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F o r e w o r d  

Industrial production is a key area of human activity. Due to its multi-dimensional importance it is 
strongly linked to the three pillars of Sustainable Development: economic competitiveness, social 
importance (employment, quality of life), and environmental impact. 

The future economic power of the European Union will depend on the capability of industry to 
produce goods and services combining environmental awareness and competitiveness. 

In their efforts to assist EU industry, European Research programs such as Brite Euram (FP4) and 
GROWTH (FP5) have taken these concepts into consideration. The future of European Industry, in 
particular within the framework of sustainable development, has to be prepared with an overall 
vision, hence the importance of European Scientific and Technical cooperation. 

To leave problems for the next generation to inherit is not acceptable. Indeed, sustainable 
development encompasses the ability to produce goods that create jobs and guarantee quality of life, 
without generating a negative impact on the environment. 

The modernisation of the industrial processes and adaptation to change are achieved through 
research activities that will develop new technologies and methodologies. They encompass process 
modelling and simulation, management systems, process integration and intensification. Agility, 
efficiency, safety and prevention of waste are considered as key goals. 

Through European research programmes, industry and associated research organisations are guided 
towards cost-shared research actions through a system-oriented approach in which chemistry, 
physics, engineering, computer science or social sciences become essential and interdependent. 

This publication is just one outcome of collaborative efforts undertaken by the projects CAPE- 
OPEN and Global CAPE-OPEN. The need for CAPE tools is mostly found in the production of fine 
chemicals and petrochemical products, but also for processes in traditional manufacturing sectors. 

Establishing the latest state-of-the-art in CAPE will be of great interest to process engineers and 
scientists, plant designers, software developers, teachers and students. 

Fr6d6ric Gouard6res 
Scientific Officer 
European Commission 
Research Directorate-General 
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Preface 

It has  been a p leasure  for us  to contr ibute  to this  book as well as  to edit it. 
The idea of edit ing a book on modern  software a rch i tec tu res  and  tools for 
CAPE came while we were collaborating with several indus t r ia l  and  resea rch  
organisa t ions  t h rough  the CAPE-OPEN initiative. We realised tha t  we were 
producing  a weal th  of useful  mater ial  and  informat ion tha t  deserved a 
broader  audience .  Moreover, a l though there are n u m e r o u s  books wri t ten  by 
leading a u t h o r s  on various aspects  of Computer-Aided Process Engineer ing,  
we could no t  find one single reference on the software side of it, t h a t  is, how 
CAPE software is designed and developed? After d i scuss ion  with a n u m b e r  
of colleagues and  friends, we came to the conclus ion  tha t  s u c h  a book could 
be quite use fu l  for the CAPE communi ty  at  large. 

The book h a s  benefited from m a n y  con t r ibu t ions  and  suppor t  from 
individuals  a n d  inst i tut ions.  The European  Commiss ion  funded  the CAPE- 
OPEN a n d  Global CAPE-OPEN projects t h rough  the Br i t e -EuRam 
programme,  and  the GCO-Suppor t  project t h r o u g h  the Competi t ive and  
Sus ta inab le  Growth programme of the 5 th Framework.  The Intell igent 
Manufac tu r ing  Sys tems  programme s u p p o r t e d  the in terna t ional  activities of 
Global CAPE-OPEN by endorsing the project and  t h u s  allowing col laborat ion 
between Europe ,  J a p a n ,  USA and Canada .  

We t h a n k  all a u t h o r s  for their cont r ibut ions  and  their  wil l ingness to satisfy 
our  r equ i rements .  Similarly, we are grateful to the a n o n y m o u s  reviewers who 
have provided valuable  comments  and  suggest ions .  We also t h a n k  Elsevier 
for their  in te res t  in the book and for publ i sh ing  it. Finally, we hope tha t  the 
reader  will find the subject  mat te r  of the book interest ing,  the informat ion  
conten t  use fu l  and  the vision motivating. We hope this book will con t r ibu te  
to the deve lopment  of a new generat ion of software tha t  will m a t c h  the  fu ture  
needs  of the  CAPE communi ty  and beyond. 

Ber t rand  B r a u n s c h w e i g  
Rafiqul Gani  
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P a r t  I I n t r o d u c t i o n  

1.1 Introduct ion  
B. Braunschweig & R. Gani 

This part consists of one chapter, which provides an introduction to the 
book, the contents of the book as well as a road map for the reader. 

Computer aided process engineering, CAPE, is briefly discussed together 
with CAPE methods and tools from a software architecture perspective. A 
brief overview on computers & software and software technologies is also 
given. 
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Software Architectures and Tools for Computer Aided Process Engineering 
B. Braunschweig and R. Gani (Editors) 
Cr 2002 Elsevier Science B.V. All rights reserved. 

C h a p t e r  1.1 I n t r o d u c t i o n  

B. Braunschweig & R. Gani 

1.1.1 SOFTWARE ARCHITECTURES & CAPE 

Computer Aided Process Engineering (CAPE) implies the use of computers 
and/or computer aided methods and tools in the solution of process and product 
engineering problems. According to Perris and Bolton (2001), CAPE may be 
defined as, 

"The application of a systems modelling approach to the study of processes 
and their control, safety, environmental protection and utility systems as an 
integrated whole, from the viewpoints of development, design and 
operation" 

CAPE software, as for many other classes of software, is becoming increasingly 
powerful, increasingly complex, increasingly better, increasingly used, and, last 
but not the least, increasingly diverse. The range of applications of CAPE tools, 
from simple database searches for retrieving reference properties of chemical 
compounds, to complex plant-wide dynamic optimisation problems solved in real 
time, is overwhelming. It calls for numerous methodologies, techniques, tools, 
and algorithms in order to cope with increasing demands, users and applications. 

On the other hand, software tools, architectures and technologies are evolving at 
a very rapid pace. They are triggered by the constant need of software providers 
for offering new commercial products; they are triggered by the constant need to 
transform new CAPE methodologies, techniques and algorithms into more 
versatile and powerful software; they are triggered by the opportunities offered 
by more powerful hardware and faster networks (including the internet,  of 
course); and they are even more triggered by the growing demands of users for 
more features, more user-friendliness, and more precise and reliable results. 

In the text below, we first give our views on CAPE methods and tools from a 
software architecture perspective, followed by a brief overview on computers & 
software and software technologies before introducing the contents of this book. 



1.1.1.1 CAPE m e t h o d s  a n d  too l s  

CAPE methods refer to a collection of computer-aided methodologies, techniques 
and algorithms that  provide the framework for the CAPE tools. CAPE tools refer 
to the software that  have been developed by transforming CAPE methods for a 
wide range of applications and uses. In this book we will refer to CAPE tools also 
as software. The software may be a single software component or a collection of 
software components integrated into one main software. A typical example of 
CAPE methods are methodologies for modelling, numerical techniques and 
equations solving approaches that provide the framework for CAPE tools such as 
process simulators. Process simulators are therefore a collection of individual 
software components put together through a defined architecture. 

Differences in the available CAPE methods of a particular type, provides 
distinguishing features to the corresponding CAPE tools or software components. 
A process simulator based on a modelling methodology that  employs predefined 
steady state unit operation models and a sequential modular approach for solving 
the model equations, is a CAPE tool for steady state process flowsheeting based 
on the sequential modular approach (see chapters 3.3 and 5.2 for more details). 

Differences in the types of CAPE methods lead to the development of different 
types of CAPE tools or software components. For example, computer aided 
molecular design techniques has led to the development of software for solvent 
design (Harper and Gani, 2001) while knowledge-based techniques have lead to 
the development of software for selection and design of equipments (Bfihner and 
Schembecker, 2001). Some CAPE methods, such as methods for process/product 
synthesis and design, data-reconciliation, real-time process optimisation, etc., 
need more than one CAPE tool or software component. Bayer et al. (2001) give a 
good example of the need for different software tools for conceptual process 
design (see also chapter 7.1). Efficient transformations of these CAPE methods 
into useful tools need corresponding and appropriate software architectures. 

New challenges and opportunities in CAPE indicate the need for integration of 
CAPE methods. As in the case of software components or processes, the 
integration of methods implies an overlap of activities (or work) and the sharing 
of information (or data). Rather than apply the CAPE methods and the 
corresponding software in a sequential manner and thereby repeat many of the 
common computations, the challenge is to satisfy the workflow and dataflow 
needs while performing the overlapping computations only once. In such 
architecture, the common parts of the workflow are performed only once and the 
common parts of the data are stored such that all other tools can access it. So, in 
this case, we have integration of methods as well as tools, which in turn, may 
involve integration of individual software components (see also chapter 6.2). Such 
integration allows one to consider aspects of operation, environment, cost and 
other process issues simultaneously, for example, in at the conceptual design 



stages of the process/product development or for generation/evaluation of retrofit 
alternatives for existing processes or products. The need for inte'grated CAPE 
tools becomes clearer if lifecycle issues are also considered. Here, the challenge is 
to also handle different scales of time and length. For example, the lifecycle 
stages in synthesis and development of manufacturing processes need to consider 
a number of concurrent CAPE issues or problems (Ng, 2001; Okada and Shirao, 
2001). Software architecture therefore becomes an important issue in the 
transformation of integrated CAPE methods into integrated CAPE tools. 

In the text below, some of the issues with respect to making CAPE software more 
powerful, increasingly complex, increasingly better, increasingly used, and 
increasingly diverse is briefly discussed from a software architecture perspective. 

i 

M o d e l s  v e r s u s  s c o p e  

All CAPE tools are model based, and therefore, models play a very important role 
in defining the scope and significance of the software. The models, of course, can 
be of different types and/or class (see chapters 3.1 and 6.1). Transformation of 
CAPE methods into tools usually occur via models (or modelling systems), which 
when solved, provides the information (knowledge) that  is used elsewhere. For 
example, a CAPE tool such as a process simulator may consist of a number of 
steady state unit operation models with different degrees of complexity. 
Application of the process simulator in this case, provides information about the 
process streams through the solution of mass and energy balance equations 
representing the process. So, in this case, the CAPE tool generates knowledge 
about the steady state behaviour of the process. This knowledge may be used by 
other tools to make decisions on the conditions of operation, to improve the 
accuracy of the model and many more. Thus, at the core of most software 
components, usually lies a model. Consequently, at the core of integrated 
software components, the model component is usually in the inner core. 
Therefore, the accuracy of the information generated by the model affects all 
other software components. For similar reasons, the application range of the 
model defines the scope of the integrated or individual software components. 

The scope of CAPE tools may also be increased through multiscale and multilevel 
modelling (see chapter 3.1). As pointed out by Pantelides (2001), significant 
advances in process modelling can be achieved through multiscale modelling, 
which also provides a framework for integrating aspects of process and product 
design (where also questions of scales of size and time need to be considered). 

The need for models at different lifecycle stages of the same process, on the other 
hand, may be referred to the need for multilevel modelling, although, indirectly, 
scales of time are also involved here. 



Multilevel modelling may also mean different uses of the CAPE method through 
different levels of model complexity or model type. For example, the transient  
operation of a process may be studied by combining a dynamic process simulation 
model with a process operation model (as in batch operations). Here, having the 
dynamic simulation model is not enough, the operational (batch) procedure is 
also needed. Also, if the generated operational information is to be used to make 
business decisions, it can be argued that  a business model also needs to be 
considered. Therefore, adding different levels of models may help to increase the 
scope and significance of the original software (or CAPE tool). 

Flexible software architectures will allow the developer of CAPE methods and 
tools to meet the demands discussed above with respect to models and their use 
in software development. The architecture needs to allow the generation of 
models according to the needs of the specific problem being solved (see also 
chapters 5.1 and 6.1). Note that  the CAPE method is transformed into software 
through the model that  also helps to define the framework for the architecture of 
the software. 

Complexi ty  versus  reliabil ity 

Complexity and reliability are closely related to the model(s) that  has been used 
to transform the CAPE method into software. Complexity here also refers to the 
ease of use, i.e., how easy is it to use the software? Thus, complexity and 
reliability of the model determines, indirectly, the scope and significance of the 
CAPE tool while complexity of parts of the software architecture dealing with the 
user interface, determines the usability of the software. Naturally, the demands 
for the software to become increasingly used, increasingly better, increasingly 
diverse, and increasingly reliable can be addressed by considering the model 
complexity-reliability, user-interface complexity, etc. in the early stages of the 
software development. More precisely, during the definition of the framework for 
the software architecture. Here, the objective of the software architecture could 
be such that  only those parts of the model and interface (from the total resident 
system) that  are needed are retrieved and used for the specific problem being 
solved. This is similar to integrating individual software components of different 
level and scale into problem specific software through intelligent software 
architecture (the basis for which could be other CAPE methods). Increasing 
reliability may mean the use of more complex models and/or larger computation 
times while more features in the model may mean more flexibility. The 
architecture needs to find an appropriate balance. 

Examples of the use of models with increasing complexity or integration of 
different levels of models can be found in applications where the capabilities of 
CFD tools are combined with those of more conventional modelling technology 
(see also chapter 7.2). 



Integrated  m e t h o d s  versus  in tegrated  sof tware  

This has been briefly addressed above (section 1.1.1.1). The text below further 
adds to the discussion. 

It is important to understand that just as individual software components may be 
integrated together to form an integrated tool (software), different individual 
CAPE methods may also be integrated to form an integrated CAPE method 
(Bansal et al. 2001). For the integrated CAPE method to work, an integration of 
the corresponding integrated tools (at the integrated software level) or an 
integration of all the individual software components corresponding to all the 
integrated tools (at the individual software component level). For integration of 
CAPE methods, models (or model components or multilevel modelling) play a 
very important role in transforming integrated methods into integrated tools and 
define certain aspects of the software architecture. Integration between 
integrated tools and/or software components need clear definition of the related 
workflow and dataflow and their representation through activity models (see 
chapters 2.3, 6.2 and 7.1). More integration will lead to software that is more 
powerful, increasingly complex, increasingly better, increasingly diverse, and, if 
all these demands are met, also increasingly used. For example, integration with 
tools for data reconciliation (see chapter 3.4) and/or fault diagnosis systems (see 
chapter 6.4) enhances the application and use of the software components. 

For integrated software, the software architecture will need to consider how 
much to involve the user in the various solution steps. For example, should all 
the conceptual design steps be made automatic or should there be user 
interaction at each step? Good resolution of these issues should lead to increased 
application and/or use of the software. 

Computer  power  versus  p r o b l e m  size 

As computers become bigger (in memory), faster and better, the CAPE tools 
taking advantage of these features will also become bigger, faster, better and 
more powerful. To take advantage of the advances in computer science and 
computers, software architecture will also need to address the hardware and 
related issues (see also section 1.1.1.2). More computer power should not be the 
only criteria to increase the problem size and solution speed. Appropriate 
software architecture should try to optimise the size, speed, flexibility, and 
efficiency of the software. 

User  product iv i ty  versus  appl icat ion  

This topic brings us back to the question of the objectives of CAPE and CAPE 
methods and tools. By providing a systematic computer aided approach to 
problem solving, the CAPE tools indirectly contribute positively to the 



productivity of the user. For example, if the user needs to spend less time to solve 
a CAPE related problem, he/she will then have more time to solve other 
important  CAPE problems, assuming of course, tha t  the CAPE tool is able to 
solve these problems. The software architecture has an important  role here. It 
needs to consider the interaction between the user and the software (through the 
computer) so tha t  the user will spend very little time in defining the problem that  
he/she needs to solve. The software (through the computer) should be able to 
correctly interpret  the user-given data, retrieve the necessary software 
components, solve the problem, and generate the results report for the user. The 
human  (user) - c o m p u t e r  relationship is important  because both have roles in the 
problem solution. The software architecture needs to make sure that  both parties 
play these roles efficiently. The ratio of computing time used (to get a solution) 
divided by the total time used in the problem solution (including the time spent 
by the user to generate and/or provide the necessary data and information, the 
number  of trials, etc.) could be used as an indicator to monitor user productivity. 
Unless special or complex and/or large problems are being solved, usually, the 
computer is able to solve the problem (for a successful convergence) at a very 
small fraction of the time needed by the user to correctly set-up the problem. If 
the user needs less time to set-up the problem and is able to obtain reliable 
results within a few attempts,  the productivity of the user will increase. 

The other important  aspect (also partially covered above) is the question of 
application. It would be impossible to provide in single monolithic software all 
the features needed for a wide range of applications. For example, from 
conceptual design to on-line control and monitoring and diagnosis, from 
continuous to batch and hybrid, from traditional sectors i.e. chemicals and 
petroleum to food, pulp and paper, etc. However, with an integrated set of tools 
(software) having the appropriate software architecture, better and more 
powerful software can certainly be developed. In this way, the application range 
of CAPE methods and tools can be significantly increased. 

Finally, the use of a systems approach means that  the experience gained from 
one application area and]or industrial sector for one tool may be transferred to 
another application area and/or industry sector for the same tool or another class 
of tools. Software architecture will help to move the tools from one application 
area to another  without too much extra effort, as in many cases, the knowledge 
structure is usually similar but the knowledge content is different. Having a 
flexible architecture tha t  can handle different knowledge content within similar 
knowledge structures would reduce the time for software developers while at the 
same time, increase the number  of applications and software users. 



1.1.1.2 Computers  and Software Technolog ies  1 

The computer and software industry has followed a pace of changes in the last 
decades, with the most recent being the universal deployment of the Internet  for 
business and home activities. 

N e t w o r k s  

It is not possible to consider a computer as a standalone device, except in very 
peculiar circumstances. Networks are everywhere, for both fixed and mobile 
systems" one can count on a link to the Internet or to mobile communication 
systems in almost any place of the world. For this reason, technologies that  allow 
software to take advantage of networks are gaining dominant position: this is the 
case for distribution architectures such as Microsoft's DCOM and .NET, OMG's 
CORBA, Sun's Enterprise Java Beans; this is also the case for the XML and 
XML-based various standards for document and data sharing. The current trend 
is to propose representations, which allow business systems to discover and 
integrate web services components on the Internet on the fly, such as with the 
UDDI initiative, or the various WSxL languages for interoperating web services, 

Machines  

Current desktop and laptop computers have more computing power, more 
memory, and more disk space, than supercomputers used in the 1980s for the 
most demanding scientific applications. A PC with a Pentium IV processor 
clocked at 2GHz can be ten times more powerful than a Cray XMP, the 
supercomputing reference system back fifteen years ago. Clusters of PCs running 
under Linux or Windows NT give huge processing power at a reasonable price; 
some companies have replaced their corporate supercomputers by clusters of 
hundreds or thousands of low-cost PCs. Network bandwidth is growing at the 
same rate, with the Ten-155 kernel at 622 Mbits/sec. deployed over all European 
and developed countries, allowing to share complex data and information from 
distant locations. GRID computing, that  is, the distribution of computation over 
the networks, is becoming a reality. 

P r o g r a m m i n g  languages  

Programming languages evolve as well, with new languages appearing 
periodically, able to take advantages of the new hardware and operating systems. 
Object-oriented languages (e.g. C++, Smalltalk, Sun's Java, Microsoft's C#) almost 
completely replaced the traditional procedural code that  was the s tandard ten 
years ago (i.e. Fortran and C). Developers of CAPE applications increasingly use 
sophisticated development tools such as Microsoft's Visual Studio or Sun's J2EE 

1 Editor 's  note: For an explanation of the acronyms, please see the "glossary of terms" section after  P a r t  VII. 
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toolkit. Source code is often generated from higher-level or abstract models and 
descriptions, and component libraries supplied with Application Programming 
Interfaces (APIs) are used for several simple and not-so-simple tasks (handling of 
lists and arrays, database handling, numerical processing, graphical user 
interface widgets, etc.). We cannot leave this list without adding the many 
languages used for the Internet, from the simple HTML static descriptions to the 
CGI scripts for database access, and to the Javascript and Active Server Pages 
dynamic systems, some of the most popular technologies in this field. 

N e w  A r c h i t e c t u r e s  

New Architectures have been proposed for the development and deployment of 
complex software. Middleware is playing an important role in these new 
architectures as it brings the "software glue" that  puts the pieces together. Three- 
tiered architectures (with three layers: data, processing, interface) are standard, 
and n-tiered architectures with several interacting layers are proposed for more 
complex applications. Following this trend, the software industry designed 
component-based architectures such as the ones presented in chapter 4.1, in 
which middleware is acting as the "software glue" for putting pieces together. 
Among these component architectures, of course, we must mention: 

�9 OMG's CORBA and its many technologies, from the IIOP software bus for 
interoperability of heterogeneous objects, to the high-level Meta Object 
Facility for analysis and design, through the IDL neutral Interface 
Description Language; 

�9 Microsoft's COM and COM+ component architecture, which allow 
Windows-based applications to interoperate, and the many development 
tools able to use this technology; this technology is further developed in the 
.NET architecture which uses the eXtensible Markup Language (XML) 
and the Standard Object Access Protocol (SOAP) as core communication 
tools; 

�9 Sun's Enterprise Java Beans architecture, on top of the Java language, 
which proposes complex and flexible arrangements of components written 
in Java. 

�9 Of course, XML itself, and its accompanying technologies (DTD, XSL, etc.) 
now has a crucial role in e-business and e-work infrastructures, gathered 
in what is now called EAI - Enterprise Application Integration; 

�9 Agent and multi-agent architectures can provide opportunistic cognitive 
distributed processing and take advantage of the network; the last chapter 
of this book gives a few ideas on the development of such facilities; 

�9 Other architectures for distribution of processing, using component 
technology and transaction mechanisms, which will become important 
when dealing with supply chain and e-commerce. We do not describe them 
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further in this book since there are no uses of such technologies in the 
applications considered. 

User Interfaces 

User interfaces made huge progress in recent years. In terms of visualisation, 
people do not speak of UIs anymore, but of GUIs, or Graphical User Interfaces. 
Invented by Xerox at their Palo Alto Research Center in the 1970s, GUIs 
involving desktops, windows, menus, mice etc. were made popular by Apple in 
the 1980s with the advent of the Macintosh, the first graphical personal 
computer. Since then, Unix workstations, Windows-based PCs, Personal Digital 
Assistants and other equipment (including some mobile phones, Linux boxes, 
etc.) were all equipped with graphical user interfaces. More advanced displays 
make use of 3D visualisation such as in "reality centers", "immersive rooms" and 
other virtual reality devices. On the other hand, interfaces used by humans to 
drive the computers followed a similar evolution, moving from keyboard input, to 
mice, touch-pads and touch-sensitive displays, voice-activated devices, virtual 
reality sensors, eye movement tracking systems etc. Development tools are 
available for all these technologies, from simple libraries with APIs to complete 
GUI development systems. 

Methods, methodologies, algorithms 

Methods, methodologies and algorithms for software development and scientific 
computing have been subject to step changes as well. Together with the 
development of new tools, new languages, new architectures, methodologies and 
methodological tools have been proposed, some of which gained enormous success 
in the recent years. In terms of object-oriented software development, we moved 
from a world of little know-how and of great confusion, to a world now dominated 
by the standard and widely accepted UML (Unified Modelling Language) 
notation and its accompanying design and analysis processes; design patterns 
which capture re-usable elements of object-oriented software design were 
developed and almost immediately exploited by the software community; a very 
abstract system such as OMG's Meta Object Facility, which represents software 
artefacts at the meta-meta level 2, was only understood by a handful of 
researchers ten years ago, but is now used in daily practice by software designers 
who exchange design models through the XMI (XML Metadata Interchange) 
language. In the algorithmic domain, algorithms for software and for scientific 
computing also followed a significant trend of evolution, allowing to tackle large 
problems that  could not be solved in the 1980s. We talk about numerical 
algorithms, especially for solving and optimising large process models, in Section 
3. Here, we mention other types of algorithms, such as the ones used for 
statistical analysis, data mining, machine learning or stochastic global 

2 Models of models of objects! 
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optimisation. In these fields as well, numerous improvements were proposed, 
such as neural  networks for learning nonlinear behaviours, fuzzy logic for 
approximate reasoning, evolutionary (genetic) algorithms for global optimisation, 
among others a. 

In summary,  computer and software technologies made such progresses in the 
last decades that  we cannot approach CAPE software development the same way 
as we did even only ten years ago. This has significant consequences on the 
organisation of work for providers of CAPE tools. People need to be trained, new 
work processes must be put in place, and this takes even longer than  developing 
the technologies themselves. But it is a necessary step, and we hope that  this 
book can contribute to the process. 

1.1.2 OBJECTIVES OF THIS BOOK 

Scientific software, commercial or otherwise, is needed to solve CAPE related 
problems by industry/academia, for research & development, for 
education]training and many more. With increasing availability and use of 
computers in industry/academia, at work and at home, the use of the appropriate 
software together with their development and availability has become an 
important  issue. There are increasing demands for CAPE software to be 
versatile, flexible, efficient, robust, reliable and many more. This means that  the 
role of software architecture is also gaining increasing importance. The software 
architecture needs to reconcile the objectives of the software, the framework 
defined by the CAPE methods, the computational algorithms, the user needs and 
tools (other software) tha t  help to develop the CAPE software. The objective of 
this book is to bring to the reader, the software side of the story with respect to 
computer aided process engineering. 

The text below explains the contents of the book, which is divided into seven 
parts  plus a glossary of terms, a subject index and an author index. The contents 
of each part  are briefly described, followed by a road map for the reader in terms 
of "who should read 9" what.  , since all parts  of the book may not be of interest to 
every reader. The reader  is, however, encouraged to read everything in order to 
get a complete picture. 

1.1.2.1 The content  ( themes ,  topics ,  s u m m a r y  of  sect ions)  

The book tries to give a ra ther  exhaustive view of the themes and topics of 
relevance to CAPE applications over the lifecycle of processes. It addresses tools 
for design, development and operation of continuous, batch and hybrid processes, 

a All of these deserve much attention and much more ink, bu t  since they are not in the focus of this book, and however  
frustrating it is for the writer and for the reader, we only mention their existence. Another book is needed on this subject. 
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in the scope of CAPE as defined above. However it does not contain detailed 
material on molecular modelling and simulation, on computational fluid 
dynamics (CFD). These technologies are very relevant for the development and 
operation of processes but deserve more attention than only a chapter in a book 
on CAPE. 

We wrote the book using our experience in the modelling of chemical, 
pharmaceutical, petrochemical and oil processes (both refining and offshore 
facilities). Some of the content can be applied to other process industries e.g. 
polymers, agrochemicals, waste and water treatment, since some of the tools 
share the same concepts. It would me more difficult to transpose the concepts in 
quite different industries such as food, steel manufacturing, pulp and paper, 
thermal and nuclear although some general ideas will probably apply. 

The book starts with an assessment of the needs of the process industries in 
terms of CAPE software. The three chapters in Part II, VISIONS AND NEEDS, 
address these needs and include a general view, a view on the specifics of batch 
processes, and the needs for lifecycle modelling, since it is now well accepted that  
models should follow the lifecycle of processes from conceptual design to 
operation and de-commissioning. Following this, we show what our medium term 
vision is, taking into account the needs and what facilities the computer industry 
will offer. Part  II is mainly written by industrial users who are experienced with 
CAPE tools and their utilisation in large and smaller corporations. 

Part  III, FRAMEWORK FOR CAPE TOOLS, introduces current architectures for 
CAPE, as proposed by leading scientists and vendors of CAPE software. It gives 
concrete examples on how these frameworks can help to solve problems expressed 
in Part  II. Its scope includes modelling, optimisation, monitoring, for continuous, 
discrete and hybrid systems. It presents the state of the art of representations, 
algorithms and architectures. 

Part  IV, MAKING CAPE TOOLS, show what are the current tools (component 
software; objects, middleware, databases, XML..) and methods (data modelling, 
UML ..) used by the CAPE software industry to develop the new frameworks 
and tells about current standards projects and their status. Through examples 
such as CAPE-OPEN, Plant Data XML, PI-STEP, the reader will get an insight 
on how these standards are being developed and implemented. This part is 
mostly written by software specialists and experienced CAPE tools providers. 

Part  V, USING CAPE TOOLS, highlights, through illustrative examples, the use 
and/or application of the relevant frameworks (of Part  III) and methods, tools & 
standards (presented in Part IV) to the solution of interesting CAPE problems. It 
also presents what are the current computer aided tools (process simulators, 
databases, design, etc.) that are currently available in industry and academia. 
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The chapters in this part has been written by contributors from academia and 
industry, all known as world experts in their field. 

Part VI, NEW FRONTIERS, shows where we are going, through new technologies 
and new potential areas of applications that  make use of the advances in CAPE 
and software technologies: e.g. agents, web-based systems, integrated 
approaches, process monitoring and fault diagnosis systems. It starts by 
discussing new business models made possible by current technologies 
(collaboration frameworks, e-Work and e-Business models). Some of the 
developments in this part are already available but not widely used yet; some 
still involve significant research before being considered for applications. 
Specialists at the forefront of CAPE research have written the chapters of this 
part. 

Part VII, CASE STUDIES, presents the modern use of CAPE tools and 
architectures on representative process examples. The designers and developers 
of these examples have written this part. 

1.1.2.2 Who should read what? 

We hope that  the book will be of interest to a wide variety of readers. Here we try 
to guide you through the book following a rough classification, with an aim to 
help in making the best of it quickly, depending on your interest. 

Managers  of  Process  Engineer ing  and related activit ies  will be mostly 
interested in the vision and needs Part II, in order to understand and share what 
the medium and long term goals are; they will probably skip most of Parts III 
and IV and find additional interest in Part V where we present applications of 
modern CAPE tools. Enough curiosity will lead them to read bits and pieces of 
Part VI, at least the Emerging Business Models chapter (6.5). They will also 
appreciate the two examples of Part VII (chapters 7.1 and 7.2). Suggested order of 
reading: II, VII, V, VI. 

Users of  computer-a ided  process eng ineer ing  software (mostly process 
engineers) will easily understand the Vision and Needs part (Part II), as they 
probably share many of the ideas expressed there. They will learn a lot by 
reading Part III as an introduction to the methods and concepts implemented in 
the tools that  they are using for their daffy activities. They will also appreciate 
the part on standards in Part IV, since it shows what facilities will be shortly 
available with the future versions of their favourite tools. Some of the 
applications shown in Part V and some of the New Frontiers developments will 
be worth learning about. Finally, we expect that they will enjoy the two examples 
in Part VII. Suggested order of reading: III, II, IV, V, VI. 
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Managers  of  CAPE s o f t w a r e  deve lopment  projects will, as all others, be 
interested in Part  II, Vision and Needs. They probably know already most of Part  
III, and will find more "meat" in Part  IV where we present methods and tools 
tha t  their development team will be using, and standards upon which they will 
base some of their future activities. As for Part  III, they will probably be already 
familiar with application examples in Part  V. They should definitely read Par t  VI 
for the new ideas for products that  it brings. Suggested order of reading: II, IV, 
VI. 

Developers  of  CAPE s o f t w a r e  will need to understand in depth the concepts 
articulated in Part  III, as it will be their final responsibility, to implement these 
concepts in software. They are certainly familiar with some of Part  IV, but 
probably not at the same level of detail for all chapters of this part, so we suggest 
tha t  they spend some time on it. Then they could skip most of Par t  V and spend 
some time on Part  VI, in the same spirit as for Part  III, that  is, to unders tand the 
concepts before implementing them. Part  VII will contribute to their motivation 
for further developments. Suggested order of reading: III, VI, IV, VII, II. 

Researchers  in CAPE and in Process  Engineer ing  will probably like the 
book as a whole; they will probably be experts in some of the chapters and will be 
even able to comment, criticize or expand some of the ideas expressed, but 
obviously not for all topics and issues. It is difficult for us to recommend a 
selection, as it will mainly depend on their specialty. Suggested order of reading: 
parts of II, VI, II, III, IV, V, and VII. 

S o f t w a r e  spec ia l i s t s  f rom other domains  will take the book as an example of 
developments in a major application sector. They will need to gain some 
familiarity with the domain from application examples from Parts  VII and V, 
completed by the vision offered in Part  II. Then, they will be able to appreciate 
the technical developments as presented in Part  IV and the future trends of Part  
VI. Suggested order of reading: VII, V, II, IV, VI. 

I f  you do not  be long to any of these  categories ,  please let us know. We 
appreciate your feedback! 
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P a r t  II: V i s i o n s  & N e e d s  f o r  C A P E  T o o l s  

2.1 General  user needs  for CAPE 
P. Banks, K. Irons, M. R. Woodman & B. J. Stenhouse 

2.2 User needs  in b a t c h  & spec ia l i ty  c h e m i c a l  processes  
T. I. Malik & L. Puigjaner 

2.3 Life cycle needs  
H. Okada & T. Shirao 

The objective of this part is to provide an assessment of the needs of the 
process industries in terms of CAPE software. There are three chapters in 
this part and they address these needs and include a general view, a view 
on the specifics of batch processes, and the needs for lifecycle modelling, 
since it is now well accepted that models should follow the lifecycle of 
processes from conceptual design to operation and de-commissioning. 
Together with an assessment of the needs, each chapter also highlights the 
medium term vision, taking into account the needs and what facilities the 
computer industry will offer. Industrial users who are experienced with 
CAPE tools and their utilisation in large and smaller corporations are the 
principal contributors to the chapters of this part. 

Chapter 2.1 written by Banks et al. begins by reviewing the environment in 
which modern CAPE professionals operate. It then considers the potential 
benefits available from the application of advanced simulation techniques 
in the different activity sectors and the issues involved in actually realising 
these benefits. Finally, it looks at some of the implications of the adoption 
of these techniques for the individuals and organisations involved. 

In terms of CAPE, both the "batch' and 'speciality" characteristics influence 
the needs for system software as well as the interfaces required between the 
components of CAPE software. Chapter 2.2 (Malik and Puigjaner) 
considers these issues in further details in terms of structural 
characteristics of batch and speciality chemicals industries, management 
requirements, examples of industries, information needed for decision 
making and finally, characteristics needed for the supporting software. 

Chapter 2.3 (Okada and Shirao) identifies the "life cycle" needs of process 
industries who are going to use CAPE software as well as other tools 
during process modelling, simulation, synthesis and process design. The 
chapter discusses the issue of sharing of information between different tools 
and the role of the data manager during project execution as they influence 
the user's lifecycle expectations or needs, such as interfacing with different 
design tools to keep information flow among different disciplines during 
not only the process design phase which should be fulfilled by CAPE but 
also across the lifecycle. 
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C h a p t e r  2.1: G e n e r a l  U s e r  N e e d s  f o r  C A P E  

P. Banks, K. Irons, M. R. Woodman & B. J. Stenhouse 

2.1.1 OVERALL OBJECTIVE 

CAPE has great potential to provide business benefits, but, in reality, only a 
portion of these benefits is currently being delivered. We look at some of the 
issues that cause this shortfall and establish the unsatisfied user needs 
implied by each issue. We will be concentrating on industrial users, since 
they are generally the most demanding, and we will highlight their needs, 
rather than suggest specific solutions. 

The diagram below summarises the scope of the chapter: 
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It shows the activities involved in the lifecycle of a plant and indicates the 
full benefits that  are available in each, if a way can be found through the 
advanced simulation technology layer in between. We assume that users are 
already receiving benefits from applying standard simulation techniques in 
each activity sector, so we will focus on the user needs that arise in seeking to 
move to the new benefits promised by advanced techniques. 

The chapter begins by reviewing the environment in which modern CAPE 
professionals operate. It then considers the potential benefits available from 
the application of advanced simulation techniques in the different activity 
sectors and the issues involved in actually realising these benefits. Finally, it 
looks at some of the implications of the adoption of these techniques for the 
individuals and organisations involved. 

2.1.2 B U S I N E S S  E N V I R O N M E N T  I S S U E S  

The modern corporation has changed significantly, and continues to change 
rapidly, from the common model of the 1980s and before. With this ever- 
increasing rate of change in the corporate environment, the ability to adapt 
quickly is paramount. Arie DeGeus, formerly head of planning at Royal 
Dutch Shell, has said "The ability to learn faster than your competitors is 
your organization's only sustainable competitive advantage." Not quality, not 
service, not technology, not price, not marketing, not patents, but the ability 
to adapt more quickly than the competition. This is true across all industry 
categories. It does not imply that speed is more important than other factors 
(quality, cost, ease of use, safety, environment, etc.), but rather that any 
competitive advantage can be copied by others in time. The rate at which an 
organisation can implement its next competitive leap will determine how long 
it can sustain its advantage. The key role of CAPE is in allowing the 
organisation to develop and implement improvements in the design and 
operation of its manufacturing plants as quickly as possible. 

2.1.2.1 The  N e e d  for S p e e d  

Mergers & acquisitions have resulted in a major change in the mix of 
organisations participating in the bulk chemical, speciality chemical, 
petroleum, petrochemical, pharmaceutical and agricultural chemical sectors. 
Many companies that were major players only a few years ago have either 
merged with others, split into separate entities, undergone major 
divestitures, totally changed focus, or disappeared completely. New 
companies have been formed, alliances and joint ventures abound, and new 
business models are being tested. 
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The result of all this has been a rapidly changing mix of competitors, intense 
competition and rapidly changing business priorities. With all of the shifts in 
the structure of firms in a given market sector, companies find themselves 
constantly facing new challenges from organisations that  didn't exist a short 
time ago. Many companies focus on market  leadership as their strategic 
intent, which requires them to compete on a number of levels: price, quality, 
service, technology, product functionality, etc. Companies cannot only react 
to this competition, they must determine how to remain a step ahead in at 
least some of the elements. As each organisation looks for ways to gain 
competitive advantage, many paths are pursued. The ability of a firm to act 
quickly can make the difference between market leadership and failure. This 
reaction speed must be supported in all activities of the organisation, 
including CAPE. 

CAPE practitioners have generally been seen as highly skilled technical 
specialists, having built expertise over time and multiple project experiences. 
However, with the factors noted above, there are increasing pressures on this 
group of professionals. With mergers, acquisitions, joint ventures, etc., staff 
changes more are far more common than was the case. The effect of these 
changes is often less continuity in the technical community, whether this 
means people moving between business units (and therefore between 
technology areas) or between companies. In addition, technical professionals 
are frequently asked to participate in diverse activities that  are not core to 
their CAPE role. While this results in a welcome broadening of perspective 
for each individual, it also means that  they become less-frequent users of 
CAPE tools, resulting in a reduction of their specific CAPE expertise. 

With increasing focus on business level objectives, CAPE technical staff can 
find themselves with less focus on a single company agenda. At the least, 
there can be difficulties in simultaneously meeting business unit objectives 
(e.g. minimum capital investment for the next new plant or p lant  expansion) 
and corporate goals (e.g. minimum energy consumption, site integration, 
emission reductions, etc.). This issue is complicated further when CAPE 
activities involve contractors, whether they are contract engineers working 
with company staff, or when entire projects are contracted. While project 
objectives are always discussed as part  of the negotiation, contracting, and 
project management  process, that  is no guarantee that  those objectives are 
translated into desired individual behaviours when the CAPE work is 
actually done. 

The combined effect of rapid change and competitive pressures means an 
increased emphasis on capital efficiency and pressure to build and operate 
plants that  reflect a shorter lifecycle for the products they manufacture. 
These plants must also aid the goals of minimised working capital, asset 
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base, lost production and maintenance budgets, as well as maximum on-line 
time. The goal here is minimum total cost of ownership. At the same time, 
there is pressure to squeeze the maximum capability from existing assets, 
which can actually decrease capital efficiency because older assets are used 
when newer technology could be more efficient. This is often done when a 
company seeks to avoid capital expenditure in an effort to increase its Return 
On Net Assets or Return On Investment. 

All of these objectives must be met with lean organisations and stretched 
staff, who are working under all the constraints and external forces noted 
here. One manifestation of this changing environment is the widespread 
practice of outsourcing all or part of a firm's CAPE activities. The 
outsourcing drivers are to reduce the costs of having a staff of internal 
experts, to be able to respond to changes in demand for CAPE activities, and 
to tap into increasingly specialised expertise available from firms who are 
"full time" CAPE practitioners. 

A final set of pressures on the CAPE community comes in the environment, 
health, & safety arena. Process industry firms are faced with ever more 
challenging environmental goals, driven by regulatory, corporate policy, 
societal, and industry pressures. The growth of a litigious society brings 
another element of pressure on the CAPE professional to deliver process 
designs that  are economic, flexible, capable of producing the required product 
mix, and socially responsible. It also adds the need to be able to provide 
evidence that  due diligence was, in fact, practiced. 

In this environment, it is clear that CAPE professionals will place heavy 
demands on computing and CAPE software capabilities, as they strive to 
deliver the speed of response being asked of them. We will look at these 
demands, later in this chapter. 

2.1.2.2 B u s i n e s s  E n v i r o n m e n t  N e e d s  

CAPE activities need to be integrated with the larger business enterprise. 
Easy incorporation of costing modules that  are directly linked to the process 
simulation will allow rapid convergence to business-optimal solutions, not 
just engineering-optimal solutions. Such cost estimators need to be able to 
access both general cost data sets as well as company or technology specific 
cost information. 

Along with cost estimation capability, the larger arena of project economics 
must be readily integrated with process modelling. Changes in the process 
design can have significant impact on overall project economics, and the 
ability to see that  impact quickly will result in more flexible and cost effective 
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plants. To be able to run multiple project economic scenarios with different 
plant design bases quickly, process simulators must  easily and intuitively 
share data with project economics packages. S tandard  interfaces between 
process and economic models will give firms the ability to fully unders tand 
their options, quickly achieving optimum solutions. 

Long-term cost of ownership for any given process design can be heavily 
influenced by maintenance costs. Maintenance cost data bases must be 
readily available to process and project economic estimators, and so allow the 
process design optimisation CAPE effort to truly identify lowest cost 
solutions. For the same reasons, reliability modelling capability must be 
linked to the overall project economic model, again using s tandard  interface 
specifications. 

Business leadership needs to design company work processes with an 
understanding of the strengths and limitations of CAPE. This includes 
integrating CAPE capabilities into contracting and outsourcing strategies, 
maintaining enough skill and experience in their  staff to be "smart buyers" of 
third party CAPE services, and recognising the limitations of process models. 
This means that  these staff members must be active, skilled practitioners, 
otherwise they will be unable to fully unders tand the capabilities and 
limitations of CAPE tools and the organisations using them. 

Mergers and acquisitions impose a constant requirement  for integration of 
the CAPE activities of the new corporate entities that  result. The adoption of 
open interface s tandards and a "plug and play" architecture for process 
simulators, commercial software components and proprietary in-house 
software, would allow this integration to take place rapidly. 

2.1.3 C O M P U T I N G  E N V I R O N M E N T  ISSUES 

All would agree that  the last 20 years have been a period of ever-greater 
focus on IT (Information Technology). IT was once the province of a select 
few operators of large-scale computers, but it now pervades every aspect of 
corporate and academic life. IT is now so all-encompassing that  it is assumed 
to be a key leveraging capability, and obviously so in CAPE. Where 
engineers once were restricted to remote access to mainframes, computers 
are now generally available and typically reside on the desktop. When 
corporate leaders see how much they invest in IT, and when they constantly 
hear  of the impact that  they should be getting for that  investment,  they have 
high expectations for CAPE. 
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The tremendous increases in computing power and availability have 
undoubtedly created an environment in which these expectations can be met. 
Models can now be created with sufficient scope and detail to have significant 
business impact. However, such models are inevitably of great  complexity; so 
complex, perhaps, that  they can actually lead to computer-aided mistakes! 
These complex systems can be handled easily by state-of-the-art computing 
equipment, but that  equipment is not always available to each member of the 
CAPE community. This can create an imbalance between the perceived need 
for model complexity and the actual computing resources at hand for a broad 
base of end users. Many in the technical specialist community hold the view 
that  their corporate IT organisations don't take these needs into account 
when acquiring and distributing computing resources. For example, future 
needs for computing power may well be met with parallel processing 
capability and web sharing, but these are issues that  have not been 
addressed by most corporate IT organisations, or even the CAPE community. 

2.1.3.1 Comput ing  Env ironment  Needs  

In many cases, computing resource needs for CAPE exceed the "standard 
desktop" computing capability as defined by IT organisations. Corporate IT 
experts need to work closely with CAPE professionals in defining a computer 
platform and capability that  will effective support CAPE activities. This does 
not normally mean something beyond a high-end desktop computer, but 
usually that  computer must have much more RAM, higher clock speed, and a 
larger hard drive than are required for typical corporate computing. 
However, in future it may mean parallel processing capability. 

Corporate computer networks and Intranets  must  be capable of transferring 
the large files associated with CAPE so that  engineers can work 
collaboratively on CAPE projects. 

2.1.4 CAPE E N V I R O N M E N T  ISSUES 

Beginning in the 1980s, powerful simulation/calculation systems have 
become generally available to the Process Engineering community. Put  
another way, these process simulators have made it possible to practice 
CAPE on a wide scale. Without these tools, engineers had to develop, debug, 
and operate their  own computer models. It is only with the advent of process 
modelling tools that  are user-friendly and broadly applicable that  CAPE has 
grown to be within reach of every practitioner. Heretofore, CAPE was 
restricted to a very small number of engineers working on highly specialised, 
long time frame projects. Costly and lengthy modelling efforts were only 
under taken for the most demanding projects. Because many sophisticated 



25 

algorithms have now been incorporated in widely available, industry 
standard CAPE tools, they are allowing practitioners to operate at the full 
level of their engineering skills. The CAPE professional can make use of 
state-of-the-art computing and modelling tools that  would be far too difficult 
and time consuming to implement, if the engineer had to write the equations 
and the computer software "from scratch." Now an engineer can easily 
perform calculations without having to painstakingly review the methodology 
and procedures, making routine application of very sophisticated 
computations the norm. 

One significant challenge for any activity involving computers is that  large 
amounts of information can be easily generated and stored, but not easily 
turned into knowledge. Such "lost knowledge" must be made accessible in 
order to avoid unnecessary reinvention and the associated waste of scarce 
resources. The ability to convert information into knowledge and to retrieve 
it in a timely and efficient manor is a function of an organisations' work 
processes and of the CAPE software used. 

To deal with the challenge of increasing complexity and a more stringent 
regulatory framework, many organisations have concluded that  the ability to 
develop an audit trail is an important component of their CAPE software. 
However, auditing has its own problems of resource needs and time 
requirements, and can be seen as a luxury in an environment where cost and 
speed are ever more important. It is the other pressures of health, safety and 
environment, personal liability and increased outsourcing that  make the case 
for documenting the audit details behind the "user friendly icons" of a process 
simulator model . .  It is particularly important in an open, plug and play 
environment, such as that  offered by CAPE-OPEN (CO) standards (see 
www.cape-open.org for more information). Here, the modeller can make use 
of multiple software components from diverse sources, so that  a complex 
model may not contain simply the process simulator supplier's unit operation 
or data base components. 

Audit documentation is especially key when a model is used for optimisation, 
as this places maximum stress on the process model, and any anomalies must 
be understood and corrected. Further,  if a project suffers from any lack of 
continuity of staff, or if a process model is used over a relatively long period of 
time, the rationale behind design and modelling decisions can be lost. CAPE 
tools that  can easily capture the rationale for decisions and design bases, 
making documentation "automatic," bring significant value to an 
organisation and its projects. Without appropriate documentation, mistakes 
can easily be made out of ignorance of the reasons for previous CAPE 
decisions. 
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Given the time pressures that  are inherent in CAPE activities, CAPE tools 
with an intuitive user interface can reduce the time required to build, 
document, and optimise a model, as well as the time to learn to use the tool. 
Such systems obviously reduce the need for specialised training, but at the 
same time, training will always be required to improve the productivity and 
quality of work for CAPE practitioners. In the rush to bring new engineers 
up to speed on a project, or convert an organisation to a newer version or a 
different brand of CAPE tool, training sometimes manifests itself as a 
combination of "sink or swim" and "ask the person down the hall". This 
approach has many limitations compared to effective training programs and 
tutorials. 

2.1.4.1 CAPE E n v i r o n m e n t  N e e d s  

Model sharing methods are needed so that  the effort put into developing and 
refining models can be leveraged across a project team. This means making 
the model available to plant, process R&D, process design, detailed design 
and maintenance engineers, as well as plant operators. While the needs of 
each of these groups are different, putting the results of the process model in 
their hands will result in significant improvements in operating plant 
performance. 

Facilitating model sharing requires intuitive user interfaces, the ability to 
store and retrieve modelling results, the ability to easily interpret those 
results through graphical presentation, the ability to easily see and 
understand the input data and underlying assumptions, and the ability to 
easily compare multiple model cases. Visualisation of modelling data and 
results, as well as the model's structure is required to best accomplish this 
goal. 

"Automatic" documentation of model structure, methodology, and the choices 
made during model assembly and use is required. This will allow and require 
users to communicate their thinking by documenting the decision process in 
model assembly and use. This documentation then becomes the basis for any 
required conformance audits and for ensuring that  subsequent model users 
and developers unders tand how and why the process model evolved. A 
similar process should also be used to document the creation of the final 
process design case. 

Self-documentation requirements extend further when a model is used for 
optimisation, whether off-line or on-line. Since optimisation involves a 
number of trade-offs, documenting both the decisions and the rationale 
behind them is key in capturing the value of the optimisation work. The 
likelihood that  a process model will be used by many CAPE practitioners over 
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several years makes such documentation all the more critical. The CAPE- 
OPEN environment emphasises this need, as software components will have 
multiple versions over time, and therefore must  be documented fully with 
each model implementation and upgrade. 

The need for intuitive interfaces is obvious, but they do not reduce the need 
for effective training. Whether this consists of on-line tutorials, classroom 
sessions, imbedded help commands, or a combination of all three, rapid and 
low cost training of everyone involved with model development and usage is 
essential. The training must  also be specific to the use, with CAPE experts 
requiring a very different experience than plant engineers, or operators using 
a t raining simulator. 

2.1.5 POTENTIAL B E N E F I T S  

There are many published examples that  demonstrate tha t  the appropriate 
application of CAPE tools can deliver substant ial  benefits across the process 
industries. These examples cover the complete range of CAPE tools applied 
in all the sectors identified in the diagram at the beginning of this chapter. 
However, accurate numbers for the size of these benefits are hard  to obtain 
and even more difficult to attribute. 

The main commercial simulation vendors routinely publish success stories for 
their software, supported by anecdotal evidence from the relevant contractor, 
or operating company, as to how the benefit was delivered. These are 
published as a sales and marketing tool, so are obviously wri t ten with that  in 
mind, but, even so, they provide a useful indication of the type and scale of 
benefits that  can be achieved. 

However, there are many potential benefits tha t  can be obtained through the 
application of CAPE that  currently are not routinely captured. To illustrate 
where these potential  benefits can be achieved, it is necessary to look at the 
process plant life cycle from process concept through to operations and 
beyond. Some of the benefits described are already being obtained in a few 
companies, but not uniformly across the process industries. 

2.1.5.1 Design and Revamp 

It is possible to deliver process designs that  are cheaper to build or, more 
exactly, capital efficient - i.e. that  requires less capital, or use the same 
capital more effectively. The potential for CAPE tools here is: 
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To enable leaner and more agile project teams to use con-current 
engineering, in place of the traditional sequential design process. 
To simplify the flowsheet for the plant (and hence remove equipment, 
reducing the capital cost) through the use of formal process synthesis 
techniques. 

A recent publication by Shell Internat ional  Chemicals and the Process Design 
Centre (Harmsen, J et. al., AIChE Symposium Series No 323, Volume 96, 
2000) describes capital cost reductions of up to 50% through the application of 
process synthesis tools. 

The same process synthesis tools can also be used to produce process designs 
with improved operating costs. There is a common assumption that  reducing 
capital costs will lead to increased operating costs, but the same paper quotes 
operating cost savings of up to 80%. Looking at the total annualised cost 
(which combines both capital and operating costs), the savings quoted range 
from 20 to 60%. 

Formal optimisation methods and dynamic simulation are two available 
techniques within CAPE that  are not routinely used, but which offer 
significant potential to deliver process designs which are safe to operate and 
easy to control. Optimisation at the design stage offers at least two benefits: 

�9 A formal approach to assessing the financial operational impact of process 
constraints against  the cost of removing them by equipment substitution. 

�9 A framework within which to assess the robustness of the design to 
uncertainty in the basic design parameters  and economic assumptions. 

Dynamic simulation offers the ability to: 

�9 Integrate process and control system design, enabling the design to be 
produced faster and with greater assurance that  the process and control 
schemes are optimised. 

�9 Examine the dynamic behaviour of the plant and proposed control 
scheme, thus ensuring the process will operate as intended and is 
controllable. 

Finally, all the techniques described above can also be used to produce 
process designs that  minimise impact on the environment. This can be 
achieved not only through the reduction in energy usage, but also by giving 
designs which minimise emissions and can cope with upset conditions in the 
most environmentally-friendly way. 
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2.1.5.2 Training 

The main area of application for CAPE during plant  start-up is through the 
provision of a t raining simulator. This enables the operators and plant 
engineers to be t rained in the operation of the process before it is 
commissioned. It is then available during start-up, for troubleshooting and to 
improve the unders tanding of the dynamics of the process. 

The training simulator subsequently becomes a tool for training new 
operators before they s tar t  work on the actual plant, and to improve the 
capability of the existing operators in situations of abnormal  operations. 

Although training simulators are becoming more common, they are still not 
made available for every new plant. Furthermore,  the most effective way of 
generating a training simulator is to base it on the models used during the 
design process. This is definitely not currently s tandard  practice, with the 
result that  a great deal of rework is needed to generate an entirely new model 
for the t raining simulator. 

2.1.5.3 Operations 

Once a process plant is operating there are many areas in which CAPE can 
offer benefits. 

Process troubleshooting is perhaps the most common application. Given the 
low process engineering manning levels present  on most process plants today, 
this activity is most often associated with helping operations staff investigate 
causes and possible solutions, when the plant  is unable to deliver the 
performance expected of it by the management  team. Here, off-line models 
are used to unders tand the process and the way in which the operating 
equipment is under performing. Frequently this involves simulation followed 
by detailed equipment rating calculations. Most industr ial  companies 
routinely use CAPE in this way and are undoubtedly generating benefits 
from the process. Significantly, some companies are now using process 
models in a more pro-active way to routinely monitor equipment 
performance. The objective is to avoid problems before they occur or, at 
worst, advise on an appropriate intervention strategy. 

Going beyond performance monitoring and operational troubleshooting, there 
is an opportunity to use process models to optimise plant  performance to 
generate increased profit for the business. The benefits of on-line model- 
based optimisation have been robustly demonstrated in a number  of areas, 
for example ethylene plant  optimisation. Here, technologies from a number  of 
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suppliers have received wide application, often linked with proprietary 
models developed by the operating company. 

Typically, on-line optimisation is used on plants, which either have multiple 
products, or where throughput  is very large, so that  there are large benefits 
to be obtained by a very accurate optimisation of the plant around the 
current operating point. Models are usually simplified, but continuously 
tuned to the plant data, thus ensuring high accuracy in the current region of 
operation. 

Such on-line optimisation can be complemented in many cases by rigorous 
off-line optimisation. Here the models need to be detailed and based on first 
principles. All equipment constraints need to be explicitly included. Off-line 
optimisation can be used to make step-out changes in the operation of the 
plant, outside the current  range of operation of the process. For example: 

An unpublished Dow project involved the consistent application of an 
in-house optimisation tool to a series of distillation columns. This has 
resulted in an average 18% reduction in distillation energy 
requirement  and a comparable increase in tower capacity. These 
towers represent  a broad range of product types including speciality 
chemicals and commodity hydrocarbons. 

In BP, a 5% improvement in throughput was obtained at an oil production 
site by optimisation of operational set-points. In addition, at the same site, a 
significant summer  production shortfall, caused by air cooler limitations, was 
eliminated. In both cases, the operating strategies proposed by the 
optimisation were counter to normal practice, but, after the event, fell firmly 
into the category of"Why didn't I think of that?" 

Finally, there are many plants for which neither off-line nor on-line 
optimisation is necessary, typically because they are single feed / single 
product processes. In these cases, the creation of high fidelity, rigorous off- 
line models is often sufficient to provide significant process understanding 
and thus improve the operation of the plant. An unpublished example from 
the Chemicals Stream of BP describes the use of such models, which resulted 
in $0.65 million operational savings per annum, whilst also reducing effluent 
by up to 50%. 

2.1.5.4 C o n t r o l  

Although control is not strictly CAPE, there are many areas where CAPE can 
be used to assist the control engineer. The use of dynamic simulation to aid 
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the control system design has already been described, but there are other 
synergies to be obtained, especially in the area of Advanced Control. 

The first of these is the re-use of the Process Engineering models in the 
Advanced Control algorithms. Such re-use is almost certainly not "as-is", 
because of the speed requirements for the models used in control, but 
simplified models can be generated based on the Process Engineering models. 

The second is the use of the Process Engineering models during the plant 
trials ("step-tests") required to tune the Advanced Control. This can either be 
by providing information as to which plant trials are required, thus avoiding 
the need for unnecessary trials and minimising the risk of upset conditions 
during the trials, or even by replacing some of the trials with off-line 
modelling, in certain circumstances. 

2.1.5.5 Decommissioning 

The optimal decommissioning of plant is an area, often over-looked, where 
CAPE tools can contribute significantly. The scenario is very common in the 
oil industry, during the later stages of an oil or gas field's life. Production 
rates begin to fall away from the design levels of the processing plant, so the 
equipment items are required to operate below full capacity. 

The most important  issues concern the operation of rotat ing machinery: 
compressors and gas turbine power generators. Low plant  throughputs 
either result in operation away from the peak efficiency point, or else require 
recycle, with its associated increased energy consumption. Both compressor 
and gas turbine efficiencies fall dramatically at operations significantly away 
from the design point. 

Where multiple trains exist, equipment can be decommissioned and load 
transferred to the remaining machines. This can result  in significant 
benefits from reduced energy demand and environmental  impact, which are 
key issues for oil and gas stabilisation plants, part icularly with a gas 
shortfall. 

A closely related scenario occurs in oil stabilisation plants, where 
hydrocarbon fluids from a large number of producing fields are processed 
centrally. This can result in gas rates and compression requirements  varying 
throughout the year, according to the profile of production units feeding the 
pipeline system. Appropriate decommissioning or re ins ta tement  of 
equipment offers significant benefits, but requires careful planning and 
accurate simulation to allow operations staff to respond in a timely manner.  
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Of course, decommissioning may sometimes have disadvantages. For 
example, there may be a loss of processing flexibility, which may affect the 
ability to respond to plant upsets and equipment failures. Also safety must 
be assessed, as with any process change. These complex issues all have to be 
included in the optimal decommissioning study, which is really only feasible 
with accurate, flexible process models. 

These techniques are now beginning to be applied. Optimisation of plant 
decommissioning has generated benefits for at least two on-shore oil and gas 
stabilisation processes. Analysis, in these cases, was performed by a 
combination of process engineering knowledge and the use of good, validated 
process models, coupled with an element of formal non-linear optimisation. 
However, the problem should really suit a robust mixed-integer, non-linear 
optimisation approach, since it has clear!y defined limits. It is, in fact, a 
particular type of process synthesis problem. 

Although this topic is of most interest in the oil and gas sector, it could also 
be applicable elsewhere, if, for example, throughputs are reduced, or there is 
a cyclical demand. 

2.1.6 DELIVERY OF ACTUAL BENEFITS 

2.1.6.1 Overview 

At its most fundamental level, an engineer uses process simulation to 
understand his process better. With the aid of this increased understanding 
the engineer can add value by improving the engineering design, by 
responding to operational problems in a more informed way and by 
establishing alternative modes of operation that offer improved performance. 

The opportunity to add value from process simulation applies during both the 
design phases of a project and during the operational phase of the associated 
plant. It is worth discussing the issues arising from these two phases 
separately. 

2.1.6.2 Benef i t s  dur ing  Plant  Des ign  

Design moves through a number of phases from synthesis or conceptual 
design, where models are traditionally relatively simple and the correct "big 
picture" solution is identified, through to detailed design where flowsheet 
topology is fixed and exact equipment performance is determined. To 
facilitate this process the underlying synthesis and simulation software 
needs to be sufficiently accessible to allow use by non-specialist technology 
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R&D or project development personnel, but able to grow with increasing 
modelling fidelity into a full-scale detailed design model. In addition the 
resulting detailed design model should be able to be taken  forward by the 
operational team as the "operational model," capable of accurately mimicking 
the control and operation of the plant after start-up. 

In summary: 

We need intuitive flexibility in modelling software and presentat ion to 
the user, so that  the representation of the plant can be easily refined 
as the design process proceeds. 

Process Synthesis 

Process synthesis technology has been developing as general simulation 
package capabilities and hardware performance have improved. However, a 
general process synthesis solver has not yet material ised and the full mixed- 
integer, non-linear programming problem that  comprises process flowsheet 
design optimisation, has remained largely a problem for academic study. 
Certain niche area synthesis programs _have matured, however, and found 
their way into the commercial simulator market.  

The desire for a generalised process synthesis package may be unrealistic, 
given the range of fundamental  issues to be addressed at this stage. For 
example, in ups t ream oil processing, the key question is the robustness of the 
design concept to the inherent  uncertainty present  in the design information; 
for a new process on a chemicals plant, the key issue may be how best to 
optimise design, given the integration of reactor and associated downstream 
separation system. As an additional complication, process synthesis often 
involves the t ransfer  of proprietary technology from academic research into 
industry. 

The general industry need is for the design engineer to be able to use detailed 
unit operation models at the heart  of a robust synthesis process, such that  
the resulting flowsheets are valid and can be taken on as the initial plant 
design basis. 

Initial synthesis studies can sometimes be performed with simple process 
models, as long as more detailed models can be substi tuted as the process 
develops. However, in other cases, especially in the chemicals industry, 
rigorous models, often representing new processes, are required from the 
start. Both of these situations demonstrate a clear need for easy plug and 
play within the synthesis activity itself. 
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In s u m m a r y :  

The use of computer-aided process synthesis tools is not widespread, 
but  emerging systems need to incorporate easy plug and play 
capabilities. This will allow the transition from simple conceptual 
models to rigorous representations for final flowsheet definition. 

Detailed Design 

In the ideal design process the simulation model lives and grows alongside 
the development of the actual operating plant. It is true to say that  this "life- 
cycle vision" for simulation has been an aspiration of many operating 
companies for a number of years. However, in most cases it has remained 
more of an aspiration than  a reality, despite some significant advances in the 
under-lying technologies. The reasons for this are manifold, but relate 
primarily to the ease of development and maintenance of the models and the 
varying relationships involved through the asset life-cycle. Another factor is 
that  the design process often involves a number of different people, each of 
whom is responsible for only one piece of the design, so that  once that  is 
completed, they move away to the next project. 

The vision is only likely to happen if the simulation model can be developed 
without the need for continual re-working. A prime example of this concerns 
the roles of steady-state and dynamic modelling. Typically the initial models 
developed of a new process are steady-state to allow the basic design 
parameters  and overall economics of the system to be assessed. However, 
t ransient  effects can have a key role in the optimum process design; the 
earlier in the design process these can be assessed, the better will be the 
resulting design. This parallel role of steady-state and dynamic simulation in 
the design process is greatly facilitated by easy movement from the steady- 
state environment to dynamics and vice-versa. Typically, these modelling 
tasks are conducted by different engineers, but the underlying requirement is 
for them to share a common model and representat ion of the plant. 
Management  commitment to this process is essential for it to take place. 

Many engineers are involved with process modelling during a plant's life 
cycle. Operating companies have eventual ownership of the plant design and 
responsibility for safe operation. However, contracting companies are 
commonly involved in the detailed design specification of the plant. They are 
also increasingly involved in the conceptual design phases, as operating 
companies minimise internal engineering resources on projects. This means 
the operating company must be able to rely not only on the abilities of the 
staff in the contracting companies, but also on the design procedures used 
and the accuracy and reliability of the recommended engineering design 
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tools. In particular thermodynamic methods, physical property correlations 
and modelling assumptions need to be well documented and sufficiently 
t ransparent  to allow a high degree of technical assurance to be easily 
established. 

Design projects typically deliver a design package consisting of documen t s -  
PFDs, PIDs, data sheets - that define the process design. These are normally 
delivered electronically as a collection of unconnected design documents. A 
much more effective project deliverable for the end-user/operator would be a 
process design package in electronic format containing process graphics, 
audit trails and automatic cross-referencing of design data. 

Design inevitably involves trying to optimise more than one objective. A good 
example of this is the requirement to design a plant that  is the cheapest to 
build, but also the most environmentally-friendly and profitable to operate. 
Historically this has involved compromise based on engineering ingenuity 
and the examination of a large number of design cases. Mathematical  
optimisation at the design stages offers an improvement over this situation, 
as sensitivity analysis can be used. However, with conventional optimisation 
techniques, integer decisions can not easily be handled and multi-objective 
optimisation can be handled only by expressing all but one of the objectives 
as a constraint on the search space. Although useful, this approach can lead 
to sub-optimal designs and there is a clear business need for true multi- 
objective optimisation, if this can be delivered in a usable fashion. 

In summary: 

The concept of a model for life is now quite feasible, but will require 
management commitment to deliver it. 
The design package can be delivered electronically and should include 
the model, supporting documentation and decision audit trail. This is 
increasingly important as in-house engineering staff numbers diminish 
and contractors deliver designs and projects. 
Practical optimisation tools are available to improve design quality, 
but real problems often require multi-objective optimisation, which is 
still to be achieved. 

2.1.6.3 Benef i ts  during  the Operational  Phase  

Once a plant is operating, benefits will only be delivered when an operator 
changes control set-points on the plant and moves it to a new and better 
operating position. Achieving this introduces a number of new issues related 
to model development and usage. 
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Model Fidelity 

Firstly, it should be possible to take the engineering design model forward as 
the operational support model for the plant. Typically this will require some 
re-configuration of the model, since design product specifications may well 
need to be replaced by new specifications representing operational set-points, 
in order to mimic the way the plant is operated and controlled. 

Before an operations department will take action based on a model's 
predictions, they require confidence that the model is a valid representation 
of the plant. Usually this confidence is built up over time, based on repeated 
evidence of the model's capabilities to predict and explain. In order to 
reproduce operating plant behaviour, in particular, operation of the plant as 
plant capacities are maximised, the fidelity of the process simulation model 
generally needs to be increased. A particular example of this is to take 
account of equipment hydraulic capacity limitations that would not normally 
appear in the design model. In general, operational optimisation models 
require all aspects of the mechanical design of the plant to be included, as it 
is not possible to predict beforehand which constraints will be active at the 
optimum solution. The implementation of such third-party capacity models 
requires the simulation program to be open, with standardised interfaces, to 
minimise software development requirements and to simplify maintenance 
and upgrade capabilities. 

It is worth stating at this stage, although it should be obvious to most people, 
that high fidelity modelling must be underpinned by the availability of high 
fidelity data. Detailed models require validation against plant performance 
and this is reliant on the availability of good process measurements linked 
into parameter estimation in the model. In fact, redundancy of data 
measurements on the plant is extremely useful for model validation, which is 
an iterative process, in practice. Initially the model is validated against data 
taken from the plant, but once accepted as a faithful representation of the 
operating plant, the model becomes capable of validating the plant data, by 
highlighting where measurements are likely to be in error. Even off-line 
operational models require convenient access to plant data. For instance, 
every time a strategic optimisation is run, up-to-date information on 
equipment performance must be fed into the model, so that  effects like 
exchanger fouling are correctly represented. If this is not easily achieved, the 
model predictions are likely to be compromised. 

In summary: 
A design model must be extended significantly for use in operational 
support. General unit operation models must be enhanced to turn 
them into models of the particular pieces of equipment that have been 
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installed. An open plug and play architecture is essential  for this to be 
done with the minimum of effort. 
Process models must  have easy access to accurate plant  data, so that  
they can reflect actual equipment performance at the time of model 
execution. 

Using models to update operational guidelines 

The techniques of offline simulation modelling and optimisation can be used 
to develop improved operator guidelines on how to utilise spare degrees of 
freedom to maximise plant performance. We can also use them here to 
il lustrate the way in which user needs extend beyond the achievement of the 
central technical prediction, in order to deliver actual benefits. 

Typically, operator guidelines are developed from previous experience 
coupled with knowledge of the design basis of the plant. Use of a high-fidelity 
optimisation model can be very valuable to generate new insights into plant 
operation and to challenge the accepted thinking of the best way to operate. 
This is because an optimisation model can look at the simultaneous 
interactions of many degrees of freedom on the plant. This can vary f rom4 or 
5 degrees of freedom on a typical chemical plant to 20 to 30 on a large 
refinery unit. Human operators can typically only cope with 2 to 3 variables 
at a time. However, operations departments  will normally be justifiably 
resistant  to implementing counter-intuitive solutions. 

A good example of this situation came during a model-based optimisation 
study of a complex crude/vacuum distillation unit in the UK, shown in Figure 
1. It distils under vacuum the heavy atmospheric residue from 3 crude oil 
distillation towers (COD 1, COD2, COD3) to recover further distillates to feed 
refinery conversion processes. It is generally regarded as a straightforward 
process, which is operated at the lowest possible pressure with base steam set 
as a ratio to vacuum residue (TAR) yield. However, in this study, model 
predictions suggested tha t  optimum distillate recovery on the vacuum unit 
would be achieved at an operating pressure some way above the current 
operating point. This was clearly counter to the normal operational 
philosophy of the unit  and was greeted initially with considerable scepticism. 
It was not until  a convincing engineering explanation of the prediction was 
developed, that  plant trials were authorised and the benefit demonstrated. 
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Figure 1. Flow diagram of a complex crude~vacuum distillation unit 

The eventual  explanation was quite simple: Vapour induced flooding of the 
vacuum tower packed beds was resulting in instability and loss of stable 
operation at high vacuum. However, increased distillate yields could be 
obtained at higher pressure by a corresponding increase in base stripping 
steam, but without initiating column flooding. Although this was all quite 
straightforward to understand, after the event, it took considerable tenacity 
and ingenuity on the part  of the engineers involved to turn  the mathematical  
messages from the optimiser into process engineering insights. This meant 
that  a long time elapsed between making the original prediction and 
implementing it on the plant, during which considerable benefit was lost. 
Although it did not happen in this case, there is always the further danger 
that  the longer this time delay is, the more likely it is tha t  something else 
will happen and the prediction will never get implemented. The key factor 
that  led to implementation was that  the operations engineers were fully 
involved with the CAPE engineers throughout. They understood the 
capabilities of the model and had confidence in its predictions. 

However, this is still not enough. Recommendations from an optimisation, 
such as those above, can only be implemented on a plant that  operators have 
under good steady control and that  they have the ability and confidence to 
move away from the normal operating region. This introduces a number of 
new issues, not least the safety impact of moving the plant to a new operating 
point, particularly where the new point is outside of the operator's comfort 
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zone or region of past experience. It is worth stating that  the specific insight 
that  led to the benefit described above was only true for this particular tower 
with its interaction of feedstock, performance requirements and design 
constraints. The conclusion ceased to be correct later in the tower's life, when 
it was revamped to replace the packed beds that  caused the hydraulic 
limitation. Different physical limitations then constrained the plant, which 
is why it is important to include all aspects of the mechanical design in the 
optimisation model. 

To summarise, we have shown that, although the primary requirement for 
the generation of improved operating strategies is the availability of a 
reliable optimisation system and a good model of the plant, there are several 
other user needs that  must be satisfied to deliver the final outcome. The 
most important of these additional user needs, is the ability to extract a 
convincing process engineering explanation for any counter-intuitive 
predictions, quickly and systematically. A robust and fast optimisation model 
will almost certainly be central to this process, as will some form of 
visualisation software. Optimisation algorithms gather significant 
information about the feasible operating region and the problem curvature, 
both on route to the solution and at the optimum point. The challenge is to 
extract this mathematical  information in a form that  provides physical 
answers to the question "why is this operating point better than all the 
others?" This question then rapidly leads to further questions about how 
much better the optimum solution is over the next, say, haft-dozen best 
solutions and which of these steady-state solutions is easiest for the operators 
to implement from the current operating position. A lot of benefit can be lost 
in moving from the current operating position to the new one, and some 
degrees of freedom are more difficult to move than others. Again, tools to 
help answer these questions quickly and systematically, will increase the 
number of these studies that  are carried through to actual benefit. 

Other additional needs are links to the plant database and detailed heat 
exchanger rating programs that enable fouling to be estimated and the 
performance of all the exchangers in the simulation to be correctly 
represented, in a convenient and consistent manner with a minimum of 
manual  intervention. 

This has been a detailed look at only one possible application of advanced 
simulation technology. The same holistic approach must be taken to the 
others to ensure that  all the steps needed to deliver the target benefit are 
first identified and then facilities put in place to enable them to be carried out 
conveniently. If this is not done, the benefits will almost certainly not be 
delivered. 
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Thus: 

New counter-intuitive operating strategies can be derived from off-line 
optimising models. However, the benefits will only be delivered, if 
tools exist to enable the engineering rationale and safety of the 
predictions to be easily determined. This is true of any optimisation 
application. 
Links are required to the plant database and detailed equipment 
rating programs. 

2.1.6.4 L i n k i n g  mode l s  to A d v a n c e d  Control  

Modern, multi-variable controllers (MVC's) are capable of handling large- 
dimensionality problems for control and optimisation, based on linear models 
derived by plant step tests. This technology is essentially associated with 
strategy enforcement. A number of the degrees of freedom available to the 
controller are tied to regulatory control; the remainder can be used for 
optimisation. However, due to the linear nature of its underlying model, the 
controller generally requires a pre-defined strategy to be implemented for 
these additional degrees of freedom, to ensure correct plant optimisation. An 
off-line simulation/optimisation model, such as the one in the example above, 
can be used in this role to define the strategy for the controller. 

A key element here for developing acceptance of Advanced Control by 
operations staff, would be the ability to utilise an off-line, non-linear dynamic 
model to mimic the action of the MVC on the plant and to test and refine the 
developed strategy logic. In addition, the step test derivation of the linear 
model for the controller is a time consuming activity, which could be 
minimised if a basic linear model could be readily created from the off-line 
dynamic model. 

In summary: 

The implementation of Advanced Control underlines the need for 
straightforward transition from steady-state to dynamic plant models. 
It also indicates that the ability to be able to create a linear model from 
the off-line dynamic model would help minimise the step tests needed 
to create the controller model. 

2.1.6.5 On-line mode l -based  p a r a m e t e r  e s t i ma t i o n  and opt imisa t ion  

Putting a model on-line for parameter  estimation and optimisation, requires 
a modelling architecture that allows flexible problem definition together with 
robust and fast solution. Historically, an equation-based architecture has 
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been considered to be best suited for this task. However, if such models are 
put on-line to optimise the process automatically, then the same models 
should be usable off-line for engineering studies and wider-ranging, strategic 
optimisations. It is in this role that  equation-based models have fallen down, 
in the past, in their  ability to solve when not close to the solution, their 
general robustness and the difficulty of diagnosis if they fail. The important  
thing, for an operating company, is that  only one model-based representat ion 
of the plant should exist and need to be maintained. This means there 
should be one set of equations and assumptions, which could be solved in 
different ways in different circumstances. The method of solution should be 
t ransparent  to the user, so long as it works correctly and reliably. 

In summary: 

The model description, in terms of equations and assumptions, should 
be separated from the solution method. This would simplify model 
maintenance and allow the most appropriate mathemat ical  techniques 
to be used for the different functions in the lifecycle of the plant and 
model. 

2.1.6.6 Operator training systems 

It should be possible to take a dynamic model developed at the design stages 
of a project as the basis for an operator training system. Since these are used 
to develop the skills of new operators and to provide training in the 
management  of unexpected situations, the models should represent  the 
plant 's performance a s  closely as possible. Once the operator t ra iner  is 
commissioned, the underlying model should be the same as that  used off-line 
for process control support studies and operational troubleshooting. Apart  
from minimising model re-working and development, the ability to use a 
common modelling platform across the range of dynamic modelling 
applications simplifies the training requirements  for operational and process 
support staff. This has often not happened in the past, because the reliability 
and speed of solution of rigorous models has not been suitable for operator 
training. These are issues that  must  be tackled in the future, to enable our 
model for life requirement  to be realised. It will probably require a 
combination of hardware  and software development. 

In summary: 

Operator training systems need high fidelity, 
modelhng facilities that  solve quickly and reliably. 

non-linear dynamic 
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2.1.6.7 Equipment  Maintenance  

Traditionally, equipment maintenance is planned on the basis of regular 
maintenance intervals during continuous operation, supported, in some 
cases, by equipment performance monitoring. The availability of high fidelity 
plant data together with high-fidelity plant models introduces the possibility 
of moving to a regime where maintenance is planned on the basis of how hard 
a piece of equipment has been operated, as well as for how long. Well- 
validated process models are key to achieving this, as they can provide a 
wealth of process information to add to the limited amount of available 
measured data. Again, this information will need to be presented in way that 
is intuitively clear to a maintenance engineer, but which is based on the same 
underlying process models that are being used to operate the plant. 

2.1.6.8 Use of tools by Process  Engineer ing  Special ists .  

The delivery of operational benefits can best be achieved by engineers whose 
primary responsibility and skill lies in utilisation and operation of the plant, 
rather  than the advanced use of simulation tools. Their role could be business 
planning, based on a knowledge of what the operating plant is capable of 
delivering, or short-term operational optimisation. However, to make good 
use of a complex asset simulation model, these engineers will require the 
simulation technology to be packaged in a way that allows them to focus on 
their business tasks, rather than on the underlying technology. The user 
interface required for each business user of simulation will, in general, be 
different and related primarily to fitting simulation seamlessly into their 
work tasks. This implies a certain degree of openness and plug-and play 
capability for the interfaces themselves, as well as the technical components. 

In summary: 

The delivery of CAPE tools to process engineering specialists requires 
the same flexibility and openness in user-interface systems as in 
modelling systems. This will allow the underlying plant model to be 
presented to each different category of user in a way that  is tailored to 
that  category. 

2.1.7 INDIVIDUAL RESPONSIBILITY 

In most countries, professional activities are increasingly governed by 
legislation, such as, for example, the UK Health and Safety at Work Act. 
Although the details may differ from one country to another, what this 
basically means is that whatever the sophistication of the computer programs 



43 

you may use, the responsibility for the decisions you finally make remains 
firmly with you. We therefore need to examine the requirements that  this 
implies for common CAPE tools, such as flowsheet simulators and equipment 
design tools, as well as considering if it suggests new tools that  need to be 
provided. 

In the case of common tools, the guidelines developed by the UK Institution 
of Chemical Engineers provide a useful discussion of the issues involved in 
the responsible use of CAPE tools (see 
http://cape.icheme.org/capeinfo/Guidelines/Good Practice_Section Menu Pag 
e.html). These guidelines cover the checks necessary before using the results 
of CAPE tools and hence imply the facilities that  the tools need to provide to 
allow this to happen conveniently. These facilities can be summarised as 
follows: 

Thermophysical d a t a -  this is critically important to any simulation and 
must be carefully selected. Openness is important so that  the origin of the 
data, its range of applicability, quality of fitted model and extrapolation 
properties can all be assessed. This must be easy to do, as must the 
application of Sensitivity Analysis. 

Engineering m o d e l -  it must be clear if there are any restrictions on 
applicability of the model. If these are missing or well hidden, it will be a 
major source of potential danger. 

Input check ing -  it must be simple to check input data to ensure the right 
problem is being solved. 

Results c h e c k i n g -  it must be simple to check mass balances at overall, 
component and atomic levels, depending on the context. It must also be 
simple to check energy balances. Error messages  must be clear and 
unambiguous. Convergence criteria must be clear, as must the status of 
convergence. However, reliable convergence is even more important. 

The only certainty is that  everything is u n c e r t a i n -  this underlines the 
importance of Sensitivity Analysis. It must be simple to apply to the overall 
solution, so that  you can easily bound the problem, determine the stability of 
the solution and assess the allocation of design margins, if appropriate. 

In addition to these general points, there is a further point associated with 
advanced techniques, especially those involving optimisation. The power of 
these techniques is that  they are multi-dimensional and, hence, likely to 
provide counter-intuitive solutions. This opens up access to benefits that  
would otherwise be unknown and unattainable, but only if the user is 



44 

comfortable about implement ing the solution. As we have discussed earlier, 
this means  tha t  the software must  not only provide the solution, it must  also 
provide a means  to unders tand  the rationale behind the solution. In the 
context of this discussion of individual responsibility, we need to focus on the 
safety implications. Whilst, for example, the new operat ing point described 
in "Using models to update operational guidelines" may be justified in 
theoretical  terms, it may not be a safe or stable operating point. This must  
be checked first and then a safe trajectory from the current  point to the new 
one has to be established. In other words: 

Projects tha t  take advantage of counter-intuitive, mult i-dimensional  
solutions must  be provided with tools and procedures to assess the safety of 
operation in unfamil iar  regions. 

In the business environment  described earlier, one of the t rends that  we have 
noted is the likelihood tha t  more changes of personnel will happen in the 
course of a project and especially in the life of a plant, than  used to be the 
case. In addition, these people are likely to work for a wider variety of 
companies than  before, as outsourcing becomes more prevalent.  One of the 
consequences of this is that  good "organic" documentat ion becomes essential 
for any model/program/design tha t  is likely to be used or modified by more 
than  one person. "Organic" documentation, in this context, means 
documentat ion tha t  is int imately associated with the model/program/design 
and tha t  is updated  whenever anything changes. It will almost  certainly be 
different from formal project documentation, which tends to be ra ther  more 
static. It  will, for example, record all changes and the reasons for the 
changes and it will log the date and the person who made the change. 
Without  this information it is difficult to judge, at a later  date, whether  it is 
safe to make changes, with the result  tha t  it is often regarded as easier to 
s ta r t  again, or just  to leave things as they are. Neither  of these options is 
necessarily the best for the business. 

Of course, it has long been the ambition of project managers  to have such a 
record available - and it has long been one of the first things to go when the 
budget  and timescales get tight. What  has changed now is tha t  the need has 
become greater, for reasons discussed above, and the universal  use of 
computers has made it possible to envisage tools tha t  could make it a 
practical proposition. The sort of tool required will be a challenge to software 
designers. It mus t  be available on line in the background so that  as, for 
example, a model is being developed, or a plant  being designed, the decision 
points are recognised, the decision captured and the user prompted for the 
rat ionale behind the decision. This must  be a seamless activity, since any 
complication or awkwardness  will almost certainly result  in lack of use. It, 
therefore, implies tha t  it can work in an intuit ive way with other tools, such 
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as flowsheet simulators, without affecting their user interfaces, in both 
capture and retrieval modes. This provides us with the final user needs 
bullet point of this section: 

CAPE tools must provide the ability to record and retrieve decision points 
and their rationale in an intuitive way during the creation or modification of 
a model/program/design. 

2 .1 .80RGANISATIONAL IMPLICATIONS 

The most important organisational success factor in the application of CAPE 
is management understanding and commitment. If management  provide 
clear guidelines on the degree of risk that  is acceptable in the pursuit  of 
CAPE benefits, provide the resources and training needed to follow the 
guidelines and maintain the policy in the medium term, then there is an 
excellent chance that  a large percentage of these benefits will be obtained. 
However, a common scenario is for there to be a message about the pursuit  of 
technical excellence, but a stronger message about the need for cost reduction 
and downsizing. Faced with the certainty of reducing costs by cutting 
resources, the possibility of benefits from difficult and new CAPE activities 
looks unattractive to many middle managers. This is hardly surprising, but 
again not necessarily in the best interests of the business. Clearly, clarity of 
purpose and good communication become even more important, as 
outsourcing increases. 

A second success factor needed to implement the issues discussed in the 
preceding sections, is the management promotion of work practices that  allow 
individual engineers to exercise their individual responsibility effectively. An 
important part  of this is to encourage good networks of CAPE practitioners 
across a corporation, or, where outsourcing is involved, across the relevant 
technical community, to encourage best practice and the reinforcement of 
skills. Thus the user needs in this section are: 

Management should communicate a clear and consistent corporate policy on 
acceptable risk in the pursuit of CAPE benefits. 
Organisations should provide tools and promote work practices that  assist 
individual engineers to exercise their professional responsibility in pursuit  of 
these CAPE benefits. 
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2.1.9 S U M M A R Y  

It is clear from the above discussion tha t  the delivery of benefits from the 
advanced use of CAPE tools is as much about the work process and the 
people who execute it, as it is about technology. The technology must  be 
available and it mus t  work, but  tha t  in itself is not a complete and sufficient 
condition for success. Most of the user needs identified above arise from the 
need to ensure tha t  the people in the delivery loop are kept fully informed 
and involved. Uncertaint ies  create barriers  tha t  extend the elapsed time of a 
CAPE project and increase the likelihood tha t  the project will not be 
under taken.  

The current  business climate is one of lean organisations,  heavily-loaded 
staff, frequent personnel  changes, shorter timescales, increasing health, 
safety and environmenta l  regulation and a generally litigious society. In this 
environment,  it is clear tha t  all categories of users require a full 
unders tanding  of the capabilities and l imitat ions of the tools they are using, 
as well as the meaning of the results. This is part icularly true with 
applications tha t  involve optimisation techniques, since these promise new, 
counter intuitive solutions that  can lie outside the normal  comfort zone. User 
interfaces must  be easily tailored to each category of user, so tha t  information 
from the same underlying model can be presented to all in ways that  are 
intuitively clear. Given the cost and complexity of a modern process model, 
the concept of a "model for life" is economically attractive. However, to 
provide the necessary user understanding,  such a model will need to carry 
around its life history in a convenient form. This means recording major 
decision points, so tha t  the model can be used and adapted with confidence, 
as the plant  proceeds through its lifecycle. 

To build and operate a plant using process modelling, in today's short 
timescales, requires an appropriate infrastructure  to provide: 

�9 Easy access to all required data, for instance: 
�9 Cost data  for design 
�9 Comprehensive plant  measurements  for operations 
�9 Effective process control systems to implement  new strategies 
�9 IT facilities capable of solving CAPE applications in a reasonable time 
�9 A plug and play, open s tandard  architecture for process simulation, such 

as tha t  provided by CAPE-OPEN. 
�9 Corporate clarity on the level of technical r isk tolerated and consistent 

management  support  for staff to pursue benefits within this risk scenario. 

If all of the above are present, benefits from advanced CAPE tools will 
certainly be delivered. As more of these elements are missing, the benefits 
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achieved will drop sharply. In the current  pressur ised business environment,  
it does not take much inconvenience to separate  a busy engineer from a 
CAPE application and hence its benefits. 

So, to deliver benefits from advanced CAPE tools, you mus t  first focus on the 
end users; identify ALL the steps tha t  mus t  be taken; make sure tha t  each 
step can be easily achieved and tha t  it flows seamlessly into the next one; and 
then provide the appropriate intuit ively-packaged tools. Discontinuities or 
confusion will rapidly destroy the process, no ma t t e r  how good the underlying 
technology may be. All this must  be done within a supportive corporate 
culture. It's not easy, but  the benefits are real and subs tan t ia l  - and if you 
don't do it, one of your competitors undoubtedly will. 
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C h a p t e r  2.2: U s e r  N e e d s  in B a t c h  a n d  S p e c i a l t i e s  C h e m i c a l  
P r o c e s s e s  

T. I. Malik & L. Puigjaner 

2.2.1 I N T R O D U C T I O N  

2.2.1.1 Distinction between 'batch processes' and 'specialty products' 

In expressing these needs, we should distinguish between what  is meant  by a 
'batch' process and 'specialties' chemical processes and clarify where both terms 
apply. By definition, a batch process occurs in a finite time span, having an 
initial s tar t  condition, a path of t ransformation (usually involving mater ia l  and 
energy transfers) and a final state. This is a definition based on type of 
processing and does not necessarily reveal the classification of the product itself. 
On the other hand, the word 'specialty' refers to the type of product being 
manufactured irrespective of process used to make it. The name, 'specialty' arises 
from the special functional properties that  these products bring when added to 
other 'bulk' materials.  Examples are chemicals tha t  impar t  special fragrances or 
flavours to their  substrates  or modify the rheological behaviour of (bulk) fuel (e.g. 
diesel). 

2.2.1.2 Different degrees 

Of course, there are different degrees tha t  can be applied to both terms. A batch 
process can be totally batch or be part  batch (where some aspect is continuous 
e.g. the flow of feeds in case of fed-batch). There can also be a mix of batch and 
continuous in different parts  of a flowsheet. Often, for producing bulk chemicals, 
the reaction and pr imary (fluid-fluid) separations may be carried out in 
continuous units whereas the secondary (fluid-solid) separat ion (e.g. in 
centrifuges), filling lines, palleting and packing may be carried out in batch units  
(sometimes at  such high frequency tha t  we get the illusion of continuity). On-line 
or off-line compositional measurements  will be batch for both types of 
manufactur ing operations. In terms of degree of 'specialty', some materials  are 
used in very minute and dilute quantit ies whereas others are the main 
component in a given application albeit with tailored, 'special' properties. 
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2.2.1.3 W h e n  are  b a t c h  p r o c e s s e s  u s e d  

The choice between a batch process or a continuous process for a given product 
depends upon many factors including scale of operation, type of transformation 
required, numbers of different products required from the same plant and 
economics. Usually these factors conspire to make specialty processes mainly 
batch based as they do to make them high value added. 

2.2.1.4 I n f l u e n c e  on  CAPE n e e d s  

In terms of CAPE, both the 'batch' and 'specialty' characteristic influence the 
needs for system software as well as the interfaces required between the 
components of CAPE software. This chapter will consider these issues in further 
detail. 

2.2.2 STRUCTURAL CHARACTERISTICS OF BATCH & SPECIALITIES  
I N D U S T R I E S  

2.2.2.1 V a l u e  o f  m a t e r i a l s  p r o c e s s e d  

The relative value of the materials processed vs. the plant used is much higher 
for batch and specialties industries as compared to bulk chemical industries. 
Whereas the bulk commodity chemicals are made in large quantities and usually 
will be the only product made on a dedicated plant, often there are many related 
but distinct specialty products that  are made using the same equipment. 

2.2.2.2 F l e x i b l e  i n f r a s t r u c t u r e  and  sa fe ty  

Thus the batch process plant needs to be sufficiently flexible to be able to 
accommodate the variation of products as well as be able to cleanly separate one 
product from the other. The safety characteristics (e.g. relief capacity) need to 
cater for all the processes that  are carried out. The sequence in which the 
products are made can be important from the point of view of safety and product 
quality (e.g. contamination). 

2.2.2.3 Mix o f  p l a n t  a n d  e q u i p m e n t  

Often, the processes have evolved over a long period of time and the equipment 
available has a large span in terms of age. (Usually the bulk of a continuous 
plant is of the same age). Often the products are made in a number of countries 
(at least for companies that  are internationally established) and it is not 
uncommon for there to be little standardisation between these. Thus the 
efficiencies can vary quite significantly between different processes. 
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2.2.2.4 Life span  of  products  

Often the life span of a product is less than in the commodity markets  as 
improved products with more special properties become available through 
research and development. Thus, a company may have several new products in 
the pipeline that  it will make using the present equipment. Product scale-up is 
quite an issue and often requires significant experimentation and pilot scale 
work. These are bottlenecks to the development of new marketable products. 

2.2.2.5 Leve ls  of  i n v e s t m e n t  made  

The investments made in plant and equipment are usually an order of magnitude 
less than those in the bulk industries. The capital is spent in a more even 
manner  unlike in the bulk companies where a few projects each year may take 
the bulk of investment. 

2.2.2.6 I n t e r a c t i o n  wi th  regu la tory  author i t i e s  

As there are many more new products and as these are often used in contact with 
man, the interactions with and the work of the regulatory authorities is much 
more important  for the introduction and safety classification of the new products. 

2.2.3 MANAGEMENT REQUIREMENTS 

2.2.3.1 Cost e f f i c i ency  

From the point of view of management,  it is desired to make the most efficient 
use of the resources available at the least cost and to provide products of the 
right quality to customers on demand (in a highly responsive manner  with safety, 
security and environmental considerations). In order to achieve these goals, it 
will be required to tract all the materials and the status of any given order at a 
given time. In order to minimise costs, the supply chain needs to be optimised 
with inventories minimised. Actions such as maintenance can be implemented at 
times of relatively lower demand on the equipment. From the point of view of the 
product cross-contamination, there should be a compatibility matrix that  says 
what  products can follow a previous batch. 

2.2.3.2 B a l a n c e  b e t w e e n  batch  f requency  and batch  s ize  

There can possibly be some trade-off between the sizes of the batches used and 
the batch cycle time although there will be a minimum batch cycle time even for 
the smallest of batches. The optimal balance needs to be found as well as the 
optimal trajectories through which the batches are passed. 
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2.2.3.3 Schedul ing  

The best and optimal schedules in which to make the products need to be 
available on a daffy basis. It should be possible to adjust these on the basis of 
changes in demand or constraints e.g. as a result  of equipment failure. 

2.2.3.4 Effective R&D Capabil ity 

As these industries are often characterised by rapidly shifting product portfolio, 
it is par t  of the management  requirement  to have an effective capability to 
develop and scale-up new products, to be able to use the existing equipment 
effectively for making new products. 

2.2.3.5 Standardisat ion  of  best  pract ice  

Given forecasting and longer-term market  demand, the management  would like 
to know what  investments in which factories are the best ones to make and 
indeed if new factories should be started. To what  extent should production be 
independent  or inter-dependent between the factories, what  strategy should be 
used for longer-term standardisat ion of best practice between the factories? 

As far as possible, management  would like to have the information and make 
decisions with the minimum expenditure of resources. This implies as much 
reliance on existing information, data and models as possible in order to 
minimise expenditure and avoid delays. 

2.2.4 EXAMPLES OF INDUSTRIES 

2.2.4.1 Relative size of  the specialt ies  sector 

The total size of the chemical industry in year 2000 is est imated to be about 
$1130 Billions. A little more than  half of this is for basics and intermediate 
chemicals. The size of the specialty products is about $330 Billions out of the 
total and the areas in which ICI operates are shown in Figure 1 below: 
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Figure 1. The Global Chemical Industry, Specialty sector and ICI Operations Year 
2000 (Original source ICI Presentation Pack 2000) 

2.2.4.2 Example  - Descr ipt ion  of  catalyst  m a k i n g  process  

Here, for illustration an example of a catalyst making process is given as many 
as 150 different products can be manufactured on the same plant. 

The making of catalysts is quite individual in that  no two catalysts are made in 
exactly the same way but certain operations are common. In the 'wet process' the 
basic liquid and solid components are mixed together using precision 
measurements. Impurities are removed through filtration and drying where 
purified solids are dried in high temperature ovens up to 1500 ~ Following this 
the right shape of the catalyst is obtained in machines similar to those used in 
the pharmaceuticals industry to make tablets. Shapes vary from thin tiny solid 
pellets to larger complex geometric shapes. Finally the pellets are packed. 

2.2.4.3 Examples  of other special ty  products  requir ing  react ion  
chemis try  

Examples of products that are made with reaction chemistry taking place in 
batch reactors include manufacture of synthetic polymers, e.g. manufacture of 
resin to be used in making paints, manufacture of surfactants, carrying out of the 
esterification reactions. Sometimes the batch reactions are combined with batch 
separation units e.g. in esterification reactions. Batch separation techniques 
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(distillation or other) are used for example in extracting flavours from natura l  
products. 

2.2.4.4 Other  E x a m p l e s  of  S p e c i a l t y  P r o d u c t s  

Fur ther  examples include adhesives, emulsifiers, dispersants e.g. for mineral oils, 
de-watering or flocculation agents, biocides e.g. for use in pigment slurry 
industry. There are products to control deposit formation and control in internal  
combustion engines, wear reducing additives, additives for diesel e.g. Cetane 
improvers, cold flow improvers and lubricity improvers. There are additives for 
Gasoline e.g. anti  knock agents and anti valve seat recession. There are additives 
for lubricants e.g. anti-oxidants, viscosity modifiers, friction modifiers, 
detergents. 

Other examples include the manufacture of anti-foam or de-foaming agents, inks, 
inhibitors and hydrophilicity agents, the manufacture of automatic gear 
lubricants, automatic transmission fluids, gelling agents for greases, tackiness 
agents. The extraction of starch from natural  sources such as corn is carried out 
at quite large scale but the process has significant batch elements. 

2.2.4.5 E x a m p l e s  of  b a t c h  p r o c e s s e s  carr i ed  out  in bulk  i n d u s t r i e s  

The manufacture  of pigments for paints are usually batch including the case for 
TiO2 which is a bulk product but at least some of the process is carried out in the 
batch mode. Most development work for continuous process industries is also 
initially carried out in batch laboratory experiments before continuous pilot 
plants may be used. Some processes used in continuous plants are cyclical e.g. 
pressure swing adsorption and in terms of process modelling these will lead to 
some of the similar issues as conventional batch processes e.g. connections 
between steady state models and non steady state models. 

2.2.5 I N F O R M A T I O N  FOR DECISION MAKING 

2.2.5.1 D e c i s i o n  l eve l s  

In order to respond to new forces on the competitive landscape, manufacturing 
companies are incorporating the Computer Integrated Manufacturing (CIM) 
model to meet today's market  needs. 

The levels of decision for decision-making of CIM architectures are described in 
the Purdue Reference Model represented in Figure 2. 
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Figure 2. A hierarchical computer control system structure for an industrial plant. 
From ISA-dS95.01-1999, Enterprise-Control System Integration. Part 1" Models 

and Terminology. 

2.2.5.2 Here  and now d e c i s i o n s / w a i t  and see d e c i s i o n s  

One of the most widely used techniques for decision making under uncertainty is 
two-stage stochastic programming. In this technique, the decision variables are 
grouped in to two sets. The first-stage variables correspond to those decisions that 
need to be made prior to resolution of uncertainty ("here and now" decisions). 
Subsequently, based on these decisions and the realization of the random events 
the second stage decisions are made subject to the constraints of the recourse 
problem. Production decisions, because of their significant lead times, may be 
contemplated in a here and now decisions scenario. Otherwise, supply-chain 
decisions can be postponed on the basis of the production decisions and the 
realization of the demand (wait and see). 

2.2.5.3 D e c i s i o n  m a k i n g  and u n c e r t a i n t y  

Uncertainty analysis might be incorporated at the different levels of decision- 
making to improve the probability of performing the expected goals. Preventive 
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maintenance tasks may also be introduced to compensate the use of facilities 
with low reliability indexes. 

As for batch processes, the production schedule has to satisfy the production 
requirements  under  certain constraints, and, optimising an objective function 
usually based on the expected plant profitability. Preventive maintenance 
increases the plant  reliability and, as a consequence, the production robustness. 
Therefore, batch processes require simultaneous maintenance and production 
scheduling activity. 

Basically, the evaluation of robustness of a schedule is based on the reliability of 
the equipment unit  assigned and of the possibility of finding an existing 
al ternat ive unit  in the case that  the unit initially assigned to a task becomes 
unavailable during the schedule execution. 

2.2.6 REQUIRED CHARACTERISTICS ON THE SUPPORTING 
SOFTWARE 

2.2.6.1 CAPE Funct ional i ty  R e q u i r e d -  Medium Term Vision 

There is a significant potential to improvements through systematic CAPE 
applications in the batch and specialty industries. However, due to the 
complexity and characteristics of these industries, the applications realised thus 
far are not as extensive as those in bulk and continuous processing industries. 
Some of the factors that  have prevented applications can be circumvented 
through open interfaces as these potentially allow the collective functionality of 
several tools to be applied to given problems. Step changes to value generation 
can be obtained through application of CAPE in the following areas as well as 
effective, seamless integration between them: 

�9 Modelling of batch/specialties processes. 
�9 Scheduling/planning of batch/specialties processes. 
�9 Information and data handling on batch/specialties processes. 

Each one of the above areas is discussed below although the major emphasis is on 
the modelling part.  

2.2.6.2 Model l ing of Batch/Special t ies  Processes  

Specific modelling needs arise both due to the nature  of the process (being 
unsteady) and the characteristics and properties of specialty products that  are 
handled. 
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Use  of  b lock-modular  p a c k a g e s  

Given sufficiently long time scale so the variation of frequency of occurrence of 
batches is masked, batch process flow sheets can be modelled with block- 
modular, steady state packages. While such models do not reveal detailed time 
behaviour within a single batch, they can give valuable mater ia l  and energy 
balance information. However, provisions are required within the package to 
recognise tha t  the plant may be utilised to make several products. The frequency 
at which batches of a given product are made may vary; indeed different products 
are included if there is interest  in the same. 

Inter faces  for batch  process  m o d e l s  

Firstly, the modelling package needs a capability to recognise if the process tha t  
is being modelled is batch (both when time varying behaviour or t ime averaged 
behaviour are considered). Further,  additional functions can be activated and the 
information about the batch stored in the correct manner  for passing across 
interfaces. The type of information that  could be valuable (if available) would be 
the time varying inputs to the batch, the material  and energy balances, the 
average size of the batch, the frequency of the batch, the utilisation of named 
equipment  for the batches. The package should recognise whether  detailed 
behaviour of a single batch or t ime-averaged behaviour over several batches is 
being addressed. 

Effect ive  in ter fac ing  w i th in  a pa cka g e  

Some block modular packages contain batch units in their  libraries, thus 
enabling time dependent behaviour to be modelled within a unit  while time 
averaged values are passed to the rest of the flowsheet. An example of this is 
when a batch reactor is used connected to a continuous process. The user 
interfaces in such connected simulators need to improve to more clearly 
distinguish between time dependent and time averaged results. Also, the 
s tandard  interface for batch unit  models could be utilised for connections of batch 
units  within a package, either with other batch units or with other continuous 
units. For the first case, clearly, it would be beneficial to be able to pass time 
dependent  information between the units. 

Use  of  a u t o m a t i c  dy na mic  mo de l  genera tors  

Commercial, state of the art, modelling packages presently allow automatic 
generation of dynamic models from a base case steady state model providing 
additional information required for dynamics is provided (sizes of equipment,  
control scheme, controller parameters  etc.). However, this functionality is 
typically only available for normally continuous units within the base steady 
state model and not for the batch models. 
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Representat ion  of physical  properties  of complex molecules  

Often batch and specialty processes are characterised by handling of materials 
tha t  incorporate complex or polymeric molecules. For example, the mixtures may 
contain water, inert  gases and condensed phases, associating vapours, 
dissociating electrolyte species, surfactants, dissociating catalysts (initiators), 
reacting species, macromolecules. There is a need to develop effective physical, 
thermodynamic and t ransport  property models for these types of mixtures that  
can contain several phased (Vapour, Liquid 1, Liquid 2, Polymer particles, and 
other solids). 

As the availability of such properties is scant, often to solve a real problem, all 
the resources need to be utilised simultaneously. Thus, parameters  may come 
from the databanks  of one package, while the physical property models are built 
and regressed in another package and linked to suitable process models 
elsewhere. Thus s tandard interfaces that  allow different modelling packages to 
be linked with each other in this co-operative mode are needed. 

Representat ion  of the form of solids 

Batch processes are often characterised by presence of solids, either on their own 
or in slurries. Often continuous fluid processes culminate in batch solid processes 
as we get closer to the final products. It is required to have s tandard  methods to 
represent  the shapes and sizes of the solid particles and to be able to pass the 
same information across interfaces (both for single solid phases and solids mixed 
with fluids). The models and the interfaces should recognise the level of model 
being used (e.g. use of average sizes, use of moments or full blown particle size 
distributions). 

Representat ion  of molecular  weights  

Similar to Particle size, molecular weight can be expressed in many different 
ways for complex materials  (e.g. as average, moments or full-blown distributions). 
These need to be recognised by the modelling package as well as s tandard 
interfaces. 

Initial  Values  for batch models  

Help needs to be available to be able to set up initial values for batch models 
without  requiring a steady state run. Initial values are particularly important  in 
equation-based packages but  for dynamic models, the initial values of the state 
variables are important  inputs that  determine the results obtained. 
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D y n a m i c  Opt imisa t ion  

The optimisation functionality used needs to be aligned with the type of model 
being used. If a time averaged model is used, steady state optimisation 
algorithms may be used and a mix of batch and continuous units may be handled 
simultaneously. Of course, the level of such optimisation could not consider the 
dynamic profiles within a batch. In order to optimise the same, dynamic 
optimisation algorithms are required so that trajectories can be adjusted to 
optimise given objective functions. There needs to be recognition by the modelling 
environment that  a dynamic batch optimisation is requested. Standard interfaces 
should be available to pass such information from one package to another. 

Batch  Des ign  vs. Rat ing  or S i m u l a t i o n  

Batch design algorithms allow directly the design and sizing of equipment 
without simulation at first. An example is the determination of the number of 
stages required in a batch distillation column. The modelling environment needs 
to provide these different functions and be able to distinguish between them and 
provide standard interfaces for transfer of the information across the interfaces. 

P r o v i s i o n  of  control  
s y s t e m s  

s c h e m e s  and contro l ler  p a r a m e t e r s  for batch  

Increasingly 'intelligent' modelling environments are proposing default control 
schemes for continuous processes. The same should be available for batch 
processes and the controller settings should take account of the part of the batch 
cycle the given process is going through. 

Batch  Models  that  run in real t ime  

It should be possible to adjust the rate at which the models can run and to be 
able to link them through to DCS systems through standard interfaces. Such 
systems can then be used for training in process operation, educational uses or 
for possible on-line control. 

Legal i ty  of  in ter faces  

There is a need for recognition of batch scenario by inter-operability standards 
and effective on-line help in interfacing (e.g. when interfacing large library based 
packages in general, checking/expressing the viability/legality of connections 
between modules). 
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Computational Fluid Dynamics 

There is a need for interfacing models at different length and time scales. For 
example, a process model can pass important  process variables (e.g. mass flow 
rates) through to a Computational Fluid Dynamics (CFD) model tha t  can re turn  
values for heat  and mass transfer coefficients or give insights into mixing. There 
are a number  of initiatives that  aim to bring high volume fraction flows to the 
domain of CFD (e.g. BRITE European Project). 

Lab-scale to Manufacturing Scale-up, dynamic parameter estimation, 
optimisation, experimental design 

Tools are required tha t  can absorb data generated at a lab scale and help in the 
scale-up to manufactur ing scale for the new products (if possible avoiding but at 
least minimising the intermediate semi-tech stage). This requires the use of 
dynamic lab scale data  to estimate parameters  (interfaces to dynamic parameter  
est imation tools) and subsequent t ranslat ion of the model to the manufacturing 
scale utilising the equipment available the information on which should be 
available on a databank.  Conversely, these models can be used to guide the lab- 
scale or semi-tech scale experimental work. There is a need to combine 
mechanistic models with data models in helping and guiding experimental 
design. A convenient way of interfacing the data collected (both off-line and on- 
line) to the modelling tools is required and there need to be hooks through to the 
hierarchical scheduling and control tools within the CIM environment mentioned 
above. This will also allow more use of full-scale plant data to improve the 
est imates of parameters .  

Intelligent Formulation 

Most of the end products are complex formulations of the key ingredients that  are 
manufactured and other manufactured or purchased ingredients. An example is 
the area of Process Flavours where Block flavours are formulated together with 
other ingredients to give the products that  are sent to various customers in the 
food industries. At present, there are not many tools available that  relate 
product properties to the formulation. This is a complex problem involving 
several product properties (physical, objective and subjective) and a formulation 
tha t  will usually have multiple dimensions. 

2.2.6.3 Scheduling/Planning of Batch/Specialties Processes 

Both short-term (e.g. weekly scheduling linked to current stock and orders) and 
long-term planning (linked to market  forecasts) needs to be accommodated. The 
la t ter  requires an interface with the forecasting and accounting types of software 
packages. At the shortest  time scales, there is on-line scheduling/re-scheduling 
tha t  is adjusted immediately in response to new relevant information becoming 
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available. For the medium and longer-term, it should be possible to carry out 
sensitivities with respect to key assumptions and variables and what-if scenarios. 
Examples of questions that  can be raised are what if the pump capacity from the 
reactor is doubled so it can be emptied in half the time. What if additional 
storage capacity is provided? 

Clearly, it is beneficial to be able to pass information through from a modelling 
package through to a scheduling package through a standard interface. However, 
there should be good management of this information and only that  is required 
for a given scheduling problem should be passed on. It is important to keep 
scheduling files to reasonable size as it may be required to distribute them from 
planning to production and through to the plant level. The process models may be 
helpful in determining the times that  are set in the scheduling models. These are 
usually based on exper iencebut  may sometimes be conservative. Through 
combined use of modelling and scheduling it should be possible to minimise the 
equipment availability excess. 

For multi-product, flexible plants, compatibility matrices between the different 
products are worth developing and interfacing to the tools. These give rules on 
the extent to which one product can follow from another with the minimum need 
for cleaning. 

2.2.6.4 In format ion  and data on Batch /Spec ia l t i e s  P r o c e s s e s  

Presentation of the right information at the right place and time is key to 
obtaining optimal development and operation of batch facilities. Some of the 
techniques that  can be used for improvement of operations e.g. SPC (Statistical 
Process Control) rely on utilisation of data from previous batches. There is the 
prospect to improve or prepare downstream batch operations dependent upon the 
indicators upstream. This brings in the general point of interfaces and ease of 
passing of information from CIM environment to modelling environment through 
to statistical packages for analysis. 

Further requirements for Information and data handling are presented 
separately for an order driven production environment and made to stock 
production environment. There is also a discussion on the retrofit and strategic 
development of batch factories. 

Spec ia l  r e q u i r e m e n t s  in an order-dr iven  p r o d u c t i o n  e n v i r o n m e n t .  

An order-driven production environment is characterised by, 

Customer order receipt triggers major components to be procured / fabricated 
and assembled into the final product, 
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�9 Product lead time for satisfying a customer order equals the time required for 
procurement, fabrication, assembly, packing, and shipping; 

�9 Expensive components are purchased or manufactured for a specific customer 
order, 

�9 Supply orders are typically pegged to specific customer orders, 
�9 Inexpensive common use items (fasteners, paint, etc.) may be inventoried 

under reorder point, 
�9 High volume operations with repetitive component use typically use standard 

cost systems, and 
�9 Low volume operations are most often seen using actual product costing. 

Automobiles, s tamping presses, bass boats and special application motors are 
examples of products manufactured in a make-to-order environment. In these 
factories, all functions must be synchronised to serve many customers 
simultaneously. 

In a make-to-order environment, improvement comes from, 

�9 Reducing the through-put time for components and finished goods to improve 
inventory turns  and lower costs, 

�9 Reducing the number of SKUs (stockkeeping Units), that  is, the number of 
one specific product available for sale, without limiting customer selection, 
and 

�9 Reducing unfavourable material, labour, scrap and performance variances 
measured by the costing system. 

Specia l  requ irements  in an make-to-stock product ion env ironment  

Make-to-stock represents a production environment in which, 

�9 Finished goods are made and stocked in anticipation of customer orders, 
�9 Demand to meet inventory stocking levels drives production, 
�9 Time required to pick, pack, and ship product is the lead time quoted to the 

customer, 
�9 ROP software techniques typically maintain inventory levels for product not 

subject to lumpy demand, and 
�9 MRP techniques are used for component items and products subject to lumpy 

demand. 

Consumer products are usually manufactured in a make to stock environment. In 
fact, anything tha t  can be purchased off the shelf was probably produced in a 
factory using make to stock manufacturing practices, i.e., toothpaste, power tools, 
light bulbs, food products, fishing tackle. The only customer of these factories 
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production is the warehouse stocking levels. On the other hand the warehouse 
may have many customers - distributors, dealers, consumers. 

In a make to stock environment, improvement comes from, 

�9 Reducing throughput time for finished goods to justify reducing the stocking 
level. 

�9 Reducing the lot sizes for manufactured and purchased components to reduce 
inventory. 

�9 Reduce lead times for manufactured and purchased components to reduce 
throughput  time and inventory. 

�9 Reduce negative cost variances for material, labour, scrap, and everything 
else measured by the standard costing system. 

Strateg ic  D e v e l o p m e n t  of  Batch  Factor ies  - S y s t e m  Retrof i t t ing  

Development of new products eventually requires plant capacity expansion, 
which becomes a complex case of redesign of existing facilities (retrofitting). 
Solution to the retrofit scenario involves strategic decisions with the necessary 
trade-off between cost and plant capacity expansion requirements. 

The problem of optimal retrofit design of multiproduct batch plants contemplates 
the case of an existing plant with the sizes and types of its equipment already 
given. Due to changing market  conditions and external economical pressures, it 
is assumed that  new production targets and selling prices are specified for a 
given set of products. The problem then consists in finding those design 
modifications that  involve purchase of new equipment for the existing plant to 
maximise the profit. 

Design options considered in the retrofit design of a multiproduct plant 
contemplate the addition of new equipment in two ways; (1) operating in parallel 
out-of-phase to ease bottleneck stages (thus decreasing the cycle time of a 
product), or (2) operating in parallel and in-phase with the current equipment, to 
increase the size of the present batches. 

The retrofit design problem can be formulated as a mixed- integer-non-linear- 
programming (MINLP) problem. Solution to this problem may require excessive 
computing time when real cases are contemplated. The introduction of 
appropriate heuristic rules should help to simplify the calculation procedure and 
insure, at the same time, convergence within a reasonable time. 
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C h a p t e r  2.3: L i f e  C y c l e  N e e d s  

Hiroshi Okada & Tetsuo Shirao 

2.3.1 I INTRODUCTION 

The main purpose of this chapter is to identify "life cycle" needs of process 

industries who are going to use CAPE software as well as other tools during 

process modelling, simulation, synthesis and process design to achieve better 

quality of the process design work for better, cheaper, faster and even greener 

[1][2]. Recently a typical question such as how well systems employed are 

integrated to share information once created at the upstream phase such that  it 

will flow through seamlessly and utilized many times is getting more attention. A 

role of the data manager is getting important during the project execution. This 

reflects the user's life cycle expectations or needs, such as interfacing with 

different design tools to keep information flow among different disciplines during 

not only the process design phase which should be fulfilled by CAPE but also 

across the life cycle. 

2.3.2 BACKGROUND 

To look into life cycle needs, let's take a look at an example of Chemical industry 

including organic and non-organic chemicals in the highly competitive market. It 

has been providing the world with a wide range of products and services. As the 

chemical market has globalised, selecting a product line and a suitable process, 

and thereafter optimising the size and location of productions is becoming one of 

demanded business concerns. Strategies and policies are put into action through 

the development of programs, budgets, and procedures. Most important decision 

on what sort of product lines are to be produced, together with issues such as 
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environmental  protection, safety, trace ability, quality, productivity, life cycle cost 

are the ones required keen focal point of the management  from the origin of every 

strategy. 

2.3.2.1 T i m e  to  M a r k e t  a n d  Cos t  P r e s s u r e  

Time to market  and cost pressure is becoming a serious issue of managements of 

any indsusty. And process industries are not exception to this rule. There are two 

potential issues involeved in here as shown below. One is efficient use of resources, 

especially at R&D phase of the life cycle, particulaly faster developement time and 

optimaized allocation of resources including cost reduction. Thus lifting the cost 

curve upward. Another is invloved in how to deploy and penetrate the market  

faster, cheaper, clearner, and even greener; thus, shifting sales cureve to the 

leftward. 

Sales 

Cost 

Time to k .................................................................. 

...................... .... 

Figure. 1 Time to Market and Cost Pressure 

Time 

2.3.2.2 D r i v i n g  F o r c e s  

Meanwhile, process plant owner and operators, at the same time, are paying more 

attention to concepts such as "Assets Life Cycle Management" and "Supply Chain 

Management" for the better management  of the business. Where "Assets Life 

Cycle" is "Life Cycle Model" whilst "Supply Chain" is a Business Model that  

consists of "Purchase", "Production", "Distribution" and "Sales". Both are actually 
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connected concepts. Beginning with Feasibility Study of the plant, Process Design 

and Engineering, Procurement will be executed to Construct and Commission the 

plant. This is called "Plant Asset Creation" in terms of Life Cycle Model, which has 

been traditionally integrated into Supply Chain Management  to perform a role of 

Production. After the delivery of the plant, the process plant  owner and operators 

will use the process plant as a tool to produce the products and ship to the market .  

This represents  "Plant Asset Deployment". This is to say that  "Operation and 

Maintenance" of the process plant in terms of Assets Life Cycle is "Production" in 

terms of Business Model where the two concepts are met. 

To il lustrate this, a new chain of the Asset Life Cycle has to be introduced as 

shown below: 

Figure 2. Plant Asset and Supply Chain 

The total picture of the process industries consists of "Assets Life cycle," "Supply 

Chain" and "Business Management" as shown above Figure.2. Information 

Framework of Plant  Asset Creation and tha t  of Supply Chain are to be integrated 

at Production consists of Maintenance and Operation. IT increasingly provides a 

strong driver to keep spinning the wheel of this chain. To increase the rotat ing 

speed, factors have to be identified so that  proper technology can be employed to 

achieve this goal. 
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2.3.2.3 Gett ing things right in the first place: 80/20 rules 

It is worth to note tha t  the impact of Process Conceptual Design to Business 

Decision as a whole to realize a Business Plan of constructing, maintaining, and 

operating the process plant. Since, in this phase, a business strategic plan will be 

deployed as the part icular  product line releasing plan, a decision on what kind of 

the process shall be designed first will determine the direction. This plan also 

defines overall cost factors such as Plant  Investment,  Labour, Raw Material  and 

Fuel cost. It can be summarized that  80 percent of total predicted cost allocated to 

this business plan has been already locked in this phase, which accounts only the 

first 20 percent of the project duration. This is called the 80/20 rule, which will 

often determine the fate of a business decision. Any errors made in the early phase 

have to be taken  care of before pursing into the later phase; otherwise, the greater  

casualties will be counted in the later. This is the main reason why more attention 

is given in process industr ies to the information created during the early phase of 

the design activities such as process design activity such that  the better  

management  of a life can be achieved to yield the fruits. Now with an advanced 

computing capability emerging Computer-chemistry gives a bir th to a new field of 

Chemistry, which enable to perform molecule level assumption, estimation, and 

simulation to achieve higher level of results during Research and Development 

phase. For instances, physical property estimation based on end-user 

requirements  can be performed. Environment impact can be also be calculated 

based on digitised physical property database in terms of life cycle assessment. 

End-user 's requirements  can be studied thoroughly. User requirements as to 

existing segment or new segment can be also predicated based on information 

stored in digital reserves. The real contribution of IT is to improve the quality of 

work such tha t  embed errors can be removed or its effects on the later  phase can be 

minimized due to enemas calculating power covering every possible range of 

analysis. Therefore "getting thing right at the first place" is what  is required to 

execute any project successfully, and IT is one of the tools to provide the practical 

solution. 
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Primary concerns of engineers who are involved in the development projects in 

terms of data  management  and control are summarized as follows: 

(a) 

(b) 

(c) 

Exchange and share of data  between engineers: This demonstrates  a 

potential problem of coordination. Timely exchange and share of data  

among part icipants is the pr imary concern since this will allow each to 

proceed with respective scope of work without delay. Also distinguishing 

between what  to be exchanged and what  to be shared is also important  in 

terms of data management .  

Data  consistency and integrity: The potential problems involve incorrect 

data  formats, different data models, not synchronized data turnovers,  

ill-adherence to stated standards,  and future maintainabil i ty of data. 

Mid- or long-term achieve and retrieval: Availability of data  for future 

reference or modification as required is getting critical. 

It should be noted that  the above concerns are deemed to be unacceptable and 

impediment  to performance required task efficiency unless proper measurements  

are taken. Also it should be understood that  they would serve as mid- and 

long-term vehicles for cost saving and not as added cost to the current  design 

practice. In order to ensure consistency, integrity, timeliness, and quality of data  
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as deliverables, a role of data manager  should not under-estimated. Especially this 

becomes a keen issue because internet  technology allows one to access to any 

information one needs, when one needs, to where one use and from where it is 

stored. 

2.3.3 LIFE CYCLE NEEDS 

Three aspects of Life cycle Needs including Activity Model, 

Requirement  and CAPE software will be explored in this section. 

Information 

2.3.3.1 Life cyc le  n e e d s -  process  i n d u s t r i e s -  act iv i ty  m o d e l  

Life cycle models have been discussed in various fashions. Following six major 

categories of activities are identified as the life cycle model of Global CAPE-OPEN 

(GCO) project as a result  of international  harmonizing co-ordination work of GCO 

activity [3] [4][5]. Descriptions of the respective activity as well as information 

requirements  can be summarized below: 

(a) Business Planning: Selecting product lines in accordance with the business 

strategic planning, quality target, sales volume, cost in consideration of 

timing, investment  target  (including investment for development) of the 

product line are the main concerns in this phase. Any interface has to be 

capable to handle all of these relevant parameters  including sales, target  

cost, and investment  criterion and basically BFD drawings so that  

Business Planning can be fully executed. 

