equipment item. A key input requirement of the process simu-
lation or material properties simulator is to enter the components, select a ther-
modynamic method and obtain the thermodynamic model parameters from an
evaluated thermodynamic model database. Next the feed material streams, unit
operations and process topology need to be defined to complete the process simu-
lation.

Results from the process simulator or the material properties simulator including
stream properties, property curves and unit operation data are loaded into ap-
propriate process load equipment data sheets.

The process designer initiates a number of equipment data sheets, one for each
equipment item in a flowsheet. The process designer adds information about the
company, the site, the project and preliminary material of construction selection
for each equipment data sheet. In some companies, information on the equipment
data sheet may be maintained by a front-end engineering database system.

The cost estimator takes preliminary design information from the process load
data sheet to obtain an initial cost estimate.

The equipment designer takes process information from the equipment data
sheet and runs the equipment design program to size and rate the equipment.
The equipment designer updates the equipment data sheet with the equipment
size and geometric configuration design details.

The cost estimator update the cost estimate based on the equipment sizing re-
sults.

The equipment designer works with purchasing to request quotations from
equipment manufacturers '

Equipment manufacturers run detailed design programs to complete the me-
chanical design and re-rate the thermal design if needed to guarantee perform-
ance. Manufacturers fill out equipment data sheets with all details and return
the equipment data sheet with a cost quotation.

Cost estimators update the cost estimate with cost quotations.

282

The equipment designer checks the manufacturer ' s design and re-rates the de-
sign if necessary. The equipment designer selects the equipment based on the
quotations and purchasing procures the equipment with a purchase order.

We can now use the diagram, tables and the narra t ive to identify reusable data
groups tha t are involved in the data flows associated with this work process. For
example the following da ta groups are suggested by the above example work-
flows.

1. Component Identification
2. Thermodynamic method and associated model pa rame te r s
3. Process mater ia l s t ream (includes composition, state, flow rate and s t ream

properties)
4. Process mater ia l s t ream property curves
5. Unit operation data (e.g., heat exchanger)
6. Site da ta
7. Project da ta
8. Document data for da ta sheets
9. P lant i tem equipment data
10.Material of construction data
11. Shell and tube exchanger configuration data
12. Shell and tube exchanger detailed mechanical specification data
13.Shell and tube cost data
14. Purchase requisit ion data

From here we can s ta r t to develop the UML data models and the XML schema in
more detail. We will use a subset of the da ta groups listed above. For the re-
mainder of this example, we will choose Task 3.1 - specify process data for design
of a shell and tube exchanger.

4.2.6 E X A M P L E UML O B J E C T DATA M O D E L

For an introduction to the Unified Modeling Language (UML), please refer to sec-
tion 4.1.5.2. For P lan tDa ta XML, we use the UML static class diagrams, where
the class propert ies are defined. However, we do not make use of the class meth-
ods, because we are only building an object data model, not an object-oriented
software application.

283

In this example, we will use a UML object data model for a small subset of the
information tha t we find on equipment data sheets. This UML model was derived

I,SEE data_sheet I

PROCESS DOCUMENT) "-->

plant_item
-id : text (required)
-boundary : text
-description :text
-function :text
-manufacturer : text
-name : text
-tag : text
-purchased_capital_cost: number-currency
-delivered_capital_cost : number-currency
-installed_capital_cost : number-currency
-weight" number-mass

is on I O . .n -maximum_weight_for_maintenance �9 number-mass / -type "text
1..1 -operating_factor" number

,~-plant reference: reference
refers tO /_p roc~s_ .de f i n i t i on reference reference

" ----~ata_sheet_reference : reference

1..n contains 1..n plant
1..1

-name : text
-description : text X is located in
-function :text
-sub_plant_type : te

~" 1..n

is composed of

l is carded out by

carries out~ 1.. 1

I process_definition
-process_definition name : text (required
-description :text -

F igure 4.3.1-6 UML d iagram for Plant I tem

from the AP 231 Application Reference Model (ARM), which uses IDEFlX nota-
tion.

Figure 4.3.1-6 shows the general information tha t can be a t t r ibuted to any plant
item, regardless of what type of equipment item it is. This model shows that a
data_sheet refers to exactly one plant_item, and tha t the plant_i tem is located in
exactly one plant. The plant_item may itself be composed on one or more
plant_items and the plant item carries out a process_definition. There are num-
ber of at t r ibutes associated with a plant_item such as its tag and its manufac-
turer. Note tha t some attr ibutes in plant_item are references, for example a ref-
erence to the process_definition, where we can find more information about the
process service for the plant_item. These reference at t r ibutes were not originally
in the AP 231 data model, but were added to the UML to resolve the "navigation"
ambiguities tha t are present in the AP 231 data model. Resolving these naviga-
tion ambiguities is essential to obtain a practical XML schema and software im-
plementation.

284

I-(SEE

i proce.~ t I i i .n ,eo L 0 ext,re ur.
1..n carries out 1-ja: text ~requtreo) r~-'~-~-function : text

-(SEE PLANT ITEM) �9 --> J-descr, pt, on :.text J J-normal flow direction: enum
l-process_porLrererence_.st : rererence_.s~j Ltvce �9 L~um-
1-tYpe: text J I-~ream~_ref~ence : reference

0..21 has is connected to~0..1

stream [
-SEE STREAM �9 -->

unit_operation_list ~ process_unit_operation ~
PROCESS DOCUMENTS) �9 ">1 I-property_curve_reference_list: reference_list I [-(SEE

I
uo_heat_exchangerside J

-side_type : constrained text J
-inlet_temperature: number-temperature J
-outlet_temperature: number-temperature I
-inlet_pressure : number-pressure L- has
-pressure_drop: number-pressure r2.. n

property_curve J

PROPERTY CURVE) �9 -->.

I
uo_heat_exchanger

-duty : number-energy per time
-overall_heat_transfer_coefficient: number-energyFluxPerTem p
-mini m urn_approach_tern perature :num ber-temperature
-surface area: number-area
-side_ref-erence_list : reference_list

l uo_shell_and_tube_heaLexchange t
-flow_direction : enum /
-number_tube_passes: integer /
-number_shell_passes: integer /
-LMTD_correction_factor : number /
-shell volume : number-volume J
-tube--volume: number-volume J

Figure 4.3.1-6 UML data model for heat exchanger unit operation

Figure 4.3.1-6 shows the UML data model for the heat exchanger unit operation,
which is a specific sub-type of process_definition, which carries out the process
function of the plant_item in Figure 4.13.1-5. A process definition may have 1 or
more process_ports, to which a s tream may be connected. A unit operation may
have 0 or more property_curves. A uo_shell_and_tube_heat_exchanger is a spe-
cific sub-type of uo_heat_exchanger, which may have 2 or more sides. The
uo_heat_exchanger has familiar at tr ibutes such as duty and overall heat transfer
coefficient. The uo_shell_and_tube_heat_exchanger has at t r ibutes specific to
that type of exchanger such as number of tube passes, number of shell passes,
etc.

285

For each item in the UML data model a data glossary definition is developed,
again using the definitions that were originally developed for AP 231. STEP does
not require that the data type and units of measure be included in the definition,
but we believe this essential information for PlantData XML. For example, Fig-
ure 4.3.1-6 shows a sample of some glossary definitions for the
Uo_heat_exchanger class.

Uo_heat_exchanger
A Uo_heat_exchanger is a type of Process_unit_operation
that is the heating or cooling of a single process
Stream, the exchange of heat between two process Streams,
the exchange of heat between a process Stream and a Util-
ity_stream, or the exchange of heat between multiple
Streams by a heat exchanger.

The data associated with Uo_heat_exchanger are the fol-
lowing:
--duty;
--minimum_approach_temperature;
--overall heat transfer coefficient;
--surface area;

duty
A duty specifies the amount of heat transferred from
the hot Stream to the cold Stream by the exchanger.
Data Type: number; Units type: energy per time, e.g.,
kilowatt

minimum_approach_temperature
A minimum_approach_temperature specifies the minimum
local difference in temperature between the shell side
fluid and the tube side fluid at all points of contact
in the exchanger. Data Type- number; Units type: tem-
perature, e.g., Kelvin

overall heat transfer coefficient
An overall heat transfer coefficient specifies the
overall rate that heat is transferred from the hot
fluid on one side of the heat exchanger to the cold
fluid on the other side. This parameter relates the to-
tal amount of heat transferred by the exchanger to its
heat transfer surface_area and the driving temperature
differences. Data Type- number; Units type: energy per
time per area per temperature, e.g., kilowatts/hour-K

286

4.2.7 EXAMPLE XML SCHEMA DERIVED FROM UML O B J E C T DATA
MODEL

At the time of this writing, XML Schema is at Candidate Recommendation status
from the W3C. XML Schema provides an XML based approach for specifying
s tandard data types and the ability to define structured data in XML files. Re-
calling from Figure 4.1.5-1, XML Schema sits on top of XML Document Type
Definitions (DTD's). Domain schema such as PlantData XML sits on top of XML
Schema, i.e., uses XML Schema, which eventually results in DTD's to obtain,
valid, well-formed XML data files.

287

F o r P l a n t D a t a X M L , w e t a k e t h e U M L o b j e c t d a t a m o d e l a n d a p p l y s o m e r u l e s b y

c o n v e n t i o n f o r c o n v e r t i n g U M L c l a s s e s , p r o p e r t i e s a n d r e l a t i o n s h i p s , a n d t r a n s -

f o r m i t i n t o a n X M L S c h e m a r e p r e s e n t a t i o n , a s u b s e t o f w h i c h is s h o w n i n F i g u r e

4 . 3 . 1 - 7 .

<ElementType name = "UoShellAndTubeHeatExchanger" content = "eltOnly" order = "seq">
<AttributeType name = "id" dt:type = "id" required = "yes"/>
<AttributeType name = "UoShel lAndTubeExchangerFlowDirect ion" dt:type = "enumera-

tion" dt:values = "cocurrent countercurrent crosscurrent multipass unspecified" default =
"countercurrent"/>

<attribute type = "id"/>
<attribute type = "UoShel lAndTubeExchangerFlowDirect ion"/>
<element type = "UoHeatExchangerDuty" minOccurs = "0" maxOccurs = "1"/>
<element type = "UoHeatExchangerOverallHeatTransferCoefficient" minOccurs = "0"

maxOccurs = "1 "/>
<element type = "UoHeatExchangerMinimumApproachTemperature" minOccurs = "0"

maxOccurs = "1 "/> ~ [

<element type = UoHeatExchangerSurfaceArea minOccurs = "0" maxOccurs = "1"/>
i

<element type = "UoHeatExchangerSide" minOccurs = "1" maxOccurs = "*"/>
<element type = "UoShel lAndTubeExchangerNumberTubePasses" minOccurs = "0"

maxOccurs = "1"/>
<element type = "UoShel lAndTubeExchangerNumberShel lPasses" minOccurs = "0"

maxOccurs = "1"/>
</ElementType>

<ElementType name = "UoHeatExchangerOverallHeatTransferCoefficient" content = "tex-
tOnly" dt:type = "number">

<AttributeType name = "energyFluxPerTempUnits" dt:type = "enumeration" dt:values =
"W.m-2.K-1 BTU.hr-l . f t -2.R-1" default = "W.m-2.K-1 "/>

<attribute type = "energyFluxPerTempUnits"/>
</ElementType>

<ElementType name = "UoHeatExchangerMinimumApproachTemperature" content = "tex-
tOnly" dt:type = "number">

<AttributeType name = "temperatureUnits" dt:type = "enumeration" dt:values = "K C R F"
de fault = "K"/>

<attribute type = "temperatureUnits"/>
</ElementType>

<ElementType name = "UoHeatExchangerSurfaceArea" content = "textOnly" dt:type =
"number">

<AttributeType name = "areaUnits" dt:type = "enumeration" dt:values = "m2 ft2" default =
"m2"/>

<attribute type = "areaUnits"/>
</ElementType>

Figure 4.3.1-7 Partial XML Schema derived from the UML data model.

288

Note t h a t the schema uses class n a m e s and a t t r ibu te n a m e s from the U ML da ta
model. Also, note t h a t some a t t r ibu tes have un i t s of m e a s u r e m e n t defined alter-
na t ive val id cha rac t e r s t r ings t h a t are acceptable for des igna t ing uni ts .

Tak ing this XML Schema, t h e n it now becomes possible to i n s t a n t i a t e XML da ta
files t h a t conform to the P l a n t D a t a XML Schema. An example XML da ta file is
shown in F igure 4.3.1-8.

<UoShellAndTubeHeatExchanger id = "101-E" UoShellAndTubeExchangerFlowDirection
= "countercurrent">

<ProcessDefinitionDescription>Stripper Reboiler</ProcessDefinitionDescription>
<ProcessDefinitionType>UoShellAndTubeHeatExchanger</ProcessDefinitionType>
<ProcessPort id = "shell inlet" ProcessPortType = "material" ProcessPortNormalFlowDi-

rection = "inlet">
<ProcessPortFunction>tower stage n-1 feed to reboiler</ProcessPortFunction>
<ProcessPortStreamReference>T- 101 Stg n- 1 Liquid</ProcessPortStreamReference>

</ProcessPort>
<UoHeatExchangerDuty energyFlowUnits = "BTU.hr- 1 ">3785400

<AJoHeatExchangerDuty>
<UoHeatExchangerOverallHeatTransferCoefficient energyFluxPerTempUnits = "BTU.ft-

2.hr- 1 .R- 1 ">69<AJoHeatExchangerOverallHeatTransferCoefficient>
<UoHeatExchangerMinimumApproachTemperature temperatureUnits = "F">20

</UoHeatExchangerMinimumApproachTemperature>
<UoHeatExchangerSurfaceArea areaUnits = "fi2">8471

<AJoHeatExchangerSurfaceArea>
<UoHeatExchangerSide UoHeatExchangerSideType = "shell">
<UoHeatExchangerSidelnletTemperature temperatureUnits = "F"> 195.8

<AJo He atExchan ger Side In I etTemp erature>
<UoHeatExchangerSideOutletTemperature temperatureUnits = "F">231.1

<AJoHeatExchangerS ideOutletTemperature>
<UoHeatExchangerSidelnletPressure pressure-gUnits = "psig">234.2

</UoHeatExchangerSidelnletPressure>
<UoHeatExchangerSidePressureDrop pressure-gUnits = "psig">8

<AJoHeatExchangerSidePressureDrop>
</UoShellAndTubeHeatExchanger>

Figure 4.3.1-8 Partial XML Data file based on XML schema

At this point we have shown pa r t i a l examples of the P l a n t D a t a XML develop-
m e n t methodology to i l lus t ra te the following steps.

1. We ident i f ied a commerc ia l ly i m p o r t a n t use case - specifying process uni t
opera t ion da ta onto a shell and tube exchanger da t a shee t and pass ing

289

that information to a heat exchanger designer for subsequent use in a heat
exchanger design program.

2. We developed a partial UML data model that was directly derived from the
AP 231 engineering data model.

3. We used the UML data model to derive an XML Schema.
4. We used the XML Schema definition to populate and XML data file.

Continuing through the PlantData XML methodology, we next complete an engi-
neering-oriented application programming interface, implement the reusable
XML software component that reads and writes the XML data files and finally
deploy that component in several commercial software packages. Then we itera-
tively and incrementally add capabilities until the commercially important scope
of data, e.g., for a shell and tube exchanger data sheet has been completed.

4.2.8 S U M M A R Y

In this chapter, we reviewed the motivations for software integration architec-
tures in the process industry. We described PlantData XML and have shown
how a process industry s tandard XML vocabulary, combined with reusable XML
software components can lead to a very cost-effective synchronous and asynchro-
nous software integration architecture that also provides a sound technical basis
for vendor-neutral data archival and more intelligent B2B e-commerce transac-
tions in the process industry.

PlantData XML builds upon the previous ISO standards development work.
PlantData XML unlocks the value in these standards by making these standards
much easier and more practical to use as well as being orders of magnitude less
expensive to implement in commercial software.

We have described a development methodology for PlantData XML that follows
the principles of the Unified Software Development Process, whereby commer-
cially significant use cases are developed first, and then used to iteratively and
incrementally develop capabilities over a period of time to eventually handle the
extremely large scope of process plant information. In i l lustrating this methodol-
ogy by an example for shell and tube exchangers, we have shown how it is possi-
ble to derive a UML data model from the AP 231 IDEF1X engineering data model
and then develop an XML Schema that reflects the structure in the UML data
model.

PlantData XML is being implemented in commercial software as part of its de-
velopment process. Several companies have committed to use PlantData XML
and the ePlantData software component to achieve commercially successful soft-
ware integrations before the end of 2001. Process designers from Insti tut Fran-
cais du Petrole (IFP) and equipment designers from Kellogg Brown & Root (KBR)

290

will use process simulation programs, equipment design programs and equip-
ment detailed mechanical design programs throughout the life cycle of heat ex-
changer design, engineering and procurement. Leading providers of these soft-
ware packages will provide commercial software tha t implement the PlantData
XML standard. These companies include Chemstations, Inc., a global supplier of
process simulators and heat exchanger design packages, Heat Transfer Research,
Inc. (HTRI), a leading provider of thermal heat exchanger design software, and
COADE, Inc., a global provider of detailed mechanical vessel design software.
WaveOne.com is an Application Services Provider who provides process engineer-
ing software, and XML data repositories to support team-based collaborative
problem solving environments on the Internet. All of these forward-looking ven-
dors have committed to implement PlantData XML interfaces into their commer-
cial software in 2001. Users of these leading software companies' products and
services will experience the benefits of P lantData XML software integration ar-
chitectures first. As practical usage spreads and significant benefits are realized,
we anticipate more vendors will support the PlantData XML industry standard
as well, as their users demand the benefits of open software architectures and
support for open industry data exchange protocols.

The PlantData XML standard is published and freely available to any companies
in the process industries to use. A commercial, reusable XML software compo-
nent, ePlantData, and an electronic data sheet, ePlantData Sheet is also available
for process industry companies and software vendors to begin using PlantData
XML right away at low cost. Through the s tandards and the software compo-
nents, we anticipate tha t the process industry will have finally achieved a practi-
cal, inexpensive approach to multi-vendor, multi-company software integration.
With the eventual widespread and broad application of electronic data exchange
architectures over the entire life cycle of process facilities, process industry com-
panies should reap annual economic benefits in the hundreds of millions to bil-
lions of dollars.

We can only speculate about the future of the Internet, but we believe strongly
tha t XML is THE key enabling technology for the next generation of the Internet.
At this time, the Internet is literally being rebuilt migrat ing away from using
HTML technology to using XML technology. XML is likely to be used in a whole
host of ways tha t we cannot even imagine now. For example, we can imagine,
geographically remote collaborating teams sharing project information and tech-
nical details at fine grained levels ra ther than coarse-grained document levels
like we do now. We can imagine using XML to remotely monitor process plants in
a remote client-server extranet architecture. We imagine XML will be a key
software integrat ion mechanism across the Internet for all kinds of e-commerce
transactions. For example, it should be possible to create Internet agents that
search out qualified suppliers based on a highly detailed set of technical require-
ments tha t are par t of electronic data sheets and electronic project and procure-
ment databases. However, while the promise of using XML to its maximum po-

291

tential for the benefit of the process industry is exciting to contemplate, it clearly
depends on the process industry developing a comprehensive set of easy-to-use
and inexpensive-to-implement industry XML standards. PlantData XML is an
initial start down this exciting path to the future.

4.2.9 R E F E R E N C E S

[1] W3C Introduction to DOM web page:
www.w3.orgfrR/WD-DOM/introduction.html
[2] David Megginson's web site on SAX: http://megginson.com/SAX/index.html
[3] Microsoft XML Developer Centre Web site:
http://msdn.microsoft.com/xml/default.asp
[4] Apache XML Project web site: xml.apache.org
[5] ePlantData web site: www.ePlantData.com

This Page Intentionally Left Blank

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
�9 2002 Elsevier Science B.V. All rights reserved. 293

Chapter 4.3: STEP for the Process I n d u s t r i e s

R. Murris

4.3.1 THE CHALLENGE

Although the discipline of process engineering is well supported by com-
puter-enhanced tools and software architectures, they are mainly focused
and thus applicable to only a small part of the process plants lifecycle. The
average 30 years process plant life span of a typical refinery generally out-
lives all operating systems, software and databases designs, which were in
use when the first design drawing was conceived. The longevity of process
plants and the ongoing functional and physical changes during its life thus
set out a real challenge for systems and software designers alike.

During the conceptual engineering phase process plant design information
flows intensively between specialized departments and once the plant is
built operational data is recycled to be used as input for plant optimization
and revamps. So data from many sources, created by a multitude of appli-
cations must be exchanged not only within the company but also increas-
ingly with supporting companies like equipment suppliers, engineering
and maintenance contractors. In the 1980's the exchange data consisted
mainly of non-intelligent 2D schematics and 3D-shape representation and
was dominated by the de-facto standards like AutoCAD's dxf/dwg formats
and the more official but ambiguous standard called IGES.

During the mid 1980's Computer Aided Design support tools became
mainstream in the process plant design cycle and the requirements for
data exchange between the variety of implementations grew outside the
scope and capabilities of the mentioned (de-facto) graphics data exchange
standards.

4.3.2 HISTORY

In the 1980's the US department of defense (DoD) was one of the firsts to
identify the growing data exchange problem. Efficient logistics around de-
fense material and spare-parts for military weapons systems is one of the
pre-requisites for fast military deployment. In 1980 the DoD relied on ap-
proximately 3500 third parties supplying equipment and parts. CALS
(Continuous Acquisition and Logistics Support) was founded to reduce the
huge amount of paper-based documents, the poor communication between

294

the suppliers and to reduce the cycle time between order and supply. The
CALS exchange requirements stretched beyond the boundaries of graphics
alone. It also included business and product data like purchase orders, in-
voices, product specification, sound, images etc. Later additional require-
ments like 'openness' and 'software vendor independence' were added. In
1986 these became the founding principles of the ISO-10303 (STEP)stan-
dard.

4.3.3 ISO-10303 or STEP

The STandard for the Exchange of Product model data (STEP) is the acro-
nym for the full ISO-10303 standard. STEP consists of parts each having a
distinct function within the formalization of exact data exchange within a
predefined set of business activities (the scope).

All the steps from the outset of the data exchange scope unti l t he valida-
tion of an application protocol in the form of data test-suites are supported
by this standard. The methods for creating an application protocol are all
par t of the STEP standard and are validated and quality assured through
the ISO technical sub committee TC184/SC4. The acceptance of an appli-
cation protocol as an Internat ional Standard (IS) although supervised by
ISO is done by the p-members. These permanent members (countries) of
ISO take par t in several balloting procedures carrying the protocol from a
NWI (new work item) to the final IS. Due to the formal and lengthy proce-
dures it can take up to seven years for a part icular application protocol to
acquire the IS status.

4.3.4 A P P L I C A T I O N P R O T O C O L 221 (AP221)

In 1995, subsidised by the EC the ESPRIT III project ProcessBase started
with the development of the ISO-10303 Application Protocol 221. The title
"Functional data and 2D schematic representation" relates to the concep-
tual and detailed design and engineering stages of the process plant lifecy-
cle. During these activities functional design data and their representa-
tions on 2D drawings are frequently passed within the plant-owner's or-
ganisation and between contractor and client. Both roles of client and con-
tractor are played by plant-owners, engineering contractors and equip-
ment suppliers in any combination.

Due to the increasing variety in software applications and the difference
in data models owned and operated by these organisations, standardised
exchange of data within the scope of AP221 became an urgent require-
ment. When the ProcessBase project ended in 1997 there was still no
AP221 s tandard but it was embodied and further developed by a consor-
t ium of European companies. The development of an Application Protocol
such as AP221 has turned out to be far more difficult than initially ex-

295

pected. Due to the enormous amount of different data types (meta-data)
within the AP's scope it deemed impossible to create one single exchange
datamodel to cover it all. The second challenge was the requirement of full
lifecycle support. Thus within a single data exchange multiple versions of
e.g. the same equipment must be passed without having redundant data.
Especially the combination of Data Explicitly Defined Once (DEDO) and
versioning within the same exchange scenario resulted in a new modelling
concept, which will here be referred to as the Associative Paradigm. This
modelling concept has been implemented, with some exceptions, through-
out the full requirement model (Application Reference Model) of AP221.
The methodology to handle huge amount of process p lant functional data
and schematics using this Associative Paradigm is an unexplored area.
However implementat ions with tradit ional relational data tables or ob-
jects oriented counterparts have proven until today to be either too in-
flexible or just impossible.

4.3.5 THE ASSOCIATIVE PARADIGM

Traditionally we find requirements of data models expressed in languages
like EXPRESS (ISO-10303-11), NIAM, ERD and lately in UML. These de-
scriptive methods, sometimes accompanied with a strict syntactic lan-
guage all use a basic set of axioms to model models. In some cases they
also define a symbol l ibrary to conveniently communicate the results of
the modelling process to the end-user or developer. In the case of EX-
PRESS the symbolic notation capability (EXPRESS-G) is far less than
what is supported by the modelling language itself. However a clever sub-
set has been defined which combines powerful, compact presentat ion of
the model without the end-viewer losing overview. Fur ther details when
required can be extracted from the EXPRESS code.

So when modelling languages fulfil the same requirements, is there a
common meta-model for these languages as well? Probably there is and in
the case of the EXPRESS language this meta-model is quite compact when
we only consider the data requirement par t and exclude the syntactic
rules tha t deal with rules, procedure, functions and uniqueness con-
straints. Basically the EXPRESS language defines three relation types
and five basic type of modelling objects.

The basic five objects are 'schema', 'entity', 'type', 'a t t r ibute ' and 'data
type'. The three basic relation types are 'specialisation', 'composition' and
'possession'. A schema can be composed of 0..n entities and types, an entity
can possess 0..n at t r ibutes and an at t r ibute possesses exactly one data
type. Each enti ty can have 0..n specialisations to other entities. The fol-
lowing table expresses the relations between the association types and the
object types.

296

Table 1 M,
Object type
Schema
Schema
Schema
Entity
Attribute
Entity

;ta model definitions for the E X P R E S S
R o l e Association Type Role
W h o l e Composition Part
W h o l e Composition Part
W h o l e Composition Part
Possessor P o s s e s s i o n Possessed
Possessor P o s s e s s i o n Possessed
Supertype Specialisation Subtype

language
Object Type
Entity
Type
Data Type
Attribute
Data Type
Entity

In 'natural ' (English) language the first record under the header reads as:
"'An instance o f ' 'object type' 'encoded as' 'schema' 'plays the role as' 'an
instance of 'role' 'encoded as' 'whole' 'in relation with' 'an instance of 'as-
sociation type' 'encoded as' 'composition' 'with' 'an instance of 'object type'
'encoded as' 'entity' 'playing the role as' 'an instance of 'role' 'encoded as'
'part'". This includes all the implicit relations made explicit between the
table header information (meta-data) and the records represented in lines
under the header. When we omit all this implicit information we get more
readable sentences, however information is lost when only these sentences
are t ransferred to any receiver who is not aware of this table header and
structure. The information in the records of table 1 are made more read-
able and are given in table 2:

Table 2 Natural language equivalent of the information in table 1
'Schema' 'can be composed of 'entities'
'Schema' 'can be composed of 'types'
'Schema' 'can be composed of 'data types'
'Entity' 'can possess' 'attribute'
'Attribute' 'can possess' 'data type'
'Entity' 'can be specialised as' 'entity'

Clearly the described cardinality constraints are missing from the previ-
ous table although defined in the explanatory text. This means that the
natura l language equivalents of the association types all begin with 'can... '
whereas some relations require 'must...'. An example is the relation be-
tween 'at tr ibute ' and 'data type'. In table 1 this could be achieved by in-
serting two extra columns (cardinality 1 and 2, abbreviated as C1 and C2)
with the possible values 1 and range value 0...n.

Table 3 ex
Object type
Schema
Schema
Schema
Entity
Attribute
Entity

9anded with cardinalities
Role C1 Association Type C2 Role
Whole 1 Composition 0..n Part
Whole 1 Composition 0..n Part
Whole 1 Composition 0..n Part
Possessor 1 Possession 0..n Possessed
Possessor 1 Possession 1 Possessed
Supertype 1 Specialisation 0..n Subtype

Object Type
Entity
Type
Data Type
Attribute
Data Type
Entity

297

The explicit sentences will real ly become un readab le because of the size,
however the n a t u r a l l anguage equiva len t where the same implici t infor-
ma t ion is omi t ted become:

Table 4 Natural language equivalent of table 3
'One' 'schema' 'can be composed of 'zero to many' 'entities'
'One: 'schema' 'can be composed of 'zero to many' 'types'
'One' 'schema' 'can be composed of 'zero to many' 'data types'
'One' 'entity' 'can possess' 'zero to many' 'attributes'
'One 'attribute' 'must possess' 'one' 'data type'
'One' 'entity' 'can be specialised as' 'zero to many' 'entities'

The defini t ions and re la t ions in tables 1-4 all describe w h a t can be ins tan-
t i a ted and not w h a t is ins tan t i a ted . So the in format ion expressed in these
tables can be used as a ' templa te ' for i n s t an t i a t i on of indiv idual records in
some implementa t ion . Or the o ther way around: indiv iduals ma tch ing the
cons t ra in t s can be classified as va l ida ted member s of t h a t t empla te . One
can e i ther explicit ly re la te an individual wi th an ins tance of associat ion
type 'classification' or allow software au tomat ica l ly es tab l i sh this associa-
t ion by invoking a ma tch ing procedure.

When we re - read the tables we probably infer t h a t the records all belong
to a specific in format ion set. So implici t ly they are grouped to convey some
meaning . W h e n the word ' templa te ' was men t ioned probably some group-
ing was mean t . In this case the inclusion of the in format ion expressed by
the six different sentences. So wi thou t wr i t ing it out explicit ly we probably
inferred t h a t the scope or view of the t empla t e included only those six ex-
pressions. One can a s sume however t h a t the tables 1...4 can conta in mil-
lions of records and wi thout a m e c h a n i s m to group these express ions no
segrega t ion can be made and its use would be l imited. Let 's a s sume t h a t
the defini t ion of this t empla te is p a r t of the context of someth ing we have
defined as 'EXPRESS modelling' and recrea te table 4 wi th th is informa-
tion: �9

Table 5 Expanded with context
'One' 'schema' 'can be composed of 'zero to many' 'entities' 'is included in' 'EXPRESS
modelling'

.

'One' 'schema' 'can be composed of 'zero to many' 'types' 'is included in' 'EXPRESS model-
ling'
'One' 'schema' 'can be composed of 'zero to many' 'data types' 'is included in' 'EXPRESS
modelling'
'One' 'entity' 'can possess' 'zero to many' 'attributes' 'is included in' 'EXPRESS modelling'
'One 'attribute' 'must possess' 'one' 'data type' 'is included in' 'EXPRESS modelling'
'One' 'entity' 'can be specialised as' 'zero to many' 'entities' 'is included in' 'EXPRESS
modelling'

W h a t does the associat ion type ins tance expressed as 'is inc luded in' actu-
ally include? All the separa te concepts expressed as words wi th in s ingle

298

quotes or the explici t assoc ia t ion ins t ances b e t w e e n those concepts as de-
scr ibed above in the ve ry long sentence or both?

To include all the expl ic i t associa t ions b e t w e e n the concepts we first m u s t
m a k e t h e m visible. In the nex t table the f i rs t record (sentence) of table 5 is
t a k e n and the explici t associa t ions are m a d e visible (excluding the asso-
c ia t ion wi th the context):

Table 6 Mak ing the sentence explicit
Sub phrase
'One' 'schema'
'is count of
'can be composed of

'zero to many' 'enti-
ties'
'must be in range'

'in between'

Explicit
'One' 'is count of 'schema'
'counter' 'is role of 'object' 'is count of 'counted' 'is role of'subject'
'whole' 'is role of 'object' 'can be composed of
'part' 'is role of 'subject'
'entities' 'must be in range' 'in between' 'zero' and 'many'

'subject to range' 'is role of 'object' 'must be in range' 'range' 'is role
of 'subject'
'minimum count' 'is role of 'object' 'in between' 'maximum count' 'is
role of 'subject'

Now we b r ing all the associa t ions to the left and use a dif ferent no ta t ion
form. H e r e b y we in t roduce the t e r m 'FACT' and m a k e use of line or record
ident i f ie rs to allow for easy referencing. The p r e s e n t e d no ta t ion form is
ident ica l to the d a t a sect ion body def ined in ISO-10303 par t21 :

Table 7 Fact table for one sentence without context
Facts
I=FACT('is count of,#2,#3);
#2=FACT('is role of,'counter','object');
#3=FACT('is role of,'counted','subject');
#4=FA CT(# 1 ,' one',' schema');
#10=FACT('must be in range',#11,#12);
11 =FACT('is role of,'subject to range','object');
12=FACT('is role of,'ran~e','subject');
#13=FACT('in between',#14,#15);
14=FACT('is role of,'minimum count','object');
15=FACT('is role of,'maximum count','subject');
#16=FACT(#13,'one','many');
17=FACT(# 10,'entities',# 16);
#20=FACT('can be composed of,#21,#22);
#2 I=FACT('is role of,'whole','object');
#22=FACT('is role of,'part','subject');
100=FA CT(#20,#4,# 17);

By following ~100=FACT(#20 ,#4 ,#17) ' one can fully r econs t ruc t the sen-
tence by t r ave l l i ng t h r o u g h the table following the references . For com-
p l e t eness we now also add the context and the inc lus ion of the jus t de-
scr ibed # 100=FACT:

299

Table 8 Fact table for one sentence with context
Facts
100=FACT(#20,#4,# 17);
#200=FACT('is included in',#201,#202);
#201 =FACT('is role of,'includer','object');
#202=FACT('is role of,'included','subject');
#300=FACT(#200,'EXPRESS modelling',#100);

This whole procedure could be repeated for the next five sentences of table
4 and resul ts in a similar listing found in table 7 and 8.

Although we have reduced the redundancy of data considerably, there are
still mult iple instances of the same terms. This is in conflict wi th the
DEDO requirement . Thus we have to define all the facts and str ings only
once. For this purpose we introduce a new enti ty type tha t can facilitate
this requirement . Table 8 is fur ther normal ised using DATA as the place-
holder for the text encoding.

Table 9 A n almost ful ly normalised dataset
Facts and data
100=FA CT(#20,#4,# 17);
#200=FACT(# 1000,#201,#202);
#20 I=FA CT(# 1001 ,# 1002,# 1003);
#202=FA CT(# 1001,# 1004,# 1005);
#300=FACT(#200,#1006,#100);
#1000=DATA('is included in');
#1001=DATA('is role of);
1002=DATA('includer');
1003=DATA('object');
1004=DATA('included');
1005=DATA(' subject');
1006=DATA('EXPRESS modelling');

All the te rms within single quotes are encoding of concepts wi th in the
scope of a par t icu lar language (English). Another requ i rement of neut ra l
data exchange is tha t any receiving party, irrespective of the language
background can reconstruct the information. Al though ISO-10303 allows
encoding of the str ings in almost any character set this still won't satisfy
the DEDO requirement . Suppose we wan t to use two languages (English
and Dutch) in the same exchange set and e.g. use the Dutch t rans la t ion 'is
rol van' which has the same meaning as 'is role of. When table 9 is used
and added with the extra Dutch te rm this could become:

300

Table 10 Dutch term 'is rol van' added
Facts and data
#201=FACT(# 1001,#1002,# 1003);
#202=FACT(#1007,#1004,#1005); l! old one was #202=FACT(#1001,#1004,#1005);

1007=DATA('is rol van');

Although there is no duplication of te rms in this set there seems to be a
duplication of concepts. Because 'is role of and 'is rol van' are the same
concepts but in a different language. To overcome this, a possible solution
is tha t #1001=DATA('is role of) and #1007=DATA('is rol van') are refer-
ring to a language independent 'handle'. A simple but effective solution is
the introduction of a unique identifier to which both DATA s ta tements re-
fer by using an identification relation:

Table 11 A d d i n g identif ication of the concept
Facts and data
#201=FACT(# 1009,# 1002,# 1003);
#202=FACT(#1009,#1004,#1005);
#1001=DATA('is role of);
#1007=DATA('is rol van');
1008=DATA('is identification of);
#1009=DATA(' 1');
#3000=FACT(#1008,#1001,#1009);
#3001 =FACT(# 1008,# 1007,# 1009);

The association type of 'is identification of is not modelled the same way
as is done with other association types in the previous examples because
one would rapidly run into recursion. Therefore the object and subject side
roles of the FACT 'is identification of are directly pointing to DATA in-
stances instead of other FACTs as in the examples above.

The same identification relation and FACTs based on the same principles
can be added for all DATA terms. In the end all FACTs at t r ibutes will re-
fer to unique identifiers expressed as DATA('I ') . . DATA(<n>) instances,
except for 'is identification of.

All information expressed above seems to be time independent . No explicit
expressions can be found tha t refer to any time concept. In tradit ional da-
ta models and implementat ions t imes tamps are found to record either the
conception data/ t ime of the record or a t imes tamp for wha t is represented
by the record or both. Thus it would be logical to add t imestamps attrib-
utes to both FACTs and DATA entities. At least for the DATA entity this
is not necessary because they represent strings tha t are considered to be
always valid. The information is not captured with the DATA but with
FACTs. Assume tha t all the FACTs records are s tr ipped from the exam-
ples above or from a hypothetical large dataset . What remains is a long
list of strings, represent ing all words, numbers etc. It would resemble the

301

index of a book but wi thou t the content or any page references. In princi-
ple it doesn' t convey any information.

The informat ion in this associative pa rad igm is s tored as FACTs. So can
we add the t ime recording to FACTs and thereby suppor t vers ioning and
t ime dependent var iances on e.g. design data? It would implicate tha t
when a cer ta in fact becomes obsolete at a cer ta in point in t ime we mus t
have a method to t e rmina t e its existence. This requi res an extra time-
s tamp a t t r ibu te to be able to record its t e rmina t ion date/ t ime. One could
also s imply delete this fact from the informat ion set. However then there
would be no way to capture his tory and go back to ear l ier versions of e.g.
design data. It is clear t h a t implement ing this solut ion will not fulfil the
lifecycle requ i rement .

In principle vers ioning informat ion and the accompanied t i m e s t a m p series
are not aspects of the real or abs t rac t world we are t ry ing to represen t
wi th a da ta set. The t ime con t inuum is an in tegra l pa r t of existence be-
cause wi thou t it there is no existence. Thus if we w a n t to record informa-
t ion about when e.g. the design of par t i cu la r piece of equ ipmen t came into
existence we are adding date/ t ime informat ion about i ts creat ion process.
So let's a s sume tha t we wan t to record t ha t a cer ta in fact from table 11
s ta r t ed its life at March 21 st 2001 at 12:34:23.000 t hen the table could be
expanded wi th the following records:

Table 12 Time information added
I Facts and data
~ I - = ~ - C T---(~ 009,# 1002,# 1003);

L#4000=FACT('starts life at',#4001,#4002);
L#4001 =FACT('is role of,'object','object');
~ _#4002=FACT('is role of,'time', subject');
[#4003=FACT(#4000,#201,#4004);
l,i#4004=DATA('2001-03-21T 12: 34: 23.000');

In table 12 the old no ta t ion (see table 7 and 8) is used to make it more
readable. However full normal i sa t ion is assumed. Wi th ano the r set of
FACTs and DATA one could also made explicit wha t type of ca lendar and
t ime encoding has been used for DATA record #4004. The existence of the
#201=FACT has now been recorded and a s imilar scheme can be used to
explicitly record its t e rmina t i on date/ t ime. To make it explicit t h a t s t a r t
and end of life FACTs are pa r t of a specific snapsho t (or version) the same
method is used as wi th inclusion of FACTs in a context. Table 8 shows this
for the context of 'EXPRESS modelling' bu t s imi lar a context for a part icu-
lar version or even va r i an t can be constructed. When there is a require-
men t to record the delet ion of a FACT be tween two vers ions or va r ian t s
one could achieve tha t us ing one of two methods. You can e i ther decide to
create a da ta / t ime t e rmina t i on FACT in the context of the las t ver-
s ion/var iant or exclude t ha t FACT using an explicit 'excluded from' FACT
in the new vers ion/var iant . In both cases no in format ion is lost, h is tory

302

remains intact and can be fully reconstructed. It seems a contradiction but
in the associative parad igm deletion means addition of facts about the de-
letion process.

So even with this fully normalised model and the fulfilment of multi-
l ingual expression and versioning capability without violating the DEDO
principles can we now actually convey information without any ambiguity?
This is surely depending on the way the receiver in terpre ts the association
types and the data wi thin the context given. This methodology of full nor-
mal isat ion will result in facts and data defined only once. One can also
imagine tha t descriptions can be added following the same methodology.
Although it could support more unambiguous in terpre ta t ion of the re-
ceived information one can never rule-out errors.

In the examples above we try to explicitly define information about a sub-
set of the EXPRESS modelling language functionality. However when we
have to deal with the explicit definition of all information in a process
plants design cycle, including its full design history it would be more than
useful to have some kind of reference dictionary. A dictionary that can be
used as lookup table for terms and references to minimise the differences
between the intended meaning and the actual perceived meaning by the
receiver.

The upcoming AP221 s tandard in its current state has only about 200 en-
tities and 200 different association types. The model has been designed to
be very flexible and describes high-level concepts such 'individual', 'class',
'activity', 'physical object', 'event' and 'aspect'. In the AP221 s tandard how-
ever one cannot find e.g. entities called 'centrifugal pump', 'vessel' or 'col-
umn', pieces of equipment regularly found in process plants. The amount
of equipment and par t types for which we want to record the existence is
current ly exceeding 5.000. It would be impossible to add all these 'classes'
as explicit enti t ies into the AP221 model. ISO procedures only allow up-
dat ing of the s t andard every three years. So in termedia te updates and ad-
ditions mus t be put in a queue unti l the next release of the standard. In
the mean time however new equipment and par ts are invented and intro-
duced on a daily basis.

To allow faster update and distr ibution of the dictionary of process plant
classes it has been decided to main ta in the dictionary as a separate regis-
ter. A set of process p lant related classes and definitions have been cre-
ated in the past six years using the knowledge of 100+ design experts all
over the world and current ly we recognise more t han 17.000 classes. An
In te rne t portal (www.STEPlib.com) facilitates the main tenance and up-
dates of this dictionary bet ter known as STEPlib. The combination of the
associative paradigm, a high level model such as AP221 at its base and the
solid definition of almost any piece of equipment main ta ined in STEPlib
should facilitate unambiguous exchange of almost any information be-
tween par tne rs in the process industries.

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
�9 2002 Elsevier Science B.V. All rights reserved. 303

Chapter 4.4: The CAPE-OPEN Standard: Motivations,
Deve lopment Process, Technical Architecture
& Examples

J.-P. Belaud, B. Braunschweig & M. White

The CAPE-OPEN standard was developed in two successive EU-funded projects,
CAPE-OPEN and Global CAPE-OPEN. Some aspects of CAPE-OPEN are
presented elsewhere in the book (see chapter 3.3); this chapter gives a broad view
of the s tandard and presents a few examples. The standard itself is available at
the www.colan.org website.

We start by setting up the scene with a section on motivations and history. Then
we present elements of the standard: its development process (section 4.4.2); its
global architecture (section 4.4.3), an example of use (4.4.4) for unit operations
and physical properties; and a further look at other portions of the standard,
namely numerical solvers and access to physical properties data bases (4.4.5 and
4.4.6); the chapter ends with a short conclusion and a presentation of future
activities and of the CO-LaN organisation.

4.4.1 MOTIVATIONS & HISTORY

The CAPE-OPEN project brought together software vendors, global chemical
manufacturing companies and universities to solve how enterprise software for
designing and optimising process plants could be made interoperable. The CAPE-
OPEN project and its successor, Global CAPE-OPEN has had a profound impact
on the strategic direction and markets for process simulation software.

At one time, chemical and refining companies built and maintained their own
simulators. In the 1970s and 80s almost all of these global companies came to
the conclusion that there was no strategic value in developing simulators, and
dropped their own proprietary simulator products in favour of a handful of
commercial software companies. Maintaining large in-house systems proprietary
systems with negligible strategic value became too difficult and expensive for
these large companies. This is a similar trend as other enterprise software
solutions, including payroll, accounting and human resources, where companies

304

opted not to continue developing in-house software and bought from external
software vendors.

By the time CAPE-OPEN was conceived and formed all of the companies on the
project had successfully divested their proprietary simulators in favour of
commercial versions from companies like Aspen, Hyprotech or Simulation
Sciences. The value of the software was in the plant models, thermodynamic
packages and solvers that each of the companies had developed to optimise the
design processes of their specific plants. Each global company still maintained
strategic and proprietary plant models, which were extraordinarily strategic to
their businesses. These models were built and used within the earlier
proprietary simulation packages and now were integrated into commercial
simulators provided by software vendors. The integration process for adding
these models was time consuming, painful and expensive. To complicate matters,
each software vendor had their own process and approach for integration into
their respective system.

As a result of the difficulties these global companies faced integrating these
software packages, combined with accelerating software technology trends, the
CAPE-OPEN project was launched, to create an open system that would allow
software vendors, global process operating companies and universities to define a
s tandard tha t would allow plug and play of process modelling components across
commercial simulation packages. CAPE-OPEN's goal and challenge was to
create a single s tandard for integrating the components of software simulation
across commercial software suppliers.

The markets for process simulators, although crucial to design and operation of a
petrochemical plant, are mature. The CAPE-OPEN project enabled software
suppliers to change the software architecture of their underlying applications and
to better address the integration needs of their largest customers. The
collaborative and competitive nature of the CAPE-OPEN project was a perfect
environment to explore the technical and business direction of process simulation
software.

Establishing a business, chemical engineering and software driven standard
across competitive software vendors was a revolutionary concept. If an open
system for process simulation could be created it would mark the first time that
competitive software companies collaborated to define business standards and
components across existing enterprise software packages. For the global
operating companies, this project was a way to:

Continue to divest non-core software;
[] Influence standards of their domain;
[] Reduce cost and time of integrating models and other simulation

components;
[] Gain efficiencies in process engineering workflow.

305

For the software company partners, the CAPE-OPEN project was a way to:

[] Explore avenues for increasing overall market share;
[] Improve integration strategies;
[] Move from monolithic application to flexible component architecture;
[] Transition to new architecture and technologies with direct user feedback;
[] Examine new business models for selling and positioning simulation products.

The CAPE-OPEN project enabled new levels of collaboration across partner
networks. Competitors and customers alike worked side-by-side to increase the
value of the process simulation software markets. Each software competitor
needed to open and discuss their competitive advantage so the market could be
expanded for all.
4.4.1.1 The P r o j e c t s

The CAPE-OPEN project was funded by the European Commission under the
Industrial and Materials Technologies Program from January 1997 to June 1999.
The partners comprised chemical or petroleum operating companies (BASF,
Bayer, BP, DuPont, Elf, ICI), a process licensor (IFP, co-ordinator), major
international vendors of process systems tools (AspenTech, Hyprotech and
SIMSCI), European academic research groups in the process systems field
(Imperial College, RWTH-Aachen, INP-Toulouse) and a software consultancy
(Quantisci). The project developed standard interface specifications for unit
operations modules, physical and thermodynamic properties systems, numerical
solvers, and graph analysis tools.

The second stage of developing an open architecture for process engineering was
the Global CAPE-OPEN (GCO) project, operating as an IMS activity involving
interregional collaboration. The partnership in GCO gathered an unprecedented
setting of highly skilled users, developers and researchers in CAPE. The
partners represented 50% of the world users of CAPE software, 90% of the
suppliers, and 10 amongst the top 12 research laboratories on the subject
worldwide.

The first achievements of the GCO project were demonstrated during the project
mid-term meeting hosted by AEAT Hyprotech and collocated with the
Hyprotech2000 conference in Amsterdam. Painless interoperability of two
commercial environments from Aspentech and AEAT Hyprotech was
demonstrated, completed by demonstrations of CAPE-OPEN compliant software
components from several companies and universities. New standards for
additional components were presented, and the foundation of the CO-LaN was
proposed.

The second half of the GCO project developed these technologies further, giving a
sound operation basis for the forthcoming CO-LaN initiative. Results of the GCO

306

project were demonstrated at its final technical meeting hosted by Aspen
Technologies in Cambridge, UK; the results included full commercial
interoperability of unit operations and physical properties from several large and
small software companies, software prototypes for new standards, many
migrated components from software vendors, universities and end-users.

4.4.2 THE C A P E - O P E N D E V E L O P M E N T P R O C E S S

CO and GCO relied on a s tructured process start ing from users requirement and
leading to software implementation, test and validation. The process is meant to
be incremental, as shown on figure 1, and uses UML (Unified Modelling
Language) notation for use case diagrams, sequence diagrams, component
diagrams and class/interface diagrams. Interface specification documents contain
a phased description of these diagrams, in order to allow future users and
developers to bet ter unders tand the specifications and how they were developed.
Examples of UML diagrams and other technical elements are given in section
4.5.3.

Users Reqs
DAE solvers

, ,4 - - ' oil.

~ User~ Reqs __.._
/ ~ ~'~ NLEQ solvers

,,J s

/ / ," Users Reqs ~ X
[/' ,' ~ LEQsolvers :~ \

Tests : ' / ~ InterfaceModels... ,.
a LEQ solvers NLEQ so lve r s / ' [] Interface Models h "~I'-- .. lests

" " LEQ solvers S t a r t ~/ NLEQ solvers
\ ~ : Interface Specs]
\ ~ LEQ solvers]

~ Prototypes _ _.J , y
LEQ solvers

Prototypes ~
NLEQ solvers Interface Specs

NLEQ solvers

Figure 1: Incremental specification of solvers

In addition, we used an approval system based on an RFC (Request for
Comments) process in order to make sure that all documents benefit from
contributions from and are agreed by all concerned specialists. The approval
process consists in a technical validation phase, followed by a period for
commenting, and concluded by formal voting, with a possibility of recycling at
any stage in case of failure.

The technical work process tha t was followed for each interface is presented in
Table 1.

307

Table 1: Work Process Phases
Phase
ANALYSIS
ANALYSIS
DESIGN

SPECS

OPTIONAL
PUBLISH
IMPLEMENT
TEST
TEST

SPECS

PUBLISH

Step
Users requirements, text
Users Requirements, Use Cases
Design Models

Draft Interface Specifications

RFC process

Interface Implementation
Standalone Testin$
Interoperability Testing

Final Interface Specifications

RFC process

Goal
Requirements in textual format
Use Case models
Sequence, Interface, Component
Diasrams
Draft Interface specifications in
COM and CORBA IDL

, , ,

Approval of Draft Specifications

Prototype implementation
Interface validation
Validation on interoperability
scenarios
Final specifications in COM and
CORBA IDL
Approval of final specifications

The need for such a formal approval process arises from the fact tha t reaching
consensus on complex technical documents can be long and tedious, especially
when many organisat ions with different backgrounds and different goals have to
agree. The CAPE-OPEN approval process is based on examples from other
in ternat ional bodies, such as the Object Managemen t Group (OMG), or the
Petrotechnical Open Software Corporation (POSC). Compared with the OMG
process, the CO process is simplified so tha t approval delays are shorter; on the
other hands it explicitly takes into account the s t andards development process
with software prototypes playing a major par t in test ing the specifications for
interoperabili ty. The process has been successfully applied in the Global CAPE-
OPEN project and will be used by the CAPE-OPEN Laboratories Network.

4.4.3 T H E C A P E - O P E N S T A N D A R D

This section introduces the current s ta tus of the CAPE-OPEN (CO) s tandard
from a technical point of view. After an introduction to the formal documentation,
the archi tecture is mentioned. Then, the CO system is modelled concisely and
three examples of CO specifications are given. Although this chapter deals with
the version 0.9.3 of CO, up-to-date information on the s t andard can be found on
the official web site [1].

4 . 4 . 3 . 1 C O f o r m a l d o c u m e n t a t i o n s e t

The CO s tandard is character ised by a unique and global version number and is
described by a set of documents. Each document has its own versioning number
in order to t rack its own life cycling, however it remains a subset of a CO version.
The road map of the CO formal documentat ion set is shown in the next figure.

308

I CAPE-OPEN standard I
version 0.9.4

I ! I I I [General ~,on II Technical architecture [I Business Interface II Common Interface ([Implementati~ Spedfica"on I

Synthesis Report Integrated Guidelines Thermodynamic and
Road Map Migration Methodology Physical Properties

Handbook Unit Operations
Conceptual Document Integration Report Numerical Solvers

Path Recommendations Sequential Modular
Specific Tools

Identification

Parameter

Error

Specification for COM

Specification for CORBA

Figure 1 CO documentation set

The formal documentat ion set includes the following blocks. Altogether they
define the current version of the CO standard:

[] General vision contains documents tha t should be read first to get the
s t andard general information such as general requi rements and needs.

[] Technical archi tecture integrates the horizontal technical materials and
defines an inf ras t ructure aiming at a process s imulat ion based on the CO
standard.

[] Business interface contains all vertical interface specification documents.
These interfaces are domain-specific interfaces for the CAPE application
domain. They define CO components involved in a CO process simulation
application. In some way these documents are abstract specifications, which
create and document a conceptual model in an implementa t ion neutra l
manner .

[] Common interface encloses horizontal interface specification documents for
handl ing concepts tha t may be required by any business interfaces. This is a
collection of interfaces tha t support basic functions and are always
independent of business interfaces. In some way these documents are abstract
specifications, which create and document a common conceptual model in an
implementa t ion neutra l manner .

[] Implementa t ion Specification contains the implementa t ion of the business
and common interface specifications for a given dis t r ibuted computing
platform. In order to produce CO compliant software components any
developer has to use these official interface definitions.

4.4.3.2 CO a r c h i t e c t u r e e l e m e n t s

The CO archi tecture elements section describes technical objectives and
terminology and provides the infras t ructure upon which support ing business and
common interfaces are based. This input comes from the folder technical
archi tecture (especially the in tegrated guidelines document) of the CO
documentat ion set. This section identifies the technologies associated with the
CO standard, includes the object model which defines common semantics and
shows the reference model which embodies the CO interface categories, CO

309

components and communication mode. The CAPE wide-scale industry adoption of
this CO architecture provides application developers and end-users with the
means to build interoperable simulation software systems distributed across all
major hardware, operating system, and programming language environments.

Selected technologies

The following technical decisions are supported by the development of CO. More
general information on these methods and tools is provided in chapter 4.2. Key
elements are the software system modelling within co-operative working process
and the distributed computing accessible over the network (intra/extra/internet).

The CO interfaces are developed and expressed using an object-oriented
paradigm. This paradigm is currently the best technical solution for developing
interface standards. It also encompasses the "conventional" procedural approach.

The standard relies on
standard assumes that
components.

the (distributed) component based approach. The
a process simulation tool can be made of several

The s tandard uses object-oriented middleware technology, namely Microsoft
COM and OMG CORBA that basically carry out the communication. The
implementation specifications are available for both middleware. Consequently
the s tandard is independent from implementation languages, and is applicable to
several hardware platforms and operating systems. Furthermore,
interoperability of CO software components over a network of heterogeneous
system is guaranteed.

The s tandard allows the encapsulation of legacy code, such as Fortran code, to
deliver CO software components.

The Unified Modelling Language (UML) is extensively employed for visualizing,
specifying, constructing and documenting the artifacts of CO.

CO object model

The object model inherits from the OMG and Microsoft object model. Due to some
conceptual inner choices a specific model is built and becomes a CO object model.
Its main characteristics are explained in a few words in this section.

The CO object model provides an organised presentation of object concepts and
terminology. It defines common semantics for specifying the externally visible
characteristics of interface objects in a standard implementation-independent
way. In other words, it defines which interfaces, operations, formal parameters,
attributes, data types, classes, objects and components are in the scope of CO

310

system. The design of interfaces included in the business and common interface
specification documents are built from this CO object model.

Interface: An interface (in fact object class stereotyped <<interface>>) is a
collection of possible uses in order to specify through its operations the service of
a class. To standardise the interfaces specific to the CAPE domain is one major
objective of CO. They are classified as business or common interfaces. At this
level, they are designed in an abstract manner, explicitly using the UML notation
and the CO object model. English being the base language, the CO interfaces
follow the naming convention such as ICapePackageIdentifier within a scope of
packages organisation where the global package is CapeOpen.

From the conceptual models of business and common interface specifications, the
implementation specifications are expressed in Microsoft Interface Definition
Language and in OMG Interface Definition Language.

Object: An object is an instance of a class. An object satisfies a CO interface if it
can be specified as the target object in each potential request described by the CO
interface. It belongs to the implementation step and so is out of the CO scope.
The development of a CO compliant software does not imply the choice of an
object-oriented language. Indeed platforms such as COM and CORBA introduce a
kind of pseudo objects.

Component: The component is a blob of software that encapsulates the
implementation of some business process logic. It is important to distinguish the
component and object technologies. The former is a packaging and distribution
technology, focusing on what a component can do, while the latter is an
implementation technology, focusing on how a component works. Thus a CO
compliant component is a piece of software that wraps up the proprietary objects,
which realise or use CO interfaces. The communication between CO component
instances is defined by the standard.

In order to make the difference between the service provider and the service
requestor, the s tandard distinguishes two kinds of CO software components:
Process Modelling Component (PMC) and Process Modelling Environment
(PME), the former providing services to the latter. Typically, the PMEs are
environments that support the construction of a process model, and allow the
end-user to perform a variety of different tasks, such as process simulation or
optimisation. The distinction between these two components is not readily
obvious. Furthermore, it is worth noting that, in the near future, it will be
possible to assemble any number of PMCs to deal with a specific process
simulation task.

CO reference model: The CO reference model, i l lustrated in the next figure,
identifies and characterises the components, interfaces, and communication

311

protocols. It includes the middleware component tha t enables the communicat ion
in a dis t r ibuted environment, the CO components (PMEs and PMCs) and two
categories of interfaces (common interface and business interface).

Figure 2 Reference model

The middleware component is the basic mechanism by which objects
t r ansparen t ly make requests to and receive responses from each other on the
same machine or across a network. It forms the foundation for building open
simulat ion applications constructed from distr ibuted CO components in both
homogeneous and heterogeneous environments . According to the selected
middleware technologies, the communicat ion protocol is GIOP/IIOP for OMG
CORBA and DCE RPC/COM for Microsoft COM.

The business interfaces are domain-specific interfaces for process engineering
applications. Within this category, impor tan t classes of PMCs are identified such
as physical properties, unit operation modules, numerical solvers, and flowsheet
analysis tools.

The common interfaces are general-purpose interfaces tha t can be fundamenta l
for developing useful CO components. They are a collection of interfaces tha t
support basic functions, which allow reusing of design concepts. The adopted CO
common interfaces are declined in parameter , identification and error interfaces.
Pa rame te r interface defines a pa r ame te r service for CO components tha t wish to
expose their ma themat ica l model in ternal data. Identification interface defines
an identification service for CO components tha t wish to expose their names and
descriptions. This information refers to a component-specific instance. Error
interface describes how a CO component has to manage an abnormal execution
terminat ion. It defines a classification and a hierarchy of errors tha t may occur
during a process simulation.

312

4.4.3.3 CO standard content

In order to describe the content of the current CO standard, this section exploits
the UML model of CO system. After introducing its scope, the different classes of
PMCs are detailed, as well as the relations between them and any PMEs. Those
can be thought as the physical views of the model. Then, the analysis of packages
and their dependencies will be done coming from the logical view.

Scope: Open architectures can benefit many different types of process
engineering software. However, the CO s tandard is specifically focused on
general tools for process modelling and, in particular, on their use for steady-
state and dynamic simulation. Moreover, the s tandard recognises explicitly the
de facto existence and widespread practical usage of two different types of such
tools, namely the modular and equation-orientated ones. Currently the CO
s tandard does not cover file format, physical model content, accuracy of models
and data, graphical user interface, process synthesis and computational fluid
dynamics.

Extracting CO components: physical view: The next figure i l lustrates the physical
aspects from the component view in the frame of a CO simulation system. It
shows the relations of dependency between the different PMCs and a PME.

Figure 3 Relations between PMC and PME

The following sections consider in greater detail the actual scope of each type of
component defined by CO. It also describes the key concepts underpinning each
PMC and its main characteristics.

Thermodynamic and physical property component: In the area of physical
properties, CO has focused on uniform fluids that are mixtures of pure
components or pseudo-components, and whose quality can be described in terms
of molar composition. The physical properties operations that have been provided

313

with standardised interfaces are those required for the calculation of vapour-
liquid-liquid-solid equilibrium or subsets thereof, as well as other commonly used
thermodynamic and transport properties. A key concept in CO is that of a
material object. Typically, each distinct material appearing in a process (in
streams flowing between unit operations, as well as within individual unit
operations) is characterised by one such object. Each unit operation module may
interact with one or more material objects. To support the implementation of the
above framework, CO has defined standard interfaces for material objects as well
as thermodynamic property packages, calculation routines and equilibrium
servers.

Unit operation component: CO has defined a comprehensive set of s tandard
interfaces for unit operation modules being used within modular and steady-state
PMEs. A unit operation module may have several ports, which allow it to be
connected to other modules and to exchange material, energy or information with
them. In the material case (which is also the most common), the port is
associated with a material object. Ports also have directions (input, output, or
input-output). Unit operation modules also have sets of parameters. These
represent information, which are not associated with the ports but that the
modules wish to expose to their clients. Typical examples include equipment
design parameters (e.g. the geometry of a reactor) and important quantities
computed by the module (e.g. the capital and operating cost of a reactor).

Numerical solver component: Here, CO has focused on the solution algorithms
tha t are necessary for carrying out steady-state and dynamic simulation of
lumped systems. In particular, this includes algorithms for the solution of large,
sparse systems of non-linear algebraic equations (NLAEs) and mixed (ordinary)
differential and algebraic equations (DAEs). Algorithms for the solution of the
large sparse systems of linear algebraic equations (LAEs) that often arise as sub-
problems in the solution of NLAEs and DAEs have also been considered. CO has
introduced new concepts, such as models and the equation set object (ESO),
which is a software abstraction of a set of non-linear algebraic or mixed
(ordinary) differential and algebraic equations. The s tandard ESO interface
enables an access to the structure of the system, as well as to information on the
variables involved. The equations in any model may involve discontinuities.
Discontinuous equations in models are represented as state-transit ion networks
(STN). A formal presentation of numerical (solvers) methods is given in chapter
3.2..

Sequential modular specific tool component: A key part of the operation of
sequential modular simulation systems is the analysis of the process flowsheet in
order to determine a suitable sequence of calculation of the unit operation
modules. Thus, typically the set of units in the flowsheet is partit ioned into one
or more disjoint subsets (maximal cyclic networks, MCNs), which may then be
solved in sequence rather than simultaneously ("ordering"). The units within

314

each MCN are linked by one or more recycle loops while calculations involving
them are converged via the identification of appropriate "tear streams" and
through iterative solution techniques. The above tasks are typically carried out
using a set of tools tha t operate on the directed graph representat ion of the
flowsheet. CO has defined s tandard interfaces for the construction of these
directed graphs, and for carrying out partitioning, ordering, tearing and
sequencing operations on them.

Organising services: logical view: We study now the s tandard from the logical
view. The s tandard has a large scope and already defines an important number of
interface classes. Fur thermore this number will increase along the standard life
cycle. As the interface is a s tructural element, which is too small in a real system
such as CO, the s tandard uses extensively the package concept, which acts as a
grouping element. A package forms a logical set of related interfaces with high
internal coherence and low external coupling. The division in packages brings
many advantages such as an easier management of the system complexity, an
improvement of the maintainabi l i ty and the life cycling. Coherence and
independence are the fundamental principles in order to organise the structure of
CO packages. It is interesting to notice that a logical package does not assign
automatically a corresponding physical component. This is the case for CO where
services of a CO component are specified through several packages. When one
package, acting as a "client", uses another, acting as a "server", to supply needed
services, the client package is said to be dependent on the server package. The
structural model of analysis i l lustrates the dependencies between CO packages.
The next figure only displays second level package dependencies (CapeOpen
package being the "mother" package).

Figure 4 Package dependencies

The business and common interface folders of the CO formal documentation set
contain all the specifications that is under the package CapeOpen.

315

The logical view that contains the design view and its related structural
organisation can be seen as abstract since it remains middleware independent.
The implementation specification folder of the CO formal documentation set
encloses the design of CO system applied to COM and CORBA. The standard files
for COM and CORBA platform are respectively CAPE-OPEN.tlb and CAPE-
OPEN.idl knowing that they are distributed as a whole. CAPE-OPEN.tlb is a
type library (a compiled version of the Microsoft IDL source) required by the MS-
Windows operating system. CAPE-OPEN.idl is a file expressed in OMG IDL. No
corresponding compiled version is provided because that would be a strong
contradiction to the CORBA objective of implementation independence.

4.4.3.4 Example 1: CO unit opera t ion

In order to illustrate an open interface specification, this section gives some
information on a CO unit operation component. The complete data can be found
in the CO formal documentation set. The unit operation open interface
specification document from the business interface folder is the central
contribution.

To look at this specification we will follow the different phases defined by the CO
development process through UML diagrams and parts of specification code. No
information will be supplied on the implementation and validation phases.

Analysis: This specification describes the unit operation (UO) component of the
CO System. The CO unit operation deals with straightforward unit operation
using regular fluids in a sequential modular, steady-state simulator. It makes
use of a physical properties interface. This behaviour is currently extended to
deal with equation-oriented simulation mode and dynamic simulation but this
has not been validated yet and so does not belong to the current CO standard.

The next figure shows the type of information passing through public unit
parameters and the transfer of stream information between a sequential modular
simulator and a CO UO. It describes a part of the system behaviour.

The global variables are essential for the calculation of heat and mass balances
(e.g. stream temperatures, ...). They have mandatory names across all CO
interfaces and are included in the CO standard. These variables are visible
across all CO components.

The public unit parameters (PUPs) are used for control/optimisation (sequential
modular simulators) and custom reporting. They are internal variables of a CO
UO and are named and made accessible to CO interfaces. Their names are not
part of the CO standard. PUPs can also be identified as "read only" if they are
calculated by the UO and therefore should not be changed (otherwise a CO error
is raised).

316

�9 T h e l a t e s t v a l u e s o f i n p u t g l o b a l t m d P U P s w e r e q u e s t e d b y a n d derivativecdculatior~ although, i fhedoes , his UOwi l lbemore

s u t ~ i e d to the UO. versatile and marketable.

�9 The UO calculates new values o f the output global variables and �9 Derivaave values are passedto the host ~imulator.

PUPs arxl passes them to the host sirmdator. �9 During the solulion o f the UO, repeated t ~ s i c a l protx'rly

�9 Requests f o r derivatives at UO solution arepassed to the UO, i f requests a n d ~ e s will occur.

required However, UO supflier is not forced to provide.

Figure 5: Some requirements on Unit Operations

Then the user requirements are expressed as a use case model. It identifies the
"users" of the system, called actors, and describes in terms of use cases what they
wish the sys tem to do. It also identif ies the boundaries of the system, which here
is a unit operation model of a steady state, sequent ia l modular process simulator.
Different use cases categories and priorities are described. Actors are defined
such as a f lowsheet builder, a f lowsheet user, a f lowsheet solver or a s imulator
executive. One must notice that some actors are h u m a n ones whi le other are
software ones. The two next figures present a reduced use case map and the
description of a use case. Note that the actor f lowsheet user usual ly interacts
wi th the CO unit operation through a graphical user interface provided by the
PME. The use case "evaluate a unit" is executed w h e n the user runs the
f lowsheet . The f lowsheet solver actor is responsible for the f lowsheet to converge
by adjust ing the variables in order to reach a specified value criterion.

Figure 6 Reduced use case map

Evaluate unit
Actors: <Flowsheet User>, <Flowsheet Solver>
Priority: <High>
Classification: < Unit Use Case>, <Specific Unit Use Case>
Status: < This Use Case is fulfilled by the following methods:
Calculate>
P re-conditions :
< [Add Unit to Flowsheet] has been used and successfully passed>
< The input and output ports (material, energy or information) have
been connected>
Flow of events:
The unit is requested to calculate its required results. The
Fiowsheet Solver tells the unit to calculate. The unit then requests
its unit ports to get its input stream data using the [Get Input
Material Streams from Input Ports] and [Get Input Energy Streams
from Input Ports] Use Cases, as well as the current values of any
required Public Unit Parameters (including its own) using the [Get
Values of Public Unit Parameters Through lnput Ports] Use Case.
I f some specific data has been provided by the Flowsheet Builder,
but has not yet been retrieved by the unit, the unit gets this specific
data. The unit then attempts to perform its calculations. It may also
make several requests for physical property ...
Post-conditions:
< The unitfinished its calculations successfully or not>
Exceptions:
< The unit may not solve successfully>
~ubordinatr Use Cases:
[Therm o: Request Physical Properties]
...

Figure 7 Use case description

Design: The CO unit operation design model is described by a combinat ion of text
and U M L diagrams so as to display the solutions derived for the requirements
expressed in the previous section. The relevant UML diagrams are the interface,
state and sequence diagrams. In this section, we propose some fundamental
d iagrams as an i l lustration.

Within the content of the CO package Unit , the following types are defined:

317

four interfaces (ICapeUnit, ICapeUnitPort , ICapeUnitCollection,
ICapeUnitReport) and their corresponding arrays, two ordered lists of identifiers
(CapePortType, CapePortDirection) and their corresponding arrays.

[] ICapeUnit is the key interface and handles most of the interaction.
[] ICapeUnitPort provides access to a unit port. This in tu rn gives access to

material, energy and information s t reams provided by the PME.
[] ICapeUnitCollection provides a means of merging lists of entities such as

parameters and ports.
[] ICapeUnitReport provides access to the reporting facilities. This is a basic

design in the Unit package. The reporting facility is a candidate as a common
interface specification for next releases of the standard. This interface could
be removed from the Unit package in the future, being replaced by a link to
the Reporting package.

Figure 9 is a simplified interface diagram for the Unit package. This diagram is
abstract which means tha t it is independent of any middleware implementation.
The Connect operation description, provided in Figure 9, i l lustrates how each CO
operation is detailed.

Figure 8 Interface diagram Figure 9 Description of an operation

The sequence diagram that captures t ime-oriented dynamic behaviour is greatly
employed within all interface specification documents in order to show
interactions organised around CO interface objects and their links to one
another. The following figure proposes a possible scenario when the Flowsheet
User manipulates a CO compliant unit operation through a PME. However let us

318

note tha t this scenario i l lustrates only some messages among all the necessary
interactions such as to add, create, edit, report, save and restore unit.

Figure 10 Manipulate unit
Specification: From the previous section, the implementat ion specifications are
wri t ten for the Microsoft COM and OMG CORBA distr ibuted computing
platform. Due to differences between these two platforms, it is not surprising to

319

get two codes, which are not so similar even if they come from the same abstract
design model.

Below you can find Microsoft IDL code lines and OMG IDL code lines. These
examples are based on the ICapeUnitPort interface and are extracted from the
files CAPE-OPENv0-9-4.tlb and CAPE-OPENv0-9-4.idl in the implementation
specification folder. From these extracts, we can notice the different approaches
especially in regards to the inheritance scheme and the error handling.

[
object,
uuid(ICape UnitP ort_IID),
dual,
helpstring("ICape UnitP ort Interface"),
pointerdefautt(unique)
]
interface ICapeUnitPort: 1Dispatch
(
//Exceptions : ECapeUnknown, ECapeFailedlnitialisation
[propget, id(1), helpstring("type of port, e.g.material, energy or information")]
HRESUL T type([out, retval] CapePortType* portType) ;
//Exceptions : ECapeUnknown, ECapeFailedlnitialisation
[propget, id(2), helpstring("direction of port, e.g. input, output or unspecified')]
HRESUL T direction(lout, retval] CapePortDirection * portDirection) ;
//Exceptions : ECapeUnknown, ECapeFailedlnitialisation
[propget, id(3), helpstring("gets the objet connected to the port, e.g. material,
energy or information')]
HRESUL T connectedObject([out, retval] Capelnterface * connectedObjec O;
//Exceptions : ECapeUnknown, ECapelnvalidArgument
[id(4), helpstring("connects the port to the object sent as argument, e.g.
material, energy or information")]
HRESUL T Connect([in] Capelnterface* objectToConnect) ;
//Exceptions : ECapeUnknown
[id(5), helpstring("disconnects the port")]
HRESUL T Disconnect O;
1:

Figure 11 Implementation specification
for COM

interface ICape UnitPort :
Common: :Identification: : ICapeldentification {

CapePortType GetTypeO raises
(Common: :Error: : ECape Unknown
Common: :Error: : ECapeFailedlnitialisation) ;

CapeP ortDirecti on GetDirecti onO raises
(Common: :Error: : ECape Unknown,
Common: :Error: : E CapeFailedlnitialisation) ;

Thrm: : Cose : : ICape ThermoMaterialObject
GetConnectedObject 0 raises
(Common: :Error: : ECape Unknown,
Common: :Error: : ECapeFailedInitialisation) ;

void Connect(in Thrm: :Cose: : ICape ThermoMaterialObject
matObj) raises
(Common: :Error: : ECape Unknown,
Common: :Error: : ECapelnvalidArgument) ;

void Disconnect 0 raises
(Common: :Error: : ECape Unknown) ;
l:

Figure 12 Implementation
specification for CORBA

4.4.4 EXAMPLE OF USE

This example is reproduced by kind permission of the Global CAPE-OPEN's
Interoperability Task Force team led by BP. It uses excerpts of an
interoperability scenario developed by this task force.

Initially intended to test the specifications and to achieve the necessary steps
towards full interoperability of CO-compliant unit operations and thermo
components, the scenario also demonstrates the use of the CO interface
specifications in current implementations.

The scenario lists actions and situations that would arise during typical day-to-
day use of CO simulation components and CO-compliant Simulator Executives
(COSE's). It is primarily concerned with the simulation user's actions, however it
also lists software actions that are hidden from the user. Any specific
implementation suggestions are included solely for the purposes of illustration.

320

Software actions are marked in italic style. These actions generally correspond to
calls to CO interfaces, shown in computer l i s t i n g s tyle . We only show the
methods invoked at each step, not their parameters .

For the purposes of this exercise, the following assumptions are made:
The CO unit component used in the tests is a mixer/splitter.
All streams, both inlet, outlet and internal, have the same mater ia l template.

Add a CO Unit to the Flowsheet

User selects a CO mixer-splitter from a palette of unit operations and places it on
the flowsheet.

COSE asks the unit to initialise itself. (I C a p e U n i c : : I n i t i a l i z e ())

The user selects or creates the streams and requests the COSE to connect them
to the ports of the unit, preferably in a way consistent with the rest of the
flowsheet. (ICapeUnit : : GetPorts () , ICapeUnitCollection : : Item () , ICapeUnitPort ::
GetType () , ICapeUnitPort : :GetDirection () , ICapeUnitPort : :Connect ())

Enter Unit Specific Data

The COSE requests the unit for a user interface (UI). I f a UI is available, it is
displayed. I f not, the COSE could attempt to construct one from the unit's list of
Public Unit Parameters, or report to the user. (ICapeUnit::GetParameters(),
ICapeUnitCollection: : Item() , ICapeParameter : :GetValue () , ICapeParameter: :GetM
ode(), ICapeParameter: :GetSpecification())

User inputs data, including selection of final and monitor reports.
(ICapeParameter: :SetValue () , ICapeUnit: :GetReportObject () , ICapeUnitReport : :G
etReports() , ICapeUnitReport::SetSelectedReport())

When the input is complete the unit checks its parameters for validity and
consistency and reports any errors.
(ICapeUnit: :Validate() , ICapeUnit: :GetValStatus())

Make Simulation Run

User asks the COSE to calculate the fiowsheet.
COSE asks the unit for the reporting options chosen by the user and acts
accordingly during the simulation run. (zcapeunic: :GeCReportObject (),
ICapeUnitReport : : GetSelectedReport ())

COSE asks the unit to calculate itself. (ICapeUnit::Calculate0)

The unit retrieves the materials associated with its streams by requesting them
from its ports. (ICapeUnit : :GetConnectedObject ())

321

The unit creates a n internal material object. This is to contain the mixed feeds.
The unit may create an internal array to contain the mixed composition. This is a
possible way to minimise calls to the material object to set compositions.
(ICapeThermoMaterialTemplate : : CreateMaterialObject ())

The unit requests the mixed stream and all the outlet streams to postpone
calculation of their internal states until it has finished defining the compositions
and conditions.

The unit retrieves the component flows of each feed from the associated materials
and adds them to the mixed stream composition array. When complete, the
composition is assigned to the mixed stream material object.
(ICapeThermoMaterialObj ect : :GetNumComponents () ,
ICapeThermoMaterialObject : :GetProp () , ICapeThermoMaterialObj ect : : SetProp ())

The unit fetches the enthalpy from each feed material object, sums them and adds
the specified heat input. The total enthalpy is assigned to the mixed stream.
(ICapeThermoMaterialObj ect : : GetProp ()) , ICapeThermoMaterialObj ect : : SetProp ()
)

The unit sets the pressure of the mixed stream to the m i n i m u m of the feed
pressures.
(ICapeThermoMaterialObj ect : : GetProp ()) , ICapeThermoMaterialObj ect : : SetProp ()
)

The unit asks the mixed stream
(ICapeThermoMaterialObject : :CalcProp ())

to calculate its temperature.

The unit assigns molar and enthalpy flows to the output streams in accordance
with the specified split factors. (ICapeThermoMater• : : SetProp ())

The unit assigns the composition of the mixed stream to the output streams.
(ICapeThermoMaterialObj ect : : SetProp ())

The unit assigns the pressure of the mixed stream to the output streams.
(ICapeThermoMaterialObj ect : : SetProp ())

The unit requests the output streams to calculate their temperatures.
(ICapeThermoMaterialObj ect : : CalcProp ())

Exit COSE
User saves the s imula t ion .
User exits from the COSE.

Rerun Simulation
User opens the COSE.
User reques t s the COSE to load the s imulat ion.

322

COSE detects any changes in the CO components and reports to user.
User makes any edits necessary.
COSE repeats the Simulation Run.

Use a CO Property Package
User creates a CO property package, using a CO-compliant property system,
which registers the CO property package.
(ICapeThermoSystem: : GetPropertyPackages ())

User selects the CO property package in the COSE and assigns it to a unit
component in the simulation. (ICapeThermoSystem: :ResolvePropertyPackage ())

User Reruns Simulation.

User repeats these actions with the same CO property package assigned to the
whole simulation.

User repeats these actions, but first introduces a CO thermodynamic method
component, e.g. SRK, into the CO-compliant property system, before creating the
CO property package for use in the simulation.

The scenario was successfully demonst ra ted in several occasions using
commercial versions of Aspen Plus / AspenProperties and Hysys. A video file of
the software demonstrat ion can be downloaded from the CO-LaN website, see
reference.

4.4.5 N U M E R I C A L SOLVERS IN THE C A P E - O P E N SYSTEM

This section deals with the numerical solvers within the scope of the CO open
architecture framework. Thus it will allow you to identify what the CO system
can or cannot do for you whatever you are a numerical tools supplier or a user of
these algorithms.

The features of the CO solver f ramework will be described. Then the analysis and
design of this framework will be done. Finally some tools built on this framework
will i l lustrate this section.

323

4.4.5.1 O v e r v i e w and f e a t u r e s

The CO numerical solver framework has focused on the solution algorithms that
are necessary for carrying out steady-state and dynamic simulation of lumped
systems. In particular, this includes algorithms for the solution of large, sparse
systems of non-linear algebraic equations (NLAEs) and mixed (ordinary)
differential and algebraic equations (DAEs). Algorithms for the solution of the
large sparse systems of linear algebraic equations (LAEs) that often arise as sub-
problems in the solution of NLAEs and DAEs have also been considered.

A technical difficulty encountered in this context is the large amount of
information that is necessary for the definition of a system of non-linear
equations. In fact, this amount increases as more and more sophisticated solution
algorithms are being developed. For instance, most modern codes for the solution
of large DAE systems require information on the sparsity structure of the system,
as well as the ability to compute both the residuals and the partial derivatives of
the equations. Even more sophisticated codes need further information on any
discontinuities that may occur in the DAE system, the logical conditions that
trigger these discontinuities and so on.

To overcome the above problem in a systematic manner, the CO standard has
introduced new concepts, such as models and the equation set object (ESO) which
is a software abstraction of a set of non-linear algebraic or mixed (ordinary)
differential and algebraic equations. The standard ESO interface allows access to
the structure of the system (i.e. the number of variables and equations in it, and
its scarcity pattern), as well as to information on the variables involved (i.e. their
names, current values and lower and upper bounds). It also allows the ESO's
clients to modify the current values of the variables and their time derivatives,
and to request the corresponding values of the residuals and part ial derivatives
(Jacobian matrix) of a subset or all of the equations in the system.

The equations in any model may involve discontinuities (e.g. arising from
transitions of flow regime from laminar to turbulent and vice versa, appearance
and/or disappearance of thermodynamic phases, equipment failure and so on).
Discontinuous equations in models are represented as state-transit ion networks
(STN). At any particular time, the system is assumed to be in one of the states in
the STN and its t ransient behaviour is described by a set of DAEs, which is itself
an ESO. Transitions from one state to another occur when defined logical
conditions become true; the model interface provides complete access to the
structure of these logical conditions as well as allowing their evaluation. Such
information is essential for the implementation of state-of-the-art algorithms for
handling of discontinuities in dynamic simulation.

Any CO compliant code for the solution of systems of LAEs, NLAEs or DAEs
provides a "system factory" interface. Typically, client software starts by creating

324

a model tha t contains a complete mathemat ica l description of the problem being
solved. It then passes this model to the appropriate system factory to create a
"system" object tha t combines an instance of the solver with the model to which
the solver will be applied. The system object then provides appropriate operations
for solving the problem completely (in the case of a NLAE system) or advancing
the solution over time (in the case of DAEs).

The pr imary aim of the introduction of the ESO and model concepts is to support
the operation of CO compliant non-linear solvers. However, an important side
benefit is tha t ESOs also provide a general mechanism for PMEs to expose the
mathemat ica l structure of models defined within these PMEs. Thus, it may fulfil
the role of "model servers" providing the basis for the development of new types
of model-based applications beyond those that are supported by the PMEs
themselves.

4.4.5.2 Analysis, design and specification

Analysis

The Numr package is subdivided into four packages:

[] The Solver package focuses on the solution algorithms for the solution of large
and sparse systems of linear algebraic equations (LAE), non linear algebraic
equations (NLE) and mixed differential and algebraic equations (DAE).

[] The Eso package contains the ESO concept (which is an abstraction
representing a square or rectangular set of equations). These equations define
the physical behaviour of the process. An ESO is a purely continuous
mathemat ica l description: the equations remain the same for all the possible
values of the variables.

[] The Model package introduces the Model object to embody the general
mathemat ica l description of a physical system. The fundamental building
block employed for this purpose is a set of ESO. A Model may additionally
encompass one or more STNs.

[] The Utility package contains the public parameter concept which allows some
customisation of each CO Solver component.

The following package diagram details the various dependencies between the
Numr packages. The black arrows within the picture display the relations that
are in the CO scope. The s tandard defines the services proposed by the Solver
components. Currently the way one builds an Eso or a Model within any PME, or
accesses them, is not s tandardised by CO. This task is left to the flowsheeting
tool suppliers. However the publication of services to the Solver component is CO
standardised.
So, software suppliers, industrials and academics can provide CO compliant
Solver, or call numerical services from any CO compliant PMC.

325

Figure 13 Numerical package dependencies

Design

The Solver package, which is responsible for driving the resolution of the problem
using all the information from the Model and the Eso, contains the five following
interfaces:

[] ICapeNumericSolverManager acts as a factory and creates any kind of solver
for a specific ESO from a specific type, linear, non-linear or differential.

[] ICapeNumericSolver is the base interface of the solver hierarchy and so
defines general facilities for identifying the various algorithmic parameters
that are recognised by a numerical solver, for altering their values if
necessary.

[] ICapeNumericLASolver defines facilities, which are specific to solvers of LAE
systems. No specific methods have been defined for this kind of solver. It is
assumed that the Solve method gets the A matrix and the b vector of the
A. x = b system using the already defined methods.

[] ICapeNumericNLASolver defines facilities, which are specific to solvers of
NLAE systems. It defines methods that allow obtaining and setting
convergence tolerance and the number of iterations.

[] ICapeNumericDAESolver defines facilities, which are specific to solvers of
DAE systems. It defines methods that allow obtaining and setting relative
and absolute tolerance.

326

The next diagram displays the interface diagram of the Solver package and its
relationship with the Utility package.

Figure 14 Interface diagram of the Solver package

Specification

The open interface specification document on Numerical Solvers can be found in
the Business Interface folder from the CO formal documentation set. The
implementat ion specification for COM and CORBA system is enclosed in the CO
libraries such as CAPE-OPENv0-9-4.tlb and CAPE-OPENv0-9-4.idl.

4.4.5.3 Implementation and tools

The CO system being new no commercial product based on the CO numerical
solver framework is currently available on the CAPE market . Nevertheless we
can cite software prototypes from the academics. These tools are more or less
validated, they provide important implementat ion feedback and then they
promote proposals for future improvements for the benefit of the entire CAPE
community. Already they demonstrate all the advantages of this open software
architecture for the next generation of solver tools, such as great interoperability,
increased commercial viability for specific algorithms and (web-enabled)
distributed calculation.

327

As examples we can notify the non linear equation solver from RWTH Aachen
Germany and the NSP tool from LGC-INP Toulouse France. These components
are compliant with the CO system for solvers. According to the previous analysis
and design, they realise the Solver package depending on the Model and Eso
packages. Following the CO architecture for CORBA system, they act as
numerical servers through the Object Request Broker, employ the Identification
Common Interface and follows the CO Error Handling strategy. Obviously, these
software are separate processes that can be used on a single machine, or across
the network within an internet-based enterprise business system.

A PME application, which is compliant with the CO standard, can bind to them
in order to resolve its process mathematical model. Some basic CO compliant
PMEs have been developed in order to validate the framework, they interact with
the above CO solver components playing some test cases such as isothermal flash
and Raleigh distillation. In this way they implement and supply the Model and
the Eso interfaces. The next figure illustrates the physical view of these CAPE
applications. The two components, PME and Solver PMC, can be on the same
host or on a remote host.

Figure 15 Component diagram

The non linear equation solver from RWTH Aachen comes from the migration of
a non linear equation solver developed in FORTRAN into a CO solver component
based on the CORBA system. The algorithm NLEQls from the Konrad-Zuse-
Zentrum fiir Informationstechnik Berlin has been used as the underlying
implementation.

The NSP (Numerical Services Provider) application combines Java and C/C++
codes as well as Fortran 77 legacy codes thanks to the wrapping technique. It
supplies the LAE, NLAE and DAE objects, jointly to the configuration parameter
objects.

328

The linear algebraic solver is the result of the wrapping of a FORTAN solver.

The non-linear algebraic solver deals with the system F(x)=0. It relies on the

Newton-Raphson algorithm and profits from the previous linear solver for solving

~x

The differential algebraic equation solver manages the system F t,x,--~ =0. Its

strategy is based on the Gear method with variable order and step.

4.4.6 PHYSICAL P R O P E R T I E S DATABASES IN THE CAPE-OPEN
SYSTEM 1

A physical property data base (PPDB) is an abstract model for all types of
collections with thermophysical property data and with parameters of models for
calculating thermophysical property data that have been taken from the
literature, have been measured or processed in one's own laboratory or have been
obtained from other sources. Such a database can be implemented in a variety of
physical manners. It can be a relational database, an online service, or a neutral
file.

A PPDB consists of data tables, which have a header with the definition of the
properties and their units and a body with the numerical values. There is no
distinction between dependent and independent variables. Each table is linked to
a mixture description and a set of bibliographic specifications.