(b) Research and Development(R&D): The purpose of this activity is to 

establish a process by the Process Development. At this stage of the life 

cycle, a process simulator will be used to study the process behaviour such 

that  sufficient information will be created to produce a Block Flow 

Diagram (BFD) drawing and its related data. Economic Analysis in terms 

of business justification mainly based on raw material  and fuel costs will 

be conducted here. It is very important  that  every single related at tr ibute 

data  including material  safety has to be extracted to hand-over to the next 

stage of the life cycle. Also managing lessons learned type information 

such as unsuccessful case studies is important  to be achieved for future 

reference. 



71 

(c) 

(d) 

(e) 

(f) 

Process Design: Conceptual Process Design phase includes activities such 

as Process Selection, Process Synthesis, Process Analysis and Evaluation. 

Process Decision will be performed in this phase such that optimised and 

safe guarded process will be selected though Conceptual and Detail 

Process Design work with the help of engineering design disciplines. 

Economic Analysis at this stage will be mainly utilized raw material and 

fuel costs and plant costs based on earlier process design and case study. 

CAPE tools are available at this stage. 

Commercialisation Decision" The decision will be made based on the 

analysis of return on investment, profitability, risks in terms of quality, 

safety and other aspects including the plant location based on off-site 

conditions and physical distribution, plant safety and reliably. User 

requirement specifications will be issued after Commercialisation Decision, 

such that Engineering Design will be started. User requirement 

specifications will be including Pre-P&ID, Equipment Functional Design, 

Control and Operability Study, Safety & Health & Environmental Study 

and Economic study. During this stage, it is essential to bring an idea 

developed in terms of BFD representation into Preliminary Piping and 

Instrument Diagram (P&ID) representation. This bridging between them 

should reflect conversion of functional requirements into mechanical 

specifications so that the actual plant can be operated as designed. 

Engineering design and construction: At this engineering design stage, 

P&ID will be fixed based on information received from process design and 

the resulting work of Engineering Design. Material, Equipment and Plant 

Safety will be built into the actual plant at this stage. Seamless transition 

of Process Design information to Engineer Design tools is a must. 

Operation and maintenance: (Production): After Construction and 

Commissioning, actual Operation and Maintenance will be applied to 

maintain the optimum production in response to changing environmental 

conditions for the process and plant. Handing over all engineering 

documentation and data to owner and operator is important in terms of 

data owner ship and responsible for any updates and resulting integration 

of the system. Especially, data integration of all related data is critical for 

smooth transition and reuse of them. Change control and revision control 

of information as changes are made is also important during day-to-day 

operation. 
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Figure 4: Life Cycle Activity 

This activity model will provide a whole framework of the process plant life. 

Fur ther  refinement can be done to break into individual work packages, such that  

typical workflow can be schemed. 

2.3.3.2 Life cyc le  n e e d s -  process  I n d u s t r i e s -  in format ion  r e q u i r e m e n t s  

Based on understanding the needs of the market, a market  development plan will 

be launched and potential demand will be estimated. Then information including 

process, process material, equipment, cost, safety is processed in every business 

aspect throughout a life of the process plant engaged by different disciplines using 

different tools [5]. The below table has been developed to summarize the life cycle 

requirements of engineers. Process Representation Methods describes the typical 

drawings used to convey the information graphically. Raw Material Cost and 

Plant  Investment Cost represent typical costing items to be considered at each 

activity. Operation Methods describe the main focus point in terms of plant 

operation at each stage. As you will see from Table 1, required granularity of 

information will be different from phase to phase. 

Process Representation Methods represent basic functionality of required 

operations; thus, they imply different meanings to different disciplines across the 

life cycle. Table 2 is formulated to illustrate information requirements of process 

engineers. Plant Function represents various class of equipment concept providing 

specific service of operations together with respective attributes. Items to be 

concerned during Equipment Concept development are those used to define 

specific type of equipment for a given operation. 
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Table 1. Information requirements of engineers 
Business Research & 
Planning Develop- 

ment 
Pre-BFD 

i 

Pre-BFD 

Estimation 
using Alike 
process or 
Literature or 
Experiment 

Estima- 
tion using 
Alike 
process or 
Literature 

Estim- Estimation 
ation using 
using Alike 
alike process 
process or or Cost DB 
Cost DB 

Process 
Conceptual 
Design 
BFD 
Pre-P&ID 
Framework 

Process 
Detailed 

, Design 
i BFD, 
Pre-P&ID 

l 
I 
i 

J 
Simulation Simulation 
using using Mass / 
Rough mass/ heat balance 
heat balance (Experiment) 
(Experiment) 

Simulation Simulation 
using using 
Alike Cost DB or 
process Estimation 
or Cost DB 

Engineer- Operation 
ing Maintenance 
Design , 
BFD, BFD, P&ID 
P&ID Actual 
(AP221, Figure 
etc) 

Simulation 
~ using 
Mass/heat 
balance or 
Actual data 

, (Experiment) 
Simul- Simulation 
ation using 
using Cost DB or 
Cost DB Actual data 
or 
Estim- 
ation 

Operation Conceptual Process Plant SOP 
Methods operation control & Control Actual 

:Operability system operation 

BFD: (Block Flow Diagram); P&ID: (Piping and Instrument Diagram); PFD: (Process 

Flow Diagram) is to be realized as Pre-P&ID; Pre-P&ID Framework indicate P&ID before 

equipment functional design; Pre indicated preliminary. 

Table 2 Information requirements during Process Design Phase 
Plant  
Funct ion  

Reactor  
sys tems 

Column 
(Tower) 

Attributes  

Reaction Heat ,  Stoichiometry 
Mater ia l  Conversion Formula ,  
Composition, Tempera tu r e  
profile, Pressure  profile, adiabat ic  
t empera tu re  increase, Catalyst ,  
Void ratio, Holding t ime 
S u m m a r y  data  (Column data,  
Number  of t rays,  Inside diameter ,  

Items to be concerned  
during Equipment  
Concept  deve lopment  
Tower, Drum,  Hea t  
Exchanger ,  Piping type. 
Interior,  Abnormal  react ion 
scenario 

Identif icat ion of Condenser/  
re la ted  equ ipment  

sys tems Liquid load, Vapour  load), 
Composition/ 
Tempera tu re  profile, P ressure  
profile 

Selection of In ter ior  such as 
Distiller, Absorber,  
Extractor ,  
Empty /Packed /Trayed  
column, In t e rna l  
Construction: Tray  type, 
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i 

Storage 
Equipment 

Heat 
Equipment 

Packing, Spray 
'Vapour/Liquid " separation, '  Selection of Drum, Tank, 
Liquid/Liquid separation, Process Silo, Vertical/Horizontal, 
Information and Holding time to Vertical Tank: Selection of 
design Interior (Agitator/ Baffle type(Corn roof, Dorm roof, 
plate/Demister etc) Floating roof etc) 
Inlet and outlet, Outlet 

!vapor/liquid, Drain based on 
, Process Information provided , 

Transfer Process Information to design Consideration on Heatup or 
Heating or cooling curve, Heat cooldown: Heat source, 
duty, Heat exchanger(Water coolant 
cooler, Steam cooler, Process) Selection of Tubular/Spiral/ 
selection, Phase changes(Total Plate/Double pipe/Air fin 
condense, Partial condense, Total type, 
vaporize, Partial vaporize) based Tube side/Shell side fluid 
on Process Information available 

Transfer Process 
Equipment Suction 

pressure, 
Liquid, Liquid based on Process 
Information 
*Special Equipment including 
Ejector, Solid transfer equipment: 

, To be set separately 
Special Equip. / To be set for each type 
Utility service 

. systems . 

Information: Driver, Selection of Equipment 
pressure, Discharge type, NPSH avail, Spare 
Head, Phase: Solid, equipment, 

Vertical/Horizontal and 
Driver, Gravity (Pump) 

Piping Systems Stream Information 
] 

Selection of Line Number, 
Size, Pressure/temperature 
class, Parts: Valve/ 
Insulation 

The following table (Table 3) illustrates a proposed mapping between Process 

Function in terms of Blocks represented by various Simulation Packages and 

Plant Function represented on P&ID. This will help translating an idea of Process 

Function into Plant Function so that Detailed Engineering can be expanded to 

provide services required by Process Function for a real world application. As a 

result, the Conceptual Process Design is conducted solely to create the information 

to conceptualise a process for producing a certain product line as indicated in 

Business Plan. 



75 

Table 3. Mapping from Block to Equipment Concept 
P l a n t  F u n c t i o n  A s p e n  B lock  HYSYS B l o c k  PRO2 B l o c k  

Reactor Systems 
Column Systems 
Drum / Tank 

RSTOIC, RCSTR, PFR, CSTR PFR, CSTR 
qr 

FLASH3, 
COLUMN 
3 phase separator, 

COLUMN 
i FLASH 

DECANTER Tank 
Heat exchanger 
Heater/Cooler 

HEATX, HEATER Heat exchanger, 
Reboiler, Heater, 
Condenser, Cooler, 
Air Cooler 

HX 

:Pump PUMP Pump , PUMP 
Compressor COMPR/Expander 

Other transfer 
equip 

Compressor/Expand COMPRESSOR/ 
er Expander 

I 
i 

Special Equipment i * Cyclone 
Piping Systems 

Utility service 

FSPLIT, VALVE, * Tee, Valve, * PIPE, FSPLIT, 
�9 VALVE, * 

qr qr qr 

Systems 
* indicates that  special rules are required as suggested below: 

FLASH2 Block-) Heater/Cooler or Drum or Piping Systems (VALVE: 1 input and 

1 output) ; MIXER Block --) Drum or Piping Systems 

RADFRAC Block --) include Column, Drum, Heat exchanger, etc 

SEP Block-) Special Equipment, etc 

The following diagram (Figure 5) illustrates the basic idea behind this mapping: 
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IOl m,~ t 

I 

Figure 5. Mapping between Process Functions and Diagrams 

The value of information generated during the Process Design phase is always 
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verified and evaluated in terms of the contribution to firm business decisions to 

produce specific products based on the process designed as shown in Figure 6. 

Information should be well-measured one so the result will be constructive that  

the business decision can be profitably made and executed. 

Process ]~---J 
Simulation 

Dynamic Simulation [ 

~ [3DModels] 

IP DI-  
Economic Analysis I [ Equipment Selectio_____~n 

Distributed Parameter 

Control 

Detail Eng'g 
Construction 

Operation 
Management 

Physical Properties [ Operation 
Design 

Mechanical 
Integrity 

Intelligent 
Database 

Figure 6. Process Engineering Activity 

The information once created should be shared through interfaces among 

activities consisting the life, including Business Plan, Research & Development, 

Process Design, Commercialisation Decision, Engineering Design and 

Construction, and Operation and Maintenance. Therefore, Life cycle is a collection 

of phases of the life that  divides a management effort into several more 

manageable subordinate efforts and management loop to conduct the business 

perpetually. 

2.3.3.3 Life cycle needs-  process industries- CAPE software 

Almost every activity will create new information after having been processed. 

The use of the information is not restricted to the activity that  creates and 

processes it. It is used in other activities in a chain to carry on a business plan e.g. 

to delivery a new product line. Moreover, it is very important to note that  

information on the product created has to outlive the life of the product per se. For 

example, information generated, integrated and archived during the process 

design will be used to generate all sorts of other information through the life of the 
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process, which are typically twenty to thirty years. This is the major reason why 

managing the information throughout the life is becoming important issue. 

To manage information in order to cope with business requirements, the CAPE 

systems used must be capable of, 

(a) Knowing what information they have, and what it is about, 

(b) Interfacing information between organisations and systems without 

degrading the contents, 

(c) Integrating and storing information from different systems, 

(d) Sharing the same information among different systems with different users' 

needs, 

(e) Managing the information, including history, for a life. 

Of course, any software that is designed to fit the needs of process engineers is no 

exception to this. To share the earnings among the participants of process design 

activities depends on how well a system employed is integrated to flow the 

information once created at the upstream phase of the entire design activities 

despite of different formats each system uses. Often this shows a bottleneck since 

availability and grade of the information has been very limited inside the 

boundary of the application systems used. Most of process engineers have to spend 

their significant time just to re-key in the information provided at the upstream 

design activities and at the same time, most importantly, keep track of 

configuration of each information as each revision is made. One of the solutions to 

this will be replied by CAPE software by proposing the interface standards among 

the components of simulation software such as Solver Package, and Unit 

Operations. Use of such components will promote standard mechanisms for 

various applications to inter-operate and facilitate the sharing of information 

between applications. CAPE software will provide various services to the process 

engineering related activities during the early phase of the conceptual process 

design thus to reach new quality and productivity levels. 

It is worth mentioning the following concerns of the business so that  CAPE 

software to be more sufficient to fit the needs of the business. Differentiation 

between Engineering/product definition and Product should be noted. Too much 

focus on engineering/product definition may lead to the conclusion that  production 
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is being supported insufficiently. Also actual life means that  history is involved. 

Dealing with organizations and processes already in-place and new paradigm and 

transition as to where and how business goes forward should be concerned. 

Change management opportunities and requirements and data ownership are the 

real issues to be concerned. 

2.3.4 GENERAL & SPECIALIZED NEEDS OF LIFE CYCLE SUPPORT 

BY CAPE SOFTWARE 

To match market requirements for a new product line required functionality to be 

designed based on information available at that time. Completeness and accuracy 

of information is the key concern of process engineers. To avoid the risk of 

non-rigidity and degraded decision, information management using various 

software tools has been schemed and devised. However islands of software tools 

causing such a greater communication problem, when the management of 

information is concerned. Bridging the isolated systems through standard 

interfaces will be one of solutions where great improvement on overall 

performance is expected based on implied 80/20 rule. It is always suitable to 

consider the way to leverage the emerging information technology solution to gain 

the improvement therefore to gain competitive advantages. This is the reason why 

CAPE Software based on a common understanding of the industry work process 

and information requirements is becoming important to be explored. In term of life 

view, general needs, as well as specialized needs will be elaborated as follows. 

2.3.4.1 G e n e r a l  N e e d s  

In this section general needs will be elaborated. Due to the latest development in 

IT industry, what engineers want to accomplish can be achieved. Once upon a time 

when capability provided by IT has been far less than what engineers requested. 

What can IT or a computer to be more specific, be used type question was the main 

topic; therefore only the IT layer consists of IT components such as COBOL, 

Mainframe computers has been discussed. Power of IT has been improved, then 

solution layer obtained such attention that utilization of the particular application 

system such as Data Base Management System, CAD system CIM composed of IT 

components has been focussed. Nowadays, Business Planning based on the 
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strategic decision makes clear the demand of integrating proper application 

systems into the designed business process. It is important to note that  each 

activity of business process consisting Life cycle Model mentioned utilizes some 

sort of system components to process data represented by its own data model. 

Through a set of externally accessible operations, interfaces are so defined to 

bridge between different system components accordingly to t ransmit  data 

required. Basic idea of CAPE software set interoperability s tandards for 

communication between system components in process design shall provide a 

solution to overcome interfacing problems of exiting proprietary systems so that  it 

shall be able to improve the efficiency and speed of the whole throughput.  

Business 
Plan 

Research 
and 
Development 

Process 
Design 

Commerciali 
zation 
Decision 

Engineering 
Design and 
Construction 

Operation 
and 
Maintenance 

Life Cycle Model Framework 

System System System System System System 

Comoo_nent Component Component Component Component Component 

I - I I T 

I I I I I - I I ..... I I I 

T ,  T I DlataTod!lM T T "[ 
~Data MoJel l~ata Model ~ata Mod!l ~ata Mod!l ~ata Model ] 

Figure 7: Life Cycle Model Framework 

What industries have seen as a change will be represented as the way how each 

computer aided system is used and integrated to create data and manage 

information. A critical issue tends to be whether or not different systems are able 

to communicate each other. This means at the information technology level, data 

is exchanged and/or shared when it is created and used by different computer 

systems, disciplines, or even different organizations sometimes. For instance, all 

the engineering related data, which is hand over to the owner and operator is used 

to feed the systems such as a maintenance system or an even to accounting system 

to keep track of the life of each equipment as the vital asset. This is becoming more 
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important when Information Technology becomes far much advanced and is to be 

utilized to perform more efficiently than the past. 

It is also worth noticing that  life of computer system is much shorter than that  of 

process plant per se so that  solution may work at that point of time, but may not 

necessarily work at the different point of time as the life passes by. For instance, 

CAD systems, which are commonly used during the design work phase of the 

process plant projects, were once running on mainframe computers with various 

operating systems, then work stations including UNIX systems, now some of them 

running on PCs with Windows operating systems. Yet the process plant is still 

standing, but the hardware of the system has been replaced with the successors 

with different operating systems. When the CAD system itself becomes obsolete, it 

has to be replaced with the new model. In order to cope with this situation, not 

only the application system but also data may also have to be converted. This is 

the reason why managing the "life" is becoming the key issue among process 

industries. 

Process Design is an activity whose mission is to design functional requirements to 

meet the market needs. Especially Process Synthesis is the key activity to 

dominate the result of 80/20 rule according to standardization work of MITI 

funded GCO project [4]. The following addresses Process Design phase specific 

needs in terms of information requirements: 

(a) Evaluation based on data created by various process designs tools is 

very essential at the early design phase. Interfacing with simulation 

applications, equipment design applications such as various sizing 

packages or in-house engineering calculation software of any equipment, 

as well as down-stream engineering design packages, especially costing 

applications to provide quantitative analysis of various design 

alternatives is required to perform any activity with less interference. 

Performing the complete analysis at the earlier stage as possible will be 

a key to succeed determining the fate of the business plan as shown in 

80/20 rule. 

(b) Leveraging process data having been available from the simulation 

results to generate conceptual process design level as well as conceptual 

engineering design level of details and representations is one of the 

sought achievements at process design phase. By bridging between 
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process function and plant function to generate automatically Pre-P&ID 

from BFD using standard design best practices requires 

standardization on the mapping and interface between functional 

components of the process resulting from process design and physical 

components of the plant resulting from engineering design. 

Exchanging and sharing information among existing software, which constitutes 

the elements of this integrated environments, has been recently taken up as the 

subject for standardization such as ISO, ISA, IEC, etc., but the available scope is 

still very rigid and limited to cover the whole life cycle per se. And significant 

efforts including those for standardization are required for the construction of the 

integrated environment. In real practice, each application tends to be customized 

to reflect the individual needs of the users. Moreover, each project may use a 

different set of the software to solve the project specific needs. Therefore, it is 

important to consider one overall concept so that  difference among user of the 

systems and procedures of the systems including CAPE software are well 

considered and seamless flow of information can be secured. 

2.3.4.2 S p e c i a l i z e d  n e e d s  

In this section, specialized needs of process engineers will be elaborated. When a 

process design was first developed, its deliverable will be graphically represented 

as a BFD. The main interest is to visualize the sequence of operation and to list 

some attributes such as heat balance and mass balance. Evaluation based on raw 

material cost and plant investment cost, which is estimated, based on similar 

process, literature, and experiment sources will be performed to seek the best 

solution at this stage. It is worth doing at this stage of Life cycle Model to archive 

not only the base case but also every single case with relevant information into 

digital storage that  has been considered during the design phase. Later phase of 

the development, the information can be shared and exchanged based on this 

repository. Information such as why this value of the parameter  has been used 

over the other type information will become vital in the later days when a similar 

study has to be conducted, which normally lost. This can be treated as a case 

library that  can be data mined later. Super class - Sub class and inheritance and 

derivative type relationship can be used to implement this library in 

object-oriented manner so that  emerging new technology can best make use of it as 
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described in other capture. 

When the process design finalized, an engineering design will be developed. 

Drawings such as P&ID and completed datasheets and lists would be issued. Then 

more detailed cost estimate can be also calculated at that  stage since more specific 

consideration has been identified. Again well-managed digital storage can play a 

critical role to maintain integrity of the information. 

For instance, during Process Design phase, various emerging computer based tools 

such as simulators, analysis tools, design tools, CAD systems, various data base 

management  systems, spread-sheet applications, word processors are commonly 

used to generate, store and manipulate necessary electric data as shown below in 

Table 4 [5]: 

Table 4. Design Tools, Data and DB 

! Desig 
n 
Tools 

Data & 
DB 
Others 

Busin  
e s s  

P lann 
ing 

Linear 
Progra 
mming 
softwa 
re 

Market 
data 

Cost & 
SHE 
DB 

Research Process  
& Conceptu 
Develop al 
ment  

Simulator 
(Material, 
Reaction, 
etc) 
Fluid 
dynamics 

Reaction 
DB 
Material 
DB 
Experiment 
DB Cost & 
SHEDB 

Simulator 
(Process) 
Pinch & 
Residue 
Curve 
Analysis 
Fluid 
dynamics 

Thermo.DB 
Experiment 
DB 
Cost & SHE 
DB 

Process  
Detai led 

Enginee  Operatio 
ring n 
Des ign Mainten 

ance 

Simulator 
(Facility) 
Fluid 
dynamics 
HTRI, 
HTFS 
Hazop, FTA 
AXSYS, 
Zyqad 
2D-CAD 

Experiment 
DB 

AD 

Plant Simulator 
design (Process) 
(System Pinch-Ana 
& lysis 
Mechanic Fluid 
al) dynamics 

Hazop, 
HTRI, FTA 
HTFS 2D/3D-CA 
2D/3D-C_ [D 

Analyzer 
Actual 
Plant Data 
Cost & 
SHE DB 

Cost & SHE Cost 
DB &SHE DB 

2D/3D-CAD systems are, for examples, Micro Station, PDS, PDMS, Plant Space. 

Cost DB: SRI, CHEM SYSTEMS, In house data includes Cost Estimation Tool (IPE, 

ICARUS2000, etc), SHE: Safety, Health and Environmental issues 
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Bridging between Process Representation and Economic Analysis reflecting 

required graininess of information is therefore summarized below in Table 5: 

Table 5. Mapping between Cost Estimate and Design Representations 

In order to assure the seamless flow of information, an experimental integrated 

environment for process designing as shown below is schemed for Chemical CALS 

project in Japan, which intended to demonstrate the power of the seamless 

interfaces among design tools. The project reported the significant improvement 

in quality of work done: 

The success of the project relies on integrating simulation tools, Costing tools for 

Feasibility Study, Rough Costing tools for early process design phase, construction 

phase, various design tools, and database management and CAD system; 

therefore, the concept of the integrated system has been proved. Next step would 

be to break the integrated system into functional components such that  each 

component can be plug and play, as it is needed for the project execution. 
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Figure 8: An experimental integrated 

environment 

2.3.5 M E D I U M  T E R M  & L O N G  T E R M  V I S I O N  - W H E R E  A R E  WE 

G O I N G  F R O M  H E R E ?  

It is very important to identify the proper seeds of a business opportunity. 

Especially the industry who is specialized in producing basic material to other 

industries facing big challenges such as Market Analysis, Quality Assurance, 

Environment Protection, Recycling Resources. Everyday various simulations are 

conducted to define the products to meet the needs based on Market Analysis. 

Changing the brand mixture, shorter delivery time, and providing customer 

satisfaction are the key words playing important roles of the industry. Business 

justification is taking account of market development, pros and cons of business 

planning, risks vs. growth decision. But none of systems employed today can 

handle this situation seamlessly. For instance, a commodity product vs. 

specialized products is a typical issue, but no clear answer can be prepared by the 

existing system. As time to market and cost pressure is building up, production 

systems of specialized products are getting attention. An unique idea such as 
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making use of multi-purpose equipment to produce the specialized product instead 

of designing specific equipment designed for the product is worth attempting since 

it will reduce the whole time to produce. Whilst commodity type, which possesses 

longer life, may utilize the specially designed equipment to reduce the overall cost 

and assure the quality. One concern here is that none of vendors is ready to accept 

the challenge since it has not yet armed with models capable to handle required 

simulation. Another growing concern shown in the business is Life Cycle 

Assessment, which requires process design to consider the environmental impacts. 

Precise calculation of the impact is getting more attention since sustainability is 

becoming the hot topic. CAPE software has been demonstrating opportunities, 

which can be gained from standard interfaces for process simulation components. 

It is an enabler integrates simulation into the process design such that enhanced 

competitive and environmental advantages can be obtained. Specialization of 

general needs is gaining popular votes among the industry. One such example is to 

bridge between Research & Development and Process Design since 

Computer-chemistry is getting more attention. CAPE software will give birth to a 

standard body, internationally supported and recognized, as well as to a network 

of integration laboratories for process simulation. Furthermore, the specifications 

should cover Computer Aided Process Engineering, and not just process 

simulation. Within this framework, existing ISO standards that cover parts of 

Process Design, Plant Design, and Plant Operation and Maintenance fields, have 

to be harmonized, in order to avoid duplication and ~inconsistencies among 

recognized standards. Whilst another bursting area of concern is Demand Chain 

Management where the business is required to shift its business paradigm 

requiring agile and flexible processing. Solution to these should enable CAPE 

software to contribute to achieve business excellence better, cheaper, and faster 
even greener than ever. 
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P a r t  III: F r a m e w o r k  for C A P E  t o o l s  

3.1 Modelling frameworks 
L. von Wedel, W. Marquardt & R. Gani 

3.2 Numerical solvers 
J. E. Tolsma & P. I. Barton 

3.3 Simulation, design & analysis 
D. Hocking, J. M. Nouguds, J. C. Rodrfguez & S. Sama 

3.4 D a t a  reconciliation framework 
N. Arora, L. T. Biegler & G. Heyen 

3.5 Computer tools for discrete/hybrid production systems 
L. Puigjaner, M. Graells & G.V. Reklaitis 

The chapters of this part introduce some of the CAPE methods that provide 
the framework for CAPE tools. There are five chapters, each dealing an 
important topic with respect to current and future CAPE tools. Although 
many topics could have been chosen, the particular selection has been made 
based on their use in current CAPE software. The chapters, covering 
modelling, numerical methods, simulation, design/analysis, data 
reconciliation and computer tools for discrete~hybrid systems, present the 
state of the art of representations, algorithms and architectures. They give 
concrete examples of how these frameworks can help to match the needs 
expressed in Part II. 

Models are considered to be valuable assets for engineering and decision- 
making processes because they are not just data but embody a lot of 
knowledge about the process studied and can be used to generate 
information about it. The purpose of modelling as a work process is to 
transform the perception of reality or an idea into a symbolic language, 
which consists of a set of well-defined concepts with an agreed 
understanding. Starting with an overview on the modelling process, 
Chapter 3.1 written by yon Wedel et al. provides a review of modelling 
concepts and languages followed by discussions on modelling tool 
functionality and modelling tool architecture. 

Typical process modelling activities involve the use of a number of different 
numerical algorithms (solvers). Chapter 3.2 (Tolsma and Barton) briefly 
describes several common numerical activities and some of the algorithms 
applied. In particular, the information that must be supplied in addition to 
the model equations is emphasised. 

Process simulation, design and analysis are some of the most common 
activities in computer aided process engineering. Process simulators are 
used daily by engineers and scientists almost on a daily basis to solve 
various CAPE related problems (such as process design) by generating 
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process information through process simulation and then by analysing the 
generated results. Chapter 3.3 written by Hocking et al., provide the 
software side of the story with respect to simulation, design and analysis. 
Definitions and explanations of the important terms are provided and 
discussions on problem definitions and the framework requirements for the 
corresponding software are presented together with examples from 
commercial simulators. 

Data reconciliation and parameter estimation are important components of 
model fitting, validation, and real time optimisation in chemical 
industries. In its most general form, data reconciliation is a minimization 
of measurement errors subject to satisfying the constraints of the process 
model. Parameter estimation is the step after data reconciliation in which 
the reconciled values of the process variables are used to set values for the 
model parameters. Chapter 3.4 (Arora et al.) discusses optimisation 
strategies that deal with data reconciliation and gross error detection. 
Included in this study are two case studies, a comprehensive steady state 
example and a small dynamic example. Both illustrate these strategies and 
issues related to this task. 

The software tools for batch processes may be classified in two broad 
classes. The first class involves modelling, simulation, and analysis of the 
physico-chemical processes that take place during batch operations. The 
second class is designed to support the decision processes at the different 
managerial and operational levels of the plant operational hierarchy. In 
chapter 3.5, Puigjaner et al. review a representative set of tools from the two 
classes of tools that are available commercially. While there is much 
innovative research and development in both academic and industrial 
groups in this domain, experimental software and prototypes have not been 
considered in the discussion. 
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Chapter  3.1: Model l ing  F r a m e w o r k s  

L. von Wedel, W. Marqua rd t  & R. Gani 

3.1.1 I N T R O D U C T I O N  

Process Systems Engineering,  PSE, has  gained an impor tan t  s ta tus  for a broad 
range of chemical engineering activities. A basic requ i rement  for applying the 
techniques provided by this ra ther  young discipline is based on the notion of a 
model. For the purpose of the chapter,  a (limiting) character iza t ion of a model as 
a formal system is made. As a requirement ,  the model represents  re levant  prop- 
erties (s t ructural  and behavioural)  of the system under  consideration. The essen- 
tial feature of a model (with respect to PSE) is tha t  it can be formally evaluated 
to make s ta tements  about a system. This feature allows the use of digital com- 
puters,  which have become an essential  tool for many  tasks  in process systems 
engineering tha t  are now character ized by the te rm computer-aided process en- 
gineering. Models mus t  be considered valuable assets for engineer ing and deci- 
s ion-making processes because they are not just  data  but  embody a lot of knowl- 
edge about the process studied and can be used to generate  information about it. 
Models allow vir tual  experiments  th rough  process s imulat ion and/or optimisation 
tha t  would be costly or even impossible to perform otherwise. 

Modelling activities consider a variety of chemical engineer ing e lements  on dif- 
ferent scales of complexity (Marquardt ,  et al., 2000; Pantel ides,  2001). Model- 
based studies cover a range from designing molecules (Harper  et al. 1999; Menial 
et al. 1998) on one end of a size scale as well as studies of the supply chain be- 
tween different plants  or even sites on the other end (Backx, et al., 1998). The 
relevant  t ime scales range from microseconds to months  or even years, respec- 
tively. Between these two extremes, the most commonly employed models today 
represent  thermodynamic  phases, single uni t  operations, or (usually only a par t  
of) a chemical process. Besides modelling physical processes, models of operation 
modes (especially of batch processes) are also of in teres t  for s imulat ion and opti- 
misat ion applications. 

3.1.1.1 Modelling Process O v e r v i e w  

The purpose of modelling as a work process is to t ransform the perception of real- 
ity or an idea into a symbolic language,  which consists of a set of well-defined 
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concepts with an agreed understanding. There are many possible models of a cer- 
tain perception, but only few of them qualify as being useful to answer the ques- 
tions relevant in the current modelling context (where a context is understood as 
a current situation and a desired goal). A modelling process should thus system- 
atically lead to a useful model and discriminate those irrelevant. In the reverse, 
however, a specific model may be needed for several model-based applications 
such as identification, simulation and optimisation during the plant development 
process. 

The modelling work process is also important with respect to developing support- 
ing tools for model development because any software tool must  focus on the 
work processes it is intended to support. Modellers are generally unwilling to 
change the work processes that  they have successfully performed for a number of 
years. Further, a weak focus on the work process is likely to miss the important 
requirements where support is needed most. Therefore, this chapter briefly 
summarizes the work of Foss et al. (1998), which presents a field study about the 
modelling process as it is conducted in chemical industries (cf. Figure 1). Several 
issues including documentation, conceptual modelling, model implementation, 
and model application have been considered in this field study. A lot of detailed 
information about various facets of modelling processes can also be found in Han- 
gos, Cameron (2001b). 

Figure 1. Mode l l ing  as an i terative work process 

D o c u m e n t a t i o n  is described as an important means of preserving and communi- 
cating informal knowledge about the models being developed. The modelling 
process should therefore start  with some sort of initial problem specification, re- 
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flecting the modeller 's initial ideas, requirements ,  and assumpt ions  on the model 
to be built. Among these, the purpose of the model should be specified a-priori, for 
example as a ta rge t  against  which simplifications can be evaluated.  This docu- 
ment  can fur ther  contain any existing information about process, equipment,  or 
mater ia l  under  consideration. A fur ther  step towards a good documentat ion is to 
trace decisions tha t  have been made during the modelling process. 

The interviewees consulted by Foss et al. (1998) s tate  tha t  a conceptual model of 
the chemical process to develop a model for is (at least) helpful (if not essential) 
for discussing with domain experts. This conceptual model specifies the model in 
terms of the chemical engineering domain together  with its assumpt ions  ra the r  
than  as a set of equat ion or even a chunk of a p rogramming  language.  Ideally, a 
conceptual model could be defined without  wri t ing any equations, but, as we will 
reveal later, current  modelling languages  do not fulfil this goal. The fact tha t  
there is more to a model than  just  its equations has been fur ther  elaborated by 
e.g. S u b r a h m a n i a n  et al. (1993) or Marqua rd t  (1996). The conceptual model can 
be considered as independent  of a real izat ion in a par t icu lar  simulator,  it is 
r a the r  the model the engineer would sketch on paper  before actually using a tool 
to implement  the model. 

Given the conceptual model, an implementation in a specific numeric  application 
must  be developed in order to analyse the model. Different tools may be chosen 
for this task, depending on the context, their  capabilit ies and the experience of 
the modeller. Engineer ing concepts must  be t r ans la ted  into the concepts provided 
by the tool in an appropriate  and systematic  manner .  It is likely tha t  differences 
in expressiveness between the representa t ion  for the conceptual model and the 
chosen tool may require extra work during the implementa t ion  step. The model 
implementa t ion  should be wri t ten  wi th  respect to numerical  performance and ro- 
bustness  (e.g. by reordering equations or scaling variables,  cf. Chapter  3.2). Such 
issues are best considered during model implementa t ion  r a the r  t han  on a concep- 
tual, domain-centred level. As an example, a spatial ly dis t r ibuted model should 
be developed using par t ia l  differential equations on a conceptual level. If imple- 
mented  in FORTRAN for example, a discretisat ion of the model becomes neces- 
sary because FORTRAN does not support  any par t ia l  derivatives. 

Often, the development  of a conceptual model is skipped and an existing imple- 
menta t ion  of some model is reused, leading to a potent ia l  source of errors and in- 
consistencies in the overall model if the under lying assumpt ions  are not quite 
appropriate  in the modelling context. Inconsistencies can be avoided or, a t  least, 
model debugging can be simplified if a conceptual model and documenta t ion  of a 
model implementa t ion  are available because reasoning can then  be performed on 
a physical level ins tead of a level of ma themat ics  or even source code. 

Modelling is a highly i terat ive process where each model developed must  be vali- 
dated agains t  the actual  plant  behaviour  to check whether  the modelling as- 
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sumptions made are a useful abstraction of the reality. If this is not the case, one 
will have to improve the model or use different techniques to tackle a problem 
(Figure 1). 

Once implemented and validated, the model can be used in a model-based appli- 
cation. Degrees of freedom and inputs to the process have to be specified. Depend- 
ing on these specifications different problem types result, such as simulation, de- 
sign, or optimisation problems. However, there is no solver package of commer- 
cial s trength that  is able to carry out the full range of model-based applications 
that  are employed during the plant development lifecycle. Also, in general, model 
implementations of different software packages are incompatible. This makes 
frequent reimplementations of the models necessary, a costly but unproductive 
step that  can be facilitated if a conceptual model has been developed from the 
outset. 

From an organizational point of view, the modelling process is often carried out 
by a number of people, contributing to different parts of the model (such as a dis- 
tillation specialist) or they are active in different modelling activities (such as pa- 
rameter  identification). Hence, the modelling process in such a group must also 
support coordination of the joint effort on the one hand and sharing/distributing 
relevant information on the other. Often, the developers and the users of a model 
are distinct persons, leading to further complications. First, the developer of the 
model must ensure that  the user (who is less familiar with the model and its 
limitations) must  be able to understand and employ it. Further,  different people 
from different domains have diverse understandings of concepts so that a control 
engineer would probably prefer a view on a reactor model as a transfer function 
relating measurements  and actuators, for example, while the reaction expert is 
most likely interested in the reaction kinetics and thermophysical properties of 
the material  system. 

The discussion above has revealed that  a single piece of process equipment (such 
as a reactor or distillation column) will be modelled for a number of different 
purposes during the plant development and operation lifecycle. These models are 
often coded in incompatible tools, which implement different model-based studies 
that  are required in the design lifecycle. These incompatibilities are a major ob- 
stacle on the path towards an efficient use of model-based techniques. 

3.1.1.2 Mult i facet ted  and Lifecycle  Process  Mode l l ing  

A systematic approach to an understanding of the above issues of process model- 
ling was first undertaken by Stephanopoulos, Henning, Leone (1990b). The term 
multifacetted modelling was characterized by considering process models being 
developed on different levels (multilevel modelling), for different modelling con- 
texts (multicontext modelling) and are being considered from different perspec- 
tives of interest (multiview modelling). During the past decade, those considera- 
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tions have evolved into what  is nowadays called lifecycle process modelling, 
where not only the different facets of process models (in the sense of data) are 
considered, but  also their  relat ionships and the evolution of these artefacts in the 
sense of a work process (Marquardt ,  et al., 2000). 

A lifecycle-centred view on the modelling process focuses on t racking the evolu- 
tion of a model from its initial creation, th rough  a number  of application and 
modification cycles. It makes  explicit tha t  different versions and views of a model 
are by no means  independent  because they describe the same physical  piece of 
equipment  so tha t  we can ta lk about a family of models r a the r  t h a n  about a sin- 
gle model. 

Such an inclusive representa t ion  of information about models enables to capture 
also the negative experiences (what bet ter  not to do), whereas  the final outcome 
of an  engineering design process only covers the decisions finally taken, and 
these are not even made explicit. Fur ther ,  a comprehensive representa t ion  of 
mathemat ica l  models together  with the work processes involved is an indispen- 
sable contribution to model reuse and unders tanding,  even after  a long period of 
time. These large time scales occur frequently in engineer ing where  a phase of 
intense design work is followed by a r a the r  long phase of operation. In subse- 
quent  reengineer ing phase (such as a capacity extension of a plant), accumulated 
knowledge (such as mathemat ica l  models) is often lost because design team 
members  have changed their  positions or left the company or it cannot  be under- 
stood because the rat ionale behind it has not been documented.  

3.1.1.3 Requirements  for Modell ing Frameworks  

Summar iz ing  the above s ta tements ,  the requirements on computer-aided support  
for chemical process modelling are means  to, 

�9 Provide a rich set of concepts to describe models using chemical process 
engineering terms without  being tailored to specific s imulat ion applica- 
tions or even tools, 

�9 Turn  domain knowledge into functionality to effectively speed up the de- 
velopment  of models for a certain purpose, 

�9 Capture  informal information belonging to the model and its development 
process to improve the communicat ion of and about models in a t eam of 
process developers, 

�9 Ease the t rans i t ion  to/between different model-based applications, and 
�9 Make the evolution of model artefacts and the modelling work process ex- 

plicit to provide a bet ter  unders tand ing  over the long-term. 

Given these requirements ,  the remainder  of this Chapter  will review existing 
modelling frameworks,  which are popular  in chemical process industr ies  and 
academia.  As the te rm of a modelling f ramework is not precisely defined other- 
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wise, we will use the generic definition of a framework from Merriam Webster's 
Dictionary as a basic conceptual structure, which here refers to modelling tool ar- 
chitectures. Such a framework must  cover: 
A set of concepts tha t  can be used to construct chemical process models, 

�9 One or more representations of these concepts suitable for communication 
among humans  and/or between tools, 

�9 Functionality to automate parts  of the modelling process, and 
�9 An architecture that  exploits the model representat ion and organizes rood- 

elling functionality in a tool implementation. 

Section 3.1.2 will provide an overview of modelling concepts and languages as 
concrete realizations of the first two issues, whereas the third will be the topic of 
Section 3.1.3, discussing modelling tool functionalities. Modelling tool architec- 
tures to organize the functionality and respective implementat ions in state-of- 
the-art  tools are discussed in Section 3.1.4. Finally, Section 3.1.5 will pick up the 
requirements  and identify future directions and potentials. 

3.1.2 M O D E L L I N G  C O N C E P T S  AND LANGUAGES 

A process model can have a wide variety of representations.  The general repre- 
sentation must  be considered with respect to two independent  coordinates. Pri- 
marily, the model is built using a set of modelling concepts each of which must 
have an agreed unders tanding among the users of the model. As an example, the 
concepts unit  operation and stream can be used to describe the structure of a 
chemical process. These concepts can be considered the semantics of the model. 
Further,  these concepts must  be notated in an unambiguous language to enable 
the concepts of the model to be communicated. The concepts employed to describe 
a process model can be used to distinguish the large set of existing approaches 
into three groups. As programming languages we cover those where a model is 
directly implemented into the solver, e.g. as a subroutine. These are not dis- 
cussed any further because they do not provide any specific means for model rep- 
resentations. Generic modelling languages are those tha t  do not provide domain- 
specific concepts but concentrate on a mathematical  (or systems) level whereas 
domain-oriented (process) modelling languages provide modelling concepts, which 
correspond to domain-specific concepts (Marquardt, 1996). 

3.1.2.1 Generic modell ing languages 

From a mathematical  point of view, models employed in CAPE can use a con- 
tinuous or a discrete representat ion of system states and time, respectively. Rig- 
orous modelling based on physical insight natural ly  leads to models, which are 
continuous with respect to states and time. However, many applications require 
simpler models, for example to increase robustness or speed up calculations per- 
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formed with the model. These requirements  are often addressed by discretising 
the model in time or states. The remainder  of the chapter  will focus on quantita- 
tive models as they are obtained from first principles modelling methodologies 
(Hangos, Cameron, 2001b; Marquardt ,  1996). 

Mathematical modelling languages 

In a mathemat ica l  modelling language, the simplest model is represented as a set 
of variables x and equations f. Whereas the variables represent  system states, in- 
puts, and outputs,  the equations constrain possible values of the variables and 
thereby represent  knowledge on the domain of interest: 

f(x) = 0 (1) 

An equation system like (1) if often used to represent  a system in its steady state. 
The equations f constitute of balance equations of the chosen balance envelope, 
constitutive equations describing equilibrium states (e.g. physical and chemical 
equilibrium) or non-equilibrium processes such as diffusion or reaction. Further,  
mater ia l  properties must  relate intensive quanti t ies such as specific enthalpy 
with pressure, temperature ,  and composition. 

The simulat ion of a model represented in such a way is then  essential ly a process 
of finding the roots of these equations (cf. Chapter  3.2). However, the equation 
system result ing from the modelling process may contain more variables than  
equations necessitat ing additional specifications for a number  of unknown vari- 
ables in order to achieve a consistent mathemat ica l  formulation. Since the for- 
mulat ion (1) of the model does not indicate which of the variables are considered 
as inputs to the model, it is also referred to as an open form model. On the con- 
trary, in a closed form model the selection of inputs and outputs  are fixed and in- 
tegrated to a solution algorithm (Marquardt,  et al., 2000; Biegler, et al., 2000). 

In addition to the steady state, one is often interested in trajectories, which result  
from a t ransi t ion of a system from one steady state to another,  for example, due 
to a change in a plant 's  feed streams.  This class of models dynamic models is of- 
ten represented as a differential-algebraic equation system: 

dx 
x,t)  = 0 (2a)  

Such an equation system describes the change of balanced quant i t ies  (e.g. mass, 
energy, or momentum) with time as a result  of fluxes enter ing or leaving the bal- 
ance envelope and sources in the envelope's interior. The solution of such a sys- 
tern consists essentially of finding the integral  

! 
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As symbolic solutions of (2a), (2b) are almost always impossible to find for rele- 
vant  engineering applications, a numerical  integration algorithm has to be pur- 
sued, s tar t ing from (consistent) initial conditions (Pantelides, 1988; Unger, e t  a l . ,  

1995 ) 

t=O 

and recursively determining a series of states x(tn) (cf .  Chapter  3.2). 

With increasing detail, spatial coordinates are of potential  interest  to the model- 
ler as well. Then, the model must  be able to represent  the changes of the state 
quanti t ies with respect to a change in space. In these equation systems, a vari- 
able occurs in derivative terms with respect to three independent  spatial coordi- 
nates r = [rx, r2, r3] w. Hence, part ial  differential operators instead of the total dif- 
ferential in Eqn. 2 must  be employed so tha t  the model can be formulated as a 
part ia l  differential-algebraic system equation (PDAE) system: 

f(x, otq-7 ' ar, ' ar  2 ' ar  3 ' t ' r " r z ' r 3 )  = 0 (3) 

Note, tha t  any formulation with less coordinates (even Eqns. 1) can be derived 
form equations (3) by a formal integration over the coordinates, which shall be 
excluded from the model (Gerstlauer, e t  a l . ,  1993). In contrast  to DAE models, 
consistent initial and boundary conditions have to be provided which is a non- 
trivial task  (Martinson, Barton, 2000). 

Distributions of a state quant i ty  are not only of interest  with respect to spatial 
coordinates but sometimes also with respect to substantial  coordinates .i such as 
the size of particles in a particulate phase. In this case, not only partial  deriva- 
tives occur, but  also integrals that  correspond to closing constraints over the dis- 
t r ibuted quantities. Hence, integro-partial  differential-algebraic equation 
(IPDAE) system are obtained: 

~x  ~x  ~x  ~x  i xdrp , r rl , r2 , rs ) = O . 
f(x' ~ ' ~)r, ' ar= ' ar  3 ' 

(4) 

A further  level of complexity is added when the systems considered no longer 
have a fixed structure but the equations used to describe them change during the 
solution process. There are many examples in process engineering applications 
exhibiting such behaviour, such as phase changes as a function of tempera- 
ture/pressure or flow pa t te rn  changes as Reynold's number  increases. To describe 
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the different modes of a system, the overall horizon of the s imulat ion is consid- 
ered to be par t i t ioned into N subintervals.  A different set of equat ions f i  as e.g. in 
(2) or (4) holds in each mode i (Barton, Pantelides,  1994): 

f~(...) = O, i =  1. . . N . (5a) 

Each of those equat ion sets fi can have its own set of variables.  The boundaries  of 
the N intervals are not fixed a-priori but  must  be de termined during the simula- 
tion itself by means  of monitoring so-called t rans i t ion  conditions L. These are as- 
sociated to a state i and describe the condition for a t rans i t ion  to state j to occur: 

d x  i 
L,,j (x,,--z,,t) = 0, i=  1...N, j = 1.. .N. (5b) 

a t  

These can be logical conditions involving logical operat ions such as AND, OR, 
and NOT. Each interval  can be considered as a s tandalone s imulat ion process, 
and mus t  be init ial ised as such so tha t  initial  conditions for in terval  boundaries  
mus t  also be computed during the s imulat ion process. In a general  formulation, 
this would involve equations tha t  hold at  the in terval  boundar ies  to relate quan- 
tities before and after the switching event to e . g .  specify tha t  the mass content of 
a t ank  is continuous over the transit ion: 

dx j dx~. 
x, 0 (5c) T,,j(xj, d t  ' ' - - ~ - ) =  " 

Initially, equat ion systems (1)-(5) had to be coded directly into the solver frame- 
work and no other  modelling facility t han  a p rogramming  language such as 
FORTRAN was available. Languages  such as GAMS (Brooke, e t  a l . ,  1998) or 
MathML (Ausbrooks, e t  a l . ,  2001) simplify the specification of the mathemat ica l  
formulat ion but  do not provide means  for s t ruc tur ing  the possibly large set of 
equations.  

Systems modell ing languages 

Systems-oriented modelling language use some sort of a s y s t e m  m o d e l  as a basic 
concept. Such a system model can be connected to other  models to yield a model 
s tructure.  According to systems theory, a model is usual ly  regarded  as 
decomposable into a number  of subordinate  models, so tha t  aggregat ion hierar-  
chies of a rb i t ra ry  depth can be developed. The main  advantage  of such a repre- 
senta t ion is, t ha t  the modeller can limit the complexity of the modelling effort by 
focussing on individual  par ts  of the overall model. Fur ther ,  par t s  of a model can 
be reused as such. Each system model contains a set of equat ions of type (1)-(5) 
and can be connected to others by specifying connection equat ions of the form 

X l  -"  X k  
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These denote that an output of some model is equal to the input of another one. 
Modelling languages that simplify the development of large-scale models have 
been available since 1967 and have improved since then. Starting with CSSL 
(Continuous systems simulation language, Augustin et al., 1967), and its deriva- 
tions like ACSL (Advanced Continuous Simulation Language, Mitchell and 
Gauthier Ass., 1992), Omola (Nilsson, 1993) and Dymola (Elmqvist, et al., 1996) 
were important stages particularly well known in the control engineering com- 
munity. 

These domain-independent (also called multi-domain) modelling languages have 
resulted in a standardization effort called Modelica (Modelica Association, 2000). 
Modelica aims at providing a standard language that  is based on object-oriented 
concepts to simplify model development and reuse. The basic element in Modelica 
is a class definition, which may occur as e.g. a model class, a variable class (a 
type), or a module for structurization purposes. These facilities can be used to in- 
troduce domain-specific models, as shown in the example (Figure 2). 

p a r t i a l  model  SeparationStage 
MaterialFlow phase 1 in, phase 1 out; 
MaterialFlowphase 1 in, phase 1 out; 

e q u a t i o n  
end SeparationStage; 
pa r t i a l  model StagedSeparationApparatus 

p a r a m e t e r  Integer no_stages "the number of stages"; 
SeparationStage stages[no_stages] "the stage models"; 

e q u a t i o n  
end StagedSeparationApparatus; 
pa r t i a l  model  CountercurrentStagedSeparationSection 

ex tends  StagedSeparationApp aratus 
e q u a t i o n  

/! connect the phase_l ports 
for i in 1:(no_stages- 1) 

connect(s tage [i] .phase 1 out, stage [i+ l] .phase 1 in); 
end for; 

/! connect the phase_2 ports in countercurrent direction 
for i in 1:(no_stages-I) 

connect(s tage [i] .phase 2 in, stage [i+ l] .phase 2 out); 
end for; 

end CountercurrentStagedSeparationSection; 

Figure 2. Example of reusable models formulated in Modelica 
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This Modelica fragment shows an abstract definition of a separation stage that  
has simply inlets and outlets for two phases. These are represented by special 
connector classes (not shown for the sake of brevity). The coupling of connectors 
is achieved by the connect statement  as shown in the CountercurrentStagedSepa- 
rationSection model. On the other hand, we define a model for a staged appara- 
tus by specifying a fixed number of stages. For a staged separation model with a 
countercurrent flow pat tern an abstract topology can now be modelled without 
specifying what  the individual pieces are. The model of the countercurrent sepa- 
ration apparatus inherits from the more general staged apparatus  model using 
the extends keyword. Note, that  all of these models have been declared using the 
Modelica keyword partial, which specifies that  these models have to be further 
extended to be used in a concrete model. This is shown in a further example of 
Modelica : 

m o d e l  VLTray e x t e n d s  SeparationStage 
. o o  

equation 
/ /adds two phases in equilibrium 

end VLTray; 
m o d e l  DistillationColumn 

extends CountercurrentStagedSeparationApparatus 
(no_stages=no_trays, stages=VLTray [no_stages]) 

Rea l  reflux_ratio; 
I n t e g e r  no_trays "the number of trays of column"; 
Condensor condensor; 
Reboiler reboiler; 

equations 
//connect tower with condensor and reboiler 

end  DistillationColumn; 

Figure 3. Extending generic models in Modelica 

A vapour-liquid separation tray is described as a special kind of a general separa- 
tion tray, again employing Modelica's inheritance mechanism using extends. A 
distillation column model is then defined as a staged apparatus  with a counter- 
current flow pat tern  where the individual stages are two-phase systems. By 
separating the flow pat tern (concurrent, countercurrent) from the actual separa- 
tion phenomena (VL/LL equilibrium) a number of different separation models 
can be rapidly built without specifying identical information over and over. This 
way of modelling demonstrates the power of the two orthogonal concepts of an 
aggregation and a specialization hierarchy for the reuse of models, here in the 
chemical engineering domain. Further,  it can be seen tha t  the definition of new 
constructs such as variable and model types can be used to develop libraries for a 
particular domain, so that  the language can be tailored at least for the mathe- 
matical representation of process models. A formal specification of non- 
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mathemat ica l  properties such as a geometric description of the model has not 
been achieved so far. The process engineering community also produced model- 
ling languages, which were more or less tailored to par t icular  requirements in 
chemical process modelling and simulation, but have been used in other domains 
as well. SpeedUp (Aspentech, 1997) as an early instance introduced an interface 
to a physical properties calculation engine, which relieved the modeller of the 
burden to code physical property models in the form of equations shown above. 
Further,  this interface allowed to include models which were coded as algorithms 
ra ther  than  equations which enabled the inclusion of e.g. local property models or 
phase stability tests which are impossible to code in an equation-oriented form 
shown above. 

Ascend (Allan, et al., 1996), although offering mostly generic modelling concepts 
has primari ly been used in the chemical engineering domain. It offers a powerful, 
object-oriented modelling language together with interest ing documentation fea- 
tures (Allan, 1997). AspenTech's Custom Modeler (Aspentech, 2001), a follow-up 
product to SpeedUp has improved on the modelling language of SpeedUp, e.g. by 
adding object-oriented features such as hierarchical decomposition. So far, 
gPROMS (Process Systems Enterprise, 2000) is probably the only known lan- 
guage, which supports all of the domain-reliant features mentioned above and is 
also available as a commercial product. Besides the specification of model equa- 
tions (1)-(5) gPROMS also allows the specification of an operation model, which is 
needed to represent  external  actions imposed on a process model during its op- 
erations. This so-called task  language has made gPROMS a popular tool for de- 
tailed batch process modelling where the batch recipes can be represented by 
such an operation model. A task is composed of e lementary  tasks and timing 
structures.  Elementary tasks describe single actions imposed on the process 
(changing a valve position, specifying changes in the variables), whereas the tim- 
ing structures can be used to position the elementary tasks with respect to time, 
specifying sequential  or parallel execution, for example. Finally, elementary 
tasks and timing structures can be assembled to a task, a complex operation pro- 
cedure, which allows the reuse of an operation procedure in different contexts of a 
model. The following example shows how a continuously stirred tank reactor 
(CSTR) can be modelled together with its operating procedure. It is operated in 
plain batch mode, where each batch consists of a phase where two reactants are 
fed in sequence, and, after a subsequent reaction phase, the product is drained 
from the tank  again. 

MODEL Cstr 
# not shown 

END 
TASK FeedReactant 

PARAMETER 
Reactor AS MODEL Cstr 
Inlet AS INTEGER 
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FeedRate AS REAL 
FinalVolume AS REAL 

SCHEDULE 
SEQUENCE 

RESET Reactor.Fin(Inlet):=FeedRate; END 
CONTINUE UNTIL Reactor.TotalVolume > FinalVolume 
RESET Reactor.Fin(Inlet):=0; END 

END 
END 
TASK Drain 

# analogous 
END 

Figure 4. Operation model specified in gPROMS 

The FeedReactant task basically sets the reactor feed s t ream specified by the 
variable Inlet to the desired FeedRate and continues the (dynamic) simulation 
until  a FinalVolume has been reached. Then, the feed s t ream into the reactor is 
switched off again simply by setting the feed rate to zero. The task  description to 
drain the product from the reactor again is very similar and therefore not shown 
here. 

TASK DoReactionBatch 
P A R A M E T E R  

Reactor AS MODEL Cstr 
S C H E D U L E  

S E Q U E N C E  
FeedReactant(Reactor IS R1, Inlet IS 1, FeedRate IS 0.1, 

TerminationVolume IS 2.5); 
FeedReactant(Reactor IS R1, Inlet IS 2, FeedRate IS 0.2, 

TerminationVolume IS 4); 
CONTINUE UNTIL (R1.X(3) > 0.25) 
DrainProduct(Reactor IS R1); 

END 
Figure 5. Aggregation of operation models in gPROMS 

Performing a reaction in batch mode is then described by reusing the more 
granular  tasks FeedReactant and DrainProduct defined above. The batch time is 
determined by the concentration of product 3, which has to reach a certain level. 
Obviously, the DoReactionBatch task  could be further aggregated with other 
tasks, e.g. for a subsequent separation of the products in semi-batch or batch 
mode. In addition to the reuse for Models, gPROMS provides reuse also for task 
descriptions based on object-oriented descriptions. 
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3.1.2.2 Domain-oriented Modelling Languages 

A natural  modelling approach for a chemical engineer is to represent his/her per- 
ception of the process in terms of concepts for communication among engineers 
instead of directly using mathematical  equations as shown above. Such a model- 
ling process allows the modeller to stay close to his/her mental  model of the proc- 
ess so that  it is easy for a domain expert to express this knowledge through a 
suitable modelling language. With respect to the modelling process overview 
sketched in the introduction, the modeller would ideally be able to directly repre- 
sent the conceptual model in a tool, abstracting from mathematical  details pre- 
sented in the former sections. 

Flowsheeting tools/languages 

The most prominent instances of the class of commercial process modelling tools 
are flowsheeting tools such as Aspentech's Aspen Plus (Figure 6), Hyprotech's 
Hysis.Plant, or Simsci's Pro II. All of these offer a library of precoded models on 
the granulari ty of a unit operation. These models can be configured through a 
limited set of choices, but the underlying phenomena and the incorporated 
chemical engineering knowledge are fixed and cannot be inspected or even modi- 
fled from the outside. 

In the chemical engineering domain, the structure of a conceptual model of a 
plant can be found by selecting the balance volumes and the streams connecting 
them, first. Usually, these are chosen identical or at least close to the physical 
equipment boundaries so that  the reuse of models for common pieces of process 
equipment is simplified. On this coarse level the process is described in terms of 
e.g. unit operation models and stream models. This correspondence between the 
mental  model and the modelling concepts offered by the tool is probably an ira- 
portant reason for the success of flowsheeting tools. 

After choosing a suitable model structure, the behaviour of each balance volume 
must  be specified. On a conceptual level this can be done by choosing equilibrium 
and non-equilibrium phenomena, the coarse behaviour of the materials proc- 
essed, and a suitable geometry. Flowsheeting tools offer a set of fixed choices for 
those items, thereby hiding a lot of mathematical  and physical complexity from 
the user at the cost of reduced flexibility. Although suitable for process simula- 
tion and/or optimisation, this type of tools/languages cannot be used for efficient 
solution of process synthesis problems involving structural  optimisation, for ex- 
ample, the determination of the optimal process flowsheet. 
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Figure 6. Aspen+ user interface with modell ing concepts on a flowsheet level 

Process modelling languages 

A broad range of process modelling languages on a more granular  level of detail 
with increased flexibility has been a topic of interest to several academic groups 
throughout the 90s (Stephanopoulos, et al., 1990a; Marquardt,  1992; Drengstig, 
et al., 1997;, Jensen, Gani, 1999). In these languages, modelling concepts are pro- 
vided on varying level of granularity (multilevel modelling), usually ranging from 
individual phenomena such as diffusion and reaction up to models of unit  opera- 
tions and their connections to a plant model. This level of versatility is primarily 
achieved by a hierarchical decomposition approach, which allows the specifica- 
tion of models not only in terms of flowsheet elements, but on arbitrary levels be- 
low. As an example, a large plant model could be broken down into a reaction and 
a separation section together with their recycle structure. Each section can be 
further decomposed into logically coherent models, e.g. a distillation column with 
its boiler and condenser or a reactor with a pre-heater would be found on this 
level. Going further, the distillation column will be refined into a set of trays and 
each tray is in turn  decomposed into a liquid and a vapour phase model, for ex- 
ample. 

As an example, M O D E L i A  (Stephanopoulos et al., 1990a) introduces the generic 
process unit as a central modelling element and various subtypes thereof to span 
modelling contexts concerning different levels of granularity. These range from 
the plant  level down to the sub-unit  level, where the latter represents e.g. indi- 
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vidual phases within a unit  operation. For representing the process structure, 
MODEL.LA offers ports, which denote connection points between models and 
streams, which connect them. The process behaviour can be modelled using vari- 
ables and constraints. Finally, MODEL.LA provides the notion of the modelling 
scope, i.e. through a set of conditions which must  hold for the modelling context 
in which the model shall be used, thus supporting multifacetted modelling of 
processes by providing different models to be used in different modelling contexts 
(Stephanopoulos, et al., 1990b). This language features also a par t ia l  support for 
documenting the model. From a formal point of view, MODEL.LA is strongly 
based on the notion of semantic networks, which were early approaches in 
knowledge representat ion (Russel, Norvig, 1994). A fragment of MODEL.LA de- 
scribing a continuously stirred tank reactor is shown in Figure 7. 

((JACKETED-CSTR IS-A UNIT) 
(THE COMPONENTS OF JACKETED-CSTR IS VESSEL) 
((VESSEL IS-A SUB-UNIT) 
(THE PURPOSE OF VESSEL IS "...") 
(...) 
ENDMODEL) 

(THE COMPONENTS OF JACKETED-CSTR IS JACKET) 
((JACKET IS-A SUB-UNIT) 
(THE TYPE-OF-MODEL OF JACKET IS LUMPED) 
(THE COMPOSITION-CHARACTERISTICS OF JACKET IS HETEROGENEOUS- 

COMPOSITION) 
(THE PHASES OF JACKET IS LIQUID-I) 

(THE PRESSURE-CHARACTERISTICS OF JACKET IS 
(SET.OF (HOMOGENEOUS-PRESSURE ISOBARIC))) 

(THE THERMAL-CHARACTERISTICS OF JACKET IS 
(SET.OF (HOMOGENEOUS-TEMPERATURE NON-ISOTHERMAL))) 
(...) 

(THE OUTPUT-CONVECTIVE-PORTS OF JACKET IS JACKET-OUT) 
((JACKET-OUT IS-A CONVECTIVE-PORT) ENDMODEL) 
(THE PHASES OF JACKET-OUT IS LIQUID-1) 

(THE INPUT-CONVECTIVE-PORTS OF JACKET IS JACKET-IN) 
((JACKET-IN IS-A CONVECTIVE-PORT) ENDMODEL) 
(...) 
ENDMODEL) 

ENDMODEL) 
Figure 7. CSTR description in MODEL.LA  

VeDa (Verfahrenstechnisches Datenmodell) used a frame-based notation to rep- 
resent process engineering models from a system-theoretic perspective 
(Marquardt,  et al., 1993). VeDa uses several meta  layers (Baumeister, 2001) to 
achieve a flexible model representat ion and builds on devices as major processing 
compartments  and connections which denote the flows between devices. Recently, 
VeDa has become par t  of CliP (Bayer, et al., 2001), extending the scope to process 
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design in general. The concept of using meta  layers to organize the data model 
has been further extended and the extensibility has been taken  care of by intro- 
ducing so-called part ial  models (sort of modules in the data  model). CliP cur- 
rently comprises part ia l  models for mathemat ica l  modelling, a function-oriented 
view of the process, the realisation of the process, economics and cost engineering 
as well as control engineering concepts. 

Another approach, based on a graphical notation, has been presented by Dreng- 
stig, et al. (1997). TRAV (Transport, Reaction, and Accumulation View) uses a 
graphical notation of not only the process structure (or topology), but also of the 
phenomena related to energy and chemical species. Different symbols are avail- 
able for accumulation, t ransport  and reaction/generation and related by arrows 
indicating flows among these effects. 

D i s c u s s i o n  

In the field of software engineering and construction, object-oriented information 
modelling (Alhir, 1998) turned out to be a useful technique to represent  domain- 
specific concepts and their  relationships. Although all of the languages men- 
tioned have an implicit information model, few development efforts were explic- 
itly based on such an implementat ion independent  description of the process en- 
gineering domain. Rather, the preferred approach was to directly define a hu- 
man- and machine-readable representat ion as text, usually defined by some 
grammar (Aho et al., 1986), along a part icular  tool being developed. This has led 
to a variety of languages which do all express tool-specific concept in one or an- 
other way and are thereby insufficient to use for communicat ing models across a 
broad range of model-based applications. Recent s tandardizat ion efforts such as 
Modelica or MathML aim at a completely tool-independent representat ion of 
models so tha t  they offer the potential  to integrate a large number  of applications 
for modelling and simulation. 

Figure 8. Relationships of conceptual models and languages 
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In the future, we would favour that  a three-level information model together with 
a suitable set of model representation languages emerges (cf. Figure 8). This vi- 
sion encompasses a mathematical  base layer, which provides a rich set of generic 
mathematical  modelling concepts on the lowest level. The systems engineering 
layer introduces the systems-oriented concepts decomposition and coupling based 
on object-oriented principles. On top of these, domain-specific extensions such as 
a chemical engineering layer are to be defined on the highest level by introducing 
specific concepts (e.g. for phenomena or unit  operations) using the object-oriented 
principles defined on the layer below. 

A domain model for the concepts on these layers proposed could be specified us- 
ing UML. For each level, standardized representations suited to different per- 
spectives can then be defined as representations to facilitate tailored exchange of 
information among humans or tools, textual as well as graphical ones. Using 
XML, the MathML standard could become a s tandard representation of the 
mathematical  view of a model. Modelica could serve as a s tandard representation 
for a systems-based, multi-domain modelling approach offering rich capabilities 
of object-oriented principles. Finally, a family of languages tailored to individual 
domains is required to enable an efficient model development in any of these do- 
mains. An XML-based approach towards such a body of standards with a focus on 
process engineering models called CapeML.Model is currently undertaken as 
part  of the Global CAPE-OPEN project (Braunschweig, et al., 2000). 

Whereas the process flowsheeting languages and corresponding concepts are in 
widespread use today, the more academic process modelling languages have not 
found much interest in industrial applications so far. Two important possible 
drawbacks are that  

�9 although focusing on process engineering concepts, a good mathematical 
understanding of modelling is still required because a complete generation 
of a process model from a specification of physical and chemical concepts 
has not been achieved up to date, and 

�9 implementations of these languages (see further below) have not been 
available in industrial  strength software. 

More recent approaches still have to prove their theoretical advantage as opposed 
to generic modelling languages. Generic modelling languages such as gPROMS, 
ACM, or GAMS have proven to be powerful, flexible tools besides the more easy 
to use flowsheeting process modelling tools. 

3.1.3 MODELLING TOOL FUNCTIONALITY 

Rapidly, computer-aided support has been identified as an important means to 
speed up the modelling process. The intention of a chemical process modelling 
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tool is to support a certain modelling methodology, where a methodology in gen- 
eral is commonly understood as a combination of a certain work process and a no- 
tation of domain-specific concepts as introduced above (Oliver, et al., 1997; Jarke, 
Marquardt,  1995). Both, process and notation should be tailored to each other, 
the process describing when to use which concept for which purpose. 

However, as of today it is impossible to automate the complete modelling process. 
Instead, some parts of the modelling process are formally understood, whereas 
others must  be considered as a creative activity and therefore require user inter- 
action (Jarke, Marquardt,  1995; Lohmann, Marquardt,  1996). Hence, it is impor- 
tant  to identify those parts of the process, which can be automated in order to 
formalize and implement them. As an example, finding the balance volumes in a 
chemical process is an activity, which requires a bit of experience and an under- 
standing of the model. On the other hand, setting up the balance equations given 
the balance envelopes, the phenomena occurring in them, and their interconnec- 
tions is a pretty straightforward task, which can easily be automated (Gerstlauer 
et al., 1993; Jensen, Gani, 1999). 

The following sections present an overview of those parts  of the modelling proc- 
ess, which are well understood so that  they could be formalized, making them 
well-suited for implementation in a tool. We structure the functionality of a mod- 
elling tool according to its support to create and manipulate conceptual and/or 
mathematical  models, to analyse them for e.g. correctness and solvability, and to 
finally translate them into an efficient representation suitable for the solver. 
These issues will be discussed in more detail in the subsequent sections. 

3.1.3.1 Mode l  Crea t ion  and M a n i p u l a t i o n  

Functionality to actually perform the creation of the model and certain modifica- 
tions of it are very interesting as they do not just automate some tedious task but 
actually introduce domain knowledge as part  of the modelling tool functionality. 
Hence, tools relying on such a paradigm can be classified as knowledge-based. 
The knowledge-based systems are those that  in addition to the features found in 
the generic modelling languages, contain "built-in rules" that  assist in setting up 
model equations. Thus, the goal of the knowledge-based systems is to let the user 
describe new models either through phenomena-based information and/or 
through experimental data and let the "built-in rules" abstract this description 
into a set of equations. In the development of the model equations, several types 
of knowledge bases may be used, such as: 

�9 Fundamenta l  model objects 
�9 And-Or graphs 
�9 Algorithms that  screen for closure constraints 
�9 Algorithms that  assist in the development of new empirical/semi-empirical 

models 
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Also, other knowledge representat ion mechanisms can be used to aid the model 
construction step such as an expert system. However, few of those have actually 
been applied to chemical process modelling. Sorlie (1990) for example employed a 
blackboard architecture in order to assist the modelling process by a predefined 
set of rules which are supervised by a scheduler. 

F u n d a m e n t a l  mode l  objects 

Fundamental modelling objects represent  core concepts from the application do- 
main  of chemical engineering. In many knowledge-based process modelling tools, 
these objects are associated with algorithms tha t  assist the user in performing a 
phenomena-based description of a new model. This phenomena-based description 
may either be used by searching for model equations that  match the specified de- 
scription (search-based methodology) and/or it may be used to eliminate parts of 
a reference model tha t  is stored in a model library, thereby, incorporating the 
concepts of model reuse and model transformation. 

Fundamenta l  modelling objects can be classified in terms of fundamental region 
objects and fundamental connection objects, similar to devices and connections 
introduced by Marquardt  (1996). This classification is based on the concept of di- 
viding the model equations into those that  represent  a defined boundary (region) 
in terms of balance equations, constitutive equations and constraint (or condi- 
tional) equations. Also, two or more boundaries or regions may be interconnected 
through connection equations. New fundamental  objects can be derived from 
equations tha t  are related to objects belonging to an existing set of reference 
(fundamental) model objects. Ideally, these fundamental  modelling objects may 
also be predefined in terms of a library. The elements of this library, fundamen- 
tal modelling templates, can control the addition of user-defined equations, for 
example, when the library (or reference) constitutive equations belonging to a 
reference model object are not suitable. A set of rules is therefore necessary to 
generate (retrieve) the necessary equations from the reference model objects and 
to check for consistency between boundary (mathematical /phenomena) descrip- 
tion and generated/retrieved equations. A "search-based" methodology therefore 
need to be applied to assist the user in locating and retrieving the most appropri- 
ate reference fundamental  objects among the feasible al ternatives available in 
the library. Figure 9 shows the classification of the model equations belonging to 
a fundamenta l  model object. 
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Figure 9. Classification of fundamental modelling object equations 

A new model can be generated by following the inheri tance pa th  for each class of 
equations (balance, constitutive and constraint) according to the boundary de- 
scription. The end of each path  is connected to a reference model object. If the 
reference model object matches the boundary description, it is retrieved, other- 
wise, it must  be modified or a user-defined reference model object has to be intro- 
duced. 

And-Or graphs 

A similar, yet fundamental ly different approach, is the representat ion of process 
modelling knowledge using an And-Or graph (Bogusch, Marquardt ,  1997). 
Whereas the approach presented in the previous section uses a specialization hi- 
erarchy to represent  knowledge of the process engineering domain, And-Or- 
Graphs use a composition approach to represent  the relationships of variables 
and equations. Such a graph is part i t ioned into a set of variable type nodes and a 
set of equation type nodes (Figure 10). Directed edges from variables to equation 
describe al ternative refinements for a variable type (Or-edges). One of these 
equations has to be selected as par t  of the process model. As an example, a diffu- 
sive mass flow J can be refined by a variety of phenomenological relations such 
as Fick's law of diffusion, Stephan-Maxwell equations, etc. Direc tededges  from 
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equat ions to variables describe which variables are constrained by an equation. 
Each of the variables in an equation occurring in a process model must  either be 
fur ther  refined using the And-Or graph or it mus t  be specified as a fixed parame- 
ter of the model. Based on such a representa t ion of domain knowledge, model de- 
velopment  can be seen as an activity of finding a suitable pa th  through an And- 
Or-Graph, where a decision according to modelling assumpt ions  and objectives 
mus t  be made at each Or-branch. In addition to the specification of the graph, a 
set of pruning rules can be useful in order to el iminate choices, which are not 
suitable in the current  modelling context. The choice of geometric relations 
should be constrained by the choice of the chosen geometry, for example. 

Figure 10. Part of an And-Or-Graph representing domain knowledge 

S c r e e n i n g  for c losure  cons tra int s  

Such algori thms screen the developed equat ion system for variables that  should 
be constrained with closure equations. That  is, if all the variables within a clo- 
sure equat ion are in the equat ion system, then this kind of algori thm should add 
the closure equation to the equation system in order to indicate tha t  the variables 
wi thin  the constraints  are not independent.  

�9 Development of new empirical/semi-empirical models 
�9 The following algori thms may be used to assist in the development of new 

empirical]semi-empirical models: 
�9 Reference constitutive relations - used to create a new phenomena model 
�9 Dimension a n a l y s i s -  the new set of equations need to be mathematical ly  

consistent  
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Statistic/plotting tools that  assist in analysing experimental data in order 
to determine an empirical constitutive relation (phenomena model) 
Model analysis - identify linear equations, decompose equations into a set 
of summation terms, identification of terms through intensive variables, 
etc. 

3.1.3.2 Model  A n a l y s i s  

Model analysis is of high interest during model development. Model analysis 
tasks can be distinguished in mathematical  criteria (which are derived e.g. from 
solvability criteria and therefore partially depend on the solver type being cho- 
sen) and domain-specific criteria, which are relevant in a physical or chemical 
context. 

A number of those criteria have been listed by Jensen (1998), Bogusch et al. 
(2001), or Piela (1989). Starting with physically motivated criteria, there is the 
analysis of physical dimensions of the variables occurring in an equation. Obvi- 
ously, the domain of the terms on the left and right hand side must  be identical, 
i.e. mass per time for a mass balance. Further,  the list of substances within each 
balance volume can be constructed by propagating them along the structural  
connections in the model if permeability of walls etc. is provided by the modeller 
(Bar, Zeitz, 1990). Several mathematical  problems can already be identified on a 
process engineering level. If e.g. too many balance equations/closure equations 
are set up, the resulting model will have a rank deficiency because two equations 
will be linearly dependent. 

The analysis features which fall into the mathematical  domain a far more com- 
prehensive. Here, degree of freedom analysis, s tructural  solvability and index 
analysis (Jensen, 1998; Bogusch et al., 2001; Russel & Gani, 2000; Unger, et al., 
995) have been developed and implemented in several chemical process modelling 
tools. 

3.1.3.3 Model  T r a n s f o r m a t i o n  

All of the model formulations presented above need an additional solution algo- 
r i thm to actually find a solution from some given input such as the parameter  
values for an algebraic equation system and the initial conditions in case of a dif- 
ferential-algebraic equation system. Without the solver algorithm, the model as 
formulated above can only be used to check whether  a given state is among the 
possible states of the system under consideration. This functionality of the model 
is used by the solver to iteratively determine a solution of the model, together 
with derivatives of the model equations f with respect to the states x in order to 
guide the iteration process. In order to connect the model to such an algorithm, 
the model equations and derivatives must  be available as an executable piece of 
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code. Such a model representation is also referred to as procedural model repre- 
sentation, as opposed to a declarative model representation where the model is 
given as data, which does not exhibit any functionality. We call the transition 
from the declarative to the procedural representation a model transformation (of 
a specific kind). 

The model resulting from the modelling process is often not well suited to be used 
by the solver directly. A number of simplifications and optimisations are usually 
applied to the model as it is transformed. For example, a discretisation based on 
the method of lines approach can be employed to make PDAE systems solvable by 
s tandard DAE solvers (Pfeiffer, Marquardt,  1996). Optimisations of the equation 
structure can be performed, e.g. by reordering equations, eliminating explicit 
equations, or factoring out common equation structures or subexpressions (Car- 
panzo, Maffezoni, 1998; Allan, Westerberg, 1999; Morton, Collingwood, 1998). 
The final step of a modelling tool is to transform such a declarative model into a 
procedural representation to be used by the solver. Generally, there are two dis- 
tinct approaches. 

First, the model can be translated into some programming language (e.g. 
FORTRAN or C++), effectively generating the procedure to be used by the solver 
(R~iumschi&ssel, 1997). During this step, automatic derivative techniques 
(Bischof, et al., 1997; Grievank, et al., 1996) can be used to supply Jacobian and 
sensitivity information required for the solution step. The resulting code must 
then be compiled and linked together with the solver or it is transformed into a 
reusable software component. Ideally, such a component is equipped with stan- 
dard interfaces according to the CAPE-OPEN standard so that  it can be used in 
combination with any standard-compliant solver in a plug-and-play manner. 

An alternative approach to achieve a procedural model representation is to trans- 
form the model into a computation tree, where the operations are represented as 
nodes and the variables are represented as leaves of the tree (Keeping, Pan- 
telides, 2000). This tree can then be evaluated in depth-first or breadth-first 
manner  resulting in values of the residual expressions. Additionally computing 
the chain rule along the computation of the tree also yields Jacobian information. 
A possible advantage of this approach is that  domain-specific knowledge can be 
taken into account in order to speed up the transformation process. This is par- 
ticularly important as process models quickly grow into sizes where generic com- 
piler optimisation capabilities get stuck due to the sheer size of the model (Allan, 
Westerberg, 1999). Further,  it does not require the user to have a particular 
compiler installed on his/her machine. 

The MoT modelling toolbox (Russel and Gani, 2000) also provide feature to trans- 
late a model into a programming language such as C++ according to a specified 
format and/or direct solution of the model equations without the need for a par- 
ticular compiler installed on the machine. 
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3.1.4 MODELLING TOOL A R C H I T E C T U R E S  

A set of concepts useful for chemical process modelling has been presented and 
functionality, which is suitable for an implementation has been discussed above. 
This section will now concentrate how these two can be successfully used in a 
modelling tool implementation. 

The coarse organization of the required functionalities into a software tool is gen- 
erally called architecture. Architecture of a software system is a term on which 
most people have an agreed understanding until it comes to a precise definition. 
There seems to be a common understanding of architecture as a blueprint of a 
software system, a description that  facilitates the construction and understand- 
ing of software artefacts. Further  important objectives to be achieved by an archi- 
tecture are the management  of change and the mediation of different views of the 
stakeholders involved in a software project (Buschmann, et al., 1996; Kruchten, 
1995). By common sense, architectures consist of building blocks (called modules 
or components), their interfaces, and the relationships between the building 
blocks (Alhir, 1998). Here, the limit of common agreement is reached. There are 
ongoing debates about whether an architecture is conceptual (providing a basic 
understanding of a possible realization of the system) or implementational (de- 
scribing a concrete implementation of the system). Also, it is not agreed whether 
an architecture also describes the control flows within the systems or distin- 
guishes different roles of its building blocks. 

As it is impossible to describe a modelling tool architecture in detail without a 
concrete example, we will focus here on the properties of architectural patterns. 
Such a (architectural) pat tern addresses a recurring design problem that  arises in 
specific design situations,  and  presents  a solution to it (Buschmann, et al., 1996; 
Gamma, et al., 1994). Being a generic rather  than  a specific solution makes pat- 
terns interesting to discuss and compare modelling tools apart  from specific ira- 
plementations. Here, we will focus on general properties in terms of functionality, 
integration aspects and extensibility, which emerge from these patterns.  

In general, two broad classes of modelling tool architectures can be distinguished. 
The first class is batch-oriented and requires a complete problem specification 
from the beginning and a description what  to do with it. All remaining activities 
will be performed automatically without further user interaction. On the con- 
trary, the interactive modelling tool aids the user in constructing the model and 
specifying the description of what  to do with the model. Open process modelling 
tools finally are tailored towards integration tasks and easily fit into engineering 
environments. 
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3.1.4.1 B a t c h - o r i e n t e d  Mode l l ing  Tool A r c h i t e c t u r e s  

A batch-oriented modelling tool can be character ized as a single tool that  reads a 
model definition from some input  file (which is usually wr i t t en  using some text 
editor). Then, a sequence of steps with this model input  is performed until  the fi- 
nal goal, a solvable model formulation, is achieved. Often, the final solution step 
is even in tegra ted  into the tool itself. Such an archi tectura l  pat tern ,  where data 
is processed in a number  of stages, one after the other, is commonly called a pipes 
and filters archi tectural  pa t t e rn  (Buschmann, et al., 1996). Each processing step 
for da ta  is called a filter because it consumes input  data  and enriches, refines, or 
t ransforms it, and finally outputs  the modified data  again. Further ,  so-called 
pipes are established; they are responsible to establ ish a communicat ion link be- 
tween filter components and to synchronize the execution of active filters. 

A pipes and filters archi tectural  pa t t e rn  for process modelling and simulation 
tools is depicted in Figure 11 and will be explained subsequently.  A tool, which 
unders tands  a textual  model representa t ion (e.g. in Modelica or gPROMS lan- 
guage), requires a pair  of a scanner  and parser  at the beginning of a suitable 
pipes and filters combination. These tools stem from the compiler construction 
domain (Aho, 1986). In fact, many batch-oriented process modelling tools have a 
lot in common with  a compiler. The scanner is required to separa te  the input lan- 
guage into syntactical  elements,  such as keywords, symbols, etc. Based on this 
syntax tree, the parser recognizes constructs defined in the language and assem- 
bles a token tree to describe the input  in terms of the grammat ica l  elements of 
the modelling language tha t  are usually described in extended Backus-Naur  form 
(EBNF) (e.g. Modelica Association, 2000). Although scanner  and parser  could be 
assembled in a pipes and filter manner  as well, compiler construction has opti- 
mised the interact ion of these two tools so well, tha t  they can be considered as a 
single uni t  wi thin  the overall architecture.  

Figure 11. Pipes and filters architecture of modelling tools 

The token tree obtained from the parser  is usual ly fur ther  analysed for semanti- 
cal correctness, this can be considered as a first analysis step. The parser  only 
verifies tha t  the language elements  are used in a proper configuration (e.g. an 
operator  must  occur between two variables), but  does not check e.g. whether  
variable names  being referred to are actually defined. This is accomplished by a 
separa te  module, a semantic analyser as shown in Figure 11. Afterwards, modifi- 
cations such as symbolic discretisation can be performed and the resulting code 
can be optimised with respect to numerical  performance and robustness.  Then, a 
model t ransformat ion  in the sense of a code generat ion step (similar to a com- 
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piler) can be applied. The final code generation filter could e.g. output the con- 
tents of a Modelica model e.g. as a set of C++ class definitions which can then be 
compiled into an executable chunk of code or a CAPE-OPEN compliant compo- 
nent (Geffers et al., 2001) to be evaluated by the solver. In terms of compiler con- 
struction the final stage where code is generated would be referred to as a back 
end. 

An interesting property of such an architectural style is that  it is often possible to 
reuse individual filter components or to reconfigure them in different ways. As an 
example it is common in compiler construction to use different back ends for dif- 
ferent target formats. Using this approach, one could build a batch-oriented rood- 
elling tool tha t  can, given a model in a certain input representation, output the 
model in a variety of different target platforms. Figure 12 shows an extended 
modelling tool architecture according to the pipes and filters architecture which 
uses different back ends to generate code not only for C++ but also for GAMS and 
Modelica. Also, different analysis and/or optimisation stages may be employed, 
depending on the problem to be solved. 

Figure 12. Pipes and filters architecture with different back ends 

Tools using an architecture resembling the pipes and filter structure are often 
developed along a particular modelling language, such as gPROMS or SpeedUp. 
This language is implemented in the scanner/parser module and describes the 
interface of the tool to the user. With respect to the functionality classification 
mentioned above, the pipes and filters architecture focuses on the aspects of 
model analysis and model transformation but usually provides only weak support 
for model creation and manipulation. 

3.1.4.2 Interact ive  Model l ing  Tools 

Interactive modelling tools on the other hand work quite differently. The main 
difference is tha t  they do not require the user to specify the full model right from 
the start, but they support him/her also during the model creation and manipula- 
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tion process. Hence, an interactive modelling tool can be applied to a process 
where generat ive functionality can be applied only par t ia l ly  to the overall model- 
ling process. This feature makes  interactive modelling tool architectures particu- 
larly well suited for the use of process modelling languages.  As already men- 
t ioned above, process modelling languages often require fur ther  user  input since 
it is impossible to generate  complete process models from a simple domain speci- 
fications. 

An interactive modelling tool frequently switches be tween a user-driven and an 
au tomated  mode. As long as user  input is required, the user  drives the modelling 
process. Then, he/she can launch au tomated  functions, which can make quick 
progress along the modelling effort. These au tomated  functionalities usually 
cover model analysis and the t ransformat ion of the model into a form suitable for 
the solver. If any of those steps fail, the modeller will have to go back into the 
model manipula t ion  mode to correct any problems reported by the tool. Also, a 
failing solution process might  force the modeller to reconsider his model. 

In recent times, also the actual  generat ion of model equat ions has been fur ther  
e laborated (cf. Section 0). Fur ther ,  it is impor tan t  to note tha t  an interactive tool 
can provide analysis  functionality also in the user-driven mode. The tool can re- 
spond to any user  input  and provide immediate  feedback if any incorrect infor- 
mat ion has been entered, such as a reference to a variable unknown so far. AI- 
though a tool may not now how to write correct equations on its own, it can very 
well identify equations, which are incorrect with respect to their  physical or 
ma themat ica l  dimensions. 

Figure 13. Document-view architecture of a modelling tool 

A useful archi tectural  pa t t e rn  to describe an interactive modelling tool is the so- 
called document-view architecture (Buschmann, 1996) as shown in Figure 13. It 



117 

consists of a central storage of the data being manipulated by the tool called a 
document and one or more views which offer representation and manipulation 
facilities of the data. The model document  is usually an implementation of a set 
of modelling concepts as presented above. Views for the model aspects structure, 
behaviour, or documentation are often implemented using a graphical user inter- 
face and a graphical language to represent the modelling concepts employed. 
These view/manipulation modules can be distinguished into model manipulation, 
analysis and model transformation features according to section 3.1.3. 

It should be further noted that  the implementation of an interactive modelling 
tool is far more complicated because analysis steps have to be applied potentially 
after each user interaction and things analysed to be correct may be no  longer 
correct after the next mouse click, whereas in a batch-oriented tool correctness 
needs to be verified only once. 

A further difficulty in the development of interactive modelling tools arises in the 
integration with a simulator. In terms of the~pipes and filters architecture pre- 
sented above, the interactive modelling tool could assume the role of a data 
source for the subsequent simulation tool, thereby integrating the pipes and fil- 
ters architecture. In practical applications, the interactive modelling tools rely on 
the generation of a model as a text file, which is then used in a batch-oriented 
tool for model transformation and simulation. Many of the academic initiatives in 
developing interactive modelling tools work this way, i.e. ModDev (Jensen & 
Gani, 1999), the recent work around MODEL.LA (Bieszczad, 2000), or ModKit 
(Bogusch, et al., 2001) which are all able to output a model definition file by 
means of a code generation step which is suitable for use in e.g. SpeedUp or 
gPROMS. But when the simulator flags a difficulty or error (such as a numerical 
singularity during the integration of a dynamic model), it is difficult for the in- 
teractive modelling tool to take over control again and support the user in cir- 
cumventing the problem. 

Interactive tools are usually developed as monolithic applications, e.g. the inter- 
actions between the different view modules are implicitly coded into the tool. 
Hence, it is impossible for others to extend the tool or to use it as a part  of some 
automated process in a larger software environment. In terms of lifecycle inte- 
gration aspects, where such tool integration challenges arise frequently, it would 
be favourable if the model data and the control over the tool could be accessed 
from the outside (Nagl, Marquardt,  2001; Wasserman, 1990). 

ModDev (Jensen, 1998) is a knowledge-based modelling system that  is integrated 
with ICAS (Gani et al. 1997) and is able to generate process models based on the 
description given above. It employs a graphical user-interface to convert the 
modeller's perception of the process in terms of phenomena, accumulation, and 
constraints, and aggregates them to form models of the unit  operation defined in 
terms of a boundaries, connections, and states. In ModDev, fundamental  model- 
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ling objects (as explained in section 0) are used to create generic building blocks. 
The fundamental  modelling objects and the generic building blocks are then ag- 
gregated to form the desired process model. The equation set representing the 
process model is then analysed and translated for integration with a solver. The 
t ranslated model may be used as an equation set in equation-oriented simulators 
or as a block in a flowsheeting system. 

ModKit (Bogusch, et al., 2001) is an interactive modelling tool based on the proc- 
ess modelling language VeDa (Marquardt, et al., 1993) tha t  specifies relevant 
domain knowledge. In ModKit several interactive tools contribute to supporting 
the modeller in setting up the model equations. These tools comprise editors for 
the model structure, for properties such as geometry or phenomena, for model 
equations and variables, and for the model documentation. In addition, analysis 
tools such as structural  solvability and index analysis are made available includ- 
ing a graphical representation of the equation system structures (incidence ma- 
trices) involved. Besides these tools to manually enter the model topology or 
equations, ModKit offers a so-called guidance  mode, where predefined parts of 
the modelling process are used by the tool to guide the modeller through the 
modelling process, proposing him creation, modification, and analysis steps 
wherever suitable. The model resulting from the modelling process can be ex- 
ported in gPROMS and SpeedUp formats. 

Fur ther  academic initiatives to be mentioned are Model.La (Bieszczad, 2000) or 
Design-Kit (Stephanopoulos et al., 1990a) -  these are also knowledge-based tools 
that  assist the user to generate/develop models based on a description of the 
process, boundary, phenomena and so on. 

On the commercial side, interactive modelling tools have not attracted too much 
attention so far. Aspen Custom Modeler (AspenTech, 2001) is one of the few com- 
mercially available modelling tools, which offers interactive functionality to 
specify and analyse a process model. However, no actual functionality to generate 
any kind of model equations (apart from connection equations describing the 
process topology) has been made available on a commercial basis. 

Open modelling tools 

As a consequence open architectures are a current topic in the development of 
modelling tools (Braunschweig et al., 2000). Such environments provide rich in- 
terfaces to enable external pieces of software to be plugged in to allow a flexible 
configuration of the tool according to the user's needs. Further,  these tools often 
provide their functionality to the outside through a so-called application pro- 
gramming interface so that  they can be used as a part  of an integrated engineer- 
ing process where models are involved as shown by Gani et al. (1997) or Hacken- 
berg, et al. (2000). Middleware such as databases access technology (e.g. ODBC, 
ODMG, or JDBC standards) or distributed object computing (such as DCOM and 
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CORBA, cf. Chapter 4) have proven an important means to provide functionality 
across the boundaries of tools, enabling modelling tools to be tightly integrated 
with other engineering processes as part  of a software environment. 

Figure 14. Client~server and multi-tiered architectures 

The resulting architecture resembles (in its simplest form) a client-server struc- 
ture, where e.g. a set of client programs share information through a central 
server (Figure 14). Often, the server provides only data access (as it is the case 
using ODBC) so that  clients must  implement everything ranging from presenta- 
tion to business logic. As a client can in turn  provide services to other modules, 
such an architecture can be further structured into several layers (also called 
tiers), where each layer should provide a well defined abstraction of some service. 
Separating e.g. the presentation services, business (modelling) logic, data main- 
tenance, and persistence leads to a multi-tiered architecture. A simple client- 
server relationship is also referred to as a two-tier architecture. 

As an example, the model repository Rome (von Wedel, Marquardt,  2000) offers 
its functionality to maintain  and manipulate process models to its environment 
based on a two-tier architecture. The bottom layer uses an object-oriented data- 
base for persistence, whereas the business model layer presents modelling con- 
cepts to the environment via a comprehensive set of CORBA interfaces. 

In order to gain more flexibility within such a layered architectural model, a 
component architecture can be employed (Mowbray, Malveau, 1997). The building 
blocks of this architecture are smaller-grained components (as compared to the 
layered architecture) with well-defined but limited functionality, which exhibit 
client/server relationships among each other. These services ideally share a stan- 
dardized interface definition that  allows a reconfiguration of the system. The set 
of services (e.g. model analysis functionality) can be extended in a simple manner  
and services can be exchanged for better or cheaper alternatives. The flexibility 
of such a component architecture is leveraged by the dynamic reconfiguration 
possibilities provided through the component software techniques. 
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The recent implementation of ModKit uses such a component architecture to pro- 
vide a set of editors to the modeller which can be flexibly extended or reconfig- 
ured without further modifications of the remainder of the modelling environ- 
ment (Marquardt, et al., 2000). ModKit uses the model repository Rome for per- 
sistence and basic model manipulation functionality and is being controlled by a 
modelling process guidance system so that  a four-tier architecture results, where 
the interactive layer can be described in terms of a component architecture. 

Such an architectural model fully satisfies the requirements on open modelling 
system with respect to flexibility, extendibility, and information sharing among 
modellers. The dynamic flexibility of components allows to tailor the system to 
the particular needs of its users and the networking capabilities of recent soft- 
ware technologies provide an essential basis for connecting modellers and model 
users working remote from each other. Hence, the modern software technologies 
must  be considered as a key enabling technology towards the development of an 
open model server as suggested by Britt and Pantelides (1994). 

3.1.5 S U M M A R Y  OF P R O B L E M S  & C H A L L E N G E S  

Compared to the first implementations of tools for process modelling and simula- 
tion an enormous amount of progress has been achieved. Today's modelling tools 
provide modelling languages, either based on process engineering concepts or 
mathematical  perspectives that  are suited to represent s tructural  and phenome- 
nological aspects of chemical process engineering. With respect to the require- 
ments sketched above, a number of issues must  be considered still open today. 

The set of modelling concepts should be improved towards a formal theory to 
automatically generate, manipulate, and reason about models. Such a theory will 
have a strong impact on the capabilities of modelling tools, but is still an open re- 
search issue. It will enable inexperienced modellers to effectively use model- 
based techniques for a wide range of applications. A step forward towards such a 
theory has been proposed by Hangos and Cameron (2001a) very recently. 

Informal documentation about the rationale and intention of models is not satis- 
factorily maintained and exploited by modelling tools. All the modeller can do is 
attach some comments to his model. Using some sort of methodology such as 
IBIS (Rittel, Kunz, 1970) would be at least desirable, but is not sufficient. In the 
long term, it must  become comprehensible why modifications of a model have 
been made. Further,  it must  be specified whether the expected outcome from 
these modifications has been met. 

Regarding modelling functionality, improvements must  be made by formalizing 
the modelling process and identifying further parts to be supported by tools in an 
automated manner  (Lohmann, Marquardt, 1996; Marquardt,  Jarke, 1995). This 
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will lead to a reuse of modelling knowledge, based on experience made in other 
modelling contexts. 

The vision of a model server (Britt, Pantelides,  1994) mus t  be fur ther  refined to 
provide shared  access to models between modellers as well as to enable a model 
to be obtained in different representa t ions  automatically.  Modern software tech- 
nologies can be considered sufficiently mature  to implement  such an environment  
complying with  a model server architecture.  However, this requires  a major con- 
t r ibut ion from software vendors. 

One of the major problems to be tackled on the way to a model server will be the 
maintenance of reusable process model libraries. Frequen t  modifications neces- 
sary due to the i terat ive engineering processes employed in process design and 
retrofit lead to a large number  of models, which differ only slightly. All of these 
must  be made available in a comprehensible manne r  and s t ruc tured  properly in a 
l ibrary so tha t  they are available for reuse on demand of the modeller. This re- 
quires on the one hand powerful algori thms to systematical ly deduce the struc- 
ture of the model l ibrary based on the information specified in the models as well 
as useful search mechanisms,  which find a model, tai lored to the current  model- 
ling context. 

Open standards such as Modelica and CAPE-OPEN are impor tan t  means  to 
achieve an economic implementa t ion  of a model server and to enable its interop- 
erabili ty wi th  a wide range of clients, such as s imulators  and interactive or 
batch-oriented modelling tools. Customers can more easily plug in their  own solu- 
tions and research results  can be in tegra ted  and assessed more quickly. 
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Chapter  3.2 Numerica l  Solvers  

J. E. Tolsma & P. I. Barton 

3.2.1 INTRODUCTION 

Typical process modeling activities involve the application of a number of 
different numerical algorithms. For example, steady-state simulation of a 
process flowsheet involves the solution of a system or systems of nonlinear 
equations. Dynamic simulation of a process transient  involves numerical 
integration of a dynamic system, represented by a system of ordinary 
differential equations (ODEs) or differential/algebraic equations (DAEs). If 
the model is a DAE or an ODE started from steady-state then the modeler 
must  provide consistent initial conditions also obtained by solving a 
system of nonlinear equations. If the modeler is interested in the influence 
of time invariant parameters in the model on the state variable 
trajectories a parametric sensitivity analysis may be performed. 
Optimization typically follows simulation and requires the application of a 
suitable optimization algorithm. The modeler may be interested in steady- 
state or dynamic optimization. 

Most numerical activities involve the application of a number of different 
solvers. In addition, the numerical algorithms themselves may be further 
decomposed into a set of elementary algorithms. For example, iterative 
methods for solving systems of nonlinear equations often require the 
solution of a linear equation subproblem, predictor-corrector methods for 
solving nonlinear stiff ODEs and DAEs involve the solution of systems of 
nonlinear equations during the corrector phase, and control 
parameterization strategies for dynamic optimization involve numerical 
integration and parametric sensitivity analysis subproblems. 

This chapter briefly describes several common numerical activities 
andsome of the algorithms applied. In particular, the information that  
must  be supplied in addition to the model equations is emphasized. 
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3.2.2  S O L U T I O N  O F  N O N L I N E A R  S Y S T E M S  O F  E Q U A -  
T I O N S  

A common problem in CAPE, as well as essentially every discipline in sci- 
ence and engineering, is finding a solution to a system of nonlinear equations. 
Examples include steady-state simulation of a process flowsheet and compu- 
tation of consistent initial conditions for dynamic simulation. 

A large number of algorithms and numerical codes exist for this task. 
An appropriate algorithm depends both on the nature of the problem being 
solved and whether additional information concerning the system of equa- 
tions is available. For example, whether or not partial derivatives of the 
system of equations are readily available may have a large impact on the 
selection of the algorithm used to solve that problem. 

We consider the following system of n nonlinear equations in terms of n 
variables: 

f ( x )  = 0  (1) 

for which we desire a solution x*. A common method for solving this system 
is to replace equation (1) at some approximation to the solution, x k, with 
the affine equation: 

L k ( x )  - -  A k ( x  - x k) + f(xk), (2) 

where A k is some suitable matrix, which may be the same for all k [43]. We 
can easily compute a solution of (2), provided A k is nonsingular, for a new 
approximation to x*. Repeating this procedure yields the iteration formula: 

x k+l = x k - ( A k ) - l f ( x k )  k = 0, 1 ,2 , . . .  (3) 

which will converge to a solution of (1), with appropriate selections for A k, 

provided x ~ is "sufficiently" close to x*. How close depends of the nature of 
f and choice of A k 

Choosing A k to be Vf(xk), the Jacobian matrix of f evaluated at the 
current approximation x k, yields the n-dimensional Newton's method with 
iteration formula: 

x k+~ - x k - V f ( x k )  -~ f ( x  k) k - O, 1, 2 , . . .  (4) 

The advantage of Newton's method is that it has q u a d r a t i c  c o n v e r g e n c e  prop- 
erties when x k is sufficiently close to the solution. Quadratic convergence of 
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the sequence of iterates implies that  the following inequality holds at each 
iteration: 

Ilx k+l - x*ll < K I I x  k - x*ll 2, (5) 

where K < c~. The error at the (k + 1)-th iteration is proportional to the 
square of the error at the k-th iteration, indicating convergence is rapid when 
near the solution. However, Newton's method is not likely to even converge to 
a solution if a good initial approximation is not available. This issue may be 
addressed through a line search approach. Given the search direction from 
Newton's method at step k, pk _. _V f ( xk ) - l f ( xk ) ,  a line search strategy 
at tempts  to find some scalar c~ k > 0 such that  

I I f ( x k +   kpk)ll < IIf(xk)ll, 

where I1" II denotes some norm. A number of different line search strategies 
exist ranging from the minimization of the norm of f in the Newton direction 
to simply selecting an c~ k such that  inequality (6) holds (such a scalar can 
always be found since pk is a descent direction in the norm of f) .  

The advantage of Newton's method is the excellent convergence proper- 
ties when the initial approximation is close to the solution. The disadvantage 
is that  the method requires the Jacobian matrix, which may be difficult to 
obtain analytically. Alternatively, the Jacobian matrix may be approximated 
with finite differences. For example, using the forward finite difference for- 
mula, the Jacobian entry Of~/Oxj may be approximated by: 

Ofi  ,.., f i ( x y  + 57) - f i ( x j )  (7) 
0 ~  ~ 5j ' 

where the perturbation, 5j, is selected based on the behavior of f evaluated 
at the current point. Selecting appropriate values for 5 7 is often difficult; too 
large of a perturbation results in significant truncation error and a value too 
small results in excessive round-off error. Without any additional informa- 
tion, the approximation of the Jacobian matrix with forward finite differences 
requires n + 1 function evaluations. This may be too costly in many applica- 
tions. The cost of the finite difference approximation may be reduced if the 
sparsity pattern of the Jacobian matrix is available explicitly. The sparsity 
pattern, which indicates the dependence of the equations on the variables, 
may be represented by an incidence matrix containing entries equal to zero or 
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unity. If the i-th equation depends on variable j then the i, j - th  entry of the 
incidence matrix is unity, otherwise it is zero. Given the incidence matrix of 
a system of equations, structurally orthogonal columns for the J acobian ma- 
trix may be identified [20]. Two columns are structurally orthogonal if they 
do not contain nonzero entries in the same row. The cost of evaluating the 
Jacobian by finite differences may be reduced by simultaneously computing 
multiple structurally orthogonal columns of the Jacobian matrix [21]. If the 
matrix is large and sparse then this saving is often significant. In addition to 
reducing the cost of finite difference approximation of the J acobian matrix, 
an explicit representation of the sparsity pattern allows sparse linear alge- 
bra techniques to be employed in computing the direction of the step [24]. 
Exploiting sparsity in the linear algebra (e.g., only performing mathematical 
operations on the nonzero entries of the Jacobian matrix) not only reduces 
memory requirements and computational cost, but also allows the engineer 
to solve readily problems that otherwise would be exceedingly difficult or 
impossible to solve. 

Obtaining the Jacobian matrix is not an issue if a symbolic representa- 
tion of the system of equations is available, as is the case within modern 
equation-oriented modeling environments. In this case, the partial deriva- 
tives are readily computed via symbolic differentiation or through automatic 
differentiation (AD) techniques applied to the equation graphs. The latter 
approach has been shown to offer significant advantages over symbolic dif- 
ferentiation both in terms of speed and memory requirements [55]. If the 
system of equations are formulated as a computer program, then AD may be 
applied to the source code to obtain the desired derivatives [10, 56, 31]. In 
contrast to symbolic differentiation, which is applied to a symbolic represen- 
tation of the system of equations, automatic (or algorithmic) differentiation 
has been designed to differentiate algorithms represented by computer code, 
such as C or Fortran. The actual statements in the code representing the 
system of equations are differentiated to produce the desired derivative in- 
formation. A number of variants of AD have been developed to accumulate 
the partial derivatives within the code. However, a detailed description is 
beyond the scope of this chapter. The code may be differentiated by either 
using the operator overloading features of some modern programming lan- 
guages (e.g., C + +  and Fortran-90) or through the construction of new code. 
In the latter approach, new source code is constructed automatically from 
the original source to compute the desired derivative information. This is 
called an automatic code transformation technique. It should be noted that 
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AD is designed to differentiate algorithms. For example, it can differentiate 
codes containing IF statements, DO loops, iterative procedures, and com- 
plex hierarchies of subroutine and functions calls. In addition, the codemay 
depend in complex ways on user supplied parameters, but the automatically 
generated derivative code is still able to adapt to changes in the parameter 
values and compute correct derivative information. 

Sometimes a model is composed of a hybrid of equations formulated sym- 
bolically, and equations that are evaluated by procedure calls to external 
code. For example, external physical property packages are often interfaced 
to equation-oriented simulators via such procedure calls. In this case, J a- 
cobians may be assembled by differentiating the symbolic equations, and 
applying finite differences to the equations evaluated by procedure calls. On 
the other hand, AD techniques may be applied to the external procedures 
to generate derivative code. Then appropriate calls to these new procedures 
can furnish analytical partial derivatives. In conjunction with differentiation 
of the symbolic equations, this yields an analytical J acobian for the entire 
model. An implementation of this is described in [58]. 

Even if analytical derivatives are readily available, the cost associated 
with evaluating and LU factoring the Jacobian in Newton's method may be 
reduced by not evaluating and factoring the Jacobian at every iteration. The 
cost saving associated with this deferred-update Newton's method is offset 
by weaker convergence properties. However, this approach is often attractive 
if a good initial approximation to the solution is available. Alternatively, 
the matrix A k in recursion (3) may be some derivative-free approximation, 
for example the secant-update formulas of Broyden [14] and Schubert [52]. 
Although convergence is weaker than Newton's method, not having to pro- 
vide numerical values for the J acobian matrix is advantageous in some cases. 
This is particularly true when solving flowsheeting problems with a sequen- 
tial modular simulator where finite difference derivative evaluation may be 
prohibitively expensive. The advantages of applying AD techniques to codes 
representing unit operation models in order to obtain the derivative values 
efficiently is described in [2]. 

The line search strategies mentioned above are attempts to increase the 
convergence region of Newton's method. Alternatively, this problem may be 
addressed with a trust region strategy. The Levenberg-Marquardt method 
[36, 39] computes search directions defined by the following optimization 
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problem: 

min IIf(x k) + V f(xk)pll2 (8) 
p 

s.t. Ilpll  < (9) 

where A k is called the trust region radius which limits the size of the step. 
The solution to this optimization problem is obtained by solving 

( V I ( x k ) T V I ( x  k) + AkI)pk __ _ V I ( x k ) T I ( x k ) ,  (10) 

where A k is determined by some strategy. This method has proven to be quite 
robust. However, since the step is obtained by solving a linear least-squares 
problem and A k is determined by some iterative procedure, the method can be 
costly. In addition, any sparsity that may be present in V f ( x  k) is lost through 
fill-in when the search direction is computed. Consequently, the approach is 
not suitable for the large-scale systems common in process modeling. 

Powell's "dog-leg" strategy avoids some of the costs of the Levenberg- 
Marquardt method by restricting x k + pk to lie on the "dog-leg" consisting 
of the straight line from x k to the minimum point of [If(x k) + Vf(xk)pk[I 2 in 
the direction of the steepest decent of I]f(x k) + Vf(xk)pkll2 and the straight 
line from this point to the point obtained from a Newton step [48]. The 
trust region in this approach is readily identified, making the approach more 
efficient than the Levenberg-Marquardt method though not as robust. 

Similar to the trust region approaches described above, the successive 
linear programming approach [23] solves the following minimization problem: 

min [If(x k) + Vf(xk)pl[1 (11) 
P 

s.t. I]P]lo~ -< Ak- (12) 

This choice in norms for the objective function and constraints results in the 

min 
p,q ,r  

s.t. 

linear program [8]" 

E (  q, + r,) (13) 
i 

V f (xk)p + q -- r -- -- f (x k) (14) 

q, r > 0 (15) 
p >_ - A  k (16) 

p < A k. (17) 
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The advantage of this approach is that sparsity can be fully exploited and 
physical bounds on the variable values may be easily incorporated into this 
framework. 

Compared to Newton's method, these trust region strategies have a larger 
region of convergence, but are computationally more expensive. They also 
suffer from the fact that they may converge to stationary points in the norm 
chosen for the system of equations, which are not necessarily the solutions 
we desire. 

Continuation methods are also often used in an attempt to widen the 
region of convergence of an iterative method. In this approach, the system 
of equations to be solved is "embedded" within another mapping and an 
additional variable is introduced [43]. This new mapping has the general 
form: 

h(x, A) = 0 ,  (18) 

where h : lI~ ~ x IR ~ IR ~, x E IR ~, and A E 11~. The mapping has the following 
properties: 

= 

h(x, l) = f(x). 
The system of equations g(x) is chosen such that  a solution x ~ to g(x ~ - 0 
is easily determined. The basic idea of continuation methods is to s tart  
at h(x ~ - g(x ~ = 0 and follow the path defined by h(x,A)  = 0 to 
h(x*, 1) = f(x*) = 0, a solution we desire, by varying A. Certain restric- 
tions must be placed on h(x, A) for this path to exist, and even if it does 
exist, additional restrictions, exceedingly difficult to verify in general, must 
be placed on h(x, A) to ensure the path followed passes through ~ • 1 [1]. 
Nevertheless, continuation methods have been successfully applied in many 
cases. In particular, the approach is often successful when the solution is 
near singularities, that  is, points where the J acobian matr ix is not invertible. 

In all of the approaches described above there are no theoretical guaran- 
tees a solution will be found. Techniques based on interval Newton/generalized 
bisection, on the other hand, guarantee solutions will be found in some re- 
gion defined by bounds on the variables, if a solution exists [40]. There are a 
number of variants of interval Newton methods, though they all require the 
evaluation of the interval extension of the system of equations and Jacobian 
matrix. An interval in this context is simply a closed, connected region on 
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the real line defined by upper and lower bounds on the variable. For example, 
let X E I[IR denote an interval, then 

x = [x ,x = e < �9 <_ (19) 
An interval vector from the set ]Ilia" is a vector where each of the n elements 
are intervals in lII~. Given a function f ( x ) ,  the interval extension of the 
function, denoted by F(X) ,  has the following property: 

f ( X )  = { f ( x )  : x e X }  C F ( X ) .  (20) 
That is, the interval extension of a function evaluated on X contains the im- 
age set of the function on X. The construction of the interval extension from 
a function is not unique and may be performed in several ways, each produc- 
ing a tighter or looser approximation of the image set. A common approach 
is the natural interval extension where each of the elementary mathematical 
operations involved in the computation of f are replaced by the correspond- 
ing elementary interval extension of the operation. For example, let o define 
some elementary binary operation (e.g., + , - , / ) ,  the interval extension of o 
is defined by 

X o Y  = { x o y : x  e X , y  ~ Y} .  (21) 

The interval extensions for unary operations and "elementary" functions such 
as sin and log are defined in a similar manner. The code for evaluating the 
function may be readily converted to code evaluating the natural interval 
extension, albeit with significant effort in many cases. However, this con- 
version may be automated using the operator overloading features in some 
languages (e.g., Fortran 90 and C++)  or through automatic code transfor- 
mation techniques [56]. 

There are a number of variants of the interval Newton/generalized bisec- 
tion approach and a detailed description is beyond the scope of this chapter. 
The disadvantages of these approaches is that they are typically quite compu- 
tationally expensive and are thus not suitable for larger systems of equations. 
Furthermore, they require the user to provide interval extensions of the sys- 
tem of equations and Jacobian matrix. This, of course, is mitigated through 
the use of the automated techniques mentioned above, provided the user has 
access to the code evaluating the function of interest. 

Several algorithms for finding solutions of nonlinear systems of equations 
are described in this section. Each of these methods are appropriate for cer- 
tain types of problems and thus the user may have to select different solvers 
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based on the particular problem at hand. The following section describes 
structural techniques that may be employed to further assist the user in 
solving a system of equations. 

3 .2.3 S T R U C T U R A L  A L G O R I T H M S  

As mentioned above, the availability of an explicit representation of the spar- 
sity pattern of the system of equations may be used to reduce the cost of finite 
difference approximation of the Jacobian matrix. ' In addition, the sparsity 
pattern allows sparse linear algebra techniques to be employed, dramatically 
increasing the size of problems that may be solved. Automatic code transfor- 
mation techniques, similar to those employed for derivative evaluation, can 
be employed to generate automatically code to evaluate the sparsity pattern 
for an arbitrary user-supplied code [56]. This section describes other struc- 
tural techniques that can be applied to this information in order to assist 
the modeler in constructing a valid model and in subsequently solving the 
model. 

Given the sparsity pattern (or incidence matrix) for a system of nonlin- 
ear equations, it is possible to find row and column permutations such that 
the permuted incidence matrix is in block lower triangular form (provided 
the matrix is not irreducible). Using the concept of matchings in a bipartite 
graph, Dulmage and Mendelsohn developed a canonical form of the block 
lower triangular decomposition [25]. The permuted incidence matrix is de- 
composed into a set of diagonal blocks. Nonzero entries may appear below the 
diagonal blocks, but only zeroes lie above the diagonal blocks. Three types of 
blocks appear on the diagonal in this decomposition: over-determined blocks 
which have more rows than columns, structurally fully-determined blocks 
which have the same number of rows and columns, and under-determined 
blocks which have more columns than rows. The diagonal block information 
may be used by the user to identify subsets of equations that must be deleted 
from the model to make it well-posed (from the over-determined blocks) and 
subsets of variables that require additional specifications or equations (from 
the under-determined blocks). With this. information, the modeler is given a 
tremendous amount of information about how to modify an ill-posed prob- 
lem. Algorithms to determine the Dulmage-Mendelsohn decomposition are 
described in [47]. 

Once a well-posed problem has been formulated, all diagonal blocks will 
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be structurally fully-determined. When permuted in this form, the overall 
system of equations may be solved by solving sequentially the subsets of 
equations associated with the diagonal blocks. Not only is this more efficient 
(for example, the sum of the cost of the linear algebra required for each of 
the smaller blocks is much smaller than the cost associated with solving the 
full system of equations), but experience has shown this to be a more reliable 
approach than solving the entire system simultaneously [45]. Furthermore, 
each of the algorithms described in the previous section may not be suitable 
for every system of equations. By solving the overall system as a sequence 
of smaller subsets of equations and variables, an appropriate solver may be 
selected for each block based on its size and difficulty to converge. 

Structural techniques may also be used to identify high index DAEs. 
Before numerically integrating a DAE, the user must provide a consistent set 
of initial conditions (this is explained in more detail in the following section). 
A high index DAE contains implicit constraints on the state variables that a 
consistent set of initial conditions must satisfy. These additional constraints 
may be uncovered by differentiating subsets of the equations in the DAE. 
The algorithm described in [44] uses structural criteria to identify subsets 
of the equations that must be differentiated in order to obtain constraints 
that must be satisfied by a consistent set of initial conditions. However, the 
approach described in [44] may indicate too few or too many equations must 
be differentiated, resulting in an incorrect determination of the index of the 
DAE [49]. Nevertheless, this algorithm has proven to be quite successful, 
particularly when applied to the DAEs that arise in process modeling. In 
our experience, this information is very useful in suggesting how a modeler 
might reformulate a model to make it low index. 

The discussion above illustrates many uses for the sparsity pattern of the 
system of equations. If the equations are available in symbolic form, then 
the sparsity pattern may be readily generated and exploited. Otherwise, 
the sparsity pattern may be constructed by hand by the user or through 
automatic code transformation techniques [56]. 



137 

3 .2 .4  N U M E R I C A L  I N T E G R A T I O N  O F  D I F F E R E N T I A L  
A N D  A L G E B R A I C  E Q U A T I O N S  

Studying the transient behavior of a batch process or the startup, shutdown, 
or effect of a disturbance in a continuous process requires the numerical 
integration of a nonlinear dynamic process model. In this situation, the 
process model consists of a system of ODEs or DAEs. Since many dynamic 
process models encountered in CAPE are most naturally described by DAEs, 
the solution of these dynamic systems will be described here. The general 
form of a DAE is: 

f(s z, t) = O, (22) 

where f :~n  x IR n • ]R ~ li ~, t is the independent variable (usually time) 
and z and ~ are the state variables and their derivatives with respect to t. 
The states z and derivatives ~ are functions of t in an n-dimensional function 
space. 

Before numerically integrating the DAE, the user must provide a set of 
consistent initial conditions, which satisfy: 

to)  = o. (23) 

This is a system of n algebraic equations in terms of 2n variables (to is 
known). In order to compute the consistent initial conditions, equation (23) 
is augmented with additional algebraic equations defining the initial condi- 
tions and the resulting system is solved, possibly using one of the algorithms 
described previously. The number of additional equations that must be in- 
troduced is equal to the number of dynamic degrees of freedom, rid. For most 
index 1 DAEs [12], nd is equal to the number of time derivatives of the state 
variables that appear explicitly in the DAE. Hence, it is only necessary to 
solve for n + nd unknowns, using the n DAEs and the nd additional equa- 
tions defining the initial conditions. If the index is greater than unity, then 
as described above, additional implicit constraints appear in the DAE that 
may be uncovered through differentiation [44]. These additional constraints 
reduce the dynamic degrees of freedom. 

It may be necessary to compute consistent initial conditions even in the 
case of an ODE. For example, often it is necessary to study the response of 
a process at steady-state to a disturbance. The consistent initial condition 
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of steady-state is computed by solving the following system of nonlinear 
equations: 

 (to) = g(z(to) ,  to) (24) 
 (to) = O. (25) 

This is identical to a steady-state simulation. 
Several methods have been developed for numerically integrating DAEs 

and there are a number of powerful codes developed based on these methods 
[9, 32, 13, 4]. Linear multi-step methods, specifically, the methods based on 
backward differentiation formulas (BDF), are the most popular and will be 
described here. Many of these codes are restricted to index-1 DAEs or higher 
index systems with special structure [12]. 

The q-step BDF consists of replacing the time derivatives, ~., by polyno- 
mials which interpolate the previous q + 1 computed solutions: 

f(-~ ~zk-, ,  zk, tk) = 0, (26) 
i = 0  

where subscript k denotes the current time step and q is the integration order. 
The method reduces to the implicit Euler method when q = 1. The BDF 
method advances the time trajectories using a predictor-corrector approach: 
a predictor polynomial is used to obtain an estimate for the next point on 
the trajectory, followed by the iterative solution of equation (26), where the 
time derivatives have been replaced by corrector polynomials. Typically, a 
deferred-update Newton's method is employed during the corrector phase, 
using the LU factored iteration matrix from some previous time step. Mod- 
ern codes attempt to balance the cost associated with the iteration matrix 
evaluation/factorization with the reduced order and time stepsize caused by 
using an outdated iteration matrix. 

Several implementations of the BDF method are available, each with dif- 
ferent heuristics for order and stepsize selection. The codes available attempt 
to make the stepsize large enough for efficient integration while still main- 
taining accuracy and stability [12]. 

In addition to the linear multi-step method described above, one-step 
methods are often used for the numerical integration of dynamic systems. In 
particular, the implicit Runge-Kutta (IRK) methods have been successfully 
applied to DAEs. An M-stage IRK method applied to DAE (22) has the 
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following form: 

M 

f(Z, ,  zk-1 + h ~ a~,j2j, tk-1 + c,h) = 0 i = 1, 2 , . . . ,  M (27) 
j = l  

M 

= + h ) S  (28) 
i=1 

where h = tk--tk-1, Z~ are the stage derivatives, and ai,j, bi, ci, i, j = 1 , . . . ,  M 
are the constants associated with the method [12]. The stage derivative Zi is 
an estimate for ~.(tk-1 + cih). Although BDF methods tend to perform bet- 
ter on average than IRK methods, these one-step methods can potentially 
have an advantage if there are frequent discontinuities along the integration 
domain. Unlike the BDF method which uses a small stepsize and low inte- 
gration order after each discontinuity, the IRK method can be started at a 
higher integration order, resulting in faster restarts. 

3.2.4.1 Hybrid Discrete/Continuous Systems 

The section above describes the numerical integration of DAEs. This dis- 
cussion assumed that  DAE was a smooth function throughout the entire 
integration domain. A common situation for interesting and realistic prob- 
lems, however, is where the functional form of the DAE changes during the 
course of a dynamic simulation. These type of models are referred to as 
hybrid discrete/continuous systems. 

Hybrid discrete/continuous systems (or simply hybrid systems) are dy- 
namic systems that  exhibit both discrete and continuous behavior. The 
continuous behavior of the model is usually described by one or more ODE 
or DAE systems. The discrete behavior, which occurs at particular points 
in time known as events, includes phenomenon such as nonsmooth forcing, 
switching of the vector field, and jumps in the state. We can broadly dis- 
tinguish between two types of events: time events and state events. A time 
event is an event where the time of occurrence is known a priori. In con- 
trast, a state event occurs when some condition involving the state variables 
is satisfied (e.g., the level in a tank reaches a certain height) and the time of 
occurrence is in general not known a priori. 

Hybrid system models appear in a wide variety of disciplines. They ap- 
pear directly when modeling discrete control actions imposed on a system 
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(e.g., a safety interlock system), disturbances introduced into a continuous 
system and sequence controllers. In addition, state events are typically in- 
troduced by modeling abstractions (e.g., physical properties of fluids are of- 
ten represented by piecewise smooth semi-empirical relationships), physical 
phenomenon such as irregularities in vessel geometry that can cause discon- 
tinuities in the relationship between holdup and level, and changes in the 
number of thermodynamic phases present. Within a code these may appear 
as nonsmooth intrinsic functions, such as MIN and MAX, as well as the more 
obvious IF statements. 

It is well known that numerically integrating systems containing hidden 
discontinuities is inefficient and sometimes results in integration failures [33]. 
In the worst case, ignoring discontinuities can lead to incorrect results that 
may escape the modeler's attention [19]. 

A number of approaches have been developed to handle properly the dis- 
continuities that occur during the numerical integration of a hybrid system. 
These approaches range from replacing the discrete aspects with a smooth 
approximation, to modifying the integrator itself to attempt to identify and 
handle the discontinuities. Replacing discontinuities with smooth approx- 
imations is laborious and error prone, particularly when modifying legacy 
code, and the modified model may not capture properly the dynamics of in- 
terest. A better alternative is to handle the discontinuities explicitly during 
numerical integration [18, 46]. To perform the state event handling correctly, 
a significant amount of additional information must be made available by the 
user. This additional information is described below. 

The following hybrid system formalism, adopted from [5, 28], will be 
used in the remainder of this section to highlight additional information that 
must be provided by the user for proper state event handling. State space is 
divided into a set of modes, S = Uk= I Sk where each mode Sk is characterized 
by: 

1. A set of variables {dc(k)(p, t), x(k)(p, t), y(k)(p, t),p, t} where x(k)(p,t), 
2(k)(p, t) are the differential variables and their derivatives, which are 

functions of p and t in an n(k)-dimensional function space, y(k)(p,t) 
are the algebraic variables, which are functions of p and t in an n (k)- 
dimensional function space, p E R np are the time invariant parameters,  
and t E IR is time, the independent variable, 

2. A set of equations f(k)(~(k) X(k) y(k) p,t) 0, where f(k) iRn~ k) ~ ~ ~ - - - "  ~ X 
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R,,(? ) ~,,(,?) :R n(2) x R"(,, k) x Rn ,  ' x ]R , x , 

3. A set of transitions from one mode to another (possibly the same mode), 
j(k), where each transition is characterized by: 

(a) Transition conditions L~ k)(~(k), x(k), y(k)p, t), j 6 j(k), defining 
the transition times and 

(b) Transition functions T (k) (~(k+l), x(k+l), y(k+l), ~(k), x(k), y(k), p, t) = 
O, j 6 j(k), a system of equations that maps the final values of 
the variables in the current mode to the initial values in the next 
mode. (Initial conditions are a special case of these transition 
functions.) The number of transition functions is determined by 
the dynamic degrees of freedom of the DAE in the new mode. 

Notice that the state variables are partitioned based on whether or not the 
corresponding time derivative appears explicitly in the DAE. It is assumed 
that the transition conditions, L~.k)(fc(k),x(k),y(k),p,t), are logical expres- 
sions composed of one or more real-valued relational expressions involving 
relational operators <, <, >, or >. For example, the logical expression 
(X 1 ~_~ 5 ) V  (X 2 > 2 /~ X 2 <~ 5 ) c o n t a i n s  the relational expressions xl _> 5, 
x2 > 2, and x2 _< 5. Putting these relational expressions into the form 

g _> (>)0 (29) 

defines discontinuity functions. In a code these state conditions are typically 
represented as IF statements. The discontinuity functions associated with 
the state condition represented by the following Fortran IF statement" 

IF ( LEVEL > I0.0 .AND. DELTAP > 0.0 ) THEN 

END IF 

are the expressions: 

LEVEL - I0.0 
DELTAP. 



142 

The logical proposition of the transition condition may switch value when 
one or more discontinuity functions cross zero. A switching event is defined 
by the earliest time at which one of the transition conditions becomes true. 
Many modern state event location algorithms identify the events by moni- 
toring the discontinuity functions associated with state conditions for these 
zero crossings. 

By monitoring discontinuity functions for zero crossings, state events may 
be identified. The various algorithms available for state event location dif- 
fer in how this monitoring is performed, ranging from simply examining the 
logical value of transition conditions at mesh points during the numerical in- 
tegration, to rigorously identifying the earliest (and thus correct) zero cross- 
ing of the discontinuity functions at each time step throughout the entire 
integration [46]. Once the state event is identified, the precise event time is 
computed. At this point the integration is stopped, the DAE is reinitialized 
in the new discrete mode using the transition functions and the integration 
is continued. Obviously, in order to perform properly the hybrid numerical 
integration, the user must provide a substantial amount of additional infor- 
mation, including the state conditions, the discontinuity functions, and the 
transition functions. If the hybrid DAE is available in symbolic form then 
this information may be readily identified, extracted, and utilized within a 
proper state event location algorithm. Recently, this capability has been ex- 
tended to hybrid DAEs represented as complex codes written in computer 
languages such as Fortran [57]. This is important even within an equation- 
oriented environment where some of the model equations are computed by 
calls to external code (e.g., physical property libraries). 

3 .2 .5  P A R A M E T R I C  S E N S I T I V I T Y  A N A L Y S I S  

The previous section describes some algorithms and solvers used to inte- 
grate numerically systems of ODEs and DAEs. Often the next step after 
numerical integration is parametric sensitivity analysis. This calculation is 
performed to examine the effects of infinitesimal perturbations in the param- 
eters of interest on the state variable trajectories. These parameters may be 
constants within the model or initial conditions. Parametric sensitivities are 
often useful themselves, for example for experimental design and process sen- 
sitivity studies. Sensitivities are also important within the context of other 
calculations, including parameter estimation and control parameterization 
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approaches for dynamic optimization. 
Given a DAE containing np parameters, p, 

f(~, z, t; p) - 0, (30) 

the forward sensitivities may be obtained through numerical integration of 
the following augmented system of n(np + 1) DAEs: 

f(2, z,t;p) 
Of i)~ Of Oz Of 

J § 
0~ 0p1 Oz Opi 0pl 

= 0 

= 0 

Of O~ Of Oz Of 
t = O, 

o ~ op~ O z Op.~ Op~ 

where n is the dimension of the DAE. Efficient algorithms are available for 
computing the forward sensitivities [38, 27]. These algorithms exploit struc- 
ture in the augmented DAE. How the sensitivity residuals (the additional 
equations appended to the original DAE) are evaluated can have a signif- 
icant impact on the performance of the calculation. When the number of 
parameters is small compared to the number of state variables, then using 
the seed matrix option of AD [10] is quite efficient. In this mode, the product 
of the Jacobian and a vector (in this case, the sensitivity vector) is computed 
efficiently at a cost bounded above by three times the cost of a DAE residual 
evaluation. If the number of parameters is large and the Jacobian matrix is 
sparse, then it is often beneficial to evaluate the sparse Jacobian then per- 
form sparse Jacobian-vector products to compute the sensitivity residuals. 
The sensitivity residuals may also be computed via finite differences, however, 
the lower accuracy can often severely impact the quality of the results. 

The cost and memory requirements for computing the forward sensitiv- 
ities scales with the number of parameters of interest. However, a common 
situation is where the number of parameters is extremely large and the user 
is only interested in the derivatives of a few outputs. This is often the case 
when the sensitivities are required within control parameterization strategies 
for dynamic optimization. In these types of situations, a better alternative 
to computing the desired derivatives is by integrating the adjoint (or re- 
verse) sensitivity system. Consider the following nonlinear ODE and initial 
condition: 

= 9(x, t ;p) (31) 
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x(to, to;p) = xo(p) (32) 

Suppose we are interested in the derivative of the scalar-valued function 
r to),p) with respect to p at time t/,  where the dimension of p is very 
large. This sensitivity may be computed by the formula: 

0r or 0r 
_ ~ ( x ( t , ,  to; p), p) = o~ op (t,, to; p) + 

TOXo 0(~ 
= ~(to, t , ; ; )  ~ + 

j(tl s P)TOg (T; + A(T, tI; , Op" p)d~', (33) 

where the vector of adjoints, A, is obtained by integrating numerically the 
following system backwards from t / t o  to: 

Of)  T 
= -  ~xx '~ (34) 

( ~  ~ ,~(tf, tf;p) = 7zz " (35) 

The advantage of the adjoint approach for derivatives is that the cost of 
the backwards integration of the adjoints does not scale with the number 
of parameters. However, this is offset by the fact that both a forward and 
backward integration are required to obtain the desired derivatives. Also, 
adjoints only give information about derivatives at one point in time for 
a single dependent function. The intermediate values of the A's have no 
interpretation as derivative information, and a new adjoint system has to be 
solved for each dependent function. These adjoint sensitivity results have 
been recently extended to DAEs [17, 16]. 

3.2.5.1 Hybrid Discrete/Continuous Parametric Sensitivity 
Analysis 

As mentioned above, discontinuities embedded within the model often cause 
adverse effects in the numerical integration, including inefficient integration 
and sometimes failures. The situation is far worse when performing para- 
metric sensitivity analysis of a model that contains discontinuities. Because 
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the sensitivities will often jump at the discontinuities, if the numerical in- 
tegration is not stopped and the jump computed explicitly, the computed 
sensitivity trajectories will generally be incorrect [28]. Furthermore, if the 
calculation does not fail, the user is given no indication about the correctness 
of the computed sensitivities [57]. 

As with proper hybrid system numerical integration, performing properly 
the hybrid sensitivity analysis requires a substantial amount of additional 
information from the user. The remainder of this section uses the hybrid 
system formalism described in Section 4.1. The sensitivity of the transition 
time with respect to parameter p~ is given by 

agk+ 1 Ot 

gk+l ~(k) ~](k) Ot agk+ 1 agk+ 1 0 t  
Oy(k) %,i + + Op~ -~ Ot Op~ = 0 ,  (36) 

where z(k) is the discontinuity function that triggers the event. The equation t/k+l 
above is solved for Ot/Opi. This quantity indicates how the event time is 
changes with small perturbations in the parameter p~. The required elements 
of 5, y, and/~ in the equation above can be computed from the first and 
higher order derivatives of the DAE. The remainder of this section assumes 
the following condition holds: 

(Of(k) o f (k ) )  = n (k) + n (k) (37) 
rank \ 05(k) Oy(k) 

for all k. This condition is sufficient for the DAEs on each of the discrete 
modes to be index 1. The jump in sensitivities can then be computed by 
solving the following linear system: 

0~(k+l) Ox(k'k'l) 'Oy(k+l) 0X(~1) 
0f(k+l)  of(k+ 1) 0f(k+l)  0 i - -  
0x(k+l) Ox(k+i) 0Y(k'k'l) 0pi 

k+l k+l k+l Ox~kt+l) ~ O~(k+l) Ox(k+~) Oy(k+~) Ot 
Of(k+x) 0f(k+l) O[(k+x) t Op~ 
0~: (k+ 1 ) Ox(k+l) bv(k+l) 0y '~'k" 1) 

ot 

(38) 
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~ ( k )  0 T C k )  ~ ( k )  OT(k) OT(k) 
" k + l  k+~. " k + l  k+~ kt-! 
0~(k) Ox(k) Oy(k) Op~ Ot 

of(k+~) o/(k+,~) 
0 0 0 ow ot 

0~(k) 0~(k) Ot 
-g~w + ot op~ 
Ox(k) Ox(k) Ot 
-~p H at op~ 
~ + o_~ o~ 
Opi Ot Opi 

I 
o_.A_t 

Opi 

Performing the hybrid sensitivity analysis properly requires not only the 
transition conditions, transition functions, and discontinuity functions, but 
also the derivatives of these expressions with respect to the state variables, 
time derivatives, parameters, and time. This burden is mitigated if the model 
is available symbolically. Recently, it has been shown that this additional 
information can be generated from the Fortran code of a hybrid system [57]. 
An adjoint formulation for hybrid dynamic systems is described in [51]. 

3.2.6 O P T I M I Z A T I O N  A L G O R I T H M S  

The numerical algorithms described previously are used to examine the be- 
havior of a process under a fixed set of operating conditions or examine the 
effect of infinitesimal perturbations on the response. In this capacity, the 
model is used to understand and predict the quantitative behavior of the 
process. Often, however, an engineer desires to improve the operation or de- 
sign of a process with respect to some criterion. Optimization algorithms may 
be employed to adjust systematically the degrees of freedom in the problem 
to meet these objectives. As with simulation, the modeler may be interested 
in steady-state and dynamic optimization. The former case involves finding 
values for the time invariant parameters of a steady-state model to improve 
the objective. The latter case, where the embedded model is a dynamic sys- 
tem, not only includes adjustment of time invariant parameters but may also 
include the determination of optimal profiles for the time varying controls. 
The decision variables in the optimization problem may take continuous or 
discrete values. Discrete valued variables may be used to represent quantities 
such as the optimal number of trays in a distillation column or whether or 
not a a piece of equipment is required. The optimization problems may be 
classified by the decision variable types and the embedded process model. 
Table 1 contains a summary of different optimization problems commonly 
encountered. 
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Table I: Classification of common optimization algorithms. 

Name ]Characteristics 

LP Linear Program 
Linear algebraic objective function and constraints. 
All variables are continuous valued. 

MILP Mixed Integer Linear Program 
Linear algebraic objective function and constraints. 
Both continuous and discrete valued variables. 

NLP Nonlinear Program 
Nonlinear algebraic objective function and constraints. 
All variables are continuous valued. 

MINLP Mixed Integer Nonlinear Program 
Nonlinear algebraic objective function and constraints. 
Both continuous and discrete valued variables. 

DO Dynamic Optimization 
Nonlinear algebraic objective function with possible integral 
terms. Nonlinear differential and algebraic constraints. 
All variables are continuous valued. 

MIDO Mixed Integer Dynamic Optimization 
Nonlinear algebraic objective function with possible integral 
terms. Nonlinear differential and algebraic constraints. 
Both continuous and discrete valued variables. 

Optimization has a number of applications within CAPE. For example, 
during process design, the problem may be formulated and solved as an 
MINLP. The objective function in this case may be to minimize operating 
costs and capital expenditure for new equipment while satisfying production 
rates and purity. During batch process design, dynamic optimization may 
be employed to determine optimal control profiles to maximize selectivity 
or minimize waste. In addition, steady-state and dynamic optimization al- 
gorithms may be used for parameter estimation. A complete discussion of 
the algorithms required to solve all of the types of optimization problems 
described in Table 1 is beyond the scope of this chapter. The remainder of 
this section describes several approaches for solving common optimization 
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problems that arise in practice, NLP and dynamic optimization. 

3 .2 .6 .1  S t e a d y - s t a t e  O p t i m i z a t i o n  

This section describes two algorithms for solving the NLPs that arise during 
steady-state optimization. Efficient algorithms for solving NLPs are also 
important due to the fact that NLPs often arise as subproblems of other 
optimization algorithms, e.g., dynamic optimization and MINLP problems. 
Consider the following NLP: 

min / ( x )  (39) 
x 

s.t. g(x) < 0 

h(x) = 0  
x L <_x<_x U, 

where f �9 lit n - II~ is the objective function, g �9 IR n ~ IR TM are the in- 
equality constraints, h �9 IR n - II~ TM are the equality constraints, x E It( ~ 
are the variables, and x L, x U ~_ II~ n are the variable lower and upper bounds, 
respectively. In process optimization, f is typically an economic objective 
function, h includes the model equations (such as mass and energy balances), 
and g represents design constraints such as product purity or waste produc- 
tion. One popular algorithm for solving (39) is successive (or sequential) 
quadratic programming (SQP). In this approach, a sequence of search direc- 
tions are generated by solving quadratic program (QP) subproblems. A QP 
is an optimization problem where the objective function is quadratic and the 
constraints are linear. At iteration k, the following QP is solved for a search 
direction dk: 

1 )TBkdk mindk I (xk)  + V f (xk)dk  + -2 (dk (40) 

s.t. g(z k) + Vg(zk)d k _< 0 
h(x k) + V h ( z k ) d  k = 0 

X L < X k Jr-d k < x u. 

The next approximation to the solution is simply 

x k +  1 = X k Jr- d k. (41) 
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The quadratic objective function in (40) is more than simply a second-order 
Taylor series approximation of f ( x )  at point k. The matrix B k approximates 
the Hessian of the Lagrange function: 

L(x,  u, u) = f ( x )  + uTh(x)  § b'Tg(x). (42) 

Using an approximation of VxxL(x k, u k, uk), rather than V2f (xk ) ,  includes 
information about the curvature of the constraints in the objective function 
of (40). In order for the d k generated in (40) to be descent directions and 
thus converge to a local minimizer of (39), the matrix B k must be positive 
definite. This may be achieved by using a positive definite approximation 
for B k, such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update [30]. 
Not only does the positive definite update ensure that descent directions 
will be generated, it also avoids the need to compute second-order derivative 
information. However, the disadVantage is that the convergence is superlinear 
rather than quadratic and the update is dense. 

As with Newton's method for solving systems of nonlinear equations, 
convergence for SQP is only guaranteed if the initial guess is sufficiently close 
to the solution. The algorithm can be made globally convergent through the 
use of a merit function [6]. A common example is the la merit function: 

r  [ Z  max{0, gi(x)} + ~ ,h~(x),] , (43) 
i j 

where # is selected such that the computed d k is a descent direction of r At 
each major iteration of the SQP algorithm, the new approximation to the 
solution is now 

x k+l = x k + Akdk. (44) 

Choosing A k such that r k + Akd k) is minimized, ensures global convergence 
of the SQP method. 

The fact that the BFGS update used in (40) is dense limits the size 
of problems that can be solved with the SQP algorithm described above. 
However, many problems in practice may be large but have few degrees of 
freedom. That is, the difference between the number of variables and number 
of active constraints is relatively small. This observation may be exploited 
in range and null space decomposition strategies for SQP [30, 59, 60]. In 
this reduced-space SQP approach, the QP subproblem is solved in the null 
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space of the active constraints (which has dimension equal to the number of 
degrees of freedom). Linear algebra is used to compute search directions in 
the range space. Since sparse linear algebra techniques may be employed, 
the size of problems that  may be handled is substantially larger. 

Another popular algorithm for solving NLPs is that implemented in the 
Minos package [41]. When using Minos, variables that appear linearly in the 
model are distinguished from variables that  appear in nonlinear expressions. 
In this case, the NLP (39) is rearranged to: . 

min f~ + cTxz (45) 
z 

s.t. f (x~) + Axl = ba 
Bx~ + Cxt = b2 

L < x ~ <  V 
X n X n 

where xz denote the subset of variables that  appear linearly in the objec- 
tive function and constraints and xn are all other variables. The objective 
function and constraints have also been partitioned into linear and nonlinear 
terms. Notice that the inequality constraints have been converted to equali- 
ties by introducing slack variables. At the k-th major iteration, the following 
problem is solved: 

' (46) min f~ --[- c T x l  - ikT(f(xn) -- ](xn; x,.)) + 
z 

L <_x~_< u 
X n X n 

�9 < x l  < 

where ](x~; x~) - f ( x~)+ V f ( x ~ ) ( z ~ - x  k) denotes the linearized constraints 
k The scalar p > 0 is chosen to improve convergence at the current point xn. 

when the initial point is far from the solution and the problem is highly 
nonlinear. The value of p is reduced to zero when near the solution. This 
linearly-constrained subproblem is typically solved through an unconstrained 
optimization procedure in the space of the linearized active constraints (the 
minor iterations). 
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A full optimization in the space of active constraints is performed at each 
major iteration in Minos. Consequently, Minos typically requires more func- 
tion evaluations than SQP and is better suited to process models which are 
mostly linear. SQP tends to perform better than Minos when the constraints 
are highly nonlinear. In addition, since fewer function evaluations are typi- 
cally required with SQP, this approach is often preferable when the function 
evaluations are expensive. 

3 .2 .6 .2  D y n a m i c  Optimization 

The section above described two common approaches for solving NLPs, op- 
timization problems where the underlying model is algebraic. Dynamic opti- 
mization, where the underlying model is a system of differential and algebraic 
equations, involves computing control trajectories that optimize some crite- 
ria. Consider the following dynamic optimization problem: 

min J = r  , t:; p) + L(z, u, t; p)dt (47) 
u~p 

s.t. f(2, z, u, t; p) = 0 

h(z, u, t; p) = 0 

g(z, u, t; p) < o 

r z(to), ~(to), to;p) = 0 
r z(t~), ~(ts),  t~; p) = o 

where J is a scalar performance measure, containing a scalar function and 
integral term to be minimized. The constraint f is the embedded dynamic 
system, h are equality path constraints, g are the inequality path constraints, 
and r and Cf are constraints at the initial and final time, respectively. Note 
the presence of control profiles, u(t), as decision variables. These are elements 
of function spaces. 

One approach for solving dynamic optimization problems is to parame- 
terize both the control and state variable trajectories, u(t) and z(t), using a 
finite set of basis functions, converting the dynamic problem into an NLP. 
This approach is called the collocation or simultaneous method. The resulting 
NLP may be solved using an appropriate algorithm, such as those described 
above. The decision variables are now the coefficients used in the discretiza- 
tion, the size of the subintervals in the discretization (often the time domain 
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is split into a series of subintervals, and separate basis functions are used on 
each subinterval), and the original time invariant parameters in the model. 
The advantage of this approach is that path constraints (i.e., constraints 
that must be satisfied at points along the trajectory) are readily incorpo- 
rated into the formulation. On the other hand, it is only guaranteed that the 
path constraints are satisfied at the mesh points of the discretization. The 
disadvantage is that very large optimization problems are produced from rea- 
sonably sized problems. Further, the number of degrees of freedom is quite 
large. This reduces the effectiveness of the range and null space strategies 
for SQP. 

Alternatively, only the control profiles can be parameterized. The dy- 
namic optimization problem is then converted into an NLP where the ob- 
jective function and constraints are obtained by integrating the embedded 
dynamic system, and gradient and J acobian values are obtained via the chain 
rule and a parametric sensitivity analysis or adjoint analysis. In this con- 
trol parameterization approach, the decision variables are the coefficients of 
polynomials used to discretize the controls, the size of the subintervals in 
the discretization, and the time invariant parameters originally in the model. 
Although initial and end-point constraints are readily incorporated into this 
method, complications arise if there are path constraints. Equality path con- 
straints may be handled in a number of ways. They may be included in the 
objective function as a heavily weighted integral term, relying on the opti- 
mizer to minimize constraint violations [15]. Similarly, they may be converted 
to end-point constraints by replacing them with integrals of the constraint 
violation. Also, equality constraints may be appended to the DAE model, f. 
This will require some of the controls to be treated as unknowns determined 
by the numerical integration. However, these additional constraints may re- 
sult in a high index DAE. An approach for handling this case is described 
in [26]. Inequality path constraints may be handled in a manner similar to 
the integral violation methods for equality path constraints. Often, the in- 
equality path constraints are also enforced as regular inequalities at the time 
subdomain boundaries. 

3 .2.7 U S I N G  S O L V E R S  

The previous sections describe several numerical algorithms used to solve a 
variety of problems commonly encountered during process modeling activi- 
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ties. This section briefly highlights some of the ways these solvers are actually 
used within an application. Specifically, the form the solvers are made avail- 
able to the user is discussed. Three approaches are described, procedure 
libraries, object-oriented libraries, and component libraries. These three li- 
brary representations closely match the evolution of programming practices 
within the software development community. 

3.2.7.1 P r o c e d u r e  L ib ra r i e s  

Traditional scientific computing has been implemented by calling numeri- 
cal routines in a well-defined order. These numerical routines are typically 
made available in the form of procedure libraries, containing synchronous, 
local-address-space functions written in a procedural language such as C or 
Fortran. A very large number of procedure libraries are available, many in 
the public domain. A brief list includes BLAS [35], Linpack [22], Eispack 
[53], Lapack [3], Odepack [34], and the Sarwell Subroutine Library (HSL) 
[37]. 

The Basic Linear Algebra Subroutine (BLAS) library is a collection of 
Fortran subroutines and functions for performing basic linear algebra tasks, 
including computation of norms, inner products, and other basic vector oper- 
ations. The computations performed by the BLAS routines are typically key 
micro-kernels within other calculations and the performance of these routines 
can often dramatically effect the performance of the overall calculation. Con- 
sequently, BLAS libraries are available for specific computers, compiled for 
optimal performance. The Linpack library, developed in the 1970s and early 
1980s, is a collection of Fortran subroutines for performing higher level lin- 
ear algebra calculations, but rely on the BLAS routines for vector operations. 
Some numerical algorithms provided in the Linpack library include dense and 
banded matrix LU factorization and backsubstitution, condition number es- 
timation, and computation of the determinant of a dense or banded matrix. 
The Eispack library is similar to the Linpack library, but provides a collection 
of subroutines for eigenvalue and eigenvector computation. The Lapack li- 
brary also provides a set of Fortran subroutines for performing linear algebra 
computations. Many of the subroutines contained in the Linpack and Eis- 
pack libraries are superseded by those in the Lapack library. An advantage of 
the~Lapack library is the use of Level-3 BLAS routines. Linpack and Eispack 
exploit Level-1 BLAS routines for performing optimized vector operations. 
However, with the advent of more sophisticated computer architectures (e.g., 
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vector processors) much of the computational overheads associated with al- 
gorithms employing Level-1 BLAS routines involve the wasteful moving of 
data from one memory location to another. Level-3 BLAS are available which 
eliminate much of this cost by tailoring the algorithms for specific computer 
architectures. Another Fortran library readily available is Odepack. Odepack 
provides a set of Fortran subroutines for the numerical integration of stiff and 
nonstiff ODEs. The subroutines in Odepack exploit both the BLAS routines 
and linear algebra routines described previously. Another subroutine library 
is the Harwell Subroutine Library (HSL). The HSL provides a large collec- 
tion of Fortran subroutines for performing tasks from sparse linear algebra 
to nonlinear optimization. The numerical algorithms employed in all of these 
libraries illustrate a common trait in numerical library design: more complex 
numerical algorithms are built on top of optimized lower level computational 
kernels. This set of libraries is by no means exhaustive, but does illustrate 
the availability of a number of procedural libraries available to the engineer 
for performing routine tasks within an overall numerical application. 

The advantage of the procedural library is that quite efficient code may 
be produced, without any of the additional overheads associated with the 
other approaches described later. In addition, the use of procedure libraries 
is familiar to many computational scientists trained in the use of proce- 
dural programming techniques and not familiar with modern programming 
paradigms. Consequently, there is essentially no learning curve that must be 
overcome when using most procedure libraries. 

There are a number of disadvantages to using solvers in the form of a 
procedure library. In typical procedure libraries, each solver has a specific 
interface (i.e., argument list and return value). This fact makes it somewhat 
difficult to swap between different solvers within an application (e.g., switch- 
ing from an explicit to an implicit ODE solver). This problem is somewhat 
mitigated if a variety of solvers are provided from a given library and in- 
terface conventions are adopted. In addition, the varying calling standards 
between different languages (even different compilers for the same language) 
make mixed-language programs difficult to create, debug, and port to other 
computers. Tight coupling and high cohesion between subprograms often 
associated with procedural programs makes the evolution and maintenance 
of software difficult. Even minor changes in one section of an overall ap- 
plication (e.g., swapping between two different classes of solvers) can have 
rippling effects that propagate throughout the entire application. As software 
systems become more complex, they involve the contributions of multidisci- 
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plinary teams of experts. This problem is exacerbated by the use of more 
sophisticated computer architectures (e.g., parallel computers). The char- 
acteristics of procedural programming techniques make it very difficult to 
manage complexity of large and evolving software applications. Neverthe- 
less, the performance possible with optimized procedure libraries will make 
this approach necessary for some time, particularly for key computationally 
intensive kernels. 

3.2.7.2 O b j e c t - o r i e n t e d  L ibra r ies  

As stated above, as scientific computations become more complex, they typ- 
ically involve the contributions of a multidisciplinary team of experts. The 
increasing complexity of the application is coupled with performing the com- 
putations on more sophisticated computer architectures. Procedural pro- 
gramming languages provide little language support for managing this com- 
plexity. Consequently, new programming paradigms have evolved in the com- 
puter science community. Specifically, there has been a move from procedural 
based languages, such as C, Fortran, and Pascal to object-based and object- 
oriented languages, such as Ada, Object Pascal, C++, and Smalltalk. In 
object-oriented design, the program is not thought of as the application of a 
set of algorithms performed in a well-defined order, but rather the interaction 
of objects. These objects, which encapsulate data and algorithms applied to 
the data, enable a higher level of abstraction in order to manage complexity. 
A growing number of object libraries are available, including Blitz++, Diff- 
pack, ISIS++, POOMA, Overture, OPlus, and Lapack++. Several of these 
libraries are designed for applications on parallel computers. 

As stated above, the use of objects rather than algorithms enables a 
higher level of abstraction, reducing the complexity of the overall application. 
Properly designed, these objects hide implementation details (referred to 
as data hiding or encapsulation). The engineer is able to focus on what 
transformation the object performs on the data rather than the specifics of 
how this transformation is performed. By hiding the implementation details 
properly, modifications can be made internal to the object with minimal 
impact to the overall application. This capability makes it much easier to 
reuse, extend, maintain, and evolve an application, particularly when several 
programmers are involved. 

A price is paid for this flexibility. It is well known that code exploiting 
many of the features of an object-oriented language is less efficient than what 
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is possible with code written in a procedural language. Second, well-designed 
objects require more than simply the use of an object-oriented language. 
They require the user to change the way they think about programs and 
how they are initially designed and implemented. Since most computational 
scientists are not trained in the use of object-oriented programming tech- 
niques, there is a substantial learning curve that must be overcome before 
object-oriented libraries may be designed and used effectively. 

3 .2 .7 .3  C o m p o n e n t  L i b r a r i e s  

Arguably, for large-scale, complex applications, object-oriented programming 
techniques have made a substantial impact. The decomposition of programs 
into loosely coupled objects, with proper data hiding, dramatically facilitates 
the collaboration of teams of programmers and the evolution and mainte- 
nance of the software application. However, complications still arise, par- 
ticularly when using commercial or other third-party codes. Furthermore, 
the advent of heterogeneous computing environments, where different por- 
tions of a program may be running on entirely different computers, possibly 
with different operating systems, pushes the limit on what is possible with 
object-oriented programs. A common scenario is a physical property server 
running on one computer, the calculation engine running on another, and 
a visualization package running on a third. Component-oriented program- 
ming approaches address many of these issues. According to [54], "software 
components are binary units of independent production, acquisition, and 
deployment that interact to form a functioning system." Components en- 
able an even higher level of abstraction than objects. Proper component 
design involves well-documented contracts explicitly stating what informa- 
tion the component will receive and what transformation on the data will 
be performed. More complete contracts indicate computation complexity as- 
sociated with the transformation. With a well-defined contract, the user of 
a component need not focus on the operations being performed, but simply 
the results of the operations. Several component frameworks are available, 
including CORBA [42], the Microsoft COM family [11], Sun's JavaBeans 
[7]. As stated above, heterogeneous computing is addressed within many 
component frameworks. 

In contrast to procedure and object-oriented libraries, where different pro- 
gramming techniques are employed for the construction of the elements of 
the library (i.e., the use of procedure-based languages versus object-oriented 
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languages), component libraries are based on frameworks which describe how 
the individual components are interfaced and linked to each other. By adher- 
ing to these standards, several different components maybe readily combined 
into an overall application, regardless of the origin of the components. 

Several initiatives based on component frameworks have emerged for sci- 
entific computing. Three of these are the DOE Common Component Archi- 
tecture Forum, the ALICE Project of the MCS Division of Argonne National 
Laboratory, and CAPE-OPEN, described in this book. 

Similar to objects, additional overheads accompany the flexibility possi- 
ble with components, particularly communication between components. In 
addition, many issues addressed by components are often not necessary for 
scientific computing. Components have been used to a greater extent within 
the business community where security is a serious concern. For many sci- 
entific applications, this is not a major requirement and the overheads are 
largely unnecessary. 

Despite these disadvantages, components will play an important role in 
the design and implementation of large-scale scientific computing applica- 
tions. Areas that will benefit from the use of components are higher level 
coordination tasks, monitoring, steering of the calculation, coordination be- 
tween different aspects of an overall calculation, visualization, communica- 
tion between different platforms. 

The availability of these different programming techniques require the 
designer and user of a solver library to pay close attention to the struc- 
ture of the overall library and individual solvers within the library. The 
three approaches described in this section are complementary: components 
frameworks for high level tasks, objects-oriented design of complicated com- 
ponents, and procedures for low level, computationally intensive kernels. 

3 .2 .7 .4  A u t o m a t i c  C o d e  G e n e r a t i o n  

The first part of this section describes several library formats through which 
numerical solvers are made available to the user. With these libraries, the 
solvers may be readily linked into the overall application. However, often in 
practice, much of the time and effort expended when performing numerical 
calculations is spent providing additional symbolic information required by 
the solver. As mentioned several times in this chapter, the user must often 
provide analytical derivatives, sparsity patterns, and other information re- 
quired by the solver. This additional information is provided in a number 
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of ways, determined by the actual solver being used and the type of library 
containing the solver. For example, procedure libraries typically require the 
user to provide model equation residuals, derivative evaluations, etc, in the 
form of external procedures. Whereas, when using component libraries, the 
natural choice is models in the form of components which export all of the 
necessary information. Regardless of how this information is provided, the 
underlying computed quantities are the same. The remainder of this section 
describes automated code generation techniques that may be used to provide 
this additional symbolic information with minimal user intervention. 

The use of automated code generation techniques to construct deriva- 
tive information from computer programs has been around for some time. 
This effort has largely taken place within the automatic differentiation (AD) 
community where a number of algorithms and codes have been developed 
[10, 31, 50, 29]. These AD techniques operate on source code of computer 
programs and provide code for computing analytical derivatives by either 
generating new source code that may be compiled and linked to provide 
the derivative values or by using the operator overloading features of many 
languages (e.g., C++ and Fortran 90) to make the compiler generate the 
additional instructions within the object code for computing the derivatives. 
Recently, these code generation techniques have been extended to automati- 
cally construct a much broader class of information [56]. For example, given 
the code for evaluating the model equations, new code can be automatically 
constructed for determining analytical derivatives, sparsity patterns, discon- 
tinuity information, interval extensions, and others. In general, most or all 
of the additional information required by the solvers can be generated au- 
tomatically from the original model code. These automatic code generation 
techniques typically apply to procedural code. However, the procedural code 
can the be embedded in any format required by the solver being used. 

3.2.8 C O N C L U S I O N S  

This chapter highlights several numerical algorithms used to solve common 
problems that arise during process modeling, including solution of systems of 
nonlinear equations, numerical integration and parametric sensitivity anal- 
ysis of hybrid discrete/continuous systems, and optimization. The actual 
algorithm selected for a particular application depends both on the nature of 
the problem being solved and the availability of additional information con- 
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cerning the model equations. If the model equations are available in symbolic 
form then much of this information is be readily available, removing many of 
these constraints. Further, recent developments in automatic code transfor- 
mation techniques offers these same benefits when the model equations are 
available as code in a programming language such as C or Fortran. 
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Chapter 3.3: Simulat ion,  Design & Analysis  

D. Hocking, J. M. Nougu~s, J. C. Rodriguez & S. Sama 

3.3.1 Simulation 

Simulation is today a well-known subject. It is nevertheless useful to get back to 
the basics and describe briefly what  is understood as simulation. 

Himmelblau and Bischoff define simulation as 'The s tudy of a system or its parts  
by manipulat ion  of its mathematical  representation or its physical  model '1. 
Encarta  provides another definition: 'The imitation of a physical  process or object 
by a program that causes a computer to respond mathemat ical ly  to data and  
changing conditions as though it were the process or object i tself  2. 

The first definition outlines the relationship between simulation and modelling. 
While modelling is the construction of a (more or less simplified) mathemat ica l  
representat ion of a system, s imulat ion consists in the use of such model to study 
the system. For all but the most trivial models, simulation will require a non- 
trivial solving of the model. In spite of this distinction, modelling and simulation 
are increasingly been used as synonyms, on the basis tha t  the modelling activity 
is almost always a pre-requisite for simulation. 

There is, therefore, a strong relationship between the modelling and the 
simulation activities. In fact, in order to simulate a system, a model is needed. 
Moreover, the same system may have several models (possibly, with different 
levels of fidelity) tha t  can be used for similar simulation purposes (leading to 
answers of varying degrees of quality). 

The lat ter  definition of simulation is interest ing in the sense tha t  it is implicitly 
restricted to computer simulation, leaving all other types of simulation outside of 
its scope. This is another  example of how the computer revolution is influencing 
the meaning of words. The solution of any mathemat ical  model tha t  represents  a 
physical process is a form of simulation, regardless of the number  of equations or 
the method of solution. The generally accepted interpreta t ion of simulation is the 
solution of a model of a system with a computer. 
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Simulation has a key role in the system design and analysis, especially in those 
systems where their intrinsic complexity makes analytical study impractical or 
infeasible. From this perspective, simulation is a tool for the system design and 
analysis activities. In these two contexts, simulation is used in different ways: 

1. For the design process, where the objective is to develop a system that  
satisfies a specified set of requirements,  simulation is used as an aid for 
the design through the prediction of the system behaviour. 

2. For analysis purposes, the real system already exists (at least its 
representat ion - the  model) and the objective is to use its model in order to 
analyse how that  system behaves under a given set of conditions. 

In both of the above mentioned activities, simulation aims at replacing with 
advantage experimentation. The cost-effectiveness of simulation is a function of 
the following factors: 

1. The cost of performing an experiment, that  is, interrogating the real 
physical system to measure its behaviour. 

2. The quality of the information obtained in the above mentioned 
experiment. 

3. The cost of building the mathematical  model of the system. 
4. The cost of simulating the system using its mathemat ical  model to 

calculate its behaviour. 
5. The quality of the information obtained from the simulation. 

Progress in a number  of dimensions is steadily pushing forward the advantages 
of simulation over experimentation: 

1. Hardware.  Moore's law states that  computer speed approximately doubles 
every 18 months, which equates to three orders of magnitude increase in 
the last ten years. Simulation scale and speed have followed this trend. In 
addition, the cost per MHz of processor speed has decreased enormously. 
This has increased the application of simulation by making it more 
accessible and cost-effective and it is now often considered a real-time 
activity. 

2. Software. Software Engineering has followed the evolution of the 
hardware,  becoming more advanced and efficient. This in turn  has driven 
a software revolution that  has made the process of making the hardware 
perform useful work much more straightforward. 

3. Engineering. Our understanding of the underlying principles and 
phenomena in physical processes continually increases. The accuracy and 
applicability of the corresponding simulations also increases. 
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4. Numerical  methods. The scale of mathemat ica l  s imulat ion problems 
solvable on a desktop terminal  has increased from a few tens of equations 
thir ty years ago to a few million today. The enormous increase in scale has 
forced the development of more efficient, stable and fast algorithms, such 
as representat ion and solution of large sparse matr ix  problems. 

3.3.1.1 G e n e r a l  a p p r o a c h e s  to s i m u l a t i o n  

Simulation tools have broadly followed one of the following approaches: 

Some of them are simulation-specific programming languages, such as 
Simnon from SSPA Marit ime Consulting AB (Goteborg, Sweden) or Advanced 
Continuous Simulation Language (ACSL) from MGA software (Concord, 
Mass.). 

Other tools are graphical tools where the user builds and connects blocks 
through the inputs and outputs of each block. The type of information flowing 
through these connections is not pre- defined but is defined in each case. Some 
examples of this type are Simulink from Mathworks or VsSim from Visual 
Solutions. 

Other tools are domain specific simulators such as HYSYS from Hyprotech 3, 
Aspen plus from Aspen Technology 4 or ProII from Simulat ion Sciences 5, in the 
field of process simulation. These type of tools is specifically tailored for a 
certain domain: process simulation. These specificity leads to ease of use, 
albeit at the expense of a certain loss of generality. 

The field of process simulation is to a large extent dominated by this lat ter  type 
of software tools. Since the early works in the computer application to chemical 
process by L. Lapidus 6 (1962), E.M. Rosen 7 (1962), Rvicz and Norman s (1964) and 
other authors, over the past  thir ty years a significant advance was made in these 
area and several software packages have been developed. HYSYS 3, HYSIM 3, 
ASPEN 9, PROII 5, SpeedUp 1~ DIVA 11, gPROMS 12, ABACUSS 13 are just  some 
examples of products designed to free engineers from the burden of having to deal 
with numerical  algorithms and allow them to focus instead in the model 
formulation and application. 

3.3.1.2 C h e m i c a l  P r o c e s s  S i m u l a t i o n  

In the field of CAPE, the systems under  consideration are physical and chemical 
processes, ranging from simple systems (e.g. vapour-liquid equilibrium 
calculations) to complete dynamic plant  simulations suitable for training 
operating staff. 
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Steady-state simulation 

Steady-state is defined as a mathematical condition whereby the properties of a 
system at each point are constant with time. This condition very rarely happens 
in real life. Why is then steady-state simulation so popular? The steady-state 
assumption removes time derivatives by setting them to zero. This provides a 
simpler mathematical  model that  is easier to understand and more adaptable to 
custom solution techniques. 

It is worth mentioning at this point that  it is often said tha t  steady state is the 
state to which a system converges when t~r162 but this is incorrect. Some systems 
do not converge to any steady state and may only be described by their dynamic 
behaviour. 

To illustrate a non-steady-state system, consider a pipeline in severe slugging 
conditions. The system exhibits changing behaviour (liquid flow rate/vapour flow 
rate) at each point in time, as shown in Figure 1. 

Figure 1. Evolution of gas and liquid mass flows at the exit of a pipeline 
showing severe slugging behaviour 

Dynamic simulation 

Dynamic simulation describes the time-dependent behaviour of a system. 
Dynamic simulation is not as widely applied as steady-state simulation. The two 
main reasons are the engineering complexity and the much greater 
computational load. As computing power increases and simulation software 
interfaces improve, dynamic simulation is rapidly becoming an effective tool. 
Some useful fields of application include: 
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�9 Dynamic studies. Steady-state simulation will provide the basic operating 
conditions for the plant. Dynamic simulation can provide further 
information on how to transition the plant between modes or hold it at a 
particular set of conditions. 

�9 Control system design and validation studies. The dynamic behaviour of a 
process is dependent on the control scheme. Different control strategies will 
result in different behaviours. Dynamic simulation is required to determine 
which scheme is optimal and provides the advantage that  the investigation 
is off-line. Dynamic models have a central role in model predictive control 
(MPC) applications. In this technology usually a black box identified models 
is used in the controller. The modelling and identification is the most time- 
consuming task during the implementation of a MPC in the industry ~4. The 
dynamic simulation of complete flowsheet can help in more effective 
deployment of the MPC applications, as this type of control usually involve 
plant wide control problems and/or strong interacting systems. MPC 
employs a simulation model of the plant to predict how the plant will 
behave in time with manipulation of the control variables. A MPC solves an 
optimisation problem at each control cycle, attempting to minimize the 
deviation from the setpoint(s) by manipulating the control variables. The 
MPC may predict several steps into the future to refine the optimisation. 
MPC permits a shift from feedback control that  is reactive, to predictive 
control that  is proactive. 

�9 OTS (Operator Training Systems). OTS brings the concept of a flight 
simulator into the process plant. The goal is to train the plant operators in 
the use of the real plant by using a simulation model. The simulation model 
must be very detailed to replicate the real plant exactly. 

Optimisation 

Optimisation determines the values of a set of independent variables (e.g. 
temperatures and pressures) that  minimize a real-valued objective function that  
is usually based on cost. Other optimisation applications are described below: 

�9 Mixed-integer optimisation. In this technique, the independent variables 
are a combination of real-values (e.g. the reflux ratio) and integer-values 
(e.g. feed tray). The optimisation determines the best integer and real 
values for the problem, for example the feed tray location for the lowest 
reflux ratio. Heat exchanger network synthesis is another mixed-integer 
problem. 

�9 Dynamic optimisation. This is similar to steady-state optimisation except 
that  the objective function is also time-dependent in some way. Dynamic 
optimisation is computationally demanding. The MPC application 
described above is a form of dynamic optimisation. The objective function is 
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the weighted sum of the setpoint deviations. The assumption is that  the 
setpoints are themselves optimal. 
Real-Time Optimisation (RTO). This is the direct application of a steady- 
state optimisation to a plant control system. On a suitable time cycle (every 
few minutes or so), the steady-state simulation is updated with appropriate 
plant  conditions and optimised. The optimal control values are then fed to 
the plant  control system and the process continues. This is effectively a 
dynamic optimisation with a steady-state model. To be effective, the 
optimisation time cycle must  be considerably smaller than  the time 
constants of the plant  being controlled. 
Data reconciliation and parameter  estimation. Data  reconciliation uses 
statistical techniques and a simulation model to identify errors in plant 
measurements .  Parameter  estimation uses reconciled data and the 
simulation model to determine accurate equipment parameters  such as 
heat  transfer coefficients (fouled/not-fouled etc). The equipment parameters 
may be used for dynamic control studies, optimisations, fault identification 
and determination of maintenance cycles. 

3.3.1.3 S i m u l a t i o n  and mode l  f idel i ty  

It was mentioned earlier tha t  the size of simulation problem we are able to solve 
increases with computing power. This has a significant impact on the level of 
detail in the simulation model. As more detail is incorporated, the computational 
load increases. The extreme example is CFD (Computational Fluid Dynamics), 
where the number  of equations can be in the millions. 

Traditional simulation models are based on lumped first-principles analyses, 
employing mass and energy balances across pieces of equipment with a 
thermodynamic characterisation, usually based on equilibrium. Basic equipment 
information and geometry is incorporated if required. Recently, neural net 
applications have been embedded into simulation packages to enable 
parameter isa t ion of complex, computationally-expensive models for high-speed 
execution. These models have the same fidelity as first-principles models, but 
they trade off the first-principles extrapolation capability for speed. 

At the other end of the spectrum, a high-fidelity CFD model requires detailed 
geometry, mater ial  properties and flow paths to be truly effective. Anomalies 
such as hot spots, s tagnation points and high-shear conditions may be 
determined with CFD modelling. The associated computational cost is high. 

Longer-term, a component-based architecture is the only way to provide a variety 
of model fidelities in simulation. A generic framework tha t  permits  a calculation 
granular i ty  much finer than  a macro unit operation is required. A particular 
vendor might provide an exceptional heat-transfer correlation, but  a mechanism 
to deliver tha t  calculation is required to make it globally beneficial. 
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3.3.2 DESIGN 

A design problem exists when the desired end result  is known, but the means or 
process leading to the end is not. Simulation is usually an integral  part  of the 
design process, in fact it is difficult to imagine a design process tha t  does not 
incorporate simulation at some point. Traditionally the design work-process 
progresses linearly through conceptual, process, detailed and costing. Recent 
advances in CAPE software promote the concept of moving through the work 
process as requirements  dictate ra ther  than  restricting the workflow to a linear 
progression. 

3.3.2.1 Conceptua l  des ign  

This is the first step in the design process, where the major process units 
required to achieve the end result are selected, e.g. reaction, separation, 
compression etc. Basic thermodynamic information is required to determine 
approximate operating conditions. Several al ternatives may be screened at this 
point to determine candidates to move forward into process design. Conceptual 
design is a steady-state simulation process. 

3.3.2.2 Process  des ign  

Process design occurs after the conceptual design. The major process units are 
decomposed into smaller groups of units with more equipment  and detail. 
Reasonably precise operating conditions are determined. This is predominantly a 
steady-state simulation process with some optimisation. However, there are great 
advantages to performing dynamic simulations at this stage to design the basic 
control scheme for the plant, as rework is minimised and control-specific issues 
such as time constants may be identified early on. 

3.3.2.3 Deta i led  Des ign  

Detailed design completes the equipment specifications and 3-D layout for the 
plant. Complete PFDs, PIDs and construction diagrams are developed here. 
Simulation at this stage can form the basis for operator training, plant  
commissioning and online applications. 

3.3.2.4 Cost Es t imat ion  

Cost est imation aims at producing an est imate for all the costs involved in a 
plant  construction and operation. Obviously, the cost est imation can be 
performed with different levels of fidelity, as a function of the availability of 
information. 
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3.3.2.5 Impact  of the Web in Des ign Act ivi t ies  

A detailed analysis of the impact of the web on the above described activities is 
beyond the scope of this article. Nevertheless, this section will mention a number 
of changes that  the web may be introducing in the way these activities are 
carried out today. 

As a general principle, the Web has greatly reduced the transaction times 
between the different stages in the value chain of most activities. In the field of 
CAPE, the Web has extended the reach of the C in the word CAPE: computers 
are not anymore restricted to one single stand-alone computer or to an intranet 
network, but they can now automate processes across companies. The impact of 
these automation of processes is very relevant in a number of design activities. 
The viability of these improvements is heavily dependent on the availability of 
robust standards that  enable CAPE software tools to work across the internet 
(and therefore across companies). 

Model l ing  complex  processes  

There are many process units such as cat crackers, reformers, and ethylene 
furnaces that  require complex models. These models are often available 
commercially, but are generally not integrated into an overall simulation 
package. Someone wishing to incorporate such a process unit  into his design 
must  either develop his own model or integrate a commercial model into the 
simulator, either alternative will take significant time and effort. 

The availability of standards such as CAPE-OPEN can alleviate such problems. 
The individual model vendors can provide their equipment models with an 
appropriate interface. The process engineer can then download the models he 
needs to complete his design. This concept extends beyond equipment models. 
Models for proprietary processes or materials could also be downloaded. 

Equipment  se lec t ion  

The availability of standards also makes possible the very appealing scenario 
described hereinafter. 

The process engineer works in the process design, which consists of a number of 
ideal building blocks (unit operations). At that  stage, aspects like the need of 
some ancillary pieces of equipment (e.g. pumps to lift fluids to the top of a 
column) are not considered. At the detailed design activity, this ancillary 
equipment is incorporated into the process design. Next comes the equipment 
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selection, which consists of replacing the abstract  pieces of equipment by real 
models available in the marketplace. 

The equipment selection, once the detailed design is available, is a task that  
usually involves contacting a number  of equipment providers. Conjunction of the 
web and s tandards such as CAPE-OPEN make it possible, at least in theory, tha t  
the process of equipment selection be automated through the use of equipment 
selection agents. 

Equipment  selection agents would take care of replacing a flowsheet composed of 
models of abstract  unit  operations by one (or more) flowsheets composed of 
models of real pieces of equipment (that is, pieces of equipment  available in the 
marketplace). The agent would communicate the requirements  of the equipment 
to the equipment provider server. The process would end up (hopefully) with a 
number  of al ternatives fulfilling the requirements  set up by the detailed process 
design activity. Those alternatives would differ in aspects such as the capital 
expenditure vs. operating expenditure tradeoff, safety, reliability, etc. 

The usefulness of the s tandards becomes apparent  when considering that  
equipment providers may decide to make available detailed simulation models of 
their pieces of equipment. The equipment selection agent would then be able to 
download a number  of such simulation models, all of them meeting the 
requirements  defined by the detailed design abstract  model. A generic (abstract) 
unit  operation is then instant ia ted in a number  of (alternative) models of real 
unit  operations provided by the equipment manufacturer .  Standards  like CAPE- 
OPEN ensure tha t  the abstract simulation model can be seamlessly replaced by 
one of a set of alternative concrete simulation models. 

The replacement of an abstract unit operation simulation model by a real, 
concrete one enables the process designer to rerun the simulation model with a 
more accurate description of the plant and thus identify effects tha t  didn't show 
up with the abstract  model. 

While the practical implementat ion of the above described scenario is not 
available yet, it is thought to happen in the near future. 

As a consequence of the equipment selection process, cost est imation can become 
cost calculation, as simulations are based on models of physical equipment with a 
defined purchase price. 
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3.3.3 ANALYSIS 

Once one or more plant designs are available, simulation allows the engineer to 
perform a number of analysis activities. These analysis activities share the goal 
of testing the behaviour of the virtual plant for a number  of parameters:  

�9 Controllability. It is well-known that  a good process design from a steady- 
state perspective is not necessarily controllable. 

�9 Start-up and shutdown operations. A dynamic model of the plant is 
required for the analysis of start-up and shutdown operations. 

�9 SHE studies. CAPE tools are extremely useful for performing Safety, 
Heal th  and Environmental  studies, such as: 

HAZOP/HAZAN. A s tandard process design activity is a 
HAZOP/HAZAN studies on the plant equipment. A CAPE tool is 
very useful in simulating the equipment behaviour under the 
conditions determined by the HAZOP/HAZAN studies. 
Emission studies. In some cases, a number  of tools are used co- 
operatively in order to analyse, for example, the evolution of a toxic 
cloud caused by a leak in the plant. Typically this problem is 
analysed by using a combination of process simulator and CFD tool, 
such as in Figure 2 below. 

Figure 2. A dynamic model of a steam reforming plant demonstrates the 
behaviour of the plant during an upset. The feed and feed preheat system are 
modelled using first principles models for all the equipment. The reactor is 

implemented with a l-dimensional pseudo homogeneous model of the reactor tube 
and uses an approximated model for the furnace side. It takes into account the 
radiation heat transfer, the furnace wall thermal lag and the combustion of the 

fuel gas. The control system reproduces the actual plant control system. The plot 
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shows the impact of a sudden 10% increase in feed rate on the reactor temperature 
profile. The X-axis represents time, the Y-axis represents the length of the reactor 
and the Z-axis shows the deviation of temperature from the nominal conditions. 

3.3.4 SYSTEM FRAMEWORKS 

3.3.4.1 Bus ines s  requ irements  

The scenarios described above require realistic mathematical  models and 
software tools that  make constructing and using the models a cost-effective 
process. Modern system frameworks aim at achieving such cost-effectiveness, 
almost without exception, by being designed allowing for reuse. Reuse needs to be 
enabled in two fundamental,  complementing areas: 

Model reuse. Usually companies will have invested important resources in 
building the model of the system under study. It is expected that  several 
simulation tools will be able to use the same model, even if they will make 
different use of it. 

Simulation tool reuse. Similarly, companies may have invested important 
resources in the development of a special-purpose simulation tool. It is also 
a reasonable expectation that  such special-purpose tool can be re-used in 
the context of a variety of more general-purpose simulation tools. As an 
example, a specialised reactor model could be used inside a conceptual 
design tool or inside an optimisation tool. 

The above high-level reuse requirements become more specific depending on the 
following factors. 

Model reuse throughout engineering disciplines. The tools need to allow 
each engineering discipline to work co-operatively, ideally to add 
knowledge into a common model. Examples of such engineering disciplines 
are: 

o Thermodynamics 
o Process design 
o Costing 
o Equipment selection 
o Control engineering 

Activity sector. Process licensors, engineering, procurement and 
construction (EPC) companies and operating companies pose completely 
different requirements on the tools and their models. 
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�9 A process licensor may be interested in using modelling tools both 
internally and as an additional, differentiating item in its product 
portfolio whereby the process model would be provided to their 
customers. For this latter application a restricted version of the 
model may be required, so that  the end user does not have access to 
information that  is considered as confidential by the process 
licensor. In addition, process licensors will usually have their own 
special-purpose in-house simulation software and will require them 
to be plugged in the simulation tool. 

�9 An EPC company may be particularly concerned about workgroup 
capabilities in the modelling tools they use. Among other aspects, 
this may pose versioning, auditing trail, etc, requirements on the 
tools. EPCs will often have as well in-hose software that  is expected 
to interact efficiently with the main simulation tool. 

�9 An operating company may make a variety of uses depending on the 
department. Operating units in such companies are usually resource 
constrained and may value robustness and ease of use of the 
simulation tool over flexibility and complex features. These latter 
capabilities may, on the contrary, be the preferred ones by central 
engineering departments in order to allow them assessing 
innovative, non-standard, design alternatives. 

Industrial  sector. While each industrial sector has different needs, it is 
impractical to build specific tools from scratch that  will address just one 
sector's needs. Modern system framework architectures may support the 
creation of specific purpose tools built on top of general purpose ones by 
providing them with a number of additional features. The following is a 
list of industry sectors briefly mentioning their specific needs. 

o Upstream Oil & Gas. This sector is particularly demanding for 
dynamic simulation and for the simulation of complex hydraulic 
systems such as pipeline networks. 

o Refinery. The refinery sector requires capabilities for the 
characterisation of different crude oil types and also modelling 
capabilities for a number of specific reactor types 
(hydrodesulphurization, fluid catalytic cracker,...). As above, the 
basic simulator's architecture may address these challenges by 
allowing for plugging-in specific modules to address these needs. 

o Petrochemicals. The petrochemicals sector has specific requirements 
for modelling some types of petrochemical reactors (e.g. ethylene 
crackers). These requirements may be handled similarly. 

o Chemicals. The chemicals sector has a very wide variety of 
requirements, among them, and just to mention a few, it requires 
electrolyte modelling capabilities and similarly batch processes 
modelling capabilities. These requirements are not trivial to fulfil: 
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issues such as electrolyte s imulat ion capabilit ies may require in 
some cases serious re-engineering of the simulator.  

Stages in the life cycle. Different stages in the process life cycle pose 
different requirements  on the model and its s imulat ion tool. Modern 
system frameworks  share the common goal of allowing seamless porting of 
the model from one stage to the following one: 

�9 Conceptual design. 
�9 Front-l ine engineering. 
�9 Detai led engineering. 
�9 Equipment  selection and costing. 
�9 Operabil i ty analysis. 
�9 Operator  training.  
�9 Performance monitoring, main tenance  
�9 Revamp studies, optimisation 

Rigor. The required level of model fidelity is not uniform in all the 
activities, but  depends to a large extent  on a number  of factors. Some 
operational problems, in particular,  may require the use of complex 
mathemat ica l  techniques such as computat ional  fluid dynamics,  while in 
other applications (like the prel iminary screening of distil lation sequences) 
a much lower model fidelity is perfectly acceptable. The architecture of the 
modern system frameworks needs to be able to accommodate different 
levels of model rigor and to allow the smooth t rans i t ion  between these 
different rigor levels. 

The above ment ioned requi rements  are reflected in the following dimensions tha t  
s imulat ion system frameworks must  address satisfactorily: 

1. Fidelity. Fidelity is the amount  of equipment  and process detail in a model. 
A quali tat ive assessment  of a separat ion process requires  relatively little 
detail; an operator  t ra iner  requires a higher  level of detail; the detailed 
analysis of a mixing process requires yet addit ional  level of detail. 

2. Scale. The scale of a model is a significant factor. A small-scale model 
might only model one section or unit  of a plant.  A large-scale model might  
cover an entire plant  or many plants.  While it is clear the impact of the 
scale in the computat ional  requirements ,  often the scale of the problem 
also impacts radically the suitability of the whole s imulat ion methodology. 

3. Performance. The performance is a function of the scale and fidelity of the 
model. The software must  support  the engineer ing activity in the time 
horizon tha t  makes  the activity useful. It is in teres t ing to note here tha t  
the whole concept of time horizon that makes the activity useful is in some 
cases an absolute one but  in some other cases a relative one. Quite 
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logically, an operator training application will be required to execute at 
least at real-time speed, which constitutes the perfect example for an 
absolute performance requirement.  On the other side, in many other 
applications, it is the market  forces of both competition and supply of 
better and faster tools that  continuously raises the expectations and 
requirements  of the engineering community, what  provides a relative 
performance level. The qualitative separation assessment mentioned above 
is a small-scale, low-fidelity model tha t  is today expected to solve quickly 
(in the order of seconds). Similarly, an on-line optimisation usually must 
be solved in the order of minutes in order to be useful, but for the (off-line) 
analysis of a mixing process, longer computation times (of the order of 
hours, or even days in some cases) may be acceptable. As can be inferred, 
the evolution in the computing power is continuously pushing the 
expectations of the engineering community towards shorter response times 
and/or more complex applications. 
Interface, communication and usability. The software tools used for 
modelling applications now operate within a complex corporate 
environment of software systems. Modern tools are expected to 
communicate with complementary applications and provide extension 
capabilities. In addition, software tools are expected to be straightforward 
to use and support the engineer as they work. 

3.3.4.2 Bas ic  t echn ica l  approaches  

The most important  task in process simulation is the solving of the large set of 
equations tha t  represents the flowsheet. For all the existing solving methods the 
initial point is the block diagram of the model. Taking into account the approach 
used to solve the set of equations, all the current  process simulators fall into the 
following categories. 

�9 Sequential/Modular approach. In this approach each unit  operation is 
represented by a set of equations grouped into a block (or module) and the 
whole flowsheet is solved one a module-by-module basis (in sequential way). 
Aspen, Process and FLOWTRAN are examples of the application of this 
approach. 

�9 Simultaneous/Modular or Two-Tier Approach. The basic idea of this approach 
was first developed by Rosen 7 and is based on a simplified, linearised set of 
equations for each unit operation, allowing the solution of interconnected unit 
operations simultaneously. 

�9 Simultaneous Solution or Equation Oriented approach. The main idea of this 
approach is to collect all the equations and solve them as a large system of 
non-linear algebraic equations. QUASALIN and SpeedUp are examples of the 
application of this approach. 

�9 Non sequential modular approach. This approach combines the sequential 
modular approach with bi-directional information flow and degree of freedom 
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monitoring techniques, allowing the interactive construction and solution of 
the flowsheets16. 
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Figure 3. Architecture of a sequential~modular simulator ~7 
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Figure 4. Architecture of an equation oriented simulator ~7 

Traditional software architectures relied heavily on the use of monolithic 
software applications that  tried to address all requirements from within a single- 
source application. Modern software architectures have become focussed on 
delivering functionality through the combination of software components from 
different sources. 

Many software tools provide some of the capabilities mentioned above but not all 
of them. There are two broad categories of CAPE software. The first one delivers 
narrow, well-defined functionality, such as the computation of physical 
properties, the simulation of a particular unit operation, or the numerical 
solution of certain types of mathematical  problems. These may be described as 
Process Modelling Components (PMC). The second category of tools provides an 
environment that  supports the construction of a process model from first 
principles and/or libraries of existing models. The user may then perform a 
variety of different tasks, such as process simulation or optimisation, using this 
single model of the process. This type of tool is a Process Modelling Environment 
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(PME) and is usually composed of many smaller PMCs working together co- 
operatively ~7. 

Enabling technologies such as COM or CORBA define a low-level communication 
mechanism tha t  is software-independent. Good software design principles, 
systems analysis and s tandards such as CAPE-OPEN define domain-specific, 
granular  interfaces for software tools. The combination of these makes it easier to 
develop portable PMCs tha t  are reusable within different PMEs and provide a 
portal for third-party development of PMCs. 

The interoperabili ty between PMEs and PMCs is made possible by a set of 
enabling standards.  Even after due simplification, at least two levels of standards 
need to be distinguished: 

1. The binary layer, e.g. CORBA, COM. 
2. The domain layer, e.g. CAPE-OPEN, pDXI. 

While the first, lower-level layer, is a general purpose one required for enabling 
component-based software (and is therefore used by literally thousands of 
software products), the second layer, built on top of the first one, provides the 
domain-specific s tandards that  make it possible meaningful communication 
between software components. 

The first layer provides the fundamental  means of communication between the 
software components. A physical analogy would be the telephone, which 
facilitates communication between people. Such communication is useless if the 
participants do not speak the same language, however. This is the purpose of the 
second layer, which provides the semantics so tha t  pieces of software can 
exchange information meaningfully. 

The meaning of the above may be clarified with the following example. COM 
defines programmatic  s tandards so that  a certain property residing in a server 
software component can be accessed from a client component is. CAPE-OPEN (or, 
for the same purpose, pDXI) may state tha t  Fugacity is one such property that  a 
certain component needs to be able to recognise. 

3.3.4.3 The prob lem of the degree of s tandard iza t ion  

The domain-specific s tandards described above need to be carefully designed with 
two apparently opposed criteria in consideration: 

�9 They need to be as easily applicable to each specific existing software 
product as possible. 

�9 They must  have as wide applicability as possible. 
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The first criterion calls for simplicity while the second one calls for complexity. 
Using a mathematical  analogy, while on one hand a least common multiple of the 
existing software is ideal to suit meet the first of the criteria, on the other hand, a 
greatest common divisor approach is better  in order to meet the second criterion. 

For example, some thermodynamic components do support and expose for access 
by their clients the property Fugacity while some others do not. A naive 
interpretat ion of the first criterion would recommend that  the domain-specific 
s tandard does not mention such property. Similarly, a naive interpretat ion of the 
second criterion would indeed recommend Fugacity is a recognised property by 
all the standard-compliant  thermodynamic components. 

The solution to the above apparent  incompatibility resides in the s tandard  taking 
a pragmatic approach: 

Recognising the fact that  some thermodynamic components may not expose 
some properties such as Fugacity (be it because they do not use such 
properties at all, be it because the authors have decided not to make them 
available to the outside world), the s tandard may state that  some properties 
do not necessarily need to be supported by a certain standard-compliant  
component. 
Recognising the fact that  some pairs of client and server components may 
benefit from using such properties, the s tandard defines some mechanisms for 
handshaking, that  is, mechanisms so that  such Fugacity-aware client and 
server can recognise such Fugacity-awareness in their counterparts  and make 
use of the Fugacity property. Among other things, this requires: 

o Uniqueness. Fugacity needs to be a universally recognised unique 
tag name for the property meant. That  is, there shouldn't be 
interfering varieties of the same property name such as fugacity 
(lower case initial letter). 

o Fault  tolerance. A component that  does not support Fugacity need to 
fail gracefully when asked for such property by a client. The 
meaning of failing gracefully needs to be specified by the s tandard in 
order for the above mentioned handshaking to be possible. 

o Extensibility. The s tandard needs to recognise the fact that  the 
wealth of human  knowledge is an ever-increasing one, and thus it 
needs to define the mechanisms so that  the s tandard  can be evolved 
and extended in order, for instance, to accommodate new properties 
(such as FugacityCoefficient) that  may come up after the s tandard 
was initially established. 

Fortunately,  the above problems are common place in today's software and are 
not restricted by any means to the world of process simulation. An excellent 
example of a similar situation can be found in the rise of XML versus htmllT, m, 20. 
While html was planned as an all-inclusive standard,  and thus required a 
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number  of updates  in order to adapt  such s tandard  to new findings or 
requirements ,  XML was designed as intrinsically extensible. XML's de-coupling 
of s t ructure  (the DTD file) and contents (the XML file) allows for self- 
documentat ion of the lexicon being used. 

The techniques outlined above tackle the issue by requir ing a minimum set of 
services in order for a component to become standard-compliant ,  but also 
allowing the component to exceed such min imum set and also allowing its client 
to make use of such extra capabilities. Following with the mathemat ica l  analogy, 
the s t andard  requires  the least common multiple but  allows the use of the 
greates t  common divisor if two interact ing components so decide.  

3.3.4.4 The Prob lem of Granular i ty  

The concept of granular i ty  is one tha t  is gaining relevance as component-based 
software archi tectures become popular. In essence granular i ty  consists in the 
level of aggregat ion exposed by a component to other external  collaborating 
pieces of software. A thermodynamic  calculation component may be designed in 
order to allow a programmat ic  client full access to detailed configuration features 
such as binary interaction parameters .  This would constitute an example of fine 
granular i ty .  Alternatively, the same component may be designed to restrict the 
interact ion with external  programmat ic  clients to the use of just  a few methods, 
explicitly prevent ing such client from accessing information considered as private 
such as the mentioned binary parameters .  This would be a case of coarse 
granular i ty .  

The level of granular i ty  of a software component is the resul t  of a number of 
factors: 

�9 Existing technology on which the component is built  upon. Some 
archi tectures  natura l ly  allow for finer levels of granulari ty,  while 
monolithic architectures usually allow only for coarse granular i ty  levels. 

�9 In tended interaction with clients. Even if the archi tecture allowed for fine 
granulari ty,  it may be a conscious decision to implement  a component in a 
coarse granular i ty  fashion in order to steer the interact ion between client 
and component through a relatively small number  of well-controlled 
methods. 

�9 Confidentiality issues. Coarse granular i ty  may be the preferred option 
when the developers of the component aim at providing their  clients with 
some useful functionality and yet want  to keep confidentiality on some 
aspects tha t  a finer granular i ty  choice would effectively disclose. 

In practice, apparent ly  minor differences in the levels of granular i ty  may lead to 
very different use cases supported by the components involved. Following the 
example of the thermodynamic component above mentioned, while the fine 
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granulari ty one may support entirely programmatic configuration by a client 
component using the standard, the coarse granular i ty one may only support 
programmatic execution. While this may seem as a minor difference, it has 
several practical implications: 

�9 In the fine granulari ty case a thermodynamic package may be created from 
scratch and fully configured (i.e. compound slate selection, single 
component parameters,  binary parameters,. . .)  and used programmatically 
using the standard. In the coarse granular i ty  case, though, either human or 
non-standard interaction (i.e. through proprietary means) will be required 
for the same purpose. When this is considered in the context of support for 
automating tasks (e.g. a situation where an executive program is 
dynamically reconfiguring such thermodynamic component), the difference 
in capabilities' consequences become clear beyond the apparently minor 
differences. 

�9 As a consequence, some applications are just not supported by a coarse 
granulari ty component. Optimisation of the binary parameters  in order to 
meet some experimental results, for instance, would only be possible with 
the fine granulari ty component. 

The flexibility introduced by a fine granular i ty  architecture brings some 
additional problems, though. In particular, as mentioned above, the developers of 
a component may consciously decide to provide only a coarse level of granulari ty 
in order to ensure adequate use of the component. Finer granular i ty may provide 
the client of the component with so many use options that  would make the 
component, in practice, very difficult to use or maintain.  

Following the example above, a fine granulari ty component providing access to 
the binary interaction parameters  has a number  of requirements  that  the coarse 
granulari ty one does not have. In particular, and to s tar t  with, the level of 
documentation required by the fine granulari ty one is much more detailed, not 
just regarding the description of how to use the interfaces in order to access the 
mentioned parameters ,  but also in order to describe exactly what  equation of 
state the binary parameters  are regressed for. Even the smallest differences 
between the form of the equation of state actually implemented by the component 
and the one assumed by the client may lead to completely wrong results. 

The situation is even more complex when the fine granular i ty  component allows 
not just for access but also for mix-and-match replacement of some of its built-in 
sub-components by external ones. The same example of the thermodynamic 
component is also suitable to illustrate this situation. A fine granulari ty 
implementat ion may allow the replacement of the individual properties 
calculation engines (methods, subroutines,...) by external ones. But in the field of 
thermodynamics it is well-known that  some properties are theoretically related, 
and replacing the calculation of one of them without adequate replacement of 
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also the other one may lead to serious inconsistency, as both quantit ies are 
strongly coupled (heat capacity, enthalpy and entropy provide one of the best 
examples). 

3.3.4.5 Example 1: Hyprotech 

Hyprotech's engineering f ramework is focused on the model-centric approach. In 
this paradigm, the different engineering activities use different views of a 
common model. Moreover, different engineering activities (e.g. conceptual design, 
dynamic simulation,...) use different software tools around the same basic model. 
These software tools work co-operatively on tha t  common model, for example: 

�9 A conceptual design tool is used to select a process topology from a number 
of design al ternatives.  

�9 A steady-state s imulator  is used to tune the basic process model to the 
desired process conditions and to assess the flexibility of the process. 

�9 An optimiser is used to find the best operating conditions. 
�9 A dynamic s imulator  is used to perform controllability studies on the 

process model. 
�9 Links to DCS's and to real-time databases  are used for applications such as 

Operator  Training Systems (OTS) and Performance Monitoring. 

Hyprotech's products support  the above mentioned business requirements 
through a variety of techniques: 

�9 Model reuse throughout  engineering disciplines. This business requirement  
is directly addressed by the model-centric approach. Each engineering 
discipline adds knowledge to a common model, which is therefore being 
refined with more detail. 

�9 Activity sector. The product can be adapted, depar t ing from a common base 
product, by extension with special-purpose modules. A process licensor may 
add to the basic s imulat ion its own proprietary model for a certain reactor, 
for instance. The architecture allows for such reactor to hide confidential 
information to the final user. 

�9 Indust r ia l  sector. Similarly as above, the basic means  for addressing the 
variety of needs throughout  different sectors is by allowing the basic 
process s imulator  to be customised for each sector by adding relevant 
features.  In this context, for instance, a specific product for refineries, 
called HYSYS Refinery, is nothing more than  the customisation of the basic 
HYSYS with a number  of refinery reactor models developed in co-operation 
with a domain expert  partner .  

�9 Stages in the life cycle. Once more, a set of optional capabilities, engineered 
as optional components compatible with the basic simulator,  addresses the 
needs of the different stages in the lifecycle. It is worth mentioning that  in 
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some cases, such as performance monitoring, the whole simulator acts as a 
component itself embedded in an executive system that  uses simulation in 
co-operation with a real-time process database. 
Rigor. The requirement  of scaleable rigor requires a finer granulari ty level 
than  the above other requirements.  In practice, scaleable rigor means that  
a certain model, at the unit operation level, can be replaced by a higher or 
lower fidelity one, usually keeping the rest of the flowsheet unchanged. In 
practice this requires the unit operation model to have been engineered for 
such underlying variety of rigor levels. This is achieved in HYSYS by 
decoupling the common aspects that  all unit  operations need to support, no 
mat te r  how rigorous the model is (e.g. interaction with the rest of the 
flowsheet) from the model internals. 

The model-centric approach is possible only if the different tools can work co- 
operatively by interacting with the model from different perspectives. The 
Hyprotech architecture delivers this functionality by building process models 
from interconnected granular  pieces that  interact  with each other. 

Some of the key pieces involved in the above describe scenario for Hyprotech's 
products are: 

�9 Common persistence layer. A common layer is used in order to grant  access 
to the model information to the different clients. Such layer allows clients 
to use persistence features without explicit knowledge of the low-level 
implementat ion details. 

�9 Thermodynamic engine. Hyprotech's thermodynamic engine is designed to 
provide common services to all the applications so requiring, both internal  
applications and also external ones. It has been chosen to provide fine 
granular i ty  in order to allow users to have full configuration capabilities, 
including overriding some of the built-in methods. XML technology is used 
in order to define the run-time configuration of the engine, tha t  is, what  
methods should be used for the calculation of each property. 

�9 Hydraulics engine. Hydraulic effects are present  in most unit  operations. A 
component providing its clients with such hydraulic steady-state and 
dynamic simulation capabilities is available. 

�9 Mathematical  component. A component based on, but not restricted to, the 
Harwell  Subroutine Library, is available for clients requiring mathemat ical  
services. 

�9 Optimiser. A component providing optimisation and data reconciliation 
capabilities (which, in turn, makes use of the mathemat ica l  component), is 
available. 

Apart  from these components supporting the above mentioned requirements,  the 
different products are engineered not just by using existing components, but also 
so that  they themselves become components. From this perspective, for instance, 
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HYSYS, which is engineered using the above ment ioned components, is in itself 
another  component tha t  can be used inside other types of applications such as 
performance monitoring. 

3.3.4.6 Example  2: CAPE-OPEN 

In this section, CAPE-OPEN is used to i l lustrate a process modelling s tandard 
tha t  helps alleviate the problems mentioned above 2~. 

The process leading to the design of such a s t andard  is also described. Since it is 
not the aim of this work to describe in detail the CAPE-OPEN project, only two 
examples will be considered here. The first one concerns Unit  Operation blocks 
and the second one deals with a thermodynamic  server, here te rmed as Property 
Package. 

The key point of component-ware process modelling is abstracting the behaviour 
of the different packages part icipat ing in the system. This implies identifying the 
behaviour tha t  is common to a class of packages (e.g. the class of unit  operations) 
and their  relat ionships with the other packages (e.g. a uni t  operation is a client 
for a thermodynamic  server). 

This abstract ion exercise will allow part i t ioning a monolithic simulation tool into 
smaller  entit ies with similar behaviour. This, in the end, can be used to replace 
these entities with others of the same class to achieve customisation. 

The abstract ion begins by simply put t ing on paper  the list of requirements  (i.e. 
the functionality) tha t  a class of components needs to fulfil. An exhaustive list of 
requirements  will allow creating a "class diagram" of the component (i.e. a 
picture of the functionality of the component, in terms of actions that  the 
component is able to perform). 

A fur ther  simplification of the "class diagram" will discard all internal  actions of 
the component. This will be considered as model details, and represents the 
functionality tha t  clients of the component do not need to be aware of. The result  
of this simplification is called "interface diagram". 

An interface diagram reflects what  happens in the boundaries  between modelling 
components. An interface diagram is the final result  of the abstraction process 
and 1) gives a clear indication of the common functionality of a class of 
s imulat ion components and 2) establishes the rules of how the other components 
have to communicate with the component exposing the interface. 

Once the information to be exchanged in the boundaries  of the various 
components has been defined in terms of the component interfaces, this can be 
expressed in terms of software artifacts tha t  will be used by programmers  to 
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create an s t andard  simulat ion component or to re-engineer and existing model. 
In ei ther  case, the final goal is to achieve "plug-and-play" of these components to 
create a composite modelling environment  respecting a set of agreed s tandards.  

E x a m p l e  2.1 - U n i t  O p e r a t i o n s  

The CAPE-OPEN abstract ion process for s teady state sequent ia l /modular  unit  
operations resul ted in a design similar  to the one represented  in Figure 5, which 
i l lustrates how a FORTRAN reactor model is re-engineered to follow the CAPE- 
OPEN standard.  There is a main entity here called Unit Operation tha t  contains 
the engineering code (i.e. encapsula ted as FORTRAN code). Unit  Operation 
exposes a set of CAPE-OPEN interfaces tha t  are common to all uni t  operation 
components (interfaces are represented by lollypops). 

Figure 5. Structure of a unit operation component created according to the 
CAPE-OPEN standard 

Unit  Operat ion uses other smaller aggregate entities; such as port and pa ramete r  
collections, ports and parameters .  Ports implement  the connectivity, while 
pa ramete r s  are the way Unit  Operat ions use to expose their  variables (in the 
reactor example, these are number  of reactor tubes, length of the tubes, wall 
t empera tu re  and tubes radii). 

Figure 6 shows how this simulation component can be used within a commercial 
s imulat ion package tha t  is aware of the CAPE-OPEN standard.  The PME and 
the PMC are independent  entities working co-operatively in a customised 
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environment. Both can have their own configuration or reporting mechanisms 
(e.g. graphical interfaces). The information that  has to be t ransmit ted between 
them in order to carry out the simulation is defined by the s tandard interfaces. 

Figure 6. Using a CAPE-OPEN component within a commercial simulation 
package. 

3.3.4.7 T h e  P r o m i s e  o f  I n n o v a t i v e  S o f t w a r e  A r c h i t e c t u r e s  

Initiatives such as the CAPE-OPEN standards are designed in such a way that  
parallel developments in software technology can be easily leveraged. As a 
consequence, internet-based technologies are opening up several important 
opportunities, some of which have already been outlined in the previous sections 
in this paper. In this section some of the anticipated short-term improvements 
will be outlined from the technical perspective. 

The implications of the so-called internet revolution in all types of activities has 
today been recognised by most companies. Software tools that  simplify the 
development of internet-aware software applications are becoming common 
place. In particular, Microsoft is endorsing the .NET framework as the preferred 
architecture for web-based applications 22. The promise of .NET is similar to the 
promise that  operating systems such as Windows made in the past: providing a 
unified framework for the development of applications. While in the case of 
Windows, the developers were suddenly freed from the need of designing from 
scratch user interface tools, in the case of .NET the promise is that  developers 
will have a framework of reference so that  they will not need to solve web-related 
architectural issues by themselves, but they will just have to follow the relatively 
easy-to-follow rules of such .NET architecture. 

Clearly, from the development perspective, what  these novel architectures will 
bring is replacement technologies for the binary layer of standards mentioned 
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above. S tandards  such as COM or CORBA are to evolve into new s tandards  tha t  
specifically provide support  for web-based tools, allowing for the next step in 
component software, namely, true local/remote t ransparency.  

Web-based local/remote t ransparency will allow different software components to 
be executed from different computers connected via web. The implications of 
these new possibilities have been briefly outlined in this paper.  Everything will 
be a web service, including PMCs and PMEs. 

A description of one sample scenario may help get an accurate idea of the 
implications. 

As ment ioned in this paper, the world of s imulat ion has evolved into PMEs and 
PMCs. The combination and inter-operabil i ty be tween them is providing value 
beyond the possibilities of one PME or PMC in isolation. The current  s tandards  
(e.g. COM/CORBA in co-operation with the CAPE-OPEN ones) allow for PMCs 
and PMEs to be developed separately and then  installed on the same computer 
and used in co-operation. 

In the forthcoming architectures,  the step of instal la t ion is completely skipped, as 
in order for a PME to use a set of PMCs, physical instal lat ion will be irrelevant:  
the PME will be able to access the co-operating PMCs through the web in a 
seamless manner ,  as if the mentioned PMCs reside on the same computer.  

Moreover, a scenario where the PMCs suitable for a certain application are 
decided at s imulat ion time is conceivable. Such applications could be, for 
example, equipment  selection as outlined elsewhere in this document.  

Obviously the practical  implementa t ion  of this vision will not be free from 
difficulties (e.g. software licensing, confidentiality issues, etc.), but  there is little 
doubt in the potential  of these new archi tectural  frameworks.  

3.3.5 A C K N O W L E D G E M E N T S  

Figure 3 & 4 have been extracted from the reference E r r o r !  B o o k m a r k  n o t  
de f ined . .  The authors  wish to t hank  its authors  and the editor. Also, this paper  
uses information obtained from the Global CAPE-OPEN project. 
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Chapter  3.4 : Data  Reconci l iat ion F r a m e w o r k  

N. Arora, L. T. Biegler & G. Heyen 

Data reconciliation and parameter estimation are important components of model fitting, 
validation, and real time optimization in chemical industries. In its most general form, data 
reconciliation is a minimization of measurement errors subject to satisfying the constraints of 
the process model. Parameter estimation is the step after data reconciliation in which the 
reconciled values of the process variables are used to set values for the model parameters. The 
most commonly used formulation of both problems is to minimize the sum of squares of the 
measurement corrections subject to model constraints and bounds. This formulation is based 
on the assumption that measurements have normally distributed random errors, in which case 
least squares is the maximum likelihood estimator. However, the data reconciliation problem 
is compounded when gross errors or biases are present in the data, as these can lead to 
incorrect estimates and severely biased reconciliation of the other measurements. This paper 
discusses optimization strategies that deal with data reconciliation and gross error detection. 
Included in this study are two case studies, a comprehensive steady state example and a small 
dynamic example. Both illustrate these strategies and issues related to this task. 

3.4.1 INTRODUCTION 

Efficient and safe plant operation can only be achieved by monitoring key process variables, 
which contribute to the process economy (e.g. yield of an operation) or are linked to 
equipment quality (fouling in a heat exchanger, activity of a catalyst), safety limits (departure 
from detonation limit) or environmental considerations (amount of pollutant rejected). 
Measurements of these variables are needed to monitor process conditions and also to ensure 
that operating conditions remain within acceptable quality and safety ranges. These 
measurements are never error free and some reconciliation of the data is a necessary condition 
for estimating the condition of the plant. 

Recent progress in automatic data collection and archiving has raised an awareness of 
estimation, at least for modem, well-instrumented plants. Operators are now faced with a lot 
of data, but they have little means to extract and fully exploit the relevant information it 
contains. Furthermore, most performance parameters are often estimated and not directly 
measured. As a result, random errors on measurements also propagate in the estimation of 
performance parameters. 

Data reconciliation, also called validation, allows state estimation and measurement 
correction problems to be addressed in a global way. The aim of validation is to remove any 
error from available measurements, and to yield consistent and complete estimates of all the 
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process state variables as well as unmeasured process parameters. Data reconciliation is based 
on measurement redundancy. This concept is not limited to replicate measurements of the 
same variable by separate sensors; it includes the concept of spatial redundancy, where a 
single variable can be estimated in several independent ways, from separate sets of 
measurements. Moreover, the plant structure yields additional information, which is exploited 
for correct measurements. Variables describing the state of a process must be reconciled to 
consistency constraints representing basic laws of nature, such as mass and energy balances 
and equilibrium constraints. Data reconciliation uses information redundancy and 
conservation laws to correct measurements and convert them into accurate and reliable 
knowledge. As a result, the reconciled values exhibit a lower variance compared to original 
raw measurements; this allows process operation closer to limits (when this results in 
improved economy). 

Current developments in the field aim at combining online data acquisition with data 
reconciliation. Reconciled data are displayed in control rooms in parallel with raw 
measurements. Departure between reconciled and measured data can trigger alarms and 
analysis of time variation of those corrections can draw attention to drifting sensors that need 
recalibration. Data reconciliation can also be viewed as a virtual instrument where key 
process variables are estimated from variables that are directly measured on-line. Finally, 
current commercial software aims at easing the development of data reconciliation models as 
follows: use of libraries of predefined unit operations, automatic generation of equations for 
typical measurement types, analysis of redundancy and observability, analysis of error 
distribution of reconciled values, interfaces to on-line data collection systems and archival 
databases, and the development of specific graphical user interfaces. 

The benefits derived from data reconciliation in chemical processes are numerous. They 
include improvement of measurement layout, fewer routine analyses, reduced frequency of 
sensor calibration (only faulty sensors need to be calibrated), removal of systematic 
measurement errors, systematic improvement of process data, a clear picture of plant 
operating condition, and reduced measurement noise for key variables. Moreover, monitoring 
through data reconciliation leads to early detection of sensor deviation and equipment 
performance degradation, actual plant balances for accounting and performance follow-up, 
safe operation closer to the process limits and improved quality and performance at the 
process level. 

The next section presents the mathematical structure of the data reconciliation problem along 
with various statistical choices for objective functions. A comprehensive case study that 
illustrates the use of this structure is provided in Section 3.4.3. The case study also motivates 
the treatment of gross errors and Section 3.4.4 provides a discussion of this treatment through 
mathematical programming formulations that involve the Akaike Information Criterion and 
robust statistics. A small case study on dynamic data reconciliation and gross error detection 
is provided in Section 3.4.5. Section 3.4.6 then briefly describes the tasks, software 
components and their interactions for data reconciliation. Finally, Section 3.4.7 summarizes 
the paper and outlines areas for future work. 
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3.4.2 M A T H E M A T I C A L  STRUCTURE OF DATA R E C O N C I L I A T I O N  P R O B L E M S  

The data reconciliation problem is formulated from data collected at sampling times i. If we 
assume these data sets to be independent of each other, then the data reconciliation and 
parameter estimation problem can be stated as the following nonlinear programming (NLP) 
problem" 

Min Zi Fi(xMi, xi) 
s.t. h(xi, ui, p) = 0 for all i 
x L s x i < x  U (1) 
u L _< ui < u u 
p L < p < p U  

where Fi(xMi, xi) is some objective function that depends on a difference between the 
measurements and their reconciled values, x M is the set of measurement data of the 
corresponding variable x, p is the set of parameters, u is the set of unmeasured variables, h is 
the set of model equations and the subscript i refers to the i th measurement set. In (1), we 
assume that all variables are identified with a particular data set and the problem is an errors 
in variables measured (EVM) problem. On the other hand, one can also have multiple 
measurements of each variable, such as in problems with moving horizons [16,22]. The 
problem is then formulated more generally as: 

Min F(x M, x) 
s.t. h(x, u, p ) =  0 
X L < X ~ X U (2) 
u L < u < u  u 
p L < p < p U  

where the symbols mean the same as in (1) but now x and u are concatenated vectors. In this 
case the reconciled values of variables would lie somewhere in between their successive 
measurements. This leads to a smaller variance of the reconciled variables and also reduces 
their sensitivity to any gross error detection tests. Finally, if the model comes from a 
discretized differential algebraic equation (DAE) system, then time is generally incorporated 
into the constraints and the objective function. The constraints, discretized successively in 
time, can be written as in (1) but the equations do not decouple easily. This coupled structure 
can be a significant issue if the dynamic data reconciliation problem is itself large. 

Problems (1) and (2) are usually formed with objective functions derived from maximum 
likelihood [3]. Here a number of specializations can be made for data reconciliation. In 
particular, if we assume data snapshots i are independent and all data have errors from similar 
sources, we can simplify the error structure. An objective function in (1) derived from a log- 
likelihood estimator with a known covariance matrix leads to: 

Fi(xMi, Xi) = �89 (xMi - Xi) T V -I (xMi - Xi) (3) 
where V is the covariance matrix, assumed to be the same for all data sets. In addition, if we 
assume that the elements of each data vector are independent of each other, then (3) simplifies 
to 

F~(xMi, x0 = '~ Zj ((xMij - xi0mj) = = ~ Zj (<j)2 (4) 
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w h e r e  (yj2 is the variance of element j and eij is the studentized residual. However, outliers in 
the data can strongly bias the reconciled data if least squares forms (3,4) are used. Instead to 
reduce the effect of these biases we also consider functions based on M-estimators (related to 

maximum likelihood) for the objective function in (1) or (2). Here ]~i Fi(xMi, Xi) = ]~ij Pij is 
defined by an overall M-estimator and Pij is the estimator associated with the each data 
element. Two particular M-estimators include the fair function, a Huber estimator [15], and 
the redescending estimator proposed by Hampel [13]. These are defined as: 

Least squares estimator." p Lij = 1//2 Eij 2 (5)  

Fair function: pvij "- C2 [I Eijl/C - log [1 + I Eijl/C]] (6) 

Three part redescending estimator." 
2 0 <1 ~j I-<a �89 

PH~J = 2 a levi I -a2/2 a <l ~;~j I < b 
ab - a /2 + �89 - b)a[ 1 - { (c -  I ~;ij I)/(c - b) } 2 ], b < e~j 1< c 

ab + �89 - b - a)a c <1 ~;ij [ 

(7) 

Here least squares is the only non-robust estimator. For the fair function, C is the tuning 
constant, which has a direct relation to the efficiency of this function. Also, a, b, and c (with c 
> b + 2a) are the tuning constants for the redescending estimator. Figure 1 shows these M- 
estimators as a function of the studentized residual. Note that the fair function increases only 
linearly for large residuals and this gives it some robustness compared to the least squares 
estimator. The redescending estimator becomes constant for large observations; thus large 
residuals have no influence on the reconciled data. Both the fair function and the 
redescending estimator approximate the least squares function for small residuals and these 
estimators have high efficiency for data derived from Gaussian distributions. 

Once formulated, problems (1) or (2) can be solved with a number of efficient approaches, as 
follows: 

�9 Problems (1) or (2) can be solved with any NLP solver. Often SQP is the method of 
choice as it requires the fewest function evaluations. 

�9 In the absence of variable bounds, Newton's method could be applied directly to the 
KKT conditions of (1) and (2). Normally this requires first and second derivatives of 
the objective function and the model equations. With a quadratic objective function 
and linear constraints, the KKT system is just a set of linear equations. Normally one 
would not expect variable bounds to be active. 

�9 If the model fits the data well (and gross errors can be eliminated or ignored through 
M-estimators), the Lagrange multipliers for the equality constraints vanish. As a 
result, Newton-like behavior is still maintained without requiring second derivatives 
from the model equations. 

More detail on these simplifications can be found in [27, 2, 3]. 
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Finally, before solving the NLP problem, some variable classification and pre-analysis is 
needed to identify unobservable variables and parameters, and non-redundant measurements. 
Stanley and Mah [26] and later Crowe [9] proposed observability and redundancy tests for 
steady state data reconciliation. Albuquerque and Biegler [2] extended these to dynamic 
systems and applied a sparse LU decomposition rather than a QR factorization. Measured 
variables can be classified as redundant (if the measurement is absent or detected as a gross 
error, the variable can still be estimated from the model) or nonredundant. Likewise, 
unmeasured variables are classified as observable (estimated uniquely from the model) or 
unobservable. The reconciliation algorithm will correct only redundant variables. If some 
variables are not observable, the program will either request additional measurements (and 
possibly suggest a feasible set) or solve a smaller sub-problem involving only observable 
variables. The preliminary analysis should also detect overspecified variables (particularly 
those set to constants) and trivial redundancy, where the measured variable does not depend 
at all upon its measured value but is inferred directly from the model. Finally, it should also 
identify model equations that do not influence the reconciliation, but are merely used to 
calculate some unmeasured variables. Such preliminary tests are extremely important, 
especially when the data reconciliation runs as an automated process. In particular, if some 
measurements are eliminated as gross errors due to sensor failure, non-redundant 
measurements can lead to unobservable values and non-unique solutions, rendering the 
estimates and fitted values useless. As a result, these cases need to be detected in advance 
through variable classification. Moreover, under these conditions, the NLP may be hard to 
converge and stronger globalization strategies, such as trust regions [8] need to be applied. 

3.4.3 STEADY STATE DATA R E C O N C I L I A T I O N  CASE STUDY 

There are few data reconciliation case studies of significant size in the literature. The one 
proposed here is provided so that it can be used to benchmark different solution strategies, 
and to illustrate what can be achieved by data reconciliation tools. Actual plant data are not 
used here because they are difficult to obtain and actual processes are much more complex, 
with details that require more space than available. Instead the process information used here 
was generated from a steady state simulation model with random noise with zero mean and 
normal distribution added to the measurement variables, we consider a simplified flowsheet 
of an ammonia synthesis loop (Figure 2) modeled with the BELSIM VALI III software [5]; 
this is a typical state of the art commercial application. 

As seen in Figure 2, synthesis gas is available as stream 1 at 30 bar pressure. It is brought to 
synthesis pressure (195 bar) using a 3-stage compressor with intermediate cooling. Unreacted 
synthesis gas (stream 15) is recycled with the feed of the last compression stage. Compressed 
reactants are brought to reaction temperature in a product-to-feed heat exchanger E-103. A 
waste heat boiler E-104 recovers part of the reaction heat to raise steam. To recover ammonia, 
the reactor effluent is further cooled in the chilling train E-105 (with water) and E-106 
(ammonia vaporizer). Condensed ammonia is separated in B-101. The liquid is flashed to 
moderate pressure in B-102, while a purge (stream 16) allows the inert components (Ar and 
CH4) to leave the loop. Physical properties and phase equilibrium calculations were estimated 
using Soave-Redlich-Kwong model. 



Table 1u : Memured und reconciled values for streurns 

Tag name 
1-MASSF 
1-MFAR 
1-MFC1 
1-MFH2 
1-MFN2 
1-MFNH3 

1-p 
1-T 
2-p 
2-T 
3-T 
4-p 
4-T 
5-T 
6-p 
6-T 
7-p 
7-T 
8-MFNH3 

8-p 
8-T 

15-MASSF 
16-MASSF 
16-MFAR 
16-MFC1 
16-MFH2 
16-MFN2 
16-MFNH3 
16-P 

16..T 
18-MASSF 
18-MFAR 
18-MFC1 
18-MFH2 
18-MFN2 
18-MFNH3 
18-P 
19-MASSF 
CW1-P 
m1-T 
CW2-P 
CW2-T 
CW3-P 
CW3-T 
CWR1-T 
CWR2-T 
CWR3-T 
AM1-P 
AM1-T 
AMR1-T 
BFW-MASSF 
BFW-P 
BFW-T 
STM-P 
STM-T 
WCOMP POWER 

Measured 
85.0 

0.970 
0.950 
74.70 
24.10 
0.00 
29.9 
39.4 
75.1 
165.0 
39.1 
183.6 
167.9 
40.4 
181.1 
5.9 

188.3 
10.9 
2.80 
191.2 
329.3 
14.60 
195.6 
502.8 
186.4 
408.4 
192.4 
84.4 
39.1 
-5.8 

182.0 
-3.9 

293.1 
18.40 
5.20 
4.80 
66.7 
22.3 
3.90 
181.9 
-6.9 
0.80 
4.90 
9.40 
32.4 
11.60 
40.4 
10.1 
62.7 
3.0 

20.2 
3.0 
20.7 
2.9 
22.8 
30.8 
30.2 
31.4 
2.0 

-19.1 
-17.2 
40.8 
40.4 
24.3 
39.3 
247.9 
21471 

Accuracy 
2.0% 
0.05 
0.05 

1 
1 

CST 
2.0% 
1.00 
2.0% 
2.00 
1.00 
2.0% 
2.00 
1.00 
2.0% 
1.00 
2.0% 
1.00 
0.20 
2.0% 
2.00 
0.20 
2.0% 
3.00 
2.0% 
3.00 
2.0% 
2.00 
1.00 
1.00 
2.05- 
1.00 
2.0% 
3.0t 
3.0% 
3.0% 
1.00 
1.00 
3.0% 
2.0% 
1.00 
5.0% 
3.0% 
3.01 
1.00 
3.0% 
1.00 
2.0% 
1.0% 
2.0% 
1.0 

2.0% 
1.0 

2.0t 
1.0 
1 0  
1.0 
1.0 

2.0% 
1.00 
1.00 
2-02 
1.0% 
1.00 
2.01 
2.00 
5.0% 

Validated 
82.4 

0.978 
0.900 
73.66 
24.38 
0.00 
29.9 

39.416 
75.1 

164.93 
39.128 
183.8 
167.8 

40.547 
101.0 
5.5 

190.4 
11.1 
2.89 
189.9 
327.8 
14.61 
191.6 
505 

191.3 
409.5 
191.3 
82.7 
39.1 
-5.2 

181.0 
-5.45 
294.7 
18.51 
5.03 
4.86 
65.38 
20.87 
3.85 
181.0 
-5.45 
0.83 
5.01 
9.15 

33.61 
11.64 
40.59 
10.1 
63.1 
3.0 
20.2 
3.0 
20.7 
2.9 
22.8 
30.8 
30.2 
31.4 
2.0 

-19.1 
-17.2 
40.3 
40.3 
24 .3 
39.5 
247.8 
21745 

Accuracy 
0.8% 

0.025 
0.025 
0.082 
0.084 

Penalty 
2.31 
0.02 
0.36 
1.08 
0.08 

Unit - 
t/h 
1 
% 
% 
1 
% 
bar 
C 
bar 
C 
C 
bar 
C 
C 
bar 
C 
bar 
C 
% 
bar 
C 
% 
bar 
C 
bar 
C 
bar 
C 
C 
C 
bar 
C 
t/h 
t/h 
t 
% 

t 
% 

% 
bar 
C 
t/h 
% 
% 
% 
% 
% 

bar 
t/h 
bar 
C 
bar 
C 
bar 
C 
C 
C 
C 
bar 
C 
C 
t/h 
bar 
C 
bar 
C 
kW 
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Table 1 b �9 Measured and reconciled values for  unit parameters 

Tag name Measured Accuracy Validated Accuracy 
C-101EFFIC 0.75 0.15 0.756 0.03 
C-102EFFIC 0.75 0.15 0.721 0.03 
C-103EFFIC 0.75 0.15 0.728 0.13 
B-102DP 170 100 170.9 1.74 
R-101DTEQI 0.0 100 0.28 3.08 
E-101A 500 CST 500 
E-101DPI 0.5 1.00 0.5 1.00 
E-101DP2 0.i 1.00 0.114 1.00 
E-101U 0.35 1.00 0.325 0.01 
E-102A 500 CST 500 
E-102DPI 0.5 1.00 0.5 1.00 
E-102DP2 0.i 1.00 0.094 1.00 
E-102U 0.35 1.00 0.323 0.01 
E-103A 3000 CST 3000 
E-103DPI 0.5 1.00 0.433 0.98 
E-103DP2 0.1 1.00 0.025 0.98 
E-103U 0.35 1.00 0.437 0.01 
E-104A 200 CST 200 
E-104DPI 0.5 1.00 0.825 0.66 
E-104DP2 0.1 1.00 0.370 0.98 
E-104U 0.35 1.00 0.476 0.01 
E-105A 2500 CST 2500 
E-105DPI 0.5 1.00 0.5 1.00 
E-105DP2 0.I 1.00 0.ii0 1.00 
E-105U 0.35 1.00 0.194 0.02 
E-106A 1500 CST 1500 
E-106DPI 0.5 1.00 0.5 1.00 
E-106DP2 0.I 1.00 0.Ii0 1.00 

Penalty Unit 
0.00 - 
0.04 - 
0.02 - 
0.00 bar 
0.00 K 

m2 
0.00 bar 
0.00 bar 
0.00 kW/m2/K 

m2 
0.0 0 bar 
0.0 0 bar 
0.00 kW/m2/K 

m2 
0.00 bar 
0.01 bar 
0.01 kW/m2/K 

m2 
0.11 bar 
0.07 bar 
0.02 kW/m2/K 

m2 
0.00 bar 
0.00 bar 
0.02 kW/m2/K 

m2 
0.00 bar 
0.00 bar 

The problem is formulated by specifying two models: the process model and the measurement 
model. Measurements, x M, are identified by a tag name and data for each measurement 
includes the measured value, the expected standard deviation, o (either a constant value or a 
percentage of the measurement), and a measurement type. Lower and upper bounds may also 
be provided for all measured variables. Further, nonstandard measurements can be defined by 
adding the corresponding linking equations to the process model. Process parameters, p, such 
as heat transfer coefficients or compressor efficiencies also fit easily in such a framework. 
They can be bounded appropriately to enforce some physical constraints or assigned a 
constant value. This is the case for some equipment parameters (e.g. area of a heat exchanger) 
or variables whose value must remain fixed (e.g. nitrogen content in atmospheric air, or 
absence of reaction product in the feed). Measured values in this study, their standard 
deviations and validated results are displayed in Tables 1 a and 1 b. 

For the case examined here, the objective function is the weighted sum of squares of 
measurement corrections and the program generates 123 model equations. These include mass 
and energy balances, pressure drop equations, vapor-liquid equilibrium constraints, and 
definitions for isentropic compressor efficiency and heat transfer coefficients and linking 
equations to relate the measured quantities (e.g. mole fractions or mass flowrate) to the state 
variables (e.g. partial molar flowrates). The reconciliation problem involves 89 measurements 
and 84 unmeasured state variables, 10 variables set as constants (e.g. area for all heat 
exchangers), and thus 40 redundancies. Solution of this NLP can be obtained in a few seconds 
on a personal computer. Two different solution algorithms have been tested and perform 
equally well on the proposed problem. The first one solves the KKT conditions of (2) as a set 
of algebraic equations using a dogleg method. In the absence of bound constraints, this 
method is the fastest for large well-behaved problems. As an alternative, the NLP was also 
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solved with a large scale SQP solver, which is somewhat slower, more robust, and can handle 
bounds on the variables. 

At the solution the weighted least squares objective function has a value of 24.5035 and the 
measurements appear to be acceptable; none is corrected by more than twice the assumed 
standard deviation, as shown in the results (Tables l a and 1 b). After convergence is attained, 
a global Chi-square test is performed (with a value of 54.58) which confirms that 
measurement corrections stay within the acceptance range of the assumed error distribution. 
The equality constraints are satisfied to within a tolerance of 10 .6 and no variable lies on a 
bound, although eleven are near their bounds. Table 2b also shows that the available 
measurement set allows process parameters to be identified with acceptable accuracy. For 
instance, the isentropic efficiency of compressor C101 was guessed at 0.75 with a standard 
deviation of 0.15. The new estimate is 0.756 with a standard deviation of 0.03. 

In addition, a sensitivity analysis provides measured and reconciled values of each 
measurement as well as its specified standard deviation and a posteriori variance of the 
reconciled value. These are reported in relative (relative accuracy) and absolute (absolute 
accuracy) terms below. Also, state variables depending on a given measurement are listed, 
along with the weight factor (contribution) indicating the contribution of the measurement 
variance to the variance of the reconciled value. For instance, for the efficiency of C101 
compressor, the sensitivity report indicates: 

Measurement Tag Name Value Absolute Relative Unit 

accuracy accuracy 

EFFIC U C-101 Reconciled 0.75573 0.28988E-01 3.84% - 
C-101EFFIC 0. 75000 0. 15000 20.00% - 

Variable Tag Name Contribution d/d meas d/d sigma Unit 

P S 1 iP 36.75% -0. 29387E-01 0.72% bar 
P S 2 2P 36.31% 0. I1630E-01 i. 36% bar 
T S 2 2T 14.99% -0. 56122E-02 1.17% C 
T S 1 IT 7 . 26% 0 . 78132E-02 0 . 35% C 
EFFIC U C-101 C-101EFFIC 3.73% 0.37347E-01 80.67% - 

Note that the uncertainty on the C-101 efficiency can be decreased mainly by improving the 
accuracy of pressure measurements for streams 1 and 2, and, to a lower extent, by improving 
temperature measurements. The initial guess of efficiency has little impact on the final value: 
the derivative of the result with respect to the guess is 0.037. This sensitivity analysis detects 
the importance of all measurements on the identification of process states and parameters. 
Some measurements might appear to have little effect on the result, and might thus be 
discarded from analysis. For instance, adding a measurement of ammonia concentration in 
stream 19 is almost useless; the process is designed so that stream 19 is almost pure ammonia 
and its purity is fixed mainly by the flash pressure and temperature. 

The data reconciliation program can also identify the influence of measurements on 
reconciled state variable values. As an example, consider the reactor productivity, where one 
might expect the reactant flow rate and ammonia fractions in the reactor inlet and outlet 
streams to be the most influential measurements. Instead, the sensitivity report below shows 
that the major source of uncertainty is due to the flowrate of the pure ammonia product 
(stream 19). Process feed (stream 1) also contributes to a lower extent, as well as the boiler 
feed water flowrate, indicating that the energy balance of the synthesis loop also provides 
information about the reaction rate. 
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Variable Tag Name Value Absolute Relative Unit 
accuracy accuracy 

EXTENT1 U R-101 Computed 1896.2 15.161 0.80% kmol/h 

Measurement Tag Name Contribution d/d meas d/d sigma Unit 
M~SF R 19 19MASSF 66.42% 19.707 18.30% t/h 
MASSF R 1 IMASSF 9.88% 2.8031 59.59% t/h 
MASSF R BFW BFWMASSF 4.92% 4.1220 25.42% t/h 
MASSF S 15 15MASSF 4.66% 0.55857 24.65% t/h 
T S ii lIT 2.75% 1.2560 26.07% C 
MASSF R 18 18MASSF 1.73% 49.897 57.38% t/h 
MFN2 R 18 18MFN2 1.34% -5.0349 30.02% % 

These examples show that some measurements can have a very high impact on the validated 
variables and on their variance. These measurements should be carried out with special 
caution, and it may prove wise to duplicate the sensors. More examples of such analysis are 
discussed in Heyen et al [14]. 

Finally, we examine how data reconciliation can be used as a fault detection framework. Here 
we generate another data set that assumes an internal leak in the heat exchanger E-103. A 
fraction (10%) of stream 7 is directly mixed with stream 11 and part of the flow bypasses the 
reactor section and cycles in the compressor and the cooling section. This is obviously a waste 
of energy. Solving the data reconciliation problem leads to an objective function of  42.8857 
and a Chi-square of 55.76. Compared to the previous case, the objective function is definitely 
larger, although the Chi-square test is still satisfied. On the other hand, one measurement 
(flow rate of stream 15) is corrected by more than 3 standard deviations, and is flagged as 
suspect. Other measurements in the reaction loop (streams 6, 9, 16, 18, 19) are also corrected 
by more than one standard deviation. 

Here, one may suspect that something is wrong, but there is no direct evidence about the 
cause. Instead, we modify the flowsheet and the reconciliation model to assume that an 
unknown fraction of stream 7 bypasses E-103 and is transferred directly to stream 11. 
Rerunning the data reconciliation problem with a very small initial guess (10 -4) for the bypass 
fraction, leads to an objective function value of 35.721 and a Chi-square value of 55.76. The 
objective function is now reduced, and the largest variable correction is less than 2 o. The 
bypass fraction is estimated as being approximately 0.06, with a standard deviation of 0.021. 

Variable Tag Name 

FRAC2 U S-I Reconciled 
S-IFRAC2 

Value Absolute Relative Penalty Unit 
accuracy accuracy 

0.60335E-01 0.21536E-01 35.69% 
0.10000E-03 0.50000 ******% 0.01 - 

Measurement Tag Name Contribution 
MASSF S 15 15MASSF 34.90% 
MFNH3 R 9 9MFNH3 18.91% 
T S II lIT 14.22% 
MASSF R BFW BFWMASSF 6.00% 
T S 8 8T 5.O6% 
. . . 

d/d meas Rel.Gain Penalty Unit 
0.12808E-02 16.94% 2.92 t/h 
0.46826E-01 20.48% 0.i0 % 

-0.40610E-02 18.61% 3.95 C 
-0.67275E-02 20.10% 2.03 t/h 
-0.24211E-02 16.45% 0.19 C 

As shown above, the sensitivity report for this parameter indicates that better estimation of the 
bypass fraction requires improved accuracy (or additional measurements) of the flow rate for 
stream 15 and, to a lesser extent, the ammonia concentration in stream 9 and the temperature 
of stream 11. As a final check, we consider the bypass model with our original (leak-proof) 
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data. Here we obtain the same objective function value (24.5035) as for the base case and the 
estimated leak fraction is correctly estimated as being zero. 

3.4.4. O P T I M I Z A T I O N  STRATEGIES FOR GROSS E R R O R  D E T E C T I O N  

In the previous section the comprehensive case study indicates the usefulness of data 
reconciliation for obtaining accurate states, assessing the sensitivity of measurements and 
their uncertainties on estimated parameters, and in providing a tool for fault detection. In this 
section we focus in more detail on efficient strategies for handling gross errors in data 
reconciliation. 

As seen in Section 3.4.2, the least squares objective function can be severely biased leading to 
incorrect reconciliation and estimation. As indicated in the case study a common procedure 
identifies the measurements that suffer from gross errors and eliminates them in a sequential 
procedure. Early papers on the subject describe tests based on Chi-square statistics as the 
criteria for identifying outliers [ 11]. In addition, Crowe et al. [12] used matrix projection to 
reconcile process flows. They devised a Chi-square test based on the inverse of the reduced 
Hessian. Madron [18, 19] proposed a Chi-square test based on the squared studentized 
residuals following a non-central Chi-square distribution. He also provided methods for gross 
error detection and the concept of measurement credibility. Kao et al. [ 17] proposed a Chi- 
square test for gross error detection in serially correlated process data. They also compared 
this with three other tests for outlier detection. 

Serth and Heenan [24] devised a combinatorial strategy called the screened combinatorial 
method which uses standard normal deviates calculated for each measured stream; they 
reduce the size of the combinatorial problem by identifying the smallest complete subset of 
biased measurements. Narasimhan and Mah [20, 21] tested their generalized likelihood ratio 
method against the results of Serth and Heenan [24] and reported that their method was able 
to identify a wide variety of gross errors. This is also a combinatorial strategy that uses the 
normal distribution for outlier identification. Crowe [10] devised a maximum power test by 
which he tested constraint residuals for normality and identified suspect balances. More 
recently, Rollins et al. [23] derived a linear combination technique which is a combinatorial 
technique based on the chi-square test that identifies equivalent gross errors. Bagajewicz and 
Jiang [4] performed gross error detection on models characterized by differential equations 
by fitting polynomials to the differential variables and solving the resulting linear system. 
They used concepts from graph theory for their combinatorial strategy. However, all of the 
above methods were derived only for linearly constrained problems and are multi-step 
processes that use a sequential scheme for reconciliation and gross error detection. 

On the other hand, the estimators derived from robust statistics can be used as objective 
functions in data reconciliation problems. These estimators put less weight on large residuals 
corresponding to outliers. As shown in Section 3.4.2, this leads to less biased parameter 
estimates and reconciled values. Tjoa [27] used the contaminated normal distribution to 
derive the objective function and used this to simultaneously identify outliers. Albuquerque 
and Biegler [2] used the fair function (6), to reduce the effects of gross errors. Finally, Arora 
and Biegler [3] used the redescending M-estimator (7). Here a key advantage for outlier 
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detection is simultaneous data reconciliation and gross error detection, and an elimination of 
the combinatorial procedure. 

The presence of so many different methods for data reconciliation raises the question of 
whether there is a common statistical framework in which both combinatorial and robust 
methods can be interpreted. Here we employ the Akaike Information Criterion (AIC) to 
provide a general framework for data reconciliation. Yamamura et al. [28] applied the AIC 
to identify biased measurements in a least squares framework for gross error detection. Due to 
the combinatorial nature of the problem attempted, they suggested a branch and bound 
method to solve the problem. This approach can be automated by mixed integer programming 
techniques (see e.g. [25,3]) However, this can be computationally expensive, as it requires a 
discrete decision for each measurement and problems become even more difficult when the 
model is nonlinear. Nevertheless, in the remainder of this section we will explore the AIC 
framework for simultaneous gross error detection and data reconciliation. In particular, we 
will derive a mixed integer approach as well as a robust approach where the constants in the 
M-estimator are tuned using AIC. 

3.4.4.1 Data Reconciliation with the Akaike Information Criterion 

Data reconciliation and gross error detection can be addressed as a model discrimination and 
parameter estimation problem, where multiple models correspond to the partitioning of 
random and gross errors. If more than one of these models can be fitted to the data under 
consideration, it becomes necessary to identify which model to use. To this end, one is 
interested in obtaining the most likely model (which gross errors are identified) and its 
parameters. Since maximum likelihood estimators are asymptotically efficient under certain 
conditions [1], the likelihood function is a very sensitive criterion of deviation of model 
parameters from their true values. For data reconciliation, the Akaike Information Criterion 
(AIC) can be written as: 

AIC = ~ij eij 2 + 2 dim(q) (8) 

where eij is the studentized measurement error obtained after reconciliation, and dim(q) is the 
number of independently adjusted model parameters given by: dim(q) - dim(p) + nout, where 
dim(p) is the number of model parameters and nout is the number of outliers. Here variables 
with outlying measurements are treated as parameters because their reconciled values are 
determined only from measurements without gross errors. 

3.4.4.2 Mixed Integer Approaches for Data Reconciliation 

The AIC estimate includes both cominuous and discrete variables and in the context of data 
reconciliation, each potential gross error is represented by a binary (0-1) variable. The 
resulting problem can be translated into a mixed integer non linear program (M1NLP) with 
binary variables identifying faulty sensors as follows: 

Min ]~ij (eij + laij) 2 + 2 ~ij yij 
s.t. h(x, p) = O, eij = (xMij - xij)/cyj (9) 

L Yij <---[gij[--< U Yij 
Yije [0, 1 ] , x > 0  
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where yij is a binary variable denoting existence of bias in element j of data vector i , ,  laij is 
the magnitude of bias in this variable, and L and U are lower and upper bounds on the bias 
variable. If the model equations are linear, they can be replaced by Ax = 0, where A is the 
coefficient matrix of linear balance constraints. Due to the presence of the absolute value 
operator in the bound constraints of (9), this problem is reformulated by adding additional 
binary and nonnegative continuous variables. In addition, mixed integer linear programming 
(MILP) approaches were derived [25, 3] where the quadratic term in (9) is replaced by a 
linear objective function related to AIC. Here, the advantage of an MILP is that it eliminates 
the nonlinear programming subproblem associated with M1NLPs that have only quadratic 
objectives. Both MINLP and MILP formulations were compared [3] on a steam metering 
example solved in a moving horizon framework (3). 

However, mixed integer formulations can be expensive to solve on-line, particularly for 
(EVM) problems (2). As an alternative, one can also consider the AIC in the context of robust 
M-estimators. Here the tuning parameters of the M-estimators (6, 7) can be chosen for the 
NLP formulation to reduce the AIC. Although this criterion is not minimized directly as in 
(9), the robust approach has the advantage of solving only continuous variable optimization 
problems. In the next section we present a small case study, with a dynamic data 
reconciliation model, that illustrates the use of M-estimators with AIC tuning. 

5. DYNAMIC DATA RECONCILIATION CASE STUDY 

In this section we compare data reconciliation strategies derived from M-estimators on a 
small dynamic process problem. This problem has been taken from Albuquerque [2] and 
deals with two stirred tanks connected by a valve; liquid flows into the first tank, from the 
first tank into the second tank, and out of the second tank. The three flows, F0, F~, and F2, and 
the heights L1 and L2 are measured at 12 second intervals. The areas of the tanks, A1 and A2 
are estimated as unknown parameters. The process is shown in Figure 3 and the system is 
described by the following index-2 DAE system (10): 

A1 dLl/dt = F0-Fl 
A2 dL2/dt = F l - F2 

F2 - A2 (2g L2)1/2= 0 
LI- L2=0  

(10) 

Measurement data is simulated as in [2]. All of the flowrates and levels are measured; they 
have independent Gaussian distributions, with a variance of 0.01. In addition, a large number 
of gross errors are introduced into the system by assuming that sensors for F2 and L1 fail at 
their lower bounds at the second time instant and remain there. The DAE system is discretized 
by an implicit Euler scheme to form the set of model equations in (1); measurements are taken 
at each interval of discretization. Thus this problem is an EVM problem with coupling in 
successive constraints for each set of measurements. Also, because of the large amount of 
data and gross errors, the problem cannot be considered with the MINLP formulation in (9). 

All measurements except F0 are redundant and the parameters l/A1 and l/A2 are observable 
and are bounded between 0.25 and 0.55. Here the resulting data reconciliation problem is 
solved with the least squares estimator, fair functions (6) at 95%, 80%, and 70% asymptotic 
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efficiencies (see [3]), and the redescending estimator (7) with an AIC tuning. All cases were 
solved with the reduced Hessian Successive Quadratic Programming (rSQP) algorithm [6]. 
Results for estimation of 1/A~ and l/A2 have been summarized in Table 2. Note that the least 
squares estimator performs very poorly because the estimates of both parameters go to their 
lower and upper bounds respectively. This behavior is expected because the least squares 
estimator is heavily biased by the gross errors; relaxing the parameter bounds would lead to 
even worse estimates. The fair function at various tuning levels performs somewhat better but 
still the estimate of l/A1 converges to the lower bound; the estimate of 1/A2 becomes better as 
the fair function becomes more robust. In contrast, the redescending estimators perform much 
better. For tuning parameters given in the experiments M2 to M6, the estimates of 1/A~ and 
l/A2 are very close to their true values. For the redescending M-estimator, Table 2 also lists 
the number of outliers along with the AIC. From Table 2, the scaled AIC objective indicates 
that the best estimator lies close to Ms. Upon tuning the parameters in (7) to minimize the 
AIC, we find this to be indeed the case. Here the estimates of l/A1 and l/A2 are almost at 
their true values. 

Figures 4 and 5 show the fitted values of L1 and F2 when estimation is performed by the least 
squares estimator, the fair function (efficiency=70%), and the tuned redescending estimator. 
In addition, we have also plotted the original noisy data (with a variance of 0.01) and the 
gross errors. Here the poor performance of least squares is clearly observed, as its fitted 
values have been grossly underestimated. The fair function underestimates L1 but fits F2 quite 
closely. This is due to the effect of l/A1 at its lower bound. Finally, in both plots the tuned 
redescending estimator ignores the noise and fits L1 and F2 at very close to their true values. 

Experiments 
True Values 

Table 2: Dynamic Data Reconciliation Results 

Least Squares 
Fair Function (Eff. = 95%) 
Fair Function (Eff. = 80%) 
Fair Function (Eft. = 70%) 
M1 (a=8, b = 16, c=32) 
M2 (a=4, b=8, c=l 6) 
M3 (a=2, b=4, c=8) 
M4 (a=2, b=2, c=4) 
M5 (a=0.5, b=l, c=2) 
M6 (a=0.1, b=0.2, c=0.4) 
Iterative Tuning (a=0.362, b=0.724, 
c=1.449) 

1/A1 1/Al 
m 

0.500 0.500 
0.25* 0.55* 
0.25* 0.320 
0.25* 0.388 
0.25* 0.439 
0.308 0.391 48 
0.454 0.485 49 
0.484 0.498 
0.485 0.499 
0.498 0.499 
0.492 0.495 
0.502 0.499 

nou t A I C  

24.855 
36.647 

95 1.409 
95 1.078 
103 1.048 
163 1.303 
105 0.974 

3.4.6. SOFTWARE ARCHITECTURE 

So far, we have considered the formulation, solution algorithms and analysis of data 
reconciliation problems for both steady state and dynamic processes. In this section we 
consider the software components and their interactions needed to perform these activities for 
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data reconciliation. For these data reconciliation studies, several tasks need to be performed, 
each requiring access to one or several software components, as shown in Figure 6. 