A PPDB can contain any type of data. However, all properties must fit into a
catalogue of properties. This catalogue is part of the CAPE-OPEN standard. It
also contains a list of calculation methods, for which model parameters are
stored, and the exact form of their equation. This catalogue makes the whole
s tandard very flexible, because additional properties can be added easily, and
this means, that the s tandard will evolve.

In principle, a PPDB can contain any type of pure compounds and mixtures with
any state of aggregation: organic, inorganic, plastics, materials (metals and
alloys), and emulsions. However, in the first stage of standardization, there is a
restriction to regular chemicals. A "regular chemical" is defined as a substance
that is listed in one of the registers of the Chemical Abstracts Service
(Columbus, Oh, USA) and has a Chemical Abstracts Registry Number (CAS-
number). But the standard also accepts substances having no CAS-numbers. For

This section uses selected text from the 1.0 CAPE-OPEN PPDB interface specification, authored by H. Langer et al.,
available on www.colan.org.

329

these substances a special enumerat ion scheme is developed. Especially technical
mixtures like mineral oils, heat t ransfer fluids or victuals (food) have to be taken
into account. They should be t reated as "pseudo-compounds".

Because a PPDB can have any internal structure, there must exist a general
interface for linking PPDBs to user programs tha t is independent of the internal
structure of the PPDB.

The internal implementat ion of a PPDB interface-set may be complicated,
because there are so many different types of PPDBs, but it is not of interest for a
client. He needs to see only two objects with the following access methods.
1. a catalogue of the available data bases

[] display contents of catalogue
2. an object representing a PPDB

[] opening a data base
[] closing a data base
[] list of available compounds
[] list of dictionary information, e.g. available journals or stored properties
[] search for properties
[] obtain overview of tables found
[] fetch numerical data and experimental errors contained in found tables
[] fetch model parameter contained in found tables
[] fetch chemical mixture belonging to found tables
[] fetch bibliographic specification belonging to found tables

In order to keep this set of interfaces as simple as possible, model parameters are
in many aspects t reated as property data.

User programs have two different ways to use data stored in a PPDB:
1. Direct retr ieval of the data
2. Retrieval of models or model parameters , which can later be used for

calculation property values.

The main interfaces of the PPDB s tandard in CAPE-OPEN are:
[] IcapePdbdRegister, knows all about the different types of PPDBs, which are

accessible, and makes this knowledge available to the clients. The system
adminis t rator and not client users manage it.

[] IcapePpdb opens and closes the databases, and manages information about
their contents: structures, lists of properties and compounds, bibliographic
references;

[] ICapePpdbTables selects tables from the PPDBs and queries them for data;
two queries methods, simple and extended, are specified;

[] IcapePpdbModels queries PPDBs for models and models parameters , in a
similar way as IcapePpdbTables queries for compounds data; it also provides
simple and extended querying mechanisms;

330

Finally the PPDB specification needs definitions of properties, units, methods or
equations, phase equilibrium information, states of aggregation in order to
invoke the interface methods in unambiguous ways: these definitions are part of
the CAPE-OPEN standard.

4.4.7 CONCLUSIONS & OUTLOOK

There is no doubt tha t the CAPE-OPEN project was one of the most successful
s tandardizat ion projects of its kind. The obstacles to success were many and in
other enterprise software domains, such as Enterprise Resource Planning (ERP),
where similar integration problems were faced, solutions to connect competitive
systems such as Baan and SAP, emerged as commercial products from companies
such as WebMethods, Extricity, IBM and Vitria. The CAPE-OPEN standard
benefited all members, enabling them to have a hands-on and collaborative
approach to solving CAPE integration problems that they would have never been
able to solve alone.

One of the key reasons why the CAPE-OPEN project was successful was that
there was tremendous t iming between the software technology curve, the
problems faced by engineers designing plants and processes, and the maturi ty of
the CAPE software markets . The collaborative nature of the project provided
huge benefits to all of the players.

The key to the future of s tandards in process engineering and plant design will
be how well these open collaboration processes are fostered and developed across
emerging technologies and business processes. The first step was taken with the
establ ishment of the CO-LaN, an online collaboration to further develop and
refine process-engineering standards. Success in the future for CO-LaN will
continue to be measured by how well the CO-LaN bridges the gap between
engineering business problems and software technology. Design in general, is
playing an increasing role in the business processes of large global corporations,
and is being looked to for bottom line results. Consortiums such as Industria, in
the process industry and Converge in the semi-conductor industry have been
heavily funded to create seamless solutions that link the design process with
procurement processes.

Jus t like a company, and like the CAPE-OPEN project, the more valuable the
CO-LaN is to its members, the greater the outlook for success. Increased
collaboration across process industry s tandards organizations will provide huge,
and more importantly, measurable business process benefits to all members. CO-
LaN will ul t imately be measured by the value it brings to its members and how it
solves new problems, integrates new technologies, ideas and goals.

331

Finally, the fact is that people set standards, not organizations. Consensus
required across disparate and many times competitive companies is not a trivial
feat. Strong leadership, and commitment from many talented individuals
combined with a truly open forum of communication led to the establishment of a
lasting CAPE-OPEN standard and innovation over fear.

4.4.7.1 CO-LAN

The CAPE-OPEN standard is now under responsibility of the CAPE-OPEN
Laboratories Network (CO-LaN), a not-for-profit user-driven organisation for the
testing and management of the CAPE-OPEN standard. CO-LaN also helps to
facilitate implementation of standard interfaces in commercial software. The
missions of the CO-LaN are:

[] User priorities for CO standards: work with software vendors to clarify user
priorities for process modelling software component/environment
interoperability and also to promote communication and cooperation among
CAPE software vendors to insure that the CO standards actually translate
into commercially valuable interoperability;

[] Exploitation and dissemination: promote the CO standard to end-users and
distribute CO information and technology internationally;

[] CAPE-OPEN specifications life cycle management: organise the maintenance,
evolution, and expansion of the specifications;

[] Testing, interoperability facilitation: supply compliance testers to support
development of components, organise interoperability tests between suppliers
of PMCs ~rocess Modelling Components) and PMEs (Process Modelling
Environments)

[] Training/Migration facilitation: ensure that training modules, guidelines and
tools to facilitate component wrapping are developed and available.

Activities of the CO-LaN are extensively presented
www.colan.org. Membership is organised in two categories:

on its web site,

[] Full members are end-user operating companies: companies who use CAPE
tools in their business activities and can be considered as end-users of the CO
standard. These are mainly operating companies, process licensing
companies, and (not academic) research institutes. End-user organisations
pay membership fees. These full members drive the society.

[] Associate members are all others: software suppliers, universities,
individuals, governmental organisations, etc. These associate members do not
have to pay membership fees (but they can always make donations), and have
no voting rights. They do, however, participate in the society's activities.

332

4.4.7.2 Future d e v e l o p m e n t s

It is obvious that the CO standard is an evolutionary system. Among other
activities, the CO-LaN consortium is in charge of managing its life cycle. The
main actions, which could result in a powerful development of the standard, are
listed below. Some of them already started but are not finalised when this book is
written.

At the technical architecture level, many technologies are or will be studied such
as EJB, COM+, the .NET and Web Services facilities, CORBA 3 (with its
associated CORBA Component Model). Tools such as compliance testers, wizards
for CO component development, and a repository for the standard management
are part of the current work in progress.

New business interface specifications are integrated in the 1.0 release of the
standard, including physical properties of petroleum fractions, chemical
reactions, the above mentioned physical property data base interface, distributed
parameters systems, parameter estimation and data reconciliation, optimisation
of linear and non linear systems, discrete and hybrid unit operation, connection
to real time systems. This version also includes common interface specifications.
New implementation specifications according to the previous evolutions will be
available.

The CO-LaN will produce an updated formal documentation set identified by
increasing version numbers of the standard. This way, the CAPE-OPEN
standard will be increasingly reliable, complete and in line with the most up-to-
date computing technologies.

4.4.8 REFERENCE

[1] CO-LaN web site: www.colan.org

333

P a r t V: U s i n g C A P E - T o o l s

5.1 Applications of modelling: A case study from process design
M. Eggersmann, J. Hackenberg, W. Marquardt & I. T. Cameron

5.2 CAPE tools for off-line simulation, design and analysis
I. D. L. Bogle & D. Cameron

5.3 Dynamic simulators and operator training
D. Cameron, C. Clausen & W. Morton

5.4 Computer tools for discrete/hybrid production systems
L. Puigjaner, M.Graells,& G. V. Reklaitis

The chapters of this part highlight, through illustrative examples, the use
and~or application of the relevant frameworks (of Part III) and methods,
tools & standards (presented in Part IV) to the solution of interesting CAPE
problems. It also presents what are the current computer aided tools
(process simulators, databases, design, etc.) that are currently available in
industry and academia. Contributors from academia as well as industry
who are regarded as world experts, have provided input to the chapters in
this part.

Chapter 5.1 (Eggersmann et al.) is devoted to the application of models in
process systems engineering. The introductory section gives a general
overview on model use in different application areas. The general problems
encountered during model construction and applications are discussed and
highlighted through a case study of model use during the design of a
process for polyamide6 production. The design process includes models
constructed with spreadsheet, flowsheeting and equation-based modelling
tools. After a thorough presentation of the models constructed during the
design the role of these tools as used to support the work process is also
analysed.

Chapter 5.2 (Bogle and Cameron) discusses the off-line use of CAPE Tools,
that is, the process to which the tools are to be applied either does not yet
exist, or it exists and on-line data are not readily available. Even though
almost all the tools discussed are applicable throughout the product and
process lifecycle, the discussion has been limited to off-line simulation,
design and analysis only. The discussions have highlighted the business
process (activities) in terms of research & development, conceptual design
& process synthesis, detailed process design and off-line analysis of
collected data.

Over the last two decades, dynamic simulation has matured as a tool for
training operators of capital-intensive and safety-critical equipment (such
as oil platforms, power stations and nuclear reactors). Dynamic simulators
(together with on-line systems) are perhaps the area of CAPE where user

334

requirements are most stringent. Chapter 5.3 (Cameron et al) describes
current practice for the use of dynamic simulators in the process industries
where a discussion of dynamic process modelling followed by a brief
historical overview of dynamic simulation in the process industries and
related areas is given. This is followed by a brief discussion of how and
where dynamic simulators can be used in the process lifecycle together with
a presentation of the requirements of a specific, but typical industrial
operation. Finally, the tools that are currently available are described.

Hybrid production systems include continuous as well as batch~discrete
process characteristics. Supporting computer tools for such systems should
therefore comprise software for steady state process simulation and
analysis, as well as support tools for the handling of batch process
dynamics and discrete decisions involved. Chapter 5.4 (Puigjaner et al.)
discuss the software tools for batch processes in terms of two broad classes.
The first class of tools involves modelling, simulation, and analysis of the
physico-chemical processes that take place during batch operations and
may be associated with the process simulation methodology. The second
class of tools is designed to support the decision processes at the different
managerial and operational levels of the plant operational hierarchy.
Puigjaner et al. review a representative set of tools from these two classes
that are available commercially.

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
(c3 2002 Elsevier Science B.V. All rights reserved. 335

Chapter 5.1: Appl icat ions of M o d e l l i n g - A Case Study from
Process Des ign

M. Eggersmann, J. Hackenberg, W. Marquardt & I. T. Cameron

This chapter is devoted to the application of models in process systems
engineering. The introductory section gives a general overview on model use in
different application areas. The general problems encountered during model
construction and applications are discussed. The main topic of this chapter is a
case study of model use during the design of a process for polyamide6 production.
The design process includes models constructed with spreadsheet, flowsheeting
and equation-based modelling tools. After a thorough presentation of the models
constructed during the design stage, the role of these tools as used in order to
support the work process is analysed.

5.1.1 PROCESS MODELLING APPLICATIONS

5.1.1.1 Application areas

Process modelling plays an extremely important role within the process
engineering lifecycle. That lifecycle consists of many interconnected steps ranging
from product conception through feasibility studies, conceptual and detailed
process design, operations and terminating with plant decommissioning. Modern
lifecycle analysis relies heavily on the use of a wide range of models, some
economic, others focused on environmental issues or plant design and
performance.

The application of models in process engineering is extensive and continues to
grow. Modelling is an application driven activity in that specific outcomes are
being sought from the modelling effort. The following table (Table 1) outlines
some important categories of model use covering key process engineering
activities together with an indication of typical outcomes expected from the
models. It is by no means exhaustive.

336

Table 1. Some key modelling application areas in process engineering
Application Area Typical model use

Process design Feasibility analysis of novel designs.
Technical, economic, environmental assessment.
Effects of process parameter changes on performance.
Structural and parametric process optimisation.
Analysing process interactions.
Design for waste minimization.

Process con t ro l Examining regulatory control performance.
Design of model-based control schemes.
Model predictive control.
(Dynamic) real-time optimisation.
Set-point tracking performance for batch operations.

Process operations Optimal startup and shutdown policies.
Scheduling of process operations.
Data reconciliation.
Fault detection and diagnosis.
Operator training simulators.
Trouble-shooting plant operations.
Environmental impact assessment.

Process safety Analysis of major hazards and their control.
Land-use planning and risk assessment.
Review of safety critical systems.

This chapter deals with modelling applications and in part icular shows the use of
modelling to address issues related to process design via spreadsheets,
t radit ional flowsheet modelling as well as specialized, tailored equation-based
models built on the unders tanding of the physics and chemistry of key unit
operations in the process.

In the next section we look at the challenges of industrial modelling and then in
subsequent sections the applications of these modelling issues to a process
system for polyamide6 production during conceptual design are discussed.

5.1.1.2 Chal lenges of industr ia l mode l l ing pract ice

Modelling within an industrial environment is a major challenge for process
engineers. There are many aspects of industrial processes that create substantial
difficulties for those who are modelling parts of the complete process lifecycle.
Here we touch on some of those important issues. More discussion on these issues
can be found elsewhere, e.g. Hangos and Cameron, 2001 or Foss et al., 1998.

A m o d e l l i n g m e t h o d o l o g y

Process modelling consists of an interconnected set of iterative tasks, which
direct the modelling effort (Hangos and Cameron, 2001). Amongst the key steps
are the s ta tement of the modelling goal, identification of key process
characteristics to be captured and the relevant system parameter values, model

337

building and solution, followed by model cal ibrat ion and validation. Inevitably,
the process modeller re turns to earl ier steps to refine, check, and improve the
model to meet the desired outcomes. In what follows we pick up on some relevant
issues for fur ther discussion.

Fit-for-purpose

The models, which are built or used, must tackle the goal for which they were
built (Minsky, 1965). This clearly puts the onus on the modeller to be clear about
what the model must represent and the types of behaviour the model must
mimic. A clear functional specification is essential before modelling begins,
otherwise, there is no means of determining when the modelling efforts have
reached a satisfactory conclusion. Too often an overly complex model is wri t ten
for what is a simple application task, resul t ing in lost time, unnecessary effort
and possibly major f rustrat ions for the modeller!

Understanding the system under study

In many cases we simply do not unde r s t and the underlying mechanisms taking
place within the process. We have a "partial" unders tanding . It is vitally
impor tant to the quality of our modelling tha t we elucidate the key mechanisms
within the system. In some cases the complexity is such tha t the modelling needs
to resort to "black-box" or empirical modelling aspects within a more
phenomenological framework. In reality, all process models we write are a
mixture of fundamenta l and empirical models - the so-called "grey-box" models.

In many industr ial-modell ing applications it is impor tan t to carry out specific
dynamic test ing ei ther at laboratory, pilot p lant or full-scale level. The aim of this
test ing can be two-fold. In the first case we might have little knowledge of key
mechanisms and we wish to verify the existence of a par t icu lar phenomenon or
the relative importance of a known mechanism. The second case relates to
obtaining key pa rame te r values within the model. These can sometimes be so
numerous tha t a sensitivity study on a pre l iminary model might be used to r ank
the importance of the pa ramete rs and thereby direct the effort of the pa rame te r
es t imat ion task.

Parsimony

This concept addresses the care we must take in having a model tha t does the job
with the min imum information content. The extremes are models tha t do not
contain enough detail to do the job to a model tha t contains every known system
mechanism tha t leads to unnecessary complexity. The challenge here is to
identify up-front the main mass and energy holdups as well as mechanisms such
as key reaction kinetics, heat, mass and momen tum t ransfers which need to be
captured in the model for its specific use. It is impor tan t to properly document

338

these underlying assumptions made about the system so tha t validation can be
performed efficiently. This usually means revisiting the original assumptions and
testing their appropriateness. Documentation still r e m a i n s a major priority in
industry (Foss et al., 1998).

Model val idat ion

The validation of process models is a non-trivial issue and one tha t is often done
poorly within industrial modelling practice. There are many challenges here for
the process engineer. Dynamic models are often the most difficult to validate and
the process data requirements to carry this out are extremely important.

The design of plant testing for validation is difficult and despite the best efforts
can be compromised by such problems as inadequate process excitation, poorly
calibrated sensors, failure of data-logging equipment and a range of errors from
sampling practice, gross data errors and laboratory analysis errors. Even after
extensive data t rea tment the subsequent model calibration and validation can be
a time consuming task. However, without adequate calibration and validation for
the intended range of application any model is suspect. Fur ther discussion on
this topic can be found in Romagnoli and Sanchez (1999).

5.1.1.3 Model l ing in Process Design

The specific model application area of this study is process design. Here we
discuss some of the key issues, which underpin the development, and use of
models within the design task.

The aim of process design is to construct a process tha t is optimal concerning
economics, environmental impact, and safety. To determine the optimal process,
several al ternatives consisting of different combinations of unit operations
employing a variety of physico-chemical phenomena must be examined. This
involves unders tanding and describing the behaviour and interactions of the unit
operations and phenomena. To this end experiments and mathematical models
can be employed.

The use of mathemat ica l models is preferred because of the possibility of
investigating more alternatives in a shorter t ime compared with an
experimentally based procedure. However the construction of models requires
experiments for parameter estimation and validation. In contrast with model
applications in process control there is no operating plant as a source of data.
Process design models are used to predict the behaviour of non-existent
processes.

During the design more and more information is generated about different
process alternatives and the investigations increase in their detail. This implies

339

the use of different models which range from very simple ones at the beginning to
highly sophisticated ones at the end of the design process (see Fig.l). The kind of
model depends on the information, which is available, and the purpose it is being
used for. Depending on the level of knowledge and detail, today different tools
such as spreadsheets, flowsheeting and equation-oriented tools are used for
modelling in an industrial setting.

Figure 1. Different models during process design.

Spreadsheet tools are used in the very early stages where only a limited amount
of information is available. Examples include rough balances, cost estimations,
calculating the economic potential, etc. They can be regarded as the pocket
calculators of today's engineers or as very simple flowsheeting tools with no
predefined models.

When the design proceeds and it has been determined which unit operations
might be used, flowsheeting tools are employed to investigate different process
structures. Modelling with flowsheeting tools is characterized by selecting and
connecting predefined model blocks. These blocks can then be parameterised to
describe the behaviour of the process the designer has in mind. The level of detail
is fixed by the model block and cannot be easily adjusted by the user.

In the latter stages of the design non-conventional equipment is often
encountered. These non-conventional units usually exploit a particular
combination of physical, chemical or biological phenomena to fulfil their function.
Therefore it is unlikely that a flowsheeting package will provide a suitable model
for such units.

340

There are many cases when standard models from flowsheeting tools and model
libraries are not applicable because most of them neglect spatial distributions or
assume equilibrium, etc. These simplifications might make it impossible to
describe the correct behaviour of non-conventional equipment or processes.

A new custom model must be developed in order to study the units under
different operating conditions as well as its interaction with other process
sections. To cope with the particular characteristics of non-standard units a
highly flexible modelling methodology is needed. A set of predefined model blocks
will always lack this flexibility. Therefore an equation-oriented approach is
usually employed for these tasks.

The next sections describe the use of different models in the course of the design
of a polyamide6 (nylon6) process. Knowing that modelling occurs in all stages of
the design life cycle, we focus our case study on the conceptual design phase and
describe the iterative process between the synthesis of a design and its analysis
by the use of mathematical models. Thereby we concentrate on the steady-state
models employed. Starting with very coarse models more and more detailed
models are used when the design advances and more information is becoming
available. In the next section, the polyamide6 process is described from a
workflow perspective, which takes into account the people involved, the tools
used, and their interaction (see also Chapter 7.1).

5.1.2 DESIGN CASE STUDY: POLYAMIDE6 P R O D U C T I O N

Polymers are materials whose molecular structure consists of long chain-like,
branched (and sometimes cross-linked) macromolecules, which are formed from a
large number of small monomeric molecules. During the polymerisation reaction
the individual monomers are interconnected to a chain.

Polyamide6 (PA6) is a thermoplastic polymer. The world production capacity is
currently about 3.3 million tons per year. The most frequent use of PA6 is the
production of fibres, which are used in home textiles, bath clothing and for carpet
production. In addition, PA6 is used, as an engineering construction material if
high abrasion resistance, firmness and solvent stability are required. Glass-fibre
reinforced and mineral material-filled PA6 is a preferred material if a
combination of rigidity, elasticity and refractory quality characteristics are
required.

The task of the case study is to design a process to produce 40.000 t/a of
polyamide6 via the hydrolytic route. The quality specification of PA6 is as
follows:

Q

�9 Residue ofe-caprolactam < 0.1%,

341

�9 Residue of cyclic dimer < 0.04 %,
�9 Residue of water < 0.01%,
�9 Relative viscosity in m-cresol of 2.7.

PA6 can be produced via an anionic and a hydrolytic reaction route. The anionic
mechanism is mainly used for special polymers (Hornsby et. al., 1994) whereas
the hydrolytic one is more often applied industrially. The structure of PA6 is
shown in Fig. 2. PA6 has two different end groups, namely an amide end group
and a carboxyl end group, which can react with each other to form longer polymer
chains.

H { N ~ C OH
o

Figure 2. Molecu lar s t ruc ture o f p o l y a m i d e 6 .

The hydrolytic reaction mechanism is described by Reimschiissel (1977) and Tai
et. al. (1982) and is the one investigated in this case study.

CL + H 2 0 (----) ACA (R1)

Pn +Pro ~'~ Pn+m +H20 (R2)

CL + 1~ e--> P.+I (R3)

CD + H 2 0 e-~ P2 (R4)

CD + 1~ <---> 1~ (R5)

It consists of three main reactions, which are the hydrolytic ring-opening (R1) of
e-caprolactam (CL) to form aminocaproic acid (ACA), the polycondensation (R2)
between two polymer chains (P), and the polyaddition (R3) of e-caprolactam to a
polymer chain. Reaction 4 is the ring-opening of the cyclic dimer (CD), which is
formed in an intramolecular reaction of a linear dimer (P2) (reverse of reaction 4);
and reaction 5 is, similar to reaction 3, the polyaddition of P2 to a polymer chain.
In order to control the molecular weight, an organic acid is often being used as
stopping agent and stabilizer. The carboxyl-end-group reacts with an amide end-
group and thereby one reacting end-group disappears.

The polymer produced has to fulfil certain requirements. The physical properties
depend very much upon the molecular weight and its distribution. Especially

342

when spinning the polymer to fibres, purity is a critical factor. Concentrations of
water, e-caprolactam, and cyclic oligomers must not exceed certain limits. These
aspects have to be covered by a mathematical model of the process.

In the course of the design process many different models are employed. These
star t from very simple ones and end with sophisticated ones. Models are a
necessary means to study a process' behaviour without having to conduct too
many experiments.

5.1.3 PLANT S T R U C T U R E

5.1.3.1 Input -output s tructure des ign

The above mentioned information has been collected in a l i terature search. This
information forms the basis for the following synthesis and analysis steps. At
first the input/output structure of the process is synthesized, as shown in Fig 3.

!

CL, H20 J
Process

1
Figure 3. Input-output structure.

PA6

This approach is consistent with the design methodology proposed by Douglas
(1988). After this synthesis a simple model is needed which allows calculating the
amount of PA6 produced from the flow rate of the raw materials. This model
only consists of simple mass balance and serves to calculate the approximate
amount of feed material needed in order to do a first economic evaluation. The
following rationale stands behind this model: When looking at the structural
formula of polyamide6 it can be observed that it mainly consists of e-caprolactam
repeating units. A molecule with a degree of polymerization of for example 100
has been formed from 100 molecules of e-caprolactam and one molecule of water.
Hence the amount of water can be neglected as a first estimate. A desired
production amount of 5000 t/h of nylon therefore requires the same amount of e-
caprolactam. This allows a first economic evaluation based upon the cost of feed
materials and the profits from the product. The calculated value of the necessary
e-caprolactam flow rate will be used as a start ing point in further calculations.
One may say that this is not yet a model but it has all the characteristics of a
model: a simplified, abstract view of a physical system.

5.1.3.2 Recycle s tructure des ign

After this analysis the design is refined into a number of major subprocesses. It is
known that due to the equilibrium reactions complete conversion of

343

e-caprolactam cannot be obtained. Therefore a separation of caprolactam and
water from the polymer is necessary in order to reach the required specification.
The separation is followed by a compounding step, in which fibers or additives
are added to the polymer. The resulting flowsheet is shown in Fig 4.

CL, H20

l
eL, H20 j Reaction J Separation

1 1

fibres~
i additives,

etc.

J Compounding PA6

Figure 4.. Recycle structure.

At this stage of the design process it is not reasonable to analyse the complete
flowsheet as not much knowledge exists about the reaction and the separation,
respectively. Therefore the process units are analysed and refined separately.
Because the separation strongly depends on the reaction, it is investigated first.

5.1.4 REACTOR DESIGN

The purpose of modelling and simulating the reactor is at first to understand the
reactions. The five simultaneous reactions prohibit an obvious understanding of
what is happening inside a reactor. Understanding the reactions means
comprehending the influences of different parameters such as conversion and
selectivity. Modelling different scenarios provides information, which leads to the
best reactor alternatives.

5.1.4.1 R e p r e s e n t a t i o n of molecu lar w e i g h t d i s tr ibut ion

When modelling polymerisation reactions, the representation of the molecular
weight is a major issue. Therefore different representation alternatives are
presented here. Unlike other substances, a polymer does not consist of one single
type of molecule but of similar molecules that are differing in their chain length.
In the case of polyamide6 a polymer chain can consist of up to several hundred
repeating units. Therefore a polymer can be compared with a multi-component
mixture occurring in petroleum processes. Different approaches exist on how to
model such systems. One solution is to represent every single component. A
decision has to be made about which is the longest molecule to be modelled. The
more molecules of varying molecular weight that are taken into account, the
more accurate are the calculations going to be, at the cost of a greater numerical
effort. For each molecule the chain building reactions have to be implemented.
This model can be simplified by grouping similar chain lengths into so-called
pseudo components. This reduces the number of components to be described.

344

Another possibility to represent the molecular weight and its distribution are
moments. For a definition and explanation of moments see Dotson et al. (1996)
and Ray (1972). Moments of molecular weight distribution allow calculations
with reduced numerical effort.

Before explaining the modelling of the reactor one model is necessary to
transform the polymer specification. This model is not related to the process but
to the material. The chain length distribution of the polymer determines its
properties, but cannot be measured directly. It is often correlated with the
viscosity of the polymer melt. Since the viscosity depends on the shear rate, a
common quality specification is the relative viscosity of the polymer in a solvent
(e.g. m-cresol). This property is not incorporated in the reaction model but has to
be transformed into a molecular weight. Respective equations can be found in
Saechtling (1995) and Reimschiissel and Dege (1971).

5.1.4.2 Se lec t ion of appropriate t h e r m o d y n a m i c mode l

As in any simulation problem in the area of chemical engineering an essential
step towards a realistic simulation is the choice of the right method for
calculating thermodynamic properties. It is not required for the equilibrium
model described below because this model only considers one phase but becomes
important as soon as two-phase-behaviour is modelled. The calculation of phase
equilibria is required for the calculation of mass and energy balances. Even if it is
not directly related to reactor modelling, it will nevertheless be explained here as
it first becomes important when the reactor shall be modelled in more detail.

Two general approaches exist: activity coefficient models (ACM) and equations of
state (EOS). ACMs correct the assumption of the ideal solution of Raoult's law by
introducing an activity coefficient, which depends on the temperature but not on
the system pressure. EOS describe the system pressure as a function of
temperature, molar volume and composition. These functions allow us to derive
most thermodynamic properties. The suitability of these different methods
mainly depends on the pressure of the system and the properties of the
substances. ACMs can be applied at low and medium pressure up to 10 bar and
also when the mixture contains polar components such as alcohols and water.
EOSs in contrast can be used at high pressures and temperatures because they
take into account the compressibility of liquids and even close to the critical point
of the occurring substances (Boki, 1999).

In the polyamide6-case the literature study shows that temperatures between
250 and 300 ~ and pressures below 10 bar are to be expected. The main
substances are e-caprolactam, water, ACA, cyclic dimer, and polyamide6.
Arguments for the use of ACMs are the presence of water as a polar component
and that the temperature and pressure ranges are far away from the critical
points. Possible ACMs, which are appropriate for mixtures containing polymers,

345

are Poly-NRTL, Flory-Huggins and UNIFAC. Poly-NRTL describes the phase
behaviour of polymer solutions with two binary interaction parameters for each
possible combination of substances. Flory-Huggins (FH) uses one interaction
parameter for the combination p o l y m e r - solvent. UNIFAC is based on molecular
structures, and needs group interaction parameters. Poly-NRTL covers wider
temperature and pressure ranges than FH and is more exact due to the
parameters being specific for each segment. UNIFAC is usable if molecular
parameters are not known but may not provide very accurate results. We
therefore decided to use the Poly-NRTL approach.

5.1.4.3 E q u i l i b r i u m mode l

The first model to analyse the reaction, which takes into account the different
reactions, is an equilibrium model (see Fig.5). In our case all reactions are
equilibrium reactions. The aim of this model is to unders tand the equilibrium of
the reactions and the effects of changes of temperature, pressure, and feed
composition on the molecular weight and the amount of side products produced.
For such a coarse model certain assumptions are justified: No kinetics are
considered but chemical equilibrium is assumed. This corresponds to a batch
reactor with infinite residence time. Evaporation is neglected and hence only one
phase is taken into account. With this model no s ta tements are possible about
reactor size or residence time. As the polycondensation reaction (reaction 4) is an
equilibrium reaction and high water content causes the reaction to proceed in the
reverse direction, i.e. the decomposition of polymer. This means tha t the final
water concentration in a reactor has to be below the calculated equilibrium
content. It can be seen that each initial water concentration corresponds to a
specific molecular weight. The less water is fed to the reactor, the higher is the
resulting molecular weight.

CL, H20

CL, H20 j Reaction J/
J Equilibrium

reactor

Separation

fibre s~
additives,
etc.

J Compounding PA6

Figure 5. Refinement of reaction section to an equilibrium reactor.

Mallon and Ray (1998) postulate a model for handling the effect of water, which
takes into account that the equilibrium constant of the polycondensation reaction

346

varies with the amount of water. Their aim is to develop a model, which is easy to
calculate, and comprehensive with a minimum of constants. To this end two
states of water are considered: bound (hydrogen bonded to the carbonyl group in
nylon polymer) and free (simply unbound water). Their results show good
agreement with experimental data.

5.1.4.4 C o n t i n u o u s s t i r r e d t a n k r e a c t o r

The equilibrium model assumes a reactor with infinite residence time or
respectively infinitely fast reactions. It does not account for different reactor
types. In the next step, the reactor is refined into a continuous stirred tank
reactor (CSTR) (see Fig. 6).

Figure 6. Refinement of reactor to a CSTR.

Modelling the reactor on a higher level of detail means constructing a kinetic
model of the CSTR. In a first step only this single reactor was modelled, with the
aim to understand the effects of different parameters on a single reactor. In
contrast to the equilibrium model this model allows the investigation of the
influence of reactor size and residence time. The aim of this model is to get
information about the relationships between reactor volume, feed rates,
conversion rate, and molecular weight. It takes into account reactions R1 to R5,
hence including the formation of the cyclic dimer as a by-product. Knowledge
from the equilibrium reactor, especially about the relations between feed
composition, reactor temperature and molecular weight were used during
simulations of the CSTR.

In our case study this model was implemented using Polymers Plus from Aspen
Technology (Polymers Plus, 2001). Even if in Polymer Plus a CSTR model already
exists, the specification of the model by the user can be considered a modelling
activity. A major task in creating the first model is to describe the reaction
scheme, which then can be used in other models, such as when the CSTR is being
replaced by another reactor type. In this model every reaction was specified three

347

times: unanalysed, catalysed by carboxyl end groups of polymer and by those of
aminocaproic acid. PA6 is being modelled as consisting of amino- and carboxyl-
end groups and repeating units. The reaction takes place between two different
end-groups, which can either lead to the formation of longer chains or, if the two
end groups belong to the same molecule, to a cyclic polymer. Equal reactivity of
the end groups is assumed. As this intramolecular reaction is unlikely for longer
polymer chains it is not considered for chains with a degree of polymerization of
three and above. Only the formation for cyclic dimer is incorporated into the
model. As mentioned above, the concentration of this cyclic dimer needs to be
minimized. No thermodynamic data are available about the cyclic dimer and the
aminocaproic acid. In the model they are considered as non-volatile. This
assumption can be justified by the fact that e-caprolactam has a boiling point of
268~ and that of CD with the same structure and twice the molecular weight
must be even higher. Aminocaproic acid (ACA) is an intermediate product that
only exists in very small concentrations (due to the kinetic constants). After it is
formed it is quickly consumed and can hardly evaporate due to the diffusion
barriers of the polymer. The liquid molar volume can be described using the
Rackett model. When modelling the reactor volume, Polymers Plus allows
different ways of describing the valid holdup phase. Two relevant possibilities are
vapour and liquid or only liquid holdup. The first gives improved results during
simulation but the second one results in less numerical and convergence
problems. Nevertheless the user has to be aware that the assumption of only a
liquid holdup phase may lead to wrong results, especially at low pressures, high
temperatures or large amounts of volatiles. The study of pressure influence is
only relevant if vapour and liquid phases are considered. A possible simplification
of this model would be to neglect the formation of cyclic oligomers, which would
reduce the complexity of the model but exclude any statement about the content
of cyclic dimer. Such a model only makes sense if the content of cyclic dimmer is
not important or sensitive to the study.

As e-caprolactam and cyclic oligomers in the polymer deteriorate the fiber-
spinning characteristics, their amount shall be minimized in the reaction.
Therefore the production of ACA and cyclic dimer must be represented in the
model of the reaction. Higher cyclic oligomers only occur in much smaller
concentrations and don't have to be considered. Details about modelling of higher
cyclic oligomers can be found in Kumar and Gupta (1997).

We decided not to model the influence of the controlling acid, as this is not yet
relevant at this stage of the design process.

Polymers Plus provides good functionality if s tandard phenomena are to be
modelled. The implemented model for polycondensation covers the different
reactions, the evaporation of light components and calculates the molecular
weight distribution (MWD). The MWD is only determined in terms of the zeroth
to second moments, which might not be sufficient for industrial applications.

348

There are no possibilities of computing the viscosity from the molecular weight.
Therefore it is not possible to determine the required mixing power of a CSTR.

5.1.4.5 P l u g f l o w r e a c t o r a n d r e a c t o r c o m b i n a t i o n s

In order to invest igate different reactor realizations the reactor is alternatively
refined to a tubula r reactor (see Fig. 7). This design has to be compared with the
CSTR. A characteris t ic difference between the two reactor configurations is the
residence time distribution: In the tubular reactor nearly every molecule has the
same residence time, whereas in the CSTR a molecule may leave the reactor
immediate ly after enter ing it. A model of the tubula r reactor must allow
determining the influence of operat ing conditions and reactor dimensions on
conversion and molecular weight. The modelling of the tubu la r reactor is done
using Polymers Plus because large par ts of the CSTR model can be reused. Once
the model of a single CSTR has been established, it can be easily extended to
describe a plug flow reactor (PFR) or combinations of these two reactors.
Therefore the complete reaction kinetics can be kept and only the reactor has to
be changed. Pa rame te r s like the size and the t empera tu re of the reactor have to
be specified. Due to the reaction equilibrium, reactor combinations have a similar
performance as a single reactor. The user does not have to deal with the fact tha t
a PFR in contrast to a CSTR is a distr ibuted system. Concentrations, pressure
and t empera tu re change over the length of the reactor, whereas in a CSTR
complete mixing is assumed. Polymers Plus handles these differences.

Figure 7. Refinement of the reactor to a PFR.

Polymers Plus offers different possibilities to model the t empera tu re in a PFR:
ei ther a constant tempera ture , a cooling liquid or an adiabatic reactor is
assumed. In the case of a cooling liquid, one out of three assumptions (constant
coolant tempera ture , co-current or counter-current coolant) can be selected.

349

5.1.4.6 S e p a r a t i o n b e t w e e n reac tors

Simulation studies with these models show that those reactor combinations serve
either to a t ta in polyamide6 with the desired molecular weight or an acceptable
conversion rate. It is not possible to reach both at the same time. High water
content leads to a high conversion of e-caprolactam but low water content is
necessary to achieve a high molecular weight. Therefore a first reactor shall be
operated with high water concentrations (to promote conversion) and a second
one with low water concentration (to allow a high molecular weight). These
considerations lead to the synthesis of a reactor section consisting of two reactors
and an intermediate separation to remove water. Hence the current design and
model should be extended by an intermediate water separat ion between two
reactors (see Fig. 8).

Figure 8. Refinement of the reaction to reactors with intermediate separation.

A first coarse model incorporates a simple splitter, which allows the analysis of
the effects of water separation but gives no prediction about a possible
realization. In the next refinement step a flash replaces this splitter. The flash
model provides information about the feasibility of the separat ion and the process
conditions. Problems of such flash calculations are related to thermodynamic
data of cyclic dimer and aminocaproic acid not being available and the high
viscosities of the polymer hindering the evaporation of volatiles. No statements
can be given about the feasibility of such a unit. The models of the reactors with
intermediate separation are implemented in Polymers Plus, as the former reactor
models can be reused. More detailed separation models do not exist in Polymers
Plus.

350

VK- tube

The literature s tudy leads to further possible refinement of the reactor design:
Industrially, the process is often performed in a so-called VK-tube (VK is derived
from the German ,,Vereinfacht Kontinuierlich" = simplified continuous) (Gfinther,
E. et. al., 1969), a vertical tube with a mixing section at the top and a plug flow
section below (see Fig. 9). e-caprolactam and water enter from the top and
polyamide6 leaves at the bottom. Water evaporates in the mixing section and
hardly enters the plug flow section. No predefined model exists in Polymers Plus
for this type of reactor, so a customized model has to be built with the aim of
describing the performance of the VK-tube and to determine its optimal
operating conditions.

Figure 9. Schematic representation of a VK-tube.

As in Aspen Plus a reactor only has one outlet port, the top section cannot be
modelled using a single reactor but has to consist of at least one reactor and one
flash. To properly model the effect that the liquid continuously moves down and
the evaporated volatiles move up, an infinite number of reactor-flash
combinations must be used. The vapour that leaves a flash has to be recycled to
the CSTR beforehand. A possible simplification would be just to use two or three
of those reactor-flash combinations. The lower part of the VK-tube can be mapped
to a PFR model. This configuration is shown in Fig 10. Because it only contains
small amounts of volatile components, it can be assumed that it only contains a
liquid phase (compare: holdup considerations above).

351

CL, H2OJ

CL, H2~
CSTR

CL, H~O

Reaction

H20

fibres,
I ,additives, etc.

Separation ~ Compounding PA6

H20

Flash C R Flash PFR I

I
Figure 10. Possible representation of a VK-tube within Polymers Plus.

Recycles

So far, the reaction par t of the process has been analysed separately, but as can
be seen in Fig. 4 the recycle from the separation section affects the reaction. The
equilibrium character of the reactions mean tha t complete conversion cannot be
reached and unreacted e-caprolactam is leaving the reactor and shall be recycled.
Therefore a model is needed, which takes into account the recycles and their
effects on the reactor section. The aim of this model is to get a realistic est imation
of the process conditions in the reactor. The effects of the recycle loop on the
reaction section can only be calculated if separat ion models are available. By
using simple separat ion models this can be done without further refinement of
the separat ion design. In this case a simple splitter model was used, which allows
an est imation of the recycle effects. This model combines a detailed
representat ion of the reactor with a simple version of the separation. It was
implemented in Polymers Plus, which allows an easy incorporation of a splitter in
the reactor model. This splitter will be refined in section 5.1.5. Here it only serves
to know the approximate recycle content in order to revise the reactor section
simulations.

5.1.5 S E P A R A T I O N DESIGN

The products leaving the last reactor still contain undesired components like
water, e-caprolactam and cyclic dimer. So the next step after modelling and
designing the reaction is to refine the separat ion design and to analyse it by
means of modelling and simulation.

In contrast to the reaction section, the separat ion section is not designed from
scratch. Instead a l i terature study was carried out, which showed two design
alternatives for the separation:

352

1. Devolatilisation in a wiped film evaporator (Riggert and Terrier, 1973;
McKenna, 1995),

2. Removal of low molecular weight components by leaching of polymer
pellets followed by a drying step (Reimschiissel, 1977).

To proceed with the design these alternatives can be investigated in parallel.
They are discussed in the next sections.

5.1.5.1 Wiped-f i lm evaporator

At low pressures and high temperatures water and e-caprolactam can be
evaporated from polyamide6, but due to the high viscosity and resulting low
transport coefficients this happens only very slowly. A way to increase the speed
is to provide a large polymer surface and to promote internal transport by
mixing. A suitable apparatus is a wiped film evaporator (WFE), a vertical tube
with wiping blades inside. The polymer mixture enters from above, flows down at
the inner walls of the tube, and is wiped by the blades. Volatiles enter the inner
gas phase and can be removed. An advantage of this process is that the melt
doesn't need to be cooled and heated again.

In order to analyse the technical and economic potential of this apparatus, a
model was written, which is mainly based upon a model described by Gesthuisen
et al. (1998). It consists of three part ial models: mass balances, energy balances,
and melt t ransport in axial direction. For more details about the melt transport
see McKelvey and Sharps (1979). The occurrence of the reaction was also taken
into account. When water evaporates the reaction can further proceed towards
higher molecular weights. The construction of this model is not discussed in
detail here. Instead we will focus on the construction of a leacher model in the
next section.

One possibility to improve the design and to reduce the necessary size of the
wiped film evaporator is to support its function by the compounding section. The
last par t of the process is a polymer processing extruder, which serves to add
fibres and additives (pigments, stabilizers, etc) to the polymer. In combination
with the wiped film evaporator it can also be used to degas remaining volatiles.
The requirements for the puri ty of the polymer leaving the WFE could be
therefore reduced. A model describing the extruder must allow the determination
of the necessary diameter, the internal design and the power of the extruder as
well as the amount of volatiles, which can be removed. Such a model has been
realized in the simulation tool MOREX (Haberstroh and Schliiter, 2000).

5.1.5.2 Leacher

Instead of evaporating the monomer from liquid polymer this process removes
the monomer from solid polymer. The melt leaving the reactor is cooled and

353

processed to pellets of about 2 mm in diameter, which are then washed with
water in a leacher in order to extract unreacted caprolactam, which is soluble in
water. The pellets are dried in a next processing step using nitrogen as a drying
agent. This process allows higher purities than the devolatilisation. One
disadvantage of this process alternative is tha t the polymer has to be solidified
before leaching and again has to be melted during compounding.

The leacher is shown schematically in Fig. 11. It is used to extract caprolactam
from polyamide6 pellets. Polymer pellets enter the appara tus at the top. Within
the apparatus they form unstructured packing which moves down the apparatus
due to the higher density of the pellets compared with water. At the bottom the
pellets are removed from the apparatus. The leaching agent water is pumped into
the apparatus at the bottom and is removed at the top. The monomer is
transferred from the pellets to the water phase during the residence time of a
pellet in the apparatus.

Pellets in

Flow direction ~ ~
pellets

Water out

~ Flow direction
water

~ F ~ ~ / - - ~ ' ~ Water in

Pellets out
Figure 11. Extraction apparatus for leaching of polymer pellets in water.

Analysis goals

As for the wiped-film evaporator there is no suitable model available for the
leacher in a flowsheeting tool. We must develop a custom model, which can serve
to determine if this al ternative is feasible and which are the operating conditions.
Since we s tar t from scratch we must address the requirements of the model in
more detail compared with using a block model in a flowsheeting tool.

Since we want to address the technical and economic potential of the leacher the
model must be able to describe certain characteristics of the s tat ionary behaviour
of the apparatus. First the model must describe the influence of the leaching

354

agent flow rate and composition on the product quality. The product quality is
defined by the monomer content of the pellets in the bottom outlet. The influence
of the apparatus and pellet geometry on the obtainable product quality must also
be studied. The apparatus geometry is necessary to estimate the investment cost
for the leacher.

Not only the composition of the pellets is of concern, but also the load of monomer
in the leaching agent at the top of the apparatus. This quantity determines the
cost of recovering the monomer from the leaching agent.

Key to describing the behavioural characteristics mentioned above will be
modelling of the mass transfer of water and caprolactam from the pellet to the
liquid phase. Since we do not know this transfer process in particular we assume
that the transport process of water and caprolactam within a pellet will be the
rate-determining step. However this assumption has to be verified by
experiments at later stages of the design process.

M o d e l s t r u c t u r e

At first a structure for the model of the leacher has to be chosen. To derive the
model structure a method suggested by Marquardt (1995) was used. The
resulting structure of the leacher model is depicted in Fig. 12.

Pellet inlet Top hood Water outlet
I i
j i

Top end

Wo rking sec tio n

Bottom end

I i
I i ,

Pellet outlet Bottom hood Water inlet

Figure 12. Model structure of the leacher.

355

The white boxes indicate devices. They abstract those parts of the leacher, which
have the ability to store an extensive quanti ty such as mass, energy, etc. in the
real world. The black boxes indicate connections. They abstract flows between
devices. The lines represent couplings between devices and connections.

The equations describing the behaviour for the hoods and all connection models
are easily derived from global balance equations. Therefore only the derivation of
the equations for the working section model is described in the following.

Descr ibing the behaviour of the working sect ion

This section describes how the equation system capturing the behaviour of the
working section is derived. The equation system is constructed step-by-step
star t ing from a set of balance equations (Bogusch and Marquardt , 1997). At each
step one or more equations are added to the model, which can be interpreted as
constraining some of the variables already appearing in the model. The new
equations might introduce new variables, which must be refined by other new
equations. After each step of adding equations, we analyse the degrees of freedom
of the current equation system. For simulation purposes the model is complete if
there are enough equations to constrain all occurring variables not considered as
inputs or parameters to the model.

5.1.5.3 Momentum transport and resul t ing flow patterns

To describe the behaviour of the working section some initial assumptions have
to be made before we can set up equations describing the water phase and the
pellets from first principles. These assumptions are related to the movement of
the pellets in the leacher.

At first we establish tha t the working section is always fully filled with water and
pellets. Thus the constant balance volume formed by the cylindrical walls of the
leacher will only include a liquid and a solid phase. We do not have to deal with a
third vapour phase when representing a part ial ly filled working section.

We also assume tha t the pellet flow to the working section is high enough and
tha t it is always fully filled with a packing of pellets. Thus we do not have to
consider a varying level of pellets in the working section.

Since our model should be used in flowsheet simulations of the polyamide6
process we only need to describe the stat ionary behaviour of the leacher. This
assumption removes all time dependencies from the model.

Concerning the pellets and the packing we make the following assumptions:

356

�9 A single pellet occupies a constant volume. This assumption is valid, if the
polymer forms a rigid lattice structure. The void volume of the lattice will
be used by water and caprolactam molecules. The existence of these
molecules should not have any influence on the lattice.

�9 The packing of the pellets has the same porosity in the whole apparatus.
During the movement through the appara tus there is no re-organizing of
the pellets.

From these assumptions it follows tha t some model variables do not vary over the
working section length. In part icular these are the volume flow of pellets and the
cross section of the pellets. These on the other hand determine a constant velocity
of the pellets moving through the apparatus.

It is pointed out tha t the assumptions made in this section can be considered as a
simplified model of the momentum transfer phenomena between the pellets, the
liquid phase and the vessel. If these assumptions should be fully relaxed we must
include momentum balances and assumptions on the momentum transfer
mechanisms to the model.

5.1.5.4 Liquid phase

To set up the mass balances the dispersed content of the leacher is considered as
a part iculate phase system. The mathemat ica l model assumes tha t at every
(mathematical) point within the control volume of the working section there is
liquid as well as solids. The smaller the pellets are the more accurate this
approximation is. The mass-based part ial densities refer to the total volume of
liquid and solids.

In the following it is assumed tha t the liquid phase (index l) consists only of
water (index W) and the monomer (index M). There will be one total mass
balance for the liquid phase and one for the monomer.

A procedure similar to one presented by Gerst lauer et al. (1993) is used to derive
formulations of the mass balances. The procedure s tar ts from a general 3-
dimensional balance formulation. In a first step the general formulation is
simplified by applying assumptions on which fluxes can be neglected. The result
is then integrated over spatial coordinates to get lower dimensional balance
formulations. At this step, boundary conditions at the border of the integration
domain enter the model.

The basis for the derivation of the mass balances is a 3-dimensional stationary
balance:

0 = - V . p , v , + jp,,. (1)

357

We have not considered any reactions, jp,~ describes the mass t ransport between

the liquid and solid phase. Integration of the mass balance on the cross section of
the working section and introduction of mean values on this plane yields"

b
Tz p, V,., = . (z)

At this point we have removed the information on the profiles of the state
variables in the radial and azimuthal directions from the mathemat ica l model.

We assume tha t the z-coordinate origin is at the bottom of the working section.

From the formula above we can easily derive the following model equations for
the total liquid mass and the mass of monomer in the liquid:

0
m - - Oz P?z" Jp,t V z e g{ " O < z < L , (3)

0
-~z PM'tVz'M't = Jp,M,, V Z e ~f~ " 0 < Z <_ L . (4)

These two equations are part ial differential equations, which have to be
augmented by boundary conditions. The boundary conditions are derived from
modelling the surfaces at the top and bottom end of the working section.

The mass balances at the top and bottom end of the working section are derived
from a general three-dimensional mass balance for interfaces and subsequent
introduction of mean values on the cross section areas after integration. In a
procedure similar to the one described above this yields:

Mtop, l = -A~pp PlVz,! [L , (5)

Mtop,lWtop,M,l = -Aapp PM,tVz~t,l [L, (6)

Mbo,,, = Aapp PtVz,t Io, (7)

Mbo,,Wbo,~S = Aapp PM,IVz,M,I 10" (8)

Within the working section a closing condition on the mass flows per area holds:

358

p,Vz, , = ~_~ p,,,Vz,,, l V z e 9r 0 <_ z < L . (9)
,~{M,W}

We can also include closure conditions on the mass fractions at the top and
bottom of the leacher:

1= ~_ W, op,,,, , (10>
/e{M,W'}

1= ~ _ W b o , , , , ' . (11)
ie{M,W}

Since we want to describe the equilibrium at the interface between liquid and
solid phase (see section 5.1.5.6) we also have to define the mass fractions of the
species in the liquid.

w,., = P"tv~'"------.--Lt 'V'(z,i)e ~ x {M,W}" 0 _< z ___ L (12)
PtVz,t

This definition holds if we neglect diffusion or dispersion in the liquid phase.

An analysis of the par t ia l model shows tha t all unknowns can be calculated from
the derived equations except the flux quanti t ies represent ing the mass t ranspor t
between the liquid and solid phase in the leacher.

Thus in the following we aim at deriving a model for this mass flow. These
modelling steps can be considered as deriving a new independent submodel
within the overall modelling process.

5 .1 .5 .5 Solid phase

A stra ight forward way to complete the model would be to include a population
balance for the solid phase. An introduction to this kind of balance has been
given by Ramkr i shna (1985).

However one modelling goal s tates tha t diffusion of monomer and water within a
pellet is the rate determining step for mass t ransfer be tween pellets and liquid
phase. Thus we must explicitly model the mass t ranspor t of monomer (index M)
and water (index W) in the polymer (index P) lattice. This requires tha t we
consider the spatial distr ibution of monomer and water wi thin a pellet. In terms
of a population balance we would need to introduce a particle characteristic,
which is described by a distr ibution instead of a single value like particle size
commonly, used in modelling of crystall ization processes. Since this is not a
s t ra ight forward task we have chosen a different approach.

359

We first derive a dynamic model for a single pellet. This model describes a pellet
within a t ime varying environment . Such a model can be applied to the
conditions in the leacher if we consider a reference frame fixed relative to this
pellet. The s t ructure of the single pellet model is shown in Fig. 13.

/ (Envir~ 1
(Surrounding Pellet / ~ Liquid)

Interface
Figure 13. Model structure for single pellet model.

Due to the assumpt ions we have made on the flow pa t t e rn within the leacher we
will be able to define a coordinate t ransformat ion to merge this par t ia l model
with the par t ia l model of the liquid phase already derived in the previous section.
That model was derived for a reference frame fLxed to the appara tus .

First we set up mass balances for the different species wi thin the pellet. We use
the same methodology as for the liquid phase balances described above. This
yields"

~(rm,,,)=O 0-70,,, +~ V(t,r , i)e ~xg~x {M,W,P}" 0 < t <_ T, 0 < r < R 1. (13)

These balances describe the dynamics of the mass fluxes inside a single pellet. No
reactions are considered. The state profiles across spherical surfaces have been
approximated by mean values.

We can refine the total mass fluxes into convective flux and diffusive flux:

mr,,.,=p,,,V,,s+Jr.,., Vq, r , i)eg~x~x{M,W,P}:O<_t<_T,O<_r<_R. (14)

The diffusive fluxes can be described by the following equat ions assuming tha t
the diffusive mass t ranspor t is due to mass fraction (which relate to
concentration) gradients:

j,,M. =_p,(D~ ~ 0) O---~WM,, + D n ~r-r Ww,, V(t,r)e ~ x ~ " 0 _< t _< T, 0 _< r _< R,

~ ~) V(t,r) 9~x9~ 0< < <R J~,w,~ = -P~ D21~--r- r WM,s + DEE ~r ww'" e �9 _ t _ T, 0 < r _ .

(15)

(16)

1 Since we consider a pellet in the following the mass-based partial densities refer to the volume of the solid phase only.

360

The diffusion coefficients in these equations are assumed to be constant (see the
above sections for a discussion of this assumption).

The total diffusive flux is zero. Thus we can determine the diffusive flux of
polymer species from:

O= ZJr , i , s V (t , r) e g ~ x ~ " O <_ t < T, O <_ r < R . (17)
J~{M,W,P}

The mean of the convective fluxes can be related to the mean value of the part ial
densities by

p,,sYr,s = p,,sVr,s V (t , r , i) e 9~xg~x {M, W,P}.'0 _< t _< T, 0 _< r _ R (18)

introducing a mass averaged velocity.

The mass fractions needed to express the diffusive fluxes are defined by

p,., = w,, ,p s V (t , r , i) e m x m x {M, W,P}..0 _< t <_ T, 0 ___ r _< R (19)

with

P s : ~_~P,,s V (t , r) e ~ x ~ ' O < t < T , O < r < R . (20)

Since we have assumed a rigid lattice of the polymer we have to state that there
is no mass flux of polymer species:

mr,e,s=O V (t , r) e ~ x ~ ' O < _ t < T , O < _ r < R . (21)

Now we have derived a dynamic model for a single pellet. The model forms a
PDAE system. Thus we have to define boundary conditions and initial conditions.
The boundary condition at the centre of the pellet is given by the assumption that
there should be no diffusive fluxes across the centre point. These fluxes would
result in a symmet ry with respect to the centre point of the pellet. Symmetry
requires vanishing mass fraction gradients:

~r wj.., [r=O: 0 V(t,i)e ~ x {M,W}" 0 < t <_ T . (22)

A fully specified dynamic model will be obtained if we add equat ions describing
initial mass fraction profiles within the pellet and the dynamic behaviour of the
mass fractions at the pellet surface. The la t ter can be obtained from equilibrium

361

calculations within the interface model if the state of the surrounding liquid is
known. Also some physical property calculations have to be included at the
system boundaries. We omit these equations at this point.

The model obtained so far can be merged with the liquid phase model if we carry
out a coordinate transformation as indicated above. This t ransformation relies on
some assumptions we have made earlier on the nature of the pellet packing. If we
consider a single pellet entering the working section at the top the assumptions
state tha t the pellet moves down the appara tus in a s t raight line with constant
velocity. Thus we can state the following relation between place and time:

z = L + vs t 1. (23)

Using this l inear relation to transform the pellet model to the spatial coordinate z
we get the following formulation for the mass balances:

+-~r (rm,.,.,_)= 0 V(z , r , i)e ~ x ~ x { M , W , P } : 0 < z < L, 0 < r < R . r ' r s P,., -gz (24)

The transforms of all other model equations can be obtained by exchanging z
with t and T with L due to the linear character of the transformation.

The missing initial conditions correspond to the boundary conditions at the top of
the working section. These can now be obtained from modelling the top end of the
working section. From the total mass balance around the top interface we get an
expression for the pellet velocity:

M,op. , = - A , v , p , o p . , . (25)

If we assume flat part ial density profiles at the entrance to the working section
we can derive the following expression from species mass balances around the top
end:

p,., Iz_ = V(r,0 {M, 0 < R. (26)

We can add a closure condition for the mass fractions at the top:

1 = ~ W,op,~, ~ . (27)
ie{M,W;P}

The value of V s is negative, because the pellets move against the direction of the spatial coordinate z.

362

Applying mass conservation principles to the bottom end of the working section
gives expressions for the total mass flow and mass fractions of the pellet stream
leaving the working section:

Mbot s AsVs ! �9 I -o dr, (28)

As Ys i Mbo,:Wbo,,,,, =-----~--- P,,, Iz-O dr V i~ {M,W}, (29)
o

1= ~ _ Wbo,,,, ~ . (30)
~{M,W,e}

5.1.5.6 Liquid-solid interface

An analysis of the model obtained so far shows that for a complete model we are
missing the values of the mass fractions at the pellet surface and the mass flows
between the phases. We can derive equations for these variables from statements
on the liquid-solid interface.

These considerations are governed by the assumption that the mass transfer rate
between liquid and solid is determined by the transport processes within the
pellet. This allows us to neglect the mass transfer resistance of a boundary layer
around the pellet in the liquid phase. Thus we can assume equilibrium between
the liquid phase and the solid phase at the pellet surface. As already indicated in
the previous section the equations describing equilibrium conditions between the
pellet and the liquid form the boundary conditions at the pellet surface. We
describe the equilibrium with a single equilibrium constant and the relative
volatility:

WM,t -" g~WM,s [r=R VZ e 91:0 < z < L, (31)

wwj = K~ac,www,s I,_-R Vz e 91:0 < z < L. (32)

Similar to the diffusion coefficients the equilibrium constant and relative
volatility will be considered constant in this model (see section 0 for a discussion
of this assumption). No equilibrium relation is required for the polymer because
we consider the polymer insoluble in the leaching agent.

From mass conservation principles at the pellet surface follow the definitions of
the mass fluxes between the liquid and solid phase:

363

Jp,i,! -" Eapelletms,r,i V (z , i) e ~ • O < z < L , (33)

Jp,l = Z Jp,i,l VZ E ~f~ " O <_ Z <_ L . (34)

These equations form the missing link to the part ia l model of the liquid phase.
The geometric factor apette, is the specific pellet surface with respect to the pellet

volume.

5.1.5.7 Physical properties

An analysis of the model equations derived so far shows tha t the system is not
yet fully specified. The required additional equations can be obtained from
physical property calculations at the solid phase boundaries. Compared with the
liquid phase model these relations are required because we have explicitly
included the convective velocities of the pellets and the monomer and water
within the pellet model.

We assume tha t the polymer forms a rigid lattice, which is filled with monomer
and water. Thus we neglect any swelling processes. With this assumption we can
derive the following relations:

P,op,, = PPotyme...............~ , (35)
Wtop,P,s

P, 1~-0= PPolymer VZ e ~R " O <_ z <_ L , (36)
Wp,s Ir=O

Ps [r=R-- PPotymer VZ e 9~ " 0 < z < L (37)

These equations assume the density of the polymer to be constant. Relaxing this
assumption is not possible, because of the assumptions we made on the flow
pat tern within the appara tus in section 5.1.5.3.

5.1.5.8 Additional equations

Analysing the model we will find out tha t the model is fully specified. However
the model will require the cross sectional area occupied by the liquid and solid
phase as parameters . These values usually will not be known a priori. Thus we

364

introduce two additional equations, which determine these parameters from the
appara tus cross sectional area and the void fraction of the packing.

The cross section occupied by pellets can be calculated by:

As = (l- e)A~pp. (38)

The cross section of the liquid phase is given by:

Aap p = A s + A 1 . (39)

Model parameters

The model derived in the previous section only contains a few parameters. This
makes it very suitable for design calculations in the early stages of a process
development activity and il lustrates the concept of parsimony discussed in
section 5.1.1.2.

The model needs several geometric parameters . These include the working
section length and radius. From the lat ter the apparatus cross-section can be
calculated. In a design scenario these parameters need to be optimised to achieve
an economic process. The model also allows the study of the influence of the void
fraction of the packing and the pellet surface per pellet volume. The latter can be
calculated from the geometry of a pellet. The packing property can only be
determined without experiments if we state additional assumptions on the
a r rangement of the pellets in the packing.

Crucial to the application of the model will be information on the thermodynamic
parameters . These include the polymer density, the diffusion coefficient and the
equilibrium parameters .

In general all these properties are functions of temperature , pressure and
composition. Since we are only dealing with liquid and solid phases we can
neglect the pressure dependencies. In the model we have considered all
properties to be constant. This is mainly due to the lack of availability of
information on the dependencies. Experience of the authors show that only the
polymer density is available from the li terature. All other parameters have to be
obtained from experiments or estimated. The equilibrium and diffusion
parameters might be obtained from the data set of experiments on a single pellet.
The pellet model derived above might be used to extract the parameter values
from this data set with parameter estimation techniques.

The model can be enhanced if the temperature and composition dependencies of
the physical property parameters are included into the model. However due to

365

some of the assumptions in the model this can only change the type and number
of model parameters but does not add new effects described by the model.

Exchanging the parameter for the polymer density with a function of
temperature and polymer chain length distribution only adds additional
parameters to the model. This is due to the fact that the assumption of constant
polymer density is the basis for assuming a rigid lattice formed by the polymer in
the pellets. Thus from the assumption it follows that the temperature of the
pellets must be constant within the whole apparatus. The chain length
distribution of the polymer is assumed constant since we do not model any
reactions.

If we refine the diffusion and equilibrium parameters with functions of
temperature and composition we include a new effect into our model. We can
exclude the assumption of constant diffusion and equilibrium parameters and
have reduced the number of parameters. The extended model will also predict the
effects of changing compositions on the equilibrium and diffusion process. The
temperature is still a model parameter as shown above.

5.1.6 TOOL S U P P O R T FOR MODELING

This section consists of two parts. In the first part we discuss the experiences
obtained while carrying out the case study. The second part exemplifies how
advanced tools reported in the literature can support some of the steps related to
the presented design and modelling process. For a full overview on the
capabilities of the different advanced modelling tools the reader is referred to
other chapters of this book (see Chapter 3.1).

5.1.6.1 E x p e r i e n c e s f rom the case s tudy

Aspen Plus with Polymers Plus from Aspen Technology has been used for steady-
state simulations. One limitation encountered is that detailed separation models
are not available in Polymers Plus, therefore, it cannot be used for a detailed
modelling of the process. To overcome this limitation, either a new model for the
whole process must be developed using another tool or new Aspen model blocks
representing the missing separation units on a higher level of detail need to be
implemented. Both alternatives require significant efforts.

In a typical flowsheeting tool the granularity of detail of the model blocks is fixed.
The user cannot adjust it and therefore, the accuracy of predictions with the
model may be limited and consequently, it may not possible to make decisions
based on the on the predictions from these models. For example, it is not possible
to calculate third and higher moments of molecular weight distributions, which
are relevant for modelling the operations of industrial polymer processes.

366

A custom leacher model has been implemented with the equation-oriented
modelling and simulation package gPROMS. The modelling features of this
package can be classified as a general modelling language according to
Marquardt (1996). Such languages support the hierarchical decomposition of
models into encapsulated sub-models. The behaviour of the sub-models is
declaratively described by a set of equations and variables. The language does
not contain chemical engineering concepts. Thus it is not domain specific. This
property limits support in deriving the model equations. However, all advanced
modelling systems, which can be classified as process modelling languages,
modelling expert systems and interactive (knowledge-based) modelling
environments by Marquardt (1996) have never been reported in the literature as
being in regular industrial use. Thus the choice of tools can be considered to be of
industrial relevance.

Major parts of modelling the leacher had to be carried out with pen and paper or
in the head of the modeller due to the lack of chemical engineering concepts
within gPROMS. However there are mappings of the results of the modelling
steps to concepts within the modelling language. Decisions on the model
structure will be reflected in UNIT, STREAM and EQUATION subsections of
MODEL sections in the gPROMS input file. There is no support to document the
derivation of a part icular model equation such as the balance equations. The
gPROMS language only represents the results of these steps in the EQUATION
subsection of a MODEL section of a gPROMS input file.

5.1.6.2 Suppor t wi th advanced tools

To overcome the problem that flowsheeting tools cannot always provide suitable
model blocks for all applications, efforts have been under taken to integrate
flowsheeting and equation-oriented tools. The Aspen Engineering Suite allows
the migration from flowsheeting to equation-oriented modelling environments
but not in the other direction. Thus the numeric robustness of the Aspen Plus
blocks cannot be exploited in detailed simulation studies.

A different approach is being developed in the Cape-Open (Braunschweig et al.,
2000) and Cheops (Wedel and Marquardt , 2000) projects, both of which aim at
providing a platform to connect different tools to one central process simulator.
Currently, the case study presented above is being extended in terms of efforts to
combine the Polymers Plus reactor model, the gPROMS separation model and the
extruder model within the special purpose tool called MOREX that will enable an
overall simulation. To this end Cheops, a component-based hierarchical process
simulator is being used to integrate the different models.

The modelling goals, as stated above, were not achieved either by the
flowsheeting tool or by the equation-oriented tool for the highlighted case study.
In an industr ial setting documentary information, such as the modelling goals,

367

will either be kept only in the mind of the modeller or will be stated in a report on
the design process. However the report is not linked electronically to the model
files. Thus it might get lost easily leaving a future user without the necessary
model documentation.

One approach to overcome these limitations is implemented in ModKit (Bogusch
et al., 2001). ModKit provides a hypertext system to document all parts of models.
Each modelling object can be linked to a hypertext page, which includes informal
documentation of a model. The hyperlinks do not only refer to modelling objects
but also to other pages within the set of documentation pages.

Development of a suitable model structure for an equation-oriented model is a
task, which requires the modeller to abstract the reality. Since a modelling tool
has no representation of the reality this process can only be supported indirectly.
The modelling tool is unable to make suggestions on how the model structure
should look like. Instead the only help currently possible is to provide a set of
well-defined canonical structural modelling objects, which can be used by the
modeller to construct the model structure in a flexible manner.

In modelling the leacher we have already used a set of such modelling concepts
from the methodology proposed by Marquardt (1995). However gPROMS neither
forces nor supports the modeller to use such concepts. In part icular there is no
graphical representation of the model structure. The ModKit system provides a
graphical model structure editor, which provides the canonical modelling objects
on a palette. The modeller can select these objects from the palette and construct
graphically the model structure. Other tools, e.g. ModDev (Jensen, 1998) and
MODEL.LA (Bieszcad, 2000) define different sets of canonical objects, which can
be employed by the user to define the model structure. However these objects are
not organized in a hierarchical class structure.

In the process of deriving the model equations a successive refinement approach
was used in the case study. Starting with the balance equations of the liquid
phase, the model was refined by adding equations describing variables appearing
in the liquid phase model. Subsequent model analysis steps (e.g. after finishing
the liquid phase model) were used to determine if the model was already fully
specified. During this process a model for a single pellet has been developed
independently from the original problem specification. This model was then fitted
into the overall model through a mathematical transformation step.

Currently there are no tools to support derivation of model equations in such a
general and flexible way based on the mathematical structure of the intermediate
model. Advanced tools for the derivation of unit operation models (Jensen, 1998
and Bieszczad, 2000) have chosen a different approach. These tools provide a set
of dialogs, which help the modeller to specify the characteristics of a general
reference model in terms of chemical engineering concepts. Bieszczad has

368

introduced the term phenomena-based modelling for this purpose. From the user
provided specifications, these tools are able to generate (derive) the model
equations automatically.

The leacher example, however, shows that such an approach is not flexible
enough to support modelling of non-conventional equipments. In the case study,
the deviation from a general reference model was necessary in order to avoid an
unnecessarily large and mathematically complex model (one employing a
population balance). MODEL.LA does not allow the user to deviate from the
reference models, which are encoded in "modelling logic operators". ModDev on
the other hand has a subsystem ModDef that allows the user to specify new
model blocks. The equations from these templates can be added to the
automatically generated equations. The templates are organized in a hierarchy,
which can be searched for model blocks with specific properties.

5.1.6.3 C o n c l u s i o n s

The case study showed that the flowsheeting as well as the equation-oriented
approaches to modelling of processes are relevant to process design. However,
there are no industrial tools available, which is able to provide the full flexibility
needed for a seamless use of both approaches in order to perform a successful
simulation of the process.

Custom modelling tools that are in industrial use today only provide very limited
support in modelling of non-conventional equipments. Tools based on
phenomena-based approaches, however, may be viewed as transferring the
modelling approach employed by flowsheeting tools such as AspenPlus to the unit
operation level. In flowsheeting tools, models are constructed from a set of
predefined unit operation blocks. The phenomena-based tools construct unit
operation models from a set of predefined phenomena models. This moves the
modelling process away from dealing with equations and introduces chemical
engineering concepts.

The case study, however, has highlighted some limitations of these advanced
modelling tools with respect to flexibility and extensibility. Since there is not a
single theory that may be employed to derive the necessary model equations, the
equation generation process should be more customisable by an expert user. The
modelling tools must provide facilities to easily define new phenomena and
associated models, which may be obtained from data-driven approaches or new
theories. It might be concluded that the phenomena-based tools provide support
for a large new class of chemical engineering modelling problems on the unit
operation level, but there is still need for a more flexible and extensible approach
to model non-conventional operations as well as processes.

369

5.1.7 SUMMARY

This contribution has provided a case study illustrating the application of
modelling in the conceptual design stage of a chemical process producing
polyamide6. The case study has focused on modelling at the flowsheet level and
at the unit operation level. The use of computer-aided tools during the modelling
process has been discussed with respect to the case study.

The nature of the modelling problems during the early stages of a design process
required that the developed models incorporated information available in the
open literature, because major pilot plant experimental studies generating them
would be highly unlikely so early in the design process.

The focus on the early stages of the design process is also the reason why model
validation was not covered in this contribution. The reader is referred to the
other chapters of this book (see all the chapters of Part III) for related topics.

5.1.8 ACKNOWLEDGEMENTS

We appreciate support for the model development described in sections 3 and 4 of
this document from the Deutsche Forschungsgemeinschaft funded Collaborative
Research Center 4 7 6 - IMPROVE at RWTH Aachen.

5.1.9 R E F E R E N C E S

Bieszczad, J., A framework for the language and logic of computer-aided
phenomena-based process modeling, PhD thesis, Department of chemical
engineering, Massachusetts Institute of Technology (2000)

Bogusch, R., B. Lohmann and W. Marquardt, "Computer-aided process modeling
with ModKit" Comput. Chem. Engng. (2001)

Bogusch, R. and W. Marquardt, "A formal Representation of Process Model
Equations" Comput. Chem. Engng., 21, 1105-1115 (1997)

Bokis, C.P., H. Orbey and C.-C. Chen, "Properly model polymer processes"
Chemical Engineering Progress, 4, 39-51 (1999)

Braunschweig, B.L., C.C. Pantelides, H.I. Britt and S. Sama, "Process modeling:
The promise of open software architectures" Chem. Eng. Progress, 96 (9), 65-76
(2o0o)

370

Dotson, N.A., R. Galv~n, R. L. Laurence and M. Tirrell, Polymerization Process
Modeling, VCH, New York (1996)

Douglas, J.M., Conceptual Design of Chemical Processes, McGraw-Hill, New York
(1988)

Foss, B.A., B. Lohmann and W. Marquardt, "A field study of the industrial
modeling process" J. Proc. Control, 8 (5,6), 325-338 (1998)

Gerstlauer, A., M. Hierlemann and W. Marquardt, "On the Representation of
Balance Equations in a Knowledge Based Process Modeling Tool" Proceedings of
CHISA'93, Prague, Czechoslovakia (1993)

Gesthuisen, R., S. Engell and C. Schmidt, "Simulation der Vakuum-
entlactamerisierung von Polyamid-6-Schmelzen in Diinnschichtverdampfern"
Tagungsband UMSICHT Tage, 15-16 September, 1998, Fraunhofer UMSICHT,
Oberhausen, Germany (1998)

gPROMS introduction,
(Accessed 12. April 2001)

h ttp ://www. p sen te rp rise. co m/gP R O MS/in de x.html

Giinther, E., et. al., "Verfahren und Vorrichtung zum kontinuierlichen
Polykondensieren von Lactamen" German Patent 1495198 (1969)

Haberstroh, E, and Schliiter, M., "Moderne Technologien bei der Entwicklung
von Simulationswerkzeugen" In: Tagungshandbuch 20. Kunststofftechnisches
Kolloquium des IKV, 7, 4-7, Verlag Kunststoffinformation, Bad Homburg,
Germany (2000)

Hangos, K.M., and I.T. Cameron,
Academic Press, London (2001)

Process Modelling and Model Analysis,

Hipp, A. and W.H. Ray, "A dynamic model for condensation polymerization in
tubular reactors" Chemical Engineering Science, 51, 2, 281-294 (1996)

Hornsby, P.R., J.F. Tung and K. Tarverdi, "Characterization of Polyamide 6
Made by Reactive Extrusion. I. Synthesis and Characterization of Properties"
Journal of Applied Polymer Science, 53, 891-897 (1994)

Jensen, A. K., Generation of problem specific simulation models within an
integrated computer aided system, PhD thesis, Department of Chemical
Engineering, Technical University of Denmark (1998)

Kumar, V.S., and S.K. Gupta, "Modeling of Higher Cyclic Oligomer Formation in
Nylon 6 Polymerization" Ind. Eng. Chem. Res, 36, 1202-1210 (1997)

371

Mallon, F.K., and H.W. Ray, "A Comprehensive Model for Nylon Melt Equilibria
and Kinetics" Journal of Applied Polymer Science, 69, 1213-1231 (1998)

Marquardt, W., "Towards a process modeling methodology" In: R. Berber (Ed.),
Model-based Process Control, Kluwer Press (1995)

Marquardt, W., "Trends in Computer-Aided Process Modeling" Comput. Chem.
Engng. 20 (1996)

McKelvey, J.M., and G.V. Sharps, "Fluid Transport in Thin Film Polymer
Processors" Polymer Engineering and Science, 19, 9, 651-659 (1979)

McKenna, T., "Design model of a wiped film evaporator. Applications to the
devolatilisation of polymer melts" Chemical Engineering Science, 50, 3, 453-467
(1995)

Minsky, M., "Matter, mind and models" In: W.A. Kalenich (Ed.), Proc. IFIP
Congress Information Processing, May 1965, New York City, 1, 45-49, Spartan
Books, Washington (1965)

Polymers Plus description, http ://www.aspentech.com/ap/downloads/.
polymersplus.pdf (Accessed 12. April 2001)

Ramkrishna, D., "The status of population balances" Reviews Chem. Engng. 3
(1985)

Ray, W.H., "On the Mathematical Modeling of Polymerization Reactors" J.
Macromol. Sci.-Revs. Macromol. Chem., C8, 1, 1-56 (1972)

Reimschi~ssel, H.K., "Nylon 6 Chemistry and Mechanisms" Journal of Polymer
Science: Macromolecular Reviews, 12, 65-139 (1977)

Reimschiissel H.K., and G.J. Dege, "On the Condensation Equilibrium in
Polymerization of Caprolactam" Journal of Polymer Science: Part A-l, 9, 2343-
2359(1971)

Riggert, K., and F. Terrier, "Die Entfernung niedermolekularer Anteile in
Polyamid-6-Schmelzen mittels Vakuum" CZ-Chemie-Technik, 2, 3, 95-99 (1973)

Romagnoli, J.A. and M.C. Sanchez, Data Processing and Reconciliation for
Chemical Process Operations, Academic Press (1999)

Saechtling, H., Kunststoff-Taschenbuch, Hanser, Munich (1995)

372

Tai, K., Y. Arai and T. Tagawa, "The Simulation of Hydrolytic Polymerization of
e-Caprolactam in Various Reactors" Journal of Applied Polymer Science, 27, 731-
736 (1982)

Wedel, L. v., and W. Marquardt, "Cheops: A Case Study in Component-Based
Process Simulation" In: M.F. Malone, J.A. Trainham, B. Carnahan (Eds.),
Foundations of Computer-Aided Process Design, AIChE Symp. Ser. 323, 96, 494-
497 (2000)

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
�9 2002 Elsevier Science B.V. All rights reserved. 373

Chapter 5.2: CAPE Tools for Off-line Simulation, Design and
Analysis

I. D. L. Bogle & D. Cameron

5.2.1 O F F - L I N E A P P L I C A T I O N S

This section discusses the off-line use of CAPE Tools. By this we mean tha t the
process to which the tools are to be applied either does not yet exist, or it exists
and on-line data are not readily available. It should be noted tha t almost all the
tools to be discussed are applicable throughout the product and process lifecycle.
This means tha t it is difficult to delimit a water t ight discussion on off-line
simulation, design and analysis. The tools to be described here tend to overflow
into later sections of the book, since, for example, dynamic simulators are
valuable tools for just the types of tasks tha t will be discussed here. However,
since we have limited space, this chapter is limited to considering the following
business processes (or activities)l:

�9 Research and development.
�9 Conceptual design, including process synthesis.
�9 Detailed process design.
�9 Off-line analysis of collected data, from experiments or operations.

These activities are hierarchically linked, as is shown in Figure 1. The R&D
activity is a precursor to conceptual design, which in tu rn is a precursor to
detailed design. Operations then follow from detailed design.

1 To avoid ugly expressions and confusion, a "process" will always be chemical process in this section. A business process,
on the other hand, is called an "activity".

374

R&D

Conceptua I designJ~` ~ 1 0 p e r a t i ~
~'-1 Detailed / ~
| design k

Experiment design and data analysis " 'k/ /

Figure 1. The off-line activities in the chemical process lifecycle.

Experimental design and data analysis is a supporting activity for the other four
activities, in part icular R&D and operations.

In this section, a variety of commercial tools and near-commercial academic
systems will be presented. We will a t tempt to show how these tools support the
off-line activities tha t lie behind the development and operation of a process. The
overview will be necessarily a little superficial. Its aim is to give the reader an
overview of the rich variety of commercial, semi-commercial and academic tools
tha t are available.

The presentat ion is biased towards continuous production facilities. Specialised
tools for batch and semi-batch processes are described in chapters 3.5 and 5.4. In
addition, since tools for dynamic simulation are described in chapters 5.3 and 5.4,
they are only briefly mentioned here.

5.2.2 OFF-LINE CAPE T O O L S - TOOLS FOR D E C I S I O N S U P P O R T

5.2.2.1 Engineer ing Decis ions

CAPE tools exist to provide information to engineers as they seek to find answers
to questions of the following type:

1. What product shall I make?
2. How shall I make it?
3. What are the implications and side effects of making it this way?
4. Is the chosen method the best way of making the product?

375

The answers given to these questions, the engineering decisions made, determine
the type of process facilities that are financed, built and run. Rational
engineering decisions require:

1. Information about the physical behaviour of the planned or actual process.
This information is provided by experiments and one or more process
models.

2. Information about the economic constraints on the process.
3. A means of recording the decisions made.
4. A means of recording the rationale behind the decisions.

The methodology of process design has been widely discussed. Standard
textbooks like Biegler et al. (1997), Seider, Seader and Lewin (2000), Turton et
al. (1997) or Smith (1995) give a good overview of current teaching practice. The
older book by Douglas (1988) is also still worth a look.

5.2.2.2 The v a r i e t y of off- l ine CAPE too ls

A wide variety of CAPE (and non-CAPE) tools are needed to support process
R&D and design. Some of these are shown in Figure 2. The diagram shows a
family of interrelated tools sharing calculation results and data to produce a
plant design. Each of these tools will be presented in more detail later in this
section.

A steady-state process simulator lies at the centre of Figure 2. A steady-state
mass and energy balance is the primary tool for the design of both continuous
and batch processes. They are used to calculate the design basis for the process.
These are discussed further in section 5.2.3.1. An accurate steady-state model
requires access to a system for calculating or est imating physical properties and
predicting thermodynamic equilibrium. These are treated in section 5.2.4.
Commercial steady-state simulators contain generic modules for reactors and
separators. These are suitable for conceptual design and flow sheet generation,
but lack predictive power. This means that they are of limited use in detailed
design and operations. More detailed models of specific unit operations need to be
built or used by the designer. These models incorporate the designer's
proprietary knowledge. These models are often stand-alone Fortran programs.
Some typical programs of this type are described in section 5.2.5.

376

Figure 2. CAPE tools in on-line applications, showing mutual relationships.
Widely used and commercial tools are shown with dark shading and bold text.

Less widespread, but commercially available tools are shown with lighter
shading. Applications that are dominated by academic, prototype tools are shown

in white.

These specific modules are often not easy to build and are based on experimental
data (for example, from bench kinetic experiments, phase equil ibrium tests and
pilot p lant runs). Modelling assistants are programs tha t a t t empt to automate
the development of a process model. This speeds development and helps the
designer in building a physically correct model. More details are given in section
5.2.5.5.

A steady-state s imulator is a good tool for solving the mass and energy balance
for a defined process flow sheet with a fixed structure. However, it is not, alone,
capable of determining whether a given process s t ructure yields the best possible
energy use, water use, environmental impact, or operat ing profit. This
calculation requires tools for process synthesis and optimisation. Process
synthesis tools calculate the optimal process s tructure, whereas optimisation
methods find the best operating conditions for a defined process structure. Both
types of calculations are described in section 5.2.6.

377

5.2.3 STEADY-STATE GENERAL PROCESS SIMULATORS

5.2.3.1 F l o w s h e e t i n g S imulators

Off-line applications were the first area where CAPE tools were applied. The first
generat ion of flowsheeting programs sought to computerise the s teady-state heat
and mass balance and equipment design calculations tha t engineers did by hand.
The method chosen was to reproduce the sequent ial approach of the hand
calculation. Given a defined feed composition, t empera tu re and pressure and a
full set of equipment operat ing parameters , a procedure (or subroutine)
corresponding to a uni t operation is run to calculate a set of outlet s t reams.
These outlets are then used as inlets to downst ream units.

This sequent ial a lgori thm works well unti l a recycle occurs, or the user wishes to
specify the value of a process output and manipula te an input or pa rame te r to
achieve this. Recycles are handled by tearing, i.e. guessing the values of one or
more chosen process s t reams (the torn streams) and i tera t ing through the flow
sheet unti l these values are the same from one i tera t ion to the next. Specified
outputs are handled by controllers: the user inserts a block whose task is to
adjust a selected input variable or pa rame te r so tha t the output value achieves
its specified value. Simulat ion controllers should not be confused with actual
process controllers. They sometimes occur in the same places in the flowsheet,
but a "controller a r rangement" tha t converges a s teady-s ta te model will not
necessarily work on the real, dynamic process.

General s teady-state process s imulators have a number of l imitations. They are
not efficient for solving for pressure in the system. The s teady-state momentum
balances tha t need to be solved here are so t ightly coupled tha t an equation-
oriented s imulator is required (see section 5.2.3.2). Pressure is therefore specified
in most s teady-state design models. This means tha t the assumed pressure drops
need to be verified at some later stage using a s teady-s ta te piping s imulator or a
dynamic simulator.

Fur thermore , hold-ups and capacities are not represen ted in a steady-state
model. If needed, hold-ups can be represented by fictitious s t reams in and out of
the system. Indeed one author has suggested this as a way of performing
dynamic simulat ions (Horwitz, 1996). Such ad hoc solutions are unwise. They are
bad practice: impossible to document, difficult to unde r s t and and will only work
with trivial problems and specific s imulator set-ups (Newell and Cameron, 1996).

378

5.2.3.2 So lv ing Networks: Sequent ia l -modular , S imul taneous -modular
and Equat ion-or iented systems and their convergence .

MIXER
2

4

3
REACTOR SEPARATOR

Figure 3. A simple process network.

Sequential modular systems calculate outputs of a unit from the inputs using
calculation modules for each unit in the flowsheet. A sequential calculation
strategy can be used to solve the whole flowsheet by solving each set of unit
equations in turn, usually done as a separate module or routine for each unit. If a
recycle exists the values of the variables in at least s t ream must be guessed. In
the case of Fig 1 for example the outputs from the mixer can only be obtained if
the s t ream vector for s tream 4 is known. One method of solving this problem is
to guess values for the s t ream vector for s tream 4. Using these values one can
calculate successively streams 2, 3, 5, and a new set of values for stream 4. The
guessed values for s t ream 4 can then be modified and the flowsheet calculations
redone until the calculated values for s tream 4 and the guessed values are the
same. When the two values are essentially the same the procedure is said to
have converged. The guessed stream or s treams are called the torn streams. The
scheme uses an iterative procedure to solve the flowsheet equations.

If we denote all the torn variables, i.e. variables in a torn stream, by the vector x,
a steady-state simulation can be converged by solving the non-linear equations:

x - f (x) : 0

where f(x) is the est imate of the torn variables at the next iteration. This is
obtained by simulating through the model once.

If controllers are present there is an additional set of equations for the outputs,
y, as a function of inputs and parameters, z:

y -g (z) =0

379

The key to efficiently solving this model is to choose the best values of x and z at
each iteration. Sequential simulators use one of several methods, including:

�9 Direct substitution, where Xn+l --ffXn).
�9 Wegstein's method, where:

f (x,.,) - xj,,

1-
Xd, n ~ X i , n _ 1

Quasi-Newton techniques, where a secant approximation is made for the
Jacobi matrix.
Newton's method, where Jacobi matrix of f(x) is calculated and used.

Equation oriented flowsheeting systems set up the full system of algebraic
equations and then solve them either simultaneously or by decomposing the
equation set into separate blocks and solving each block independently. The
information from a degrees of freedom analysis of a flowsheet, where the
variables and equations are listed, can be set up in matrix form. This matrix is
known as the occurrence matrix for the equation set. A well-posed problem can
usually be obtained by reducing the columns of the matrix until the matrix is
square. This is equivalent to specifying each of the variables for which a column
is removed. When the matrix is square this represents a system in which the
number of equations is equal to the number of variables and a solution can be
sought.

The Jacobian matrix, J, of a system of equations, the matrix of derivatives, has
the same structure as the occurrence matrix, i.e. where the occurrence matrix has
a zero so too does the Jacobian and where the occurrence matrix has an entry the
Jacobian has a value. If the Jacobian matrix is singular, i.e. its determinant is
zero, for a particular set of parameter values then the equations are not all
independent. Newton based methods are used to solve the equation set.