1. A process model has to be defined. This can be done either by using a graphical user 
interface to assemble process building block (heat exchangers, mixers, splitters, reactors, 
etc) as shown in Figure 2, or by explicitly defining all the constraints equations (mass and 
energy balance, constitutive equations, etc). This definition phase is similar to the set up 
phase of a simulation problem. Reference can be made to a library of custom models (e.g. 
unit operations, physical properties) and to a data bank of model parameters (e.g. pure 
component and mixture parameters). 

2. The process description and its parameters must be stored in an appropriate data structure, 
usually a process database. 

3. A measurement model has to be defined; this requires the declaration and description of 
all available measurements : a name, an identification (e.g. the tag name of the sensor in 
the DCS system), the default value, the error distribution (e.g. standard deviation if a 
Gaussian error distribution is assumed), possibly rules used for gross error detection (in 
the simplest case, lower and upper bounds for the measured value, outside which the 
measured value will be flagged as erroneous and discarded). When the measured value is 
not a state variable, link equations must be added to relate it to the process state variables. 
Access to a database of sensor properties can also provide some help. 

4. The measurement model must be stored in an appropriate data structure that can be part of 
the process database or kept separate. Measurements can be obtained in real time from the 
DCS interface. 

5. The first step in the solution of the data reconciliation problem is to detect and isolate 
gross errors, to verify the redundancy, and to classify variables. This problem analysis 
phase relies on the analysis of the incidence matrix of the equation system. A library of 
modules allowing a graph analysis and/or equation and variable ordering is needed. 
Feedback is provided to the user, in the form of advice on additional measurements to add 
in case the problem is underspecified. 

6. The problem solution makes use of some solver" it can be a linear or non-linear equation 
solver, or an optimizer (typically large-scale SQP). In the solution phase, residuals of the 
energy balance equations and equilibrium constraints must be evaluated, which requires 
access to a physical property package. Feedback is provided to the user, in case of any 
convergence problem, or with a display of reconciled values through the GUI and the 
process database. 

7. Reconciled values can also be transferred back to the DCS for archival, or for use in the 
supervisory control system or the on-line optimizer. 

8. Sensitivity analysis, statistical inference and assessment of the accuracy of the reconciled 
values can be obtained by post processing the Jacobian matrix of the constraint equation 
system. This requires access to linear algebra and statistical packages. Feedback is 
provided to the user, in the form of advice on measurements to add or to improve in order 
to reduce the uncertainty on key process parameters. 

Data reconciliation can be run under control of a user, who enters measurement values in the 
measurement database or modifies the model in order to carry out a performance study or to 
design a measurement system. It can also run under the control of a real time executive, to 
process routinely all measurements gathered by the DCS, and to provide reconciled values for 
the real time optimizer. This is why a typical data reconciliation software is composed of 
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several applications: graphical user interface, database systems, expert systems and a run time 
solver. 

3.4.7. CONCLUSIONS 

Data reconciliation and parameter estimation is a widely used technology that has become an 
important component in model fitting, validation, and real time optimization for chemical 
processes. Most of the applications are for processes operated at steady state, and for which a 
model based on steady state conservation laws is adequate. However, careful attention must 
be paid to the optimization formulation. Here commonly used data reconciliation formulations 
that use least squares objective functions can lead to severely biased reconciliation of the state 
variables in the process. To deal with these issues, this paper discusses optimization strategies 
for data reconciliation and gross error detection. Moreover, their application is illustrated 
with a comprehensive steady state case study and a small dynamic example. 

Despite advances in the development and application of data reconciliation strategies, there 
are a number of ongoing developments in several areas. First, most implementations of data 
reconciliation assume that measurement errors follow a Gaussian distribution with zero mean 
and known covariance (usually diagonal covariance is assumed); the implications of those 
assumptions and the benefit expected from more complex hypothesis still deserves some 
attention. Preliminary work along these lines includes the use of Bayesian and M-estimator 
formulations which allow for more general distributions as well as robustness to deviations in 
the assumed error distribution [27, 3]. 

Second, model based data reconciliation ignores any model uncertainty. However some 
constraint equations (e.g. energy balances) involve empirical relationships, such as the 
physical property models, that are not totally accurate; a data validation framework 
accounting for model uncertainty is still to be developed. Some interesting work along these 
lines relates to model discrimination. Although applied to off-line problems, Bayesian 
approaches can provide additional information on the suitability of competing process 
models. In addition, model discrimination algorithms, that detect failing sensors(in order to 
ignore them) and distinguish between process upsets and perturbed measurements, need to be 
improved. 

Third, data reconciliation is useful for process monitoring, but it could be used also for the 
rational design of measurement systems. This includes questions on where to locate sensors, 
when to make them redundant, how to minimize measurement cost for a prescribed accuracy, 
or how to maximize accuracy for a given measurement cost. 

Fourth, on-line data reconciliation based on steady state models involves the solution of a 
large NLP or a large set of nonlinear equations. Here a robust solution is usually obtained by 
using the previous solution as the initial guess for the next problem. However, this strategy 
can fail when the process structure or the measurement set changes (e.g., shutdown or start up 
of a unit, failing sensor, measurement result available only after a long delay). Moreover, the 
presence of gross errors can lead to nonunique solutions and convergence failure. More 
efficient and robust nonlinear programming strategies are needed for these situations [8]. 
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Finally, the on-line application of dynamic data reconciliation (during process transients, or 
for batch processes) is only in its infancy. A number of challenges include an increase in 
model complexity as well as the optimization of large-scale differential-algebraic systems. In 
addition, the choice of a suitable horizon for the observations that are taken into account in the 
analysis has to be a compromise between precision and computation time. One way to explore 
this trade-off is the application and refinement of wavelet approximations over time [7]. 
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Figure 1." Comparison of M-estimators 

Figure 2." Sample flowsheet for data reconciliation case study 
A simplified ammonia synthesis loop 
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Chapter  3.5: Computer  Tools for Discre te /Hybr id  
Produc t ion  Sys tems  

L. Puigjaner, M. Graells & G.V. Reklaitis 

The software tools for batch processes may be classified in two broad classes. 
The first class involves modelling, simulation, and analysis of the physico- 
chemical processes that take place during batch operations. These tools can 
be associated with the process simulation methodology that constitutes the 
core of the first Cape Open project. The second class is designed to support 
the decision processes at the different managerial and operational levels of 
the plant operational hierarchy, which are the topics included in the scope of 
the follow-up, Global Cape Open Project. This class of tools may be further 
classified on the basis of the planning, scheduling, monitoring, and control 
tasks, which they support, specialized to the batch processing case. In this 
chapter we review a representative set of tools from these two classes that  
are available commercially. While there is much innovative research and 
development in both academic and industrial groups in this domain, we have 
excluded experimental software and proto-types from our discussion. 

3.5.1 PROCESS SIMULATION & ANALYSIS 

3.5.1.1 Continuous Process Simulation 

Process simulation systems were initially conceived to allow modeling of 
continuous steady-state process flowsheets, as represented by classical 
petrochemical processes such as the hydrodealkylation of benzene or the 
production of ethylbenzene. The process flowsheet model generally consisted 
of models of the unit operations present in the flowsheet that  were linked 
through the process streams which constituted the external input and output 
variable sets for these models. The solution of the flowsheet model was 
complicated by the presence of recycle streams, which created linkages 
between the unit models. To solve the resulting large scale coupled algebraic 
equation systems a natural decomposition strategy called the sequential 
modular approach was widely adopted. Under this approach unit models 
where executed in a serial fashion in the direction of the principal process 
streams with the recycle stream, or more precisely, tears streams serving as 
iteration variables. AspenPlus (Aspen Technology.), HYSIM-HYSYS 
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(Hyprotech/AEA) and PRO/II (Simulation Sciences) remain the most 
significant examples of this type of simulation technology. These tools 
gradually evolved to contain substantial libraries of unit operations modules, 
including some which involved models consisting of differential equations, as 
well as extensive physical property estimation capabilities and supporting 
properties constant databases. Because of the desirability of allowing the 
easy addition of new process specific unit operations models or modifications 
of existing models, the need soon arose to allowing linkage or insertion of 
user-added FORTRAN subroutines. In recent years, this in part served to 
stimulate the idea of COSE (Cape Open Simulation Executive). In due 
course, with advances in efficient methods for the solution of large-scale 
algebraic systems, these methods were adopted to solve the entire set of 
flowsheet model equations simultaneously, resulting in the so-called equation 
oriented flowsheet simulation architecture. 

A natural  next step for flowsheet simulation was to provide the capability to 
model the dynamics of the process. Again the solution of such dynamic 
simulation models was initially approached using sequential modular 
strategies but contemporary systems have emphasized simultaneous solution 
methods. Tools such as DYNSIM (Simulation Sciences), HYSYS 
(Hyprotech/AEA) and AspenDynamics (Aspen Technology) embodied these 
architectures. Ideally such tools offer a consistent set of steady state and 
dynamic models of the same unit operations, allowing the user the 
convenience of ready transition from steady state to dynamic simulation of a 
given process. The DynaPLUS system marketed by Aspen Technology is 
intended to achieve precisely that aim. 

3.5.1.2 B a t c h  P r o c e s s  S i m u l a t i o n  Too l s  

Since batch operations are inherently dynamic, one would not expect steady 
state flowsheet methodology to be applicable to batch process simulation. On 
the other hand, one might well assume that dynamic simulation systems 
would be extensible to handle batch processes. While this is the case for 
individual operations, it is not when one seeks to model the entire network of 
batch operations typical in batch chemical processing. The complicating 
factors include the need to handle the discontinuities inherent in the start 
and stop of the tasks which comprise a batch process and the fact that with 
batch processes the description of the set of chemical-physical tasks which 
must be executed to manufacture a given product (the recipe) is distinct from 
the set of equipment which are used to perform these tasks. Since the 
equipment items are generally multipurpose, the definition of the flowsheet 
for a batch process requires a series of task to equipment assignment 
decisions which may be governed by equipment availability, the availability 
of resources such as feedstock's, catalysts, and hold tanks, product priorities, 
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and other state dependent or even economic factors. Thus, in the batch case, 
the flowsheet is in effect defined dynamically as the recipe is executed. These 
additional numerical and decision aspects are not accommodated by 
conventional dynamic flowsheet simulation systems. 

Of course, simulations of individual batch operations, such as batch reaction 
and batch distillation, can be modeled and solved within the framework of 
dynamic simulation methodology. These simulations are most commonly 
structured as stand-alone modules or programs, which either share the 
physical properties estimation features of an associated process simulation 
system or employ an independent physical properties package. BATCHFRAC 
and BatchCAD are examples of these types of commercial systems. Other 
examples of programs of this kind include Batch Colonne, Batch R~acteur 
(ProSim) and BDIST-SimOpt (Batch Process Technologies). Such systems 
may offer additional features such as operating profile optimization or 
parameter  optimization to fit empirically observed operating profiles. 

To facilitate the simulation of processes involving a mix of continuous and 
batch operations, as might arise in single product plants in which some of the 
operations must necessarily be of a batch nature, several of the process 
simulators do allow use of batch reactor and batch distillation modules, of the 
type noted above, within a continuous steady-state model of the process. As is 
the case with a plug flow reactor model, the integration of the batch operation 
model is carried out internal to the module and averaged output streams are 
computed for use by the downstream continuous unit operation. 
Conceptually, this can be viewed as following the batch operation with one or 
more implicit holding tanks, which at the termination of the batch effectively 
provide the averaged output stream or streams, which feed the succeeding 
continuous unit. This type of linkage of steady state and dynamic model types 
can readily be accommodated in the sequential modular architecture since all 
unit operations models are treated as closed procedures. It can also be 
handled within equation-oriented systems provided such system also 
accommodates closed procedures. Although the AspenTech and SinSci steady- 
state products thus do permit interfacing of batch and continuous operations 
in this fashion, the entire process model remains effectively steady state. 

As noted earlier, the effective simulation of batch processes requires 
representation of the dynamics of the individual batch operations, the 
decision logic associated with the start and stop of operations, as well as the 
decisions associated with the assignment of equipment and other resources to 
specific operations as defined through the product recipe. Some conventional 
dynamic simulators (e.g., HYSYS) do offer tools for programming the 
decision logic associated with a series of events to be executed at specific 
points during the execution of a simulation run. In this way it is possible to 
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simulate certain classes of batch processes. However, this type of adaptation 
of the dynamic simulation executive only address part  of the requirements for 
the simulation of typical multiproduct batch processes. The more advanced 
capabilities of a combined continuous-discrete simulation architecture are 
required to accomplish this in a general fashion. The BATCHES (Batch 
Process Technologies) simulation tool does accommodate the above mentioned 
batch process features and uses advances in combined discrete-continuous 
dynamic simulation methodology to follow the progress of the batch plant 
over time. 

A BATCHES simulation model consists of three main building blocks: a 
recipe network, an equipment network and a set of processing directives. The 
equipment network defines the equipment specifications and the connectivity 
or transfer limitations between the equipment. The recipe for the 
manufacture of a product is modeled as a network of tasks and each task as a 
sequence of subtask. A task consists of all of the operations performed in a 
single item of equipment: a subtask consists of a model of one of these 
operations. Tasks have associated with them requirements of specific types of 
equipment and selection priorities. BATCHES provide a library of models of 
various types of operations (heating, cooling, decanting, batch reaction, etc.). 
Subtasks may have associated with them additional requirements for 
resources types and levels such as operator types and utilities as well as 
definition of conditions under which the subtask is to be terminated. These 
may be state dependent (a specific temperature or composition level is 
achieved) or directly specified (completion time or duration). Processing 
directives consist of information that  drives the execution of the process over 
time. These include information such as the amounts and sequences in which 
the various products are made, the due date and amount for finished product 
delivery, or the amounts and frequency of raw materials deliveries or other 
resource releases. 

BATCHES uses a dynamic solution strategy under which the dynamic 
models associated with all of the subtasks that  are active in a given time 
period are solved simultaneously using a DAE solver. As the solver advances 
through time, the occurrence of subtask termination or s tar t  events is tested 
at each solver time step. As events are identified and occur, the set of active 
subtask models is reconfigured and the solution process continued. This 
computational approach is effectively a decomposition strategy as only the 
models of the subtasks active at a given point in time are actually included in 
the integration step executed. To accommodate stochastic parameters, 
BATCHES allows Monte Carlo sampling of simulation parameters  from a 
library of distributions using established techniques from the discrete event 
simulation literature. It also provides linkages to physical properties 
estimation capabilities. More complex decision processes, such as solution of 
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an assignment or scheduling model, can be accommodated by defining event 
conditions under  which the simulation is interrupted, the information 
necessary to execute the decision model is assembled, the decision model 
solved, and the simulation of resulting actions t ransferred back to the 
simulation executive. 

3.5.1.3 General Purpose Modeling Languages 

In BATCHES non-standard subtask models as well as unusual  decision or 
event logic can be accommodated using the vehicle of user-supplied models 
writ ten in conventional programming languages. This is a limitation, which 
the tool shares with conventional steady state and dynamic simulators that  
do not provide a higher level modeling language. That  limitation is mitigated 
by general-purpose process modeling and simulation software such as 
Speedup, gPROMS and Abbacus. gPROMS is a successor to Speedup and is 
in turn superceded in part  by the academic package, Abbacus. gPROMS does 
accommodate the full range of model types, from purely batch to purely 
continuous. It allows model developers to write models of the most complex 
processes and their operating p r o c e d u r e s -  from the detailed mathematical  
equations for individual components, to the structure and operation of large 
complex systems composed of many such components - using a sophisticated 
natura l  language. The complexity of the processing of the result ing equations 
and the solution methodology are handled through system utilities and thus 
can largely be hidden from the user. gPROMS offers extensive facilities for 
linking to external  software across a range of hardware  and software 
platforms. It also provides advanced features such as dynamic optimization of 
continuous dynamic models thus allowing simultaneous optimization of the 
parameters  of equipment and operating procedures. Of course, since it is a 
modeling system, it leaves to the user the definition and formulation of the 
models and part icular  decision processes of batch operations. 

3.5.1.4 Batch Process Development and Information Management 

An alternative approach to supporting the development and operation of 
batch processes is to offer a software package that  provides the capabilities of 
organizing and managing recipe information together with a suite of tools for 
operating on that  information, including a rudimentary recipe simulation 
capability. Linkage to more detailed tools such as stand-alone batch reactor 
and batch distillation packages can also be provided. This is the approach 
that  has been used in two of the packages described in this section. The 
additional functionalities not provided by these tools, namely the generation 
of operating procedures and the execution of batch process hazards analysis, 
are available from IPS. We describe these developments in the third part  of 
this section. 
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Batch Plus (Aspen Technologies) is a general-purpose system designed to 
model the complex, recipe-based processes found in the batch process 
industries. The key design concept is the representation of a batch process 
using the multilevel "process recipe" metaphor. Based on the recipe 
description of the process, software allows design, engineering, and scale-up 
to be performed. Among features provided is the AspenTech electronic Batch 
Record System (AeBRS) which is designed to address manufacturers '  needs 
in the areas of work orders management,  procedure management  and 
documentation management.  

The BaSYS system of software is designed to help batch processing 
companies improve communication between chemists and engineers, perform 
faster process scale-ups and more efficiently allocate existing equipment. 
BDK, the core of BaSYS, is an integrated batch process development and 
design environment that  helps companies accelerate many aspects of batch 
process development, from route synthesis to implementation. BDK offers 
tools for enabling the rapid selection from among alternative synthesis route 
for manufacturing, improving waste processing and facility utilization, and 
providing a "knowledge warehouse" that  documents the development process. 
Neither of these systems are intended to provide rigorous process simulation 
capability but could in principle be interfaced to a simulator, given that  much 
of the recipe and other data required for a simulation is contained in the 
information base that  these systems maintain. 

Two critical tasks in the development cycle of a batch process are the 
synthesis of operating procedures given basic recipe information and the 
analysis of the operating procedure to identify, evaluate and mitigate 
potential operating hazards. These two functionalities are not provided by 
the systems described above. However, the generation and validation of 
operating procedures for new processes constitute time-consuming and error 
prone activities that  lend themselves to computer support. Moreover, with 
the increasing complexity of operating procedures and governmental and 
social pressure to reduce safety and environmental incidents, there is strong 
incentive to conduct process hazards analysis and mitigation for all new and 
existing processes. Since considerable portions of this activity are also 
repetitive and very labor intensive, there is an opportunity for intelligent 
tools to support process hazards analysis. PHASuite, a system initially 
developed at Purdue University to support this task, is now available from 
IPS. PHASuite consists of two closely integrated components, iTOPs and 
Batch HAZOPexpert. The former component serves to synthesize the detailed 
sequence of instructions an operator in a chemical plant needs to follow in 
order to manage a process safely and optimally. BHE serves to systematically 
analyze the process in question to identify, assess, and mitigate the possible 
hazards that  can occur. 
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PHASuite follows ISA $88 batch standards for modeling batch process 
information. In iTOPS, Graf chart-based concepts are used to represent the 
batch process and a hierarchical planning technique is employed together 
with information about the process materials, equipment, and chemistry to 
synthesize procedures at the phase level. BHE uses a logical separation of 
process information into specific and generic components, qualitative causal 
digraph models and a two-layered Petri-net based model of the process to 
systematically identify possible hazardous situations that  can arise in a 
chemical process. The two PHASuite components are fully integrated, 
including the creation of the various representations of the process recipe and 
logic. The user inputs batch process i n f o r m a t i o n -  the materials, the 
chemistry, and the e q u i p m e n t -  through a top-level interface. PHASuite 
returns a complete batch record documents, including safety instructions and 
a list of potential hazards classified by severity. The systems has been tested 
extensively in pharmaceutical applications, resulting in documented 
substantial savings in engineer time, and considerable improvements in 
accuracy of the resulting operating procedures and completeness in hazards 
identification. 

3.5.2 PROCESS PLANNING & SCHEDULING 

3.5.2.1 P l a n n i n g  

Production planning for individual batch plants and planning for entire 
supply chains consisting of multiple interacting batch plants can in principle 
be performed using generic planning tools. Thus, generic linear programming 
(LP) and mixed integer programming (MILP) packages such as CPLEX 
(ILOG) can be used providing that the user is prepared to develop the case 
specific formulation and provide the appropriate data interfaces. 
Alternatively, if manufacturing recipe details are aggregated and thus the 
plant treated as a black box, then various capacity planning tools offered by 
ERP vendors can be applied. However, in batch manufacturing applications, 
the details of the batch operations often prove to be important because 
equipment and other limited resources are shared among the various 
products under consideration, thus production capacity is constrained. 
Unfortunately, at the present time there are no commercial tools which can 
accommodate this level of detail without explicit user developed models. Such 
a suite of tools is available for petroleum refinery planning and supplies 
chain applications in the form of Aspen Technology's PIMS and Ref-Sked 
packages, which are based on LP methodology. 
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3.5.2.2 Schedul ing 

As at the planning level, scheduling applications for batch operations can be 
developed using general purpose scheduling toolboxes such as Scheduler 
provided by ILOG. Aspen Technology's MIMI system also falls into this 
category. However, the use of these toolboxes to batch processing problems 
requires knowledge of the strengths and limitations of the individual tools 
and experience in scheduling application formulation. This is a level of 
expertise beyond that  of plant engineers. However, several tools do exist that  
have been developed specifically for batch processing applications, two of 
which, gBBS and Virtecs, are described in this section. 

Available through Process Systems Enterprise (PSE) Ltd, gBBS is the 
outcome of extensive research conducted at the Centre for Process Systems 
Engineering at Imperial  College, London. It is a scheduling tool designed for 
multi-purpose process production, from purely batch to purely continuous. 
Process specific issues such as cleaning, recycling and intermediate materials 
that  are also final products can all be treated. A complete gBSS application is 
composed of data such as product demands and inventory, product recipes, 
plant resources, staff and maintenance schedules and the current status of 
plant equipment. The user's data is checked for consistency and converted 
automatically into one of three MILP (mixed integer linear programming) 
formulations. Specialised MILP algorithms requiring little or no user 
intervention are used to find the solution which is guaranteed to be optimal if 
allowed to run to convergence and the results are then processed and 
presented in an engineering form. When solving especially large problems, 
gBSS breaks them down into several smaller ones and combines the results 
into a final solution. Recipes and processes are modelled using the State-Task 
Network representation and the modelling language is designed to express 
complex plants in a simple and flexible way. Established models can be 
accessed from a 3rd-party front-end such as MS Excel. 

gBSS can be configured to solve three types of scheduling problem 
formulations: Short-term scheduling, Campaign planning, and Scheduling for 
Design. In short-term scheduling, the plant layout, processes and products 
are known and change infrequently. Other data may change with each run of 
gBSS - demand, deadlines, availability of equipment and staff. Transport 
costs and times can be included so that  multi-site production and distribution 
can in principle be accommodated, at the cost of increased computational 
burden. The campaign planning form is appropriate for applications in which 
product demands are stable or may be forecast accurately thus allowing 
longer production horizons to be divided into a number of campaigns. The 
Scheduling for Design option is used to find the optimum plant resources 
given a fixed set of demands and their deadlines, gBSS can take account of 
both capital and running costs and find the ideal plant for a minimum initial 
cost or a minimum lifetime cost. It is also suitable for designing extensions to 
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existing plants. This facility is available for plants operated in either 
campaign or short-term scheduling mode. 

Advanced Process Combinatorics, Inc. (APC) has developed Virtecs for 
process scheduling and planning. Virtecs is based on Mixed Integer Linear 
Programming (MILP) technology and offers the ability to model processes at 
a high level of detail including constraints on limited material shelf life, 
process vessel storage, shared storage, labor, utilities, minimum/maximum 
inventory levels, complex bill of materials, piping connectivity, equipment 
downtime, multiple stages of production, parallel equipment, and process 
changeovers. The MILP based scheduling tool can provide solutions in fully 
automatic mode and a user can readily make process changes. APC has 
recently released Virtecs v5.0 that includes support for Internet based use 
and publication of schedules, developing schedules from previous schedules 
and efficient human override of automated scheduling capability so that the 
tool can be used anywhere from a fully manual to fully automatic mode. 
Previous versions of Virtecs have been successfully used in the 
pharmaceutical, specialty chemical, food and beverage, consumer products, 
lubricant, and retail industries. The MILP based solver behind Virtecs is 
highly customized and routinely solves scheduling problems involving 
hundreds or thousands of tasks in one or two minutes on a desktop personal 
computer. While MILP scheduling technology is in its infancy and will 
continue to grow in capability, the existing advantages include explanations 
of why demands cannot be met on time, lower consulting costs for installing 
and supporting tool use, ability to support engineering applications such as 
expansion studies or debottlenecking, online applications that  can be readily 
extended by the user to support new products or process equipment changes. 

Because of reliable and accurate automated solution capability, Virtecs can 
be used in a distributed fashion to integrate and mediate detailed 
coordination between multiple facilities. Because of the versatility afforded 
by their solution technology, APC has also applied Virtecs technology to 
warehouse management applications and integrates them with upstream 
production and downstream distribution activities. APC also uses their 
MILP solver underneath a tool that selects and schedules projects in research 
and development pipelines. The main components of the Virtecs tool are a 
natural modeling language for describing processes, reporting system, 
database for managing multiple scenarios, graphical user interface with 
readily extensible Gantt Chart, and a highly engineered MILP solver based 
on implicit formulation generation. Because of the extensibility of APC's 
MILP approach, their tools can be used in conjunction with simulation 
capability to analyze the impact of uncertainty on the performance of 
solutions and manage risk in high-level applications such as pricing studies, 
mergers and acquisitions, and supply chain design/operations. Because of 
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close ties with Purdue University, APC has world-class research and 
development capability and has demonstrated significant functionality gains 
with each new product release. 

3.5.3 S C H E D U L I N G - C O N T R O L  INTERFA C E 

Once a scheduling solution is developed using one of the tools described 
above, it must  be implemented in the production environment and executed 
through the batch control system. At the level of process detail represented in 
scheduling applications, operational details such as valve opening and closing 
are normally not taken into account. Moreover, it is usually inefficient to 
rerun the scheduler with every modest process variation or delay that  is 
encountered. Thus, there is a practical need for either manual  or automatic 
conversion, if necessary, readjustment,  and execution of the scheduling 
solution. The S U P E R B A T C H  package, offered by PSE Inc and prototyped at 
Imperial  College, offers the ability to work on-line, in conjunction with 
s tandard batch control systems, and to automatically update schedules as 
small delays and process variations occur. The TotalPlant Batch system 
offered by Honeywell provides the interface for the user to execute batches 
manually following a schedule created off-line and to manually readjust 
timing as needed, with all of the recipe and equipment details, 
communications with the control system, and handling of alarms and 
messages handled automatically. In this section we briefly describe the 
functionalies of these two systems. The reader should note that  these 
functionalities are to varying degrees provided by other commercial batch 
automation systems. 

Designed for embedding within manufacturing execution systems (MES) or 
linkage to a scheduling product, SUPERBATCH provides the capabilities for 
static off-line short-term schedule readjustment as well as for on line 
schedule correction, with changes broadcast once a minute to screens in 
departments  throughout the factory. It uses a modeling language which 
conforms to ISA $88.01 to describe the plant, the materials, recipes and 
ancillary procedures (such as changeovers and cleaning suitable for hygienic 
industries) as well as the production batches themselves. For off-line 
scheduling applications, once embedded within a graphical user-interface to 
present the schedule, SUPERBATCH will find the earliest possible time for 
each batch, subject to the constraints of the model. Equipment allocations 
may be pre-defined or picked by the user from the feasible set which 
SUPERBATCH offers. SUPERBATCH also delivers the profiles of each plant 
item as needed to draw a graphical schedule. For on-line schedule 
adjustments, SUPERBATCH provides an on-line monitor, which executes the 
schedule, and a versatile interface, which accesses control systems (and 
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simulators) usually across a network. Once a minute, the current  status of 
the plant is read from the control system and the schedule is updated to 
match. In this fashion, delays and stoppages can be accommodated 
automatically. SUPERBATCH then initiates execution of any operations due 
by sending the appropriate commands and parameters  to the control system. 
The system also issues alert messages, which provide advance warning of 
impending events requiring operator attention. SUPERBATCH is written in 
object-oriented C++ adhering to the ANSI draft standard, using rpc for it's 
networking, and is portable to a wide variety of environments and control 
systems. 

The TotalPlant Batch systems provided by Honeywell is an open, object- 
oriented software application for modular batch automation. Developed 
around ISA $88.01 it provides batch recipe and equipment management,  
batch management  and execution, an integrated operator interface, easy to 
use graphical configuration tools, and rudimentary  batch simulation 
capability. The assignment of units can be done dynamically at run time or 
batch creation time. Implemented to run under Windows NT, it is designed to 
operate with Honeywelrs TotalPlant and the PlantScape control systems. 
The major components of TotalPlant Batch and their functionalities are the 
following: 

�9 B a t c h  V i e w  allows the user to create batches, execute them, review 
batch related information and respond to alarms and messages. 

�9 B a t c h  S e r v e r  monitors and controls execution of batch procedures and 
displays batch execution information 

�9 B a t c h  D a t a  S e r v e r  communicates and between the Batch Server and 
the phase logic sequences in the control system 

�9 B a t c h  R e c i p e  E d i t o r  allows the user to specify recipe parameters  and to 
graphically construct the recipe sequence using sequential  function 
charts and tables 

�9 B a t c h  E q u i p m e n t  E d i t o r  allows the user to configure and maintain  the 
physical plant model used by the other components 

The system also provides customizable event archiving and batches report 
generation utilities. 

3.5.4 C O N C L U D I N G  R E M A R K S  

As should be evident, the suite of functionalities provided by existing 
software tools for batch process systems engineering is quite broad but as yet 
far from complete. While there is much exploratory research conducted 
within the academic community, commercial developments seem to be 
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lagging. For instance, with the exception of BATCHES there is limited 
recognition in the existing software of the highly stochastic nature of the 
operation of most batch processes. Issues of robustness and risk are simply 
not addressed. Also missing is the capability to perform batch optimization 
through the optimal selection of recipe parameters such as conversions, batch 
times, separation fractions, a capability that  is generally available with 
steady state flowsheet simulation systems. Systematic tools for batch 
monitoring and fault diagnosis are notably absent: a combination of trend 
analysis and predictive dynamic models would appear to be required. 

Integration of the existing tools is as yet a distant dream. For instance, the 
seamless linkage of planning and scheduling tools or of scheduling and 
simulation tools is not available. Furthermore, at present there clearly are no 
standards that would facilitate the integration of these tools through suitable 
common date structures. The $88 standard for representing batch recipes 
and equipment could well serve as the heart of such a common data 
structure. Indeed a number of the tools have used the recipe structure and 
naming conventions promulgated under that standard in defining their input 
data structures. However, this structure must be further elaborated to 
encompass all of the information associated batch product and process design 
and batch plant operations. 

The batch operations domain evidently offers great opportunities both for 
methodology research and for commercial software development. 

3.5.5 CONTACT INFORMATION 

The following list provides contact information for the products and tools 
cited in this chapter. The reader is invited to pursue the latest developments 
through these electronic sources. 

Advanced Process Combinatorics, Inc. 
Products: Virtecs 
Information: www.combination.com 

AEA Technology Engineering Software 
Products: BaSYS, BDK, HYSIM, HYSYS 
Information: www.hyprotech.com info@hyprotech.com 

Aspen Technology, Inc. 
Products: AeBRS, AspenDynamics, AspenPlus, BATCHFRAC, Batch 
Plus, DynaPlus, Mimi, PIMS, Re-Sked 
Information: www.aspentech.com info@aspentech.com 
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BatchCAD Ltd 
Products: Batch CAD 
Information: sales@batchcad.com 

Batch Process Technologies, Inc 
Products: BATCHES, BDIST-SimOpt 
Information: www.bptech.com sales@bptech.com 

ChemEng Software and Services 
Products: BATCHDIST 

Information: ChemEng@BTinternet.com 

Honeywell, Inc. 
Products: TotalPlant Batch 
Information: www.iac.honeywell, corn 

ILOG, Inc 
Product: CPLEX, Solver, Scheduler 
Information: www.ilog.com info@ilog.com 

Integrated Process Solutions, Inc. 
Products: BatchHAZOPexpert, iTOPS, PHASuite 
Information: www.ipsol.com 

Process Systems Enterprise. Ltd. 
Products: gBBS, gPROMS, SUPERBATCH 
Information: www.psenterprise.com 

Simulation Sciences, Inc. 
Products: DYNSIM, PRO/II. PRO/II Batch Module 
Information: www.scimsci.com 
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P a r t  IV: M a k i n g  C A P E - T o o l s  

4.1 Methods  & tools for software archi tecture  
J. K6ller, J.-P. Belaud, M. Jarke, A. Kuckelberg & T. Teague 

4.2 P lantData  XML 
T. Teague 

4.3 PI-STEP 
R. Murris 

4.4 The CAPE-OPEN standard: Motivations,  deve lopment  process ,  
t echnica l  archi tecture  and examples  

J.-P. Belaud, B. Braunschweig & M. White 

Part IV  shows what are the current tools (component software, objects, 
middleware, databases, XML...) and methods (data modelling, UML ...) 
used by the CAPE software industry to develop the new frameworks and 
tells about current standards projects and their status. Through examples 
such as CAPE-OPEN, PlantData XML, PI-STEP, the reader will get an 
insight on how these standards are being developed and implemented. This 
part is mostly written by software specialists and experienced CAPE tools 
providers. 

Chapter 4.1, by K6ller et al., gives an in-depth assessment of some of the 
technologies: middleware, COM and CORBA, XML, application 
integration. In addition, it introduces the UML notation and the Unified 
development process, which are now widely recognized as standard 
techniques for specifying, designing and developing object-oriented systems. 

Chapters 4.2 and 4.3 present two approaches to developing standardized 
data models for the process industries. In 4.2, Teague develops his Plant 
Data XML standard for data exchange, which is based on the eXtensible 
Markup Language (XML); XML is a core technology of the World-Wide Web 
and of Microsoft's .NET architecture; it is the key to web services and to the 
future semantic web, and is used as well for supporting data 
communication between heterogeneous platforms; chapter 4.2 shows the use 
of XML for unit operation data, with an emphasis on heat exchangers; 
then, chapter 4.3 by Murris summarizes several years of efforts put into the 
development of the PI-STEP (STEP for the Process Industries) standard; 
these efforts led to the definition of the IS0-10303 Application Protocol 221, 
which uses the EXPRESS formalism. API 221 is interesting as it defines a 
data metamodel (a model of data models), which has been further 
developed into the STEPLib dictionary of process plant classes. 

Finally, Chapter 4.4 by Belaud et al. presents the CAPE-OPEN (CO) 
standard, developed in two successive international projects, CAPE-OPEN 



228 

and Global CAPE-OPEN. As we wrote in our introductory chapter (part 1), 
CAPE-OPEN and Global CAPE-OPEN motivated us to prepare this book, 
and therefore the CO technologies and development process are evoked in 
several chapters; however, Chapter 4.5 is the only chapter totally devoted to 
CO; the chapter gives an overview of it and looks into parts of the standard, 
in order to give a basic understanding; the interested reader will find a lot 
of additional information on the CAPE-OPEN Laboratories Network 
website, www.colan.org. 
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Chapter  4.1: Methods  & Tools for Sof tware  A r c h i t e c t u r e  

J. KSller, J.-P. Belaud, M. Jarke, A. Kuckelberg, & T. Teague 

4.1.1 I N T R O D U C T I O N  

It is an obvious t rend that  software systems, especially the ones used in an 
enterprise environment,  have become more and more complex in recent years. 
Applications have changed from simple stand-alone batch programs running on 
mainframes to complex, highly integrated, and distributed systems. The recent 
t rend of building internet-enabled systems brings even more problems into the 
game. For example, large enterprise resource planning (ERP) systems such as 
SAP R3 can now be found in every major company. They consist of many 
functional modules tha t  have to interact and must  have the ability for 
integration with other external  systems such as databases or e-commerce 
solutions. 

Unfortunately, many of the existing systems tha t  were not designed to run in 
such an environment  and are still in use in many companies (often performing 
mission critical tasks) do not fit into that  picture. They are closed, monolithic 
applications, which are inflexible and not easy (if at all) to integrate with other 
software systems. Additionally, maintaining these programs is very expensive 
especially in the case of non-modular systems tha t  were implemented in 'ancient' 
languages such as FORTRAN, COBOL or even Assembler. 

These problems apply to the CAPE domain as well. Many different tools are 
needed throughout  the design and operation of a chemical plant. The systems 
employed for tha t  task range from computer-aided design tools (CAD) over 
process simulators and optimisers to costing and ERP systems. But nowadays all 
of these systems are mostly stand-alone tools, which offer no direct integration 
among each other. 

To change this si tuation for the CAPE domain and for software development and 
design in general new paradigms, systematic approaches and flexible technical 
solutions are needed. New paradigms (compared to the ones used for creating the 
existing monolithic systems) are mainly based on object-oriented and component- 
based modelling of a software system. These approaches facilitate the design and 
implementat ion of loosely coupled systems. These systems are ra ther  flexible and 
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easy to integrate with other pieces of software writ ten following the same 
paradigm. More on the idea of object-oriented design is presented in the following 
sections. Additionally, methods for using these paradigms to develop well- 
designed software systems are shown. We also discuss several technical 
approaches and frameworks, which support the software developer in 
transforming a good and flexible design into running software, including 
application integration via standardised data exchange and middleware 
solutions. 

If you a look at many large-scale up-to-date enterprise applications in industry, 
you can easily recognize that  the employment of the frameworks and techniques 
presented here facilitates the development of reliable and flexible software 
systems. Additionally, most of the approaches shown in the following sections 
have been used for the development of the CAPE-OPEN standard (see Chapter 
4.3) and the implementation of CAPE-OPEN compliant software. This is a good 
example of how state-of-the art software development techniques are used to 
create high quality software in the CAPE domain. 

Of course, only a very brief introduction to all these issues can be given in this 
book. For a deeper understanding of the methods, frameworks and techniques, 
the resources listed in this chapter are recommended many of which are 
available online. 

4.1.2 BASICS OF SOFTWARE E N G I N E E R I N G  

This section gives a brief overview of some basic principles of software 
engineering. A short history of the development of programming and design 
principles is given to motivate why a change of the paradigms in software 
engineering has taken place. This will make clear why legacy software systems 
are causing so many problems and how they can be avoided. Among other issues 
the following subjects are addressed: A brief sketch of object-oriented 
development and design; concrete object-oriented specification methods are 
presented in sections 4.1.5.2 and 4.1.4.1, namely the Unified Modelling Language 
(UML) and the Unified Process (UP). Next, the ideas of component-based 
software and middleware are presented. Again, technical implementations such 
as COM and CORBA will be discussed later (Section 4.1.5.1). Because the 
migration of old software to new standards (e.g. transforming FORTRAN77 code 
to an object-oriented design) is an important issue, some introductory material on 
that  is shown. This section concludes with some general thoughts on systems and 
data modelling as well as data representation. As an application, the universal 
data representation format XML is presented in Section 4.1.5.3. 
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4.1.2.1 Evolut ion of Programming Principles  

The architecture of CAPE software follows the mains t ream of software 
development and programming principles [21,34,35]. Therefore, CAPE software 
has changed as well. This is one reason for the difficulties arising when legacy 
CAPE software is to be integrated with other software systems. To unders tand 
the problems arising with the evolution of software development paradigms it is 
helpful to summarize this development in brief. 

In general the evolution can be divided in five principles: l inear procedural 
programming, s tructured procedural programming, event-driven programming, 
object-oriented programming and component-based architectures. The 
programming languages themselves can follow different programming paradigms 
such as imperative, functional or logic programming, but are not of deeper 
interest  in our context because most problems in developing modern (CAPE) 
software architectures result from the changing programming principles, not 
from the paradigms. 

- Linear procedural programming: Initially, programs were wri t ten as 
monolithic command sequences. Even if basic program structuring techniques 
were available, the program was developed linearly in an imperative manner  
using programming languages like Assembler, COBOL, ALGOL60 and early 
versions of FORTRAN. Main control structures used within the programs are 
jumps (GOTO), jumps with conditions (IF-THEN-ELSE) and loops (FOR- 
NEXT/WHILE-DO/REPEAT-UNTIL) which were usually combined to one 
huge block of code and data. Therefore, such software systems were often 
comprehensible only by a small group of involved developers. 

- Structured procedural programming: The next wave of programming 
principles in the middle of the 1960's was strongly influenced by C.A.R. Hoare 
and E.W. Dijkstra. The programs were structured into functional units or sub- 
procedures. These procedures were identified and coded as independent units. 
The data was encapsulated, or hidden, from the calling procedure, and the 
programming languages got a theoretical foundation comprising syntactical 
specification of the language and compiler theory to qualify them for universal 
problem solving. This is likely to be the principle used by most current 
(legacy) CAPE systems because current  CAPE software is often descended 
from this era. Popular languages were FORTRAN77, ALGOL68, PASCAL, C, 
PL/1, al though languages with other programming paradigms like LISP or 
PROLOG were also used. The programs themselves remained monolithic 
procedural constructs, some with module concepts allowing an extension or 
replacement of functional program units. 

- Event-driven programming: Event-driven programming approaches were 
needed for computer-based process control applications, where a closed 
procedural approach is inadequate.  In event-driven programs, the main 
program is a simple routine, which is essentially a t imer  loop, waiting for 
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events to happen. When events are detected, an interrupt-driven event- 
handling subroutine is called to handle the event, before returning control to 
the main program. 
Object-oriented programming: Object-oriented programming, introduced in 
the 1980's, uses an event-driven approach of cooperating objects, rather than 
a monolithic, beginning-to-end procedural paradigm. This approach focuses on 
how to map real-world, user-controlled, event-driven scenarios, such as mouse 
clicks or keystrokes, into the program. Objects are identified as entities 
similar to those in the real world with properties (encapsulated data) and a 
behaviour (encapsulated procedural methods). This ability to hold both the 
procedure and the data in the object is conceptually very different from 
procedural approaches in which data are held in (potentially large) data 
structures separate from the procedural code. Programming languages such 
as C++, JAVA, and SMALLTALK provide language constructs to reflect the 
object-oriented view [24]. 
Component-based systems: Component-based systems can be thought of as 
pre-built collections of objects that  exist independently of any single main 
application program, whereas in "just object-oriented" systems the objects are 
typically created and used in the context of a single specific application 
program. In component-based systems, applications can be built from pre-  
assembled components, which may be provided by multiple, independent 
supplier companies. To facilitate this, standardized frameworks to access the 
components programming interfaces are required. In component-based 
systems, some of these components are "servers" for other components who 
are "clients". Often the client components and the server components are on 
the same computer, but in general, they can be located on different computers 
communicating over a network. The only important  thing for a client 
component is to know how to communicate with the server component. To 
achieve this implementation and location independence of components, a 
middleware layer is needed which covers the technical details of the 
communication and which provides a common and standardized interface to a 
components. Current examples of middleware solutions are CORBA, (D)COM 
or EJB but also distributed and client-server systems which use (system- 
specific) standardized communication protocols [24,25,37]. 

Considering the very different programming paradigms of legacy software, which 
uses structured procedural programming, and modern software systems, which 
use object-oriented and component-based architectures, we can see that  it is not 
easy to evolve legacy software for use in modern software systems. We will come 
back to this issue in Section 4.1.2.3. 

4.1.2.2 Middleware Principles  

Component-based applications consist of several pieces of software, which are 
executed independently and may reside on the same host or on remote host over 
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a network (such as intra-/extra-/internet). For such a component-based 
application to work, the components must  be able to interoperate, i.e. to exchange 
data and issue method calls to each other via the component's defined interface. 
The technology that  implements an infrastructure for component communication 
is called middleware. A middleware solution provides standardized mechanisms 
for the definition of component functionality and communication as well as 
additional services easing the use and implementation of component-based 
software. Currently, the most prominent object middleware solutions are 
(D)COM from Microsoft, CORBA from OMG and Enterprise Java Beans from 
SUN to all of which we will re turn in Section 4.1.5.1. 

The middleware described so far is called object middleware, as it is an 
intermediary for components, which have interfaces following the object-oriented 
paradigm. There are two other kinds of middleware, which should be named but 
will not be discussed here: remote procedure calls (RPC) and message-oriented 
middleware (MOM). Fur ther  information about these approaches as well as a 
good general introduction to middleware principles can be found in [33] 

Basically, a middleware framework consists of four parts: an interface definition 
language (IDL), an interoperability protocol, an object request broker (ORB), and 
additional supporting services. The IDL is a language, which describes all 
accessible data and methods of a component. It is very similar to a programming 
language but contains method headers only, no implementations. Most IDLs 
follow the object-oriented paradigm. The interoperability protocol defines how the 
components communicate which each other. It defines valid message types and 
formats and how their content should be interpreted. One of the most important 
aspects of the interoperability protocol is the definition how the data structures 
defined in terms of IDL (e.g. a string or integer) are t ranslated into network 
messages and vice versa. This process is called marshall ing (resp. 
unmarshalling). 

Having defined the IDL and the low-level communication, an entity is needed for 
coordinating component communication. Direct point-to-point communication 
between components would be possible but is very inflexible in multi-component 
applications. Therefore, most middleware frameworks include an object request 
broker (ORB), which is responsible for directing messages to and from different 
components throughout the network. It is the central piece of software in every 
advanced middleware because it is the logical backbone for all component 
communication. Additional supporting services are defined in most middleware 
systems for making the system more efficient and easier to use. Examples of such 
services are naming or persistence services and might be implemented as 
components themselves. 

Figure 1 illustrates the use of a middleware infrastructure for component 
communication. A client application uses some server functionality. The IDL is 
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used to define the interface that  a server implements, i.e. the set of services that  
clients may request. The IDL interface specifications are compiled into client and 
server stubs. The client application calls a client stub to request a service. The 
client stub interfaces to the runtime system of which the ORB is a part  and 
which invokes server code that  implements the requested service through the 
appropriate server stub. The transmission of service requests and responses 
between clients and servers is handled by the runtime system of the middleware 
platform. Thus, applications need not deal with concerns such as: location of 
clients and servers on the network, differences between hardware  platforms and 
operating systems, and implementation languages (e.g. data formats and calling 
conventions). 

Figure 1 Middleware Approach 

The example shows that  client and the server can be located on different 
computers, based on different operating systems, and different hardware 
platforms (e.g. a Windows PC and a SUN Solaris machine). Additionally, 
different programming languages can be used on client and server side (e.g. C++ 
and Java). This integration aspect is one of the most important  advantages of 
component and middleware technology. However, because most middleware 
frameworks follow the object-oriented approach, non-object-oriented languages 
(e.g. FORTRAN77) might not be suitable for use in a middleware environment or 
may require additional effort for integration. Furthermore,  a hard problem is the 
integration of components that  use different middleware platforms (e.g. one using 
COM, the other CORBA). We will come back to these issues in the next section. 
See also [6,12,33,37]. 

4.1.2.3 Migrat ion of Legacy Software 

In the last section we have presented the principles of component-based systems, 
which integrate components via middleware technology to form a complex 
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distr ibuted software system. Unfortunately,  a lot of existing software was not 
designed using a component-based approach or was wr i t ten  before these concepts 
even existed. These systems are called legacy systems. In many  C, COBOL or 
FORTRAN legacy systems, the implementa t ion  history may reach back several 
decades. Migrat ing these systems to a component-based envi ronment  is a non- 
trivial but  nevertheless  very useful task. By migra t ing  these systems they are 
opened up to other applications and can be in tegra ted  with them. This exposes 
their  functionality to the outside world, which would not be possible otherwise, 
and avoids wast ing the money spent on designing and implement ing those 
systems. 

There are many approaches how to migrate  a legacy system. None of them is 
really easy. Which way of migrat ion is the best  depends on how your legacy 
system is s t ructured and what  information about it still exists. The worst  case for 
migrat ion is a system tha t  has no or only useless documentat ion and where all 
developers knowing the system are gone. Then the options for real  migrat ion are 
very limited. A complete re- implementat ion of the whole system may be the only 
choice. But things often look better.  In most cases, source code is available along 
with some documentat ion.  Depending on what  language was used for the 
implementa t ion  there  are several options. If a s t anda rd  language such as 
COBOL, FORTRAN, C or C++ was used, there are several  ways to move to a 
component-based system. We present  two small  scenarios in which the original 
code is completely preserved. Other  solutions may include par t ia l  re- 
implementa t ion  and re-design of the system but  will not be discussed here. 

Migrat ing an object-oriented legacy system is r a the r  easy. If the system was 
designed well it a l ready encapsulates  objects and da ta  tha t  can be directly re- 
used in a component-based environment  such as COM or CORBA. The only thing 
tha t  remains  to be done is the connection to the middleware system. If the 
interfaces of the components directly correspond to the interfaces of the legacy 
objects, you need only a thin wrapper  doing the t rans la t ion  from middleware 
calls to calls to the legacy objects. If the interfaces differ, the wrapper  (in this 
case sometimes called mediator) must  provide a t rans la t ion  between the 
component and the middleware interfaces. 

If a non-object-oriented language such as FORTRAN77 was used, things are a 
little more complicated. In this case, a wrapper  mus t  accomplish two things. 
First, it must  provide an object-oriented view to the non-object-oriented legacy 
code. This is a problem whose complexity strongly depends on the s t ructure  of the 
underlying system. For example, it may be necessary to extract  code segments  
from monolithic code and res t ructure  the data  interface to fit an object-oriented 
approach. Because the wrapper  usually will be in a different language t han  the 
legacy system, some kind of bridge between those languages  is necessary. There 
are products able to solve this problem by cross-compilation or other bridging 
strategies.  Second, the wrapper  must  provide a connection to the middleware 
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system as in the first scenario. A case study of a migration of a FORTRAN77 
thermodynamics package to the CAPE-OPEN standard can be found in the 
Migration Methodology Handbook from the CAPE-OPEN formal documentation 
set [11]. 

This can only be a short introduction into the wide area of software migration. 
But it is important  to know that  there are strategies for moving from legacy 
systems to component-based architectures without throwing away all the code 
that  has been wri t ten and proven useful for a long period of time. [8] describes a 
systematic approach for migrat ing mission critical enterprise systems whereas 
[28,42] discuss general strategies for opening up legacy systems. 

4.1.2.4 Modell ing Systems and Data 

The quality of software systems is strongly influenced by their  architecture. 
Quality aspects include e.g. the clear separation of functional units and their 
encapsulation in components, methods or subsystems; a well documented 
program code with agreed layout, interfaces and documentation of the systems; 
effectiveness and efficiency of the system which often is strongly influenced by 
the basic architecture; the size and resources needed for system execution etc. 
Various metrics have been developed to measure software quality. 

An important  step in developing well-designed systems is a clear a-priori 
architecture and a modelling of the system, which can be refined in a top-down 
manner.  Different modelling approaches for software systems and the data, 
communication or control flow within the systems have been developed as well as 
modelling techniques for specifying how systems are used. In general two 
modelling s treams can be distinguished: system modelling and data modelling. 
While data modelling is of big interest  when dealing with large amounts of data 
(data organization, storage, and retrieval) system modelling is important  when a 
complex system with functional units and behaviour is designed [31,34,48]. 

System modelling: A software system consists of multiple parts, which 
usually interact  and are related in a complex manner.  As mentioned in 
section 4.1.2.1 the development and programming principles for software 
systems have changed and therefore requirements  to system modelling have 
changed, too. Current  systems mostly follow the object-oriented or the 
component-based approach which raises different requirements  for system 
modelling: 

Component modelling: Which components or objects are part  of an 
overall system, and what  is their  behaviour? What are their  characteristics 
and how are they related? 
System usage modelling: How can a system be used, what  API's are 
supported and what  user interface is offered? What  interactions are 
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necessary for which task and how can system components be used and 
coupled together for overall tasks? 

- Con t ro l  a n d  m e s s a g e  f l o w  m o d e l l i n g :  Which message flow between 
different parts of the system does exist? Which actions are started by what 
components, what  is the calling sequence of components respectively 
objects? Which actions interact in which way with system interfaces and 
system users? 
S y s t e m  s t a t e  m o d e l l i n g :  What states can a system be in? What action 
can have which effects? What state transitions are allowed? 

Tools for system modelling have to consider as many of these requirements as 
possible. A popular approach is the Unified Modelling Language (UML) 
described in section 4.1.5.2. More information about system architecture and 
modelling can be found in [9]. 

�9 D a t a  m o d e l l i n g :  A system cannot do anything without data in multiple 
forms, e.g. persistent data, runtime system data, or data communicated 
throughout different parts of the system. Especially where data is to be 
exchanged between components, the data representation and semantics must 
be clear for all participating components. An introduction to data 
representation is given in the next section. For data semantics various 
modelling methods have been developed for different purposes. One of the 
most important tasks is the definition of data models for databases holding 
persistent system data and making it accessible in different ways. A popular 
data modelling approach is the entity-relationship model based on data 
entities and relations between entities. More about data modelling can be 
found in [41]. 

4.1.2.5 Data  R e p r e s e n t a t i o n  

When modelling a system the data within is important, too. The control and 
information flow within the system and through the interfaces relies on 
communication data, which can be modelled as well. From an abstract 
perspective, data can be classified as structured, semi-structured and data 
without fixed format. 

�9 S t r u c t u r e d  d a t a :  Structured data is data that  fits a predefined schema. It is 
known in advance what the type of data is, how different parts of the 
managed data are interrelated, and which data fields are mandatory and 
optional. The data of a relational database is an example of structured data 
with a well-understood theory behind it. Normally, using structured data has 
the best performance considering data storage and retrieval but limits the 
flexibility of the system. Examples for structured data are the predefined 
relational schema, fixed communication protocols or system-dependent 
memory organisation. 
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�9 S e m i -  s t r u c t u r e d  d a t a :  Semi-structured data is getting very popular. For 
example, XML is a widely accepted and used data representation for semi 
structured data. The power of semi-structured data is its flexibility. In 
contrast to structured data, no schema is needed in advance to handle the 
data. The only concept is the entry, which can have any arbitrary content 
(even entries again) and certain characteristics (e.g. attributes in XML). In 
XML and some other frameworks for semi structured data these entries are 
organised in a hierarchy. Techniques for storage and retrieval of semi- 
structured data (esp. XML) are evolving rapidly but there are still limitations 
concerning this functionality because semi-structured data usually don't fit 
directly to underlying system hardware, structure or architecture. 

�9 F r e e  d a t a  s t r u c t u r e s :  The most flexible approach concerning the data format 
is the usage of free data structures without any given schema or restrictions. 
This leads to data management  where all data is interpreted as binary 
objects. The most important disadvantage is the limited functionality in 
querying the data because no structures are given and therefore it is very 
difficult to implement powerful algorithms for searching certain data within a 
(large) collection of binary data. 

Even if the different data representation approaches are of interest within 
applications and for internal component communication the data representation 
is important for interactions between a system and a system user. Therefore, the 
question of data representation is mainly an issue when defining system or 
component interfaces, which are published for further "external" use. 

For better management  of semi-structured data, most prominently XML, 
different approaches exist to restrict the complete freeness of data structure. 
Document Type Definitions (DTDs), in general, define a filter for semi-structured 
data and restrict data acceptance to specified classes of data. Multiple DTD 
specifications for various areas of application such as CML, MathML (all 
presented in [44]) or XMI [23] exist. A more detailed introduction XML is given in 
Section 4.1.5.3. More information about data, data management  and 
representation can be found in [29,35,40]. 

4.1.3 SOFTWARE INTEGRATION A R C H I T E C T U R E S  & STANDARS 

This section introduces key concepts and issues related to software integration 
architectures and the need for industry standards to make these integration 
architectures practical and cost-effective. First, the industry need for software 
integration architecture is reviewed in the context of process engineering work 
processes. Then, the two major approaches to software integration architectures 
- loosely-coupled, asynchronous architecture and tightly-coupled synchronous 
architecture - are reviewed along with background information on the process 
industry standards efforts related to both styles of software integration. 
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Figure 2. Traditional Software Integration 

4.1.3.1 The indus try  need  for sof tware  in tegra t ion  a r c h i t e c t u r e s  

In the process industry, software applications have been built to solve specific 
problems associated with a highly complex technical work process involving 
many people, disciplines and companies. Typical examples from the process 
engineering problem domain are shown in Figure2 and are summarized in the 
next paragraph [5,38,49,50]. 

A data regression tool is used to evaluate thermodynamic experimental data 
obtained from a thermo database in order to construct an accurate 
thermodynamic prediction model to use in a process simulator, which is used to 
simulate steady-state process behaviour. Dynamic simulators simulate dynamic 
process response and evaluate control systems. Fluid flow simulators predict 
pressure drops in piping systems. Equipment design tools size and rate process 
equipment performance and produces mechanical designs. Cost estimating tools 
are used to estimate equipment capital costs. Various tools including 
spreadsheets and engineering databases are used to produce engineering 
documents such as equipment data sheets, equipment lists, line lists, utilities 
lists and various other engineering documents associated with design reports. 
Intelligent diagramming programs are used to produce engineering drawings 
such as process flow diagrams (PFD's), piping and instrumentation diagrams 
(P&ID's), isometric drawings and plot plan equipment layouts. Computer Aided 
Design (CAD) systems are used to built virtual 3D plant models. Plant in- 
formation systems that are integrated with real-time process control systems and 
maintenance management systems are used to track, maintain and improve 
plant performance. 
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Of course, these are just the technical software applications. There are many 
other software applications used by engineers in a process industry enterprise, 
including office automation software, multiple technical and business database 
systems, e.g., Enterprise Resource Planning (ERP) systems. To compound this 
already complicated software integration problem, the work process is a complex, 
team-oriented work activity with many people and disciplines spanning multiple 
enterprises, including owner-operators, technology licensors, engineering- 
procurement-construction (EPC) companies, and equipment suppliers. In general, 
these various companies who partner for particular projects, do not use the same 
software applications. Because of this inherently complex work process and the 
multi-company, multi-software vendor environment, software integration to 
support the process engineering work process has traditionally been 
accomplished by using people to do the software integration, as illustrated in 
Figure 3 [39]. 

Figure 3. Manual Software b~tegration 

Each application manages its own data files and interacts with users through 
normal interfaces (either displays or printed reports). Typically a subset of either 
common input or output data from Application 1 is needed as input to 
Application 2 or vice-versa. There is one overriding key requirement software 
integration: In translating data from one application to another, a translation 
table, or "map," is always needed to decide the meaning of data in one application 
and how that  data maps onto data used in the other application. As we shall see, 
the cost of this data map is the key to achieving practical software integration 
architectures. 

While labour-intensive, manual  software integration is the primary approach to 
software integration today, the drawbacks are significant, including higher costs, 
longer schedules, and occasionally, lower quality due to inevitable human errors 
escape detection and correction. Practical and widespread automation 
approaches to software integration could have a dramatically beneficial impact 
on the process industry, estimated to be on the order of hundreds of millions to 
billions of dollars annually. 

4.1.3.2 Loose ly-coupled ,  or a s y n c h r o n o u s  approaches  to software 
in tegrat ion  
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The earliest (and still used) approach to software integration is to build point-to- 
point software interfaces from one application to another (Figure 4) [39]. 

Figure 4. Point to Point Software Integration 

In this approach, because input processing is usually more costly than producing 
specialized output reports, the data maps are often embedded into the 
application as a specialized output report to map the report-producing 
application's data onto the other application's input file format, or some easily 
parsed (computer-, but not human-readable) alternative input file format. 
Manual editing and merging of these special transfer files may still be needed for 
these interfaces to work. While this approach automates manual  software 
integration, it is still a very expensive approach because custom software 
interfaces must be built for every application pair in the work process and 
maintained each time a new version of one of the applications is released. If you 
have more than just a few applications, the number of potential required 
interfaces required becomes very large, (N2-N) interfaces, where N is the number 
of applications. Further,  with this approach, each application owner is faced with 
developing and supporting N independent interfaces, and sometimes directly 
with competing software packages and vendors. In the process engineering 
domain, N is typically on the order of 10-30 or more applications across multiple 
software vendors, making point-to-point software integration impractical for 
process engineering. 

Figure 5. Common File Format and Database Integration 

A major improvement on the point-to-point architecture is to use an industry- 
standard common data definition and file format, which may be either fiat files 
(for paired application data exchanges) or databases (for multi-application data 
sharing) as illustrated in Figure5 [39]. The major advantage of this approach is 
reducing the potential number of application interfaces and associated maps from 
N2-N to a much more manageable 2N interfaces. Furthermore, for any single 
application owner, support for only one interface mapping is required, regardless 
of how large N becomes. This is a major advantage for software owners. 
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However, a major challenge for this software integration architecture is 
obtaining consensus and agreement from the multiple companies and software 
vendors who own and use the applications to agree upon the common data 
definition and software implementation architecture to become a widely accepted 
industry standard. 

4.1.3.3 Process  industry  efforts to develop a s y n c h r o n o u s  ISO 
s tandards  

The ISO 10303 (STEP) standard [17] started in the 1980's and was largely driven 
by the need to exchange product information and detailed geometry and CAD 
information across multiple industries including the aerospace, automotive, 
electronics and, since the mid-1990's, for the process industry. In order to 
accommodate a multi-industry standard while still using a common data model 
and instantiation of data at the physical level, the STEP architecture employs a 
two-layer data mapping architecture, which is shown in Figure 6. 

Figure 6. STEP Architecture for Software Integration 

In the STEP approach, the application interface map consists of two-layers: (1) 
the application domain layer, which in STEP terminology is called the 
Application Resource Model (ARM) and (2) the general layer, which in STEP 
terminology is called the STEP Integrated Resources model. The physical 
instantiation of a STEP-compliant intermediate file or database is required to be 
compliant with the STEP Integrated Resources model so that physical 
instantiations will be independent of industry and problem domain. In each 
Application Protocol (AP) document, a document that describes each domain- 
specific part of the STEP standard, there is an explicit mapping of the domain 
(ARM) level data model to the general STEP Integrated Resources. The map from 
the ARM to the STEP Integrated Resources is called the Application Interpreted 
Model (AIM). The ARM and the AIM together comprise a STEP Application 
Protocol (AP). 

Starting in the mid-1990's process industry consortia sponsored the development 
of three STEP Application Protocols: 

o AP 221: Functional Data and Schematic Representation for Process Plant 
(sponsored by USPI-NL, PISTEP and EPISTLE in Europe, [3]. See 
Chapter 4.2 for more information) 
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AP 227: Plant Spatial Configuration (sponsored by the US-based 
PlantSTEP consortium) [4] 

o AP 231: Process Engineering Data: Process Design and Process 
Specifications for Major Process Equipment (sponsored by pdXi. See 
Chapter 4.2 for more information.) 

By 2001, AP 221 and AP 231 have reached Committee Draft status, while AP 227 
has reached International Standard status. More information about AP 221 is 
presented in 4.2, additional background information about AP 231 is included in 
Chapter 4.2. 

There is an interesting contrast to note in the above three efforts. AP 227 and AP 
231 followed a traditional STEP approach of developing explicit engineering 
domain object models using process and plant engineering terminology at the 
domain (ARM) level, and then mapping these to the STEP Integrated Resources 
model in the AIM. In contrast, AP 221 effort defined the plant engineering 
problem domain using another general abstract model (called the EPISTLE data 
model) at the domain (ARM) level, which then needed to be mapped to the 
general abstract STEP Integrated Resources level. To make software 
implementations possible, an instantiation of the AP 221 generic ARM model is 
required that  maps engineering data from software applications. To meet this 
need, another modelling level was added on top of the ARM model, called the 
Reference Data Library (RDL). Therefore, to implement STEP AP 221 in 
software interfaces, three mapping layers are r e q u i r e d -  Application to RDL, 
RDL to EPISTLE/ARM, and EPISTLE/ARM to STEP Integrated Resources. 

An alternative ISO standards effort, ISO 15926, [18] which is sponsored by the 
POSC-CAESAR consortium, emerged in the late 1990's in parallel to AP 221 to 
address the needs of data warehouses (databases) for oil and gas production 
facilities. ISO 15926 uses the generic, conceptual data model developed by 
EPISTLE [14] for AP 221 and, in cooperation with EPISTLE/AP 221 has 
developed an extensive Reference Data Library (RDL) to support the draft 
standard. Using the ISO 15926 standard allows the application interface maps to 
become similar to the STEP standards, where the RDL serves as the engineering 
domain level model and the EPISTLE/AP221 general model serves the same 
function as the STEP Integrated Resources model. 

Both the STEP or ISO 15926 two-layered mapping approach to software 
integration make it possible to have multi-industry, multi-domain data exchange 
or data repository architectures using the same physical data instantiation in 
databases. This is an advantage for software owners, such as CAD vendors or 
vendors of data warehouse repositories, whose customers span multiple industry 
groups and the same basic database can be customized to different industry 
groups. One feature (some would say advantage, others would say disadvantage) 
of the AP221/EPISTLE/ISO15926 approach is that  each time the standard is 
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used, the two parties in the data exchange must  first agree on the version of the 
RDL tha t  they will use. This offers flexibility (advantage), but  incurs extra cost to 
implement  (disadvantage). One general disadvantage of the two-layered mapping 
approach to software integration, whether  STEP or ISO 15926, is that,  overall, it 
becomes very complex, difficult and costly for most software application owners, 
at least in the process industry, to unders tand and implement software 
application maps and interfaces. This high complexity and high cost of building 
software interfaces presents a high activation energy barrier  for most software 
vendors to achieve fully STEP-compliant, or ISO 15926-compliant commercial 
software implementat ions in process industry software. 

The ISO standards have been a long time in development and are generally 
expensive to implement  in process industry software due to the high cost of 
building the application data maps to the highly abstracted general data models 
(STEP integrated resources model or EPISTLE model). This high 
implementat ion cost has been an inhibitor to their widespread use in commercial 
software. 

4.1.3.4 Proces s  indus try  efforts to deve lop  a s y n c h r o n o u s  XML 
s tandards  

The eXtensible Markup Language (XML) has recently emerged as an important 
Internet  s tandard for electronic commerce and is introduced in more detail in 
Section 4.1.5.3. At this point, suffice it to say tha t  XML is an Internet  s tandard 
file format for the common data file format software integration architecture 
shown in Figure7. 

However, by itself, XML is not sufficient to constitute a practical software 
integration architecture for the process industry. To achieve value and practical 
software integration architectures, the process industry still needs to reach 
consensus on a s tandard process industry XML vocabulary. Efforts in the process 
industry to develop XML standards have just begun to emerge. One of these 
efforts is aecXML [1]. aecXML was originally organized by Bentley Systems and 
now operates under the auspices of the Internat ional  Alliance for Interoperability 
(IAI) [16]. The aecXML effort is largely oriented towards buildings and building 
construction projects, but does have a small Plant  Working Group. The Plant 
Data XML effort [27], building on the previous ISO standards work on AP 231, is 
described further in Chapter 4.2. 

4.1.3.5 T ight ly -coupled  or s y n c h r o n o u s  a p p r o a c h e s  to sof tware  
in tegra t ion  

An alternative approach to software integration is needed when two applications 
need to execute synchronously in a collaborative way. This concept is i l lustrated 
in Figure 7. 
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Figure 7. Tightly coupled synchronous integration 

In contrast to the asynchronous, loosely coupled style of integration, there is no 
physical instant ia t ion of data in separate files in synchronous integration. As 
with asynchronous integration approaches, each application remains responsible 
for its own data. In the synchronous architecture, one application program 
(client) requests services from the other application (server). The most common 
example of this style of software integration are the client-server architectures 
implemented in shared database systems, where Application 1 may be a problem- 
domain oriented program, perhaps wri t ten in Visual Basic or web client script, 
and Application 2 is a server-resident database program, which may be servicing 
many applications at the same time. Typically the client program makes a 
request and waits while the server program fulfils the request. In this 
synchronous architecture, as with the asynchronous architecture, it is possible 
for the applications to reside either on the same hardware  or on different 
hardware.  

However, the synchronous architecture need not be limited to "data only" clients 
and services. In the late 1990's and early 2000's, the process industry, through 
the CAPE-OPEN and Global CAPE-OPEN research consortia, has been 
developing synchronous data integration architectures for integrat ing 
synchronous calculations among separate applications through a s tandard 
programming interface called CAPE-OPEN (CO) [11]. For integrated 
calculations, synchronous integration approaches are required because the 
performance penalty of instant ia t ing physical files in a loosely coupled approach 
is too severe to make loose coupling practical for this application. To summarize 
the approach in the context of software integration architectures, one application 
(e.g., a "client" process simulator which supports CAPE-OPEN "socket" 
interfaces) calls a second application (for example, a third-party thermodynamic 
properties "server" which supports a CAPE-OPEN "plug" interface) in real-time 
to converge a process simulation model. In this way, user companies who have 
proprietary thermodynamic properties calculation or unit  operation software, can 
write "plug" server modules and plug them into their  preferred commercial 
process simulator, which provides the "socket" interface. Details about the CAPE- 
OPEN s tandard  will be presented in section 4.3.3 and chapter  4.4 
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4.1.4 P R O C E S S E S  FOR D E V E L O P I N G  C OMPONENT-BASED 
SOFTWARE 

The alarming reality is tha t  about one-half of the es t imated 300,000 software 
projects in the United States in 2001 will fail due to poor planning, inexperienced 
project managers,  or inept project teams. This section discusses the project 
management ,  method and process for building software system especially based 
on object-oriented components. Our objective here is only to introduce this subject 
and demonstrate  to what  extent this aspect is fundamental .  This section 
addresses principally the processes. 

Project management  faces the challenges of producing top-quality software on 
time and within budget. As with many industries, managers  in software 
development must  keep their  staff motivated, cost-justify their  strategies, beat 
deadlines and balance budgets. But this becomes all the more challenging in an 
industry where terms, technologies and processes shift rapidly. To plan and 
execute a successful software project, some managers  rely on a method. 

A notation/language and a specific process define a method. Accompanying the 
success of the object development, we can count more than  50 object methods and 
we cannot find one rule, which is very formal and relevant  to the different 
business domains. The UML language opened the unification field in merging the 
notations and in defining thoroughly the concepts. However, many organisations 
use the UML as a common language for their  project artefacts, but they will use 
the same UML diagram types in the context of different processes. As a mat ter  a 
fact, the UML is intentionally process independent, and defining a s tandard 
process was not a goal of the UML. The UML language is presented in Section 
4.1.5.2. 

Therefore, the remaining challenge is to unify the software development process. 
To specify one universal process would be very perilous. Indeed, experience has 
shown that  different organisations and problem domains require different 
processes. For example, the development process for shrink-wrapped software is 
vastly different from building hard-real-t ime avionics systems upon which lives 
depend. Even in a single domain such as CAPE, to build a complete environment 
for process simulation and to build a thermodynamic library for electrolytes 
require different processes. In fact, the UML authors do not really unify the 
process but ra ther  collect best practices of object-oriented software (component or 
not) development. In the future, we should find a family of processes coming from 
this work, grouped under the term Unified Process. 

4.1.4.1 T h e  u n i f i e d  p r o c e s s  

As the strategic value of software increases for many companies, the industry 
looks for techniques to automate the production of software and to improve 
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quality and reduce cost and time-to-market. The development for the World Wide 
Web, while making some things simpler, has exacerbated the problem. A well- 
defined process is a central element on the road of the success. 

A process defines a set of partially ordered steps intended to reach a goal. In 
software engineering the goal is to build a software product or to enhance an 
existing one. A unified process (UP) [20] is a software development process that  
uses the UML language to represent models of the software system to be 
developed. It is iterative, architecture centric, use case driven and risk 
confronting. It derived primarily from the three market  leading methods (Booch, 
Objectory and OMT) with ideas drawn from many other methods and input from 
many other parties. Ivar Jacobson, the principal developer of the UP, defines it 
as: "...a generic process framework that  can be specialised for a very large class of 
software systems, for different application areas, different types of organisations, 
different competence levels, and different project sizes." [20] 

Figure 8 summarises the overall structure of the UP. The process has two 
dimensions" 

�9 The horizontal dimension represents time and shows the lifecycle aspects of 
the process (phases) as it unfolds. 

�9 The vertical dimension represents core process disciplines (workflows), which 
logically group software engineering activities by their nature. 

The four phases are" 

Figure 8. Structure of the unified process 
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�9 Inception: defines the scope of the project and develop business case. 
�9 Elaboration: Plan project, specify features, and baseline the architecture. 
�9 Construction: Build the product. 
�9 Transition: Transition the product to its users. 

The horizontal dimension represents the dynamic aspect of the process expressed 
in terms of cycles, phases, iterations, and milestones. A software product is 
designed and built in a succession of incremental iterations. This allows testing 
and validation of design ideas, as well as risk mitigation, to occur earlier in the 
lifecycle. The vertical dimension represents the static aspect of the process 
described in terms of process components: activities, disciplines, artefacts, and 
roles. 

The UP is a process framework that  can be adapted and extended to suit the 
needs of an adopting organisation which can modify, adjust, and expand the 
process to accommodate the specific needs, characteristics, constraints, and 
history of its organisation, culture, and domain. 

As main examples of unified process, we can cite the Two Tracks Unified Process 
(2TUP) [30] and the Rational Unified Process (RUP) [22]. The RUP, which is a 
commercial product from Rational, is defined as a more specific instance, or 
specialisation, of the more general UP. As with UML, the UP was created and 
promoted by Rational, but entered the public domain, so that  now Rational is 
just one of many organisations with competence in its use. 

It is worth noting that  although there is nothing unique in the UP that can not 
be found in other modern development processes, it organises high-impact best- 
practices in a cohesive, thorough, and well-documented presentation. 
Nevertheless we should notice the critical review of the UP [2] that  presents a 
survey of the alternate software processes, and synthesises a "more" robust 
process that  addresses the complete breadth of real-world development and 
production needs. 

4.1 .4 .2  CAPE-OPEN w o r k  p r o c e s s  

The CAPE-OPEN work process is dedicated to the CAPE-OPEN standard and 
aims at delivering standard interface specifications and prototypes. In some way, 
this interface development process is a unified process even though it does not 
formalise clearly the different phases. It is iterative, relies on the object-oriented 
modelling and component technology, creates and manages a UML model, pays 
ongoing intensive attention to the definition and management  of end-user 
requirements. It adapts the UP process workflows and consequently defines the 
analysis, design, specifications, implementation and test steps. More information 
can be found in section 4.3.3 and chapter 4.4. 



249 

4.1.5 S E L E C T E D  STATE-OF-THE-ART T E C H N O L O G I E S  

This section provides an overview of approaches, technical solutions, and tools for 
dealing with the issues presented in the previous sections. Three middleware 
approaches (COM, CORBA, and Enterprise Java  Beans) for synchronous 
software integrat ion will be discussed and briefly compared. Subsequently, the 
Unified Modelling Language will be presented as a means  for object-oriented 
systems design. An introduction to XML as a universal  data  interchange format 
as a means of asynchronous software integration and its practical application 
concludes this section. 

4.1.5.1 M i d d l e w a r e  s o l u t i o n s  

The following section gives a short introduction to the three most popular 
middleware approaches: CORBA from the Object Management  Group, COM from 
Microsoft, and the Java 2 Enterprise Edition (J2EE) technology from SUN. We 
also discuss their  s trengths and weaknesses and point out some middleware 
interoperability issues. The Cetus website [9] gives on-line resources for all 
technologies mentioned here. It also contains some tutorials on various issues. 

CORBA 

The Common Object Request Broker Architecture (CORBA) is an open 
middleware s tandard  facilitating broad interoperabili ty between object-oriented 
distributed components in highly heterogeneous environments  [23]. It was 
developed by the Object Management  Group (OMG), which represents a wide 
community of software vendors, developers, and users. The OMG specified the 
Object Management  Architecture (OMA), which includes CORBA as a key part.  
It is important  to know tha t  the OMA and CORBA are just  open specifications 
and no implementations.  The implementat ion of these s tandards  is left to the 
software vendors. 

The OMA comprises an Object Model tha t  defines how objects distributed across 
a heterogeneous environment can be described, and an architectural  Reference 
Model tha t  characterises the interaction between those objects. These models 
also include the definition of the Internet  Inter-Orb Protocol (IIOP), which sets a 
s tandard for internet-based communication between software components for 
transferring messages and data. It also defines marshal l ing procedures on a 
binary level. This enables CORBA implementat ions from different software 
vendors to communicate with each other. The OMA Object Model defines an 
object as an encapsulated entity, which offers services tha t  can only be accessed 
through well-defined interfaces. Clients send requests to objects to perform 
services on their  behalf. An overview of the OMA Reference Model is given in 
Figure 9. 
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The central par t  of the OMA is the ORB, a kind of distributed object bus that  is, 
as explained in Section 4.1.2.2, mainly responsible for facilitating communication 
between client and server objects through their  interfaces. Several ORBs in the 
network from different vendors may communicate via IIOP, thereby maybe 
connecting different hardware platforms or operating systems. Additionally, 
several s tandardized services are part  of the OMA, which are defined using the 
CORBA interface definition language (IDL). These services can be grouped in the 
following categories [43]: 

Figure 9. OMA Reference Model: Interface Categories 

Object Services: These interfaces define the system-level object frameworks that  
extend the CORBA object bus. They are used by many application programs and 
provide services that  are almost always necessary regardless of the application 
domain. Two examples are Naming Service, which allows to locate objects based 
on names, and the Trading Service -- a kind of yellow pages that  enables to find 
objects based on their properties. 

Common Facilities: Like Object Services these interfaces are horizontally 
oriented, i.e. independent of the application domain, but they are more oriented 
towards the end-user application. For example database services could be found 
here. 

Domain Interfaces: These interfaces are vertically oriented and focus on specific 
application domains such as manufacturing, telecommunications, medical, and 
financial domains. These s tandard interfaces as well as the Common Facilities 
are designed by special task forces of the OMG. 

Application Interfaces: These interfaces are specifically developed for applications 
and thus not standardized by the OMG. 
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The IDL used for defining these standard services and for all components 
developed outside the OMG is fully object-oriented and supports multiple 
inheritances of interfaces. To use these IDL definitions, the CORBA standard 
includes language bindings, which are translation rules from IDL to real 
programming languages. Therefore, it is possible to connect components 
developed in different programming languages using these standardized 
mappings and the other CORBA mechanisms. Additionally, the language 
bindings facilitate the development of IDL compilers, which can automatically 
generate all necessary code for the communication between the component 
implementation and the ORB. Currently, official standardized bindings are 
available for C, C++, COBOL, Java, Smalltalk, Ada, Python, and Lisp. There are 
also some bindings available for other languages (e.g. FORTRAN, Visual Basic) 
which have not been standardized by the OMG so far. Hybrid approaches can be 
used for integrating languages that no mapping exists for. For example, one 
could provide a C++ wrapper for a FORTRAN program and then use the wrapper 
to access CORBA. 

Due to its strengths in the integration of software in heterogeneous environments 
and its robustness, CORBA has gained growing importance in large enterprise 
applications. It has proven useful for complex and mission critical applications 
and is therefore employed in many e-commerce applications as well as in the 
banking sector. The importance and maturity of CORBA is stressed by the fact 
that a wide range of stable and high-performance commercial (e.g. IONA Orbix, 
Borland VisiBroker) and non-commercial (e.g. OmniORB, Mico) CORBA 
implementations is currently available. There are also integrated tools in the 
market supporting rapid prototyping with CORBA (e.g. JBuilder, Delphi and C++ 
Builder from Borland) 

COM 

Microsoft's Component Object Model (COM) [47] and its distributed version 
DCOM are the foundation of Microsoft's compound document technology OLE 
(Object Linking and Embedding). In the beginning, OLE was a proprietary 
integration solution for Microsoft Office products, but now it has become very 
popular. Based on OLE there is another Microsoft component standard which has 
become very popular recently especially in the area of web-based applications: 
ActiveX. Many tools available today are based on these technologies, which 
allows them to integrate with each other seamlessly on the GUI level. Moreover, 
the next generation COM+ has been made available in Windows 2000, which 
offers advanced object services and targets the integration of systems developed 
in different programming languages. 

In contrast to CORBA, COM is not an open specification but a binary interface 
standard that is directly connected to the Windows operating system. This makes 
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COM and its derivatives a platform dependent technology not very suitable for 
heterogeneous environments.  However, there are some DCOM implementations 
available for other operating systems but these products have not gained much 
acceptance in the market  so far. On the other hand, their  strong relation to 
Windows has facilitated a quite efficient implementat ion for reasons that  are 
explained below. 

Figure 10: COM Objects and Interface References 

The central  idea of COM is to construct a binary interface (see Figure 10) using a 
data s tructure called virtual  function table, or v-table (vTbl). This v-table 
contains pointers to the functions within the COM object. A reference to a COM 
interface implies tha t  you have a pointer to a pointer to a v-table. Since COM 
provides no language mappings, the developer of a component is responsible for 
providing these tables. They match very closely with v-tables known from Visual 
C++, but it can be very difficult if not impossible to directly implement COM 
interfaces in other languages such as FORTRAN. However, Visual Basic, Visual 
C++, Visual J++, Delphi and others offer powerful tools that  support COM such 
that  less effort is required for these languages. Regarding FORTRAN, a hybrid 
can be built by wrapping FORTRAN with Visual C++ or Visual Basic. In this 
implementat ion model, there is no explicit piece of software handling all object 
requests as in CORBA. All the COM ORB functionality is built into the Windows 
operating system. Obviously, this kind of implementat ion is quite efficient but 
very proprietary. 

On a higher level, the functionality of a COM component is described by the 
Microsoft IDL (MIDL). The MIDL whose syntax strongly resembles C++, is an 
object-oriented language which features single inheritance only. But in contrast 
to CORBA, a componen~ is allowed to implement several interfaces, which can be 
used for simulating multiple inheritances. 

Microsoft already defines many s tandard COM interfaces, which can be used to 
provide s tandard behaviour of application components. Most of them are closely 
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related with OLE and define common services such as Structured Storage or 
compound document facilities. For application development it is necessary to 
create custom interfaces to define the services a component wants  to provide. 

In spite of some conceptual weaknesses, COM plays a very important  role in 
purely Windows-based environments.  Strong tool support is offered by various 
vendors hiding the inherent  complexity of COM to a developer. Especially with 
Visual Basic, COM component development is very easy. No additional software 
is needed for using COM as it is shipped as par t  of the Windows operating 
system. But when choosing COM as a technology one should keep remember  that  
there are ra ther  limited options for interfacing non-Windows systems. 

Java  2 Enterpr i s e  Edi t ion  

The Java 2 Enterprise Edition (J2EE) [36] is a platform designed for 
implementing distributed and web-enabled large-scale enterprise applications. 
The J2EE consists of a set of specifications for components and various 
component related services. Additionally, the J2EE contains a reference 
implementat ion of the specifications and a testing environment  for application 
developers. Similar  to CORBA, several commercial implementat ions of the 
specifications are available (e.g. Inprise Application Server, Bea Weblogic Server, 
IBM Websphere Application Server). 

Par t  of the J2EE is the specification of the Enterprise Java  Beans (EJB), which is 
Java-based component architecture. Other specifications, which are parts  of the 
J2EE cover other areas of component-based applications such as naming and 
directory services (JNDI), and a basic infrastructure for inter-component- 
communication (RMI and RMI over IIOP). The J2EE goes one step beyond the 
COM and CORBA middleware architectures. It does not only offer a wide range 
services for handling components such as the basic communication infrastructure 
or object services but also contains a framework for c r e a t i n g  dynamically 
extensible application servers into which EJB components can be plugged. 

An application server is a piece of software, which can handle software 
components and their data. It is responsible for activating components, making 
them and their  data persistent  in a database, handling load balancing issues, 
t ransaction management ,  and many additional services. This dimension of 
working with components is only part ial ly addressed in COM and CORBA even 
though there are some activities in tha t  direction regarding COM+ and the latest  
CORBA 3.0 specification. 

As J2EE and the EJBs are Java  frameworks, all object-oriented concepts of Java  
are available for the EJB components. Therefore, all inheri tance mechanisms are 
available and regular Java  interface definitions are used for specifying 
components. But this Java  focus is also a drawback. The only language tha t  can 
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be used for implementing J2EE components is Java itself. In contrast to COM or 
CORBA, it is not possible to integrate components writ ten in different languages 
directly. Fortunately, the J2EE framework integrates with CORBA quite well 
thereby opening up itself to everything that  is available on a CORBA basis. 
Additionally, the J2EE offers connections to COM exposing EJBs to the COM 
world and connector interfaces to existing legacy systems. 

Middleware interoperabil ity 

As discussed above, COM, CORBA and J2EE have their specific strengths and 
weaknesses. COM is a good choice in a purely Windows-based non-distributed 
environment. It offers good tool support for different programming languages and 
is efficient. But it is not as clearly structured and as well designed from an 
object-oriented standpoint as the two other approaches. CORBA has its strengths 
in the integration of very heterogeneous IT-landscapes as it is available for most 
operating systems and many programming languages. It is clearly designed and 
can be used for mission-critical enterprise systems. On the other hand, it does not 
integrate as seamlessly as COM into the Windows environment, making it less 
runtime efficient. The J2EE combines the advantages of CORBA with additional 
support for many component services needed in an enterprise environment such 
as transaction handling or persistence of components and data. Web-based 
systems are also directly supported. But although there are connections to COM 
and CORBA, J2EE is strongly focussed on Java as the implementation language, 
which is unsuitable in domains where just raw computational power is required 
(i.e. number crunching). 

For CAPE, the best solution seems to be a hybrid strategy, which combines the 
best of all worlds. To reach such a solution, so-called bridging software is needed 
exposing a component writ ten for a specific middleware system to another system 
(e.g. make a CORBA component available to COM or vice versa). As mentioned 
above, CORBA and J2EE integrate very well and there is no additional software 
needed. On a conceptual level, the integration of these systems is also 
manageable because the principles do not differ widely. COM integration to 
J2EE or CORBA is not tha t  easy because the systems differ conceptually. There 
are some products available (e.g. Iona Orbix COMet) which offer bridging 
capabilities for that  area. COM-CORBA bridging is tackled extensively in [15]. 
The J2EE already includes specifications that  define bridges to COM. 

4.1.5.2 The Unified Modelling Language (UML) 

Developing a model for an industrial-strength software system prior to its 
construction or renovation is as essential as having a blueprint for a large 
building. Good models are crucial for communication among project teams and to 
assure architectural soundness. As the complexity of systems increases, so does 
the importance of good modelling techniques. There are many additional factors 
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of a project's success, but  having a rigorous modelling language s tandard is one 
essential factor. 

In the face of increasingly complex systems, visualisation and modelling become 
essential. The UML is a widely accepted response to tha t  need. It is the visual 
modelling language of choice for building object-oriented and component-based 
systems. A vast  amount  of l i terature is now available on this language; we only 
cite here the books by the UML authors [31, 32]. 

I n t r o d u c t i o n  to  the  UML 

The UML is a graphical language for visualising, specifying, constructing, and 
documenting the artefacts of a software-intensive system. The UML represents a 
collection of best engineering practices in the modelling of large and complex 
systems. The UML focuses on a s tandard modelling language, not a s tandard 
process. Although the UML must  be applied in the context of a process, 
experience has shown tha t  different organisations and problem domains require 
different processes. Therefore, the efforts concentrate on a common meta-model 
(which unifies semantics) and on a common notation (which provides a human  
rendering of this semantics). However, the UML authors promote a development 
process tha t  is use-case driven, architecture centric, i terative and incremental.  
The main goals in the design of the UML were as follows: 

�9 Provide users with a ready-to-use, expressive visual modelling language so 
they can develop and exchange meaningful models. 

�9 Provide extensibility and specialisation mechanisms to extend the core 
concepts. 

�9 Be independent  of part icular  programming languages and development 
processes. 

�9 Provide a formal basis for understanding the modelling language. 
�9 Encourage the growth of the object-oriented tools market .  
�9 Support higher-level development concepts such as collaborations, 

frameworks, pat terns  and components. 
�9 Integrate best practices. 

Prior to the UML, there was no clearly leading modelling language. Users had to 
choose from many similar modelling languages with minor differences in overall 
expressive power. Most of them shared a set of commonly accepted concepts tha t  
were expressed slightly differently in these notations. These differences did not 
greatly expand the power of modelling, but  threa tened to fragment  the object- 
oriented industry, and sometimes discouraged new users from learning visual 
modelling. Users longed for the industry to adopt one broadly supported 
modelling language suitable for general-purpose usage. They wanted a lingua 
franca for modelling. Thus UML is the result  of collaboration and merging of 
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three major object-oriented methodologies, namely the Booch method, OMT and 
the OOSE. 

This unification started in 1994 and the OMG (Objects Management Group) 
acceptance was reached in 1997. Now, the open OMG process manages the UML 
that  is becoming a worldwide standard for meta modelling and notation. The 
current version of this de-facto standard is 1.3 [23]. The complete UML version 
1.3 specifications is provided as a single downloadable file and contains UML 
summary, UML semantics, UML notation guide, UML extensions, UML CORBA 
facility interface facility, UML XMI DTD specification and Object Constraint 
Language specification. For more information on what is XMI DTD, see Section 0 
XML Tools. The following companies submitted or supported this OMG 
technology adoption: Rational Software, Microsoft, Hewlett-Packard, Oracle, 
Sterling Software, MCI Systemhouse, Unisys, ICON Computing, IntelliCorp, i- 
Logix, IBM, ObjecTime, Platinum Technology, Ptech, Taskon, Reich Technologies 
and Softeam. 

UML does not guarantee project success but it does improve many things. For 
example, it significantly lowers the perpetual cost of training and retooling when 
changing between projects or organisations. It provides the opportunity for new 
integration between tools, processes and domains. But most importantly, it 
enables developers to focus on delivering business value and provides them a 
paradigm to accomplish this. 

Logical  mode l  of  the UML 

The architecture of the UML is based on a four-layer meta-model structure, 
which consists of the following layers: 

�9 user objects, 
�9 model, 
�9 meta-model, 
�9 meta-meta-model. 

This section is primarily concerned with the meta-model layer, which is an 
instance of the meta-meta-model layer. For example, Class in the meta-model is 
an instance of MetaClass in the meta-meta-model. The primary responsibility of 
the meta-model layer is to define a language for specifying models. Meta-models 
are typically more elaborate than the meta-meta-models that  describe them, 
especially when they define dynamic semantics. Examples of meta-objects in the 
meta-modelling layer are: Class, Attribute, Operation, and Component. The 
complexity of the UML meta-model is managed by organising it into logical 
packages. These packages group meta-classes that  show strong cohesion with 
each other and loose coupling with meta-classes in other packages. The meta- 
model is decomposed into the top-level packages Foundation, Behavioural 
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Elements and Model Management.  Note tha t  the Foundation and Behavioural 
Elements packages are further decomposed. 

O v e r v i e w  of  the  UML 

Without respecting the formal structure of the three top-level packages 
mentioned in the previous section, we only introduce four concepts" the elements, 
the relationships, the extensibility mechanisms and the diagrams. 

Modelling elements: The elements are fundamental  abstractions of a model. We 
can identify four types of elements in UML: 

�9 Structural  elements tha t  enclose class (see Figure 11), 
collaboration, use-case, active class, component and node. 

�9 Behavioural elements that  enclose interaction and state machine. 
�9 Grouping elements tha t  enclose package 
�9 Other elements that  enclose notes. 

name 

L UnitOperation 

# name : string 

+ initialise ( )  :void  

+ calculate ( ) : void 

+ validate ( ) : boolean 

- setMode (in m : Mode) : void 
visibil i ty 

~ s ignature  

Figure 11. Class 

attr ibutes  

__J 
operat ions  

j J  

interface, 

Relationships: The relationships form the glue between the modelling elements. 
There are four types of relationships in UML: dependency, association (see 
Figure 12), generalisation and realisation. 

name 

"-o has  0..1 1..* 
> 

\ 
multiplicity ~ role name 

Figure 12. Association 
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Extensibility mechanisms: The UML provides a rich set of modelling concepts and 
notations tha t  have been carefully designed to meet the needs of typical software 
modelling projects. However, users may sometimes require additional features 
and /o r  notations beyond those defined in the UML standard.  Extensibility 
mechanisms allow model elements to be customised and extended through 
stereotypes, tagged values and constraints. 

Diagrams: A diagram is a view into a model presented from the aspect of a 
part icular  stakeholder. It provides a part ial  representat ion of the system and is 
semantically consistent with other views. In the UML, there are nine diagrams 
as i l lustrated in the next figure (Figure 13). 

Figure 13. Model, View and Diagram 

You can graphically depict an overview of the behaviour of your system with a 
use-case diagram. The collaboration diagram shows object interactions organised 
around objects and their links to one another. The state chart  diagram provides 
additional analysis techniques for classes with significant dynamic behaviour. A 
state chart  diagram shows the life history of a given class, the events that  cause 
a transi t ion from one state to another, and the actions tha t  result  from a state 
change. Activity diagrams provide a way to model a class operation or the 
workflow of a business process. 

The system's logical architecture is captured in class diagrams that  contain the 
classes and relationships tha t  represent the key abstractions of the system under 
development. The component architecture is captured in component diagrams 
that  focus on the actual software module organisation within the development 
environment.  The deployment architecture is captured in deployment diagrams 
tha t  map software to processing nodes, showing the configuration of run-time 
processing elements and their  software processes. 
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You can view examples of UML diagrams in other parts of this book especially 
chapter 4.4. 

Visual modell ing tools 

Visual modelling is the mapping of real world processes of a system to a 
graphical representation. Standardising a language such as UML is a necessary 
foundation for tools. Many visual modelling tools supporting the UML standard 
are available on the market. You can find from [9] the object-oriented analysis 
and design tools web page provided by the OMG. From this page you can access a 
list of products. These tools allow the visual modelling using UML language 
through object-oriented analysis and design. One interesting feature is that they 
facilitate code-generation from object models and vice-versa. This forward and 
reverse engineering is intended to allow software engineers to keep their designs 
up to date even when they are at the implementation phase. 

Below, we provide some basic information on two specific tools; please note that 
the authors of this section do not recommend any modelling tool. Their features 
are given only in order to illustrate what these kinds of products are capable of. 

Rose from Rational: Rational Rose is a visual modelling software solution that 
lets you create, analyse, design, view, modify, and manipulate components. You 
can graphically depict the system through the use-case analysis and object- 
oriented modelling. The Rose family includes Model, Professional, Enterprise and 
Real Time versions. It provides the following features to facilitate the analysis, 
design, and iterative construction of applications: user-configurable support for 
UML, COM, OMT, and Booch'93; semantic checking; support for controlled 
iterative development; round-trip engineering (code generation and reverse 
engineering); parallel multi-user development; documentation generation; 
integration with data modelling tools; scripting for integration and extensibility. 

The add-in feature allows customising the product environment depending on 
your development needs. There are two types of add-ins, non-language (version 
control, web publisher, XMI, ..) and language (C++, CORBA, Java, Visual Basic, 
Ada, ..). 

Objecteering from Softeam: Objecteering is a sophisticated object-modelling 
workshop, offering significant modelling support especially through the nine 
UML diagrams. It guarantees model consistency and has considerable capacity 
for generating code. The different versions are Personal, Open, Enterprise and 
Project edition. A university package is available. In the Enterprise version it is a 
multi-project and multi-user services tool. This tool offers advanced generation, 
modelling services and is destined for team application development. It allows 
the documentation generation and supports model exchange through XMI. It 
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provides a universal  model element identification mechanism and interbase 
model exchange services, as well as group work functions. This version also 
allows workshop parameter isa t ion,  both at the UML level and at the generation, 
model t ransformat ion  and model request  or operation levels, due to its specific 
UML Profile Builder module. Objecteering/Enterprise is an expandable tool. 
These modules, such as Java,  C++ or SQL and CORBA , can be supplied and 
added at any time to any Enterpr ise  site. 

C A P E - O P E N  s t a n d a r d  a n d  U M L  

Models are useful for unders tanding  problems, communicat ing with everyone 
involved with the CAPE-OPEN (CO) development, modelling complex systems, 
prepar ing documentation,  and designing CO interfaces. Modelling promotes 
bet ter  unders tand ing  of requirements ,  cleaner designs, and more maintainable  
systems. The CO s tandard  adopts the UML and uses extensively its capabilities. 
In chapter  4.4 you can find an introduction to the CO S tandard  and its use of 
UML. Par t icular ly  the following concepts are employed: 

�9 Use-case: It is a description of one par t icular  usage of a par t  of the system. It 
captures the CO system functionalities as seen by users. A complete analysis 
requires many different use-cases, for example there  are close to 30 use-cases 
for the CO unit  operat ion interface alone. A use-case involves an actor who 
can be a person or another  piece of software. An actor performs some 
interact ion with the system being described. It is a specific generic description 
of a use of the system. The use-case is a t tempt ing  to capture the functional 
interact ions ra the r  t han  the physical appearance of the system. 

�9 Sequence diagram: It shows a specific scenario th rough  the sequence of events 
in a use-case. It captures  t ime-oriented dynamic behaviour.  It shows the 
objects involved as vertical lines. The messages passing between the objects 
are shown as horizontal  lines. The Y-axis represents  time, s tar t ing from the 
top and moving downwards.  

�9 Interface diagram: It is similar to the class d iagram except tha t  it shows 
interfaces. An interface is somewhat  like a class except tha t  it presents  areas 
of functionality to the user  grouped in a logical "lump". An interface is a 
collection of possible uses in order to specify through its operations the service 
of a class. The functions in an interface can be implemented  by many different 
objects or no objects at all, just  normal  subroutines.  In the CO context these 
interface definitions capture the vocabulary of the CO software s tandard.  

4 .1 .5 .3  The  e X t e n s i b l e  M a r k u p  L a n g u a g e  (XML) 

The eXtensible Markup  Language (XML) emerged as a key enabling technology 
and In te rne t  s t andard  for electronic commerce around the turn  of the 
millennium. Similar to HyperText  Markup Language (HTML), XML is an 
In te rne t  s t andard  published by the World Wide Web Consort ium (W3C) [44] and 
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is derived from the Standard Generalized Markup Language (SGML), which 
became the ISO 8879 international s tandard [19] in 1986. HTML, XML and 
SGML are all text-based "tag" languages where information is enclosed inside 
the markup tags. For example, <b>Bolded Text</b> is a markup language 
representation of Bolded  Text.  The primary advantage of the text-based 
approach of these languages is the ability of these languages to work on virtually 
any computer hardware/operating system platform and virtually any application 
program. This computing platform neutrality has been a major factor 
contributing to the success of HTML on the Internet. 

SGML has been around since the mid-1980's, and its application in commercial 
applications has been successful, but because of its complexity it has been 
relatively limited in scope and impact. 

In the 1990's, HTML, a very small subset of SGML that  is primarily oriented to 
describing text formatting and display, was used to build most of the Internet 
that  exists today. HTML has the key advantage of being very simple to use with 
a very limited set of markup tags, which provide adequately powerful formatting 
capabilities especially with Cascading Style Sheets (CSS) [44]. As a result, it has 
been very widely used in today's Internet with millions of web sites and hundreds 
of millions to billions of web pages. 

However, the same simplicity that  makes HTML ideal for quickly developing web 
site content, limits its use as an intelligent software development platform. 
HTML pages are "dumb" in the sense that  there is no mechanism to describe the 
semantics of the information contained on these millions of web sites. There is no 
way to intelligently handle data. Therefore, HTML is unsuited for "intelligent" 
document/data exchange over the Internet. 

In the late 1990's XML was standardized as a larger subset of SGML, chosen to 
streamline SGML usage in the Internet environment. The key feature XML 
offers beyond HTML is semantic information embedded in text files through 
customisable markup tags. Because of this ability, XML will be the key enabling 
technology to build the next generation "intelligent" Internet.  Consider the 
following simple example contrasting HTML and XML: 

In HTML: 
<p>Centrifugal pump 
<br>Model P280 
<br>ABC Pumps 
<br>$3,480 

In XML: 
<pump> 

<type>Centrifugal</type> 
<model>Model P280 </model> 
<supplier>ABe Pumps </supplier> 
<price>$3,480 </price> 

</pump> 
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The HTML version offers a way to format and display the information. The XML 
tags can also be used for formatting and display, but offer the additional feature 
tha t  inexpensive software can be writ ten to make intelligent use of the semantic 
information contained in the same text data. 

Because of this inherent flexibility for describing data, the next incarnation of 
the Internet, based on XML, will provide much more intelligent web sites and 
agents than  are possible in today's Internet  using HTML. XML will enable 
intelligent business-to-business (B2B) e-commerce, accommodating common 
things such as electronic catalogues and purchase orders between companies, but 
also more complex things such as equipment data sheets, which can be used for 
the complex e-procurement processes in the process industry. XML usage 
conventions such as ebXML [13] and BizTalk [7] will enable applications to send 
intelligent messages (requests and replies) across the Internet.  XML enables a 
vendor-neutral, software neutral, version-neutral ways of storing information. 
This will enable data archiving spanning many years and software versions. 
Summarizing, XML offers a technology that  allows cross-platform, synchronous 
or asynchronous application integration across the Internet  and across firewalls 
and data archival across many years of time and software versions. This opens 
up an expansive range of opportunities for technical software integration, e- 
commerce, business to business collaboration and long-term archival of technical 
data. 

P r a c t i c a l  a p p l i c a t i o n  of  X M L -  the  need  for layers  on top of  XML 

By itself, XML is just a file syntax for developing platform-neutral text files. It is 
possible to construct "well-formed" XML files just by complying with the syntax 
rules, e.g., the text information is enclosed between beginning and ending tags 
such as <pump> </pump>. 

Figure 13. XML Usage Convention Layers 
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In order to be more useful, several layers need to be added to XML and 
eventually standardized, as shown in Figure 13. 

In the first layer above the base XML syntax, it is better to construct "valid" XML 
files. Valid XML files conform to a Document Type Definition (DTD). A DTD is 
simply a means to tell an XML parser what  the valid tag names are in a given 
document. For example a DTD may specify that  <pump> is a valid tag, but that  
<PUMP> is not. Valid XML files are therefore self-describing files, because the 
markup tags they conform to in a valid XML file conforms to the set of rules 
defined in the included DTD. 

Even with DTD's it is possible for everyone to define their own DTD files and 
construct valid XML files. Therefore, additional layers are needed to make XML 
a technology for software integration. For example, it would be helpful to have a 
standard way of describing standard data structures and data types, such as 
integer, real, text, date, etc. XML Schema is an emerging s tandard [44] to 
describe data types in s tandard ways. 

With XML Schema, we have reached the point where describing data with rich 
data type semantics and data structures is possible, but we still have complete 
freedom to define the tag labels themselves. For example, someone may choose to 
define an XML Schema or DTD tags in German, while another may construct 
them in French and still another in English. Even in a single language such as 
English, it would be possible to use different tag labels to mean the same thing, 
for example, <T>, <Temp>, <Temperature> and <temperature> are all 
acceptable and valid tags for temperature.  To get the most value out of XML, the 
process industry needs a s tandard set of internationally recognized standard 
XML tags to describe process engineering data. This is the focus of the Plant 
Data XML effort, further described in chapter 4.2. Other domain-specific XML 
vocabularies include Chemical Markup Language (CML) [10], Mathematics 
Markup Language (MathML) [44] and XML Metadata Interchange (XMI) 
sponsored by the Object Management Group [23]. Each of these domain-specific 
vocabularies are needed to facilitate industry-wide integration of software 
applications using common terminology. 

Finally, to enable cross-platform, application integration across the Internet, 
s tandard messaging protocols need to be developed, ebXML [13], organized under 
OASIS [26] is one such example. BizTalk [7] and SOAP [44], organized by 
Microsoft are other examples, ebXML has recently adopted SOAP has part of 
their standard, so convergence of these messaging standards is likely over the 
next year or so. 

There are many other technologies related to XML, including XML Stylesheet 
Language (XSL) to enable translation from one XML schema to another and to 
display of XML files in browsers. Other XML technologies include XLink, 
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XPointer, etc. Please refer to the World Wide Web Consortium (W3C) web site 
[44] and the OASIS [26] web site for more details about this fast-moving 
technology development. In addition, there are many good books available on 
XML. 

XML Tools 

There are many tools available for working with X M L -  far too numerous for any 
sort of exhaustive review here. Some of these tools are free. Others are 
commercial products. Rather than list them and describe them here, we will just 
list the types of tools that  are available and web site resources to learn more 
about them. The types of tools that  are available include XML Browsers, XML 
Editors, XML Parsers, XML/DTD Schema editors, XML serialization tools, XSLT 
editors, XSL formatters, XML and XSL utilities. Some resources for finding out 
more about these tools include [45] and [46]. 
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Chapter  4.2: P lantData  XML 

T. Teague 

4.2.1 INTRODUCTION 

PlantData  XML is an effort originally conceived in 1999, with work now starting 
in 2001, to combine existing process industry international  data exchange stan- 
dards and eXtensible Markup Language (XML) Internet  standards to create a 
practical and easy to use electronic data exchange s tandard for the process indus- 
try. The PlantData  XML standards, similar to many XML standards, are freely 
available to encourage widespread adoption and use in the process industry. The 
intention of creating PlantData XML standards is to enable both synchronous 
and asynchronous software integration architectures to be built that  work both 
within and across companies in a vendor-neutral way. 

The key ideas behind PlantData XML are to (1) develop a process-industry spe- 
cific XML markup tag vocabulary that  leverages a n d  unlocks the value of the 
previously developed process industry ISO 10303 STEP standards by making 
these standards easier and less expensive to use and to (2) deploy the PlantData 
XML vocabulary in commercial software implementations to ensure that  value 
can be obtained from the industry s tandard at a reasonable cost. 

The key benefits of PlantData XML to the process industry include: 

�9 Significantly improving the cost-effectiveness of engineering work proc- 
esses through vendor-neutral electronic data exchange. 

�9 Providing vendor-neutral technical data archival and reuse over the plant 
life cycle. 

�9 Enabling more effective procurement and business-to-business (B2B) e- 
commerce in the process industry. 

In this chapter, we first elaborate further the motivations for developing Plant- 
Data XML in the context of software integration architectures and previous 
standards work, which were described in more detail Chapter 4.1, section 4.1.3. 
Next, we discuss a software integration architecture using XML. In that  section, 
we further elaborate the introductory material  on XML presented in Section 
4.1.5.3 to discuss the parts of XML software integration architecture related to 
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creating application interfaces and use of XML parsing tools. We next review 
the potential scope and utility of PlantData XML using common industry work 
processes. Then, we describe a software development methodology for creating 
PlantData XML that adopts the iterative, incremental unified software develop- 
ment model advocated by Jacobson, Booch and Rumbaugh, and following this, we 
present a worked out initial example of PlantData XML. We conclude the chap- 
ter by discussing the initial application of PlantData XML in commercial soft- 
ware packages, which is anticipated to occur in the second half of 2001. 

4.2.2 M O T I V A T I O N  FOR D E V E L O P I N G  P l a n t D a t a  XML 

In Chapter 4.1, section 4.1.3 the general approaches to software integration ar- 
chitectures were reviewed and the process industry efforts to develop process in- 
dustry standards were summarized for both synchronous and asynchronous soft- 
ware integration architectures. The initial focus for PlantData XML is to de- 
velop a standard to accomplish widely and easily implemented, asynchronous 
electronic data exchange among software applications. Potential other future 
uses for PlantData XML are discussed in section 4.3.1.8. 

As illustrated previously in section 4.1.3 (see Figure 4.1.3.1), technical software 
applications in the process engineering domain include (at least) the following 
types of software applications: 

~ 

2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 

Thermo Database 
Data Regression (Thermo model parameter fitting) 
Process Simulation (steady-state & dynamic) 
Fluid flow hydraulics 
Equipment design and rating 
Detailed mechanical design 
Cost estimating 
Engineering Documents (e.g., equipment data sheets, summary lists, etc.) 
Intelligent Diagramming (PFD's, P&ID's, isometrics, layouts, etc.) 
CAD models (3-dimensional geometry, visualization, etc.) 
Plant Information Systems (operational and market data) 
Maintenance Management Systems 
Supply Chain Management Systems 
ERP systems 
Spreadsheets (used for many special purposes) 

The engineering work processes that employ the above tools is a complex one that 
involves team efforts across multiple companies-  owner operator companies, en- 
gineering-procurement-construction (EPC) companies and process industry sup- 
plier companies such as equipment manufacturers. Particular combinations of 
multiple companies collaborate for a given project, and then new sets of project 
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team companies are assembled for other projects. In general, the various differ- 
ent companies use a mixture of commercial and internal  software application 
programs, and, in general, the tools tha t  are used in one company are not the 
same as those used by the companies tha t  come together for a part icular  project. 

Unfortunately, because the multiple companies involved use different software 
packages, labor-intensive, manual  software integration is the pr imary approach 
to software integration today and the drawbacks are significant, including higher 
costs, longer schedules, and occasionally, lower quality due to inevitable human 
errors escape detection and correction. Practical and widespread automation ap- 
proaches to software integration could have a dramatical ly beneficial impact on 
the process industry, est imated to be on the order of hundreds of millions to bil- 
lions of dollars annually. 

Both the STEP architecture and the ISO 15926 s tandard  employ a two-layer data 
mapping architecture, which is shown in Figure 4.3.1-1. The application inter- 
face map consists of two-layers (1) the application domain layer and (2) the gen- 
eral abstract  data model layer. In the case of STEP, this two-layer architecture 

was developed to enable 
multiple application do- 
mains to share a single 
physical implementat ion 
format. In the case of ISO 
15926, the two-layer ar- 
chitecture was developed 
to allow high flexibility in 
defining the domain layer. 

Figure 4.3.1-1 STEP Architecture for software integration One general disadvantage 

of the two-layered mapping approach to software integration, whether  STEP or 
ISO 15926, is that,  overall, it is a very complex, difficult and costly approach for 
most software application owners in the process industry to unders tand and im- 
plement  software application maps and interfaces. This is due largely to the 
highly specialized knowledge of the general data model and the custom mapping 
that  is required from the domain level to the general layer. Only a few hundred 
people worldwide have the expertise to build software implementat ions in STEP. 
This high complexity and specialized nature of the mapping interface results in a 
high cost to build software interfaces. For example, building one application in- 
terface for this style of architecture for the STEP AP 231 s tandard  was est imated 
in 1999 to cost between 0.5 to 1 million US Dollars. The cost of building applica- 
tion maps is therefore a prohibitively high activation energy barrier  for most 
software vendors to achieve current s tandards-compliant  commercial software 
implementat ions in process industry software. 
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As shown in Figure 4.3.1-2 the PlantData XML standard uses a single layer 
mapping approach to a standard format XML file. The XML file employs a data 

schema that  directly 
uses familiar process 
engineering terminol- 
ogy. Specifically, 
PlantData  XML starts 
with the domain level 
data model from the AP 
231 STEP standard and 

Figure 4.3.1-2 PlantData XML file format integration uses i t  to define a proc- 

ess industry XML vocabulary. Further,  since the PlantData  XML standard is be- 
ing developed with software vendors and users to meet the needs of commercial 
software applications, practical validation of the XML vocabulary is achieved, 
where practical implementation of the AP 231 standard itself was never demon- 
strated in commercial software. The cost of building application maps using 
PlantData  XML is one to two orders of magnitude less expensive than building a 
STEP implementation, making standards-based electronic data exchange practi- 
cal and affordable. 

4.2.3 XML SOFTWARE INTEGRATION A R C H I T E C T U R E  

A foundation to effective industry-wide software integration is the adoption of a 
Process Industry vocabulary as described in section 4.1.5.3. But equally impor- 
tant  are the software components that  make XML based software integration a 
practical reality. 

To integrate applications XML interfaces must enable two data flows as shown in 
Figure 4.3.1-3: 

Figure 4.3.1-3 XML interface data flows 

The "To XML" step, consisting of writing text in a format specified in a DTD or 
schema, is easy. The "From XML" step, consisting of parsing the XML text, is 
much more complex. There are currently two popular Application Programming 
Interfaces (APIs) that  support the "From XML" process and to some extend, the 
"To XML" process. These are the Document Object Model (DOM) [1] and the 
Simple API for XML (SAX) [2]. 
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DOM is an interface description being developed by the World Wide Web Consor- 
t ium (W3C) of which Level 1 is currently a recommended standard. It can be im- 
plemented on any platform in any programming language. DOM presents XML 
data as a hierarchical tree of nodes based on the structure of the XML. SAX is an 
interface for event-based XML parsing and presents the XML data as a stream of 
events. 

Both interfaces have their strengths and weaknesses. DOM is particularly ap- 
propriate when access and manipulation of all the data is required. DOM, being 
developed by the W3C, is mostly likely to become a widely accepted standard that  
will be fully supported on all platforms. SAX is a good candidate for handling 
large amounts of data that  you do not want  held in memory and which will be 
processed once through, such as feeding data to a database. 

Freely available software already supports both DOM and SAX to varying de- 
grees. Microsoft's MSXML Parser version 3.0 [3] provides a DOM interface with 
Microsoft specific extensions and a SAX like interface. MSXML is easily used 
from MS Visual Basic. The Apache XML Project [4] provides open source XML 
parsers for C++, Java and Perl available for a number of platforms, which, be- 
sides supporting DOM and a SAX like interface, also provides validation against 
schema. 

So, with freely available PlantData XML Schema and freely available parser 
software, XML software interfaces become open for anyone with the proper skills 
and enough time to build a PlantData XML software interface. 

While this single-layer map to XML architecture il lustrated in Figure 4.3.1-2 is 
substantially less expensive to implement than the STEP architecture shown in 
Figure 4.3.1-1, there are some additional, substantial  improvements and cost- 
reduction benefits that  can be made by adopting a component-based architecture 
shown in Figure 4.3.1-4. 

The general pur- 
pose XML inter- 
faces and the avail- 
able software that  
implements them 
are oriented for 
software engineers' 
use on a wide range 

Figure 4.3.1-4 Component Architecture for XML software integration of non-engineering 

applications. There are additional issues that  anyone building a process 
engineering XML interfaces will have to cope with. Examples of these include 
handling units of measurement  and viewing the data objects in an XML file to- 
gether in a more easily used engineering view of the data that  aligns well with 
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in a more easily used engineering view of the data that  aligns well with the way 
current applications view the data. This reduces the cost of building the applica- 
tion maps by an additional substantial  amount. 

Another advantage of this component-based approach to data integration is that  
it allows direct synchronous data integration across applications using the com- 
mon XML component. In this way the XML component can provide for both syn- 
chronous and asynchronous software integration architectures, depending on the 
needs of the users of the applications involved. 

A process industry XML software component encapsulates the complexities of 
reading and writing the process industry XML file format, handling units of 
measure conversions and updates to the XML file format. The work to enable any 
application to be integrated with others is reduced to writing a small extension to 
the application that  transfers the data between the application's internal data 
structures and a well defined, easily used, engineering oriented interface sup- 
plied by the XML component. In the Microsoft Windows' environment the process 
industry XML software component is most conveniently a COM/OLE object that  
can be used from Visual Basic, C++ or even Excel or Visio via Visual Basic for 
Applications. 

A process industry focused XML software component acts as a catalyst to lower 
the activation energy barrier to implementing XML based software integration 
solutions and makes building application maps rapid, practical and cost effective 
(see Figure 4.3.1-4). Rather than every application owner having to face and deal 
with these common issues, there is an advantage to having a reusable process 
engineering XML component that  hides the complexity of dealing with XML and 
dealing with the special process engineering data mapping issues. 

An example of such a component is the ePlantData Software [5] COM XML gate- 
way for parsing and writing process data. The component fully supports units of 
measurement  and extensibility. It provides an interface designed for Process 
Engineers but also a fully W3C compliant DOM interface. The component uses a 
SAX like event-based parser to provide "load on demand" capabilities to preview 
data before loading required sections. The full ePlantData Software includes 
Excel based datasheets for easy viewing and editing Process Industry XML data 
in familiar data sheet formats that  may be customized by end-users to match 
their own internal layout and format. 
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To summarize the problems and potential solutions to software integration and 
the benefits of various software integration architectures, we can draw an anal- 
ogy to the energy levels associated with an exothermic chemical reaction, shown 

in Figure 4.3.1-4. 
There are very large 

"e ne rgy-re lease" 
economic benefits to 

Cost of STEP Interface be obtained by the 

process industry by 
moving from the 
current, highly la- 

Cost of standard XML Interface bor-intensive work 

Cost of component XML Interface process to a stan- 
Current Work dards-based elec- 

Process tronic data exchange 
work process that  is 
much less labor- 
intensive. In the 

Benefits of electronic 
data exchange case of a two-layer 

STEP architecture, 
the benefits are 
high, but so are the 
costs to implement 
interfaces. This 

Work~rocesswith places too high of 
Electronic Data Exchange activation energy 

barr ier  for most 
Figure 4.3.1-4 Energy activation barriers for electronic data exchange process industry 

companies to actu- 
al ly use STEP. Adopting a single-layer engineering oriented XML standard ap- 
proach is a good catalyst, which reduces the activation energy barr ier  signifi- 
cantly. However, there is still a higher than  necessary cost in terms of XML tech- 
nology learning curves and duplication of effort across many companies on com- 
mon issues such as units of measurement  handling and engineering-oriented 
data mapping. Adopting a component-based approach is a better  catalyst, offer- 
ing the lowest cost approach of all, enabling s tandard  XML data exchange to be 
widely achieved across the industry at lowest cost. Common industry-oriented 
XML software components such as ePlantData  software that  solve common ap- 
plication interfaces issues and implement industry s tandard  XML vocabularies 
such as P lan tData  XML provide an effective solution to simplify and reduce the 
cost of integrat ing process industry software. 
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4.2.4 POTENTIAL SCOPE FOR P R O C E S S  E N G I N E E R I N G  DATA 
EXCHANGE 

One of the challenges for standardizing process engineering data exchange is the 
immense scope of technical data that  could be exchanged. This immense breadth 
of scope was one of the difficulties for the previous STEP and ISO 15926 standard 
development activities, which contributed to the  complexity and the length of 
time required to develop the standards. AP 227, which is the only process indus- 
try STEP standard that  successfully reached the status of International Stan- 
dard, had the narrowest scope of the all. The scope of AP 227 was confined to 
s tandard 3D representations of piping systems. 

For AP 221 and AP 231, in international review of the scope of the draft stan- 
dards, there was a strong pressure to expand the scope. For example, consider 
one of the key usage scenarios described in the AP 231 standard - that  of ex- 
changing an entire process design package from an owner-operator company who 
has developed the initial conceptual design to an engineering-procurement- 
construction (EPC) company to carry out a detailed design. Another scenario is 
to transfer the entire "as-built" facility data from the EPC contractor back to the 
owner-operator upon commissioning the facility. The amount and variety of 
process engineering technical information in such design packages is very broad. 

Yet to achieve the very large promising benefits of electronic data exchange, this 
broad scope must  eventually be achieved. So the practical question, if we are go- 
ing to make progress on this immense problem becomes, "How do you eat an ele- 
phant?" The only practical answer to this question is "One slice at a time over 
some period of time." 

The PlantData XML standard is being developed to cover the immense scope of 
process engineering data exchange by attacking it one slice at a time. One possi- 
ble arrangement  of slices is shown in Table 4.3.1-1. In this table the phases of 
the life cycle are shown horizontally, while the major subsets of process engineer- 
ing data are listed vertically. The initial scope of PlantData XML is highlighted 
in Table 4.3.1-1 

There are two areas of scope being addressed by PlantData XML in the initial fo- 
cus of work. These are: 

1. Process Materials 
2. Equipment data sheets for shell and tube heat exchangers. 

In the process materials area, PlantData XML is being developed to describe en- 
gineering aspects of process material data, in conjunction with the Design Insti- 
tute for Physical PRoperties (DIPPR), which is a long-standing joint industry 
consortium organized under the AIChE. The DIPPR 991 project is currently un- 
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dertaking an effort to harmonize and standardize the way process mater ial  data 
is described not only for its own databases, but for other important  process indus- 
try consortia and data suppliers as well. These other sources of data include 
Dechema, NEL PPDS, API, TRC and the recent efforts by the IUCOSPED project 
to standardize electronic reporting of process mater ia l  properties data in scien- 
tific and technical journals. 

The second major focus area for PlantData  XML is to develop and support elec- 
tronic data sheets for shell and tube exchangers. The equipment  data sheet was 
chosen precisely because it covers each phase of the life cycle from initial concep- 
tual  design through detailed design, procurement, construction and operation. 

Table 4.3.1-1 Potential Scope of Data Exchange for Process Plants 
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> shell and tube 
- Mass transfer 
- Instrumentat ion 

Engineering Doc's 
- Equipment lists 
- Data sheets 
- PFD's 
- P&ID's 

PlantData  
- Site data 

Project Data 

]P lan t  Data  XML and ePlantData Sheet  ( i n i t i a l ) :  

I Plant Data XML and ePlantData Sheet ( init ial) i  

Plant Data XML and ePlantData  Sheet ( i n i t i a l )  
Plant Data XML and ePlantData  Sheet (initiaI) i 

As can be seen from Table 4.3.1-1, equipment data sheets cover a number of plant 
data sub-areas, including stream properties, unit operation data, equipment de- 
sign data, engineering documents, site data and project data. Shell and tube ex- 
changers were chosen because they are very common items of equipment in proc- 
ess plants and the design work process for these equipment items is sufficiently 
complex with multiple software packages by multiple vendors to where there will 
be large benefits achieved through electronic data exchange throughout conceive, 
design, procure, construct operate life cycle. 

The initial scope of PlantData XML was deliberately chosen to be of limited scope 
so that  beneficial results would be obtained quickly and delivered to users 
through commercial software. As user companies derive significant business 
value from applying the initial version of the standard, the PlantData XML stan- 
dard will eventually be broadened in scope, in business-driven ways, to meet the 
entire scope of data that  users collectively believe is cost-justified. 

4 . 2 . 5  D E V E L O P M E N T  M E T H O D O L O G Y  F O R  P l a n t D a t a  X M L  

4 . 2 . 5 . 1  L e s s o n s  l e a r n e d  f r o m  t h e  S T E P  m e t h o d o l o g y  

The ISO STEP methodology for developing standards is very rigorous and com- 
prehensive, eventually resulting in highly reviewed standards documents. In 
this process the sponsor technical team produces a succession of draft standards 
documents, which are used to help define scope, which in the case of process in- 
dustries were generally very broad scopes. The document is successively refined 
and reviewed in stages from Working Draft to Committee Draft, then to Draft In- 
ternational Standard and then to International Standard. At each stage, the 
draft documents are subjected to very extensive technical working committee re- 
views, independent international technical reviews and an international ballot- 
ing process to gain international approval to move the draft s tandard to the next 
stage. Commercial software implementations are generally not done until the 
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standard reaches the International Standard stage. 
must  remain static for at least 3 years. 

International  Standards 

Unfortunately, at least in the experience of the Process Data eXchange Institute 
(pdXi) in developing the STEP AP 231 Committee Draft s tandard for conceptual 
process engineering data, there are several weaknesses in the STEP methodology 
as follows: 

1. There is inadequate attention at the very beginning of the s tandard devel- 
opment process to ensure that  the detailed work processes and usage sce- 
narios are well understood and documented in depth and that  economic 
benefits for each included data exchange scenario can be readily recognized 
and justified. 

2. Building of demonstration software implementations by commercial soft- 
ware vendors is postponed until very late in the standards development 
process: it is not a requirement until the development of the Draft Interna- 
tional Standard stage. If demonstration software implementations were 
required earlier in the standards development process on a very small sub- 
set of scope, such as a single usage scenario, then the difficulty of the two- 
layer STEP implementation architecture would have been uncovered much 
earlier in the development process. 

3. The length of time and amount of effort required to produce and review the 
required documents at each stage is very long and costly, which tends to 
encourage sponsor groups to identify broad scopes so that  they only have to 
go through these review cycles once. These broad scopes further aggravate 
the scope, schedule and complexity problem. The problem is further ag- 
gravated by the fact that  the speed of standards development effort is 
largely governed by the availability of domain experts, who are usually 
participating on a volunteer basis. 

4. The STEP architecture and methodology are very complex and was not 
well understood, at least by the AP 231 sponsor companies, until many 
years into development process. For example, when work started in 1991, 
pdXi sponsor companies required that  the work be done in a manner  suit- 
able to build a STEP standard, but imposed this requirement without a 
full understanding the cost and complexity of the two-layer application 
mapping approach required by STEP. As early as 1994 pdXi built trial 
software implementations assuming that  the data model could be ex- 
pressed in physical files at the engineering domain level, and later discov- 
ered that  these were not standards-compliant interfaces after all. It was 
not until 1998, 7 years after the pdXi effort s tarted and 3 years after the 
AP 231 standard development effort started, when it was recognized that  a 
STEP-compliant software implementation was required to work at the ge- 
neric, STEP integrated resources level. Once the high cost of STEP soft- 
ware implementation was recognized, work stopped on continuing the 
s tandard development. 
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These were difficult, expensive lessons for pdXi and the AP 231 development 
team to learn about developing and implementing STEP standards.  However, 
the technical work and the extensive internat ional  review of the engineering 
level data  model are still a very worthwhile piece of technical work reflecting an 
investment  of $1-2 million by the process industry companies tha t  developed the 
draft s tandard.  All tha t  is needed now is a more cost-effective approach to soft- 
ware implementation.  Implementing the engineering level data  model using 
XML offers such an approach. 

4.2.5.2 Methodo logy  for Deve lop ing  P lantData  XML Standard 

The methodology for developing the PlantData  XML standard reflects the lessons 
learned from the STEP development process and adapts key ideas from the Uni- 
fied Software Development process described in section 4.1.4. A key piece of the 
process is to use the engineering domain data models developed by the STEP 
standards to take advantage of the good technical work tha t  has already been 
done. 

The major tasks in developing PlantData  XML are listed below: 
1. Describe task-oriented work flows, use cases and data flows 
2. Identify reusable subsets of process engineering data tha t  participate in 

the data flows. Exclude any data tha t  does not directly participate in a 
commercially important  work process and data flow. 

3. For a single identified subset of data, s tar t  with the draft ISO standards 
and develop a UML object data model for the reusable subsets of data that  
match the identified tasks, use cases and data flows. 

4. Develop XML schema from UML object model, organizing the logically re- 
lated reusable subsets of data into XML namespaces. 

5. Define engineering-oriented application programming interfaces that  sup- 
port the engineering view of the data used in the identified data flows. 

6. Develop a reusable software component tha t  uses the engineering-oriented 
application programming interfaces to read and write XML files that  con- 
form to the defined XML schema. 

7. Develop software implementations that  use the XML software component 
for the identified tasks, use cases and data flows. 

8. Repeat steps 3-7, incrementally adding data scope as needed to meet the 
needs of the identified tasks, use cases and data flows. 

9. Publish the resulting XML schema as a s tandard that  has been proven and 
used by commercial software implementations.  

At the time of this writing (early 2001), P lantData  XML development is just 
starting. In the following sections we include some initial prototype examples to 
show how PlantData  XML is being developed using the above work process. For 
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the most up to date versions of PlantData XML, consult the ePlantData web site 
[5]. 

4.2.6 P R O C E S S  E N G I N E E R I N G  WORK FLOW & DATA FLOW 

The first task in developing PlantData XML is to describe the work process, 
tasks, tools and data flows to understand where the economic opportunities are 
for automating the technical data exchange. A portion of the process engineering 
work process including major roles, tasks, tools and data flows, which are being 
developed for the PlantData XML, are shown in Figure 4.3.1-5. 

/• Evaluated Thermo/Reaction Evaluated Thermo/Reaction 1/1 I~\ Mo~el Parameters I P,,~,,,,,,n~n III 
~ Model Parameters / ~ ~ 4 - -  a ~ j  

Proces:Matenal Process [Designer .. j " Task 2.1, 2.2, 2.3, 2.4 ~'rocess t Properties 
Simulation ! Calculation / Equipment ~'rog~am I Program ~ Size & ( 3 o n f i g u r a t i o n ~  

I ~ IEquipmen~ Stream Properities I ~ ' ~ ~ . ~ ~  " Design 
Property Curves Program 

Unit Operation Data 

~r I :al~~~eit 4 
Equipment] JTa,, . - .  

ngmeenng ~ -' Data Sheet LE;gitabedngj ( ' ]  (spreadsheet) ~-'~ ~ Cost 
[ - -  J ' "~--~),  Iv----~ Estimation 

"~ Program ( ~'~ Equipment U~_~ 
Procurement Design Cost Estimator 

Purchase I / ~  Quotation ~ Task 4.1 
Order i_., uI i~ J t ~ , -" ~ Detailed System ! -/A l ~. / ~  I I /_/ ~ "/ ,  I v ~'1 Design 

Purchaser /_//~_.~ I PrOgram 
Purchase Order Equipment - ~. Manufacturer 

Task 3.5, 3.6 

Figure 4.3.1-5 Process Engineering Roles, Tasks and Data Flows 

The detailed task descriptions referred to by number in Figure 4.3.1-5 are shown 
in an accompanying set of tables, such as the one shown in Table 4.3.1-2. 
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Table 4.3.1-2 Work tasks associated with a portion of the process engineering work 
process 

ID 
T a s k  I n p u t  

T a s k  D o n e  I n p u t  D a t a  F r o m  
, by , 

3.1 Specify 
process 
specifica- 
tion data 
for proc- 
ess equip- 
ment 
item, e.g., 
S&T heat 
exchanger 

To T a s k  
A p p l i c a t i o n  

T a s k  
Output  Data  

Owner- 
opera- 
tor 
or EPC 

Material Process 
streams equipment 
Stream prop- simulation 
erties program 
Stream Prop- 
erty curves Process 
Unit Opera- Simulation 
tion program 

Equipment 
data sheet pro- 
gram (e.g., 
spreadsheet) 

Front-end en- 
gineering da- 
tabase 

Data Sheet 
information 
Project infor- 
mation 
Equipment 
Item Data 
Unit Op Data 
Material 
Stream and 
Stream Proper- i 
ties 
Stream Prop- 
erty curves 

3.2 De- 
sign/size 
process 
equip- 
ment, 
e.g., heat 
exchanger 

Owner- 
opera- 
tor 
or EPC 

Material 
streams 
Stream prop- 
erties 
Stream prop- 
erty curves 
Unit Opera- 
tion 

Equipment 
data sheet 
Equipment 
simulation 
program 
Process 
Simulator 

Equipment 
Design Pro- 
gram, e.g., 
S&T ex- 
changer design 
program 

Equipment size 
and configura- 
tion data, e.g., 
for S&T ex- 
changers 

3.3 

3.4 

Rate p roc- 
ess equip- 
ment per- 
formance, 
e.g., heat 
exchanger 

Owner- 
opera- 
tor, 
EPC or 
equip- 
ment 
manufa 
cturer 

Unit Op Data 
Material 
Stream Prop- 
erties 
Property 
curves 
Equipment 
size and con- 
figuration data 

Specify 
size and 
configura- 
tion speci- 
fication 
data for 
process 
equip- 
ment 
item, e.g., 
S&T heat 
exchanger 

Owner- 
opera- 
tor 
or EPC 

Material 
stream(s) 
Stream prop- 
erties 
Stream prop- 
erty curves 
Unit Opera- 
tion(s) 
Equipment 
size and con- 
figuration 

Equipment 
data sheet 

Front-end 
eng data- 
base 

Equipment 
Design Pro- 
gram 

Equipment 
i Design Pro- i 
I gram 

Process Simu- 
lation program 

Equipment size 
and configura- 
tion data (re- 
vised) 

Equipment 
Design Pro- 
gram 

Equipment 
data sheet 
program 

Equipment 
data sheet pro- 
gram 

Front-end en- 
gineering da- 
tabase 

Data Sheet 
information 
Project Infor- 
mation 
Equipment 
Item Data 
Unit Op Data 
Material 
Stream Proper- 
ties 
Property curves 
Equipment size 
and configura- 
tion 
Material of 
Construction 
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A work flow narrative can be developed corresponding to the diagrams and ta- 
bles. For the work flow diagram shown in Figure 4.3.1-5, we can write the follow- 
ing narrative. 

A process designer sets up a process simulation for the process being studied. Al- 
ternatively, the process designer may set up and use a material  properties simu- 
lator for a single equipment item. A key input requirement of the process simu- 
lation or material  properties simulator is to enter the components, select a ther- 
modynamic method and obtain the thermodynamic model parameters  from an 
evaluated thermodynamic model database. Next the feed material  streams, unit 
operations and process topology need to be defined to complete the process simu- 
lation. 

Results from the process simulator or the material  properties simulator including 
stream properties, property curves and unit operation data are loaded into ap- 
propriate process load equipment data sheets. 

The process designer initiates a number of equipment data sheets, one for each 
equipment item in a flowsheet. The process designer adds information about the 
company, the site, the project and preliminary material  of construction selection 
for each equipment data sheet. In some companies, information on the equipment 
data sheet may be maintained by a front-end engineering database system. 

The cost estimator takes preliminary design information from the  process load 
data sheet to obtain an initial cost estimate. 

The equipment designer takes process information from the equipment data 
sheet and runs the equipment design program to size and rate the equipment. 
The equipment designer updates the equipment data sheet with the equipment 
size and geometric configuration design details. 

The cost estimator update the cost estimate based on the equipment sizing re- 
sults. 

The equipment designer works with purchasing to request quotations from 
equipment manufacturers '  

Equipment manufacturers  run detailed design programs to complete the me- 
chanical design and re-rate the thermal design if needed to guarantee perform- 
ance. Manufacturers fill out equipment data sheets with all details and return 
the equipment data sheet with a cost quotation. 

Cost estimators update the cost estimate with cost quotations. 
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The equipment  designer checks the manufacturer ' s  design and re-rates the de- 
sign if necessary. The equipment  designer selects the equipment  based on the 
quotations and purchasing procures the equipment  with a purchase  order. 

We can now use the diagram, tables and the narra t ive  to identify reusable data  
groups tha t  are involved in the data  flows associated with this work process. For 
example the following da ta  groups are suggested by the above example work- 
flows. 

1. Component  Identification 
2. Thermodynamic  method and associated model pa rame te r s  
3. Process mater ia l  s t ream (includes composition, state, flow rate and s t ream 

properties) 
4. Process mater ia l  s t ream property curves 
5. Unit  operation data  (e.g., heat  exchanger) 
6. Site da ta  
7. Project da ta  
8. Document  data  for da ta  sheets 
9. P lant  i tem equipment  data  
10.Material  of construction data  
11. Shell and tube exchanger  configuration data  
12. Shell and tube exchanger  detailed mechanical  specification data 
13.Shell and tube cost data  
14. Purchase  requisit ion data  

From here we can s ta r t  to develop the UML data  models and the XML schema in 
more detail. We will use a subset of the da ta  groups listed above. For the re- 
mainder  of this example, we will choose Task 3.1 - specify process data for design 
of a shell and tube exchanger.  

4.2.6 E X A M P L E  UML O B J E C T  DATA M O D E L  

For an introduction to the Unified Modeling Language (UML), please refer to sec- 
tion 4.1.5.2. For P lan tDa ta  XML, we use the UML static class diagrams, where 
the class propert ies are defined. However, we do not make use of the class meth- 
ods, because we are only building an object data  model, not an object-oriented 
software application. 
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In this example, we will use a UML object data model for a small subset of the 
information tha t  we find on equipment data sheets. This UML model was derived 

I,SEE data_sheet I 

PROCESS DOCUMENT) "--> 

plant_item 
-id : text (required) 
-boundary : text 
-description :text 
-function :text 
-manufacturer : text 
-name : text 
-tag : text 
-purchased_capital_cost: number-currency 
-delivered_capital_cost : number-currency 
-installed_capital_cost : number-currency 
-weight" number-mass 

is on I O . .n  -maximum_weight_for_maintenance �9 number-mass / -type "text 
1..1 -operating_factor" number 

,~-plant reference: reference 
refers tO /_p roc~s_ .de f i n i t i on  reference reference 

" ----~ata_sheet_reference : reference 

1..n contains 1..n plant 
1..1 

-name : text 
-description : text X is located in 
-function :text 
-sub_plant_type : te 

~" 1..n 

is composed of 

l is carded out by 

carries out~ 1.. 1 

I process_definition 
-process_definition name : text (required 
-description :text - 

F igure 4.3.1-6 UML d iagram for Plant  I tem 

from the AP 231 Application Reference Model (ARM), which uses IDEFlX nota- 
tion. 

Figure 4.3.1-6 shows the general information tha t  can be a t t r ibuted to any plant 
item, regardless of what  type of equipment item it is. This model shows that  a 
data_sheet refers to exactly one plant_item, and tha t  the plant_i tem is located in 
exactly one plant. The plant_item may itself be composed on one or more 
plant_items and the plant  item carries out a process_definition. There are num- 
ber of at t r ibutes associated with a plant_item such as its tag and its manufac- 
turer.  Note tha t  some attr ibutes in plant_item are references, for example a ref- 
erence to the process_definition, where we can find more information about the 
process service for the plant_item. These reference at t r ibutes  were not originally 
in the AP 231 data model, but were added to the UML to resolve the "navigation" 
ambiguities tha t  are present  in the AP 231 data model. Resolving these naviga- 
tion ambiguities is essential to obtain a practical XML schema and software im- 
plementation. 
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I-(SEE 

i proce.~ t I i i  .n ,eo L . . . . . . . .  0 ext,re ur.  
1..n carries out 1-ja: text ~requtreo) r~-'~-~-function : text 

-(SEE PLANT ITEM) �9 --> J-descr, pt, on :.text . . . . . . .  J .... J-normal flow direction: enum 
l-process_porLrererence_.st : rererence_.s~j Ltvce �9 L~um- 
1-tYpe: text J I-~ream~_ref~ence : reference 

0..21 has is connected to~0..1 

stream [ 
-SEE STREAM �9 --> 

unit_operation_list ~ process_unit_operation ~ 
PROCESS DOCUMENTS) �9 ">1 I-property_curve_reference_list: reference_list I [-(SEE 

I 
uo_heat_exchangerside J 

-side_type : constrained text J 
-inlet_temperature: number-temperature J 
-outlet_temperature: number-temperature I 
-inlet_pressure : number-pressure L- has 
-pressure_drop: number-pressure r2.. n 

property_curve J 

PROPERTY CURVE) �9 -->. 

I 
uo_heat_exchanger 

-duty : number-energy per time 
-overall_heat_transfer_coefficient: number-energyFluxPerTem p 
-mini m urn_approach_tern perature :num ber-temperature 
-surface area: number-area 
-side_ref-erence_list : reference_list 

l uo_shell_and_tube_heaLexchange t 
-flow_direction : enum / 
-number_tube_passes: integer / 
-number_shell_passes: integer / 
-LMTD_correction_factor : number / 
-shell volume : number-volume J 
-tube--volume: number-volume J 

Figure 4.3.1-6 UML data model for heat exchanger unit operation 

Figure 4.3.1-6 shows the UML data model for the heat  exchanger unit operation, 
which is a specific sub-type of process_definition, which carries out the process 
function of the plant_item in Figure 4.13.1-5. A process definition may have 1 or 
more process_ports, to which a s tream may be connected. A unit  operation may 
have 0 or more property_curves. A uo_shell_and_tube_heat_exchanger is a spe- 
cific sub-type of uo_heat_exchanger, which may have 2 or more sides. The 
uo_heat_exchanger has familiar at tr ibutes such as duty and overall heat transfer 
coefficient. The uo_shell_and_tube_heat_exchanger has at t r ibutes specific to 
that  type of exchanger such as number of tube passes, number  of shell passes, 
etc.  
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For each item in the UML data model a data glossary definition is developed, 
again using the definitions that  were originally developed for AP 231. STEP does 
not  require that  the data type and units of measure be included in the definition, 
but we believe this essential information for PlantData  XML. For example, Fig- 
ure 4.3.1-6 shows a sample of some glossary definitions for the 
Uo_heat_exchanger class. 

Uo_heat_exchanger 
A Uo_heat_exchanger is a type of Process_unit_operation 
that is the heating or cooling of a single process 
Stream, the exchange of heat between two process Streams, 
the exchange of heat between a process Stream and a Util- 
ity_stream, or the exchange of heat between multiple 
Streams by a heat exchanger. 

The data associated with Uo_heat_exchanger are the fol- 
lowing: 
--duty; 
--minimum_approach_temperature; 
--overall heat transfer coefficient; 
--surface area; 

duty 
A duty specifies the amount of heat transferred from 
the hot Stream to the cold Stream by the exchanger. 
Data Type: number; Units type: energy per time, e.g., 
kilowatt 

minimum_approach_temperature 
A minimum_approach_temperature specifies the minimum 
local difference in temperature between the shell side 
fluid and the tube side fluid at all points of contact 
in the exchanger. Data Type- number; Units type: tem- 
perature, e.g., Kelvin 

overall heat transfer coefficient 
An overall heat transfer coefficient specifies the 
overall rate that heat is transferred from the hot 
fluid on one side of the heat exchanger to the cold 
fluid on the other side. This parameter relates the to- 
tal amount of heat transferred by the exchanger to its 
heat transfer surface_area and the driving temperature 
differences. Data Type- number; Units type: energy per 
time per area per temperature, e.g., kilowatts/hour-K 
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4.2.7 EXAMPLE XML SCHEMA DERIVED FROM UML O B J E C T  DATA 
MODEL 

At the time of this writing, XML Schema is at Candidate Recommendation status 
from the W3C. XML Schema provides an XML based approach for specifying 
s tandard  data  types and the ability to define structured data  in XML files. Re- 
calling from Figure 4.1.5-1, XML Schema sits on top of XML Document Type 
Definitions (DTD's). Domain schema such as PlantData  XML sits on top of XML 
Schema, i.e., uses XML Schema, which eventually results in DTD's to obtain, 
valid, well-formed XML data files. 
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F o r  P l a n t D a t a  X M L ,  w e  t a k e  t h e  U M L  o b j e c t  d a t a  m o d e l  a n d  a p p l y  s o m e  r u l e s  b y  

c o n v e n t i o n  f o r  c o n v e r t i n g  U M L  c l a s s e s ,  p r o p e r t i e s  a n d  r e l a t i o n s h i p s ,  a n d  t r a n s -  

f o r m  i t  i n t o  a n  X M L  S c h e m a  r e p r e s e n t a t i o n ,  a s u b s e t  o f  w h i c h  is  s h o w n  i n  F i g u r e  

4 . 3 . 1 - 7 .  

<ElementType name = "UoShellAndTubeHeatExchanger"  content = "eltOnly" order = "seq"> 
<AttributeType name = "id" dt:type = "id" required = "yes"/> 
<AttributeType name = "UoShel lAndTubeExchangerFlowDirect ion" dt:type = "enumera- 

tion" dt:values = "cocurrent countercurrent crosscurrent multipass unspecified" default = 
"countercurrent"/> 

<attribute type = "id"/> 
<attribute type = "UoShel lAndTubeExchangerFlowDirect ion"/> 
<element type = "UoHeatExchangerDuty" minOccurs = "0" maxOccurs  = "1"/> 
<element type = "UoHeatExchangerOverallHeatTransferCoefficient" minOccurs = "0" 

maxOccurs = "1 "/> 
<element type = "UoHeatExchangerMinimumApproachTemperature"  minOccurs = "0" 

maxOccurs = "1 "/> ~ [ 

<element type = UoHeatExchangerSurfaceArea minOccurs = "0" maxOccurs = "1"/> 
i 

<element type = "UoHeatExchangerSide" minOccurs = "1" maxOccurs  = "*"/> 
<element type = "UoShel lAndTubeExchangerNumberTubePasses"  minOccurs = "0" 

maxOccurs = "1"/> 
<element type = "UoShel lAndTubeExchangerNumberShel lPasses"  minOccurs = "0" 

maxOccurs = "1"/> 
</ElementType> 

<ElementType name = "UoHeatExchangerOverallHeatTransferCoefficient" content = "tex- 
tOnly" dt:type = "number"> 

<AttributeType name = "energyFluxPerTempUnits" dt:type = "enumeration" dt:values = 
"W.m-2.K-1 BTU.hr-l . f t -2.R-1" default = "W.m-2.K-1 "/> 

<attribute type = "energyFluxPerTempUnits"/> 
</ElementType> 

<ElementType name = "UoHeatExchangerMinimumApproachTemperature"  content = "tex- 
tOnly" dt:type = "number"> 

<AttributeType name = "temperatureUnits" dt:type = "enumeration" dt:values = "K C R F" 
de fault = "K"/> 

<attribute type = "temperatureUnits"/> 
</ElementType> 

<ElementType name = "UoHeatExchangerSurfaceArea" content = "textOnly" dt:type = 
"number"> 

<AttributeType name = "areaUnits" dt:type = "enumeration" dt:values = "m2 ft2" default = 
"m2"/> 

<attribute type = "areaUnits"/> 
</ElementType> 

Figure 4.3.1-7 Partial XML Schema derived from the UML data model. 
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Note t h a t  the  schema  uses  class n a m e s  and  a t t r ibu te  n a m e s  from the  U ML da ta  
model.  Also, note t h a t  some a t t r ibu tes  have  un i t s  of m e a s u r e m e n t  defined alter- 
na t ive  val id  cha rac t e r  s t r ings  t h a t  are acceptable  for des igna t ing  uni ts .  

Tak ing  this  XML Schema,  t h e n  it now becomes possible to i n s t a n t i a t e  XML da ta  
files t h a t  conform to the  P l a n t D a t a  XML Schema.  An example  XML da ta  file is 
shown  in F igure  4.3.1-8. 

<UoShellAndTubeHeatExchanger id = "101-E" UoShellAndTubeExchangerFlowDirection 
= "countercurrent"> 

<ProcessDefinitionDescription>Stripper Reboiler</ProcessDefinitionDescription> 
<ProcessDefinitionType>UoShellAndTubeHeatExchanger</ProcessDefinitionType> 
<ProcessPort id = "shell inlet" ProcessPortType = "material" ProcessPortNormalFlowDi- 

rection = "inlet"> 
<ProcessPortFunction>tower stage n-1 feed to reboiler</ProcessPortFunction> 
<ProcessPortStreamReference>T- 101 Stg n- 1 Liquid</ProcessPortStreamReference> 

</ProcessPort> 
<UoHeatExchangerDuty energyFlowUnits = "BTU.hr- 1 ">3785400 

<AJoHeatExchangerDuty> 
<UoHeatExchangerOverallHeatTransferCoefficient energyFluxPerTempUnits = "BTU.ft- 

2.hr- 1 .R- 1 ">69<AJoHeatExchangerOverallHeatTransferCoefficient> 
<UoHeatExchangerMinimumApproachTemperature temperatureUnits = "F">20 

</UoHeatExchangerMinimumApproachTemperature> 
<UoHeatExchangerSurfaceArea areaUnits = "fi2">8471 

<AJoHeatExchangerSurfaceArea> 
<UoHeatExchangerSide UoHeatExchangerSideType = "shell"> 
<UoHeatExchangerSidelnletTemperature temperatureUnits = "F"> 195.8 

<AJo He atExchan ger Side In I etTemp erature> 
<UoHeatExchangerSideOutletTemperature temperatureUnits = "F">231.1 

<AJoHeatExchangerS ideOutletTemperature> 
<UoHeatExchangerSidelnletPressure pressure-gUnits = "psig">234.2 

</UoHeatExchangerSidelnletPressure> 
<UoHeatExchangerSidePressureDrop pressure-gUnits = "psig">8 

<AJoHeatExchangerSidePressureDrop> 
</UoShellAndTubeHeatExchanger> 

Figure 4.3.1-8 Partial XML Data file based on XML schema 

At this  point  we have  shown  pa r t i a l  examples  of the  P l a n t D a t a  XML develop- 
m e n t  methodology  to i l lus t ra te  the following steps.  

1. We ident i f ied a commerc ia l ly  i m p o r t a n t  use case - specifying process uni t  
opera t ion  da ta  onto a shell  and  tube  exchanger  da t a  shee t  and  pass ing  
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that  information to a heat exchanger designer for subsequent use in a heat 
exchanger design program. 

2. We developed a partial  UML data model that  was directly derived from the 
AP 231 engineering data model. 

3. We used the UML data model to derive an XML Schema. 
4. We used the XML Schema definition to populate and XML data file. 

Continuing through the PlantData XML methodology, we next complete an engi- 
neering-oriented application programming interface, implement the reusable 
XML software component that  reads and writes the XML data files and finally 
deploy that  component in several commercial software packages. Then we itera- 
tively and incrementally add capabilities until the commercially important scope 
of data, e.g., for a shell and tube exchanger data sheet has been completed. 

4.2.8 S U M M A R Y  

In this chapter, we reviewed the motivations for software integration architec- 
tures in the process industry. We described PlantData  XML and have shown 
how a process industry s tandard XML vocabulary, combined with reusable XML 
software components can lead to a very cost-effective synchronous and asynchro- 
nous software integration architecture that  also provides a sound technical basis 
for vendor-neutral data archival and more intelligent B2B e-commerce transac- 
tions in the process industry. 

PlantData  XML builds upon the previous ISO standards development work. 
PlantData XML unlocks the value in these standards by making these standards 
much easier and more practical to use as well as being orders of magnitude less 
expensive to implement in commercial software. 

We have described a development methodology for PlantData  XML that  follows 
the principles of the Unified Software Development Process, whereby commer- 
cially significant use cases are developed first, and then used to iteratively and 
incrementally develop capabilities over a period of time to eventually handle the 
extremely large scope of process plant information. In i l lustrating this methodol- 
ogy by an example for shell and tube exchangers, we have shown how it is possi- 
ble to derive a UML data model from the AP 231 IDEF1X engineering data model 
and then develop an XML Schema that  reflects the structure in the UML data 
model. 

PlantData XML is being implemented in commercial software as part  of its de- 
velopment process. Several companies have committed to use PlantData XML 
and the ePlantData software component to achieve commercially successful soft- 
ware integrations before the end of 2001. Process designers from Insti tut  Fran- 
cais du Petrole (IFP) and equipment designers from Kellogg Brown & Root (KBR) 
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will use process simulation programs, equipment design programs and equip- 
ment  detailed mechanical design programs throughout the life cycle of heat ex- 
changer design, engineering and procurement.  Leading providers of these soft- 
ware packages will provide commercial software tha t  implement  the PlantData  
XML standard.  These companies include Chemstations, Inc., a global supplier of 
process simulators and heat  exchanger design packages, Heat  Transfer Research, 
Inc. (HTRI), a leading provider of thermal  heat  exchanger design software, and 
COADE, Inc., a global provider of detailed mechanical vessel design software. 
WaveOne.com is an Application Services Provider who provides process engineer- 
ing software, and XML data repositories to support team-based collaborative 
problem solving environments on the Internet.  All of these forward-looking ven- 
dors have committed to implement  PlantData  XML interfaces into their commer- 
cial software in 2001. Users of these leading software companies' products and 
services will experience the benefits of P lantData  XML software integration ar- 
chitectures first. As practical usage spreads and significant benefits are realized, 
we anticipate more vendors will support the PlantData  XML industry standard 
as well, as their  users demand the benefits of open software architectures and 
support for open industry data exchange protocols. 

The PlantData  XML standard is published and freely available to any companies 
in the process industries to use. A commercial, reusable XML software compo- 
nent, ePlantData, and an electronic data sheet, ePlantData Sheet is also available 
for process industry companies and software vendors to begin using PlantData 
XML right away at low cost. Through the s tandards and the software compo- 
nents, we anticipate tha t  the process industry will have finally achieved a practi- 
cal, inexpensive approach to multi-vendor, multi-company software integration. 
With the eventual  widespread and broad application of electronic data exchange 
architectures over the entire life cycle of process facilities, process industry com- 
panies should reap annual  economic benefits in the hundreds of millions to bil- 
lions of dollars. 

We can only speculate about the future of the Internet,  but  we believe strongly 
tha t  XML is THE key enabling technology for the next generation of the Internet. 
At this time, the Internet  is literally being rebuilt migrat ing away from using 
HTML technology to using XML technology. XML is likely to be used in a whole 
host of ways tha t  we cannot even imagine now. For example, we can imagine, 
geographically remote collaborating teams sharing project information and tech- 
nical details at fine grained levels ra ther  than  coarse-grained document levels 
like we do now. We can imagine using XML to remotely monitor process plants in 
a remote client-server extranet  architecture. We imagine XML will be a key 
software integrat ion mechanism across the Internet  for all kinds of e-commerce 
transactions. For example, it should be possible to create Internet  agents that  
search out qualified suppliers based on a highly detailed set of technical require- 
ments  tha t  are par t  of electronic data sheets and electronic project and procure- 
ment  databases. However, while the promise of using XML to its maximum po- 
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tential for the benefit of the process industry is exciting to contemplate, it clearly 
depends on the process industry developing a comprehensive set of easy-to-use 
and inexpensive-to-implement industry XML standards. PlantData XML is an 
initial start  down this exciting path to the future. 

4.2.9 R E F E R E N C E S  

[1] W3C Introduction to DOM web page: 
www.w3.orgfrR/WD-DOM/introduction.html 
[2] David Megginson's web site on SAX: http://megginson.com/SAX/index.html 
[3] Microsoft XML Developer Centre Web site: 
http://msdn.microsoft.com/xml/default.asp 
[4] Apache XML Project web site: xml.apache.org 
[5] ePlantData web site: www.ePlantData.com 
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Chapter  4.3: STEP for the Process  I n d u s t r i e s  

R. Murris 

4.3.1 THE CHALLENGE 

Although the discipline of process engineering is well supported by com- 
puter-enhanced tools and software architectures, they are mainly focused 
and thus applicable to only a small part of the process plants lifecycle. The 
average 30 years process plant life span of a typical refinery generally out- 
lives all operating systems, software and databases designs, which were in 
use when the first design drawing was conceived. The longevity of process 
plants and the ongoing functional and physical changes during its life thus 
set out a real challenge for systems and software designers alike. 

During the conceptual engineering phase process plant design information 
flows intensively between specialized departments and once the plant is 
built operational data is recycled to be used as input for plant optimization 
and revamps. So data from many sources, created by a multitude of appli- 
cations must be exchanged not only within the company but also increas- 
ingly with supporting companies like equipment suppliers, engineering 
and maintenance contractors. In the 1980's the exchange data consisted 
mainly of non-intelligent 2D schematics and 3D-shape representation and 
was dominated by the de-facto standards like AutoCAD's dxf/dwg formats 
and the more official but ambiguous standard called IGES. 

During the mid 1980's Computer Aided Design support tools became 
mainstream in the process plant design cycle and the requirements for 
data exchange between the variety of implementations grew outside the 
scope and capabilities of the mentioned (de-facto) graphics data exchange 
standards. 

4.3.2 HISTORY 

In the 1980's the US department of defense (DoD) was one of the firsts to 
identify the growing data exchange problem. Efficient logistics around de- 
fense material and spare-parts for military weapons systems is one of the 
pre-requisites for fast military deployment. In 1980 the DoD relied on ap- 
proximately 3500 third parties supplying equipment and parts. CALS 
(Continuous Acquisition and Logistics Support) was founded to reduce the 
huge amount of paper-based documents, the poor communication between 
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the suppliers and to reduce the cycle time between order and supply. The 
CALS exchange requirements  stretched beyond the boundaries of graphics 
alone. It also included business and product data like purchase orders, in- 
voices, product specification, sound, images etc. Later  additional require- 
ments like 'openness' and 'software vendor independence' were added. In 
1986 these became the founding principles of the ISO-10303 (STEP)stan-  
dard. 

4.3.3 ISO-10303 or  STEP  

The STandard for the Exchange of Product model data (STEP) is the acro- 
nym for the full ISO-10303 standard.  STEP consists of parts  each having a 
distinct function within the formalization of exact data exchange within a 
predefined set of business activities (the scope). 

All the steps from the outset of the data exchange scope unti l  t he  valida- 
tion of an application protocol in the form of data test-suites are supported 
by this standard.  The methods for creating an application protocol are all 
par t  of the STEP standard and are validated and quality assured through 
the ISO technical sub committee TC184/SC4. The acceptance of an appli- 
cation protocol as an Internat ional  Standard (IS) although supervised by 
ISO is done by the p-members. These permanent  members (countries) of 
ISO take par t  in several balloting procedures carrying the protocol from a 
NWI (new work item) to the final IS. Due to the formal and lengthy proce- 
dures it can take up to seven years for a part icular  application protocol to 
acquire the IS status.  

4.3.4 A P P L I C A T I O N  P R O T O C O L  221 (AP221) 

In 1995, subsidised by the EC the ESPRIT III project ProcessBase started 
with the development of the ISO-10303 Application Protocol 221. The title 
"Functional data and 2D schematic representation" relates to the concep- 
tual  and detailed design and engineering stages of the process plant lifecy- 
cle. During these activities functional design data and their  representa- 
tions on 2D drawings are frequently passed within the plant-owner's or- 
ganisation and between contractor and client. Both roles of client and con- 
tractor are played by plant-owners, engineering contractors and equip- 
ment  suppliers in any combination. 

Due to the increasing variety in software applications and the difference 
in data models owned and operated by these organisations, standardised 
exchange of data  within the scope of AP221 became an urgent  require- 
ment. When the ProcessBase project ended in 1997 there was still no 
AP221 s tandard but  it was embodied and further developed by a consor- 
t ium of European companies. The development of an Application Protocol 
such as AP221 has turned out to be far more difficult than  initially ex- 
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pected. Due to the enormous amount of different data  types (meta-data) 
within the AP's scope it deemed impossible to create one single exchange 
datamodel to cover it all. The second challenge was the requirement  of full 
lifecycle support. Thus within a single data exchange multiple versions of 
e.g. the same equipment must  be passed without having redundant  data. 
Especially the combination of Data Explicitly Defined Once (DEDO) and 
versioning within the same exchange scenario resulted in a new modelling 
concept, which will here be referred to as the Associative Paradigm. This 
modelling concept has been implemented, with some exceptions, through- 
out the full requirement  model (Application Reference Model) of AP221. 
The methodology to handle huge amount  of process p lant  functional data 
and schematics using this Associative Paradigm is an unexplored area. 
However implementat ions with tradit ional  relational data  tables or ob- 
jects oriented counterparts  have proven until  today to be either too in- 
flexible or just  impossible. 

4.3.5 THE ASSOCIATIVE PARADIGM 

Traditionally we find requirements  of data  models expressed in languages 
like EXPRESS (ISO-10303-11), NIAM, ERD and lately in UML. These de- 
scriptive methods, sometimes accompanied with a strict syntactic lan- 
guage all use a basic set of axioms to model models. In some cases they 
also define a symbol l ibrary to conveniently communicate the results of 
the modelling process to the end-user or developer. In the case of EX- 
PRESS the symbolic notation capability (EXPRESS-G) is far less than  
what  is supported by the modelling language itself. However a clever sub- 
set has been defined which combines powerful, compact presentat ion of 
the model without the end-viewer losing overview. Fur ther  details when 
required can be extracted from the EXPRESS code. 

So when modelling languages fulfil the same requirements,  is there a 
common meta-model for these languages as well? Probably there is and in 
the case of the EXPRESS language this meta-model is quite compact when 
we only consider the data  requirement  par t  and exclude the syntactic 
rules tha t  deal with rules, procedure, functions and uniqueness con- 
straints. Basically the EXPRESS language defines three relation types 
and five basic type of modelling objects. 

The basic five objects are 'schema', 'entity', 'type', 'a t t r ibute '  and 'data 
type'. The three basic relation types are 'specialisation', 'composition' and 
'possession'. A schema can be composed of 0..n entities and types, an entity 
can possess 0..n at t r ibutes and an at t r ibute possesses exactly one data 
type. Each enti ty can have 0..n specialisations to other entities. The fol- 
lowing table expresses the relations between the association types and the 
object types. 
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Table 1 M, 
Object type 
Schema 
Schema 
Schema 
Entity 
Attribute 
Entity 

;ta model definitions for the E X P R E S S  
R o l e  Association Type Role 
W h o l e  Composition Part 
W h o l e  Composition Part 
W h o l e  Composition Part 
Possessor P o s s e s s i o n  Possessed 
Possessor P o s s e s s i o n  Possessed 
Supertype Specialisation Subtype 

language 
Object Type 
Entity 
Type 
Data Type 
Attribute 
Data Type 
Entity 

In 'natural '  (English) language the first record under the header reads as: 
"'An instance o f '  'object type' 'encoded as' 'schema' 'plays the role as' 'an 
instance of 'role' 'encoded as' 'whole' 'in relation with' 'an instance of 'as- 
sociation type' 'encoded as' 'composition' 'with' 'an instance of 'object type' 
'encoded as' 'entity' 'playing the role as' 'an instance of 'role' 'encoded as' 
'part'". This includes all the implicit relations made explicit between the 
table header  information (meta-data) and the records represented in lines 
under the header. When we omit all this implicit information we get more 
readable sentences, however information is lost when only these sentences 
are t ransferred to any receiver who is not aware of this table header and 
structure. The information in the records of table 1 are made more read- 
able and are given in table 2: 

Table 2 Natural  language equivalent of the information in table 1 
'Schema' 'can be composed of 'entities' 
'Schema' 'can be composed of 'types' 
'Schema' 'can be composed of 'data types' 
'Entity' 'can possess' 'attribute' 
'Attribute' 'can possess' 'data type' 
'Entity' 'can be specialised as' 'entity' 

Clearly the described cardinality constraints are missing from the previ- 
ous table although defined in the explanatory text. This means that  the 
natura l  language equivalents of the association types all begin with 'can... ' 
whereas some relations require 'must...'. An example is the relation be- 
tween 'at tr ibute '  and 'data type'. In table 1 this could be achieved by in- 
serting two extra columns (cardinality 1 and 2, abbreviated as C1 and C2) 
with the possible values 1 and range value 0...n. 

Table 3 ex 
Object type 
Schema 
Schema 
Schema 
Entity 
Attribute 
Entity 

9anded with cardinalities 
Role C1 Association Type C2 Role 
Whole 1 Composition 0..n Part 
Whole 1 Composition 0..n Part 
Whole 1 Composition 0..n Part 
Possessor 1 Possession 0..n Possessed 
Possessor 1 Possession 1 Possessed 
Supertype 1 Specialisation 0..n Subtype 

Object Type 
Entity 
Type 
Data Type 
Attribute 
Data Type 
Entity 
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The explicit  sentences  will real ly  become un readab le  because  of the  size, 
however  the  n a t u r a l  l anguage  equiva len t  where  the  same implici t  infor- 
ma t ion  is omi t ted  become: 

Table 4 Natural language equivalent of table 3 
'One' 'schema' 'can be composed of 'zero to many' 'entities' 
'One: 'schema' 'can be composed of 'zero to many' 'types' 
'One' 'schema' 'can be composed of 'zero to many' 'data types' 
'One' 'entity' 'can possess' 'zero to many' 'attributes' 
'One 'attribute' 'must possess' 'one' 'data type' 
'One' 'entity' 'can be specialised as' 'zero to many' 'entities' 

The defini t ions and  re la t ions  in tables  1-4 all describe w h a t  can be ins tan-  
t i a ted  and  not  w h a t  is ins tan t i a ted .  So the in format ion  expressed  in these  
tables  can be used as a ' templa te '  for i n s t an t i a t i on  of indiv idual  records in 
some implementa t ion .  Or the o ther  way  around:  indiv iduals  ma tch ing  the 
cons t ra in t s  can be classified as va l ida ted  member s  of t h a t  t empla te .  One 
can e i ther  explicit ly re la te  an  individual  wi th  an  ins tance  of associat ion 
type 'classification'  or allow software au tomat ica l ly  es tab l i sh  this  associa- 
t ion by invoking a ma tch ing  procedure.  

When  we re - read  the tables  we probably  infer t h a t  the  records all belong 
to a specific in format ion  set. So implici t ly they  are grouped to convey some 
meaning .  W h e n  the word ' templa te '  was  men t ioned  probably  some group- 
ing was  mean t .  In  this  case the  inclusion of the  in format ion  expressed  by 
the six different  sentences.  So wi thou t  wr i t ing  it out  explicit ly we probably  
inferred t h a t  the scope or view of the  t empla t e  included only those six ex- 
pressions.  One can a s sume  however  t h a t  the tables  1...4 can  conta in  mil- 
lions of records and  wi thout  a m e c h a n i s m  to group these  express ions  no 
segrega t ion  can be made  and  its use would be l imited.  Let 's  a s sume  t h a t  
the defini t ion of this  t empla te  is p a r t  of the  context  of someth ing  we have 
defined as 'EXPRESS modelling'  and  recrea te  table  4 wi th  th is  informa- 
tion: �9 

Table 5 Expanded with context 
'One' 'schema' 'can be composed of 'zero to many' 'entities' 'is included in' 'EXPRESS 
modelling' 

. . . . . . . . . .  

'One' 'schema' 'can be composed of 'zero to many' 'types' 'is included in' 'EXPRESS model- 
ling' 
'One' 'schema' 'can be composed of 'zero to many' 'data types' 'is included in' 'EXPRESS 
modelling' 
'One' 'entity' 'can possess' 'zero to many' 'attributes' 'is included in' 'EXPRESS modelling' 
'One 'attribute' 'must possess' 'one' 'data type' 'is included in' 'EXPRESS modelling' 
'One' 'entity' 'can be specialised as' 'zero to many' 'entities' 'is included in' 'EXPRESS 
modelling' 

W h a t  does the  associat ion type ins tance  expressed  as 'is inc luded in' actu- 
ally include? All the  separa te  concepts expressed  as words wi th in  s ingle  
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quotes  or the  explici t  assoc ia t ion  ins t ances  b e t w e e n  those  concepts as de- 
scr ibed above in the  ve ry  long sentence  or both? 

To include all the  expl ic i t  associa t ions  b e t w e e n  the  concepts  we first  m u s t  
m a k e  t h e m  visible. In  the  nex t  table  the  f i rs t  record (sentence)  of table  5 is 
t a k e n  and  the  explici t  associa t ions  are  m a d e  visible (excluding the  asso- 
c ia t ion wi th  the  context):  

Table 6 Mak ing  the sentence explicit 
Sub phrase 
'One' 'schema' 
'is count of 
'can be composed of 

'zero to many' 'enti- 
ties' 
'must be in range' 

'in between' 

Explicit 
'One' 'is count of 'schema' 
'counter' 'is role of 'object' 'is count of 'counted' 'is role of'subject' 
'whole' 'is role of 'object' 'can be composed of 
'part' 'is role of 'subject' 
'entities' 'must be in range' 'in between' 'zero' and 'many' 

'subject to range' 'is role of 'object' 'must be in range' 'range' 'is role 
of 'subject' 
'minimum count' 'is role of 'object' 'in between' 'maximum count' 'is 
role of 'subject' 

Now we b r ing  all the  associa t ions  to the  left and  use  a dif ferent  no ta t ion  
form. H e r e b y  we in t roduce  the  t e r m  'FACT'  and  m a k e  use of line or record 
ident i f ie rs  to allow for easy  referencing.  The  p r e s e n t e d  no ta t ion  form is 
ident ica l  to the  d a t a  sect ion body def ined in ISO-10303 par t21 :  

Table 7 Fact table for one sentence without context 
Facts 
# I=FACT('is count of,#2,#3); 
#2=FACT('is role of,'counter','object'); 
#3=FACT('is role of,'counted','subject'); 
#4=FA CT(# 1 ,' one',' schema'); 
#10=FACT('must be in range',#11,#12); 
# 11 =FACT('is role of,'subject to range','object'); 
# 12=FACT('is role of,'ran~e','subject'); 
#13=FACT('in between',#14,#15); 
# 14=FACT('is role of,'minimum count','object'); 
# 15=FACT('is role of,'maximum count','subject'); 
#16=FACT(#13,'one','many'); 
# 17=FACT(# 10,'entities',# 16); 
#20=FACT('can be composed of,#21,#22); 
#2 I=FACT('is role of,'whole','object'); 
#22=FACT('is role of,'part','subject'); 
# 100=FA CT(#20,#4,# 17); 

By following ~100=FACT(#20 ,#4 ,#17) '  one can  fully r econs t ruc t  the  sen- 
tence  by t r ave l l i ng  t h r o u g h  the table  following the  references .  For  com- 
p l e t eness  we now also add  the  context  and  the  inc lus ion  of the  jus t  de- 
scr ibed # 100=FACT: 
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Table 8 Fact table for one sentence with context 
Facts 
# 100=FACT(#20,#4,# 17); 
#200=FACT('is included in',#201,#202); 
#201 =FACT('is role of,'includer','object'); 
#202=FACT('is role of,'included','subject'); 
#300=FACT(#200,'EXPRESS modelling',#100); 

This whole procedure could be repeated for the next five sentences of table 
4 and resul ts  in a similar  listing found in table 7 and 8. 

Although we have reduced the redundancy of data  considerably, there  are 
still mult iple instances of the same terms.  This is in conflict wi th  the 
DEDO requirement .  Thus we have to define all the facts and str ings only 
once. For this  purpose we introduce a new enti ty type tha t  can facilitate 
this requirement .  Table 8 is fur ther  normal ised using DATA as the place- 
holder for the text encoding. 

Table 9 A n  almost  ful ly  normalised dataset  
Facts and data 
# 100=FA CT(#20,#4,# 17); 
#200=FACT(# 1000,#201,#202); 
#20 I=FA CT(# 1001 ,# 1002,# 1003 ); 
#202=FA CT(# 1001,# 1004,# 1005); 
#300=FACT(#200,#1006,#100); 
#1000=DATA('is included in'); 
#1001=DATA('is role of); 
# 1002=DATA('includer'); 
# 1003=DATA('object'); 
# 1004=DATA('included'); 
# 1005=DATA(' subject'); 
# 1006=DATA('EXPRESS modelling'); 

All the te rms  within single quotes are encoding of concepts wi th in  the 
scope of a par t icu lar  language (English). Another  requ i rement  of neut ra l  
data  exchange is tha t  any receiving party,  irrespective of the language 
background can reconstruct  the information. Al though ISO-10303 allows 
encoding of the str ings in almost any character  set this still won't  satisfy 
the DEDO requirement .  Suppose we wan t  to use two languages  (English 
and Dutch) in the same exchange set and e.g. use the Dutch t rans la t ion  'is 
rol van'  which has the same meaning  as 'is role of. When table 9 is used 
and added with the extra  Dutch te rm this could become: 
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Table 10 Dutch term 'is rol van'  added  
Facts and data 
#201=FACT(# 1001,#1002,# 1003); 
#202=FACT(#1007,#1004,#1005); l! old one was #202=FACT(#1001,#1004,#1005); 

# 1007=DATA('is rol van'); 

Although there is no duplication of te rms in this set there  seems to be a 
duplication of concepts. Because 'is role of and 'is rol van' are the same 
concepts but  in a different language. To overcome this, a possible solution 
is tha t  #1001=DATA('is role of) and #1007=DATA('is rol van') are refer- 
ring to a language independent  'handle'.  A simple but  effective solution is 
the introduction of a unique identifier to which both DATA s ta tements  re- 
fer by using an identification relation: 

Table 11 A d d i n g  identif ication of the concept 
Facts and data 
#201=FACT( # 1009,# 1002,# 1003); 
#202=FACT(#1009,#1004,#1005); 
#1001=DATA('is role of); 
#1007=DATA('is rol van'); 
# 1008=DATA('is identification of); 
#1009=DATA(' 1'); 
#3000=FACT(#1008,#1001,#1009); 
#3001 =FACT(# 1008,# 1007,# 1009); 

The association type of 'is identification of is not modelled the same way 
as is done with other association types in the previous examples because 
one would rapidly run  into recursion. Therefore the object and subject side 
roles of the FACT 'is identification of are directly pointing to DATA in- 
stances instead of other  FACTs as in the examples above. 

The same identification relation and FACTs based on the same principles 
can be added for all DATA terms. In the end all FACTs at t r ibutes  will re- 
fer to unique identifiers expressed as DATA('I ' ) . .  DATA(<n>) instances, 
except for 'is identification of. 

All information expressed above seems to be time independent .  No explicit 
expressions can be found tha t  refer to any time concept. In tradit ional  da- 
ta models and implementat ions  t imes tamps  are found to record either the 
conception data/ t ime of the record or a t imes tamp for wha t  is represented 
by the record or both. Thus it would be logical to add t imestamps  attrib- 
utes to both FACTs and DATA entities. At least for the DATA entity this 
is not necessary because they represent  strings tha t  are considered to be 
always valid. The information is not captured with the DATA but with 
FACTs. Assume tha t  all the FACTs records are s tr ipped from the exam- 
ples above or from a hypothetical  large dataset .  What  remains  is a long 
list of strings, represent ing all words, numbers  etc. It  would resemble the 
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index of a book but  wi thou t  the content  or any page references.  In princi- 
ple it doesn' t  convey any information.  

The informat ion  in this  associative pa rad igm is s tored as FACTs. So can 
we add the t ime recording to FACTs and  thereby  suppor t  vers ioning and 
t ime dependent  var iances  on e.g. design data? It  would implicate tha t  
when  a cer ta in  fact becomes obsolete at  a cer ta in  point  in t ime we mus t  
have a method  to t e rmina t e  its existence. This requi res  an  extra  time- 
s tamp a t t r ibu te  to be able to record its t e rmina t ion  date/ t ime.  One could 
also s imply delete this  fact from the informat ion  set. However  then  there  
would be no way to capture  his tory and go back to ear l ier  versions of e.g. 
design data.  It  is clear t h a t  implement ing  this  solut ion will not  fulfil the 
lifecycle requ i rement .  

In principle vers ioning informat ion  and  the accompanied t i m e s t a m p  series 
are not aspects  of the real  or abs t rac t  world we are t ry ing  to represen t  
wi th  a da ta  set. The t ime con t inuum is an in tegra l  pa r t  of existence be- 
cause wi thou t  it there  is no existence. Thus  if we w a n t  to record informa- 
t ion about  when  e.g. the design of par t i cu la r  piece of equ ipmen t  came into 
existence we are adding date/ t ime informat ion  about  i ts creat ion process. 
So let's a s sume  tha t  we wan t  to record t ha t  a cer ta in  fact from table 11 
s ta r t ed  its life at  March  21 st 2001 at  12:34:23.000 t hen  the  table could be 
expanded wi th  the following records: 

Table 12 Time information added 
I Facts and data 
~ I - = ~ - C  T---(~ 009,# 1002,# 1003 ); 

L#4000=FACT('starts life at',#4001,#4002); 
L#4001 =FACT('is role of,'object','object'); 
~ _#4002=FACT('is role of,'time', subject'); 
[ #4003=FACT(#4000,#201,#4004); 
l,i#4004=DATA('2001-03-21T 12: 34: 23.000'); 

In table 12 the old no ta t ion  (see table 7 and 8) is used  to make  it more 
readable.  However  full normal i sa t ion  is assumed.  Wi th  ano the r  set of 
FACTs and  DATA one could also made explicit wha t  type of ca lendar  and 
t ime encoding has  been used for DATA record #4004. The existence of the 
#201=FACT has now been recorded and  a s imilar  scheme can be used to 
explicitly record its t e rmina t i on  date/ t ime.  To make  it explicit t h a t  s t a r t  
and end of life FACTs are pa r t  of a specific snapsho t  (or version) the same 
method  is used as wi th  inclusion of FACTs in a context.  Table 8 shows this  
for the context  of 'EXPRESS modelling'  bu t  s imi lar  a context  for a part icu-  
lar  version or even va r i an t  can be constructed.  When  there  is a require- 
men t  to record the delet ion of a FACT be tween  two vers ions or va r ian t s  
one could achieve tha t  us ing one of two methods.  You can e i ther  decide to 
create a da ta / t ime t e rmina t i on  FACT in the context  of the las t  ver- 
s ion/var iant  or exclude t ha t  FACT using an explicit 'excluded from' FACT 
in the new vers ion/var iant .  In both cases no in format ion  is lost, h is tory 
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remains  intact  and can be fully reconstructed. It seems a contradiction but  
in the associative parad igm deletion means  addition of facts about the de- 
letion process. 

So even with this fully normalised model and the fulfilment of multi- 
l ingual expression and versioning capability without  violating the DEDO 
principles can we now actually convey information without  any ambiguity? 
This is surely depending on the way the receiver in terpre ts  the association 
types and the data  wi thin  the context given. This methodology of full nor- 
mal isat ion will result  in facts and data  defined only once. One can also 
imagine tha t  descriptions can be added following the same methodology. 
Although it could support  more unambiguous  in terpre ta t ion  of the re- 
ceived information one can never rule-out errors. 

In the examples above we try to explicitly define information about a sub- 
set of the EXPRESS modelling language functionality. However when we 
have to deal with the explicit definition of all information in a process 
plants  design cycle, including its full design history it would be more than  
useful to have some kind of reference dictionary. A dictionary that  can be 
used as lookup table for terms and references to minimise the differences 
between the intended meaning and the actual perceived meaning by the 
receiver. 

The upcoming AP221 s tandard  in its current  state has only about 200 en- 
tities and 200 different association types. The model has  been designed to 
be very flexible and describes high-level concepts such 'individual', 'class', 
'activity', 'physical object', 'event' and 'aspect'. In the AP221 s tandard  how- 
ever one cannot find e.g. entities called 'centrifugal pump',  'vessel' or 'col- 
umn', pieces of equipment  regularly found in process plants.  The amount  
of equipment  and par t  types for which we want  to record the existence is 
current ly exceeding 5.000. It would be impossible to add all these 'classes' 
as explicit enti t ies into the AP221 model. ISO procedures only allow up- 
dat ing of the s t andard  every three years. So in termedia te  updates and ad- 
ditions mus t  be put  in a queue unti l  the next release of the standard.  In 
the mean  time however new equipment  and par ts  are invented and intro- 
duced on a daily basis. 

To allow faster  update  and distr ibution of the dictionary of process plant  
classes it has been decided to main ta in  the dictionary as a separate regis- 
ter. A set of process p lant  related classes and definitions have been cre- 
ated in the past  six years  using the knowledge of 100+ design experts all 
over the world and current ly we recognise more t han  17.000 classes. An 
In te rne t  portal  (www.STEPlib.com) facilitates the main tenance  and up- 
dates of this dictionary bet ter  known as STEPlib. The combination of the 
associative paradigm, a high level model such as AP221 at  its base and the 
solid definition of almost any piece of equipment  main ta ined  in STEPlib 
should facilitate unambiguous  exchange of almost any information be- 
tween par tne rs  in the process industries.  
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Chapter 4.4: The CAPE-OPEN Standard: Motivations,  
Deve lopment  Process,  Technical  Architecture 
& Examples  

J.-P. Belaud, B. Braunschweig & M. White 

The CAPE-OPEN standard was developed in two successive EU-funded projects, 
CAPE-OPEN and Global CAPE-OPEN. Some aspects of CAPE-OPEN are 
presented elsewhere in the book (see chapter 3.3); this chapter gives a broad view 
of the s tandard and presents a few examples. The standard itself is available at 
the www.colan.org website. 

We start  by setting up the scene with a section on motivations and history. Then 
we present elements of the standard: its development process (section 4.4.2); its 
global architecture (section 4.4.3), an example of use (4.4.4) for unit operations 
and physical properties; and a further look at other portions of the standard, 
namely numerical solvers and access to physical properties data bases (4.4.5 and 
4.4.6); the chapter ends with a short conclusion and a presentation of future 
activities and of the CO-LaN organisation. 

4.4.1 MOTIVATIONS & HISTORY 

The CAPE-OPEN project brought together software vendors, global chemical 
manufacturing companies and universities to solve how enterprise software for 
designing and optimising process plants could be made interoperable. The CAPE- 
OPEN project and its successor, Global CAPE-OPEN has had a profound impact 
on the strategic direction and markets for process simulation software. 

At one time, chemical and refining companies built and maintained their own 
simulators. In the 1970s and 80s almost all of these global companies came to 
the conclusion that  there was no strategic value in developing simulators, and 
dropped their own proprietary simulator products in favour of a handful of 
commercial software companies. Maintaining large in-house systems proprietary 
systems with negligible strategic value became too difficult and expensive for 
these large companies. This is a similar trend as other enterprise software 
solutions, including payroll, accounting and human resources, where companies 
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opted not to continue developing in-house software and bought from external 
software vendors. 

By the time CAPE-OPEN was conceived and formed all of the companies on the 
project had successfully divested their proprietary simulators in favour of 
commercial versions from companies like Aspen, Hyprotech or Simulation 
Sciences. The value of the software was in the plant  models, thermodynamic 
packages and solvers that  each of the companies had developed to optimise the 
design processes of their specific plants. Each global company still maintained 
strategic and proprietary plant  models, which were extraordinarily strategic to 
their  businesses. These models were built and used within the earlier 
proprietary simulation packages and now were integrated into commercial 
simulators provided by software vendors. The integration process for adding 
these models was time consuming, painful and expensive. To complicate matters, 
each software vendor had their  own process and approach for integration into 
their respective system. 

As a result  of the difficulties these global companies faced integrating these 
software packages, combined with accelerating software technology trends, the 
CAPE-OPEN project was launched, to create an open system that  would allow 
software vendors, global process operating companies and universities to define a 
s tandard tha t  would allow plug and play of process modelling components across 
commercial simulation packages. CAPE-OPEN's goal and challenge was to 
create a single s tandard for integrating the components of software simulation 
across commercial software suppliers. 

The markets  for process simulators, although crucial to design and operation of a 
petrochemical plant, are mature.  The CAPE-OPEN project enabled software 
suppliers to change the software architecture of their underlying applications and 
to better address the integration needs of their largest customers. The 
collaborative and competitive nature of the CAPE-OPEN project was a perfect 
environment to explore the technical and business direction of process simulation 
software. 

Establishing a business, chemical engineering and software driven standard 
across competitive software vendors was a revolutionary concept. If an open 
system for process simulation could be created it would mark  the first time that  
competitive software companies collaborated to define business standards and 
components across existing enterprise software packages. For the global 
operating companies, this project was a way to: 

Continue to divest non-core software; 
[] Influence standards of their domain; 
[] Reduce cost and time of integrating models and other simulation 

components; 
[] Gain efficiencies in process engineering workflow. 
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For the software company partners, the CAPE-OPEN project was a way to: 

[] Explore avenues for increasing overall market  share; 
[] Improve integration strategies; 
[] Move from monolithic application to flexible component architecture; 
[] Transition to new architecture and technologies with direct user feedback; 
[] Examine new business models for selling and positioning simulation products. 

The CAPE-OPEN project enabled new levels of collaboration across partner  
networks. Competitors and customers alike worked side-by-side to increase the 
value of the process simulation software markets. Each software competitor 
needed to open and discuss their competitive advantage so the market  could be 
expanded for all. 
4.4.1.1 The P r o j e c t s  

The CAPE-OPEN project was funded by the European Commission under the 
Industrial and Materials Technologies Program from January  1997 to June 1999. 
The partners  comprised chemical or petroleum operating companies (BASF, 
Bayer, BP, DuPont, Elf, ICI), a process licensor (IFP, co-ordinator), major 
international vendors of process systems tools (AspenTech, Hyprotech and 
SIMSCI), European academic research groups in the process systems field 
(Imperial College, RWTH-Aachen, INP-Toulouse) and a software consultancy 
(Quantisci). The project developed standard interface specifications for unit 
operations modules, physical and thermodynamic properties systems, numerical 
solvers, and graph analysis tools. 

The second stage of developing an open architecture for process engineering was 
the Global CAPE-OPEN (GCO) project, operating as an IMS activity involving 
interregional collaboration. The partnership in GCO gathered an unprecedented 
setting of highly skilled users, developers and researchers in CAPE. The 
partners represented 50% of the world users of CAPE software, 90% of the 
suppliers, and 10 amongst the top 12 research laboratories on the subject 
worldwide. 

The first achievements of the GCO project were demonstrated during the project 
mid-term meeting hosted by AEAT Hyprotech and collocated with the 
Hyprotech2000 conference in Amsterdam. Painless interoperability of two 
commercial environments from Aspentech and AEAT Hyprotech was 
demonstrated, completed by demonstrations of CAPE-OPEN compliant software 
components from several companies and universities. New standards for 
additional components were presented, and the foundation of the CO-LaN was 
proposed. 

The second half of the GCO project developed these technologies further, giving a 
sound operation basis for the forthcoming CO-LaN initiative. Results of the GCO 
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project were demonstrated at its final technical meeting hosted by Aspen 
Technologies in Cambridge, UK; the results included full commercial 
interoperability of unit  operations and physical properties from several large and 
small software companies, software prototypes for new standards, many 
migrated components from software vendors, universities and end-users. 

4.4.2 THE C A P E - O P E N  D E V E L O P M E N T  P R O C E S S  

CO and GCO relied on a s tructured process start ing from users requirement and 
leading to software implementation, test and validation. The process is meant  to 
be incremental,  as shown on figure 1, and uses UML (Unified Modelling 
Language) notation for use case diagrams, sequence diagrams, component 
diagrams and class/interface diagrams. Interface specification documents contain 
a phased description of these diagrams, in order to allow future users and 
developers to bet ter  unders tand the specifications and how they were developed. 
Examples of UML diagrams and other technical elements are given in section 
4.5.3. 

Users Reqs 
DAE solvers 

, ,4  - - '  oil. 

~ User~ Reqs __.._ 
/ ~ . . . . . .  ~'~ NLEQ solvers 

,,J s 

/ / ," Users Reqs ~ X 
[ /' ,' ~ LEQsolvers :~ \ 

Tests : ' / ~ InterfaceModels... ,. 
a LEQ solvers NLEQ so lve r s  / '  . . . .  [ ] Interface Models h "~I'-- .. lests 

" " LEQ solvers S t a r t  ~/ NLEQ solvers 
\ ~ :  Interface Specs ] 
\ ~ LEQ solvers ] 

~ Prototypes _ _.J , y 
LEQ solvers 

Prototypes ~ . . . . . .  
NLEQ solvers Interface Specs 

NLEQ solvers 

Figure 1: Incremental specification of solvers 

In addition, we used an approval system based on an RFC (Request for 
Comments) process in order to make sure that  all documents benefit from 
contributions from and are agreed by all concerned specialists. The approval 
process consists in a technical validation phase, followed by a period for 
commenting, and concluded by formal voting, with a possibility of recycling at 
any stage in case of failure. 

The technical work process tha t  was followed for each interface is presented in 
Table 1. 
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Table 1: Work Process Phases 
Phase 
ANALYSIS 
ANALYSIS 
DESIGN 

SPECS 

OPTIONAL 
PUBLISH 
IMPLEMENT 
TEST 
TEST 

SPECS 

PUBLISH 

Step 
Users requirements, text 
Users Requirements, Use Cases 
Design Models 

Draft Interface Specifications 

RFC process 

Interface Implementation 
Standalone Testin$ 
Interoperability Testing 

Final Interface Specifications 

RFC process 

Goal 
Requirements in textual format 
Use Case models 
Sequence, Interface, Component 
Diasrams 
Draft Interface specifications in 
COM and CORBA IDL 

, , ,  

Approval of Draft Specifications 

Prototype implementation 
Interface validation 
Validation on interoperability 
scenarios 
Final specifications in COM and 
CORBA IDL 
Approval of final specifications 

The need for such a formal approval process arises from the fact tha t  reaching 
consensus on complex technical documents can be long and tedious, especially 
when many  organisat ions with different backgrounds and different goals have to 
agree. The CAPE-OPEN approval process is based on examples from other 
in ternat ional  bodies, such as the Object Managemen t  Group (OMG), or the 
Petrotechnical  Open Software Corporation (POSC). Compared with  the OMG 
process, the CO process is simplified so tha t  approval  delays are shorter; on the 
other hands  it explicitly takes  into account the s t andards  development process 
with software prototypes playing a major par t  in test ing the specifications for 
interoperabili ty.  The process has been successfully applied in the Global CAPE- 
OPEN project and will be used by the CAPE-OPEN Laboratories  Network. 

4.4.3 T H E  C A P E - O P E N  S T A N D A R D  

This section introduces the current  s ta tus  of the CAPE-OPEN (CO) s tandard  
from a technical point of view. After an introduction to the formal documentation,  
the archi tecture is mentioned. Then, the CO system is modelled concisely and 
three examples of CO specifications are given. Although this chapter  deals with 
the version 0.9.3 of CO, up-to-date information on the s t andard  can be found on 
the official web site [1]. 

4 . 4 . 3 . 1  C O  f o r m a l  d o c u m e n t a t i o n  s e t  

The CO s tandard  is character ised by a unique and global version number  and is 
described by a set of documents.  Each document has its own versioning number  
in order to t rack its own life cycling, however it remains  a subset  of a CO version. 
The road map of the CO formal documentat ion set is shown in the next figure. 
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I CAPE-OPEN standard I 
version 0.9.4 

I ! I I I [ General ~,on II Technical architecture [ I  Business Interface II Common Interface ([Implementati~ Spedfica"on I 

Synthesis Report Integrated Guidelines Thermodynamic and 
Road Map Migration Methodology Physical Properties 

Handbook Unit Operations 
Conceptual Document Integration Report Numerical Solvers 

Path Recommendations Sequential Modular 
Specific Tools 

Identification 

Parameter 

Error 

Specification for COM 

Specification for CORBA 

Figure 1 CO documentation set 

The formal documentat ion set includes the following blocks. Altogether they 
define the current  version of the CO standard:  

[] General  vision contains documents tha t  should be read first to get the 
s t andard  general  information such as general  requi rements  and needs. 

[] Technical archi tecture integrates  the horizontal  technical  materials  and 
defines an inf ras t ructure  aiming at a process s imulat ion based on the CO 
standard.  

[] Business interface contains all vertical interface specification documents. 
These interfaces are domain-specific interfaces for the CAPE application 
domain. They define CO components involved in a CO process simulation 
application. In some way these documents are abstract  specifications, which 
create and document a conceptual model in an implementa t ion neutra l  
manner .  

[] Common interface encloses horizontal interface specification documents for 
handl ing concepts tha t  may be required by any business interfaces. This is a 
collection of interfaces tha t  support basic functions and are always 
independent  of business interfaces. In some way these documents  are abstract  
specifications, which create and document a common conceptual model in an 
implementa t ion  neutra l  manner .  

[] Implementa t ion  Specification contains the implementa t ion  of the business 
and common interface specifications for a given dis t r ibuted computing 
platform. In order to produce CO compliant software components any 
developer has  to use these official interface definitions. 

4.4.3.2 CO a r c h i t e c t u r e  e l e m e n t s  

The CO archi tecture elements section describes technical objectives and 
terminology and provides the infras t ructure  upon which support ing business and 
common interfaces are based. This input  comes from the folder technical 
archi tecture (especially the in tegrated guidelines document) of the CO 
documentat ion set. This section identifies the technologies associated with the 
CO standard,  includes the object model which defines common semantics and 
shows the reference model which embodies the CO interface categories, CO 
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components and communication mode. The CAPE wide-scale industry adoption of 
this CO architecture provides application developers and end-users with the 
means to build interoperable simulation software systems distributed across all 
major hardware, operating system, and programming language environments. 

Selected technologies 

The following technical decisions are supported by the development of CO. More 
general information on these methods and tools is provided in chapter 4.2. Key 
elements are the software system modelling within co-operative working process 
and the distributed computing accessible over the network (intra/extra/internet). 

The CO interfaces are developed and expressed using an object-oriented 
paradigm. This paradigm is currently the best technical solution for developing 
interface standards. It also encompasses the "conventional" procedural approach. 

The standard relies on 
standard assumes that  
components. 

the (distributed) component based approach. The 
a process simulation tool can be made of several 

The s tandard uses object-oriented middleware technology, namely Microsoft 
COM and OMG CORBA that  basically carry out the communication. The 
implementation specifications are available for both middleware. Consequently 
the s tandard is independent from implementation languages, and is applicable to 
several hardware platforms and operating systems. Furthermore, 
interoperability of CO software components over a network of heterogeneous 
system is guaranteed. 

The s tandard allows the encapsulation of legacy code, such as Fortran code, to 
deliver CO software components. 

The Unified Modelling Language (UML) is extensively employed for visualizing, 
specifying, constructing and documenting the artifacts of CO. 

CO object model 

The object model inherits from the OMG and Microsoft object model. Due to some 
conceptual inner choices a specific model is built and becomes a CO object model. 
Its main characteristics are explained in a few words in this section. 

The CO object model provides an organised presentation of object concepts and 
terminology. It defines common semantics for specifying the externally visible 
characteristics of interface objects in a standard implementation-independent 
way. In other words, it defines which interfaces, operations, formal parameters, 
attributes, data types, classes, objects and components are in the scope of CO 
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system. The design of interfaces included in the business and common interface 
specification documents are built from this CO object model. 

Interface: An interface (in fact object class stereotyped <<interface>>) is a 
collection of possible uses in order to specify through its operations the service of 
a class. To standardise the interfaces specific to the CAPE domain is one major 
objective of CO. They are classified as business or common interfaces. At this 
level, they are designed in an abstract manner, explicitly using the UML notation 
and the CO object model. English being the base language, the CO interfaces 
follow the naming convention such as ICapePackageIdentifier within a scope of 
packages organisation where the global package is CapeOpen. 

From the conceptual models of business and common interface specifications, the 
implementation specifications are expressed in Microsoft Interface Definition 
Language and in OMG Interface Definition Language. 

Object: An object is an instance of a class. An object satisfies a CO interface if it 
can be specified as the target object in each potential request described by the CO 
interface. It belongs to the implementation step and so is out of the CO scope. 
The development of a CO compliant software does not imply the choice of an 
object-oriented language. Indeed platforms such as COM and CORBA introduce a 
kind of pseudo objects. 

Component: The component is a blob of software that  encapsulates the 
implementation of some business process logic. It is important to distinguish the 
component and object technologies. The former is a packaging and distribution 
technology, focusing on what a component can do, while the latter is an 
implementation technology, focusing on how a component works. Thus a CO 
compliant component is a piece of software that  wraps up the proprietary objects, 
which realise or use CO interfaces. The communication between CO component 
instances is defined by the standard. 

In order to make the difference between the service provider and the service 
requestor, the s tandard distinguishes two kinds of CO software components: 
Process Modelling Component (PMC) and Process Modelling Environment 
(PME), the former providing services to the latter. Typically, the PMEs are 
environments that  support the construction of a process model, and allow the 
end-user to perform a variety of different tasks, such as process simulation or 
optimisation. The distinction between these two components is not readily 
obvious. Furthermore, it is worth noting that, in the near future, it will be 
possible to assemble any number of PMCs to deal with a specific process 
simulation task. 

CO reference model: The CO reference model, i l lustrated in the next figure, 
identifies and characterises the components, interfaces, and communication 
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protocols. It includes the middleware component tha t  enables the communicat ion 
in a dis t r ibuted environment,  the CO components (PMEs and PMCs) and two 
categories of interfaces (common interface and business interface). 

Figure 2 Reference model 

The middleware component is the basic mechanism by which objects 
t r ansparen t ly  make  requests  to and receive responses from each other  on the 
same machine or across a network. It forms the foundation for building open 
simulat ion applications constructed from distr ibuted CO components  in both 
homogeneous and heterogeneous environments .  According to the selected 
middleware technologies, the communicat ion protocol is GIOP/IIOP for OMG 
CORBA and DCE RPC/COM for Microsoft COM. 

The business interfaces are domain-specific interfaces for process engineering 
applications. Within this category, impor tan t  classes of PMCs are identified such 
as physical properties,  unit  operation modules, numerical  solvers, and flowsheet 
analysis tools. 

The common interfaces are general-purpose interfaces tha t  can be fundamenta l  
for developing useful CO components. They are a collection of interfaces tha t  
support  basic functions, which allow reusing of design concepts. The adopted CO 
common interfaces are declined in parameter ,  identification and error interfaces. 
Pa rame te r  interface defines a pa r ame te r  service for CO components  tha t  wish to 
expose their  ma themat ica l  model in ternal  data.  Identification interface defines 
an identification service for CO components tha t  wish to expose their  names  and 
descriptions. This information refers to a component-specific instance.  Error  
interface describes how a CO component has to manage  an abnormal  execution 
terminat ion.  It defines a classification and a hierarchy of errors tha t  may occur 
during a process simulation. 
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4.4.3.3 CO standard content 

In order to describe the content of the current CO standard, this section exploits 
the UML model of CO system. After introducing its scope, the different classes of 
PMCs are detailed, as well as the relations between them and any PMEs. Those 
can be thought as the physical views of the model. Then, the analysis of packages 
and their  dependencies will be done coming from the logical view. 

Scope: Open architectures can benefit many different types of process 
engineering software. However, the CO s tandard is specifically focused on 
general tools for process modelling and, in particular,  on their  use for steady- 
state and dynamic simulation. Moreover, the s tandard recognises explicitly the 
de facto existence and widespread practical usage of two different types of such 
tools, namely the modular  and equation-orientated ones. Currently the CO 
s tandard does not cover file format, physical model content, accuracy of models 
and data, graphical user interface, process synthesis and computational fluid 
dynamics. 

Extracting CO components: physical view: The next figure i l lustrates the physical 
aspects from the component view in the frame of a CO simulation system. It 
shows the relations of dependency between the different PMCs and a PME. 

Figure 3 Relations between PMC and PME 

The following sections consider in greater detail the actual scope of each type of 
component defined by CO. It also describes the key concepts underpinning each 
PMC and its main characteristics. 

Thermodynamic and physical property component: In the area of physical 
properties, CO has focused on uniform fluids that  are mixtures of pure 
components or pseudo-components, and whose quality can be described in terms 
of molar composition. The physical properties operations that  have been provided 
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with standardised interfaces are those required for the calculation of vapour- 
liquid-liquid-solid equilibrium or subsets thereof, as well as other commonly used 
thermodynamic and transport  properties. A key concept in CO is that  of a 
material  object. Typically, each distinct material  appearing in a process (in 
streams flowing between unit  operations, as well as within individual unit  
operations) is characterised by one such object. Each unit  operation module may 
interact with one or more material  objects. To support the implementation of the 
above framework, CO has defined standard interfaces for material  objects as well 
as thermodynamic property packages, calculation routines and equilibrium 
servers. 

Unit operation component: CO has defined a comprehensive set of s tandard 
interfaces for unit operation modules being used within modular and steady-state 
PMEs. A unit operation module may have several ports, which allow it to be 
connected to other modules and to exchange material, energy or information with 
them. In the material  case (which is also the most common), the port is 
associated with a material  object. Ports also have directions (input, output, or 
input-output). Unit operation modules also have sets of parameters.  These 
represent information, which are not associated with the ports but that  the 
modules wish to expose to their clients. Typical examples include equipment 
design parameters  (e.g. the geometry of a reactor) and important  quantities 
computed by the module (e.g. the capital and operating cost of a reactor). 

Numerical solver component: Here, CO has focused on the solution algorithms 
tha t  are necessary for carrying out steady-state and dynamic simulation of 
lumped systems. In particular, this includes algorithms for the solution of large, 
sparse systems of non-linear algebraic equations (NLAEs) and mixed (ordinary) 
differential and algebraic equations (DAEs). Algorithms for the solution of the 
large sparse systems of linear algebraic equations (LAEs) that  often arise as sub- 
problems in the solution of NLAEs and DAEs have also been considered. CO has 
introduced new concepts, such as models and the equation set object (ESO), 
which is a software abstraction of a set of non-linear algebraic or mixed 
(ordinary) differential and algebraic equations. The s tandard ESO interface 
enables an access to the structure of the system, as well as to information on the 
variables involved. The equations in any model may involve discontinuities. 
Discontinuous equations in models are represented as state-transit ion networks 
(STN). A formal presentation of numerical (solvers) methods is given in chapter 
3.2.. 

Sequential modular specific tool component: A key part  of the operation of 
sequential modular simulation systems is the analysis of the process flowsheet in 
order to determine a suitable sequence of calculation of the unit  operation 
modules. Thus, typically the set of units in the flowsheet is partit ioned into one 
or more disjoint subsets (maximal cyclic networks, MCNs), which may then be 
solved in sequence rather  than simultaneously ("ordering"). The units within 
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each MCN are linked by one or more recycle loops while calculations involving 
them are converged via the identification of appropriate "tear streams" and 
through iterative solution techniques. The above tasks are typically carried out 
using a set of tools tha t  operate on the directed graph representat ion of the 
flowsheet. CO has defined s tandard interfaces for the construction of these 
directed graphs, and for carrying out partitioning, ordering, tearing and 
sequencing operations on them. 

Organising services: logical view: We study now the s tandard  from the logical 
view. The s tandard  has a large scope and already defines an important  number of 
interface classes. Fur thermore this number  will increase along the standard life 
cycle. As the interface is a s tructural  element, which is too small in a real system 
such as CO, the s tandard uses extensively the package concept, which acts as a 
grouping element. A package forms a logical set of related interfaces with high 
internal  coherence and low external coupling. The division in packages brings 
many advantages such as an easier management  of the system complexity, an 
improvement of the maintainabi l i ty  and the life cycling. Coherence and 
independence are the fundamental  principles in order to organise the structure of 
CO packages. It is interesting to notice that  a logical package does not assign 
automatically a corresponding physical component. This is the case for CO where 
services of a CO component are specified through several packages. When one 
package, acting as a "client", uses another, acting as a "server", to supply needed 
services, the client package is said to be dependent on the server package. The 
structural  model of analysis i l lustrates the dependencies between CO packages. 
The next figure only displays second level package dependencies (CapeOpen 
package being the "mother" package). 

Figure 4 Package dependencies 

The business and common interface folders of the CO formal documentation set 
contain all the specifications that  is under the package CapeOpen. 
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The logical view that  contains the design view and its related structural 
organisation can be seen as abstract since it remains middleware independent. 
The implementation specification folder of the CO formal documentation set 
encloses the design of CO system applied to COM and CORBA. The standard files 
for COM and CORBA platform are respectively CAPE-OPEN.tlb and CAPE- 
OPEN.idl knowing that  they are distributed as a whole. CAPE-OPEN.tlb is a 
type library (a compiled version of the Microsoft IDL source) required by the MS- 
Windows operating system. CAPE-OPEN.idl is a file expressed in OMG IDL. No 
corresponding compiled version is provided because that  would be a strong 
contradiction to the CORBA objective of implementation independence. 

4.4.3.4 Example  1: CO unit  opera t ion  

In order to illustrate an open interface specification, this section gives some 
information on a CO unit operation component. The complete data can be found 
in the CO formal documentation set. The unit  operation open interface 
specification document from the business interface folder is the central 
contribution. 

To look at this specification we will follow the different phases defined by the CO 
development process through UML diagrams and parts of specification code. No 
information will be supplied on the implementation and validation phases. 

Analysis: This specification describes the unit operation (UO) component of the 
CO System. The CO unit operation deals with straightforward unit  operation 
using regular fluids in a sequential modular, steady-state simulator. It makes 
use of a physical properties interface. This behaviour is currently extended to 
deal with equation-oriented simulation mode and dynamic simulation but this 
has not been validated yet and so does not belong to the current  CO standard. 

The next figure shows the type of information passing through public unit 
parameters  and the transfer of stream information between a sequential modular 
simulator and a CO UO. It describes a part  of the system behaviour. 

The global variables are essential for the calculation of heat  and mass balances 
(e.g. stream temperatures,  ...). They have mandatory names across all CO 
interfaces and are included in the CO standard. These variables are visible 
across all CO components. 

The public unit parameters  (PUPs) are used for control/optimisation (sequential 
modular simulators) and custom reporting. They are internal  variables of a CO 
UO and are named and made accessible to CO interfaces. Their names are not 
part  of the CO standard. PUPs can also be identified as "read only" if they are 
calculated by the UO and therefore should not be changed (otherwise a CO error 
is raised). 
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Figure 5: Some requirements on Unit Operations 

Then the user  requirements  are expressed  as a use case model.  It identifies the 
"users" of the system,  called actors, and describes in terms of use cases  what  they 
wish  the sys tem to do. It also identif ies  the boundaries  of the system,  which here 
is a unit  operation model  of a steady state,  sequent ia l  modular  process simulator. 
Different use cases  categories  and priorities are described. Actors are defined 
such as a f lowsheet  builder, a f lowsheet  user, a f lowsheet  solver or a s imulator 
executive.  One must  notice that  some actors are h u m a n  ones whi le  other are 
software ones.  The two next  figures present  a reduced use case map and the 
description of a use case. Note that  the actor f lowsheet  user usual ly  interacts 
wi th  the CO unit  operation through a graphical user  interface provided by the 
PME. The use case "evaluate a unit" is executed w h e n  the user runs the 
f lowsheet .  The f lowsheet  solver actor is responsible for the f lowsheet  to converge 
by adjust ing the variables  in order to reach a specified value criterion. 

Figure 6 Reduced use case map 

Evaluate unit 
Actors: <Flowsheet User>, <Flowsheet Solver> 
Priority: <High> 
Classification: < Unit Use Case>, <Specific Unit Use Case> .... 
Status: < This Use Case is fulfilled by the following methods: 
Calculate> 
P re-conditions : 
< [Add Unit to Flowsheet] has been used and successfully passed> 
< The input and output ports (material, energy or information) have 
been connected> 
Flow of  events: 
The unit is requested to calculate its required results. The 
Fiowsheet Solver tells the unit to calculate. The unit then requests 
its unit ports to get its input stream data using the [Get Input 
Material Streams from Input Ports] and [Get Input Energy Streams 
from Input Ports] Use Cases, as well as the current values of  any 
required Public Unit Parameters (including its own) using the [Get 
Values of  Public Unit Parameters Through lnput Ports] Use Case. 
I f  some specific data has been provided by the Flowsheet Builder, 
but has not yet been retrieved by the unit, the unit gets this specific 
data. The unit then attempts to perform its calculations. It may also 
make several requests for physical property ... 
Post-conditions: 
< The unitfinished its calculations successfully or not> 
Exceptions: 
< The unit may not solve successfully> 
~ubordinatr Use Cases: 
[Therm o: Request Physical Properties] 
... 

Figure 7 Use case description 

Design: The CO unit  operation design model  is described by a combinat ion of text 
and U M L  diagrams so as to display the solutions derived for the requirements  
expressed  in the previous section. The relevant  UML diagrams are the interface, 
state  and sequence  diagrams.  In this  section, we propose some fundamental  
d iagrams as an i l lustration.  

Within  the content  of the CO package Unit ,  the following types are defined: 
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four interfaces (ICapeUnit, ICapeUnitPort ,  ICapeUnitCollection, 
ICapeUnitReport) and their corresponding arrays, two ordered lists of identifiers 
(CapePortType, CapePortDirection) and their  corresponding arrays. 

[] ICapeUnit  is the key interface and handles most of the interaction. 
[] ICapeUnitPort  provides access to a unit  port. This in tu rn  gives access to 

material,  energy and information s t reams provided by the PME. 
[] ICapeUnitCollection provides a means of merging lists of entities such as 

parameters  and ports. 
[] ICapeUnitReport  provides access to the reporting facilities. This is a basic 

design in the Unit  package. The reporting facility is a candidate as a common 
interface specification for next releases of the standard.  This interface could 
be removed from the Unit  package in the future, being replaced by a link to 
the Reporting package. 

Figure 9 is a simplified interface diagram for the Unit  package. This diagram is 
abstract  which means tha t  it is independent  of any middleware implementation.  
The Connect operation description, provided in Figure 9, i l lustrates how each CO 
operation is detailed. 

Figure 8 Interface diagram Figure 9 Description of an operation 

The sequence diagram that  captures t ime-oriented dynamic behaviour is greatly 
employed within all interface specification documents in order to show 
interactions organised around CO interface objects and their  links to one 
another. The following figure proposes a possible scenario when the Flowsheet 
User manipulates  a CO compliant unit  operation through a PME. However let us 
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note tha t  this scenario i l lustrates only some messages among all the necessary 
interactions such as to add, create, edit, report, save and restore unit. 

Figure 10 Manipulate unit 
Specification: From the previous section, the implementat ion specifications are 
wri t ten for the Microsoft COM and OMG CORBA distr ibuted computing 
platform. Due to differences between these two platforms, it is not surprising to 
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get two codes, which are not so similar even if they come from the same abstract 
design model. 

Below you can find Microsoft IDL code lines and OMG IDL code lines. These 
examples are based on the ICapeUnitPort interface and are extracted from the 
files CAPE-OPENv0-9-4.tlb and CAPE-OPENv0-9-4.idl in the implementation 
specification folder. From these  extracts, we can notice the different approaches 
especially in regards to the inheritance scheme and the error handling. 

[ 
object, 
uuid(ICape UnitP ort_IID), 
dual, 
helpstring("ICape UnitP ort Interface"), 
pointerdefautt(unique) 
] 
interface ICapeUnitPort: 1Dispatch 
( 
//Exceptions : ECapeUnknown, ECapeFailedlnitialisation 
[propget, id(1), helpstring("type of  port, e.g.material, energy or information")] 
HRESUL T type([out, retval] CapePortType* portType) ; 
//Exceptions : ECapeUnknown, ECapeFailedlnitialisation 
[propget, id(2), helpstring("direction of  port, e.g. input, output or unspecified')] 
HRESUL T direction(lout, retval] CapePortDirection * portDirection) ; 
//Exceptions : ECapeUnknown, ECapeFailedlnitialisation 
[propget, id(3), helpstring("gets the objet connected to the port, e.g. material, 
energy or information')] 
HRESUL T connectedObject([out, retval] Capelnterface * connectedObjec O; 
//Exceptions : ECapeUnknown, ECapelnvalidArgument 
[id(4), helpstring("connects the port to the object sent as argument, e.g. 
material, energy or information")] 
HRESUL T Connect([in] Capelnterface* objectToConnect) ; 
//Exceptions : ECapeUnknown 
[id(5), helpstring("disconnects the port")] 
HRESUL T Disconnect O; 
1: 

Figure 11 Implementation specification 
for COM 

interface ICape UnitPort : 
Common: :Identification: : ICapeldentification { 

CapePortType GetTypeO raises 
(Common: :Error: : ECape Unknown 
Common: :Error: : ECapeFailedlnitialisation) ; 

CapeP ortDirecti on GetDirecti onO raises 
(Common: :Error: : ECape Unknown, 
Common: :Error: : E CapeFailedlnitialisation) ; 

Thrm: : Cose : : ICape ThermoMaterialObject 
GetConnectedObject 0 raises 
(Common: :Error: : ECape Unknown, 
Common: :Error: : ECapeFailedInitialisation) ; 

void Connect(in Thrm: :Cose: : ICape ThermoMaterialObject 
matObj) raises 
(Common: :Error: : ECape Unknown, 
Common: :Error: : ECapelnvalidArgument) ; 

void Disconnect 0 raises 
(Common: :Error: : ECape Unknown) ; 
l: 

Figure 12 Implementation 
specification for CORBA 

4.4.4 EXAMPLE OF USE 

This example is reproduced by kind permission of the Global CAPE-OPEN's 
Interoperability Task Force team led by BP. It uses excerpts of an 
interoperability scenario developed by this task force. 

Initially intended to test the specifications and to achieve the necessary steps 
towards full interoperability of CO-compliant unit operations and thermo 
components, the scenario also demonstrates the use of the CO interface 
specifications in current implementations. 

The scenario lists actions and situations that would arise during typical day-to- 
day use of CO simulation components and CO-compliant Simulator Executives 
(COSE's). It is primarily concerned with the simulation user's actions, however it 
also lists software actions that are hidden from the user. Any specific 
implementation suggestions are included solely for the purposes of illustration. 
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Software actions are marked in italic style. These actions generally correspond to 
calls to CO interfaces, shown in computer l i s t i n g  s tyle .  We only show the 
methods invoked at each step, not their parameters .  

For the purposes of this exercise, the following assumptions are made: 
The CO unit  component used in the tests is a mixer/splitter. 
All streams, both inlet, outlet and internal, have the same mater ia l  template. 

Add a CO Unit to the Flowsheet 

User selects a CO mixer-splitter from a palette of unit  operations and places it on 
the flowsheet. 

COSE asks the unit to initialise itself. ( I C a p e U n i c  : : I n i t i a l i z e  ( ) )  

The user selects or creates the streams and requests  the COSE to connect them 
to the ports of the unit, preferably in a way consistent with the rest of the 
flowsheet. ( ICapeUnit : : GetPorts ( ) , ICapeUnitCollection : : Item ( ) , ICapeUnitPort :: 
GetType () , ICapeUnitPort : :GetDirection () , ICapeUnitPort : :Connect ()) 

Enter Unit Specific Data 

The COSE requests the unit for a user interface (UI). I f  a UI is available, it is 
displayed. I f  not, the COSE could attempt to construct one from the unit's list of 
Public Unit Parameters, or report to the user. (ICapeUnit::GetParameters(), 
ICapeUnitCollection: : Item() , ICapeParameter : :GetValue ( ) , ICapeParameter: :GetM 
ode(), ICapeParameter: :GetSpecification()) 

User inputs data, including selection of final and monitor reports. 
(ICapeParameter: :SetValue () , ICapeUnit: :GetReportObject () , ICapeUnitReport : :G 
etReports() , ICapeUnitReport::SetSelectedReport()) 

When the input is complete the unit checks its parameters for validity and 
consistency and reports any errors. 
(ICapeUnit: :Validate() , ICapeUnit: :GetValStatus() ) 

Make Simulation Run 

User asks the COSE to calculate the fiowsheet. 
COSE asks the unit for the reporting options chosen by the user and acts 
accordingly during the simulation run. (zcapeunic: :GeCReportObject (), 
ICapeUnitReport : : GetSelectedReport ( ) ) 

COSE asks the unit to calculate itself. (ICapeUnit::Calculate0) 

The unit retrieves the materials associated with its streams by requesting them 
from its ports. (ICapeUnit : :GetConnectedObject ()) 
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The unit creates a n  internal material object. This is to contain the mixed feeds. 
The unit may create an internal array to contain the mixed composition. This is a 
possible way to minimise calls to the material object to set compositions. 
(ICapeThermoMaterialTemplate : : CreateMaterialObject ( ) ) 

The unit requests the mixed stream and all the outlet streams to postpone 
calculation of their internal states until it has finished defining the compositions 
and conditions. 

The unit retrieves the component flows of each feed from the associated materials 
and adds them to the mixed stream composition array. When complete, the 
composition is assigned to the mixed stream material object. 
(ICapeThermoMaterialObj ect : :GetNumComponents ( ) , 
ICapeThermoMaterialObject : :GetProp ( ) , ICapeThermoMaterialObj ect : : SetProp ( ) ) 

The unit fetches the enthalpy from each feed material object, sums them and adds 
the specified heat input. The total enthalpy is assigned to the mixed stream. 
( ICapeThermoMaterialObj ect : : GetProp ( ) ) , ICapeThermoMaterialObj ect : : SetProp ( ) 
) 

The unit sets the pressure of the mixed stream to the m i n i m u m  of the feed 
pressures. 
( ICapeThermoMaterialObj ect : : GetProp ( ) ) , ICapeThermoMaterialObj ect : : SetProp ( ) 
) 

The unit asks the mixed stream 
(ICapeThermoMaterialObject : :CalcProp ( ) ) 

to calculate its temperature. 

The unit assigns molar and enthalpy flows to the output streams in accordance 
with the specified split factors. (ICapeThermoMater• : : SetProp ()) 

The unit assigns the composition of the mixed stream to the output streams. 
(ICapeThermoMaterialObj ect : : SetProp ()) 

The unit assigns the pressure of the mixed stream to the output streams. 
(ICapeThermoMaterialObj ect : : SetProp ( ) ) 

The unit requests the output streams to calculate their temperatures. 
(ICapeThermoMaterialObj ect : : CalcProp ( ) ) 

Exit COSE 
User  saves the s imula t ion .  
User  exits from the COSE. 

Rerun Simulation 
User  opens the COSE. 
User  reques t s  the COSE to load the s imulat ion.  
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COSE detects any changes in the CO components and reports to user. 
User makes any edits necessary. 
COSE repeats the Simulation Run. 

Use a CO Property Package 
User creates a CO property package, using a CO-compliant property system, 
which registers the CO property package. 
( ICapeThermoSystem: : GetPropertyPackages ( ) ) 

User selects the CO property package in the COSE and assigns it to a unit  
component in the simulation. (ICapeThermoSystem: :ResolvePropertyPackage ()) 

User Reruns Simulation. 

User repeats these actions with the same CO property package assigned to the 
whole simulation. 

User repeats these actions, but first introduces a CO thermodynamic method 
component, e.g. SRK, into the CO-compliant property system, before creating the 
CO property package for use in the simulation. 

The scenario was successfully demonst ra ted  in several occasions using 
commercial versions of Aspen Plus / AspenProperties and Hysys. A video file of 
the software demonstrat ion can be downloaded from the CO-LaN website, see 
reference. 

4.4.5 N U M E R I C A L  SOLVERS IN THE C A P E - O P E N  SYSTEM 

This section deals with the numerical  solvers within the scope of the CO open 
architecture framework. Thus it will allow you to identify what  the CO system 
can or cannot do for you whatever you are a numerical tools supplier or a user  of 
these algorithms. 

The features of the CO solver f ramework will be described. Then the analysis and 
design of this framework will be done. Finally some tools built on this framework 
will i l lustrate this section. 
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4.4.5.1 O v e r v i e w  and  f e a t u r e s  

The CO numerical solver framework has focused on the solution algorithms that  
are necessary for carrying out steady-state and dynamic simulation of lumped 
systems. In particular, this includes algorithms for the solution of large, sparse 
systems of non-linear algebraic equations (NLAEs) and mixed (ordinary) 
differential and algebraic equations (DAEs). Algorithms for the solution of the 
large sparse systems of linear algebraic equations (LAEs) that  often arise as sub- 
problems in the solution of NLAEs and DAEs have also been considered. 

A technical difficulty encountered in this context is the large amount of 
information that  is necessary for the definition of a system of non-linear 
equations. In fact, this amount increases as more and more sophisticated solution 
algorithms are being developed. For instance, most modern codes for the solution 
of large DAE systems require information on the sparsity structure of the system, 
as well as the ability to compute both the residuals and the partial  derivatives of 
the equations. Even more sophisticated codes need further information on any 
discontinuities that  may occur in the DAE system, the logical conditions that  
trigger these discontinuities and so on. 

To overcome the above problem in  a systematic manner, the CO standard has 
introduced new concepts, such as models and the equation set object (ESO) which 
is a software abstraction of a set of non-linear algebraic or mixed (ordinary) 
differential and algebraic equations. The standard ESO interface allows access to 
the structure of the system (i.e. the number of variables and equations in it, and 
its scarcity pattern), as well as to information on the variables involved (i.e. their 
names, current values and lower and upper bounds). It also allows the ESO's 
clients to modify the current values of the variables and their time derivatives, 
and to request the corresponding values of the residuals and part ial  derivatives 
(Jacobian matrix) of a subset or all of the equations in the system. 

The equations in any model may involve discontinuities (e.g. arising from 
transitions of flow regime from laminar to turbulent and vice versa, appearance 
and/or disappearance of thermodynamic phases, equipment failure and so on). 
Discontinuous equations in models are represented as state-transit ion networks 
(STN). At any particular time, the system is assumed to be in one of the states in 
the STN and its t ransient  behaviour is described by a set of DAEs, which is itself 
an ESO. Transitions from one state to another occur when defined logical 
conditions become true; the model interface provides complete access to the 
structure of these logical conditions as well as allowing their evaluation. Such 
information is essential for the implementation of state-of-the-art algorithms for 
handling of discontinuities in dynamic simulation. 

Any CO compliant code for the solution of systems of LAEs, NLAEs or DAEs 
provides a "system factory" interface. Typically, client software starts  by creating 
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a model tha t  contains a complete mathemat ica l  description of the problem being 
solved. It then passes this model to the appropriate system factory to create a 
"system" object tha t  combines an instance of the solver with the model to which 
the solver will be applied. The system object then provides appropriate operations 
for solving the problem completely (in the case of a NLAE system) or advancing 
the solution over time (in the case of DAEs). 

The pr imary aim of the introduction of the ESO and model concepts is to support 
the operation of CO compliant non-linear solvers. However, an important  side 
benefit is tha t  ESOs also provide a general mechanism for PMEs to expose the 
mathemat ica l  structure of models defined within these PMEs. Thus, it may fulfil 
the role of "model servers" providing the basis for the development of new types 
of model-based applications beyond those that  are supported by the PMEs 
themselves. 

4.4.5.2 Analysis, design and specification 

Analysis 

The Numr  package is subdivided into four packages: 

[] The Solver package focuses on the solution algorithms for the solution of large 
and sparse systems of linear algebraic equations (LAE), non linear algebraic 
equations (NLE) and mixed differential and algebraic equations (DAE). 

[] The Eso package contains the ESO concept (which is an abstraction 
representing a square or rectangular  set of equations). These equations define 
the physical behaviour of the process. An ESO is a purely continuous 
mathemat ica l  description: the equations remain the same for all the possible 
values of the variables. 

[] The Model package introduces the Model object to embody the general 
mathemat ica l  description of a physical system. The fundamental  building 
block employed for this purpose is a set of ESO. A Model may additionally 
encompass one or more STNs. 

[] The Utility package contains the public parameter  concept which allows some 
customisation of each CO Solver component. 

The following package diagram details the various dependencies between the 
Numr  packages. The black arrows within the picture display the relations that  
are in the CO scope. The s tandard defines the services proposed by the Solver 
components. Currently the way one builds an Eso or a Model within any PME, or 
accesses them, is not s tandardised by CO. This task is left to the flowsheeting 
tool suppliers. However the publication of services to the Solver component is CO 
standardised. 
So, software suppliers, industrials and academics can provide CO compliant 
Solver, or call numerical services from any CO compliant PMC. 
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Figure 13 Numerical package dependencies 

Design 

The Solver package, which is responsible for driving the resolution of the problem 
using all the information from the Model and the Eso, contains the five following 
interfaces: 

[] ICapeNumericSolverManager acts as a factory and creates any kind of solver 
for a specific ESO from a specific type, linear, non-linear or differential. 

[] ICapeNumericSolver is the base interface of the solver hierarchy and so 
defines general facilities for identifying the various algorithmic parameters  
that  are recognised by a numerical solver, for altering their values if 
necessary. 

[] ICapeNumericLASolver defines facilities, which are specific to solvers of LAE 
systems. No specific methods have been defined for this kind of solver. It is 
assumed that  the Solve method gets the A matrix and the b vector of the 
A. x = b system using the already defined methods. 

[] ICapeNumericNLASolver defines facilities, which are specific to solvers of 
NLAE systems. It defines methods that  allow obtaining and setting 
convergence tolerance and the number of iterations. 

[] ICapeNumericDAESolver defines facilities, which are specific to solvers of 
DAE systems. It defines methods that  allow obtaining and setting relative 
and absolute tolerance. 
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The next diagram displays the interface diagram of the Solver package and its 
relationship with the Utility package. 

Figure 14 Interface diagram of the Solver package 

Specification 

The open interface specification document on Numerical  Solvers can be found in 
the Business Interface folder from the CO formal documentation set. The 
implementat ion specification for COM and CORBA system is enclosed in the CO 
libraries such as CAPE-OPENv0-9-4.tlb and CAPE-OPENv0-9-4.idl. 

4.4.5.3 Implementation and tools 

The CO system being new no commercial product based on the CO numerical 
solver framework is currently available on the CAPE market .  Nevertheless we 
can cite software prototypes from the academics. These tools are more or less 
validated, they provide important  implementat ion feedback and then they 
promote proposals for future improvements for the benefit of the entire CAPE 
community. Already they demonstrate all the advantages of this open software 
architecture for the next generation of solver tools, such as great interoperability, 
increased commercial viability for specific algorithms and (web-enabled) 
distributed calculation. 
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As examples we can notify the non linear equation solver from RWTH Aachen 
Germany and the NSP tool from LGC-INP Toulouse France. These components 
are compliant with the CO system for solvers. According to the previous analysis 
and design, they realise the Solver package depending on the Model and Eso 
packages. Following the CO architecture for CORBA system, they act as 
numerical servers through the Object Request Broker, employ the Identification 
Common Interface and follows the CO Error Handling strategy. Obviously, these 
software are separate processes that  can be used on a single machine, or across 
the network within an internet-based enterprise business system. 

A PME application, which is compliant with the CO standard, can bind to them 
in order to resolve its process mathematical  model. Some basic CO compliant 
PMEs have been developed in order to validate the framework, they interact with 
the above CO solver components playing some test cases such as isothermal flash 
and Raleigh distillation. In this way they implement and supply the Model and 
the Eso interfaces. The next figure illustrates the physical view of these CAPE 
applications. The two components, PME and Solver PMC, can be on the same 
host or on a remote host. 

Figure 15 Component diagram 

The non linear equation solver from RWTH Aachen comes from the migration of 
a non linear equation solver developed in FORTRAN into a CO solver component 
based on the CORBA system. The algorithm NLEQls  from the Konrad-Zuse- 
Zentrum fiir Informationstechnik Berlin has been used as the underlying 
implementation. 

The NSP (Numerical Services Provider) application combines Java and C/C++ 
codes as well as Fortran 77 legacy codes thanks to the wrapping technique. It 
supplies the LAE, NLAE and DAE objects, jointly to the configuration parameter  
objects. 
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The linear algebraic solver is the result of the wrapping of a FORTAN solver. 

The non-linear algebraic solver deals with the system F(x)=0. It relies on the 

Newton-Raphson algorithm and profits from the previous linear solver for solving 

~x 

The differential algebraic equation solver manages the system F t,x,--~ =0. Its 

strategy is based on the Gear method with variable order and step. 

4.4.6 PHYSICAL P R O P E R T I E S  DATABASES IN THE CAPE-OPEN 
SYSTEM 1 

A physical property data base (PPDB) is an abstract model for all types of 
collections with thermophysical property data and with parameters  of models for 
calculating thermophysical property data that  have been taken from the 
literature, have been measured or processed in one's own laboratory or have been 
obtained from other sources. Such a database can be implemented in a variety of 
physical manners.  It can be a relational database, an online service, or a neutral 
file. 

A PPDB consists of data tables, which have a header with the definition of the 
properties and their units and a body with the numerical values. There is no 
distinction between dependent and independent variables. Each table is linked to 
a mixture description and a set of bibliographic specifications. 

A PPDB can contain any type of data. However, all properties must fit into a 
catalogue of properties. This catalogue is part  of the CAPE-OPEN standard. It 
also contains a list of calculation methods, for which model parameters are 
stored, and the exact form of their equation. This catalogue makes the whole 
s tandard very flexible, because additional properties can be added easily, and 
this means, that  the s tandard will evolve. 

In principle, a PPDB can contain any type of pure compounds and mixtures with 
any state of aggregation: organic, inorganic, plastics, materials (metals and 
alloys), and emulsions. However, in the first stage of standardization, there is a 
restriction to regular chemicals. A "regular chemical" is defined as a substance 
that  is listed in one of the registers of the Chemical Abstracts Service 
(Columbus, Oh, USA) and has a Chemical Abstracts Registry Number (CAS- 
number). But the standard also accepts substances having no CAS-numbers. For 

This section uses selected text from the 1.0 CAPE-OPEN PPDB interface specification, authored by H. Langer et al., 
available on www.colan.org. 
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these substances a special enumerat ion scheme is developed. Especially technical 
mixtures like mineral  oils, heat  t ransfer  fluids or victuals (food) have to be taken 
into account. They should be t reated as "pseudo-compounds". 

Because a PPDB can have any internal  structure, there must  exist a general 
interface for linking PPDBs to user programs tha t  is independent  of the internal 
structure of the PPDB. 

The internal  implementat ion of a PPDB interface-set may be complicated, 
because there are so many different types of PPDBs, but it is not of interest  for a 
client. He needs to see only two objects with the following access methods. 
1. a catalogue of the available data bases 

[] display contents of catalogue 
2. an object representing a PPDB 

[] opening a data base 
[] closing a data base 
[] list of available compounds 
[] list of dictionary information, e.g. available journals or stored properties 
[] search for properties 
[] obtain overview of tables found 
[] fetch numerical  data and experimental  errors contained in found tables 
[] fetch model parameter  contained in found tables 
[] fetch chemical mixture belonging to found tables 
[] fetch bibliographic specification belonging to found tables 

In order to keep this set of interfaces as simple as possible, model parameters  are 
in many aspects t reated as property data. 

User programs have two different ways to use data stored in a PPDB: 
1. Direct retr ieval  of the data 
2. Retrieval of models or model parameters ,  which can later  be used for 

calculation property values. 

The main interfaces of the PPDB s tandard  in CAPE-OPEN are: 
[] IcapePdbdRegister, knows all about the different types of PPDBs, which are 

accessible, and makes this knowledge available to the clients. The system 
adminis t rator  and not client users manage it. 

[] IcapePpdb opens and closes the databases, and manages  information about 
their contents: structures, lists of properties and compounds, bibliographic 
references; 

[] ICapePpdbTables selects tables from the PPDBs and queries them for data; 
two queries methods, simple and extended, are specified; 

[] IcapePpdbModels queries PPDBs for models and models parameters ,  in a 
similar way as IcapePpdbTables queries for compounds data; it also provides 
simple and extended querying mechanisms; 
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Finally the PPDB specification needs definitions of properties, units, methods or 
equations, phase equilibrium information, states of aggregation in order to 
invoke the interface methods in unambiguous ways: these definitions are part  of 
the CAPE-OPEN standard.  

4.4.7 CONCLUSIONS & OUTLOOK 

There is no doubt tha t  the CAPE-OPEN project was one of the most successful 
s tandardizat ion projects of its kind. The obstacles to success were many and in 
other enterprise software domains, such as Enterprise Resource Planning (ERP), 
where similar integration problems were faced, solutions to connect competitive 
systems such as Baan and SAP, emerged as commercial products from companies 
such as WebMethods, Extricity, IBM and Vitria. The CAPE-OPEN standard 
benefited all members, enabling them to have a hands-on and collaborative 
approach to solving CAPE integration problems that  they would have never been 
able to solve alone. 

One of the key reasons why the CAPE-OPEN project was successful was that  
there was tremendous t iming between the software technology curve, the 
problems faced by engineers designing plants and processes, and the maturi ty  of 
the CAPE software markets .  The collaborative nature  of the project provided 
huge benefits to all of the players. 

The key to the future of s tandards in process engineering and plant  design will 
be how well these open collaboration processes are fostered and developed across 
emerging technologies and business processes. The first step was taken with the 
establ ishment  of the CO-LaN, an online collaboration to further develop and 
refine process-engineering standards.  Success in the future for CO-LaN will 
continue to be measured by how well the CO-LaN bridges the gap between 
engineering business problems and software technology. Design in general, is 
playing an increasing role in the business processes of large global corporations, 
and is being looked to for bottom line results. Consortiums such as Industria, in 
the process industry and Converge in the semi-conductor industry have been 
heavily funded to create seamless solutions that  link the design process with 
procurement processes. 

Jus t  like a company, and like the CAPE-OPEN project, the more valuable the 
CO-LaN is to its members, the greater the outlook for success. Increased 
collaboration across process industry s tandards organizations will provide huge, 
and more importantly, measurable business process benefits to all members. CO- 
LaN will ul t imately be measured by the value it brings to its members  and how it 
solves new problems, integrates new technologies, ideas and goals. 
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Finally, the fact is that  people set standards, not organizations. Consensus 
required across disparate and many times competitive companies is not a trivial 
feat. Strong leadership, and commitment from many talented individuals 
combined with a truly open forum of communication led to the establishment of a 
lasting CAPE-OPEN standard and innovation over fear. 

4.4.7.1 CO-LAN 

The CAPE-OPEN standard is now under responsibility of the CAPE-OPEN 
Laboratories Network (CO-LaN), a not-for-profit user-driven organisation for the 
testing and management of the CAPE-OPEN standard. CO-LaN also helps to 
facilitate implementation of standard interfaces in commercial software. The 
missions of the CO-LaN are: 

[] User priorities for CO standards: work with software vendors to clarify user 
priorities for process modelling software component/environment 
interoperability and also to promote communication and cooperation among 
CAPE software vendors to insure that  the CO standards actually translate 
into commercially valuable interoperability; 

[] Exploitation and dissemination: promote the CO standard to end-users and 
distribute CO information and technology internationally; 

[] CAPE-OPEN specifications life cycle management: organise the maintenance, 
evolution, and expansion of the specifications; 

[] Testing, interoperability facilitation: supply compliance testers to support 
development of components, organise interoperability tests between suppliers 
of PMCs ~rocess  Modelling Components) and PMEs (Process Modelling 
Environments) 

[] Training/Migration facilitation: ensure that  training modules, guidelines and 
tools to facilitate component wrapping are developed and available. 

Activities of the CO-LaN are extensively presented 
www.colan.org. Membership is organised in two categories: 

on its web site, 

[] Full members are end-user operating companies: companies who use CAPE 
tools in their business activities and can be considered as end-users of the CO 
standard. These are mainly operating companies, process licensing 
companies, and (not academic) research institutes. End-user organisations 
pay membership fees. These full members drive the society. 

[] Associate members are all others: software suppliers, universities, 
individuals, governmental organisations, etc. These associate members do not 
have to pay membership fees (but they can always make donations), and have 
no voting rights. They do, however, participate in the society's activities. 
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4.4.7.2 Future  d e v e l o p m e n t s  

It is obvious that  the CO standard is an evolutionary system. Among other 
activities, the CO-LaN consortium is in charge of managing its life cycle. The 
main actions, which could result in a powerful development of the standard, are 
listed below. Some of them already started but are not finalised when this book is 
written. 

At the technical architecture level, many technologies are or will be studied such 
as EJB, COM+, the .NET and Web Services facilities, CORBA 3 (with its 
associated CORBA Component Model). Tools such as compliance testers, wizards 
for CO component development, and a repository for the standard management 
are part  of the current work in progress. 

New business interface specifications are integrated in the 1.0 release of the 
standard, including physical properties of petroleum fractions, chemical 
reactions, the above mentioned physical property data base interface, distributed 
parameters  systems, parameter  estimation and data reconciliation, optimisation 
of linear and non linear systems, discrete and hybrid unit operation, connection 
to real time systems. This version also includes common interface specifications. 
New implementation specifications according to the previous evolutions will be 
available. 

The CO-LaN will produce an updated formal documentation set identified by 
increasing version numbers of the standard. This way, the CAPE-OPEN 
standard will be increasingly reliable, complete and in line with the most up-to- 
date computing technologies. 

4.4.8 REFERENCE 

[1] CO-LaN web site: www.colan.org 
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P a r t  V: U s i n g  C A P E - T o o l s  

5.1 Applications of modelling: A case study from process design 
M. Eggersmann, J. Hackenberg, W. Marquardt & I. T. Cameron 

5.2 CAPE tools for off-line simulation, design and analysis 
I. D. L. Bogle & D. Cameron 

5.3 Dynamic simulators and operator training 
D. Cameron, C. Clausen & W. Morton 

5.4 Computer tools for discrete/hybrid production systems 
L. Puigjaner, M.Graells,& G. V. Reklaitis 

The chapters of this part highlight, through illustrative examples, the use 
and~or application of the relevant frameworks (of Part III) and methods, 
tools & standards (presented in Part IV) to the solution of interesting CAPE 
problems. It also presents what are the current computer aided tools 
(process simulators, databases, design, etc.) that are currently available in 
industry and academia. Contributors from academia as well as industry 
who are regarded as world experts, have provided input to the chapters in 
this part. 

Chapter 5.1 (Eggersmann et al.) is devoted to the application of models in 
process systems engineering. The introductory section gives a general 
overview on model use in different application areas. The general problems 
encountered during model construction and applications are discussed and 
highlighted through a case study of model use during the design of a 
process for polyamide6 production. The design process includes models 
constructed with spreadsheet, flowsheeting and equation-based modelling 
tools. After a thorough presentation of the models constructed during the 
design the role of these tools as used to support the work process is also 
analysed. 

Chapter 5.2 (Bogle and Cameron) discusses the off-line use of CAPE Tools, 
that is, the process to which the tools are to be applied either does not yet 
exist, or it exists and on-line data are not readily available. Even though 
almost all the tools discussed are applicable throughout the product and 
process lifecycle, the discussion has been limited to off-line simulation, 
design and analysis only. The discussions have highlighted the business 
process (activities) in terms of research & development, conceptual design 
& process synthesis, detailed process design and off-line analysis of 
collected data. 

Over the last two decades, dynamic simulation has matured as a tool for 
training operators of capital-intensive and safety-critical equipment (such 
as oil platforms, power stations and nuclear reactors). Dynamic simulators 
(together with on-line systems) are perhaps the area of CAPE where user 
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requirements are most stringent. Chapter 5.3 (Cameron et al) describes 
current practice for the use of dynamic simulators in the process industries 
where a discussion of dynamic process modelling followed by a brief 
historical overview of dynamic simulation in the process industries and 
related areas is given. This is followed by a brief discussion of how and 
where dynamic simulators can be used in the process lifecycle together with 
a presentation of the requirements of a specific, but typical industrial 
operation. Finally, the tools that are currently available are described. 

Hybrid production systems include continuous as well as batch~discrete 
process characteristics. Supporting computer tools for such systems should 
therefore comprise software for steady state process simulation and 
analysis, as well as support tools for the handling of batch process 
dynamics and discrete decisions involved. Chapter 5.4 (Puigjaner et al.) 
discuss the software tools for batch processes in terms of two broad classes. 
The first class of tools involves modelling, simulation, and analysis of the 
physico-chemical processes that take place during batch operations and 
may be associated with the process simulation methodology. The second 
class of tools is designed to support the decision processes at the different 
managerial and operational levels of the plant operational hierarchy. 
Puigjaner et al. review a representative set of tools from these two classes 
that are available commercially. 
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Chapter  5.1: Appl icat ions  of  M o d e l l i n g -  A Case Study  from 
Process  Des ign  

M. Eggersmann, J. Hackenberg, W. Marquardt  & I. T. Cameron 

This chapter is devoted to the application of models in process systems 
engineering. The introductory section gives a general overview on model use in 
different application areas. The general problems encountered during model 
construction and applications are discussed. The main topic of this chapter is a 
case study of model use during the design of a process for polyamide6 production. 
The design process includes models constructed with spreadsheet, flowsheeting 
and equation-based modelling tools. After a thorough presentation of the models 
constructed during the design stage, the role of these tools as used in order to 
support the work process is analysed. 

5.1.1 PROCESS  MODELLING APPLICATIONS 

5.1.1.1 Application areas 

Process modelling plays an extremely important role within the process 
engineering lifecycle. That lifecycle consists of many interconnected steps ranging 
from product conception through feasibility studies, conceptual and detailed 
process design, operations and terminating with plant decommissioning. Modern 
lifecycle analysis relies heavily on the use of a wide range of models, some 
economic, others focused on environmental issues or plant design and 
performance. 

The application of models in process engineering is extensive and continues to 
grow. Modelling is an application driven activity in that  specific outcomes are 
being sought from the modelling effort. The following table (Table 1) outlines 
some important  categories of model use covering key process engineering 
activities together with an indication of typical outcomes expected from the 
models. It is by no means exhaustive. 
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Table 1. Some key modelling application areas in process engineering 
Application Area Typical model use 

Process design Feasibility analysis of novel designs. 
Technical, economic, environmental assessment. 
Effects of process parameter changes on performance. 
Structural and parametric process optimisation. 
Analysing process interactions. 
Design for waste minimization. 

Process con t ro l  Examining regulatory control performance. 
Design of model-based control schemes. 
Model predictive control. 
(Dynamic) real-time optimisation. 
Set-point tracking performance for batch operations. 

Process operations Optimal startup and shutdown policies. 
Scheduling of process operations. 
Data reconciliation. 
Fault detection and diagnosis. 
Operator training simulators. 
Trouble-shooting plant operations. 
Environmental impact assessment. 

Process safety Analysis of major hazards and their control. 
Land-use planning and risk assessment. 
Review of safety critical systems. 

This chapter  deals with modelling applications and in part icular  shows the use of 
modelling to address issues related to process design via spreadsheets, 
t radit ional  flowsheet modelling as well as specialized, tailored equation-based 
models built on the unders tanding of the physics and chemistry of key unit 
operations in the process. 

In the next section we look at the challenges of industrial  modelling and then in 
subsequent  sections the applications of these modelling issues to a process 
system for polyamide6 production during conceptual design are discussed. 

5.1.1.2 Chal lenges  of  industr ia l  mode l l ing  pract ice  

Modelling within an industrial  environment is a major challenge for process 
engineers. There are many aspects of industrial  processes that  create substantial  
difficulties for those who are modelling parts  of the complete process lifecycle. 
Here we touch on some of those important  issues. More discussion on these issues 
can be found elsewhere, e.g. Hangos and Cameron, 2001 or Foss et al., 1998. 