5.2.3.3 C o m m e r c i a l s i m u l a t o r s for p e t r o l e u m and c h e m i c a l s p r o c e s s e s

The market for steady-state simulation in the petroleum and chemical industries
is dominated by four products: Aspen Plus from Aspen Technology Inc., Hysys
(and its predecessor Hysim) from Hyprotech (a division of AEA Engineering
Software), CHEMCAD, from Chemstations Inc., and PRO/II from Simulation
Sciences. Aspen Plus and PRO/II are sequential modular simulators, whereas
Hysys uses a simultaneous modular algorithm. Aspen Plus and PRO/II have a
long history, beginning in the late 1970's and early 1980's as Fortran applications
on mainframes and later minicomputers. Simulations were configured using

380

keyword input files 2. During the 1990's these tools migrated to personal
computers, and the input files were hidden behind first DOS-based configuration
tools (such as Aspen's Model Manager) and then Windows-based graphical
configuration tools (newer versions of Model Manager, Simulation Sciences'
ProVision, and in CHEMCAD). Hysim was developed later, and was written for
personal computers. Hysys was a further development for a Windows operating
system.

Name
Aspen Plus

Hysys

PRO/II

CHEMCAD

Table 1 Some market-leading steady-state simulators.
Supplier Web site
Aspen http://www.aspentech.com/index.asp?menuchoice=ap5aspenplus
Technologies
I n c .

Hyprotech
(part of AEA
Engineering
Software)
Simulation
Sciences
Chemstations
Inc.

h t t p ://www. hyp ro tech .com/p roce ss /de faul t , asp

http://www.simsci.com/products/proII.htm

http://www.chemstations.net

5.2.3.4 I n - h o u s e S i m u l a t o r s

Many large chemical companies developed their own steady-state simulators
during the 1970's and 1980's. For example ICI developed Flowpack, BP built
Genesis, Norsk Hydro built MAHEBA and NEW*S. Exxon, DuPont, Dow, DSM,
BASF, Bayer and Shell all had similar systems. During the late 1980's and 1990's
most of these systems have been superseded by generic simulators. The
production companies decided that software development and support was not
core business and that it was not worthwhile maintaining the (expensive) skills
that were needed.

There remain, however, some companies who maintain in-house simulators as a
source of competitive advantage. Liquefied gas companies usually use their own
simulators, with their own highly accurate thermodynamic and fractionation
model, such as Linde's OPTISIM simulator (Volt, 1994). Effective design of air
separation equipment requires very accurate calculation of phase equilibrium, as
the relative volatility of oxygen and nitrogen is very low.

Haldor Topsoe is another company who maintains their own engineering
simulator (Christiansen, 1992). Their maintenance of a specialised tool is

2 These files were noticeably influenced by their Fortran pedigree. They were terse, dense and not very readable.

381

justified by their concentration upon a narrow range of processes in which
proprietary reactor and catalyst technology is central.

5.2.3.5 Flowsheet ing in Paper, Minerals and Metals Processing

The standard steady-state simulators are most widely used in the petroleum and
chemicals industries. This has been due to both technical and economic
pressures. Technically, the simulators were well suited to modelling fluids with
relatively well-defined compositions and thermodynamic properties. They were
less suitable for processes with poorly defined compositions and properties. This
was despite the fact that Aspen was originally developed as a simulator for
simulating processes with ill-defined compositions, such as coal (see, for example
McIlvried, Marano and Boyd (1996)).

The petroleum and chemicals industries were also economically and culturally
attractive to the vendors. Engineers understood the need for steady state
simulation as a means of developing a design basis. Clear cost benefits could be
demonstrated by using these new tools.

Minerals processing and metallurgy have provided niches for smaller vendors
and research organisations to provide specialised steady-state simulators. For
example, Mintek in South Africa, market Pyrosim, a simulator for pyro-
metallurgical processes. Further description of this product is available at the
web-site http ://www.mintek.co.za/Pyromet/Pyrosim/Pyrosim.htm. Similar
products are marketed by JKTech, the commercial arm of the Julius Kruttschitt
Mineral Research Centre (http://www.jktech.com.au/software.htm). SpeedUp has
been applied to electrolytic zinc processing (Barton and Perkins, 1988). A typical
simulator for minerals processing is described by Houdouin and Coelho (1987).
Simulators for minerals processing (i.e. crushing, grinding, screening and
flotation) usually include data reconciliation algorithms as the predictive power
of unit models are low and redundant process measurements and analyses are
available.

Many pyrometallurgical and hydrometallurgical process are modelled using
thermochemical software, such as Outokumpu's HSC software
(http://www.outokumpu.com/hsc/) or FACTSage (http://www.factsage.com/).
These tools offer limited modelling of flowsheets, but good modelling of single
reactors using the minimisation of Gibbs free energy.

Pulp and paper processes are characterised by solid-liquid-gas systems, complex
chemistries and poorly defined materials (such as pulp, broke and black liquor).
The processes are also tightly coupled mass flow networks. This makes equation-
based process simulators attractive. Again there are some niche products.
Massbal (Shewchuk, 1987) is an equation-oriented simulator that has good

382

market penetrat ion in the paper industry. VTT in Finland markets a sequential-
modular s imulator called BALAS (http://www.vtt.fi/ene/balas/balas.htm).

5.2.3.6 From Steady-State Design to Dynamic Design

Dynamic simulation first grew out of the need to predict the effects of controller
tuning, ensure reliable emergency procedures and to develop effective start up
and shut down of plant. However a number of factors affecting plant design and
operation have caused a much greater interest in plant dynamics recently. Plants
are becoming more complex and more tightly integrated, both internally within
individual plants and on a site-wide basis, via shared utilities, relief systems,
etc.. Such integrated complexes often have more complex dynamic behaviour and
are therefore more complex to commission and to operate. Upset dynamics is
often a critical issue, potentially leading to safety & environmental problems and
the propagation of faults through the site. Localised manufactur ing is creating
the need for much smaller plants with very similar requirements. Many of the
newer high-value products (such as pharmaceuticals, fine chemicals, etc) are
produced using batch (or other discontinuous) processes (and, of course, many
plants are hybrids, i.e. contain both continuous and batch sections) - such
processes are inherently dynamic and therefore more difficult to develop, design
and operate.

The analysis and exploitation of the dynamics of a plant provides capabilities,
which can help ensure tha t these goals are met. Great strides, particularly in the
provision of dynamic simulation of continuous and to a lesser extent batch
processes have helped in achieving some of the benefits. The offshore oil industry
in part icular has made great use of the tools and methods available.

A number of products are now available for use as design and verification tools.
In many cases the tools are closely tied to steady state simulation tools. Aspen
Dynamics from Aspentech is a dynamic simulation tool integrated with their
steady state simulator. The system is an equation-based technology where the
equations can be seen and modified. Hysys, from Hyprotech, is also tightly bound
with the steady state capability allowing a very easy switch from steady state
mode to dynamic mode. gPROMS from PSEnterprise Ltd
(http://www.psenterprise.com) is a general purpose process modelling, simulation
and optimisation environment allowing open access to the model equations. It
has a more sophisticated technique for handling discrete events than the systems
mentioned so far. They have also developed an object-oriented framework for the
modelling and the dynamic simulation of chemical processes, Odysseo (Object-
oriented Dynamic Simulation Software Environment), a reusable C++
development framework as a foundation for general or dedicated dynamic
simulator design. Models are developed in equation-based form but it also
supports inclusion of modules. Prosim (http://www.prosim.fr) has developed
some tools for the design of batch processes which are by their nature dynamic.

383

5.2.3.7 From Steady-State Des ign to Opt imisat ion

Most design problems are in fact optimisation problems - there are many
possible solutions to the problem and the problem is to find the best choice. It is
necessary tha t there be at least one degree of freedom and variables represented
by these degrees of freedom are manipula ted to find the best solution. It is
important of course to define by what criterion the optimal choice is to be made
i.e. to define an objective function. Investment design problems are made on the
basis of a weighted balance of capital and discounted operating cost over the
project lifetime such as the Net Present Value of the project. Many operational
decisions are made on the basis of a measure of the current profitability of the
short to medium term operating costs. For example refinery blending schedules
are determined solving linear optimisation problems. Increasingly designs are
being optimised on the basis of environmental performance using for example
Life Cycle Analysis as a basis (Stefanis et al., 1997; Azapagic and Clift, 1995) or
the sustainable process index (Krotschek and Narodoslawsky, 1996).

Optimisation codes manipulate the variables until the objective function satisfies
the optimality conditions, where the objective function cannot be improved
locally, while still satisfying the model equations. The full optimality conditions
are known as the Kuhn Tucker conditions. Most process optimisation tools use
var iants on the sequential quadratic programming algorithm (SQP). A full
explanation of process optimisation can be found in Edgar et al. (2001). It should
be noted tha t all optimisation tools currently implemented in design tools find a
local minimum, which may not necessarily be the best, or global, minimum.
Significant strides have been achieved recently in techniques for determining the
global optimisation (see for example Floudas, 1999) but there is still some way
before there are commercial codes. To a t tempt to obtain the global solution
normal practice is to try the same problem from many different s tar t ing guesses.
Aspen Plus, PRO II, Hysys and gPROMS all support an optimisation capability
using SQP based algorithms. CHEMCAD does not, preferring to encourage the
user to develop scenarios to explore the potential solutions.

5.2.3.8 Batch S c h e d u l i n g

Tools for batch process design have been concentrated on solving the scheduling
problem - deciding how best to schedule a set of recipes within a fixed set of
plant resources. The tools assume that the times and capacities of each step in
the recipe are known. This topic is covered in detail in chapters 3.5 and 5.4.

384

5.2.4 THERMODYNAMICS AND PHYSICAL P R O P E R T I E S

Wide ranges of thermodynamic property prediction tools are available. Main
simulator vendors have their own, proprietary thermodynamics system. This is
also true for the most of the smaller vendors. For example, Prosim, offers a
system called PhoPhy Plus. AspenTech's system, PropertiesPlus, is also available
as a stand-alone product.

These calculation systems build on databases of pure-component properties and
interaction factors such as

o DIPPR (http:l/www.aiche.org/dippr/),
o PPDS (http:#www.ppds.co.utd) and
o DETHERM (http:#www.dechema.delinfsys/dsd/englisch/dethermMain.htm).
o

Figure 4 shows the typical structure for a physical properties system. The
calculation program draws on one or more pure property databases, one or more
mixture (interaction parameter) databases, a library of methods (equations of
state, activity coefficient equations) and a library of algorithms (different types of
flashes). All these components need to be in place and consistent with each other
for a successful calculation.

Calculation Engine

1
I I I I

/ / / / I ii I
Q Mixture ((Equations of I

data state, activity I
models) 1

Figure 4. Structure of a thermodynamic system.

Pure
component
properties

Algorithms
(Flash

algorithms)

A general simulator thermodynamic system must be able calculate properties for
at least the following types of compounds:

o oil fluids, including pseudo-components.
o polar chemicals and solvents.
o aqueous electrolytes.
o polymers.

The large vendors' systems all have methods for representing these fluid types.
Smaller vendors, such as Infochem (http://www.infochemuk.com/) and Calsep

385

(http://www.calsep.com) have concentrated on delivering stand-alone products,
with system integration features, for oil and gas systems.

The thermodynamic and physical properties packages
difficult to use. Typical problems encountered by users are:

are complicated and

A large number of methods are available. These are of dubious relevance
and unknown quality. As Linkson (1998) has pointed out, using an
unsuitable method can give dangerously spurious answers. CAPEC at the
Technical Universi ty of Denmark (http://www.capec.kt.dtu.dk) has
developed, an expert assistant, called TMS. This program identifies the
most appropriate thermodynamic model needed to describe the specified
properties for a given mixture.
Data for pure components or mixtures is not available, unless linked to
suitable databases. All good physical property systems provide tools for
regressing experimental data for pure components and mixtures. If,
however, it is not feasible to conduct experiments, estimates of key
parameters may be made using group contribution methods, such as
UNIFAC (Fredenslund et al., 1977). A graphical tool, called PROPRED
uses a variety of group contribution methods to calculate pure component
properties for molecules that the user interactively draws. This product
was developed at CAPEC and an independent commercial version ha also
been developed by IP-Sol (http://www.ip-sol.com/).

5.2.5 S P E C I F I C SIMULATORS FOR UNIT O P E R A T I O N S

As noted in the introduction, generic process simulators contain generic models
for reactors and separators. These models are usually good enough for conceptual
design, but are inadequate for detailed work. In addition, reactors and separators
are usually the parts of the process that are proprietary and confidential. Most
technology licensers possess a variety of detailed models for key processes. These
are particularly useful for batch process design and development.

5.2.5.1 R e a c t o r s

Aspentech have a range of specialist reaction design systems, among others for
Hydrocrackers, FCCs and Hydrotreaters. BatchReactor from Prosim is a tool for
chemists, technicians and process engineers for prompt and safe design of batch
chemical reactors. It permits the optimisation of the process combined with
thermal stability analysis. Aspen's Batch Plus supports the development of
modelling of batch recipes of reaction and separation stages.

386

5.2.5.2 Heat e x c h a n g e r s

During the mid 1990's the leading vendors of specialised software for designing
and rating heat exchangers were acquired by one of the vendors of sequential
modular simulators. Thus, HTFS' parent company acquired Hyprotech and
integrated HTFS into Hysys. Similarly AspenTech acquired and integrated B-
JAC. Around the same time, Simulation Sciences acquired the Hextran software.

These products are broadly comparable and are capable of designing and rating a
wide variety of shell-and-tube, finned and compact heat exchangers. The software
is available as a stand-alone system, but can be integrated with the parent
company's simulator.

Smaller vendors also have niche products, for example, Prosim sells a product
called ProSec, which is dedicated to brazed aluminum plate-fin heat exchangers
and Ariane, which optimises power plants (steam, electricity, hot water) to
determine the operating parameters that enable the lowest energy cost.

5.2.5.3 Dis t i l la t ion

Aspentech have a system for modelling non-equilbrium separations, both packed
and trayed, called RATEFRAC, which uses a rate-based model to predict
separations. For batch distillation Aspentech provide a tool called BATCHFRAC
and Prosim provides Batchcolumn. Both of these models use rigorous tray-to-tray
calculations based on phase equilibrium models.

Hyprotech markets a product for column sequencing and design of ternary and
azeotropic distillation columns. This product, called Distil, is a commercialisation
of research results from the University of Massachusetts.

5.2.5.4 Adsorpt ion

Aspentech provide ADSIM for modelling and designing the full range of
industrial gas and liquid adsorption processes. A brochure on this system can be
downloaded from http://www.aspentech.com/ap/downloads/adsim wp.pdf.

5.2.5.5 Model l ing ass i s tants

Developing models, especially those with any degree of detail, is a difficult task.
In recent years there have been new tools to assist with this task. One of the
first of these was MODEL.LA (http://modella.mit.edu/) (Bieszczad, 2000).
Another approach to model building is presented in the I CAS system (Gani et al.,
1997) (http://www.capec.kt.dtu.dk). Modelling assistants are treated in more
detail elsewhere in this book (see for example, chapters 3.1 and 5.1).

387

5.2.6 P R O C E S S SYNTHESIS

The problems solved by the tools outlined in section 1.2 a l l assume t h a t the
choice of units and interconnections between them, the structure or topology of
the flowsheet, are predetermined. The aim of Process Synthesis tools is the
automatic identification of the optimal choice of units and the connections
between them for the production of a particular product. Algorithms for the
solution of this problem have been appearing since the 1960s. There are three
main approaches for this problem: properties based, optimisation based, and
heuristics based.

5.2.6.1 Whole P r o c e s s S y n t h e s i s

Jaksland et al (1995) proposed an approach to the problem, which determines
which separation techniques are feasible using physical property differences
between the major components to be separated. The approach is based on the
idea that each unit operation is governed by a physical property driving force eg
distillation is governed by the volatility difference between the components.
Table 2 lists a number of alternative separation techniques along with the
physical property, which governs its performance. For the method it is
necessary to develop the binary ratio matrix, a matrix that contains the ratios
between each pair of components of all the relevant physical properties. For the
published results the properties are mostly predicted using group contribution
methods.

Table 2. Separation Techniques and governing physical property

Separation technique Property

Absorption solubility parameter
Distillation boiling point, heat of vaporisation
Crystallisation melting point, heat of fusion
Microfiltration size, molecular weight
Gas separation membranes critical temperature, van der Waals volume

In optimisation based approaches an optimisation problem is formulated which
encompass all possible solutions of the problem. It is necessary first to develop a
mathematical description of the problem, which encompasses all solutions, often
known as a superstructure, and to define an objective function, which
characterises the performance of the proposed design. This may be economic or
environmental or characterising any other objective which can be quantified.
This optimisation problem is then solved using computational optimisation
methods either using continuous optimisation methods such as sequential

388

quadratic optimisation methods (Papoulias and Grossmann, 1983b) or using
integer search methods (Fraga and McKinnon). This approach is often used for
subproblems of the overall synthesis problem e.g. heat exchanger network
problems (Papoulias and Grossmann, 1983a). Fraga (1998) has developed a
system called Jacaranda, which uses integer optimisation solution method and
coarsely discretises the continuous variable space.

Douglas (1988) developed a heuristic or rule based procedure for designing
process plants. His procedure begins with defining the economic potential of the
design as the difference between the product value and the raw material costs.
The procedure then follows a series of decisions trees to decide the following
questions:

o Operate in batch or continuous mode?
o What is the flowsheet input output structure?
o What is the recycle structure?
o What is the separation system?
o What process integration is possible?

The procedure involves continued evaluation of the effects of each choice on the
economic potential. They have implemented the approach in a system called PIP.
The use of thermodynamic heuristics in the design of heat exchanger systems has
been a great success for the process industries and this is discussed in more
detail in the following section.

GHN mbH market a synthesis tool called PROSYN, which uses an expert system
principally using heuristics for process synthesis (http://www.ghn.de/). The
system works through a number of domain expert programs for the following
problems: the selection and design of reactors for a given reaction path
(READPERT); the generation of distillation sequences using simple and complex
columns (REKPERT); the development of energy integrated distillation
sequences (HEATPERT); the development of distillation sequences for the
separation of azeotropic or close-boiling mixtures (TEAGPERT); and the
determination of the method of producing crystalline products and the selection
and design of the appropriate crystalliser (KRISPERT).

5.2.6.2 Heat E x c h a n g e r and Water N e t w o r k S y n t h e s i s

The area with the most concerted activity is the synthesis of heat exchanger
systems motivated by the need for energy efficiency. Aspentech market a tool
called Aspen Pinch. The tool implements the ideas of pinch technology for
predicting minimum energy and capital requirements for a set of hot and cold
streams with target temperatures.

389

Pressure on performance targets for the effective use of process utilities has
encouraged the development of a number of tools for synthesising systems for the
optimal use of process water. Aspen Water from Aspentech is a tool for
optimising process water utilisation. Aspentech's Aspen Utilities focuses on the
optimisation of the purchase, supply and usage of fuel, steam and power within
environmental constraints.

AspenTech is used only as an example here. Similar products are available from
other vendors and consortia, such as:

o Veritech (http://www.veritech-energy.com/).
o Linnhoff March (http://www.linnhoffmarch.co.uk/).
o UMIST (http://www.cpi.umist.ac.uk]).
o Hyprotech (http://www.hyprotech.com/hx-net/default.asp).
o NEL (http://www.ppds.co.uldproducts/heatnet.asp).

5.2.7 DATA RECONCILIATION

Developing models off-line directly from plant data is an important application.
While many off-line tools can be used with generic models where possible using
realistic design parameters, many operational problems require better quality
prediction from the models especially when used in conjunction with any on-line
applications. This is done using available data, as much as can be obtained,
together with a data reconciliation package which obtains the model parameters
which best fit the data. See also chapter 3.4 for a detailed discussion on the data-
reconciliation framework.

VALI from BELSIM (http://www.belsim.com) is an equation based data
reconciliation software tool. It uses information from redundancy and
conservation laws to correct measurements and convert them into models. VALI
detects faulty sensors and pinpoints degradation of equipment performance (such
as heat rate and compressor efficiency.).

Data Reconciliation is more efficiently done using an equation-oriented simulator
than a sequential modular simulator. Thus, Simulation Sciences markets their
data reconciliation product, DATACON 3 as a parallel product to the PRO/II
simulator. Use of the Massbal simulator for data reconciliation has been
described by Cameron, Morton and Paterson (1991).

3 ht tp: / /www.simsci .com/pdf/DATACON.pdf

390

5.2.8 P R O D U C T S Y N T H E S I S

A new frontier for off line tools is in designing appropriate products for specific
well-defined uses. There are few examples of generic tools in this are.

However one successful example is the Computer Aided Molecular Design
(CAMD) technique, the computerised generation and identification of compounds
with specific properties. ProCAMD (http://www.capec.kt.dtu.dk, http://www.ip-
sol.com/) implements this using group contribution property prediction tools to
build molecules with specific properties and has been used to identify/design
potential new solvents, process fluids and refrigerants (Harper and Gani, 2000).

Westerberg and Subrahmanian (2000) have also developed some generic ideas
but the topic remains in its infancy.

5.2.9 I N T E G R A T I N G THE D E S I G N P R O C E S S

One of the weaknesses of design is that it is done in a sequential fashion choosing
units, then interconnections, then capacities and flows and thermodynamic
states, then control system to keep operations at the chosen conditions etc..
However these decisions are rarely distinct and much iteration is required to
ensure that technical specification are met as well as safety and environmental
limits and of course cost optimality or as close as can be obtained. The
integration of the design process remains an elusive target, not helped by the
diversity of tools used in the various stages of design. Even the first stage of
integrating the design process, that of tools integration eludes us although some
prototype tools such as Epee (Costello et al. 1996) and ICAS (Gani et al. 1997)
exist. Also a prototype for tracking the rationale of design decisions, KBDS
(Banares Alcantara (1995a, 1995b), has also been developed. True concurrent
engineering in the design process is a challenging topic and progress in this topic
is covered in detail in chapters 6.2 and 7.1.

5.2.10 REFERENCES

Azapagic A. and Clift R., (1995), "Life Cycle Assessment and Linear
Programming - Environmental Optimisation of Product Stream", Comput. Chem
Eng., 19(Suppl.), $229-$234
Banares Alcantara, R., (1995a), "Design support systems for process engineering.
i. Requirements and proposed solutions for design process representation.",
Comput. Chem. Engng, 19(3), 267-277.
Banares Alcantara, R., and Lababidi, H.M.S., (1995b), "Design support systems
for process engineering, ii. KBDS: and experimental prototype", Comput. Chem.
Engng, 19(3), 279-301.

391

Barton, G.W., and Perkins, J.D., (1988), "Experiences with SpeedUp in the
Mineral Processing Industries", Chem. Eng. Res. Des., 66(5), 408-418.
Barton, P.I., (2000), "Modeling, Simulation and Sensitivity Analysis of Hybrid
Systems", Proceedings of the 2000 IEEE International Symposium on Computer-
Aided Control System Design.
Bieszczad, J, (2000), "A Framework for the Language and Logic of Computer-
Aided Phenomena-Based Process Modeling", Ph.D. Thesis, MIT, available from
http://modella.mit.edu/bieszczadthesis/index.html.
Biegler, L.T., Grossmann, I.E., Siirola, J.J., and Westerberg, A.W., (1997),
"Systematic Methods of Chemical Process Design", Prentice Hall.
Cameron, D.B., Morton, W., and Paterson, W.R., (1991), "Framework for the
modelling of metallurgical processes", Trans. Instn Min. Metall. (Sect. C: Mineral
Process. Extr. Metall.), 100, C 11-C20.
Christiansen, L.J., (1992), "A Computer-Aided Engineering System For
Development Of Catalytic Processes", Comput. Chem. Engng,16(Suppl.), May,
$55-$68.
Costello D., Fraga E.S., Skilling N., Ballinger G.H., Banares-Alcantara R., J
Krabbe J., Laing D.M., McKinnel R.C., Ponton J.W., & Spenceley M.W. (1996)
~p~e: A Support Environment for Process Engineering Software, Comput. Chem.
Engng, 20(12), 1399-1412.
Douglas J.M., (1988), "Conceptual design of chemical processes", McGraw Hill,
New York.
Edgar T.F. and Himmelblau D.M. and Lasdon L.S., (2001), "Optimization of
Chemical Processes", 2 ~d Ed., McGraw Hill, New York.
Floudas, C., (1999), "Recent advances in global optimisation for process synthesis
design and control: Enclosure of all solutions", Comput. Chem. Engng, 23(Suppl.)
$963-$973
Fraga E. S. and McKinnon K.I.M., (1994), "CHIPS: A process synthesis package",
Chem Eng Res. Des., 72, 389-394.
Fraga E.S., (1998), "The generation and use of partial solutions in process
synthesis", Trans IchemE, 76A, 45-54.
Fredenslund, A., Gmehling J., Rasmussen, P., (1977), "Vapour-Liquid Equilibria
Using UNIFAC", Elsevier, Amsterdam, The Netherlands.
Gani R., Hytoft G., Jaksland C., and Jensen A.K., (1997), "An integrated
computer aided system for integrated design of chemical processes", Comput
Chem Engng, 21(10), 1135-1146.
Harper, P.M., and Gani, R., (2000), "A multi-step and multi-level approach for
computer aided molecular design", Comput. Chem Engng, 24(2-7), 677- 683.
Horwitz, B.A., (1996), "Avoid nausea when solving dynamic problems", Chem.
Eng. Prog., March, 44-51.
Hodouin, D. and Coelho, S.V., (1987), "Mass Balance Calculations Around
Mineral Processing Units Using Composition Analyses Within Particle-Size
Classes", Int. Jnl. Mineral Processing, 21, 65-82
Jaksland C., Gani R., and Lien K. (1995) 'Separation processdesign and
synthesis based on thermodynamic insights' Chem Eng Sci. 50/3 511-530

392

Krotschek C. and Narodoslawsky M. (1996) The sustainable process index. A
new dimension in ecological evaluation. Ecological Engineering, 6(4) 241.
Laing D.M. and Fraga E.S (1997) A case study on synthesis in preliminary
design. Comput chem Engng 21 Suppl. PPS53-$58
Linkson, P.B., (1998), "Can you trust your aqueous system simulations?", Chem.
Eng. Prog., November, 39-47.
McIlvried, H.G., Marano, J.J., and Boyd, J.H., (1996), "Development of an
ASPEN model of a direct coal liquefaction facility",
http://www.fetc.doe.gov/publications/proceedings/96/96jpfs/jpfs pdf]aspen.pdf
Newell R.B and Cameron I.T., (1996), "Issues for future dynamic process
simulators", Chemical Engineering in Australia, ChE21(2), 11-14.
Papoulias, S., and Grossmann, I., (1983a), 'A structural optimisation approach to
process synthesis - II Heat recovery networks', Comput Chem. Eng., 7, 707
Papoulias, S., and Grossmann, I., (1983b), 'A structural optimisation approach to
process synthesis - III Total Processing Systems', Comput Chem. Eng., 7, 723
Seider, W.D., Seader, J.D., and Lewin W.R., (1998), "Process Design Principles :
Synthesis, Analysis, and Evaluation", Wiley, New York.
Shewchuk, C.F., (1987), "Massbal Mk II: New Process Simulation System", Pulp
Paper Canada, 88(5), T161-T167.
Smith, R., (1995), "Chemical Process Design", McGraw-Hill, New York.
Stefanis S.K., Livingstone A.G. and Pistikopoulos E.N. (1997) Environmental
impact considerations in the optimal design and scheducling of batch processes.
Comput Chem Engng. 21/10 1073-1094.
Tolsma, J.E., Clabaugh, J., and Barton, P.I., (1999), "ABACUSS II: Advanced
Modelling Environment and Embedded Simulator",
http://yoric.mit.edu/abacuss2/abacuss2.html
Turton, R., Bailie, R.C., Whiting, W.C., and Shaeiwitz, J., (1997), "Analysis,
Synthesis, and Design of Chemical Processes", Prentice Hall.
Volt, J., (1994), "The production of computer-based plant optimization systems
with the OPTISIM| process simulator. Experience with a Linde air separation
plant", Linde Reports on Science and Technology, 54, 19-25.
Westerberg, A.W. and Subrahmanian, E., (2000), "Product Design", Comput.
Chem. Engng, 24(2-7), 9 5 9 - 966.

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
(_4) 2002 Elsevier Science B.V. All rights reserved. 393

Chapter 5.3" Dynamic Simulators for Operator Training

D. Cameron, C. Clausen & W. Morton

5.3.1 INTRODUCTION

This chapter describes current practice for the use of dynamic simulators in the
process industries. Over the last two decades, dynamic simulation has matured
as a tool for training operators of capital-intensive and safety-critical equipment
(such as oil platforms, power stations and nuclear reactors). Advances in
computer speed, programming methods and user interface facilities have made
dynamic simulation a robust, effective and relatively inexpensive way of training
operators. As this has occurred, dynamic simulators for training have been
adopted (often in a simplified form) in other industries.

Furthermore, the technical quality of simulation models has improved with
computer speed. This means that dynamic simulators can also be gainfully used
for engineering design and operations support. These trends will be described
and explored later in the chapter.

The discussion begins with a discussion of dynamic process modelling. This sets
the context for later, more detailed discussions. This is followed by a brief
historical overview of dynamic simulation in the process industries and related
areas, such as energy production. This is followed by a brief discussion of how
and where dynamic simulators can be used in the process lifecycle. This section
provides a road-map for the rest of the chapter.

Dynamic simulators (together with on-line systems) are perhaps the area of
Computer Aided Process Engineering where user requirements are most
stringent. A presentation of the requirements of a specific, but typical industrial
operation is given in section 5.3.6.

Once this background has been given, it remains to describe the tools that are
currently available. This is done in two steps. Section 5.3.7 describes the two
methods that are used to solve dynamic models of processes. Section 5.3.8 lists
and describes typical products that can be used for dynamic simulation.

394

Sections 5.3.9 and 5.3.10 revisit the discussion of lifecycle dynamic modelling in
more detail. Section 5.3.9 presents how dynamic simulators are used in operator
training and section 5.3.10 gives an example of how a dynamic model can also be
used to provide on-line operator support.

The chapter concludes with a few thoughts about how dynamic simulators will
develop over the next decade.

5.3.2 WHAT IS A DYNAMIC PROCESS MODEL?

5.3.2.1 M od e l s are se t s of d i f f eren t ia l and a l g e b r a i c e q u a t i o n s

The theory of process dynamics is part of s tandard undergraduate Chemical
Engineering theory, and is well covered by standard process control textbooks
such as Luyben (1990) or Bequette (1998). The dynamic behaviour of a process is
governed by the laws of conservation of mass, momentum and energy. These, for
an example of a lumped control volume (see Figure 1) with in and outflow and N
chemical species present, give rise to a system of N+2 differential equations:

Inlet
stream - - .

T,e P.,, F, xu.

Holdup
T,P,n~

Outlet
stream

T, P,F, Xj, o. t

Figure 1. A simple, lumped control volume

Conservation of mass for each chemical species

dn~

dt
= FinXi.in -- Fout Xi,ou t + I~ i for i = 1, N

Conservation of energy (enthalpy in a flow system)

dH
dt

= Finhin - Fouthou t -I- AH + q

Conservation of momentum and equation of state (with constant volume)

dT d Z n i / d P = f V,
dt & '

395

These differential equations are accompanied by a set of algebraic equations.
These algebraic equations represent (a) definitions of variables in the model, (b)
calculations of physical properties, (c) quasi-steady-state relationships for
phenomena with fast dynamics and (d) process inputs.

Thus, any dynamic model is a system of differential and algebraic equations
(DAEs). A dynamic model of a chemical process would typically include hundreds
of differential equations and thousands of algebraic equations. Efficient solution
of these models is not trivial. Methods for solving such systems are reviewed in
section 5.3.7

5.3.2.2 D y n a m i c mode l s inc lude more t h a n j u s t t he b a r e p roces s

The dynamic behaviour of a chemical process depends on much more than the
dynamics of the actual processing units. To be useful a process model needs to
take account of the dynamic behaviour of the "ironmongery" in the process
system. Thus, a dynamic process model will need to include dynamic models of:

�9 sensors and transmitters (e.g. thermocouples and flow sensors).
�9 analogue-digital conversion and sampling.
�9 signal processing and transmission.
�9 logic and sequences.
�9 control algorithms.
�9 actuator dynamics (e.g. valve positioners, actuators and variable-speed

drives).
�9 final control elements (e.g. valve stem travel, hysteresis and sticking).

These additional models introduce further DAEs, and will usually introduce
discontinuous, discrete events.

This has two implications:

(1)

(2)

Dynamic process models require much more information than the
corresponding steady-state model. Steady-state models are largely
indifferent to equipment size and shape ~, controller tuning, sampling
time, signal noise, valve hysteresis or shut-down sequences. An adequate
dynamic model is, however, dependent on the correct modelling of these
features. Indeed, the dynamic behaviour of many processes is dominated
by the dynamics of the control system.
Dynamic process models are mathematically challenging. The modeller
always needs balance physical fidelity and efficient solution.

' Al though a predict ive s teady-s ta te model of a reac tor will need to t ake account of the reac tor size and flow patterns.

396

5.3.3 REVIEW OF APPLICATIONS

This review will, given the backgrounds of the authors, give most attention to the
oil and gas industries. However, the use of dynamic simulators in this industry is
in many ways typical for other industries. As a rule, training simulators have
been widely adopted in industries where capital investment is high, processes are
complex and the consequences of plant or operator failure are serious. Industries
of this type are the offshore oil and gas industry and the power and energy
industry (both nuclear and conventional). Adoption has been slower, but still
significant, in oil refining, chemicals and pulp and paper. The presentation of
these sectors will be brief, and will point out areas where practice differs from the
oil and gas industry.

5.3.3.1 Oil and Gas P r o d u c t i o n

High fidelity dynamic process simulators have been used extensively by all major
companies within the oil and gas industry for more than two decades. Basically
within process design studies, detailed engineering studies, process de-
bottlenecking, control system verification, but also within operator training.
Constantly changing process conditions, slugging problems from pipelines,
changing feed stocks and complicated control systems are the reality in the day to
day operation of most plants. Only well trained operators, thoroughly tested
operational procedures and optimised control schemes will guarantee maximum
throughput and safe operation.

This comprehensive use of dynamic simulators is based on the fact that steady
state simulations do not give any answers about transient behaviour of the
process. They provide an instant picture of a particular design case, and do not
include feedback from the process itself or from the control system. A steady state
simulator also neglect the effect of equipment hold-ups and integrating elements
in the process. A dynamic model solves the necessary equations of the process
system and calculates all plant model variables as functions of time. This means
that the dynamic response of the process to changing operating conditions can be
thoroughly examined and evaluated with a dynamic simulator.

Normally top side dynamic simulators can be
engineering simulators and training simulators.

split into two main types:

E n g i n e e r i n g s imula to r s

The main objective of the engineering simulators was, and still is, to undertake
detailed operational and design studies. An engineering simulator is developed to
be an accurate and detailed model of the main processes of a plant (or plant area)
using either generic or emulated process controllers.

397

A generic controller is a standard PID algorithm, as supplied by the simulator
vendor, whereas an emulated controller is the real control system functionality
recreated within the simulator supplier's software.

Process engineers would normally focus their at tention to a relatively small area
of the plant and perform a series of tests and studies enabling them to suggest
solutions to a given problem. This need for detailed engineering studies
demanded a thorough t rea tment of physical behaviour, which in tu rn demanded
fast computer processing. The lack of processing capacity a decade ago resulted in
slow simulations, often below one fifth of real time. This was a nuisance, but was
not considered a great problem.

Most significant fields or sub sea wellhead/pipelines in the North Sea have been
modelled either as a separate engineering model or added onto an existing
engineering model. Multiphase pipelines have normally been modelled using
OLGA, whilst topside processes have been modelled using one of the different
modelling tools listed in Section 5.3.8.3.

So far dynamic simulators has proven to be a powerful and valuable analytical
tool in investigating the time varying behaviour of a process system.

Training simulators

The main objective of a training simulator is to educate skilled and competent
control room operators. To be able to meet this objective the t raining simulator
should represent the process plant as close as possible. The dynamic response of
the t raining simulator should not differ significantly from the behaviour of the
real plant. Thus the simulator needed to run in real time. Normally a training
simulator would contain more models (although somewhat simplified) of the
process utility areas than an engineering model. As an example, a training
simulator of an offshore oil and gas platform would include models of the
emergency and process shutdown system, fuel gas system, flare system, cooling
and heating systems, regeneration systems, and water t r ea tment systems. In
addition necessary sequences to perform start-up of turbines, compressors and
pumps would be modelled. This modelling approach was chosen to ensure that
the operators received adequate training in operating all main areas of the
process. Training simulators was normally based on either an emulated or a
st imulated control system. These are explained further in section 5.3.8 of this
chapter. St imulated simulators gave the possibility of using and testing the real
control system prior to upgrades, but the capital hardware costs were high.
Emulat ion was cheaper, but any change in process or control system
configuration needed a change in emulated software by the simulator supplier.
This was a time consuming process and the choice of concept was basically a
question of philosophy.

398

This first generation of training simulators was considered very successful. Using
Statoil as an example, training simulators have been built for the Gullfaks,
Sleipner, Heidrun, Norne, Troll and Veslefrikk offshore fields. In addition,
simulators have been developed for the K~rsto NLG plant, Kollsnes Gas
Treatment plant and the Tjeldbergodden methanol plant. A smaller batch
training simulator also exists at the Mongstad refinery. These operator training
simulators together cover the whole range from computer-based trainers to full
replica operator simulators. Most of them are still in daily use.

5.3.3.2 Nuclear Industry, Power and Energy

Operator training and dynamic simulation was recognised as a key enabling
technology for safe operations of nuclear plants (Nuclear Energy Agency, 1998).
In many jurisdictions, simulator-based operator training is required by law. In
some countries (including Finland, the USA and Canada), trainees are examined
using the simulators for licensing purposes.

In a survey of operating companies and training institutions in OECD countries
(Nuclear Energy Agency, 1998) it was found that 100% of operators in responding
companies (in Belgium, Canada, Finland, France, Germany, Japan, South Korea,
Spain, Sweden, Switzerland and the USA) trained using a process simulator that
represented the control room and all key process operations. 80% of operators
trained on a simulator that was a replica of the plant on which they worked.

Specialised simulators of nuclear reactors are regularly benchmarked and
compared. There are ranges of simulators used, and it appears that most national
research organisations and power utilities maintain a core simulator and a power
plant simulator. A benchmarking of different simulators on simulating a break in
the main steam line of a Pressurised Water Reactor is presented in Nuclear
Energy Agency (2000).

A representative system is APROS, which is produced and marketed by VTT, the
Technical Research Centre of Finland (Puska, 1999). This simulator is capable of
simulating both the reactor core and the power system, whereas an older system
uses different software for these components, and an interface was required to
the model of the core.

Historically, developments in simulation in the Nuclear industry have catalysed
and enabled applications in other industries. For example, the Norwegian
nuclear research institute, IFE, was involved in the pioneering training
simulators in the North Sea (Endrestol et al, 1989) and remains active both in its
own right, and as a collaborator with Kongsberg Simrad (Ek, 2000). Other
vendors, such as GSE Systems and VTT have taken the same path.

399

Simulator systems that were developed for nuclear applications can naturally be
extended to model coal-fired or gas-fired thermal power plants.

5.3.3.3 Chemica l s Indus try and Ref in ing

Training simulators in the chemical industry and oil refining use the same
technology as all other training simulators. The main qualitative difference is
that chemical reactors are key elements in the process, and hence in the process
model. The reactor is a challenge to the process model and the integrator. The
reactor is often the most complicated unit to model: dynamic models of chemical
reactors usually require the solution of a system of partial differential equations.
Each reactor has a unique geometry, flow arrangement and reaction scheme -
this means that reactor models often need to be tailor-made for a given process.
Furthermore, reactors are usually proprietary, licensed technologies. Technology
licensers can be reluctant to disclose detailed information about process
chemistry and reactor design to the supplier of a dynamic process simulator. In
this situation the modeller has three choices:

1. A simplified representation of the reactor can be built, that represents how
the vendor believes that the model works.

2. A "black box" model of the reactor, obtained from the technology licensor,
can be integrated into the simulation model. This may require substantial
work in interfacing the model and ensuring that it interacts properly (i.e.
in a numerically stable way) with the rest of the simulation.

5.3.4 LIFECYCLE DYNAMIC SIMULATION

5.3.4.1 Evo lu t ion of the t ra in ing s imula tor

In the recent past, and still to some extent, the engineering simulator and the
training simulators for a platform were purchased separately, sometimes even
from two different suppliers. Accurate and stable engineering studies demanded
very detailed modelling and a high execution rate of the calculations and
sequential network solvers (i.e. short time steps). Engineering simulators
therefore ran slowly. Operator training simulators, on the other hand, must be
able to run in real time, rather than being 100% accurate under all t ransient
situations. Real-time execution was not possible with complicated
thermodynamic calculations and fast execution rate using the prevailing
processing power and speed. A training simulator therefore often compromise on
modelling rigour and accepted longer time steps to achieve real time simulation.
Filters and lags then compensated for instability and ensured plausible and
stable behaviour in t ransient mode.

400

The development of modern computer technology has opened several new
possibilities. Steadily increasing processing speed, multiprocessing computers
and the use of s tandard application software and platforms makes it possible to
develop simulators tha t are faster, better and more detailed than ever before.
Now, even large simulators will be able to run in real t ime even with small time
steps. New technology also makes it possible to build simulators through a
graphical online builder, to generate a dynamic model from a steady state model,
to import sequences or cause-and-effect diagrams, to use vendor soft controllers
and to keep track of modelling data. Today fully integrated steady state/dynamic
simulators are commercially available. We are very close now to the life cycle
simulator concept where the same simulator model is used throughout the
lifetime of the plant. The vision is one basic start ing model, where the simulator's
functionality increases in scope and fidelity with time and use.

Around the early to mid 1980's simulators began to be applied in the chemical
industry by vendors with backgrounds in the nuclear and energy industries. Thus
Womack (1986) can give a review of dynamic simulation in Mobil. At that stage
Mobil had used ACSL for model building and also purchased simulators from
Bechtel and Lummus/CE Simcon (now ABB). Training simulation started in the
early 1970s, with an analog computing simulator used for start-up training of oil
refineries at Joliet and Wilhelmshaven.

Around the same time, ICI was using ACSL to develop a training model of an
evaporator plant (Aldren, 1986). This solution, using a s tandard solver for
modelling, was contrasted with vendor-supplied training simulators.

During the late 1980's and early 1990's implementat ion in chemical processes
passed from being pioneering work into common practice. The introduction of
reasonably-priced minicomputers, notably the VAX, reduced the cost and
technical risk of t raining simulators. Most of the simulators that are
commercially important today began to be widely used in this period. Thus,
SACDA's "Trainer" simulator was used to develop training models of pulp and
paper plants. It was later acquired by Honeywell, and formed the basis for their
training simulator products.

Jones and Brook (1990) describe a typical training simulator delivery using
Simcon's GPURS software. The simulator was installed on an ethylene plant run
by Shell. The control system, a Honeywell TDC3000, was emulated (see section
5.3.9). This highlights a further change tha t occurred in the late 1980's. Second-
generation control systems (such as the TDC3000) began to appear. These were
more complicated than the panel or first-generation systems that they replaced.
This increased the need for training.

401

5.3.4.2 Applications through the process lifecycle

As we have seen above, dynamic simulation is routinely used in the design and
start-up phase of processes, as shown in Figure 2. In addition, one simulator is
increasingly used for both engineering and training. It is therefore attractive to
consider using this simulator to support and document all phases of the process
lifecycle.

The simulator can be used as a vehicle for t ransmit t ing and retaining knowledge
from conceptual design, through design and commissioning to operations. It can
also be used as a means of transferring experience (and data) from operations
back into the design of future plants and the retro-fitting of existing plants.

Figure 2. Dynamic simulation in the process lifecycle.

This is what we call the Life Cycle Simulator concept.

A life-cycle simulator model in the oil industry should be used for:

�9 Conceptual studies in the pre-design phase.
�9 Engineering (what-if) studies during detailed design (de-bottlenecking,

process verification).
�9 Control system verification studies.
�9 Testing of new applications.
�9 Perform start-up preparations.
�9 Validation of operational procedures.
�9 Optimisation and troubleshooting.
�9 Training and evaluation of operators.
�9 Operator support and monitoring systems.
�9 Safety training and crisis handling.
�9 Modification and tail production 2 studies.

2 By tail production we mean the period in an off field's history where off production is declining. The drop in oil
production rate results in a relative increase in water and gas production. Undesirable multiphase flow phenomena, such

402

5.3.5 I N D U S T R I A L R E Q U I R E M E N T S

A process simulator should be robust and reliable, accurate and repeatable, easy
to maintain, use and update, be based on high fidelity models with stable
network solvers and first principle techniques. In addition a modern process
simulator should be based on s tandard Windows technology and be fully
compatible with s tandard windows office applications (such as spreadsheets).

The model shall be stable, realistic and repeatable when operated within the
operating domain of the process plant: from ambient start-up conditions through
steady state operation, shutdown situations and operation through malfunctions.

A dynamic process model should be based on the following requirements:

�9 Standard PC computers. Developed and running on Windows software.
Hardware should have significant spare computer power, spare storage
capacity and extension capabilities (printers, CD-ROMs, internal/external
net).

�9 Object oriented, online configurable graphic interface (WYSIWYG-
philosophy).

�9 High fidelity mathemat ical models based on first-principles engineering
practise and sound mathemat ical methods.

�9 Three-phase flash capabilities (water-oil-gas) and multiphase flow
capabilities.

�9 Rigorous thermodynamics or continuously updated local property correlations.
All calculations should be based on equation of state algorithms. The results
should be presented in engineering units (This means SI in Europe, and
otherwise in the USA).

�9 Well proven and stable simultaneous pressure/flow network solvers within
fast transients.

�9 Acceptable integration methods to ensure fast and stable calculations.
�9 Robust, fast and reliable simulation through discontinuities (vessel

overflow/dry-up, phase changes, compressor surge and stonewall regions, etc.)
�9 Conversion tools to and from steady state/dynamic state.
�9 Proven DCS interface technology. DCS to be based on suppliers soft

controllers.
�9 Easy on-line parameterisat ion/validation of process equipment and control

modules.
�9 The graphical user interface should, like a CAD program, support "layers".

Thus, the engineer building a model can place all control schemes on one
layer, all logic on another, and instructor facilities on yet another layer. It is
then simple to display or hide these features as required.

as slugging, may become more common. Pressure in the processing system may also need to be reduced. All these effects
require careful optimisation of operating conditions and re-training of the process operators.

403

�9 Easy graphical update functionality for ESD, PSD, sequences and logic.
�9 Flexible naming convention when copying equipment or plant areas.
�9 Animation or HMI symbols to show the status of process equipment (e.g.

running/stand-by/off-line, levels and valve position).
�9 Standard instructor and engineering facilities to ensure optimal use.

(run/freeze, malfunctions, operator evaluation, printable trending, data
export/import)

The requirements of engineering and training simulators may still differ
somewhat due to the irreducible demand of real time execution of an operator
training simulator. This might cause some simplification in the models and in
accuracy in t ransient areas, but with multiple processors this should be
considered ra ther a challenge than an obstacle out of reach.

The need for instructor facilities and operator monitoring systems on a training
simulator are also a considerable difference between the two types of simulators.
Again, today's technology should, by now, be able to overcome these challenges by
adding/removing/loading specific application software and ult imately bring
together the best from both simulator concepts.

5.3.5.1 I n d u s t r i a l n e e d s

Traditionally process design was based on steady state simulation tools such as
PRO II. Operability and control issues were addressed after the process had been
designed, and normally tested on a separately developed dynamic simulator.
Today this could be the same simulator tool.

What the oil and gas industry needs is a high fidelity process simulator that
contains the same core model for both engineering and training purposes. A
simulator model that can evolve naturally from an early steady state model in
the concept design phase, be extended into a dynamic simulator with detailed
modelling for engineering studies and finally be moved into a rigorous dynamic
model with soft controllers to be used for detailed control/modification studies
and operator training. This is the life-cycle simulator described in section 5.3.8.

In addition to the process model it is necessary to have:

�9 Well-skilled engineers and instructors to enable correct and optimal use
of the process simulator.

�9 A training room where the training sessions can be performed in
familiar surroundings.

�9 Well-documented training courses based on operational procedures.
�9 A variety of training scenarios for normal and emergency operation.
�9 Objective monitoring system for operator evaluation.

404

Finally, but not least importantly, a management decision that the process
simulator should be considered as a constant investment rather than an annual
expense.

5.3.5.2 C h a l l e n g e s to be m e t

Process simulators are considered by the majority of oil and gas industry to be a
very valuable tool in both engineering studies and in operator training. But they
are also considered to be a tool for specialist. The key of future success is to
ensure that the simulation tool is moved towards a more general accepted and
user friendly tool. This means that dynamic simulation tools must be constantly
developed and improved to withstand the increasing demands to model fidelity
and usability.

Co-operation between simulator suppliers and company
performing/ordering the studies and further develop the models.

engineers in

Today's process simulators are based on either generic or emulated controllers.
Future process simulators must be based on supplier's soft code of the real
controllers. This will enable the process simulator to perform engineering studies
on the real control system without having a complete traditionally stimulated
system.

The possibility to run the process simulators on the internet / intranet will enable
process engineers to be able to solve process problems both onshore and offshore.

The possibility to extend existing models to include the physical behaviour of
various internals in drums and other equipment. This will enable detailed
studying of limited process areas where more detailed modelling is necessary.

An integration of the dynamic process simulation system and transient
multiphase pipeline models must be handled within the same network solver.
This will make it possible to study the dynamics of slugging interaction between
pipeline and topside equipment.

Future simulators must be based on the same methods for fluid modelling and
thermodynamic flash calculations for both engineering and training simulators.

Companies must participate in developing Best Practice methods for standard
simulation studies to ensure consistent approach.

Another future development might be to connect the topside model to a reservoir
simulation model to fully integrate the dynamic behaviour of the reservoir and
flowing wells to pipeline and top side models.

405

5.3.5.3 Requirements

The simulator model shall be based on the piping and instrumentation diagrams
(PIDs), system control diagrams (SCDs), cause and effect diagrams and isometric
drawings of the process. Marked up plant piping and instrumentation diagrams
shall clearly identify, by suitable colour coding, the equipment, pipes or
instruments which shall be included in the process model. All equipment
modelling shall be based on suppliers data sheet unless otherwise agreed by
Company.

The minimum level of fidelity required for specific
instrumentation and unit operations is defined below:

types of equipment,

Vessels (e.g. separators, scrubbers)

The modelling of these items of equipment must be based on internal geometry
and separation devices. The modelling of vessels shall be based on rigorous heat
and mass balances with resulting vapour / liquid equilibrium of incoming
streams. Heat loss to surroundings shall be correctly modelled for both phases.

Heat Exchangers

Exchanger performance shall be calculated based on upon the flowing stream's
temperature, flow rates and composition, the exchanger geometrical arrangement
and the thermal properties of the materials of construction. The model shall
account for heat loss to the surroundings with appropriate effects of heat
exchanger materials of construction and fluid hold up incorporated.

Compressors (Centrifugal and axial)

Compressors shall be simulated based on vendor supplied nozzle to nozzle flow
versus head and polytropic efficiency curves with variable compressor speed
(normally min. 4). Effects due to variable gas properties (P, T, MW, H) shall be
included. Effects of surge and stonewall are to be represented in suitable detail.
Run down times upon compressor trip must be based upon a power balance
between load and supply. Fuel gas consumption shall be correctly calculated from
turbine speed and efficiency.

Pumps

Pumps shall be based on vendor supplied performance curves. Where variation in
flowing medium conditions e.g. temperature, composition have significant effects
on observable behaviour they shall be simulated. Both forward/reverse flow
through a stopped pump shall be correctly modelled.

406

Drivers (rotat ing equipment)

For large or variable speed machines the rotating speed shall be calculated based
on a power balance between drivers and loads, including appropriate friction
losses and total of inertia of all equipment to the drive shaft. For smaller speed
machines simplified start up and shutdown dynamic responses shall be
permitted.

Control valves

Control valves shall be based on a standard or vendor-supplied flow correlation
with the correct valve characteristic. In vapour service the effects of choked flow
are to be simulated. Where available, valve stem stroke times are to be used. In
the event of loss of inst rument power (air/hydraulic) all valves are to travel to
their fail safe position.

Isolat ion valves

Isolation valves shall be simulated with stroke times from equipment data sheets
if available. Limit switches, where applicable, are to be realistically positioned on
valve stems. The restriction to flow shall be variable as a function of valve
opening and representative of the valve type.

Pressure rel ief va lves

Pressure relief valves shall be simulated to reflect the opening&losing nature of
these items of equipment. Multiple relief valves with identical set pressures can
be modelled as a single device with equivalent capacity.

Piping ne twork

The flow distribution within piping networks must be accurately represented
with adequate regard taken for equipment configuration and operational
pressures. Dynamic responses within the network due to equipment operation
must be realistically represented.

Plant logic

The emergency and process shut down system shall preferably be based on easy-
to-modify cause and effect diagrams to enable quick and easy change of logic.

Simulator Model Accuracy

The steady state accuracy of the model when compared to operating data from
the actual process shall be within +/- 2%. The requirements for accuracy of

407

transient behaviour must be better than
minute.

+/- 10% for t ransient greater than 1

5.3.6 ALGORITHMS

As mentioned above, a dynamic process model is described by a system of
differential and algebraic equations (DAEs). Process simulators solve these
equations in one of two ways"

�9 sequent ia l ly . Algorithms of this type are described in section 5.3.6.1.
�9 al l -at once. Algorithms of this type are described in section 5.3.6.2.

5.3.6.1 S e q u e n t i a l S i m u l a t o r s

B l o c k - o r i e n t e d s i m u l a t i o n

A sequential process simulator divides the process into small blocks. A block
usually corresponds to a piece of equipment (e.g. a vessel, pipe, pump, motor or
valve). These blocks are connected together by data structures tha t represent
streams and signals. Each block is a procedure that, given values for inputs (at
the last and new time step), calculates values for the state variables and output
variables at the next time step. Blocks are usually wri t ten in a third-generation
programming language (Fortran, C, or, increasingly, C++), and each block is
responsible for implementing its own integration algorithm and equation solving
method. This means that the equations solved in a block are "hidden" from the
simulator executive program and the user.

In other words at a certain time, a block contains values for the inputs at time
step j, the state variables at time step j and the outputs at time step j. The block
immediately upstream executes and passes the inputs at time j + l to the block.
The block procedure uses all this information to calculate the state variables and
outputs at time step j + l . The output values are then passed to the downstream
blocks.

This algorithm works well as long as there are no recycles of material or
information in the system. However, the method can break down if such recycles
occur. Luckily, most process and information recycles normally involve time
delays longer than the control sampling interval, so tha t a "once-through" plant
models (with the recycle broken) may be adequate.

N e t w o r k so lvers and f low p r e s s u r e n e t w o r k s

However, the sequential modular algorithm has difficulty dealing with upstream
information flow, which notably occurs in "flow-pressure networks". Consider the

408

simple system shown in Figure 3, which consists of a network of pipes and
pumps.

, Q [i
G I

Figure 3. A s imple f low-pressure network. Pipe segments are shown as rectangles
and pressure nodes are shown as circles.

The pressure in the vessel depends on the flow rate in the pipe outlet. However
this requires knowledge of the pressure at the outlet of the pipeline. This is
available at the previous t ime step, so a calculation can be made - but it can
easily be inaccurate and unstable. Flow-pressure interact ions are fast, especially
in liquid systems, which mean tha t very small in tegrat ion steps are needed to
avoid this instability.

Successful commercial dynamic simulators solve this problem by setting up and
solving a system of s imultaneous equations for flow and pressure in the flow
pressure network. Blocks in a flow pressure network are of one of two types:

�9 Flow blocks, such as pipe segments, pumps and valves, calculate flow
given inlet and outlet pressure.

�9 Pressure blocks, such as vessels and branches, calculate pressure given
all inlets and outlet flows.

The system of equations for flow and pressure is s t ruc tured and sparse. Thus,
commercial s imulators use some var iant of Newton-Raphson equation solving
and a sparse l inear algebra solver. Algorithmic finesses like line search and
relaxat ion are used to increase accuracy and robustness. A well-designed and
well- implemented network solver can be very efficient. Network solver-based
s imulators have been able to accurately solve process models with hundreds of
pressure nodes in real-time.

However, where there is close coupling between flows, pressures and other
process variables (such as t empera tures and compositions), unphysical
interact ions may arise between the variables in the network and these other
variables. In some si tuations this requires careful implementa t ion of the model if
spurious results are to be avoided.

409

Sequential dynamic simulators are widely used, and dominate the market for
t raining simulators. Commercial products of this type are presented in section
5.3.8.3.

5.3.6.2 Differential -Algebraic S imulators

It may be bet ter to use an efficient, s tandard DAE solver (on a fast machine)
despite the computational cost this involves. DAE solvers work by reducing the
system of DAEs to a system of algebraic equations through the application of a
time discretisation. This can be demonstrated simply through the use of velocity
variables (Smith, 1985, Smith and Morton, 1988).

If the DAE system is wri t ten in the following form:

~, dt ,X,C =0

g(x,e)= 0

where x is the vector of dynamic variables and c is the vector of algebraic
variables, we can convert this system into a system of algebraic equations by
introducing the velocity variables, s, which are the current values of dx/dt. If this
is done the following non-linear equation set can be solved for a full t ime step, d,
from time tk to tk+l:

f(s,x,e)= 0

A(s,x,d,t)

t - d = t k

d = dspecified
where A is a vector if functions obtained from the chosen integrat ion algorithm.
Higher order methods, such as Runge-Kutta solve this system of equations at
intermediate points in the time step.

Widely used DAE solvers are capable of solving stiff systems of equations
effectively through error control and variat ion of step size.

A stiff system of differential equations is dominated by the time response of one or
two dynamic variables with short time constants (e.g. mass transfer on a
distillation column tray). The fast dynamics of these variables requires short time
steps for stability and accuracy. However, once these fast transients have died out,
the same short time step would be inefficient and inaccurate (due to the
accumulation of round-off errors) for solving the rest of the dynamic response.

410

Thus, the Massbal dynamic simulator uses an adaptive Runge-Kutta algorithm,
first published by Prokopakis and Seider (1981). Other simulators, such as
SpeedUp, use an implicit Gear-type (BDF) algorithm. One advantage of using a
Runge-Kutta type algorithm is that step length is an explicit par t of the algebraic
equation system. It is therefore relatively straight-forward to handle
discontinuities and t imed events. This is more difficult with Gear-based
algorithms. Recent simulators, such as gProms, offer a choice of algorithms.

DAE simulators have been widely used for the detailed, accurate simulation of
smaller plant units. They have used computationally-intensive algorithms and,
until recently, lacked a graphical user interface. However, these simulators are
matur ing and may allow a common engineering and t raining model of the plant
to be mainta ined if the la t ter is detailed enough. Whether this is yet feasible in
the majority of applications is open to debate. There may, for example, be a need
to buy a supercomputer or a network of workstations (e.g. one processor for each
unit or group of units) to achieve real-time dynamic simulation. In this case the
handling of communications between processors needs to be addressed.

The products tha t use this type of algorithm are presented in section 5.3.8.1.

5.3.7 SOME TYPICAL P R O D U C T S

5.3.7.1 G e n e r a l D i f f eren t ia l and D i f f e r e n t i a l - A l g e b r a i c S i m u l a t o r s

Much work on dynamic simulation of processes and control systems, especially by
students, is done using general equation-solvers and software. One of the oldest
of these is ACSL (Breitenecker and Lingl, 1998). This program can uses a
graphical configuration tool to build models in a way tha t resembles analogue
computing (with gain, integrator and summer blocks) (Gauthier, 1999). ACSL
was widely used in the chemical industry in the 1980's (Aldren, 1986, Womack
1986). SimuSolv was a proprietary tool, developed by the Dow Chemical
Company as a system for simulating chemical systems, especially reactors. It is
still used academia as a teaching tool. Both of the above tools were valuable in
their t ime has since been superseded by the advent of equation-oriented process
simulators. They now are useful in legacy applications, teaching and for low-
budget, one-off modelling of processes.

Probably the most prevalent general tools in use today, part icularly in academia,
is Matlab, with its graphical modelling tool, Simulink. This program provides a
mathemat ica l programming language that makes it a good tool for rapidly
constructing and solving systems of equations. Over the years, the base system
has been supplemented by commercial and academic toolboxes covering areas
such as signal processing, optimisation and control. Part icularly within the

411

process control community, Matlab has become a means of publishing and
sharing methods and algorithms.

A valuable guide and comparison
Arbeitsgemeinschaft Simulation
(http ://www. argesim.org/).

of general tools is given by the
News at their web site

Finally, a number of simulators developed in the milieu around the University of
Lund, Sweden, have proven to be powerful and effective simulators for
mechanical and energy systems. Object-oriented prototype systems, such as
Omola and Dymola (Cellier, 1991) have provided a basis for a consensus
modelling language - which can be supported by any number of systems (such as
D y m o l a) - called Modelica (Modelica, 2000). These tools are more used for
simulating mechanical systems than process systems, but both Omola and
Dymola have been applied to chemical and energy systems. An application of
Dymola to an Akzo Nobel ethoxylation plant is described by Askaner (1999).

5.3.7.2 Differential-Algebraic (Equation-oriented) Process Simulators

The primary disadvantage of the above tools for large-scale dynamic modelling is
that they lack the infrastructure that is needed to support process simulation. As
general tools, they lack a natural unit-operations orientation (with the exception
of the object-oriented systems, such as Dymola), they lack data structures that
can represent process streams or material hold-ups, and they lack well-
structured access to standard methods of calculating thermophysical properties
and equilbria. Specialised process DAE simulators have these features, and
thereby provide greater productivity.

This group of process simulators is widely used for engineering simulations, but
are less widely used for training simulators. All these simulators express the
process model explicitly as a system of DAEs, which are then solved using one of
the algorithms described in Section 5.3.6.2.

Pioneer simulators of this type were SpeedUp from Imperial College London,
Quasilin from Cambridge University (Smith and Morton, 1988) and Ascend from
Carnegie Mellon University (Perry and Allan, 1996). SpeedUp was
commercialised by Aspen Technologies and is now called Aspen Custom Modeller.
The academic experience obtained in building SpeedUp was then embodied in the
gProms simulator (Barton and Pantelides, 1994), which was designed to support
discrete events and distributed-parameter models (i.e. partial differential
equations). In a similar way the experience of Quasilin was implemented in the
Massbal simulator (Shewchuk and Morton, 1990), which is now marketed by
Hyprotech.

412

Both SpeedUp and gProms allow the user to build models by declaratively
writing the variables and equations that represent a unit operation. A properly
defined unit operation could then be used (repeatedly, if needed) in building a
model of a flowsheet. Ascend had a similar approach. Models of common unit
operations and processes could be built using a library of ready-made unit
operations. Massbal, on the other hand, provides a l ibrary of finished unit
operations in which the equations are hidden from the user. In addition, it is
possible to build additional unit operations declaratively, but this feature is less
elegant than in SpeedUp or gProms. On the whole, a program like Massbal is
easier to use than SpeedUp, but is less flexible. My unders tanding of Aspen
Custom Modeller is tha t it has taken this approach to increasing usability.

The greatest challenge in solving a large equation-oriented dynamic model is
giving a consistent set of specifications. An effective equation analyser and
degrees-of-freedom counter are essential if this is to be done effectively.

5.3.7.3 E n g i n e e r i n g and Training S imulators

The below listing of process simulator suppliers is by no means complete, but
reflects the knowledge of the authors involved. It is recommended to use the
Internet or other sources to supplement the list. The listing gives the name of the
supplier followed by location and the name of the simulation tool. All suppliers
have varied experience within both engineering and training simulators, and also
within various processes i.e. Distillation towers, LNG-plants, absorption towers,
amine/glycol regeneration, CO2- injection, and compact heat exchangers. Again a
comprehensive listing of supplier's deliverables and model references will give a
valuable insight into possible choices. Especially within specialised processes i.e.
where catalytic processes are involved and often are considered proprietary
information.

Suppl ier 's
name
Kongsberg
Simrad
Fantoft
AS

Process

Honeywell

Hyprotech
(AEA)
RSI (IFP)

L o c a t i o n

Norway

Norway/UK/US

US/Canada/UK

Canada/UK/US

France
Aspentech Ltd; US/UK

N a m e of
tool
ASSETT

D-SPICE

Shadow
Plant /
Trainer
Hysys/Plant

Reference / Website

http ://www.kongsberg-simrad.com

http ://www.fantoft.com

http://www.iac.honeywell.com

http://www.hyprotech.com

I ND I S S h ttp ://www. rsi- france, com
OTIS S h ttp ://www. asp e nte ch. com

413

Suppl i er ' s
n a m e
ABB Simcon

GSE (S3/Singer)

CAE
Esscor
(Invensys)

L o c a t i o n

US/UK

US

Canada
US

N a m e of
too l
ABB
SIMCONx
SimSuite
Pro
ROSE
Ascend

R e f e r e n c e / W e b s i t e

http://www.abb.com

http://www.gses.com/

http ://www.cae.com/
http://www.esscor.com

5.3.8 TRAINING SIMULATORS

5.3.8.1 What is a t r a i n i n g s imula tor?

Operator training is necessary for both new and experienced operators. New
operators need training in the layout of the control system, normal operations,
start-up and shutdown and general plant behaviour. More experienced operators
need refresher courses and advanced training in how to deal with unexpected
problems, hazards and incidents.

In addition, engineers and process managers require training in how the process
works and how operating decisions will affect plant performance.

Training simulators allow training to occur in a structured, well-ordered way,
without disturbing normal plant operations. Operators can use the simulator to
tackle situations that only occur rarely in practice. This experience can then be
used to avoid loss of production time and equipment if these situations do occur.

5.3.8.2 Types of t r a i n i n g s i m u l a t o r s

Overview

Training simulators may be classified both by application type and technology.
We identify three applications for training simulators:

(1) Operator training.
(2) Process training.
(3) Discipline training.

There are three system
development:

technologies that are used for training system

(1) Stimulated systems.

414

(2)
(3)

Emulated systems.
Quasi-st imulated systems.

All these terms are defined below.

Operator training

The most common, and most comprehensive, type of training simulator is used
for operator training. Process operators are t rained and drilled in operating their
process using a simulated copy of the plant 's control system. These systems are
relatively expensive, since they require that the operator trainee interact with an
HMI that that is the same as (or at least resembles strongly) the actual plant
control system.

Process training

Operators, engineers and maintenance staff require a good knowledge about the
plant on which they are working. The fundamentals of this knowledge are
obtained from process training courses. A simulation of the plant can be useful
tool in these courses. The instructor can use the model as a "living flow sheet" of
the process during the course. The model can be run in plenum to demonstrate
key procedures and features of the process. Furthermore, engineers and
maintenance staff can be given a better unders tanding of the operator's tasks
through the demonstrat ion of start-up and shut-down procedures. Finally,
trainees can also use the simulator itself to gain familiarity with the process and
its peccadilloes.

Process simulators are usually less expensive than full-featured operator
trainers. No connection with a control system is needed, and, often the
simulator's native user interface is sufficient for use in training.

Discipline training

Finally, dynamic models of generic processes or process segments can be valuable
aids in general process engineering education. High fidelity process models of
realistic processes can be useful tools for gaining hands-on experience and insight
in process control. For example, a lecture or course on controller tuning can
conclude with a practical session where a trainee can tune a variety of control
loops. This hands-on experience is invaluable in building the necessary feel for
the dynamics of processes and their control systems.

415

5.3.8.3 Types of training system

O v e r v i e w

Operators communicate with their process through a control system (either a
(Distributed Control System) DCS, or a SCADA (Supervisory Control and Data
Acquisition) system (where the process controllers are implemented in a number
of PLCs). They need training in how they relate to the process through the DCS
or SCADA human-machine interface. This means that a training simulator must
provide the same "look and feel" as the control system HMI.

This similarity can be obtained in three ways:

�9 by using the simulator to communicate with a physical copy of the entire
control system. This is called a stimulated system.

�9 by using the simulator to communicate with a physical copy of either the DCS
operator stations or the SCADA part of a SCADA/PLC control system. This is
called a quasi-stimulated system.

�9 by building a software replica of the control system and its user interface and
communicating with this. This is called an emulated system.

Stimulated Systems

In a st imulated system the simulator implements process behaviour only, and
communicates with a physical copy of the control system. The process simulator
provides the control system with values for its digital and analogue inputs
(equipment status, measurements). The control system, in turn, provides the
simulator with values for digital and analogue outputs (trip signals, controller
outputs). Conceptually, the simulator is responsible for representing system
behaviour up to the control system's I/O cards. Indeed, in older training systems,
the simulator communicated with the control system through the actual I/O
connections. This is less common now, as control systems now offer one or more
application programming interfaces (APIs) that can be used for software
communication with the relevant I/O tags in the control system. Indeed, the OPC
standard makes it possible to use a generic interface to several types of control
systems.

416

Figure 4. Stimulated Training System

Emulated Systems

An extra copy of the control system hardware can be expensive, in addition
proprietary, unpublished communications protocols may make stimulation of a
control system infeasible. In such circumstances, it is attractive to simulate the
control system and its user interfaces alongside the process. It is then the
responsibility of the simulator vendor to copy the appearance and behaviour of
the control system's user interface. This is labour consuming, even with older
systems, which had static, full-screen displays. This task becomes even more
complicated with windows-based user interfaces, since the layout of screens can
be variable. The emulated operator station runs on cheap, non-proprietary,
hardware, such as a PC.

Figure 5. Emulated Training System

417

Quasi-st imulated Systems

If a given control system user interface is difficult to emulate, it may be possible
to use a model of the process and its control system to provide data and receive
values from an actual copy of the control system's user interface ha rdware (i.e.
the operator stations).

Figure 6. Quasi-stimulated Training System

A disadvantage of this a r r angement is tha t the communicat ion link has high
bandwid th (data t ransfer rate) compared with a s t imula ted system. However,
this bandwid th can be minimised by exception reporting.

5.3.8.4 Control system check-out and maintenance

A s t imula ted t ra in ing s imulator is also a useful tool for checking, verifying and
pre- tuning the control system. Since the s imulator provides the control system
with a valid set of input signals and gives realistic responses to outlet signals, it
can be used to find errors and problems in the control system before it is
commissioned. This saves labour and speeds up production start .

418

/

Testing Engineer

Runs scenario

~v

Process
Simulator

~ n S a n d corrects errbr~

J Control System Exchange of "[
measurements and

control outputs
Figure 7. Control system checkout

A check out s imulator consists of four components (as shown in the figure below):

�9 The actual control system hardware and software (prior to shipping) or a
duplicate thereof (if this is to be used later for a t ra in ing simulator).

�9 The process simulator, which s imulates the behaviour of the process system.
This model responds to changes in analogue and digital outputs received from
the control system.

�9 A link between the simulator and the control system. This is software for
t ransfer r ing data between the s imulator and the control system. The data
s imulator sends values for all re levant analogue and digital inputs. The
control system sends values for all relevant analogue and digital outputs in
return.

�9 A human-machine interface. The test ing engineer will use this interface to:
�9 Configure and run scenarios.
�9 Examine the response of the control system and its effects on the

process.
�9 Configure, monitor and run the link software.

The responses of the PLC can be logged and examined using this interface. All
aspects of the behaviour of the model in response to the actions of the PLC can
also be inspected using the HMI.

' LJ
Engineering HMI ~ 1 Simulator Link

:J
Figure 8. Components in the check-out simulator

419

5.3.8.5 T r a i n i n g Prac t i ce

Well-trained and confident operators are the best guarantee for safe and optimal
operation throughout the lifetime of the plant. This sounds like an obvious fact,
and it is a fact, but it is not obvious how we can achieve this goal during our
training practice. A training simulator model, as good as it might be, will never
be successful if used as a stand-alone model. Simulator t raining must be seen in
a wider context. We need to combine skilled instructors, well prepared training
sessions, with a good simulator model containing the necessary instructor
features, to achieve our training goals.

The operator t raining therefore must be based on four pillars.

�9 a high fidelity simulator model. (See section 5.3.7.3).
�9 detailed training courses.
�9 simulator instructor facilities according to requirements.
�9 good and skilled instructors.

All operator t raining should be based on this fact and t raining sessions and the
training simulator should be developed according to these needs.

S i m u l a t o r t r a i n i n g c o u r s e s

Many major oil companies have developed their t ra ining courses after the
following pattern:

Simulator Course I
Duration: i week.

Simulator Course II
Duration: 1 week.

Simulator Course III
Duration: i week.

Simulator Course IV
Duration: 2-3 days.

Introduction to the control system, ESD/PSD and Fire and Gas
system.
Familiarisation with the man machine interface (MMI).
Process familiarisation. Simple MMI operations.
Normal process start-up of wells and separation system.
Normal process start-up of compressor system with gas export
and/or gas injection. Process shut down.
Emergency training. Handling of critical situations from process
changeover, local shutdown to complete shutdown and
depressurisation of the plant.
Annual refresher courses with predefined scenarios.
Training in normal/abnormal situations. Emergency situations.

Some oil companies still continue the practice
refresher/update after each four week leave period.

of holding a one day

All t raining courses should be carried out in the same manner and be based on
predefined scenarios to ensure objective and consistent evaluation of the
operators.

420

I n s t r u c t o r S t a t i o n

The training sessions are controlled from the Instructor Station. The instructor
Station is the graphic interface from which the instructor prepares the training
sessions, supervises the participants and monitors operator actions for later
debriefing. Normally the Instructor Station would be situated in a separate room.
The instructor interface shall be realised using the latest display technology to
achieve the best overall performance. It shall be easy to configure and modify for
different applications.

As a minimum, the following instructor functions shall be available:

�9 Run/Freeze
�9 Speed (altering the speed of execution).
�9 Load/Save Initial Conditions (IC).
�9 Snapshots, Backtrack and Replay
�9 Change of Operating Conditions
�9 Field Operator Functions (FOD), e.g. opening or closing a manual valve at a

specified rate.
�9 Malfunctions
�9 Scenarios (event or time controlled).
�9 Trainees Performance Monitoring System (operator evaluation system).
�9 Monitoring, trending and Reporting Facilities.
�9 Online help facilities.
�9 Comprehensive self explaining error log.

I n s t r u c t o r sk i l l s

The instructor is responsible for preparing the initial process conditions for
training, running predefined scenarios, creating equipment malfunctions and
controlling the operator monitoring system. The instructor plans and carries out
the training sessions in compliance with educational techniques.

The instructor also acts as the field operator and implements any field actions
that are required by procedures or the operators.

To be able to take care of all the instructor roles the instructor must have a
comprehensive knowledge of the process and its operational procedures. The
instructor to be able to act correctly as field operator and plant personnel during
training sessions.

The instructor must know the Instructor Station functionality's and have the
pedagogic knowledge to be able to run the training sessions professionally.

421

The instructor must be aware of s tandard teaching techniques, and prepare all
training sessions accordingly. Debriefing should be held after all
emergency/decision training courses.

The instructor must be positive and supportive when correcting operator errors
to ensure the training aim: better-skilled and more confident operators.

The Training Centre

Several major oil companies (and refineries) have built their own training centres
and included large-scale replica training simulators of the process control rooms.
Especially from the early 1980's many large-scale training simulators were built.
The largest training simulators, such as Gulfaks, Veslefrikk, Sleipner (Statoil),
Oseberg/Brage (Norsk Hydro), Draugen (Shell) and Snorre (Saga) are all
examples of what were basically full replica training simulators. Several other
training simulators (e.g. by ESSO, BP, Philips and Elf) have been built but not to
the same extent. Full replica training simulators included correct size of rooms,
colours, floors, panels and operator stations as well as a separate instructor room
with instructor stations. Even radios, plant monitors and telephones were
correctly installed in many cases. The main reason for these large-scale full
replica training simulators was to create the feeling tha t this was the real control
room and the real plant. The approach is similar approach to tha t employed
within the nuclear power industry.

Today's training simulators are no longer 100% replicas of the control room.
Many panels, monitors and communication are simplified, but the training
simulators are still expected to serve the overall need for training. Still a training
simulator is the only tool we have.

All the same, it is still considered important that the training room should have
an outlook fairly similar to the control room to avoid the feeling of "running a
computer game". At least the Training Centre should consist of a control room
area with operator stations (and panels), an instructor room with instructor
station and a classroom area for theoretical tutoring and debriefing.

Training Tasks

The ult imate goal of any training is to give the participants the necessary skill,
knowledge and confidence to be able to handle any known process operation and
be able to analyse and correct any unforeseen event. Dynamic real-time
simulations are excellent training tools because the can reveal complex
interactions between process components and subsystems.

422

Critical situations can be demonstrated without the risk of damage to life and
equipment. Emergency situations and operational procedures can be visualised
and rehearsed throughout training sessions.

Shift personnel can be trained together in emergency situations. (Co-operation
effects)

Operators and instrument engineers can use the simulator to optimise control
schemes.

Control room operators can be taught to take correct action to process
disturbances.

The operators will learn what to do, and equally important, what not to do in
critical situations.

Basic training tasks:

�9 Familiarisation with the control system
�9 Training on start-up and shutdown procedures.
�9 Operator training (normal start, stop operation of wells, oil-train, gas train,

utility systems)
�9 Team training (shift training within normal operation)
�9 Decision training (what to do in abnormal situations, malfunction of

equipment)
�9 Procedure training (change over, well testing, compressor load change etc.)
�9 Emergency training. (critical situations,)
�9 Plant start-up (black start up of plant,
�9 Control system operation (change of parameters, set points of controllers)

Simulator advantages

Within large technically complex installations human errors are still the most
frequent cause of shut down and emergencies. The use of training simulators is
by far the most efficient tool to develop skilled and confident operators.

Skilled and well-trained operators will lead to:

�9 Better understanding of process interactions
�9 Fewer shutdowns.
�9 Quicker start-up.
�9 Improved safety.
�9 Optimised throughput.

423

5.3.9 REAL-TIME DYNAMIC S I M U L A T O R S

5.3.9.1 O v e r v i e w

As noted above, engineering models, simulator-based operator t raining and
control system checkout are now routinely-used tools in the oil industry. Oil
companies invest large amounts of intellectual (and real!) capital in models of
their processes.

Real-time simulation applications allow this "corporate knowledge" to be made
available to operators as they run a process. A dynamic model (or part ial model)
of the process is set up to run in parallel to the process and to access and use
measured data from the plant's control system. The model then uses this
information to:

�9 Ensure that it is tracking (or shadowing) current process conditions. A
discrepancy between the model's predictions and process conditions
may indicate a fault. The operator should be informed about this.

�9 Calculate est imates of unmeasured (indeed, in some cases, non-
measurable) variables that are of use to the operators, plant engineers
and plant management .

To provide
components:

the above functions, an on-line model requires the following

�9 a database for storing process data.
�9 an interface for obtaining process data from the control system.
�9 a process model which is capable of following process behaviour and

performing useful calculation.
�9 a module for checking process measurements , reconciling measured

data, est imating unmeasured variables and tuning the process model.
�9 an interface for reporting results to the operator.
�9 a real-time executive system.

This structure is shown is shown in Figure 9.

A model tha t is tracking the process can provide a validated star t ing point (a
snapshot) for a range of other calculations:

�9 A pred ic t i ve , or look-ahead model tha t runs certain f~xed scenarios
ahead of the process and flags potential problems.

�9 A p l a n n i n g model, where the engineer is free to specify a scenario, or
set of scenarios, to be evaluated.

424

�9 A hindsight model, tha t can be used to re-run p lant history so tha t
mis takes tha t were made can be avoided in future.

�9 Various control and optimisation calculations.

Figure 9. Structure of a real-time system.

Real-time systems have begun to be widely implemented in downstream
operations, such as refining and ethylene production. Here the typical application
consists of a model-based process controller for key uni ts (such as catalytic
crackers) or a s teady-state on-line model, which has the role of calculating
optimal set points for the process control system. This last type of application is
called on-line optimisation.

Real-time systems in oil and gas production are more seldom. Most modern
compressor anti-surge systems are actually small real-t ime systems. A model of
the compressor performance is used to place the surge and stonewall lines and
determine appropriate control actions.

5.3.9.2 Systems requirements

The process model runs on a Real-time Model Server computer tha t is connected
to the same network as the control system (SCADA) server. The model(s) on the
model server will exchange values directly with the SCADA server's database.

The simulat ion system in the model server reads real measured process values
from the database in the SCADA server and uses them for model tuning. The
model is tuned slowly, using selected parameters , so tha t it closely follows normal
plant operation. Es t imates of unmeasured variables can then be passed back to
SCADA server for trending, a larm handling and display.

425

Model maintenance and tuning will be done through an Engineering Station with
a graphical HMI.

Figure 10. Systems for a Real-time model

5.3.9.3 An example: Monitoring of pipel ines

Sta tement of Problem

A pipeline monitoring system uses a high-fidelity model of a hydrocarbon
t ransport network to provide operational information to the system's operators.
The key requirement for a PMS is that it will raise an a larm when a leak occurs
in the system. This is called leak detection. In addition, the system then uses the
model to predict where the leak is most likely to have occurred. This leak location
is important information, as the pipelines monitored are often several hundred
kilometres long and run through inhospitable terrain.

426

Scrapers, or pigs, are routinely sent through piping systems to clean out deposits
and reduce pressure drop. Smart scrapers can also be used to collect information
for preventative maintenance. The position of a scraper in the pipeline depends
on the fluid flow, composition and topography. This can be readily calculated by a
model, but is difficult to predict using rules-of-thumb. An on-line scraper-tracking
tool is used to warn operators of an approaching scraper and to raise an alarm if
a scraper is stuck in the pipe. Related, batch tracking calculations are relevant
for multi-product pipelines, where it is important that the interface between
different products (such as diesel, petrol and avgas) is tracked along the pipeline,
so that operators can minimise the loss of off-spec product at the receiving
station. Long pipelines contain appreciable amounts of fluid. They are therefore
used as storage buffers to balance supply with demand. In gas pipelines, pressure
can be increased in anticipation of demand peaks. The calculation of line pack,
which is the amount of fluid in a pipeline, is therefore a vital tool for optimising
profit and customer satisfaction. Finally, the line pack can be used to calculate
and report a survival time for the pipeline. This is the time during which normal
supply can be maintained to customers after a stoppage in supply to the pipeline.

A PMS uses a detailed model of a pipeline to calculate and report these control
parameters, thereby providing a "window into the piping network" for the
operator. Operators thus gain access to calculated results that are not available
from instrumentat ion alone. Safer, more efficient operations result from this.

The PMS Sys t em

The operation of the PMS system is shown in Figure 11. Measurements of
pressure and flow from the pipeline system are read from the control system. In
addition valve positions (which can analog or digital signals) and equipment
status is read. This data is checked and validated so that it does not cause
spurious results when entered into the model.

427

Analogue ~J
~ Measurement checking

and validation
me asD~gr ietl~ ent t

i
Validated~J

data
Real-time
Process

Simulator

Estimates of~

residuals /
/ ISnap~hot of

Sn pshot o.f I curre~ or prbvious I
pl~ it sta~

Scunario~ pla ncn::P~y~/~
Figure 11. Data flow in an online simulator.

Look-ahead
Process
Simulator

Predictions o~
variables

Predicted plant~
performance/

A selection of this data is used to drive a dynamic model of the process. Some of
this data is used as direct specifications of boundary conditions, whilst other data
is used to tune the model over a long time horizon. The rest of the data can be
used to generate measurement residuals, which can be used to detect leaks.

At any given time, a snapshot of process conditions can be taken and used by the
look-ahead or the operations-support (planning) simulator.

T e c h n i c a l C h a l l e n g e s

The technical challenges involved in real-time applications lie in the following
areas:

�9 Maintaining robust operation in a critical process environment.
�9 Delivering software that meets real-time, safety-critical quality

requirements.
�9 Properly handling inadequacies in the process data supplied to the real-

t ime system.

An on-line model must be able to run for long periods with predictable and low
maintenance requirements. It must be good-quality software. Errors, such as
memory leaks, which are not usually critical in off-line models, are not
permissible in an on-line application. For this reason, the modell ing calculations
and user interfaces are usually supported by separate, independent programs.
These programs communicate using a common protocol, such as TCP/IP. This

428

structure is robust, as the modelling program is freed from the (error-prone)
complexities of user interaction. System availability is thereby improved.

Robust on-line models require robust numerical methods. Pipeline models are
complicated PDE modules with time-dependent two-point boundary conditions
(Matko et al. 2000). Work needs to be been devoted to developing stable, accurate
interfaces between these specialised models and the simulation platform's
algorithms for integration and solving flow-pressure networks.

Finally, a mix of heuristics and statistical methods is needed to ensure that the
data used to drive the on-line model is correct. Furthermore, effective fault
detection requires that measurement residuals that are generated by a fault are
differentiated from a model error. This decision often requires process knowledge,
as statistical methods, by themselves cannot differentiate between model
mismatch and a fault. Making on-line systems robust to measurement and
modelling errors remains the main challenge for implementation.

5.3.10 FUTURE PERSPECTIVES

5.3.10.1 Faster, better and f r i end l i er - but complex!

Commercial dynamic simulators have evolved into powerful, relatively user-
friendly tools over the last decade. As computers continue to decrease in price
and increase in power, we can expect models to be built of ever larger and more
complex process systems. We can also expect that the application of web
technology, object-oriented development and virtual reality will make process
models easier to configure and simpler to use.

5.3.10.2 Expansion through the lifecycle

Applications of dynamic simulation are currently concentrated in the detailed
design and start-up phases of the process lifecycle.

5.3.10.3 Better integrat ion with the design process

Much of the engineering time involved in developing and implementing a
dynamic model of a process lies in entering and maintaining the parameters in
the model. These parameters (such as vessel diameter, weir height, valve
discharge coefficient or valve type) are results from the process design and a
documented on equipment data sheets. However, these parameters may need to
be revised as the result of dynamic simulations. For example, a valve may be
found to be too large or to have the wrong characteristic for given control task.

429

For existing plants, this design data lies in a paper-based or, increasingly, a
digital archive. However, the digital archive often only contains scanned copies of
the former paper-based archive. Thus, diameter of the vessel still has to be read
manual ly off the scanned datasheet. Some design organisations are using process
design databases (such as Zyqad or AXSYS) to store design sheets and their
information for electronic retrieval. Such databases make it possible to exchange
design data with the dynamic simulator. However, this requires proprietary
solutions, and a simulator vendor needs to support multiple interfaces.

Perhaps the answer to this problem lies in the use of a neutral data transfer
format. Initiatives, such as pDXML and PI-STEP, which are described Chapters
4.2 and 4.3 of this book, could meet this need.

5.3.10.4 Combinat ion with virtual real i ty

Dynamic simulators have been already integrated with vir tual reality (VR)
systems in the nuclear industry. For example, a VR control room, called
HAMMLAB-2000 is being built at the OECD facility in Halden, Norway. This
system will incorporate training simulators of a variety of reactors (Nuclear
Energy Agency, 1997).

Older t raining laboratories for t raining in the oil industry were based on physical
replicas of the control room. However, such installations are now viewed as being
expensive and unnecessary. However, similarity to the operator's actual working
conditions is desirable, VR facilities can be used to deliver this similarity at lower
cost.

This above application is very prosaic. We believe tha t with imagination, VR tools
can be applied to make dynamic simulation more accessible and more compelling
to for engineers and decision makers.

5.3.11 N O M E N C L A T U R E

F
E

h
H
AH
n
P
q
T
V
x

Molar flow, kmol/s.
Molar production of a component, kmol/s.
Specific enthalpy kJ/kmol.
Enthalpy holdup, kJ.
Internal production of enthalpy, kW.
Molar holdup of a component, kmol.
Pressure, kPa.
Flow of heat to a control volume, kW.
Temperature, K.
Volume of a control volume, m 3.
Mole fraction of a component.