A m o d e l l i n g  m e t h o d o l o g y  

Process modelling consists of an interconnected set of iterative tasks, which 
direct the modelling effort (Hangos and Cameron, 2001). Amongst the key steps 
are the s ta tement  of the modelling goal, identification of key process 
characteristics to be captured and the relevant system parameter  values, model 
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building and solution, followed by model cal ibrat ion and validation. Inevitably, 
the process modeller re turns  to earl ier  steps to refine, check, and improve the 
model to meet  the desired outcomes. In what  follows we pick up on some relevant  
issues for fur ther  discussion. 

Fit-for-purpose 

The models, which are built  or used, must  tackle the goal for which they were 
built  (Minsky, 1965). This clearly puts  the onus on the modeller to be clear about 
what  the model must  represent  and the types of behaviour  the model must  
mimic. A clear functional specification is essential  before modelling begins, 
otherwise, there  is no means  of determining when the modelling efforts have 
reached a satisfactory conclusion. Too often an overly complex model is wri t ten  
for what  is a simple application task, resul t ing in lost time, unnecessary  effort 
and possibly major f rustrat ions for the modeller! 

Understanding the system under study 

In many cases we simply do not unde r s t and  the underlying mechanisms taking 
place within the process. We have a "partial" unders tanding .  It is vitally 
impor tant  to the quality of our modelling tha t  we elucidate the key mechanisms 
within the system. In some cases the complexity is such tha t  the modelling needs 
to resort to "black-box" or empirical modelling aspects within a more 
phenomenological  framework.  In reality, all process models we write are a 
mixture of fundamenta l  and empirical models - the so-called "grey-box" models. 

In many industr ial-modell ing applications it is impor tan t  to carry out specific 
dynamic test ing ei ther  at laboratory, pilot p lant  or full-scale level. The aim of this 
test ing can be two-fold. In the first case we might  have little knowledge of key 
mechanisms and we wish to verify the existence of a par t icu lar  phenomenon or 
the relative importance of a known mechanism. The second case relates to 
obtaining key pa rame te r  values within the model. These can sometimes be so 
numerous  tha t  a sensitivity study on a pre l iminary  model might  be used to r ank  
the importance of the pa ramete rs  and thereby direct the effort of the pa rame te r  
es t imat ion task. 

Parsimony 

This concept addresses  the care we must  take in having a model tha t  does the job 
with the min imum information content. The extremes are models tha t  do not 
contain enough detail  to do the job to a model tha t  contains every known system 
mechanism tha t  leads to unnecessary complexity. The challenge here is to 
identify up-front the main  mass and energy holdups as well as mechanisms such 
as key reaction kinetics, heat, mass and momen tum t ransfers  which need to be 
captured in the model for its specific use. It  is impor tan t  to properly document 
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these underlying assumptions made about the system so tha t  validation can be 
performed efficiently. This usually means revisiting the original assumptions and 
testing their  appropriateness. Documentation still r e m a i n s  a major priority in 
industry (Foss et al., 1998). 

Model val idat ion 

The validation of process models is a non-trivial issue and one tha t  is often done 
poorly within industrial  modelling practice. There are many challenges here for 
the process engineer. Dynamic models are often the most difficult to validate and 
the process data requirements  to carry this out are extremely important.  

The design of plant  testing for validation is difficult and despite the best efforts 
can be compromised by such problems as inadequate process excitation, poorly 
calibrated sensors, failure of data-logging equipment and a range of errors from 
sampling practice, gross data  errors and laboratory analysis errors. Even after 
extensive data  t rea tment  the subsequent model calibration and validation can be 
a time consuming task. However, without adequate calibration and validation for 
the intended range of application any model is suspect. Fur ther  discussion on 
this topic can be found in Romagnoli and Sanchez (1999). 

5.1.1.3 Model l ing in Process  Design 

The specific model application area of this study is process design. Here we 
discuss some of the key issues, which underpin the development, and use of 
models within the design task. 

The aim of process design is to construct a process tha t  is optimal concerning 
economics, environmental  impact, and safety. To determine the optimal process, 
several al ternatives consisting of different combinations of unit  operations 
employing a variety of physico-chemical phenomena must  be examined. This 
involves unders tanding and describing the behaviour and interactions of the unit 
operations and phenomena. To this end experiments and mathematical  models 
can be employed. 

The use of mathemat ica l  models is preferred because of the possibility of 
investigating more alternatives in a shorter t ime compared with an 
experimentally based procedure. However the construction of models requires 
experiments for parameter  estimation and validation. In contrast  with model 
applications in process control there is no operating plant  as a source of data. 
Process design models are used to predict the behaviour of non-existent 
processes. 

During the design more and more information is generated about different 
process alternatives and the investigations increase in their  detail. This implies 
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the use of different models which range from very simple ones at the beginning to 
highly sophisticated ones at the end of the design process (see Fig.l). The kind of 
model depends on the information, which is available, and the purpose it is being 
used for. Depending on the level of knowledge and detail, today different tools 
such as spreadsheets, flowsheeting and equation-oriented tools are used for 
modelling in an industrial setting. 

Figure 1. Different models during process design. 

Spreadsheet tools are used in the very early stages where only a limited amount 
of information is available. Examples include rough balances, cost estimations, 
calculating the economic potential, etc. They can be regarded as the pocket 
calculators of today's engineers or as very simple flowsheeting tools with no 
predefined models. 

When the design proceeds and it has been determined which unit operations 
might be used, flowsheeting tools are employed to investigate different process 
structures. Modelling with flowsheeting tools is characterized by selecting and 
connecting predefined model blocks. These blocks can then be parameterised to 
describe the behaviour of the process the designer has in mind. The level of detail 
is fixed by the model block and cannot be easily adjusted by the user. 

In the latter stages of the design non-conventional equipment is often 
encountered. These non-conventional units usually exploit a particular 
combination of physical, chemical or biological phenomena to fulfil their function. 
Therefore it is unlikely that  a flowsheeting package will provide a suitable model 
for such units. 
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There are many cases when standard models from flowsheeting tools and model 
libraries are not applicable because most of them neglect spatial distributions or 
assume equilibrium, etc. These simplifications might make it impossible to 
describe the correct behaviour of non-conventional equipment or processes. 

A new custom model must  be developed in order to study the units under 
different operating conditions as well as its interaction with other process 
sections. To cope with the particular characteristics of non-standard units a 
highly flexible modelling methodology is needed. A set of predefined model blocks 
will always lack this flexibility. Therefore an equation-oriented approach is 
usually employed for these tasks. 

The next sections describe the use of different models in the course of the design 
of a polyamide6 (nylon6) process. Knowing that  modelling occurs in all stages of 
the design life cycle, we focus our case study on the conceptual design phase and 
describe the iterative process between the synthesis of a design and its analysis 
by the use of mathematical  models. Thereby we concentrate on the steady-state 
models employed. Starting with very coarse models more and more detailed 
models are used when the design advances and more information is becoming 
available. In the next section, the polyamide6 process is described from a 
workflow perspective, which takes into account the people involved, the tools 
used, and their interaction (see also Chapter 7.1). 

5.1.2 DESIGN CASE STUDY: POLYAMIDE6 P R O D U C T I O N  

Polymers are materials whose molecular structure consists of long chain-like, 
branched (and sometimes cross-linked) macromolecules, which are formed from a 
large number of small monomeric molecules. During the polymerisation reaction 
the individual monomers are interconnected to a chain. 

Polyamide6 (PA6) is a thermoplastic polymer. The world production capacity is 
currently about 3.3 million tons per year. The most frequent use of PA6 is the 
production of fibres, which are used in home textiles, bath clothing and for carpet 
production. In addition, PA6 is used, as an engineering construction material if 
high abrasion resistance, firmness and solvent stability are required. Glass-fibre 
reinforced and mineral material-filled PA6 is a preferred material if a 
combination of rigidity, elasticity and refractory quality characteristics are 
required. 

The task of the case study is to design a process to produce 40.000 t/a of 
polyamide6 via the hydrolytic route. The quality specification of PA6 is as 
follows: 

Q 

�9 Residue ofe-caprolactam < 0.1%, 
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�9 Residue of cyclic dimer < 0.04 %, 
�9 Residue of water  < 0.01%, 
�9 Relative viscosity in m-cresol of 2.7. 

PA6 can be produced via an anionic and a hydrolytic reaction route. The anionic 
mechanism is mainly used for special polymers (Hornsby et. al., 1994) whereas 
the hydrolytic one is more often applied industrially. The structure of PA6 is 
shown in Fig. 2. PA6 has two different end groups, namely an amide end group 
and a carboxyl end group, which can react with each other to form longer polymer 
chains. 

H { N ~ C  OH 
o 

Figure  2. Molecu lar  s t ruc ture  o f  p o l y a m i d e 6 .  

The hydrolytic reaction mechanism is described by Reimschiissel (1977) and Tai 
et. al. (1982) and is the one investigated in this case study. 

CL + H 2 0  (----) ACA (R1) 

Pn +Pro ~'~ Pn+m +H20 (R2) 

CL + 1~ e--> P.+I (R3) 

CD + H 2 0  e-~ P2 (R4) 

CD + 1~ <---> 1~ (R5) 

It consists of three main reactions, which are the hydrolytic ring-opening (R1) of 
e-caprolactam (CL) to form aminocaproic acid (ACA), the polycondensation (R2) 
between two polymer chains (P), and the polyaddition (R3) of e-caprolactam to a 
polymer chain. Reaction 4 is the ring-opening of the cyclic dimer (CD), which is 
formed in an intramolecular  reaction of a linear dimer (P2) (reverse of reaction 4); 
and reaction 5 is, similar to reaction 3, the polyaddition of P2 to a polymer chain. 
In order to control the molecular weight, an organic acid is often being used as 
stopping agent and stabilizer. The carboxyl-end-group reacts with an amide end- 
group and thereby one reacting end-group disappears. 

The polymer produced has to fulfil certain requirements.  The physical properties 
depend very much upon the molecular weight and its distribution. Especially 
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when spinning the polymer to fibres, purity is a critical factor. Concentrations of 
water, e-caprolactam, and cyclic oligomers must  not exceed certain limits. These 
aspects have to be covered by a mathematical  model of the process. 

In the course of the design process many different models are employed. These 
star t  from very simple ones and end with sophisticated ones. Models are a 
necessary means to study a process' behaviour without having to conduct too 
many experiments. 

5.1.3 PLANT S T R U C T U R E  

5.1.3.1 Input -output  s tructure  des ign 

The above mentioned information has been collected in a l i terature search. This 
information forms the basis for the following synthesis and analysis steps. At 
first the input/output structure of the process is synthesized, as shown in Fig 3. 

! 

CL, H20 J 
Process 

1 
Figure 3. Input-output structure. 

PA6 

This approach is consistent with the design methodology proposed by Douglas 
(1988). After this synthesis a simple model is needed which allows calculating the 
amount  of PA6 produced from the flow rate of the raw materials.  This model 
only consists of simple mass balance and serves to calculate the approximate 
amount  of feed material  needed in order to do a first economic evaluation. The 
following rationale stands behind this model: When looking at the structural 
formula of polyamide6 it can be observed that  it mainly consists of e-caprolactam 
repeating units. A molecule with a degree of polymerization of for example 100 
has been formed from 100 molecules of e-caprolactam and one molecule of water. 
Hence the amount  of water  can be neglected as a first estimate. A desired 
production amount  of 5000 t/h of nylon therefore requires the same amount of e- 
caprolactam. This allows a first economic evaluation based upon the cost of feed 
materials  and the profits from the product. The calculated value of the necessary 
e-caprolactam flow rate will be used as a start ing point in further  calculations. 
One may say that  this is not yet a model but it has all the characteristics of a 
model: a simplified, abstract view of a physical system. 

5.1.3.2 Recycle  s tructure  des ign 

After this analysis the design is refined into a number  of major subprocesses. It is 
known that  due to the equilibrium reactions complete conversion of 
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e-caprolactam cannot be obtained. Therefore a separation of caprolactam and 
water from the polymer is necessary in order to reach the required specification. 
The separation is followed by a compounding step, in which fibers or additives 
are added to the polymer. The resulting flowsheet is shown in Fig 4. 

CL, H20 

l 
eL, H20 j Reaction J Separation 

1 1 

fibres~ 
i additives, 

etc. 

J Compounding PA6 

Figure 4.. Recycle structure. 

At this stage of the design process it is not reasonable to analyse the complete 
flowsheet as not much knowledge exists about the reaction and the separation, 
respectively. Therefore the process units are analysed and refined separately. 
Because the separation strongly depends on the reaction, it is investigated first. 

5.1.4 REACTOR DESIGN 

The purpose of modelling and simulating the reactor is at first to understand the 
reactions. The five simultaneous reactions prohibit an obvious understanding of 
what is happening inside a reactor. Understanding the reactions means 
comprehending the influences of different parameters  such as conversion and 
selectivity. Modelling different scenarios provides information, which leads to the 
best reactor alternatives. 

5.1.4.1 R e p r e s e n t a t i o n  of molecu lar  w e i g h t  d i s tr ibut ion  

When modelling polymerisation reactions, the representation of the molecular 
weight is a major issue. Therefore different representation alternatives are 
presented here. Unlike other substances, a polymer does not consist of one single 
type of molecule but of similar molecules that  are differing in their chain length. 
In the case of polyamide6 a polymer chain can consist of up to several hundred 
repeating units. Therefore a polymer can be compared with a multi-component 
mixture occurring in petroleum processes. Different approaches exist on how to 
model such systems. One solution is to represent every single component. A 
decision has to be made about which is the longest molecule to be modelled. The 
more molecules of varying molecular weight that  are taken into account, the 
more accurate are the calculations going to be, at the cost of a greater numerical 
effort. For each molecule the chain building reactions have to be implemented. 
This model can be simplified by grouping similar chain lengths into so-called 
pseudo components. This reduces the number of components to be described. 
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Another possibility to represent the molecular weight and its distribution are 
moments. For a definition and explanation of moments see Dotson et al. (1996) 
and Ray (1972). Moments of molecular weight distribution allow calculations 
with reduced numerical effort. 

Before explaining the modelling of the reactor one model is necessary to 
transform the polymer specification. This model is not related to the process but 
to the material. The chain length distribution of the polymer determines its 
properties, but cannot be measured directly. It is often correlated with the 
viscosity of the polymer melt. Since the viscosity depends on the shear rate, a 
common quality specification is the relative viscosity of the polymer in a solvent 
(e.g. m-cresol). This property is not incorporated in the reaction model but has to 
be transformed into a molecular weight. Respective equations can be found in 
Saechtling (1995) and Reimschiissel and Dege (1971). 

5.1.4.2 Se lec t ion  of appropriate  t h e r m o d y n a m i c  mode l  

As in any simulation problem in the area of chemical engineering an essential 
step towards a realistic simulation is the choice of the right method for 
calculating thermodynamic properties. It is not required for the equilibrium 
model described below because this model only considers one phase but becomes 
important as soon as two-phase-behaviour is modelled. The calculation of phase 
equilibria is required for the calculation of mass and energy balances. Even if it is 
not directly related to reactor modelling, it will nevertheless be explained here as 
it first becomes important when the reactor shall be modelled in more detail. 

Two general approaches exist: activity coefficient models (ACM) and equations of 
state (EOS). ACMs correct the assumption of the ideal solution of Raoult's law by 
introducing an activity coefficient, which depends on the temperature but not on 
the system pressure. EOS describe the system pressure as a function of 
temperature,  molar volume and composition. These functions allow us to derive 
most thermodynamic properties. The suitability of these different methods 
mainly depends on the pressure of the system and the properties of the 
substances. ACMs can be applied at low and medium pressure up to 10 bar and 
also when the mixture contains polar components such as alcohols and water. 
EOSs in contrast can be used at high pressures and temperatures because they 
take into account the compressibility of liquids and even close to the critical point 
of the occurring substances (Boki, 1999). 

In the polyamide6-case the literature study shows that  temperatures between 
250 and 300 ~ and pressures below 10 bar are to be expected. The main 
substances are e-caprolactam, water, ACA, cyclic dimer, and polyamide6. 
Arguments for the use of ACMs are the presence of water as a polar component 
and that  the temperature and pressure ranges are far away from the critical 
points. Possible ACMs, which are appropriate for mixtures containing polymers, 
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are Poly-NRTL, Flory-Huggins and UNIFAC. Poly-NRTL describes the phase 
behaviour of polymer solutions with two binary interaction parameters  for each 
possible combination of substances. Flory-Huggins (FH) uses one interaction 
parameter  for the combination p o l y m e r -  solvent. UNIFAC is based on molecular 
structures, and needs group interaction parameters.  Poly-NRTL covers wider 
temperature and pressure ranges than FH and is more exact due to the 
parameters  being specific for each segment. UNIFAC is usable if molecular 
parameters  are not known but may not provide very accurate results. We 
therefore decided to use the Poly-NRTL approach. 

5.1.4.3 E q u i l i b r i u m  mode l  

The first model to analyse the reaction, which takes into account the different 
reactions, is an equilibrium model (see Fig.5). In our case all reactions are 
equilibrium reactions. The aim of this model is to unders tand the equilibrium of 
the reactions and the effects of changes of temperature,  pressure, and feed 
composition on the molecular weight and the amount of side products produced. 
For such a coarse model certain assumptions are justified: No kinetics are 
considered but chemical equilibrium is assumed. This corresponds to a batch 
reactor with infinite residence time. Evaporation is neglected and hence only one 
phase is taken into account. With this model no s ta tements  are possible about 
reactor size or residence time. As the polycondensation reaction (reaction 4) is an 
equilibrium reaction and high water content causes the reaction to proceed in the 
reverse direction, i.e. the decomposition of polymer. This means tha t  the final 
water concentration in a reactor has to be below the calculated equilibrium 
content. It can be seen that  each initial water concentration corresponds to a 
specific molecular weight. The less water is fed to the reactor, the higher is the 
resulting molecular weight. 

CL, H20 

CL, H20 j Reaction J/ 
J Equilibrium 

reactor 

Separation 

fibre s~ 
additives, 
etc. 

J Compounding PA6 

Figure 5. Refinement of reaction section to an equilibrium reactor. 

Mallon and Ray (1998) postulate a model for handling the effect of water, which 
takes into account that  the equilibrium constant of the polycondensation reaction 
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varies with the amount of water. Their aim is to develop a model, which is easy to 
calculate, and comprehensive with a minimum of constants. To this end two 
states of water are considered: bound (hydrogen bonded to the carbonyl group in 
nylon polymer) and free (simply unbound water). Their results show good 
agreement with experimental data. 

5.1.4.4 C o n t i n u o u s  s t i r r e d  t a n k  r e a c t o r  

The equilibrium model assumes a reactor with infinite residence time or 
respectively infinitely fast reactions. It does not account for different reactor 
types. In the next step, the reactor is refined into a continuous stirred tank 
reactor (CSTR) (see Fig. 6). 

Figure 6. Refinement of reactor to a CSTR.  

Modelling the reactor on a higher level of detail means constructing a kinetic 
model of the CSTR. In a first step only this single reactor was modelled, with the 
aim to understand the effects of different parameters  on a single reactor. In 
contrast to the equilibrium model this model allows the investigation of the 
influence of reactor size and residence time. The aim of this model is to get 
information about the relationships between reactor volume, feed rates, 
conversion rate, and molecular weight. It takes into account reactions R1 to R5, 
hence including the formation of the cyclic dimer as a by-product. Knowledge 
from the equilibrium reactor, especially about the relations between feed 
composition, reactor temperature and molecular weight were used during 
simulations of the CSTR. 

In our case study this model was implemented using Polymers Plus from Aspen 
Technology (Polymers Plus, 2001). Even if in Polymer Plus a CSTR model already 
exists, the specification of the model by the user can be considered a modelling 
activity. A major task in creating the first model is to describe the reaction 
scheme, which then can be used in other models, such as when the CSTR is being 
replaced by another reactor type. In this model every reaction was specified three 
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times: unanalysed, catalysed by carboxyl end groups of polymer and by those of 
aminocaproic acid. PA6 is being modelled as consisting of amino- and carboxyl- 
end groups and repeating units. The reaction takes place between two different 
end-groups, which can either lead to the formation of longer chains or, if the two 
end groups belong to the same molecule, to a cyclic polymer. Equal reactivity of 
the end groups is assumed. As this intramolecular reaction is unlikely for longer 
polymer chains it is not considered for chains with a degree of polymerization of 
three and above. Only the formation for cyclic dimer is incorporated into the 
model. As mentioned above, the concentration of this cyclic dimer needs to be 
minimized. No thermodynamic data are available about the cyclic dimer and the 
aminocaproic acid. In the model they are considered as non-volatile. This 
assumption can be justified by the fact that  e-caprolactam has a boiling point of 
268~ and that  of CD with the same structure and twice the molecular weight 
must be even higher. Aminocaproic acid (ACA) is an intermediate product that  
only exists in very small concentrations (due to the kinetic constants). After it is 
formed it is quickly consumed and can hardly evaporate due to the diffusion 
barriers of the polymer. The liquid molar volume can be described using the 
Rackett model. When modelling the reactor volume, Polymers Plus allows 
different ways of describing the valid holdup phase. Two relevant possibilities are 
vapour and liquid or only liquid holdup. The first gives improved results during 
simulation but the second one results in less numerical and convergence 
problems. Nevertheless the user has to be aware that  the assumption of only a 
liquid holdup phase may lead to wrong results, especially at low pressures, high 
temperatures or large amounts of volatiles. The study of pressure influence is 
only relevant if vapour and liquid phases are considered. A possible simplification 
of this model would be to neglect the formation of cyclic oligomers, which would 
reduce the complexity of the model but exclude any statement about the content 
of cyclic dimer. Such a model only makes sense if the content of cyclic dimmer is 
not important or sensitive to the study. 

As e-caprolactam and cyclic oligomers in the polymer deteriorate the fiber- 
spinning characteristics, their amount shall be minimized in the reaction. 
Therefore the production of ACA and cyclic dimer must be represented in the 
model of the reaction. Higher cyclic oligomers only occur in much smaller 
concentrations and don't have to be considered. Details about modelling of higher 
cyclic oligomers can be found in Kumar and Gupta (1997). 

We decided not to model the influence of the controlling acid, as this is not yet 
relevant at this stage of the design process. 

Polymers Plus provides good functionality if s tandard phenomena are to be 
modelled. The implemented model for polycondensation covers the different 
reactions, the evaporation of light components and calculates the molecular 
weight distribution (MWD). The MWD is only determined in terms of the zeroth 
to second moments, which might not be sufficient for industrial  applications. 
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There are no possibilities of computing the viscosity from the molecular weight. 
Therefore it is not possible to determine the required mixing power of a CSTR. 

5.1.4.5 P l u g  f l o w  r e a c t o r  a n d  r e a c t o r  c o m b i n a t i o n s  

In order to invest igate different reactor realizations the reactor is alternatively 
refined to a tubula r  reactor (see Fig. 7). This design has to be compared with the 
CSTR. A characteris t ic  difference between the two reactor configurations is the 
residence time distribution: In the tubular  reactor nearly every molecule has the 
same residence time, whereas  in the CSTR a molecule may leave the reactor 
immediate ly  after enter ing it. A model of the tubula r  reactor  must  allow 
determining the influence of operat ing conditions and reactor dimensions on 
conversion and molecular weight. The modelling of the tubu la r  reactor is done 
using Polymers Plus because large par ts  of the CSTR model can be reused. Once 
the model of a single CSTR has been established, it can be easily extended to 
describe a plug flow reactor (PFR) or combinations of these two reactors. 
Therefore the complete reaction kinetics can be kept  and only the reactor has to 
be changed. Pa rame te r s  like the size and the t empera tu re  of the reactor have to 
be specified. Due to the reaction equilibrium, reactor combinations have a similar 
performance as a single reactor. The user  does not have to deal with the fact tha t  
a PFR in contrast  to a CSTR is a distr ibuted system. Concentrations, pressure 
and t empera tu re  change over the length of the reactor, whereas  in a CSTR 
complete mixing is assumed. Polymers Plus handles  these differences. 

Figure 7. Refinement of the reactor to a PFR. 

Polymers Plus offers different possibilities to model the t empera tu re  in a PFR: 
ei ther  a constant  tempera ture ,  a cooling liquid or an adiabatic reactor is 
assumed.  In the case of a cooling liquid, one out of three assumptions  (constant 
coolant tempera ture ,  co-current or counter-current  coolant) can be selected. 
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5.1.4.6 S e p a r a t i o n  b e t w e e n  reac tors  

Simulation studies with these models show that  those reactor combinations serve 
either to a t ta in  polyamide6 with the desired molecular weight or an acceptable 
conversion rate. It is not possible to reach both at the same time. High water  
content leads to a high conversion of e-caprolactam but low water  content is 
necessary to achieve a high molecular weight. Therefore a first reactor shall be 
operated with high water  concentrations (to promote conversion) and a second 
one with low water  concentration (to allow a high molecular weight). These 
considerations lead to the synthesis of a reactor section consisting of two reactors 
and an intermediate separation to remove water. Hence the current  design and 
model should be extended by an intermediate water  separat ion between two 
reactors (see Fig. 8). 

Figure 8. Refinement of the reaction to reactors with intermediate separation. 

A first coarse model incorporates a simple splitter, which allows the analysis of 
the effects of water  separation but gives no prediction about a possible 
realization. In the next refinement step a flash replaces this splitter. The flash 
model provides information about the feasibility of the separat ion and the process 
conditions. Problems of such flash calculations are related to thermodynamic 
data of cyclic dimer and aminocaproic acid not being available and the high 
viscosities of the polymer hindering the evaporation of volatiles. No statements  
can be given about the feasibility of such a unit. The models of the reactors with 
intermediate separation are implemented in Polymers Plus, as the former reactor 
models can be reused. More detailed separation models do not exist in Polymers 
Plus. 
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VK- tube  

The literature s tudy  leads to further possible refinement of the reactor design: 
Industrially, the process is often performed in a so-called VK-tube (VK is derived 
from the German ,,Vereinfacht Kontinuierlich" = simplified continuous) (Gfinther, 
E. et. al., 1969), a vertical tube with a mixing section at the top and a plug flow 
section below (see Fig. 9). e-caprolactam and water enter from the top and 
polyamide6 leaves at the bottom. Water evaporates in the mixing section and 
hardly enters the plug flow section. No predefined model exists in Polymers Plus 
for this type of reactor, so a customized model has to be built with the aim of 
describing the performance of the VK-tube and to determine its optimal 
operating conditions. 

Figure 9. Schematic representation of a VK-tube. 

As in Aspen Plus a reactor only has one outlet port, the top section cannot be 
modelled using a single reactor but has to consist of at least one reactor and one 
flash. To properly model the effect that  the liquid continuously moves down and 
the evaporated volatiles move up, an infinite number of reactor-flash 
combinations must  be used. The vapour that  leaves a flash has to be recycled to 
the CSTR beforehand. A possible simplification would be just to use two or three 
of those reactor-flash combinations. The lower part  of the VK-tube can be mapped 
to a PFR model. This configuration is shown in Fig 10. Because it only contains 
small amounts of volatile components, it can be assumed that  it only contains a 
liquid phase (compare: holdup considerations above). 
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I 
Figure 10. Possible representation of a VK-tube within Polymers Plus. 

Recycles 

So far, the reaction par t  of the process has been analysed separately, but  as can 
be seen in Fig. 4 the recycle from the separation section affects the reaction. The 
equilibrium character  of the reactions mean tha t  complete conversion cannot be 
reached and unreacted e-caprolactam is leaving the reactor and shall be recycled. 
Therefore a model is needed, which takes into account the recycles and their  
effects on the reactor section. The aim of this model is to get a realistic est imation 
of the process conditions in the reactor. The effects of the recycle loop on the 
reaction section can only be calculated if separat ion models are available. By 
using simple separat ion models this can be done without further refinement of 
the separat ion design. In this case a simple splitter model was used, which allows 
an est imation of the recycle effects. This model combines a detailed 
representat ion of the reactor with a simple version of the separation. It was 
implemented in Polymers Plus, which allows an easy incorporation of a splitter in 
the reactor model. This splitter will be refined in section 5.1.5. Here it only serves 
to know the approximate recycle content in order to revise the reactor section 
simulations. 

5.1.5 S E P A R A T I O N  DESIGN 

The products leaving the last reactor still contain undesired components like 
water, e-caprolactam and cyclic dimer. So the next step after modelling and 
designing the reaction is to refine the separat ion design and to analyse it by 
means of modelling and simulation. 

In contrast to the reaction section, the separat ion section is not designed from 
scratch. Instead a l i terature study was carried out, which showed two design 
alternatives for the separation: 
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1. Devolatilisation in a wiped film evaporator (Riggert and Terrier, 1973; 
McKenna, 1995), 

2. Removal of low molecular weight components by leaching of polymer 
pellets followed by a drying step (Reimschiissel, 1977). 

To proceed with the design these alternatives can be investigated in parallel. 
They are discussed in the next sections. 

5.1.5.1 Wiped-f i lm evaporator  

At low pressures and high temperatures  water  and e-caprolactam can be 
evaporated from polyamide6, but due to the high viscosity and resulting low 
transport  coefficients this happens only very slowly. A way to increase the speed 
is to provide a large polymer surface and to promote internal  transport by 
mixing. A suitable apparatus  is a wiped film evaporator (WFE), a vertical tube 
with wiping blades inside. The polymer mixture enters from above, flows down at 
the inner walls of the tube, and is wiped by the blades. Volatiles enter the inner 
gas phase and can be removed. An advantage of this process is that  the melt 
doesn't need to be cooled and heated again. 

In order to analyse the technical and economic potential  of this apparatus, a 
model was written, which is mainly based upon a model described by Gesthuisen 
et al. (1998). It consists of three part ial  models: mass balances, energy balances, 
and melt t ransport  in axial direction. For more details about the melt transport  
see McKelvey and Sharps (1979). The occurrence of the reaction was also taken 
into account. When water  evaporates the reaction can further  proceed towards 
higher molecular weights. The construction of this model is not discussed in 
detail here. Instead we will focus on the construction of a leacher model in the 
next section. 

One possibility to improve the design and to reduce the necessary size of the 
wiped film evaporator is to support its function by the compounding section. The 
last par t  of the process is a polymer processing extruder, which serves to add 
fibres and additives (pigments, stabilizers, etc) to the polymer. In combination 
with the wiped film evaporator it can also be used to degas remaining volatiles. 
The requirements  for the puri ty of the polymer leaving the WFE could be 
therefore reduced. A model describing the extruder must  allow the determination 
of the necessary diameter, the internal  design and the power of the extruder as 
well as the amount  of volatiles, which can be removed. Such a model has been 
realized in the simulation tool MOREX (Haberstroh and Schliiter, 2000). 

5.1.5.2 Leacher  

Instead of evaporating the monomer from liquid polymer this process removes 
the monomer from solid polymer. The melt leaving the reactor is cooled and 
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processed to pellets of about 2 mm in diameter, which are then washed with 
water  in a leacher in order to extract unreacted caprolactam, which is soluble in 
water. The pellets are dried in a next processing step using nitrogen as a drying 
agent. This process allows higher purities than  the devolatilisation. One 
disadvantage of this process alternative is tha t  the polymer has to be solidified 
before leaching and again has to be melted during compounding. 

The leacher is shown schematically in Fig. 11. It is used to extract caprolactam 
from polyamide6 pellets. Polymer pellets enter  the appara tus  at the top. Within 
the apparatus  they form unstructured packing which moves down the apparatus  
due to the higher density of the pellets compared with water.  At the bottom the 
pellets are removed from the apparatus.  The leaching agent water  is pumped into 
the apparatus  at the bottom and is removed at the top. The monomer is 
transferred from the pellets to the water  phase during the residence time of a 
pellet in the apparatus.  

Pellets in 

Flow direction ~ ~ 
pellets 

Water  out 

~ Flow direction 
water  

~ F ~  ~ / - - ~ ' ~  Water  in 

Pellets out 
Figure 11. Extraction apparatus for leaching of polymer pellets in water. 

Analysis goals 

As for the wiped-film evaporator there is no suitable model available for the 
leacher in a flowsheeting tool. We must  develop a custom model, which can serve 
to determine if this al ternative is feasible and which are the operating conditions. 
Since we s tar t  from scratch we must  address the requirements  of the model in 
more detail compared with using a block model in a flowsheeting tool. 

Since we want  to address the technical and economic potential  of the leacher the 
model must  be able to describe certain characteristics of the s tat ionary behaviour 
of the apparatus.  First  the model must  describe the influence of the leaching 
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agent flow rate and composition on the product quality. The product quality is 
defined by the monomer content of the pellets in the bottom outlet. The influence 
of the apparatus and pellet geometry on the obtainable product quality must also 
be studied. The apparatus geometry is necessary to estimate the investment cost 
for the leacher. 

Not only the composition of the pellets is of concern, but also the load of monomer 
in the leaching agent at the top of the apparatus. This quantity determines the 
cost of recovering the monomer from the leaching agent. 

Key to describing the behavioural characteristics mentioned above will be 
modelling of the mass transfer of water and caprolactam from the pellet to the 
liquid phase. Since we do not know this transfer process in particular we assume 
that  the transport  process of water and caprolactam within a pellet will be the 
rate-determining step. However this assumption has to be verified by 
experiments at later stages of the design process. 

M o d e l  s t r u c t u r e  

At first a structure for the model of the leacher has to be chosen. To derive the 
model structure a method suggested by Marquardt  (1995) was used. The 
resulting structure of the leacher model is depicted in Fig. 12. 

Pellet inlet Top hood Water outlet 
I i 
j i 

Top end 

Wo rking sec tio n 

Bottom end 

I i 
I i , 

Pellet outlet Bottom hood Water inlet 

Figure 12. Model structure of the leacher. 
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The white boxes indicate devices. They abstract  those parts  of the leacher, which 
have the ability to store an extensive quanti ty  such as mass, energy, etc. in the 
real world. The black boxes indicate connections. They abstract  flows between 
devices. The lines represent  couplings between devices and connections. 

The equations describing the behaviour for the hoods and all connection models 
are easily derived from global balance equations. Therefore only the derivation of 
the equations for the working section model is described in the following. 

Descr ibing  the behaviour of the working  sect ion 

This section describes how the equation system capturing the behaviour of the 
working section is derived. The equation system is constructed step-by-step 
star t ing from a set of balance equations (Bogusch and Marquardt ,  1997). At each 
step one or more equations are added to the model, which can be interpreted as 
constraining some of the variables already appearing in the model. The new 
equations might  introduce new variables, which must  be refined by other new 
equations. After each step of adding equations, we analyse the degrees of freedom 
of the current  equation system. For simulation purposes the model is complete if 
there are enough equations to constrain all occurring variables not considered as 
inputs or parameters  to the model. 

5.1.5.3 Momentum transport  and resul t ing flow patterns  

To describe the behaviour of the working section some initial  assumptions have 
to be made before we can set up equations describing the water  phase and the 
pellets from first principles. These assumptions are related to the movement of 
the pellets in the leacher. 

At first we establish tha t  the working section is always fully filled with water  and 
pellets. Thus the constant balance volume formed by the cylindrical walls of the 
leacher will only include a liquid and a solid phase. We do not have to deal with a 
third vapour phase when representing a part ial ly filled working section. 

We also assume tha t  the pellet flow to the working section is high enough and 
tha t  it is always fully filled with a packing of pellets. Thus we do not have to 
consider a varying level of pellets in the working section. 

Since our model should be used in flowsheet simulations of the polyamide6 
process we only need to describe the stat ionary behaviour of the leacher. This 
assumption removes all time dependencies from the model. 

Concerning the pellets and the packing we make the following assumptions: 
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�9 A single pellet occupies a constant  volume. This assumption is valid, if the 
polymer forms a rigid lattice structure.  The void volume of the lattice will 
be used by water  and caprolactam molecules. The existence of these 
molecules should not have any influence on the lattice. 

�9 The packing of the pellets has the same porosity in the whole apparatus.  
During the movement  through the appara tus  there is no re-organizing of 
the pellets. 

From these assumptions it follows tha t  some model variables do not vary over the 
working section length. In part icular  these are the volume flow of pellets and the 
cross section of the pellets. These on the other hand determine a constant velocity 
of the pellets moving through the apparatus.  

It is pointed out tha t  the assumptions made in this section can be considered as a 
simplified model of the momentum transfer  phenomena between the pellets, the 
liquid phase and the vessel. If these assumptions should be fully relaxed we must  
include momentum balances and assumptions on the momentum transfer 
mechanisms to the model. 

5.1.5.4 Liquid phase 

To set up the mass balances the dispersed content of the leacher is considered as 
a part iculate  phase system. The mathemat ica l  model assumes tha t  at every 
(mathematical)  point within the control volume of the working section there is 
liquid as well as solids. The smaller the pellets are the more accurate this 
approximation is. The mass-based part ial  densities refer to the total volume of 
liquid and solids. 

In the following it is assumed tha t  the liquid phase (index l) consists only of 
water  (index W) and the monomer (index M). There will be one total mass 
balance for the liquid phase and one for the monomer. 

A procedure similar to one presented by Gerst lauer  et al. (1993) is used to derive 
formulations of the mass balances. The procedure s tar ts  from a general 3- 
dimensional  balance formulation. In a first step the general formulation is 
simplified by applying assumptions on which fluxes can be neglected. The result 
is then  integrated over spatial  coordinates to get lower dimensional balance 
formulations. At this step, boundary conditions at the border of the integration 
domain enter  the model. 

The basis for the derivation of the mass balances is a 3-dimensional stationary 
balance: 

0 = - V . p , v ,  + jp,,. (1) 
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We have not considered any reactions, jp,~ describes the mass t ransport  between 

the liquid and solid phase. Integration of the mass balance on the cross section of 
the working section and introduction of mean values on this plane yields" 

b 
Tz p, V,., = . ( z )  

At this point we have removed the information on the profiles of the state 
variables in the radial and azimuthal  directions from the mathemat ica l  model. 

We assume tha t  the z-coordinate origin is at the bottom of the working section. 

From the formula above we can easily derive the following model equations for 
the total liquid mass and the mass of monomer in the liquid: 

0 
m - -  Oz P?z"  Jp,t V z  e g{ " O < z < L , (3) 

0 
-~z PM'tVz'M't = Jp,M,, V Z  e ~f~ " 0 < Z <_ L . (4) 

These two equations are part ial  differential equations, which have to be 
augmented by boundary conditions. The boundary conditions are derived from 
modelling the surfaces at the top and bottom end of the working section. 

The mass balances at the top and bottom end of the working section are derived 
from a general three-dimensional mass balance for interfaces and subsequent  
introduction of mean values on the cross section areas after integration. In a 
procedure similar to the one described above this yields: 

Mtop, l = -A~pp PlVz,! [L , (5) 

Mtop,lWtop,M,l = -Aapp PM,tVz~t,l [L, (6) 

Mbo,,, = Aapp PtVz,t Io, (7) 

Mbo,,Wbo,~S = Aapp PM,IVz,M,I 10" (8) 

Within the working section a closing condition on the mass flows per area holds: 
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p,Vz, , = ~_~ p,,,Vz,,, l V z  e 9r 0 <_ z < L . (9) 
,~{M,W} 

We can also include closure conditions on the mass fractions at the top and 
bottom of the leacher: 

1= ~_ W, op,,,, , (10> 
/e{M,W'} 

1= ~ _ W b o , , , ,  ' . (11) 
ie{M,W} 

Since we want  to describe the equilibrium at the interface between liquid and 
solid phase (see section 5.1.5.6) we also have to define the mass  fractions of the 
species in the liquid. 

w,., = P"tv~'"------.--Lt 'V'(z,i)e ~ x  {M,W}" 0 _< z ___ L (12) 
PtVz,t 

This definition holds if we neglect diffusion or dispersion in the liquid phase. 

An analysis of the par t ia l  model shows tha t  all unknowns  can be calculated from 
the derived equations except the flux quanti t ies  represent ing the mass t ranspor t  
between the liquid and solid phase in the leacher. 

Thus in the following we aim at deriving a model for this mass flow. These 
modelling steps can be considered as deriving a new independent  submodel 
within the overall modelling process. 

5 .1 .5 .5  Solid phase 

A stra ight  forward way to complete the model would be to include a population 
balance for the solid phase. An introduction to this kind of balance has been 
given by Ramkr i shna  (1985). 

However one modelling goal s tates tha t  diffusion of monomer  and water  within a 
pellet is the rate  determining step for mass t ransfer  be tween pellets and liquid 
phase. Thus we must  explicitly model the mass t ranspor t  of monomer (index M) 
and water  (index W) in the polymer (index P) lattice. This requires tha t  we 
consider the spatial  distr ibution of monomer and water  wi thin  a pellet. In terms 
of a population balance we would need to introduce a particle characteristic, 
which is described by a distr ibution instead of a single value like particle size 
commonly, used in modelling of crystall ization processes. Since this is not a 
s t ra ight  forward task  we have chosen a different approach. 
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We first derive a dynamic model for a single pellet. This model describes a pellet 
within a t ime varying environment .  Such a model can be applied to the 
conditions in the leacher if we consider a reference frame fixed relative to this 
pellet. The s t ructure  of the single pellet model is shown in Fig. 13. 

/ ( Envir~ 1 
(Surrounding Pellet / ~ Liquid) 

Interface 
Figure 13. Model structure for single pellet model. 

Due to the assumpt ions  we have made on the flow pa t t e rn  within  the leacher we 
will be able to define a coordinate t ransformat ion  to merge this par t ia l  model 
with the par t ia l  model of the liquid phase already derived in the previous section. 
That  model was derived for a reference frame fLxed to the appara tus .  

First  we set up mass  balances for the different species wi thin  the pellet. We use 
the same methodology as for the liquid phase balances described above. This 
yields" 

~(rm,,,)=O 0-70,,, +~ V(t,r , i )e ~xg~x {M,W,P}" 0 < t <_ T, 0 < r < R 1. (13) 

These balances describe the dynamics of the mass  fluxes inside a single pellet. No 
reactions are considered. The state profiles across spherical  surfaces have been 
approximated  by mean  values. 

We can refine the total  mass  fluxes into convective flux and diffusive flux: 

mr,,.,=p,,,V,,s+Jr.,., Vq, r , i )eg~x~x{M,W,P}:O<_t<_T,O<_r<_R. (14) 

The diffusive fluxes can be described by the following equat ions assuming tha t  
the diffusive mass  t ranspor t  is due to mass  fraction (which relate to 
concentration) gradients:  

j,,M. =_p,(D~ ~ 0 ) O---~WM,, + D n ~r-r Ww,, V(t,r)e ~ x ~ "  0 _< t _< T, 0 _< r _< R, 

~ ~ ) V(t,r) 9~x9~ 0< < <R J~,w,~ = -P~ D21~--r- r WM,s + DEE ~r  ww'" e �9 _ t _ T, 0 < r _ . 

(15) 

(16) 

1 Since we consider a pellet in the following the mass-based partial densities refer to the volume of the solid phase only. 
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The diffusion coefficients in these equations are assumed to be constant  (see the 
above sections for a discussion of this assumption). 

The total diffusive flux is zero. Thus we can determine the diffusive flux of 
polymer species from: 

O= ZJr , i , s  V ( t , r ) e  g ~ x ~  " O <_ t < T, O <_ r < R . (17) 
J~{M,W,P} 

The mean  of the convective fluxes can be related to the mean  value of the part ial  
densities by 

p,,sYr,s = p,,sVr,s V ( t , r , i ) e  9~xg~x {M, W,P}.'0 _< t _< T, 0 _< r _ R (18) 

introducing a mass averaged velocity. 

The mass fractions needed to express the diffusive fluxes are defined by 

p,., = w,, ,p s V ( t , r , i ) e  m x m x  {M, W,P}..0 _< t <_ T, 0 ___ r _< R (19) 

with 

P s :  ~_~P,,s V ( t , r ) e ~ x ~ ' O < t < T , O < r < R .  (20) 

Since we have assumed  a rigid lattice of the polymer we have to state that  there 
is no mass flux of polymer species: 

mr,e,s=O V ( t , r ) e ~ x ~ ' O < _ t < T , O < _ r < R .  (21) 

Now we have derived a dynamic model for a single pellet. The model forms a 
PDAE system. Thus we have to define boundary conditions and initial conditions. 
The boundary  condition at the centre of the pellet is given by the assumption that  
there should be no diffusive fluxes across the centre point. These fluxes would 
result  in a symmet ry  with respect to the centre point of the pellet. Symmetry 
requires vanishing mass fraction gradients: 

~r  wj.., [r=O: 0 V(t,i)e ~ x  {M,W}" 0 < t <_ T . (22) 

A fully specified dynamic model will be obtained if we add equat ions describing 
initial mass  fraction profiles within the pellet and the dynamic behaviour of the 
mass fractions at the pellet surface. The la t ter  can be obtained from equilibrium 
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calculations within the interface model if the state of the surrounding liquid is 
known. Also some physical property calculations have to be included at the 
system boundaries. We omit these equations at this point. 

The model obtained so far can be merged with the liquid phase model if we carry 
out a coordinate transformation as indicated above. This t ransformation relies on 
some assumptions we have made earlier on the nature  of the pellet packing. If we 
consider a single pellet entering the working section at the top the assumptions 
state tha t  the pellet moves down the appara tus  in a s t raight  line with constant 
velocity. Thus we can state the following relation between place and time: 

z = L + vs t  1. (23) 

Using this l inear relation to transform the pellet model to the spatial  coordinate z 
we get the following formulation for the mass balances: 

+-~r (rm,.,.,_ )= 0 V(z , r , i )e  ~ x ~ x  { M , W , P } :  0 < z < L, 0 < r < R . r ' r  s P,., -gz (24) 

The transforms of all other model equations can be obtained by exchanging z 
with t and T with L due to the linear character  of the transformation.  

The missing initial conditions correspond to the boundary conditions at the top of 
the working section. These can now be obtained from modelling the top end of the 
working section. From the total mass balance around the top interface we get an 
expression for the pellet velocity: 

M,op. ,  = - A , v , p , o p . ,  . (25) 

If we assume flat part ial  density profiles at the entrance to the working section 
we can derive the following expression from species mass balances around the top 
end: 

p,., Iz_ = V(r,0  {M, 0 < R. (26) 

We can add a closure condition for the mass fractions at the top: 

1 = ~ W,op,~, ~ . (27) 
ie{M,W;P} 

The value of V s is negative, because the pellets move against the direction of the spatial coordinate z. 
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Applying mass conservation principles to the bottom end of the working section 
gives expressions for the total mass flow and mass fractions of the pellet stream 
leaving the working section: 

Mbot s AsVs ! �9 I -o dr, (28) 

As Ys i Mbo,:Wbo,,,,, =-----~--- P,,, Iz-O dr V i~  {M,W}, (29) 
o 

1= ~ _  Wbo,,,, ~ . (30) 
~{M,W,e} 

5.1.5.6 Liquid-solid interface 

An analysis of the model obtained so far shows that  for a complete model we are 
missing the values of the mass fractions at the pellet surface and the mass flows 
between the phases. We can derive equations for these variables from statements 
on the liquid-solid interface. 

These considerations are governed by the assumption that  the mass transfer rate 
between liquid and solid is determined by the transport  processes within the 
pellet. This allows us to neglect the mass transfer resistance of a boundary layer 
around the pellet in the liquid phase. Thus we can assume equilibrium between 
the liquid phase and the solid phase at the pellet surface. As already indicated in 
the previous section the equations describing equilibrium conditions between the 
pellet and the liquid form the boundary conditions at the pellet surface. We 
describe the equilibrium with a single equilibrium constant and the relative 
volatility: 

WM,t -" g~WM,s [r=R VZ e 91:0 < z < L, (31) 

wwj = K~ac,www,s I,_-R Vz e 91:0 < z < L. (32) 

Similar to the diffusion coefficients the equilibrium constant and relative 
volatility will be considered constant in this model (see section 0 for a discussion 
of this assumption). No equilibrium relation is required for the polymer because 
we consider the polymer insoluble in the leaching agent. 

From mass conservation principles at the pellet surface follow the definitions of 
the mass fluxes between the liquid and solid phase: 
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Jp,i,! -" Eapelletms,r,i V ( z , i ) e  ~ •  O < z < L ,  (33) 

Jp,l = Z Jp,i,l VZ E ~f~ " O <_ Z <_ L .  (34) 

These equations form the missing link to the part ia l  model of the liquid phase. 
The geometric factor apette, is the specific pellet surface with respect to the pellet 

volume. 

5.1.5.7 Physical properties 

An analysis of the model equations derived so far shows tha t  the system is not 
yet fully specified. The required additional equations can be obtained from 
physical property calculations at the solid phase boundaries. Compared with the 
liquid phase model these relations are required because we have explicitly 
included the convective velocities of the pellets and the monomer and water  
within the pellet model. 

We assume tha t  the polymer forms a rigid lattice, which is filled with monomer 
and water. Thus we neglect any swelling processes. With this assumption we can 
derive the following relations: 

P,op,, = PPotyme...............~ , (35) 
Wtop,P,s 

P, 1~-0= PPolymer VZ e ~R " O <_ z <_ L ,  (36) 
Wp,s Ir=O 

Ps [r=R-- PPotymer VZ e 9~ " 0 < z < L (37) 

These equations assume the density of the polymer to be constant. Relaxing this 
assumption is not possible, because of the assumptions we made on the flow 
pat tern  within the appara tus  in section 5.1.5.3. 

5.1.5.8 Additional equations 

Analysing the model we will find out tha t  the model is fully specified. However 
the model will require the cross sectional area occupied by the liquid and solid 
phase as parameters .  These values usually will not be known a priori. Thus we 
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introduce two additional equations, which determine these parameters  from the 
appara tus  cross sectional area and the void fraction of the packing. 

The cross section occupied by pellets can be calculated by: 

As = (l- e)A~pp. (38) 

The cross section of the liquid phase is given by: 

Aap  p = A s + A 1 . (39) 

Model  parameters  

The model derived in the previous section only contains a few parameters.  This 
makes it very suitable for design calculations in the early stages of a process 
development activity and il lustrates the concept of parsimony discussed in 
section 5.1.1.2. 

The model needs several geometric parameters .  These include the working 
section length and radius. From the lat ter  the apparatus  cross-section can be 
calculated. In a design scenario these parameters  need to be optimised to achieve 
an economic process. The model also allows the study of the influence of the void 
fraction of the packing and the pellet surface per pellet volume. The latter can be 
calculated from the geometry of a pellet. The packing property can only be 
determined without experiments if we state additional assumptions on the 
a r rangement  of the pellets in the packing. 

Crucial to the application of the model will be information on the thermodynamic 
parameters .  These include the polymer density, the diffusion coefficient and the 
equilibrium parameters .  

In general all these properties are functions of temperature ,  pressure and 
composition. Since we are only dealing with liquid and solid phases we can 
neglect the pressure dependencies. In the model we have considered all 
properties to be constant. This is mainly due to the lack of availability of 
information on the dependencies. Experience of the authors show that  only the 
polymer density is available from the li terature. All other parameters  have to be 
obtained from experiments or estimated. The equilibrium and diffusion 
parameters  might be obtained from the data set of experiments on a single pellet. 
The pellet model derived above might be used to extract the parameter  values 
from this data set with parameter  estimation techniques. 

The model can be enhanced if the temperature  and composition dependencies of 
the physical property parameters  are included into the model. However due to 
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some of the assumptions in the model this can only change the type and number 
of model parameters  but does not add new effects described by the model. 

Exchanging the parameter  for the polymer density with a function of 
temperature and polymer chain length distribution only adds additional 
parameters  to the model. This is due to the fact that  the assumption of constant 
polymer density is the basis for assuming a rigid lattice formed by the polymer in 
the pellets. Thus from the assumption it follows that  the temperature of the 
pellets must  be constant within the whole apparatus.  The chain length 
distribution of the polymer is assumed constant since we do not model any 
reactions. 

If we refine the diffusion and equilibrium parameters  with functions of 
temperature and composition we include a new effect into our model. We can 
exclude the assumption of constant diffusion and equilibrium parameters and 
have reduced the number of parameters.  The extended model will also predict the 
effects of changing compositions on the equilibrium and diffusion process. The 
temperature is still a model parameter  as shown above. 

5.1.6 TOOL S U P P O R T  FOR MODELING 

This section consists of two parts. In the first part  we discuss the experiences 
obtained while carrying out the case study. The second part  exemplifies how 
advanced tools reported in the literature can support some of the steps related to 
the presented design and modelling process. For a full overview on the 
capabilities of the different advanced modelling tools the reader is referred to 
other chapters of this book (see Chapter 3.1). 

5.1.6.1 E x p e r i e n c e s  f rom the  case  s tudy  

Aspen Plus with Polymers Plus from Aspen Technology has been used for steady- 
state simulations. One limitation encountered is that  detailed separation models 
are not available in Polymers Plus, therefore, it cannot be used for a detailed 
modelling of the process. To overcome this limitation, either a new model for the 
whole process must  be developed using another tool or new Aspen model blocks 
representing the missing separation units on a higher level of detail need to be 
implemented. Both alternatives require significant efforts. 

In a typical flowsheeting tool the granularity of detail of the model blocks is fixed. 
The user cannot adjust it and therefore, the accuracy of predictions with the 
model may be limited and consequently, it may not possible to make decisions 
based on the on the predictions from these models. For example, it is not possible 
to calculate third and higher moments of molecular weight distributions, which 
are relevant for modelling the operations of industrial  polymer processes. 
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A custom leacher model has been implemented with the equation-oriented 
modelling and simulation package gPROMS. The modelling features of this 
package can be classified as a general modelling language according to 
Marquardt  (1996). Such languages support the hierarchical decomposition of 
models into encapsulated sub-models. The behaviour of the sub-models is 
declaratively described by a set of equations and variables. The language does 
not contain chemical engineering concepts. Thus it is not domain specific. This 
property limits support in deriving the model equations. However, all advanced 
modelling systems, which can be classified as process modelling languages, 
modelling expert systems and interactive (knowledge-based) modelling 
environments by Marquardt  (1996) have never been reported in the literature as 
being in regular  industrial use. Thus the choice of tools can be considered to be of 
industrial  relevance. 

Major parts  of modelling the leacher had to be carried out with pen and paper or 
in the head of the modeller due to the lack of chemical engineering concepts 
within gPROMS. However there are mappings of the results of the modelling 
steps to concepts within the modelling language. Decisions on the model 
structure will be reflected in UNIT, STREAM and EQUATION subsections of 
MODEL sections in the gPROMS input file. There is no support to document the 
derivation of a part icular  model equation such as the balance equations. The 
gPROMS language only represents the results of these steps in the EQUATION 
subsection of a MODEL section of a gPROMS input file. 

5.1.6.2 Suppor t  wi th  advanced  tools  

To overcome the problem that  flowsheeting tools cannot always provide suitable 
model blocks for all applications, efforts have been under taken to integrate 
flowsheeting and equation-oriented tools. The Aspen Engineering Suite allows 
the migration from flowsheeting to equation-oriented modelling environments 
but not in the other direction. Thus the numeric robustness of the Aspen Plus 
blocks cannot be exploited in detailed simulation studies. 

A different approach is being developed in the Cape-Open (Braunschweig et al., 
2000) and Cheops (Wedel and Marquardt ,  2000) projects, both of which aim at 
providing a platform to connect different tools to one central  process simulator. 
Currently, the case study presented above is being extended in terms of efforts to 
combine the Polymers Plus reactor model, the gPROMS separation model and the 
extruder model within the special purpose tool called MOREX that  will enable an 
overall simulation. To this end Cheops, a component-based hierarchical process 
simulator is being used to integrate the different models. 

The modelling goals, as stated above, were not achieved either by the 
flowsheeting tool or by the equation-oriented tool for the highlighted case study. 
In an industr ial  setting documentary information, such as the modelling goals, 
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will either be kept only in the mind of the modeller or will be stated in a report on 
the design process. However the report is not linked electronically to the model 
files. Thus it might get lost easily leaving a future user without the necessary 
model documentation. 

One approach to overcome these limitations is implemented in ModKit (Bogusch 
et al., 2001). ModKit provides a hypertext system to document all parts of models. 
Each modelling object can be linked to a hypertext page, which includes informal 
documentation of a model. The hyperlinks do not only refer to modelling objects 
but also to other pages within the set of documentation pages. 

Development of a suitable model structure for an equation-oriented model is a 
task, which requires the modeller to abstract the reality. Since a modelling tool 
has no representation of the reality this process can only be supported indirectly. 
The modelling tool is unable to make suggestions on how the model structure 
should look like. Instead the only help currently possible is to provide a set of 
well-defined canonical structural modelling objects, which can be used by the 
modeller to construct the model structure in a flexible manner.  

In modelling the leacher we have already used a set of such modelling concepts 
from the methodology proposed by Marquardt  (1995). However gPROMS neither 
forces nor supports the modeller to use such concepts. In part icular  there is no 
graphical representation of the model structure. The ModKit system provides a 
graphical model structure editor, which provides the canonical modelling objects 
on a palette. The modeller can select these objects from the palette and construct 
graphically the model structure. Other tools, e.g. ModDev (Jensen, 1998) and 
MODEL.LA (Bieszcad, 2000) define different sets of canonical objects, which can 
be employed by the user to define the model structure. However these objects are 
not organized in a hierarchical class structure. 

In the process of deriving the model equations a successive refinement approach 
was used in the case study. Starting with the balance equations of the liquid 
phase, the model was refined by adding equations describing variables appearing 
in the liquid phase model. Subsequent model analysis steps (e.g. after finishing 
the liquid phase model) were used to determine if the model was already fully 
specified. During this process a model for a single pellet has been developed 
independently from the original problem specification. This model was then fitted 
into the overall model through a mathematical  transformation step. 

Currently there are no tools to support derivation of model equations in such a 
general and flexible way based on the mathematical  structure of the intermediate 
model. Advanced tools for the derivation of unit  operation models (Jensen, 1998 
and Bieszczad, 2000) have chosen a different approach. These tools provide a set 
of dialogs, which help the modeller to specify the characteristics of a general 
reference model in terms of chemical engineering concepts. Bieszczad has 
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introduced the term phenomena-based modelling for this purpose. From the user 
provided specifications, these tools are able to generate (derive) the model 
equations automatically. 

The leacher example, however, shows that  such an approach is not flexible 
enough to support modelling of non-conventional equipments. In the case study, 
the deviation from a general reference model was necessary in order to avoid an 
unnecessarily large and mathematically complex model (one employing a 
population balance). MODEL.LA does not allow the user to deviate from the 
reference models, which are encoded in "modelling logic operators". ModDev on 
the other hand has a subsystem ModDef that  allows the user to specify new 
model blocks. The equations from these templates can be added to the 
automatically generated equations. The templates are organized in a hierarchy, 
which can be searched for model blocks with specific properties. 

5.1.6.3 C o n c l u s i o n s  

The case study showed that  the flowsheeting as well as the equation-oriented 
approaches to modelling of processes are relevant to process design. However, 
there are no industrial tools available, which is able to provide the full flexibility 
needed for a seamless use of both approaches in order to perform a successful 
simulation of the process. 

Custom modelling tools that  are in industrial use today only provide very limited 
support in modelling of non-conventional equipments. Tools based on 
phenomena-based approaches, however, may be viewed as transferring the 
modelling approach employed by flowsheeting tools such as AspenPlus to the unit 
operation level. In flowsheeting tools, models are constructed from a set of 
predefined unit operation blocks. The phenomena-based tools construct unit 
operation models from a set of predefined phenomena models. This moves the 
modelling process away from dealing with equations and introduces chemical 
engineering concepts. 

The case study, however, has highlighted some limitations of these advanced 
modelling tools with respect to flexibility and extensibility. Since there is not a 
single theory that  may be employed to derive the necessary model equations, the 
equation generation process should be more customisable by an expert user. The 
modelling tools must  provide facilities to easily define new phenomena and 
associated models, which may be obtained from data-driven approaches or new 
theories. It might be concluded that  the phenomena-based tools provide support 
for a large new class of chemical engineering modelling problems on the unit 
operation level, but there is still need for a more flexible and extensible approach 
to model non-conventional operations as well as processes. 
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5.1.7 SUMMARY 

This contribution has provided a case study illustrating the application of 
modelling in the conceptual design stage of a chemical process producing 
polyamide6. The case study has focused on modelling at the flowsheet level and 
at the unit operation level. The use of computer-aided tools during the modelling 
process has been discussed with respect to the case study. 

The nature of the modelling problems during the early stages of a design process 
required that the developed models incorporated information available in the 
open literature, because major pilot plant experimental studies generating them 
would be highly unlikely so early in the design process. 

The focus on the early stages of the design process is also the reason why model 
validation was not covered in this contribution. The reader is referred to the 
other chapters of this book (see all the chapters of Part III) for related topics. 
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Chapter 5.2: CAPE Tools for Off-line Simulation,  Design and 
Analysis 

I. D. L. Bogle & D. Cameron 

5.2.1 O F F - L I N E  A P P L I C A T I O N S  

This section discusses the off-line use of CAPE Tools. By this we mean tha t  the 
process to which the tools are to be applied either does not yet exist, or it exists 
and on-line data  are not readily available. It should be noted tha t  almost all the 
tools to be discussed are applicable throughout the product and process lifecycle. 
This means tha t  it is difficult to delimit a water t ight  discussion on off-line 
simulation, design and analysis. The tools to be described here tend to overflow 
into later sections of the book, since, for example, dynamic simulators are 
valuable tools for just the types of tasks tha t  will be discussed here. However, 
since we have limited space, this chapter  is limited to considering the following 
business processes (or activities)l: 

�9 Research and development. 
�9 Conceptual design, including process synthesis. 
�9 Detailed process design. 
�9 Off-line analysis of collected data, from experiments or operations. 

These activities are hierarchically linked, as is shown in Figure 1. The R&D 
activity is a precursor to conceptual design, which in tu rn  is a precursor to 
detailed design. Operations then follow from detailed design. 

1 To avoid ugly expressions and confusion, a "process" will always be chemical process in this section. A business process, 
on the other hand, is called an "activity". 
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Figure 1. The off-line activities in the chemical process lifecycle. 

Experimental  design and data  analysis is a supporting activity for the other four 
activities, in part icular  R&D and operations. 

In this section, a variety of commercial tools and near-commercial academic 
systems will be presented. We will a t tempt  to show how these tools support the 
off-line activities tha t  lie behind the development and operation of a process. The 
overview will be necessarily a little superficial. Its aim is to give the reader an 
overview of the rich variety of commercial, semi-commercial and academic tools 
tha t  are available. 

The presentat ion is biased towards continuous production facilities. Specialised 
tools for batch and semi-batch processes are described in chapters 3.5 and 5.4. In 
addition, since tools for dynamic simulation are described in chapters 5.3 and 5.4, 
they are only briefly mentioned here. 

5.2.2 OFF-LINE CAPE T O O L S -  TOOLS FOR D E C I S I O N  S U P P O R T  

5.2.2.1 Engineer ing  Decis ions  

CAPE tools exist to provide information to engineers as they seek to find answers 
to questions of the following type: 

1. What  product shall I make? 
2. How shall I make it? 
3. What  are the implications and side effects of making it this way? 
4. Is the chosen method the best way of making the product? 
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The answers given to these questions, the engineering decisions made, determine 
the type of process facilities that  are financed, built and run. Rational 
engineering decisions require: 

1. Information about the physical behaviour of the planned or actual process. 
This information is provided by experiments and one or more process 
models. 

2. Information about the economic constraints on the process. 
3. A means of recording the decisions made. 
4. A means of recording the rationale behind the decisions. 

The methodology of process design has been widely discussed. Standard 
textbooks like Biegler et al. (1997), Seider, Seader and Lewin (2000), Turton et 
al. (1997) or Smith (1995) give a good overview of current teaching practice. The 
older book by Douglas (1988) is also still worth a look. 

5.2.2.2 The v a r i e t y  of  off- l ine CAPE too ls  

A wide variety of CAPE (and non-CAPE) tools are needed to support process 
R&D and design. Some of these are shown in Figure 2. The diagram shows a 
family of interrelated tools sharing calculation results and data to produce a 
plant design. Each of these tools will be presented in more detail later in this 
section. 

A steady-state process simulator lies at the centre of Figure 2. A steady-state 
mass and energy balance is the primary tool for the design of both continuous 
and batch processes. They are used to calculate the design basis for the process. 
These are discussed further in section 5.2.3.1. An accurate steady-state model 
requires access to a system for calculating or est imating physical properties and 
predicting thermodynamic equilibrium. These are treated in section 5.2.4. 
Commercial steady-state simulators contain generic modules for reactors and 
separators. These are suitable for conceptual design and flow sheet generation, 
but lack predictive power. This means that  they are of limited use in detailed 
design and operations. More detailed models of specific unit operations need to be 
built or used by the designer. These models incorporate the designer's 
proprietary knowledge. These models are often stand-alone Fortran programs. 
Some typical programs of this type are described in section 5.2.5. 
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Figure 2. CAPE tools in on-line applications, showing mutual relationships. 
Widely used and commercial tools are shown with dark shading and bold text. 

Less widespread, but commercially available tools are shown with lighter 
shading. Applications that are dominated by academic, prototype tools are shown 

in white. 

These specific modules are often not easy to build and are based on experimental  
data  (for example, from bench kinetic experiments,  phase equil ibrium tests and 
pilot p lant  runs). Modelling assistants are programs tha t  a t t empt  to automate 
the development of a process model. This speeds development and helps the 
designer in building a physically correct model. More details are given in section 
5.2.5.5. 

A steady-state  s imulator  is a good tool for solving the mass and energy balance 
for a defined process flow sheet with a fixed structure.  However, it is not, alone, 
capable of determining whether  a given process s t ructure  yields the best possible 
energy use, water  use, environmental  impact, or operat ing profit. This 
calculation requires tools for process synthesis and optimisation. Process 
synthesis tools calculate the optimal process s tructure,  whereas  optimisation 
methods find the best operating conditions for a defined process structure.  Both 
types of calculations are described in section 5.2.6. 
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5.2.3 STEADY-STATE GENERAL PROCESS SIMULATORS 

5.2.3.1 F l o w s h e e t i n g  S imulators  

Off-line applications were the first area  where CAPE tools were applied. The first 
generat ion of flowsheeting programs sought to computerise the s teady-state  heat  
and mass balance and equipment  design calculations tha t  engineers  did by hand. 
The method chosen was to reproduce the sequent ial  approach of the hand  
calculation. Given a defined feed composition, t empera tu re  and pressure  and a 
full set of equipment  operat ing parameters ,  a procedure (or subroutine) 
corresponding to a uni t  operation is run  to calculate a set of outlet s t reams.  
These outlets are then  used as inlets to downst ream units.  

This sequent ial  a lgori thm works well unti l  a recycle occurs, or the user  wishes to 
specify the value of a process output  and manipula te  an input  or pa rame te r  to 
achieve this. Recycles are handled by tearing, i.e. guessing the values of one or 
more chosen process s t reams (the torn streams) and i tera t ing through the flow 
sheet unti l  these values are the same from one i tera t ion to the next. Specified 
outputs  are handled  by controllers: the user  inserts  a block whose task  is to 
adjust a selected input  variable or pa rame te r  so tha t  the output  value achieves 
its specified value. Simulat ion controllers should not be confused with actual  
process controllers. They sometimes occur in the same places in the flowsheet, 
but  a "controller a r rangement"  tha t  converges a s teady-s ta te  model will not 
necessarily work on the real, dynamic process. 

General  s teady-state  process s imulators  have a number  of l imitations. They are 
not efficient for solving for pressure  in the system. The s teady-state  momentum 
balances tha t  need to be solved here are so t ightly coupled tha t  an equation- 
oriented s imulator  is required (see section 5.2.3.2). Pressure  is therefore specified 
in most s teady-state  design models. This means  tha t  the assumed pressure  drops 
need to be verified at some later  stage using a s teady-s ta te  piping s imulator  or a 
dynamic simulator.  

Fur thermore ,  hold-ups and capacities are not represen ted  in a steady-state 
model. If needed, hold-ups can be represented  by fictitious s t reams in and out of 
the system. Indeed one author  has suggested this as a way of performing 
dynamic simulat ions (Horwitz, 1996). Such ad hoc solutions are unwise. They are 
bad practice: impossible to document, difficult to unde r s t and  and will only work 
with trivial  problems and specific s imulator  set-ups (Newell and Cameron, 1996). 
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5.2.3.2 So lv ing  Networks:  Sequent ia l -modular ,  S imul taneous -modular  
and Equat ion-or iented  systems and their  convergence .  

MIXER 
2 

4 

3 
REACTOR SEPARATOR 

Figure 3. A simple process network. 

Sequential  modular  systems calculate outputs of a unit  from the inputs using 
calculation modules for each unit  in the flowsheet. A sequential  calculation 
strategy can be used to solve the whole flowsheet by solving each set of unit 
equations in turn, usually done as a separate module or routine for each unit. If a 
recycle exists the values of the variables in at least s t ream must  be guessed. In 
the case of Fig 1 for example the outputs from the mixer can only be obtained if 
the s t ream vector for s tream 4 is known. One method of solving this problem is 
to guess values for the s t ream vector for s tream 4. Using these values one can 
calculate successively streams 2, 3, 5, and a new set of values for stream 4. The 
guessed values for s t ream 4 can then be modified and the flowsheet calculations 
redone until the calculated values for s tream 4 and the guessed values are the 
same. When the two values are essentially the same the procedure is said to 
have converged. The guessed stream or s treams are called the torn streams. The 
scheme uses an iterative procedure to solve the flowsheet equations. 

If we denote all the torn variables, i.e. variables in a torn stream, by the vector x, 
a steady-state simulation can be converged by solving the non-linear equations: 

x - f ( x ) :  0 

where f(x) is the est imate of the torn variables at the next iteration. This is 
obtained by simulating through the model once. 

If controllers are present  there is an additional set of equations for the outputs, 
y, as a function of inputs and parameters,  z: 

y -g (z )  =0 
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The key to efficiently solving this model is to choose the best values of x and z at 
each iteration. Sequential simulators use one of several methods, including: 

�9 Direct substitution, where Xn+l --ffXn). 
�9 Wegstein's method, where: 

f (x,., ) -  xj,, 

1- 
Xd, n ~ X i , n _  1 

Quasi-Newton techniques, where a secant approximation is made for the 
Jacobi matrix. 
Newton's method, where Jacobi matrix of f(x) is calculated and used. 

Equation oriented flowsheeting systems set up the full system of algebraic 
equations and then solve them either simultaneously or by decomposing the 
equation set into separate blocks and solving each block independently. The 
information from a degrees of freedom analysis of a flowsheet, where the 
variables and equations are listed, can be set up in matrix form. This matrix is 
known as the occurrence matrix for the equation set. A well-posed problem can 
usually be obtained by reducing the columns of the matrix until the matrix is 
square. This is equivalent to specifying each of the variables for which a column 
is removed. When the matrix is square this represents a system in which the 
number of equations is equal to the number of variables and a solution can be 
sought. 

The Jacobian matrix, J, of a system of equations, the matrix of derivatives, has 
the same structure as the occurrence matrix, i.e. where the occurrence matrix has 
a zero so too does the Jacobian and where the occurrence matrix has an entry the 
Jacobian has a value. If the Jacobian matrix is singular, i.e. its determinant  is 
zero, for a particular set of parameter  values then the equations are not all 
independent. Newton based methods are used to solve the equation set. 

5.2.3.3 C o m m e r c i a l  s i m u l a t o r s  for p e t r o l e u m  and c h e m i c a l s  p r o c e s s e s  

The market  for steady-state simulation in the petroleum and chemical industries 
is dominated by four products: Aspen Plus from Aspen Technology Inc., Hysys 
(and its predecessor Hysim) from Hyprotech (a division of AEA Engineering 
Software), CHEMCAD, from Chemstations Inc., and PRO/II from Simulation 
Sciences. Aspen Plus and PRO/II are sequential modular simulators, whereas 
Hysys uses a simultaneous modular algorithm. Aspen Plus and PRO/II have a 
long history, beginning in the late 1970's and early 1980's as Fortran applications 
on mainframes and later minicomputers. Simulations were configured using 
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keyword input files 2. During the 1990's these tools migrated to personal 
computers, and the input files were hidden behind first DOS-based configuration 
tools (such as Aspen's Model Manager) and then Windows-based graphical 
configuration tools (newer versions of Model Manager, Simulation Sciences' 
ProVision, and in CHEMCAD). Hysim was developed later, and was written for 
personal computers. Hysys was a further development for a Windows operating 
system. 

Name 
Aspen Plus 

Hysys 

PRO/II 

CHEMCAD 

Table 1 Some market-leading steady-state simulators. 
Supplier Web site 
Aspen http://www.aspentech.com/index.asp?menuchoice=ap5aspenplus 
Technologies 
I n c .  

Hyprotech 
(part of AEA 
Engineering 
Software) 
Simulation 
Sciences 
Chemstations 
Inc. 

h t t p  ://www. hyp  ro tech .com/p  roce ss /de faul t ,  asp 

http://www.simsci.com/products/proII.htm 

http://www.chemstations.net 

5.2.3.4 I n - h o u s e  S i m u l a t o r s  

Many large chemical companies developed their own steady-state simulators 
during the 1970's and 1980's. For example ICI developed Flowpack, BP built 
Genesis, Norsk Hydro built MAHEBA and NEW*S. Exxon, DuPont, Dow, DSM, 
BASF, Bayer and Shell all had similar systems. During the late 1980's and 1990's 
most of these systems have been superseded by generic simulators. The 
production companies decided that software development and support was not 
core business and that it was not worthwhile maintaining the (expensive) skills 
that were needed. 

There remain, however, some companies who maintain in-house simulators as a 
source of competitive advantage. Liquefied gas companies usually use their own 
simulators, with their own highly accurate thermodynamic and fractionation 
model, such as Linde's OPTISIM simulator (Volt, 1994). Effective design of air 
separation equipment requires very accurate calculation of phase equilibrium, as 
the relative volatility of oxygen and nitrogen is very low. 

Haldor Topsoe is another company who maintains their own engineering 
simulator (Christiansen, 1992). Their maintenance of a specialised tool is 

2 These files were noticeably influenced by their Fortran pedigree. They were terse, dense and not very readable. 
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justified by their concentration upon a narrow range of processes in which 
proprietary reactor and catalyst technology is central. 

5.2.3.5 Flowsheet ing in Paper, Minerals and Metals Processing 

The standard steady-state simulators are most widely used in the petroleum and 
chemicals industries. This has been due to both technical and economic 
pressures. Technically, the simulators were well suited to modelling fluids with 
relatively well-defined compositions and thermodynamic properties. They were 
less suitable for processes with poorly defined compositions and properties. This 
was despite the fact that Aspen was originally developed as a simulator for 
simulating processes with ill-defined compositions, such as coal (see, for example 
McIlvried, Marano and Boyd (1996)). 

The petroleum and chemicals industries were also economically and culturally 
attractive to the vendors. Engineers understood the need for steady state 
simulation as a means of developing a design basis. Clear cost benefits could be 
demonstrated by using these new tools. 

Minerals processing and metallurgy have provided niches for smaller vendors 
and research organisations to provide specialised steady-state simulators. For 
example, Mintek in South Africa, market Pyrosim, a simulator for pyro- 
metallurgical processes. Further description of this product is available at the 
web-site http ://www.mintek.co.za/Pyromet/Pyrosim/Pyrosim.htm. Similar 
products are marketed by JKTech, the commercial arm of the Julius Kruttschitt 
Mineral Research Centre (http://www.jktech.com.au/software.htm). SpeedUp has 
been applied to electrolytic zinc processing (Barton and Perkins, 1988). A typical 
simulator for minerals processing is described by Houdouin and Coelho (1987). 
Simulators for minerals processing (i.e. crushing, grinding, screening and 
flotation) usually include data reconciliation algorithms as the predictive power 
of unit models are low and redundant process measurements and analyses are 
available. 

Many pyrometallurgical and hydrometallurgical process are modelled using 
thermochemical software, such as Outokumpu's HSC software 
(http://www.outokumpu.com/hsc/) or FACTSage (http://www.factsage.com/). 
These tools offer limited modelling of flowsheets, but good modelling of single 
reactors using the minimisation of Gibbs free energy. 

Pulp and paper processes are characterised by solid-liquid-gas systems, complex 
chemistries and poorly defined materials (such as pulp, broke and black liquor). 
The processes are also tightly coupled mass flow networks. This makes equation- 
based process simulators attractive. Again there are some niche products. 
Massbal (Shewchuk, 1987) is an equation-oriented simulator that has good 
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market  penetrat ion in the paper industry. VTT in Finland markets  a sequential- 
modular s imulator  called BALAS (http://www.vtt.fi/ene/balas/balas.htm). 

5.2.3.6 From Steady-State Design to Dynamic Design 

Dynamic simulation first grew out of the need to predict the effects of controller 
tuning, ensure reliable emergency procedures and to develop effective start  up 
and shut down of plant. However a number  of factors affecting plant  design and 
operation have caused a much greater interest  in plant  dynamics recently. Plants 
are becoming more complex and more tightly integrated, both internally within 
individual plants and on a site-wide basis, via shared utilities, relief systems, 
etc.. Such integrated complexes often have more complex dynamic behaviour and 
are therefore more complex to commission and to operate. Upset dynamics is 
often a critical issue, potentially leading to safety & environmental  problems and 
the propagation of faults through the site. Localised manufactur ing is creating 
the need for much smaller plants with very similar requirements.  Many of the 
newer high-value products (such as pharmaceuticals,  fine chemicals, etc) are 
produced using batch (or other discontinuous) processes (and, of course, many 
plants are hybrids, i.e. contain both continuous and batch sections) - such 
processes are inherently dynamic and therefore more difficult to develop, design 
and operate. 

The analysis and exploitation of the dynamics of a plant  provides capabilities, 
which can help ensure tha t  these goals are met. Great  strides, particularly in the 
provision of dynamic simulation of continuous and to a lesser extent batch 
processes have helped in achieving some of the benefits. The offshore oil industry 
in part icular  has made great use of the tools and methods available. 

A number  of products are now available for use as design and verification tools. 
In many cases the tools are closely tied to steady state simulation tools. Aspen 
Dynamics from Aspentech is a dynamic simulation tool integrated with their 
steady state simulator. The system is an equation-based technology where the 
equations can be seen and modified. Hysys, from Hyprotech, is also tightly bound 
with the steady state capability allowing a very easy switch from steady state 
mode to dynamic mode. gPROMS from PSEnterprise Ltd 
(http://www.psenterprise.com) is a general purpose process modelling, simulation 
and optimisation environment  allowing open access to the model equations. It 
has a more sophisticated technique for handling discrete events than  the systems 
mentioned so far. They have also developed an object-oriented framework for the 
modelling and the dynamic simulation of chemical processes, Odysseo (Object- 
oriented Dynamic Simulation Software Environment),  a reusable C++ 
development framework as a foundation for general or dedicated dynamic 
simulator design. Models are developed in equation-based form but it also 
supports inclusion of modules. Prosim (http://www.prosim.fr) has developed 
some tools for the design of batch processes which are by their  nature  dynamic. 
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5.2.3.7 From Steady-State  Des ign  to Opt imisat ion  

Most design problems are in fact optimisation problems - there are many 
possible solutions to the problem and the problem is to find the best choice. It is 
necessary tha t  there be at least one degree of freedom and variables represented 
by these degrees of freedom are manipula ted to find the best solution. It is 
important  of course to define by what  criterion the optimal choice is to be made 
i.e. to define an objective function. Investment  design problems are made on the 
basis of a weighted balance of capital and discounted operating cost over the 
project lifetime such as the Net Present  Value of the project. Many operational 
decisions are made on the basis of a measure of the current  profitability of the 
short to medium term operating costs. For example refinery blending schedules 
are determined solving linear optimisation problems. Increasingly designs are 
being optimised on the basis of environmental  performance using for example 
Life Cycle Analysis as a basis (Stefanis et al., 1997; Azapagic and Clift, 1995) or 
the sustainable process index (Krotschek and Narodoslawsky, 1996). 

Optimisation codes manipulate  the variables until  the objective function satisfies 
the optimality conditions, where the objective function cannot be improved 
locally, while still satisfying the model equations. The full optimality conditions 
are known as the Kuhn Tucker conditions. Most process optimisation tools use 
var iants  on the sequential  quadratic programming algorithm (SQP). A full 
explanation of process optimisation can be found in Edgar  et al. (2001). It should 
be noted tha t  all optimisation tools currently implemented in design tools find a 
local minimum, which may not necessarily be the best, or global, minimum. 
Significant strides have been achieved recently in techniques for determining the 
global optimisation (see for example Floudas, 1999) but  there is still some way 
before there are commercial codes. To a t tempt  to obtain the global solution 
normal practice is to try the same problem from many different s tar t ing guesses. 
Aspen Plus, PRO II, Hysys and gPROMS all support an optimisation capability 
using SQP based algorithms. CHEMCAD does not, preferring to encourage the 
user to develop scenarios to explore the potential  solutions. 

5.2.3.8 Batch S c h e d u l i n g  

Tools for batch process design have been concentrated on solving the scheduling 
problem - deciding how best to schedule a set of recipes within a fixed set of 
plant  resources. The tools assume that  the times and capacities of each step in 
the recipe are known. This topic is covered in detail in chapters 3.5 and 5.4. 
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5.2.4 THERMODYNAMICS AND PHYSICAL P R O P E R T I E S  

Wide ranges of thermodynamic property prediction tools are available. Main 
simulator vendors have their own, proprietary thermodynamics system. This is 
also true for the most of the smaller vendors. For example, Prosim, offers a 
system called PhoPhy Plus. AspenTech's system, PropertiesPlus, is also available 
as a stand-alone product. 

These calculation systems build on databases of pure-component properties and 
interaction factors such as 

o DIPPR (http:l/www.aiche.org/dippr/), 
o PPDS (http:#www.ppds.co.utd) and 
o DETHERM (http:#www.dechema.delinfsys/dsd/englisch/dethermMain.htm). 
o 

Figure 4 shows the typical structure for a physical properties system. The 
calculation program draws on one or more pure property databases, one or more 
mixture (interaction parameter) databases, a library of methods (equations of 
state, activity coefficient equations) and a library of algorithms (different types of 
flashes). All these components need to be in place and consistent with each other 
for a successful calculation. 

Calculation Engine 

1 
I I I I 

/ / / / I ii I 
Q Mixture ( (Equations of I 

data state, activity I 
models) 1 

Figure 4. Structure of a thermodynamic system. 

Pure 
component 
properties 

Algorithms 
(Flash 

algorithms) 

A general simulator thermodynamic system must  be able calculate properties for 
at least the following types of compounds: 

o oil fluids, including pseudo-components. 
o polar chemicals and solvents. 
o aqueous electrolytes. 
o polymers. 

The large vendors' systems all have methods for representing these fluid types. 
Smaller vendors, such as Infochem (http://www.infochemuk.com/) and Calsep 
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(http://www.calsep.com) have concentrated on delivering stand-alone products, 
with system integration features, for oil and gas systems. 

The thermodynamic and physical properties packages 
difficult to use. Typical problems encountered by users are: 

are complicated and 

A large number of methods are available. These are of dubious relevance 
and unknown quality. As Linkson (1998) has pointed out, using an 
unsuitable method can give dangerously spurious answers. CAPEC at the 
Technical Universi ty  of Denmark (http://www.capec.kt.dtu.dk) has 
developed, an expert assistant, called TMS. This program identifies the 
most appropriate thermodynamic model needed to describe the specified 
properties for a given mixture. 
Data for pure components or mixtures is not available, unless linked to 
suitable databases. All good physical property systems provide tools for 
regressing experimental data for pure components and mixtures. If, 
however, it is not feasible to conduct experiments, estimates of key 
parameters  may be made using group contribution methods, such as 
UNIFAC (Fredenslund et al., 1977). A graphical tool, called PROPRED 
uses a variety of group contribution methods to calculate pure component 
properties for molecules that  the user interactively draws. This product 
was developed at CAPEC and an independent commercial version ha also 
been developed by IP-Sol (http://www.ip-sol.com/). 

5.2.5 S P E C I F I C  SIMULATORS FOR UNIT O P E R A T I O N S  

As noted in the introduction, generic process simulators contain generic models 
for reactors and separators. These models are usually good enough for conceptual 
design, but are inadequate for detailed work. In addition, reactors and separators 
are usually the parts of the process that  are proprietary and confidential. Most 
technology licensers possess a variety of detailed models for key processes. These 
are particularly useful for batch process design and development. 

5.2.5.1 R e a c t o r s  

Aspentech have a range of specialist reaction design systems, among others for 
Hydrocrackers, FCCs and Hydrotreaters. BatchReactor from Prosim is a tool for 
chemists, technicians and process engineers for prompt and safe design of batch 
chemical reactors. It permits the optimisation of the process combined with 
thermal stability analysis. Aspen's Batch Plus supports the development of 
modelling of batch recipes of reaction and separation stages. 
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5.2.5.2 Heat  e x c h a n g e r s  

During the mid 1990's the leading vendors of specialised software for designing 
and rating heat exchangers were acquired by one of the vendors of sequential 
modular simulators. Thus, HTFS' parent company acquired Hyprotech and 
integrated HTFS into Hysys. Similarly AspenTech acquired and integrated B- 
JAC. Around the same time, Simulation Sciences acquired the Hextran software. 

These products are broadly comparable and are capable of designing and rating a 
wide variety of shell-and-tube, finned and compact heat exchangers. The software 
is available as a stand-alone system, but can be integrated with the parent 
company's simulator. 

Smaller vendors also have niche products, for example, Prosim sells a product 
called ProSec, which is dedicated to brazed aluminum plate-fin heat exchangers 
and Ariane, which optimises power plants (steam, electricity, hot water) to 
determine the operating parameters that enable the lowest energy cost. 

5.2.5.3 Dis t i l la t ion  

Aspentech have a system for modelling non-equilbrium separations, both packed 
and trayed, called RATEFRAC, which uses a rate-based model to predict 
separations. For batch distillation Aspentech provide a tool called BATCHFRAC 
and Prosim provides Batchcolumn. Both of these models use rigorous tray-to-tray 
calculations based on phase equilibrium models. 

Hyprotech markets a product for column sequencing and design of ternary and 
azeotropic distillation columns. This product, called Distil, is a commercialisation 
of research results from the University of Massachusetts. 

5.2.5.4 Adsorpt ion  

Aspentech provide ADSIM for modelling and designing the full range of 
industrial gas and liquid adsorption processes. A brochure on this system can be 
downloaded from http://www.aspentech.com/ap/downloads/adsim wp.pdf. 

5.2.5.5 Model l ing  ass i s tants  

Developing models, especially those with any degree of detail, is a difficult task. 
In recent years there have been new tools to assist with this task. One of the 
first of these was MODEL.LA (http://modella.mit.edu/) (Bieszczad, 2000). 
Another approach to model building is presented in the I CAS system (Gani et al., 
1997) (http://www.capec.kt.dtu.dk). Modelling assistants are treated in more 
detail elsewhere in this book (see for example, chapters 3.1 and 5.1). 
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5.2.6 P R O C E S S  SYNTHESIS  

The problems solved by the tools outlined in section 1.2 a l l  assume t h a t  the 
choice of units and interconnections between them, the structure or topology of 
the flowsheet, are predetermined. The aim of Process Synthesis tools is the 
automatic identification of the optimal choice of units and the connections 
between them for the production of a particular product. Algorithms for the 
solution of this problem have been appearing since the 1960s. There are three 
main approaches for this problem: properties based, optimisation based, and 
heuristics based. 

5.2.6.1 Whole  P r o c e s s  S y n t h e s i s  

Jaksland et al (1995) proposed an approach to the problem, which determines 
which separation techniques are feasible using physical property differences 
between the major components to be separated. The approach is based on the 
idea that each unit operation is governed by a physical property driving force eg 
distillation is governed by the volatility difference between the components. 
Table 2 lists a number of alternative separation techniques along with the 
physical property, which governs its performance. For the method it is 
necessary to develop the binary ratio matrix, a matrix that contains the ratios 
between each pair of components of all the relevant physical properties. For the 
published results the properties are mostly predicted using group contribution 
methods. 

Table 2. Separation Techniques and governing physical property 

Separation technique Property 

Absorption solubility parameter 
Distillation boiling point, heat of vaporisation 
Crystallisation melting point, heat of fusion 
Microfiltration size, molecular weight 
Gas separation membranes critical temperature, van der Waals volume 

In optimisation based approaches an optimisation problem is formulated which 
encompass all possible solutions of the problem. It is necessary first to develop a 
mathematical description of the problem, which encompasses all solutions, often 
known as a superstructure, and to define an objective function, which 
characterises the performance of the proposed design. This may be economic or 
environmental or characterising any other objective which can be quantified. 
This optimisation problem is then solved using computational optimisation 
methods either using continuous optimisation methods such as sequential 
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quadratic optimisation methods (Papoulias and Grossmann, 1983b) or using 
integer search methods (Fraga and McKinnon). This approach is often used for 
subproblems of the overall synthesis problem e.g. heat exchanger network 
problems (Papoulias and Grossmann, 1983a). Fraga (1998) has developed a 
system called Jacaranda, which uses integer optimisation solution method and 
coarsely discretises the continuous variable space. 

Douglas (1988) developed a heuristic or rule based procedure for designing 
process plants. His procedure begins with defining the economic potential of the 
design as the difference between the product value and the raw material costs. 
The procedure then follows a series of decisions trees to decide the following 
questions: 

o Operate in batch or continuous mode? 
o What is the flowsheet input output structure? 
o What is the recycle structure? 
o What is the separation system? 
o What process integration is possible? 

The procedure involves continued evaluation of the effects of each choice on the 
economic potential. They have implemented the approach in a system called PIP. 
The use of thermodynamic heuristics in the design of heat exchanger systems has 
been a great success for the process industries and this is discussed in more 
detail in the following section. 

GHN mbH market a synthesis tool called PROSYN, which uses an expert system 
principally using heuristics for process synthesis (http://www.ghn.de/). The 
system works through a number of domain expert programs for the following 
problems: the selection and design of reactors for a given reaction path 
(READPERT); the generation of distillation sequences using simple and complex 
columns (REKPERT); the development of energy integrated distillation 
sequences (HEATPERT); the development of distillation sequences for the 
separation of azeotropic or close-boiling mixtures (TEAGPERT); and the 
determination of the method of producing crystalline products and the selection 
and design of the appropriate crystalliser (KRISPERT). 

5.2.6.2 Heat  E x c h a n g e r  and Water N e t w o r k  S y n t h e s i s  

The area with the most concerted activity is the synthesis of heat exchanger 
systems motivated by the need for energy efficiency. Aspentech market a tool 
called Aspen Pinch. The tool implements the ideas of pinch technology for 
predicting minimum energy and capital requirements for a set of hot and cold 
streams with target temperatures. 
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Pressure on performance targets for the effective use of process utilities has 
encouraged the development of a number of tools for synthesising systems for the 
optimal use of process water. Aspen Water from Aspentech is a tool for 
optimising process water utilisation. Aspentech's Aspen Utilities focuses on the 
optimisation of the purchase, supply and usage of fuel, steam and power within 
environmental constraints. 

AspenTech is used only as an example here. Similar products are available from 
other vendors and consortia, such as: 

o Veritech (http://www.veritech-energy.com/). 
o Linnhoff March (http://www.linnhoffmarch.co.uk/). 
o UMIST (http://www.cpi.umist.ac.uk]). 
o Hyprotech (http://www.hyprotech.com/hx-net/default.asp). 
o NEL (http://www.ppds.co.uldproducts/heatnet.asp). 

5.2.7 DATA RECONCILIATION 

Developing models off-line directly from plant data is an important  application. 
While many off-line tools can be used with generic models where possible using 
realistic design parameters,  many operational problems require better quality 
prediction from the models especially when used in conjunction with any on-line 
applications. This is done using available data, as much as can be obtained, 
together with a data reconciliation package which obtains the model parameters  
which best fit the data. See also chapter 3.4 for a detailed discussion on the data- 
reconciliation framework. 

VALI from BELSIM (http://www.belsim.com) is an equation based data 
reconciliation software tool. It uses information from redundancy and 
conservation laws to correct measurements  and convert them into models. VALI 
detects faulty sensors and pinpoints degradation of equipment performance (such 
as heat rate and compressor efficiency.). 

Data Reconciliation is more efficiently done using an equation-oriented simulator 
than a sequential modular simulator. Thus, Simulation Sciences markets their 
data reconciliation product, DATACON 3 as a parallel product to the PRO/II 
simulator. Use of the Massbal simulator for data reconciliation has been 
described by Cameron, Morton and Paterson (1991). 

3 ht tp: / /www.simsci .com/pdf/DATACON.pdf  
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5.2.8 P R O D U C T  S Y N T H E S I S  

A new frontier for off line tools is in designing appropriate products for specific 
well-defined uses. There are few examples of generic tools in this are. 

However one successful example is the Computer Aided Molecular Design 
(CAMD) technique, the computerised generation and identification of compounds 
with specific properties. ProCAMD (http://www.capec.kt.dtu.dk, http://www.ip- 
sol.com/) implements this using group contribution property prediction tools to 
build molecules with specific properties and has been used to identify/design 
potential new solvents, process fluids and refrigerants (Harper and Gani, 2000). 

Westerberg and Subrahmanian (2000) have also developed some generic ideas 
but the topic remains in its infancy. 

5.2.9 I N T E G R A T I N G  THE D E S I G N  P R O C E S S  

One of the weaknesses of design is that it is done in a sequential fashion choosing 
units, then interconnections, then capacities and flows and thermodynamic 
states, then control system to keep operations at the chosen conditions etc.. 
However these decisions are rarely distinct and much iteration is required to 
ensure that technical specification are met as well as safety and environmental 
limits and of course cost optimality or as close as can be obtained. The 
integration of the design process remains an elusive target, not helped by the 
diversity of tools used in the various stages of design. Even the first stage of 
integrating the design process, that of tools integration eludes us although some 
prototype tools such as Epee (Costello et al. 1996) and ICAS (Gani et al. 1997) 
exist. Also a prototype for tracking the rationale of design decisions, KBDS 
(Banares Alcantara (1995a, 1995b), has also been developed. True concurrent 
engineering in the design process is a challenging topic and progress in this topic 
is covered in detail in chapters 6.2 and 7.1. 
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Chapter 5.3" Dynamic Simulators for Operator Training 

D. Cameron, C. Clausen & W. Morton 

5.3.1 INTRODUCTION 

This chapter describes current practice for the use of dynamic simulators in the 
process industries. Over the last two decades, dynamic simulation has matured 
as a tool for training operators of capital-intensive and safety-critical equipment 
(such as oil platforms, power stations and nuclear reactors). Advances in 
computer speed, programming methods and user interface facilities have made 
dynamic simulation a robust, effective and relatively inexpensive way of training 
operators. As this has occurred, dynamic simulators for training have been 
adopted (often in a simplified form) in other industries. 

Furthermore, the technical quality of simulation models has improved with 
computer speed. This means that dynamic simulators can also be gainfully used 
for engineering design and operations support. These trends will be described 
and explored later in the chapter. 

The discussion begins with a discussion of dynamic process modelling. This sets 
the context for later, more detailed discussions. This is followed by a brief 
historical overview of dynamic simulation in the process industries and related 
areas, such as energy production. This is followed by a brief discussion of how 
and where dynamic simulators can be used in the process lifecycle. This section 
provides a road-map for the rest of the chapter. 

Dynamic simulators (together with on-line systems) are perhaps the area of 
Computer Aided Process Engineering where user requirements are most 
stringent. A presentation of the requirements of a specific, but typical industrial 
operation is given in section 5.3.6. 

Once this background has been given, it remains to describe the tools that  are 
currently available. This is done in two steps. Section 5.3.7 describes the two 
methods that  are used to solve dynamic models of processes. Section 5.3.8 lists 
and describes typical products that can be used for dynamic simulation. 
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Sections 5.3.9 and 5.3.10 revisit the discussion of lifecycle dynamic modelling in 
more detail. Section 5.3.9 presents how dynamic simulators are used in operator 
training and section 5.3.10 gives an example of how a dynamic model can also be 
used to provide on-line operator support. 

The chapter concludes with a few thoughts about how dynamic simulators will 
develop over the next decade. 

5.3.2 WHAT IS A DYNAMIC PROCESS MODEL? 

5.3.2.1 M od e l s  are se t s  of  d i f f eren t ia l  and  a l g e b r a i c  e q u a t i o n s  

The theory of process dynamics is part  of s tandard undergraduate Chemical 
Engineering theory, and is well covered by standard process control textbooks 
such as Luyben (1990) or Bequette (1998). The dynamic behaviour of a process is 
governed by the laws of conservation of mass, momentum and energy. These, for 
an example of a lumped control volume (see Figure 1) with in and outflow and N 
chemical species present, give rise to a system of N+2 differential equations: 

Inlet 
stream - - .  

T,e P.,, F, xu. 

Holdup 
T,P,n~ 

Outlet 
stream 

T, P,F, Xj, o. t 

Figure 1. A simple, lumped control volume 

Conservation of mass for each chemical species 

dn~ 

dt 
= FinXi.in -- Fout Xi,ou t + I~ i for i = 1, N 

Conservation of energy (enthalpy in a flow system) 

dH 
dt 

= Finhin - Fouthou t -I- AH + q 

Conservation of momentum and equation of state (with constant volume) 

dT d Z n i  / d P = f  V, 
dt & '  
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These differential equations are accompanied by a set of algebraic equations. 
These algebraic equations represent (a) definitions of variables in the model, (b) 
calculations of physical properties, (c) quasi-steady-state relationships for 
phenomena with fast dynamics and (d) process inputs. 

Thus, any dynamic model is a system of differential and algebraic equations 
(DAEs). A dynamic model of a chemical process would typically include hundreds 
of differential equations and thousands of algebraic equations. Efficient solution 
of these models is not trivial. Methods for solving such systems are reviewed in 
section 5.3.7 

5.3.2.2 D y n a m i c  mode l s  inc lude  more  t h a n  j u s t  t he  b a r e  p roces s  

The dynamic behaviour of a chemical process depends on much more than the 
dynamics of the actual processing units. To be useful a process model needs to 
take account of the dynamic behaviour of the "ironmongery" in the process 
system. Thus, a dynamic process model will need to include dynamic models of: 

�9 sensors and transmitters  (e.g. thermocouples and flow sensors). 
�9 analogue-digital conversion and sampling. 
�9 signal processing and transmission. 
�9 logic and sequences. 
�9 control algorithms. 
�9 actuator dynamics (e.g. valve positioners, actuators and variable-speed 

drives). 
�9 final control elements (e.g. valve stem travel, hysteresis and sticking). 

These additional models introduce further DAEs, and will usually introduce 
discontinuous, discrete events. 

This has two implications: 

(1) 

(2) 

Dynamic process models require much more information than the 
corresponding steady-state model. Steady-state models are largely 
indifferent to equipment size and shape ~, controller tuning, sampling 
time, signal noise, valve hysteresis or shut-down sequences. An adequate 
dynamic model is, however, dependent on the correct modelling of these 
features. Indeed, the dynamic behaviour of many processes is dominated 
by the dynamics of the control system. 
Dynamic process models are mathematically challenging. The modeller 
always needs balance physical fidelity and efficient solution. 

' Al though  a predict ive s teady-s ta te  model  of a reac tor  will need  to t ake  account  of the  reac tor  size and  flow patterns. 
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5.3.3 REVIEW OF APPLICATIONS 

This review will, given the backgrounds of the authors, give most attention to the 
oil and gas industries. However, the use of dynamic simulators in this industry is 
in many ways typical for other industries. As a rule, training simulators have 
been widely adopted in industries where capital investment is high, processes are 
complex and the consequences of plant or operator failure are serious. Industries 
of this type are the offshore oil and gas industry and the power and energy 
industry (both nuclear and conventional). Adoption has been slower, but still 
significant, in oil refining, chemicals and pulp and paper. The presentation of 
these sectors will be brief, and will point out areas where practice differs from the 
oil and gas industry. 

5.3.3.1 Oil and Gas P r o d u c t i o n  

High fidelity dynamic process simulators have been used extensively by all major 
companies within the oil and gas industry for more than two decades. Basically 
within process design studies, detailed engineering studies, process de- 
bottlenecking, control system verification, but also within operator training. 
Constantly changing process conditions, slugging problems from pipelines, 
changing feed stocks and complicated control systems are the reality in the day to 
day operation of most plants. Only well trained operators, thoroughly tested 
operational procedures and optimised control schemes will guarantee maximum 
throughput and safe operation. 

This comprehensive use of dynamic simulators is based on the fact that steady 
state simulations do not give any answers about transient behaviour of the 
process. They provide an instant picture of a particular design case, and do not 
include feedback from the process itself or from the control system. A steady state 
simulator also neglect the effect of equipment hold-ups and integrating elements 
in the process. A dynamic model solves the necessary equations of the process 
system and calculates all plant model variables as functions of time. This means 
that the dynamic response of the process to changing operating conditions can be 
thoroughly examined and evaluated with a dynamic simulator. 

Normally top side dynamic simulators can be 
engineering simulators and training simulators. 

split into two main types: 

E n g i n e e r i n g  s imula to r s  

The main objective of the engineering simulators was, and still is, to undertake 
detailed operational and design studies. An engineering simulator is developed to 
be an accurate and detailed model of the main processes of a plant (or plant area) 
using either generic or emulated process controllers. 
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A generic controller is a standard PID algorithm, as supplied by the simulator 
vendor, whereas an emulated controller is the real control system functionality 
recreated within the simulator supplier's software. 

Process engineers would normally focus their  at tention to a relatively small area 
of the plant  and perform a series of tests and studies enabling them to suggest 
solutions to a given problem. This need for detailed engineering studies 
demanded a thorough t rea tment  of physical behaviour, which in tu rn  demanded 
fast computer processing. The lack of processing capacity a decade ago resulted in 
slow simulations, often below one fifth of real time. This was a nuisance, but was 
not considered a great problem. 

Most significant fields or sub sea wellhead/pipelines in the North Sea have been 
modelled either as a separate engineering model or added onto an existing 
engineering model. Multiphase pipelines have normally been modelled using 
OLGA, whilst topside processes have been modelled using one of the different 
modelling tools listed in Section 5.3.8.3. 

So far dynamic simulators has proven to be a powerful and valuable analytical 
tool in investigating the time varying behaviour of a process system. 

Training simulators 

The main objective of a training simulator is to educate skilled and competent 
control room operators. To be able to meet this objective the t raining simulator 
should represent  the process plant  as close as possible. The dynamic response of 
the t raining simulator should not differ significantly from the behaviour of the 
real plant. Thus the simulator needed to run in real time. Normally a training 
simulator would contain more models (although somewhat simplified) of the 
process utility areas than  an engineering model. As an example, a training 
simulator of an offshore oil and gas platform would include models of the 
emergency and process shutdown system, fuel gas system, flare system, cooling 
and heating systems, regeneration systems, and water  t r ea tment  systems. In 
addition necessary sequences to perform start-up of turbines, compressors and 
pumps would be modelled. This modelling approach was chosen to ensure that  
the operators received adequate training in operating all main areas of the 
process. Training simulators was normally based on either an emulated or a 
st imulated control system. These are explained further  in section 5.3.8 of this 
chapter. St imulated simulators gave the possibility of using and testing the real 
control system prior to upgrades, but the capital hardware  costs were high. 
Emulat ion was cheaper, but any change in process or control system 
configuration needed a change in emulated software by the simulator supplier. 
This was a time consuming process and the choice of concept was basically a 
question of philosophy. 
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This first generation of training simulators was considered very successful. Using 
Statoil as an example, training simulators have been built for the Gullfaks, 
Sleipner, Heidrun, Norne, Troll and Veslefrikk offshore fields. In addition, 
simulators have been developed for the K~rsto NLG plant, Kollsnes Gas 
Treatment  plant and the Tjeldbergodden methanol plant. A smaller batch 
training simulator also exists at the Mongstad refinery. These operator training 
simulators together cover the whole range from computer-based trainers to full 
replica operator simulators. Most of them are still in daily use. 

5.3.3.2 Nuclear Industry,  Power and Energy 

Operator training and dynamic simulation was recognised as a key enabling 
technology for safe operations of nuclear plants (Nuclear Energy Agency, 1998). 
In many jurisdictions, simulator-based operator training is required by law. In 
some countries (including Finland, the USA and Canada), trainees are examined 
using the simulators for licensing purposes. 

In a survey of operating companies and training institutions in OECD countries 
(Nuclear Energy Agency, 1998) it was found that  100% of operators in responding 
companies (in Belgium, Canada, Finland, France, Germany, Japan, South Korea, 
Spain, Sweden, Switzerland and the USA) trained using a process simulator that 
represented the control room and all key process operations. 80% of operators 
trained on a simulator that  was a replica of the plant on which they worked. 

Specialised simulators of nuclear reactors are regularly benchmarked and 
compared. There are ranges of simulators used, and it appears that  most national 
research organisations and power utilities maintain a core simulator and a power 
plant simulator. A benchmarking of different simulators on simulating a break in 
the main steam line of a Pressurised Water Reactor is presented in Nuclear 
Energy Agency (2000). 

A representative system is APROS, which is produced and marketed by VTT, the 
Technical Research Centre of Finland (Puska, 1999). This simulator is capable of 
simulating both the reactor core and the power system, whereas an older system 
uses different software for these components, and an interface was required to 
the model of the core. 

Historically, developments in simulation in the Nuclear industry have catalysed 
and enabled applications in other industries. For example, the Norwegian 
nuclear research institute, IFE, was involved in the pioneering training 
simulators in the North Sea (Endrestol et al, 1989) and remains active both in its 
own right, and as a collaborator with Kongsberg Simrad (Ek, 2000). Other 
vendors, such as GSE Systems and VTT have taken the same path. 
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Simulator systems that  were developed for nuclear applications can naturally be 
extended to model coal-fired or gas-fired thermal  power plants. 

5.3.3.3 Chemica l s  Indus try  and Ref in ing  

Training simulators in the chemical industry and oil refining use the same 
technology as all other training simulators. The main qualitative difference is 
that  chemical reactors are key elements in the process, and hence in the process 
model. The reactor is a challenge to the process model and the integrator. The 
reactor is often the most complicated unit to model: dynamic models of chemical 
reactors usually require the solution of a system of partial  differential equations. 
Each reactor has a unique geometry, flow arrangement  and reaction scheme - 
this means that  reactor models often need to be tailor-made for a given process. 
Furthermore, reactors are usually proprietary, licensed technologies. Technology 
licensers can be reluctant to disclose detailed information about process 
chemistry and reactor design to the supplier of a dynamic process simulator. In 
this situation the modeller has three choices: 

1. A simplified representation of the reactor can be built, that  represents how 
the vendor believes that  the model works. 

2. A "black box" model of the reactor, obtained from the technology licensor, 
can be integrated into the simulation model. This may require substantial  
work in interfacing the model and ensuring that  it interacts properly (i.e. 
in a numerically stable way) with the rest of the simulation. 

5.3.4 LIFECYCLE DYNAMIC SIMULATION 

5.3.4.1 Evo lu t ion  of the  t ra in ing  s imula tor  

In the recent past, and still to some extent, the engineering simulator and the 
training simulators for a platform were purchased separately, sometimes even 
from two different suppliers. Accurate and stable engineering studies demanded 
very detailed modelling and a high execution rate of the calculations and 
sequential network solvers (i.e. short time steps). Engineering simulators 
therefore ran slowly. Operator training simulators, on the other hand, must  be 
able to run in real time, rather  than being 100% accurate under all t ransient  
situations. Real-time execution was not possible with complicated 
thermodynamic calculations and fast execution rate using the prevailing 
processing power and speed. A training simulator therefore often compromise on 
modelling rigour and accepted longer time steps to achieve real time simulation. 
Filters and lags then compensated for instability and ensured plausible and 
stable behaviour in t ransient  mode. 
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The development of modern computer technology has opened several new 
possibilities. Steadily increasing processing speed, multiprocessing computers 
and the use of s tandard application software and platforms makes it possible to 
develop simulators tha t  are faster, better and more detailed than  ever before. 
Now, even large simulators will be able to run in real t ime even with small time 
steps. New technology also makes it possible to build simulators through a 
graphical online builder, to generate a dynamic model from a steady state model, 
to import sequences or cause-and-effect diagrams, to use vendor soft controllers 
and to keep track of modelling data. Today fully integrated steady state/dynamic 
simulators are commercially available. We are very close now to the life cycle 
simulator concept where the same simulator model is used throughout the 
lifetime of the plant. The vision is one basic start ing model, where the simulator's 
functionality increases in scope and fidelity with time and use. 

Around the early to mid 1980's simulators began to be applied in the chemical 
industry by vendors with backgrounds in the nuclear and energy industries. Thus 
Womack (1986) can give a review of dynamic simulation in Mobil. At that  stage 
Mobil had used ACSL for model building and also purchased simulators from 
Bechtel and Lummus/CE Simcon (now ABB). Training simulation started in the 
early 1970s, with an analog computing simulator used for start-up training of oil 
refineries at Joliet and Wilhelmshaven. 

Around the same time, ICI was using ACSL to develop a training model of an 
evaporator plant  (Aldren, 1986). This solution, using a s tandard solver for 
modelling, was contrasted with vendor-supplied training simulators. 

During the late 1980's and early 1990's implementat ion in chemical processes 
passed from being pioneering work into common practice. The introduction of 
reasonably-priced minicomputers, notably the VAX, reduced the cost and 
technical risk of t raining simulators. Most of the simulators that  are 
commercially important  today began to be widely used in this period. Thus, 
SACDA's "Trainer" simulator was used to develop training models of pulp and 
paper plants. It was later acquired by Honeywell, and formed the basis for their 
training simulator products. 

Jones and Brook (1990) describe a typical training simulator delivery using 
Simcon's GPURS software. The simulator was installed on an ethylene plant run 
by Shell. The control system, a Honeywell TDC3000, was emulated (see section 
5.3.9). This highlights a further change tha t  occurred in the late 1980's. Second- 
generation control systems (such as the TDC3000) began to appear. These were 
more complicated than  the panel or first-generation systems that  they replaced. 
This increased the need for training. 
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5.3.4.2 Applications through the process lifecycle 

As we have seen above, dynamic simulation is routinely used in the design and 
start-up phase of processes, as shown in Figure 2. In addition, one simulator is 
increasingly used for both engineering and training. It is therefore attractive to 
consider using this simulator to support and document all phases of the process 
lifecycle. 

The simulator can be used as a vehicle for t ransmit t ing and retaining knowledge 
from conceptual design, through design and commissioning to operations. It can 
also be used as a means of transferring experience (and data) from operations 
back into the design of future plants and the retro-fitting of existing plants. 

Figure 2. Dynamic simulation in the process lifecycle. 

This is what  we call the Life Cycle Simulator concept. 

A life-cycle simulator model in the oil industry should be used for: 

�9 Conceptual studies in the pre-design phase. 
�9 Engineering (what-if) studies during detailed design (de-bottlenecking, 

process verification). 
�9 Control system verification studies. 
�9 Testing of new applications. 
�9 Perform start-up preparations. 
�9 Validation of operational procedures. 
�9 Optimisation and troubleshooting. 
�9 Training and evaluation of operators. 
�9 Operator support and monitoring systems. 
�9 Safety training and crisis handling. 
�9 Modification and tail production 2 studies. 

2 By tail production we mean the period in an off field's history where off production is declining. The drop in oil 
production rate results in a relative increase in water and gas production. Undesirable multiphase flow phenomena, such 
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5.3.5 I N D U S T R I A L  R E Q U I R E M E N T S  

A process simulator should be robust and reliable, accurate and repeatable, easy 
to maintain,  use and update, be based on high fidelity models with stable 
network solvers and first principle techniques. In addition a modern process 
simulator should be based on s tandard Windows technology and be fully 
compatible with s tandard windows office applications (such as spreadsheets). 

The model shall be stable, realistic and repeatable when operated within the 
operating domain of the process plant: from ambient  start-up conditions through 
steady state operation, shutdown situations and operation through malfunctions. 

A dynamic process model should be based on the following requirements:  

�9 Standard PC computers. Developed and running on Windows software. 
Hardware should have significant spare computer power, spare storage 
capacity and extension capabilities (printers, CD-ROMs, internal/external 
net). 

�9 Object oriented, online configurable graphic interface (WYSIWYG- 
philosophy). 

�9 High fidelity mathemat ical  models based on first-principles engineering 
practise and sound mathemat ical  methods. 

�9 Three-phase flash capabilities (water-oil-gas) and multiphase flow 
capabilities. 

�9 Rigorous thermodynamics or continuously updated local property correlations. 
All calculations should be based on equation of state algorithms. The results 
should be presented in engineering units (This means SI in Europe, and 
otherwise in the USA). 

�9 Well proven and stable simultaneous pressure/flow network solvers within 
fast transients.  

�9 Acceptable integration methods to ensure fast and stable calculations. 
�9 Robust, fast and reliable simulation through discontinuities (vessel 

overflow/dry-up, phase changes, compressor surge and stonewall regions, etc.) 
�9 Conversion tools to and from steady state/dynamic state. 
�9 Proven DCS interface technology. DCS to be based on suppliers soft 

controllers. 
�9 Easy on-line parameterisat ion/validation of process equipment  and control 

modules. 
�9 The graphical user interface should, like a CAD program, support "layers". 

Thus, the engineer building a model can place all control schemes on one 
layer, all logic on another, and instructor facilities on yet another layer. It is 
then simple to display or hide these features as required. 

as slugging, may become more common. Pressure in the processing system may also need to be reduced. All these effects 
require careful optimisation of operating conditions and re-training of the process operators. 
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�9 Easy graphical update functionality for ESD, PSD, sequences and logic. 
�9 Flexible naming convention when copying equipment or plant  areas. 
�9 Animation or HMI symbols to show the status of process equipment (e.g. 

running/stand-by/off-line, levels and valve position). 
�9 Standard instructor and engineering facilities to ensure optimal use. 

(run/freeze, malfunctions, operator evaluation, printable trending, data 
export/import) 

The requirements of engineering and training simulators may still differ 
somewhat due to the irreducible demand of real time execution of an operator 
training simulator. This might cause some simplification in the models and in 
accuracy in t ransient  areas, but with multiple processors this should be 
considered ra ther  a challenge than an obstacle out of reach. 

The need for instructor facilities and operator monitoring systems on a training 
simulator are also a considerable difference between the two types of simulators. 
Again, today's technology should, by now, be able to overcome these challenges by 
adding/removing/loading specific application software and ult imately bring 
together the best from both simulator concepts. 

5.3.5.1 I n d u s t r i a l  n e e d s  

Traditionally process design was based on steady state simulation tools such as 
PRO II. Operability and control issues were addressed after the process had been 
designed, and normally tested on a separately developed dynamic simulator. 
Today this could be the same simulator tool. 

What the oil and gas industry needs is a high fidelity process simulator that  
contains the same core model for both engineering and training purposes. A 
simulator model that  can evolve naturally from an early steady state model in 
the concept design phase, be extended into a dynamic simulator with detailed 
modelling for engineering studies and finally be moved into a rigorous dynamic 
model with soft controllers to be used for detailed control/modification studies 
and operator training. This is the life-cycle simulator described in section 5.3.8. 

In addition to the process model it is necessary to have: 

�9 Well-skilled engineers and instructors to enable correct and optimal use 
of the process simulator. 

�9 A training room where the training sessions can be performed in 
familiar surroundings. 

�9 Well-documented training courses based on operational procedures. 
�9 A variety of training scenarios for normal and emergency operation. 
�9 Objective monitoring system for operator evaluation. 



404 

Finally, but not least importantly, a management  decision that  the process 
simulator should be considered as a constant investment rather  than an annual 
expense. 

5.3.5.2 C h a l l e n g e s  to  be m e t  

Process simulators are considered by the majority of oil and gas industry to be a 
very valuable tool in both engineering studies and in operator training. But they 
are also considered to be a tool for specialist. The key of future success is to 
ensure that  the simulation tool is moved towards a more general accepted and 
user friendly tool. This means that  dynamic simulation tools must  be constantly 
developed and improved to withstand the increasing demands to model fidelity 
and usability. 

Co-operation between simulator suppliers and company 
performing/ordering the studies and further develop the models. 

engineers in 

Today's process simulators are based on either generic or emulated controllers. 
Future process simulators must be based on supplier's soft code of the real 
controllers. This will enable the process simulator to perform engineering studies 
on the real control system without having a complete traditionally stimulated 
system. 

The possibility to run the process simulators on the internet / intranet  will enable 
process engineers to be able to solve process problems both onshore and offshore. 

The possibility to extend existing models to include the physical behaviour of 
various internals in drums and other equipment. This will enable detailed 
studying of limited process areas where more detailed modelling is necessary. 

An integration of the dynamic process simulation system and transient 
multiphase pipeline models must be handled within the same network solver. 
This will make it possible to study the dynamics of slugging interaction between 
pipeline and topside equipment. 

Future simulators must  be based on the same methods for fluid modelling and 
thermodynamic flash calculations for both engineering and training simulators. 

Companies must  participate in developing Best Practice methods for standard 
simulation studies to ensure consistent approach. 

Another future development might be to connect the topside model to a reservoir 
simulation model to fully integrate the dynamic behaviour of the reservoir and 
flowing wells to pipeline and top side models. 
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5.3.5.3 Requirements 

The simulator model shall be based on the piping and instrumentation diagrams 
(PIDs), system control diagrams (SCDs), cause and effect diagrams and isometric 
drawings of the process. Marked up plant piping and instrumentation diagrams 
shall clearly identify, by suitable colour coding, the equipment, pipes or 
instruments which shall be included in the process model. All equipment 
modelling shall be based on suppliers data sheet unless otherwise agreed by 
Company. 

The minimum level of fidelity required for specific 
instrumentation and unit operations is defined below: 

types of equipment, 

Vessels (e.g. separators, scrubbers) 

The modelling of these items of equipment must be based on internal geometry 
and separation devices. The modelling of vessels shall be based on rigorous heat 
and mass balances with resulting vapour / liquid equilibrium of incoming 
streams. Heat loss to surroundings shall be correctly modelled for both phases. 

Heat Exchangers 

Exchanger performance shall be calculated based on upon the flowing stream's 
temperature, flow rates and composition, the exchanger geometrical arrangement 
and the thermal properties of the materials of construction. The model shall 
account for heat loss to the surroundings with appropriate effects of heat 
exchanger materials of construction and fluid hold up incorporated. 

Compressors (Centrifugal and axial) 

Compressors shall be simulated based on vendor supplied nozzle to nozzle flow 
versus head and polytropic efficiency curves with variable compressor speed 
(normally min. 4). Effects due to variable gas properties (P, T, MW, H) shall be 
included. Effects of surge and stonewall are to be represented in suitable detail. 
Run down times upon compressor trip must be based upon a power balance 
between load and supply. Fuel gas consumption shall be correctly calculated from 
turbine speed and efficiency. 

Pumps 

Pumps shall be based on vendor supplied performance curves. Where variation in 
flowing medium conditions e.g. temperature, composition have significant effects 
on observable behaviour they shall be simulated. Both forward/reverse flow 
through a stopped pump shall be correctly modelled. 
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Drivers  (rotat ing equipment)  

For large or variable speed machines the rotating speed shall be calculated based 
on a power balance between drivers and loads, including appropriate friction 
losses and total of inertia of all equipment to the drive shaft. For smaller speed 
machines simplified start  up and shutdown dynamic responses shall be 
permitted. 

Control  valves  

Control valves shall be based on a standard or vendor-supplied flow correlation 
with the correct valve characteristic. In vapour service the effects of choked flow 
are to be simulated. Where available, valve stem stroke times are to be used. In 
the event of loss of inst rument  power (air/hydraulic) all valves are to travel to 
their fail safe position. 

Isolat ion valves  

Isolation valves shall be simulated with stroke times from equipment data sheets 
if available. Limit switches, where applicable, are to be realistically positioned on 
valve stems. The restriction to flow shall be variable as a function of valve 
opening and representative of the valve type. 

Pressure  rel ief  va lves  

Pressure relief valves shall be simulated to reflect the opening&losing nature of 
these items of equipment. Multiple relief valves with identical set pressures can 
be modelled as a single device with equivalent capacity. 

Piping  ne twork  

The flow distribution within piping networks must  be accurately represented 
with adequate regard taken for equipment configuration and operational 
pressures. Dynamic responses within the network due to equipment operation 
must  be realistically represented. 

Plant  logic 

The emergency and process shut down system shall preferably be based on easy- 
to-modify cause and effect diagrams to enable quick and easy change of logic. 

Simulator  Model  Accuracy  

The steady state accuracy of the model when compared to operating data from 
the actual process shall be within +/- 2%. The requirements for accuracy of 
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transient  behaviour must  be better than 
minute. 

+/- 10% for t ransient  greater than 1 

5.3.6 ALGORITHMS 

As mentioned above, a dynamic process model is described by a system of 
differential and algebraic equations (DAEs). Process simulators solve these 
equations in one of two ways" 

�9 sequent ia l ly .  Algorithms of this type are described in section 5.3.6.1. 
�9 al l -at  once. Algorithms of this type are described in section 5.3.6.2. 

5.3.6.1 S e q u e n t i a l  S i m u l a t o r s  

B l o c k - o r i e n t e d  s i m u l a t i o n  

A sequential process simulator divides the process into small blocks. A block 
usually corresponds to a piece of equipment (e.g. a vessel, pipe, pump, motor or 
valve). These blocks are connected together by data structures tha t  represent 
streams and signals. Each block is a procedure that, given values for inputs (at 
the last and new time step), calculates values for the state variables and output 
variables at the next time step. Blocks are usually wri t ten in a third-generation 
programming language (Fortran, C, or, increasingly, C++), and each block is 
responsible for implementing its own integration algorithm and equation solving 
method. This means that  the equations solved in a block are "hidden" from the 
simulator executive program and the user. 

In other words at a certain time, a block contains values for the inputs at time 
step j, the state variables at time step j and the outputs at time step j. The block 
immediately upstream executes and passes the inputs at time j + l  to the block. 
The block procedure uses all this information to calculate the state variables and 
outputs at time step j + l .  The output values are then passed to the downstream 
blocks. 

This algorithm works well as long as there are no recycles of material  or 
information in the system. However, the method can break down if such recycles 
occur. Luckily, most process and information recycles normally involve time 
delays longer than the control sampling interval, so tha t  a "once-through" plant 
models (with the recycle broken) may be adequate. 

N e t w o r k  so lvers  and f low p r e s s u r e  n e t w o r k s  

However, the sequential modular algorithm has difficulty dealing with upstream 
information flow, which notably occurs in "flow-pressure networks". Consider the 
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simple system shown in Figure 3, which consists of a network of pipes and 
pumps.  

, Q [ i 
G I 

Figure 3. A s imple  f low-pressure network. Pipe segments  are shown as rectangles 
and  pressure nodes are shown as circles. 

The pressure  in the vessel depends on the flow rate in the pipe outlet. However 
this requires knowledge of the pressure at the outlet of the pipeline. This is 
available at the previous t ime step, so a calculation can be made - but it can 
easily be inaccurate  and unstable.  Flow-pressure interact ions are fast, especially 
in liquid systems, which mean  tha t  very small  in tegrat ion steps are needed to 
avoid this instability. 

Successful commercial  dynamic simulators solve this problem by setting up and 
solving a system of s imultaneous equations for flow and pressure  in the flow 
pressure  network. Blocks in a flow pressure network are of one of two types: 

�9 Flow blocks, such as pipe segments,  pumps and valves, calculate flow 
given inlet and outlet  pressure.  

�9 Pressure blocks, such as vessels and branches,  calculate pressure given 
all inlets and outlet flows. 

The system of equations for flow and pressure  is s t ruc tured  and sparse. Thus, 
commercial s imulators  use some var iant  of Newton-Raphson equation solving 
and a sparse l inear  algebra solver. Algorithmic finesses like line search and 
relaxat ion are used to increase accuracy and robustness.  A well-designed and 
well- implemented network solver can be very efficient. Network solver-based 
s imulators  have been able to accurately solve process models with hundreds of 
pressure  nodes in real-time. 

However, where there is close coupling between flows, pressures  and other 
process variables (such as t empera tures  and compositions), unphysical 
interact ions may arise between the variables in the network and these other 
variables.  In some si tuations this requires careful implementa t ion  of the model if 
spurious results  are to be avoided. 
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Sequential dynamic simulators are widely used, and dominate the market  for 
t raining simulators. Commercial products of this type are presented in section 
5.3.8.3. 

5.3.6.2 Differential -Algebraic  S imulators  

It may be bet ter  to use an efficient, s tandard  DAE solver (on a fast machine) 
despite the computational cost this involves. DAE solvers work by reducing the 
system of DAEs to a system of algebraic equations through the application of a 
time discretisation. This can be demonstrated simply through the use of velocity 
variables (Smith, 1985, Smith and Morton, 1988). 

If the DAE system is wri t ten in the following form: 

~, dt ,X,C =0 

g(x,e)= 0 

where x is the vector of dynamic variables and c is the vector of algebraic 
variables, we can convert this system into a system of algebraic equations by 
introducing the velocity variables, s, which are the current  values of dx/dt. If this 
is done the following non-linear equation set can be solved for a full t ime step, d, 
from time tk to tk+l: 

f(s,x,e)= 0 

A(s,x,d,t) 

t - d = t  k 

d = dspecified 
where A is a vector if functions obtained from the chosen integrat ion algorithm. 
Higher order methods, such as Runge-Kutta  solve this system of equations at 
intermediate  points in the time step. 

Widely used DAE solvers are capable of solving stiff systems of equations 
effectively through error control and variat ion of step size. 

A stiff system of differential equations is dominated by the time response of one or 
two dynamic variables with short time constants (e.g. mass transfer on a 
distillation column tray). The fast dynamics of these variables requires short time 
steps for stability and accuracy. However, once these fast transients have died out, 
the same short time step would be inefficient and inaccurate (due to the 
accumulation of round-off errors) for solving the rest of the dynamic response. 
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Thus, the Massbal dynamic simulator uses an adaptive Runge-Kutta  algorithm, 
first published by Prokopakis and Seider (1981). Other simulators, such as 
SpeedUp, use an implicit Gear-type (BDF) algorithm. One advantage of using a 
Runge-Kutta  type algorithm is that  step length is an explicit par t  of the algebraic 
equation system. It is therefore relatively straight-forward to handle 
discontinuities and t imed events. This is more difficult with Gear-based 
algorithms. Recent simulators, such as gProms, offer a choice of algorithms. 

DAE simulators have been widely used for the detailed, accurate simulation of 
smaller plant  units. They have used computationally-intensive algorithms and, 
until  recently, lacked a graphical user interface. However, these simulators are 
matur ing  and may allow a common engineering and t raining model of the plant 
to be mainta ined if the la t ter  is detailed enough. Whether  this is yet feasible in 
the majority of applications is open to debate. There may, for example, be a need 
to buy a supercomputer or a network of workstations (e.g. one processor for each 
unit  or group of units) to achieve real-time dynamic simulation. In this case the 
handling of communications between processors needs to be addressed. 

The products tha t  use this type of algorithm are presented in section 5.3.8.1. 

5.3.7 SOME TYPICAL P R O D U C T S  

5.3.7.1 G e n e r a l  D i f f eren t ia l  and D i f f e r e n t i a l - A l g e b r a i c  S i m u l a t o r s  

Much work on dynamic simulation of processes and control systems, especially by 
students, is done using general equation-solvers and software. One of the oldest 
of these is ACSL (Breitenecker and Lingl, 1998). This program can uses a 
graphical configuration tool to build models in a way tha t  resembles analogue 
computing (with gain, integrator and summer blocks) (Gauthier, 1999). ACSL 
was widely used in the chemical industry in the 1980's (Aldren, 1986, Womack 
1986). SimuSolv was a proprietary tool, developed by the Dow Chemical 
Company as a system for simulating chemical systems, especially reactors. It is 
still used academia as a teaching tool. Both of the above tools were valuable in 
their  t ime has since been superseded by the advent of equation-oriented process 
simulators. They now are useful in legacy applications, teaching and for low- 
budget, one-off modelling of processes. 

Probably the most prevalent  general tools in use today, part icularly in academia, 
is Matlab, with its graphical modelling tool, Simulink. This program provides a 
mathemat ica l  programming language that  makes it a good tool for rapidly 
constructing and solving systems of equations. Over the years, the base system 
has been supplemented by commercial and academic toolboxes covering areas 
such as signal processing, optimisation and control. Part icularly within the 
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process control community, Matlab has become a means of publishing and 
sharing methods and algorithms. 

A valuable guide and comparison 
Arbeitsgemeinschaft Simulation 
(http ://www. argesim.org/). 

of general tools is given by the 
News at their web site 

Finally, a number of simulators developed in the milieu around the University of 
Lund, Sweden, have proven to be powerful and effective simulators for 
mechanical and energy systems. Object-oriented prototype systems, such as 
Omola and Dymola (Cellier, 1991) have provided a basis for a consensus 
modelling language - which can be supported by any number of systems (such as 
D y m o l a ) -  called Modelica (Modelica, 2000). These tools are more used for 
simulating mechanical systems than process systems, but both Omola and 
Dymola have been applied to chemical and energy systems. An application of 
Dymola to an Akzo Nobel ethoxylation plant is described by Askaner (1999). 

5.3.7.2 Differential-Algebraic (Equation-oriented)  Process  Simulators  

The primary disadvantage of the above tools for large-scale dynamic modelling is 
that they lack the infrastructure that is needed to support process simulation. As 
general tools, they lack a natural unit-operations orientation (with the exception 
of the object-oriented systems, such as Dymola), they lack data structures that 
can represent process streams or material hold-ups, and they lack well- 
structured access to standard methods of calculating thermophysical properties 
and equilbria. Specialised process DAE simulators have these features, and 
thereby provide greater productivity. 

This group of process simulators is widely used for engineering simulations, but 
are less widely used for training simulators. All these simulators express the 
process model explicitly as a system of DAEs, which are then solved using one of 
the algorithms described in Section 5.3.6.2. 

Pioneer simulators of this type were SpeedUp from Imperial College London, 
Quasilin from Cambridge University (Smith and Morton, 1988) and Ascend from 
Carnegie Mellon University (Perry and Allan, 1996). SpeedUp was 
commercialised by Aspen Technologies and is now called Aspen Custom Modeller. 
The academic experience obtained in building SpeedUp was then embodied in the 
gProms simulator (Barton and Pantelides, 1994), which was designed to support 
discrete events and distributed-parameter models (i.e. partial differential 
equations). In a similar way the experience of Quasilin was implemented in the 
Massbal simulator (Shewchuk and Morton, 1990), which is now marketed by 
Hyprotech. 
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Both SpeedUp and gProms allow the user to build models by declaratively 
writing the variables and equations that  represent  a unit  operation. A properly 
defined unit operation could then be used (repeatedly, if needed) in building a 
model of a flowsheet. Ascend had a similar approach. Models of common unit 
operations and processes could be built using a library of ready-made unit 
operations. Massbal, on the other hand, provides a l ibrary of finished unit 
operations in which the equations are hidden from the user. In addition, it is 
possible to build additional unit  operations declaratively, but  this feature is less 
elegant than  in SpeedUp or gProms. On the whole, a program like Massbal is 
easier to use than  SpeedUp, but is less flexible. My unders tanding of Aspen 
Custom Modeller is tha t  it has taken this approach to increasing usability. 

The greatest  challenge in solving a large equation-oriented dynamic model is 
giving a consistent set of specifications. An effective equation analyser and 
degrees-of-freedom counter are essential if this is to be done effectively. 

5.3.7.3 E n g i n e e r i n g  and Training  S imulators  

The below listing of process simulator suppliers is by no means complete, but 
reflects the knowledge of the authors involved. It is recommended to use the 
Internet  or other sources to supplement the list. The listing gives the name of the 
supplier followed by location and the name of the simulation tool. All suppliers 
have varied experience within both engineering and training simulators, and also 
within various processes i.e. Distillation towers, LNG-plants, absorption towers, 
amine/glycol regeneration, CO2- injection, and compact heat  exchangers. Again a 
comprehensive listing of supplier's deliverables and model references will give a 
valuable insight into possible choices. Especially within specialised processes i.e. 
where catalytic processes are involved and often are considered proprietary 
information. 

Suppl ier 's  
name 
Kongsberg 
Simrad 
Fantoft 
AS 

Process 

Honeywell 

Hyprotech 
(AEA) 
RSI (IFP) 

L o c a t i o n  

Norway 

Norway/UK/US 

US/Canada/UK 

Canada/UK/US 

France 
Aspentech Ltd; US/UK 

N a m e  of 
tool  
ASSETT 

D-SPICE 

Shadow 
Plant  / 
Trainer 
Hysys/Plant 

Reference  / Website  

http ://www.kongsberg-simrad.com 

http ://www.fantoft.com 

http://www.iac.honeywell.com 

http://www.hyprotech.com 

I ND I S S h ttp ://www. rsi- france, com 
OTIS S h ttp ://www. asp e nte ch. com 
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Suppl i er ' s  
n a m e  
ABB Simcon 

GSE (S3/Singer) 

CAE 
Esscor 
(Invensys) 

L o c a t i o n  

US/UK 

US 

Canada 
US 

N a m e  of  
too l  
ABB 
SIMCONx 
SimSuite 
Pro 
ROSE 
Ascend 

R e f e r e n c e  / W e b s i t e  

http://www.abb.com 

http://www.gses.com/ 

http ://www.cae.com/ 
http://www.esscor.com 

5.3.8 TRAINING SIMULATORS 

5.3.8.1 What  is a t r a i n i n g  s imula tor?  

Operator training is necessary for both new and experienced operators. New 
operators need training in the layout of the control system, normal operations, 
start-up and shutdown and general plant behaviour. More experienced operators 
need refresher courses and advanced training in how to deal with unexpected 
problems, hazards and incidents. 

In addition, engineers and process managers require training in how the process 
works and how operating decisions will affect plant performance. 

Training simulators allow training to occur in a structured, well-ordered way, 
without disturbing normal plant operations. Operators can use the simulator to 
tackle situations that only occur rarely in practice. This experience can then be 
used to avoid loss of production time and equipment if these situations do occur. 

5.3.8.2 Types  of  t r a i n i n g  s i m u l a t o r s  

Overview 

Training simulators may be classified both by application type and technology. 
We identify three applications for training simulators: 

(1) Operator training. 
(2) Process training. 
(3) Discipline training. 

There are three system 
development: 

technologies that are used for training system 

(1) Stimulated systems. 
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(2) 
(3) 

Emulated systems. 
Quasi-st imulated systems. 

All these terms are defined below. 

Operator training 

The most common, and most comprehensive, type of training simulator is used 
for operator training. Process operators are t rained and drilled in operating their 
process using a simulated copy of the plant 's control system. These systems are 
relatively expensive, since they require that  the operator trainee interact with an 
HMI that  that  is the same as (or at least resembles strongly) the actual plant 
control system. 

Process training 

Operators, engineers and maintenance staff require a good knowledge about the 
plant on which they are working. The fundamentals  of this knowledge are 
obtained from process training courses. A simulation of the plant  can be useful 
tool in these courses. The instructor can use the model as a "living flow sheet" of 
the process during the course. The model can be run in plenum to demonstrate 
key procedures and features of the process. Furthermore,  engineers and 
maintenance staff can be given a better  unders tanding of the operator's tasks 
through the demonstrat ion of start-up and shut-down procedures. Finally, 
trainees can also use the simulator itself to gain familiarity with the process and 
its peccadilloes. 

Process simulators are usually less expensive than  full-featured operator 
trainers.  No connection with a control system is needed, and, often the 
simulator's native user interface is sufficient for use in training. 

Discipline training 

Finally, dynamic models of generic processes or process segments can be valuable 
aids in general process engineering education. High fidelity process models of 
realistic processes can be useful tools for gaining hands-on experience and insight 
in process control. For example, a lecture or course on controller tuning can 
conclude with a practical session where a trainee can tune a variety of control 
loops. This hands-on experience is invaluable in building the necessary feel for 
the dynamics of processes and their control systems. 
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5.3.8.3 Types of training system 

O v e r v i e w  

Operators communicate with their process through a control system (either a 
(Distributed Control System) DCS, or a SCADA (Supervisory Control and Data 
Acquisition) system (where the process controllers are implemented in a number 
of PLCs). They need training in how they relate to the process through the DCS 
or SCADA human-machine interface. This means that  a training simulator must 
provide the same "look and feel" as the control system HMI. 

This similarity can be obtained in three ways: 

�9 by using the simulator to communicate with a physical copy of the entire 
control system. This is called a stimulated system. 

�9 by using the simulator to communicate with a physical copy of either the DCS 
operator stations or the SCADA part  of a SCADA/PLC control system. This is 
called a quasi-stimulated system. 

�9 by building a software replica of the control system and its user interface and 
communicating with this. This is called an emulated system. 

Stimulated Systems 

In a st imulated system the simulator implements process behaviour only, and 
communicates with a physical copy of the control system. The process simulator 
provides the control system with values for its digital and analogue inputs 
(equipment status, measurements).  The control system, in turn, provides the 
simulator with values for digital and analogue outputs (trip signals, controller 
outputs). Conceptually, the simulator is responsible for representing system 
behaviour up to the control system's I/O cards. Indeed, in older training systems, 
the simulator communicated with the control system through the actual I/O 
connections. This is less common now, as control systems now offer one or more 
application programming interfaces (APIs) that  can be used for software 
communication with the relevant I/O tags in the control system. Indeed, the OPC 
standard makes it possible to use a generic interface to several types of control 
systems. 
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Figure 4. Stimulated Training System 

Emulated Systems 

An extra copy of the control system hardware can be expensive, in addition 
proprietary, unpublished communications protocols may make stimulation of a 
control system infeasible. In such circumstances, it is attractive to simulate the 
control system and its user interfaces alongside the process. It is then the 
responsibility of the simulator vendor to copy the appearance and behaviour of 
the control system's user interface. This is labour consuming, even with older 
systems, which had static, full-screen displays. This task becomes even more 
complicated with windows-based user interfaces, since the layout of screens can 
be variable. The emulated operator station runs on cheap, non-proprietary, 
hardware,  such as a PC. 

Figure 5. Emulated Training System 
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Quasi-st imulated Systems 

If a given control system user  interface is difficult to emulate,  it may be possible 
to use a model of the process and its control system to provide data  and receive 
values from an actual  copy of the control system's user  interface ha rdware  (i.e. 
the operator  stations). 

Figure 6. Quasi-stimulated Training System 

A disadvantage of this a r r angement  is tha t  the communicat ion link has high 
bandwid th  (data t ransfer  rate) compared with a s t imula ted  system. However, 
this bandwid th  can be minimised by exception reporting. 

5.3.8.4 Control system check-out  and maintenance  

A s t imula ted  t ra in ing s imulator  is also a useful tool for checking, verifying and 
pre- tuning the control system. Since the s imulator  provides the control system 
with a valid set of input  signals and gives realistic responses to outlet  signals, it 
can be used to find errors and problems in the control system before it is 
commissioned. This saves labour and speeds up production start .  
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Testing Engineer 

Runs scenario 

~v 

Process 
Simulator 

~ n S a n d  corrects errbr~ 

J Control System Exchange of "[ 
measurements and 

control outputs 
Figure 7. Control system checkout 

A check out s imulator  consists of four components (as shown in the figure below): 

�9 The actual  control system hardware  and software (prior to shipping) or a 
duplicate thereof (if this is to be used later  for a t ra in ing simulator).  

�9 The process simulator, which s imulates  the behaviour  of the process system. 
This model responds to changes in analogue and digital outputs  received from 
the control system. 

�9 A link between the simulator and the control system. This is software for 
t ransfer r ing  data  between the s imulator  and the control system. The data 
s imulator  sends values for all re levant  analogue and digital inputs. The 
control system sends values for all relevant  analogue and digital outputs in 
return.  

�9 A human-machine  interface. The test ing engineer  will use this interface to: 
�9 Configure and run  scenarios. 
�9 Examine the response of the control system and its effects on the 

process. 
�9 Configure, monitor and run  the link software. 

The responses of the PLC can be logged and examined using this interface. All 
aspects of the behaviour  of the model in response to the actions of the PLC can 
also be inspected using the HMI. 

' LJ 
Engineering HMI ~ 1 Simulator Link 

:J 
Figure 8. Components in the check-out simulator 
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5.3.8.5 T r a i n i n g  Prac t i ce  

Well-trained and confident operators are the best guarantee  for safe and optimal 
operation throughout  the lifetime of the plant. This sounds like an obvious fact, 
and it is a fact, but it is not obvious how we can achieve this goal during our 
training practice. A training simulator model, as good as it might be, will never 
be successful if used as a stand-alone model. Simulator t raining must  be seen in 
a wider context. We need to combine skilled instructors, well prepared training 
sessions, with a good simulator model containing the necessary instructor 
features, to achieve our training goals. 

The operator t raining therefore must  be based on four pillars. 

�9 a high fidelity simulator model. (See section 5.3.7.3). 
�9 detailed training courses. 
�9 simulator instructor facilities according to requirements.  
�9 good and skilled instructors. 

All operator t raining should be based on this fact and t raining sessions and the 
training simulator should be developed according to these needs. 

S i m u l a t o r  t r a i n i n g  c o u r s e s  

Many major oil companies have developed their  t ra ining courses after the 
following pattern:  

Simulator Course I 
Duration: i week. 

Simulator Course II 
Duration: 1 week. 

Simulator Course III 
Duration: i week. 

Simulator Course IV 
Duration: 2-3 days. 

Introduction to the control system, ESD/PSD and Fire and Gas 
system. 
Familiarisation with the man machine interface (MMI). 
Process familiarisation. Simple MMI operations. 
Normal process start-up of wells and separation system. 
Normal process start-up of compressor system with gas export 
and/or gas injection. Process shut down. 
Emergency training. Handling of critical situations from process 
changeover, local shutdown to complete shutdown and 
depressurisation of the plant. 
Annual refresher courses with predefined scenarios. 
Training in normal/abnormal situations. Emergency situations. 

Some oil companies still continue the practice 
refresher/update after each four week leave period. 

of holding a one day 

All t raining courses should be carried out in the same manner  and be based on 
predefined scenarios to ensure objective and consistent evaluation of the 
operators. 
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I n s t r u c t o r  S t a t i o n  

The training sessions are controlled from the Instructor Station. The instructor 
Station is the graphic interface from which the instructor prepares the training 
sessions, supervises the participants and monitors operator actions for later 
debriefing. Normally the Instructor Station would be situated in a separate room. 
The instructor interface shall be realised using the latest display technology to 
achieve the best overall performance. It shall be easy to configure and modify for 
different applications. 

As a minimum, the following instructor functions shall be available: 

�9 Run/Freeze 
�9 Speed (altering the speed of execution). 
�9 Load/Save Initial Conditions (IC). 
�9 Snapshots, Backtrack and Replay 
�9 Change of Operating Conditions 
�9 Field Operator Functions (FOD), e.g. opening or closing a manual  valve at a 

specified rate. 
�9 Malfunctions 
�9 Scenarios (event or time controlled). 
�9 Trainees Performance Monitoring System (operator evaluation system). 
�9 Monitoring, trending and Reporting Facilities. 
�9 Online help facilities. 
�9 Comprehensive self explaining error log. 

I n s t r u c t o r  sk i l l s  

The instructor is responsible for preparing the initial process conditions for 
training, running predefined scenarios, creating equipment malfunctions and 
controlling the operator monitoring system. The instructor plans and carries out 
the training sessions in compliance with educational techniques. 

The instructor also acts as the field operator and implements any field actions 
that  are required by procedures or the operators. 

To be able to take care of all the instructor roles the instructor must have a 
comprehensive knowledge of the process and its operational procedures. The 
instructor to be able to act correctly as field operator and plant personnel during 
training sessions. 

The instructor must  know the Instructor Station functionality's and have the 
pedagogic knowledge to be able to run the training sessions professionally. 
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The instructor must  be aware of s tandard teaching techniques, and prepare all 
training sessions accordingly. Debriefing should be held after all 
emergency/decision training courses. 

The instructor must  be positive and supportive when correcting operator errors 
to ensure the training aim: better-skilled and more confident operators. 

The Training Centre 

Several major oil companies (and refineries) have built their own training centres 
and included large-scale replica training simulators of the process control rooms. 
Especially from the early 1980's many large-scale training simulators were built. 
The largest training simulators, such as Gulfaks, Veslefrikk, Sleipner (Statoil), 
Oseberg/Brage (Norsk Hydro), Draugen (Shell) and Snorre (Saga) are all 
examples of what  were basically full replica training simulators. Several other 
training simulators (e.g. by ESSO, BP, Philips and Elf) have been built but not to 
the same extent. Full replica training simulators included correct size of rooms, 
colours, floors, panels and operator stations as well as a separate instructor room 
with instructor stations. Even radios, plant monitors and telephones were 
correctly installed in many cases. The main reason for these large-scale full 
replica training simulators was to create the feeling tha t  this was the real control 
room and the real plant. The approach is similar approach to tha t  employed 
within the nuclear power industry. 

Today's training simulators are no longer 100% replicas of the control room. 
Many panels, monitors and communication are simplified, but the training 
simulators are still expected to serve the overall need for training. Still a training 
simulator is the only tool we have. 

All the same, it is still considered important  that  the training room should have 
an outlook fairly similar to the control room to avoid the feeling of "running a 
computer game". At least the Training Centre should consist of a control room 
area with operator stations (and panels), an instructor room with instructor 
station and a classroom area for theoretical tutoring and debriefing. 

Training Tasks 

The ult imate goal of any training is to give the participants the necessary skill, 
knowledge and confidence to be able to handle any known process operation and 
be able to analyse and correct any unforeseen event. Dynamic real-time 
simulations are excellent training tools because the can reveal complex 
interactions between process components and subsystems. 
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Critical situations can be demonstrated without the risk of damage to life and 
equipment. Emergency situations and operational procedures can be visualised 
and rehearsed throughout training sessions. 

Shift personnel can be trained together in emergency situations. (Co-operation 
effects) 

Operators and instrument  engineers can use the simulator to optimise control 
schemes. 

Control room operators can be taught to take correct action to process 
disturbances. 

The operators will learn what  to do, and equally important, what  not to do in 
critical situations. 

Basic training tasks: 

�9 Familiarisation with the control system 
�9 Training on start-up and shutdown procedures. 
�9 Operator training (normal start, stop operation of wells, oil-train, gas train, 

utility systems) 
�9 Team training (shift training within normal operation) 
�9 Decision training (what to do in abnormal situations, malfunction of 

equipment) 
�9 Procedure training (change over, well testing, compressor load change etc.) 
�9 Emergency training. (critical situations,) 
�9 Plant  start-up (black start  up of plant, 
�9 Control system operation (change of parameters,  set points of controllers) 

Simulator advantages 

Within large technically complex installations human errors are still the most 
frequent cause of shut down and emergencies. The use of training simulators is 
by far the most efficient tool to develop skilled and confident operators. 

Skilled and well-trained operators will lead to: 

�9 Better understanding of process interactions 
�9 Fewer shutdowns. 
�9 Quicker start-up. 
�9 Improved safety. 
�9 Optimised throughput. 
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5.3.9 REAL-TIME DYNAMIC S I M U L A T O R S  

5.3.9.1 O v e r v i e w  

As noted above, engineering models, simulator-based operator t raining and 
control system checkout are now routinely-used tools in the oil industry. Oil 
companies invest large amounts of intellectual (and real!) capital in models of 
their processes. 

Real-time simulation applications allow this "corporate knowledge" to be made 
available to operators as they run a process. A dynamic model (or part ial  model) 
of the process is set up to run in parallel to the process and to access and use 
measured data from the plant's control system. The model then uses this 
information to: 

�9 Ensure that  it is tracking (or shadowing) current  process conditions. A 
discrepancy between the model's predictions and process conditions 
may indicate a fault. The operator should be informed about this. 

�9 Calculate est imates of unmeasured  (indeed, in some cases, non- 
measurable) variables that  are of use to the operators, plant  engineers 
and plant  management .  

To provide 
components: 

the above functions, an on-line model requires the following 

�9 a database for storing process data. 
�9 an interface for obtaining process data from the control system. 
�9 a process model which is capable of following process behaviour and 

performing useful calculation. 
�9 a module for checking process measurements ,  reconciling measured 

data, est imating unmeasured  variables and tuning the process model. 
�9 an interface for reporting results to the operator. 
�9 a real-time executive system. 

This structure is shown is shown in Figure 9. 

A model tha t  is tracking the process can provide a validated star t ing point (a 
snapshot) for a range of other calculations: 

�9 A pred ic t i ve ,  or look-ahead model tha t  runs certain f~xed scenarios 
ahead of the process and flags potential  problems. 

�9 A p l a n n i n g  model, where the engineer is free to specify a scenario, or 
set of scenarios, to be evaluated. 
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�9 A hindsight  model, tha t  can be used to re-run p lant  history so tha t  
mis takes  tha t  were made can be avoided in future. 

�9 Various control and optimisation calculations. 

Figure 9. Structure of a real-time system. 

Real-time systems have begun to be widely implemented  in downstream 
operations, such as refining and ethylene production. Here the typical application 
consists of a model-based process controller for key uni ts  (such as catalytic 
crackers) or a s teady-state  on-line model, which has the role of calculating 
optimal set points for the process control system. This last  type of application is 
called on-line optimisation. 

Real-time systems in oil and gas production are more seldom. Most modern 
compressor anti-surge systems are actually small  real-t ime systems. A model of 
the compressor performance is used to place the surge and stonewall lines and 
determine appropriate  control actions. 

5.3.9.2 Systems requirements 

The process model runs  on a Real-time Model Server computer  tha t  is connected 
to the same network as the control system (SCADA) server. The model(s) on the 
model server will exchange values directly with the SCADA server's database. 

The simulat ion system in the model server reads real measured  process values 
from the database  in the SCADA server and uses them for model tuning. The 
model is tuned slowly, using selected parameters ,  so tha t  it closely follows normal 
plant  operation. Es t imates  of unmeasured  variables can then  be passed back to 
SCADA server for trending, a larm handling and display. 
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Model maintenance and tuning will be done through an Engineering Station with 
a graphical HMI. 

Figure 10. Systems for a Real-time model 

5.3.9.3 An example: Monitoring of pipel ines  

Sta tement  of Problem 

A pipeline monitoring system uses a high-fidelity model of a hydrocarbon 
t ransport  network to provide operational information to the system's operators. 
The key requirement  for a PMS is that  it will raise an a larm when a leak occurs 
in the system. This is called leak detection. In addition, the system then uses the 
model to predict where the leak is most likely to have occurred. This leak location 
is important  information, as the pipelines monitored are often several hundred 
kilometres long and run through inhospitable terrain.  
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Scrapers, or pigs, are routinely sent through piping systems to clean out deposits 
and reduce pressure drop. Smart scrapers can also be used to collect information 
for preventative maintenance. The position of a scraper in the pipeline depends 
on the fluid flow, composition and topography. This can be readily calculated by a 
model, but is difficult to predict using rules-of-thumb. An on-line scraper-tracking 
tool is used to warn operators of an approaching scraper and to raise an alarm if 
a scraper is stuck in the pipe. Related, batch tracking calculations are relevant 
for multi-product pipelines, where it is important that  the interface between 
different products (such as diesel, petrol and avgas) is tracked along the pipeline, 
so that  operators can minimise the loss of off-spec product at the receiving 
station. Long pipelines contain appreciable amounts of fluid. They are therefore 
used as storage buffers to balance supply with demand. In gas pipelines, pressure 
can be increased in anticipation of demand peaks. The calculation of line pack, 
which is the amount of fluid in a pipeline, is therefore a vital tool for optimising 
profit and customer satisfaction. Finally, the line pack can be used to calculate 
and report a survival time for the pipeline. This is the time during which normal 
supply can be maintained to customers after a stoppage in supply to the pipeline. 

A PMS uses a detailed model of a pipeline to calculate and report these control 
parameters,  thereby providing a "window into the piping network" for the 
operator. Operators thus gain access to calculated results that  are not available 
from instrumentat ion alone. Safer, more efficient operations result from this. 

The PMS Sys t em 

The operation of the PMS system is shown in Figure 11. Measurements of 
pressure and flow from the pipeline system are read from the control system. In 
addition valve positions (which can analog or digital signals) and equipment 
status is read. This data is checked and validated so that  it does not cause 
spurious results when entered into the model. 
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A selection of this data is used to drive a dynamic model of the process. Some of 
this data is used as direct specifications of boundary conditions, whilst  other data 
is used to tune the model over a long time horizon. The rest of the data can be 
used to generate measurement  residuals, which can be used to detect leaks. 

At any given time, a snapshot of process conditions can be taken and used by the 
look-ahead or the operations-support (planning) simulator. 

T e c h n i c a l  C h a l l e n g e s  

The technical challenges involved in real-time applications lie in the following 
areas: 

�9 Maintaining robust operation in a critical process environment.  
�9 Delivering software that meets  real-time, safety-critical quality 

requirements.  
�9 Properly handling inadequacies in the process data supplied to the real- 

t ime system. 

An on-line model must  be able to run for long periods with predictable and low 
maintenance requirements.  It must  be good-quality software. Errors, such as 
memory leaks, which are not usually critical in off-line models, are not 
permissible in an on-line application. For this reason, the modell ing calculations 
and user interfaces are usually supported by separate, independent programs. 
These programs communicate using a common protocol, such as TCP/IP. This 
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structure is robust, as the modelling program is freed from the (error-prone) 
complexities of user interaction. System availability is thereby improved. 

Robust on-line models require robust numerical methods. Pipeline models are 
complicated PDE modules with time-dependent two-point boundary conditions 
(Matko et al. 2000). Work needs to be been devoted to developing stable, accurate 
interfaces between these specialised models and the simulation platform's 
algorithms for integration and solving flow-pressure networks. 

Finally, a mix of heuristics and statistical methods is needed to ensure that  the 
data used to drive the on-line model is correct. Furthermore, effective fault 
detection requires that  measurement  residuals that  are generated by a fault are 
differentiated from a model error. This decision often requires process knowledge, 
as statistical methods, by themselves cannot differentiate between model 
mismatch and a fault. Making on-line systems robust to measurement and 
modelling errors remains the main challenge for implementation. 

5.3.10 FUTURE PERSPECTIVES 

5.3.10.1 Faster, better and f r i end l i er -  but complex! 

Commercial dynamic simulators have evolved into powerful, relatively user- 
friendly tools over the last decade. As computers continue to decrease in price 
and increase in power, we can expect models to be built of ever larger and more 
complex process systems. We can also expect that  the application of web 
technology, object-oriented development and virtual reality will make process 
models easier to configure and simpler to use. 

5.3.10.2 Expansion through the lifecycle 

Applications of dynamic simulation are currently concentrated in the detailed 
design and start-up phases of the process lifecycle. 

5.3.10.3 Better integrat ion with the design process 

Much of the engineering time involved in developing and implementing a 
dynamic model of a process lies in entering and maintaining the parameters in 
the model. These parameters (such as vessel diameter, weir height, valve 
discharge coefficient or valve type) are results from the process design and a 
documented on equipment data sheets. However, these parameters  may need to 
be revised as the result of dynamic simulations. For example, a valve may be 
found to be too large or to have the wrong characteristic for given control task. 
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For existing plants, this design data lies in a paper-based or, increasingly, a 
digital archive. However, the digital archive often only contains scanned copies of 
the former paper-based archive. Thus, diameter  of the vessel still has to be read 
manual ly  off the scanned datasheet.  Some design organisations are using process 
design databases (such as Zyqad or AXSYS) to store design sheets and their 
information for electronic retrieval. Such databases make it possible to exchange 
design data with the dynamic simulator. However, this requires proprietary 
solutions, and a simulator vendor needs to support multiple interfaces. 

Perhaps the answer to this problem lies in the use of a neutral  data transfer 
format. Initiatives, such as pDXML and PI-STEP, which are described Chapters 
4.2 and 4.3 of this book, could meet this need. 

5.3.10.4 Combinat ion  with  virtual  real i ty  

Dynamic simulators have been already integrated with vir tual  reality (VR) 
systems in the nuclear industry. For example, a VR control room, called 
HAMMLAB-2000 is being built at the OECD facility in Halden, Norway. This 
system will incorporate training simulators of a variety of reactors (Nuclear 
Energy Agency, 1997). 

Older t raining laboratories for t raining in the oil industry were based on physical 
replicas of the control room. However, such installations are now viewed as being 
expensive and unnecessary. However, similarity to the operator's actual working 
conditions is desirable, VR facilities can be used to deliver this similarity at lower 
cost. 

This above application is very prosaic. We believe tha t  with imagination, VR tools 
can be applied to make dynamic simulation more accessible and more compelling 
to for engineers and decision makers.  

5.3.11 N O M E N C L A T U R E  

F 
E 

h 
H 
AH 
n 
P 
q 
T 
V 
x 

Molar flow, kmol/s. 
Molar production of a component, kmol/s. 
Specific enthalpy kJ/kmol. 
Enthalpy holdup, kJ. 
Internal  production of enthalpy, kW. 
Molar holdup of a component, kmol. 
Pressure, kPa. 
Flow of heat  to a control volume, kW. 
Temperature,  K. 
Volume of a control volume, m 3. 
Mole fraction of a component. 
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Chapter 5.4: Computer tools for Discrete /Hybrid 
Product ion Systems 

L. Puigjaner, M. Graells & G.V. Reklaitis 

5.4.1 INTRODUCTION 

Hybrid production systems participate of both, continuous and batch/discrete 
process characteristics. Supporting computer tools for such systems should 
therefore comprise software for steady state process simulation and analysis, 
as well as support tools for the handling of batch process dynamics and 
discrete decisions involved. 

The software tools for batch processes may be classified in two broad classes. 
The first class involves modelling, simulation, and analysis of the physico- 
chemical processes that take place during batch operations. These tools can 
be associated with the process simulation methodology that  constitutes the 
core of the first Cape Open project. The second class is designed to support 
the decision processes at the different managerial and operational levels of 
the plant operational hierarchy, which are the topics included in the scope of 
the follow-up, Global Cape Open Project. This class of tools may be further 
classified on the basis of the planning, scheduling, monitoring, and control 
tasks, which they support, specialized to the batch processing case. In this 
chapter we review a representative set of tools from these two classes that  
are available commercially. While there is much innovative research and 
development in both academic and industrial groups in this domain, we have 
excluded experimental software and proto-types from our discussion. 

5.4.2 P P R O C E S S  SIMULATION & ANALYSIS 

5.4.2.1 C o n t i n u o u s  process simulation 

Process simulation systems were initially conceived to allow modelling of 
continuous steady-state process flowsheets, as represented by classical 
petrochemical processes such as the hydrodealkylation of benzene or the 
production of ethylbenzene. The process flowsheet model generally consisted 
of models of the unit operations present in the flowsheet that  were linked 
through the process streams which constituted the external input and output 
variable sets for these models. The solution of the flowsheet model was 
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complicated by the presence of recycle streams, which created linkages 
between the unit models. To solve the resulting large scale coupled algebraic 
equation systems a natural  decomposition strategy called the sequential 
modular approach was widely adopted. Under this approach unit models 
were executed in a serial fashion in the direction of the principal process 
streams with the recycle stream, or more precisely, tear  streams serving as 
iteration variables. AspenPlus (Aspen Technology.), HYSIM-HYSYS 
(Hyprotech/AEA) and PRO/II (Simulation Sciences) remain the most 
significant examples of this type of simulation technology (Fig. 1). These tools 
gradually evolved to contain substantial  libraries of unit operations modules, 
including some which involved models consisting of differential equations, as 
well as extensive physical property estimation capabilities and supporting 
properties constant databases. Because of the desirability of allowing the 
easy addition of new process specific unit operations models or modifications 
of existing models, the need soon arose to allowing linkage or insertion of 
user-added FORTRAN subroutines. In recent years, this in part  served to 
stimulate the idea of COSE (Cape Open Simulation Executive). In due 
course, with advances in efficient methods for the solution of large-scale 
algebraic systems, these methods were adopted to solve the entire set of 
flowsheet model equations simultaneously, resulting in the so-called equation 
oriented flowsheet simulation architecture. 

Figure 1. Continuous process simulation. The AspenPlus Environment. 

A natura l  next step for flowsheet simulation was to provide the capability to 
model the dynamics of the process. Again the solution of such dynamic 
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simulation models was initially approached using sequential modular 
strategies but contemporary systems have emphasized simultaneous solution 
methods. Tools such as DYNSIM (Simulation Sciences), HYSYS 
(Hyprotech/AEA) and AspenDynamics (Aspen Technology) embodied these 
architectures (Fig. 2). Ideally such tools offer a consistent set of steady state 
and dynamic models of the same unit operation, allowing the user the 
convenience of ready transition from steady state to dynamic simulation of a 
given process. The DynaPLUS system marketed by Aspen Technology is 
intended to achieve precisely that  aim. 

Figure 2. Dynamic continuous process simulation. The H Y S Y S  environment. 

5.4.2.2 B a t c h  p r o c e s s  s i m u l a t i o n  t o o l s  

Since batch operations are inherently dynamic, one would not expect steady 
state flowsheet methodology to be applicable to batch process simulation. On 
the other hand, one might well assume that  dynamic simulation systems 
would be extensible to handle batch processes. While this is the case for 
individual operations, it is not when one seeks to model the entire network of 
batch operations typical in batch chemical processing. The complicating 
factors include the need to handle the discontinuities inherent  in the star t  
and stop of the tasks which comprise a batch process and the fact tha t  with 
batch processes the description of the set of chemical-physical tasks which 
must be executed to manufacture a given product (the recipe) is distinct from 
the set of equipment which are used to perform these tasks. Since the 
equipment items are generally multipurpose, the definition of the flowsheet 
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for a batch process requires a series of task to equipment assignment 
decisions which may be governed by equipment availability, the availability 
of resources such as feedstock's, catalysts, and hold tanks, product priorities, 
and other state dependent or even economic factors. Thus, in the batch case, 
the flowsheet is in effect defined dynamically as the recipe is executed. These 
additional numerical and decision aspects are not accommodated by 
conventional dynamic flowsheet simulation systems. 

Of course, simulations of individual batch operations, such as batch reaction 
and batch distillation, can be modelled and solved within the framework of 
dynamic simulation methodology. These simulations are most commonly 
structured as stand-alone modules or programs, which either share the 
physical properties estimation features of an associated process simulation 
system or employ an independent physical properties package. BATCHFRAC 
and BatchCAD are examples of these types of commercial systems. Other 
examples of programs of this kind include Batch Colonne, Batch R~acteur 
(ProSim) and BDIST-SimOpt (Batch Process Technologies). Such systems 
may offer additional features such as operating profile optimization or 
parameter  optimisation to fit empirically observed operating profiles. 

To facilitate the simulation of processes involving a mix of continuous and 
batch operations, as might arise in single product plants in which some of the 
operations must  necessarily be of a batch nature, several of the process 
simulators do allow use of batch reactor and batch distillation modules, of the 
type noted above, within a continuous steady-state model of the process. As is 
the case with a plug flow reactor model, the integration of the batch operation 
model is carried out internal to the module and averaged output streams are 
computed for use by the downstream continuous unit operation. 
Conceptually, this can be viewed as following the batch operation with one or 
more implicit holding tanks, which at the termination of the batch effectively 
provide the averaged output stream or streams, which feed the succeeding 
continuous unit. This type of linkage of steady state and dynamic model types 
can readily be accommodated in the sequential modular architecture since all 
unit operations models are treated as closed procedures. It can also be 
handled within equation-oriented systems provided such system also 
accommodates closed procedures. Although the AspenTech and SimSci 
steady-state products thus do permit interfacing of batch and continuous 
operations in this fashion, the entire process model remains effectively steady 
state. 

As noted earlier, the effective simulation of batch processes requires 
representation of the dynamics of the individual batch operations, the 
decision logic associated with the start  and stop of operations, as well as the 
decisions associated with the assignment of equipment and other resources to 
specific operations as defined through the product recipe. Some conventional 
dynamic simulators (e.g., HYSYS) do offer tools for programming the 
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decision logic associated with a series of events to be executed at specific 
points during the execution of a simulation run. In this way it is possible to 
simulate certain classes of batch processes. However, this type of adaptation 
of the dynamic simulation executive only address part  of the requirements for 
the simulation of typical multiproduct batch processes. The more advanced 
capabilities of a combined continuous-discrete simulation architecture are 
required to accomplish this in a general fashion. The BATCHES (Batch 
Process Technologies) simulation tool does accommodate the above mentioned 
batch process features and uses advances in combined discrete-continuous 
dynamic simulation methodology to follow the progress of the batch plant 
over time. 

A BATCHES simulation model consists of three main building blocks: a 
recipe network, an equipment network and a set of processing directives. The 
equipment network defines the equipment specifications and the connectivity 
or transfer limitations between the equipment. The recipe for the 
manufacture of a product is modelled as a network of tasks and each task as 
a sequence of subtasks. A task consists of all of the operations performed in a 
single item of equipment: a subtask consists of a model of one of these 
operations. Tasks have associated with them requirements of specific types of 
equipment and selection priorities. BATCHES provide a library of models of 
various types of operations (heating, cooling, decanting, batch reaction, etc.). 
Subtasks may have associated with them additional requirements for 
resources types and levels such as operator types and utilities as well as 
definition of conditions under which the subtask is to be terminated. These 
may be state dependent (a specific temperature or composition level is 
achieved) or directly specified (completion time or duration). Processing 
directives consist of information that  drives the execution of the process over 
time. These include information such as the amounts and sequences in which 
the various products are made, the due date and amount for finished product 
delivery, or the amounts and frequency of raw materials deliveries or other 
resource releases. 

A sample equipment network shown in Fig.3 will indicate symbols of the 
equipment items, their input and output ports, and the connectivity of the 
equipment items. The recipe network, illustrated in Fig.4, indicates the 
subtasks involved in each task, the subtasks between which material  transfer 
occurs, as well as the order in which tasks are to be executed. In this 
example, the recipe for product A involves nine tasks but of these only three 
involve more than one subtask. The results of a simulation typically consists 
of extended Gantt  charts which indicate the dynamic status of each item of 
equipment over time, as shown in Fig.5, as well as plots of any dynamic 
variable such as tank levels, materials utilization profiles, and other resource 
level plots. The equipment network diagram can also be used to animate the 
simulation, that  is, to playback the dynamic progression of events arising 
during the course of the simulation. For instance in Fig. 3, the green lines 
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indicate the active t ransfer  of mater ials  between vessels, the vessel coloring 
can show the mater ia l  level in the vessel, and gauges and bar  plots can show 
current  uti l ization levels of key shared resources. 

Figure 3: Example BATCHES equipment network 

BATCHES uses a dynamic solution s t ra tegy under  which the dynamic 
models associated with all of the subtasks  tha t  are active in a given time 
period are solved s imul taneously  using a DAE solver. As the solver advances 
through time, the occurrence of subtask te rminat ion  or s t a r t  events is tested 
at each solver t ime step. As events are identified and occur, the set of active 
subtask  models is reconfigured and the solution process continued. This 
computat ional  approach is effectively a decomposition s t ra tegy  as only the 
models of the subtasks  active at  a given point in time are actual ly included in 
the in tegrat ion step executed. 
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Figure 4. Example BATCHES Recipe Network 

Fig.5: Example BATCHES Equipment dynamic status plot 

To accommodate stochastic parameters,  BATCHES allows Monte Carlo 
sampling of simulation parameters  from a library of distributions using 
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established techniques from the discrete event simulation literature. It also 
provides linkages to physical properties estimation capabilities. More 
complex decision processes, such as solution of an assignment or scheduling 
model, can be accommodated by defining event conditions under which the 
simulation is interrupted, the information necessary to execute the decision 
model is assembled, the decision model solved, and the simulation of 
resulting actions transferred back to the simulation executive. In this 
fashion, the simulation can be used to study the effects of various dispatching 
or scheduling methods under deterministic or stochastic conditions. 

5.4.2.3 General  purpose  mode l l ing  languages  

As in the steady state simulation case, the library of subtask models and 
decision logic options provided with the simulation system is sufficient to 
represent most applications. Occasionally a specific feature of the application 
may require a subtask model not available in the simulator library. In 
BATCHES non-standard subtask models as well as unusual decision or event 
logic can be accommodated using the vehicle of user-supplied models written 
in conventional programming languages. This is a limitation, which the tool 
shares with conventional steady state and dynamic simulators that do not 
provide a higher level modelling language. That limitation is mitigated by 
general-purpose process modelling and simulation software such as Speedup, 
gPROMS and Abbacus. gPROMS is a successor to Speedup and is in turn 
superceded in part by the academic package, Abbacus. gPROMS does 
accommodate the full range of model types, from purely batch to purely 
continuous. It allows model developers to write models of the most complex 
processes and their operating procedures - from the detailed mathematical 
equations for individual components, to the structure and operation of large 
complex systems composed of many such components - using a sophisticated 
natural  language. The complexity of the processing of the resulting equations 
and the solution methodology are handled through system utilities and thus 
can largely be hidden from the user. gPROMS offers extensive facilities for 
linking to external software across a range of hardware and software 
platforms. It also provides advanced features such as dynamic optimisation of 
continuous dynamic models thus allowing simultaneous optimisation of the 
parameters of equipment and operating procedures. Of course, since it is a 
modelling system, it leaves to the user the definition and formulation of the 
models and particular decision processes of batch operations. Moreover, in 
practice, users are generally reluctant to build mathematical models and 
prefer to assemble models using the blocks provided through a model library. 

5.4.2.4 Batch process  d e v e l o p m e n t  and informat ion  m a n a g e m e n t  

An alternative approach to supporting the development and operation of 
batch processes is to offer a software package that provides the capabilities of 
organizing and managing recipe information together with a suite of tools for 
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operating on that  information, including a rudimentary recipe simulation 
capability. Linkage to more detailed tools such as stand-alone batch reactor 
and batch distillation packages can also be provided. This is the approach 
that has been used in two of the packages described in this section. The 
additional functionalities not provided by these tools, namely the generation 
of operating procedures and the execution of batch process hazards analysis, 
are available from IPS. We describe these developments in the third part of 
this section. 

Batch Plus (Aspen Technologies) is a general-purpose system designed to 
model the complex, recipe-based processes found in the batch process 
industries. The key design concept is the representation of a batch process 
using the multilevel "process recipe" metaphor. Based on the recipe 
description of the process, software allows design, engineering, and scale-up 
to be performed. Among features provided is the AspenTech electronic Batch 
Record System (AeBRS) which is designed to address manufacturers' needs 
in the areas of work orders management, procedure management and 
documentation management. 

Figure 6. Recipe management in the Batch Design Kit (BDK) environment. 

The BaSYS system of software is designed to help batch processing 
companies improve communication between chemists and engineers, perform 
faster process scale-ups and more efficiently allocate existing equipment. 
BDK, the core of BaSYS, is an integrated batch process development and 
design environment that helps companies accelerate many aspects of batch 
process development, from route synthesis to implementation. BDK offers 
tools for enabling the rapid selection from among alternative synthesis route 
for manufacturing, improving waste processing and facility utilization, and 
providing a "knowledge warehouse" that documents the development process 
(Fig. 6). Neither of these systems are intended to provide rigorous process 
simulation capability but could in principle be interfaced to a simulator, 
given that much of the recipe and other data required for a simulation is 
contained in the information base that these systems maintain. 



442 

Two critical tasks in the development cycle of a batch process are the 
synthesis of operating procedures given basic recipe information and the 
analysis of the operating procedure to identify, evaluate and mitigate 
potential operating hazards. These two functionalities are not provided by 
the systems described above. However, the generation and validation of 
operating procedures for new processes constitute time-consuming and error 
prone activities that  lend themselves to computer support. Moreover, with 
the increasing complexity of operating procedures and governmental and 
social pressure to reduce safety and environmental  incidents, there is strong 
incentive to conduct process hazards analysis and mitigation for all new and 
existing processes. Since considerable portions of this activity are also 
repetitive and very labour intensive, there is an opportunity for intelligent 
tools to support process hazards analysis. PHASuite, a system initially 
developed at Purdue University to support this task, is now available from 
IPS. PHASuite consists of two closely integrated components, iTOPs and 
Batch HAZOPexpert. The former component serves to synthesize the detailed 
sequence of instructions an operator in a chemical plant needs to follow in 
order to manage a process safely and optimally. BHE serves to systematically 
analyse the process in question to identify, assess, and mitigate the possible 
hazards that  can occur. 

PHASuite follows ISA $88 batch standards for modelling batch process 
information. In iTOPS, Graf chart-based concepts are used to represent the 
batch process and a hierarchical planning technique is employed together 
with information about the process materials, equipment, and chemistry to 
synthesize procedures at the phase level. An example of the Process Sequence 
Diagram (PSD) that  is generated by the iTOPS component of PHASuite is 
shown in Fig.7. The left hand side of the figure displays the menu for 
inputting material, chemistry, equipment and recipe information. From this 
the PSD and then the detailed operating procedure are automatically 
generated. After this, BHE generates the HAZOP results. This is shown in 
Fig.8. The HAZOP results table summarizes the deviations, abnormal causes, 
adverse consequences, safeguards and recommendations for mitigating the 
hazards for a given task in a given equipment in a process. BHE uses a 
logical separation of process information into specific and generic 
components, qualitative causal digraph models and a two-layered Petri-net 
based model of the process to systematically identify possible hazardous 
situations that  can arise in a chemical process. The two PHASuite 
components are fully integrated, including the creation of the various 
representations of the process recipe and logic. The user inputs batch process 
information - the materials, the chemistry, and the e q u i p m e n t -  through a 
top-level interface. PHASuite returns a complete batch record documents, 
including safety instructions and a list of potential hazards classified by 
severity. The systems has been tested extensively in pharmaceutical 
applications, resulting in documented substantial  savings in engineer time, 
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and considerable improvements in accuracy of the resulting operating 
procedures and completeness in hazards identification. 

Figure 7. An example of Process Sequence Diagram generated by iTOPS 

Figure 8. HAZOP results from BHE 
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5.4.3 PPOCESS PLANNING & SCHEDULING 

5.4.3.1 P lanning  

Production planning for individual batch plants and planning for entire 
supply chains consisting of multiple interacting batch plants can in principle 
be performed using generic planning tools. Thus, generic linear programming 
(LP) and mixed integer programming (MILP) packages such as CPLEX 
(ILOG) can be used providing that the user is prepared to develop the case 
specific formulation and provide the appropriate data interfaces. 
Alternatively, if manufacturing recipe details are aggregated and thus the 
plant treated as a black box, then various capacity planning tools offered by 
ERP vendors can be applied. However, in batch manufacturing applications, 
the details of the batch operations often prove to be important because 
equipment and other limited resources are shared among the various 
products under consideration, thus production capacity is constrained. 
Unfortunately, at the present time there are no commercial tools, which can 
accommodate this level of detail without explicit user developed models. Such 
a suite of tools is available for petroleum refinery planning and supplies 
chain applications in the form of Aspen Technology's PIMS and Ref-Sked 
packages, which are based on LP methodology. 

5.4.3.2 Schedul ing  

As at the planning level, scheduling applications for batch operations can be 
developed using general purpose scheduling toolboxes such as Scheduler 
provided by ILOG. Aspen Technology's MIMI system also falls into this 
category. However, the use of these toolboxes to batch processing problems 
requires knowledge of the strengths and limitations of the individual tools 
and experience in scheduling application formulation. This is a level of 
expertise beyond that of plant engineers. However, several tools do exist that 
have been developed specifically for batch processing applications, three of 
which, gBBS, Virtecs and BOLD are described in this section. 

Available through Process Systems Enterprise (PSE) Ltd, gBBS is the 
outcome of extensive research conducted at the Centre for Process Systems 
Engineering at Imperial College, London. It is a scheduling tool designed for 
multi-purpose process production, from purely batch to purely continuous. 
Process specific issues such as cleaning, recycling and intermediate materials 
that  are also final products can all be treated. A complete gBSS application is 
composed of data such as product demands and inventory, product recipes, 
plant resources, staff and maintenance schedules and the current status of 
plant equipment. The user's data is checked for consistency and converted 
automatically into one of three MILP (mixed integer linear programming) 
formulations. Specialised MILP algorithms requiring little or no user 
intervention are used to find the solution that is guaranteed to be optimal if 
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allowed to run to convergence and the results are then processed and 
presented in an engineering form. When solving especially large problems, 
gBSS breaks them down into several smaller ones and combines the results 
into a final solution. Recipes and processes are modelled using the State-Task 
Network representation and the modelling language is designed to express 
complex plants in a simple and flexible way. Established models can be 
accessed from a 3rd-party front-end such as MS Excel. 

gBSS can be configured to solve three types of scheduling problem 
formulations: Short-term scheduling, Campaign planning, and Scheduling for 
Design. In short-term scheduling, the plant layout, processes and products 
are known and change infrequently. Other data  may change with each run of 
gBSS - demand, deadlines, availability of equipment and staff. Transport  
costs and times can be included so that  multi-site production and distribution 
can in principle be accommodated, at the cost of increased computational 
burden. The campaign planning form is appropriate for applications in which 
product demands are stable or may be forecast accurately thus allowing 
longer production horizons to be divided into a number  of campaigns. The 
Scheduling for Design option is used to find the optimum plant resources 
given a fixed set of demands and their deadlines, gBSS can take account of 
both capital and running costs and find the ideal plant for a minimum initial 
cost or a minimum lifetime cost. It is also suitable for designing extensions to 
existing plants. This facility is available for plants operated in either 
campaign or short-term scheduling mode. 

Advanced Process Combinatorics, Inc. (APC) has developed Virtecs for 
process scheduling and planning. Virtecs is based on Mixed Integer Linear 
Programming (MILP) technology and offers the ability to model processes at 
a high level of detail including constraints on limited mater ia l  shelf life, 
process vessel storage, shared storage, labour, utilities, minimum/maximum 
inventory levels, complex bill of materials, piping connectivity, equipment 
downtime, multiple stages of production, parallel equipment, and process 
changeovers. The MILP based scheduling tool can provide solutions in fully 
automatic mode and a user can readily make process changes. APC has 
recently released Virtecs v5.0 that  includes support for Internet  based use 
and publication of schedules, developing schedules from previous schedules 
and efficient human  override of automated scheduling capability so tha t  the 
tool can be used anywhere from a fully manual  to fully automatic mode. The 
menu in Fig.9 illustrates the choices available to the user in the interactive 
or manual  mode. These interactive tools can be used to shape the schedule to 
the user's satisfaction, and, with each user preference carried out by the 
mathemat ical  program, schedule feasibility is guaranteed. 
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Figure 9. Screen shot from Virtecs- options available 

Previous versions of Virtecs have been successfully used in the 
pharmaceutical, specialty chemical, food and beverage, consumer products, 
lubricant, and retail industries. The MILP based solver behind Virtecs is 
highly customized and routinely solves scheduling problems involving 
hundreds or thousands of tasks in one or two minutes on a desktop personal 
computer. While MILP scheduling technology is in its infancy and will 
continue to grow in capability, the existing advantages include explanations 
of why demands cannot be met on time, lower consulting costs for installing 
and supporting tool use, ability to support engineering applications such as 
expansion studies or debottlenecking, online applications that  can be readily 
extended by the user to support new products or process equipment changes. 
Fig.10 shows what is involved in making a process change. When a model 
modification is required, the work process for "model building" is described 
with the familiar "Windows" file structure. From there, the user selects those 
components (demand and process times are shown) requiring change, and 
initiates the change. With these actions the revised problem is ready for 
solution. 

Because of reliable and accurate automated solution capability, Virtecs can 
be used in a distributed fashion to integrate and mediate detailed 
coordination between multiple facilities. Because of the versatility afforded 
by their solution technology, APC has also applied Virtecs technology to 
warehouse management applications and integrates them with upstream 
production and downstream distribution activities. APC also uses their 
MILP solver underneath a tool that  selects and schedules projects in research 
and development pipelines. The main components of the Virtecs tool are a 
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natural modelling language for describing processes, reporting system, 
database for managing multiple scenarios, graphical user interface with 
readily extensible Gantt Chart, and a highly engineered MILP solver based 
on implicit formulation generation. Because of the extensibility of APC's 
MILP approach, their tools can be used in conjunction with simulation 
capability to analyse the impact of uncertainty on the performance of 
solutions and manage risk in high-level applications such as pricing studies, 
mergers and acquisitions, and supply chain design/operations. Because of 
close ties with Purdue University, APC has world-class research and 
development capability and has demonstrated significant functionality gains 
with each new product release. 

Figure 10. Alternatives evaluation with respect to process change 

A different approach is contemplated in BOLD (available through CIMADE, 
SA). Built upon an academic prototype developed by the Universidad 
Polit6cnica de Catalunya (MOPP), BOLD follows ISA $88 batch standards in 
the organization of batch process information. Complex recipes and 
processing structures are modelled using the hierarchical Process-Stage- 
Operation representation, while the Event-Operation Network representation 
model describes the appropriate timing of process operations and associated 
resources. As in the other two software applications, specific external models 
can be accessed via standard MS Excel spreadsheet. Which is relevant in this 
application its ability to handle "flexible recipes" instead of traditional fixed 
batch recipes. The Flexible Recipe Model is regarded as a constraint on 
quality requirements and production constraints. In this way, critical process 
variables are adjusted at the beginning of the batch resulting in an 
integrated decision framework that links the Master recipe with the 
initialised control recipe under a performance criterion that  may vary from 
batch to batch and may contain economic as well as process variables 
information. The solution approach uses the Sgraph algorithm (an 
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accelerated Branch & Bound algorithm) integrated in the flexible recipe 
model. Actually, BOLD constitutes a suite of tools comprising human 
resources management  (BOLD Work Planner), production planning (BOLD 
APS), financial aspects (BOLD CFU) and project management  (BOLD PMO). 

5.4.4 S C H E D U L I N G - C O N T R O L  I N T E R F A C E  

Once a scheduling solution is developed using one of the tools described 
above, it must  be implemented in the production environment and executed 
through the batch control system. At the level of process detail represented in 
scheduling applications, operational details such as valve opening and closing 
are normally not taken into account. Moreover, it is usually inefficient to 
rerun the scheduler with every modest process variation or delay that  is 
encountered. Thus, there is a practical need for either manual  or automatic 
conversion, if necessary, readjustment,  and execution of the scheduling 
solution. The SUPERBATCH package, offered by PSE Inc and prototyped at 
Imperial  College, offers the ability to work on-line, in conjunction with 
s tandard batch control systems, and to automatically update schedules as 
small delays and process variations occur (Fig.l 1). The TotalPlant Batch 
system offered by Honeywell provides the interface for the user to execute 
batches manually following a schedule created off-line and to manually 
readjust timing as needed, with all of the recipe and equipment details, 
communications with the control system, and handling of alarms and 
messages handled automatically. In this section we briefly describe the 
functionalities of these two systems. The reader should note that  these 
functionalities are to varying degrees provided by other commercial batch 
automation systems. 

Designed for embedding within manufacturing execution systems (MES) or 
linkage to a scheduling product, SUPERBATCH provides the capabilities for 
static off-line short-term schedule readjustment  as well as for on line 
schedule correction, with changes broadcast once a minute to screens in 
departments  throughout the factory. 

Figure 11. The SUPERBATCH scheduling and control system 
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It uses a modelling language, which conforms to ISA $88.01 to describe the 
plant, the materials, recipes and ancillary procedures (such as changeovers 
and cleaning suitable for hygienic industries) as well as the production 
batches themselves. For off-line scheduling applications, once embedded 
within a graphical user-interface to present the schedule, SUPERBATCH will 
find the earliest possible time for each batch, subject to the constraints of the 
model. Equipment allocations may be pre-defined or picked by the user from 
the feasible set which SUPERBATCH offers. SUPERBATCH also delivers the 
profiles of each plant item as needed to draw a graphical schedule. For on- 
line schedule adjustments, SUPERBATCH provides an on-line monitor, 
which executes the schedule, and a versatile interface, which accesses control 
systems (and simulators) usually across a network. Once a minute, the 
current status of the plant is read from the control system and the schedule is 
updated to match. In this fashion, delays and stoppages can be 
accommodated automatically. SUPERBATCH then initiates execution of any 
operations due by sending the appropriate commands and parameters to the 
control system. The system also issues alert messages, which provide 
advance warning of impending events requiring operator attention. 
SUPERBATCH is written in object-oriented C++ adhering to the ANSI draft 
standard, using rpc for it's networking, and is portable to a wide variety of 
environments and control systems. 

The TotalPlant Batch systems provided by Honeywell is an open, object- 
oriented software application for modular batch automation. Developed 
around ISA $88.01 it provides batch recipe and equipment management, 
batch management and execution, an integrated operator interface, easy to 
use graphical configuration tools, and rudimentary batch simulation 
capability. The assignment of units can be done dynamically at run time or 
batch creation time. Implemented to run under Windows NT, it is designed to 
operate with Honeywell's TotalPlant and the PlantScape control systems. 
The major components of TotalPlant Batch and their functionalities are the 
following: 

�9 B a t c h  V i e w  allows the user to create batches, execute them, review batch 
related information and respond to alarms and messages. 
�9 B a t c h  S e r v e r  monitors and controls execution of batch procedures and 
displays batch execution information 
�9 B a t c h  D a t a  S e r v e r  communicates and between the Batch Server and the 
phase logic sequences in the control system 
�9 B a t c h  R e c i p e  E d i t o r  allows the user to specify recipe parameters  and to 
graphically construct the recipe sequence using sequential function charts 
and tables 
�9 B a t c h  E q u i p m e n t  E d i t o r  allows the user to configure and maintain the 
physical plant model used by the other components 
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As might be expected, all of the user interaction with the system is through 
graphical means. For instance, Fig 12 shows the typical menu based 
approach to adding a new batch while Fig.13 shows the graphical structures 
used to configure the sequential control actions followed in batch execution. 
The system also provides customisable event archiving and batches report 
generation utilities. 

Figure 12. Menu based approach to adding a new batch 

Figure 13. Graphical structures used to configure the sequential control 
actions followed in batch execution 
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5.4.5 C O N C L U D I N G  R E M A R K S  

As should be evident, the suite of functionalities provided by existing 
software tools for batch process systems engineering is quite broad but as yet 
far from complete. While there is much exploratory research conducted 
within the academic community, commercial developments seem to be 
lagging. For instance, with the exception of BATCHES there i s  limited 
recognition in the existing software of the highly stochastic nature of the 
operation of most batch processes. Issues of robustness and risk are simply 
not addressed. Also missing is the capability to perform batch optimisation 
through the optimal selection of recipe parameters such as conversions, batch 
times, separation fractions, a capability that  is generally available with 
steady state flowsheet simulation systems. Systematic tools for batch 
monitoring and fault diagnosis are notably absent: a combination of trend 
analysis and predictive dynamic models would appear to be required. 

Integration of the existing tools is as yet a distant dream. For instance, the 
seamless linkage of planning and scheduling tools or of scheduling and 
simulation tools is not available. Furthermore, at present there clearly are no 
standards that  would facilitate the integration of these tools through suitable 
common date structures. The $88 standard for representing batch recipes 
and equipment could well serve as the heart  of such a common data 
structure. Indeed a number of the tools have used the recipe structure and 
naming conventions promulgated under that  standard in defining their input 
data structures. However, this structure must be �9 further elaborated to 
encompass all of the information associated batch product and process design 
and batch plant operations. 

The batch operations domain evidently offers great opportunities both for 
methodology research and for commercial software development. 

5.4.6 CONTACT INFORMATION 

The following list provides contact information for the products and tools 
cited in this chapter. The reader is invited to pursue the latest developments 
through these electronic sources. 

Advanced Process Combinatorics, Inc. 
Products: Virtecs 
Information: www.combination.com 

AEA Technology Engineering Software 
Products: BaSYS, BDK, HYSIM, HYSYS 
Information: www.hyprotech.com info@hyprotech.com 

Aspen Technology, Inc. 
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Products: AeBRS, AspenDynamics, AspenPlus, BATCHFRAC, Batch 
Plus, DynaPlus, Mimi, PIMS, Re-Sked 
Information: www.aspentech.com info@aspentech.com 

BatchCAD Ltd 
Products: Batch CAD 
Information: sales@batchcad.com 

Batch Process Technologies, Inc 
Products: BATCHES, BDIST-SimOpt 
Information: www.bptech.com sales@bptech.com 

ChemEng Software and Services 
Products: BATCHDIST 
Information: ChemEng@BTinternet.com 

CIMADE, SA 
Products: BOLD, BOLD Work Planner, BOLD APS, BOLD CFU, 
BOLD PMU. 
Information: www.cimade.com, bold@cimade.com 

Honeywell, Inc. 
Products: TotalPlant Batch 
Information: www.iac.honeywell.com 

ILOG, Inc 
Product: CPLEX, Solver, Scheduler 
Information: www.ilog.com info@ilog.com 

Integrated Process Solutions, Inc. 
Products: BatchHAZOPexpert, iTOPS, PHASuite 
Information: www.ipsol.com 

Process Systems Enterprise. Ltd. 
Products: gBBS, gPROMS, SUPERBATCH 
Information: www.psenterprise.com 

ProSim SA 
Products: ProSimPlus, BatchColumn, BatchReactor 
Information: www.prosim.net 

Simulation Sciences, Inc. 
Products: DYNSIM, PRO/II. PRO/II Batch Module 
Information: www.scimsci.com 

The Instrumentation, Systems and Automation Society 
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P a r t  VI: N e w  F r o n t i e r s  

6.1 Software agents  
R. Batres & B. Braunschweig 

6.2 Tools integrat ion for computer  aided process eng ineer ing  
appl icat ions  

E. S. Fraga, R. Gani, J. W. Ponton & R. Andrews 
6.3 Web-based systems 

I. T. Cameron & J. W. Ponton 
6.4 F a u l t  diagnosis  methodologies  for process operat ion 

D. Leung & J. A. Romagnoli 
6.5 Emerging business  models  

J. K6Uer, T. List, C. Quix, M. Schoop, M. Jarke, P. Edwards & M. 
Pons 

Part VI shows where we are going, through new technologies and new 
potential applications areas that make use of the advances in CAPE and 
software technologies: e.g. agents, web-based systems, integrated 
approaches, process monitoring and fault diagnosis systems. Some of the 
developments in this part are already available but not widely used yet, 
some still involve significant research before being considered for 
applications. Specialists at the forefront of CAPE research have contributed 
to the chapters of this part. 

Chapter 6.1 by Batres and Braunschweig. looks at agent-based systems in 
process engineering. Although these might look a bit futuristic, knowing 
current architectures and usages of CAPE tools, we decided to include a 
chapter on multiagents in this book. A number of research prototypes based 
on the multiagent approach have been developed, and there seems to be a 
strong trend towards agents in IT  as a whole, with e-commerce and 
negotiation agents leading the way. The chapter shows what software 
agents can do for you through a set of illustrative examples in process 
monitoring, distributed design and simulation, process workflow and 
supply chain management. We hope that you will enjoy it 

Application integration is the subject of numerous developments in 
computer-aided process engineering, but at the moment application 
integration is generally more a wish than a reality, with few real-world 
examples of lifecycle integration from process design to operation and 
control. Chapter 6.2 by Fraga et al. presents a few attempts in integrated 
approaches, starting with the Epde system by University of Edinburgh, 
which was further developed into the "Process Web Objects" system, which 
transposes concepts of Epde in the context of the World-Wide Web. The third 
example is the ICAS system proposed by the CAPEC group f r o m  the 
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Technical University of Denmark. The rest of the chapter relates these tools 
to current projects and looks at future trends for integrated approaches, 
such as grid computing, data management and web-enabled systems. 

The following chapter 6.3 by Cameron et al. gives a broad view of web- 
based process engineering systems. Web technologies are invading the 
whole spectrum of IT  developments, even in scientific applications - 
although the main trends are defined by the needs of e-business and of 
global information management systems. The chapter mentions process 
engineering portals, collaboration infrastructures, remote computing, 
virtual laboratories and web-based education systems. As Cameron writes: 
"...the world wide web will change the way we do business at the 
educational level and at the business level. I f  you are not actively planning 
your web-based systems then opportunities may well pass you by". 

Chapter 6.4 by Leung and Romagnoli brings us back to equations and 
algorithms. It is the only chapter on process monitoring and diagnosis, and 
gives a summary of a number of techniques, model-based or not, used in 
this domain. Although sophisticated models are built for process design, 
operation and (sometimes) control activities, the use of such models in the 
area of fault diagnosis and monitoring is still in its infancy, compared with 
the use of simpler but computationally efficient modelling techniques. The 
chapter presents current approaches to building diagnosis systems, alarm 
filtering systems, and other monitoring tools, using statistical, causal or 
qualitative representations; with the increase of computer processing power 
available at the factory, we expect that more and more detailed models will 
be used for the same purposes. 

Finally, chapter 6. 5 by KSller et al. analyses the technical results of CAPE- 
OPEN and develops some of the business models that can be supported by 
such an interoperability framework. After giving a brief historical view on 
the use of IT  in process industries, the chapter presents the expected 
benefits of Application Service Provision (ASP), of software components 
marketplaces, and defines a number of technical requirements for these 
business models to take place e.g. public catalogues, labelling facilities, 
brokering services. 
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Chapter 6.1: Software Agents 

R. Batres & B. Braunschweig 

6.1.1 INTRODUCTION 

In the previous parts of this book, we looked at the current technologies for CAPE, 
based on modern software development approaches: object-oriented design and 
programming, component architectures, middleware infrastructures, XML for data 
exchange, and the like. 

All these architectures, even though they allow distributed computing on 
heterogeneous hardware platforms, share the same paradigm for control and co- 
ordination: a central piece of software controls and co-ordinates execution of all software 
modules and components that together constitute the model and the solving 
mechanism of a system. One example is the central piece of software that is usually 
called simulation executive, or COSE in CAPE-OPEN architectures. Its tasks are 
numerous: it communicates with the user; it stores and retrieves data from files and 
databases; it manages simulation cases; it helps building the flowsheet and checks 
model topology; it attaches physical properties and thermodynamic systems to parts of 
the flowsheet; it manages the solving and optimisation algorithms; it launches and runs 
simulations; etc. All other modules (e.g. unit operations, thermodynamic calculation 
routines, solvers and optimisers, data reconciliation algorithms, chemical kinetics, unit 
conversion systems etc.) are under control of the simulation executive and communicate 
with it in a hierarchical manner, as disciplined soldiers execute their assignments and 
report to their superiors (Figure 1). 

Figure 1. A COSE-centric distributed architecture 
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In this chapter, we look at examples of distributed architectures based on multi-agents 
technologies where control and co-ordination are decentralised. In these technologies, 
each piece of software, each module, each component, generically called agent, lives its 
own life with the ability to negotiate and co-ordinate with other components in order to 
solve problems such as process design, fault diagnosis, or supply chain management 
(Figure 2). 

Figure 2. A multi-agent system (based on [1]) 

This might look futuristic and adventurous for many readers, since, at the time of 
publishing this book there is not even one commercial implementation of multi-agent 
systems for CAPE applications. But most of us might have used individual software 
agents in office applications or on the web. 

A familiar software agent is the companion present in MS-Office products, among 
others. This invisible or iconised component, always active in the background, monitors 
what the user types, sometimes correcting spelling mistakes, sometimes suggesting 
better use of the word processing software, sometimes saving work without telling the 
user. Companions for process simulation software already exist in proprietary 
environments. These tools help to enter data, to select models, to check the solvability of 
a flowsheet, to determine the number of unknowns, etc. 

Other virtual friends monitor web pages for us; they search for books, auto parts, CDs, 
etc. on our behalf. They crawl the Internet looking for information of interest to us. 
These are single-agent applications in which the user configures a software agent so 
that it executes the boring task of que~Sng the web in search for data. At least, we can 
clearly see the benefits of using such avatar agents ~ for doing repetitive tasks, thus 
saving our precious time for doing more interesting activities. 

Avatar: a software agent that  represents its human owner; avatars can be simple agents or human-like 3D 
representations living in virtual worlds, e-marketplaces, etc. 
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Multi-agent systems extend the single agent paradigm and add co-ordination between 
several agents, thus letting collective behaviour emerge from the combination of much 
individual behaviour. 

The MIT Encyclopaedia of Cognitive Sciences [2] gives the following definition: 'WIulti- 
agent systems are distributed computer systems in which the designers ascribe to 
component modules autonomy, mental state, and other characteristics of agency. 
Software developers have applied multi-agent systems to solve problems in power 
management, transportation scheduling, and a variety of other tasks. With the growth 
of the Internet and networked information systems generally, separately designed and 
constructed programs increasingly need to interact substantively; such complexes also 
constitute multi-agent systems." 

Now, the average reader will say: "what's in it for me. ~' Is there any chance that multi- 
agents systems will have an impact on future CAPE applications? There are at least 
two good reasons for giving a positive answer to this question. 

First, agent technology can be seen as the future of software development. Object 
technology and component technology are moving towards agent-based 
representations. In addition to the standard facilities gained using an object-oriented or 
a component approach (encapsulation of behaviour, inheritance mechanisms, notion of 
service provider, etc.), the agent-based approach adds consciousness of the collaboration 
between objects and components; multi-agent technology adds collaborative interaction 
frameworks within a population of software components. For example, the RoboCup 
simulation league, an internal competition between soccer simulation programs, uses a 
CORBA standard interface for the communication between the simulated players, 
referee, ball, and field. With such an interface, a simulation of a soccer game is seen as 
22 playing agents (plus the rest) interacting in order to win a game. Similarly, it could 
be possible do develop a whole simulation as a set of collaborating agents, each of them 
being responsible for its own data, calculation, persistence, etc. 

The second reason is that current technology allows us to do it. For example, the CAPE- 
OPEN framework provides the communication infrastructure that allows CAPE 
components to interoperate. Process modelling components directories, such as the one 
developed by the CO-LaN, give ways to locate these components on the web. 

Standard agents platforms such as FIPA, and agent languages such as KQML (Section 
6.1.2), can help to transform process-modelling components into autonomous 
communicating agents (Section 6.1.3.4). These technologies can have an important 
impact on the development of fault-diagnosis systems and operating support systems in 
general where co-operation between software components generate results faster as 
opposed to stand-alone applications (Section 6.1.3.1). Existing interoperation 
technologies have been applied to demonstrate how an agency can support the 
workflow during the construction of a simulation model as discussed in Section 6.1.3.3. 
Agent technologies combined with application-independent information representation 
mechanisms such as XML and EXPRESS have already been applied in modelling 
supply chains over the Internet (Section 6.1.3.5). 
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The next sections of this chapter will detail these and other technologies as well as 
current and future applications of multi-agents systems in CAPE. 

6.1.2 C O M M U N I C A T I O N  A S P E C T S  OF M U L T I - A G E N T  SYSTEMS 

In engineering, data are used in different ways by a number of tools and people as 
information evolves through negotiation and trade-offs. Increasingly, engineering 
activities demand communication approaches in which data is shared and exchanged 
easily between product, process and plant life cycles, and between any of their stages. 
Communication is possible when data becomes information. 

Data becomes information when it is given a meaning that  is useful within a certain 
context. In other words, data must be timely, it has to get to the right person, and it has 
to be relevant to the user in a form that is easy to use. In multi-agent systems, agents 
communicate by exchanging messages over the network either synchronously or 
asynchronously. Messages contain knowledge and data represented in different formats 
and languages. Communication is kept even when one agent is off-line, as information 
requester either finds another agent that provides similar services or waits until the 
agent becomes on-line (perhaps on a different computer). 

Communication in multi-agent systems is possible with the combination of a number of 
layers (Figure 3). 

Figure 3. Inter-operability layers in multi-agent communication 

In the lowest layer, we have common protocols for data transfer and object 
communication that  include object interaction such as the one defined with CORBA 
Interface Definition Language (IDL) and COM or DCOM. In this layer of 
communication a software component can access the services of a remote software 
component by calling object methods. For example, an IDL interface allows a software 
component to call the methods of a remote software component [3]. 
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CORBA and COM/DCOM alone can be used to integrate distributed components. 
However, using distributed object-oriented programming alone, interactions among 
objects remain fixed through code in eachapplication [4]. 

Then we have resource management services that are the mechanisms that allow 
software components to find each other without knowing the exact location of the 
participants. For example, CORBA Object Request Broker provides this kind of services 
[5]. 

The agent name server (ANS) of some agent environments is a particular example of 
the resource management layer. ANS is a component that permits agents to locate and 
address other agents by name (rather than IP addresses and ports). 

In the next layer we have approaches for application-independent data and knowledge 
representation, including Part 21 of the Standard for the Exchange of Product Model 
Data (STEP ISO-10303), the knowledge interchange format (KIF) [6] and XML [7]. 
STEP Part  21 defines the mechanism for exchanging instances of the data defined in an 
EXPRESS information model (see below). EXPRESS is a language defined in part-11 of 
STEP that is human and machine-readable. In STEP, data are stored in a neutral 
format that can be exchanged among applications that provide translation between 
Part 21 format and the internal data structure of the application. Likewise, knowledge 
interchange format (KIF) can be used to share data and knowledge. Extensible Markup 
Language (XML) is a standardised syntactic structure of data, so that data is 
exchangeable between heterogeneous software components. XML is particularly 
tailored to support Internet applications. 

In collaborating teams and tools, interdisciplinary parties very often have diverse but 
overlapped views that need to be harmonised. Common information models and 
ontologies are specifications of a worldview that allows parties to understand the 
meaning of data. The lack of agreement on the meaning of data undermines consistent 
flow of information or knowledge. 

Ongoing developments of standard information models include the ISO initiative STEP 
[8] [9]. Information models in STEP describe the structure of data so that plant 
schematic representation and simulation data can be shared and exchanged between 
different applications. Information models are composed of entities, attributes, and 
relationships among the objects. 

Although similar to information models, an ontology is a formal and explicit 
representation of definitions of objects, concepts and the relationships that hold them 
[10]. The role of an ontology is to give information a precise meaning using a formal 
representation (often in the form of first-order logic) so as to enable consistent 
interpretation between humans as well as between software tools. The main difference 
between the two approaches is that ontologies make a commitment to an unambiguous 
representation of the terms of a specific domain of discourse, while information models 
makes a commitment to an efficient data structure. Ongoing ontology development for 
the process industries is reported in [11]. 

The components of an ontology include, classes of objects, their taxonomy, relations, 
and axioms. The definitions of objects can be represented using first order logic 
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expressions in a format that is readable by both knowledge-based systems and humans. 
Axioms ensure that applications pass legal data for semantic consistency according to 
the definitions in ontologies. This capability can be exploited to express queries at a 
higher level of abstraction in a more convenient way than using existing text-based 
query mechanisms [12]. Efforts exist that extend current XML capabilities to support 
ontologies, including the DARPA Agent Markup Language and the Ontology 
Interchange Language [ 13 ]. 
Agent-communication languages (ACLs) provide the means by which agents represent 
intentions on the use of data, and find resources. With an agent communication 
language it is possible to convert a statement such as (open valve-l) into a question (is 
valve-1 open?) or into an assertion (valve-1 is open). A number of agent commum'cation 
languages (ACLs) have been developed that provide such functionality. KQML 
~ o w l e d g e  Query and Manipulation Language), which is based on the speech act 
theory, is the de facto standard for agent communication languages. KQML is a 
protocol language developed by the ARPA supported Knowledge Sharing Effort that 
provides a standard interface that is independent of the implementation and platform 
[14 ]. A KQML message consists of a performative, contents and a number of 
parameters (keywords). An example of a KQML message is shown in Figure 4. 

(insert 
:contents (assert (edge (node-from "pump-1 '9 

(node-to "valve-1 '9)) 
:language CLIPS 
:ontology equipment-network 
:receiver agent2 
:reply-with nil 
:sender flowsheet-agent 
:kqml-msg-id 55 79+perseus+1201) 

Figure 4. An insert performative is used to add topological information 

A performative describes the intention and attitudes of an agent towards the 
information that is to be communicated. Some KQML performatives are listed in Table 
1. 

Table 1. KQML Performatives 

Category 
Basic informational performatives 
Basic query performatives 

Factual performatives 

Multi-response query 
performatives 
Basic effector performatives 
Intervention performatives 

Reserved  pe r fo rmat ive  names  
tell, untell, deny 
evaluate, reply, ask-if, ask-one, ask-all, sorry 
insert, uninsert, delete-one, delete-all, 
undelete 

stream-about, stream-all, generator 

achieve, unachieve 
next, ready, eos, standby, rest, discard 
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Capability definition 
performatives 
Notification performatives 

Networking performatives 

Facilitation performatives 

advertise 

subscribe, monitor 
register, unregister, forward, broadcast, pipe, 
break 
broker-one, broker-all, recommend-one, 
recommend-all, recruit-one, recruit-all 

Contents is the section of the message in which the transmitted data or knowledge is 
stored. The language used to represent the contents is specified using the :language 
parameter. 

Parameters in a KQML message are used to specify information about the sender, 
receiver, information model or ontology, data or knowledge representation language, 
along with the message identifier. 

Due to its extensible nature, KQML has neither fixed specifications, nor interoperable 
implementations, nor agreed-upon semantics. To solve these problems, FIPA 
(Foundation for Intelligent Physical Agents) currently is developing common 
specifications of an ACL with a message structure similar to KQML [15]. 

Figure 5 illustrates the use of messages in a brokering transaction that is initiated by 

Figure 5. Brokering (the case in which an agent wants to f ind a 
suitable service provider) 

agent1 who wants to find a suitable agent for a required service. Examples of KQML 
performatives are shown in parentheses. Agen t l  first sends a message to a facil i tator 
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agent who uses ontology, contents language, and query information along with legal 
and other constraints to find a suitable agent that can provide the required service. 
Facilitators perform tasks such as routing messages to the adequate agents, locating 
agents, and providing cross-platform interfaces. Once the service provider is found 
(agent2) communication is established between the service requester (agentl) and 
service provider (agent2). Several other communication alternatives are also possible. 

Agents need a collaboration model that determines how information is to be used and 
produced by the involved parties. Two different levels in a collaboration model can be 
identified. On a higher level of abstraction there are clearly predefined and well- 
understood interactions. On the other hand, some information flows cannot be specified 
beforehand and need to be determined at the time of execution. Approaches for high- 
level collaboration include rules based on activity models. Activity models organise 
tasks to be performed and identify the information flows between activities. Not only 
can activity models support the construction of co-ordination rules, but activity models 
also define information requirements for the development of information models. For 
this reason, STEP standards include activity models along with information models. 
One example of an activity model that covers a broad number of process engineering 
functions is the PIBASE activity model [16]. 

In the lower level collaboration models, negotiation and conflict resolution approaches 
can be used. In [17] negotiation is defined as "the process by which a group of agents 
come to a mutually acceptable agreement on some matter." Agreements are convening 
on price, the use of resources, services to be provided, etc. The negotiation process may 
involve things such as the relaxation of constraints. Reported negotiation techniques 
range from game-theoretical approaches, distributed constraint satisfaction problems 
[18] to ant-colony methods [19] that are based on trails of pheromone. 

6.1.3 D I S T R I B U T E D  P R O B L E M  S O L V I N G  

In today's environment with ever-increasing pressures from the market and tighter 
safety, environmental and societal constraints, process industries are being required to 
develop safer, and more versatile plants, that results in high-quality products in shorter 
time and less cost. Consequently, new engineering environments are then needed that 
integrate multiple aspects of the product, process and plant life-cycles. 

The agent paradigm is well suited for such environments where multi-disciplinary 
teams and tools need to collaborate, where design constraints need to be propagated 
fast, where operators are to be relieved of the stress and fatigue, and where dynamic 
networks of companies with short-term relationships need to collaborate by integrating 
computational resources and people. 

The following sections discuss applications of agents that ~im at making all this 
possible. 
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6.1.3.1 Application of Agents in Process Monitoring~ault diagnosis 

The safety of a process plant relies heavily on the timely detection and diagnosis of 
abnormal situations. Despite that most of the time the control system responds to 
deviation of the process, humans are greatly involved in the diagnosis and decision- 
making when an abnormal situation occurs. A number of factors influence the 
performance of plant operators during these critical situations, including fatigue, and 
human error to name a few. 

The agent paradigm fits in well for such situations. As pointed out by Brazier et al., [20] 
agent properties such as autonomy, pro-activeness, reactiveness, and co-operation can 
be exploited in developing diagnosis and other kinds of support systems. 

The earliest work on the development of agent systems for fault diagnosis was done as 
part of the ARCHON project [21]. This project produced a general-purpose architecture 
for multi-agent systems that was applied in the fault diagnosis of an electricity 
transmission system and of a particle accelerator. The first application integrated 
existing expert systems for monitoring the network, diagnosing faults and planning and 
executing repairs. Co-operation enabled the system to generate results faster as 
opposed to stand-alone applications. The system was also robust because the 
htnctionality of one application of domain had the backup of an application of another 
domain that was intelligently co-ordinated. The second application distributed and co- 
ordinated a large number of software applications that were connected to the 
accelerator. Co-operation was implemented to provide a series of interconnected trees of 
hypothesis of the faults generated from multiple agents each with its own domain of 
expertise. 

In the ARCHON architecture, each agent is composed of two layers: a domain-specific 
layer and a generic layer. The domain-specific layer was in most cases the wrapping of 
an existing application. The generic layer included modules for high-level 
communication, planning and co-ordination, and co-operation modules. Distributed 
problem solving in this work was possible through the use of a self-module model and 
an acquaintance model. The self-model module was a model about the wrapped 
application that  permits the agent to reason about its workload, previously executed 
tasks and its capabilities. The agent acquaintance model described other agents in 
terms of their goals, capabilities, current state of workload, etc. 

Chemical plants are designed such that they can be operated for long periods of time 
with little human intervention. Analogously, in space exploration devices highly 
reliable operations are required over similar time horizons. In contrast to chemical 
plants, until recently spacecraft had traditionally required hundreds of ground-control 
operation team members who corrected malfunctions and operated the space devices 
remotely. One departure from that situation is NASA's remote agent, developed as part 
of the New Millennium Program. The program is oriented to allow a handful of human 
team members to command the spacecrafc while reducing the cost of space-exploration 
missions and simultaneously increasing their number [22, 23]. 

Remote agent is made up of three independent modules for planning, executing 
operations, diagnosing faults and recovering from abnormal situations. The 
architecture integrates real-time monitoring and control with constraint-based 
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Figure 6. An agent architecture for plant operations based on 
NASA's remote-agent 

planning and scheduling, model-based diagnosis, and reconfiguration. These are 
essentially, the same kind of operation support function useful in chemical plants. 

Remote Agent's fault protection module, Livingston, combines the use of a declarative 
model of the spacecraft with deduction and search capabilities. It predicts process 
values using the spacecraft model and the mission information (the set points). When 
the current equipment configuration (the set of valves and other devices that are 
operated currently) fails to satisfy a goal of the mission, the agent finds an optimum 
cost-effective procedure to reconfigure the spacecraft and satisfy the goal. 
Reconfiguration is similar to changeover operations in chemical processes. An agent 
architecture for plant operation based on remote agent is shown in Figure6. 

Another area of application of multi-agent systems is found in the integration of fault 
diagnosis and other operations support software. For example [24] reports the use of an 
agent system for the integration of fault-diagnosis and maintenance activities. These 
ideas can be extended farther to support integration with plant design databases, 
corrosion simulators, and control systems. 

6.1.3.2 Dis tr ibuted  des ign  e n v i r o n m e n t s  

During the design of a product, a process or a plant, a number of alternatives are 
proposed, evaluated and screened. Unfortunately, engineers in the design of the process 
and product frequently face a number of uncertain factors that affect the evaluation 
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[25]. In today's environment where information is becoming available faster, one can 
predict that engineers will collaborate with an infrastructure that allows for timely 
information about life-cycle considerations (such as safety, operability, and site location) 
to be incorporated in each stage of the design. Then methodologies and infrastructures 
are needed for managing design decisions as information becomes available. When this 
is possible, new products, processes, and plants would then be designed in a cost- 
effective way through collaboration over an information network such as Internet. The 
following example illustrates the use of such infrastructure. Let us assume that a water 
treatment facility is being considered for design as part of the design a plant that 
contractor A is managing. As the project evolves, A announces that several plant 
owners of the contiguous facilities have agreed to subcontract the design of a common 
water treatment process. Consequently, the design assignment considered by A 
becomes invalid for the group of agents (software and people) working for A, albeit it 
remains valid for the agents of the subcontractor that communicate with A's agents via 
the Internet. 

Several multi-agent systems have been proposed to support design in the mechanical, 
electrical and aviation domains. Some of them will be briefly discussed below. 

ProcessLink is an ongoing project that aims at developing an infrastructure and 
methodology to facilitate the co-ordination of agents (people and software) in a 
distributed heterogeneous environment [26]. Engineering environments based on 
ProcessLink allow engineers make design decisions while a group of agents determine 
the validity of constraints and constraint violations. Agents communicate by 
exchanging KQML messages using a predefined ontology based on the design model 
Redux [27]. Combining the functions of facilitator and ANS agents, an agent manager, 
manages the inventory of available agents and their capabilities. A project manager 
agent, which is a combination of a software agent and a human agent, sets overall 
plans and schedules to be passed to the rest of the agents. To generate the schedule the 
project manager requests the agent manager to provide information about their 
availability and capabilities. Agents from particular engineering domains co-ordinate 
their decisions through a constraint manager and a co-ordination agent. The constraint 
manager uses constraint propagation techniques in association with the dependency- 
directed backtracking techniques 2 [28] from the co-ordination agent to test the 
consistency of a decision. Dependency-directed backtracking techniques also allow the 
co-ordination agent to evaluate the effects of a change in constraints of the project. 

In the area of plant design, Struthers [29] proposes a generic design of autonomous 
agents for the modelling of design processes. Such modelling is used for organising and 
managing a pressure relief and blowdown study. Agents exchange messages using a 
predefined protocol for encoding the agent's intentions during the design process in 
which functionally similar agents negotiate toward the best design alternative. 

Procedural control design is a major issue in process plants where operations are to be 
synthesised to achieve a fast, safe, and cost-effective transition from one process state to 

22 As a point of interest, Bafiares-Alc~ntara et al. [28] describes the application of dependency-directed backtracking for 
management of change for conceptual chemical process design. 
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another. Agents that mimic interactive, autonomous plant objects can be used to 
collaboratively address this kind of design problem. In [30] a simulation-based planning 
method is proposed in which operations are determined by a number of agents 
organised hierarchically based on the concept of controlled group unit (CGU) developed 
by Naka [31]. Operations are organised in three hierarchical levels: plant, CGU, and 
equipment levels. At the plant level, operations are carried out to control the 
interactions with contiguous plants or battery limits. Plant agents determine overall 
goals that are communicated to agents in the lower hierarchies (Figure7). The plant is 
divided into smaller units (CGUs) that are operated by agents who act co-operatively 
and report to the plant agent. A CGU can be identified from the flowsheet topology as 
an assembly of pieces of equipment surrounded by remotely actionable-equipment 
(RAE), i.e., equipment that can be controlled from the control room such as control 
valves. Each CGU agent is responsible for controlling a local inventory of material by 
means of sending commands to lower-level agents that operate its input and output 
valves as well as internal equipment items. Negotiation is used to determine the 
actions of contiguous CGUs. Rules for co-ordination are used that deal with decisions 
taken locally by CGUs about operating their valves with those taken globally by the 
plant. 

Figure 7. Plant and CG U agents 

6.1.3.3 Process  workf low support ing  agents  

Geopolitical, economic and technological forces are changing organisations and 
consequently affecting the way engineers work. The activities in an engineering work 
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process may be distributed across different team members with different expertise 
located in different countries, in which co-operation and co-ordination among those 
distributed activities are frequently required. To effectively deal with the complexity of 
such work processes, it is desirable to employ workflow support software tools. In 
general, those tools (often referred to as Workflow Management Systems) help 
organisations specify, execute, monitor, and co-ordinate the flow of work items within a 
work group or organisation [32]. In this section, we will take a look at how workflow 
management systems work and how the agent-based paradigm can be and has been 
used in realising workflow systems. Ai~rwards, we will look at the state of the art of 
the work process support for process engineering including the perspective of applying 
the agent-based paradigm. 

Generally, it is not the goal of workflow management systems to completely automate 
an entire work process. In most workflow systems, tasks are usually regarded as being 
performed externally. The workflow management system only concerns itself with 
management issues such as checking the availability of input and output information 
and resource allocation [33]. Therefore, instead of automating work processes, workflow 
support systems are usually used to help the users in planning their actions. However, 
partial automation can be achieved if an algorithm can describe some of the activities 
that constitute the workflow. 

In principle, the support of activities in a work process relies on appropriate process 
information, which has to be available to the workflow system. For example, guiding a 
user through a predefined workflow requires knowledge about the work process and the 
activities of which it is made up, information about possible orderings of the sub- 
activities, evaluation procedures to find out whether an activity is executable in the 
given situation, and methods to change the data on which the activity operates. The 
latter is only relevant if automation of the activity or a whole workflow is the objective 
of the support. Communication platforms such as the BSCW [34], which can also be 
regarded as workflow support systems because they facilitate information exchange 
within teams independently of any prior detailed knowledge of the work process, 
because they just store and make available information in the form of data files. 

Among the alternative approaches to realising workflow-supporting tools, multi-agent 
systems have been found well suited because of their autonomous, adaptive and 
collaborative characteristics. In this context, agents act collaboratively with the users 
by monitoring events and determining ways to support the users in a proactive fashion 
[35]. There are a number of different possible ways in which an agent can support 
wortdlow processes. For example, an agent can guide the user through predefined 
workflows, suggest executable activities, facilitate the collaboration between team 
members, or retrieve information on request. By offering these kinds of support, a 
process support agent can improve both the quality and the speed of work processes. 

The field in which workflow support has gained the most attention is that of business 
processes such as banking, healthcare, and office automation. Here we often find 
planned, structured and shared workflows, which are good targets for workflow 
management systems [36]. Nevertheless, some systems have also been developed to 
support engineering fields. As for agent-based systems, an example for business 
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processes management is the Agent Based Process Management System (APMS) 
architecture [37] from the ADEPT project [38]. In [39], agents are used in collaborative 
product development where they delegate work packages and activities and guide 
relevant data and control flows. [40] reports a so,ware engineering environment which 
incorporates agent-based workflow management to actively support collaborative work 
in a software project. 

Activities in process engineering have their particular complexities. For example, the 
activities involved in plant design and retrofitting can be organised in two kinds of work 
processes that are always combined. On a higher level of abstraction there are clearly 
predefined and well-understood work processes that always follow the same schematic 
path of execution (for example see [41]). However, as engineering activities are 
decomposed further, workflows may exhibit highly creative and impromptu activities 
that cannot be planned and represented in advance. When trying to describe parts of 
these work processes, like the initialisation problem for model simulation, on a detailed 
level, one often has to deal with creative aspects of the engineer's problem solving 
activities. 

Until now, the work that has been done to assist in handling the complex work 
processes in process engineering is still quite limited. Some commercial modelling and 
simulation tools for chemical processes, like Aspen Plus, provide the user with 
automatically generated menus that adapt to the needs of the user depending on the 

Figure 8. Screendump of COPS in a snapshot when it is supporting 
process modelling activities 
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tool state and suggestions of next work items, providing a kind of simple workflow 
support for individual users. However, they do not provide explicit information on the 
underlying workflow model, and do not allow it to be changed. Besides, several process 
design support systems such as n-dim [42] and KBDS [43] have been developed in 
which the aspect of workflow management is addressed to a certain extent. However, 
none of these systems has explicitly incorporated a separate wortdlow management tool 
equivalent to those that have been applied in other domains but suitable to chemical 
process design. As an ongoing effort in process design support, an ambitious long-term 
research project, IMPROVE [44,45], aims at the design and implementation of a 
process-centred environment for chemical process design. In this environment, work 
process support is addressed on several levels, from co-ordination of engineering 
activities by the project management to the support of personal work processes. 
Incremental replanning of work processes, feedback situations with task re-execution 
and the integration of existing software tools into the work process are taken into 
account. 

Ongoing development of an information model in the IMPROVE project represents 
process design processes, actors and the relations between a design process itself and 
the design artefacts that are obtained during the execution of the worldlow process. 
Using this model, a context-oriented process support system (COPS) has been 
prototyped [46 ]. As an independent tool working in a process-centred software 
environment, COPS guides actors to select and execute a set of activities and performs 
documentation. It also overcomes the deficiencies existing in those commercial 
modelling and simulation tools mentioned above. 

Figure8 shows a working screen of COPS's supporting process modelling activities. 
Based on these results, applying a multi-agent paradigm to develop a comprehensive 
worldlow support system for chemical process design is currently being evaluated [47]. 
In particular, a software system architecture has been proposed which consists of a 
workflow server, a number of workflow agents and a number of personal agenda 
agents, as shown in Figure9, The workflow server i s  responsible to create workflow 
agents and to allocate designers of specific roles. A workflow agent initiates a design 
activity, determines the role of designers for this activity, then supports the execution of 
the activity and documents the activity. Finally, by co-operating with the workflow 
server and workflow agents, a personal agenda agent works for a specific designer, 
helping arrange the designer's agenda in the context of the entire design team or 
project. 
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In this paradigm, agents can potentially be employed not only in fiflfilling the typical 
workflow management functionality, i.e. managing design activities, but also in other 
aspects closely related to the definition and execution of activities, such as assisting the 
designer by showing relevant design artefact information according to the definition 
and status of an activity. 
In summary, we have seen how complex process engineering activities can benefit from 
workflow supporting agents. Although workflow supporting tools (agent-based tools in 
particular) have not been widely applied in process engineering, the experience from 
other domains as well as the current emerging trend in these evolving technologies of 
agent-based worldlow support are showing an encouraging prospective of enabling 
efficient co-ordination and management of process engineering activities. 

6.1.3.4 D i s t r i b u t e d  s i m u l a t i o n  

Multi-agent based computation infrastructure for simulation are already finding 
increasing scope of application in varied domains like social, economic, biological or 
ecological systems [48 ]. The autonomous nature of individual agents and their 
capability of intelligent interactions make them able to represent system modules, 
which act autonomously in the real world. Thus, simulation of discrete event systems 
involving natttrally intelligent entities witnessed the initial applications of agent-based 

Figure 9. Agent.based workflow management  system for process 
design. WFS - Workflow Server WFA - Workflow Agent  PAA - 
Personal Agenda Agent. 

computation. In the case of simulation of continuous processes, though a limited 
number of research and implementations are reported, the possible application scopes 
of agent-based computations are yet to be fully explored. One of the efforts in agent- 
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based simulation of continuous phenomena in distributed parameter composite 
physical systems can be found in [49, 50]. Agent applications specifically oriented 
towards distributed simulation of chemical process plants are yet to be widely available. 
In this section we will discuss some of the envisaged benefits of agent based distributed 
simulation of chemical process plants. 

As the demand of powerful simulation approaches to tackle more complex problems 
increases, a single desktop computation capability is no longer a practical option for 
problems such as real plant simulation. To circumvent the resulting problem of large 
initial investment on computation, one research direction is to use distributed 
computation environments where a cluster of multiple low cost computers are to share 
the computational burden. Present availability of agent based software communication 
protocols and the addition of knowledge-based problem solving capabilities potentially 
offers fast, flexible yet cost effective simulation environment possibilities. 

Chemical process plants typically represent a hybrid system, which manifest both 
continuous dynamics as well as discrete event phenomena. While functions such as 
planning and executing operations can be assigned to a number of agents, the 
decomposition of the continuous process dynamics need careful analysis of the system. 
Some preliminary research in this direction that is targeted to process plant simulation 
is reported in [51]. 

The major anticipated roles of agents in an agent based process simulation 
environment are likely to include: behaviour model decomposition, processing resource 
allocation, local solver execution, thermodynamic property computation, and 
distributed computation co-ordination. One or multiple agents may be necessary for 
each of these activities that implement the desired functions of a distributed simulation 
environment. During a simulation session each computation module of the behaviour 
model may be assigned to dedicated agents. Each simulation session could be co- 
ordinated by one computation co-ordination agent. A typical distributed multi-agent 
based process simulation environment is shown in Figure l0. A scenario of agent 
creation and inter-agent communication may proceed in the following way. 
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On initiation of a new simulation session by any external agent (human or software), 
the behaviour model management agent (referred below as model agent) is instantiated 
and associated with the desired behaviour model database, if no such instance is 
already running. The model agent analyses the behaviour model and demarcates 
multiple computation modules. A computation co-ordination agent is subsequently 
initiated by the model agent with the information of the number of computation 
modules. In the case of the existence of a model agent instance, the new simulation 
request is registered to the existing agent and a new co-ordination agent is instantiated. 
The co-ordinator agent creates instances of the required number of solver agents and 
assigns appropriate processor to the solver agents so that the estimated discrepancy in 
time per computation cycle among the processes is minimum. To support the 
computation, the solver agents need access to the thermodynamic property computation 
utility, which may be made available as individual utilities or as a multi-thread server 
with agent interface. The solver agents are to collect their respective computation model 
from the model agent and with the help of the co-ordinator agent initialise the inter- 

FigurelO. Schematic view of a typical multi-agent based distributed 
simulation environment and client utilities 

module communication ports for information exchange about computation time. During 
execution on completion of each global time step the solver agents are to exchange 
relevant variable values with the appropriate solver agents as well as with the co- 
ordinator agent. On confirmation of convergence, the co-ordinator agent for the next 
time step would issue the computation command. In the case of perceived mismatches 
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in the values of the variables, the co-ordinator agent requests a re-computation of the 
last time step with new global time step. 

As shown schematically in Figure l0, an integrated agent oriented process design 
environment is likely to employ many other agents or groups of agents to play 
specialised roles. Some of these activities are product design, process design, plant 
design, behaviour model editing, operation procedure synthesis, etc. Agents responsible 
for these activities are likely to interact with one or more of the above described 
simulation support agents. The interaction could be for executing a new simulation, 
analysis and interpretation of a process behaviour or to register changes to the ongoing 
simulation sessions. As the need for concurrent engineering environments are being 
appreciated, the requirements for intelligent inter-utility interactions are becoming 
essential. These requirements also gave rise to efforts for developing proper protocols of 
information exchange across specialised knowledge domains. Several initiatives, as 
discussed earlier in this chapter (Section 6.1.2), for defining meta-data format 
standards and domain specific ontologies are making it possible to have m e a n i n ~  
inter-agent communications across the context boundary of individual agents. 

The major benefits, which are envisaged to be available in agent based distributed 
simulation environments, can be summarised as follows: 

�9 Increased speed of computation through concurrent utilisation of distributed 
processing power 

�9 Scalability of computational complexity as well as computation environment 
features by gradual incorporation of more processing power or utilities 

�9 Convenient integration of third party utilities and customised selection of 
appropriate tools for any particular requirement 

�9 Convenience of maintenance and management of software components with 
possibility of modular upgrade of the simulation environment 

�9 Flexible multi-user support for collaborative evaluation, decision making or 
training in a distributed environment 

�9 Possibility of intelligent interfaces that adapt to human users as well as to other 
software components 

Possibility of fast and flexible connectivity of software components and users over 
Internet offers promising directions of distributed computation. Agent based world-wide 
integration and utilisation of idle processing power, simulation supporting utilities as 
well as simulation results would aid distributed monitoring, analysis and decision 
making regarding simulated as well as real online processes. This will also facilitate 
different design and development activities to be performed concurrently without the 
constraint of physical location of the involved personnel in a cost effective and flexible 
way. Some implementation efforts in this direction are already being reported [52]. 

High-level modelling languages allow users to describe process simulation problems at 
various levels of abstraction composed of several modelling components. Putting this 
together, it is now possible to develop a system in which a user would only specify a 
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process engineering problem using the high-level modelling language, and 
communicate the problem to a component catalogue which would in turn communicate 
with process modelling agents and let them build a solution collectively. Such a multi- 
agent framework for process modelling is what can be called CO-GENTS in the CAPE- 
OPEN project. The CO-GENTS framework is currently being investigated by a group of 
universities and companies in order to demonstrate the feasibility of the approach. 

6.1.3.5 Supply-Chain Management 

Supply chains are distributed, integrated processes where the participating parties 
work together to acquire raw materials, convert them into other products and deliver 
the finished products to retailers and customers. Two basic processes dominate the 
dynamics of the supply chain, namely production planning-inventory control, and 
logistics-distribution. Along the supply chain, parties experience a forward flow of 
materials, a backward flow of capital, and a bi-directional flow of information. The 
degree of integration between the participating components depends on the ease with 
which these flows occur along the chain. It is worth mentioning here that the term 
supply chain is used as a convenient simplification; as each link on the chain actually 
branches in its own and different suppliers and retailers, a more realistic term would be 
supply network. In the same fashion, some authors consider the term demand chain to 
be more accurate, since the chain begins with a consumer, who creates demand for 
products, and ends with the raw materials suppliers [53]. 

From this definition of supply chain we can consider the finished product to be anything 
from the manufactured items that go to the final customers, the process plant units, 
control systems, computer hardware, or whatever that has a market niche. From here 
on, however, we focus our discussion on two of these products, namely the process plant 
and its manufactured products. These two are the axles that spawn the need for data 
modelling. 

On one side, the complexity of supply chains whose final products are process plants 
and its relation with the plant life cycle has yielded plenty of studies. Yang and 
McGreavy [54] identify the requirements for the process data to be used over the plant 
life cycle under the EPISTLE (European Process Industries STEP 3 Technical Liaison 
Executive) framework. The need to share data, codes and concepts is stressed. 
Functional characteristics of a computer integrated CE environment usehtl along the 
whole plant life cycle is discussed in [55], stressing the chemical industries' special 
needs. A project management system that is able to handle different plant life cycle 
activity models within a concurrent engineering framework is described in [56]. 
However, the chemical process industries are far from the integration that other 
productive activities such as aeronautics, automotive and electronics have achieved in 
aspects like e-commerce and data modelling. 

The STEP s tandard  discussed in Section 6.1.2 
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On the other hand, the supply chains of chemical products have some distinctive 
features. Firstly, in the market of chemicals, the best customers are usually other 
chemical companies. Secondly, the final customer is usually farther in the chain and 
therefore it is harder to pull on an extreme to favour integration. In addition, the final 
product and by-products co-exist in the market. Furthermore, compared to other 
industrial sectors, the life cycles of plants, products and processes are longer and more 
complex. Finally, the process is subject to tighter safety and environmental constraints 
than in other industries [57]. The product life cycle is therefore very different to other 
manufactured products. Figure l l  shows the relationship between the plant life-cycle 
and the plant 4 and product supply chains 5. 

Compared to the many efforts on methods based on control theory and optimisation 
(ranging from operations research models of logistics/production and statistical analysis 
to business games), the work on agent-based systems is still very limited, and little has 
been published about specific applications in the process engineering domain. Agent- 
based systems have a number of distinctive features that make them attractive for 
supporting the supply chain. For example, the decentralised interoperability of agents 

Figure 11. Relationship between the plant's life cycle and the 
plant and product supply chains 

makes them well suited for designing distributed supply chain systems. In addition, the 
modular, collaborative and autonomous characteristics of agents allow them to mimic 
the supply chain structure, i.e., systems for individual chain components can be 
developed and maintained independently. 

4 The plant  supply chain involves the flow of information, material and energy between the engineering,  procurement and 
construction service providers (EPC contractor), plant owners, equipment suppliers, control vendors, and process 
licensors. 
5 Extended supply chains may include recycling facilities, consumers, collectors of recycling materials, etc. 
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Ongoing work at the University of Leeds aims at developing a multi-agent support 
system that is intended to address the above challenges. The system is a multi-agent 
based environment that models the geographically distributed retailers, logistics, 
warehouses, plants and raw material suppliers as an open and re-coniigurable network 
of co-operative agents, each performing one or more supply chain functions. The 
environment operates at two levels of a decision maldng process. At the top level, an 
agent based co-operation mechanism allows compromise decisions to be made through 
negotiation. When there are conflicts, the next level (the dynamic simulation of chain 
behaviour) allows optimal compromises through the simulation of the effect of the 
decisions. 

The model is coherent inasmuch as it abets component integration at all the different 
levels of implementation [58, 59], as shown in Figure 12. Agents are programmed with 
the Java language so they can run on any platform. The agent instances are shown in 
Figure l l3.The use of Java allows the system to be easily adapted to run on the 
Internet. KQML is used as common language for inter-agent communication. The 
STEP approach (section 6.1.2) is used to give format to the contents of the messages 
exchanged between the agents. 

The implementation focused on a case study where a multi-purpose batch plant that 
produces wood paint and coatings schedules its production in order to htlfil warehouses 
and customers demand. The models deal with inventory levels, optimisation, 
production scheduling, demand forecasting, transportation logistics and information 
exchange in order to study the effect of the chain dynamics over the plant's variables, 
wearing away and idle times during campaigns along a given horizon. 

Definition of Functional Relationships ] 

Agent Implementation Level 
JAVA 

Protocol Level 
KQML 

Contents Levelq 

EXPRESS J 

Figure 12. Levels of implementation. 
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Figure 13. Agent instances in supply chain model. 
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Figure14 shows some interesting results of a step change in demand that can give 
insight into the use regime of batch plants regime and their long term scheduling. The 
plant produces three finished products and has ten processing units. 

Multi-agent systems will be deployed over the Internet to act simultaneously as real- 
time knowledge management tools, corporate decision support tools, simulation test- 
beds for what-if scenarios and as means for increasing the supply chains integration. 
This paradigm is envisioned as fundamentally changing the way that partners interact 
in the supply chain. 
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Figure 14. Effect of the chain dynamics over the amount produced, 
plant's idle time and used equipment capacity. 

6.1.4 CONCLUSIONS 

The previous sections have shown representative examples of multi-agent systems for 
application in CAPE. Looking again at the evolution of software artefacts, as presented 
in the introduction and in chapter 4.1 of this book, we can now predict that agent 
technology will allow CAPE tools to reach the third stage of evolution, that is, the one of 
dynamic adaptive components (see Figure 15). In order to reach this stage, process 
modelling agents will need to be enhanced with dynamic capabilities, such as automatic 
reconiiguration, learning from examples, from past applications, or from interactions 
with users. An auto-adaptive numerical solver, for example, would not only offer its 
services to other modelling agents, but would also be able to adjust convergence criteria 
based on the solutions of previous problems, or on memories of interactions with the 
user, remembering preferences and thus offering better default values for its 
parameters each time it is being invoked. 

Since this chapter is about future trends, let's ask: what next? Well, look at the trends 
in information technologies, such as described in the European Commission's 
Information Society Technology FET (Future and Emerging Technologies) actions [60], 
or in the US Information Technologies for the Twenty-First Century (IT2) programme. 
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You will see that computers, ambient intelligence, pervasive computing, million- 
neurone networks, and computational grids disappear. In other words, clues for the 
next generation of software objects and agents that was implicitly predicted by Genrich 
Altshuller in TRIZ with his "patterns of evolution". Time will tell if these futuristic 
considerations make sense, but remember that CAPE and software were only invented 
less than fifty years ago, therefore there will obviously be much more to come. 

Figure 15. The third stage of evolution: dynamic components 

Another crucial aspect is whether there can exist any business model capable of coping 
with new technologies such as the ones presented in this section and in other parts of 
the book. This will be the subject of chapter 6.5. 
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Chapter 6.2: Tools Integration for Computer Aided Process 
Engineering Applications 

E. S. Fraga, R. Gani, J. W. Ponton & R. Andrews 

6.2.1 INTRODUCTION 

Computer tools for process engineering cover a wide range of applications. These 
range from the mundane, such as office productivity tools used to prepare 
reports, through to highly specific tools for process engineering. As an 
illustration, Fig. 1 shows the tasks involved in reactor modelling and simulation. 
Even a small part of the whole design of a process is itself made up of a large 
number of sub-tasks with complex inter-relationships. For design as a whole, the 
tasks range from model building, the generation of process flowsheets, heat 
exchanger network synthesis and rigorous simulation of process flowsheets for 
detailed analysis. Furthermore, identifying the best process design requires 
considering a variety of issues. These include economics, operability, safety and 
maintenance, along with the impact of a design on the environment, including 
issues related to society. The number of distinct applications used is therefore 
large and the process of design requires managing the flow of information from 
one application to another. 

There are two approaches for handling this diversity of tasks and requirements. 
The first is to use a specific tool for each task while the second is to use an 
application, which attempts to cover the full range of requirements. The former 
has the advantage of allowing the use of the best of breed tool for each specific 
aspect. However, integrating the different tools used may be an obstacle, which is 
difficult to overcome. The data generated by one tool may be required as input in 
another tool. For example, the state of a process flowsheet may be required to 
define the heat exchanger network synthesis problem to be solved using the 
pinch method or the results of a detailed simulation of a reactor may be required 
by the engineers responsible for the design of the separation section. 

In many cases, this transfer of data from one tool to another is carried out by 
hand. Although effective and reasonable in some cases, in general this limits the 
efficiency and accuracy with which the necessary calculations may be executed. 
The effect on efficiency is simply due to the time required to translate, by hand, 
the output of one program into the form required by the second program. More 
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importantly, however, the manual operation is likely to suffer from transcription 
errors, especially as the amount of data transferred increases. Automated 
interaction between the diverse tools used in process engineering is therefore 
necessary for the effective use of all the computer aided tools available to the 
engineer. 

A fully integrated approach eliminates the problem of data interchange. There is 
only one tool and no manual intervention for data transfer is necessary. Another 
advantage of this approach is that the engineer need only learn one interface, 
minimizing the human errors inherent in using complex computer tools. 
However, defining and implementing a computer based framework, which can be 
extended for use throughout the design process is also challenging. 
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Figure 1. Data flow, work flow and needed tools in reactor modelling & 
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Although the two approaches described above are orthogonal, they share the 
underlying problem of data representation. From the user's point of view, it is 
likely that  both approaches will appear the same (assuming that  the user 
interfaces for the tools in an integrated environment share a common look and 
feel). Furthermore, in practice, it is likely that  a combination of both approaches 
will be required. Fully integrated tools will be unlikely to cover the whole 
spectrum of tasks required in design and so even these tools will need to 
integrate with other tools. In any case, application integration is not simply a 
mat ter  of transferring data from one tool to another, although this step is 
necessary. Issues of data interpretation, data management,  concurrency in the 
design process, ease of use, and the generation of audit trails are equally 
important. 

The overall aim of tool integration is to aid the engineer in the process of design, 
helping meet the increasing demands on process simulation, analysis, 
optimisation and control. By providing an easy to use environment for design, the 
engineer is able to consider more issues simultaneously, leading to a better final 
design. More informed decisions can be made early in the design process and 
there is therefore a reduction in the iterative procedure that  often appears in 
design where later analysis leads one to throw away the current design and start  
over. An integrated environment which provides a common interface also has the 
advantage of minimizing human errors, errors often induced by having to deal 
with radically different user interfaces presented by separate tools. An integrated 
environment reduces problem set-up time and, therefore, increases the 
productivity of the user. Finally, all users of the same environment share the 
same common data, providing consistency. 

This chapter describes the approaches to application integration in process 
engineering. Three existing environments for process engineering are first 
described in detail to give an overview of the issues involved. These issues are 
further discussed in light of current research in both areas. The chapter ends 
with a discussion of new technologies that  may lead to better, fully integrated, 
easier to use and more comprehensive tools for process engineering. 

6.2.2 F R A M E W O R K S  F O R  TOOL I N T E G R A T I O N  

In this section, we describe three environments or frameworks for application 
integration in process engineering. The dpde system, a proof-of-concept prototype 
system, was developed a few years ago with the aim of understanding the issues 
in application integration. A subsequent project, Process Web Objects, is a Web 
based system developed to demonstrate the potential of the Web as a framework 
for application integration and has been based on the experience gained in the 
~p~e project. An example of a tightly integrated system for application 
integration, ICAS, is then presented. 
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At the core of the first two systems is a framework for data  interchange. 
Automating the interchange of data from one tool to another is not only a matter  
of t ransla t ing from one format to another. It is a non-trivial exercise for a variety 
of reasons, summarized here: 

�9 Each tool will typically use a different format for data representation. The 
data representat ions will often be based on a binary representation, specific to 
the type of platform and software used. Even with office productivity tools, 
this is an issue. Often, enterprises have to standardize on a single word 
processing tool to ensure that  problems with document formats do not arise. 
For process engineering, this problem is compounded by the large number of 
diverse tools required and because these tools come from a large number of 
vendors. A translat ion from one format to another is therefore likely 
necessary to integrate any two tools. If there are n tools, there are potentially 
n 2 t ranslat ion procedures required. 

�9 Even if the formats were to be the same, the information embodied in the data 
set may require interpretation. Each application has its own set of 
assumptions and these assumptions may be in conflict between the tools to be 
integrated. This is particularly true when comparing tools used early in the 
design process to those used much later. For early design, quantities may be 
considered to be approximate or may not even be required. Once a flowsheet 
design has been chosen, however, many of the quantit ies will be assumed to 
be fixed (and accurate). 