430

5.3.12 REFERENCES

Aldren, D.B., (1986), "Development of a Low Cost Dynamic Training Simulator
for a Chemical Plant", Proc. 21 ~d IEE Intl. Conf. on Simulators, Warwick, UK, 7-
10 September.
Askaner, M., (1999), "Simulerad process l~ittare att utveckla (Simulated process
easier to develop)", in Swedish, Kemisk Tidskrift / Kemiviirlden, October, 16-18.
Barton, P.I., and Pantelides, C.C., (1994), "Modelling of combined discrete /
continuous processes", AIChE Jl., 40(6), June, 966-979.
Bequette, B.W, (1998), "Process Dynamics: Modeling, Analysis and Simulation",
Prentice Hall.
Breitenecker, F., and Lingl, M., (1998), "Comparison 7-ACSL Hybrid Modelling
Approach", Simulation News Europe, 22, March, 42.
Gauthier, J.S., (1999), "Comparison 1 - A C S L Graphical ModeUer Numerical
Approach", Simulation News Europe, 26, 35.
Cellier, F.E., (1991), "Continuous System Modeling", Springer Verlag, New York.
Ek, Arild, (2000), "Feltsimulator - et nytt verktoy for petroleumsindustrien",
Energien, 2000(2), 16-17.
Endrestol, G., Sira, T., Qstenstad, M., Malik, T., Meeg, M., and Thrane, J.,
(1989), "Simultaneous Computation within a Sequential Process Simulation
Tool", Modeling, Identification and Control, 10(4), October, 203-211.
Jones, D.R., Brook, J., (1990), "High fidelity real time simulation and its
application to olefins plant operator training", in Bussemaker, H.Th., Iedema,
P.D, (eds.), Computer Applications in Chemical Engineering, Elsevier,
Amsterdam, 1990, 217-222.
Luyben, W.L., (1990), "Process Modeling, Simulation and Control for Chemical
Engineers", 2 nd edition, Mc-Graw Hill, New York.
Matko, D., Geiger, G., Gregoritza, W., (2000), "Pipeline simulation techniques",
Mathematics and Computers in Simulation, 52, 211-230.
Modelica (2000), "Modelica Specification 1.4", available from
http://www.modelica.org. December.
Nuclear Energy Agency, (1997), "Meeting Summary of the Second CSNI
Specialist Meeting of Simulators and Plant Analyzers. Current Issues in Nuclear
Power Plant Simulation", NEA/CSNI/R(97)36, available from:
http ://www.nea.fr/htmllnsdJdocs! 1997/csni-r 1997- 36.pdf
Nuclear Energy Agency, (1998), "Principal Working Group No. 1 - Extended
Task Force on Human Factors. Task 5: Role of Simuators in Operator Training",
NEA/CSNI/R(97)13, 29 th June, Paris.
Nuclear Energy Agency, (2000), "Pressurised Water Reactor Main Steam Line
Break Benchmark Workshop. Summary of the Fourth Workshop. 24 th and 25 th
January 2000, Chateau de la Muette, Paris", NEAJNSCfDOC(2000)2, available
from: http://www.nea.fr/htmllscience/docs/2000/nsc-doc2000-2.pdf

431

Perry, J.L. and Allan, B.A., (1996), "Design and Use of Dynamic Modeling in
ASCEND IV", Carnegie Mellon University, EDRC Technical Report 06-224-96,
http:!/www.ndim.edrc.cmu.edu/~ascend/pdffiles/AscendIVP.pdf.
Puska, E.K., (1999), "Nuclear reactor core modelling in multifunctional
simulators", VTT Publications 376, Espoo, available from
http ://www. inf. vtt. fi/p df/,
Shewchuk, C.F., and Morton, W., (1990), "A New Dynamic Simulator for On-line
Applications", in Proc. 1990 TAPPI Engineering Conf., Atlanta, 595-603.
Smith, G.J., (1985), "Dynamic Simulation of Chemical Processes", Ph.D.
Dissertation, University of Cambridge.
Smith, G.J., and Morton, W., (1988), "Dynamic Simulation using an Equation-
Orientated Flowsheeting Package", Comput. Chem. Engng, 12(5), 469-473.
Womack, J.W, (1986), "Dynamic Simulation Gives 20-20 Foresight", Oil Gas Jl,
April 7 th, 66-76.

This Page Intentionally Left Blank

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
�9 2002 Elsevier Science B.V. All rights reserved. 433

Chapter 5.4: Computer tools for Discrete /Hybrid
Product ion Systems

L. Puigjaner, M. Graells & G.V. Reklaitis

5.4.1 INTRODUCTION

Hybrid production systems participate of both, continuous and batch/discrete
process characteristics. Supporting computer tools for such systems should
therefore comprise software for steady state process simulation and analysis,
as well as support tools for the handling of batch process dynamics and
discrete decisions involved.

The software tools for batch processes may be classified in two broad classes.
The first class involves modelling, simulation, and analysis of the physico-
chemical processes that take place during batch operations. These tools can
be associated with the process simulation methodology that constitutes the
core of the first Cape Open project. The second class is designed to support
the decision processes at the different managerial and operational levels of
the plant operational hierarchy, which are the topics included in the scope of
the follow-up, Global Cape Open Project. This class of tools may be further
classified on the basis of the planning, scheduling, monitoring, and control
tasks, which they support, specialized to the batch processing case. In this
chapter we review a representative set of tools from these two classes that
are available commercially. While there is much innovative research and
development in both academic and industrial groups in this domain, we have
excluded experimental software and proto-types from our discussion.

5.4.2 P P R O C E S S SIMULATION & ANALYSIS

5.4.2.1 C o n t i n u o u s process simulation

Process simulation systems were initially conceived to allow modelling of
continuous steady-state process flowsheets, as represented by classical
petrochemical processes such as the hydrodealkylation of benzene or the
production of ethylbenzene. The process flowsheet model generally consisted
of models of the unit operations present in the flowsheet that were linked
through the process streams which constituted the external input and output
variable sets for these models. The solution of the flowsheet model was

434

complicated by the presence of recycle streams, which created linkages
between the unit models. To solve the resulting large scale coupled algebraic
equation systems a natural decomposition strategy called the sequential
modular approach was widely adopted. Under this approach unit models
were executed in a serial fashion in the direction of the principal process
streams with the recycle stream, or more precisely, tear streams serving as
iteration variables. AspenPlus (Aspen Technology.), HYSIM-HYSYS
(Hyprotech/AEA) and PRO/II (Simulation Sciences) remain the most
significant examples of this type of simulation technology (Fig. 1). These tools
gradually evolved to contain substantial libraries of unit operations modules,
including some which involved models consisting of differential equations, as
well as extensive physical property estimation capabilities and supporting
properties constant databases. Because of the desirability of allowing the
easy addition of new process specific unit operations models or modifications
of existing models, the need soon arose to allowing linkage or insertion of
user-added FORTRAN subroutines. In recent years, this in part served to
stimulate the idea of COSE (Cape Open Simulation Executive). In due
course, with advances in efficient methods for the solution of large-scale
algebraic systems, these methods were adopted to solve the entire set of
flowsheet model equations simultaneously, resulting in the so-called equation
oriented flowsheet simulation architecture.

Figure 1. Continuous process simulation. The AspenPlus Environment.

A natura l next step for flowsheet simulation was to provide the capability to
model the dynamics of the process. Again the solution of such dynamic

435

simulation models was initially approached using sequential modular
strategies but contemporary systems have emphasized simultaneous solution
methods. Tools such as DYNSIM (Simulation Sciences), HYSYS
(Hyprotech/AEA) and AspenDynamics (Aspen Technology) embodied these
architectures (Fig. 2). Ideally such tools offer a consistent set of steady state
and dynamic models of the same unit operation, allowing the user the
convenience of ready transition from steady state to dynamic simulation of a
given process. The DynaPLUS system marketed by Aspen Technology is
intended to achieve precisely that aim.

Figure 2. Dynamic continuous process simulation. The H Y S Y S environment.

5.4.2.2 B a t c h p r o c e s s s i m u l a t i o n t o o l s

Since batch operations are inherently dynamic, one would not expect steady
state flowsheet methodology to be applicable to batch process simulation. On
the other hand, one might well assume that dynamic simulation systems
would be extensible to handle batch processes. While this is the case for
individual operations, it is not when one seeks to model the entire network of
batch operations typical in batch chemical processing. The complicating
factors include the need to handle the discontinuities inherent in the star t
and stop of the tasks which comprise a batch process and the fact tha t with
batch processes the description of the set of chemical-physical tasks which
must be executed to manufacture a given product (the recipe) is distinct from
the set of equipment which are used to perform these tasks. Since the
equipment items are generally multipurpose, the definition of the flowsheet

436

for a batch process requires a series of task to equipment assignment
decisions which may be governed by equipment availability, the availability
of resources such as feedstock's, catalysts, and hold tanks, product priorities,
and other state dependent or even economic factors. Thus, in the batch case,
the flowsheet is in effect defined dynamically as the recipe is executed. These
additional numerical and decision aspects are not accommodated by
conventional dynamic flowsheet simulation systems.

Of course, simulations of individual batch operations, such as batch reaction
and batch distillation, can be modelled and solved within the framework of
dynamic simulation methodology. These simulations are most commonly
structured as stand-alone modules or programs, which either share the
physical properties estimation features of an associated process simulation
system or employ an independent physical properties package. BATCHFRAC
and BatchCAD are examples of these types of commercial systems. Other
examples of programs of this kind include Batch Colonne, Batch R~acteur
(ProSim) and BDIST-SimOpt (Batch Process Technologies). Such systems
may offer additional features such as operating profile optimization or
parameter optimisation to fit empirically observed operating profiles.

To facilitate the simulation of processes involving a mix of continuous and
batch operations, as might arise in single product plants in which some of the
operations must necessarily be of a batch nature, several of the process
simulators do allow use of batch reactor and batch distillation modules, of the
type noted above, within a continuous steady-state model of the process. As is
the case with a plug flow reactor model, the integration of the batch operation
model is carried out internal to the module and averaged output streams are
computed for use by the downstream continuous unit operation.
Conceptually, this can be viewed as following the batch operation with one or
more implicit holding tanks, which at the termination of the batch effectively
provide the averaged output stream or streams, which feed the succeeding
continuous unit. This type of linkage of steady state and dynamic model types
can readily be accommodated in the sequential modular architecture since all
unit operations models are treated as closed procedures. It can also be
handled within equation-oriented systems provided such system also
accommodates closed procedures. Although the AspenTech and SimSci
steady-state products thus do permit interfacing of batch and continuous
operations in this fashion, the entire process model remains effectively steady
state.

As noted earlier, the effective simulation of batch processes requires
representation of the dynamics of the individual batch operations, the
decision logic associated with the start and stop of operations, as well as the
decisions associated with the assignment of equipment and other resources to
specific operations as defined through the product recipe. Some conventional
dynamic simulators (e.g., HYSYS) do offer tools for programming the

437

decision logic associated with a series of events to be executed at specific
points during the execution of a simulation run. In this way it is possible to
simulate certain classes of batch processes. However, this type of adaptation
of the dynamic simulation executive only address part of the requirements for
the simulation of typical multiproduct batch processes. The more advanced
capabilities of a combined continuous-discrete simulation architecture are
required to accomplish this in a general fashion. The BATCHES (Batch
Process Technologies) simulation tool does accommodate the above mentioned
batch process features and uses advances in combined discrete-continuous
dynamic simulation methodology to follow the progress of the batch plant
over time.

A BATCHES simulation model consists of three main building blocks: a
recipe network, an equipment network and a set of processing directives. The
equipment network defines the equipment specifications and the connectivity
or transfer limitations between the equipment. The recipe for the
manufacture of a product is modelled as a network of tasks and each task as
a sequence of subtasks. A task consists of all of the operations performed in a
single item of equipment: a subtask consists of a model of one of these
operations. Tasks have associated with them requirements of specific types of
equipment and selection priorities. BATCHES provide a library of models of
various types of operations (heating, cooling, decanting, batch reaction, etc.).
Subtasks may have associated with them additional requirements for
resources types and levels such as operator types and utilities as well as
definition of conditions under which the subtask is to be terminated. These
may be state dependent (a specific temperature or composition level is
achieved) or directly specified (completion time or duration). Processing
directives consist of information that drives the execution of the process over
time. These include information such as the amounts and sequences in which
the various products are made, the due date and amount for finished product
delivery, or the amounts and frequency of raw materials deliveries or other
resource releases.

A sample equipment network shown in Fig.3 will indicate symbols of the
equipment items, their input and output ports, and the connectivity of the
equipment items. The recipe network, illustrated in Fig.4, indicates the
subtasks involved in each task, the subtasks between which material transfer
occurs, as well as the order in which tasks are to be executed. In this
example, the recipe for product A involves nine tasks but of these only three
involve more than one subtask. The results of a simulation typically consists
of extended Gantt charts which indicate the dynamic status of each item of
equipment over time, as shown in Fig.5, as well as plots of any dynamic
variable such as tank levels, materials utilization profiles, and other resource
level plots. The equipment network diagram can also be used to animate the
simulation, that is, to playback the dynamic progression of events arising
during the course of the simulation. For instance in Fig. 3, the green lines

438

indicate the active t ransfer of mater ials between vessels, the vessel coloring
can show the mater ia l level in the vessel, and gauges and bar plots can show
current uti l ization levels of key shared resources.

Figure 3: Example BATCHES equipment network

BATCHES uses a dynamic solution s t ra tegy under which the dynamic
models associated with all of the subtasks tha t are active in a given time
period are solved s imul taneously using a DAE solver. As the solver advances
through time, the occurrence of subtask te rminat ion or s t a r t events is tested
at each solver t ime step. As events are identified and occur, the set of active
subtask models is reconfigured and the solution process continued. This
computat ional approach is effectively a decomposition s t ra tegy as only the
models of the subtasks active at a given point in time are actual ly included in
the in tegrat ion step executed.

439

Figure 4. Example BATCHES Recipe Network

Fig.5: Example BATCHES Equipment dynamic status plot

To accommodate stochastic parameters, BATCHES allows Monte Carlo
sampling of simulation parameters from a library of distributions using

440

established techniques from the discrete event simulation literature. It also
provides linkages to physical properties estimation capabilities. More
complex decision processes, such as solution of an assignment or scheduling
model, can be accommodated by defining event conditions under which the
simulation is interrupted, the information necessary to execute the decision
model is assembled, the decision model solved, and the simulation of
resulting actions transferred back to the simulation executive. In this
fashion, the simulation can be used to study the effects of various dispatching
or scheduling methods under deterministic or stochastic conditions.

5.4.2.3 General purpose mode l l ing languages

As in the steady state simulation case, the library of subtask models and
decision logic options provided with the simulation system is sufficient to
represent most applications. Occasionally a specific feature of the application
may require a subtask model not available in the simulator library. In
BATCHES non-standard subtask models as well as unusual decision or event
logic can be accommodated using the vehicle of user-supplied models written
in conventional programming languages. This is a limitation, which the tool
shares with conventional steady state and dynamic simulators that do not
provide a higher level modelling language. That limitation is mitigated by
general-purpose process modelling and simulation software such as Speedup,
gPROMS and Abbacus. gPROMS is a successor to Speedup and is in turn
superceded in part by the academic package, Abbacus. gPROMS does
accommodate the full range of model types, from purely batch to purely
continuous. It allows model developers to write models of the most complex
processes and their operating procedures - from the detailed mathematical
equations for individual components, to the structure and operation of large
complex systems composed of many such components - using a sophisticated
natural language. The complexity of the processing of the resulting equations
and the solution methodology are handled through system utilities and thus
can largely be hidden from the user. gPROMS offers extensive facilities for
linking to external software across a range of hardware and software
platforms. It also provides advanced features such as dynamic optimisation of
continuous dynamic models thus allowing simultaneous optimisation of the
parameters of equipment and operating procedures. Of course, since it is a
modelling system, it leaves to the user the definition and formulation of the
models and particular decision processes of batch operations. Moreover, in
practice, users are generally reluctant to build mathematical models and
prefer to assemble models using the blocks provided through a model library.

5.4.2.4 Batch process d e v e l o p m e n t and informat ion m a n a g e m e n t

An alternative approach to supporting the development and operation of
batch processes is to offer a software package that provides the capabilities of
organizing and managing recipe information together with a suite of tools for

441

operating on that information, including a rudimentary recipe simulation
capability. Linkage to more detailed tools such as stand-alone batch reactor
and batch distillation packages can also be provided. This is the approach
that has been used in two of the packages described in this section. The
additional functionalities not provided by these tools, namely the generation
of operating procedures and the execution of batch process hazards analysis,
are available from IPS. We describe these developments in the third part of
this section.

Batch Plus (Aspen Technologies) is a general-purpose system designed to
model the complex, recipe-based processes found in the batch process
industries. The key design concept is the representation of a batch process
using the multilevel "process recipe" metaphor. Based on the recipe
description of the process, software allows design, engineering, and scale-up
to be performed. Among features provided is the AspenTech electronic Batch
Record System (AeBRS) which is designed to address manufacturers' needs
in the areas of work orders management, procedure management and
documentation management.

Figure 6. Recipe management in the Batch Design Kit (BDK) environment.

The BaSYS system of software is designed to help batch processing
companies improve communication between chemists and engineers, perform
faster process scale-ups and more efficiently allocate existing equipment.
BDK, the core of BaSYS, is an integrated batch process development and
design environment that helps companies accelerate many aspects of batch
process development, from route synthesis to implementation. BDK offers
tools for enabling the rapid selection from among alternative synthesis route
for manufacturing, improving waste processing and facility utilization, and
providing a "knowledge warehouse" that documents the development process
(Fig. 6). Neither of these systems are intended to provide rigorous process
simulation capability but could in principle be interfaced to a simulator,
given that much of the recipe and other data required for a simulation is
contained in the information base that these systems maintain.

442

Two critical tasks in the development cycle of a batch process are the
synthesis of operating procedures given basic recipe information and the
analysis of the operating procedure to identify, evaluate and mitigate
potential operating hazards. These two functionalities are not provided by
the systems described above. However, the generation and validation of
operating procedures for new processes constitute time-consuming and error
prone activities that lend themselves to computer support. Moreover, with
the increasing complexity of operating procedures and governmental and
social pressure to reduce safety and environmental incidents, there is strong
incentive to conduct process hazards analysis and mitigation for all new and
existing processes. Since considerable portions of this activity are also
repetitive and very labour intensive, there is an opportunity for intelligent
tools to support process hazards analysis. PHASuite, a system initially
developed at Purdue University to support this task, is now available from
IPS. PHASuite consists of two closely integrated components, iTOPs and
Batch HAZOPexpert. The former component serves to synthesize the detailed
sequence of instructions an operator in a chemical plant needs to follow in
order to manage a process safely and optimally. BHE serves to systematically
analyse the process in question to identify, assess, and mitigate the possible
hazards that can occur.

PHASuite follows ISA $88 batch standards for modelling batch process
information. In iTOPS, Graf chart-based concepts are used to represent the
batch process and a hierarchical planning technique is employed together
with information about the process materials, equipment, and chemistry to
synthesize procedures at the phase level. An example of the Process Sequence
Diagram (PSD) that is generated by the iTOPS component of PHASuite is
shown in Fig.7. The left hand side of the figure displays the menu for
inputting material, chemistry, equipment and recipe information. From this
the PSD and then the detailed operating procedure are automatically
generated. After this, BHE generates the HAZOP results. This is shown in
Fig.8. The HAZOP results table summarizes the deviations, abnormal causes,
adverse consequences, safeguards and recommendations for mitigating the
hazards for a given task in a given equipment in a process. BHE uses a
logical separation of process information into specific and generic
components, qualitative causal digraph models and a two-layered Petri-net
based model of the process to systematically identify possible hazardous
situations that can arise in a chemical process. The two PHASuite
components are fully integrated, including the creation of the various
representations of the process recipe and logic. The user inputs batch process
information - the materials, the chemistry, and the e q u i p m e n t - through a
top-level interface. PHASuite returns a complete batch record documents,
including safety instructions and a list of potential hazards classified by
severity. The systems has been tested extensively in pharmaceutical
applications, resulting in documented substantial savings in engineer time,

443

and considerable improvements in accuracy of the resulting operating
procedures and completeness in hazards identification.

Figure 7. An example of Process Sequence Diagram generated by iTOPS

Figure 8. HAZOP results from BHE

444

5.4.3 PPOCESS PLANNING & SCHEDULING

5.4.3.1 P lanning

Production planning for individual batch plants and planning for entire
supply chains consisting of multiple interacting batch plants can in principle
be performed using generic planning tools. Thus, generic linear programming
(LP) and mixed integer programming (MILP) packages such as CPLEX
(ILOG) can be used providing that the user is prepared to develop the case
specific formulation and provide the appropriate data interfaces.
Alternatively, if manufacturing recipe details are aggregated and thus the
plant treated as a black box, then various capacity planning tools offered by
ERP vendors can be applied. However, in batch manufacturing applications,
the details of the batch operations often prove to be important because
equipment and other limited resources are shared among the various
products under consideration, thus production capacity is constrained.
Unfortunately, at the present time there are no commercial tools, which can
accommodate this level of detail without explicit user developed models. Such
a suite of tools is available for petroleum refinery planning and supplies
chain applications in the form of Aspen Technology's PIMS and Ref-Sked
packages, which are based on LP methodology.

5.4.3.2 Schedul ing

As at the planning level, scheduling applications for batch operations can be
developed using general purpose scheduling toolboxes such as Scheduler
provided by ILOG. Aspen Technology's MIMI system also falls into this
category. However, the use of these toolboxes to batch processing problems
requires knowledge of the strengths and limitations of the individual tools
and experience in scheduling application formulation. This is a level of
expertise beyond that of plant engineers. However, several tools do exist that
have been developed specifically for batch processing applications, three of
which, gBBS, Virtecs and BOLD are described in this section.

Available through Process Systems Enterprise (PSE) Ltd, gBBS is the
outcome of extensive research conducted at the Centre for Process Systems
Engineering at Imperial College, London. It is a scheduling tool designed for
multi-purpose process production, from purely batch to purely continuous.
Process specific issues such as cleaning, recycling and intermediate materials
that are also final products can all be treated. A complete gBSS application is
composed of data such as product demands and inventory, product recipes,
plant resources, staff and maintenance schedules and the current status of
plant equipment. The user's data is checked for consistency and converted
automatically into one of three MILP (mixed integer linear programming)
formulations. Specialised MILP algorithms requiring little or no user
intervention are used to find the solution that is guaranteed to be optimal if

445

allowed to run to convergence and the results are then processed and
presented in an engineering form. When solving especially large problems,
gBSS breaks them down into several smaller ones and combines the results
into a final solution. Recipes and processes are modelled using the State-Task
Network representation and the modelling language is designed to express
complex plants in a simple and flexible way. Established models can be
accessed from a 3rd-party front-end such as MS Excel.

gBSS can be configured to solve three types of scheduling problem
formulations: Short-term scheduling, Campaign planning, and Scheduling for
Design. In short-term scheduling, the plant layout, processes and products
are known and change infrequently. Other data may change with each run of
gBSS - demand, deadlines, availability of equipment and staff. Transport
costs and times can be included so that multi-site production and distribution
can in principle be accommodated, at the cost of increased computational
burden. The campaign planning form is appropriate for applications in which
product demands are stable or may be forecast accurately thus allowing
longer production horizons to be divided into a number of campaigns. The
Scheduling for Design option is used to find the optimum plant resources
given a fixed set of demands and their deadlines, gBSS can take account of
both capital and running costs and find the ideal plant for a minimum initial
cost or a minimum lifetime cost. It is also suitable for designing extensions to
existing plants. This facility is available for plants operated in either
campaign or short-term scheduling mode.

Advanced Process Combinatorics, Inc. (APC) has developed Virtecs for
process scheduling and planning. Virtecs is based on Mixed Integer Linear
Programming (MILP) technology and offers the ability to model processes at
a high level of detail including constraints on limited mater ia l shelf life,
process vessel storage, shared storage, labour, utilities, minimum/maximum
inventory levels, complex bill of materials, piping connectivity, equipment
downtime, multiple stages of production, parallel equipment, and process
changeovers. The MILP based scheduling tool can provide solutions in fully
automatic mode and a user can readily make process changes. APC has
recently released Virtecs v5.0 that includes support for Internet based use
and publication of schedules, developing schedules from previous schedules
and efficient human override of automated scheduling capability so tha t the
tool can be used anywhere from a fully manual to fully automatic mode. The
menu in Fig.9 illustrates the choices available to the user in the interactive
or manual mode. These interactive tools can be used to shape the schedule to
the user's satisfaction, and, with each user preference carried out by the
mathemat ical program, schedule feasibility is guaranteed.

446

Figure 9. Screen shot from Virtecs- options available

Previous versions of Virtecs have been successfully used in the
pharmaceutical, specialty chemical, food and beverage, consumer products,
lubricant, and retail industries. The MILP based solver behind Virtecs is
highly customized and routinely solves scheduling problems involving
hundreds or thousands of tasks in one or two minutes on a desktop personal
computer. While MILP scheduling technology is in its infancy and will
continue to grow in capability, the existing advantages include explanations
of why demands cannot be met on time, lower consulting costs for installing
and supporting tool use, ability to support engineering applications such as
expansion studies or debottlenecking, online applications that can be readily
extended by the user to support new products or process equipment changes.
Fig.10 shows what is involved in making a process change. When a model
modification is required, the work process for "model building" is described
with the familiar "Windows" file structure. From there, the user selects those
components (demand and process times are shown) requiring change, and
initiates the change. With these actions the revised problem is ready for
solution.

Because of reliable and accurate automated solution capability, Virtecs can
be used in a distributed fashion to integrate and mediate detailed
coordination between multiple facilities. Because of the versatility afforded
by their solution technology, APC has also applied Virtecs technology to
warehouse management applications and integrates them with upstream
production and downstream distribution activities. APC also uses their
MILP solver underneath a tool that selects and schedules projects in research
and development pipelines. The main components of the Virtecs tool are a

447

natural modelling language for describing processes, reporting system,
database for managing multiple scenarios, graphical user interface with
readily extensible Gantt Chart, and a highly engineered MILP solver based
on implicit formulation generation. Because of the extensibility of APC's
MILP approach, their tools can be used in conjunction with simulation
capability to analyse the impact of uncertainty on the performance of
solutions and manage risk in high-level applications such as pricing studies,
mergers and acquisitions, and supply chain design/operations. Because of
close ties with Purdue University, APC has world-class research and
development capability and has demonstrated significant functionality gains
with each new product release.

Figure 10. Alternatives evaluation with respect to process change

A different approach is contemplated in BOLD (available through CIMADE,
SA). Built upon an academic prototype developed by the Universidad
Polit6cnica de Catalunya (MOPP), BOLD follows ISA $88 batch standards in
the organization of batch process information. Complex recipes and
processing structures are modelled using the hierarchical Process-Stage-
Operation representation, while the Event-Operation Network representation
model describes the appropriate timing of process operations and associated
resources. As in the other two software applications, specific external models
can be accessed via standard MS Excel spreadsheet. Which is relevant in this
application its ability to handle "flexible recipes" instead of traditional fixed
batch recipes. The Flexible Recipe Model is regarded as a constraint on
quality requirements and production constraints. In this way, critical process
variables are adjusted at the beginning of the batch resulting in an
integrated decision framework that links the Master recipe with the
initialised control recipe under a performance criterion that may vary from
batch to batch and may contain economic as well as process variables
information. The solution approach uses the Sgraph algorithm (an

448

accelerated Branch & Bound algorithm) integrated in the flexible recipe
model. Actually, BOLD constitutes a suite of tools comprising human
resources management (BOLD Work Planner), production planning (BOLD
APS), financial aspects (BOLD CFU) and project management (BOLD PMO).

5.4.4 S C H E D U L I N G - C O N T R O L I N T E R F A C E

Once a scheduling solution is developed using one of the tools described
above, it must be implemented in the production environment and executed
through the batch control system. At the level of process detail represented in
scheduling applications, operational details such as valve opening and closing
are normally not taken into account. Moreover, it is usually inefficient to
rerun the scheduler with every modest process variation or delay that is
encountered. Thus, there is a practical need for either manual or automatic
conversion, if necessary, readjustment, and execution of the scheduling
solution. The SUPERBATCH package, offered by PSE Inc and prototyped at
Imperial College, offers the ability to work on-line, in conjunction with
s tandard batch control systems, and to automatically update schedules as
small delays and process variations occur (Fig.l 1). The TotalPlant Batch
system offered by Honeywell provides the interface for the user to execute
batches manually following a schedule created off-line and to manually
readjust timing as needed, with all of the recipe and equipment details,
communications with the control system, and handling of alarms and
messages handled automatically. In this section we briefly describe the
functionalities of these two systems. The reader should note that these
functionalities are to varying degrees provided by other commercial batch
automation systems.

Designed for embedding within manufacturing execution systems (MES) or
linkage to a scheduling product, SUPERBATCH provides the capabilities for
static off-line short-term schedule readjustment as well as for on line
schedule correction, with changes broadcast once a minute to screens in
departments throughout the factory.

Figure 11. The SUPERBATCH scheduling and control system

449

It uses a modelling language, which conforms to ISA $88.01 to describe the
plant, the materials, recipes and ancillary procedures (such as changeovers
and cleaning suitable for hygienic industries) as well as the production
batches themselves. For off-line scheduling applications, once embedded
within a graphical user-interface to present the schedule, SUPERBATCH will
find the earliest possible time for each batch, subject to the constraints of the
model. Equipment allocations may be pre-defined or picked by the user from
the feasible set which SUPERBATCH offers. SUPERBATCH also delivers the
profiles of each plant item as needed to draw a graphical schedule. For on-
line schedule adjustments, SUPERBATCH provides an on-line monitor,
which executes the schedule, and a versatile interface, which accesses control
systems (and simulators) usually across a network. Once a minute, the
current status of the plant is read from the control system and the schedule is
updated to match. In this fashion, delays and stoppages can be
accommodated automatically. SUPERBATCH then initiates execution of any
operations due by sending the appropriate commands and parameters to the
control system. The system also issues alert messages, which provide
advance warning of impending events requiring operator attention.
SUPERBATCH is written in object-oriented C++ adhering to the ANSI draft
standard, using rpc for it's networking, and is portable to a wide variety of
environments and control systems.

The TotalPlant Batch systems provided by Honeywell is an open, object-
oriented software application for modular batch automation. Developed
around ISA $88.01 it provides batch recipe and equipment management,
batch management and execution, an integrated operator interface, easy to
use graphical configuration tools, and rudimentary batch simulation
capability. The assignment of units can be done dynamically at run time or
batch creation time. Implemented to run under Windows NT, it is designed to
operate with Honeywell's TotalPlant and the PlantScape control systems.
The major components of TotalPlant Batch and their functionalities are the
following:

�9 B a t c h V i e w allows the user to create batches, execute them, review batch
related information and respond to alarms and messages.
�9 B a t c h S e r v e r monitors and controls execution of batch procedures and
displays batch execution information
�9 B a t c h D a t a S e r v e r communicates and between the Batch Server and the
phase logic sequences in the control system
�9 B a t c h R e c i p e E d i t o r allows the user to specify recipe parameters and to
graphically construct the recipe sequence using sequential function charts
and tables
�9 B a t c h E q u i p m e n t E d i t o r allows the user to configure and maintain the
physical plant model used by the other components

450

As might be expected, all of the user interaction with the system is through
graphical means. For instance, Fig 12 shows the typical menu based
approach to adding a new batch while Fig.13 shows the graphical structures
used to configure the sequential control actions followed in batch execution.
The system also provides customisable event archiving and batches report
generation utilities.

Figure 12. Menu based approach to adding a new batch

Figure 13. Graphical structures used to configure the sequential control
actions followed in batch execution

451

5.4.5 C O N C L U D I N G R E M A R K S

As should be evident, the suite of functionalities provided by existing
software tools for batch process systems engineering is quite broad but as yet
far from complete. While there is much exploratory research conducted
within the academic community, commercial developments seem to be
lagging. For instance, with the exception of BATCHES there i s limited
recognition in the existing software of the highly stochastic nature of the
operation of most batch processes. Issues of robustness and risk are simply
not addressed. Also missing is the capability to perform batch optimisation
through the optimal selection of recipe parameters such as conversions, batch
times, separation fractions, a capability that is generally available with
steady state flowsheet simulation systems. Systematic tools for batch
monitoring and fault diagnosis are notably absent: a combination of trend
analysis and predictive dynamic models would appear to be required.

Integration of the existing tools is as yet a distant dream. For instance, the
seamless linkage of planning and scheduling tools or of scheduling and
simulation tools is not available. Furthermore, at present there clearly are no
standards that would facilitate the integration of these tools through suitable
common date structures. The $88 standard for representing batch recipes
and equipment could well serve as the heart of such a common data
structure. Indeed a number of the tools have used the recipe structure and
naming conventions promulgated under that standard in defining their input
data structures. However, this structure must be �9 further elaborated to
encompass all of the information associated batch product and process design
and batch plant operations.

The batch operations domain evidently offers great opportunities both for
methodology research and for commercial software development.

5.4.6 CONTACT INFORMATION

The following list provides contact information for the products and tools
cited in this chapter. The reader is invited to pursue the latest developments
through these electronic sources.

Advanced Process Combinatorics, Inc.
Products: Virtecs
Information: www.combination.com

AEA Technology Engineering Software
Products: BaSYS, BDK, HYSIM, HYSYS
Information: www.hyprotech.com info@hyprotech.com

Aspen Technology, Inc.

452

Products: AeBRS, AspenDynamics, AspenPlus, BATCHFRAC, Batch
Plus, DynaPlus, Mimi, PIMS, Re-Sked
Information: www.aspentech.com info@aspentech.com

BatchCAD Ltd
Products: Batch CAD
Information: sales@batchcad.com

Batch Process Technologies, Inc
Products: BATCHES, BDIST-SimOpt
Information: www.bptech.com sales@bptech.com

ChemEng Software and Services
Products: BATCHDIST
Information: ChemEng@BTinternet.com

CIMADE, SA
Products: BOLD, BOLD Work Planner, BOLD APS, BOLD CFU,
BOLD PMU.
Information: www.cimade.com, bold@cimade.com

Honeywell, Inc.
Products: TotalPlant Batch
Information: www.iac.honeywell.com

ILOG, Inc
Product: CPLEX, Solver, Scheduler
Information: www.ilog.com info@ilog.com

Integrated Process Solutions, Inc.
Products: BatchHAZOPexpert, iTOPS, PHASuite
Information: www.ipsol.com

Process Systems Enterprise. Ltd.
Products: gBBS, gPROMS, SUPERBATCH
Information: www.psenterprise.com

ProSim SA
Products: ProSimPlus, BatchColumn, BatchReactor
Information: www.prosim.net

Simulation Sciences, Inc.
Products: DYNSIM, PRO/II. PRO/II Batch Module
Information: www.scimsci.com

The Instrumentation, Systems and Automation Society

AKNOWLEDGEMENTS

The financial support from the European Community (project Global-Cape-
Open-IMS 26691) and the Generalitat de Catalunya (through CeRTAP -
Centre de Refer~ncia en Tecnologies de Producci6") are thankfully
appreciated.

453

P a r t VI: N e w F r o n t i e r s

6.1 Software agents
R. Batres & B. Braunschweig

6.2 Tools integrat ion for computer aided process eng ineer ing
appl icat ions

E. S. Fraga, R. Gani, J. W. Ponton & R. Andrews
6.3 Web-based systems

I. T. Cameron & J. W. Ponton
6.4 F a u l t diagnosis methodologies for process operat ion

D. Leung & J. A. Romagnoli
6.5 Emerging business models

J. K6Uer, T. List, C. Quix, M. Schoop, M. Jarke, P. Edwards & M.
Pons

Part VI shows where we are going, through new technologies and new
potential applications areas that make use of the advances in CAPE and
software technologies: e.g. agents, web-based systems, integrated
approaches, process monitoring and fault diagnosis systems. Some of the
developments in this part are already available but not widely used yet,
some still involve significant research before being considered for
applications. Specialists at the forefront of CAPE research have contributed
to the chapters of this part.

Chapter 6.1 by Batres and Braunschweig. looks at agent-based systems in
process engineering. Although these might look a bit futuristic, knowing
current architectures and usages of CAPE tools, we decided to include a
chapter on multiagents in this book. A number of research prototypes based
on the multiagent approach have been developed, and there seems to be a
strong trend towards agents in IT as a whole, with e-commerce and
negotiation agents leading the way. The chapter shows what software
agents can do for you through a set of illustrative examples in process
monitoring, distributed design and simulation, process workflow and
supply chain management. We hope that you will enjoy it

Application integration is the subject of numerous developments in
computer-aided process engineering, but at the moment application
integration is generally more a wish than a reality, with few real-world
examples of lifecycle integration from process design to operation and
control. Chapter 6.2 by Fraga et al. presents a few attempts in integrated
approaches, starting with the Epde system by University of Edinburgh,
which was further developed into the "Process Web Objects" system, which
transposes concepts of Epde in the context of the World-Wide Web. The third
example is the ICAS system proposed by the CAPEC group f r o m the

454

Technical University of Denmark. The rest of the chapter relates these tools
to current projects and looks at future trends for integrated approaches,
such as grid computing, data management and web-enabled systems.

The following chapter 6.3 by Cameron et al. gives a broad view of web-
based process engineering systems. Web technologies are invading the
whole spectrum of IT developments, even in scientific applications -
although the main trends are defined by the needs of e-business and of
global information management systems. The chapter mentions process
engineering portals, collaboration infrastructures, remote computing,
virtual laboratories and web-based education systems. As Cameron writes:
"...the world wide web will change the way we do business at the
educational level and at the business level. I f you are not actively planning
your web-based systems then opportunities may well pass you by".

Chapter 6.4 by Leung and Romagnoli brings us back to equations and
algorithms. It is the only chapter on process monitoring and diagnosis, and
gives a summary of a number of techniques, model-based or not, used in
this domain. Although sophisticated models are built for process design,
operation and (sometimes) control activities, the use of such models in the
area of fault diagnosis and monitoring is still in its infancy, compared with
the use of simpler but computationally efficient modelling techniques. The
chapter presents current approaches to building diagnosis systems, alarm
filtering systems, and other monitoring tools, using statistical, causal or
qualitative representations; with the increase of computer processing power
available at the factory, we expect that more and more detailed models will
be used for the same purposes.

Finally, chapter 6. 5 by KSller et al. analyses the technical results of CAPE-
OPEN and develops some of the business models that can be supported by
such an interoperability framework. After giving a brief historical view on
the use of IT in process industries, the chapter presents the expected
benefits of Application Service Provision (ASP), of software components
marketplaces, and defines a number of technical requirements for these
business models to take place e.g. public catalogues, labelling facilities,
brokering services.

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
(~_:) 2002 Elsevier Science B.V. All rights reserved. 455

Chapter 6.1: Software Agents

R. Batres & B. Braunschweig

6.1.1 INTRODUCTION

In the previous parts of this book, we looked at the current technologies for CAPE,
based on modern software development approaches: object-oriented design and
programming, component architectures, middleware infrastructures, XML for data
exchange, and the like.

All these architectures, even though they allow distributed computing on
heterogeneous hardware platforms, share the same paradigm for control and co-
ordination: a central piece of software controls and co-ordinates execution of all software
modules and components that together constitute the model and the solving
mechanism of a system. One example is the central piece of software that is usually
called simulation executive, or COSE in CAPE-OPEN architectures. Its tasks are
numerous: it communicates with the user; it stores and retrieves data from files and
databases; it manages simulation cases; it helps building the flowsheet and checks
model topology; it attaches physical properties and thermodynamic systems to parts of
the flowsheet; it manages the solving and optimisation algorithms; it launches and runs
simulations; etc. All other modules (e.g. unit operations, thermodynamic calculation
routines, solvers and optimisers, data reconciliation algorithms, chemical kinetics, unit
conversion systems etc.) are under control of the simulation executive and communicate
with it in a hierarchical manner, as disciplined soldiers execute their assignments and
report to their superiors (Figure 1).

Figure 1. A COSE-centric distributed architecture

456

In this chapter, we look at examples of distributed architectures based on multi-agents
technologies where control and co-ordination are decentralised. In these technologies,
each piece of software, each module, each component, generically called agent, lives its
own life with the ability to negotiate and co-ordinate with other components in order to
solve problems such as process design, fault diagnosis, or supply chain management
(Figure 2).

Figure 2. A multi-agent system (based on [1])

This might look futuristic and adventurous for many readers, since, at the time of
publishing this book there is not even one commercial implementation of multi-agent
systems for CAPE applications. But most of us might have used individual software
agents in office applications or on the web.

A familiar software agent is the companion present in MS-Office products, among
others. This invisible or iconised component, always active in the background, monitors
what the user types, sometimes correcting spelling mistakes, sometimes suggesting
better use of the word processing software, sometimes saving work without telling the
user. Companions for process simulation software already exist in proprietary
environments. These tools help to enter data, to select models, to check the solvability of
a flowsheet, to determine the number of unknowns, etc.

Other virtual friends monitor web pages for us; they search for books, auto parts, CDs,
etc. on our behalf. They crawl the Internet looking for information of interest to us.
These are single-agent applications in which the user configures a software agent so
that it executes the boring task of que~Sng the web in search for data. At least, we can
clearly see the benefits of using such avatar agents ~ for doing repetitive tasks, thus
saving our precious time for doing more interesting activities.

Avatar: a software agent that represents its human owner; avatars can be simple agents or human-like 3D
representations living in virtual worlds, e-marketplaces, etc.

457

Multi-agent systems extend the single agent paradigm and add co-ordination between
several agents, thus letting collective behaviour emerge from the combination of much
individual behaviour.

The MIT Encyclopaedia of Cognitive Sciences [2] gives the following definition: 'WIulti-
agent systems are distributed computer systems in which the designers ascribe to
component modules autonomy, mental state, and other characteristics of agency.
Software developers have applied multi-agent systems to solve problems in power
management, transportation scheduling, and a variety of other tasks. With the growth
of the Internet and networked information systems generally, separately designed and
constructed programs increasingly need to interact substantively; such complexes also
constitute multi-agent systems."

Now, the average reader will say: "what's in it for me. ~' Is there any chance that multi-
agents systems will have an impact on future CAPE applications? There are at least
two good reasons for giving a positive answer to this question.

First, agent technology can be seen as the future of software development. Object
technology and component technology are moving towards agent-based
representations. In addition to the standard facilities gained using an object-oriented or
a component approach (encapsulation of behaviour, inheritance mechanisms, notion of
service provider, etc.), the agent-based approach adds consciousness of the collaboration
between objects and components; multi-agent technology adds collaborative interaction
frameworks within a population of software components. For example, the RoboCup
simulation league, an internal competition between soccer simulation programs, uses a
CORBA standard interface for the communication between the simulated players,
referee, ball, and field. With such an interface, a simulation of a soccer game is seen as
22 playing agents (plus the rest) interacting in order to win a game. Similarly, it could
be possible do develop a whole simulation as a set of collaborating agents, each of them
being responsible for its own data, calculation, persistence, etc.

The second reason is that current technology allows us to do it. For example, the CAPE-
OPEN framework provides the communication infrastructure that allows CAPE
components to interoperate. Process modelling components directories, such as the one
developed by the CO-LaN, give ways to locate these components on the web.

Standard agents platforms such as FIPA, and agent languages such as KQML (Section
6.1.2), can help to transform process-modelling components into autonomous
communicating agents (Section 6.1.3.4). These technologies can have an important
impact on the development of fault-diagnosis systems and operating support systems in
general where co-operation between software components generate results faster as
opposed to stand-alone applications (Section 6.1.3.1). Existing interoperation
technologies have been applied to demonstrate how an agency can support the
workflow during the construction of a simulation model as discussed in Section 6.1.3.3.
Agent technologies combined with application-independent information representation
mechanisms such as XML and EXPRESS have already been applied in modelling
supply chains over the Internet (Section 6.1.3.5).

458

The next sections of this chapter will detail these and other technologies as well as
current and future applications of multi-agents systems in CAPE.

6.1.2 C O M M U N I C A T I O N A S P E C T S OF M U L T I - A G E N T SYSTEMS

In engineering, data are used in different ways by a number of tools and people as
information evolves through negotiation and trade-offs. Increasingly, engineering
activities demand communication approaches in which data is shared and exchanged
easily between product, process and plant life cycles, and between any of their stages.
Communication is possible when data becomes information.

Data becomes information when it is given a meaning that is useful within a certain
context. In other words, data must be timely, it has to get to the right person, and it has
to be relevant to the user in a form that is easy to use. In multi-agent systems, agents
communicate by exchanging messages over the network either synchronously or
asynchronously. Messages contain knowledge and data represented in different formats
and languages. Communication is kept even when one agent is off-line, as information
requester either finds another agent that provides similar services or waits until the
agent becomes on-line (perhaps on a different computer).

Communication in multi-agent systems is possible with the combination of a number of
layers (Figure 3).

Figure 3. Inter-operability layers in multi-agent communication

In the lowest layer, we have common protocols for data transfer and object
communication that include object interaction such as the one defined with CORBA
Interface Definition Language (IDL) and COM or DCOM. In this layer of
communication a software component can access the services of a remote software
component by calling object methods. For example, an IDL interface allows a software
component to call the methods of a remote software component [3].

459

CORBA and COM/DCOM alone can be used to integrate distributed components.
However, using distributed object-oriented programming alone, interactions among
objects remain fixed through code in eachapplication [4].

Then we have resource management services that are the mechanisms that allow
software components to find each other without knowing the exact location of the
participants. For example, CORBA Object Request Broker provides this kind of services
[5].

The agent name server (ANS) of some agent environments is a particular example of
the resource management layer. ANS is a component that permits agents to locate and
address other agents by name (rather than IP addresses and ports).

In the next layer we have approaches for application-independent data and knowledge
representation, including Part 21 of the Standard for the Exchange of Product Model
Data (STEP ISO-10303), the knowledge interchange format (KIF) [6] and XML [7].
STEP Part 21 defines the mechanism for exchanging instances of the data defined in an
EXPRESS information model (see below). EXPRESS is a language defined in part-11 of
STEP that is human and machine-readable. In STEP, data are stored in a neutral
format that can be exchanged among applications that provide translation between
Part 21 format and the internal data structure of the application. Likewise, knowledge
interchange format (KIF) can be used to share data and knowledge. Extensible Markup
Language (XML) is a standardised syntactic structure of data, so that data is
exchangeable between heterogeneous software components. XML is particularly
tailored to support Internet applications.

In collaborating teams and tools, interdisciplinary parties very often have diverse but
overlapped views that need to be harmonised. Common information models and
ontologies are specifications of a worldview that allows parties to understand the
meaning of data. The lack of agreement on the meaning of data undermines consistent
flow of information or knowledge.

Ongoing developments of standard information models include the ISO initiative STEP
[8] [9]. Information models in STEP describe the structure of data so that plant
schematic representation and simulation data can be shared and exchanged between
different applications. Information models are composed of entities, attributes, and
relationships among the objects.

Although similar to information models, an ontology is a formal and explicit
representation of definitions of objects, concepts and the relationships that hold them
[10]. The role of an ontology is to give information a precise meaning using a formal
representation (often in the form of first-order logic) so as to enable consistent
interpretation between humans as well as between software tools. The main difference
between the two approaches is that ontologies make a commitment to an unambiguous
representation of the terms of a specific domain of discourse, while information models
makes a commitment to an efficient data structure. Ongoing ontology development for
the process industries is reported in [11].

The components of an ontology include, classes of objects, their taxonomy, relations,
and axioms. The definitions of objects can be represented using first order logic

460

expressions in a format that is readable by both knowledge-based systems and humans.
Axioms ensure that applications pass legal data for semantic consistency according to
the definitions in ontologies. This capability can be exploited to express queries at a
higher level of abstraction in a more convenient way than using existing text-based
query mechanisms [12]. Efforts exist that extend current XML capabilities to support
ontologies, including the DARPA Agent Markup Language and the Ontology
Interchange Language [13].
Agent-communication languages (ACLs) provide the means by which agents represent
intentions on the use of data, and find resources. With an agent communication
language it is possible to convert a statement such as (open valve-l) into a question (is
valve-1 open?) or into an assertion (valve-1 is open). A number of agent commum'cation
languages (ACLs) have been developed that provide such functionality. KQML
~ o w l e d g e Query and Manipulation Language), which is based on the speech act
theory, is the de facto standard for agent communication languages. KQML is a
protocol language developed by the ARPA supported Knowledge Sharing Effort that
provides a standard interface that is independent of the implementation and platform
[14]. A KQML message consists of a performative, contents and a number of
parameters (keywords). An example of a KQML message is shown in Figure 4.

(insert
:contents (assert (edge (node-from "pump-1 '9

(node-to "valve-1 '9))
:language CLIPS
:ontology equipment-network
:receiver agent2
:reply-with nil
:sender flowsheet-agent
:kqml-msg-id 55 79+perseus+1201)

Figure 4. An insert performative is used to add topological information

A performative describes the intention and attitudes of an agent towards the
information that is to be communicated. Some KQML performatives are listed in Table
1.

Table 1. KQML Performatives

Category
Basic informational performatives
Basic query performatives

Factual performatives

Multi-response query
performatives
Basic effector performatives
Intervention performatives

Reserved pe r fo rmat ive names
tell, untell, deny
evaluate, reply, ask-if, ask-one, ask-all, sorry
insert, uninsert, delete-one, delete-all,
undelete

stream-about, stream-all, generator

achieve, unachieve
next, ready, eos, standby, rest, discard

461

Capability definition
performatives
Notification performatives

Networking performatives

Facilitation performatives

advertise

subscribe, monitor
register, unregister, forward, broadcast, pipe,
break
broker-one, broker-all, recommend-one,
recommend-all, recruit-one, recruit-all

Contents is the section of the message in which the transmitted data or knowledge is
stored. The language used to represent the contents is specified using the :language
parameter.

Parameters in a KQML message are used to specify information about the sender,
receiver, information model or ontology, data or knowledge representation language,
along with the message identifier.

Due to its extensible nature, KQML has neither fixed specifications, nor interoperable
implementations, nor agreed-upon semantics. To solve these problems, FIPA
(Foundation for Intelligent Physical Agents) currently is developing common
specifications of an ACL with a message structure similar to KQML [15].

Figure 5 illustrates the use of messages in a brokering transaction that is initiated by

Figure 5. Brokering (the case in which an agent wants to f ind a
suitable service provider)

agent1 who wants to find a suitable agent for a required service. Examples of KQML
performatives are shown in parentheses. Agen t l first sends a message to a facil i tator

462

agent who uses ontology, contents language, and query information along with legal
and other constraints to find a suitable agent that can provide the required service.
Facilitators perform tasks such as routing messages to the adequate agents, locating
agents, and providing cross-platform interfaces. Once the service provider is found
(agent2) communication is established between the service requester (agentl) and
service provider (agent2). Several other communication alternatives are also possible.

Agents need a collaboration model that determines how information is to be used and
produced by the involved parties. Two different levels in a collaboration model can be
identified. On a higher level of abstraction there are clearly predefined and well-
understood interactions. On the other hand, some information flows cannot be specified
beforehand and need to be determined at the time of execution. Approaches for high-
level collaboration include rules based on activity models. Activity models organise
tasks to be performed and identify the information flows between activities. Not only
can activity models support the construction of co-ordination rules, but activity models
also define information requirements for the development of information models. For
this reason, STEP standards include activity models along with information models.
One example of an activity model that covers a broad number of process engineering
functions is the PIBASE activity model [16].

In the lower level collaboration models, negotiation and conflict resolution approaches
can be used. In [17] negotiation is defined as "the process by which a group of agents
come to a mutually acceptable agreement on some matter." Agreements are convening
on price, the use of resources, services to be provided, etc. The negotiation process may
involve things such as the relaxation of constraints. Reported negotiation techniques
range from game-theoretical approaches, distributed constraint satisfaction problems
[18] to ant-colony methods [19] that are based on trails of pheromone.

6.1.3 D I S T R I B U T E D P R O B L E M S O L V I N G

In today's environment with ever-increasing pressures from the market and tighter
safety, environmental and societal constraints, process industries are being required to
develop safer, and more versatile plants, that results in high-quality products in shorter
time and less cost. Consequently, new engineering environments are then needed that
integrate multiple aspects of the product, process and plant life-cycles.

The agent paradigm is well suited for such environments where multi-disciplinary
teams and tools need to collaborate, where design constraints need to be propagated
fast, where operators are to be relieved of the stress and fatigue, and where dynamic
networks of companies with short-term relationships need to collaborate by integrating
computational resources and people.

The following sections discuss applications of agents that ~im at making all this
possible.

463

6.1.3.1 Application of Agents in Process Monitoring~ault diagnosis

The safety of a process plant relies heavily on the timely detection and diagnosis of
abnormal situations. Despite that most of the time the control system responds to
deviation of the process, humans are greatly involved in the diagnosis and decision-
making when an abnormal situation occurs. A number of factors influence the
performance of plant operators during these critical situations, including fatigue, and
human error to name a few.

The agent paradigm fits in well for such situations. As pointed out by Brazier et al., [20]
agent properties such as autonomy, pro-activeness, reactiveness, and co-operation can
be exploited in developing diagnosis and other kinds of support systems.

The earliest work on the development of agent systems for fault diagnosis was done as
part of the ARCHON project [21]. This project produced a general-purpose architecture
for multi-agent systems that was applied in the fault diagnosis of an electricity
transmission system and of a particle accelerator. The first application integrated
existing expert systems for monitoring the network, diagnosing faults and planning and
executing repairs. Co-operation enabled the system to generate results faster as
opposed to stand-alone applications. The system was also robust because the
htnctionality of one application of domain had the backup of an application of another
domain that was intelligently co-ordinated. The second application distributed and co-
ordinated a large number of software applications that were connected to the
accelerator. Co-operation was implemented to provide a series of interconnected trees of
hypothesis of the faults generated from multiple agents each with its own domain of
expertise.

In the ARCHON architecture, each agent is composed of two layers: a domain-specific
layer and a generic layer. The domain-specific layer was in most cases the wrapping of
an existing application. The generic layer included modules for high-level
communication, planning and co-ordination, and co-operation modules. Distributed
problem solving in this work was possible through the use of a self-module model and
an acquaintance model. The self-model module was a model about the wrapped
application that permits the agent to reason about its workload, previously executed
tasks and its capabilities. The agent acquaintance model described other agents in
terms of their goals, capabilities, current state of workload, etc.

Chemical plants are designed such that they can be operated for long periods of time
with little human intervention. Analogously, in space exploration devices highly
reliable operations are required over similar time horizons. In contrast to chemical
plants, until recently spacecraft had traditionally required hundreds of ground-control
operation team members who corrected malfunctions and operated the space devices
remotely. One departure from that situation is NASA's remote agent, developed as part
of the New Millennium Program. The program is oriented to allow a handful of human
team members to command the spacecrafc while reducing the cost of space-exploration
missions and simultaneously increasing their number [22, 23].

Remote agent is made up of three independent modules for planning, executing
operations, diagnosing faults and recovering from abnormal situations. The
architecture integrates real-time monitoring and control with constraint-based

464

Figure 6. An agent architecture for plant operations based on
NASA's remote-agent

planning and scheduling, model-based diagnosis, and reconfiguration. These are
essentially, the same kind of operation support function useful in chemical plants.

Remote Agent's fault protection module, Livingston, combines the use of a declarative
model of the spacecraft with deduction and search capabilities. It predicts process
values using the spacecraft model and the mission information (the set points). When
the current equipment configuration (the set of valves and other devices that are
operated currently) fails to satisfy a goal of the mission, the agent finds an optimum
cost-effective procedure to reconfigure the spacecraft and satisfy the goal.
Reconfiguration is similar to changeover operations in chemical processes. An agent
architecture for plant operation based on remote agent is shown in Figure6.

Another area of application of multi-agent systems is found in the integration of fault
diagnosis and other operations support software. For example [24] reports the use of an
agent system for the integration of fault-diagnosis and maintenance activities. These
ideas can be extended farther to support integration with plant design databases,
corrosion simulators, and control systems.

6.1.3.2 Dis tr ibuted des ign e n v i r o n m e n t s

During the design of a product, a process or a plant, a number of alternatives are
proposed, evaluated and screened. Unfortunately, engineers in the design of the process
and product frequently face a number of uncertain factors that affect the evaluation

465

[25]. In today's environment where information is becoming available faster, one can
predict that engineers will collaborate with an infrastructure that allows for timely
information about life-cycle considerations (such as safety, operability, and site location)
to be incorporated in each stage of the design. Then methodologies and infrastructures
are needed for managing design decisions as information becomes available. When this
is possible, new products, processes, and plants would then be designed in a cost-
effective way through collaboration over an information network such as Internet. The
following example illustrates the use of such infrastructure. Let us assume that a water
treatment facility is being considered for design as part of the design a plant that
contractor A is managing. As the project evolves, A announces that several plant
owners of the contiguous facilities have agreed to subcontract the design of a common
water treatment process. Consequently, the design assignment considered by A
becomes invalid for the group of agents (software and people) working for A, albeit it
remains valid for the agents of the subcontractor that communicate with A's agents via
the Internet.

Several multi-agent systems have been proposed to support design in the mechanical,
electrical and aviation domains. Some of them will be briefly discussed below.

ProcessLink is an ongoing project that aims at developing an infrastructure and
methodology to facilitate the co-ordination of agents (people and software) in a
distributed heterogeneous environment [26]. Engineering environments based on
ProcessLink allow engineers make design decisions while a group of agents determine
the validity of constraints and constraint violations. Agents communicate by
exchanging KQML messages using a predefined ontology based on the design model
Redux [27]. Combining the functions of facilitator and ANS agents, an agent manager,
manages the inventory of available agents and their capabilities. A project manager
agent, which is a combination of a software agent and a human agent, sets overall
plans and schedules to be passed to the rest of the agents. To generate the schedule the
project manager requests the agent manager to provide information about their
availability and capabilities. Agents from particular engineering domains co-ordinate
their decisions through a constraint manager and a co-ordination agent. The constraint
manager uses constraint propagation techniques in association with the dependency-
directed backtracking techniques 2 [28] from the co-ordination agent to test the
consistency of a decision. Dependency-directed backtracking techniques also allow the
co-ordination agent to evaluate the effects of a change in constraints of the project.

In the area of plant design, Struthers [29] proposes a generic design of autonomous
agents for the modelling of design processes. Such modelling is used for organising and
managing a pressure relief and blowdown study. Agents exchange messages using a
predefined protocol for encoding the agent's intentions during the design process in
which functionally similar agents negotiate toward the best design alternative.

Procedural control design is a major issue in process plants where operations are to be
synthesised to achieve a fast, safe, and cost-effective transition from one process state to

22 As a point of interest, Bafiares-Alc~ntara et al. [28] describes the application of dependency-directed backtracking for
management of change for conceptual chemical process design.

466

another. Agents that mimic interactive, autonomous plant objects can be used to
collaboratively address this kind of design problem. In [30] a simulation-based planning
method is proposed in which operations are determined by a number of agents
organised hierarchically based on the concept of controlled group unit (CGU) developed
by Naka [31]. Operations are organised in three hierarchical levels: plant, CGU, and
equipment levels. At the plant level, operations are carried out to control the
interactions with contiguous plants or battery limits. Plant agents determine overall
goals that are communicated to agents in the lower hierarchies (Figure7). The plant is
divided into smaller units (CGUs) that are operated by agents who act co-operatively
and report to the plant agent. A CGU can be identified from the flowsheet topology as
an assembly of pieces of equipment surrounded by remotely actionable-equipment
(RAE), i.e., equipment that can be controlled from the control room such as control
valves. Each CGU agent is responsible for controlling a local inventory of material by
means of sending commands to lower-level agents that operate its input and output
valves as well as internal equipment items. Negotiation is used to determine the
actions of contiguous CGUs. Rules for co-ordination are used that deal with decisions
taken locally by CGUs about operating their valves with those taken globally by the
plant.

Figure 7. Plant and CG U agents

6.1.3.3 Process workf low support ing agents

Geopolitical, economic and technological forces are changing organisations and
consequently affecting the way engineers work. The activities in an engineering work

467

process may be distributed across different team members with different expertise
located in different countries, in which co-operation and co-ordination among those
distributed activities are frequently required. To effectively deal with the complexity of
such work processes, it is desirable to employ workflow support software tools. In
general, those tools (often referred to as Workflow Management Systems) help
organisations specify, execute, monitor, and co-ordinate the flow of work items within a
work group or organisation [32]. In this section, we will take a look at how workflow
management systems work and how the agent-based paradigm can be and has been
used in realising workflow systems. Ai~rwards, we will look at the state of the art of
the work process support for process engineering including the perspective of applying
the agent-based paradigm.

Generally, it is not the goal of workflow management systems to completely automate
an entire work process. In most workflow systems, tasks are usually regarded as being
performed externally. The workflow management system only concerns itself with
management issues such as checking the availability of input and output information
and resource allocation [33]. Therefore, instead of automating work processes, workflow
support systems are usually used to help the users in planning their actions. However,
partial automation can be achieved if an algorithm can describe some of the activities
that constitute the workflow.

In principle, the support of activities in a work process relies on appropriate process
information, which has to be available to the workflow system. For example, guiding a
user through a predefined workflow requires knowledge about the work process and the
activities of which it is made up, information about possible orderings of the sub-
activities, evaluation procedures to find out whether an activity is executable in the
given situation, and methods to change the data on which the activity operates. The
latter is only relevant if automation of the activity or a whole workflow is the objective
of the support. Communication platforms such as the BSCW [34], which can also be
regarded as workflow support systems because they facilitate information exchange
within teams independently of any prior detailed knowledge of the work process,
because they just store and make available information in the form of data files.

Among the alternative approaches to realising workflow-supporting tools, multi-agent
systems have been found well suited because of their autonomous, adaptive and
collaborative characteristics. In this context, agents act collaboratively with the users
by monitoring events and determining ways to support the users in a proactive fashion
[35]. There are a number of different possible ways in which an agent can support
wortdlow processes. For example, an agent can guide the user through predefined
workflows, suggest executable activities, facilitate the collaboration between team
members, or retrieve information on request. By offering these kinds of support, a
process support agent can improve both the quality and the speed of work processes.

The field in which workflow support has gained the most attention is that of business
processes such as banking, healthcare, and office automation. Here we often find
planned, structured and shared workflows, which are good targets for workflow
management systems [36]. Nevertheless, some systems have also been developed to
support engineering fields. As for agent-based systems, an example for business

468

processes management is the Agent Based Process Management System (APMS)
architecture [37] from the ADEPT project [38]. In [39], agents are used in collaborative
product development where they delegate work packages and activities and guide
relevant data and control flows. [40] reports a so,ware engineering environment which
incorporates agent-based workflow management to actively support collaborative work
in a software project.

Activities in process engineering have their particular complexities. For example, the
activities involved in plant design and retrofitting can be organised in two kinds of work
processes that are always combined. On a higher level of abstraction there are clearly
predefined and well-understood work processes that always follow the same schematic
path of execution (for example see [41]). However, as engineering activities are
decomposed further, workflows may exhibit highly creative and impromptu activities
that cannot be planned and represented in advance. When trying to describe parts of
these work processes, like the initialisation problem for model simulation, on a detailed
level, one often has to deal with creative aspects of the engineer's problem solving
activities.

Until now, the work that has been done to assist in handling the complex work
processes in process engineering is still quite limited. Some commercial modelling and
simulation tools for chemical processes, like Aspen Plus, provide the user with
automatically generated menus that adapt to the needs of the user depending on the

Figure 8. Screendump of COPS in a snapshot when it is supporting
process modelling activities

469

tool state and suggestions of next work items, providing a kind of simple workflow
support for individual users. However, they do not provide explicit information on the
underlying workflow model, and do not allow it to be changed. Besides, several process
design support systems such as n-dim [42] and KBDS [43] have been developed in
which the aspect of workflow management is addressed to a certain extent. However,
none of these systems has explicitly incorporated a separate wortdlow management tool
equivalent to those that have been applied in other domains but suitable to chemical
process design. As an ongoing effort in process design support, an ambitious long-term
research project, IMPROVE [44,45], aims at the design and implementation of a
process-centred environment for chemical process design. In this environment, work
process support is addressed on several levels, from co-ordination of engineering
activities by the project management to the support of personal work processes.
Incremental replanning of work processes, feedback situations with task re-execution
and the integration of existing software tools into the work process are taken into
account.

Ongoing development of an information model in the IMPROVE project represents
process design processes, actors and the relations between a design process itself and
the design artefacts that are obtained during the execution of the worldlow process.
Using this model, a context-oriented process support system (COPS) has been
prototyped [46]. As an independent tool working in a process-centred software
environment, COPS guides actors to select and execute a set of activities and performs
documentation. It also overcomes the deficiencies existing in those commercial
modelling and simulation tools mentioned above.

Figure8 shows a working screen of COPS's supporting process modelling activities.
Based on these results, applying a multi-agent paradigm to develop a comprehensive
worldlow support system for chemical process design is currently being evaluated [47].
In particular, a software system architecture has been proposed which consists of a
workflow server, a number of workflow agents and a number of personal agenda
agents, as shown in Figure9, The workflow server i s responsible to create workflow
agents and to allocate designers of specific roles. A workflow agent initiates a design
activity, determines the role of designers for this activity, then supports the execution of
the activity and documents the activity. Finally, by co-operating with the workflow
server and workflow agents, a personal agenda agent works for a specific designer,
helping arrange the designer's agenda in the context of the entire design team or
project.

470

In this paradigm, agents can potentially be employed not only in fiflfilling the typical
workflow management functionality, i.e. managing design activities, but also in other
aspects closely related to the definition and execution of activities, such as assisting the
designer by showing relevant design artefact information according to the definition
and status of an activity.
In summary, we have seen how complex process engineering activities can benefit from
workflow supporting agents. Although workflow supporting tools (agent-based tools in
particular) have not been widely applied in process engineering, the experience from
other domains as well as the current emerging trend in these evolving technologies of
agent-based worldlow support are showing an encouraging prospective of enabling
efficient co-ordination and management of process engineering activities.

6.1.3.4 D i s t r i b u t e d s i m u l a t i o n

Multi-agent based computation infrastructure for simulation are already finding
increasing scope of application in varied domains like social, economic, biological or
ecological systems [48]. The autonomous nature of individual agents and their
capability of intelligent interactions make them able to represent system modules,
which act autonomously in the real world. Thus, simulation of discrete event systems
involving natttrally intelligent entities witnessed the initial applications of agent-based

Figure 9. Agent.based workflow management system for process
design. WFS - Workflow Server WFA - Workflow Agent PAA -
Personal Agenda Agent.

computation. In the case of simulation of continuous processes, though a limited
number of research and implementations are reported, the possible application scopes
of agent-based computations are yet to be fully explored. One of the efforts in agent-

471

based simulation of continuous phenomena in distributed parameter composite
physical systems can be found in [49, 50]. Agent applications specifically oriented
towards distributed simulation of chemical process plants are yet to be widely available.
In this section we will discuss some of the envisaged benefits of agent based distributed
simulation of chemical process plants.

As the demand of powerful simulation approaches to tackle more complex problems
increases, a single desktop computation capability is no longer a practical option for
problems such as real plant simulation. To circumvent the resulting problem of large
initial investment on computation, one research direction is to use distributed
computation environments where a cluster of multiple low cost computers are to share
the computational burden. Present availability of agent based software communication
protocols and the addition of knowledge-based problem solving capabilities potentially
offers fast, flexible yet cost effective simulation environment possibilities.

Chemical process plants typically represent a hybrid system, which manifest both
continuous dynamics as well as discrete event phenomena. While functions such as
planning and executing operations can be assigned to a number of agents, the
decomposition of the continuous process dynamics need careful analysis of the system.
Some preliminary research in this direction that is targeted to process plant simulation
is reported in [51].

The major anticipated roles of agents in an agent based process simulation
environment are likely to include: behaviour model decomposition, processing resource
allocation, local solver execution, thermodynamic property computation, and
distributed computation co-ordination. One or multiple agents may be necessary for
each of these activities that implement the desired functions of a distributed simulation
environment. During a simulation session each computation module of the behaviour
model may be assigned to dedicated agents. Each simulation session could be co-
ordinated by one computation co-ordination agent. A typical distributed multi-agent
based process simulation environment is shown in Figure l0. A scenario of agent
creation and inter-agent communication may proceed in the following way.

472

On initiation of a new simulation session by any external agent (human or software),
the behaviour model management agent (referred below as model agent) is instantiated
and associated with the desired behaviour model database, if no such instance is
already running. The model agent analyses the behaviour model and demarcates
multiple computation modules. A computation co-ordination agent is subsequently
initiated by the model agent with the information of the number of computation
modules. In the case of the existence of a model agent instance, the new simulation
request is registered to the existing agent and a new co-ordination agent is instantiated.
The co-ordinator agent creates instances of the required number of solver agents and
assigns appropriate processor to the solver agents so that the estimated discrepancy in
time per computation cycle among the processes is minimum. To support the
computation, the solver agents need access to the thermodynamic property computation
utility, which may be made available as individual utilities or as a multi-thread server
with agent interface. The solver agents are to collect their respective computation model
from the model agent and with the help of the co-ordinator agent initialise the inter-

FigurelO. Schematic view of a typical multi-agent based distributed
simulation environment and client utilities

module communication ports for information exchange about computation time. During
execution on completion of each global time step the solver agents are to exchange
relevant variable values with the appropriate solver agents as well as with the co-
ordinator agent. On confirmation of convergence, the co-ordinator agent for the next
time step would issue the computation command. In the case of perceived mismatches

473

in the values of the variables, the co-ordinator agent requests a re-computation of the
last time step with new global time step.

As shown schematically in Figure l0, an integrated agent oriented process design
environment is likely to employ many other agents or groups of agents to play
specialised roles. Some of these activities are product design, process design, plant
design, behaviour model editing, operation procedure synthesis, etc. Agents responsible
for these activities are likely to interact with one or more of the above described
simulation support agents. The interaction could be for executing a new simulation,
analysis and interpretation of a process behaviour or to register changes to the ongoing
simulation sessions. As the need for concurrent engineering environments are being
appreciated, the requirements for intelligent inter-utility interactions are becoming
essential. These requirements also gave rise to efforts for developing proper protocols of
information exchange across specialised knowledge domains. Several initiatives, as
discussed earlier in this chapter (Section 6.1.2), for defining meta-data format
standards and domain specific ontologies are making it possible to have m e a n i n ~
inter-agent communications across the context boundary of individual agents.

The major benefits, which are envisaged to be available in agent based distributed
simulation environments, can be summarised as follows:

�9 Increased speed of computation through concurrent utilisation of distributed
processing power

�9 Scalability of computational complexity as well as computation environment
features by gradual incorporation of more processing power or utilities

�9 Convenient integration of third party utilities and customised selection of
appropriate tools for any particular requirement

�9 Convenience of maintenance and management of software components with
possibility of modular upgrade of the simulation environment

�9 Flexible multi-user support for collaborative evaluation, decision making or
training in a distributed environment

�9 Possibility of intelligent interfaces that adapt to human users as well as to other
software components

Possibility of fast and flexible connectivity of software components and users over
Internet offers promising directions of distributed computation. Agent based world-wide
integration and utilisation of idle processing power, simulation supporting utilities as
well as simulation results would aid distributed monitoring, analysis and decision
making regarding simulated as well as real online processes. This will also facilitate
different design and development activities to be performed concurrently without the
constraint of physical location of the involved personnel in a cost effective and flexible
way. Some implementation efforts in this direction are already being reported [52].

High-level modelling languages allow users to describe process simulation problems at
various levels of abstraction composed of several modelling components. Putting this
together, it is now possible to develop a system in which a user would only specify a

474

process engineering problem using the high-level modelling language, and
communicate the problem to a component catalogue which would in turn communicate
with process modelling agents and let them build a solution collectively. Such a multi-
agent framework for process modelling is what can be called CO-GENTS in the CAPE-
OPEN project. The CO-GENTS framework is currently being investigated by a group of
universities and companies in order to demonstrate the feasibility of the approach.

6.1.3.5 Supply-Chain Management

Supply chains are distributed, integrated processes where the participating parties
work together to acquire raw materials, convert them into other products and deliver
the finished products to retailers and customers. Two basic processes dominate the
dynamics of the supply chain, namely production planning-inventory control, and
logistics-distribution. Along the supply chain, parties experience a forward flow of
materials, a backward flow of capital, and a bi-directional flow of information. The
degree of integration between the participating components depends on the ease with
which these flows occur along the chain. It is worth mentioning here that the term
supply chain is used as a convenient simplification; as each link on the chain actually
branches in its own and different suppliers and retailers, a more realistic term would be
supply network. In the same fashion, some authors consider the term demand chain to
be more accurate, since the chain begins with a consumer, who creates demand for
products, and ends with the raw materials suppliers [53].

From this definition of supply chain we can consider the finished product to be anything
from the manufactured items that go to the final customers, the process plant units,
control systems, computer hardware, or whatever that has a market niche. From here
on, however, we focus our discussion on two of these products, namely the process plant
and its manufactured products. These two are the axles that spawn the need for data
modelling.

On one side, the complexity of supply chains whose final products are process plants
and its relation with the plant life cycle has yielded plenty of studies. Yang and
McGreavy [54] identify the requirements for the process data to be used over the plant
life cycle under the EPISTLE (European Process Industries STEP 3 Technical Liaison
Executive) framework. The need to share data, codes and concepts is stressed.
Functional characteristics of a computer integrated CE environment usehtl along the
whole plant life cycle is discussed in [55], stressing the chemical industries' special
needs. A project management system that is able to handle different plant life cycle
activity models within a concurrent engineering framework is described in [56].
However, the chemical process industries are far from the integration that other
productive activities such as aeronautics, automotive and electronics have achieved in
aspects like e-commerce and data modelling.

The STEP s tandard discussed in Section 6.1.2

475

On the other hand, the supply chains of chemical products have some distinctive
features. Firstly, in the market of chemicals, the best customers are usually other
chemical companies. Secondly, the final customer is usually farther in the chain and
therefore it is harder to pull on an extreme to favour integration. In addition, the final
product and by-products co-exist in the market. Furthermore, compared to other
industrial sectors, the life cycles of plants, products and processes are longer and more
complex. Finally, the process is subject to tighter safety and environmental constraints
than in other industries [57]. The product life cycle is therefore very different to other
manufactured products. Figure l l shows the relationship between the plant life-cycle
and the plant 4 and product supply chains 5.

Compared to the many efforts on methods based on control theory and optimisation
(ranging from operations research models of logistics/production and statistical analysis
to business games), the work on agent-based systems is still very limited, and little has
been published about specific applications in the process engineering domain. Agent-
based systems have a number of distinctive features that make them attractive for
supporting the supply chain. For example, the decentralised interoperability of agents

Figure 11. Relationship between the plant's life cycle and the
plant and product supply chains

makes them well suited for designing distributed supply chain systems. In addition, the
modular, collaborative and autonomous characteristics of agents allow them to mimic
the supply chain structure, i.e., systems for individual chain components can be
developed and maintained independently.

4 The plant supply chain involves the flow of information, material and energy between the engineering, procurement and
construction service providers (EPC contractor), plant owners, equipment suppliers, control vendors, and process
licensors.
5 Extended supply chains may include recycling facilities, consumers, collectors of recycling materials, etc.

476

Ongoing work at the University of Leeds aims at developing a multi-agent support
system that is intended to address the above challenges. The system is a multi-agent
based environment that models the geographically distributed retailers, logistics,
warehouses, plants and raw material suppliers as an open and re-coniigurable network
of co-operative agents, each performing one or more supply chain functions. The
environment operates at two levels of a decision maldng process. At the top level, an
agent based co-operation mechanism allows compromise decisions to be made through
negotiation. When there are conflicts, the next level (the dynamic simulation of chain
behaviour) allows optimal compromises through the simulation of the effect of the
decisions.

The model is coherent inasmuch as it abets component integration at all the different
levels of implementation [58, 59], as shown in Figure 12. Agents are programmed with
the Java language so they can run on any platform. The agent instances are shown in
Figure l l3.The use of Java allows the system to be easily adapted to run on the
Internet. KQML is used as common language for inter-agent communication. The
STEP approach (section 6.1.2) is used to give format to the contents of the messages
exchanged between the agents.

The implementation focused on a case study where a multi-purpose batch plant that
produces wood paint and coatings schedules its production in order to htlfil warehouses
and customers demand. The models deal with inventory levels, optimisation,
production scheduling, demand forecasting, transportation logistics and information
exchange in order to study the effect of the chain dynamics over the plant's variables,
wearing away and idle times during campaigns along a given horizon.

Definition of Functional Relationships]

Agent Implementation Level
JAVA

Protocol Level
KQML

Contents Levelq

EXPRESS J

Figure 12. Levels of implementation.

477

I Customer]

I Retaile__..___[r 0_ .. i

[~ 1 Logistics I I Purchasingl i

I Retailer 2 ~ , ~ Warehouse O % , 2
I Retailer 3 L.,%~

I Retailer 4

I Retailer 5

I Retailer 6 ~'//

I Retailer 7

Raw material
supplier 0

Raw material
supplier 2

Raw material
supplier 3

Material flow

Figure 13. Agent instances in supply chain model.

I Raw material
producer

Figure14 shows some interesting results of a step change in demand that can give
insight into the use regime of batch plants regime and their long term scheduling. The
plant produces three finished products and has ten processing units.

Multi-agent systems will be deployed over the Internet to act simultaneously as real-
time knowledge management tools, corporate decision support tools, simulation test-
beds for what-if scenarios and as means for increasing the supply chains integration.
This paradigm is envisioned as fundamentally changing the way that partners interact
in the supply chain.

478

Figure 14. Effect of the chain dynamics over the amount produced,
plant's idle time and used equipment capacity.

6.1.4 CONCLUSIONS

The previous sections have shown representative examples of multi-agent systems for
application in CAPE. Looking again at the evolution of software artefacts, as presented
in the introduction and in chapter 4.1 of this book, we can now predict that agent
technology will allow CAPE tools to reach the third stage of evolution, that is, the one of
dynamic adaptive components (see Figure 15). In order to reach this stage, process
modelling agents will need to be enhanced with dynamic capabilities, such as automatic
reconiiguration, learning from examples, from past applications, or from interactions
with users. An auto-adaptive numerical solver, for example, would not only offer its
services to other modelling agents, but would also be able to adjust convergence criteria
based on the solutions of previous problems, or on memories of interactions with the
user, remembering preferences and thus offering better default values for its
parameters each time it is being invoked.

Since this chapter is about future trends, let's ask: what next? Well, look at the trends
in information technologies, such as described in the European Commission's
Information Society Technology FET (Future and Emerging Technologies) actions [60],
or in the US Information Technologies for the Twenty-First Century (IT2) programme.

479

You will see that computers, ambient intelligence, pervasive computing, million-
neurone networks, and computational grids disappear. In other words, clues for the
next generation of software objects and agents that was implicitly predicted by Genrich
Altshuller in TRIZ with his "patterns of evolution". Time will tell if these futuristic
considerations make sense, but remember that CAPE and software were only invented
less than fifty years ago, therefore there will obviously be much more to come.

Figure 15. The third stage of evolution: dynamic components

Another crucial aspect is whether there can exist any business model capable of coping
with new technologies such as the ones presented in this section and in other parts of
the book. This will be the subject of chapter 6.5.

6.1.5 R E F E R E N C E S

1 A. Drogul, "Applications des SMA r~actifs: simulation et aide ~ la conception,"
Tunisian Schoool on AI, May (2001) [On-line] Available: http://www-
poleia.lip 6.fr/-droguY

2 MIT Encyclopedia of Cognitive Sciences [On-line] Available:
http ://co gne t. mit. e du/MITE CS

3 OMG, "CORBA 2.4 specification," [On-line] Available: http://www.omg.org/
(2ooo)

480

4 D.L. Martin, A. J. Cheyer, and D. B. Moran, "The open agent architecture: A
framework for building distributed software components," Applied Artificial
Intelligence, Vol. 13, No. 1, pp. 91-128 (1999)

5 Orbix Programmer's Guide (1997)
6 M.R. Genesereth and R. E. Fikes, "Knowledge Interchange Format Version

3.0 Reference Manual," Technical Report Logic-92-1. Stanford University
Logic Group, [Online] Available: http:/llogic.stanford.edu/papers/kif.ps (1992)

7 W3C, "Extensible Markup Language (XML) 1.0 (Second Edition)," [On-line]
Available: http://www.w3.org/XML/ (2000)

8 J. Fowler, "STEP for data management exchange and sharing," Technology
Appraisals, ISBN 1-871802-36-9 (1995)

9 NIST, "The STEP Project," Available on the World Wide Web from:
http://www.nist.gov/sc4/www/stepdocs.htm (1999).

10 T. Gruber, "A Translation Approach to Portable Ontology Specifications,"
Knowledge Acquisition, Vol. 5, No. 2 (1993)

11 R. Batres and Y. Naka "Process Plant Ontologies based on a Multi-
Dimensional Framework," In Foundations of Computer Aided Process Design,
AICHE Symposium Series, No. 323, ISBN No: 0-8169-0826-5 (2000)

12 E. Mena, V. Kashyap, A. Illarramendi, A. Sheth, "Estimating Information
Loss for Multi-ontology Based Query Processing," Second International and
Interdisciplinary Workshop, Intelligent Information Integration, Aug. 24-25,
Brighton Centre, Brighton, UK (1998)

13 J. Hendler, D. L. McGuinness, "The DARPA Agent Markup Language," IEEE
Intelligent Systems, Vol. 15, No. 6, pp. 67-73 (2000)

14 T. Finin, J. Weber, G. Wiederhold, M. Genesereth, D. McKay, R. Fritzson, S.
Shapiro, R. Pelavin, and J. McGuire, "Specification of the KQML Agent-
Communication Language" (1994) [On-line] Available: http:/!
logic.stanford.edu/sharing/papers/kqml.ps

15 J. Dale and E. Mamdani, "Open Standards for Interoperating Agent-Based
Systems," Software Focus, To be appear, (2001) [On-line] Available:
http://www.fipa.org/docs/input/f-in-00023/f-in-00023.doc

16 Process Industry Executive for achieving Business Advantage using
Standards for data Exchange, "PIEBASE Activity Model," [On-line] Available:
http://cic.nist.gov/piebase/ppam20.pdf

17 N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C. Sierra and M.
Wooldridge "Automated negotiation: prospects, methods and challenges," Int.
J. of Group Decision and Negotiation, Vol. 10, No. 2, pp. 199-215 (2001)

18 S. E. Conry, K. Kuwabara, V. R. Lesser, and R. A. Meyer, "Multistage
negotiation for distributed constraint satisfaction IEEE Transactions on
Systems, Man, and Cybernetics, 6, pp. 1462-1477, Nov./Dec. (1991)

19 H.V.D. Parunak and S. Brueckner, "Ant-Like Missionaries and Cannibals:
Synthetic Pheromones for Distributed Motion Control," Fourth International
Conference on Autonomous Agents, Barcelona, Spain. June (2000)

481

20 F.M.T. Brazier, C.M. Jonker, J. Treur, and N.J.E Wijngaards, "On the Use of
Shared Task Models in Knowledge Acquisition, Strategic User Interaction
and Clarification Agents," International Journal of Human-Computer Studies,
Vol. 52, No. 1, pp. 77-110 (2000)

21 N. R. Jennings, E. H. Mamdani, I. Laresgoiti, J. Perez, and J. Corera, "Using
ARCHON to develop real-world DAI applications," IEEE Expert 11, No. 6, pp.
64-70 (1996)

22 S. Hedberg, "Executive Insight: AI Coming of Age: NASA Uses AI for
Autonomous Space Exploration," IEEE Expert 12, No. 3, pp. 13-15 (1997)

23 N. Muscettola, P. Nayak, B. Pell, and B. Williams, "Remote Agent: To Boldly
Go Where No AI System Has Gone Before," Artificial Intelligence 103, No. 1-2,
pp. 5-48, (1998)

24 S. Nagano, T. Kawamura, T. Hasegawa, A. Ohsuga, "A Plant Diagnosis and
Maintenance System Coordinated by Bee-gent," Proceedings of the 60 th
Annual Convention on Information Processing Technology, Tokyo, Japan (In
Japanese) (2000)

25 P. M. Herder, M. P. C. Weijnen, "A concurrent engineering approach to
chemical process design," Int. J. Production Economics, Vol. 64, pp. 311-318
(2000)

26 C. Petrie, "ProcessLink Coordination of Distributed Engineering," Available,
[WWW] http://www-cdr.stanford.edu/ProcessLink/papers/osaka/J-PLink.ps
(1997)

27 C. Petrie, "The Redux' Server," Proc. International Conference on Intelligent
and Cooperative Information Systems (ICICIS), Rotterdam, May (1993)

28 R. Bafiares-Alcfintara, J. M.P. King and G. H. Ballinger, "]~gide" A Design
Support System for Conceptual Chemical Process Design," in AI System
Support for Conceptual Design, Springer-Verlag, Edited by John E.E. Sharpe
(1995)

29 A. Struthers, "Use of Intelligent Software Agents in an Industrial Pressure
Relief and Blowdown Design Tool," Comp. Chem. Eng. Vol. 21, Suppl., pp.
$83-88 (1997)

30 R. Batres, S. P. Asprey, T. Fuchino and Y. Naka, "A KQML Multi-Agent
Environment for Concurrent Process Engineering," Computers & Chemical
Engineering, Vol. 23, Supplement, pp. $653-656 (1999)

31 Y. Naka, "Operational Design,"Process System Engineering Laboratory,
Internal Report (in Japanese), Tokyo Institute of Technology (1989)

32 C.A. Ellis, J. Wainer, "Goal-based models of collaboration," Collaborative
Computing, Chapman& Hall, March, 1-1:61-86 (1994)

33 W. M. P. van der Aalst, K. M. van Hee and G. J. Houben, "Modeling Workflow
Management Systems with high-level Petri Nets," Proceedings of the second
Workshop on Computer-Supported Cooperative Work, Petri nets and related
Formalisms, pp. 31-50, (1994)

482

34 W. Appelt,"WWW Based Collaboration with the BSCW System," in
Proceedings of SOFSEM'99, Springer Lecture Notes in Computer Science
1725, pp.66-78 (1999)

35 K. Sycara, K. Decker, A. Pannu, M. Williamson, and D. Zeng, "Distributed
Intelligent Agents," IEEE Expert, Vol. 11, No. 6, 1996

36 W. Schulze, "Workflow-Management fiir CORBA-basierte Anwendungen.
Springer," Berlin (2000)

37 P. D. O'Brien and W. E. Wiegand, "Agent Based Process Management:
Applying Intelligent Agents to Workflow," The Knowledge Engineering
Review, Vol. 13, No. 2 (1998)

38 N. R. Jennings, P. Faratin, T. J. Norman, P. O'Brien, M. E. Wiegand, C.
Voudouris, J. L. Alty, T. Miah, and E. H. Mamdani, "ADEPT: Managing
Business Processes using Intelligent Agent," Proceedings of BCS Expert
Systems Conference (ISIP Track), (1996)

39 G.Q. Huang and K.L. Mak, "Agent-based workflow management in
collaborative product development on the Internet," Computer-Aided Design,
32:133-144 (2000)

40 J.W. Chang and C.T. Scott, "Agent-based workflow: TRP support
environment (TSE)," Computer Networks and ISDN Systems, 28:1501-1511
(1996)

41 J. M. Douglas, "Conceptual Design of Chemical Processes," McGraw-Hill,
New York (1988)

42 A. W. Westerberg, E. Subrahmanian, Y. Reich, S. Konda and the n-dim group,
"Designing the Process Design Process," Presented on PSE'97 (1997)

43 R. Bafiares-Alc~ntara and H. M. S. Lababidi, "Design Support Systems for
Process Engineering--II. KBDS: An Experimental Prototype," Computers
chem. Engng., Vol. 19, No. 3, pp. 279-301, (1995)

44 M. Jarke, T. List, and K. Weidenhaupt, "A Process-Integrated Conceptual
Design Environment for Chemical Engineering," 18 th International
Conference on Conceptual Modeling, Paris, France, (1999)

45 M. Nagl, B. Westfechtel (eds.), "Integration von Entwicklungssystemen in
Ingenieuranwendungen," Springer, Berlin (1999)

46 M. Eggersmann, C. Krobb, and W. Marquardt, "A Modeling Language for
Design Processes in Chemical Engineering," Proceedings of the 19 th
International Conference on Conceptual Modeling, Lecture Notes in
Computer Science 1920, Springer, pp. 369-382, (2000)

47 A. D. Yang, "Workflow Management in Process Design With Software
Agents," Internal report, LPT, RWTH Aachen, Jan. 2000

48 N. R., Jennings, K. Sycara and M. Wooldridge, "A Roadmap of Agent
Research and Development," International Journal of Autonomous Agents and
Mutli-Agent Systems, Vol. 1, No. 1, pp.7-38, (1998)

483

49 T. Drashansky, E. N. Houstis, N. Ramakrishnan and J. R. Rice, "Networked
Agents for Scientific Computing,"Communications of ACM, Vol. 42, No. 3,
pp.48-54 (1999)

50 L. BS15ni, D. C. Marinescu, J. R. Rice, P. Tsompanopoulou and E. A. Vavalis,
"Agent based Networks for Scientific Simulation and Modeling," Concurrency:
Practice and Experience, Vol. 12, No. 9, pp. 845-861 (2000)

51 R., Chatterjee, "Towards An Integrated Simulation Based Process
Engineering Environment," Proceedings of JSPS International Workshop on
Safety-Assured Operation and Concurrent Engineering, December 3-5,
Yokohama, Japan (2000)

52 Y. Zeng, S. M. Jang and C. C. Weng, "Consider an Internet-Based Process
Simulation System," Chemical Engineering Progress, p.53-60, July 2000

53 L.F. Dugal, M.S. Healy, S. Tarkenton, "Supply chain management: a
challenge to change," Coopers & Librand, L.L.P., Boston, MA (1994)

54 X. Yang, C. McGreavy, "Requirements for sharing process data in the life
cycle of process plants,"Comp. Chem. Eng., 20, pp. $363-$368 (1996)

55 C. McGreavy, X.Z. Wang, M. L. Lu, Y. Naka, "A concurrent engineering
environment for chemical manufacture," Concurrent Engineering: Research
and Applications, 3, pp. 281-292, (1995)

56 J.W. Hawtin, P.W.H. Chung, "Concurrent engineering system for supporting
STEP based activity model," Comp. Chem. Eng., 22, pp. $781-$784 (1998)

57 C. E. Bodington and D.E. Shobrys, "Optimise the supply chain," In Advanced
process control and information systems for the process industries, Kane, L.A.
(eds.), Gulf Publishing Co., Houston, pp. 236-240 (1999)

58 R. Garcia-Flores, X. Z. Wang, and G. E. Goltz, "Agent-based information flow
for process industries' supply chain modelling," Comp. Chem. Eng., 24, pp.
1135-1141 (2000)

59 R. Garcia-Flores, X. Z. Wang, "Multi-agent based chemical supply chain
management and simulation," to appear (2001)

60 European Commission's Information Society Technology FET (Future and
Emerging Technologies) actions. [On-line] Available: www.cordis.lu/IST/FET

This Page Intentionally Left Blank

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
�9 2002 Elsevier Science B.V. All rights reserved. 485

Chapter 6.2: Tools Integration for Computer Aided Process
Engineering Applications

E. S. Fraga, R. Gani, J. W. Ponton & R. Andrews

6.2.1 INTRODUCTION

Computer tools for process engineering cover a wide range of applications. These
range from the mundane, such as office productivity tools used to prepare
reports, through to highly specific tools for process engineering. As an
illustration, Fig. 1 shows the tasks involved in reactor modelling and simulation.
Even a small part of the whole design of a process is itself made up of a large
number of sub-tasks with complex inter-relationships. For design as a whole, the
tasks range from model building, the generation of process flowsheets, heat
exchanger network synthesis and rigorous simulation of process flowsheets for
detailed analysis. Furthermore, identifying the best process design requires
considering a variety of issues. These include economics, operability, safety and
maintenance, along with the impact of a design on the environment, including
issues related to society. The number of distinct applications used is therefore
large and the process of design requires managing the flow of information from
one application to another.

There are two approaches for handling this diversity of tasks and requirements.
The first is to use a specific tool for each task while the second is to use an
application, which attempts to cover the full range of requirements. The former
has the advantage of allowing the use of the best of breed tool for each specific
aspect. However, integrating the different tools used may be an obstacle, which is
difficult to overcome. The data generated by one tool may be required as input in
another tool. For example, the state of a process flowsheet may be required to
define the heat exchanger network synthesis problem to be solved using the
pinch method or the results of a detailed simulation of a reactor may be required
by the engineers responsible for the design of the separation section.

In many cases, this transfer of data from one tool to another is carried out by
hand. Although effective and reasonable in some cases, in general this limits the
efficiency and accuracy with which the necessary calculations may be executed.
The effect on efficiency is simply due to the time required to translate, by hand,
the output of one program into the form required by the second program. More

486

importantly, however, the manual operation is likely to suffer from transcription
errors, especially as the amount of data transferred increases. Automated
interaction between the diverse tools used in process engineering is therefore
necessary for the effective use of all the computer aided tools available to the
engineer.

A fully integrated approach eliminates the problem of data interchange. There is
only one tool and no manual intervention for data transfer is necessary. Another
advantage of this approach is that the engineer need only learn one interface,
minimizing the human errors inherent in using complex computer tools.
However, defining and implementing a computer based framework, which can be
extended for use throughout the design process is also challenging.

Modelling expert Reactor expert

Problem objective

Literature
search

Generation of I
altemaUves

for the j ~
reaction

Pdodtised list of reactor f Tested reactor altematJves
alternatives "~., = (" 1 =t ~ Reactor model equations) invest ;]ation CS rR-"~

jjo-'~
Reactor equations ,q........... J J -i oo.r..c,orl

Reactor volume
Reaction temperature

i Similitude,] > |J 15 l# J Estimati~ ~ IJ product different reactionat jjl~=''" ~'~ " ' ' ' " ' " - ' ' - " ' - ValvelnitiaIPerfectlY stirred hold-up constant

~,.I conditions ~,)
"- - .4 - "

Export reactor "~"~"~l= Evaluation of
,§ / / Implemented Effluent compositions reactor type flowsheet and operating

simulatorT 2 l] dynam~demlactor Dynamic behaviour " ranges

Figure 1. Data flow, work flow and needed tools in reactor modelling &
simulation

487

Although the two approaches described above are orthogonal, they share the
underlying problem of data representation. From the user's point of view, it is
likely that both approaches will appear the same (assuming that the user
interfaces for the tools in an integrated environment share a common look and
feel). Furthermore, in practice, it is likely that a combination of both approaches
will be required. Fully integrated tools will be unlikely to cover the whole
spectrum of tasks required in design and so even these tools will need to
integrate with other tools. In any case, application integration is not simply a
mat ter of transferring data from one tool to another, although this step is
necessary. Issues of data interpretation, data management, concurrency in the
design process, ease of use, and the generation of audit trails are equally
important.

The overall aim of tool integration is to aid the engineer in the process of design,
helping meet the increasing demands on process simulation, analysis,
optimisation and control. By providing an easy to use environment for design, the
engineer is able to consider more issues simultaneously, leading to a better final
design. More informed decisions can be made early in the design process and
there is therefore a reduction in the iterative procedure that often appears in
design where later analysis leads one to throw away the current design and start
over. An integrated environment which provides a common interface also has the
advantage of minimizing human errors, errors often induced by having to deal
with radically different user interfaces presented by separate tools. An integrated
environment reduces problem set-up time and, therefore, increases the
productivity of the user. Finally, all users of the same environment share the
same common data, providing consistency.

This chapter describes the approaches to application integration in process
engineering. Three existing environments for process engineering are first
described in detail to give an overview of the issues involved. These issues are
further discussed in light of current research in both areas. The chapter ends
with a discussion of new technologies that may lead to better, fully integrated,
easier to use and more comprehensive tools for process engineering.

6.2.2 F R A M E W O R K S F O R TOOL I N T E G R A T I O N

In this section, we describe three environments or frameworks for application
integration in process engineering. The dpde system, a proof-of-concept prototype
system, was developed a few years ago with the aim of understanding the issues
in application integration. A subsequent project, Process Web Objects, is a Web
based system developed to demonstrate the potential of the Web as a framework
for application integration and has been based on the experience gained in the
~p~e project. An example of a tightly integrated system for application
integration, ICAS, is then presented.

488

At the core of the first two systems is a framework for data interchange.
Automating the interchange of data from one tool to another is not only a matter
of t ransla t ing from one format to another. It is a non-trivial exercise for a variety
of reasons, summarized here:

�9 Each tool will typically use a different format for data representation. The
data representat ions will often be based on a binary representation, specific to
the type of platform and software used. Even with office productivity tools,
this is an issue. Often, enterprises have to standardize on a single word
processing tool to ensure that problems with document formats do not arise.
For process engineering, this problem is compounded by the large number of
diverse tools required and because these tools come from a large number of
vendors. A translat ion from one format to another is therefore likely
necessary to integrate any two tools. If there are n tools, there are potentially
n 2 t ranslat ion procedures required.

�9 Even if the formats were to be the same, the information embodied in the data
set may require interpretation. Each application has its own set of
assumptions and these assumptions may be in conflict between the tools to be
integrated. This is particularly true when comparing tools used early in the
design process to those used much later. For early design, quantities may be
considered to be approximate or may not even be required. Once a flowsheet
design has been chosen, however, many of the quantit ies will be assumed to
be fixed (and accurate).

�9 Process engineering is a team based activity and data sharing amongst the
members of the team, and the applications each member uses, is required for
an efficient execution of the design process. Issues of concurrency arise. For
instance, suppose one engineer is responsible for the design of a reaction
section of a process and another is responsible for the separation section.
Design decisions made by one engineer will affect the design generated by the
other engineer. The effect of decisions made by each engineer will need to be
recorded if not automatically taken into account.

�9 Process engineering is just one par t of the activities in an enterprise. Issues
tha t affect the enterprise will affect the needs for tool integration. For
instance, the regulatory environment will typically lead to the need for clear
and precise audit trails. Tool integration, which happens automatically, must
therefore generate the data necessary to produce a suitable audit trail. This is
part icularly crucial with respect to the decomposition of design described in
the previous point.

The third system has no requirements of data exchange because the system is
tightly coupled. All the tools within this system share a common data format.
Nevertheless, the issues presented above are still relevant and should be
considered in the development of any integration environment.

489

6.2.2.1 The ~p~e sys tem

Tool integration requires not only the ability to transfer data from one
application to another but also interpretation of the data, management of the
applications used, and support for multiple users accessing the same data. Two of
the authors were involved, at the University of Edinburgh, in the development of
a prototype system for application integration, which at tempted to address all of
these issues. This prototype system is ~p~e, the Ecosse Process Engineering
Environment (Ballinger et al., 1994; Costello et al., 1996). It was developed to
support process engineering in general, although with emphasis on early,
conceptual design. Although the ~p~e project was terminated a few years ago, a
description of the main features of the system is useful for understanding the
issues in tool integration and how they may be tackled.

�9 ,pp 5

:\ I / ,,,
! llt>p 1 7/

t,_ . o - - . z j

I
~Q~QIt
BzokQz

. . .

Figure 2. Architecture of the dpde system.

The ~p6e system is based on a modular architecture (see Fig. 2). At the centre, is
a server that responds to requests from applications. These requests include
accessing data objects previously created, storing new data objects, or requesting
the application of methods on given data objects. Applications are invoked by the
server in response to method application requests by either the user or by
another application. The server is network-aware and applications may be
started on any system in the network, as required (for instance, some software
may be licensed only on specific systems). The system is controlled through a set
of databases, which describe the applications that are available, and what
methods they provide.

490

Data representation

The core of the ~p6e system is an extensible object oriented data representation.
The aim is to provide an application neutral data representation. Applications
can be wri t ten to use this data representat ion directly, through the application
programming interface (API) provided by ~p~e. Existing applications can be
integrated by implementing a wrapper application, which t ransla tes between the
neutral representat ion and the representat ion used by the application. To ensure
maximum portability, the data are encoded in ASCII.

Targeting conceptual design means that it is difficult, if not impossible, to pre-
define the full set of data types required or even fully define any single type. For
instance, the definition of a process s tream cannot be fixed. In the earliest stages,
a s t ream may simply consist of a list of components with little or no information
about the actual amount of each component in the stream. In fact, the list of
components may be only partially defined. In later stages, however, process
s t reams will often include multiple phases, each phase defined by a fully
specified list of components and their flows, a temperature, a pressure, and so on.
One aim of the ~p~e system was to enable a wide range of applications to work
with the same basic object definitions regardless of the level of detail required.

An ~p6e object consists of a set of slots. Each slot consists of a name and its value.
The definition of each slot specifies what type of data values it should hold.
Certain collections of slots are named and defined as templates, mostly for
convenience. For instance, Fig. 3 and 4 show the slots tha t make up the ~p~e
s t ream and mixture templates.

In the definition of the mixture template, we see tha t the Temperature and
Pressure slots represent real values with given ranges and units. The
Component_Fractions slot is defined to contain a list of Component_Fraction
objects. EGO and EDO are the ~p~e Generic Object and the ~p~e Design Object
respectively. The templates show that both IS_A and HAS_A types of
relationships between objects exist.

The type of object is defined implicitly by the set of slots it contains. That is, an
object is not one type or another but is simply a collection of slots. When a
method is invoked, the system matches the target object with the requirements of
the method. These requirements are specified as a set of slots. If the object has
the slots specified, it will be deemed suitable as the target for the method. In
practice, the set of slots required for a method will be specified through the
specification of a template, essentially a class definition for a type of object.
Nevertheless, the ~p~e objects are not explicitly typed and it is only at method
invocation tha t the suitability of an object for the method is checked. This makes
the system completely extensible. The implicit dynamic typing of objects, only
when methods are applied, imposes no restrictions on what types of objects can

491

exist or what applications can be supported. Furthermore, it provides the
capability of using objects that are partially instant iated within tools during the
early design stages. These same objects can later be used in more detailed
analysis once they are fully defined.

Figure 4. Definition of mixture class.

The definitions of templates, slots, methods and applications are all stored in a

492

set of databases. Methods are defined with a specification of the minimum
amount of information required to work with an object. The method definition
also includes a list of applications (actual programs), which provide the particular
method. Users may specify a preference when there is a choice of application that
provides a given method. Applications are spawned as required, using a
distributed computing application layer, which can make use of networked
computers when appropriate. This can be useful, for instance, when a particular
piece of software can only be run on a specific computer, a computer different
from the one the engineer is using interactively.

Fig. 5 shows a snapshot of the ~p~e console application displaying currently
active applications (known as Providers) and the methods they provide. Each
application may provide more than one method and a given method can be
provided by more than one application. The CHIPS application (Fraga &
McKinnon, 1994), for instance, provides a set of different synthesis methods,
including heat integrated process synthesis, the use of rigorous models, and a
simple short-cut model based procedure.

~}--- ps
id I Provider@Machine I Info On I Methods a Control Interests

262164 i esh@(?) I Busy with --> I Being An Epee Shell

262157 I Select@rain I Ready to use I Select.Slot
I I I

2 6 2 1 5 4 I CHiPS@tain
I
I
I
I
I

I Providing - I I Des Ign. Sequence. Separat ion. Heat Int
I I I Design. Sequence. Separation.Rigorou
I -> I Deslgn. Sequence. Separation. Simple
I I Des ign. Sequence. Separat ion
I I Synthesis. Process. Separation
I I

2 6 2 1 5 1 Browser@ (?) Prov id ing -]
I
I
I
I
I
I
I -->

Get. Stream
Get. Process
Get .Mixture
Get. Generic_Obj ect
Get. Component
View. Contents
View.History
Brows e. S t ructure
Brows e. Object s
Brows e. H is tory

262149 Db. S rver@t a in Ready to use Database.Llst Contents .GDB
Database. Publ ish. GDB
Database.List Contents
Database. publ ish
Database. Retrieve

~}--- i

Figure 5. gp4e console output.

493

Third party tool integration

The main problem with a system like ~p~e is that applications have to be writ ten
to use the system specifically. In practice, however, until a s tandard for tool
integration is adopted, this is unlikely to be the case. The situation is very much
a chicken and egg scenario in which any application integration environment will
not be a s tandard until the majority of applications are based on it and the
applications will not make use of the environment until it becomes a standard.

Until such a standard is adopted, the only alternative is to write wrapper
environments for third party tools. The wrapper translates between the base data
encoding provided by the integration environment and the native data format
expected by the tool. Although somewhat onerous if a large number of
applications are required, the number of translations is equal to the number of
applications and not the n 2 required if each application were to be integrated
with each other.

The use of a wrapper for integrating third party, legacy applications was
demonstrated by Ballinger, Fraga & Bafiares Alc~ntara (1995). This
demonstration integrated the basic simulation procedure in Aspen PLUS into the
~p~e system. A flowsheet was generated using CHIPS (Fraga & McKinnon, 1994)
and the flowsheet generated was validated using Aspen PLUS. The output of the
simulation was compared to the output of the synthesis procedure to determine
the level of accuracy of the synthesis procedure. The controlling software was the
KBDS system, a design support system described briefly in the next section.

Supporting the design process

Design is a team-based activity. Data must be shared amongst the members of
the team. Furthermore, the actual process of design may take months or years
and the deliverable is not just a process design but the decisions and steps that
led to the actual design. Bafiares Alc~ntara and co-workers have proposed a
design support system, known as KBDS, for supporting this process (Bafiares-
Alc~ntara, 1991, 1995; Bafiares-Alc~ntara & King, 1997; Bafiares-Alc~ntara &
Lababidi, 1995; King & Bafiares-Alc~ntara, 1996). The ~p~e system implements a
small subset of the underlying concepts in KBDS to provide support for design
and, moreover, provides some of the features necessary for application
integration within such a support environment.

What differentiates ~p~e from other proposals for data representa t ion is the
incorporation of the concept of history in to the object representation. All objects
have a record of how and when they were created. This is il lustrated briefly in
Fig. 6. This figure shows the (very brief) history of a process design. The design is
the bottom object, shown graphically by an icon together with some information
about the object, including the name, the date on which it was created, and the

494

method used to create it. In this case, the method is one provided by the CHIPS
synthesis package (Fraga & McKinnon, 1994). The figure shows tha t this process
design was the result of applying the method to the s t ream object shown
immediately above the design object. This object was created over two months
previously. The s t ream was created by applying the Edi t .Stream method (a
graphical interface for defining stream objects), s tar t ing from the stream object
at the top of the figure, which was created directly by the system. As well as the
information presented in this figure, each object has a record of which user or
users were responsible for these actions.

Figure 6. Illustration of history of process design.

Method invocation seldom has any side effects. In the case of the synthesis
procedure in CHIPS, a set of other objects is created. The history browser enables
us to see these objects, if so required, as shown in Fig. 7.

495

Figure 7. More detailed view of history of process design.

The more detailed view shows tha t the process design (bottom right of Fig. 7) is
the result of applying a method to a s t ream object (2nd object from the top), as
before. However, we now see a variety of other objects associated with the method
invocation. The method invocation itself is represented by two special objects, a
method s tar t object, indicated by the s tar t banner icon, and a method end object,
indicated by the chequered flag icon. Linked into these two objects are the side-
effect objects, a variety of s t ream and process block (processing units) objects.
The view is history based so these side-effect objects appear as descendents of the
method s tar t object. However, they are also referenced from the method end
object, as can be seen in Fig. 8. Shown in the figure are the method s tar t and
method end objects, in a content view mode. The method s tar t has information
about the actual application used. The method end has references to all the side-
effect objects described above.

Summary of the ~p~e system

The ~p~e system was developed to demonstrate the potential of an integrated

496

computer based environment to support process engineering. Two main criteria
motivated the development of the system:

1.The need for an extensible architecture and an application neutral data
representat ion to cater for the wide range of applications used in process
engineering.

2.The support for a design and decision support system which is required for
providing the environment necessary for team-based design and the extra
functionality demanded by the enterprise.

The system tha t was developed achieved these two goals. However, it was only
intended as a proof of concept and the system was not suitable for day to day use.
In particular, ~p~e did not scale well for large design tasks, mostly due to the
database technology used (simple relational databases). Furthermore, there was
a lack of support for the process of modelling; the data models used in ~p~e were
developed through meetings and with little rigour. More detailed analysis of the
modelling requirements of the design process would have been required.

Figure 8. Display of method start and end objects for synthesis example.

6.2.2.2 P r o c e s s Web Objects : A Web based e n v i r o n m e n t

As will be noted later, Lu et al. (1996) have incorporated the Web into an
environment for tool integration. Andrews & Ponton (1999) have taken this a

497

step further by making the Web, and the browsers used to interface with the
Web, be the integration environment. When work on the ~p~e system was
started, the Web was in its infancy. Towards the end of ~p~e's development, it
was noticeable that many of the features, which had had to be custom designed
for the ~p~e server, were features of s tandard Web servers. Developers of design
support and information management systems noted tha t many of their
requirements could be met even by early hypertext systems. In fact, the initial
development of KBDS investigated such a system, al though its l imitations soon
became apparent and the vehicle was switched to a Lisp graphic environment.
However, the power, and particularly the universal acceptance of the underlying
s tandards that comprise the Web (http, HTML, CGI), suggested tha t the notion
of an object based process engineering environment based on Web technology
should be re-examined.

The initial objective of the Process Web Objects project was to see how much of
the ~p~e functionality could be reproduced using s tandard Web servers and
creating objects as HTML documents. Subsequently, Web Objects have developed
a wider and more flexible context, integrat ing synthesis and flowsheeting tools,
spreadsheets, and have acquired some distinctive features of their own. A fuller
description of Process Web Objects is given in Andrews & Ponton (1998) and an
online demonstrat ion is also available at
www.chemeng.ed, ac.uk/people/ross/public/web objects/introduction.html.
The rest of this section gives an overview of the features and their
implementation, part icularly with reference to the ~p~e system described above.

Objec t Hierarchy

This is broadly that of ~p~e, viz components, mixtures, streams, processes etc. It
is less systematic than that of ~p~e, having developed in a ra ther ad hoc manner,
and containing objects tha t were felt to be useful, but which do not really fit into
a tidy hierarchy. New types of object have been defined to handle higher levels of
process representat ion and abstraction for use in process synthesis. These
include a Task object which specifies a design or synthesis task to be carried out,
a Domain object which contains all the Process objects which can achieve a
part icular Task, and Class objects, several of which can contain groups of Process
objects within a Domain have part icular common features (Williams, 2000).

Object Structure

Objects are HTML documents. They contain slots which are either atomic, i.e.
containing simple data, in the form of a text string, or are themselves objects.
Atomic slots may either be fixed or changeable. Changeable slots are typically
implemented as HTML text form elements. The user may decide changeable slots
in one generation of an object shall be fixed in its descendants, but fixed objects
cannot be unfixed. Slots, which are objects, are represented by hyperlinks. Thus

498

the whole of the Web is accessible as par t of a Web Object. Furthermore,
anything tha t may be pointed at by a link can be par t of an object. The link may
be to text, graphics, audio, arbi t rary files, or any entity which may be created by
running a program in the cgi area of a server. This clearly provides great
flexibility and richness.

S tandard objects come with pre-specified slots. However, a method is available to
create a new object with additional slots from a s tandard one.

M e t h o d s

As in ~p~e, methods applied to an object generally create a new object. A key
feature of ~p~e was object persistence, i.e. once created, an object could never be
destroyed. This highlights one limitation of web technology in this role; for
security reasons programs running on the Web cannot access the client's
workspace, and are limited even in what they can do to the desktop. Thus Web
Objects are ephemeral and, in practice, new objects can only be created on a Web
server. We have minimised this problem by using the ideas of a working session
and of subsequent publication, as described below.

Web methods are in practice of three types, dependent on how they are
implemented. The distinction is largely one of convenience and feasibility ra ther
than of anything fundamental . The methods can also be categorized according to
where they execute:

Server Methods and Method Application: Most methods are applied by programs
running on the server to which the object is submitted as a form using CGI
protocols. The list of methods applicable to an object is specified by a form select
list and chosen by the user (Fig. 9). An object's methods are thus effectively
defined within the object itself. Indeed they might almost be thought of as
specialised slots, which cause an action to be performed when they are accessed.
Some methods are common to all objects, while others are specific. A user can
also create objects tha t inherit all the methods of a s tandard object but add a new
method as a URL on a server. The user must provide code at that location to
implement the method.

Most methods result in the creation of a new object. This is stored on the server
and usually also sent as an HTML page to the user's browser. "Child' links to it
are added to the object from which it was created and the new object is linked to
the appropriate places in the History object.

Server methods may make use of any software accessible to the server. For
instance, two methods available in the prototype are "Create an Aspen Model'
which creates an Aspen input file object from a Process Object and "Get data from
Aspen Model' which fills slots in a Process Object from an Aspen output file.

499

These can easily be combined into a single "Balance Process with Aspen' method
with the AspenPlus system run by the server program.

Client Methods: Most Web Object methods run on a server but they may also,
with some restrictions, be implemented on the client by Java Applets or some
even in JavaScript . In principle, most server methods could be implemented in
Java to run on the client. Although the Java security model allows a Java applet
to write only to the server from which it was loaded, most of the existing server
methods could be implemented this way. In a system with a large number of
users, this could offer a significant reduction in server load.

JavaScript is much more restricted in tha t it cannot write to anywhere except a
browser on the user's desktop, and is limited even there. In practice, JavaScript
only provides "viewing' methods and can be used to change what the user sees,
e.g. to change the units or form in which information from slots is displayed.
However JavaScript can initiate action on a server or apply any public method of
an applet in the object document, making it a convenient means of implementing
user interfaces. An example of this, the "molecular typewriter ' , shown elsewhere
in this book (Chapter 6.3 - Cameron and Ponton), is used as an interface for
creating Component objects.

500

Figure 9. Method selection in Web Process Objects interface.

Extensibility

As already noted, it is possible to create new versions of s tandard objects with
additional slots and methods. Since methods can involve any program, which the
server can run, complete flexibility and extensibility has been achieved. Since an
object slot is a hyperlink, and hyperlinks can point to any type of file that is given
a URL anywhere on the Web, Web Objects can effectively contain any kind of
information. Fur thermore, browsers may be set to use "plugins' to open part icular
types of file wi th a client application. For example, another method for a Process
Object is "Create Spreadsheet model'. This creates a spreadsheet format file with
appropriate extension, containing a linearised mass balance model of the process,
ei ther with user specified process parameters or those derived from a solved
Aspen Process Object. Clicking on the hyperl ink in the generated Spreadsheet
Model object will, once browser options have been set, automatical ly bring this up
in a spreadsheet on the client (Fig. 10).

501

Figure 10. Integration of flowsheet viewer and spreadsheet calculator in Web
Process Objects.

The History Object, Work Sessions and Publication

When a new Web Objects "Work Session' is initiated, the user is allocated space
on the server for the objects tha t will be created. The first object created is an
empty History object. The history object will contain a tree diagram showing all
objects created, wi th hyperl inks to those objects. Clicking on an object brings it
up in a browser window. Any method applied to it tha t creates a new object will
enter a new branch into the History object. Additionally, objects have logistical
slots, which point to parent and child slots. The server workspace is preserved so
long as it is deemed to be required by the user (interpretat ion of this depends on
the type of user). It is normally private to one user and password protected,
al though it can in principle be shared. The general method "Mail all created
objects...' compresses all objects in the workspace into a zip file and emails them
to their registered owner. The owner can then unzip the directory and install it in
his own web space. B y telling others the URL of the History object, the user
effectively "publishes' the entire workspace in the sense used in n-dim

502

(Westerberg et al., 1997). Anyone with access to the URL can bring up an object
created by the user and, if the new user has access to a Web Objects server, can
apply a method to and star t a new family of descendants which belong to the new
user ra ther than to the owner of the original object.

6.2.2.3 The I CAS s y s t e m

The two systems described above are frameworks for integrating diverse
applications, taking care of the data management issues presented early in this
chapter. These approaches assume a loose interaction between the different tools.
To be effective, a loose integration approach requires tha t all the tools present a
common look and feel to the user and that all the tools are able to interpret any
data exchanged correctly. The lat ter is part icularly difficult to guarantee in such
a loosely coupled environment. In this section, we present an environment, which
is fully integrated, using a common data representat ion and a common user
interface.

The Integrated Computer Aided System, ICAS, developed at CAPEC, Department
of Chemical Engineering of the Technical University of Denmark (Gani, Hytoft,
Jaks land & Jensen, 1997) is an example of a fully integrated computer
environment for process engineering (http:ffwww.capec.kt.dtu.dk). ICAS
combines computational tools for modelling, simulation (including property
prediction), synthesis/design, control and analysis in a single integrated system.
These computational tools are present as toolboxes. During the solution of a
problem, the user moves from one toolbox to another to solve problems requiring
more than one tool. For example, in process synthesis, one option is to define the
feed stream, then analyse the mixture (analysis and utility toolbox), generate a
flowsheet (synthesis toolbox), optimise the flowsheet (design toolbox), and finally
verify the design (analysis toolbox). From any toolbox it is possible to invoke the
simulation engine to perform steady state and dynamic simulations for batch and
continuous process operations. From the synthesis toolbox, it is possible to invoke
the solvent design tool (from the design toolbox) if a solvent is required for a
specific separat ion task. There is also a utility toolbox, which determines
properties, phase diagrams, etc., which can be used by the other toolboxes or by
the user to analyse the behaviour of the specified system.

The following tools are currently available in ICAS:

�9 Property prediction: Tools include CAPEC database, pure component property
prediction (ProPred), mixture property prediction (TML), model parameter
est imation (TML) and thermodynamic model selection (TMS).

�9 Modelling: Computer aided model generation (ModDev), model analysis,
t ransla t ion and solution (MOT) plus addition of user-defined models (MOT).

�9 Process synthesis and design: Tools include computer aided flowsheet
generation (CAPSS), design of reactive/azeotropic distillation (PDS),

503

configuration of distillation columns (PDS), solvent search/design (ProCamd).
�9 Reactions: Tools include reaction database, kinetic model parameter

estimation, reaction pa th synthesis based on data (RAS).
�9 Simulation: The ICAS-SIM simulation engine allows steady state and

dynamic simulation of continuous as well as batch operations (BRIC).
�9 ReacPar: Reaction kinetics modelling, including paramete r estimation.
�9 Simul: Simulator engine - includes an integrated steady state and dynamic

simulation features and DynSim (a dynamic simulation system).
�9 Control: Design and analysis of control systems, including a MPC toolbox for

model predictive control.
�9 BRIC: Batch operation records and simulation.

Fig. 11 gives an overview of what is available in I CAS, how the various tools are
connected and the functions of each tool. The figure shows tha t ICAS consists of
four major parts. That is, problem definition, simulation engine, tools for
extending the system through the definition of, for instance, new compounds,
models and reactions, and specific process engineering tools which may be used
to solve sub-problems. In problem definition, the user defines the problem to be
solved by selecting from the available options. The job of the simulation engine is
to obtain a numerical solution to all the model equations representing the
specified system/process. Knowledge based systems are available to select
phenomena (property) models, solvents, separation techniques for a specified
separation task and numerical methods (simulation strategy).

ICAS is available to CAPEC member companies and is being used as a teaching
aid in courses on separation processes, chemical process design, advanced process
simulation/optimisation and in process & tools integration at graduate and post-
graduate levels. In industrial use, the tools of I CAS help to reduce the time of
project work within a company. As a teaching aid, it provides s tudents with tools
tha t help to generate the data/information that is not par t of the course but is
needed to solve the course problems. A typical example is distillation design- it is
necessary to compute phase diagrams, to find solvents (in case of solvent based
distillation), to configure the distillation column and finally to verify the design
by simulation. Having all the tools present in an integrated manner helps users
not only to concentrate on the problems related to the specific application but also
to become aware of what information is needed and how this information can be
obtained. The additional knowledge helps the user to consider more alternatives
and to obtain better solutions, which otherwise would not be possible to obtain.

504

Figure 11. Overview of the ICAS system.

6.2.3 C U R R E N T P R O J E C T S IN TOOLS INTEGRATION

The systems presented above demonstrate the capabilities of integrated systems
and how some of the issues in application integration can be tackled. These
systems are a small sample of the work currently in progress in different
research groups (and software vendors). An overview of some of the current
projects in application integration is presented in this section, grouped according
to the particular issue they address.

6.2.3.1 Data m o d e l s for i n t e g r a t i o n

The importance of the underlying data representation to process integration is
emphasized by the work of Bayer, Shneider & Marquardt (2000). As part of a
larger programme of research aiming to develop an integrated environment to
support process engineering, they have developed a conceptual data model, which
is designed for the integration of existing data models.

505

McGreavy et al. (1996) use STEP models, represented using the EXPRESS
language, for computer aided concurrent engineering. They have developed a
multi-dimensional object oriented information model (MDOOM), based on STEP.
They decompose the information required for the whole design process into
process, facilities and equipment. The distinction between these is tha t processes
generate products using the facilities, which are a logical abstraction of the
process plant, presenting a functional view of the equipment tha t makes up the
plant. STEP is intended for more detailed representat ion than is typically
required for conceptual design and, as a result, the system is most appropriate
for use late in the design process.

Maguire et al. (1998) propose the use of intelligent agents to represent data as
well as to provide the mechanism for actual integration. They define intelligent
agents as objects with extensions to provide the following properties:

Flexibility:
Planning:

Prediction:

Selectivity:

Robustness:

The ability to learn from the environment.
The ability to synthesize a sequence of actions in
order to achieve a specific goal.
The ability to predict what the actions of other agents
will be.
The ability to choose the appropriate data from a
larger amount of information.
The ability to cope with failure.

Their view is tha t agents can be used for data representation, for managing the
integration of applications, and for manipulat ion of the models. The use of agents
is appealing but their potential has yet to be demonstrated. Maguire et al. limit
themselves to examples which are within the remit of any object oriented system
and so the potential of agents is not fully demonstrated.

Agents can ease the management and representat ion of data by combining the
two aspects. What is not entirely clear at this stage is how the combination
affects the extensibility of a system built up using agents. There is also the issue
of audit trails and, if the agents are truly autonomous, consistency within a team
based project and guarantee of the correctness of the results generated could be
difficult.

6.2.3.2 Data sharing

Although tool integration is an important aspect of computer aided process
engineering, the problem of data sharing is more general. Data sharing can
include tool integration but also includes sharing data amongst the members of a
team and passing information from one team to the next in the design process.
The issues tha t apply to tool integration apply even more so in data sharing.

506

Some fundamental questions need be addressed, including the following:

�9 When are data objects available for use by other members of a team and other
teams?

�9 What happens when somebody changes an element of data?
�9 What is the context of a data i tem and how does this context change as the

design progresses?

These issues have been considered in detail by Westerberg et al. (1997). They
have developed a system, n-dim, for describing the modelling process. Of
part icular relevance is the concept of publ ish ing whereby data are made
available to other members of the team and other teams. Once published, data
cannot be changed, ensuring global consistency and providing support for audit
trails.

Related issues arise from considering the role of design within the enterprise.
Struthers & Curwen (1998) have developed an agent-based system for tool
integration, through the use of agents, known as VIBE. The aim of this
environment is to support enterprise or business processes as well as the process
of design.

6.2.3.3 A p p l i c a t i o n in ter faces

The CAPE-OPEN and Global CAPE-OPEN projects, described in detail elsewhere
in this book, deal with the definition of open interfaces for process engineering
applications. Although they do not deal directly with the integration of these
applications, by defining open s tandards for access to the different components
that make up the applications, integration becomes feasible through the
development of the underlying data representat ion and manipulat ion layers.

McGreavy et al. (1996) use message passing between agents as the integration
mechanism. In their work, agents are self-contained, concurrently executing
software processes. An agent encapsulates state information and can
communicate with other agents via message passing. A knowledge based rule
system is used to co-ordinate the application of tools. The decomposition of
applications used within design by agents is hierarchical. Each agent may have
sub-agents tha t are agents that are restricted to communicate only with other
sub-agents contained within the same agent. Finally, the co-ordination of agents
within the framework is controlled by the use of a Petri Net model.

6.2.3.4 User i n t e r a c t i o n

An interesting aspect of the work of McGreavy et al. (1996) is tha t the user is also
considered to be an agent, t reated as any other application within the framework.
The user interacts with other agents through the graphical interface. This

507

interface allows a user to browse the list of agents available. McGreavy et al.
further argue that it is necessary to consider models for the management of the
design teams and the role of the project manager as well as modelling the design
task itself. This fits naturally with their view of users as agents.

Lu et al. (1996) present a web based manager for process engineering tool
integration. Based on the MDOOM models (McGreavy et al., 1996), Lu et al.
introduce the concept of hyper-objects to represent the inter-linked nature of
objects in an object-oriented database. This is similar in concept to the hypertext
links that underpin the Web. The links between objects bind these objects to the
common tools used to create the objects, although this binding is dynamic. The
activities of the engineers change as the design progresses and, hence, the tools
used also change. A hypermanager is introduced to manage and represent these
dynamic object groupings.

The hypermanager incorporates a user interface for viewing and managing
objects. The tool is written in tk/tcl and provides a graphical representation of the
process design. A Web browser interface is also available. The interface allows
the user to inspect individual components of the design and provides access to
tools such as editors, simulators, etc. The main feature of this system is the
decomposition of the data into the process, facilities and equipment groupings
described above and the ability to switch between the different groupings easily.

6.2.3.5 Des ign and dec i s ion support

As described above, application integration is not only about sharing data
between applications; it is also about managing the design process. This
management must support the requirements of the enterprise. One aspect is to
provide a design support system, an example of which is the KBDS system
described earlier (Bafiares-Alc~ntara & co-workers). The aim of a design support
system is to cater for the requirements of the engineer when tackling a large and
complex design problem, to support team based activities, and to meet the
demands imposed on the enterprise by society. The core of any such system is the
need to manage the complexity of design as a process. KBDS provides support for
recording the process of design, including a full history of decisions taken
(including information on the reasons for decisions and the arguments made both
for and against any positions taken in the decision process), and for managing
the complex interactions between multiple designers working on a given design
problem.

Han et al. (2000) have also developed a f ramework for concurrent process
engineering. ~ Their framework is based on agents and the development of a
knowledge based interchange format (KIF) together with a knowledge query and
manipulation language (KQML). Furthermore, they have integrated a decision
management system. The system is writ ten using the Java Agent Template

508

package, JATLite, available from Stanford University [java.stanford.edu]. The
framework presented is similar, in concept, to KBDS. It has been demonstrated
on a plant layout design problem. The user and three agents are integrated with
the user interfacing through a CAD package. The underlying system ensures that
any changes made by the designer violate no constraints by communicating with
the appropriate agents when constraints are violated.

6.2.4 F U T U R E T R E N D S

The development of a framework for tool integration in computer aided process
engineering or a fully integrated process engineering environment requires the
following elements:

1.A data representat ion suitable for process engineering applications
throughout the life cycle of a design, including commissioning, operation,
and decommissioning.

2.A management layer, which star ts the appropriate applications and
manages the communication of data between applications, possibly
including the t ranslat ion between native and integration data
representations.

3.The specification of an application programmer 's interface, which allows
new applications to be writ ten to fit into the integrat ion environment.

The systems described above address one or more of these issues. The ~p~e
system, for instance, to some degree addresses all of them. However, there have
been and will be developments in the area of computing which will make each of
these elements easier to implement. These are described in this section.

6.2.4.1 T h e W e b

Arguably, the most important development in computer use over the past decade
has been the introduction of the Web. The web provides an architecture neutral
protocol and user interface specification. Through the Web, any computer (or,
more generally, any form of connected device including process equipment,
sensors, phones, etc.) can access and manipulate data on any other system with a
Web server and with suitable access rights. The http protocol is simple and
suitably efficient for the requirements of application integration. The browsers
used to access the Web provide an interface the users are comfortable with.
Accessing applications through such an interface can ease the difficulties
associated with using a large variety of tools. The Process Web Objects project,
described above, is an example of the use of Web technologies for application
integration.

509

Of part icular note, however, are the more recent introductions of two languages
for use with the Web, Java and XML. Java is meant to be a portable high-level
language, similar to C++ but somewhat easier to program. Originally intended
for embedded systems, the language was targeted at Web applications and, in
recent times, has found a part icular niche as a Web server language. Being a full
programming language, it provides the features necessary for the development of
a complete integration environment.

The portable nature of Java programs makes them ideal for use as agents, as
described above. For this reason, there are a variety of packages for agent
development in Java:

1.The Java Agent Template, from Stanford University [java.stanford.edu],
provides the basic functionality for writ ing agents. Communication
between agents can be in KQML format, as used by Han et al. (2000), as
well as arbi t rary data.

2.JATLite [java.stanford.edu], Java Agent Template Lite, is another package
for agent development, also from Stanford University. This is the package
used by Han et al. (2000).

3.JAFMAS [www.ececs.uc.edu/~abaker/JAFMAS] is a framework for agents
in early development. It also supports KQML.

4.The Aglets Workbench [www.trl.ibm.co.jp/aglets] provides support for
migrat ing agents, agents tha t can move from one computer to another.
This can prove to be useful not only with mobile computing but also for
applications with varying computational demands.

XML, the extensible markup language [w3c.org], is a language for describing
data. Through the definition of a document type definition (DTD), XML can be
used to represent any type of data. It is ideal for the data representat ion needs of
process engineering applications. Tools are now available for developing
applications, which process and generate XML documents. In particular, there is
a na tura l synergy between XML and Java. For example, JSX
[www.csse.monash.edu.au/-brergJSX] provides a set of classes for automatically
generat ing XML code for any Java object and for creating an instance of a Java
class based on XML input. This is similar in concept to the Java serialization
procedures except tha t the data is represented in XML making it suitable for
integration with non-Java applications and for dissemination through Web
browsers. Although still in rapid development, the current version of JSX is
usable and useful.

6.2.4.2 The Grid

A recent development in networked computing is the Grid. This is a view of
networked computers as a dynamic resource, which can be used by applications
when required. A good overview of the Grid, and its potential, can be found on the

510

Web site for the Globus project [www.globus.org]. Globus is an open source
project, which aims to develop the underlying framework to support Grid
applications.

One of the aims of the Grid is to deliver guaranteed performance over the
Internet, allowing a software developer to treat remote computational resources
as if they were local. For process engineering applications, the Grid can be useful
in a variety of ways. For instance, it can be used to provide access to applications,
which must reside on specific systems on the network (for example, due to
licensing restrictions). It can also be useful for connecting data monitoring
stations to simulation and control packages.

6.2.4.3 Data m a n a g e m e n t i n f r a s t r u c t u r e

Management and manipulation of both data and applications requires a
repository of information and protocols for transferring data between applications
and computers. The repository of information is needed by the integration
environment and typically underpins the whole system. The framework
developed by Han et al. (2000), for instance, uses an SQL database to store design
information generated by the CAD package. However, that same system stores
the knowledge base within a Lisp program. The experience gained from the ~p~e
system demonstrates that the underlying database technology is crucial to the
scalability of the system. Object oriented database management systems
(OODBMS) have been in existence for a relatively long time now and are stable
and easily available. Through the development of the ODBC (Object Database
Connectivity) and JDBC (Java Database Connectivity) standards, accessing these
databases programmatically is straightforward.

Previously, issues about the transport protocols, such as Microsoft's OLE & COM
protocols versus the CORBA standard, were important. Recently, the actual
transport protocols have become less important, replaced instead by discussions
about the middle layer, which is responsible for the actual development of
interacting applications, often known as components. Two initiatives are
currently being advertised, the Brazi l [http:ffwww.sun.com/research~razil/]
framework from Sun Microsystems and the .net [http://msdn.microsoft.com/net/]
framework from Microsoft. It is still too early to say if either of these will prove to
be useful for process engineering application integration. What is interesting,
however, is that both of these initiatives use the Internet as the underlying
transport medium. They both aim to make it easier to develop applications from
small components and to provide user interaction via distributed computation.

The combination of Java, XML, object oriented database systems, and general
Internet integration initiatives provides the necessary underpinnings for the
development of an integration environment. Technology itself is no longer an
issue.

511

6.2.5 C O N C L U S I O N S

Tool integration for computer aided process engineering is not simply a matter of
data translation. To be effective, tool integration requires the combination of
design support environments (Bafiares-Alc~ntara & King, 1997; Han et al., 2000;
Lu et al., 1996; McGreavy et al., 1996; Struthers & Curwen, 1998; Westerberg et
al., 1997) with methodologies for manipulating and interpreting process
engineering data throughout the design process (Bayer et al., 2000;
Braunschweig et al., 2000; Maguire et al., 1998). The aim of tool integration is to
provide the engineer a seamless environment through which the large variety of
tools required for process engineering can be access. Such an environment,
whether the result of a loosely coupled tools through a system like ~p~e or as a
tightly integrated system such as ICAS, is essential for tackling the increasingly
complex problems in process engineering.

New technologies, particularly Web or Internet oriented, will provide the
standards required to ensure a stable target for developers of tool integration
environments. XML, in particular, has the potential to provide an architecture
neutral language for representing process engineering data. The development of
formal requirements for these data will be necessary first. The development of
easy to use Java based agent packages will also make development of design
environments easier and more portable. Finally, standards developed by the
process engineering community, such as those expected from the Global CAPE-
OPEN project, will be crucial for the long-term development of integrated process
engineering tools.

6.2.6 R E F E R E N C E S

1.Andrews, R. & Ponton, J. W. (1998), A Process Engineering Information
Management System Using World-Wide Web Technology, AIChE Syrup Ser No
320, 94, 501-506.

2.Ballinger, G. H., Bafiares Alc~ntara, R., Costello, D. J., Fraga, E. S., King, J.,
Krabbe, J., Laing, D. M., McKinnel, R. C., Ponton, J. W., Skilling, N., &
Spenceley, M. W. (1994), Developing an environment for creative process
design, Chemical Engineering Research and Design, 72(A3), 316-324.

3.Ballinger, G. H., Fraga, E. S. & Bafiares-Alc~ntara, R. (1995), Case study in
process engineering tool integration, Computers & Chemical Engineering
19(Suppl.), S759-S764.

4.Bafiares-Alc~ntara, R. (1995). Design Support Systems for Process Engineering.
I. Requirements and Proposed Solutions for a Design Process Representation,
Computers & Chemical Engineering, 19(3) 267-277.

5.Bafiares-Alc~ntara, R. (1991). Representing the Engineering Design Process:

512

Two Hypotheses, Computer-Aided Design (CAD) Journal, 23(9) 595-603.
6.Bafiares-Alc~ntara, R. & King, J. M. P. (1997), Design Support Systems for

Process Engineering. III. Design Rationale as a Requirement for Effective
Support, Computers & Chemical Engineering, 21(3), 263-276.

7.Bafiares-Alc~ntara, R. & Lababidi, H. M. S. (1995). Design Support Systems for
Process Engineering. II. KBDS: an Experimental Prototype, Computers &
Chemical Engineering, 19(3) 279-301.

8.Bayer, B., Schneider, R., & Marquardt, W. (2000). Integration of data models
for process design - First steps and experiences, Computers & Chemical
Engineering, 24(2-7) 599-605.

9.Braunschweig, B. L., Pantelides, C. C., Britt, H. I. & Sama, S. (2000). Process
modeling: The promise of open software architectures, Chemical Engineering
Progress, 96(9) 65-76.

10.Cameron, I. & Ponton, J. W., Web based systems, <this book- Ch. 6.3>.
l l.Costello, D. J., Fraga, E. S., Skilling, N., Ballinger, G. H., Bafiares Alc~ntara,

R., Krabbe, J., Laing, D. M., McKinnel, R. C., Ponton, J. W., & Spenceley, M.
W. (1996), ~pde: A support environment for process engineering software,
Computers & Chemical Engineering 20(12), 1399-1412.

12.Fraga, E. S. & McKinnon, K. I. M. (1994). CHIPS: A process synthesis package,
Chemical Engineering Research and Design, 72(A3) 389-394.

13.Gani, R., Hytoft, G., Jaksland, C. & Jensen, A. K. (1997). An integrated
computes aided system for integrated design of chemical processes, Computers
& Chemical Engineering, 21(10) 1135-1146.

14.Han, S. Y., Kim, Y. S., Lee, T. Y. & Yoon, T. (2000). A framework of concurrent
process engineering with agent-based collaborative design strategies and its
application on plant layout problem, Computers & Chemical Engineering,
24(2-7) 1673-1679.

15.King, J. M. P. & Bafiares-Alc~ntara, R. (1996). Extending the Scope and Use of
Design Rationale Records, Artificial Intelligence in Engineering Design
Analysis and Manufacturing (AIEDAM) Journal, 11(2) 155-167.

16.Lu, M. L., Batres, R., & Naka, Y. (1996). A hypermanager for a computer
integrated concurrent process engineering environment, Computers & Chemical
Engineering, 20(12) $1155-S1159.

17.Maguire, P. Z., Struthers, A., Scott, D. M. & Paterson, W. R. (1998). The use of
agents both to represent and to implement process engineering models,
Computers & Chemical Engineering, 22(10) S571-S578.

18.Marquardt, W. (1999). From process simulation to lifecycle modeling, Chemie
Ingenieur Technik, 71(10) 1119-1137.

19.McGreavy, C., Wang, X. Z., Lu, M. L., Zhang, M. & Yang, S. H. (1996). Objects,
agents and work flow modelling for concurrent engineering process design,
Computers & Chemical Engineering, 20(12) S 1167-S 1172.

20.Struthers, A., Curwen, R. (1998). A new approach to integrated process systems
engineering - the VIBE Agent environment, Computers & Chemical
Engineering, 22(10) $745-$748.

21.Westerberg, A. W., Subrahmanian, E., Reich, Y., Konda, S. & the n-dim team

513

(1997). Designing the process design process. Computers & Chemical
Engineering, 21(Suppl.) $1-$9.

22.Williams, G. W. (2000), Multiobjective Process Synthesis and a Post-Synthesis
Environment for Process Design, PhD Thesis, University of Edinburgh.

This Page Intentionally Left Blank

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
�9 2002 Elsevier Science B.V. All rights reserved. 515

C h a p t e r 6.3: W e b - B a s e d S y s t e m s

I. T. Cameron & J. W. Ponton

6.4.1 I N T R O D U C T I O N

The world wide web (WWW) is a ubiquitous phenomenon, influencing the lives of
all of us. We either use it for our email, purchase goods via web suppliers or do
our banking on-line. It's almost e-everythingl

Here in this chapter we look at the effect the web is having on engineering and
CAPE, as well as look at past and current paradigms for web use and do some
crystal ball gazing for the future. One thing is certain, opportunities for using the
web are moving so quickly that comments on these issues are almost out-of-date
before the latest webpage is mounted!

The chapter considers the basic infrastructure changes that have and are now
taking place on the web including the future delivery of broadband capabilities
which will permit activity not generally possible at present.

As well, we discuss and outline current trends in electronic, business and
collaborative activities or E-, B- and C- activities. What is happening in these
areas? Where is it going? What are the implications for CAPE? We also look at
developments and opportunities i n the area of CAPE education via web
technologies.

One thing we can predict is that the world wide web will change the way we do
business at the educational level and at the business level. If you are not
seriously involved or actively planning your web-based business or education
systems then opportunities may well pass you by.

6.4.2 THE PHENOMENA OF WWW

1994 doesn't seem that long ago in terms of time. It was the year that the World
Wide Web came into existence through the work of Tim Berners-Lee and it has
grown exponentially since that time. Not that this was the start of serious
information sharing and computer networking. That dates back to the US

516

government ARPAnet initiative in the 1960's with the subsequent development of
the TCP/IP network protocol which is dominant today.

Growth of activity on the WWW has been exponential as measured by host
numbers which have grown rapidly from several hosts in 1981 to over 93 million
in 2000 [16], as seen in Figure 1. Growth has almost doubled each year since the
early days of the internet. This growth in computers connected to the internet is
also matched by people connected or having regular access to the internet [17].
Figure 2a shows the percent linguistic distribution on-line for 2000 and the
projected percentages in 2005. The internet population will grow from 400
million to 1.15 billion over tha t t ime with non-english speakers dominating the
linguistic population.

Figure 2a Linguistic Distribution On-
Line for 2000

Figure 2b Projected Percentages in 2005

517

This represents a significant change in the internet population as well as a
challenge for those providing services to such a wide and diverse group of users.

6.4.3 C U R R E N T ENABLING T E C H N O L O G I E S

The effective use of the web and its continuing growth relies heavily on a number
of enabling infrastructure technologies and related developments. These are both
hardware and software systems. Of clear importance to increased web-based
engineering systems is the ability to handle large amounts of digital traffic. This
increased bandwidth is being provided by current developments and rollout of
digital subscriber line (DSL) and related technologies.

6.4.3.1 DSL T e c h n o l o g y

There are several flavours of DSL technology including:

�9 Asymmetric DSL (ADSL)
�9 Symmetric DSL (SDSL)
�9 Very high speed DSL (VDSL)

ADSL technology provides much higher download rates than upload, typically
0.7Mbits/s versus 0.25Mbits/s, whilst SDSL provides equivalent rates in both
directions at rates up to 2.3Mbits/s. These broadband technologies are now being
deployed in the consumer market. SDSL is clearly aimed at the business market
as will VDSL (60Mbits/s) in the future. The advantages of these technologies will
be to provide capabilities for more extensive use of content-rich applications over
the internet. It will directly impact on the ability to deliver CAPE technologies
via the internet. Testing and roll-out of these technologies is now underway in
Europe, the USA and the Asia-Pacific region.

The days of a 33.6 or 56kbits/s modem are fast vanishing.

6.4.3.2 XML

The development and use of eXtensible Markup language (XML) is having a
significant impact on web-based systems, especially upon electronic document or
data interchange (EDI). This coupled to powerful SQL servers such as MySQL or
MS SQL provide much of the needed infrastructure for developing powerful web
applications.

XML has significant advantages over s tandard HTML since it provides
application control over the content of the document. Users of XML can define
the protocols at each end of a t ransact ion with data t ransfer handled via XML. It

518

thus provides a s tandard tha t links web and database systems into a unified
framework.

In the CAPE area, XML has been used to set a s tandard such as pdXML [8] for
exchange of process engineering data. Similarly, aecXML provides a standard to
communicate information related to the architectural, engineering and
construction industries. The advantage of XML should be an increased
willingness for companies and educational organizations to develop improved
electronic interoperability. It should help drive down inter-company costs and
help open markets.

6.4.3.3 Java Applets

With the increasing power of personal computers and workstations, it has become
feasible to run very extensive computations locally even if their implementation
is not particularly efficient. Java was designed to be platform independent, and,
despite the efforts of some major software companies, it effectively remains so.
The potential efficiency disadvantage of it being at least part ly interpreted rather
than fully compiled is, for most purposes, balanced by the increased speed of low
cost computers.

Java provides elegant and relatively easy to use graphics capabilities, as well as
being highly interactive. Its main disadvantage is likely to be the need to
completely rewrite, and probably redesign, any existing code in Java and as an
Applet.

However, much legacy code is probably due for rewriting in the interests of
t ransparency and security, and at least as regards educational software, the size
of the task may tend to be overestimated. Java is a bet ter language for
development of complex programs than the early For t ran in which most existing
simulation programs were wri t ten and the rewriting of well-defined numerical
procedures in it can be quite rapid.

6.4.3.4 JavaScr ipt

Both Java and JavaScript both run on the user's (client) computer, but while
Java is part ly compiled, JavaScript is always interpreted and is thus seen by
many users as "inefficient'. In fact JavaScript is a powerful and flexible language.
Its syntax is similar to Java, but its philosophy is quite different.

JavaScript provides many useful techniques for making the web browser
interactive, its most common (mis)use being to pop up subsidiary advertising
windows on commercial web sites. However, it is also a useful general purpose
language for any web application which is not too computationally intensive.
JavaScript can be used to apply any Java public method. This means that the

519

interface to a Java applet may be wri t ten in JavaScript; because the lat ter is
fully interpreted, it can be a faster way of developing such interfaces.

6,4.3.5 S e r v e r p r o g r a m s

In principle a web browser can run any program that is on a server or is
accessible to a server using the WWW Common Gateway Interface (CGI). This
provides a means of making existing programs available over the WWW with
minimum reprogramming. Older "batch mode' programs are part icularly easy to
adapt to this method of operation and may require no modification to the existing
code at all.

The user is presented with a form in which he supplies the input data to the
program. Submitt ing the form causes a program to be run in the CGI area of the
server. This could in principle be the main program, but it will usually be more
convenient to run a short program or script, which converts the user's form input
into whatever the main program requires, and then causes it to be run. The main
program can run either on the server itself or on another machine on a network
accessible to the server (but not necessarily to the WWW). Similarly, the script
can reformat the main program output into HTML for display on a web page, and
send it back to the user. Alternatively, the output can be emailed to the user.

6.4.4 B 2 - W H A T ?

The use of the WWW is now in its third generation. First was the simple, static
provision of information from web sites. Second were the business-to-customer
(B2C) systems as exemplified by a m a z o n . c o r n and other on-line customer oriented
systems. That generation has matured and has passed. Now is the emerging
generation of business-to-business (B2B) and its var iants such as business-to-
multiple businesses (B2MB) and B2everyB.

Worldwide B2B e-commerce is anticipated to be worth some $US7.3 trillion
dollars by 2004 [15]. Most of this activity is driven by manufactur ing and
commercial industries. Supply chain issues will inevitably drive further
expansion of the B2B or B2MB systems. A major example is the newly formed
chemicals E-Marketplace ELEMICA sponsored by some of the world's largest
chemical manufacturers [19].

CAPE tools are certainly in-line for exploitation within the B2B business model
currently evolving. However the evidence shows tha t few systems are being made
available online at this time. In the next section we consider the key areas of E-
engineering specifically related to CAPE technologies and highlight what is being
provided.

520

6.4.5 e - E N G I N E E R I N G

6.4.5.1 E n g i n e e r i n g Por ta l s

A portal is simply a "one-stop shop" website tha t provides a comprehensive set of
services and information to a par t icular audience. The portal is a gateway into
specific content. Yahoo! provides the best known of these web systems, however
it is now an impor tan t development for process engineering business applications
as seen in myplant.com which is shown in Figure 3. Other portals such as
processcity.com (see Figure 4) are beginning to emerge wi th the purpose of
providing news, services, on-line computat ion and discussion for the process
industries. These sites will continue to grow, providing a useful gateway into
process specific information.

Figure 3. Portal: myplant.com Figure 4. Portal: processcity.com

We are now seeing many application service providers (ASPs) emerging in the
engineering area. For example Engineering-e.com provides a marketplace for a
range of engineering services, one of the most impor tan t being the Simulation
Center tha t provides access to on-line computat ional fluid dynamics (CFD) and
s t ruc tura l finite e lement applications. Several other players such as e-CFD and
Moldflow's plasticzone.com provide in ternet CFD facilities based on fixed period,
unl imited time renta ls or on CPU hour computat ion times. Others are available.
Making these work well needs appropriate software architectures.

6.4.5.2 C l i e n t s - Fat and Thin

Most new web-based engineering applications adopt archi tectures that range
from thin clients to fat ones. A client is simply an application located on a local
PC tha t uses a separa te server for a variety of functions. Thin clients rely on a
server to carry out the bulk of the data processing, whilst fat clients have the
local PC doing the majority of the processing. There are advantages to each
archi tecture depending on the application area.

521

The following sections outline some application areas tha t use various forms of
clients for interactivity.

CFD appl icat ions

Most CFD and computational ASPs use thin-client architectures to provide input
and display capabilities on the client machine, whilst server side activity
concerns the computation of the specific CFD problem. The server side in these
circumstances is usually accessing super-computer facilities to perform
computations.

Propert ies predic t ion

In the CAPE area, a growing number of interactive internet applications are
becoming available such as on-line calculations of physical properties, as
il lustrated by Aspen WebProperties Express under processcity.com. In this case a
thin client provides data input and results display.

Hazard and risk a s se s sment

In the area of risk assessment for land-use planning, web-based risk
management tools are available for local government authorities to make impact
assessments of hazardous scenarios via shortcut or detailed model estimates.
Decision support facilities are also available. Such a system is seen in Figure 5
[9]. These are purely web-based server side applications with dynamic generation
of web pages to the client.

Figure 5. Web-based risk assessment

522

Other applications include web-based expert systems for workplace hazards
identification and assessment such as the e-Compliance Assistance Tools from
OSHA [10].

Optimisat ion

On-line optimisation services are available through the use of a Java thin client
that helps prepare problem specifications for submission to the NEOS server.
This system provides a wide-ranging suite of optimisation tools for integer, linear
and nonlinear programming problems [20]. Its use tends to be dominated by
government and academic users, with a smaller number of commercial users.

Most CAPE tool vendors have not moved from monolithic code, distributed via
CD or web downloads, towards architectures that provide web-based engineering
capabilities. Thin client architectures provide a means to generate these web-
based solutions, with little major rewriting of the server side CAPE software.
This is a likely scenario given past investment in major coding (legacy code), the
cost of re-implementation and the hesitancy of some major companies to fully
embrace web-based systems. We are yet to see a wider range of significant web-
based tools such as process design, modelling and simulation applications
becoming available.

6.4.6 e-Collaboration

One of the rapidly growing areas of web-based applications is in the area of
collaborative systems [11,12]. Here formal design methods and tools are used by
geographically separated design teams to work on product development. In many
cases web browsers act as the interface.

Components of these systems include design documents, containers such as filing
cabinets and briefcases, collaboration tools such as whiteboards, address books as
well as relay chat repeaters for real-time designer interaction. Other tools
relevant to the particular design such as safety analysis methods can be available
to all team members. Cheng et al. [13] argue that e-collaboration can greatly
assist in the area of agile manufacturing through improved response to customer
needs and high quality, short time delivery of solutions to the market. The
design area is a fruitful field for further development. Systems such as OneSpace
[14] are being used by companies such as Fisher Controls for collaborative design
with significant impacts.

One of the current limitations for effective collaboration is internet bandwidth,
especially where 3D designs are being developed. New software developments are
addressing the data transfer issue to make real-time collaboration on such
projects a reality.

523

6.4.7 E n g i n e e r i n g E d u c a t i o n in CAPE

The WWW offers opportunit ies to make education in a technical subject both
more effective and more widely available. As a minimum, WWW technology
enables a course lecturer (say) to make all his mater ia l immedia te ly available at
any time and place to his class, or indeed to anyone whom he wishes to allow
access. At the other end of the scale of complexity, s tudents can be given complex
'vir tual worlds' with interactive mul t imedia presentat ions.

Major companies such as DOW [18] are embracing web technology to deliver on-
the-job t ra in ing to their workforce with significant cost savings and improved
learning outcomes.

6.4.7.1 O v e r v i e w of P o s s i b i l i t i e s

S i m p l e T h i n g s

As soon as we first encountered the WWW and the early Mosaic browser,
sometime in the early 90's, we saw it as a way of making lecture slides, already
at tha t t ime prepared on a computer, available in full to the class immediate ly
after a lecture. This remains a simple and sensible use of web technology.
Interestingly, however, this model has now come full circle; our tendency now is
to prepare web mater ia l in the first instance, in some cases present ing the lecture
mater ia l from a web browser through a computer and da ta projector. Hard copy
mater ia l is now usually the last thing to be produced.

A c c e s s to d a t a

All of the general facilities of the WWW are of course available for teaching.
Amongst the most useful are the range of da ta sources and search facilities.
Process engineers regularly require information about chemicals, their physical
and chemical properties, hazards, etc. Much of this information is now available
online

For educat ional purposes one of the most useful "chemical' sites is NIST [2], the
US National Ins t i tu te of S tandards and Technology. This provides a database of
physical and chemical properties such boiling points, enthalpies of formation, etc.
which, given the availabili ty of a Web connected computer, can be accessed by
s tudents faster t han finding and looking up practically any reference text.

6.4.7.2 On l ine C o m p u t a t i o n and S i m u l a t i o n

The WWW can provide access to computat ional tools by a var ie ty of methods.
These are described briefly in the following sections along with examples of their
use.

524

Server programs

Server side programs using existing large-scale CAPE tools can provide the basis
for effective web-based applications. This approach has been used successfully to
run the AspenPlus simulation engine remotely for students. No changes could, or
needed to be made to the code, which for licensing reasons only ran on a
computer which was not itself a web server, but which could be accessed by the
server over the local network.

Java Applets

Use of Java applets can be extremely effective in delivering web-based solutions.
For example, a dynamic distillation simulation that we use, took the equivalent
of less than a month of full-time work by a masters level project student. Part of
the interface is seen in Figure 6

More time is usually required to write the interactive "front end' of applet based
simulations, but these would in any case require development. Our experience
suggests that using JavaScript (see below) rather than Java may often speed
development.

Figure 6. Dynamic Distillation Simulation

525

JavaScript

The simulat ions in the Control HyperCourse [3], discussed in section 6.4.8.1 are
all implemented in this way. JavaScr ip t provides a good way of implement ing
fairly short interact ive programs. For the Process calculations course described
below several interactive applications were implemented including a ' t r iangular
d iagram reader' , an approximate vapour pressure calculator and a l inear
equat ion solver.

Server generated code

Our original use of programs on servers was to run s imulat ions and generate
their results in the form of web pages or downloadable information. Two less
obvious applications follow from this.

Active JavaScript pages

Since JavaScr ip t code is just a par t of the web page text, it can be genera ted and
sent by a server program, for example to provide resul ts which can be
manipu la ted interact ively by the user.

One of the early teaching tools for the Process Calculations course, was a
'molecular typewri ter ' which implemented a simple group contribution method to
es t imate boiling points of organic species. This was extended to the es t imat ion of
other properties, for which For t ran programs already existed and rewri t ing was
not desirable. The JavaScr ip t code was augmented to send the s t ructure of the
molecule to the server, where the larger program was run to est imate, inter alia,
s t andard free energies of formation and coefficients for a hea t capacity
polynomial. Originally these were simply r e tu rned to the user as a format ted web
page. It was then realised tha t the server could easily write a page containing not
only the es t imated values, but JavaScr ip t code to calculate hea t capacities and
free energies at a t empera tu re specified interact ively by the user. The final form
of the expanded Molecular Typewri ter is shown in Figure 7.

526

Figure 7. Molecular Typewriter

D o w n l o a d a b l e code

In the HyperCourse [3] over the WWW, students needed to write and run simple
dynamic simulations. This could have been implemented by providing a
commercial dynamic simulator on a server, but we had access to no particularly
suitable system, and also wished to avoid licensing complications. We also wished
to provide something that could provide more immediate interactivity at run time
than was available by the essentially batch mode of this approach.

The solution was to develop a simple simulation language based loosely on the
syntax of gPROMS [1], and write a compiler to produce code for a target language
which could be run on the user's own PC. The choice of target caused some
problems; initial experiments were carried out with MathWorks popular Matlab
system, but the cost of providing this on individual PCs was found to be
excessive.

In the end, the solution was to generate spreadsheet code compatible with the
major packages. This has proved very successful, as essentially all students
already had a spreadsheet on their computers and were familiar with its use. It
also meant that they could exploit all the useful features of the spreadsheet, such
as graphing and customised report generation, without the need to provide them
in the simulation system.

Three tools now work this way, the simple dynamic simulator, a linear equation
solver (this being a feature not normally implemented in spreadsheets) and now
a moderately sophisticated flowsheeting system. The last of these also takes the
converged output of an AspenPlus model effectively turned into a linearised

527

process model, and allows the user to carry out l imited sensitivity analysis
without having to access the whole AspenPlus package.

6.4.7.3 M u l t i m e d i a S y s t e m s

Chemical engineering does not rank amongst the most graphics-orientated of
disciplines. While mechanical engineers create 3 dimensional virtual motor cars,
chemical engineers perform most of their work with boringly two dimensional
flowsheets. Chemical engineering movies seldom go beyond the bubbling fluidised
bed.

Architects and civil engineers provide virtual tours of buildings, but the
corresponding facility for chemical engineers, the vir tual plantwalk, while of
undoubted use at the appropriate stage of plant design or for operator
familiarisation, is of l imited value in undergraduate education. The possibilities
for web based interactive mult imedia are potentially so rich tha t they must be
worth exploring. However, chemical engineers have not taken very natural ly to
the exploitation of their possibilities.

A number of textbooks [4,5] are now issued with CDs featuring both audio-visual
clips of plant (Felder and Rousseau, see also Virtual Plant section 6.4.7.6) and
voice augmented interactive tutorials (Seider et al) both of which could be
implemented over the web given the sort of bandwidth which is now becoming
available.

Seider et al. give an excellent introduction to the mechanics of using flowsheeting
packages, which is essentially hypertext plus voice. If used carefully, this
approach could significantly enhance the use of hypertext alone, and add very
much less bandwidth than video.

6.4.7.4 V ir tua l L a b o r a t o r i e s

We have developed some ra ther limited applications in the area of "virtual
laboratories'. The intention of this is to provide something of the flavour of the
department 's laboratories for online external users. To do this one can construct
simulation models of items of and set up web pages photographs, videos or sound
files to augment the simulation.

6.4.7.5 Real L a b o r a t o r i e s Onl ine

One chemical engineering depar tment has put actual laboratory experiments
online via the WWW [6]. The hardware required to do this is no more than would
be required to at tach a control computer in the usual way, provided the computer
has WWW access. Although individual PCs on the web are usually "clients',

528

making contact with hosts, which are "servers', the network does not make this
distinction, and any connected machine can in fact be a server.

The software effort required to implement such a system is substantial . And
there are clearly issues of safety and security in giving the world access to one's
laboratory hardware! Although this is a very impressive example of what can be
done with the web, our own instinct is to endeavour to make simulations more
realistic, and more immediate, for example by adding sound and video clips.

6.4.7.6 V i r t u a l P l a n t

The obvious next step from a vir tual laboratory is a complete vir tual plant. Early
a t tempts have been made to reproduce a process operator t ra in ing rig at a local
chemical company which used to be the subject of an annua l visit by students.
This was a very simple 'process', which pumped water around, heated and cooled
it and provided the company's apprentice operators wi th experience of basic
ins t ruments and plant operations. However, it was closed down as an economy
measure.

A basic s imulat ion of this was augmented with flowsheet, P and I diagrams, 3D
layout in VRML, and a series of pictures. It was never used because the
s imulat ion of such a simple process was felt to be too uninterest ing. Much of the
point of s imulat ion is to do what cannot easily be done in reality, and so a 'virtual
plant ' should really have complex chemistry and interes t ing separations.
Fur the rmore the audio-visual effects now available are superior to those
implemented at the time.

The vir tual p lant idea will be revisited making the process a more interesting if
not a completely real one. We have recently developed a simplified but realistic
dynamic s imulat ion of both binary and mult icomponent distillation tha t runs
surprisingly fast as a Java applet on the current PC hardware . This will form
par t of the vir tual plant tha t will also incorporate audio and video features. The
nonideal models are sufficiently rigorous to i l lustrate for example distillation
boundary crossings in a 3-component mixture, i l lustrat ing a column, which starts
up containing feed from one side of the distillation boundary, and ends up with a
product on the other side.

6.4.8 CASE S T U D I E S IN WEB-BASED E D U C A T I O N

The following sections briefly describe experience with courses from United
Kingdom second year undergradua te level to Masters level. Only one of these is
in tended as a fully web based course. In most the web mate r ia l is an adjunct to a
greater or lesser amount of conventional teaching.

529

6.4.8.1 The Control HyperCourse and Distance Learning MSc

The Control HyperCourse [3] was developed originally as supplementary
mater ia l to a chemical engineering undergradua te course where teaching of
process control was spread over all of years 2 through to 4 and 5. This was the
first major a t t empt at creating web based teaching material , and our approach
developed considerably as we put the course together.

The mater ia l in tended for undergradua tes in year 2 was the first module to be
developed. This consisted largely of simply tu rn ing lecturers ' notes into HTML.
However, we conceived the idea of a Virtual Control Laboratory, which included a
s imulat ion of a "hardware' laboratory experiment. The purpose of this module
was to introduce basic quali tat ive ideas about control and ins t rumenta t ion . The
second module, in tended for year 3 undergraduates , is in two parts . One par t
deals with essential ly quali tat ive issues in p lacement of control loops, such as the
existence or not of a cause-and-effect between a proposed m e a s u r e m e n t and an
adjustment . Originally a formal degrees of freedom analysis was presented; more
recently we have realised tha t this can be replaced by the observation tha t the
max imum number of possible control loops is equal to the max imum possible
number of control valves which in t u rn equals the number of lines or s t reams on
the flowsheet!

The second par t of this module is about controller tun ing and simple input-output
models. This uses a number of tun ing exercises in the Vir tual laboratory. The
lecture mater ia l accompanying this course is also p repared in HTML, which the
lecturer displays by running a browser in a laptop, connected to a da ta projector.
This includes a "whiteboard' tha t allows the user to drag and drop controllers into
different configurations on a flowsheet (Figure 8).

530

Figure 8. Control Loop Drag and Drop

Students taking this course are given a copy of the lecturer 's mater ia l and the
re levant section of the online course, including the Vir tual Lab applets, as a self-
extract ing zip file so tha t they can use it on their own computer without a web
connection. The increasing number of s tudents who have their own computers
has very positively received this.

The mater ia l for year 4 s tudents is about the placement of control loops on
complete processes, using a hierarchical approach [8]. This is i l lustrated by a
series of examples, two of which are worked through in the web pages, and one of
which has interactive quest ion-and-answer mater ia l (wri t ten in JavaScript)
which provides critical comment on the student 's responses.

The final module tha t is still being extended contains optional mater ia l taken by
year 4, 5 or graduate programme students. This includes mater ia l on frequency
response methods i l lustrated by simulations and Virtual Lab exercises. We have
found this to be a more effective way of introducing the concept than the
t radi t ional analyt ical approach. There is also mater ia l on multiloop controllers
with corresponding simulations. A final exercise involves tuning the controllers
on a s imula ted binary distillation column, which provides an interest ing contrast,

531

and supplement to earl ier tuning exercises using very simple or idealised model
processes.

Essential ly the same mater ia l is used in a distance learning MSc module aimed
at graduates in industry. When t aken in this mode year 2 mater ia l is designated
as revision, and all other mater ia l as new. Students work in their own time
through a series of exercises, submit t ing their solutions by email, in some cases
the submission being automatical ly genera ted by the Vir tual lab server. Since
many of the s tudents are working at home through dial up lines and slow
modems we have redesigned the mater ia l to minimize the need for a server, and
now provide the s tudents with a self contained version of the course on disc or
CD.

Three cohorts of graduate s tudents have now taken this module and a l though we
have modified some par ts of it in the light of experience it has in general been
very well received.

6.4.8.2 P r o c e s s C a l c u l a t i o n s

By contrast to the control course, which was a p lanned major exercise, covering a
complete topic, a range of small tools and aids has gradual ly evolved to support
one of our year 2 courses called Process Calculations. This is essential ly a
mater ia l balances course, but seeks to draw together other topics already t aken
by the students, in par t icular phase equil ibrium separa t ion processes.

The course is a conventional lecture course, and so all the mate r ia l developed was
intended to supplement ra the r t han replace the usual lectures and problem
classes. The exception to this is the online AspenPlus mater ia l . We now no longer
give lectures to s tudents on the use of flowsheeting packages. The same mater ia l
can be used by faculty members who have never learned to use such systems but
wish to keep up with their design project s tudents .

As well as having all lecture notes and slides, problem sheets and, eventually,
solutions, available on line, the course home page provides:

�9 Links to a range of da ta sources such as NIST.
�9 Self-instruction mater ia l for AspenPlus. (After seeing the more

sophist icated mater ia l of Seider et al we would consider adding spoken
commentary to this.)

�9 Links to property est imat ion methods and thermodynamic calculations
(see Figure 8 above).

�9 Simple calculators for vapour pressure, humidi ty etc.
�9 General-purpose calculators for solving l inear and nonl inear equations.

532

Students are encouraged to use these to supplement and check conventional data
sources and hand calculations. These have been added to over the three years
that this course has been taught. Students have taken well to using the web both
for calculations and as a data source. They quite regularly come up with
information sources of which the course tutors were unaware.

Developing simple 'value added' material for use in supplementing a conventional
lecture course is relatively painless compared with the effort required to produce
a complete course or module.

6.4.8.3 The Des ign Project

Our fourth year process design project is a group activity carried out by about ten
students over the equivalent of a semester. Group working, self-organisation and
the production of interim reports and working documents is seen as an important
part of this project. The WWW provides a powerful vehicle for collaborative
working by groups and is already being used in industry to manage design teams,
sometimes working round the clock worldwide.

Over the last two years we have encouraged our students to use the web to help
manage their own projects. It was intended that the initiative for developing this
should come from the students, and all that was done was to set up a skeleton
web page with the design brief and a list of the group and their email addresses,
but with links to subpages for:

�9 Collections of chemical properties, hazard data, etc.

�9 Minutes of weekly project meetings.
�9 Interim and final reports.

Both the enthusiasm and aptitude of students for developing data pages and
putt ing their ongoing and finished work on line has been variable. However, this
mode of working has undoubtedly appealed to all of them and electronic
communication and data presentation has become the norm for most design
teams. Feedback suggests that this has helped the organisation of the project
both for students and staff. For example part time industrial design tutors
working with the groups can view current progress from outside the university.
They can also be contacted by email with student queries at times other than
those designated for their visits to the department, which has proved a mixed
blessing from their standpoint!

6.4.9 FUTURE DIRECTIONS

The World Wide Web has become extremely pervasive throughout the academic
world and is rapidly achieving a similar penetration in industry and commerce.

533

It has increasingly become a first, if not the first, data source consulted by
students. Its utility as such is limited by the unselectivity of current search
engines, and we would anticipate the development of both specialised and
tailorable search facilities. In principle, any program on a web-connected
computer can access the web and download information from it. One of the future
developments we expect is the use of more selective and automatic web searches.
For example, if the required properties of a substance are not available to a
program, it can connect to the web, search for the information, find and verify it,
and then continue the calculation using it.

The WWW will become the pr imary delivery vehicle for software. Already the
downloading of software and updates from the web is probably the most common
route for obtaining software which does not come installed on a PC. However, the
more sophisticated mechanisms described above for running programs over the
web or "just in time' loading of the specific applets or scripts required for an
application will become more prevalent. The motivation for this is likely to be
commercial; this is an easy way for vendors to charge customers on a "per use'
basis.

The further development of engineering portals will see a greater range of
interactive CAPE tools being made available to the process engineering
community. Both steady state and dynamic simulation tools together with
modelling and control design systems will begin to emerge as web-based systems.
Bandwidth increases will enhance both academic and commercial organizations
to work interactively and collaboratively with one another other. The problems
supporting large monolithic simulation codes on multiple internal company
machines or servers will help move the community in the direction of web-based
delivery of solutions.

In education the advantages of this approach wil l be flexibility in providing
exactly what students require, and no more. It will encourage students to use
computer methods for short calculations when the required software is compact
and loads quickly from a local server, ra ther than having to load a complete large
flowsheeting package, most of which is not required. It will also be possible to
monitor student use and progress as an aid to targeting support and providing
feedback.

Web-based systems will provide incentive for further development of extended
site learning experiences for students who spend a substantial part of their
education working for a company. The ability to access and learn online will
enhance the overall learning experience.

Increasing bandwidth will encourage the use of more graphic material and
audiovisual presentations. The most effective use of this still has to be

534

determined. Some uses of bandwidth, such as a video of a lecturer talking in front
of a blackboard, are less useful than others.

6.4.10 R E F E R E N C E S

1. Internet Software Consortium, Internet Domain Survey, http://www.isc.org!
2. Global Reach, Languages on the I-net, http://www.glreach.com/
3. pdXML, http://www.pdxml.com, 2001
4. Foreshew, J., E-commerce takes digital silk road, The Australian IT, The

Australian, NewsCorp, Dec 5, 2000.
5. ELEMICA, Online chemicals E-marketplace, Press release,

h ttp://www, b as f. co m/
6. Cameron, I.T., An interactive web-based decision support system for

hazardous industry land-use planning, Computers and Chemical Engineering
24, 1057-1062, 2000.

7. Occupational Safety and Health Administration, e-Compliance Assistance
Tools, http://www.osha-slc.gov/

8. Argonne National Laboratory, NEOS Server for Optimization, http://www-
neos.mcs.anl.gov/

9. Brandenburgh, J. et al., A framework for low-overhead web-based
collaborative systems, CSCW 98 Seattle, ACM 1-58113-009-0/98/11, 1998

10.Huang, G.Q. and K.L. Mak, Web-based collaborative conceptual design, J.
Eng. Design, 10 (2), 183-194, 1999

11. Cheng, K. et al., The internet as a tool with application to agile
manufacturing: a web-based engineering approach and its implementation
issues, Int. J. Prod. Res., 38(12), 2743-2759, 2000

12. CoCreate, Collaboration software solutions, http://www.c0create.com
13.Dow Chemical Company, Learn@Dow.online.
14. The National Institute of Standards and Technology,

http ://w ebb ook. nist. gov/che mistral
15.The ECOSSE Control HyperCourse http://ecosse.org/controll
16.Barton, P.I., "The Modelling and Simulation of Combined Discrete/Continuous

Processes", PhD Thesis ICST, London 1992.
17.Felder, R.M. and Rousseau, R.W. "Elementary Principles of Chemical

Processes", John Wiley, 2000.
18. Seider, W.D., Seader, J.D. and Lewin, D.R. "Process Design Principles", John

Wiley, 1999.
19. The University of Tennessee at Chattanooga, Control Systems Lab,

http://chem.engr.utc.edu/webres/Stations/controlslab.html
20.Ponton, J.W. and Laing, D.M., "A Hierarchical Approach to the Design of

Process Control Systems", ChERD, 7, 181-188, 1993.

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
�9 2002 Elsevier Science B.V. All rights reserved. 535

Chapter 6.4: Fault Diagnosis Methodologies for Process Operation

D. Leung & J. A. Romagnoli

6.4.1 INTRODUCTION

Today's petrochemical and mineral processes are far more sophisticated than those as
of ten or twenty years ago in terms of process complexity. This is the result of a
combination of factors. People are more aware of the environmental impact that
process industries have on the environment and as a result governments all around the
world are imposing increasingly stringent environment restrictions on gas emissions
and waste disposal. If a company wants to stay competitive and profitable, its process
has to be flexible enough to adapt to the fluctuation in demands of various chemical
products of different purities. At the same time, the process has to be stable and
controllable with "minimum" operating costs.

From an operational perspective, the increase in process complexity translates into a
significant increase in activities involved in process operations and management.
Process operational tasks can be classified into three levels according to the frequency
of execution. The low-level tasks include data acquisition and regulatory control,
which is normally automated by Distributed Control Systems (DCS) or the more
advanced Supervisory Control and Data Acquisition systems (SCADAs). The
medium-level tasks ensure the integrity of the operation, and they include process
monitoring, fault administrations, optimization and other advanced control strategies.
A majority of processes still relies on human personnel in performing these tasks. The
high-level management tasks involve planning and scheduling. In most
circumstances, it is the responsibility of the management team of the organization.
Figure 1 illustrates a graphical representation of the above-mentioned task hierarchy.
The pyramidal shape symbolizes the frequency of execution.

Figure 1: Task hierarchy pyramid

536

Among all the medium level tasks, fault detection and fault diagnosis can be
considered as the two most influential tasks. When there is a process upset, the
identified root causes can have adverse effect on the execution of optimization and
other advance control strategies. Furthermore, depending on the severity of the
identified root causes, they can also post a significant impact on planning and
scheduling in management level. If the malfunction of a major process equipment is
detected and confirmed, a medium or long term planning and scheduling may be
required to compute a new production plan to meet the orders and production targets.

6.4.2 AUTOMATED FAULT DETECTION AND DIAGNOSIS

As chemical and mineral processes become more complex, they also become more
vulnerable to process upsets and hardware failure. Fault diagnosis, therefore, becomes
more important and difficult to perform. Although enormous effort has been put into
designing better equipment and control systems, most of the fault diagnosis still
heavily relies on plant operators. They are "expected" to respond accurately in
locating the source of abnormalities and make quick and appropriate corrective
actions. The difficulty of manual fault detection and diagnosis depends primarily on
three factors:

1. Human knowledge and their mental status;
2. The nature of the anomaly; and
3. The topology of the process.

6.4.2.1 Human knowledge and Mental Status

The more knowledgeable and experienced the operator, the more accurate they can
diagnose upset correctly within the shortest period of time. This well-accepted
statement, however, does not take into account the mental status of the operators.
Fatigue, emotional and personal matters can all affect their diagnostic capability
dramatically.

6.4.2.2 Nature of anomaly

Single fault from a major piece of equipment, such as pumps, can be detected and
diagnosed without any difficulty. However, for upsets such as fouling, deterioration of
catalysts, valve failure, or upsets due to a combination of faults, their detection and
diagnosis are more difficult and require more experience and knowledge on the
operator' s part..

6.4.2.3 Process Topology

For a complicated process with extensive recycles, and interactions between
monitoring variables, even experienced operators and process engineers will find it
difficult to diagnose the root cause promptly. In such a process, a fault can propagate
its effect to a number of monitored variables almost instantly. During a process upset,
it is rare to find a single alarm from the control systems. In reality, the control system
will be flooded with tens of alarm messages. Either one of the two scenarios will
happen. In the first scenario, the flooding of alarms will create additional mental

537

stress on the operators. If they are inexperienced, this mental stress will lower their
diagnostic capacity, resulting in false diagnosis and unnecessary panic. In the second
scenario, the operators may choose to ignore the alarms by repeatedly clicking the
"Acknowledge" button on the control system keyboards without paying attention to
any of the alarms until all the alarm messages are acknowledged. In doing so, they
ignore the process anomaly completely. This behavior often led to unnecessary
downtime or even catastrophic accidents.

Automated fault diagnosis systems can help in ensuring that each and every operator
will make fast and accurate decisions under all conditions, even the most abnormal
ones. In the following sections, we will highlight some of the key fault detection and
identification methodologies.

6.4.3 METHODOLOGIES

Industries begin to realize the importance of automated fault detection and diagnosis.
Over the past decade, fault diagnosis receives enormous attention, and it is now one of
the key research areas in process systems engineering. A series of technologies have
been developed, ranging from purely quantitative to purely qualitative. Each of these
methodologies has their pros and cons. A methodology that works well in one process
may not give the same performance in another process. In selecting the right
technology for fault diagnosis, one should take into account the plant topology, the
sensitivity of the anomaly, and the complexity of the process equipment.

We classify fault detection and diagnosis techniques into the four following major
categories"

1) Residual generations;
2) Statistical analysis; and
3) Knowledge-based (qualitative) approach.
4) Hybrid techniques

6.4.3.1 Residual generation

Analytical residual generation approaches use a series of mathematical equations to
model the processes. These process model equations are used to calculate the
residuals between sensor outputs and expected values, g iven a set of process
parameters or operating conditions (Chow and Willsky, 1984; Frank 1990). If the
discrepancy exceeds a certain threshold value, a fault is detected, and the
corresponding process equipment or process section is being diagnosed as the root
cause of the anomaly. The concept of fault detection and diagnosis can be represented
by Figure 2.

538

Actual
Process ~ l n p u t u---~ ~ o u t p u t y

+

Nominal ~
mode l predicted

residual-I~.

Figure 2: The conceptual representation of residual generation technique

Redundancy estimation can further be classified into two subclasses: residual due to
redundancy and residual due to process parameters.

Residual due to redundancy

This approach makes use of the redundancy of the process. The redundancy can be
either spatial or temporal. Spatial redundancy is a result of utilizing information from
redundant sensors in process streams. This kind of redundancy is usually described by
simple algebraic equations. Temporal redundancy exploit on the dynamic relationship
between the input and output relationship of the process or the equipment. This type
of redundancy is typically being described by differential or difference equations.

In general, the process can be described by the following linear discrete state
equations:

x(k+ 1) = Ax(k) + Bu(k)
y(k) = Cx(k) (1)

where x is the state vector (n*l), u is the input vector (p*l), y is the output vector
(q ' l) , k is the time instant, A, B and C are known matrix describing the nominal
process.

In regards to the modeling involved, there is no straight rule. Modeling can be done in
many forms, as long as they are adequate to describe the input-output relationship of
the process and its dynamics. Mechanistic models develop from first principal mass
and energy balances or time-series models, frequency response or transfer function
models obtained from historic plant data can all be used.

Residual due to process parameters

Redundancy residual approach uses a fixed nominal process model to calculate the
predicted process output y. Residual due to process parameters, which is also known
as parameter identification, takes the opposite approach. During a process upset, the
fault(s) will change the physical properties of a system. The principle of parameter
estimation is to detect and identify the fault by calculating the parameters of the
mathematical model and the corresponding physical parameters and compare it
against the nominal physical parameters.

539

The technique can be summarized by the following procedure (Isermann, 1984)"

1. During offiine calculation, choose a parametric model to represent the
dynamics of the process. The parametric model can be a linear model with
input/output differential relationship or it can be linear time series model. Let
A be the model parameters.

2. Determine the relationship between the model parameters A and the physical
parameters P:

A = f(P) (2)
3. During online execution, the model parameters Areal-time are being identified

from input u and output y of the real process.
4. The real-time physical parameter, Preal-time is being calculated by

Preal-time-- f-1 (Areal-time) (3)
5. The deviation of real-time physical parameter Preal-time for its nominal value P

is calculated.
AP = Preal-time- P (4)

6. A fault is detected if AP is greater than the threshold value, and the root cause
of the fault is identified from the pattern of AP.

Figure 3 illustrates the above procedure.

~ i n p u t u Actual Process

. • Parameter Identification L
Areal-tiime r

Physical parameter,
Preal-time calculation

Calculation of physical
parameter residual AP

output y ~-

Figure 3: Concept of parameter identification

The detection power of residual techniques depends on the accuracy of the
mathematical models. This technique is sensitive for detecting upset at early
development stage.

6.4.3.2 Statistical Analysis

For large scale industrial processes with numerous sensors and complicated process
equipment, it is difficult to develop residual generation fault detection and

540

identification systems, not to mention that it is also extremely computational
expensive to execute online.

In statistical analysis, statistical information of the variable of interests is being used
for fault detection and identification. This approach is considered to be completely
"data-driven". Instead of using pre-determined process models, statistical models are
built from normal operating data. Statistical thresholds are defined and they are used
to distinguish the random process fluctuation due to noise from significant process
deviation due to major disturbances and process upsets. Statistical analysis is
commonly known as statistical process control (SPC). If the statistics of the interested
variables are within the threshold values, the process is said to be in statistical control.
When a process upset occurs, the upset will cause a directional deviation of the real-
time statistics from its normal operating value, and eventually, the value will exceed
pre-defined statistical thresholds. The process is not in statistical control and a fault is
detected.

Statistical techniques can further be categorized into univariate techniques and
multivariate techniques.

Univariate statistical process control

Univariate SPC techniques perform statistical tests on one process variable at a time.
SPC fault detection is carried out through various statistical control charts. They
include Shewhart charts (Shewhart, 1931), exponentially weighted moving average
charts, EWMA and cumulative sum charts, CUSUM, (Woodward and Goldsmith,
1964).

Shewhart Charts." Shewhart charts are plots of real-time process variable x. When a
number of observations can be recorded simultaneously, as in the case of offline

m

laboratory analysis, Shewhart charts are then plots of mean (x) , range (R) and
standard deviation (S) of a data set of n observations. The statistical hypothesis is that
the mean and standard deviation should remain the same as the mean ~t and standard
deviation 6 of the normal operating data. Upper control limit (UCL) and lower control
limit (LCL) are calculated by specifying the level of significance ~. In case of plotting
real-time process variable x, assuming x follows a normal distribution, and assuming
the UCL and LCL cover 99.7% of the normal operating data, the UCL and LCL are
defined as

UCL = ~t + 36
LCL = It- 36 (5)

For samples with a number of observations, n, the UCL and LCL for x are defined
a s "

UCLon x" x + A R

LCL on x" x - A R (6)

where x is the arithmetic mean of x, and R is the arithmetic mean of R. The UCL
and LCL for R are defined as"

UCL on R: D1R

LCL on R: D2 R (7)

541

Values of A, D1 and D2 can be obtained from statistical tables. Note that the values of

kt + 3~ can be significantly different from x + A R .

CUSUM Charts: CUSUM chart plots the cumulated statistics on a regular time basis.
Common form of cumulated statistics include the monitored variable itself, its
deviation from a reference value, its deviation from its expected value, and its
successive difference. Let Sn be the cumulative sum at time n, and X is the statistics
of interest, CUSUM can be described by the following equation:

Sn=X+Sn.1 (8)

The objective of using CUSUM is to detect changes in monitoring statistics.
Therefore, in using CUSUM charts, it is not our concern whether or not the cumulated
sum of the statistics falls over a fixed UCL and LCL. The real concern is the slope or
the deviation between successive data points. Due to this nature, the definition of
control limits of CUSUM is not UCL and LCL. The control limit of CUSUM is
expressed as an overlay mask. It determines the maximum statistically allowable
deviation of the previous data points. If the previous points fall out of the mask, the
process is said to be not in statistical control. It signifies a noticeable change in
process dynamics due to major disturbance or fault is detected.

EWMA Chart: Exponential Weighted Moving Average (EWMA) chart is a weighted
plot of statistics of process variable, usually the process variable x itself or the sample

mean x, by placing a weight w, 0 < w < 1 on the most recent data point and a
forgetting factor 1 - w on the last statistics.
Assuming the information to be plotted is Z, EWMA can be represented by the
following formula:

Zn+ 1 - w * Zn+ 1 + (1 -- W) * Z n (9)

where Zn+l is the raw information at time (n+l), and Z;+ 1 is the EWMA information

at time (n+l). For a special case where w = 1, EWMA will be the same as Shewhart
statistics.

The UCL and LCL of EWMA can be calculated by:

UCL = g + 35 * w
2 - w

LCL = g - 3~* w (10)

where ~ is the mean of Z and ~5 is the standard deviation of Z.

M u l t i v a r i a t e s t a t i s t i c a l p r o c e s s c o n t r o l (M S P C)

Univarate SPC only considers one variable at a time. In order to use this technique to
monitor a process with many process variables, it is necessary to apply these statistics
or control charts on each individual variable. For the testing hypothesis to be valid for

542

these univariate statistics, one has to assume that these variables are not cross-
correlated to each other. However, in reality, many of these variables are cross-
correlated. A deviation of one variable will also cause deviations in other variables.
Such a process is said to be multivariate. This variable-variable interaction invalidates
the assumption in univariate SPC. Applying univariate statistics to a multivariate
process will only over-define the control limits, and thus leading to a wrong definition
of the statistical normal operating region (NOR). This is illustrated in Figure 4.

Figure 4: Representation of multivariate NOR a) using univariate approach
(improper definition), b) using multivariate approach (true definition)

MSPC can overcome this problem by taking variable correlation into account.
Multivariate projection-based approaches such as Principal Component Analysis
(PCA) and Partial Least Square (PLS) are the most common and well-studied MSPC
techniques (Wold et al, 1978; Jackson, 1991). They project all the process and quality
variables onto an orthogonal state-space. In doing so, all the correlated variables are
transformed into a new set of independent variables. These techniques can
significantly reduce the dimensionality of the monitoring problem without a
significant reduction in monitoring accuracy, and therefore they are especially
suitable for simultaneously monitoring a large number of correlated variables
(MacGregor and Kourti, 1995).

Principal components (PC) are based on a special property of matrix algebra. For a set
of normal operating condition (NOC) training data X of n variables over m
observations (n • m) with covariance matrix 'E:

P' ~P = k (11)

where the columns of P, Pl, P2, ..., Pi are the principal component loading vectors
(m x l) or the eigenvectors of ~, k is a diagonal matrix and its elements ~,1, ~2, �9 ~,i
are the latent roots or the eigenvalues of :E.

543

The i th transformed variable, called principal component (PC) or score Zi, is a linear
combination of zi = X * pi. Jackson (1991) outlined several criteria for selecting the
number of PC, A, required to "successfully" describe a process.

The original data X can be reconstructed from PC by

X = Zl * p l T + z2 * p2 T + . . . + ZA * pA T + E (12)

where E is the residual. If A is chosen correctly, there should not be any significant
process information left in E, and the magnitude of E should be relatively small.

PCA can only deal with process variable data X that are measured on-line at the same
frequency. There are also product quality variables Y being measured on-line at a
lower frequency or off-line in laboratory. Partial Least Square (PLS) uses regression
techniques to correlate X to Y.

Using the previous notation, over time t there are n process variables with m
observations. Process variable matrix X has a dimension of (nxm) . Let us assume

that there are k quality variables with 1 observations over the same time t. This gives
us a (k • l) quality variable matrix Y. In order to perform criss-cross regression on

variable matrix X and Y, we have to extract a submatrix of X (n• l)such that the

submatrices of both X and Y have the same number of rows.

Basic PLS algorithms have been well documented in chemometrics literature
(H6skuldsson, 1988, 1992). The training of PLS involves sequentially calculation of
the loading vectors for matrix X and Y such that they give maximal reduction in the
covariance of the remaining X and Y matrices. PLS models can be represented by

A

X = ~ t a p , ' + E
a=l

Y = ~ u,q,' + F (13)

where ta and Ua are the a th latent variables or scores, and Pa and qa are the athx loading
and y loading respectively. E and F are the residual matrices.

Similar to univariate SPC, MSPC monitoring is done through various control charts.

Score Plots: PCA has the ability to reduce the dimensionality of the process into just a
few PC. In some processes with highly correlated process variables, they may be
modeled "sufficiently" with two to three PC's. For a 2 PC's scenario, a 2-D PCA
score plot of Z1 vs. Z2 is adequate to encapsulate the variability of the process. In the
case of a 3 PC's scenario, either one 3-D PCA plot or three 2-D PCA score plots of Z~
vs. Z2, Z2 vs. Z3 and Z1 vs. Z3 are required. Score plots of PLS are similar to those of
PCA. Q scores are calculated from P scores and therefore they are not plotted in score
plots. Only P scores are plotted in PLS score plots. Unfortunately, it is obvious that
score plots are not visually possible for processes with more than three PC.
In score plots, NOR are defined from the training data. By assuming normal
distribution, NOR can be defined by an ellipsoid,. In reality, this may not be valid and
a skew ellipsoid is more appropriate (MacGregor et al., 1994). In some cases,

544

probability density function (PDF) can be calculated and applied to define NOR
(Chen et al., 1996; Martin and Morris, 1996). Figure 5 shows a comparison between
two NOR of a score plot, one defined by ellipsoidal approach and the other defined by
kernel PDF approach.

a)

PC-1

~ ~ : " ,.".
�9 ==t= = f

! P - ' i t . , ~

�9 �9 , % , " ;

b)

PC-1

PC-2 Covera.ge �9 73.6 PC-2 Coverage" 73.6 %

Figure 5: Comparison between a) ellipsoidal and b) Kernel PDF definitions

T 2 Plots: Another useful statistical chart is the T 2 plot, which is based on Hotelling's
T 2 statistics (Hotelling, 1947):

A 2

Tl = ~,--~ (14)
i = l ~ i

It can be detected from T 2 whether the variation in X is within the space defined by
the first A PC. The upper control limit (UCL) of T 2 can be approximated by F-
distribution (Jackson 1991).

p(A-1)
UCL = ~-~ ~..p-j F= (p, A- p) (15)

where p = the number training data points, A = the number of principal components
used, and F~ is the F-distribution with p and n-p degree of freedom and significance
level of ct.

SPE Plots: If a new event occurs and if it is not present in the training data, the
statistical projection model will not be adequate to describe the event. Consequently, a
Type B outlier occurs. T 2 plot cannot detect the invalidity of the statistical model. A
chart of the square predicted error (SPE) of the residuals could successfully detect this
abnormal event.

A ^

S P E x -" E (X i -- X i) 2 (16)
i = l

^

where xi is the predicted variable set calculated from PCA or PLS model.
SPE follows Chi-squared distribution and its UCL can be calculated using Chi-
squared approximated (Jackson, 1991; Nomikos and MacGregor 1995).

Statistical Fault Diagnosis

Various univarate and multivariate SPC charts are used for fault detection only.

545

Fault Clustering." Statistical fault diagnosis is primarily performed by clustering. Fault
clusters are defined from faulty data of know root cause. Assuming that one has fault
clusters of all root cause defined. During process upset, the real-time data point will
move into one of the fault clusters. By performing test on which cluster the real-time
data point is moving towards or position upon, root cause of the upset can be
diagnosed. Mathematically, clustering can be performed on problems with any
dimension, although it can only be presented graphically only on 2 and 3 dimensional
space.

Fault clustering can be applied to original process variables. If the dimensionality of
the process is high or the variables are highly correlated, fault clustering technique
can be applied to PC scores of PCA or PLS. There are not many statistically
clustering approaches available.

The simplest way to define the cluster is the angle of which the cluster locates relative
to the axis and the NOR. Let Frt=(x, y) be the coordinate of the real-time faulty score
in a PC score plot, and let Fi(xfi, yfi) be the mean coordinate of a faulty data group i,
the angle ~ between the faulty data and the faulty cluster can be determined by:

v . . v , = IFrtl ivilcos (17)

The simplicity of this approach makes it very appealing for online implementation.
However, it is apparent that this method is insensitive to fault clusters with similar
angles. Therefore this method is not recommended for processes with many root
causes of similar symptoms.

A more advanced alternative is to define the cluster probabilistically by specifying a
significance level. Clusters can be defined by assuming normal distribution or by
calculating the PDF of the faulty data set. Assuming the monitored variables are
independent, the probability of the fault cluster in n dimension Xn(Xl, x2, Xn) can
be defined by:

P(Xn) _ - k [1 I ~ 1 2 5n - }1
0"113'2...~ n * (2~)"/2 exp- ~ [~1-- T + ~132 2 + """~ 2]J (18)

where ~n--Xn-~n, the deviation of the data point from its mean ~n, and On is the
standard deviation. However, if the root cause affects two independent variables, it
will be likely that the cluster is skewed with an angle. This can happen even if one
applies PCA/PLS to correlated data. After the projection, a root cause, which only
affects one process variable in X subspace, can affect more than one PC. This can be
overcome by first finding the angle between the axis and the principle skewed axis of
the fault cluster, and then perform a rotation of axis before the calculation of the
cluster.

This rotation of axis can be avoided if PDF is used. One of the well-known estimation
approaches is the kernel estimator technique (Chen et al., 1996). The general
formulation of kernel estimator is:

^ 1 n
f(x) = ~ " i~l K (x - xi _ h) (19)

546

A

where f is the probability density, n is the number of data points, h is the window
width of smoothing parameter. Many approaches are available to determine the
smoothing parameter. The simplest is Scott Rule, which states that:

3.5xt~
h= 3 - ~ n (20)

The final kernel function K must satisfies the following condition:

if_** K(x)dx = 1 (21)

The choice of function K is arbitrary. For clustering and NOR definition on a two
dimensional score plot using Gaussian distribution as the kernel function, the
probability density function (PDF) becomes:

1 ~ 1 (x i - x (Yi-Y exp- m + m

f(x'Y)= 2~nhxhy - i = l -2 hx2 ~ - (22)

where (Xm,Ym) is the coordinate of the grip around that data clusters, and hx and hy are
the smoothing parameters of the x- and y-axis. Like the normal distribution approach
(equation 18), this approach can be extended to multi-dimensional problem.

Score and SPE Contribution Plot: In MSPC, when Hotelling's T2 and SPE exceeds its
UCL, a breakdown of the contribution from each original process variable xi can help
to diagnose the underlying anomaly. During a faulty condition, observing the
deterioration pattern of PC scores and SPE contribution plot can identify the
"suspicious" variables, which do not follow the projection model. These variables
usually associate with events that cause the anomaly (MacGregor, 1998).

6.4.3.3 Knowledge.based (qualitative) approach

Knowledge-based (KB) approach employs qualitative modeling and reasoning as the
fundamentals, although there are also new methodologies that incorporate probability
and other mathematical techniques. As the name suggests, knowledge-based approach
captures the knowledge of human experts. Knowledge can be classified into deep
knowledge, which is knowledge from first principals, and shallow knowledge, which
are heuristics that gathered from experience. Compared to residual generation and
statistical analysis, KB is more suitable for fault diagnosis than fault detection.
Different KB based fault diagnosis approaches use different knowledge representation
method to capture deep and shallow knowledge.

Hierarchical Knowledge Representation

Fault Tree Analysis: One of the earliest qualitative approaches is fault tree (FT)
diagnosis (Himmelblau, 1978; Lapp and Power, 1977). FT arranges the knowledge
about fault diagnosis in a hierarchical, inverted-tree fashion by using logic operators.
The top of the FT is a node representing an upset or abnormal event. As it searches

547

downwards, the detail of the knowledge regarding the nature or the location of the
fault increases. This is equivalent to a backward-search through the topological
structure of the plant from a coarser to a finer scale. The search will continue until the
root cause of the upset event is identified. In between each level of the FT, logic AND
and OR gates are used to represent how the lower level nodes can satisfy the high
level objectives. Construction of fault tree can be time-consuming. There are
automatic fault tree generation procedures available to speed up the knowledge
representation process (Lapp and Power, 1977). Figure 6 shows the general structure
of a tree analysis. Due to the inverted tree structure, probability can be incorporated
into fault tree diagnosis without difficulty.

AND

, ~

Figure 6: Structure of a typical fault tree

Goal Tree Success Tree: Goal Tree Success Tree (GTST) is another qualitative
approach which uses hierarchical knowledge representation (Chen and Modarres,
1992). GTST uses goal-oriented knowledge representation. The tree can be divided
into 2 parts, the goal tree (GT) and the success tree (ST). GT describes how the
process goal can be achieved by various sub-goals, and ST summaries how the bottom
goal can be achieved logically by different equipment, automatic and human actions.
The logical structure of ST and FT shares many similarities. Figure 7 illustrates the
general structure of a GTST.

548

+
I Goal I

I Top Goal I

I oa' I

I Goal I

Isystem I

+

I Goal I

Ihumanl

T
goal
tree

l success
tree

l
Figure 7: Typical structure of a Goal Tree Success Tree

In GTST methodology probability calculated onlineis used to determine which is the
optimum branch that should be used to continue within the search through. The
underlying principle is somewhat similar to a "best-first search", in which probability
is used as the evaluation function.

Signed Direct Graph (SDG) Based Approach

Signed Directed Graph: Another early qualitative fault diagnosis methodology is
Signed Directed Graph (SDG) model, which was proposed by Iri et al (1979). In this
model, SDG is used to describe the qualitative cause-effect influences between
various process variables and events. These causal relationships can be derived
through deep knowledge mathematical models and plant and instrumentation
diagrams (P&ID).

SDG can be described by a (G, s) pair. The signed directed graph, G, is made up of a
number of nodes N and branches B. Nodes N correspond to state or process variables
or fault origins such as equipment failure. Branches B are arcs that join two nodes
together. The directions of the branches B are described by two incidence functions, i
and j. A simple SDG and its representation are illustrated in Figure 8.

549

N = { n l , n2, n3 }
B = { b l , b2, b3 }

b i i(bi) t (bl)

bl nl n2

b2 n2 n3

b3 nl n3

l bl

b2

Figure 8." A simple SDG and its representation

Three states, namely high, normal and low, are used to describe the state of each node
in SDG. Function s maps the direction of deviations between adjacent nodes to the set
{+, -}. For instance,

+
A >B

means deviation in A will induce deviation in B in the same direction, whereas

A >B

implies deviation in A will cause opposite deviation in B.

SDG is an attractive technology because it has the ability to handle cyclic causal
relationships and uncertainties, the capability of locating all possible causes and the
ease of construction from first principle. Diagnosis using SDG can be done directly by
implementing search algorithms to search the SDG, or by transforming SDG
information into a rule-based systems (Kramar et a/., 1987).

Possible Cause and Effect Graph: Although SDG is a powerful technique, it has its
own weaknesses. It restricts the state description statement of each node to one of the
three symbols, namely high, normal and low. In SDG, all nodes that appear in the
Cause and Effect (CE) graph could be the possible root cause of the abnormality. In
many cases, this demerit makes the diagnosis results meaningless and hard to interpret
(ambiguous outcomes).

Possible Cause and Effect Graph (PCEG) approach is a modified SDG approach
which is proposed to overcome these weaknesses (Wilcox, 1994). In PCEG, the
domain is divided into a set of partitions or subjects S, which is mutually exclusive. A
set of abnormal statements A and normal statements N is defined. A subset X of A is
defined as the exogenous causes (possible root causes). Each subject s will have one
normal statement and at least one abnormal statement. Causal relationships R relate
the cause-and-effect relationships between the abnormal statements of different
subjects. Function f maps between subject s and its corresponding normal statement n.
The family of all possible state of subject s is Sk+ f(s), with Sk being all the abnormal
statements of subject S. Figure 9 illustrates the concept of PCEG model.

550

Figure 9: Illustration of PCEG concept

Instrument A, Instrument B, Variable A and Variable B are the subjects of the
domain. The normal statement of the domain includes a "normal" node from each of
these subjects, and they are represented as circles with letter "N" on the right hand
side. The members of the abnormal statement of each subject are enclosed inside the
rectangles in the diagram. Each of Instrument A and Instrument B has only one
"abnormal" statement. They are the exogenous causes of the domain because they are
the source nodes of the CE graph. They are denoted "M" for malfunction. Each of
Variable A and Variable B has two "abnormal" statements, namely high and low.
They are denoted as "H" and "L" respectively in the diagram. Depending on the
application, high-high or low-low or other abnormal conditions can be added to the
abnormal statement of the subjects. The arrows represented the causal relationship
between two members of abnormal statements of different subjects. For example,
Instrument A malfunction "can-cause" high value of Variable A.

In PCEG, more meaningful state description about the nodes can be used, making it
user-friendlier both in terms of knowledge representation and state partitioning.
Another major improvement is the distinct definition of exogenous (root) causes in
the domain.

Probabilistic Possible Cause and Effect Graph: Unlike FT and GTST, the possibility
of existence of multiplies connected nodes and cyclic loops within SDG and PCEG
make online probability calculation difficult. Leung and Romagnoli (2000) proposed
a novel approach to overcome this difficulty.
First, a Bayesian Belief Network, as illustrated in Figure 10, is incorporated into the
PCEG methodology as the basis for probability calculation. A set of evidence is used
to change the real-time conditional probability between parent and child nodes as
follow:

If evidence is true

551

else

Condcal (V, U) = Condexpert (V, U)

Condcal (V, U) = 1 - Condexpert (V, U) (23)

I Node 1 I I Node2 I
I Prior Probability1 I Prior ProbabilityJ,,,

I c~ nal Pr~ II Conditional 4Pr~
. .

~ ~ , , , ,

I Node3 I i Node4 I
J Priorl"r~ I J Pri~ Probability i , ,

I C ond51{51ition al 1P?b I ! 5' ! 6 , I C onditional l.,?b !
,,,

I Node 5 I I Node 6 I I Node 7
r Pri~ Pr~165 J Pd~ pr~

I

J Prior ProbabilitVl
I

Figure 1 O: Simplified Bayesian Belief Network

In solving the difficulty of multiply connected nodes, special search mechanism
which is mathematically equivalent to conditioning is used. Traditional Bayesian
Belief Network does not support any existence of directed cycles (Russell and Norvig,
1995). A rule-based system is proposed to overcome this difficulty. The states of
process variables that are not involved in the cyclic loops can sometimes provide vital
information of the possible process upset scenarios. During manual diagnosis, human
experts apply the same mental model to achieve accurate results. In this expert
system, we apply the same conceptual model. A special set of "expert" rules is
modeled to make on-line causality adjustment (arc deletion). These rules break the
causality loops on-line, and tum the final PCEG into an acyclic network for fault
diagnosis.

Time Delay Management: Alarms can be classified into root alarms and effect alarms,
as illustrated in Figure 11. All fault diagnosis methodologies can respond to root and
effect alarms. However not many methodologies can handle time-delayed alarms,
especially when uncertainty of their occurrence has to be taken into account.

552

Figure 11: Alarm Classification

The uniqueness of the probabilistic PCEG approach also enables the system to handle
delayed alarms, which is also known as phantom alarms effectively. As anomaly
escalates, abnormal level upstream process variables can propagate to cause abnormal
level of downstream process variables. For small processes, effect alarms are
"virtually" instantaneous. For large complex process with time delays, effect alarms
are "time-delayed". Abnormal level on one variable may take minutes or even hours
to propagate to other downstream variables. Even if the upstream variables have been
restored to normal operating range, time-delayed propagation will continue and cause
"phantom alarms" downstream. Phantom alarms are "effect" alarms that only appear
some time after the appearance and reparation of the "root" alarms due to time delay.
Phantom alarms are considered as abnormal statement about the process. Using the
same notation as above"

A = { a l , a 2 , ASn,S m } (24)

A is a set of abnormal statements about the process at any time t . ASn,S m is the

complete list of the time delay abnormal statements, aSn,S m , which is defined as the

time delay abnormal statement that causes abnormal statement of subject Sm as a
result of a historical abnormal statement of subject Sn.

A a ~ a
S n ,S m t Snl ' S M 2 Sn2 , S m 2 "

(25)

The list is stochastic, i.e. it varies with time and process conditions. Phantom alarms
can be the potential root causes of observed anomaly, and therefore they are also
modeled as a subset of exogenous causes.

ASn,S m c X (26)

553

There is a subset of the binary relation R, called the delay relation RD. It defines the
"delay can cause" relationship between the abnormal statement set A.

R D c R (27)

Time delay management adopts the AI approach of dynamic belief network (DBN)
management. A list of anticipating time delay exogenous causes for the future is
computed every time fault diagnosis is run, and this list is updated into the network by
appropriate node creation and deletion. The system prepares the belief network
structurally for any future diagnosis.

Let na be all the active nodes at time tl, and let ni be all the inactive nodes. If a delay
relationship RD exists between na and ni (na delay can cause ni), then it can be
concluded that there is a possibility of phantom alarm of ni due to na.

n a c N active, n i c N inactive

Vn a,n i RD(n a,ni) ==> phantom__alarm (ni) (2 8)

When the expert system identifies possible phantom alarms, it will dynamically
append the possible time-delay nodes onto the original PCEG belief network, with
each of them properly time-stamped (Primary Update).

When abnormality is detected in future time t2 (t2 > tl), the expert system will execute
a "secondary update" mechanism with the following rules:

1. Phantom alarm cause deletion when the variable causing the delay effect, na, is
still in alarm mode;

2. Conditional probability revision when the variables which cause the phantom
alarms are "normal"; and

3. Cause deletion when the predicted "phantom" alarms do not appear or their
anticipated effects have been expired.

This "update" sequence prepares the phantom alarm section of the belief network with
the latest real-time information regarding the process. After the completion of belief
network updates, the probabilistic PCEG fault diagnosis algorithm will be executed.
The overall interface for phantom alarm management is shown in Figure 12.

554

Figure 12: Overall inferences for dynamic time delay management

6.4.3.4 Hybrid Techniques

In the above sections, we have described a number of basic fault detection and
diagnosis technologies. Researchers in fault detection and identification focus on fault
identification algorithms and they usually overlook the importance of fault detection.
In many cases such as all kb techniques, only simple univariate limit-checking
technique is used as the means of fault detection. Using primitive univariate fault
detection technique sufficiently reduces the sensitivity and accuracy of the fault
diagnosis mechanisms.

To effectively coordinate between these two tasks, one should concentrate on
planning a framework that allows flow and utilization of information from MSPC
monitoring to fault administration. Research work in interfacing MSPC with fault
diagnosis has taken off only about two years ago, and some initial successes have
been documented in literature. Norvilas et al. (1998) interfaced MSPC KB fault
diagnosis for monitoring-fault diagnosis purpose. In their work, they used MSPC to
perform monitoring. If the MSPC statistics exceeds the predefined limits, the numeric
MPSC information will be compressed into symbolic "high/low/normal" and the
variable nodes in the fault diagnosis knowledge base will be activated/deactivated
accordingly. Vedam and Venkatasubramanian (1998) used individual SPE to link the
MSPC information to a SDG-based fault diagnosis module. In their work, they
assume that fault will cause displacement in SPE plane of the PCA projection and the

555

variables, which have abnormally high individual SPE, are identified as "alarm
variables" in SDG fault diagnosis. Leung and Romagnoli (2000) use a KB to mimic
how a human engineer would interpret various MSPC statistics contribution charts
(MacGregor et al., 1994). In addition to this symbolic interpretation of various
contribution plots and control charts, they also used real-time MSPC statistics as
inputs into their probabilistic PCEG KB approach (Leung and Romagnoli, 2000) in
order to increase confidence and accuracy of the probability calculation.

6.4.4 CONCLUSION

An overview on fault diagnosis methodologies for process operation has been given
with a view to development of computer aided tools. First, different features of
automated fault diagnosis has been defined and explained, followed by explanation of
different types and classes of methodologies. We hope that the contents of this chapter
will help the reader to design the corresponding software architecture for fault
detection and diagnosis and to develop new state-of-the-art software.

6.4.5 REFERENCES

Chen, J., A. Bandoni, J. Romagnoli (1996). Robust PCA and normal region in
multivariable statistical process monitoring, AIChe Journal, 42, 12, 3563-3566
Chen L W, M Modarres (1992), Hierarchical Decision Process For Fault
Administration, Comput. chem.Engng, 16, 425-448
Chow, E.Y., A.S. Willsky (1984). Analytical redundancy and the design of robust
Failure detection systems, IEEE Trans. Automat. Contr., AC-29, 7, 603-614
Frank, P.M. (1990). Fault diagnosis in dynamic systems using analytical and
knowledge-based redundancy - a survey and some new results. Automatica, 26, 3,
459-474
Himmelblau, D.M. (1978). Fault Detection and Diagnosis in Chemical and
Petrochemical Processes, Elsevier.
H6skuldsson, A. (1988), PLS Regression Method, J. Chemometrics, 2, 211-228
H6skuldsson, A. (1992), Quadratic PLS Regression, J. Chemometrics, 6, 307-334
Hotelling, H. (1947), Multivariate quality comrol, illustrated by the air testing of
sample bombsights, Techniques of Statistical Analysis, 113-184. McGraw-Hill, New
York.
Iri, M., K. Aoki, E. O'Shima, H. Matsuyama (1979). An algorithm for diagnosis of
system failures in the chemical process. Comput.chem.Engng., 3,489-493
Jackson, J.E. (1991). A User's Guide to Principal Components, John Wiley and Sons,
New York.
Kramer, M. A., B. L. Palowitch (1987). A rule-based approach to fault diagnosis
using the signed digraph, AICHE J., 33, No.7, 1067-1078
Kresta, J.V., J.F. MacGregor, T.E. Marlin (1991). Multivariate Statistical Monitoring
of Process Operating Performance. Can. J. Chem. Eng., 69, 35-47.
Lapp, S.A., G.A. Power (1977). Computer-aided synthesis of fault trees. IEEE Trans.
Reliability, R-37, 2-13
Leung, D., J. Romagnoli. (2000) Dynamic Probabilistic Model-based Expert System
for Fault Diagnosis, Comput.chem.Engng., 24, 2473-2492

556

Leung, D., J. Romagnoli (2000), A framework for full integration of multivariate
statistical information into knowledge-based fault diagnosis, ADCHEM2000, Pisa,
Italy
MacGregor, J.F., T. Kourti (1995). Statistical Process Control of Multivariate
Processes. Control. Eng. Practice, 3, 3,403-414.
Norvilas, A., A. Negiz, J. DeCicco, A. Cinar (2000). Intelligent process monitoring by
interfacing knowledge-based systems and multivariate statistical monitoring. Journal
of Process Control, 10, 341-350
Rich S H, V. Venkatasubramanian (1987), Model-Based Reasoning in Diagnostic
Expert Systems for Chemical Process Plants, Comput.chem.Engng, 11, 111-122
Russell, S., P. Norvig (1995), Artificial Intelligence A Modern Approach, Prentice
Hall
Shewhart, W.A. (193 l) Economic Control of Quality of Manufactured Product. Van
Nostrand, Princeton, N.J.
Vedam, H. and V. Venkatasubramanian, Automated interpretation of PCA-based
process monitoring and fault diagnosis using signed digraphs. In Proceedings of 3 rd
IFAC Workshop on On-line Fault Detection and Supervision in the Chemical Process
Industries, IFAC, Lyon, France
Wilcox, N.A., D. M. Himmelblau (1994a). The Possible Cause and Effect Graph
(PCEG) Model For Fault Diagnosis-I. Methodology, Comput.chem.Engng, 18, 103-
116
Wilcox, N.A., D. M. Himmelblau (1994b). The Possible Cause and Effect Graph
(PCEG) Model for Fault Diagnosis-II. Applications, Comput.chem.Engng., 18, 117-
127
Wold, S., P. Geladi, K. Esbensen, J. Ohman (1987). Multiway principal components
and PLS analysis. Jr. Chemometrics, 1, 41-56.
Woodward, R.H., P.L. Goldsmith (1964). Cumulative Sum Techniques. Oliver and
Boyd. London

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
�9 2002 Elsevier Science B.V. All rights reserved. 557

Chapter 6.5: Emerging Business Models

J. KSller, T. List, C. Quix, M. Schoop, M. Jarke, P. Edwards & M. Pons

6.5.1 I N T R O D U C T I O N

Information technology (IT) continues to be increasingly impor tant as a critical
area of business competency. In the US, est imated expenditures for IT are pegged
at about 8% of revenue. This reflects the fact tha t IT expenditures continue their
recent increased penetrat ion of business activities. It is also the basis for the
latest shift in the balance of competencies for enterprise leadership. These
transforming benefits achieved through using IT-based technology will depend
heavily on technical factors and on the willingness of a community to work
together for the greater benefit of all.

This dependency can be seen in the s tandards area. Examples of the
collaboration issues are i l lustrated by (1) the area of Java s tandards (where
Microsoft appears to have given up on a contentious s tandards process - striking
out with its own product called C#) and (2) the highly competitive area of XML
standards (where Microsoft is providing an XML technology platform called
BizTalk Server) and the Rosetta Net XML application s tandards consortium. The
issue here is whether using Microsoft platform technology is a valid standards-
based approach. In Microsoft's view, there is an XML language s tandard and
industry groups working with an XML collaborative business network supported
by Microsoft can be regarded as being engaged in developing conforming XML-
based application s tandards for their part icular industry. RosettaNet supporters
don't agree.

An example of a major success of s tandards that will t ransform an industry can
be found in a specialized area of computing used by the process industries. The
part icular computing domain is termed Computer Aided Process Engineering
(CAPE). The industry had evolved to a point where there were three global major
players plus a second group of smaller suppliers tha t part icipated in part icular
regions or in niche products/technologies. Overall success depended on achieving
success in technology and collaboration. Technology success was based on
standardizing interfaces for component software. This was combined with success
in achieving collaboration between (1) the first and second tier of suppliers and
(2) the major corporate users of the CAPE products and technologies. Currently,

558

the newly evolved standards are being driven forward by an international
coalition called Global CAPE-OPEN (GCO), which is operating under the
auspices of the Intelligent Manufacturing Systems (IMS) organization. The EU,
Japan, and the US are all working with the GCO project.

Industry breakthroughs such as GCO are being repeated hundredfold in the
broader area of enterprise IT. These breakthroughs are based on hard work and
vision. They will support the reengineering of inter-business processes that
underly an increasingly complex activity of building and evolving IT
infrastructure for medium to large enterprises (MLEs). The emerging IT
environment is characterized by rapid change in 1) the technology, 2) the roles
and relationships of the industry, and 3) expectations of the marketplace and by
stakeholders who have invested in providers or consumers of IT technology.

New value-adding tools are being developed to enable processes in this enterprise
IT environment, which is characterized by an explosion in complexity. In
particular, it addresses the need to manage an amount of information about IT
solutions and processes that is growing exponentially. This is true for IT in
general and will be also true for high-value, highly specialized areas, as
illustrated by technology for computer aided process engineering (CAPE). We
distinguish enterprise software from individual productivity products such as
Microsoft Office, communications software such as Outlook and Netscape
Messenger, and from PDA systems that combine some of these capabilities.

6.5.2 INDUSTRY STRUCTURE

6.5.2.1 The Supply Side

Companies that power the growth of Internet-based business processes and
infrastructure--usually termed E-Business--now include disparate
organizations, e.g. IBM, Siemens, SAP and Microsoft. Other major participants in
the growth of IT include the major consultancies such as Accenture (formerly
Andersen Consulting), Price Waterhouse Coopers (PCW) and CAP Gemini.

There is overlap in activity, but the first group is clearly identified with the
development and sale of hardware and/or software. The second group is more
closely identified with consulting for the business application of IT to improve
business processes by some combination of automation and innovation. IBM is an
example of a company that belongs to both groups. Had HP acquired PCW, it
would have ended up in a similar position as IBM.

The history of the impact of IT on business organizations has been intertwined
throughout the last decade with an organizational process called business process
improvement (BPI). From time to time this general term has been exploited or

559

oversold in terms of the discipline needed for success. This has led on occasions to
bad press when failure has occurred through misapplication or poor
implementation. The concept of reengineering is valid and is enabling major
productivity improvements. It has been seen that the companies that are better
able to achieve these potential benefits are the companies tha t understand the
technology and have good implementation skills. Good examples are Cisco, Dell
and IBM.

In its recent form, BPI has evolved to encompass applying technology (primarily
Internet based) to disintermediation strategies, and/or new business models that
are technically enabled or dependent.

The separation of design and construction from operations has a parallel with
historic engineering fields. At one point, the design, construction and operations
were contained within one organization. Now this is the exception. The operating
companies have focused on their operating competencies. They also developed
supporting competencies in the acquisition of technology, facilities and
infrastructure from companies whose core competencies are in those specialized
fields. Good examples are the airline industry and the process industries In the
past, the airlines designed and built their own planes. Famous examples are Pan
Am and Iberia Air. Famous examples in the process industry are Shell, Exxon,
BASF and DuPont. In the World War II era, DuPont had a very large design and
construction department that encompassed civil engineering as well as chemical
engineering. These industry structures are now gone and the operating
companies are focused on operations, marketing and finance.

6.5.2.2 Evo lv ing B u s i n e s s Models in Proces s Indus t r i e s (1960-2000)

The process industries have seen an evolution of the industry structures on
which business models are based. This is paralleled by a very similar evolution of
the CAPE software used.

We might look back 40-50 years to trace these changes. At that point, the
manufacturing companies were vertically integrated. They did (1) the product
and process research, (2) process development, (3) built the process, (4) operated
the process and (5) distributed the product using owned storage and
transportat ion facilities. Over the last half century, we have evolved to the point
where about 80% of this value chain is outsourced by the owner of the overall
process.

The same thing happened in CAPE. The first versions of CAPE programs were
developed over 40 years ago by companies such as DuPont (Chemical Process
Evaluation System - CPES), Monsanto (Flowtran), and Dow in the US. These
early versions ran on the scientific mainframe computers that were available 50
years ago, e.g. IBM 1620, 7090 and 7094.

560

Then specialized companies were formed that could leverage economy of scale in
what become an increasingly complex and specialized technology. One key event
in this history occurred in the US, when the Department of Engery sponsored the
development of a process simulator at MIT. This was eventually spun off as a
commercial venture called Aspen Technology. Process industry companies were
under pressure to justify the specialized skills needed for in-house simulation
systems. As this was going on, Monsanto's Flowtran was incorporated into
Aspen's products. Also, Simulations Sciences picked up a public domain version
of the MIT simulator with an interest in offering a PC system. New players
entered the fray, e.g. Hyprotech in North America. Changes in this structure
have evolved to the current day position, strongly influenced by the changes in
the parent industry structures.

Then came a major new technology--modern IT--which has arguably reached
the take-off stage. The two most famous and successful chemical engineers in the
world are Jack Welch and Andy Grove (if we evaluate on the Market Cap of GE
and Intel, which have been shaped or created in large part as a reflection of their
respective leadership). Both take a view that IT and E-Business in the broad
sense are going to have a transforming impact on business that will unfold over
the next several decades.

What happened to Civil Engineering and Chemical Engineering will happen
again in the field of IT. The operating companies will turn to the equivalents of
Brown & Root for Civil Engineering or the Kellogg and IFPs of the process
industry. Today, the old monolithic companies are still disengaging and building
the new supporting competency that exists on other areas.

These structural transformations of organization places new demands on the
ability to define, specify and evaluate both the software building blocks of
information technology and the management processes for implementing reliable
systems. A first step has been the emergence of generalist and specialist IT
research organizations. Examples of the former are Gartner, Forrester, Seybold
and IDC. Examples of the latter are SANS, ICSA, and Goldburg. The first two
are taken from the IT/Internet security domain while the third is in the CRM
area. The first group generates an incredible array of research reports and White
Papers which are used in part by the final users of IT (the producers of final
goods and services that make up GDP), but which are used even more extensively
used by the suppliers of IT technology. Goldburg is an interesting example. This
company evaluates software used in the CRM field. Each year, from a list of over
200 volunteering software suppliers, sixty are chosen and subjected to an actual
testing of their products. From this list, thirty are selected and included in a
comprehensive evaluation that rates performance on 52 separate performance
criteria.

561

The current processes that support interactions of IT providers (including COTS
software applications, design and building of infrastructure and increasingly the
contracted operation of IT systems) is clearly undergoing fast change and will
mature over the next one or two decades. Major advances in the software
engineering technologies will clearly lead to huge improvements in the
productivity and reliability of the IT building process. Donald Hagerling of the
US Treasury comments that - in essence - we are on the lower slopes of a
technology S curve. He predicts that:

...by the year 2050, the world's commerce will be dominated by the first
country to have provided an infrastructure t rusted to provide transactions
and intellectual property. By then, the matur i ty of formal methods,
software engineering practices and 6 th generation languages will have
brought trust and correctness to all software. All executable code will be
generated by a formal model and will not be accepted unless it has been
vetted and digitally signed by a recognized third party.

An i m p o r t a n t c o n c l u s i o n is that the business models will continue to evolve as
they have been doing for the last 40 years. Grove and Welch say we are at the
beginning of an S-curve because computing performance and costs plus advances
in methodologies have evolved to a point that changes the rules.

The first step will be better systems for managing information about software
applications. This will be utilized across major business areas such as sales
automation and CRM and supply chain. It also offers gains for the specialized
areas of scientific and engineering software. In the CAPE area, organizations like
CO-LaN will support evolution of the next generation of standards-based CAPE
software.

For the purposes of this discussion we will segment the new array of enterprise
IT software into 1) computing and Internet infrastructure, e.g. operating systems
and networking, 2) traditional basic accounting and transaction systems, 3)
newly established business and application suites, e.g. SAP, PeopleSoft, 4)
advanced software application platforms, e.g. Seibel Systems and BroadVision,
and 5) specialized software solution components that provide specialized products
or services.

The IT enterprise software encompasses a broad range of functionality and
capability. Products will typically vary in the extent to which they support the
range of functionality. This means that the best choice for a particular u s e r ~
going forward we will use the terms user to refer to business enterprises, not
individuals~wil l depend on that user's balance of requirements. For example,
the balance of requirements for an American Airline sales automation system
will be different from the balance of requirements for a GE Plastics materials
supplier's sales automation system. From the software side, we can accomplish

562

field sales automation/CRM with simple systems tha t cost $5-10k up to systems
like Seibel and BroadVision that may cost $100k and up to acquire and startup.
The use of software in the process industries is more specialized, but again we
see a wide range of products that support differing balances of need in varying
ways. One process industry organization lists about 2000 products in its annual
catalogue of process industry engineering software. This of course excludes basic
commercial systems such as SAP tha t are outside our current consideration.

6.5.2.3 E m e r g i n g Needs for the Enterprise

Communities in the enterprise are grappling with this fast growing management
challenge. They are also doing this in a fast changing business environment that
is shifting power and responsibility within and between organizations. The rate
of change has never been greater. It can only be sustained in a coherent fashion
through the adoption of IT enterprise management systems tha t will support a
rational process for the evaluation, selection, purchase and asset accounting. This
needs to be a distributed system that can accommodate the needs and tradeoffs
tha t exist in global organizations between local initiative and localization
requirements (e.g. language and training support) and the direct or �9 perhaps
visible economies of standardization and bulk purchasing power.

6.5.2.4 Br ie f History of IT in the Enterpr ise

The late 50s and early 60s were the days of the programming by wiring boards,
followed by creating digitally stored programs wri t ten in machine instructions.
Then came the breakthroughs of J im Backus at IBM and Grace Murray Hopper
with the US Navy. These led to FORTRAN and COBOL, which are still used
extensively about 40 years after their initial creation. Admittedly, the current
versions are very different from the early forms of these pioneering languages.

COBOL was probably responsible for the initial breakthrough in business
computing. In the beginning, the COBOL programmers were in a subgroup of a
larger organization that was called Accounting and Business Services. Several
things happened: (1) computers became faster and less expensive, (2) application
languages evolved, (3) SQL and relational database technology were invented by
Codd and others, and (4) software engineering methodologies were developed.
The scaling issue was addressed as IBM introduced its System 360 with the
concept tha t one could move to a higher capacity, faster machine without re-
writing the applications running on the smaller machines. Computer science also
advanced on a broader form tha t included standardization, algorithmic
development, creating a consistent, effective compiler technology and the
continuing work done to improve software engineering methodology and
practices. During this period, IBM was enormously successful in converting
mechanical digital systems to modern computer based digital systems. This led to

563

the penetrat ion of computing into business tha t quickly outpaced the previous
base of computing in the scientific and engineering fields.

IT was moving past the point at which IBM's founder Tom Watson declared that
the world could probably use five computers. In the beginning scientific
computing methods overlapped with the business area through the application of
algorithmic approaches like Linear and Nonlinear Programming to
solve/optimize t ransportat ion and supply chain models, and discrete simulation
systems like GPSS were used to solve a wide range of industr ial problems
extending from tanker scheduling to detailed design of shop floor, manufacturing
facilities.

A major transit ion/disruption for IT had its roots in the 1980s with the advent of
PCs, fat clients in modern IT terminology. In the business arena, this led to fast
growth of applications tha t enhance the productivity of individuals. In the
beginning, this was focused on the office worker, but there were early
experiments with sales force automation in the late eighties as truly portable PC
were developed. The PC was responsible for the democratisation of digital
computing for the entire organization. This led to initiatives in market ing and
manufactur ing organizations that were independent from the central IT
organization. For the next 15 years, the control of the application and
management of non-transactional computing applications has been - to some
extent - been an area of contention. During tha t t imeframe, the size and power of
IT organizations grew rapidly. The same thing happened in the area of CAPE
tha t we have noted previously.

In the current next phase, the Internet has the empowering impact tha t PCs did
in the mid-eighties. In particular, the IT organizations of today and business
organizations in general, face another jolting period of change. Authorities
ranging from Peter Drucker to Information Week are making pronouncements
about IT. Peter Drucker says that IT is moving to the point! where its role can be
liked to the role of printing and publishing once tha t new technology was
mastered and reduced to an efficient and well-resourced commodity. Information
Week has said the position of Chief Information Officer will go away and the
competency of running a business will refocus on the older and more tradit ional
competencies.

There may be an element of cheek in what Peter Drucker and Information Week
said, but there is also a reality. What will surely happen is tha t the design and
construction of IT applications and infrastructure will increasingly be outsourced.
The new competency will be to manage this enormous outsourcing of what has
become a major factor in supporting business operations. What will happen will
parallel what happened in the process industries in an earlier era. There are also
lessons to be learned from these earlier experiences. It is a fact tha t modern IT
applications are complex. There are many parameters of performance that are

564

critical. Some of the t radi t ional ones are scalability and uptime. But there are
many others. In fact, books (e.g. [15]) have been wr i t t en on metrics for E-
Commerce. These a t tempts to write down a set of metrics for E-Commerce or E-
Business have been useful, but they only represent a point in time as the
concepts and the technology of enterprise IT continue to unfold.

6.5.2.5 IT out s ide the Enterprise: Appl i ca t ion Serv ice Prov iders

The recent t rend of outsourcing as much IT inf ras t ruc ture and application
systems as possible and reduce a company's activities to its core competencies
has led to a new model of handl ing software systems employed in an enterprise.
Since current applications are growing more and more complex and their tasks
are becoming mission critical for every company, running and mainta ining them
has become very expensive and resource consuming. Detai led knowledge is
necessary to operate those systems and large inves tments have to be made to
provide a suitable ha rdware infrastructure. According to a study of the Gar tner
Group [11] one single workspace in an MLE costs up to $10.000. Only one third of
these costs originate from investments in ha rdware or software systems. Two
thirds are due to the resources tha t are needed to install, configure, and main ta in
this IT infras t ructure .

Obviously, there is a large potential for saving money in outsourcing these
activities to specialised companies, which have their core competencies in tha t
area. This has given rise to a novel group of IT-services, namely application
service providing. An application service provider (ASP) delivers software
functionali ty as external service to a company. Therefore, an ASP can be defined
as a company tha t 1) develops and delivers a service shared by multiple
customers; 2) provides these services for a subscription or usage-based fee; and 3)
supplies these services from a central location, over the In te rne t or a private
network, as opposed to running on the customer's premises [23,34,35].

Usual ly the ASP provides and manages the server side soft- and hardware
inf ras t ruc ture thereby leveraging the customers ' IT infrastructure. This
dramat ical ly reduces the total cost of ownership (TOC) for the software systems
tha t are now hosted at the ASP. This will have a major impact on the handling of
software in the industries. Forres ter Research es t imates tha t the ASP marke t
will reach a volume of $21 billion in 2001 s tar t ing from $1 billion in 1997. Major
software vendors such as Microsoft, Oracle, HP, SAP and IBM have adopted this
idea and are making progress in implement ing this new business model into
their products [4].

It is impor tan t to dis t inguish this new class of IT services from the mainframe-
oriented services, which were popular some twenty or th i r ty years ago. In those
t imes powerful ha rdware was expensive and only large companies could afford
their own mainf rame systems. Powerful desktop solutions were not available.

565

Therefore, companies owning data processing centres sold computing time on
their machines to their customers. But the applications running on these
machines were running more or less stand-alone and were not integrated in the
customers' IT infrastructure. Calculations were performed in batch mode often
allowing no real interaction. This is the major difference to the ASP model.
Modern Internet technology enables the ASP to operate the machines and the
software in their location and to fully integrate it into the customers
environment. The users on the client side can interact freely with the systems as
if the systems were executed in their own environment.

Looking at the ASP landscape, we can identify three main areas where ASP
solutions are in use today. The first class of applications making use of this new
approach are desktop-based software systems. A good example is Mircrosoft's
activities for making their office products ASP-enabled. These activities are
mainly focused on delivery and management of desktop applications, The second
class of ASP applications are electronic commerce (EC) applications. Many of the
EC software vendors offer hosting services for their products. The adoption of the
ASP model to EC applications has been ra ther easy because these systems were
designed to be web-enabled (i.e. accessible through web-interfaces) from the
beginning. This was not the case for the third class of applications, the enterprise
resource planning (ERP) systems. Originally ERP systems were designed as
corporate wide client-server systems but not as real web-enabled applications.
Nevertheless, since these systems are extremely complex, using the ASP
approach here is attractive. This is why the ERP vendors are investing lots of
resources for web-enabling their applications. Nevertheless, integrat ing these
systems in a corporate environment (which is still necessary) remains a critical
task.

Therefore, a new concept for next generation ASP applications is required tha t
facilitates easy integration and flexible combination of different functionalities.
The basis for this new generation is the idea of component-based software
architectures. Software components are software entities tha t are executed
somewhere in a distributed environment (e.g. the Internet) and offer a specific set
of services through well-defined interfaces. This technology enables the creation
of ASP-hosted web services, which can be used as building blocks for more
complex client side applications. Such technology facilitates the seamless
.integration of internal and external services to create applications tha t bring
together data coming from vendors, partners, and internal sources. This idea has
been adopted in the .NET architecture by Microsoft and will be supported by
many forthcoming products [25]. Other technologies tha t have been employed in
the CAPE-OPEN context are also suitable for implementing these ideas (see
Sections 6.5.4.1 and 6.5.5.1).

Another critical issue when dealing with the ASP approach is security. From the
t ransmission point of view the problem of security is solved. There are various

566

technologies available on the market ensuring that data t ransmit ted over the
Internet cannot be spied on. Examples for such technologies are the Secure
Socket Layer (SSL) Protocol or Pretty Good Privacy (PGP) for file encryption. A
more critical issue is the question what will happen with the user data after
transmission on the ASP's machines. The ASP has to access the data in order to
perform calculations with it. Usually, this must be done on decrypted data which
is a problem when sensitive data is involved. Therefore, the user must either
simply t rust the ASP or suitable protection mechanisms have to be developed.

6.5.2.6 A br ie f His tory of Process S i m u l a t i o n Appl i ca t ions

In the remainder of this chapter, we shall consider specifically emerging business
models for process simulation applications. Looking at the historic development
of CAPE tools and especially process simulators, we observe a similar evolution
compared to IT in general. When flowsheeting tools became widespread some
twenty years ago, they were deployed on mainframes, since PCs were just in
their infancy. Only very large companies were able to afford the cost of
mainframes and process simulators operated on in-house machines. Most end-
users relied on service providers and paid solely for the use they were making of
both the hardware and the software enabled by these service providers.
Interestingly, such service providers were not subsidiaries of flowsheeting tools
suppliers but mostly independent companies or subsidiaries from hardware
suppliers. Connection to such providers relied on mostly unreliable phone
networks and rather crude modems by today's standards. Costs of running the
simulation of a distillation column (converging or not) were in the range of
several hundred Euros per run.

Progressively, PCs have become the typical hardware on which flowsheeting tools
are executed. The price of hardware has been steadily decreasing while
performance has increased dramatically. It is more difficult to assess if and how
software costs have also been drastically changing. PC-based process simulators
have used the classical ways of buying and licensing so far. The software was
installed in the customer's network and used traditional licensing models.
Licenses have been acquired for each PC, giving an unlimited usage on each
single machine (in contrast to the times of mainframes when each simulation had
to be paid for separately). Thus there was a direct contact between the simulation
tool provider and the end-user rather than going through some intermediary.
User support for instance was also progressively given directly by the software
supplier.

But the problems concerning TCO of software apply to process simulation
software as well. Maintenance of these systems and the required hardware have
become expensive so that other models such ASP have become more attractive.
The process simulation software faces the same problems as other systems that
where not designed with the ASP approach in mind. They were not web-enabled,

567

and web-enabling these systems would mean a fundamental change in their
design, which has not been accomplished so far. In process simulation software,
not only web-enabling is an interesting problem field. Opening these systems up
for integration with other applications is also desirable because designing and
simulating a process is a very complex task, which typically involves many
different tools with strong interrelations. Most of these tools are highly
specialised, expensive, and require much expertise to run and maintained them.
Therefore, process simulation can be seen as a good candidate (1) for applying
component techniques for mutual integration and data exchange and (2) for using
ASP techniques cutting down maintenance and integration costs.

However, the situation in the 1990s w.r. t , software for CAPE applications was
that no component-based architectures were used, because most existing systems
had a FORTRAN core which is not even object-oriented. The tools used for
process simulation were closed, monolithic applications, which made it almost
impossible to include new components from other vendors or to combine these
tools [7]. But this is very desirable, as the manual exchange of data between
those applications is tedious and error prone. Additionally, these tools were (and
still are) highly heterogeneous because they may run on simple PCs using
Windows or mainframes using Unix. To combine these tools, each of them must
be divided up into standardised components with defined interfaces. Not only the
problem of integrating the simulators is solved by such an approach but by doing
so the systems are also moving one big step forward to web-enabled applications.
Therefore, they will then be usable in an ASP environment.

Recent announcements made by main suppliers of simulation software lead us to
believe that the pay-per-use business model may be back on stream, but using
completely different technologies originating from the ASP area. Web-based
distribution models are appearing that resemble what occurred twenty years ago
but on a much more powerful and flexible level. The CAPE-OPEN standard is
one possible means of accomplishing that goal by providing a complete set of
s tandard component interfaces for process simulation software and will open up a
new class of business models for process simulation software.

6.5.3 B U S I N E S S A S P E C T S

The market of process simulators is dominated by a few major providers such as
AspenTech Inc., AEA Technology Hyprotech and Simulation Sciences Inc., at
least for the off-line share of the simulation market. Exact figures are difficult to
obtain but 70% to 80% of the market may reasonably be considered as shared by
these three companies. Concentration in this market has been going on steadily
in the recent years. Or at least the concept of providing a whole range of solutions
for an enterprise ra ther than just simulation tools has been implemented. That
can be achieved through a string of well considered acquisitions, a simulation

568

company buying a number of niche suppliers. That can also be done by
integrating simulation companies within technological conglomerates providing a
large range of software related products.

Typically an industrial end-user is tied up with a single simulation package
provider or maybe two at the most when considering the links per business
branch within a company. Global supply agreements are often entered where a
number of licenses are provided up-front and then costs for additional licenses
are fixed. These licenses may be proposed as a bundle, that is not only licenses
for basic process simulation tools, but also for additional CAPE tools more
specific to a number of applications.

One-to-one relationships between an end-user company and a simulation tool
provider are common place. The simulation tool provider shapes the licensing
contract to the specificities of each end-user and more so when the client is a
large one. So a unique relationship tends to exist which is usually strengthened
by a number of years of relationship. But with the change of technology to a more
flexible and open environment this relationship could be subject to a fundamental
change in the CAPE domain.

One reason for this change is that component technology in connection with
industry standards such as CAPE-OPEN will open up the market for many small
software vendors offering specialised niche products. Developing such products
will become attractive for such vendors because when using the CAPE-OPEN
standard they can implement a component, which may then be used in all
simulators supporting the CAPE-OPEN standard. As two major simulator
vendors (AspenTech and AEA Hyprotech) already support the standard this is
likely to happen. A market survey has revealed some 2000 possible component
providers.

Customers will then be able to pick the components that optimally suit their
needs and employ them in their simulation in a plug-and-play manner. As the
next logical step, these components could be made available for download over
the internet (after paying a fee) and then be installed on a client's machine.
Finally, combining the products of different component vendors, component
marketplaces could be created on the web offering a wide variety of simulation
software components through a single web-site. We will come back to the idea of
a component marketplace later in this chapter discussing possible requirements
and business models.

As mentioned above, software components in connection with current internet
technology pave the way for ASPs in process simulation. ASP could come in
different flavours in that application domain. One option would be the 'classic'
ASP model where hosting and executing the simulator with all its components is
done on the ASP's machines. But the fully component based CAPE-OPEN

569

s tandard would also facilitate the ASP model for single components. Therefore, a
possible scenario would be a simulation run on your local machine with some
components (e.g. a powerful numerical solver, a CFD calculation or just a
component that is needed very seldom) performed on a remote computer (e.g. a
massive parallel machine). Finally, these ASP components could be offered in a
marketplace together with 'normal' simulation components. In combination with
flexible licensing models, this could form a very flexible environment for
simulation users enabling them just to buy or rent the software they need and
combine them in a plug-and-play manner. We will come back to these ideas later.
As an overall consequence of the new technology and s tandards in the process
simulation domain new service providers, besides classic software vendors, will
be likely to arise. The basis for one class of services offering computational
services will be ASP technology. The other class of services tha t will enter the
market are information services. They could come in form of online simulation
databases, component dictionaries with intelligent search mechanisms and many
others. Using the technologies mentioned above they can be integrated in modern
component based simulation environments. Later we will present more details on
these services and possible business models. Additionally, these services might be
combined with a marketplace for creating a one-stop full service simulation
portal [18,28].

6.5.4 CONTEXT: SOFTWARE C O M P O N E N T S FOR THE CHEMICAL
INDUSTRY

New technologies have to be assessed in order to unders tand their value for
business models in the CAPE domain.

6.5.4.1 S o f t w a r e c o m p o n e n t s

Modern software systems, especially large enterprise systems, tend to grow more
and more complex but require on the other hand increased flexibility. This
flexibility facilitates easy integration of new subsystems or the extraction of
functionality of parts of the system to be used elsewhere. Additionally, managing
interdependencies between different subsystems in a complex enterprise
environment has become a challenging task for software engineers. Therefore,
the component-based approach for design and implementat ion has become
popular and has proven useful [13].

Software components can be considered as the next step beyond objects. There
are several definitions of a software component which are similar but which each
emphasise part icular aspects. Some definitions can be found in [12,33]. Based on
these definitions the term "software component" is used in this chapter as
follows: "A software component is an executable, stand-alone piece of software
with a clearly defined interface and behaviour." The component's interface allows

570

other pieces of software (e.g. other components) to access its functionality. There
are different middleware approaches facilitating the implementation and
deployment of software components by providing low level communication
infrastructure, component lifecycle management, transaction services, and
similar services. The most prominent middleware systems are (D)COM, COM+
and the .NET framework by Microsoft [24,25], CORBA created by the Object
Management Group [26], and Enterprise Java Beans by Sun Microsystems [17].
In addition several proprietary middleware systems exist. Additional information
on middleware is presented in Chapter 4.1.

The fact that software components are stand-alone pieces of software, which can
be delivered and deployed, in a given environment makes them a good candidate
for being traded on the web in a component marketplace. In fact several concepts
and technical architectures for web-based component marketplaces have been
developed [1,5,14,36]. However, all of these marketplaces follow a horizontal
approach, i.e. the type of components that can be sold is not limited to specific
domains. The horizontal approach can become a problem for various reasons; for
example, the more generic a component is, the more technical understanding of
the developer and the more customisation for usefulness in a specific domain is
necessary.

6.5.4.2 C A P E - O P E N c o m p o n e n t s

The challenges for software engineering concerning integration and flexibility
aspects of complex software systems depicted above are also relevant to the
CAPE domain, especially to process simulation. Process simulators are tools
designed to create mathematical models of manufacturing facilities for processing
and/or transforming materials. Chemical manufacturing through continuous or
batch processing, polymer processing, and oil refining are examples of such
processes. Process simulators are central for designing new processes; they are
also used extensively to predict behaviour of existing or proposed processes. [16]
and [20] give an overview of trends and state-of-the-art approaches for
simulation-based process engineering.

This problem was addressed by the European CAPE-OPEN (see for example,
Chapter 4.3) initiative in which the chemical industries and major vendors of
process simulation software have accomplished a s tandard of open interfaces for
process simulation software [2,3]. The overall outcome of CAPE-OPEN was the
definition of a conceptual design and interface specifications for simulators,
which consist of an assembly of relatively large software components. As
illustrated in Figure 1 and discussed in more depth in Chapter 4.3, CAPE-OPEN
has identified the following standard components of a process simulator from a
conceptual point of view [6].

571

Modular Process Modeling

Ex~iutiv e IT
I[

Operation I I Operati~ II Operation I ~ , I
Modui~ II M odul~ II Modul~ I

1[1[tT I ,i
Properties II Properties II Properties I

Figure 1. CAPE-OPEN simulator components

�9 Unit Operation Modules (Units) represent the behaviour of physical
process steps or apparatuses (e.g. a mixer or a reactor). They are linked to
the simulation flowsheet, which represents an abstraction of the plant
structure, and they compute the chemical results of the process steps they
represent. The overall process model which represents the plant is
assembled from predefined unit libraries.

�9 Physical Properties (Thermodynamics) Packages: an important
functionality of a process simulator is its ability to calculate
thermodynamic and physical properties of mater ials (e.g. density or boiling
point). Typically, they consist of a database containing many simple
properties for a set of chemical species and a set of calculation routines for
more complex properties based upon specific mathemat ica l models.

�9 Numerical Solvers: the mathemat ica l process models of a unit operation or
a complete plant are large systems of equations and highly non-linear. An
analytical solution is impossible. Therefore, iterative, numerical
approaches are either used to solve the equations of a single unit operation
module or to solve the overall flowsheet.

�9 Simulator Executive" the simulator core controls the set-up and execution
of the simulation, i.e. analysing the flowsheet and calculate the units.
Furthermore, it is responsible for a consistent flowsheet set-up and error
checking. The simulator executive itself is not a component but a platform
tha t co-ordinates the actions performed on the various components
described above.

The semantics of these components and their interdependencies have been
defined in terms of UML diagrams, COM and CORBA interface definitions, and
textual descriptions [8].

572

6.5.5 R E Q U I R E M E N T S F O R A C A P E - O P E N C O M P O N E N T
M A R K E T P L A C E

As explained above, component technology in combination with internet
technology and industry domain standards such as CAPE-OPEN can be used for
t rading software components over the web. For creating such a marketplace and
associated IT services an overview of electronic business transactions as
applications of a classic three-phase model for business transactions [28] will be
presented. Then the requirements for customers, vendors and intermediaries (e.g.
a marketplace owner) will be discussed and possible business models will be
derived. Some of the services and business models presented here would also be
valuable outside a marketplace context. Therefore, possible combinations of these
services will be discussed as well.

6.5.5.1 A m o d e l o f an e l e c t r o n i c b u s i n e s s t r a n s a c t i o n

During a commerce process, the involved part icipants usually go through three
phases [28]. Firstly, a par ty looks for potential business partners. A buyer wants
to find relevant suppliers of the product he/she is looking for; a seller might want
to find potential customers for the products he/she can supply. After locating
potential (new) partners, the second step is to come to an agreement tha t is
acceptable to all partners. Par tners might bargain about the price, might find a
compromise about the delivery dates, and might negotiate about quality aspects
of the products. The aim is to finalise a contract tha t specifies the business deal.
Therefore, this second phase concerns negotiation about details of the agreement
[31]. If the negotiation is successful then a business deal is struck and the
outcome is a contract which will then have to be processed by the partners in the
third phase, e.g. concerning logistics, payment etc. The general model that can be
extracted from the above observations is one of three phases, see Figure 2.

Figure 2. Three Phases of a Commerce Process [28]

573

The s e a r c h p h a s e is about finding business partners; the n e g o t i a t i o n p h a s e is
about finding agreements leading to a contract; the f u l f i l m e n t p h a s e concerns
the execution of the contract. It is important to state tha t not all of the three
phases are present in every commerce process. For example, if it is clear who the
negotiation par tner is, then no search needs to take place. Furthermore, the
three phases do not need to occur in a strictly sequential order. It is possible to
jump back, e.g. if it becomes clear that a certain negotiation is a dead end, then a
business par tner might want to come back to the earlier search results and start
new negotiations.

The three-phase model is independent of any technological means, i.e. it is valid
for traditional commerce processes as well as for electronic commerce
interactions (see its application in the MEMO-Mediat ing and Monitoring
Electronic Commerce-Project [http://www.abnamro.com/memo/]). For example, a
buyer might look for potential suppliers in the yellow pages, in the catalogues of
chambers of commerce or on the internet. In this chapter we will concentrate on
electronic marketplaces for business-to-business electronic commerce. The current
practices in such marketplaces can best be discussed using an example of an
existing business-to-business marketplace of the chemical industry called
chemUnity [http://www.chemunity.com]. A buyer's request containing
information about the product he/she wants to purchase, its type and
concentration, the delivery address and time is t ransferred via the marketplace
to all potential suppliers as specified by the buyer. Suppliers have a fixed amount
of time (usually 25 hours) to react. Those who choose to send an offer will be
taken into account. The marketplace based on the buyer's selection criteria
determines the best offer. If the best offer is within the price range indicated by
the buyer, then the transaction is completed and the following obligations exist:
The seller must supply the product(s) indicated in the original request whereas
the buyer must provide the payment according to the offer received.

Abstracting from the example, we can state general observations concerning the
three phases in electronic marketplaces as follows.

The search phase consists of (extended) keyword search based on some
classification, e.g. a product catalogue, a list of companies in a certain branch etc.
Using these kinds of search mechanisms presupposes good knowledge of the
search items by the search party and an appropriately structured search domain.
For example, if a company would like to find new business contacts or would like
to find suppliers of certain products that have different names in different
companies, then keyword-based search is clearly insufficient. More intelligent
search mechanisms are available [19] but will not be discussed here.

The protocols of electronic negotiations that are usually supported in electronic
marketplaces are auctions or electronic catalogues [31]. In the latter case, the
option is one of "take it or leave it" - either to order at the price specified in the

574

catalogue or not to enter into the business t ransact ion at all. Auctions can be
useful for settings as described above. However, even in the example of
chemUnity certain problems are obvious. Such a model cannot support complex
negotiations. For example, the cheapest supplier might not be the one offering
the best quality, the cheapest supplier might not be trustworthy, the third
cheapest supplier might be able to deliver much quicker than the cheapest one
etc. Furthermore, if negotiations concern frame contracts, then a different
negotiation protocol is required. Highly interactive exchanges that occur in
tradit ional commerce can be transferred to electronic commerce where, on the
one hand, the potential of information technology can be exploited to offer new
functionalities and support effective interactions and, on the other hand,
information technology cannot (and indeed should not) replace the human
negotiator by an automated software agent but ra ther support human
negotiators in their tasks [30,31].

The fulfilment phase is the one that is usually covered best in any electronic
marketplace. Payment models are supported (e.g. payment by credit card) and an
integration with the companies' logistic systems is achieved. If all goes well after
the contract has been finalised then such a model is sufficient. However, if
disagreements occur between the part ies as to which obligations need to be
fulfilled, whether certain duties have been carried out according to the
agreements made during the negotiation etc., there is hardly any support to help
solving such problems. No history behind an agreement is usually provided that
could help the part ies themselves or an independent third par ty to understand
why certain agreements have been reached and where the specific problem lies.
To summarise, there are potential problems with respect to current practises for
all three phases. Nowadays there exist a number of electronic marketplaces for
different branches. Therefore, a (new) marketplace requires additional
functionalities for all phases to make it attractive to part icipants and to
distinguish it from its competitors, e.g.,

�9 Search: To capture different relations between concepts, semantic search
mechanisms need to be provided so that similar and related information
can be found.

�9 Negotiate: A new negotiation protocol is required tha t is interaction-based
and supports the communication-intensive exchanges in complex
negotiations.

�9 Fulfil: Different payment models should be provided to capture the
different needs of various application contexts. Furthermore, a monitoring
component could help to observe the interactions and trace them back in
case of conflicts.

We have discussed before tha t software components are good candidates for being
sold in a web-based marketplace due to their properties. We have also pointed
out tha t for making a marketplace attractive, additional services should be

575

offered which can be effectively designed for a vertical, i.e. domain-specific,
marketplace only.

Next we will define the requirements for a CO marketplace from three different
viewpoints.

�9 Firstly, the component users, i.e. operating companies and others, will
view the marketplace mainly as a platform for buying the components they
are interested in without having to search individually for the vendors that
can provide them.

�9 Secondly, the component vendors see the marketplace mainly as a forum
for intelligent presentation. They can be found by interested customers
and can find prospective clients. Furthermore, vendors will get a notion of
the requirements in the market, thereby being able to quickly adapt to
changing needs.

�9 Thirdly, the marketplace provider is interested in an efficient management
of the marketplace and the related data. Effective interactions must be
ensured to attract participants willing to pay for joining the marketplace.

These different viewpoints lead to different requirements tha t will be discussed
in the following three sections.

6.5.5.2 R e q u i r e m e n t s o f c o m p o n e n t u s e r s

In each marketplace, the customers are the ones that determine whether the
market is successful of not. Every business model depends on the customer
buying the goods offered, regardless of how the money is actually earned. Thus
special attention has to be paid to the customers' needs. The most important
issue here is that the CAPE-OPEN standard must be easy to use. There are
several aspects considering this:

S u i t a b l e c o m p o n e n t s m u s t be e a s y to f ind

A typical CAPE-OPEN simulator executive (COSE) will contain a basic set of
units and solvers, maybe in a CAPE-OPEN compliant form or as proprietary
parts of the simulator (e.g. AspenPlus). This means tha t if a user (probably a
process engineer) needs additional components he/she is looking for some very
specific features. These features highly depend on the engineer's software
environment and the task in work. This can be the required interplay between
the COSE and other components already in use or special features of the model
the component implements. The component user will need a component
dictionary combined with advanced product search facilities that reflect the
complicated domain of process simulation.

While the CAPE-OPEN standard offers the possibility for small and medium-
sized enterprises to participate in the simulation component market as vendors,

576

the component user will surely not want to search through the product lists of
more t ha n a few suppliers. Therefore central ised locations are needed where
users can s tar t their search for components.

Therefore, a marketplace should offer a broker functionali ty so tha t a company
does not have to negotiate with each vendor about similar products. The broker
should be able to search through the products of several or all vendors using a
given specification for a component. It should then be able to present a list of
solutions to the customer or to select a specific product according to the needs of
the customer. The engineering company can thereby easily access a file of
components wi thout much overhead.

Sometimes a company will not find a component for a given task. The desired
component could be a slight var ia t ion of an existing component as well as a
complex and not yet developed implementa t ion of a model. CAPE-OPEN offers
the possibility for vendors and suppliers to tailor these components to the specific
need of a customer, which then can be in tegrated as plug-and-play component.
Using the broker functionality or through direct contact wi th a vendor the
customer should be able to negotiate about the tai loring of such a component.
Here it will be vital to produce an exact specification of the component to develop.
A marketplace has to support these negotiations in a s t ruc tured way to ensure
tha t the customer gets the required product. The CAPE-OPEN structures have to
be reflected wi thin the negotiation. On the other hand, the negotiation support
mus t be flexible enough to specify conditions tha t are impor tan t to the customer
but tha t are not par t of CAPE-OPEN.

F l e x i b l e l i c e n s i n g m o d e l s are n e e d e d

The CAPE-OPEN s tandard offers the possibility for a wide range of simulation
components - from easy but necessary variat ions of s tandard uni ts up to complex
and specialised s imulat ion or solver components. These different components
should be handled in the same way. The simple ones should be accessible without
dis turbance of the work process, some components will be often used by a process
engineer and should be added to her/his default set of components while others
will only be used once in a very specialised si tuation. Some components might
need calculation power tha t can be offered by an ASP and do not run in the
engineer 's local network.

The CAPE-OPEN s tandard offers a flexibility tha t can be used to realise a huge
set of different license models for components. The license models in the process
s imulat ion domain have to be more flexible t han current license models for
software where the use of the software is usually restr icted to a certain time and
a certain set of individual or concurrent users. To reflect the different application
si tuations, license models are required in which the actual use of the component
is paid.

577

It is often not suitable to explicitly buy each component, in part icular concerning
standard components. The component user wants to select the necessary
component and use it immediately. To support this, components should be
bundled into groups that can be bought as a whole. Again it will certainly not be
useful to create fixed bundles of components-the user should not be forced to buy
a set of components of which he only needs some. To offer the greatest flexibility,
negotiations for component bundles should be offered. This should include
dynamic bundles that develop during the use of components. Here the customer
buys a number of components from a given larger set. A number of components
from this set can be used so that the customer can choose those components that
are useful for him/her and skipping those that are not required. Licensing
approaches should support these bundles both for static as well as for dynamic
sets.

Component label l ing ensures s tandard compl iance

Before buying or renting a component, the customer has to know that it is really
CAPE-OPEN compliant. Should it be otherwise, plug-and-play with such a
component would not be possible. Additionally, the CAPE-OPEN standard does
not cover every aspect of process simulators, e.g. performance aspects or
suitability for a specific COSE. Therefore, the components should be labelled to
guarantee s tandard compliance and other specific aspects. These labels should
contain the information whether the component can work in an arbitrary COSE
and whether the component supports additional features of the COSE that are
not part of the CAPE-OPEN standard.

Easy and fast dep loyment of software c o m p o n e n t s

The deployment of the CAPE-OPEN component in the COSE should work
without problems. As the standard does not specify how the deployment has to be
done, this should be incorporated with the COSE and the marketplace. For the
customer, there should be a way to select the necessary components using a web-
browser and plug them directly into the COSE in use. Special features of the
component according to a specific COSE should be considered.

User support

User support for customers should be available regarding the standard
definition. The standard specification documents have to be accessible in an easy
way and additional documents have to be supplied. These documents are special
collections containing frequently asked questions and answers (FAQs) and "HOW
TO"-documents that explain common tasks that arise with the standard.

In addition to buying ready-to-use components from component vendors, some
companies might want to develop their own CAPE-OPEN compliant components

578

to incorporate in-house software and knowledge into a COSE. To support this,
there should be self-training tools and migration guidelines tha t supplement
t raining courses and consulting. Other additional services could include online
process and proper ty databases or expert forums helping in creating a model for
a specific process.

6.5.5.3 R e q u i r e m e n t s of c o m p o n e n t vendors

Until now we have looked at customers that buy a CAPE-OPEN component to
use it with a COSE. Now we take a look at component vendors. Here vendor
means a software company or operating company as the developer of in-house
software. A vendor develops CAPE-OPEN compliant components and uses the
marketplace to offer these components. Here other requirements for the
marketplace arise:

Support for c o m p o n e n t d e v e l o p m e n t

As in the case of the customers the marketplace should offer a wide range of
support for the CAPE-OPEN standard. The developer should find all necessary
information for development at the marketp lace- the marketplace should
especially be linked with the CO-LaN.

Make c o m p o n e n t s avai lable and find cus tomers

Small and medium-sized enterprises (SMEs) can use the marketplace to enter
the market of CAPE software. Small but specialised companies can use the
s tandard to bring their own expertise to the customer. For example, it has been
hard up to now to use a custom tailored model for a unit within the simulation of
a whole plant. With CAPE-OPEN, this model can be plugged into the COSE and
cooperate with the rest of the structural plant model. For small companies
developing such components, it is vital to find customers. A marketplace gives
the opportunity to do so.

For SMEs as well as for large software vendors it is vital tha t the customers find
the components offered. Therefore a marketplace can make the components and
data about them available so that a customer can search the components
according to his or her needs. The vendors therefore have to specify information
about the components that can be used in a search.

Large software vendors might be interested to offer their own marketplace of
components. Since not even large vendors will offer components for every
situation, they will be interested to augment their own set of components with
niche products tha t they cannot/do not want to offer. Here small and large
vendors can cooperate to offer a marketplace that is highly attractive to
customers.

579

A marketplace can be used not only to offer products but also to find customers
looking for a specific new component. Combined with the above mentioned broker
functionality, vendors can be able to find orders for new products that do not yet
exist. Again, a detailed negotiation between customer and vendor or between
broker and vendor is necessary to specify the exact requirements for the
component. Only if a marketplace actively supports these features, smaller
software vendors will be able to find new customers. It opens up the market for
software companies specialised in developing hand-tailored software in the
CAPE-domain.

Additional services

If the marketplace offers the possibility to test a component as CAPE-OPEN
compliant, the customer can be sure to buy components with a certain quality. A
testing facility therefore makes the marketplace more attractive for the
customer. As we have already seen the CO compliance alone might not be enough
as a quality indicator. Component labelling according to other quality factors
such as performance checks and specifications should therefore be available.

As a marketplace collects a large amount of information about the market of
software components the marketplace provider (e.g. a large software vendor) can
easily and automatically create market surveys that can be used to show up the
potential for new products or the modification of existing products.

6.5.5.4 R e q u i r e m e n t s of marketplace provider

This section will describe the requirements of the marketplace provider. We will
present the requirements independent of the provider's original role, i.e. the
marketplace could be provided by a large vendor company, by a consortium of
users or niche providers, or by an independent organization.

Firstly, the marketplace has to manage data for various aspects. On the one
hand, there is static data such as product and company profiles, which will not
change very often. The marketplace has to provide a coherent and
understandable data model, so that search on the profiles is facilitated and the
results are comparable [27]. For example, the data model for products must be
able to represent very different but very specific descriptions of the products. On
the other hand, dynamic data that is created during a business transaction must
also be managed. Dynamic data are, for example, the results of a search, the
messages exchanged during a negotiation, and the traces recorded during the
fulfilment.

To make the marketplace more competitive the marketplace provider has to offer
additional services. One example are t rust services that can be provided by the
marketplace provider itself or by a trusted third party (TTP) such as a bank, an

580

insurance company, or an umbrel la organisat ion [9,10,21,22]. The TTP will act as
the monitor of the marketplace [29]. The TTP can monitor the messages, which
are exchanged between business par tners during the negotiat ion or fulfilment
phase [29]. In case of a conflict, the TTP has to provide the da ta which has been
recorded for the given business transaction. This data can then be used to resolve
the conflict. From a technological point of view, the marketp lace needs, therefore,
tooffer interfaces tha t allow the TTP to monitor a t ransact ion.

Finally, the marketp lace provider can take over a more active role as an
in termediary between customers and suppliers of components. As the provider
knows what the customers are looking for, the provider can provide this
information about current user demands to the vendors. This can also be done in
the opposite direction, i.e. new products offered by vendors can be advertised to
potential customers who have recently been looking for a similar component.
These functionalit ies can be supported technically by da ta mining applications.
Data mining is a mechanism to detect pa t t e rns in large da ta sets. In this context,
it can be used to detect repeat ing demands of customers for similar products.
Fur thermore , the marketplace provider can support the customer during the
negotiation phase by conducting pre-negotiations with potent ia l suppliers, so tha t
the customer does not have to deal with many vendors s imultaneously when
he/she is looking for one component.

All of the three types of requi rements can be fulfilled in different ways. Based on
the requirements , we can derive new (future/emerging) business models, which
are described in the next section.

6.5.6 BUSINESS MODELS

Based on requirements , a number of services can be derived. These services can
become the basis for various business models. Depending on the type of service
these business models could be applied by three kinds of companies: component
vendors, marketplace owners, or independent service providers. However, there
could be intersections between these groups. A marketplace owner could possibly
be a completely independent company. But it seems more likely that a large
software vendor(s) or a user group would operate such a marketplace. The same
holds for the independent service providers, which could offer their services to be
plugged into a marketplace or to be used directly by the software vendors and
users.

6.5.6.1 C o m p o n e n t d ic t ionar ies

As we have seen for the requirements of component users as well as those of
suppliers, the most impor tan t thing is to have a platform for offering and finding
components. Therefore, the most impor tant service tha t has to be offered is a

581

component dictionary, that includes information about components and its
vendors. This service will be a par t of the CO-LaN tha t will not offer features
such as advanced search mechanisms. In part icular the advanced search will be
the added value of a component dictionary, the complex field of CAPE
components needs more than a search based on 5 categories (e.g. vendor,
operating system, unit type) to reflect the often fine-grained differences between
units or mathemat ical models.

The business models related to component dictionaries are similar to those of
internet search engines: The search engine is an ideal advertising platform or an
integrated feature to another service. Another option would be to charge fees for
entering or retrieving component information into the dictionary. Thus it is
possible to have the dictionary as a stand-alone service or as par t of a
marketplace. While the stand-alone service will have to concentrate on offering a
most complete list of components, the integrated service will have to support the
vendors tha t participate in the marketplace.

6.5.6.2 A S P s e r v i c e s

The ASP can fulfil different roles each of them offering different business models.
Mostly, an ASP will offer several of activities mentioned here and make its
money from a combination of the business models presented here [18]. The ASP
could be a software vendors itself, the marketplace owner or an independent
provider.

The ASP may own and mainta in the software (component) and charge licence
fees to the users. The charges can be base on various license models depending on
his relation to the customer. The customer can hold a permanent licence for
unlimited access (maybe for a limited time) to the software as the s tandard
model. More flexible approaches such as pay-per-time, pay-per-use combined
with a monthly base fee or software bundling are more advanced options.

The ASP may host the software (i.e. execute it on his machines) and provide
access via the Internet or a private network for the customer. Additionally, the
ASP takes care of maintaining hardware, software, and other services, e.g. doing
backups. Depending on the security and availability, the ASP can guarantee the
customer has to pay a monthly fee.

The ASP may host and/or own data-related services such as the component
directory mentioned above or any other kind of online database. Access to such a
service may be charged on a transaction base or as by monthly fee. A variant of
this model would be data push services where the ASP automatically provides
data to the customer without letting the client explicitly ask for it (e.g. stock
quotes). Charging models are similar to the lat ter case.

582

If the ASP has programming competency it can also offer customisation and
integration services. This means that it is responsible for writing software that
connects the ASP's server site application with the ones running locally in the
clients network.

As the ASP is able collect user data it can use this information to make money by
selling it (e.g. by using data mining techniques, see below)

6.5.6.3 Community platform

A business opportunity that has already been taken up in some of the existing
marketplaces is that of providing community-building services [32]. Participants
in a marketplace share similar interests. For example, customers want to buy
software components for the chemical industry that adhere to a certain standard
and quality. By setting up and maintaining such a community platform, the
marketplace provider can supply services to a large group of users (be it vendors,
customers, or other participants) with similar demands. The main service is that
of providing information. In the present context, that could be, for example,
information about the CO standard, about the participants in the marketplace,
about specific components, about usage and set-ups of such components. A set of
frequently asked questions could be provided which prevents the provider from
having to answer similar questions by different parties while being able to
broadcast relevant information in an efficient way. The information provider
could, therefore, enable consulting via such a community platform. Furthermore,
individual consulting could be offered, targeted at specific groups of participants.
Access to the community could be restricted by charging a membership fee to all
companies or individuals wanting to participate thereby generating revenue.
This model has been applied by various business-to-business marketplaces.

6.5.6.4 Certification Authority

One of the key arguments for using software components in combination with an
software standard such as CAPE-OPEN is that plug-and-play interoperability is
possible. This facilitates easy and inexpensive integration of third party software
into the customers system. However, for plug-and-play to work, standard
compliance of the software components must be ensured. This can be
accomplished by performing tests for standard compliance on the software and
granting a label or certificate if the test is successfully passed.

In the case of CAPE-OPEN, labelling is first performed by the CO-LaN
organisation but it is planned that this activity will later be performed by other
companies (e.g. a large software vendor). The business model in this case will be
to charge a component supplier for performing and evaluating a compliance test
for the software component. This basic model is already implemented by the CO-
LaN organization. Additional tests with regard to suitability for running in

583

specific simulators or performance issues may also be included in more advanced
(and more expensive) test suites.

For the component vendor, going through these tests will be attractive because
the label will guarantee a certain level of quality of his software. Additionally,
the labelling company may maintain a detailed dictionary compliant components
(see above), which can be seen as marketing ins t rument for the vendor. The
certification authority could generate additional revenue by charging the vendor
for entering his data in a dictionary or by providing certification data to a
dictionary owner.

6.5.6.5 Broker p la t form

Since the interactions between vendors and customers as described before are not
direct but take place via a marketplace, an intermediary mediates between the
parties. This mediating role can be fulfilled by a broker system. Such broker
system would then support the three phases of a business transaction, namely
search, negotiate, fulfil [27]. The broker could also play an active role since it
acquires a large amount of knowledge about the market exchanges. For example,
the broker could find out business needs, bundle the requirements and sell this
information to the vendors. Pre-negotiations could take place about standard
requests that could be offered to the customers. Therefore, customers would not
have to negotiate about all requests themselves with many different vendors.
Apart from mediating, the broker could also act as a monitor. Conflict resolution
could be offered to the participants by monitoring the contract fulfilment.
Traceability can be used as a tool to find out what happened before, i.e. to see the
history behind agreements, which is helpful for all participants involved in the
business interactions [29,31]. Similar to the community platform access fees for
the broker platform could be charged. Another option would be a transactions
based fee scheme here based on the value of the business transactions.

6.5.6.6 Data m i n i n g

Another business opportunity is offered by the data gathered at the marketplace.
It contains valuable information about the behaviour of suppliers and customers
in the marketplace. New demands or trends can be detected by analysing this
data. Furthermore, the credibility of a vendor or a customer can be judged on the
traces of previous business transactions. For example, a customer could be
marked as less credible if he/she has often refused to pay for the delivered
components. On the other hand, the quality of the components of a specific
vendor may be considered low if customers often complain about them. All this
information is gathered during the operation of the marketplace in the
negotiation and fulfilment phases and can be offered to the participants as an
additional service. Of course, all parties have to agree to allow the collection of
this kind of information and to present it to the participants of the marketplace.

584

Vendors and customers will certainly agree to it, as not only negative s ta tements
as given in the examples before can be deduced from the data. Positive
s t a tements about the quali ty of a vendor or the credibility of customer can be
made as well.

The marketplace provider can also gather information about the efficiency of
specific licence models or negotiation strategies. The provider as an intermediary
be tween vendors and customers knows which models are used more frequently
t h a n others. The information about the most successful licence models can be
offered to vendor companies tha t then may result in the change of licence models.

6.5.7 C O N C L U S I O N

The discussion in this chapter shows tha t t rends in computer-aided process
engineer ing software are parallel to t rends in general IT. This also applies to the
most recent trend, the one towards opening up global marke ts through electronic
business including eMarkets for CAPE software components to include more
vendors, and Application Service Providing to enable more customers.

However, the complexity of CAPE software requires addit ional steps towards
making such innovative and beneficial solutions possible. One of the most crucial
requirements , addressed in our case by the CAPE-OPEN s tandard and the
re la ted methods and software tools, is the management , method and tool support
for a broadly accepted and learnable s tandard. In part icular , a global web-based
service can be developed this way.

On the solid ground of such a s tandard, the marketplace provider can be a
vendor, a coalition of customers, an independent organisat ion (e.g. a Trusted
Third Party), or various combinations of the above. Most important ly for
continuous innovation, SME's can enter the marke t previously dominated by few
vendors, and the large vendors can offer innovative combinations of their own
and of th i rd-par ty products. In this way, a well-designed eMarket-Place for CAPE
software can play a critical role in the fast-moving process industr ies once it has
gained an initial critical mass to be broadly used and accepted. The Global CAPE
OPEN consort ium is actively pursuing this avenue.

6.5.8 R E F E R E N C E S

[1] A. Behle" An Internet-based Information System for Cooperative Software
Reuse. In Proc. of 5 th IEEE Internat ional Conference on Software Reuse, pp 236-
245, 1998.

585

[2] B. Braunschweig , M. Jarke, A. Becks, J. KSller and C. Tresp: Designing
Standards for Open Simulation Environments in the Chemical Industries: A
Computer-Supported Use-Case Approach. In Proc. of the 9 th Annual Int.
Symposium of the Int. Council on Systems Engineering, Brighton, England,
June, 1999.

[3] B. Braunschweig, M. Jarke, J. KSller, W. Marquardt and L .v. Wedel:
CAPE-OPEN- experiences from a standardization effort in chemical industries.
In Proc. Intl. Conf. Standardization and Innovation in Information Technology
(SIIT99), Aachen 1999.

[4] Business Software Alliance: Building an Information Economy, Software
Industry Positions U.S. for New Digital Era, 1999.

[5] P. Buxmann, W. KSnig and F. Rose: The Java Repository- An Electronic
Intermediary for Java Resources. In Proc. of the 7 th Int'l Conference of the
International Information Management Assoc., 1996.

[6] CAPE-OPEN, Conceptual Design Document 2, http://www, global-cape-
open.org/CAPE-OPEN_standard.html, 1998.

[7] CAPE-OPEN, Project Programme, Annex I, Brite/EuRam Be 3512, 1996.

[8] CAPE-OPEN, Web-site, www.global-cape-open.org, 2001.

[9] A.M. Chircu, G.B. Davis and R.J. Kauffman: Trust, Expertise, and E-
Commerce Intermediary Adoptions. In Proceedings of the 2000 Americas
Conference on Information Systems, Long Beach, CA, 2000.

[10] T.H. Clark and H.G. Lee: Electronic Intermediaries: Trust Building and
Market Differentiation. In Proceedings of Proceedings of the Thirty-Second
Annual Hawaii International Conference on System Science, IEEE Computer
Society, 1999.

[11] L. Cohen et al.: External Service Providers (ESP): Delivering on the
Promise of Value. PC Week, June 1999.

[12] D. D'Souza and A.C. Wills: Objects, Components and Frameworks with
UML: The Catalysis Approach. Addison Wesley, Reading, MA, 1999.

[13] J. Hopkins: Component Primer. Communications of the ACM, 43(10),
October 2000.

586

[14] H.-A. Jacobsen, O. Giinther and G. Riessen: Component Leasing on the
World Wide Web. In Proc. of the 1 st ACM Conf. Electronic Commerce, ACM Press,
1999.

[15] S. Jagannathan, J. Srinivasan, J. Kalman, Internet Commerce Metrics and
Models in the New Era of Accountability, Prentice Hall, 2001

[16] M. Jarke and W. Marquardt: Design and evaluation of computer-aided
process modeling tools. In Proc of the Intl. Conference on Intelligent Systems in
Process Engineering (Snowmass, Co, July 1995), AIChE Symposium Series, vol.
92, 1996, 97-109.

[17] Java 2 Platform Enterprise Edition http://java.sun.com/j2ee, 2000.

[18] J. KSller, T. List and M. Jarke: Designing a Component Store for Chemical
Engineering Software Solutions. In Proc. 34th Hawaiian Intl. Conf. On System
Sciences (HICSS-34), Maui, 2001.

[19] C.J. Leune: Final document on searching, querying and discovering
mec hanis ms. MEMO De live rab le 1.4, July 2000
(http://www.abnamro.com/memo/).

[20] W. Marquardt: Trends in Computer-Aided Process Modeling. In Computers
and Chemical Engineering, 1995.

[21] R.C. Mayer, J.H.Davis and F.D. Schoormann: An Integrative Model of
Organizational Trust. Academy of Management Review, 20(3), 1995, 709-734.

[22] M. Merz, W. Lamersdorf and K. Miiller: Trusted Third-party Services in
COSM. Electronic Markets, 4(2), 1994, 7-8.

[23] Microsoft Corporation: Application Service Providers: Evolution and
Resources. White Paper, 2000.

[24] Microsoft COM web-site www.microsoft.com/com, 2001.

[25] Microsoft .NET web-site, www.microsoft.com/net, 2001.

[26] OMG CORBAweb site: www.omg.org/corba, 2001.

[27] C. Quix and M. Schoop: Facilitating Business-to-Business Electronic
Commerce for Small and Medium-Sized Enterprises. In Proc. First Intl.
Conference on Electronic Commerce and Web Technologies, EC-Web 2000,
Greenwich, UK, September 2000, pp 442-451, Springer Verlag.

587

[28] M. Schoop, J. KSller, T. List and C. Quix: A Three-Phase Model of
Electronic Marketplaces for Software Components in Chemical Engineering. Proc.
of First IFIP Conference on E-Commerce, E-Government, E-Business, Zurich,
Switzerland, October 2001 (to appear).

[29] M. Schoop and T. List. To Monitor or not to Moni to r - The Role of Trusted
Third Parties in Electronic Marketplaces. In Proc. Wirtschaftsinformatik 2001,
Augsburg, Germany, September 2001 (to appear).

[30] M. Schoop, C. Quix: Towards Effective Negotiation Support in Electronic
Marketplaces. In Proc. Tenth Annual Workshop on Information Technologies &
Systems, WITS 2000, pp 1-6, Brisbane, Australia, 2000.

[31] M. Schoop and C. Quix: DOC.COM: Combining document and
communication management for negotiation support in business-to-business
electronic commerce. In Proc. 34 th Hawaiian Intl. Conf. On System Sciences
(HICSS-34), Maui, 2001.

[32] K. Stanoevska-Slabeva and B. Schmid. Requirements Analysis for
Community Supporting Platforms based on the Media Reference Model.
Electronic Markets 10(4): 250-257, 2000.

[33] C. Szyperski: Component Software: Beyond Object-Oriented Programming.
Addison Wesley Longman Ltd, 1998.

[34] G. Tamm and O. Giinther: Business models for ASP marketplaces. In Proc.
12 th European Conference on Information Systems (ECIS 2000), Vienna, 2000.

[35] G. Tamm and O. Giinther: On-Demand Application Integration: Business
Concepts and Strategies for the ASP Market. In Proc. 4 th Workshop on Federated
Databases, Shaker, 1999.

[36] E. Whitehead, J. Robbins, N. Medvidovic and N. Taylor: Software
Architecture: Foundation of a Software Component Marketplace. In Proc. 1 st
International Workshop on Architectures for Software Systems, Seattle WA,
April 24-25, 1995, 276-282.

This Page Intentionally Left Blank

589

P a r t VII: C a s e S t u d i e s

7.1 Case s t u d i e s in design and analysis
B. Bayer, M. Eggersmann, R. Gani & R. Schneider

7.2 A p r o t o t y p e for o p e n a n d d i s t r i b u t e d s i m u l a t i o n w i t h COM and
CORBA

V. Siepmann, K.W. Mathisen & T.I. Eikaas

The chapters of this part present the modern use of CAPE tools and
architectures on representative process examples. The designers and
developers of these examples from the Global CAPE Open project have also
written these chapters.

Chapter 7.1 (Bayer et al) highlights the need for a number of CAPE
methods and tools during the lifecycle stages of conceptual process design.
Two case studies are presented. For each of these case studies, the activity
model, the workflow and the dataflow are presented, highlighting the need
for different tools and how they can be used efficiently through appropriate
interfaces. The two case studies deal with the conceptual design of processes
for the production of methyl acetate and production of polyamide6.

Chapter 7.2 (Siepmann et al.) highlights the need for open simulation
environments with a prototype describing two alternative COM CORBA
bridges. The prototype highlights, for example, wrapping around an
external third party software (in this case, a Fluent CFD simulation
package) for multilevel modelling purposes.

This Page Intentionally Left Blank

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
�9 2002 Elsevier Science B.V. All rights reserved. 591

Chapter 7.1: Case Studies in Des ign & Analys i s

B. Bayer, M. Eggersmann, R. Gani & R. Schneider

7.1.1 INTRODUCTION

The objective of this chapter is to highlight the need for interfaces and standards
through the description of the activities during the conceptual design stage of the
process design lifecycle involving the design of two processes. Two case studies
have been used to highlight this. The case studies do not provide numerical
results but point out the work-flow and data-flow associated with the solving of
the conceptual design problems related to these case studies. In this way, the
reader can get an idea of the need for standard interfaces when solving practical
design problems.

The first process (case study)involves conceptual design for the production of
methyl acetate while the second process (case study) involves the production of
polyamide-6. Both case studies employ a number of commercial software as well
as software developed in-house (in academic institutions). More details on these
software can be found in chapters of parts III, IV and V.

A description of the various stages of the process design lifecycle is described in
chapter 2.3.

7.1.2 CASE STUDY: METHYL ACETATE

7.1.2.1 Introduction

Methyl acetate is an ester of some industrial importance. It is used mainly as a
solvent for fast-drying lacquers and as solvent for cellulose nitrate and other
cellulose derivatives. In 1985 the yearly production of Methyl Acetate was 17,350
tons and one production technique is esterification of methanol and acetic acid
with water as by-product.

CH3OH + CH3COOH r CHaCOOCH3 + H20

592

The principal side-reaction leads to small amounts of di-methyl Ether (DME) by
the elimination reaction of two methanol molecules:

2 CH3OH <:> CH3OCH3 + H20

Reaction information can be obtained from Kirk-Othmer [1], RSnnback et a/.[2],
PSpken et al. [3] and Song et a/.[4]. Additional equilibrium mixture data is
available in the Dortmund database. A search of the literature and in databases
is necessary to collect all the relevant information. From the literature, at least
six alternative flowsheets can be found (Siirola [5], Jaksland [6], Pilavachi &
Sawistowski [7]). Examples of industrially used Mass Separation Agents for
different separations can be found in Perry et al. [8]. A conventional flowsheet of
the process is illustrated in Figure 1. In the separation step it involves extractive
distillation, azeotropic distillation, a decanter and extraction. Based on an
algorithm using thermodynamic insights Jaksland [6] proposed the alternative
flowsheet shown in Figure 2 involving only four columns. The analysis involves
the use of several computer aided tools. A tool is used for mixture analysis to
identify binary and ternary azeotropes, liquid-liquid phase splits and distillation
boundaries. Moreover a tool is used for solvent selection using Computer Aided
Molecular Design (CAMD) technology. Several alternatives have been proposed
applying both azeotropic, extractive and pressure swing distillation for the
different separation tasks.

593

MeOH | MeAc ~ r ~
Catalyst ' H20 ~1~, 99.9% i ~ IM~ H

~ MeAc MeAc I ~ I ue~ I ~ F~o,ventl I ~ 1

ACOH
H20

H20

Decan,er

I AcOH
Heaviers

h

H20
He

Figure 1: Conventional flowsheet for the methyl acetate process, Siirola [5]

,MeOH

MeOH
MeAc 99.9%

I H20 AcOH

AcOH
MeOH 1 ba--~r

[AcOH

Figure 2: Alternative flowsheet for methyl acetate production proposed by
Jaksland [6]

It is feasible to combine the reaction step and the separation step in a single
reactive distil lation column. An equilibrium-based reactive distillation column
can be set up and simulated. It has been possible to obtain approximately 90%

594

pure methyl acetate as a product. When the reactive distillation column is
combined with a conventional distillation column, high purity methyl acetate
product can be obtained. The flowsheet in this case is just two distillation
columns, one reactive and one non-reactive.

~ ~ ~ MeAc~
AcOH

Catalyst "-

reaction'
section :

iiiiii

,J section ~ MeAc
MeOH

MeOH

Figure 3: Methyl Acetate produced by reactive distillation

This case study is chosen for the following reasons:
�9 Many of the steps involved in the early phase of the conceptual design can

be highlighted through this case study.
�9 Esterification processes are of industrial significance.
�9 This process has been well studied (at least six flowsheets proposed in the

open literature).
�9 Kinetic reaction data is available.
�9 The system has complex physical behaviour (e.g. azeotropic mixtures).
�9 Several CAPE tools are required for the analysis.
�9 Both traditional and hybrid separation processes (reactive distillation) are

involved.

7.1.2.2 S tages of the p roces s des ign l i fecycle

The activities, the scenarios, the data-flow, work-flow and the interface
requirements for selected stages of the process design lifecycle related to
conceptual design are highlighted in this section. A detailed description of other
important stages of the process lifecycle, such as, studies related to operation and
controllability, safety & hazards, environmental assessment, etc., can be found in
Bayer et al. [9]

595

Mode l l ing of k i n e t i c reac tor

The main activity here is to prepare a kinetic model of a liquid phase reactor,
which would be needed in process simulation for design and analysis. Figure 4a
and 4b highlight the sequence of the main activities related to the development of
a kinetic reactor.

Chemist

Kinetic
analysis

Obt "ad~kinetic

Determination ~'~
of rate law /

J

Modelling expert

Property
estimation

Determination
of rate law

Kinetic
Parameter
estimation

Define
reaction model

Figure 4a Work-flow for modelling of reaction kinetics

The start ing point for this activity is the selection of the reaction path. Once the
reaction pa th has been selected the kinetics must be studied. A kinetic analysis
may be performed in the laboratory to produce kinetic data or the data might be
obtained from li terature. From data and physical insights a suitable rate law is
determined and through kinetic parameter est imations the reaction model is
defined. The reactor model can then be generated, for example, in a modelling
testbed and used for simulations of the reactor operation. When a suitable model
has been fixed it can be exported to a process simulator.

If a reaction model cannot be found in l i terature such a model may be generated
based on experimental work. The Chemist needs access to the fundamental
physical data of the involved compounds. These may be supplied from li terature
or from the modelling expert. The Chemist plans the experimental work and
collects the data in a Spreadsheet together with date, experimental conditions,
batch numbers, etc. From the behaviour with respect to concentration and
tempera ture dependence, models are chosen for fitting the data. The parameters
in the model are fitted using t h e experimental data, i.e. an interface is needed
between the spreadsheet (or other data collection program) and the parameter
est imation tool.

596

Having a kinetic model with fitted parameters we can predict the reaction
behaviour within certain operational limits. This forms the basis of the reactor
design. Possible reactor designs are investigated in co-operation with a reactor
expert who provides the fundamental models for the different reactor types. The
modelling expert combines the reactor models and the kinetic model (and
possibly the physical properties model) to generate the reactor model. An
interface is thus needed between the kinetic parameter estimation tool and the
reactor modelling tool.

The reactor model is tested in the modelling tool by the reactor expert. The
results from different runs should be collected in e.g. a spreadsheet, i.e. the
modelling should be interfaced with a data collection tool. When the model is
documented and has been tested and the reactor expert is satisfied with it, it
should be exported as a GCO compliant unit to a process simulator. The
modelling tool should therefore be interfaced with a process simulator (see Figure
4b). Table 1 summarizes the interface between different types of tools that may
be used development of the kinetic model.

Modelling expert Reactor expert

Model reactor -'~
Generate

reactor model

I

Export reactor
model to
flowsheet
simulator

Literature
search

Generation of j~
alternatives for

the reaction

1st 1 investigation CSTR
Model reactor 1

Estimation of
reaction

product at
different

conditions

Evaluation of
reactor type
and operating

ranges
I

Figure 4c Simulation and evaluation of reactor

597

T o o l A

Excel

User

Kinetic parameter
estimation tool
User

Modelling tool

Modelling tool

Table 1. Interface between different types of tools

Tool B

Kinetic parameter
estimation tool
Kinetic parameter
estimation tool
Modelling tool

Modelling tool

Spreadsheet

Process simulator

A -) B

Experimental data

Kinetic model

Kinetic model

Reactor equations

Results of reactor
simulation
Unit model

B -) A

Results of reactor
simulation

D e f i n i t i o n o f t h e r m o d y n a m i c m o d e l

The main activity here is to set up a thermodynamic model, which can predict the
necessary physical properties of the individual pure components and their
mixtures. The activity diagram and thesummary of interface requirements are
highlighted through Figure 5 and Table 2, respectively.

In order to model the process an accurate model of the physical behaviours is
essential. Pure component and mixture properties are taken either from
literature or experimental data. If l i terature data cannot be found and
experimental work is constrained by time and/or money, physical properties can
be estimated using CAPE tools. From an analysis of the process type and
operating conditions a suitable properties model package can be selected.
Relevant property model parameters can be fitted and/or tuned from
experimental data using a tool for parameter estimation.

598

Chemist

u"a'u e' I) database search

Get data for component
mixture properties properties

pretties
modal J

Literature I 1 database search

Experimental
work

Engineer - properties expert

Estimation of properties of compounds not found

~ Determination ~ ~)
of pure Analysis of component process properties

Choice of 1 properties mo~(s)

Parameter 1 estimation

Definition prq:~ties model for of
gi~n system

Figure 5. Selection of Thermodynamic Model

Many pure components are documented in the l i terature and the work will
therefore start with a l i terature/database search. If the properties of a compound
are not known, experimental work can be planned and performed. Data will often
be collected in a spreadsheet together with details of date, batch numbers,
conditions, etc. The experimental data can be fitted to the needed correlations
using a parameter est imation program. Thus, an interface is needed between the
spreadsheet (process model) and the parameter estimation program.
Fur thermore an interface is needed between the parameter estimation program
and the compound database. Est imates of pure component properties can be
obtained by using suitable CAPE tools. An interface is therefore also needed
between the property prediction tool and the compound database.

T o o l A

User

User

Table 2: Interface requirements for property prediction tools

Tool B

Excel

TMS
(Thermodynamic
Model Selection)

A - -) B

Experimental data

Compounds
Mixture composition
Type of operation
Temperature and

B - -) A

Suggested
thermodynamic
models
Literature references

599

Tool A

TMS

Excel

User

TML

User

Pr0Pred

Tool B

TML
(Thermodynamic
Model Library)
TML

TML

Compound
database

ProPred (Pure
component

A -) B

pressure range

Choice of properties
model

Tables with
experimental data
Objective function
Weights and scaling
factors
Parameters to be
fitted
Optimisation
method
Pure component
properties
Mixture interaction
parameters
Molecular structure
Estimation method

B - -) A

Interaction
parameters
Residual plots

Mixture interaction
parameters
Vapour pressure
parameters
Primary properties
Secondary properties

property
prediction)

Compound
database

Pure component
properties

(functions of more
than one property)
Functional (functions
of T and P)

The next important step is to describe the properties of the mixture. First of all a
literature search takes place in order to determine if interaction parameters are
already available. If not experimental work needs to be planned and performed.
A chemist and the properties expert discuss the choice of properties model from
the knowledge of mixture behaviour and which types of calculations are involved,
for example, phase diagrams. An expert system can assist in the choice of
properties model. The model parameters can then be fitted to the experimental
data using a parameter estimation tool. An interface between the expert system
and the parameter estimation program is useful. Mixture interaction parameters
are transferred to the compound database, and an interface is also needed for
this.

S e l e c t i o n of s e p a r a t i o n s e q u e n c e

The principal activity here is to determine the separation sequence. The activity
diagram and the summary of the interface requirements are highlighted through
Figure 6 and Table 3, respectively.

600

A driving force based technique for process synthesis that determines a near
optimal separation sequence is determined. First mixture data is calculated from
a properties model. From this data the driving force (or secondary separation
efficiency) curves are generated for each adjacent pair of key components at
uniform pressure. This identifies feasible separation techniques and conditions of
operation. Mixture data is analysed using ternary phase diagrams and residue
curves. Scaling factors are applied to penalise non-sharp separations and
compensate for diluted feed in the driving force curves. New driving force curves
are calculated and the separation sequence is determined on this background.

Initial information for the separation expert is the compounds present, an
appropriate properties model and an estimated pressure throughout the system.
Necessary data can be generated using information from a compound database
and a tool for validation of generated process alternatives, for example, a process
simulator. An interface is required between the compound database and the
simulation tool. The phase composition data can be transformed into a
composition driving force diagram. An interface is required between the
simulation tool and a graphical tool. For many systems ternary phase diagrams
with residue curves are also generated. An interface is therefore also required to
transfer compound and property model information from the process simulator to
this tool.

The separation expert analyses the composition driving force diagrams and
ternary phase diagrams in order to determine possible products, phase
boundaries, ternary azeotropes, feasible separation techniques, feasible
conditions of operation and evaluates the sizes of composition driving forces.
From this information the separation sequence (including hybrid separation
techniques) is determined. Both distillation columns and other unit operations
can be included. In case of a distillation column sequence, the first column is
analysed using a tool for Process Design (PDS). From information of compounds,
property model, pressure, equilibrium data, column feed composition, desired
product composition, the reflux ratio and the minimum reflux ratio, PDS
generates scaling factors, determines near optimal feed plate location, generates
operating lines and estimates the number of stages required. Thus, an interface
is required between PDS and the process simulator for the validation phase of
the design.

The remaining columns in the separation sequence are then investigated in the
same manner using PDS. When all the columns in the separation sequence have
been designed, all the design data can be transferred to the process simulator
through a suitable interface. The separation system is then verified by simulation
using appropriate process models.

601

Separation Expert

Generate mixture
data (VLE, LLE,

SLE, etc.)

Generate driving
force plots (binary

split and
multicomponent

mixtures)

Generate temary
phase diagrams

and residue
curves

I I

Analysis of
composition
driving force

diagrams
I

1

~r t

Determination of
separation sequence

(including hybrid
separations)

ternary phase
diagrams and
residue curves

1

Analysis of 1

)
_ Determine ~'~

scaling factor)

~176)

~' %,-,=ees:u:nS'n J)
t f Verify separaton
I] s s];,u::,i~!;n~ ~

Figure 6. Separation sequence

602

Table 3. Interface requirements for sc

I Tool A Tool S

.... User ICASSIM (Process

Compound
database

User

ICASSIM

User

PDS

Simulator)

ICASSIM

PDS (Process
Design Studio)

PDS

PDS

ICASSIM

Ftware tools for separation process design

A - -) B

Compounds
Properties model
Pressure
Pure component
properties
Mixture interaction
parameters

Compounds
Properties model
Pressure
Column feed
composition
Desired product
composition
R / Rmin

Topology of column
sequence
Distillation column
designs:
Feed plate location
Number of stages
Reflux ratio

B - -) A

Phase composition
data
Driving force plots

Ternary phase
diagrams
Azeotropes (binary
and ternary)
Heterogeneous liquid
boiling surface
Residue curves
Distillation
boundaries
Liquid miscibility

Feed plate location
Operating lines
Estimated number of
stages

D e s i g n of an e x t r a c t i v e d i s t i l l a t ion s y s t e m

The main activity here is to design an extractive distillation system for
separation of Methyl Acetate from Methanol. A suitable entrainer also needs to
be found (selected) and the optimal design of the column system is to be
determined. Figures 8 a - 8c show the activity diagrams for this step. The
interfaces between tools are summarized in the Table 4.

From a mixture analysis a list of candidate entrainers is found. Feasibility is
checked by binary and ternary mixture analysis. An initial column design is

603

proposed by a distillation design expert and a suitable steady state model for the
column is determined. The extractive column is first modelled in a steady state
simulator. An optimisation problem is formulated and the extractive column is
optimised. Then the solvent regeneration column is added to the simulation and
the system re-optimised. By using the different candidate entrainers, the most
suitable entrainer can be chosen.

For extractive distillation a suitable solvent is needed. From the problem
definition and the compounds, which need to be separated, a l i terature study is
performed by the properties expert to identify already used solvents. A number of
constraints on physical properties are then formulated, e.g. boiling point range,
azeotrope behaviour, etc. Constraints can either be formulated in order to find a
solvent with equivalent properties to an already known solvent or in order to
fulfil some desired properties, e.g., high selectivity and high solvent power. A list
of feasible solvents is generated using a Computer Aided Molecular Design
(CAMD) tool. This list is then screened with respect to availability, health and
safety aspects, operational aspects and solvent price. From this analysis a list of
feasible candidate solvents are generated for further analysis.

The candidate solvents are analysed with respect to their mixture behaviour.
Binary VLE diagrams are generated for the different combinations of solvents
and mixture components. Ternary phase diagrams are generated to identify
binary and ternary azeotropes, liquid-liquid phase splits, distillation boundaries
and residue curves. An interface is required between the CAMD tool and the
binary and ternary phase diagram analysis tool. From the analysis of the mixture
behaviour of the different solvents the most promising candidate solvents are
chosen.

The separation objective and the feed flow conditions are used by the distillation
expert in order to determine column type and approximate column parameters
(number of plates, feed plate locations) and a start ing point for column
parameters (reflux ratio, vapour boil-up, etc.). This information is used by the
simulation and optimisation expert to set up and simulate a steady state column
model.

504

Properties expert

Availability and
feasibility

study

I

Literature
search

Molecular
Design

I I

and safety
study

l

+
Generate list
of candidate

solvents

Binary mixture
analysis

feasible
candidate
solvent(s)

Figure 8a. Extractive distillation--properties expert

The simulation and optimisation expert formulates and solves a steady state
simulation of the extractive column using the information from the distillation
expert. An interface between the CAMD tool and the process simulator is useful.
An optimisation problem is formulated, which can include capital cost models,
utility cost, solvent price and constraints on operation and purities. From
knowledge of feasible control variables, appropriate optimisation variables can be
selected. The optimisation is formulated mathemat ical ly in the optimisation
solver. An interface between the process simulator and the optimisation solver is
required in order to include the column model in the optimisation problem. The
column model operating under 'optimal' conditions is then extended with a
recovery column, which is used to recycle the solvent back to the extractive
column. The simulation model is updated and the optimisation problem is
extended to incorporate the new column. The outcome is a steady state
simulation model of an extractive distillation system with optimal operating
conditions.

6 0 5

Distillation design
specialist

~ ~'~euOl~
~ ~~ I~ sizing of

column

controlled
variables

~ ~et !~
appropriate
performace

specifications

~ Oe~a~e~ ~
distillation

column model

I

Simulation and
optimisation specialist

Model and
simulate

steady state
column

Figure 8b. Extractive distillation - - distillation design specialist

606

Simulation and optimisation
specialist

Model and)
simulate 1 steady state
column

~1 Oe,,ne=) ~ Select objective optimisation variables

~ Define ~ constraints

Define optimisation
problem+

~ Op~mise
extractive column

column to
simulation model

Steady state
simulation of

model

extend
optimisation

problem

Optimise 10 column
system

Solvent selection

Steady state
simulation with
closed recycle

stream

Figure 8c. Extract ive dist i l lat ion - S imu la t ion and opt imisat ion expert

607

T o o l A

User

Table 4. Interface requirements for integrated process design

Tool B A --~ B B --~ A

User

Process
simulator

ProCAMD

Components
Reaction models
Separation models
Properties model
Simulation strategy
Numerical solver

! Units of measurements
' Flowsheet topology
Feed streams
Unit specifications

Unit and stream
summary
Convergence history

Functional groups in
molecule
Thermodynamic model
Solute
Constraints:Normal
boiling point;Selectivity;
Solvent power
Solvent loss

List of feasible solvents;
Compound Database
entry

ProCAMD Process Feasible solvents
simulator

Mixture information

User

ProCAMD

PDS Thermodynamic model

PDS Feasible solvents

Ternary phase
diagrams
Azeotropes (binary and
ternary)
Heterogeneous liquid
boiling surface
Residue curves
Distillation boundaries
Liquid miscibility

Compound
database

PDS UNIFAC parameters

Process
simulator

PDS Mixture information
Pressure

User SQP (optimiser) Objective function
Constraints
Optimisation variables
Solver settings
Solution strategy

Optimal values of
optimisation variables
Value of objective
function
Values of constraint
equations
Lagrange multipliers
Convergence history

Process
simulator

SQP (optimiser) Unit and stream
information

Set points
Simulation strategy

608

Simulat ion and opt imisat ion of f l o w s h e e t

The main activities here are to set up and simulate a generated process flowsheet
including the reactor, the separation system and the recycle s t reams and then to
determine the optimal process conditions through a steady state optimisation.
See Figure 9 and Table 5 for the activity diagram and the summary of the
interface requirements, respectively.

A flowsheet topology has been suggested in the process synthesis stage and
steady state simulation of the process will be performed. The flowsheet is set up
using GCO compliant models (where these exist) and custom models. When
steady state behaviour of the flowsheet has been determined we optimise the
operating parameters to meet the objective within the given constraints. First we
need to formulate an appropriate objective function and formalise the process
constraints. Next we need to identify appropriate optimisation variables. The
process can then be formulated in the simulation environment and optimised
using a static optimisation algorithm. Finally, the result of the optimisation
algorithm can be analysed by doing a sensitivity analysis and by analysing the
effect of the active constrains (Lagrange multipliers).

A flowsheet is built in the process simulation environment by the simulation and
optimisation expert. Steady state simulations are performed to investigate static
behaviour. An optimisation problem is defined, which can include capital cost
functions, operating cost functions and revenue functions, plus a number of
constraints. The optimisation problem is integrated with the simulation problem,
thus an interface is required between the flowsheet simulator and the optimiser.
The optimiser will re turn the optimal set of optimisation variables and the value
of the objective functions. Fur thermore the Lagrange variables are given for
sensitivity analysis.

609

Simulation and optimisation expert

Bull d flowsheet in simulation environment

~ PerfonTi ~ Define ~
steady state opUmisation simulation problem

I I

Analysis of
results 6 (constraints, sensitivity, etc)

Figure 9. Information flows during simulation and optimization

Table 5. b~terface requirements for process simulation & optimisation

T o o l A Tool B A - -) B B - -) A

User

Process
simulator
User

Process
simulator

Components
Reaction models
Separation models
Properties model
Simulation strategy
Numerical solver
Units of measurements
Flowsheet topology
Feed streams
Unit specifications

Unit and stream
summary
Convergence history

SQP (optimiser)

Optimiser

Objective function
Constraints
Optimisation variables
Solver settings
Solution strategy

Optimal values of
optimisation variables
Value of objective
function

i

i Values of constraint
equations
Lagrange multipliers

�9 Convergence history

Simulation results (state Set-points (controlled
variables) variables)

,

610

7.1.3 CASE STUDY: POLYAMIDE6

7.1.3.1 I n t r o d u c t i o n

This case study describes the design process of a chemical plant for the
production of polyamide6 including the polymer compounding and post-
processing. It focuses on the workflow, the involved people and the used tools
together with their interactions. This case study also forms the basis for Chapter
5.1, where it is employed to demonstrate the use of various mathemat ica l models
during process design.

The design task given in this case study is to produce 40 000 tons polyamide6 per
year with a given product quality and specification.. Polyamide6 is produced by
the polymerisation of .-caprolactam. There are two possible reaction
mechanisms, the hydrolytic and the anionic polymerisation [10]. Since the
anionic polymerisation is mainly used for special polymers [11], this case study
looks at the hydrolytic polymerisation, which is also more often applied
industrially. This polymerisation consists of three single reaction steps:

Ring opening of --caprolactam:
C6HI1NO + H20 ~ C6HI3NO 2

Poly-condensation:
H[NH - (cH~)~ - c = o]~ o H + ~ [u ~ - (c ~) ~ - c = o]o o ~

H [N H - (C ~) ~ - C = O L . OH + ~ O

Poly-addition:
H[NH-(CH2) 5 - C -- O]nOg -[-C6HI2NO ~ H[NH-(CH2) 5 - C : O]n+l O g

There are different kinds of reactors that can be used for the polymerisation:
sequences of two or more tank reactors or plug flow reactors [12] and a special
reactor developed for the polyamide6 production, the VK-tube [13]. The polymer
melt at the outlet of the reactor contains monomer, oligomers and water, which
need to be removed in order to meet the required product quality. Therefore, a
separat ion is needed. Two separation mechanisms can be used here: The
evaporation in a wiped-film-evaporator (WFE) or extraction with water to remove
�9 -caprolac tam with a successive drying step [14]. Polymer post-processing is
done within an extruder: Additives, fillers and fibres are added in order to meet
the specified product qualities. Within the extruder, an additional polymerisation
of the melt and the degassing of volatile components are possible.

These different alternatives for reaction, separation and extrusion lead to several
al ternative processes for the polyamide6 production. In Figure 10, a flowsheet of
one process al ternative is given: the reaction takes place within two reactors;

611

separat ion is done by leaching and drying of polymer pellets. The cleaned pellets
are re-melted in the ext ruder so tha t additives can be added.

The case study covers the design of the reaction and separa t ion system as well as
the extrusion. For all process units, ma themat ica l models are developed and used
for s imulat ion within different simulators. Because the design requires very
specific knowledge, each unit is s tudied in detail by different experts.

This case s tudy was chosen for the following reasons:

�9 The design process covers many steps performed by different roles within
the conceptual process design phase.

�9 Computer-aided process engineering for polymer processes is still a novel
research area with many potentials for improvements .

�9 Through the integrat ion of the compounding and post-processing
cooperation between actors from different companies and backgrounds can
be examined.

�9 The polyamide6 production is a well s tudied process.
�9 Numerous data on the reaction mechanisms is available.

to distillation l
and recycle

loaded
water (with
monomer,
dimer, ...)

vapor reaction
;hing

~et gas

- ~ ~ polymer melt I
(with monomer, I

caprolactam dimer, water) I polymer I qu pellets

enching bath

dry gas

tank

D

cleaned
polymer
pellets

additives,
fibers, fillers

@

%

extrusion

Figure 10. Flowsheet for polyamide6 production.

I I

612

7.1.3.2 Stages of the process des ign l i fecycle

This case study covers mainly the phases of conceptual process design. Based on
the design task, the overall structure of the process and the operation mode are
set. Several design alternatives are synthesized, analysed, and evaluated.
Finally, decisions for the different process sections are taken and the plant
concept is set comprising a process description, process flow diagrams together
with mass and energy balances and data sheets for major units.

The different stages of this case study from the project s tart to the decision for a
plant concept are described in some detail in the following. The focus is set on
technical activities, roles, used tools, and information flows; management
activities are mainly unconsidered. This design process is presented in Chapter
5.1 from a modelling perspective.

Literature survey

Manager

project
start

I

Literature expert

literature
survey

Figure 11. Literature survey.

The manager defines the design task; he places a team responsible for the project
and sets a first project schedule. The first step after this project start is to gather
information about the process, which is going to be developed, its underlying
chemistry, and the occurring components. This is done by a li terature expert (not
a librarian, but a person with a technical background working on literature
surveys and research) within a literature survey (see Figure 12). The information
collected is available to all members of the design team.

The output information of that survey is a collection of books, articles, and
patents. It covers information like:

�9 Physical properties of the occurring substances: . -caprolactam, water,
polyamide6, and others;

�9 existing industrial processes (process flow diagrams);
�9 reactions and their kinetics;
�9 occurring side reactions; and
�9 relation between viscosity and molecular weight.

613

Preliminary flowsheet synthesis

Based on the results of the literature survey, some preliminary flowsheets are
created. At this stage of the design process, simple block flow diagram are used.
For their creation information about the occurring components, reactions
including stoichiometry, reaction conditions as well as information about the
product distribution and conversion is needed. This information is part of the
results of the l i terature survey. Furthermore, the information about the desired
production amount and the product quality is needed. Based on that information,
the technical project leader creates preliminary flowsheets for the two
alternatives for the process within a flowsheet editor (FE): one for continuous
operation mode and one for batch mode (Figure 13).

The next step in the scenario is the evaluation of these two alternatives. The
economic potential for both preliminary flowsheets is calculated using a simple
model based on the actual material prices, the product distribution within the
different reactors and the assumption of complete separations, which is
implemented in EXCEL. A comparison shows tha t for the required amount of
40000 t/a the continuous mode is more economic. Fur ther information that lead
to that decision are heuristics about the pros and cons of batch and continuous
processes.

In the following, the reaction and the separation section are studied in parallel by
a reaction and a separation expert.

Technical project leader

~ create I
preliminary flowsheet

(cont. mode)

create preliminary flowsheet (batch mode)

e te tai ivne~
Figure 13. Preliminary flowsheet synthesis.

614

A

User

Table 6. Information flows during preliminary flowsheet synthesis.

B A - ~ B B -) A

Flowsheet editor

User

Flowsheet editor

EXCEL

EXCEL

Flowsheets
(structure,
elements)
Flowsheets
(structure,
elements)
Product amount
Product distribution
Separation factors
Material prices
Model for economic
potential

Economic potential

S y n t h e s i s of r e a c t o r a l t e r n a t i v e s

The reaction expert s tar ts with the generat ion of some possible realizations of the
polymerisat ion reaction. His activities during this synthesis step are shown in
Figure 14. For the generat ion of reasonable a l ternat ives and their analysis, the
he needs some addit ional information about the hydrolytic polymerisation of
polyamide6. He formulates a demand for some addit ional l i terature to the
l i te ra ture expert, who performs a corresponding survey (see Figure 4). This
l i te ra ture contains the information tha t there are two principle al ternatives for
the real izat ion of a polymer reaction [15] and tha t indust r ia l polyamide6
productions are mainly carried out in a sequence of two or more reactors[16].

The reaction expert creates four al ternat ives for the reaction section of the
pre l iminary flowsheet using the flowsheet editor: a CSTR, a PFR, and two
reactor sequences (CSTR-CSTR and CSTR-PFR). The reactor sequence consisting
of a CSTR and a PFR corresponds to the reaction sequence conducted in a VK-
tube. The input information for this activity are the pre l iminary flowsheet, the
results from the reaction l i tera ture survey and the expert 's knowledge about
reaction processes.

Literature expert

,,te Uresu.
(reaction)

Reaction expert

demand for
additional |
literature J

generation of
alternatives

for the
reaction es ma ~176 1 aOon uct

Figure 14. Synthesis of reactor alternatives.

615

The separation expert needs some information about the mater ia l s t ream at the
reactor outlet. Therefore, based on the knowledge about occurring components
and reactions, stoichiometry and conversions (obtained from the two l i terature
surveys), the reaction expert makes an est imation of the reaction product (stream
information), so that the separation expert can star t working immediately.

A

User

Table 7. Information flows during synthesis of reactor alternatives.

B A - - ~ B B - - ~ A

Flowsheet editor Flowsheets with 4
reactor
alternatives
(structure,
elements)

A n a l y s i s o f r e a c t o r a l t e r n a t i v e s w i t h o n e r e a c t o r

First simulations only involve one reactor to unders tand the basic effects and to
compare the different reactor types. The reaction expert s tar ts with the
simulation of the CSTR (1 st investigation CSTR, Figure 15) because these
simulations are easier to realize. For the simulation of the reactor Polymers Plus
from Aspen Tech is used [17]. The input for specifying the simulation model
comprises knowledge about the occurring reactions, reaction conditions, and
kinetic data. Thermodynamic data can be obtained from the Polymers Plus
properties database; the user adds data for one specific component, the cyclic
dimer of .-caprolactam, since for this component no data is available in Polymers
Plus. The reaction expert makes some assumptions to simplify the calculations
(reactor volume, neglecting the vapour phase).

Doing some simulation studies, he tries to meet the given product specification.
Results are operating conditions for the CSTR, reactor size, s t ream results, some
graphs obtained from sensitivity analyses and the simulation files themselves.
Based on the s t ream results, the reaction expert updates the information about
the reaction product, which builds the basis for the separat ion design.

As simulations for polymers are not very sophisticated yet, they have to be
validated by experiments. When the 1 st investigation of the CSTR is finished, the
reaction expert contacts the laboratory director to plan some experiments on the
polymerisation reaction. They discuss which experiments should be performed to
obtain some information about the polymerisation of . -caprolactam in a CSTR as
well as a schedule. The laboratory director uses his knowledge about
experimental techniques for the characterization of polymers during that
discussion. These experiments are performed at laboratory-scale and the results
are passed to the reactor expert. He compares them with the simulations and
recognizes significant differences. In a discussion with the laboratory director the

616

reaction expert finds out, that it was a mistake during the simulation not to
consider the vapour phase in the polymerisation reactor. A second investigation
of the CSTR within Polymers Plus follows.

i I

Reaction expert

1st
investigation CSTR

updating I information
about reaction

product

1st) 6 investigation
PFR

discussion of
experiments CSTR)
comparison 1
experiments/

simulation (CSTR)

results CSTR ==

) In Ion

!

Figure 15. Analysis of reactor alternatives L

Laboratory
director

~.~ discussion of
experiments CSTR

,L
experiments CSTR

)
)
)

In parallel to the experiments with a CSTR, the reaction expert has started with
the first investigation of the PFR within Polymers Plus based on the results
obtained from the 1 st investigation of the CSTR (which leads to an "information
flow" from Polymers Plus to Polymers Plus as given in Table 8). Again,
thermodynamic data and the given product specification are used. Results are
operating conditions for the PFR, reactor size, stream results, some graphs
obtained from sensitivity analysis and the simulation files themselves. Since the
reaction expert made the same assumption as in the CSTR simulation (no vapour
phase), a second investigation of the PFR is also necessary, where the
experimental results of the CSTR are taken into consideration.

617

Based on the results of the first investigations of the CSTR and the PFR and the
experimental results, the reaction expert performs the 2 ~d investigations. The
results are new operating conditions for the CSTR and the PFR, respectively,
reactor sizes, s t ream results, new graphs from sensitivity analyses and modified
simulation files.

A

Table 8. Information flows during analysis of reactor alternatives I.

Flowsheet editor

User

B

Polymers Plus

Polymers Plus

Polymers Plus

Polymers Plus

Properties data
base (e.g. Polymers
Plus)
Polymers Plus

A - -) B

Flowsheets
(structure,
elements)
Occurring reactions
Reaction conditions
Kinetic data
Product specification
Assumptions

Thermodynamic
data

Input and output
files

B -) A

Operating conditions
Reactor size
Stream information
Graphs (sensitivity
analyses)
Input and output
files

Input and output
files

A n a l y s i s o f r e a c t o r s e q u e n c e s

Based on the simulations with one reactor, the reaction expert wants to perform
some investigations on the two reactor al ternatives consisting of two reactors.
The investigations of the CSTR and PFR showed, tha t the molecular weight of
the polymer depends on the water content within the reactor. Therefore, a
separation between the reactors seems to be reasonable in order to a t ta in the
desired molecular weight. The reaction expert first discusses possible separations
with the separat ion expert (see Figure 16). Based on the problem formulation
(occurring components, operating conditions, separation task) and his knowledge
about the separat ion of volatiles from polymer melts, the separat ion expert
thinks that a separation of the water from the melt should be possible by
flashing. According to tha t discussion result, the reaction expert creates two new
flowsheet al ternatives for the reaction in the flowsheet editor with a separation
between the two reactors in the al ternatives with the CSTR-CSTR and the
CSTR-PFR sequence.

He performs some investigations of all reactor sequence al ternatives (CSTR-
CSTR, CSTR-PFR, CSTR-Sep-CSTR, CSTR-Sep-PFR); he uses his results,
experiences and the files from the investigations of the CSTR and the PFR. For
the Polymers Plus model of the separation simple splitter blocks are used as well

618

as a flash model. The results are operating conditions for the CSTRs and the
PFRs in the sequences, reactor sizes, stream results, new graphs from sensitivity
analysis and new simulat ion files.

Based on the results of the invest igation of all four reactor alternatives, the
reaction expert est imates the costs of each alternative (capital investment costs
as well as operating costs) using the ICARUS Process Evaluator [18]. The costs
obtained from that est imation are major criteria for the decision for one reactor
alternative.

Reaction expert

§
investigations CSTR-CSTR

1~ discussion of
possible

separations

I I

m
m

t

inC~sTiRg?~F;

I CSTR-Sep- CSTR
I I

Figure 16. Analysis of reactor alternatives II.

Separation expert

discussion of
possible

separations

619

A

User

Table 9. Information flows during analysis of reactor alternatives II.

Flowsheet editor

User

Properties data
base (e.g. Polymers
Plus)
Polymers Plus

Polymers Plus

B

Flowsheet Editor

Polymers Plus

Polymers Plus

Polymers Plus

Polymers Plus

IPE

IPE User

A -) B

Flowsheets
(structure,
elements)
Flowsheets
(structure,
elements)
Reaction conditions
Product specification

Thermodynamic
data

Input and output
files
Operating
conditions
Reactor sizes
Output files

B -) A

Operating conditions
Reactor size
Stream information
Graphs (sensitivity
analyses)
Input and output
files

Input and output
files

Costs for 4 reactor
alternatives
(operating, capital
investment)

Synthes i s of separat ion a l ternat ives

In order to be able to synthesize and analyse some possible al ternatives for the
separation of .- caprolactam, oligomers and water out of the polymer melt, the
separation expert needs additional information about polyamide6, water,
monomer and oligomers and their physical properties (thermodynamic data,
t ransport data). He demands some additional l i terature from the l i terature
expert, who performs a corresponding l i terature survey and submits the results
back (Figure 17).

620

Literature expert

literature
survey

(separation) 1

Separation expert

demand for
additional
literature

generation of
alternatives
(separation)

Figure 17. Separation alternatives.

Based on the information obtained from the additional l i terature survey and
general knowledge about separation processes (flashing, evaporation, absorption,
etc.), the separation expert synthesizes two alternatives for the process step of
the removal of water, monomer and oligomers from the polymer within the
prel iminary flowsheet: the evaporation in a wiped-film-evaporator (WFE) and the
extraction with water with a successive drying step.

Table 10. Information

T o o l A

User

Tool B

flow during synthesis of separation alternatives.

A--~B B- -~A

Flowsheet editor Flowsheets with 2
separation
alternatives
(structure,
elements)

A n a l y s i s of s e p a r a t i o n in a WFE

The separation expert starts the investigation of the degassing with a simulation
of tha t separation alternative using Polymers Plus. As an input s tream into the
separation system, he uses the est imated reaction product s t ream from the
reaction expert; product amount and quality are constraints he has to regard.
Since no predefined model for a WFE is available within Polymers Plus, the
separation expert uses a flash simulation in which mass t ransfer limitations are
neglected as a first approximation (1 st investigation degassing; Figure 18).
Product amount and quality, thermodynamic data, and the s t ream information
about the reactor outlet from the reaction expert are the input data for that
simulation. After this investigation, the separation expert comes to the end, that
the flash model within Polymers Plus is not suitable, since the polymer melt is a
very viscous fluid and the assumption of negligible mass transfer resistance is
not tolerable.

621

Separation expert Laboratory director Modelling and Polymers
simulation expert processing expert

,st
investigation I
degassing I

(flash ~mulat.) I

discussion of ~~3 discussion of
problem problem = '~ (deg~sing) (deg sing)

discussion of possible ., possible -- |
degassingextruder in m 4~, degassing J

modeling of 0 ass,n0

Figure 18. Analysis of the wiped film evaporator.

The separation expert discusses with the modelling and simulation expert the
characteristics of the WFE and the requirements for a model. Based on an agreed
problem formulation and all required inputs (flowsheet, production amount and
quality, stream information, thermodynamic data), the modelling and simulation
expert develops the model within the modelling tool ModKit [19]. From this, he
generates a model that can be simulated with gPROMS [12].

During the first investigation of the degassing the separation expert realizes that
it is difficult to reach the required purity of the polyamide6. He knows that
degassing in the polymer extruder is a means to remove a certain content of
volatiles. Therefore, this option should be considered already during the
separation study. The separation expert discusses with the polymers processing

622

expert, if it is possible to have a combination of the WFE and an extruder in
which the polymer is degassed. They decide to take this alternative into
consideration.

Using the ModKit model and the gPROMS file, the separation expert performs
the second investigation of the WFE. He obtains simulation information about
the operating conditions and equipment sizes of the WFE as well as sensitivities'
The gPROMS model needs to be validated with experiments. The separation
expert discusses with the laboratory director which experiments should be
performed to obtain some information ~ about that specific process step. They
agree on a schedule; the experiments are performed at laboratory-scale. When
the results are available, the separation expert compares them with the
simulations. After a discussion with the laboratory director he adjusts the
parameters of the gPROMS model in order to fit them to the experimental
results. A third investigation of the WFE with the gPROMS model follows. Again,
the simulation gives information about the WFE (operating conditions,
equipment sizes); the information about the flow rate coming from the WFE is
needed by the polymers processing expert.

Using all operating conditions, equipment data and other simulation results that
can be obtained from the output files, the separation expert estimates the capital
investment costs and the operating costs of the wiped film evaporator within the
ICARUS Process Evaluator.

623

A

Flowsheet Editor

User

Properties data
base (e.g.
Polymers Plus)
Polymers Plus

Table 12. Information flows during analysis of the WFE.

B A - -) B B - -) A

Polymers Plus Flowsheets
(structure,
elements)

Polymers Plus Product amount
and quality

Polymers Plus Thermodynamic
data

Flowsheet Editor

User

Properties data
base (e.g.
Polymers Plus)
ModKit

User

gPROMS

User

Polymers Plus

ModKit

ModKit

ModKit

gPROMS

gPROMS

IPE

IPE

Stream
information
reactor outlet
Flowsheets
(structure,
elements)
Stream
information
reactor outlet
Product amount
and quality
Thermodynamic
data

Model
specification
experimental
results degassing

Operating
conditions
Equipment data
Output files

Model specification

Costs for WFE
(capital
investment,
operating)

Operating
conditions
Equipment data
Stream
information
Graphs (sensitivity
analyses)
Input and output
files

624

Analysis of separation with leaching

The separation expert wants to perform a first investigation of the leacher and
the dryer, but for this alternative of the separation no model is available within
Polymers Plus. Therefore, the separation expert discusses with the modelling and
simulation expert the characteristics of the leaching and the requirements for the
model. Based on an agreed problem formulation and all required inputs
(flowsheet, production amount and quality, stream information, thermodynamic
data), the modelling and simulation expert develops the model using the
modelling tool ModKit. Using this ModKit model, which is described in detail in
chapter 5.1.6, and the gPROMS file generated from it, the separation expert
performs the second investigation of the leacher. These simulations bring
information about the operating conditions and equipment sizes of the extraction.
The gPROMS model of the leacher needs to be validated with experiments. The
separation expert discusses with the laboratory director which experiments
should be performed to obtain some information about that specific process step.
They agree on a schedule. The experiments are performed at laboratory-scale.
When the results are available the separation expert compares them with the
simulation results. After a discussion with the laboratory director, he adjusts the
parameters of the gPROMS model in order to fit them to the experimental
results. A third investigation of the leacher with the gPROMS model follows.
Again, the simulation gives information about the leacher (operating conditions,
equipment sizes). These results are used for the estimation of capital investment
costs and operating costs with the ICARUS Process Evaluator (IPE).

625

Separation expert
I st FE.

investigation
extraction
(leaching)

discussion of
problem

formulation
(extraction)

Laboratory director Modelling and
simulation expert

Figure 19. Analysis of the leacher.

626

A

Table 13. Information flows

B A - -) B

Flowsheet Editor

User

Properties data
base (e.g.
Polymers Plus)
ModKit

User

gPROMS

User

ModKit

ModKit

ModKit

GPROMS

GPROMS

IPE

IPE

during analysis of the leacher.

B - -) A

Flowsheets
(structure,
elements)
Stream
information
reactor outlet
Product amount
and quality
Thermodynamic
data

Model
specification
Experimental
results degassing

Operating
conditions
Equipment data
Output files

Model specification

Operating
conditions
Equipment data
Stream
information
Graphs (sensitivity
analyses)
Input and output
files

Costs for leacher
(capital
investment,
operating)

Extruder des ign

The polymers processing expert starts with extruder design after a discussion
with the separation expert about the possibility of having a combination of the
WFE and an extruder in which the polymer is degassed. Therefore, the study of
the plastics processing parts is performed in parallel to the other studies.
Conventionally, studies like this are carried out after the design of the reaction
and separation sections is finished.

627

The polymers processing expert demands additional l i terature regarding
mater ial parameters of polyamide6 in order to be able to do some mater ial
planning. The l i terature expert performs the corresponding l i terature survey and
passes the results back. Additionally, the polymers processing expert searches for
information about additives, fillers and fibres tha t can be used for polyamide6
compounding.

The extruder design starts with an estimation of the impacts of the extrusion on
the mater ia l (e.g. molecular weight) and determinat ion of the necessary amount
of additives and fibres (19, 22). Based on the flow rate of the polymer melt
obtained from the WFE simulation, thermodynamic data, and the est imated fibre
content, the process parameters of the extruder are calculated and an
appropriate screw geometry is determined using MOREX, a tool for simulating
the flow within twin screw extruders based on mathemat ica l and physical models
15. Those are the input for the calculation of the degassing performance and for
the simulation of the extruder with consideration of the degassing leading to
operation conditions and equipment data for the extruder.

The results of the calculations need to be validated by experiments within an
extruder in lab-scale. The required experiments are discussed between the
polymers processing expert and the laboratory director. The experiments are
performed. When the experimental results are available and discussed in order to
unders tand them and the experimental conditions under which they were
obtained, the polymers processing expert uses them to optimise the extrusion
process and the screw geometry using MOREX.

628

Literature Separation expert
expert Q discussion of ~

possible
degassing in

extruder

literature
sunmy

(mate~
parameters) 1

Laboratory director

discussion
experiments
degassing in
an extruder

experiments
degassing in
an extruder

discuss o,
exp. results
degassing in
an extruder

Polymers processing expert

discussion of 1
possible

degassing

Na;ing

necessary
fibre content

)

)
IBm

BIB

calculat~n of
process

parameters

calculation of
degassing

performance

Figure 2. Extruder design.

simulation
extmder with
degassing

discussion 1 experiments
degassing in
an extruder

discussion of ~
exp. results
degassing in
an extruder

optimization of
extrusion and

screw
geomeW

cost estimation
f o r extruder

Again, a simulation gives information about extruder design (operating
conditions, extruder data). Based on this information and the output files, the
polymers processing expert estimates the capital investment costs and the
operating costs of the extruder.

629

A

Properties data
base (e.g.
Polymers Plus)
User

MOREX

User

Table 14. b~formation flows during extruder design.

B

MOREX

IPE

IPE

MOREX

A -) B

Thermodynamic
data

Product amount
and quality
Stream
information
reactor outlet
Experimental
results degassing
Est. fibre content
Information about
additives, ...
Operating
conditions
Extruder data

B -) A

Process parameters
Operating
conditions
Extruder data
Input and output
files

Costs for extruder
(capital
investment,
operating)

Dec i s i on for p lant c o n c e p t

Technical project leader

decision for a ~'~
plant concept ;

Reaction expert

Oeos,on,ora
plant concept ;

Separation expert

decision for a -'~
plant concept J

Figure 20. Decision for plant concept.

I Polymers processing expert

~13 decision for a ~
T ~ plantc~ J

The final decisions for the reactor and the separation system are taken by all
designers together in a meeting where the influences between the different
process parts can be discussed. All results of the different experts (reaction,
separation, and polymers processing) need to be considered. The plant concept
comprises a process description of that process which will be investigated in more
detail in the following phases of the design lifecycle. PFD and pre-P&ID together
with mass and energy balances and data sheets for major units are the main
results and output of this case study (Figure 20).

630

7.1.4 DISCUSSION AND CONCLUSIONS

Two case studies for design processes in chemical engineering have been
presented. In the Methyl Acetate case study a process is designed for a basic
chemical intermediate by looking at major process steps in reaction and
separation in detail and by including elements of the basic engineering phase
such as cost estimation, safety and environmental studies. The scope of the
Polyamide6 is the process chain from the monomer, i.e. a chemical intermediate,
to the final customer product. The process design takes place in different
departments; this leads to a high number of interactions and dependencies
between co-workers highlighting the workflow.

Therefore, the two case studies complement each other in the way that the
Methyl Acetate study has a higher emphasis on the use of many smaller
specialized tools in specific parts of the conceptual design and detailed
engineering phase, whereas the Polyamide6 study describes in more details the
overall workflow in the conceptual design phase and focuses on the use of larger
more generalized tools.

Process design involves the application of different design approaches that
require different methods and tools. Process design can simply be a scale-up of a
laboratory experiment, supported by the use of heuristics, design equation,
shortcuts and/or graphical methods. On the other hand, in model-based design
mathemat ica l models are used at different levels of detail for prediction of
process and plant behaviour during various stages of the process lifecycle 18.
Within most real design processes these two approaches are combined. Both case
studies rely heavily on the use of models.

From case studies like this, it is possible to derive several conclusions, for
example, needs for tool support; needs for interfaces can be identified from the
information flows between tools; dependencies between different activities may
imply possible changes and improvements in the workflow such as better
communication between the designers; and, bottlenecks and weaknesses in
existing design processes can be also identified. This discussion focuses
exemplarily on the need and identification of tool interfaces.

[Lr to I

Figure 21. Classes of tools and their interactions.

631

During a design process different alternatives are synthesized and analysed.
Based on the analysis one design alternative is chosen. It is possible to identify a
structure among the methods and tools used in the design phase and can be
broadly classified as shown in Figure 21.

Tools for analysis tools are used for evaluation of the chemical process of interest
or parts of it under different scenarios, such as physical-chemical behaviour,
safety, environmental, or economic consideration. Within analysis tools different
kinds of models at various levels of detail and granulari ty are used and solved.

Example for analysis tools are all kinds of process simulators, tools used for
parameter estimation, analysis of physical behaviour, analysis of the safety or
economic potential of some design alternative, etc.. Repositories, where all kind of
information and data is collected and stored, like physical property databases,
model libraries, and design databases.

Examples of synthesis tools are tools for solvent design, flowsheet design,
modelling, etc.. This classification of synthesis and analysis corresponds to the
structure of the design process where synthesis and analysis activities are
performed: several design alternatives are synthesized and analysed regarding
different scenarios. Based on the results of this analysis, the designers choose one
(or a small number of) design alternatives, which are considered for further
investigation. The repositories are needed for storing the information.

The data handled in the different tool classes depend on each other: data that are
created or changed within one tool is needed in another tool or has an influence
on the data created there. A summary of information that needs to be exchanged
between the different tool classes is given in Table 15. It was obtained from
abstracting the data flows between the actual tools within the two case studies
presented in this chapter. Thus, this table does not give a complete overview of
all possible information flows occurring between different tool classes, but it gives
a good impression of needed tool interfaces.

632

T o o l c l a s s A

Table 15. b~formation exchange between tool classes in the two case studies.

Tool class B A --~ B B --~ A

Analysis

Analysis

Analysis

Repositories

Repositories

Analysis

Repositories

Synthesis

Flowsheets
Mathematical
models
Kinetic reaction
model
Property model
information
Design specification
Process parameters
Simulation results
Equipment data
Stream information

Synthesis

Repositories

Synthesis

Synthesis

Energy
requirements

Model information
Impact factors

Component
properties
Thermodynamic
data
Flowsheets

Experimental data
Component
properties
Thermodynamic data
Impact factors
Flowsheets
Equipment data
Process parameters
Unit models

7.1.4 ACKNOWLEDGEMENTS

This work is partially supported by the European Union within the project Global
CAPE-OPEN and by the DFG, Deutsche Forschungsgemeinschaft, in the CRC
476 'IMPROVE'.

633

7.1.5 R E F E R E N C E S

0

.

o

.

.

.

8.

.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Kirk-Othmaer Encyclopedia of Chemical technology, 1980, 3ed., Vol 9, John
Wiley & Sons, New York.
Ronnback, R., Salmi, T., Vuori, A., Haario, H., Lehtonen, J., Sundqvist, A.,
Tirronen, E., Chem Eng Sci., 52, (1997), 3369-3381.
Popken, T., Geisler, R., Gotze, L., Brehm, A., Moritz, P., Gmehling, J., Chem
Eng Technol, 21 (1999), 401-404.
Song, W., Venimadhavan, G., Manning, J. M., Malone, M. F., Doherty, M. F., I
& EC Research, 37, (1998), 1917-1928.
Sirolla, J., An industrial perspective on process synthesis, AIChE Symposium
Series, 91 (304), (1999), 222-234.
Jaksland, C., 1996, Separation process design and synthesis based on
thermodynamic insights, PhD-thesis, CAPEC-DTU, Lyngby, Denmark.
Sawistowski, H., Pilavakis, P. A., Chem Eng Sci., 43 (1978), 355-360.
Perry, R. H., Green, D. W., Maloney, J. O., 1997, Perry's Chemical Engineers'
Handbook, 7ed., McGraw-Hill, USA.
Bayer, B., Henriksen, J. P., R. Schneider, R., 2000, Aspects of lifecyle
modelling I & II, GCO-project report, RWTH-Aachen & CAPEC-DTU.
Aspen Technology, 2001. Aspen Products [online]. Available from: http;!/
www.aspentech.comfindex.asp?menuchoice=appolymerplus. Accessed July 18,
2001.
Aspen Technology, 2001. Aspen Products [online]. Available from: http://
www.aspentech.com/index.asp?menuchoice=ap5ipe. Accessed July 18, 2001.
Bogusch, R., Lohmann, B., Marquardt, W., Computer-Aided Process Modeling
with MODKIT, in print: Computers and Chemical Engineering (2001).
Deutsches Patentamt, Verfahren und Vorrichtung zum kontinuierlichen Poly-
kondensieren von Lactamen, patent number P 14 95 198.5 B78577 (1969).
Gerrens, H., On Selection of Polymerization Reactors, Ger. Chem. Eng. 4
(1981) 1-13.
Haberstroh, E., Schliiter, M., Moderne Technologien bei der Entwicklung yon
Simulationswerkzeugen. In: Tagungshandbuch 20. Kunststofftechnisches
Kolloquium des IKV, Verlag Kunststoffinformation, Bad Homburg (2000) Part
7, 4-7.
Hornsby, P.R., Tung, J.F., Tarverdi, K., Characterization of polyamide 6 made
by reactive extrusion. I. Synthesis and characterization of properties, Journal
of Applied Polymer Science 53 (1994), 891-897.
Kohan, M.I. (Ed.), Nylon Plastics Handbook, Carl Hanser Verlag, Miinchen
(1995).
Marquardt, W., von Wedel, L., Bayer, B., Perspectives on lifecycle process
modeling, in: Malone, M.F., Trainham, J.A., Carnahan, B. (eds.)" Foundations
of Computer-Aided Process Design, AIChE Ser. 323, vol. 96 (2000) 192-214
Michaeli, W., Grevenstein, A., Engineering Analysis and Design of Twin-
Screw Extruders for Reactive Extrusion, Advances in Polymer Technology 14
(1995) 263-276

634

20.Process Systems Enterprise (2001). PSE: gPROMS Overview [online].
Available from: http://www.psenterprise.com/products gproms.html. Accessed
July 18, 2001.

21.Tai, G., Tagawa, T., Simulation of Hydrolytic Polymerisation of e-Caprolactam
in Various Reactors. A Review on Recent Advances in Reaction Engineering of
Polymerization, Industrial & Engineering Chemistry Product Research and
Development 22 (1983), 192-206.

22. Verein Deutscher Ingenieure (Ed.), Der Doppelschneckenextruder, Grundlagen
und Anwendungsgebiete, VDI-Verlag (1998).

Software Architectures and Tools for Computer Aided Process Engineering
B. Braunschweig and R. Gani (Editors)
�9 2002 Elsevier Science B.V. All rights reserved. 635

Chapter 7.2: A Prototype for Open and Dis tr ibuted
S imulat ion with COM and CORBA

V. Siepmann, K.W. Mathisen & T.I. Eikaas

7.2.1 INTRODUCTION

The main part of this work was done as part of the Global CAPE Open project
[1, 2, 3] where open standards for process modelling components (PMC) have
been developed and integrated in process modelling environments (PME).
Main PMC's include unit operation, thermodynamics and solvers and main
CAPE Open compliant PME's include AspenPlus [1], Hysys [9] and gPROMS
[12], see chapter 4.4 for more details. A CAPE Open PME can also be
abbreviated COSE (CAPE Open Simulation Environment).

In order to really develop open simulation environments it is important to be
able to integrate Windows COM [5] modules and software components on
other platforms, e.g. Unix based on CORBA [4]. Windows is the dominating
operating systems for CAPE Open PME. To establish communication
between PME in COM and PMC in CORBA, some sort of a bridging module
has to be developed. Furthermore a standard or procedure for developing
CAPE Open CORBA PMC must be defined.

This prototype describes two alternative COM CORBA bridges, one developed
in C++ [8, 15], and one in Python [7,13, 14]. Secondly, two alternative
CORBA unit modules are described, both based on a CORBA C++ Unit
skeleton. One is a in-house unit model typically used for proprietary unit
operations and the other is a wrapping around another third party CAPE
application such as a Fluent CFD simulation. For these reasons a prototype
exploiting the Cape-Open interfaces for PMC in CORBA was developed. This
technology is available on most widely used platforms, e.g. Windows, Linux,
Unix, Solaris, Free-BSD, open-VMS, and it is especially suitable for
heterogeneous setups.

636

7.2.2 S O F T W A R E A R C H I T E C T U R E

7.2.2.1 O v e r v i e w

An overview of software components for the prototype is shown in Figure 1.

Figure I Software architecture overview

The modules running on Windows are shown in the upper part of the figure
(above the dashed line). These are either developed in C++ (using Visual C++)
or Python (using ActivePython,[2]). The modules that are not required to be
running on Windows platforms are shown in the lower part of the figure. The
modules to the left are used when wrapping a third party module or
application, in this case a Fluent CFD simulation. One could also use the
CORBA C++ unit skeleton to implement standalone unit modules. Finally is
possible to develop miscellaneous CORBA units in other programming
languages.

However, it was experienced that it can be quite difficult to develop COM-
CORBA bridges in C++, and an alternative approach is to use Python. Python
is a high level programming supporting both COM and CORBA technologies
satisfactory in one single distribution. The Python approach includes (see
Figure 1) a COM CAPE Open Unit Operation skeleton in Python and a
bridge instantiation created by wrapping a CORBA CAPE Open Unit
Operation server. The first step of this approach makes it possible to include
a CapeML unit operation. CapeML is XML-based [16] and tailor-made for
process modeling tasks.

637

Note that there are different types of module connections in Figure 1. Some
connections (i.e., blue and cyan ones) are based on the CAPE Open standards
while red connections mean that the connected modules run in the same
process.

7.2.2 Sof tware D e v e l o p m e n t E n v i r o n m e n t

The prototype is developed on Redhat Linux 7.0 and SuSE Linux 7.1 using
gcc 2.95, and Windows NT 4.0 Servicepack 6. Coding has been done with the
aid of Visual C++ 6.0 [15] and ActivePython [13]. Workspace definitions for
Visual C++ 6.0 and GNU-style makefiles exist for the CORBA unit skeleton.
The unit skeleton is represented by a pair of static / dynamic libraries for use
on UNIX-like platforms. For compatibility reasons, only a static library is
provided for Windows platforms. OmniORB v3.0.2 [11] is used as the object
request broker, since it supplies high performance CORBA 2.3 [4] compliant
code.

7.2.2.3 P r oc e s s Mode l l ing E n v i r o n m e n t

The Process Modelling Environment (PME) must be a CAPE Open
Simulation Environment (COSE). Possible COSE's include AspenPlus, Hysys
and gPROMS. For further details on COSE's, please see chapters 3.3 and 4.4.

7.2.2.4 COM-CORBA C++ Bridge

In order to connect CORBA CAPE Open unit operations to currently
available simulation environments, a bridging tool is necessary. This tool
converts the COM-calls from the executive to CORBA-calls to the external
unit operation and, the other way, converts CORBA-calls from the external
unit operation to compatible COM-calls to the appropriate modules located
inside the simulation executive. Note that the described module is not a
general COM-CORBA bridge, but specific for CAPE Open unit operations. It
could be possible to split the bridge in two related modules, the first one
being a COM Unit skeleton and the second the actual bridge implementation.
Such a split is proposed for the Python realisation and there are historical
reasons only for not splitting in the same way for the C++ implementation.

7.2.2.5 CORBA C++ Unit Ske l e ton

The CORBA unit operation skeleton in C++ enables programmers with little
knowledge on CORBA and CAPE Open to develop a new CAPE Open
compliant unit model or wrap an existing unit model so that it becomes
CAPE Open compliant. This wrapping technique can be extended so that
existing FORTRAN unit models can be made CAPE Open compliant.

638

In summary, the main requirements for the CORBA C++ unit operation
skeleton are:

�9 It mus t provide an easy to use C++ unit operat ion framework hiding
CORBA from the implementing programmer.

�9 It mus t cover most possible facilities available through the CAPE Open
specifications.

�9 There must be a simple way to define paramete rs and ports as well as
to access those.

�9 The software architecture should be flexible to allow non-standard
implementat ions .

Figure 2 shows how the unit skeleton works in a CAPE Open context.

Figure 2 Illustration of history of process design

The skeleton provides an implementat ion of the CORBA CAPE Open
interfaces, which is used by the COM-CORBA bridge to supply a PME with
implementat ions of the COM CAPE Open interface. At the same time, it
supports generic facilities to the specific unit operation, including a generic
unit report and helper functions to create and access parameters and ports.
These facilities allow the implement ing programmer of a specific unit
operation to concentrate on the code for initialising, calculating and
te rmina t ing a unit operation. Basically these features are all to be provided
from the specific implementa t ion to the skeleton.

To avoid unnecessary effort and loss of performance and information through
the skeleton, most interfaces are directly implemented one to one as classes.
Inheri tance relations of interfaces are therefore reflected by corresponding
inheri tances of the implement ing classes. Figure 3 shows this at the example
of the ICapeUnitReport interface.

639

' I -i
I D L ~ C-H-

Figure 3 Illustration of the general design to implement Cape Open IDL
interfaces in C++

In some cases, addit ional classes are introduced. Fur the rmore , the abstract
class GCOCorbaUnit, which directly implements ICapeUnit, is equipped with
C++ in ternal methods described as generic facilities above. The abst ract
methods InitializeO and ComputeO have to be implemented by a sub-class,
while TerminateO, RestoreO and SaveO are defined v i r tua l and provide by
default an empty implementat ion. Hence, they can be over- implemented on
demand. For future versions, default persistence facilities might be needed,
e.g. saving the uni t pa rame te r s in an XML file. -

7.2.2.6 F l u e n t C++ U n i t M o d u l e

This module is a specific implementa t ion of the CORBA C++ Uni t Skeleton.
In order to operate as in tended methods for initialising, calculat ing and
t e rmina t ing the uni t operation mus t be included. Dur ing ini t ial isat ion ports
and pa ramete r s are declared and some addit ional resources are allocated.
The communicat ion to F luent via the IO-Communicator is ini t ial ised and
validated.

During calculation messages from PME via the bridge is sent to F luent and
back. Fi rs t the input port data is read, in te rpre ted and converted to F luent
surface definition commands. Typically the input port da ta represents
mate r ia l s t ream vectors, e.g. in T, p, x and Ntotal coordinates. Second the
surface definitions are sent to F luent via the IO-communicator . Third the
F luen t calculation is invoked. Finally, when the F luen t resul ts are available
the surface data for the output ports are converted to s t r eam vectors and
saved. The run is t e rmina ted by closing the connection to Fluent . Resources
allocated during ini t ial isat ion are freed.

7.2.2.7 I O - C o m m u n i c a t o r

This module is a C++ class tha t is compiled into the F luen t C++ uni t module.
I t is capable of s ta r t ing a process and handl ing the s t anda rd input, output
and error channels.

640

7 .2 .2 .8 F l u e n t

The F luent module can be any F luen t s imulat ion case, from one small piece
of process equipment to a complicated set of process uni ts or even plant
sections. The F luen t case (instance) is built up using the Fluent built-in
graphical capabilities, but during run-t ime the F luen t is called, s tar ted and
run from the PME. With other words F luent is run a batch mode. Only the
min imum set of commands to manage a F luent s imulat ion case can be used
at this stage. On a longer term the following capabili t ies is desired:

�9 Defining and reading boundary conditions;
�9 Obtaining different kinds of mean values for quant i t ies on the surfaces

(boundaries);
�9 (Re-) Ini t ia l isat ion of quant i t ies in the s imulat ion space.
�9 Perform s teady-s ta te i terat ions on the problem and check convergence;
�9 In tegra t ing a defined time interval in a dynamic context

The last i tem emphasises tha t it is desired to extend the scope of the current
CAPE-OPEN interfaces to enable dynamic s imulat ions in a dynamic-modular
context.

7 .2 .2 .9 M i s c e l l a n e o u s C++ U n i t M o d u l e s

The CORBA unit operation skeleton in C++ can also be used to develop a
general CAPE Open Unit module. Unit is one of the main process modeling
components (PMC) in the CAPE Open s tandard. However, most active
par t ic ipants in the CAPE Open work have focused on developing COM, not
CORBA based uni t modules. Experiences on developing CAPE Open units in
CORBA have been gained by developing a model of a heat ing tank. This
module can run on a separate machine from the PME and the rest of the
s imulat ion modules, and i l lustrates how (geographically) distr ibuted
s imulat ion capabilit ies are built-in when using CORBA.

7 .2 .2 .10 M i s c e l l a n e o u s C O R B A U n i t s

The main purpose of this hybrid (COM and CORBA) prototype is to
demonst ra te open simulat ion as facili tated by the CAPE Open standards.
Our main approach is to use C++ in the prototype development. However, the
CAPE Open s t anda rd is independent of the p rogramming language. This
means tha t s tandalone units based on CORBA tha t follows the CAPE Open
s tandards can be implemented in a number of different programming
languages, e.g. JAVA, can be used.

641

7.2.2.11 Py thon COM Unit Ske l e ton

The Python COM unit skeleton is developed by defining a Python class with
the required CAPE Open interface methods and parameters. The methods
and parameters have been described earlier in the C++ implementation. They
have also been presented in chapter 4.1 where a COM implementation of the
CAPE Open Unit interface standard is described.

7.2.2.12 Py thon Bridge Module

The Python Bridge module converts the COM calls to the appropriate
CORBA syntax.

7.2.2.13 Misce l laneous Python Units

The proposed architecture may also be used to include COM CAPE Open
units developed in Python. The Python COM unit skeleton will hide many
technical details and make the development possible without expert's skill on
COM programming.

7.2.2.14 Python CapeML Unit

A very interesting capability of the prototype architecture is that it is possible
to include units specified in CapeML. CapeML is an extension of XML and
designed for process modeling tasks

7.2.3 REFERENCES

1. Aspen Technology, Inc (AspenTech) (2001). AspenPlus (Sequential modular
steady state process simulator) v10.2, http://www.aspentech.com
2. Braunschweig, B. L., Pantelides, C. C., Britt, H. I. & Sama, S. (2000).
Process modeling: The promise of open software architectures, Chemical
Engineering Progress, 96(9) 65-76.
3. Belaud, J. P., Bernier, J., Halloran, M., KSller, J., Pifiol, D. & Roux. R.
(2000). Error handling strategy: Error common interface. Technical report,
Global CAPE-OPEN and project partners.
4. CORBA (2001). Common Object Request Broker Architecture,
http://www.omg.org
5. COM (2001), Component Object Model, http://www.microsoft.com
6. Greenfield, L. (1996). The LINUX Users' Guide, http://www.linux.org
7. Hammond, M. & Robinson, A. (2000). Python Programming on Win32.
O'Reilly, 1 st edition
8. Henning M., & Vinoski. S. (1999). Advanced CORBA Programming with
C++. Addison-Wesley

642

9. Hyprotech (subsidiary of AEA Technology plc) (2001). Hysys.Process
(Sequential modular steady state process simulator) v2.2,
http://www, hyp ro tech. co m
10, Object Management Group (OMG) (1999). C++ Language Mapping
Specification, http://www.OMG.org
11. OmniORB (2001). OmniORB, freeware, Object Request Broker for C++
and Python, http://www.uk.research.att.com/omniORB
12. PSE (Process Systems Enterprise Ltd) (2001). gPROMS v2.0 (Equation-
oriented process simulator), http://www.psenterprise.com
13. ActivePython (2001). ActivePython freeware development tool,
http://www.python.org
14. Rossum, G. v. (1999). Python Library Reference, release 1.5.2, CNRI,
http://www.python.org
15. Stroustrup, B. (1997). The C++ Programming Language. Addison-Wesley,
3rd edition
16. XML (2001). Extensible Markup Language, w3 consortium,
http://www.w3.org

643

G l o s s a r y of T e r m s I

ACL
ACSL
AD
AIC
ANS
API

Architecture

ARM
ASP
AspenPlus
Batch process

BDF
BFD
BLAS

BPI
C#

C++

CAMD
CAPE
CapeML.Model
CAS Number

CGI

Agent Communication Languages (see chapter 6.1)
Advanced Continuous Simulation Language
Automatic differentiation
Akaike Information Criterion (see chapter 3.4)
Agent Name Server
Abbreviation of application program interface, a set of routines, protocols, and
tools for building software applications. A good API makes it easier to develop a
program by providing all the building blocks. A programmer puts the blocks
together. (w)
Defines how a computer program is broken down into its constituent parts. In the
domain of OO applications, these parts are software components or objects. (c)
Application Resource Model
Application Service Provider
Aspen-Commercial process simulation package (http://www.aspentech.com)
By definition, a batch process occurs in a finite time span, having an initial start
condition, a path of transformation (usually involving material and energy
transfers) and a final state. This is a definition based on type of processing and
does not necessarily reveal the classification of the product itself.
Backward differentiation formula (see chapter 3.2)
Block Flow Diagram
Basic linear algebra subroutine l ibrary- A collection of FORTRAN subroutines
and functions for performing basic linear algebra tasks
Business Process Improvement (see chapter 6.5)
A hybrid of C and C++, it is Microsoft's newest programming language developed
to compete with Sun's Java language. C# is an object-oriented programming
language used with XML -based Web services on the .NET platform and designed
for improving productivity in the development of Web applications.(w)
A high-level programming language developed by Bjarne Stroustrup at Bell Labs.
C++ adds object-oriented features to its predecessor, C. C++ is one of the most
popular programming language for graphical applications, such as those that run in
Windows and Macintosh environments. (w)
Computer Aided Molecular Design
Computer Aided Process Engineering
See chapter 3.1
Chemical Abstracts Service has a Chemical Abstracts Registry Number (CAS-
number) for known chemicals.
CGI: Abbreviation of Common Gateway Interface, a specification for transferring
information between a World Wide Web server and a CGI program. A CGI
program is any program designed to accept and return data that conforms to the
CGI specification. The program could be written in any programming language,
including C, Perl, Java, or Visual Basic. CGI programs are the most common way

l
Definitions in this annex are borrowed from websites with minor rewriting or simplifications. The sources are indicated: (w) for

www.pcwebopedia.com, an online computer dictionary for intemet terms, (o) for www.omg.org, OMG's web site. (m) for Microsoff's web
site, www.microsoft.com, (c) for www.colan.org, the CAPE-OPEN Laboratories network website.

644

CO-LaN

COM/DCOM/C
OM+

CO
COPS
CORBA

COSE
DAE
Data
Reconciliation
DCS
DIPPR
DO

DSL
DTD
Dynamic
simulation
EAI

for Web servers to interact dynamically with users. Many HTML pages that
contain forms, for example, use a CGI program to process the form's data once it's
submitted. (w)
CAPE-OPEN Laboratories Network (CO-LaN), a not-for-profit user-driven
organisation for the testing and management of the CAPE-OPEN standard.
Abbreviation of Component Object Model, a model for binary code developed by
Microsoft for its implementation of middleware. COM enables programmers to
develop objects that can be accessed by any COM-compliant application. COM+
builds on COM's integrated services and features, making it easier for developers
to create and use software components in any language, using any tool. (m) & (c)
CAPE OPEN project (see chapter 4.4)
Context Oriented Process Support System
Short for Common Object Request Broker Architecture, an architecture that
enables pieces of programs, called objects, to communicate with one another
regardless of what programming language they were written in or what operating
system they're running on. CORBA was developed by an industry consortium
known as the Object Management Group (OMG). (w)
CAPE OPEN Simulation Executive
Differential - Algebraic Equations
Data reconciliation is a minimization of measurement errors subject to satisfying
the constraints of the process model
Distributed Control System
Design Institute for Physical Properties
Dynamic Optimisation. Nonlinear algebraic objective function with possible
integral terms. Nonlinear differential and algebraic constraints. All variables are
continuous valued.

Domain oriented Domain-oriented (process) modelling languages provide modelling concepts,
language which correspond to domain-specific concepts.

Digital Subscriber Line
Document Type Definition
Dynamic simulation defines the behaviour of a process over time. (c)

EJB

EPC
ERP
ESO
EVM
Flowsheet

GAMS
GCO
Generic

Acronym for enterprise application integration. EAI is the unrestricted sharing of
data and business processes throughout the networked applications or data sources
in an organization. (w)
EJB: short for Enterprise JavaBeans,(EJB) is a Java API developed by Sun
Microsystems that defines a component architecture for multi-tier client/server
systems. EJB systems allow developers to focus on the actual business architecture
of the model, rather than worry about endless amounts of programming and coding
needed to connect all the working parts. This task is left to EJB server vendors.
Developers just design (or purchase) the needed EJB components and arrange
them on the server.(w)
Engineering Procurement and Construction
Enterprise Resource Planning
Equation Set Object
Errors in Variables Measured (see chapter 3.4)
A symbolic representation of process: a set of simulation blocks with connections.
(c)
General Algebraic Modelling System
Global CAPE OPEN project (see chapter 4.4)
Generic modelling languages are those that do not provide domain-specific

645

Language
gProms
GRID
computing

GUI

HLS

HTML

HYSYS
ICAS
IDL

IIOP

Interface

IRK
IT
J2EE

Java

Javascript

concepts but concentrate on a mathematical (or systems) level.
Commercial process simulation package (http://www.psenterprise.com)
The growing popularity of the Internet along with the availability of powerful
computers and high-speed networks as low-cost commodity components are
changing the way we do computing. These new technologies enable the clustering
of a wide variety of geographically distributed resources, such as supercomputers,
storage systems, data sources, and special devices, that can then be used as a
unified resource and thus form what are popularly known as "Computational
Grids". A Grid is analogous to the electrical power grid and aims to couple
distributed resources and offer consistent and inexpensive access to resources
irrespective of their physical location.
Graphical User Interface. A program interface that takes advantage of the
computer's graphics capabilities to make the program easier to use. Well-designed
graphical user interfaces can free the user from learning complex command
languages. (w)
Harwell subroutine l ibrary- a large collection of FORTRAN subroutines for
performing tasks from linear sparse algebra to nonlinear optimisation
HyperText Markup Language, the authoring language used to create documents on
the World Wide Web. HTML is similar to SGML, although it is not a strict subset.
HTML defines the structure and layout of a Web document by using a variety of
tags and attributes. (w)
Commercial process simulation package (http://www.hyprotech.com)
Integrated Computer Aided System (http://www.capec.kt.dtu.dk)
Interface Definition Language. IDL is used to formally define the interface of a
Software Component. It is programming language neutral, but its syntax is very
similar to C. (c)
Internet Inter-ORB Protocol, a protocol developed by the Object Management
Group (OMG) to implement CORBA solutions over the World Wide Web. IIOP
enables browsers and servers to exchange integers, arrays, and more complex
objects. (w)
An interface represents a communication gateway to an implementation of the
functionality of a class or Software Component. It does not imply an
implementation, but defines what the implementation provides. A Software
Component may employ several interfaces, which act as different aspects or ways
of working with the component. Multiple interfaces are used to group together
levels or kinds of functionality.(c)
Implicit Runge-Kutta method (see chapter 3.2)
Information Technology
Java 2 Platform Enterprise Edition. J2EE is a platform-independent, Java-centric
environment from Sun for developing, building and deploying Web-based
enterprise applications online. The J2EE platform consists of a set of services,
APIs, and protocols that provide the functionality for developing multitiered, Web-
based applications.(w)
A high-level programming language developed by Sun Microsystems. Java was
designed to take advantage of the World Wide Web. Java is an object-oriented
language similar to C++, but simplified to eliminate language features that cause
common programming errors. (w)
A scripting language developed by Netscape to enable Web authors to design
interactive sites. Although it shares many of the features and structures of the full
Java language, it was developed independently. Javascript can interact with HTML
source code, enabling Web authors to spice up their sites with dynamic content.

646

KQML
Lifecycle
process
modelling
Linux

LP

MathML
Middleware

MIDO

MILP

MINLP

ModDev
MODEL.LA
Modelica

ModKit
MOM
MoT
MPC
NET

NLP

Object

(w)
Knowledge Query Manipulation Language
Where not only the different facets of process models (in the sense of data) are
considered, but also their relationships and their evolution in the sense of a work
process.
A freely-distributable open source implementation of UNIX that runs on a number
of hardware platforms, including Intel and Motorola microprocessors. It was
developed mainly by Linus Torvalds. Because it's free, and because it runs on
many platforms, including PCs, Macintoshes and Amigas, Linux has become
extremely popular over the last couple years. (w)
Linear Program. Linear algebraic objective function and constraints. All variables
are continuous valued.
MathML (see chapter 3.1)
Middleware provides a mechanism for communication between separately
compiled and linked Software Components that can be written in different
programming languages and run on different processors and platforms. It thus
provides a means of communicating between Software Components prepared by
different authors and organizations. Middleware provides binary level standards to
permit this communication. It allows software systems to be assembled from well-
tested, independently developed, Software Components obtained from a variety of
sources. (c)
Mixed integer dynamic optimisation. Nonlinbear algebraic objective function with
possible integral terms. Nonlinear differential and algebraic constraints. Both
discrete and continuous valued variables
Mixed integer linear program. Linear algebraic objective function and constraints.
Both discrete and continuous valued variables.
Mixed integer nonlinear program. Nonlinear algebraic objective function and
constraints. Both discrete and continuous valued variables
A computer aided tool for model generation (see chapter 3.1)
A computer aided modelling tool (see chapter 3.1)
Modelica: Modelica is the result of a standardisation effort in domain-independent
(also called multi-domain) modelling languages, which aims at providing a
standard language that is based on object-oriented concepts to simplify model
development and reuse.
See MODEL.LA (see chapter 3.1)
Message oriented middleware
Computer aided modelling tool-box (see chapter 3.1)
Model predictive control
A Microsoft operating system platform that incorporates applications, a suite of
tools and services and a change in the infrastructure of the company's Web
strategy. The objective of .NET is to bring users into the next generation of the
Internet by conquering the deficiencies of the first generation and giving users a
more enriched experience in using the Web for both personal and business
applications. (w)
Nonlinear Program. Nonlinear algebraic objective function and constraints. All
variables are continuous valued
An object is a software entity, which combines both properties (data or variables)
and methods (procedures). Objects are created from an abstraction called a class.
One can have many objects of the same class or type, each representing different
instances (for example, several different distillation columns within a simulation).
The term encapsulation is commonly used with objects. It means that the an

647

Object
Orientation

Object Oriented
Languages

ODE
OMG

ORB
OTS
Parameter
Estimation
PDAE
PFD
P&ID
PlantData
XML

PMC
PME
POSC
PPDB
PRO-II
Programming
language
PSE
PUP
RTO
Sequential/
Modular
Approach
Simulation
Simultaneous
Solution or
Equation
oriented
Simultaneous/

object's internal properties and methods are not visible except in the controlled
way that is defined by the class interface. (c)
Object Orientation (OO) is a way of building software based on objects and the
relationships between them. Objects have defined behaviours and states. Objects
are defined by classes that can be grouped hierarchically. OO promotes efficient
code re-use and creating programs that are easier to read. Key attributes of an
object-oriented language are encapsulation, inheritance and polymorphism. These
benefits are provided through a class structure, which is a feature central to all OO-
languages. It is claimed that OO handles complexity better because it provides a
more natural correspondence between the software and real-world entities. (c)
Object-Oriented languages provide classes, and mechanisms of inheritance and
polymorphism. The OO languages include C++, Java, Smalltalk, C# and others.
Visual Basic is often included because it supports most OO concepts and is widely
used for business and engineering applications. (c)
Ordinary Differential Equations
Object Management Group, a consortium with a membership of more than 700
companies. The organization's goal is to provide a common framework for
developing applications using object-oriented programming techniques. OMG is
responsible for the CORBA specification. (w)
Object Request Broker
Operator Training System
Parameter estimation is the step after data reconciliation in which the reconciled
values of the process variables are used to set values for the model parameters.
Partial Differential Algebraic Equations
Process Flow Diagram
Piping & Instrument Diagram
PlantData XML is an effort originally conceived in 1999, with work now starting
in 2001, to combine existing process industry international data exchange
standards and XML Internet standards to create a practical and easy to use
electronic data exchange standard for the process industry.
Process Modelling Component
Process Modelling Environment
Pterotechnical Open Software Corporation
Physical Properties DataBase
Commercial process simulation package (http://www.simsci.com)
Modelling language where a model is directly implemented into the solver, e.g. as
a subroutine.
Process Systems Engineering
Public Unit Parameters
Real Time Optimisation
In this approach each unit operation is represented by a set of equations grouped
into a block (or module) and the whole flowsheet is solved one a module-by-
module basis (in sequential way)
See chapter 3.3 for definition
The main idea of this approach is to collect all the equations and solve them as a
large system of non-linear algebraic equations.

The basic idea of this approach is based on solving a simplified, linearised set of
Modular or two- equations for each unit operation in an inner-loop thereby allowing the solution of
tier approach interconnected unit operations simultaneously. In the outer-loop, a rigorous model

648

Smalltalk

SOAP

Software
Component

Speciality
products

SpeedUP
SQP
STEP
MOF

Three-tier

Two-tier

UDDI

UML

VeDa
Visual Studio

is used to update the linearised model.
An object-oriented operating system and programming language developed at
Xerox Corporation's Palo Alto Research Center. Smalltalk was the first object-
oriented programming language. Although it never achieved the commercial
success of other languages such as C++ and Java, Smalltalk is considered by many
to be the only true object-oriented programming environment, and the one against
which all others must be compared. (w)
Simple Object Access Protocol provides a way for applications to communicate
with each other over the Internet, independent of platform. Unlike OMG's IIOP,
SOAP piggybacks a DOM onto HTTP in order to penetrate server firewalls. SOAP
relies on XML to define the format of the information and then adds the necessary
HTTP headers to send it. (w)
A software component is a defined set of functionality provided by some
implementation of compiled software. The software component functionality is
defined through a specified interfaces. Access to the interface is by the
middleware technology. A software component is capable of being used and re-
used in different software applications. (c)
The word 'specialty' refers to the type of product being manufactured irrespective
of process used to make it. The name, 'specialty' arises from the special functional
properties that these products bring when added to other 'bulk' materials.
Examples are chemicals that impart special fragrances or flavours to their
substrates or modify the rheological behaviour of (bulk) fuel (e.g. diesel).
Commercial simulation package (see chapters 3.1 and 5.3)
Sequential (or successive) quadratic programming (see chapter 3.4)
See chapter 4.1 for definition (also visit http://www.STEPlib.com)
The MOF, or MetaObject Facility, standardizes a meta-model - the concepts that
are used to build application models. UML models, which are built from the MOF
metamodel, interchange easily because of this commonality. Another part of the
MOF specification defines a repository for metamodels and models. (o)
Three-tier: a special type of client/server architecture consisting of three well-
defined and separate processes, each running on a different platform: 1. The user
interface, which runs on the user's computer (the client). 2. The functional modules
that actually process data. This middle tier runs on a server and is often called the
application server.3. A database management system (DBMS) that stores the data
required by the middle tier. This tier runs on a second server called the database
server. (w)
Two-tier architecture: A simple client-server relationship is referred to as a two-
tier architecture.
Universal Description, Discovery and Integration. A Web-based distributed
directory that enables business to list themselves on the Internet and discover each
other, similar to a traditional phone book's yellow and white pages. (w)
Unified Modelling Language (UML) is the software notation that emerged from
collaborative efforts of Rational Software and two other leading companies in
analysis of object based software design. UML merges the methods formerly
known as Objectory (Ivar Jacobson), OMT (James Rumbaugh), and the Booch
Method (Grady Booch).It provides different views of planned and proposed
software systems. It has been accepted as a standard notation by OMG. (c)
See chapter 3.1 for details
Microsoft Visual Studio is a complete enterprise-class development system
including tools for Basic, C++ and J++ development and Web applications
creation. (m)

649

Windows

WSDL

WWW
XMI

XML

A family of operating systems for personal computers. Windows dominates the
personal computer world, running, by some estimates, on 90% of all personal
computers. The remaining 10% are mostly Macintosh computers. Like the
Macintosh operating environment, Windows provides a graphical user interface
(GUI), virtual memory management, multitasking, and support for many
peripheral devices. (w)
Web Services Description Language, an XML-formatted language used to describe
a Web service's capabilities as collections of communication endpoints capable of
exchanging messages. WSDL is an integral part of UDDI, an XML-based
worldwide business registry. WSDL is the language that UDDI uses. WSDL was
developed jointly by Microsoft and IBM. (w)
World Wide Web
XMI: short for XML Metadata Interchange, is a stream format for interchange of
metadata including UML models. It's useful for transferring the model from one
step to the next as your design and coding progress, or for transferring from one
design tool to another. Because XMI streams models into XML datasets, it also
serves as a mapping from UML to XML. (o)
xXtensible Markup Language, a specification developed by the W3C. XML is a
pared-down version of SGML, designed especially for Web documents. It allows
designers to create their own customized tags, enabling the definition,
transmission, validation, and interpretation of data between applications and
between organizations. (w)

This Page Intentionally Left Blank

651

Subject Index

Activity model
Adsorption
Advanced (modelling) tools
Analysis
Analysis of reactor alternatives with one reactor
Analysis of reactor sequences
And-or Graphs
Application interfaces
Application protocol 221
Application service providers
ASP services
AspenPlus
Automated fault detection and diagnosis
Automatic code generation
Batch design versus rating or simulation
Batch frequency and batch size
Batch oriented modeling tool architecture
Batch process
Batch process - simulation tools
Batch process - simulation tools
Batch process development
Batch process development
Batch process Planning
Batch process Planning
Batch process Scheduling
Batch process Scheduling
Batch process Schedul ing- control interface
Batch process Schedul ing- control interface
Batch scheduling
Benefits during operational phase
Benefits during plant design
Broker platform
Business aspects
Business environment issues
Business environment needs
Business models
CAPE environment issues
CAPE environment needs
CAPE funct ional i ty- medium term vision
CAPE O P E N - Development process

70
386
366
173
615
617
109
506
294
564
581
75
536
157
59
51
113
49
214
435
217
440
219
444
219
444
222
448
383
35
32
583
567
2O
22
58O
24
25
56
306

652

CAPE O P E N - Standards
CAPE OPEN component marketplace
CAPE OPEN components
CAPE OPEN sys tems- numerical solvers
CAPE OPEN sys tems- physical properties databases
CAPE OPEN work process
Case S t u d y - Methyl acetate production
Case s t u d y - Polyamide6 production
Certification authority
Chemical Industry and refinery
Chemical process simulation
CO architecture elements
CO Formal documentation set
CO Interoperability - example of use
CO Unit operat ion- example
CO-LaN
COM-CORBA C++ Bridge
Commercial simulators
Community platform
Component based software - Processes and development
Component dictionaries
Component libraries
Computational fluid dynamics
Computing environment issues
Computing environment needs
Conceptual design
Continuous stirred tank reactor
Control
CORBA C++ Unit Skeleton
Cost efficiency
Cost estimate and design representation
Cost estimation
Current enabling WWW technologies
Data management infrastructure
Data mining
Data models for integration
Data reconciliation
Data reconciliation- akaike information criterion
Data reconciliation- dynamic (case study)
Data reconciliation- mathematical structure
Data reconciliation- mixed integer approach
Data reconciliation- steady state (case study)
Data representation
Data sharing
Decision for plant concept

307
571
570
322
328
248
591
610
582
399
167
308
307
319
315
331
637
379
582
246
58O
156
6O
23
24
171
346
3O
637
51
83
171
517
510
583
5O4
389
203
204
194
203
197
237
505
629

653

Decision levels
Decision making and uncertainty
Decommissioning
Definition of thermodynamic model
Degree of standardization
Design activities
Design and decision support
Design and revamp
Design of an extractive distillation system
Design process - Integration
Design tools, data and DB
Detailed design
Detailed design
Distillation
Distributed design environments
Distributed problem solving
Distributed simulation
Domain oriented modeling languages
Driving forces
DSL technology
Dynamic optimization
Dynamic optimization
Dynamic process model
Dynamic simulation
Dynamic s imulator- industrial requirements
e-collaboration
e-Engineering
Emerging needs for the enterprise
Engineering education in CAPE
Engineering simulators
Equipment maintenance
Equipment selection
Evolution of programming principles
Evolution of the training simulator
Extruder design
Fault detection- hybrid techniques
Fault detection- knowledge based approach
Fault detection- methodologies
Fault detection- statistical analysis
Fault detection -Residual generation
Flexible infrastructure and safety
Flowsheeting- Paper, Minerals, Metals Processing
Flowsheeting simulators
Flowsheeting tools/languages
Fluent

54
55
31
596
180
172
507
27
602
390
82
34
171
386
464
462
470
102
66
517
59
151
394
168
402
522
520
562
523
396
42
172
231
399
626
554
546
537
539
537
5O
381
377
102
639

654

Fluent C++ unit module
Fundamental model objects
Generic modeling languages
Granularity
Gross error detect ion- optimization strategies
Heat exchanger and water network synthesis
Heat exchangers
Here and now decisions/wait and see decisions
Hierarchical knowledge representation
History of IT in the enterprise
Hybrid discrete/continuous parametric sensitivity analysis
Hybrid discrete/continuous systems
HYSYS
Industrial modeling practice -challenges
Industry s t ruc tu re - the supply side
Information management
Information management
Information requirements
In-house simulators
Integrated environment
Intelligent formulation
Interactive modeling tools
Interfaces for batch process models
IO Communications
Java applets
Java Script
Leacher - analysis of separation
Leacher- modelling
Life span of products
Lifecycle - dynamic simulation
Lifecycle model framework
Lifecycle needs
Lifecycle support by CAPE software
Linking models to advanced control
Make to stock production environment
Manufacturing scale-up
Mapping from block to equipment concept
Mathematical modeling languages
Middelware solutions
Middleware principles
Migration of legacy software
Miscellaneous C++ Unit modules
Miscellaneous CORBA Units
Mix of plant and equipment
Model analysis

639
108
94
182
202
388
385
55
546
562
144
139
75
336
558
217
440
72
380
84
60
115
57
639
518
518
624
352
51
399
72
65
78
40
62
60
75
95
249
232
234
640
640
50
111

655

Model creation and manipulation
Model fidelity
Model transformation
Modelling assistants
Modelling complex processes
Modelling concepts and languages
Modelling frameworks
Modelling in process design
Modelling kinetic reactor
Modelling languages- general purpose
Modelling languages- general purpose
Modelling of batch/specialities processes
Modelling process
Modelling systems and data
Modelling tool architecture
Modelling tool functionality
Models to update operational guidelines
Momentum transport
Monitoring of pipelines- application example
Multi-agent sys tems- communication aspects
Multifacetted and lifecycle process modeling
Multi-media systems
Nuclear Industry
Numerical integration of differential and algebraic equations
Object data model - example UML
Object data model - example XML
Object oriented libraries
Off-line applications
OFF-line CAPE tools- Decision support systems
Oil and gas production
On-line computation and simulation
On-line parameter estimation and optimization
Open modeling tools
Operations
Operator training system
Optimisation
Optimisation algorithms
Order driven production environment
Parametric sensitivity analysis
Physical properties
PlantDataXML
PlnatDataXML Standards- methodology for development
Plug flow reactor & reactor combinations
Polyamide6 production- design case study
Polyamide6 production- plant structure

107
36
111
386
172
94
93
338
593
217
440
56
89
236
113
106
37
355
425
455
92
527
398
137
282
286
156
373
374
396
523
40
118
29
41
169
146
61
142
363
267
278
348
340
340

656

Polyamide6 p roduc t ion - reactor design
Polyamide6 p roduc t ion - separation design
Power Industry
Prel iminary flowsheet synthesis
Process calculations
Process design
Process design phase
Process engineering - data exchange
Process engineering - dataflow
Process engineering - workflow
Process engineering activity
Process engineering specialists
Process Industries - Evolving business models
Process lifecycle applications
Process modeling environment
Process modelling applications
Process modelling languages
Process planning & scheduling
Process planning & scheduling
Process simulation - continuous
Process simulation - continuous
Process simulation applications
Process simulators - Algorithms
Process s i m u l a t o r s - steady state
Process synthesis
Process Web Objects
Process workflow supporting agents
Product synthesis
PRO-II
Python CapeML unit
Python COM unit skeleton
Reactors
Real laboratories on-line
Real time dynamic simulators
Representat ion of molecular weights
Representat ion of physical properties of complex molecules
Representat ion of the form of solids
Requirements of component vendors
Requirements of the marketplace provider
Scheduling
Scheduling/planning
Screening for closure constraints
Selection of separation sequence
Selection of thermodynamic model
Server programs

343
351
398
613
531
171
73
274
279
279
76
42
559
401
637
335
103
219
444
213
433
566
407
377
33
496
466
389
75
640
640
385
527
422
58
58
58
578
580
52
6O
110
599
344
519

657

Signed direct graph based approach
Simulation
Simulation & model fidelity
Simulation and optimisation of flowsheet
Simulators - differential algebraic (equation-oriented)
simulators
Simula tors- engineering and training simulators

548
165
170
606
411

412
S i m u l a t o r s - general differential and differential algebraic 410
simulators
Software architecture
Software architecture - data reconciliation
Software architecture - integration and standards
Software components - chemical industry
Software development environment
Software engineer ing- basics
Software in tegra t ion- Asynchronous approaches
Software integration architecture - XML
Software integration - industry needs
Solution of non-linear systems of equations
Solving networks
Speciality products
Stages of the process design lifecycle
Stages of the process design lifecycle
Standardisation of best practice
Steady state des ign- dynamic design
Steady state des ign- optimisation
Steady state optimization
Steady state simulation
STEP methodology- lessons learned
STEP or ISO - 10303
Strategic development of batch factories
Structural algorithms
Structural characteristics of batch and specialities industries
Supply chain management
Supporting software
Synthesis of reactor alternatives
Synthesis of separation alternatives
System frameworks
Systems modeling languages
The 80/20 Rules
The control hypercourse & distance learning
The design project
The 6p66 system
The eXtensible Markup Langauge (XML)
The GRID

636
205
238
569
637
230
240
270
239
128
378
49
592
612
52
382
383
148
168
276
294
63
135
5O
474
56
614
619
175
97
68
529
532
489
26O
5O9

658

The ICAS system
The Phenomenon of WWW
The unified modeling language (UML)
The Web
Thermodynamics and physical properties
Time to market and cost pressure
Tool support for modelling
Tools integration - current projects
Tools In tegra t ion- Frameworks
Training
Training simulator
Training simulators
Use of automatic dynamic model generators
Use of block modular packages
User interaction
Value of materials processed
Virtual laboratories
Virtual plant
Web-based education
Whole process synthesis
Wiped film evapora tor- analysis of separation
Wiped-film evapora tor- modeling
XML

502
515
254
508
384
66
365
504
487
29
413
397
57
57
506
5O
527
528
528
387
620
352
517

A u t h o r I n d e x

R. Andrews
N. Arora
P. Banks
P. I. Barton
R. Batres
B. Bayer
J.-P. Belaud
L. T. Biegler
I. D. L. Bogle
B. Braunschweig
D. Cameron
I. T. Cameron
C. Clausen
P. Edwards
M. Eggersmarm
T. I. Eikaas
E. S. Fraga
R. Gani
M. Graells
J. Hackenberg
G. Heyen
D. Hocking
K. Irons
M. Jarke
J. K611er
A. Kuckelberg
D. Leung

485
193
19
127
455

591
229, 303
193
373
3,303,455
373,393
335,515
393
557
335,591
635
485 �9
3,89,485,591
213,433
335
193
165
19
229,557
229,557
229
535

T. I. Malik
W. Marquardt
K. W. Mathisen
W. Morton
R. Murris
J. M. Nougu6s
H. Okada
M. Pons
J. W. Ponton
L. Puigjaner
C. Quix
G. V. Reklaitis
J. C. Rodriguez
J. A. Romagnoli
S. Sama
R. Schneider
M. Schoop
T. Shirao
V. Siepmann
B. J. Stenhouse
T. List
T. Teague
J. E. Tolsma
L. von Wedel
M. White
M. R. Woodman

659

49
89,335
635
393
293
165
65
557
485,515
49,213,433
557
213,433
165
535
165
591
557
65
635
19
557
229,267
127
89
303
19

This Page Intentionally Left Blank

661

CORRIGENDUM

The chapter "3.5: Frameworks for Discrete/Hybrid Production Systems" by L.
Puigjaner, A. Espufia & G.V. Reklaitis belongs to Part III, unfortunately it could not
be placed in sequence, and has been placed at the end of the book, pages 663-700.

We apologize for any inconvenience this may cause.

Elsevier Science B.V.

This Page Intentionally Left Blank

663

Chapter 3.5: Frameworks for Discrete /Hybrid Product ion
Sys tems

L. Puigjaner, A. Espufia & G.V. Reklaitis

3.5.1 I N T R O D U C T I O N

In a recent review (Antsaklis, 2000) the term "Hybrid" has been identified as
meaning in general, heterogeneous in nature or composition, and the term
"hybrid systems" meaning systems with behaviour defined by entities or
involving a combination of continuous and discrete parts. Thus, a "hybrid
dynamical system" is considered to be a dynamical system where the behaviour
of interest is determined by interacting continuous and discrete dynamics. Such
systems generate variables that are combinations of continuos or discrete values
and through them cause interaction with other systems and environments .
Fur thermore, this discrete or continuous-valued information is time dependent,
where the time may also take on continuous or discrete values. One could also
dist inguish between information, which is t ime-driven in some cases, and event-
driven in others. The consideration of all these elements embraces a var iety of
disciplines tha t include process and control engineering, mathemat ics and
computer science.

The coexistence of continuous and discrete systems requires the development of
models tha t accurately describe the behaviour of such hybrid systems. Hybrid
models may be used to significant advantage in the context of manufactur ing,
communication networks, computer synchronisation, traffic control and chemical
processes among others. Here, we will concentrate in those related to flexible
chemical manufactur ing systems.

In chemical processes, al though hybrid systems have a central role in embedded
control systems tha t interact with the physical plant, they also arise in complex
flexible manufactur ing structures by virtue of the hierarchical organization of the
whole enterprise management system. In these systems, a hierarchical
framework is needed to manage complexity. Generally, higher levels in the
hierarchy require less detailed models of the behavior occurring at the lower
levels, thus creating the need for interaction of discrete and continuous
components. In general, there will be different types of models and at different
level of detail, as it will be described next.

664

This chapter discusses the characteristics of frameworks for discrete/hybrid
production systems. First existing s tandards and generic models are indicated.
Next sources of information and information flow are described. Then, existing
modeling frameworks embodying different approaches are presented. The
exploitation of information for model improvement is discussed in the next
section. The last section outlines the use of models for decision-making and
optimization.

3.5.2 E X I S T I N G S T A N D A R D S

Chemical plants constitute in part large hybrid systems. A rigorous model of a
single unit of a chemical plant may easily encompass several hundred of
nonlinear differential equations and several thousand algebraic equations. The
associated modeling effort requires open structures, interoperabili ty and strict
adherence to existing standards. A summary of those s tandards is given below.

3.5.2.1 G e n e r i c m o d e l s

Generic models related to the integration of manufactur ing entities can be
classified in two types of architecture (Sararaga et al., 1999):

�9 Enterprise reference architectures: these are used to manage the
development and the implementat ion of an integration system for the
whole enterprise.

�9 Architectures for designing physical systems: these are associated with a
specific system. The most interesting architectures for our study are the
CIM architectures and the functional control architectures:

o The CIM architectures are hierarchical and deterministic models of
scheduling and control.

o The functional architectures for control identify the components,
specify the integration rules and present s tandard interfaces for
developing interoperable components.

An enterprise reference architecture models the whole cycle of an integration
project at the enterprise level, from its conception through its definition,
functional design, detail design, implementat ion and operation, to its
obsolescence.

Most of the architectures and methodologies developed in the Enterprise
Engineering area are summarized as follows.

665

�9 ARIS (Architecture for Information Systems) by IDS Scheer. ARIS focuses
on enterpr ise modeling room, on operative and information technologies,
with the objective to construct the information system of the enterprise.

�9 CIM-OSA (CIM Open System Architecture) by ESPRIT program. This
open archi tecture supplies: a general definition of CIM field, an
implementa t ion guide, a description of the system components and
subsystems, and a modular s t ructure matching the in terna t ional
s tandards . The CIMOSA reference model has been val idated in different
projects: VOICE in the automation sector, TRAUB in the machine-tool
sector and VOICE II in the a luminum smelt ing sector.

�9 GRAI-GIM (GRAI In tegra ted methodology) by GRAI Laboratory. Init ial ly
this archi tecture was developed for modeling the decision s t ructure of a
manufac tur ing enterprise with focus on strategy, tactical and operat ional
scheduling. Subsequently, it was extended to support the design of CIM
systems, becoming an integrated methodology for modeling of business
processes, tha t establishes a s t ructured and clear approach for analyzing
and designing this type of systems.

�9 IEM (Integrated Enterpr ise Modeling) by IPK Fraunhofer Inst i tute . IEM
supports the construction of enterprise models for process reengineering,
and so, it also allows modeling the process dynamic to evaluate the
operative options.

�9 P E R A (Purdue Enterpr ise Reference Architecture) by Purdue Applied
Control Laboratory. This model is the most complete life cycle for
developing CIM systems. It involves explicitly the organizat ion and the
staff in the model, searching these critical factors in the integrat ion of the
whole system (Figure 1).

666

E X T E R N A L E N T I T I E S

MANAGEMENT POLICY BUDGET

MARKETING ~SALES . - ' " ' ' ' ' " "
POLICY /FORECAST . . - ' "

/ PRODUCT
.J I!

. l I I T H E

. j ' R , o l l J ~ i L P R O D U C T I O N
I I REO,.l I I I / I = & C T t 3 R V R Y R T I = M I DEVELOPMENT |=] I I /

INFORMATION I I DESIGN REO. -' ' ' '~'~ �9 �9 / /
I I . Y J

"'" " B ILL OF "
. ~ I r LL E / T ISHI;] I

~ ; ; I I ~ / I I I
.... I I I I I I I I I I ~ SUPPORT I 1 ENGINEERINGJ I INFORMATIONI I I I

, -, i |] I I
_ . , , I , , FsJ I - .

I R E S ~ | / IWASTEI / WASTE I
I I IRESOURCI~S J ; ; ~ MATERIAL

RESOURCES I I 1 I I / TREATMENT /
. . . . GEMENT I " l

/ I MA,NTENANCE I Shaded area is
I I I
I

scope of PRM for
manufacturing

Figure 1. The Purdue Reference Model (PRM) architecture.

T h e w h e e l o f CASA/SME (Computer and Automated Systems
Association/Society. The new wheel of the manufac tur ing enterprise is a
graphic index of the knowledge and management aspects needed in the
cur rent manufac tur ing environment. It describes the main six elements to
obtain a competitive manufacturing: the clients, the staff and management
resources, the systems and the shared knowledge, the processes, the
resources and the responsibilities, and the manufac tur ing infrastructure.
G E R A M (Generalized Enterprise Reference Architecture and
Methodology) by IFAC/IFIP (Internat ional Federat ion of Automatic
Control / In terna t ional Federat ion for Information Processing) Task Force.
G ERAM defines those methods, models and tools required for developing,
designing, constructing and mainta ining an integrated enterprise in a
changing environment It is not a new proposal. It organizes all the
knowledge of enterprise integrat ion instead of redefines it. In this way, the
previous archi tectures mainta in their identity, but they can contrast the
overlapped and complementary profits with the other architectures
through GERAM.

3.5.2.2 CIM A r c h i t e c t u r e s

The main characterist ics of CIM archi tectures are summarized in the following
descriptions.

667

�9 FAM (Factory Automation Model) by ISO (Internat ional S tandards
Organization). It establishes a hierarchical s t ructure with six levels
(Enterprise, Factory/shop floor, Section/Area, Cell, Station and Equipment)
for modeling a production shop floor. In each level, the upper level
objectives are subdivided into simple tasks, and the lower level
information is evaluated.

�9 A M R F (Advanced Manufactur ing Research Facility) by NBS (National
Bureau of Standards). This hierarchical s t ructure with five levels (Factory,
Area, Cell, Station, Equipment) has been developed with ha rdware and
software of different manufacturers . The upper level tasks are broken
down through the hierarchy, and in the lowest level those tasks are a set of
simple executable actions.

�9 ICAM (Internat ional Computer Aerospace Manufactur ing) program model
by U.S. Air Force. This model is a functional s t ructure with five levels,
tha t follows s t ructured method development for applying computer-aided
technologies to manufactur ing, as a manne r of improving productivity.

�9 C O P I C S (Communicat ion-Oriented Production Information and Control
System) by IBM. COPICS involves the main activities in relat ion with
manufac tur ing scheduling and control, with special a t tent ion to
communications, database managemen t and presentat ions.

�9 D i g i t a l E q u i p m e n t C o r p o r a t i o n mode l . This approach defines a
control system as a set of functional modules with their corresponding data
flows. All this information allows the es tabl i shment of the shop floor
layout. As a result, functional and physical models for a manufac tur ing
system and its subsystems are obtained.

�9 S i e m e n s mode l . This model in tegrates the main technical and
managemen t functions for manufac tur ing through the information flow. It
dist inguishes a vertical information flow for interconnecting the different
levels of the hierarchical model, and a horizontal information flow for
controlling and synchronizing the activities of each level. Moreover, it
incorporates the Computer Aided Organizat ion (CAO) concept tha t
involves accounting, staff and industr ia l accounting areas, and Computer
Aided Indus t ry (CAI) tha t involves CIM and CAO.

�9 U P C CIM model. This approach solves the problem of co-ordination of the
different activities, considering hierarchical s t ructures which are built
under a modular philosophy (Puigjaner and Espufia, 1998). Figure 2 shows
the h ierarchy flowchart between the different levels. A large Real-t ime
Data base Management system is accessible to any level, feeds the
knowledge base supporting the expert systems at two levels and provides
information to the optimization module.

Figure 3 shows the CIM archi tecture against a mult i - layer optimisat ion
f ramework tha t follows ISA SP88 and SP95 s tandards.

668

Figure 2. Flowchart of the hierarchical decision-making

Figure 3. Multi-layer Optimization Framework.

3.5.2.3 I n f o r m a t i o n s t r u c t u r e : ISA S P 8 8

Processes have always been made up of physical objects, vessels, pumps, valves,
t ransmi t te rs , and controllers represent physical objects joined together by pipe
and wire. Normally the physical plant objects constitute a na tu ra l hierarchical
s t ructure. The object vessel can, for example, have the sub-objects agitator and
heater . The heater can have its own sub-objects such as a t empera tu re sensor
and control valve.

669

In the batch industr ies the methods to describe objects and procedures have
differed from indust ry to industry, and sometimes even from project to project.
That has served as incentive to s tandardize how batch control procedures must
be implemented (NAMUR NE33, ASTRID, ISA S88.01, ISA S88.02, GAMP
guidelines).

The ISA S88.01 introduced an object-oriented methodology to modeling the batch
processes and a common set of definitions. S88.01 offers opportunit ies to define
process control applications in a modular fashion. The application of ISA S88 in
batch control will be presented later in detail.

3.5.2.4 I n f o r m a t i o n m a n a g e m e n t : ISA S P 9 5

Open simulat ion and optimization in a real time environment requires
specification of the data flows between the s imulat ion models and applications at
levels 2, 3 and 4 in the hierarchical computer system structure (ISA-dS95.01-
1999) shown in Figure 4.

Data flows should lead to a reference model. The ISA model is mainly logical and
does not focus on the software architecture. Interoperabi l i ty requires the
extensive and detailed identification of data flows so tha t formal software
interface support ing these flows can be defined. The following modules are
contemplated:

�9 Coordination (Supervisory Control at level 2)
�9 Data reconciliation (Supervisory Control at level 2)
�9 Model predictive control (Supervisory Control at level 2, sub-scenario of

what one may call Advanced control).
�9 Scheduling and planing (Plant Production Scheduling and Operat ional

Management Level 4A).

The following modules will also be described:
Faul t detection and diagnosis (Supervisory Control at level 2).

It is not intended to describe some supervisory control subtasks as s tandalone
(independent) scenarios. For example:

�9 Pa rame te r est imation (although it may be par t of Data Reconciliation,
Faul t Detection and Diagnosis, or possibly even Model predictive control)

�9 State est imation (although it may be par t of Model predictive control,
Faul t Detection and Diagnosis, or possibly even par t of Data
Reconciliation).

�9 Real-time optimization (although Model Predictive Control includes
optimization).

�9 Optimization (a term tha t is really too broad to be used in this context)

670

�9 Data acquisition.

The interact ion can take place between simulators (or optimizers) and any other
external software (not just real-t ime control systems) exchanging information
with each other during the simulation (or optimization). So the impor tant bit as
far as GCO is concerned is what interfaces the s imulator (or optimizer) needs to
provide to allow this type of i n t e r a c t i o n - (n o t the real- t ime issues, which have
al ready been considered by many other s tandardiza t ion efforts, e.g. OPC).

(LEVEL 4)

(LEVEL 3)

(LEVEL 2)

EVEL I)

(LEVEL 0)

~ LEVEL 4B L
MANAGEMENT

DATA
PRESENTATION I

I i LEVEL 4A
OPERATIONAL AND I PRODUCTION L

SUPERVISION J~'

I SUPERVISOR'S L
CONSOLE i~,

I SUPERVISOR'S L
CONSOLE I

7 ~AGEMENT L
I INFORMATION I ~

J PLANT PRODUCTION !

I r

I T ,
7 i~ ~ "
I " i i ~

I T , J I o~.~

I ~ ~8~

o

Figure 4. A hierarchical computer control system structure for an industrial
plant. From ISA-dS95.01-1999, Enterprise-Control System Integration. Part 1:

Models and Terminology.

The "communication" with other external software is realized with OPC and
utilized in real- t ime issues. These specifications are contemplated at a general
level. Our purpose is to specify the type of "specific" information in the Process
Indus t ry tha t is exchanged through these s tandards. In this way, OPC will be
tool for the interaction.

There are two main general modes of external software interact ing with process
simulators:

671

�9 The s imula tor replaces the plant and it is uti l ized for val idat ion purposes
and for operator t raining.

�9 The s imula tor runs in parallel with the plant and aids the other sys tems to
make decisions or to evaluate actions (decision support).

The informat ion tha t is exchanged in each one of the above in teract ion modes is
as follows:

�9 In the operators ' t ra in ing case, the s imula t ion is dynamic. The external
software sends the s imulator t ime-varying control actions and receives
"plant" measurements . There are several levels at which s imula tors can
in te rac t with operators. Depending on the level, the t ime r equ i r emen t
change, and also the operat ion dynamics. Tha t is, at some levels it is
possible t ha t the s imulat ion could be in a s teady-s ta te mode.

�9 In a decision suppor t tool context, the s imula t ion can be e i ther s teady s tate
or dynamic.

3.5.3 S O U R C E S OF I N F O R M A T I O N

3.5.3.1 P r o c e s s M o n i t o r i n g

The decis ion-making process concerning possible modification of a system
requires knowledge about its actual cur ren t state. This r equ i r emen t is even more
impor t an t in hybrid manufac tu r ing s t ructures . The re levant informat ion is
obtained by collecting a data set, improving its accuracy and refining it. The
refined informat ion is used for process moni tor ing which may ini t ia te fu r ther
analysis, diagnosis and control actions, opt imizat ion and general m a n a g e m e n t
planning.

Data collected on indus t r ia l plants is typically subject to var ia t ion in quali ty.
This is i nhe ren t in all indus t r ia l data collection because the sampl ing and tes t ing
equipment , schedules and techniques are exposed to a wide range of influences.
Such influences will give rise to a raw data set conta ining missing da ta points,
gross errors, and outliers, all of which need to be t r ea ted to obtain a useable da ta
set (Bagajewicz, 2001).

Gross errors are caused by an i n s t rumen t or tes t ing procedure tha t gives an
incorrect response for an extended length of time. The resul ts are therefore not
represen ta t ive of the process state. If the errors are large enough to dis tor t the
real t rend, they should be excluded from data analysis. Gross errors cause
problems when the variable is being used in a da ta informat ion extract ion
procedure such as principal component analysis (PCA) or any other data
compression technique. Gross errors in even one variable can therefore be of
critical impor tance to the usefulness of an entire data set if advanced da ta
analysis tools are to be used. The data collection sys tems need to be designed to

672

detect the onset of gross errors and alert the operators. Outliers in data occur
even in the best data collection systems. They need to be detected and eliminated
so as not to distort statistical tests conducted in the data. This distortion occurs
because the outliers increase the apparent measuring error (residual variance)
and consequently affects the sensitivity of confidence tests. Missing data disrupts
the regularly spaced nature of sampled process data and prevents the use of
various data analysis techniques that assume regular sampling. Consequently,
missing data should be replaced with realistic estimates of process readings
before using the data in analysis.

Process monitoring and Trend Detection focuses on identifying the trends in the
behavior of a process in real-time. Various methods based on multivariate
statistics (Principal Component Analysis, Part ial Least Squares, Canonical
Variates Analysis), system Theory (Canonical Variates State Space Modeling,
Observers, State Estimators, Hidden Markov Models, Wavelets), artificial
intelligence (Knowledge-Based Systems, Neural Networks, Fuzzy Logic) have
been reported for process monitoring and trend analysis. As the process moves
from normal operation to abnormal operation, it is imperative that this
identification is made quickly and correctly. Since most processes are monitored
by relying on models built from process data as opposed to models derived from
fundamenta l equations, using several techniques s imultaneously and seeking
some consensus among their results is more advantageous than relying on any
single technique.

3.5.3.2 P l a n t a n d P r o c e s s S i m u l a t i o n

Chemical processing plants have been tradit ionally categorized into continuous
and batch plants. An uninter rupted flow of material through the plant
characterizes continuous plants, which are most commonly operated in a steady-
state manner. By contrast, in batch plants, discrete quanti t ies of material
undergo physicochemical transformations. The process parameters usually vary
overtime, operat ing conditions may be different from one batch to next and
available resources may be allocated differently to create a variety of production
routes. Thus, batch plants are more dynamic and flexible than continuous ones.
In practice, continuous and batch operations can both be present in chemical
production facilities to benefit from the advantages of each and/or because of the
hybrid nature of the underlying physical-chemical processes themselves. It is
therefore necessary to consider this hybrid nature of the continuous-discrete
interactions taking place in chemical processing plants within an appropriate
framework for plant and process simulation (Engell et al., 2000).

A common tool tha t is needed is the computer modeling and simulation of such
interactions between continuous and discrete elements of chemical plants. This is
addressed in the next section.

673

3.5.4 O R G A N I Z I N G I N F O R M A T I O N : M O D E L I N G F R A M E W O R K S

The discrete t ransi t ions occurring in chemical processing plants have only
recently been addressed in a systematic manner . Barton and Pantel ides (1994)
did pioneering work in this area. A new formal mathemat ica l description of the
combined discrete/continuous simulation problem was introduced to enhance the
unders t and ing of the fundamenta l discrete changes required to model processing
systems. The modeling task is decomposed into two distinct activities: modeling
fundamenta l physical behavior, and modeling the external actions imposed on
this physical system result ing from interact ion of the process with its
envi ronment by disturbances, operation procedures, or other control actions.

The physical behavior of the system can be described in terms of a set of integral
and par t ia l differential and algebraic equations (IPDAE). These equat ions may
be continuous or discontinuous. In the la t ter case, the discontinuous equations
are modeled using s ta te- t ransi t ion networks (STNs) and resource-task networks
(RTNs) which are based on discrete models. Otherwise, other f rameworks based
on a continuous representa t ion of t ime have appeared more recently (Event
Operat ion Network among others). The detailed description of the different
representa t ion frameworks is the topic of the next section.

3.5.4.1 P r o c e s s R e p r e s e n t a t i o n F r a m e w o r k s

The representa t ion of State - T a s k - N e t w o r k (STN) proposed by Kondili et al.
(1993) was originally intended to describe complex chemical processes aris ing in
mult iproduct /mult ipurpose batch chemical plants. The establ ished
representa t ion is s imilar to the flowsheet representa t ion of continuous plants,
but is intended to describe the process itself r a the r than a specific plant.

The distinctive characterist ic of the STN is tha t it has two types of nodes; mainly,
the state nodes, represent ing the feeds, in termedia tes and final products-and the
task nodes, represent ing the processing operations which t ransform mater ia l
from input s tates to output states. State and task nodes are denoted by circles
and rectangles respectively (Figure 5).

Feed 2

~ TlO

F eedl ~ . T20

~ ~ --~' Tll ~ " T21

..... ~ Prod 1

Figure 5. S ta te - task ne twork representat ion of chemical processes.

This representa t ion is free from the ambiguit ies associated with recipes networks
where only processing operations are represented. Process equipment and its

674

connectivi ty is not explicitly shown.
represented .

Other available resources are not

The STN represen ta t ion is equally suitable for ne tworks of all types of processing
tasks -cont inuous , semicont inuous or batch. The rules followed in its
construct ion are:

A task has as many input (output) s ta tes as different types of input
(output) mater ial .
Two or more s t reams enter ing the same state are necessari ly of the same
mater ia l . If mixing of different s t reams is involved in the process, then this
operat ion should form a separa te task.

The STN represen ta t ion assumes tha t an operat ion consumes mater ia l from
input s ta tes at fixed ratio and produces mater ia l for the ou tpu t state also at a
known fixed proportion. The processing time of each operat ion is known a priori
and considered to be independent of the amoun t of mater ia l to be processed.
Otherwise , the same operat ion may lead to different s tates (products) using
different processing times.

Sta tes may be associated to four main types of storage policies:

�9 Unl imi ted In te rmedia te Storage.
�9 Finite In te rmed ia te Storage.
�9 No In te rmed ia te Storage.
�9 Zero Wait (the product is unstable).

An a l te rna t ive representa t ion; the Resource-Task Network (RTN) was proposed
by Pante l ides (1994). In contras t to the STN approach, where a task consumes
and produces mater ia l s while using equipment and util i t ies dur ing its execution,
in this representa t ion , a task is assumed only to consume and produce resources.
Processing i tems are t rea ted as though consumed at the s ta r t of a task and
produced at the end. Fur thermore , processing equ ipment in different conditions
can be t rea ted as different resources, with different activities consuming and
genera t ing them - t h i s enables a simple representa t ion of changeover activities.
Pante l ides (1994) also proposed a discrete-time scheduling formulat ion based on
the RTN which, due to the uniform t r ea tmen t of resources, only requires the
descript ion of three types of constraint , and does not dis t inguish between
identical equ ipment items. He demons t ra ted tha t the integral i ty gap could not be
worse than the most efficient form of STN formulation, but the ability to capture
addi t ional problem features in a s t ra ight forward fashion are at tractive.
Subsequen t research has shown tha t these conveniences in formulat ion are
overshadowed by the advantages offered by the STN formulat ion in allowing
explicit exploitat ion of const ra int s t ruc ture through algori thm engineering.

675

The STN and RTN representat ions use discrete-time models. Such models suffer
from a number of inherent drawbacks:

�9 The discretization interval must be fine enough to capture all significant
events, which may result in a very large model.

�9 It is difficult to model operations where the processing time is dependent
on the batch size

�9 The modeling of continuous operations must be approximated and
minimum run-lengths give rise to complicated constraints.

Therefore, a t tempts have been
continuous time representat ion.

made to develop frameworks based on a

A realistic and flexible description of complex recipes has been recently improved
using a flexible modeling environment (Graells et al., 1998) for the scheduling of
batch chemical processes. The process s tructure (individual tasks, entire
subtra ins or complex s tructures of manufactur ing activities) and related
materials (raw, intermediate or final products) is characterised by means of a
Processing Network, which describes the material balance. In the most general
case, the activity carried out in each process consti tutes a general Activity
Network. Manufactur ing activities are considered at three different levels of
abstraction: the Process level, the Stage level and the Operat ion level.

This hierarchical approach permits the consideration of mater ial s tates (subject
to mater ial balance and precedence constraints) and temporal states (subject to
time constraints) at different levels.

At the process level, the Process and Materials Network (PMN) provides a
general description of production s t ructures (like synthesis and separat ion
processes) and materials involved, including in termediates and recycled
materials. An explicit material balance is specified for each of the processes in
terms of a stoichiometric-like equation relat ing raw materials, in termedia tes and
final products (Figure 6). Each process may represent any kind of activity
necessary to t ransform the input materials into the derived outputs.

Between the process level and the detailed description of the activities involved
at the operation level, there is the Stage level. At this level is described the block
of operations to be executed in the same equipment. Hence, at the stage level
each process is split into a set of the blocks (Figure 7). Each stage implies the
following constraints:

�9 The sequence of operations involved requires a set of implicit constraints
(links).

�9 Unit ass ignment is defined at this level. Thus, for all the operations of the
same stage, the same unit ass ignment must be made.

676

A common size factor is a t t r ibuted to each stage. This size factor
summar ises the contribution of all the operations involved.

Process 1 ~ / /

~ 2/3

1/2

1/3

3(RM-1) + 6 (R M - 2) ~ BP-1 + IP-1

Process 2

IP-1 * 2 (RM-3) ~ 5 (FP-1)

J Process 3

2 (RM-4) ~ FP-2

Figure 6. PMN describing the processing of two products

1/3

2/3

Stage 1

J Stage 2

Process 1

Stage 3

1/2

Figure 7. Stage level. Each stage involves different unit assignment opportunities.

The Operation level contains the detailed description of the activities
contemplated in the network (tasks and subtasks). While implicit time
constraints (links) must be met at this level, as indicated in Figure 8 by the thick
arrows. The detailed representat ion of the s tructure of activities defining the
different processes is called the Event Operation Network (EON). It is also at this
level tha t the general util i ty requirements (renewable, non-renewable, storage)
are represented.

677

(~ I SET-UP

. I I I
UN'OAmNG ~ LOAmNG ~ / I

i ~ - - i - v I I - 7

REACTION i

Figure 8. Operation level: operation links are shown.

The Event Operation Network representation model describes the appropr ia te
t iming of process operations. A continuous t ime representa t ion of process
activities is made using three basic elements: events, operat ions and links.

Events designate those t ime ins tants where some change occurs. They are
represented by nodes in the EON graph, and may be l inked to operations or other
events (Figure 9). Each event n is associated to a t ime value Tn and a lower
b o u n d Tn rain (1).

Operat ions comprise those t ime intervals between events (Figure 10). Each
operation m is represented by a box linked with solid arrows to its associated
nodes: in i t ia | N I m and final NF m nodes. Operat ions establ ish the equal i ty links
between nodes (2) in terms of the characterist ic propert ies of each operation: the
operation time, TOP and the wait ing time TW. The operation t ime will depend on
the amount of mater ia ls to be processed; the uni t model and product changeover.
The wait ing t ime is the lag t ime between operations, which is bounded by
equat ion (3).

Figure 9. Nodes can be connected to other nodes or operations.

rain
T . > T , (1)

T N F m - - T N I m - - T O P m "- T W m 2)

678

Figure 10. The time description for Operations

0 < TWm < Tl~max
- - - - ~ , , m (3)

Finally, links are established between events by precedence constraints. A
dashed arrow represents each link k from its node of origin NOb to its destiny
node NDk and an associated offset time ATK. The e v e n t - e v e n t links can be
expressed by the inequali ty constraint (4)

T NDk ~ T NOk -k- A T k

N O ? aTk NDk
Figure 11. Event to event link and associated offset time representation

(4)

Despite its simplicity, the EON representat ion is very general and flexible and it
allows the handl ing of complex recipes (Figure 12). The corresponding TOP,
according to the batch size and material flowrate also represents t ransfer
operations between production stages. The necessary time Overlapping of
semicontinuous operations with batch units is also contemplated in this
representa t ion through appropriate links.

Other resources required for each operation (utilities, storage, capacity,
manpower, etc.) can be also considered associated to the respective operation and
timing.

Simulat ion of plant operation can be performed in terms of the EON
representat ion from the following information contained in the process recipe and
production s tructure characteristics:

�9 A sequence of production runs or jobs (Orp) associated to a process or
recipe p.

�9 A set of ass ignments (Xujpr) associated to each job and consistent with the
process p (Xujpr <_ xujp).

�9 A batch size (Brp) associated to each job and consistent with the process p
(B rp min <~ Brp < Brpmax).

�9 A set of shifting times (Tn 'nin) for all the operations involved.

679

Figure 12. The recipe described as a structured set of operations. The E O N
representation allows the handling of complex synthesis problems.

These decisions may be generated automat ical ly by using diverse procedures for
the de terminat ion of an initial feasible solution. Hence, s imulat ion may be
executed by solving the corresponding EON to determine the t iming of the
operations and other resources requirements .

The effective s imulat ion of batch processes requires representa t ion of the
dynamics of the individual batch operations, the decision logic associated with
the s tar t and stop of operations, as well as the decisions associated with the
ass ignment of equipment and other resources to specific operations as defined
through the product recipe. The BATCHES (Batch Process Technologies)
s imulat ion f ramework does accommodate the above ment ioned batch process
features and uses advances in combined discrete-continuous dynamic s imulat ion
methodology to follow the progress of the batch plant over t ime.

A BATCHES simulat ion model consists of three main building blocks: a recipe
network, an equipment network and a set of processing directives (Mockus and
Reklaitis, 1996). The equipment network defines the equipment specifications
and the connectivity or t ransfer l imitat ions between the equipment . The recipe
for the manufac ture of a product is modeled as a network of tasks and each task
as a sequence of subtask. A task consists of all of the operat ions performed in a
single i tem of equipment: a subtask consists of a model of one of these operations.
Tasks have associated with them requi rements of specific types of equipment and
selection priorities. BATCHES provide a l ibrary of models of various types of
operations (heating, cooling, decanting, batch reaction, etc.). Subtasks may have
associated with them addit ional requi rements for resources types and levels such
as operator types and uti l i t ies as well as definition of conditions under which the
subtask is to be terminated . These may be s tate dependent (a specific
t empera tu re or composition level is achieved) or directly specified (completion
t ime or duration). Processing directives consist of information tha t drives the
execution of the process over time. These include information such as the
amounts and sequences in which the various products are made, the due date

680

and a m o u n t for finished product delivery, or the amounts and frequency of raw
mate r ia l s deliveries or other resource releases.

BATCHES uses a dynamic solution s t ra tegy under which the dynamic models
associated wi th all of the subtasks tha t are active in a given t ime period are
solved s imul taneous ly using a DAE solver. As the solver advances through time,
the occurrence of subtask t e rmina t ion or s ta r t events is tes ted at each solver t ime
step. As events are identified and occur, the set of active subtask models is
reconfigured and the solution process continued. This computa t iona l approach is
effectively a decomposition s t ra tegy as only the models of the subtasks active at a
given point in t ime are actual ly included in the in tegra t ion step executed. To
accommodate stochastic pa ramete rs , BATCHES allows Monte Carlo sampl ing of
s imula t ion pa rame te r s from a l ibrary of dis t r ibut ions using establ ished
techniques from the discrete event s imula t ion l i terature . It also provides l inkages
to physical propert ies es t imat ion capabilities. More complex decision processes,
such as solution of an ass ignment or scheduling model, can be accommodated by
defining event conditions under which the s imulat ion is in ter rupted, the
informat ion necessary to execute the decision model is assembled, the decision
model solved, and the s imulat ion of resul t ing actions t rans fe r red back to the
s imula t ion executive.

3.5.5 E X P L O I T I N G I N F O R M A T I O N F O R M O D E L I M P R O V E M E N T

3.5.5.1 P a r a m e t e r E s t i m a t i o n

Hybrid sys tems require an accurate modeling envi ronment capable of continuous
model upda t ing and improvement .

One f u n d a m e n t a l task in real t ime model improvement is model p a r a m e t e r
es t imat ion (PE). This task could ei ther be the sole aim of the user (that is, one
only requires es t imates of some process pa rame te r s wi thout a data reconciliation
step), or a sub task of data reconciliation (the process model used for data
reconcil iat ion (DR) contains some unknown or uncer ta in p a r a m e t e r tha t mus t be
determined) . If the uncer ta in pa r ame te r is re la ted to the other variables in a non-
l inear re la t ionship, the two tasks (DR, PE) must be performed s imultaneously,
o therwise the pa rame te r s could be es t imated with corrupted data. In the case
where the re la t ionship is l inear the two tasks can be performed sequentially, first
DR and then PE.

3.5.5.2 D a t a R e c o n c i l i a t i o n

Data reconciliation (DR) is a procedure tha t adjusts the values of the raw
m e a s u r e m e n t s to be consis tent with the conservation's laws and other exact
const ra ints , so tha t the random error is e l iminated and the variable variance is

681

reduced. However the presence of gross error on the da ta can inva l ida te the DR
procedure. The reader is referred to chapter 3.4 for a discussion on "data
reconcil iat ion framework".

3.5.5.3 G r o s s E r r o r D e t e c t i o n

The a d j u s t m e n t of process data leading to be t te r e s t ima tes of the process var iab le
t rue value is normal ly performed in two steps. Non-random m e a s u r e m e n t errors,
such as pe rs i s t en t gross errors, mus t first be detected, then removed or corrected.
Next, the measuremen t (s) and/or constraint(s) t h a t contain the gross error m u s t
be identif ied Indeed, meaningful da ta reconcil iat ion can be achieved if and only if
there is no gross error present in the data.

Thus the funct ional i ty of gross error detection encompasses the detect ion of the
gross error, the ident if icat ion of the var iable subject to error and if possible the
correction of the error encountered. On the other hand GED could r e t u r n
informat ion about the type of gross error t h a t has been identified, namely , a
process-re la ted error or m e a s u r e m e n t - r e l a t e d error. GED mus t be per formed
prior to DR step since a key assumpt ion dur ing DR is t ha t errors are no rma l ly
dis t r ibuted. The res idual vector (e) in Eq. (5) affect the violat ion of the
cons t ra in t s by the m e a s u r e m e n t and is the f u n d a m e n t a l vector used in gross
error detect ion wi th its covariance matr ix . In order to m a i n t a i n the degree of
r edundancy and observabil i ty, it is preferable, if possible, to compensa te the
m e a s u r e m e n t r a t h e r t han e l imina t ing the var iable in error.

f (x , .) = e (5)

The first step in the development of da ta reconciliation, p a r a m e t e r es t imat ion ,
Gross error detect ion or variable classification is the p repara t ion of a process
model. This model is general ly based on balance equat ion (energy, mass ,
components) . This use case allows the in t roduct ion of the ent i re model
cons t ra in t s t ha t r ep resen t s the whole p lan t and the model p a r a m e t e r s .

3.5.6 E X P L O I T I N G M O D E L S FOR D E C I S I O N - M A K I N G &
O P T I M I Z A T I O N

Modeling hybr id processes can become very complex depending on the level of
detai l requi red to adequa te ly represen t real-life operat ions, and very difficult to
s t anda rd ize if it involves a very wide var ie ty of operat ions, as is the case wi th
large-scale processes. Also, a major l imi ta t ion of p resen t solutions is t h a t they do
not adequa te ly reflect the d is t r ibuted n a t u r e of the problem (Puigjaner , 1999) in
t e rms of organiza t ion and production uni t s (plants, product ion d e p a r t m e n t s , and
lines, ba tch units). As a consequence, i n t e rna l d i s tu rbances occurring at any level

682

of this organizational context or external per turbat ions caused by the market
environment may create frequent and irrecoverable readjus tments in real-life
industr ia l operations. A realistic answer to this si tuation inevitably entails
appropriate consideration of the interaction between various planning levels
linked to the batch control system:

�9 Plant management and scheduling control, including planning, scheduling
and plant wide optimization;

�9 Subplant co-ordination between major production areas, including local
schedule adjus tments and recipe modifications;

�9 Switching and supervisory control of process units, including appropriate
handling of emergencies;

�9 Individual equipment regulatory and fault diagnosis actions.

All these levels should operate on real time process information base which must
be supported with data reconciliation and trend tracking capabilities (Pekny et
al., 1991).

3.5.6.1 S c h e d u l i n g and P lann ing

The complex problem of what to produce and where and how to produce it is best
considered through an integrated, hierarchical approach which also
acknowledges typical corporate structures and business processes (Rickard et al
1999). The scheduling problem is in essence a complex decision problem, which
involves many factors. As a result the decision to adopt a part icular schedule is
best made within a framework that provides some assessment of the merits and
properties of the proposed schedule. Thus, a practical scheduling tool should not
only generate a Gant t Chart and a Resource use Diagram corresponding to "the"
solution, ra ther it should allow an assessment of the impact of that schedule in
context. A detailed simulation most readily provides that context. For this reason
it is desirable to integrate a scheduling and planning tool with a simulation
capability. A scheduling tool with integrated simulation capability allows ready
evaluation of the flexibility of the proposed schedule, and for instance to see the
impact of variat ions in the products, operating conditions, environmental and
safety factors that might not be explicitly taken in to account in the scheduling
formulation. Of course, from the simulation point of view, it is also necessary to
have a tool, which allows the correct simulation of the system under
consideration.

The information flows, which occur between the components of a scheduling
system and various users, are shown in Figure 13. The Scheduling and Planning
system receives from the management information system (ERP, MRP) in level 4
(Figure 4), detailed information on due dates, forecasts and orders, and re turns to
the ERP system the predicted inventory s tatus and the work plan. The
scheduling system also sends the predicted schedule to the supervisory control

683

system, which launches the realized schedule. Finally, operators , engineers and
manage r s have access to informat ion about the schedule th rough a G r a p h i c a l -
User interface. On the other hand the end user -opera t iona l staff can manage the
information, create new schedules and analyze the results .

The problem of shor t - te rm scheduling can be formula ted as follows:

Given:
�9 The product ion recipe.
�9 The available uni ts for each task, the uni ts connectivi ty and the i r

availabil i ty.
�9 The list of amount , t ime and kind of ut i l i t ies consumpt ion requi red by each

un i t avai lable for each task (could be var iable wi th the a m o u n t of ma te r i a l
being processed).

�9 The m a r k e t r equ i remen t s expressed as specific amoun t s of products at a
given in s t an t of t ime (product orders) and other l imi ta t ions on shared
resources.

Determine:
�9 The opt imal sequence of tasks performed in each un i t (under specific

performance criteria)
�9 The a m o u n t of mate r ia l being processed at each t ime in each unit .
�9 The processing t ime of each task in each unit .
�9 The use of ut i l i t ies as function of time.

Therefore, this problem involves:
�9 The a s s ignmen t of uni ts and resources to tasks.
�9 The sequencing of the tasks assigned to specific units .
�9 The de te rmina t ion of the s ta r t and end t imes for the execution of all tasks.
�9 The resources consumpt ion at any time.

684

Figure 13. Data flows between the scheduling system and other systems

Additional issues which might arise, include:

Considerat ion of exclusion times, i.e., t ime periods during which
ass ignment of some equipment is not allowed due to maintenance
requirements .
Discrepancies between the proposed schedule and what is actually
achievable. Discrepancies may be caused by processing t ime variations,
rush orders, failed batches, equipment breakdowns, etc. So, the schedule
should be adjusted to incorporate this new information. This is called
reactive scheduling.

Once this information is processed, the result ing modified solution of the
scheduling problem becomes the schedule implemented. The schedule is reported
as a sequence of recipe task to unit ass ignments and resource consumption time
profiles. All this information is usually represented using a Gant t Chart and
Resource Diagram

The Gant t chart shows the use of the different equipment uni ts along time (see
Figure 14). With this chart it is possible see the s tar t and end of a task, and the
uni t used for making tha t task. The colors correspond to different product
batches and the numbers are task identifiers.

685

Figure 14. Gantt Chart

The Resource Diagram shows the consumption of resources
electricity, manpower and others, also as a t ime function.

like s team,

These graphical constructions are a major source of information for the
production staff, but are also needed by the sales and supply depar tments , for
inventory control purposes, and plant maintenance.

For the evaluat ion of any plan or schedule, there are a number of different
performance measures tha t can be used according to the specific needs of an
enterprise. Some measures have to do with the t ime a batch spends in the plant;
others per ta in to performance relat ive to specified due dates; and still others
concern ut i l izat ion of production resources (Silver et al., 1998).

Note tha t these three general goals may be in conflict with each other. For
example, high resource uti l izat ion may increase the t ime spent, and may degrade
due date satisfaction. Therefore in spite of the very shor t - term na tu re of the
scheduling problem, larger strategic concerns often are at issue.

Managers should be very concerned with the trade-off implied in the choice of
which performance measure to use. For example, this choice may implicit ly t rade
off Work in Process Inventory (WPI) cost with customer sat isfaction regarding
meet ing due dates, and amort izat ion of capital inves tment . These three general
goals can be specified in more precise performance measures .

One performance measure tha t is a p r imary focus of plant managers is the
average WPI level. High WIP levels mean tha t more money mus t be invested in
inventory, thus adding to the operat ional cost and incurr ing opportuni ty costs.
Flowtime is the t ime tha t a batch spends from the moment it s ta r t s processing
unti l its completion, and includes any wai t ing t ime prior to processing. The
makespan is the total t ime for all jobs to finish processing.

Some performance measures have to do with performance relat ive to each batch's
due date. These include lateness, earl iness and tardiness . Lateness is the amount
of t ime a batch is past its due date. Lateness is a negat ive number if a batch is
early. Tardiness equals la teness if the batch is late, or zero if it is on t ime or

686

early. Earl iness is the amount of t ime prior to its due date at which a batch's
processing is complete.

Managers concerned with amort izing inves tment in equipment would like to see
the equipment continuously processing batches tha t bring in revenue. Equipment
ut i l izat ion and labor uti l ization are the pr imary performance measures of plant
util ization.

The selection of the performance measure is a manager ia l decision and has to do
with the strategic objectives of the par t icular enterprise.

The information required for the Coordination/Supervisory Control level is
basically the Schedule to be executed. This information is included in the Results
Report of the previous part. Eventually, the SPP will require information from
the Coordinat ion/Supervisory Control level on the actual Schedule being realized
and the production capacity of the plant (see Table 1).

Table 1. Information flow
Coordination / Supervisory Control Scheduling

Package
Schedule information retr ieval

& Planning

Ask the SPP for the Schedule to be performed
in the plant

Responds with the Schedule

3.5.6.2 Superv i sory Control

This level considers activities related to the Model Predictive Control module,
Data Reconciliation and the Faul t Detection and Diagnosis modules.

Model Predictive Control receives the sensor signals and the previous control
inputs to the plant. The outputs are the control signals to the plant and to the set
points of the multiloop controllers. This module determines the optimal control
actions. Control methods and strategies can be classified into a number of
different categories representa t ive of the evolution of the field. These include the
PID family, classical methods, such as selective controllers, model based and
predictive techniques, new generation advanced techniques based on optimal
control theory, expert systems, neural networks, fuzzy and hybrid systems.

A general scheme of a model predictive control module is shown in Figure 15. The
optimizer receives the differences between the plant 's output and the set points.
The future control signals are optimized according to the predicted behavior of
the plant in a given time horizon. The signal is sent to the plant via the DCS. In
order to predict the behavior of the plant a plant model is needed (Morari and

687

Lee, 1999). This model need to be periodically upda ted as the system changes
with time.

3.5.6.3 D a t a R e c o n c i l i a t i o n

Process m e a s u r e m e n t s are subject to errors due to random errors, as well as
i n s t r u m e n t a t i o n faults, such as incorrect ins ta l la t ion or calibration, process
leaks, etc. The main purpose of data reconciliation is to provide consistency
between the measured variables and the constraints , which arise from mass and
energy balances and are assumed to be the "true" process model. Ma themat i ca l ly
this can be expressed as reconciling the process m e a s u r e m e n t s by minimiz ing a
weighted least squares or max imum likelihood function of the m e a s u r e m e n t
errors (Chouaib et al., 2000).

3.5.6.4 P r o c e s s F a u l t D e t e c t i o n a n d D i a g n o s i s (P F D & D)

The PFD&D subsys tem receives sensor data from the p lant as well as the control
signals. The informat ion can be in the form of cont inuous signals (t empera tu res ,
flowrates, pressures) or discrete signals (valves open or close, pumps on or off).
The ou tpu ts are a set of suspected faults. The signal corresponding to each
suspected faul t is considered to be b inary (0 or 1). At the next level of detai l the
size of the diagnosed fault or its es t imated probabil i ty could also be given. This
output can then be used by the advanced control module in order to take control
actions, or by the operators who take appropr ia te action or by other levels in the
m a n a g e m e n t and control s tructure, such as the scheduling system (Ruiz et al.,
2O0O).

688

Plant

Variable Guide
-word

DCS

7 - ~ . - - - ~ ~ " 1

, , . ")' '
I .. "l i~~176176 " - ~ l

! + , '3-.. !
I Optimizer L~ (~ SO! !

I ~0v~o~ P~176
m ~ . m m m m m m m m m _ m m m m m m m

Figure 15. Scheme of the advanced control module

Table 2. Example of a part of HAZOP analysis
Cause Consequence Corrective Preventive actions

actions
Flow Low Pipe Loss of product Close the Container/pipe

leakage Time needed for valve Maintenance
tank charge Check the
increased pipe

Table 2 shows as an example a small part of a Hazard and Operability Analysis
(HAZOP) of a process s tream in a chemical plant.

Based on the previous analysis there is a suspected fault called "Pipe leakage".
The output of the PFD&D system has different forms according to the decision
level and associated system modules (Table 3).

Table 3. Information to be sent from the PFD&D system to the other levels
M o d u l e Leve l
Control system 2
Scheduling 4
system
Supervisor 2 Check the pipe
console

T r a n s l a t i o n f r o m t h e P F D & D o u t p u t
Close the valve
Time needed for tank charge increased

689

The use of a DataBase system simplifies the communicat ion of information
because the same information is used by the different modules at different levels
of detail and from different points of view. It also assures tha t the actions to be
performed are coherent and avoids redundancies.

Figure 16 shows the data flows in the Faul t Detection and Diagnosis system and
Figure 17 shows the data flows between the Faul t Detection and Diagnosis
system and other systems (Leonhardt and Ayoubi, 1997; I se rmann and Baill~,
1997)

Measurements-~t~
Control signals •1• Change Fault

Signal -Features --Symptoms-I~
Processing Detection diagnosis

Figure 16. Fault Detection and Diagnosis System

--~Faults

The analyt ical knowledge about the process is used to produce quantif iable,
analyt ical information. To do this, Signal Processing based on measured process
variables have to be performed, to first generate the character is t ic values,
consisting of parameters , s tate variables or residuals. Special features can be
extracted from these characterist ic values. These features are then compared
with the normal features of the non-faulty process. For this purpose, methods of
Change Detection and classification are applied. The resul t ing changes
(discrepancies) in the described directly measured signals, signal models or
process models are considered as analyt ical symptoms. In addition to symptom
generat ion using quantif iable information, using qual i ta t ive information from
h u m a n operators can produce heurist ic symptoms. In this way heuris t ic
symptoms are generated, which can be represented as fuzzy variables (e.g., small,
medium, large) or as vague numbers (e.g. around a certain value).

The task of Fault Diagnosis consists of de termining the type, size and location of
the fault as well as its t ime of occurrence based on the observed analyt ical and
heurist ic symptoms. If no fur ther knowledge of fault symptom causal i t ies is
available, classification methods can be applied which allow a mapping of
symptom vectors into fault vectors. If, however, a-priori knowledge of fault-
symptom causali t ies is available, diagnostic reasoning s t rategies can be applied.
Three types of s t ra tegies are in use:

�9 Classification methods, including geometric, statistic, neura l and
polynomial classifiers, all use reference pa t te rns for learning. Their
s t ructure is not t r anspa ren t but they can be adapted during use.

�9 Inference methods are based on linguistic rules. Most of the t ime they are
given in a fuzzy way. Expert systems fed with fuzzy rules allow a fuzzy
decision-making, the so-called "approximate reasoning". The problem with

690

this approach is the long time needed to develop the rules and the
difficulties involved in adjusting the rule base.
Adaptive neuro-fuzzy systems combine the s t rengths of both methods. The
idea is to obtain an adaptive learning diagnosis system with t ransparent
knowledge representation.

Figure 17. Data flows between the Fault Detection and Diagnosis package and
other systems

3.5.7 B A T C H C O N T R O L

Batch control has the characteristics of a hybrid system in itself. Since batch
processes typically are neither purely continuous nor discrete, but instead have
characteristics of both, the automation of batch processes is considerably more
complicated than that of continuous or discrete processes. In a continuous
process, process control is required only to monitor that the system is working
within the optimum limits, and if not, to apply local control in order to re turn the
system to within the optimal limits. In a batch process, the control system must
also detect when a phase has been completed, and then change from one dynamic
configuration to another dynamic configuration, with changes in the local
controllers for each phase.

In batch processes there are three different types of process control: basic control,
procedural control and co-ordination control. A combination of control activities

691

and control functions of these control types provides batch control, defined as 'a
means to process finite quant i t ies of input mater ia l s by subject ing them to an
ordered set of processing activities over a finite period of t ime using one or more
pieces of equipment .

The $88 s t anda rd takes into account two types of information: equ ipmen t
dependent and product dependent , to s t ruc ture the descript ion of the batch
processes in the form of three models. These models are combined to r ep resen t
these two types of information. The first model is the physical hierarchy model.
The other is the procedural model, used to describe the procedura l control
e lements . The combinat ion of the equ ipment control funct ions and physical
equ ipmen t the equ ipment enti t ies are obtained, tha t has the same name as the
physical model level tha t represent . The th i rd model, is the recipe structure. The
character is t ics of these models are described next.

A mul t i l ayer physical hierarchical model to describe the enterpr ise , lower level
groupings is combined to form higher levels in the hierarchy. The model has
seven levels (Figure 18). At the top there are the three bus iness levels, an
enterpr ise , a site and an area level, all three of which are outside the scope of the
s88.01 s tandard . The lower four levels are the process cells, units , equ ipment
modules and control modules.

Process cells define a logical grouping of equ ipment necessary to produce one or
more batches, though not necessari ly a final product; somet imes process cells are
called t ra ins . Defining process cells makes product ion schedul ing easier.
Considera t ions when s t ruc tur ing process cells include:

�9 Es tabl i sh clear boundaries .
�9 Funct ions performed mus t be consis tent regardless of wha t product is

being produced.
�9 In te rac t ion with other process cells min imal and when necessary,

conducted at the same or h igher ent i ty level i.e., process cell to process cell;
and

�9 Ma in ta in ing consistency so operators in terac t ing wi th s imi lar ent i t ies do
so na tu ra l l y and wi thout confusion.

Units are a collection of equ ipment and control modules in which major
processing activities, such as react, distil, crystallize, make solution, etc., can be
conducted. Uni t character is t ics include:

�9 Opera te on only one batch at a time.
�9 Cannot acquire ano ther unit; and
�9 Opera te independent of other units.

692

Figure 18. $88 Physical mode

Equipment modules are functional groups centered around a piece of processing
equipment tha t carry out defined activities, such as header control, dosing,
weighing, jacket service management , scrubber control, etc. A collection of control
modules can become an equipment module if the collection executes one or more
equipment phases.

Control modules are the lowest grouping of equipment capable of carrying out
basic control. For example, solenoids and limit switches combined can form
Off/On valve control modules, and t r ansmi t t e r s and valves can be combined into
PID control modules.

The physical model described is used to describe the plant in te rms of physical
objects, the equ ipment -dependant information.

The procedural model describes the interact ion with upper levels (coordination,
scheduling and planning), which involve sequential control activities.

Procedures are the s t ra tegy for carrying out batch activities within a process cell.
Procedures, such as clean in place, do not always produce a product or a product
in te rmedia te .

693

Unit procedures provide a s trategy for carrying out operations and methods in a
contiguous manner within a single unit. A unit procedure can execute
concurrently on different units.

Operations are independent processing activities that usual ly result in a chemical
or physical change in the material being handled. Operations include the
instruct ions necessary for the initiation, organization, and completion of
activities such as prepare reactor, charge, heat, cool, react, etc.

Phases accomplish a specific process-oriented task, can be executed sequential ly
or in parallel, can be self-terminating, and need to account for exception condition
handling. When defining phases, a few of the considerations include:

�9 Consistent use of predefined states, such as holding, held, res tar t ing,
failing, etc.

�9 Consistent use of predefined commands, such as hold, stop, abort, etc.
�9 Definition of the modes for each phase, and how the phase will respond to

each mode. For example, is a single-step mode needed for troubleshooting?
�9 Definition of exception handling and recovery mechanism's; and
�9 Data collection of phase-related activities.

The recipe model is hierarchical, the degree of details depending of the level of
the physical model at which the recipe is specified. The s tandards for batch
process automat ion define four major categories of recipes:

�9 General Recipes, which are mainta ined at the corporate level (typically
within the ERP system) and which permit companies to make the same
product in plants around the globe on a variety of equipment, but based on
the same source recipe.

�9 Site Recipes, which typically reside on manufactur ing execution systems (a
layer tha t lies between plant floor control and ERP systems). Site recipes
define local site control of recipes across different hardware platforms,
such as those supplied by control systems manufacturers , Honeywell,
Fisher-Rosemount, Rockwell Automation, ABB, etc.

�9 Master Recipes, which are the specific procedures tha t actually execute the
recipe in a part icular manufactur ing area, known as a process cell.

�9 Control Recipes, which are the running recipes in the process cell control
systems.

�9 The mas te r recipe is more general than the control recipe. In the mas ter
recipe equipment clauses, for example, are stated and quant i t ies are
usual ly specified normalized. A master recipe can also be used for
manufac tur ing a large number of batches.

694

A control recipe is used for manufactur ing a single batch only. The control recipe
is made from a master recipe adding batch-specific information. For example the
equipment and the exact quanti t ies of ingredients to be used.

The hierarchical s t ructure makes the systems easy to unders tand and the layer
s t ructure allow encapsulat ing the not relevant details of one level to the others;
each level contains only the relevant information for it.

3.5.7.1 Integrat ion

The new communication technologies and the advances in computer hardware
have permit ted the solution of many problems in control and production
managemen t in the process industries, in part through a more effective and
intensive data exchange between different sectors of the process. At the same
time, this has led to a growing complexity in these systems. The development of
applications for these systems using only the operating system and some
programming language is today an unaffordable task both from economic and
technical points of view. To develop these complex applications requires the
integrat ion of different specific subsystems developed with various tools in a
single application that fulfils the performances required by the system.
In the design of the integrat ion architecture, the following aspects should be
considered:

�9 Open interfaces to other network levels.
operation supports.

�9 Time synchronization.
�9 Data translat ion.
�9 Data abstraction.

Client/server scheme, event

The general communication architecture uses the client/server paradigm. At the
higher level (near real time data) the communications are implemented over a
higher-level protocol via a TCP/IP network. In some non-critical communication
task the common higher-level Internet protocols are used. The planning and
scheduling system and the control system share a common database tha t
contains the recipe descriptions and plant description data. The most detailed
level of recipe information is used mainly for the control system; while the
planning and scheduling system uses less detailed information to perform its
task. The advantage of this common database is that a common interface can be
used to input data, so that data consistency between the two modules is ensured
because both systems are using the same data. Additionally the communication
between the Planning system and the Control system is carried out using a data
server, which manages the queues of the different messages and delivers them on
request. The use of a data server allows easy upgrades and changes of the
different modules. It also allows easy monitoring of the communication between
the different modules of the whole system. The third main advantage of this

695

system is its open archi tecture tha t allows communica t ing with th i rd par t ies
software and hardware .

An effective way to represent the in tegrat ion model is th rough the use of a
h ierarchical layered model (Figure 2), with each of the i tems of I tem l(a) being
subordinate , or below tha t above it in the list, in the model. At the same time,
the aggregat ion of I tem l(b) occurs natural ly , going upward in the same layered
fashion.

�9 The deployment of this archi tecture over the ne twork is shown in Figure
19. There are three basic e lements in the system platform tha t g u a r a n t y
connectivity, openness and reliabil i ty of each modules of the archi tecture:

�9 The operating system guarant ies an independent , quasi-paral le l execution
of modules and ensures independence from the specific hardware .

�9 The communication system ensures the co-operation of modules in a
s tandard ized way.

�9 The configuration system serves to build up a software topology of the set
of available modules by ins tan t i a t ing and connecting the different
modules.

Any system in tegra t ion has to be built in te rms of these elements . Each specific
funct ional software module has a common applicat ion program interface (API)
which mus t be made accessible to the others.

The communication system is the only means for informat ion in te rchange
be tween system modules. It must support both, the exchange of informat ion
between modules located on the same processor-board as well as exchange
be tween modules located on different boards connected th rough a bus-sys tem
(network). A s tandard ized protocol has to be defined to ensure uniform data
formats and a fixed set of messages.

To connect the modules over the ne twork a core bus (see Figure 20) is defined
based on the OSI base reference model. It implements any middleware
technology from simple TCP/IP protocol or other h igher level In t e rne t protocol
like HTTP to CORBA. Over this middleware technology two addi t ional layer
have to be buil t one for object mapping specific for the selected middleware
technology and other for message parsing. The inter-process communica t ion is
made th rough DDE/OLE technology, and RPC, the same pars ing mechan i sm is
used to processing the cross application message. In the figure the system
modules are shown over the deployment network, also, in these figure the
informat ion t r a n s m i t t e d is indicated.

Today the avai labi l i ty of a communicat ion in f ras t ruc tu re based on TCP/IP
protocol and the use of s t andard In te rne t application protocol (HTTP, SMTP, and
FTP) allows much easier shar ing of informat ion t han was possible jus t a few

696

years ago. A web-based communicat ion mechanism has been recently proposed
(Nougu~s, 2000). The communication mechanism follows a three-layer
communicat ion s t ructure (Figure 21) tha t uses the core bus to exchange data.
The core bus implementa t ion depends on the specific middleware technology used
to dis t r ibute the application. Here a simple TCP client server protocol are used to
communicate the data server with the servlet, and the HTTP protocol to
communicate the client application (Browser and applets) with the web server
and servlets.

Figure 19. Deployment of system architecture.

Today the availabil i ty of a communication infras t ructure based on TCP/IP
protocol and the use of s tandard In terne t application protocol (HTTP, SMTP, and
FTP) allows shar ing information much easier than a few years ago. A web-based
communicat ion mechanism has been recently proposed (Nougu~s and Puigjaner,
2001).

Simulador L4 r
. D C S 1 - . ~ iApplicati~

I . f l Com. • C o m .
i Layer ~" * ! Layer

~-Object ,napping laver-'] ~ -

CORE BUS i

Figure 20: Network core bus.

69'/

The communication mechanism follows a three-layer communication s tructure
(Figure 21) tha t uses the core bus to exchange data. The core bus implementat ion
depends on the specific middleware technology used to distribute the application.
Here a simple TCP client server protocol are used to communicate the data
server with the servlet, and the HTTP protocol to communicate the client
application (Browser and applets) with the web server and servlets.

In Figure 21, a detailed modules relationship is shown and the type of
communication between the modules is also indicated. It is impor tant to remark
that the s imulator engine, Data Server and Simulator can be run on different
computers i.e. can be distributed object over the network.

Simulador I f App'icati~ l
i (X,,,,,_Parser 1

Oa'a e erlx , arse "1 oo,e, II i
TCP server ge ilv' Servlet " I" ge .l__ i~,,, "

I I HTTP I I (C~ ~
..Cl,~.t j XML format I I Server I I urowser~tored in the serve~

Figure 21. Subsystems and information flow.

Message exchanged between the different modules is formatted in XML syntax.
That way, XML parser is implemented in each sub-module as can be seen in the
figure.

3.5.7.20ptimisation Techniques

Mathematical Programming Techniques

Many Mixed Integer Linear Programming (MILP) models have been proposed for
scheduling problems arising in the process and related industr ies (Pekny and
Reklaitis, 1998; Shah, 1998, Pinto and Grossman, 1998). While a major
advantage of the mathematical programming app roach is tha t it provides a
general f ramework for modeling a large variety of problems, its main l imitation
lies in the potentially very large computational effort required to solve problems
of practical size, which can be a severe l imitation for industr ia l applications.
Additionally, th ,~ use of linear models to describe the manufactur ing
environment, objectives, constraints and policies can lead to unsat isfactory or
unfeasible solutions. To overcome the combinatorial explosion characterist ic of
this type of problem, several authors have developed logic-based optimization
methods, such as Generalized Disjunctive Programming (Raman and
Grossmann, 1994), Constraint Programming (Hentenrych, 1989), and/or

698

combinations of both with generic MILP methods to reduce de search space
(Harjunkoski and Grossmann, 2001). Through these means a substant ia l
reduction in the computat ion effort by several orders of magni tude can at t imes
be achieved with large size problems.

S t o c h a s t i c Opt imiza t ion

Non determinist ic methods have seen increasing application in the optimization
of large complex plants. Improved random searh algori thms have been reported
(Salcedo, 1992). Metaheuris t ic algori thms (Simulated Annealing, Genetic
Algorithms, Artificial Neural Networks, Tabu Search) are also finding a
widespread application in process engineering. These methods may be efficiently
combined with rigorous approaches to find quasi optimal solutions within
reasonable computing time for complex hybrid production scenarios

Spec i f ic So lu t ions for Spec i f ic Problems

The development of a general scheduling tool is an extremely ambitious objective
and in fact given present unders tanding of the na ture of scheduling problems
consti tutes an impossible task. Production facilities tend to be very par t icular
because company policies, objectives and constraints are very specific and of
different nature . Specific constraints in batch chemical processing made this
si tuation even harder. For these reasons, scheduling methods need to be adapted
and user interfaces rebuilt each time a new application is encountered. However,
the modelling of batch processes may follow a common framework and share the
same basic simulation procedures, user interfaces and data organization and
management . Consequently, most of the computer code developed for the general
case need not be rewri t ten each time a new application is encountered, but
instead can be reused. This is one of the main advantages claimed by Component
Technology. Distr ibuted components and distr ibuted computing have been
recognized as the way to reduce software complexity and cost as well as to
increase software flexibility and extensibility.

3.5.8 REF ERENCES

Antsaklis, , P.J., 2000, "Scanning the Issue/Technology", Proceedings of the IEEE
88, 879-887.
Bagajewicz M., 2001, "Review of Recent Results in Ins t rumenta t ion Design and
Upgrade for Process Plants". Proceedings of the 4 th IFAC Workshop on On-Line
Fault Detection & Supervision in the Chemical Process Industries, June 8-9,
Seoul, Korea.
Barton, P.I. and C. C. Pantelides, 1994, "Modeling of Combined
Discrete/Continuous Processes". AIChE Journal. 40(6), 966-979

699

Chouaib, Ch.,. Tona, R.V., Espufia, A. and L. Puigjaner, 2001,"On-line
application of Integral Dynamic Data Reconciliation", PRESS'01, Florence
Engell, S.,Kowalewski, S., Schulz, C. And Stursberg, O, 2000, "Continuous-
Discrete Interactions in Chemical Processing Plants", Proceedings of the IEEE
88, 1050-1068.
Graells, M., Cant6n, J.,Peschaud, B.and L. Puigjaner, 1998, Comp. Chem. Eng.,
22S, 395-4O2
Harjunkoski, I. and J. E. Grossmann, 2001, "Combined MILP-Constraint
Programming Approach for the Optimal Scheduling of Multistage Batch Process".
Proc. ESCAPE 11, Scanticon, Denmark.
Hentenryck, P. V., 1989, "Constraint Satisfaction in Logic Programming", MIT
Press, Cambridge, MA.
ISA-$88.01-1995. "Batch Control. Part 1: Models and Terminology". Approved
February 28 1995
ISA-$88.02. "Batch Control. Part 2: Data Structures and Guidelines for
Languages". Draft 13. February 1999
ISA-dS95.01-1999, "Draft Standard, Enterprise - Control System Integration,
Part 1: Models and Terminology". Draft 14, November 1999
Isermann, R. and Ball~ P., 1997, Trends in the application of model-based fault
detection and diagnosis of technical processes, Control Eng. Practice, 5, 709-719
http://www.opcfoundation.org
Leonhardt, S. and Ayoubi, M., 1997, "Methods of Fault Diagnosis", Control Eng.
Practice, 5, 683-692.
Morari M., Lee, J.H., 1999, "Model predictive control: past, present and future",
Computers & Chemical Engineering, 23 (4-5) 667-682.
Mockus, L. and Reklaitis, G. V., 1996, "Continuous Time Representation in
Batch/Semicontinuous Process Scgheduling-Randomized Heuristics Approach",
Computers & Chemical Engineering, $20 ,S1173-S1178.
NAMUR, "GO Koncept", NE33, February 1987.
Nougu~s, J.M. and L. Puigjaner, 2001, "Web-Based Process Simulator", Proc.
ESCAPE- 11, Scanticon, Denmark.
Pekny, J. and Reklaitis, G.V., 1998, "Towards the convergence of Theory and
Practice; a Technology Guide for Scheduling/Planning Methodology".
Foundations of Computer-Aided Process Operations (Eds. J.F. Pekny and G.E.
Blau), AIChE Symposium Series no. 320, 91-111.
Pinto, J. M. and Grossmann, I.E., 1997,"A Logic-Based Approach to Scheduling
Problems with Resource Constraints", Computers & Chemical Engineering, 21,
801-818.
Puigjaner, L., Espufia, A., 1998, "Prospects for Integrated Management and
Control of Total Sites in the Batch Manufacturing Industry". Computers &
Chemical Engineering, 22, 87-107.
Puigjaner, L., 1999, "Handling the increasing complexity of detailed batch
process simulation and optimisation" Computers & Chemical Engineering, 23 S
(ISSN: 0098-1354), $929-$943.

/oo

Raman, R. and I. E. Grossmann, 1994, "Modeling and Computational Techniques
for Logic based Integer Programming". Computer and Chemical Engineering, 18,
563-578.
Rickard, J.G. Machieto, S. and Shah, N. 1999, "Integrated Decision Support in
Flexible Multipurpose Plants" Comput. Chem. Engng. Suppl.,23,. $547-$550
Ruiz, D., Nougu~s, J. M., CantSn, J., Espufia, A. and L. Puigjaner, 2000, "Fault
Diagnosis System Support for Reactive Scheduling in Multipurpose Batch
Chemical Plants". Computer Aided Chemical Engineering- ESCAPE 10 (Ed. S.
Pierucci), Vol. 8, 745-750.
Salcedo, R. L., "Solving Nonconvex Nonlinear Programming and Mixed-Integer
Nonlinear Programming Problems with Adaptive Random Search". Ind. Eng.
Chem. Res., 31,262.
Saraga, M. I., Kahoraho, E., Burgos, A. and J. I. Llorente, 1999, "An evaluation of
different manufacturing generic models from the reuse point of view".
Proceedings 7th IEEE International Conference on Emerging Technologies and
Factory Automation (Ed. J. M. Fuertes), Vol. 1, 767-773, IEEE Society,
Piscataway, N.J.
Shah, N., 1998, "Single- and Multisite Planning and Scheduling: Current Status
and Future Challenges". Foundations of Computer-Aided Process Operations
(Eds. J.F. Pekny and G.E. Blau), AIChE Symposium Series no. 320, 75-90.
Silver, E., Pyke, D. and R. Peterson, 1998, "Inventory Management and
Production Planning and Scheduling". John Wiley and Sons.

A C KN O W L E D G E ME N T S

The financial support from the European Community (project Global-Cape-
Open-IMS 26691), the Generalitat de Catalunya (through CeRTAP - Centre de
Refer~ncia en Tecnologies de ProducciS") and CYCIT (project QUI99-1091) are
thankfully appreciated

	Software Architectures and Tools for Computer Aided Process Engineering
	Copyright Page
	Foreword
	Preface
	List of contributing authors
	Contents
	Part I
	Chapter 1.1 Introduction

	Part II: Visions & Needs for CAPE Tools
	Chapter 2.1 General User Needs for CAPE
	Chapter 2.2 Batch User Needs & Specialities Chemical Processes
	Chapter 2.3 Life Cycle Needs

	Part III: Framework for CAPE tools
	Chapter 3.1 Modelling Frameworks
	Chapter 3.2 Numerical Solvers
	Chapter 3.3 Simulation, Design & Analysis
	Chapter 3.4 Data Reconciliation Framework
	Chapter 3.5 Frameworks for Discrete/Hybrid Production Systems

	Part IV: Making CAPE-Tools
	Chapter 4.1 Methods & Tools for Software Architecture
	Chapter 4.2 PlantData XML
	Chapter 4.3 PI-STEP
	Chapter 4.4 The CAPE-OPEN Standard: Motivations, Development Process, Technical Architecture & Examples

	Part V: Using CAPE-Tools
	Chapter 5.1 Applications of Modelling: A Case Study from Process Design
	Chapter 5.2 CAPE Tools for Off-line Simulation, Design and Analysis
	Chapter 5.3 Dynamic Simulators for Operator Training
	Chapter 5.4 Computer Tools for Discrete/Hybrid Production Systems

	Part VI: New Frontiers
	Chapter 6.1 Software Agents
	Chapter 6.2 Tools Integration for Computer Aided Process Engineering Applications
	Chapter 6.3 Web-Based Systems
	Chapter 6.4 Fault Diagnosis Methodologies for Process Operation
	Chapter 6.5 Emerging Business Models

	Part VII: Case Studies
	Chapter 7.1 Case Studies in Design and Analysis
	Chapter 7.2 A Prototype for Open and Distributed Simulation with COM and CORBA

	Glossary of Terms
	Subject Index
	Author Index
	Corrigendum