�9 Process engineering is a team based activity and data sharing amongst the 
members of the team, and the applications each member uses, is required for 
an efficient execution of the design process. Issues of concurrency arise. For 
instance, suppose one engineer is responsible for the design of a reaction 
section of a process and another is responsible for the separation section. 
Design decisions made by one engineer will affect the design generated by the 
other engineer. The effect of decisions made by each engineer will need to be 
recorded if not automatically taken into account. 

�9 Process engineering is just one par t  of the activities in an enterprise. Issues 
tha t  affect the enterprise will affect the needs for tool integration. For 
instance, the regulatory environment will typically lead to the need for clear 
and precise audit trails. Tool integration, which happens automatically, must 
therefore generate the data necessary to produce a suitable audit  trail. This is 
part icularly crucial with respect to the decomposition of design described in 
the previous point. 

The third system has no requirements of data exchange because the system is 
tightly coupled. All the tools within this system share a common data format. 
Nevertheless, the issues presented above are still relevant and should be 
considered in the development of any integration environment.  
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6.2.2.1 The ~p~e sys tem 

Tool integration requires not only the ability to transfer data from one 
application to another but also interpretation of the data, management  of the 
applications used, and support for multiple users accessing the same data. Two of 
the authors were involved, at the University of Edinburgh, in the development of 
a prototype system for application integration, which at tempted to address all of 
these issues. This prototype system is ~p~e, the Ecosse Process Engineering 
Environment (Ballinger et al., 1994; Costello et al., 1996). It was developed to 
support process engineering in general, although with emphasis on early, 
conceptual design. Although the ~p~e project was terminated a few years ago, a 
description of the main features of the system is useful for understanding the 
issues in tool integration and how they may be tackled. 
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Figure 2. Architecture of the dpde system. 

The ~p6e system is based on a modular architecture (see Fig. 2). At the centre, is 
a server that  responds to requests from applications. These requests include 
accessing data objects previously created, storing new data objects, or requesting 
the application of methods on given data objects. Applications are invoked by the 
server in response to method application requests by either the user or by 
another application. The server is network-aware and applications may be 
started on any system in the network, as required (for instance, some software 
may be licensed only on specific systems). The system is controlled through a set 
of databases, which describe the applications that  are available, and what 
methods they provide. 
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Data representation 

The core of the ~p6e system is an extensible object oriented data representation. 
The aim is to provide an application neutral  data representation.  Applications 
can be wri t ten to use this data representat ion directly, through the application 
programming interface (API) provided by ~p~e. Existing applications can be 
integrated by implementing a wrapper application, which t ransla tes  between the 
neutral  representat ion and the representat ion used by the application. To ensure 
maximum portability, the data are encoded in ASCII. 

Targeting conceptual design means that  it is difficult, if not impossible, to pre- 
define the full set of data types required or even fully define any single type. For 
instance, the definition of a process s tream cannot be fixed. In the earliest stages, 
a s t ream may simply consist of a list of components with little or no information 
about the actual amount  of each component in the stream. In fact, the list of 
components may be only partially defined. In later stages, however, process 
s t reams will often include multiple phases, each phase defined by a fully 
specified list of components and their flows, a temperature,  a pressure, and so on. 
One aim of the ~p~e system was to enable a wide range of applications to work 
with the same basic object definitions regardless of the level of detail required. 

An ~p6e object consists of a set of slots. Each slot consists of a name and its value. 
The definition of each slot specifies what  type of data  values it should hold. 
Certain collections of slots are named and defined as templates, mostly for 
convenience. For instance, Fig. 3 and 4 show the slots tha t  make up the ~p~e 
s t ream and mixture templates.  

In the definition of the mixture template, we see tha t  the Temperature and 
Pressure slots represent  real values with given ranges and units. The 
Component_Fractions slot is defined to contain a list of Component_Fraction 
objects. EGO and EDO are the ~p~e Generic Object and the ~p~e Design Object 
respectively. The templates show that  both IS_A and HAS_A types of 
relationships between objects exist. 

The type of object is defined implicitly by the set of slots it contains. That is, an 
object is not one type or another but is simply a collection of slots. When a 
method is invoked, the system matches the target  object with the requirements of 
the method. These requirements  are specified as a set of slots. If the object has 
the slots specified, it will be deemed suitable as the target  for the method. In 
practice, the set of slots required for a method will be specified through the 
specification of a template,  essentially a class definition for a type of object. 
Nevertheless, the ~p~e objects are not explicitly typed and it is only at method 
invocation tha t  the suitability of an object for the method is checked. This makes 
the system completely extensible. The implicit dynamic typing of objects, only 
when methods are applied, imposes no restrictions on what  types of objects can 
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exist or what  applications can be supported. Furthermore,  it provides the 
capability of using objects that  are partially instant iated within tools during the 
early design stages. These same objects can later be used in more detailed 
analysis once they are fully defined. 

Figure 4. Definition of mixture class. 

The definitions of templates, slots, methods and applications are all stored in a 
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set of databases. Methods are defined with a specification of the minimum 
amount of information required to work with an object. The method definition 
also includes a list of applications (actual programs), which provide the particular 
method. Users may specify a preference when there is a choice of application that 
provides a given method. Applications are spawned as required, using a 
distributed computing application layer, which can make use of networked 
computers when appropriate. This can be useful, for instance, when a particular 
piece of software can only be run on a specific computer, a computer different 
from the one the engineer is using interactively. 

Fig. 5 shows a snapshot of the ~p~e console application displaying currently 
active applications (known as Providers) and the methods they provide. Each 
application may provide more than one method and a given method can be 
provided by more than one application. The CHIPS application (Fraga & 
McKinnon, 1994), for instance, provides a set of different synthesis methods, 
including heat integrated process synthesis, the use of rigorous models, and a 
simple short-cut model based procedure. 

~}--- ps 
id I Provider@Machine I Info On I Methods a Control Interests 

262164 i esh@(?) I Busy with --> I Being An Epee Shell 

262157 I Select@rain I Ready to use I Select.Slot 
I I I 

2 6 2 1 5 4  I CHiPS@tain 
I 
I 
I 
I 
I 

I Providing - I I Des Ign. Sequence. Separat ion. Heat Int 
I I I Design. Sequence. Separation.Rigorou 
I -> I Deslgn. Sequence. Separation. Simple 
I I Des ign. Sequence. Separat ion 
I I Synthesis. Process. Separation 
I I 

2 6 2 1 5 1  Browser@ ( ? ) Prov id ing - ] 
I 
I 
I 
I 
I 
I 
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Get. Stream 
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Database. publ ish 
Database. Retrieve 

~}--- i 

Figure 5. gp4e console output. 
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Third party tool integration 

The main problem with a system like ~p~e is that  applications have to be writ ten 
to use the system specifically. In practice, however, until a s tandard for tool 
integration is adopted, this is unlikely to be the case. The situation is very much 
a chicken and  egg scenario in which any application integration environment will 
not be a s tandard until the majority of applications are based on it and the 
applications will not make use of the environment until it becomes a standard. 

Until such a standard is adopted, the only alternative is to write wrapper 
environments for third party tools. The wrapper translates between the base data 
encoding provided by the integration environment and the native data format 
expected by the tool. Although somewhat onerous if a large number of 
applications are required, the number of translations is equal to the number of 
applications and not the n 2 required if each application were to be integrated 
with each other. 

The use of a wrapper for integrating third party, legacy applications was 
demonstrated by Ballinger, Fraga & Bafiares Alc~ntara (1995). This 
demonstration integrated the basic simulation procedure in Aspen PLUS into the 
~p~e system. A flowsheet was generated using CHIPS (Fraga & McKinnon, 1994) 
and the flowsheet generated was validated using Aspen PLUS. The output of the 
simulation was compared to the output of the synthesis procedure to determine 
the level of accuracy of the synthesis procedure. The controlling software was the 
KBDS system, a design support system described briefly in the next section. 

Supporting the design process 

Design is a team-based activity. Data must be shared amongst the members of 
the team. Furthermore, the actual process of design may take months or years 
and the deliverable is not just a process design but the decisions and steps that  
led to the actual design. Bafiares Alc~ntara and co-workers have proposed a 
design support system, known as KBDS, for supporting this process (Bafiares- 
Alc~ntara, 1991, 1995; Bafiares-Alc~ntara & King, 1997; Bafiares-Alc~ntara & 
Lababidi, 1995; King & Bafiares-Alc~ntara, 1996). The ~p~e system implements a 
small subset of the underlying concepts in KBDS to provide support for design 
and, moreover, provides some of the features necessary for application 
integration within such a support environment. 

What differentiates ~p~e from other proposals for data representa t ion is the 
incorporation of the concept of history in to the object representation. All objects 
have a record of how and when they were created. This is il lustrated briefly in 
Fig. 6. This figure shows the (very brief) history of a process design. The design is 
the bottom object, shown graphically by an icon together with some information 
about the object, including the name, the date on which it was created, and the 
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method used to create it. In this case, the method is one provided by the CHIPS 
synthesis package (Fraga & McKinnon, 1994). The figure shows tha t  this process 
design was the result  of applying the method to the s t ream object shown 
immediately above the design object. This object was created over two months 
previously. The s t ream was created by applying the Edi t .Stream method (a 
graphical interface for defining stream objects), s tar t ing from the stream object 
at the top of the figure, which was created directly by the system. As well as the 
information presented in this figure, each object has a record of which user or 
users were responsible for these actions. 

Figure 6. Illustration of history of process design. 

Method invocation seldom has any side effects. In the case of the synthesis 
procedure in CHIPS, a set of other objects is created. The history browser enables 
us to see these objects, if so required, as shown in Fig. 7. 
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Figure 7. More detailed view of history of process design. 

The more detailed view shows tha t  the process design (bottom right of Fig. 7) is 
the result  of applying a method to a s t ream object (2nd object from the top), as 
before. However, we now see a variety of other objects associated with the method 
invocation. The method invocation itself is represented by two special objects, a 
method s tar t  object, indicated by the s tar t  banner  icon, and a method end object, 
indicated by the chequered flag icon. Linked into these two objects are the side- 
effect objects, a variety of s t ream and process block (processing units) objects. 
The view is history based so these side-effect objects appear  as descendents of the 
method s tar t  object. However, they are also referenced from the method end 
object, as can be seen in Fig. 8. Shown in the figure are the method s tar t  and 
method end objects, in a content view mode. The method s tar t  has information 
about the actual application used. The method end has references to all the side- 
effect objects described above. 

Summary of the ~p~e system 

The ~p~e system was developed to demonstrate  the potential  of an integrated 
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computer based environment to support process engineering. Two main criteria 
motivated the development of the system: 

1.The need for an extensible architecture and an application neutral  data 
representat ion to cater for the wide range of applications used in process 
engineering. 

2.The support for a design and decision support system which is required for 
providing the environment necessary for team-based design and the extra 
functionality demanded by the enterprise. 

The system tha t  was developed achieved these two goals. However, it was only 
intended as a proof of concept and the system was not suitable for day to day use. 
In particular, ~p~e did not scale well for large design tasks, mostly due to the 
database technology used (simple relational databases). Furthermore,  there was 
a lack of support for the process of modelling; the data models used in ~p~e were 
developed through meetings and with little rigour. More detailed analysis of the 
modelling requirements of the design process would have been required. 

Figure 8. Display of method start and end objects for synthesis example. 

6.2.2.2 P r o c e s s  Web Objects :  A Web based  e n v i r o n m e n t  

As will be noted later, Lu et al. (1996) have incorporated the Web into an 
environment for tool integration. Andrews & Ponton (1999) have taken this a 
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step further by making the Web, and the browsers used to interface with the 
Web, be the integration environment.  When work on the ~p~e system was 
started, the Web was in its infancy. Towards the end of ~p~e's development, it 
was noticeable that  many of the features, which had had to be custom designed 
for the ~p~e server, were features of s tandard Web servers. Developers of design 
support and information management  systems noted tha t  many of their 
requirements  could be met even by early hypertext  systems. In fact, the initial 
development of KBDS investigated such a system, al though its l imitations soon 
became apparent  and the vehicle was switched to a Lisp graphic environment.  
However, the power, and particularly the universal  acceptance of the underlying 
s tandards that  comprise the Web (http, HTML, CGI), suggested tha t  the notion 
of an object based process engineering environment based on Web technology 
should be re-examined. 

The initial objective of the Process Web Objects project was to see how much of 
the ~p~e functionality could be reproduced using s tandard  Web servers and 
creating objects as HTML documents. Subsequently, Web Objects have developed 
a wider and more flexible context, integrat ing synthesis and flowsheeting tools, 
spreadsheets, and have acquired some distinctive features of their  own. A fuller 
description of Process Web Objects is given in Andrews & Ponton (1998) and an 
online demonstrat ion is also available at 
www.chemeng.ed, ac.uk/people/ross/public/web objects/introduction.html. 
The rest of this section gives an overview of the features and their  
implementation,  part icularly with reference to the ~p~e system described above. 

Objec t  Hierarchy 

This is broadly that  of ~p~e, viz components, mixtures, streams, processes etc. It 
is less systematic than  that  of ~p~e, having developed in a ra ther  ad hoc manner,  
and containing objects tha t  were felt to be useful, but  which do not really fit into 
a tidy hierarchy. New types of object have been defined to handle higher levels of 
process representat ion and abstraction for use in process synthesis. These 
include a Task object which specifies a design or synthesis task  to be carried out, 
a Domain  object which contains all the Process objects which can achieve a 
part icular  Task, and Class objects, several of which can contain groups of Process 
objects within a Domain have part icular  common features (Williams, 2000). 

Object Structure 

Objects are HTML documents. They contain slots which are either atomic, i.e. 
containing simple data, in the form of a text string, or are themselves objects. 
Atomic slots may either be fixed or changeable. Changeable slots are typically 
implemented as HTML text form elements. The user may decide changeable slots 
in one generation of an object shall be fixed in its descendants, but  fixed objects 
cannot be unfixed. Slots, which are objects, are represented by hyperlinks. Thus 
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the whole of the Web is accessible as par t  of a Web Object. Furthermore, 
anything tha t  may be pointed at by a link can be par t  of an object. The link may 
be to text, graphics, audio, arbi t rary  files, or any entity which may be created by 
running a program in the cgi area of a server. This clearly provides great 
flexibility and richness. 

S tandard  objects come with pre-specified slots. However, a method is available to 
create a new object with additional slots from a s tandard  one. 

M e t h o d s  

As in ~p~e, methods applied to an object generally create a new object. A key 
feature of ~p~e was object persistence, i.e. once created, an object could never be 
destroyed. This highlights one limitation of web technology in this role; for 
security reasons programs running on the Web cannot access the client's 
workspace, and are limited even in what  they can do to the desktop. Thus Web 
Objects are ephemeral  and, in practice, new objects can only be created on a Web 
server. We have minimised this problem by using the ideas of a working session 
and of subsequent publication, as described below. 

Web methods are in practice of three types, dependent on how they are 
implemented. The distinction is largely one of convenience and feasibility ra ther  
than  of anything fundamental .  The methods can also be categorized according to 
where they execute: 

Server Methods and Method Application: Most methods are applied by programs 
running on the server to which the object is submitted as a form using CGI 
protocols. The list of methods applicable to an object is specified by a form select 
list and chosen by the user (Fig. 9). An object's methods are thus effectively 
defined within the object itself. Indeed they might almost be thought of as 
specialised slots, which cause an action to be performed when they are accessed. 
Some methods are common to all objects, while others are specific. A user can 
also create objects tha t  inherit  all the methods of a s tandard  object but add a new 
method as a URL on a server. The user must  provide code at that  location to 
implement  the method. 

Most methods result  in the creation of a new object. This is stored on the server 
and usually also sent as an HTML page to the user's browser. "Child' links to it 
are added to the object from which it was created and the new object is linked to 
the appropriate places in the History object. 

Server methods may make use of any software accessible to the server. For 
instance, two methods available in the prototype are "Create an Aspen Model' 
which creates an Aspen input file object from a Process Object and "Get data from 
Aspen Model' which fills slots in a Process Object from an Aspen output file. 
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These can easily be combined into a single "Balance Process with Aspen' method 
with the AspenPlus system run by the server program. 

Client Methods: Most Web Object methods run  on a server but  they may also, 
with some restrictions, be implemented on the client by Java  Applets or some 
even in JavaScript .  In principle, most server methods could be implemented in 
Java  to run on the client. Although the Java  security model allows a Java  applet 
to write only to the server from which it was loaded, most of the existing server 
methods could be implemented this way. In a system with a large number  of 
users, this could offer a significant reduction in server load. 

JavaScript  is much more restricted in tha t  it cannot write to anywhere except a 
browser on the user's desktop, and is limited even there. In practice, JavaScript  
only provides "viewing' methods and can be used to change what  the user sees, 
e.g. to change the units or form in which information from slots is displayed. 
However JavaScript  can initiate action on a server or apply any public method of 
an applet in the object document, making it a convenient means of implementing 
user interfaces. An example of this, the "molecular typewriter ' ,  shown elsewhere 
in this book (Chapter 6.3 - Cameron and Ponton), is used as an interface for 
creating Component objects. 
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Figure 9. Method selection in Web Process Objects interface. 

Extensibility 

As already noted, it is possible to create new versions of s tandard  objects with 
additional slots and methods. Since methods can involve any program, which the 
server can run, complete flexibility and extensibility has been achieved. Since an 
object slot is a hyperlink, and hyperlinks can point to any type of file that  is given 
a URL anywhere on the Web, Web Objects can effectively contain any kind of 
information. Fur thermore,  browsers may be set to use "plugins' to open part icular 
types of file wi th  a client application. For example, another  method for a Process 
Object is "Create Spreadsheet  model'. This creates a spreadsheet  format file with 
appropriate extension, containing a linearised mass balance model of the process, 
ei ther with user  specified process parameters  or those derived from a solved 
Aspen Process Object. Clicking on the hyperl ink in the generated Spreadsheet 
Model object will, once browser options have been set, automatical ly bring this up 
in a spreadsheet  on the client (Fig. 10). 
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Figure 10. Integration of flowsheet viewer and spreadsheet calculator in Web 
Process Objects. 

The History Object, Work Sessions and Publication 

When a new Web Objects "Work Session' is initiated, the user  is allocated space 
on the server for the objects tha t  will be created. The first object created is an 
empty History object. The history object will contain a tree diagram showing all 
objects created, wi th  hyperl inks to those objects. Clicking on an object brings it 
up in a browser window. Any method applied to it tha t  creates a new object will 
enter  a new branch into the History object. Additionally, objects have logistical 
slots, which point to parent  and child slots. The server workspace is preserved so 
long as it is deemed to be required by the user ( interpretat ion of this depends on 
the type of user). It is normally private to one user  and password protected, 
al though it can in principle be shared. The general  method "Mail all created 
objects...' compresses all objects in the workspace into a zip file and emails them 
to their  registered owner. The owner can then unzip the directory and install  it in 
his own web space. B y  telling others the URL of the History object, the user 
effectively "publishes' the entire workspace in the sense used in n-dim 
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(Westerberg et al., 1997). Anyone with access to the URL can bring up an object 
created by the user and, if the new user has access to a Web Objects server, can 
apply a method to and star t  a new family of descendants which belong to the new 
user ra ther  than  to the owner of the original object. 

6.2.2.3 The  I CAS s y s t e m  

The two systems described above are frameworks for integrating diverse 
applications, taking care of the data management  issues presented early in this 
chapter. These approaches assume a loose interaction between the different tools. 
To be effective, a loose integration approach requires tha t  all the tools present a 
common look and feel to the user and that  all the tools are able to interpret any 
data exchanged correctly. The lat ter  is part icularly difficult to guarantee in such 
a loosely coupled environment.  In this section, we present  an environment, which 
is fully integrated, using a common data representat ion and a common user 
interface. 

The Integrated Computer Aided System, ICAS, developed at CAPEC, Department 
of Chemical Engineering of the Technical University of Denmark  (Gani, Hytoft, 
Jaks land  & Jensen, 1997) is an example of a fully integrated computer 
environment  for process engineering (http:ffwww.capec.kt.dtu.dk). ICAS 
combines computational  tools for modelling, simulation (including property 
prediction), synthesis/design, control and analysis in a single integrated system. 
These computational  tools are present  as toolboxes. During the solution of a 
problem, the user moves from one toolbox to another  to solve problems requiring 
more than  one tool. For example, in process synthesis, one option is to define the 
feed stream, then analyse the mixture (analysis and utility toolbox), generate a 
flowsheet (synthesis toolbox), optimise the flowsheet (design toolbox), and finally 
verify the design (analysis toolbox). From any toolbox it is possible to invoke the 
simulation engine to perform steady state and dynamic simulations for batch and 
continuous process operations. From the synthesis toolbox, it is possible to invoke 
the solvent design tool (from the design toolbox) if a solvent is required for a 
specific separat ion task. There is also a utility toolbox, which determines 
properties, phase diagrams, etc., which can be used by the other toolboxes or by 
the user to analyse the behaviour of the specified system. 

The following tools are currently available in ICAS: 

�9 Property prediction: Tools include CAPEC database, pure component property 
prediction (ProPred), mixture property prediction (TML), model parameter  
est imation (TML) and thermodynamic model selection (TMS). 

�9 Modelling: Computer aided model generation (ModDev), model analysis, 
t ransla t ion and solution (MOT) plus addition of user-defined models (MOT). 

�9 Process synthesis and design: Tools include computer aided flowsheet 
generation (CAPSS), design of reactive/azeotropic distillation (PDS), 
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configuration of distillation columns (PDS), solvent search/design (ProCamd). 
�9 Reactions: Tools include reaction database, kinetic model parameter  

estimation, reaction pa th  synthesis based on data (RAS). 
�9 Simulation: The ICAS-SIM simulation engine allows steady state and 

dynamic simulation of continuous as well as batch operations (BRIC). 
�9 ReacPar: Reaction kinetics modelling, including paramete r  estimation. 
�9 Simul: Simulator engine - includes an integrated steady state and dynamic 

simulation features and DynSim (a dynamic simulation system). 
�9 Control: Design and analysis of control systems, including a MPC toolbox for 

model predictive control. 
�9 BRIC: Batch operation records and simulation. 

Fig. 11 gives an overview of what  is available in I CAS, how the various tools are 
connected and the functions of each tool. The figure shows tha t  ICAS consists of 
four major parts.  That  is, problem definition, simulation engine, tools for 
extending the system through the definition of, for instance, new compounds, 
models and reactions, and specific process engineering tools which may be used 
to solve sub-problems. In problem definition, the user defines the problem to be 
solved by selecting from the available options. The job of the simulation engine is 
to obtain a numerical  solution to all the model equations representing the 
specified system/process. Knowledge based systems are available to select 
phenomena (property) models, solvents, separation techniques for a specified 
separation task  and numerical  methods (simulation strategy). 

ICAS is available to CAPEC member companies and is being used as a teaching 
aid in courses on separation processes, chemical process design, advanced process 
simulation/optimisation and in process & tools integration at graduate and post- 
graduate levels. In industrial  use, the tools of I CAS help to reduce the time of 
project work within a company. As a teaching aid, it provides s tudents  with tools 
tha t  help to generate the data/information that  is not par t  of the course but is 
needed to solve the course problems. A typical example is distillation design-  it is 
necessary to compute phase diagrams, to find solvents (in case of solvent based 
distillation), to configure the distillation column and finally to verify the design 
by simulation. Having all the tools present  in an integrated manner  helps users 
not only to concentrate on the problems related to the specific application but also 
to become aware of what  information is needed and how this information can be 
obtained. The additional knowledge helps the user to consider more alternatives 
and to obtain better  solutions, which otherwise would not be possible to obtain. 
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Figure 11. Overview of the ICAS system. 

6.2.3 C U R R E N T  P R O J E C T S  IN TOOLS INTEGRATION 

The systems presented above demonstrate the capabilities of integrated systems 
and how some of the issues in application integration can be tackled. These 
systems are a small sample of the work currently in progress in different 
research groups (and software vendors). An overview of some of the current 
projects in application integration is presented in this section, grouped according 
to the particular issue they address. 

6.2.3.1 Data  m o d e l s  for i n t e g r a t i o n  

The importance of the underlying data representation to process integration is 
emphasized by the work of Bayer, Shneider & Marquardt (2000). As part of a 
larger programme of research aiming to develop an integrated environment to 
support process engineering, they have developed a conceptual data model, which 
is designed for the integration of existing data models. 
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McGreavy et al. (1996) use STEP models, represented using the EXPRESS 
language, for computer aided concurrent engineering. They have developed a 
multi-dimensional object oriented information model (MDOOM), based on STEP. 
They decompose the information required for the whole design process into 
process, facilities and equipment. The distinction between these is tha t  processes 
generate products using the facilities, which are a logical abstraction of the 
process plant, presenting a functional view of the equipment  tha t  makes up the 
plant. STEP is intended for more detailed representat ion than  is typically 
required for conceptual design and, as a result, the system is most appropriate 
for use late in the design process. 

Maguire et al. (1998) propose the use of intelligent agents to represent  data as 
well as to provide the mechanism for actual integration. They define intelligent 
agents as objects with extensions to provide the following properties: 

Flexibility: 
Planning: 

Prediction: 

Selectivity: 

Robustness: 

The ability to learn from the environment.  
The ability to synthesize a sequence of actions in 
order to achieve a specific goal. 
The ability to predict what  the actions of other agents 
will be. 
The ability to choose the appropriate data from a 
larger amount  of information. 
The ability to cope with failure. 

Their view is tha t  agents can be used for data representation,  for managing the 
integration of applications, and for manipulat ion of the models. The use of agents 
is appealing but their  potential  has yet to be demonstrated.  Maguire et al. limit 
themselves to examples which are within the remit  of any object oriented system 
and so the potential  of agents is not fully demonstrated.  

Agents can ease the management  and representat ion of data  by combining the 
two aspects. What  is not entirely clear at this stage is how the combination 
affects the extensibility of a system built up using agents. There is also the issue 
of audit  trails and, if the agents are truly autonomous, consistency within a team 
based project and guarantee of the correctness of the results generated could be 
difficult. 

6.2.3.2 Data sharing 

Although tool integration is an important  aspect of computer aided process 
engineering, the problem of data sharing is more general. Data  sharing can 
include tool integration but also includes sharing data  amongst  the members  of a 
team and passing information from one team to the next in the design process. 
The issues tha t  apply to tool integration apply even more so in data sharing. 
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Some fundamental  questions need be addressed, including the following: 

�9 When are data objects available for use by other members  of a team and other 
teams? 

�9 What  happens when somebody changes an element of data? 
�9 What  is the context of a data i tem and how does this context change as the 

design progresses? 

These issues have been considered in detail by Westerberg et al. (1997). They 
have developed a system, n-dim, for describing the modelling process. Of 
part icular  relevance is the concept of publ ish ing whereby data are made 
available to other members  of the team and other teams. Once published, data 
cannot be changed, ensuring global consistency and providing support for audit 
trails. 

Related issues arise from considering the role of design within the enterprise. 
Struthers  & Curwen (1998) have developed an agent-based system for tool 
integration, through the use of agents, known as VIBE. The aim of this 
environment is to support enterprise or business processes as well as the process 
of design. 

6.2.3.3 A p p l i c a t i o n  in ter faces  

The CAPE-OPEN and Global CAPE-OPEN projects, described in detail elsewhere 
in this book, deal with the definition of open interfaces for process engineering 
applications. Although they do not deal directly with the integration of these 
applications, by defining open s tandards for access to the different components 
that  make up the applications, integration becomes feasible through the 
development of the underlying data representat ion and manipulat ion layers. 

McGreavy et al. (1996) use message passing between agents as the integration 
mechanism. In their  work, agents are self-contained, concurrently executing 
software processes. An agent encapsulates state information and can 
communicate with other agents via message passing. A knowledge based rule 
system is used to co-ordinate the application of tools. The decomposition of 
applications used within design by agents is hierarchical. Each agent may have 
sub-agents tha t  are agents that  are restricted to communicate only with other 
sub-agents contained within the same agent. Finally, the co-ordination of agents 
within the framework is controlled by the use of a Petri  Net model. 

6.2.3.4 User  i n t e r a c t i o n  

An interesting aspect of the work of McGreavy et al. (1996) is tha t  the user is also 
considered to be an agent, t reated as any other application within the framework. 
The user interacts with other agents through the graphical interface. This 
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interface allows a user to browse the list of agents available. McGreavy et al. 
further argue that  it is necessary to consider models for the management of the 
design teams and the role of the project manager as well as modelling the design 
task itself. This fits naturally with their view of users as agents. 

Lu et al. (1996) present a web based manager for process engineering tool 
integration. Based on the MDOOM models (McGreavy et al., 1996), Lu et al. 
introduce the concept of hyper-objects to represent the inter-linked nature of 
objects in an object-oriented database. This is similar in concept to the hypertext 
links that  underpin the Web. The links between objects bind these objects to the 
common tools used to create the objects, although this binding is dynamic. The 
activities of the engineers change as the design progresses and, hence, the tools 
used also change. A hypermanager  is introduced to manage and represent these 
dynamic object groupings. 

The hypermanager incorporates a user interface for viewing and managing 
objects. The tool is written in tk/tcl and provides a graphical representation of the 
process design. A Web browser interface is also available. The interface allows 
the user to inspect individual components of the design and provides access to 
tools such as editors, simulators, etc. The main feature of this system is the 
decomposition of the data into the process, facilities and equipment groupings 
described above and the ability to switch between the different groupings easily. 

6.2.3.5 Des ign  and dec i s ion  support  

As described above, application integration is not only about sharing data 
between applications; it is also about managing the design process. This 
management must support the requirements of the enterprise. One aspect is to 
provide a design support system, an example of which is the KBDS system 
described earlier (Bafiares-Alc~ntara & co-workers). The aim of a design support 
system is to cater for the requirements of the engineer when tackling a large and 
complex design problem, to support team based activities, and to meet the 
demands imposed on the enterprise by society. The core of any such system is the 
need to manage the complexity of design as a process. KBDS provides support for 
recording the process of design, including a full history of decisions taken 
(including information on the reasons for decisions and the arguments made both 
for and against any positions taken in the decision process), and for managing 
the complex interactions between multiple designers working on a given design 
problem. 

Han et al. (2000) have also developed a f ramework  for concurrent process 
engineering. ~ Their framework is based on agents and the development of a 
knowledge based interchange format (KIF) together with a knowledge query and 
manipulation language (KQML). Furthermore, they have integrated a decision 
management  system. The system is writ ten using the Java  Agent Template 
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package, JATLite, available from Stanford University [java.stanford.edu]. The 
framework presented is similar, in concept, to KBDS. It has been demonstrated 
on a plant  layout design problem. The user and three agents are integrated with 
the user interfacing through a CAD package. The underlying system ensures that  
any changes made by the designer violate no constraints by communicating with 
the appropriate agents when constraints are violated. 

6.2.4 F U T U R E  T R E N D S  

The development of a framework for tool integration in computer aided process 
engineering or a fully integrated process engineering environment  requires the 
following elements: 

1.A data representat ion suitable for process engineering applications 
throughout  the life cycle of a design, including commissioning, operation, 
and decommissioning. 

2.A management  layer, which star ts  the appropriate applications and 
manages  the communication of data  between applications, possibly 
including the t ranslat ion between native and integration data 
representations.  

3.The specification of an application programmer 's  interface, which allows 
new applications to be writ ten to fit into the integrat ion environment. 

The systems described above address one or more of these issues. The ~p~e 
system, for instance, to some degree addresses all of them. However, there have 
been and will be developments in the area of computing which will make each of 
these elements easier to implement.  These are described in this section. 

6.2.4.1 T h e  W e b  

Arguably, the most important  development in computer use over the past decade 
has been the introduction of the Web. The web provides an architecture neutral  
protocol and user interface specification. Through the Web, any computer (or, 
more generally, any form of connected device including process equipment, 
sensors, phones, etc.) can access and manipulate  data on any other system with a 
Web server and with suitable access rights. The http protocol is simple and 
suitably efficient for the requirements  of application integration. The browsers 
used to access the Web provide an interface the users are comfortable with. 
Accessing applications through such an interface can ease the difficulties 
associated with using a large variety of tools. The Process Web Objects project, 
described above, is an example of the use of Web technologies for application 
integration. 
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Of part icular  note, however, are the more recent introductions of two languages 
for use with the Web, Java  and XML. Java is meant  to be a portable high-level 
language, similar to C++ but somewhat  easier to program. Originally intended 
for embedded systems, the language was targeted at Web applications and, in 
recent times, has found a part icular  niche as a Web server language. Being a full 
programming language, it provides the features necessary for the development of 
a complete integration environment.  

The portable nature  of Java programs makes them ideal for use as agents, as 
described above. For this reason, there are a variety of packages for agent 
development in Java: 

1.The Java  Agent Template, from Stanford University [java.stanford.edu], 
provides the basic functionality for writ ing agents. Communication 
between agents can be in KQML format, as used by Han  et al. (2000), as 
well as arbi t rary data. 

2.JATLite [java.stanford.edu], Java  Agent Template Lite, is another  package 
for agent development, also from Stanford University. This is the package 
used by Han et al. (2000). 

3.JAFMAS [www.ececs.uc.edu/~abaker/JAFMAS] is a framework for agents 
in early development. It also supports KQML. 

4.The Aglets Workbench [www.trl.ibm.co.jp/aglets] provides support for 
migrat ing agents, agents tha t  can move from one computer to another. 
This can prove to be useful not only with mobile computing but also for 
applications with varying computational  demands. 

XML, the extensible markup language [w3c.org], is a language for describing 
data. Through the definition of a document type definition (DTD), XML can be 
used to represent  any type of data. It is ideal for the data  representat ion needs of 
process engineering applications. Tools are now available for developing 
applications, which process and generate XML documents. In particular,  there is 
a na tura l  synergy between XML and Java.  For example, JSX 
[www.csse.monash.edu.au/-brergJSX] provides a set of classes for automatically 
generat ing XML code for any Java  object and for creating an instance of a Java 
class based on XML input. This is similar in concept to the Java  serialization 
procedures except tha t  the data is represented in XML making it suitable for 
integration with non-Java applications and for dissemination through Web 
browsers. Although still in rapid development, the current  version of JSX is 
usable and useful. 

6.2.4.2 The  Grid  

A recent development in networked computing is the Grid. This is a view of 
networked computers as a dynamic resource, which can be used by applications 
when required. A good overview of the Grid, and its potential, can be found on the 
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Web site for the Globus project [www.globus.org]. Globus is an open source 
project, which aims to develop the underlying framework to support Grid 
applications. 

One of the aims of the Grid is to deliver guaranteed performance over the 
Internet, allowing a software developer to treat remote computational resources 
as if they were local. For process engineering applications, the Grid can be useful 
in a variety of ways. For instance, it can be used to provide access to applications, 
which must reside on specific systems on the network (for example, due to 
licensing restrictions). It can also be useful for connecting data monitoring 
stations to simulation and control packages. 

6.2.4.3 Data  m a n a g e m e n t  i n f r a s t r u c t u r e  

Management and manipulation of both data and applications requires a 
repository of information and protocols for transferring data between applications 
and computers. The repository of information is needed by the integration 
environment and typically underpins the whole system. The framework 
developed by Han et al. (2000), for instance, uses an SQL database to store design 
information generated by the CAD package. However, that same system stores 
the knowledge base within a Lisp program. The experience gained from the ~p~e 
system demonstrates that the underlying database technology is crucial to the 
scalability of the system. Object oriented database management systems 
(OODBMS) have been in existence for a relatively long time now and are stable 
and easily available. Through the development of the ODBC (Object Database 
Connectivity) and JDBC (Java Database Connectivity) standards, accessing these 
databases programmatically is straightforward. 

Previously, issues about the transport protocols, such as Microsoft's OLE & COM 
protocols versus the CORBA standard, were important. Recently, the actual 
transport protocols have become less important, replaced instead by discussions 
about the middle layer, which is responsible for the actual development of 
interacting applications, often known as components.  Two initiatives are 
currently being advertised, the Brazi l  [http:ffwww.sun.com/research~razil/] 
framework from Sun Microsystems and the .net [http://msdn.microsoft.com/net/] 
framework from Microsoft. It is still too early to say if either of these will prove to 
be useful for process engineering application integration. What is interesting, 
however, is that both of these initiatives use the Internet as the underlying 
transport medium. They both aim to make it easier to develop applications from 
small components and to provide user interaction via distributed computation. 

The combination of Java, XML, object oriented database systems, and general 
Internet integration initiatives provides the necessary underpinnings for the 
development of an integration environment. Technology itself is no longer an 
issue. 
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6.2.5 C O N C L U S I O N S  

Tool integration for computer aided process engineering is not simply a matter of 
data translation. To be effective, tool integration requires the combination of 
design support environments (Bafiares-Alc~ntara & King, 1997; Han et al., 2000; 
Lu et al., 1996; McGreavy et al., 1996; Struthers & Curwen, 1998; Westerberg et 
al., 1997) with methodologies for manipulating and interpreting process 
engineering data throughout the design process (Bayer et al., 2000; 
Braunschweig et al., 2000; Maguire et al., 1998). The aim of tool integration is to 
provide the engineer a seamless environment through which the large variety of 
tools required for process engineering can be access. Such an environment, 
whether the result of a loosely coupled tools through a system like ~p~e or as a 
tightly integrated system such as ICAS, is essential for tackling the increasingly 
complex problems in process engineering. 

New technologies, particularly Web or Internet oriented, will provide the 
standards required to ensure a stable target for developers of tool integration 
environments. XML, in particular, has the potential to provide an architecture 
neutral language for representing process engineering data. The development of 
formal requirements for these data will be necessary first. The development of 
easy to use Java based agent packages will also make development of design 
environments easier and more portable. Finally, standards developed by the 
process engineering community, such as those expected from the Global CAPE- 
OPEN project, will be crucial for the long-term development of integrated process 
engineering tools. 
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C h a p t e r  6.3: W e b - B a s e d  S y s t e m s  

I. T. Cameron & J. W. Ponton 

6.4.1 I N T R O D U C T I O N  

The world wide web (WWW) is a ubiquitous phenomenon, influencing the lives of 
all of us. We either use it for our email, purchase goods via web suppliers or do 
our banking on-line. It's almost e-everythingl 

Here in this chapter we look at the effect the web is having on engineering and 
CAPE, as well as look at past and current paradigms for web use and do some 
crystal ball gazing for the future. One thing is certain, opportunities for using the 
web are moving so quickly that  comments on these issues are almost out-of-date 
before the latest webpage is mounted! 

The chapter considers the basic infrastructure changes that  have and are now 
taking place on the web including the future delivery of broadband capabilities 
which will permit activity not generally possible at present. 

As well, we discuss and outline current trends in electronic, business and 
collaborative activities or E-, B- and C- activities. What is happening in these 
areas? Where is it going? What are the implications for CAPE? We also look at 
developments and opportunities i n  the area of CAPE education via web 
technologies. 

One thing we can predict is that  the world wide web will change the way we do 
business at the educational level and at the business level. If you are not 
seriously involved or actively planning your web-based business or education 
systems then opportunities may well pass you by. 

6.4.2 THE PHENOMENA OF WWW 

1994 doesn't seem that  long ago in terms of time. It was the year that  the World 
Wide Web came into existence through the work of Tim Berners-Lee and it has 
grown exponentially since that  time. Not that  this was the start  of serious 
information sharing and computer networking. That dates back to the US 
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government ARPAnet initiative in the 1960's with the subsequent development of 
the TCP/IP network protocol which is dominant  today. 

Growth of activity on the WWW has been exponential as measured by host 
numbers  which have grown rapidly from several hosts in 1981 to over 93 million 
in 2000 [16], as seen in Figure 1. Growth has almost doubled each year since the 
early days of the internet.  This growth in computers connected to the internet is 
also matched by people connected or having regular access to the internet [17]. 
Figure 2a shows the percent linguistic distribution on-line for 2000 and the 
projected percentages in 2005. The internet  population will grow from 400 
million to 1.15 billion over tha t  t ime with non-english speakers dominating the 
linguistic population. 

Figure 2a Linguistic Distribution On- 
Line for 2000 

Figure 2b Projected Percentages in 2005 
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This represents a significant change in the internet  population as well as a 
challenge for those providing services to such a wide and diverse group of users. 

6.4.3 C U R R E N T  ENABLING T E C H N O L O G I E S  

The effective use of the web and its continuing growth relies heavily on a number  
of enabling infrastructure technologies and related developments. These are both 
hardware and software systems. Of clear importance to increased web-based 
engineering systems is the ability to handle large amounts  of digital traffic. This 
increased bandwidth  is being provided by current  developments and rollout of 
digital subscriber line (DSL) and related technologies. 

6.4.3.1 DSL T e c h n o l o g y  

There are several flavours of DSL technology including: 

�9 Asymmetric DSL (ADSL) 
�9 Symmetric DSL (SDSL) 
�9 Very high speed DSL (VDSL) 

ADSL technology provides much higher download rates than  upload, typically 
0.7Mbits/s versus 0.25Mbits/s, whilst SDSL provides equivalent rates in both 
directions at rates up to 2.3Mbits/s. These broadband technologies are now being 
deployed in the consumer market.  SDSL is clearly aimed at the business market  
as will VDSL (60Mbits/s) in the future. The advantages of these technologies will 
be to provide capabilities for more extensive use of content-rich applications over 
the internet.  It will directly impact on the ability to deliver CAPE technologies 
via the internet.  Testing and roll-out of these technologies is now underway in 
Europe, the USA and the Asia-Pacific region. 

The days of a 33.6 or 56kbits/s modem are fast vanishing. 

6.4.3.2 XML 

The development and use of eXtensible Markup language (XML) is having a 
significant impact  on web-based systems, especially upon electronic document or 
data interchange (EDI). This coupled to powerful SQL servers such as MySQL or 
MS SQL provide much of the needed infrastructure for developing powerful web 
applications. 

XML has significant advantages over s tandard  HTML since it provides 
application control over the content of the document. Users of XML can define 
the protocols at each end of a t ransact ion with data t ransfer  handled via XML. It 
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thus provides a s tandard tha t  links web and database systems into a unified 
framework. 

In the CAPE area, XML has been used to set a s tandard  such as pdXML [8] for 
exchange of process engineering data. Similarly, aecXML provides a standard to 
communicate information related to the architectural,  engineering and 
construction industries. The advantage of XML should be an increased 
willingness for companies and educational organizations to develop improved 
electronic interoperability. It  should help drive down inter-company costs and 
help open markets.  

6.4.3.3 Java Applets  

With the increasing power of personal computers and workstations, it has become 
feasible to run very extensive computations locally even if their  implementation 
is not particularly efficient. Java  was designed to be platform independent, and, 
despite the efforts of some major software companies, it effectively remains so. 
The potential efficiency disadvantage of it being at least part ly interpreted rather  
than  fully compiled is, for most purposes, balanced by the increased speed of low 
cost computers. 

Java  provides elegant and relatively easy to use graphics capabilities, as well as 
being highly interactive. Its main disadvantage is likely to be the need to 
completely rewrite, and probably redesign, any existing code in Java and as an 
Applet. 

However, much legacy code is probably due for rewriting in the interests of 
t ransparency and security, and at least as regards educational software, the size 
of the task may tend to be overestimated. Java is a bet ter  language for 
development of complex programs than the early For t ran in which most existing 
simulation programs were wri t ten and the rewriting of well-defined numerical 
procedures in it can be quite rapid. 

6.4.3.4 JavaScr ipt  

Both Java  and JavaScript  both run on the user's (client) computer, but while 
Java  is part ly compiled, JavaScript  is always interpreted and is thus seen by 
many users as "inefficient'. In fact JavaScript  is a powerful and flexible language. 
Its syntax is similar to Java, but its philosophy is quite different. 

JavaScript  provides many useful techniques for making the web browser 
interactive, its most common (mis)use being to pop up subsidiary advertising 
windows on commercial web sites. However, it is also a useful general purpose 
language for any web application which is not too computationally intensive. 
JavaScript  can be used to apply any Java public method. This means that  the 
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interface to a Java  applet may be wri t ten in JavaScript;  because the lat ter  is 
fully interpreted, it can be a faster way of developing such interfaces. 

6,4.3.5 S e r v e r  p r o g r a m s  

In principle a web browser can run any program that  is on a server or is 
accessible to a server using the WWW Common Gateway Interface (CGI). This 
provides a means of making existing programs available over the WWW with 
minimum reprogramming.  Older "batch mode' programs are part icularly easy to 
adapt  to this method of operation and may require no modification to the existing 
code at all. 

The user is presented with a form in which he supplies the input data to the 
program. Submitt ing the form causes a program to be run  in the CGI area of the 
server. This could in principle be the main program, but it will usually be more 
convenient to run a short program or script, which converts the user's form input 
into whatever  the main program requires, and then causes it to be run. The main 
program can run either on the server itself or on another  machine on a network 
accessible to the server (but not necessarily to the WWW). Similarly, the script 
can reformat the main program output into HTML for display on a web page, and 
send it back to the user. Alternatively, the output can be emailed to the user. 

6.4.4 B 2 - W H A T ?  

The use of the WWW is now in its third generation. First  was the simple, static 
provision of information from web sites. Second were the business-to-customer 
(B2C) systems as exemplified by a m a z o n . c o r n  and other on-line customer oriented 
systems. That  generation has matured and has passed. Now is the emerging 
generation of business-to-business (B2B) and its var iants  such as business-to- 
multiple businesses (B2MB) and B2everyB. 

Worldwide B2B e-commerce is anticipated to be worth some $US7.3 trillion 
dollars by 2004 [15]. Most of this activity is driven by manufactur ing and 
commercial industries. Supply chain issues will inevitably drive further  
expansion of the B2B or B2MB systems. A major example is the newly formed 
chemicals E-Marketplace ELEMICA sponsored by some of the world's largest 
chemical manufacturers  [19]. 

CAPE tools are certainly in-line for exploitation within the B2B business model 
currently evolving. However the evidence shows tha t  few systems are being made 
available online at this time. In the next section we consider the key areas of E- 
engineering specifically related to CAPE technologies and highlight what  is being 
provided. 
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6.4.5 e - E N G I N E E R I N G  

6.4.5.1 E n g i n e e r i n g  Por ta l s  

A portal  is simply a "one-stop shop" website tha t  provides a comprehensive set of 
services and information to a par t icular  audience. The portal  is a gateway into 
specific content. Yahoo! provides the best known of these web systems, however 
it is now an impor tan t  development for process engineering business  applications 
as seen in myplant.com which is shown in Figure 3. Other  portals such as 
processcity.com (see Figure 4) are beginning to emerge wi th  the purpose of 
providing news, services, on-line computat ion and discussion for the process 
industries.  These sites will continue to grow, providing a useful gateway into 
process specific information. 

Figure 3. Portal: myplant.com Figure 4. Portal: processcity.com 

We are now seeing many  application service providers (ASPs) emerging in the 
engineering area. For example Engineering-e.com provides a marketplace for a 
range of engineering services, one of the most impor tan t  being the Simulation 
Center tha t  provides access to on-line computat ional  fluid dynamics (CFD) and 
s t ruc tura l  finite e lement  applications. Several other  players such as e-CFD and 
Moldflow's plasticzone.com provide in ternet  CFD facilities based on fixed period, 
unl imited time renta ls  or on CPU hour computat ion times. Others  are available. 
Making these work well needs appropriate  software architectures.  

6.4.5.2 C l i e n t s -  Fat  and Thin  

Most new web-based engineering applications adopt archi tectures  that  range 
from thin clients to fat ones. A client is simply an application located on a local 
PC tha t  uses a separa te  server for a variety of functions. Thin clients rely on a 
server to carry out the bulk of the data  processing, whilst  fat clients have the 
local PC doing the majority of the processing. There are advantages  to each 
archi tecture depending on the application area. 
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The following sections outline some application areas tha t  use various forms of 
clients for interactivity. 

CFD appl icat ions  

Most CFD and computational ASPs use thin-client architectures to provide input 
and display capabilities on the client machine, whilst server side activity 
concerns the computation of the specific CFD problem. The server side in these 
circumstances is usually accessing super-computer facilities to perform 
computations. 

Propert ies  predic t ion  

In the CAPE area, a growing number of interactive internet  applications are 
becoming available such as on-line calculations of physical properties, as 
il lustrated by Aspen WebProperties Express under processcity.com. In this case a 
thin client provides data input and results display. 

Hazard and risk a s se s sment  

In the area of risk assessment for land-use planning, web-based risk 
management  tools are available for local government authorities to make impact 
assessments of hazardous scenarios via shortcut or detailed model estimates. 
Decision support facilities are also available. Such a system is seen in Figure 5 
[9]. These are purely web-based server side applications with dynamic generation 
of web pages to the client. 

Figure 5. Web-based risk assessment 
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Other applications include web-based expert systems for workplace hazards 
identification and assessment such as the e-Compliance Assistance Tools from 
OSHA [10]. 

Optimisat ion 

On-line optimisation services are available through the use of a Java thin client 
that  helps prepare problem specifications for submission to the NEOS server. 
This system provides a wide-ranging suite of optimisation tools for integer, linear 
and nonlinear programming problems [20]. Its use tends to be dominated by 
government and academic users, with a smaller number of commercial users. 

Most CAPE tool vendors have not moved from monolithic code, distributed via 
CD or web downloads, towards architectures that  provide web-based engineering 
capabilities. Thin client architectures provide a means to generate these web- 
based solutions, with little major rewriting of the server side CAPE software. 
This is a likely scenario given past investment in major coding (legacy code), the 
cost of re-implementation and the hesitancy of some major companies to fully 
embrace web-based systems. We are yet to see a wider range of significant web- 
based tools such as process design, modelling and simulation applications 
becoming available. 

6.4.6 e-Collaboration 

One of the rapidly growing areas of web-based applications is in the area of 
collaborative systems [11,12]. Here formal design methods and tools are used by 
geographically separated design teams to work on product development. In many 
cases web browsers act as the interface. 

Components of these systems include design documents, containers such as filing 
cabinets and briefcases, collaboration tools such as whiteboards, address books as 
well as relay chat repeaters for real-time designer interaction. Other tools 
relevant to the particular design such as safety analysis methods can be available 
to all team members. Cheng et al. [13] argue that  e-collaboration can greatly 
assist in the area of agile manufacturing through improved response to customer 
needs and high quality, short time delivery of solutions to the market. The 
design area is a fruitful field for further development. Systems such as OneSpace 
[14] are being used by companies such as Fisher Controls for collaborative design 
with significant impacts. 

One of the current limitations for effective collaboration is internet bandwidth, 
especially where 3D designs are being developed. New software developments are 
addressing the data transfer issue to make real-time collaboration on such 
projects a reality. 
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6.4.7 E n g i n e e r i n g  E d u c a t i o n  in CAPE 

The WWW offers opportunit ies to make education in a technical  subject both 
more effective and more widely available. As a minimum,  WWW technology 
enables a course lecturer  (say) to make all his mater ia l  immedia te ly  available at 
any time and place to his class, or indeed to anyone whom he wishes to allow 
access. At the other  end of the scale of complexity, s tudents  can be given complex 
'vir tual  worlds' with interactive mul t imedia  presentat ions.  

Major companies such as DOW [18] are embracing web technology to deliver on- 
the-job t ra in ing to their  workforce with significant cost savings and improved 
learning outcomes. 

6.4.7.1 O v e r v i e w  of  P o s s i b i l i t i e s  

S i m p l e  T h i n g s  

As soon as we first encountered the WWW and the early Mosaic browser, 
sometime in the early 90's, we saw it as a way of making  lecture slides, already 
at tha t  t ime prepared  on a computer,  available in full to the class immediate ly  
after a lecture. This remains  a simple and sensible use of web technology. 
Interestingly,  however, this model has now come full circle; our tendency now is 
to prepare  web mater ia l  in the first instance, in some cases present ing  the lecture 
mater ia l  from a web browser through a computer  and da ta  projector. Hard  copy 
mater ia l  is now usually the last  thing to be produced. 

A c c e s s  to d a t a  

All of the general  facilities of the WWW are of course available for teaching. 
Amongst  the most useful are the range of da ta  sources and search facilities. 
Process engineers  regularly require information about chemicals, their  physical 
and chemical properties,  hazards,  etc.  Much of this information is now available 
online 

For educat ional  purposes one of the most useful "chemical' sites is NIST [2], the 
US National  Ins t i tu te  of S tandards  and Technology. This provides a database  of 
physical and chemical properties such boiling points, enthalpies  of formation, etc. 
which, given the availabili ty of a Web connected computer,  can be accessed by 
s tudents  faster  t han  finding and looking up practically any reference text. 

6.4.7.2 On l ine  C o m p u t a t i o n  and S i m u l a t i o n  

The WWW can provide access to computat ional  tools by a var ie ty  of methods. 
These are described briefly in the following sections along with  examples of their  
use. 
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Server  programs 

Server side programs using existing large-scale CAPE tools can provide the basis 
for effective web-based applications. This approach has been used successfully to 
run the AspenPlus simulation engine remotely for students. No changes could, or 
needed to be made to the code, which for licensing reasons only ran on a 
computer which was not itself a web server, but which could be accessed by the 
server over the local network. 

Java Applets  

Use of Java applets can be extremely effective in delivering web-based solutions. 
For example, a dynamic distillation simulation that  we use, took the equivalent 
of less than a month of full-time work by a masters level project student. Part of 
the interface is seen in Figure 6 

More time is usually required to write the interactive "front end' of applet based 
simulations, but these would in any case require development. Our experience 
suggests that  using JavaScript (see below) rather than  Java may often speed 
development. 

Figure 6. Dynamic Distillation Simulation 
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JavaScript 

The simulat ions in the Control HyperCourse [3], discussed in section 6.4.8.1 are 
all implemented  in this way. JavaScr ip t  provides a good way of implement ing 
fairly short interact ive programs.  For the Process calculations course described 
below several  interactive applications were implemented  including a ' t r iangular  
d iagram reader' ,  an  approximate vapour  pressure  calculator and a l inear  
equat ion solver. 

Server generated code 

Our original use of programs on servers was to run  s imulat ions and generate  
their  results  in the form of web pages or downloadable information. Two less 
obvious applications follow from this. 

Active JavaScript  pages 

Since JavaScr ip t  code is just  a par t  of the web page text, it can be genera ted  and 
sent  by a server  program, for example to provide resul ts  which can be 
manipu la ted  interact ively by the user. 

One of the early teaching tools for the Process Calculations course, was a 
'molecular typewri ter '  which implemented  a simple group contribution method to 
es t imate  boiling points of organic species. This was extended to the es t imat ion of 
other properties,  for which For t ran  programs already existed and rewri t ing was 
not desirable. The JavaScr ip t  code was augmented  to send the s t ructure  of the 
molecule to the server, where the larger  program was run  to est imate,  inter  alia, 
s t andard  free energies of formation and coefficients for a hea t  capacity 
polynomial. Originally these were simply r e tu rned  to the user  as a format ted  web 
page. It was then  realised tha t  the server could easily write a page containing not 
only the es t imated  values, but  JavaScr ip t  code to calculate hea t  capacities and 
free energies at  a t empera tu re  specified interact ively by the user. The final form 
of the expanded Molecular Typewri ter  is shown in Figure 7. 
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Figure 7. Molecular Typewriter 

D o w n l o a d a b l e  code 

In the HyperCourse [3] over the WWW, students needed to write and run simple 
dynamic simulations. This could have been implemented by providing a 
commercial dynamic simulator on a server, but we had access to no particularly 
suitable system, and also wished to avoid licensing complications. We also wished 
to provide something that  could provide more immediate interactivity at run time 
than  was available by the essentially batch mode of this approach. 

The solution was to develop a simple simulation language based loosely on the 
syntax of gPROMS [1], and write a compiler to produce code for a target language 
which could be run on the user's own PC. The choice of target caused some 
problems; initial experiments were carried out with MathWorks popular Matlab 
system, but the cost of providing this on individual PCs was found to be 
excessive. 

In the end, the solution was to generate spreadsheet code compatible with the 
major packages. This has proved very successful, as essentially all students 
already had a spreadsheet on their computers and were familiar with its use. It 
also meant  that  they could exploit all the useful features of the spreadsheet, such 
as graphing and customised report generation, without the need to provide them 
in the simulation system. 

Three tools now work this way, the simple dynamic simulator, a linear equation 
solver (this being a feature not normally implemented in spreadsheets) and now 
a moderately sophisticated flowsheeting system. The last of these also takes the 
converged output of an AspenPlus model effectively turned into a linearised 



527 

process model, and allows the user to carry out l imited sensitivity analysis 
without having to access the whole AspenPlus package. 

6.4.7.3 M u l t i m e d i a  S y s t e m s  

Chemical engineering does not rank amongst  the most graphics-orientated of 
disciplines. While mechanical engineers create 3 dimensional virtual  motor cars, 
chemical engineers perform most of their  work with boringly two dimensional 
flowsheets. Chemical engineering movies seldom go beyond the bubbling fluidised 
bed. 

Architects and civil engineers provide virtual  tours of buildings, but the 
corresponding facility for chemical engineers, the vir tual  plantwalk,  while of 
undoubted use at the appropriate stage of plant  design or for operator 
familiarisation, is of l imited value in undergraduate  education. The possibilities 
for web based interactive mult imedia are potentially so rich tha t  they must  be 
worth exploring. However, chemical engineers have not taken  very natural ly  to 
the exploitation of their  possibilities. 

A number  of textbooks [4,5] are now issued with CDs featuring both audio-visual 
clips of plant  (Felder and Rousseau, see also Virtual Plant  section 6.4.7.6) and 
voice augmented interactive tutorials (Seider et al) both of which could be 
implemented over the web given the sort of bandwidth  which is now becoming 
available. 

Seider et al. give an excellent introduction to the mechanics of using flowsheeting 
packages, which is essentially hypertext plus voice. If used carefully, this 
approach could significantly enhance the use of hypertext  alone, and add very 
much less bandwidth than  video. 

6.4.7.4 V ir tua l  L a b o r a t o r i e s  

We have developed some ra ther  limited applications in the area of "virtual 
laboratories'. The intention of this is to provide something of the flavour of the 
department 's  laboratories for online external users. To do this one can construct 
simulation models of items of and set up web pages photographs, videos or sound 
files to augment  the simulation. 

6.4.7.5 Real  L a b o r a t o r i e s  Onl ine  

One chemical engineering depar tment  has put  actual laboratory experiments 
online via the WWW [6]. The hardware required to do this is no more than  would 
be required to at tach a control computer in the usual  way, provided the computer 
has WWW access. Although individual PCs on the web are usually "clients', 
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making  contact with hosts, which are "servers', the network does not make this 
distinction, and any connected machine can in fact be a server. 

The software effort required to implement  such a system is substantial .  And 
there  are clearly issues of safety and security in giving the world access to one's 
laboratory hardware!  Although this is a very impressive example of what  can be 
done with the web, our own instinct is to endeavour  to make  simulations more 
realistic, and more immediate,  for example by adding sound and video clips. 

6.4.7.6 V i r t u a l  P l a n t  

The obvious next step from a vir tual  laboratory is a complete vir tual  plant. Early 
a t tempts  have been made to reproduce a process operator t ra in ing rig at a local 
chemical company which used to be the subject of an annua l  visit by students.  
This was a very simple 'process', which pumped  water  around, heated and cooled 
it and provided the company's apprentice operators wi th  experience of basic 
ins t ruments  and plant  operations. However, it was closed down as an economy 
measure.  

A basic s imulat ion of this was augmented  with flowsheet, P and I diagrams, 3D 
layout in VRML, and a series of pictures. It was never used because the 
s imulat ion of such a simple process was felt to be too uninterest ing.  Much of the 
point of s imulat ion is to do what  cannot easily be done in reality, and so a 'virtual 
plant '  should really have complex chemistry and interes t ing separations. 
Fur the rmore  the audio-visual effects now available are superior to those 
implemented at the time. 

The vir tual  p lant  idea will be revisited making  the process a more interesting if 
not a completely real one. We have recently developed a simplified but realistic 
dynamic s imulat ion of both binary and mult icomponent  distillation tha t  runs 
surprisingly fast as a Java  applet on the current  PC hardware .  This will form 
par t  of the vir tual  plant  tha t  will also incorporate audio and video features. The 
nonideal models are sufficiently rigorous to i l lustrate for example distillation 
boundary crossings in a 3-component mixture,  i l lustrat ing a column, which starts  
up containing feed from one side of the distillation boundary,  and ends up with a 
product on the other side. 

6.4.8 CASE S T U D I E S  IN WEB-BASED E D U C A T I O N  

The following sections briefly describe experience with courses from United 
Kingdom second year  undergradua te  level to Masters  level. Only one of these is 
in tended as a fully web based course. In most the web mate r ia l  is an adjunct to a 
greater  or lesser amount  of conventional teaching. 
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6.4.8.1 The Control HyperCourse and Distance Learning MSc 

The Control HyperCourse [3] was developed originally as supplementary  
mater ia l  to a chemical engineering undergradua te  course where  teaching of 
process control was spread over all of years 2 through to 4 and 5. This was the 
first major a t t empt  at creating web based teaching material ,  and our approach 
developed considerably as we put  the course together. 

The mater ia l  in tended for undergradua tes  in year  2 was the first module to be 
developed. This consisted largely of simply tu rn ing  lecturers '  notes into HTML. 
However, we conceived the idea of a Virtual  Control Laboratory,  which included a 
s imulat ion of a "hardware'  laboratory experiment.  The purpose of this module 
was to introduce basic quali tat ive ideas about control and ins t rumenta t ion .  The 
second module, in tended for year  3 undergraduates ,  is in two parts .  One par t  
deals with essential ly quali tat ive issues in p lacement  of control loops, such as the 
existence or not of a cause-and-effect between a proposed m e a s u r e m e n t  and an 
adjustment .  Originally a formal degrees of freedom analysis  was presented;  more 
recently we have realised tha t  this can be replaced by the observation tha t  the 
max imum number  of possible control loops is equal  to the max imum possible 
number  of control valves which in t u rn  equals the number  of lines or s t reams on 
the flowsheet! 

The second par t  of this module is about controller tun ing  and simple input-output  
models. This uses a number  of tun ing  exercises in the Vir tual  laboratory. The 
lecture mater ia l  accompanying this course is also p repared  in HTML, which the 
lecturer  displays by running  a browser in a laptop, connected to a da ta  projector. 
This includes a "whiteboard' tha t  allows the user  to drag and drop controllers into 
different configurations on a flowsheet (Figure 8). 
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Figure 8. Control Loop Drag and Drop 

Students  taking this course are given a copy of the lecturer 's  mater ia l  and the 
re levant  section of the online course, including the Vir tual  Lab applets, as a self- 
extract ing zip file so tha t  they can use it on their  own computer  without a web 
connection. The increasing number  of s tudents  who have their  own computers 
has very positively received this. 

The mater ia l  for year  4 s tudents  is about the placement  of control loops on 
complete processes, using a hierarchical  approach [8]. This is i l lustrated by a 
series of examples, two of which are worked through in the web pages, and one of 
which has interactive quest ion-and-answer mater ia l  (wri t ten in JavaScript)  
which provides critical comment on the student 's  responses. 

The final module tha t  is still being extended contains optional mater ia l  taken by 
year  4, 5 or graduate  programme students.  This includes mater ia l  on frequency 
response methods i l lustrated by simulations and Virtual  Lab exercises. We have 
found this to be a more effective way of introducing the concept than  the 
t radi t ional  analyt ical  approach. There is also mater ia l  on multiloop controllers 
with corresponding simulations. A final exercise involves tuning  the controllers 
on a s imula ted  binary distillation column, which provides an interest ing contrast, 
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and supplement  to earl ier  tuning exercises using very simple or idealised model 
processes. 

Essential ly the same mater ia l  is used in a distance learning MSc module aimed 
at graduates  in industry.  When t aken  in this mode year  2 mater ia l  is designated 
as revision, and  all other mater ia l  as new. Students  work in their  own time 
through a series of exercises, submit t ing their  solutions by email, in some cases 
the submission being automatical ly genera ted  by the Vir tual  lab server. Since 
many of the s tudents  are working at home through dial up lines and slow 
modems we have redesigned the mater ia l  to minimize the need for a server, and 
now provide the s tudents  with a self contained version of the course on disc or 
CD. 

Three cohorts of graduate  s tudents  have now taken  this module and a l though we 
have modified some par ts  of it in the light of experience it has in general  been 
very well received. 

6.4.8.2 P r o c e s s  C a l c u l a t i o n s  

By contrast  to the control course, which was a p lanned major exercise, covering a 
complete topic, a range of small tools and aids has gradual ly  evolved to support  
one of our year  2 courses called Process Calculations. This is essential ly a 
mater ia l  balances course, but  seeks to draw together  other  topics already t aken  
by the students,  in par t icular  phase equil ibrium separa t ion processes. 

The course is a conventional lecture course, and so all the mate r ia l  developed was 
intended to supplement  ra the r  t han  replace the usual  lectures and problem 
classes. The exception to this is the online AspenPlus  mater ia l .  We now no longer 
give lectures to s tudents  on the use of flowsheeting packages.  The same mater ia l  
can be used by faculty members  who have never learned to use such systems but  
wish to keep up with  their  design project s tudents .  

As well as having all lecture notes and slides, problem sheets  and, eventually,  
solutions, available on line, the course home page provides: 

�9 Links to a range of da ta  sources such as NIST. 
�9 Self-instruction mater ia l  for AspenPlus.  (After seeing the more 

sophist icated mater ia l  of Seider et al we would consider adding spoken 
commentary  to this.) 

�9 Links to property est imat ion methods and thermodynamic  calculations 
(see Figure 8 above). 

�9 Simple calculators for vapour  pressure,  humidi ty  etc. 
�9 General-purpose calculators for solving l inear  and nonl inear  equations.  
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Students are encouraged to use these to supplement and check conventional data 
sources and hand calculations. These have been added to over the three years 
that  this course has been taught. Students have taken well to using the web both 
for calculations and as a data source. They quite regularly come up with 
information sources of which the course tutors were unaware.  

Developing simple 'value added' material  for use in supplementing a conventional 
lecture course is relatively painless compared with the effort required to produce 
a complete course or module. 

6.4.8.3 The Des ign  Project  

Our fourth year process design project is a group activity carried out by about ten 
students over the equivalent of a semester. Group working, self-organisation and 
the production of interim reports and working documents is seen as an important 
part  of this project. The WWW provides a powerful vehicle for collaborative 
working by groups and is already being used in industry to manage design teams, 
sometimes working round the clock worldwide. 

Over the last two years we have encouraged our students to use the web to help 
manage their own projects. It was intended that  the initiative for developing this 
should come from the students, and all that  was done was to set up a skeleton 
web page with the design brief and a list of the group and their email addresses, 
but with links to subpages for: 

�9 Collections of chemical properties, hazard data, etc. 

�9 Minutes of weekly project meetings. 
�9 Interim and final reports. 

Both the enthusiasm and aptitude of students for developing data pages and 
putt ing their ongoing and finished work on line has been variable. However, this 
mode of working has undoubtedly appealed to all of them and electronic 
communication and data presentation has become the norm for most design 
teams. Feedback suggests that  this has helped the organisation of the project 
both for students and staff. For example part  time industrial design tutors 
working with the groups can view current progress from outside the university. 
They can also be contacted by email with student queries at times other than 
those designated for their visits to the department, which has proved a mixed 
blessing from their standpoint! 

6.4.9 FUTURE DIRECTIONS 

The World Wide Web has become extremely pervasive throughout the academic 
world and is rapidly achieving a similar penetration in industry and commerce. 
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It has increasingly become a first, if not the first, data source consulted by 
students. Its utility as such is limited by the unselectivity of current search 
engines, and we would anticipate the development of both specialised and 
tailorable search facilities. In principle, any program on a web-connected 
computer can access the web and download information from it. One of the future 
developments we expect is the use of more selective and automatic web searches. 
For example, if the required properties of a substance are not available to a 
program, it can connect to the web, search for the information, find and verify it, 
and then continue the calculation using it. 

The WWW will become the pr imary  delivery vehicle for software. Already the 
downloading of software and updates from the web is probably the most common 
route for obtaining software which does not come installed on a PC. However, the 
more sophisticated mechanisms described above for running programs over the 
web or "just in time' loading of the specific applets or scripts required for an 
application will become more prevalent. The motivation for this is likely to be 
commercial; this is an easy way for vendors to charge customers on a "per use' 
basis. 

The further development of engineering portals will see a greater range of 
interactive CAPE tools being made available to the process engineering 
community. Both steady state and dynamic simulation tools together with 
modelling and control design systems will begin to emerge as web-based systems. 
Bandwidth increases will enhance both academic and commercial organizations 
to work interactively and collaboratively with one another other. The problems 
supporting large monolithic simulation codes on multiple internal  company 
machines or servers will help move the community in the direction of web-based 
delivery of solutions. 

In education the advantages of this approach wil l  be flexibility in providing 
exactly what  students require, and no more. It will encourage students to use 
computer methods for short calculations when the required software is compact 
and loads quickly from a local server, ra ther  than  having to load a complete large 
flowsheeting package, most of which is not required. It will also be possible to 
monitor student use and progress as an aid to targeting support and providing 
feedback. 

Web-based systems will provide incentive for further development of extended 
site learning experiences for students who spend a substantial  part  of their 
education working for a company. The ability to access and learn online will 
enhance the overall learning experience. 

Increasing bandwidth will encourage the use of more graphic material  and 
audiovisual presentations. The most effective use of this still has to be 
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determined. Some uses of bandwidth, such as a video of a lecturer talking in front 
of a blackboard, are less useful than others. 
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Chapter 6.4: Fault Diagnosis Methodologies for Process Operation 

D. Leung & J. A. Romagnoli 

6.4.1 INTRODUCTION 

Today's petrochemical and mineral processes are far more sophisticated than those as 
of ten or twenty years ago in terms of process complexity. This is the result of a 
combination of factors. People are more aware of the environmental impact that 
process industries have on the environment and as a result governments all around the 
world are imposing increasingly stringent environment restrictions on gas emissions 
and waste disposal. If a company wants to stay competitive and profitable, its process 
has to be flexible enough to adapt to the fluctuation in demands of various chemical 
products of different purities. At the same time, the process has to be stable and 
controllable with "minimum" operating costs. 

From an operational perspective, the increase in process complexity translates into a 
significant increase in activities involved in process operations and management. 
Process operational tasks can be classified into three levels according to the frequency 
of execution. The low-level tasks include data acquisition and regulatory control, 
which is normally automated by Distributed Control Systems (DCS) or the more 
advanced Supervisory Control and Data Acquisition systems (SCADAs). The 
medium-level tasks ensure the integrity of the operation, and they include process 
monitoring, fault administrations, optimization and other advanced control strategies. 
A majority of processes still relies on human personnel in performing these tasks. The 
high-level management tasks involve planning and scheduling. In most 
circumstances, it is the responsibility of the management team of the organization. 
Figure 1 illustrates a graphical representation of the above-mentioned task hierarchy. 
The pyramidal shape symbolizes the frequency of execution. 

Figure 1: Task hierarchy pyramid 
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Among all the medium level tasks, fault detection and fault diagnosis can be 
considered as the two most influential tasks. When there is a process upset, the 
identified root causes can have adverse effect on the execution of optimization and 
other advance control strategies. Furthermore, depending on the severity of the 
identified root causes, they can also post a significant impact on planning and 
scheduling in management level. If the malfunction of a major process equipment is 
detected and confirmed, a medium or long term planning and scheduling may be 
required to compute a new production plan to meet the orders and production targets. 

6.4.2 AUTOMATED FAULT DETECTION AND DIAGNOSIS 

As chemical and mineral processes become more complex, they also become more 
vulnerable to process upsets and hardware failure. Fault diagnosis, therefore, becomes 
more important and difficult to perform. Although enormous effort has been put into 
designing better equipment and control systems, most of the fault diagnosis still 
heavily relies on plant operators. They are "expected" to respond accurately in 
locating the source of abnormalities and make quick and appropriate corrective 
actions. The difficulty of manual fault detection and diagnosis depends primarily on 
three factors: 

1. Human knowledge and their mental status; 
2. The nature of the anomaly; and 
3. The topology of the process. 

6.4.2.1 Human knowledge and Mental Status 

The more knowledgeable and experienced the operator, the more accurate they can 
diagnose upset correctly within the shortest period of time. This well-accepted 
statement, however, does not take into account the mental status of the operators. 
Fatigue, emotional and personal matters can all affect their diagnostic capability 
dramatically. 

6.4.2.2 Nature of anomaly 

Single fault from a major piece of equipment, such as pumps, can be detected and 
diagnosed without any difficulty. However, for upsets such as fouling, deterioration of 
catalysts, valve failure, or upsets due to a combination of faults, their detection and 
diagnosis are more difficult and require more experience and knowledge on the 
operator' s part.. 

6.4.2.3 Process Topology 

For a complicated process with extensive recycles, and interactions between 
monitoring variables, even experienced operators and process engineers will find it 
difficult to diagnose the root cause promptly. In such a process, a fault can propagate 
its effect to a number of monitored variables almost instantly. During a process upset, 
it is rare to find a single alarm from the control systems. In reality, the control system 
will be flooded with tens of alarm messages. Either one of the two scenarios will 
happen. In the first scenario, the flooding of alarms will create additional mental 
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stress on the operators. If they are inexperienced, this mental stress will lower their 
diagnostic capacity, resulting in false diagnosis and unnecessary panic. In the second 
scenario, the operators may choose to ignore the alarms by repeatedly clicking the 
"Acknowledge" button on the control system keyboards without paying attention to 
any of the alarms until all the alarm messages are acknowledged. In doing so, they 
ignore the process anomaly completely. This behavior often led to unnecessary 
downtime or even catastrophic accidents. 

Automated fault diagnosis systems can help in ensuring that each and every operator 
will make fast and accurate decisions under all conditions, even the most abnormal 
ones. In the following sections, we will highlight some of the key fault detection and 
identification methodologies. 

6.4.3 METHODOLOGIES 

Industries begin to realize the importance of automated fault detection and diagnosis. 
Over the past decade, fault diagnosis receives enormous attention, and it is now one of 
the key research areas in process systems engineering. A series of technologies have 
been developed, ranging from purely quantitative to purely qualitative. Each of these 
methodologies has their pros and cons. A methodology that works well in one process 
may not give the same performance in another process. In selecting the right 
technology for fault diagnosis, one should take into account the plant topology, the 
sensitivity of the anomaly, and the complexity of the process equipment. 

We classify fault detection and diagnosis techniques into the four following major 
categories" 

1) Residual generations; 
2) Statistical analysis; and 
3) Knowledge-based (qualitative) approach. 
4) Hybrid techniques 

6.4.3.1 Residual generation 

Analytical residual generation approaches use a series of mathematical equations to 
model the processes. These process model equations are used to calculate the 
residuals between sensor outputs and expected values, g iven a set of process 
parameters or operating conditions (Chow and Willsky, 1984; Frank 1990). If the 
discrepancy exceeds a certain threshold value, a fault is detected, and the 
corresponding process equipment or process section is being diagnosed as the root 
cause of the anomaly. The concept of fault detection and diagnosis can be represented 
by Figure 2. 
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Figure 2: The conceptual representation of residual generation technique 

Redundancy estimation can further be classified into two subclasses: residual due to 
redundancy and residual due to process parameters. 

Residual due to redundancy 

This approach makes use of the redundancy of the process. The redundancy can be 
either spatial or temporal. Spatial redundancy is a result of utilizing information from 
redundant sensors in process streams. This kind of redundancy is usually described by 
simple algebraic equations. Temporal redundancy exploit on the dynamic relationship 
between the input and output relationship of the process or the equipment. This type 
of redundancy is typically being described by differential or difference equations. 

In general, the process can be described by the following linear discrete state 
equations: 

x(k+ 1) = Ax(k) + Bu(k) 
y(k) = Cx(k) (1) 

where x is the state vector (n*l), u is the input vector (p*l), y is the output vector 
(q ' l ) ,  k is the time instant, A, B and C are known matrix describing the nominal 
process. 

In regards to the modeling involved, there is no straight rule. Modeling can be done in 
many forms, as long as they are adequate to describe the input-output relationship of 
the process and its dynamics. Mechanistic models develop from first principal mass 
and energy balances or time-series models, frequency response or transfer function 
models obtained from historic plant data can all be used. 

Residual due to process parameters 

Redundancy residual approach uses a fixed nominal process model to calculate the 
predicted process output y. Residual due to process parameters, which is also known 
as parameter identification, takes the opposite approach. During a process upset, the 
fault(s) will change the physical properties of a system. The principle of parameter 
estimation is to detect and identify the fault by calculating the parameters of the 
mathematical model and the corresponding physical parameters and compare it 
against the nominal physical parameters. 
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The technique can be summarized by the following procedure (Isermann, 1984)" 

1. During offiine calculation, choose a parametric model to represent the 
dynamics of the process. The parametric model can be a linear model with 
input/output differential relationship or it can be linear time series model. Let 
A be the model parameters. 

2. Determine the relationship between the model parameters A and the physical 
parameters P: 

A =  f(P) (2) 
3. During online execution, the model parameters Areal-time are being identified 

from input u and output y of the real process. 
4. The real-time physical parameter, Preal-time is being calculated by 

Preal-time-- f-1 (Areal-time) (3) 
5. The deviation of real-time physical parameter Preal-time for its nominal value P 

is calculated. 
AP = Preal-time- P (4) 

6. A fault is detected if AP is greater than the threshold value, and the root cause 
of the fault is identified from the pattern of AP. 

Figure 3 illustrates the above procedure. 

~ i n p u t  u Actual Process 

. •  Parameter Identification L 
Areal-tiime r 

Physical parameter, 
Preal-time calculation 

Calculation of physical 
parameter residual AP 

output y ~- 

Figure 3: Concept of parameter identification 

The detection power of residual techniques depends on the accuracy of the 
mathematical models. This technique is sensitive for detecting upset at early 
development stage. 

6.4.3.2 Statistical Analysis 

For large scale industrial processes with numerous sensors and complicated process 
equipment, it is difficult to develop residual generation fault detection and 
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identification systems, not to mention that it is also extremely computational 
expensive to execute online. 

In statistical analysis, statistical information of the variable of interests is being used 
for fault detection and identification. This approach is considered to be completely 
"data-driven". Instead of using pre-determined process models, statistical models are 
built from normal operating data. Statistical thresholds are defined and they are used 
to distinguish the random process fluctuation due to noise from significant process 
deviation due to major disturbances and process upsets. Statistical analysis is 
commonly known as statistical process control (SPC). If the statistics of the interested 
variables are within the threshold values, the process is said to be in statistical control. 
When a process upset occurs, the upset will cause a directional deviation of the real- 
time statistics from its normal operating value, and eventually, the value will exceed 
pre-defined statistical thresholds. The process is not in statistical control and a fault is 
detected. 

Statistical techniques can further be categorized into univariate techniques and 
multivariate techniques. 

Univariate statistical process control 

Univariate SPC techniques perform statistical tests on one process variable at a time. 
SPC fault detection is carried out through various statistical control charts. They 
include Shewhart charts (Shewhart, 1931), exponentially weighted moving average 
charts, EWMA and cumulative sum charts, CUSUM, (Woodward and Goldsmith, 
1964). 

Shewhart Charts." Shewhart charts are plots of real-time process variable x. When a 
number of observations can be recorded simultaneously, as in the case of offline 

m 

laboratory analysis, Shewhart charts are then plots of mean (x) ,  range (R) and 
standard deviation (S) of a data set of n observations. The statistical hypothesis is that 
the mean and standard deviation should remain the same as the mean ~t and standard 
deviation 6 of the normal operating data. Upper control limit (UCL) and lower control 
limit (LCL) are calculated by specifying the level of significance ~. In case of plotting 
real-time process variable x, assuming x follows a normal distribution, and assuming 
the UCL and LCL cover 99.7% of the normal operating data, the UCL and LCL are 
defined as 

UCL = ~t + 36 
LCL = It- 36 (5) 

For samples with a number of observations, n, the UCL and LCL for x are defined 
a s "  

UCLon x" x + A R  

LCL on x" x - A R (6) 

where x is the arithmetic mean of x, and R is the arithmetic mean of R. The UCL 
and LCL for R are defined as" 

UCL on R: D1R 

LCL on R: D2 R (7) 
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Values of A, D1 and D2 can be obtained from statistical tables. Note that the values of 

kt + 3~ can be significantly different from x + A R .  

CUSUM Charts: CUSUM chart plots the cumulated statistics on a regular time basis. 
Common form of cumulated statistics include the monitored variable itself, its 
deviation from a reference value, its deviation from its expected value, and its 
successive difference. Let Sn be the cumulative sum at time n, and X is the statistics 
of interest, CUSUM can be described by the following equation: 

Sn=X+Sn.1 (8) 

The objective of using CUSUM is to detect changes in monitoring statistics. 
Therefore, in using CUSUM charts, it is not our concern whether or not the cumulated 
sum of the statistics falls over a fixed UCL and LCL. The real concern is the slope or 
the deviation between successive data points. Due to this nature, the definition of 
control limits of CUSUM is not UCL and LCL. The control limit of CUSUM is 
expressed as an overlay mask. It determines the maximum statistically allowable 
deviation of the previous data points. If the previous points fall out of the mask, the 
process is said to be not in statistical control. It signifies a noticeable change in 
process dynamics due to major disturbance or fault is detected. 

EWMA Chart: Exponential Weighted Moving Average (EWMA) chart is a weighted 
plot of statistics of process variable, usually the process variable x itself or the sample 

mean x, by placing a weight w, 0 < w < 1 on the most recent data point and a 
forgetting factor 1 - w on the last statistics. 
Assuming the information to be plotted is Z, EWMA can be represented by the 
following formula: 

Zn+ 1 - w * Zn+ 1 + (1 -- W) * Z n (9)  

where Zn+l is the raw information at time (n+l), and Z;+ 1 is the EWMA information 

at time (n+l). For a special case where w = 1, EWMA will be the same as Shewhart 
statistics. 

The UCL and LCL of EWMA can be calculated by: 

UCL = g + 35 * w 
2 - w  

LCL = g -  3~* w (10) 

where ~ is the mean of Z and ~5 is the standard deviation of Z. 

M u l t i v a r i a t e  s t a t i s t i c a l  p r o c e s s  c o n t r o l  ( M S P C )  

Univarate SPC only considers one variable at a time. In order to use this technique to 
monitor a process with many process variables, it is necessary to apply these statistics 
or control charts on each individual variable. For the testing hypothesis to be valid for 
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these univariate statistics, one has to assume that these variables are not cross- 
correlated to each other. However, in reality, many of these variables are cross- 
correlated. A deviation of one variable will also cause deviations in other variables. 
Such a process is said to be multivariate. This variable-variable interaction invalidates 
the assumption in univariate SPC. Applying univariate statistics to a multivariate 
process will only over-define the control limits, and thus leading to a wrong definition 
of the statistical normal operating region (NOR). This is illustrated in Figure 4. 

Figure 4: Representation of multivariate NOR a) using univariate approach 
(improper definition), b) using multivariate approach (true definition) 

MSPC can overcome this problem by taking variable correlation into account. 
Multivariate projection-based approaches such as Principal Component Analysis 
(PCA) and Partial Least Square (PLS) are the most common and well-studied MSPC 
techniques (Wold et al, 1978; Jackson, 1991). They project all the process and quality 
variables onto an orthogonal state-space. In doing so, all the correlated variables are 
transformed into a new set of independent variables. These techniques can 
significantly reduce the dimensionality of the monitoring problem without a 
significant reduction in monitoring accuracy, and therefore they are especially 
suitable for simultaneously monitoring a large number of correlated variables 
(MacGregor and Kourti, 1995). 

Principal components (PC) are based on a special property of matrix algebra. For a set 
of normal operating condition (NOC) training data X of n variables over m 
observations (n • m) with covariance matrix 'E: 

P'  ~P = k (11) 

where the columns of P, Pl, P2, ..., Pi are the principal component loading vectors 
(m x l) or the eigenvectors of ~, k is a diagonal matrix and its elements ~,1, ~2, �9 .... ~,i 
are the latent roots or the eigenvalues of :E. 
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The i th transformed variable, called principal component (PC) or score Zi, is a linear 
combination of zi = X * pi. Jackson (1991) outlined several criteria for selecting the 
number of PC, A, required to "successfully" describe a process. 

The original data X can be reconstructed from PC by 

X = Zl * p l  T + z2 * p2 T + . . .  + ZA * pA T + E (12) 

where E is the residual. If A is chosen correctly, there should not be any significant 
process information left in E, and the magnitude of E should be relatively small. 

PCA can only deal with process variable data X that are measured on-line at the same 
frequency. There are also product quality variables Y being measured on-line at a 
lower frequency or off-line in laboratory. Partial Least Square (PLS) uses regression 
techniques to correlate X to Y. 

Using the previous notation, over time t there are n process variables with m 
observations. Process variable matrix X has a dimension of (nxm) .  Let us assume 

that there are k quality variables with 1 observations over the same time t. This gives 
us a (k • l) quality variable matrix Y. In order to perform criss-cross regression on 

variable matrix X and Y, we have to extract a submatrix of X (n• l)such that the 

submatrices of both X and Y have the same number of rows. 

Basic PLS algorithms have been well documented in chemometrics literature 
(H6skuldsson, 1988, 1992). The training of PLS involves sequentially calculation of 
the loading vectors for matrix X and Y such that they give maximal reduction in the 
covariance of the remaining X and Y matrices. PLS models can be represented by 

A 

X = ~ t a p , '  + E 
a=l 

Y = ~ u,q,'  + F (13)  

where ta and Ua are the a th latent variables or scores, and Pa and qa are the athx loading 
and y loading respectively. E and F are the residual matrices. 

Similar to univariate SPC, MSPC monitoring is done through various control charts. 

Score Plots: PCA has the ability to reduce the dimensionality of the process into just a 
few PC. In some processes with highly correlated process variables, they may be 
modeled "sufficiently" with two to three PC's. For a 2 PC's scenario, a 2-D PCA 
score plot of Z1 vs. Z2 is adequate to encapsulate the variability of the process. In the 
case of a 3 PC's scenario, either one 3-D PCA plot or three 2-D PCA score plots of Z~ 
vs. Z2, Z2 vs. Z3 and Z1 vs. Z3 are required. Score plots of PLS are similar to those of 
PCA. Q scores are calculated from P scores and therefore they are not plotted in score 
plots. Only P scores are plotted in PLS score plots. Unfortunately, it is obvious that 
score plots are not visually possible for processes with more than three PC. 
In score plots, NOR are defined from the training data. By assuming normal 
distribution, NOR can be defined by an ellipsoid,. In reality, this may not be valid and 
a skew ellipsoid is more appropriate (MacGregor et al., 1994). In some cases, 
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probability density function (PDF) can be calculated and applied to define NOR 
(Chen et al., 1996; Martin and Morris, 1996). Figure 5 shows a comparison between 
two NOR of a score plot, one defined by ellipsoidal approach and the other defined by 
kernel PDF approach. 

a) 

PC-1 

~ ~ : "  ,.". 
�9 ==t= = f 

! ................... P - ' i t . , ~  . . . . . . . . . . . .  

�9 �9 , % , "  ; 

b) 

PC-1 

PC-2 Covera.ge �9 73.6 PC-2 Coverage"  73.6 % 

Figure 5: Comparison between a) ellipsoidal and b) Kernel PDF definitions 

T 2 Plots: Another useful statistical chart is the T 2 plot, which is based on Hotelling's 
T 2 statistics (Hotelling, 1947): 

A 2 

Tl = ~,--~ (14) 
i = l ~ i  

It can be detected from T 2 whether the variation in X is within the space defined by 
the first A PC. The upper control limit (UCL) of T 2 can be approximated by F- 
distribution (Jackson 1991). 

p(A-1) 
UCL = ~-~ ~..p-j F= (p, A-  p) (15) 

where p = the number training data points, A = the number of principal components 
used, and F~ is the F-distribution with p and n-p degree of freedom and significance 
level of ct. 

SPE Plots: If a new event occurs and if it is not present in the training data, the 
statistical projection model will not be adequate to describe the event. Consequently, a 
Type B outlier occurs. T 2 plot cannot detect the invalidity of the statistical model. A 
chart of the square predicted error (SPE) of the residuals could successfully detect this 
abnormal event. 

A ^ 

S P E  x -" E ( X i  -- X i )  2 (16) 
i = l  

^ 

where xi is the predicted variable set calculated from PCA or PLS model. 
SPE follows Chi-squared distribution and its UCL can be calculated using Chi- 
squared approximated (Jackson, 1991; Nomikos and MacGregor 1995). 

Statistical Fault Diagnosis 

Various univarate and multivariate SPC charts are used for fault detection only. 
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Fault Clustering." Statistical fault diagnosis is primarily performed by clustering. Fault 
clusters are defined from faulty data of know root cause. Assuming that one has fault 
clusters of all root cause defined. During process upset, the real-time data point will 
move into one of the fault clusters. By performing test on which cluster the real-time 
data point is moving towards or position upon, root cause of the upset can be 
diagnosed. Mathematically, clustering can be performed on problems with any 
dimension, although it can only be presented graphically only on 2 and 3 dimensional 
space. 

Fault clustering can be applied to original process variables. If the dimensionality of 
the process is high or the variables are highly correlated, fault clustering technique 
can be applied to PC scores of PCA or PLS. There are not many statistically 
clustering approaches available. 

The simplest way to define the cluster is the angle of which the cluster locates relative 
to the axis and the NOR. Let Frt=(x, y) be the coordinate of the real-time faulty score 
in a PC score plot, and let Fi(xfi, yfi) be the mean coordinate of a faulty data group i, 
the angle ~ between the faulty data and the faulty cluster can be determined by: 

v . . v ,  = IFrtl ivilcos  (17) 

The simplicity of this approach makes it very appealing for online implementation. 
However, it is apparent that this method is insensitive to fault clusters with similar 
angles. Therefore this method is not recommended for processes with many root 
causes of similar symptoms. 

A more advanced alternative is to define the cluster probabilistically by specifying a 
significance level. Clusters can be defined by assuming normal distribution or by 
calculating the PDF of the faulty data set. Assuming the monitored variables are 
independent, the probability of the fault cluster in n dimension Xn(Xl, x2, .... Xn) can 
be defined by: 

P(Xn)  _ - k [ 1 I ~ 1 2  5n - }1 
0"113'2...~ n * (2~)"/2 exp- ~ [ ~1-- T + ~132 2 + """~ 2 ]J (18) 

where ~n--Xn-~n, the deviation of the data point from its mean ~n, and On is the 
standard deviation. However, if the root cause affects two independent variables, it 
will be likely that the cluster is skewed with an angle. This can happen even if one 
applies PCA/PLS to correlated data. After the projection, a root cause, which only 
affects one process variable in X subspace, can affect more than one PC. This can be 
overcome by first finding the angle between the axis and the principle skewed axis of 
the fault cluster, and then perform a rotation of axis before the calculation of the 
cluster. 

This rotation of axis can be avoided if PDF is used. One of the well-known estimation 
approaches is the kernel estimator technique (Chen et al., 1996). The general 
formulation of kernel estimator is: 

^ 1 n 
f(x) = ~ "  i~l K ( x -  xi _ h ) (19) 
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A 

where f is the probability density, n is the number of data points, h is the window 
width of smoothing parameter. Many approaches are available to determine the 
smoothing parameter. The simplest is Scott Rule, which states that: 

3.5xt~ 
h= 3 - ~ n  (20) 

The final kernel function K must satisfies the following condition: 

if_** K(x)dx = 1 (21) 

The choice of function K is arbitrary. For clustering and NOR definition on a two 
dimensional score plot using Gaussian distribution as the kernel function, the 
probability density function (PDF) becomes: 

1 ~ 1 ( x i - x  (Yi-Y exp- m + m 

f(x'Y)= 2~nhxhy - i = l  -2 hx2 ~ -  (22) 

where (Xm,Ym) is the coordinate of the grip around that data clusters, and hx and hy are 
the smoothing parameters of the x- and y-axis. Like the normal distribution approach 
(equation 18), this approach can be extended to multi-dimensional problem. 

Score and SPE Contribution Plot: In MSPC, when Hotelling's T2 and SPE exceeds its 
UCL, a breakdown of the contribution from each original process variable xi can help 
to diagnose the underlying anomaly. During a faulty condition, observing the 
deterioration pattern of PC scores and SPE contribution plot can identify the 
"suspicious" variables, which do not follow the projection model. These variables 
usually associate with events that cause the anomaly (MacGregor, 1998). 

6.4.3.3 Knowledge.based (qualitative) approach 

Knowledge-based (KB) approach employs qualitative modeling and reasoning as the 
fundamentals, although there are also new methodologies that incorporate probability 
and other mathematical techniques. As the name suggests, knowledge-based approach 
captures the knowledge of human experts. Knowledge can be classified into deep 
knowledge, which is knowledge from first principals, and shallow knowledge, which 
are heuristics that gathered from experience. Compared to residual generation and 
statistical analysis, KB is more suitable for fault diagnosis than fault detection. 
Different KB based fault diagnosis approaches use different knowledge representation 
method to capture deep and shallow knowledge. 

Hierarchical Knowledge Representation 

Fault Tree Analysis: One of the earliest qualitative approaches is fault tree (FT) 
diagnosis (Himmelblau, 1978; Lapp and Power, 1977). FT arranges the knowledge 
about fault diagnosis in a hierarchical, inverted-tree fashion by using logic operators. 
The top of the FT is a node representing an upset or abnormal event. As it searches 
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downwards, the detail of the knowledge regarding the nature or the location of the 
fault increases. This is equivalent to a backward-search through the topological 
structure of the plant from a coarser to a finer scale. The search will continue until the 
root cause of the upset event is identified. In between each level of the FT, logic AND 
and OR gates are used to represent how the lower level nodes can satisfy the high 
level objectives. Construction of fault tree can be time-consuming. There are 
automatic fault tree generation procedures available to speed up the knowledge 
representation process (Lapp and Power, 1977). Figure 6 shows the general structure 
of a tree analysis. Due to the inverted tree structure, probability can be incorporated 
into fault tree diagnosis without difficulty. 

AND 

, ~ 

Figure 6: Structure of a typical fault tree 

Goal Tree Success Tree: Goal Tree Success Tree (GTST) is another qualitative 
approach which uses hierarchical knowledge representation (Chen and Modarres, 
1992). GTST uses goal-oriented knowledge representation. The tree can be divided 
into 2 parts, the goal tree (GT) and the success tree (ST). GT describes how the 
process goal can be achieved by various sub-goals, and ST summaries how the bottom 
goal can be achieved logically by different equipment, automatic and human actions. 
The logical structure of ST and FT shares many similarities. Figure 7 illustrates the 
general structure of a GTST. 
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Figure 7: Typical structure of a Goal Tree Success Tree 

In GTST methodology probability calculated onlineis used to determine which is the 
optimum branch that should be used to continue within the search through. The 
underlying principle is somewhat similar to a "best-first search", in which probability 
is used as the evaluation function. 

Signed Direct Graph (SDG) Based Approach 

Signed Directed Graph: Another early qualitative fault diagnosis methodology is 
Signed Directed Graph (SDG) model, which was proposed by Iri et al (1979). In this 
model, SDG is used to describe the qualitative cause-effect influences between 
various process variables and events. These causal relationships can be derived 
through deep knowledge mathematical models and plant and instrumentation 
diagrams (P&ID). 

SDG can be described by a (G, s) pair. The signed directed graph, G, is made up of a 
number of nodes N and branches B. Nodes N correspond to state or process variables 
or fault origins such as equipment failure. Branches B are arcs that join two nodes 
together. The directions of the branches B are described by two incidence functions, i 
and j. A simple SDG and its representation are illustrated in Figure 8. 
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N = { n l ,  n2, n3 } 
B = { b l ,  b2, b3 } 

b i i(bi) t (bl) 

bl nl n2 

b2 n2 n3 

b3 nl n3 

l bl 

b2 

Figure 8." A simple SDG and its representation 

Three states, namely high, normal and low, are used to describe the state of each node 
in SDG. Function s maps the direction of deviations between adjacent nodes to the set 
{+, -}. For instance, 

+ 
A >B 

means deviation in A will induce deviation in B in the same direction, whereas 

A >B 

implies deviation in A will cause opposite deviation in B. 

SDG is an attractive technology because it has the ability to handle cyclic causal 
relationships and uncertainties, the capability of locating all possible causes and the 
ease of construction from first principle. Diagnosis using SDG can be done directly by 
implementing search algorithms to search the SDG, or by transforming SDG 
information into a rule-based systems (Kramar et a/., 1987). 

Possible Cause and Effect Graph: Although SDG is a powerful technique, it has its 
own weaknesses. It restricts the state description statement of each node to one of the 
three symbols, namely high, normal and low. In SDG, all nodes that appear in the 
Cause and Effect (CE) graph could be the possible root cause of the abnormality. In 
many cases, this demerit makes the diagnosis results meaningless and hard to interpret 
(ambiguous outcomes). 

Possible Cause and Effect Graph (PCEG) approach is a modified SDG approach 
which is proposed to overcome these weaknesses (Wilcox, 1994). In PCEG, the 
domain is divided into a set of partitions or subjects S, which is mutually exclusive. A 
set of abnormal statements A and normal statements N is defined. A subset X of A is 
defined as the exogenous causes (possible root causes). Each subject s will have one 
normal statement and at least one abnormal statement. Causal relationships R relate 
the cause-and-effect relationships between the abnormal statements of different 
subjects. Function f maps between subject s and its corresponding normal statement n. 
The family of all possible state of subject s is Sk+ f(s), with Sk being all the abnormal 
statements of subject S. Figure 9 illustrates the concept of PCEG model. 
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Figure 9: Illustration of PCEG concept 

Instrument A, Instrument B, Variable A and Variable B are the subjects of the 
domain. The normal statement of the domain includes a "normal" node from each of 
these subjects, and they are represented as circles with letter "N" on the right hand 
side. The members of the abnormal statement of each subject are enclosed inside the 
rectangles in the diagram. Each of Instrument A and Instrument B has only one 
"abnormal" statement. They are the exogenous causes of the domain because they are 
the source nodes of the CE graph. They are denoted "M" for malfunction. Each of 
Variable A and Variable B has two "abnormal" statements, namely high and low. 
They are denoted as "H" and "L" respectively in the diagram. Depending on the 
application, high-high or low-low or other abnormal conditions can be added to the 
abnormal statement of the subjects. The arrows represented the causal relationship 
between two members of abnormal statements of different subjects. For example, 
Instrument A malfunction "can-cause" high value of Variable A. 

In PCEG, more meaningful state description about the nodes can be used, making it 
user-friendlier both in terms of knowledge representation and state partitioning. 
Another major improvement is the distinct definition of exogenous (root) causes in 
the domain. 

Probabilistic Possible Cause and Effect Graph: Unlike FT and GTST, the possibility 
of existence of multiplies connected nodes and cyclic loops within SDG and PCEG 
make online probability calculation difficult. Leung and Romagnoli (2000) proposed 
a novel approach to overcome this difficulty. 
First, a Bayesian Belief Network, as illustrated in Figure 10, is incorporated into the 
PCEG methodology as the basis for probability calculation. A set of evidence is used 
to change the real-time conditional probability between parent and child nodes as 
follow: 

If evidence is true 
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else 

Condcal (V, U) = Condexpert (V, U) 

Condcal (V, U) = 1 - Condexpert (V, U) (23) 

I Node 1 I I Node2 I 
I Prior Probability1 I Prior ProbabilityJ,,, 

I c~ nal Pr~ II Conditional 4Pr~ 
. .  

~ ~ , , , ,  

I Node3 I i Node4 I 
J Priorl"r~ I J Pri~ Probability i , ,  

I C ond51{51ition al 1P?b I ! 5' ! 6 , I C  onditional l.,?b ! 
,,,  

I Node 5 I I Node 6 I I Node 7 
r Pri~ Pr~165 J Pd~ pr~ 

I 

J Prior ProbabilitVl 
I 

Figure 1 O: Simplified Bayesian Belief Network 

In solving the difficulty of multiply connected nodes, special search mechanism 
which is mathematically equivalent to conditioning is used. Traditional Bayesian 
Belief Network does not support any existence of directed cycles (Russell and Norvig, 
1995). A rule-based system is proposed to overcome this difficulty. The states of 
process variables that are not involved in the cyclic loops can sometimes provide vital 
information of the possible process upset scenarios. During manual diagnosis, human 
experts apply the same mental model to achieve accurate results. In this expert 
system, we apply the same conceptual model. A special set of "expert" rules is 
modeled to make on-line causality adjustment (arc deletion). These rules break the 
causality loops on-line, and tum the final PCEG into an acyclic network for fault 
diagnosis. 

Time Delay Management: Alarms can be classified into root alarms and effect alarms, 
as illustrated in Figure 11. All fault diagnosis methodologies can respond to root and 
effect alarms. However not many methodologies can handle time-delayed alarms, 
especially when uncertainty of their occurrence has to be taken into account. 
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Figure 11: Alarm Classification 

The uniqueness of the probabilistic PCEG approach also enables the system to handle 
delayed alarms, which is also known as phantom alarms effectively. As anomaly 
escalates, abnormal level upstream process variables can propagate to cause abnormal 
level of downstream process variables. For small processes, effect alarms are 
"virtually" instantaneous. For large complex process with time delays, effect alarms 
are "time-delayed". Abnormal level on one variable may take minutes or even hours 
to propagate to other downstream variables. Even if the upstream variables have been 
restored to normal operating range, time-delayed propagation will continue and cause 
"phantom alarms" downstream. Phantom alarms are "effect" alarms that only appear 
some time after the appearance and reparation of the "root" alarms due to time delay. 
Phantom alarms are considered as abnormal statement about the process. Using the 
same notation as above" 

A = {  a l , a 2 , .  . . . . . .  ASn,S  m } (24) 

A is a set of abnormal statements about the process at any time t .  ASn,S m is the 

complete list of the time delay abnormal statements, aSn,S m , which is defined as the 

time delay abnormal statement that causes abnormal statement of subject Sm as a 
result of a historical abnormal statement of subject Sn. 

A a ~ a 
S n ,S m t Snl  ' S M  2 Sn2 , S m 2  . . . .  " 

(25) 

The list is stochastic, i.e. it varies with time and process conditions. Phantom alarms 
can be the potential root causes of observed anomaly, and therefore they are also 
modeled as a subset of exogenous causes. 

ASn,S m c X (26) 
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There is a subset of the binary relation R, called the delay relation RD. It defines the 
"delay can cause" relationship between the abnormal statement set A. 

R D c R (27) 

Time delay management adopts the AI approach of dynamic belief network (DBN) 
management. A list of anticipating time delay exogenous causes for the future is 
computed every time fault diagnosis is run, and this list is updated into the network by 
appropriate node creation and deletion. The system prepares the belief network 
structurally for any future diagnosis. 

Let na be all the active nodes at time tl, and let ni be all the inactive nodes. If a delay 
relationship RD exists between na and ni (na delay can cause ni), then it can be 
concluded that there is a possibility of phantom alarm of ni due to na. 

n a c N active, n i c N inactive 

Vn a,n i RD(n a,ni) ==> phantom__alarm (ni) ( 2 8 )  

When the expert system identifies possible phantom alarms, it will dynamically 
append the possible time-delay nodes onto the original PCEG belief network, with 
each of them properly time-stamped (Primary Update). 

When abnormality is detected in future time t2 (t2 > tl), the expert system will execute 
a "secondary update" mechanism with the following rules: 

1. Phantom alarm cause deletion when the variable causing the delay effect, na, is 
still in alarm mode; 

2. Conditional probability revision when the variables which cause the phantom 
alarms are "normal"; and 

3. Cause deletion when the predicted "phantom" alarms do not appear or their 
anticipated effects have been expired. 

This "update" sequence prepares the phantom alarm section of the belief network with 
the latest real-time information regarding the process. After the completion of belief 
network updates, the probabilistic PCEG fault diagnosis algorithm will be executed. 
The overall interface for phantom alarm management is shown in Figure 12. 
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Figure 12: Overall inferences for dynamic time delay management 

6.4.3.4 Hybrid Techniques 

In the above sections, we have described a number of basic fault detection and 
diagnosis technologies. Researchers in fault detection and identification focus on fault 
identification algorithms and they usually overlook the importance of fault detection. 
In many cases such as all kb techniques, only simple univariate limit-checking 
technique is used as the means of fault detection. Using primitive univariate fault 
detection technique sufficiently reduces the sensitivity and accuracy of the fault 
diagnosis mechanisms. 

To effectively coordinate between these two tasks, one should concentrate on 
planning a framework that allows flow and utilization of information from MSPC 
monitoring to fault administration. Research work in interfacing MSPC with fault 
diagnosis has taken off only about two years ago, and some initial successes have 
been documented in literature. Norvilas et al. (1998) interfaced MSPC KB fault 
diagnosis for monitoring-fault diagnosis purpose. In their work, they used MSPC to 
perform monitoring. If the MSPC statistics exceeds the predefined limits, the numeric 
MPSC information will be compressed into symbolic "high/low/normal" and the 
variable nodes in the fault diagnosis knowledge base will be activated/deactivated 
accordingly. Vedam and Venkatasubramanian (1998) used individual SPE to link the 
MSPC information to a SDG-based fault diagnosis module. In their work, they 
assume that fault will cause displacement in SPE plane of the PCA projection and the 
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variables, which have abnormally high individual SPE, are identified as "alarm 
variables" in SDG fault diagnosis. Leung and Romagnoli (2000) use a KB to mimic 
how a human engineer would interpret various MSPC statistics contribution charts 
(MacGregor et al., 1994). In addition to this symbolic interpretation of various 
contribution plots and control charts, they also used real-time MSPC statistics as 
inputs into their probabilistic PCEG KB approach (Leung and Romagnoli, 2000) in 
order to increase confidence and accuracy of the probability calculation. 

6.4.4 CONCLUSION 

An overview on fault diagnosis methodologies for process operation has been given 
with a view to development of computer aided tools. First, different features of 
automated fault diagnosis has been defined and explained, followed by explanation of 
different types and classes of methodologies. We hope that the contents of this chapter 
will help the reader to design the corresponding software architecture for fault 
detection and diagnosis and to develop new state-of-the-art software. 
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Chapter 6.5: Emerging Business  Models 

J. KSller, T. List, C. Quix, M. Schoop, M. Jarke,  P. Edwards  & M. Pons 

6.5.1 I N T R O D U C T I O N  

Information technology (IT) continues to be increasingly impor tant  as a critical 
area of business competency. In the US, est imated expenditures for IT are pegged 
at about 8% of revenue. This reflects the fact tha t  IT expenditures continue their  
recent increased penetrat ion of business activities. It is also the basis for the 
latest  shift in the balance of competencies for enterprise leadership. These 
transforming benefits achieved through using IT-based technology will depend 
heavily on technical factors and on the willingness of a community to work 
together for the greater benefit of all. 

This dependency can be seen in the s tandards area. Examples of the 
collaboration issues are i l lustrated by (1) the area of Java  s tandards  (where 
Microsoft appears to have given up on a contentious s tandards  process - striking 
out with its own product called C#) and (2) the highly competitive area of XML 
standards (where Microsoft is providing an XML technology platform called 
BizTalk Server) and the Rosetta Net XML application s tandards  consortium. The 
issue here is whether  using Microsoft platform technology is a valid standards- 
based approach. In Microsoft's view, there is an XML language s tandard  and 
industry groups working with an XML collaborative business network supported 
by Microsoft can be regarded as being engaged in developing conforming XML- 
based application s tandards for their part icular  industry. RosettaNet supporters 
don't agree. 

An example of a major success of s tandards that  will t ransform an industry can 
be found in a specialized area of computing used by the process industries. The 
part icular  computing domain is termed Computer Aided Process Engineering 
(CAPE). The industry had evolved to a point where there were three global major 
players plus a second group of smaller suppliers tha t  part icipated in part icular  
regions or in niche products/technologies. Overall success depended on achieving 
success in technology and collaboration. Technology success was based on 
standardizing interfaces for component software. This was combined with success 
in achieving collaboration between (1) the first and second tier of suppliers and 
(2) the major corporate users of the CAPE products and technologies. Currently, 
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the newly evolved standards are being driven forward by an international 
coalition called Global CAPE-OPEN (GCO), which is operating under the 
auspices of the Intelligent Manufacturing Systems (IMS) organization. The EU, 
Japan, and the US are all working with the GCO project. 

Industry breakthroughs such as GCO are being repeated hundredfold in the 
broader area of enterprise IT. These breakthroughs are based on hard work and 
vision. They will support the reengineering of inter-business processes that 
underly an increasingly complex activity of building and evolving IT 
infrastructure for medium to large enterprises (MLEs). The emerging IT 
environment is characterized by rapid change in 1) the technology, 2) the roles 
and relationships of the industry, and 3) expectations of the marketplace and by 
stakeholders who have invested in providers or consumers of IT technology. 

New value-adding tools are being developed to enable processes in this enterprise 
IT environment, which is characterized by an explosion in complexity. In 
particular, it addresses the need to manage an amount of information about IT 
solutions and processes that is growing exponentially. This is true for IT in 
general and will be also true for high-value, highly specialized areas, as 
illustrated by technology for computer aided process engineering (CAPE). We 
distinguish enterprise software from individual productivity products such as 
Microsoft Office, communications software such as Outlook and Netscape 
Messenger, and from PDA systems that combine some of these capabilities. 

6.5.2 INDUSTRY STRUCTURE 

6.5.2.1 The Supply  Side 

Companies that power the growth of Internet-based business processes and 
infrastructure--usually termed E-Business--now include disparate 
organizations, e.g. IBM, Siemens, SAP and Microsoft. Other major participants in 
the growth of IT include the major consultancies such as Accenture (formerly 
Andersen Consulting), Price Waterhouse Coopers (PCW) and CAP Gemini. 

There is overlap in activity, but the first group is clearly identified with the 
development and sale of hardware and/or software. The second group is more 
closely identified with consulting for the business application of IT to improve 
business processes by some combination of automation and innovation. IBM is an 
example of a company that belongs to both groups. Had HP acquired PCW, it 
would have ended up in a similar position as IBM. 

The history of the impact of IT on business organizations has been intertwined 
throughout the last decade with an organizational process called business process 
improvement (BPI). From time to time this general term has been exploited or 
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oversold in terms of the discipline needed for success. This has led on occasions to 
bad press when failure has occurred through misapplication or poor 
implementation. The concept of reengineering is valid and is enabling major 
productivity improvements. It has been seen that  the companies that  are better 
able to achieve these potential benefits are the companies tha t  understand the 
technology and have good implementation skills. Good examples are Cisco, Dell 
and IBM. 

In its recent form, BPI has evolved to encompass applying technology (primarily 
Internet  based) to disintermediation strategies, and/or new business models that  
are technically enabled or dependent. 

The separation of design and construction from operations has a parallel with 
historic engineering fields. At one point, the design, construction and operations 
were contained within one organization. Now this is the exception. The operating 
companies have focused on their operating competencies. They also developed 
supporting competencies in the acquisition of technology, facilities and 
infrastructure from companies whose core competencies are in those specialized 
fields. Good examples are the airline industry and the process industries In the 
past, the airlines designed and built their own planes. Famous examples are Pan 
Am and Iberia Air. Famous examples in the process industry are Shell, Exxon, 
BASF and DuPont. In the World War II era, DuPont had a very large design and 
construction department  that  encompassed civil engineering as well as chemical 
engineering. These industry structures are now gone and the operating 
companies are focused on operations, marketing and finance. 

6.5.2.2 Evo lv ing  B u s i n e s s  Models  in Proces s  Indus t r i e s  (1960-2000) 

The process industries have seen an evolution of the industry structures on 
which business models are based. This is paralleled by a very similar evolution of 
the CAPE software used. 

We might look back 40-50 years to trace these changes. At that  point, the 
manufacturing companies were vertically integrated. They did (1) the product 
and process research, (2) process development, (3) built the process, (4) operated 
the process and (5) distributed the product using owned storage and 
transportat ion facilities. Over the last half century, we have evolved to the point 
where about 80% of this value chain is outsourced by the owner of the overall 
process. 

The same thing happened in CAPE. The first versions of CAPE programs were 
developed over 40 years ago by companies such as DuPont (Chemical Process 
Evaluation System - CPES), Monsanto (Flowtran), and Dow in the US. These 
early versions ran on the scientific mainframe computers that  were available 50 
years ago, e.g. IBM 1620, 7090 and 7094. 
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Then specialized companies were formed that  could leverage economy of scale in 
what  become an increasingly complex and specialized technology. One key event 
in this history occurred in the US, when the Department  of Engery sponsored the 
development of a process simulator at MIT. This was eventually spun off as a 
commercial venture called Aspen Technology. Process industry companies were 
under pressure to justify the specialized skills needed for in-house simulation 
systems. As this was going on, Monsanto's Flowtran was incorporated into 
Aspen's products. Also, Simulations Sciences picked up a public domain version 
of the MIT simulator with an interest in offering a PC system. New players 
entered the fray, e.g. Hyprotech in North America. Changes in this structure 
have evolved to the current day position, strongly influenced by the changes in 
the parent  industry structures. 

Then came a major new technology--modern IT--which has arguably reached 
the take-off stage. The two most famous and successful chemical engineers in the 
world are Jack Welch and Andy Grove (if we evaluate on the Market Cap of GE 
and Intel, which have been shaped or created in large part  as a reflection of their 
respective leadership). Both take a view that  IT and E-Business in the broad 
sense are going to have a transforming impact on business that  will unfold over 
the next several decades. 

What happened to Civil Engineering and Chemical Engineering will happen 
again in the field of IT. The operating companies will turn to the equivalents of 
Brown & Root for Civil Engineering or the Kellogg and IFPs of the process 
industry. Today, the old monolithic companies are still disengaging and building 
the new supporting competency that  exists on other areas. 

These structural  transformations of organization places new demands on the 
ability to define, specify and evaluate both the software building blocks of 
information technology and the management  processes for implementing reliable 
systems. A first step has been the emergence of generalist and specialist IT 
research organizations. Examples of the former are Gartner, Forrester, Seybold 
and IDC. Examples of the latter are SANS, ICSA, and Goldburg. The first two 
are taken from the IT/Internet security domain while the third is in the CRM 
area. The first group generates an incredible array of research reports and White 
Papers which are used in part by the final users of IT (the producers of final 
goods and services that  make up GDP), but which are used even more extensively 
used by the suppliers of IT technology. Goldburg is an interesting example. This 
company evaluates software used in the CRM field. Each year, from a list of over 
200 volunteering software suppliers, sixty are chosen and subjected to an actual 
testing of their products. From this list, thirty are selected and included in a 
comprehensive evaluation that  rates performance on 52 separate performance 
criteria. 
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The current processes that  support interactions of IT providers (including COTS 
software applications, design and building of infrastructure and increasingly the 
contracted operation of IT systems) is clearly undergoing fast change and will 
mature over the next one or two decades. Major advances in the software 
engineering technologies will clearly lead to huge improvements in the 
productivity and reliability of the IT building process. Donald Hagerling of the 
US Treasury comments that  - in essence - we are on the lower slopes of a 
technology S curve. He predicts that: 

...by the year 2050, the world's commerce will be dominated by the first 
country to have provided an infrastructure t rusted to provide transactions 
and intellectual property. By then, the matur i ty  of formal methods, 
software engineering practices and 6 th generation languages will have 
brought trust  and correctness to all software. All executable code will be 
generated by a formal model and will not be accepted unless it has been 
vetted and digitally signed by a recognized third party. 

An i m p o r t a n t  c o n c l u s i o n  is that  the business models will continue to evolve as 
they have been doing for the last 40 years. Grove and Welch say we are at the 
beginning of an S-curve because computing performance and costs plus advances 
in methodologies have evolved to a point that  changes the rules. 

The first step will be better systems for managing information about software 
applications. This will be utilized across major business areas such as sales 
automation and CRM and supply chain. It also offers gains for the specialized 
areas of scientific and engineering software. In the CAPE area, organizations like 
CO-LaN will support evolution of the next generation of standards-based CAPE 
software. 

For the purposes of this discussion we will segment the new array of enterprise 
IT software into 1) computing and Internet  infrastructure, e.g. operating systems 
and networking, 2) traditional basic accounting and transaction systems, 3) 
newly established business and application suites, e.g. SAP, PeopleSoft, 4) 
advanced software application platforms, e.g. Seibel Systems and BroadVision, 
and 5) specialized software solution components that  provide specialized products 
or services. 

The IT enterprise software encompasses a broad range of functionality and 
capability. Products will typically vary in the extent to which they support the 
range of functionality. This means that  the best choice for a particular u s e r ~  
going forward we will use the terms user to refer to business enterprises, not 
individuals~wil l  depend on that  user's balance of requirements.  For example, 
the balance of requirements for an American Airline sales automation system 
will be different from the balance of requirements for a GE Plastics materials 
supplier's sales automation system. From the software side, we can accomplish 
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field sales automation/CRM with simple systems tha t  cost $5-10k up to systems 
like Seibel and BroadVision that  may cost $100k and up to acquire and startup. 
The use of software in the process industries is more specialized, but again we 
see a wide range of products that  support differing balances of need in varying 
ways. One process industry organization lists about 2000 products in its annual  
catalogue of process industry engineering software. This of course excludes basic 
commercial systems such as SAP tha t  are outside our current  consideration. 

6.5.2.3 E m e r g i n g  Needs  for the Enterprise  

Communities in the enterprise are grappling with this fast growing management  
challenge. They are also doing this in a fast changing business environment that  
is shifting power and responsibility within and between organizations. The rate 
of change has never been greater. It can only be sustained in a coherent fashion 
through the adoption of IT enterprise management  systems tha t  will support a 
rational process for the evaluation, selection, purchase and asset accounting. This 
needs to be a distributed system that  can accommodate the needs and tradeoffs 
tha t  exist in global organizations between local initiative and localization 
requirements  (e.g. language and training support) and the direct or �9 perhaps 
visible economies of standardization and bulk purchasing power. 

6.5.2.4 Br ie f  History of IT in the Enterpr ise  

The late 50s and early 60s were the days of the programming by wiring boards, 
followed by creating digitally stored programs wri t ten in machine instructions. 
Then came the breakthroughs of J im Backus at IBM and Grace Murray Hopper 
with the US Navy. These led to FORTRAN and COBOL, which are still used 
extensively about 40 years after their initial creation. Admittedly, the current 
versions are very different from the early forms of these pioneering languages. 

COBOL was probably responsible for the initial breakthrough in business 
computing. In the beginning, the COBOL programmers  were in a subgroup of a 
larger organization that  was called Accounting and Business Services. Several 
things happened: (1) computers became faster and less expensive, (2) application 
languages evolved, (3) SQL and relational database technology were invented by 
Codd and others, and (4) software engineering methodologies were developed. 
The scaling issue was addressed as IBM introduced its System 360 with the 
concept tha t  one could move to a higher capacity, faster machine without re- 
writing the applications running on the smaller machines. Computer science also 
advanced on a broader form tha t  included standardization, algorithmic 
development, creating a consistent, effective compiler technology and the 
continuing work done to improve software engineering methodology and 
practices. During this period, IBM was enormously successful in converting 
mechanical digital systems to modern computer based digital systems. This led to 
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the penetrat ion of computing into business tha t  quickly outpaced the previous 
base of computing in the scientific and engineering fields. 

IT was moving past  the point at which IBM's founder Tom Watson declared that  
the world could probably use five computers. In the beginning scientific 
computing methods overlapped with the business area through the application of 
algorithmic approaches like Linear and Nonlinear Programming to 
solve/optimize t ransportat ion and supply chain models, and discrete simulation 
systems like GPSS were used to solve a wide range of industr ial  problems 
extending from tanker  scheduling to detailed design of shop floor, manufacturing 
facilities. 

A major transit ion/disruption for IT had its roots in the 1980s with the advent of 
PCs, fat clients in modern IT terminology. In the business arena, this led to fast 
growth of applications tha t  enhance the productivity of individuals. In the 
beginning, this was focused on the office worker, but  there were early 
experiments with sales force automation in the late eighties as truly portable PC 
were developed. The PC was responsible for the democratisation of digital 
computing for the entire organization. This led to initiatives in market ing  and 
manufactur ing organizations that  were independent  from the central  IT 
organization. For the next 15 years, the control of the application and 
management  of non-transactional computing applications has been - to some 
extent - been an area of contention. During tha t  t imeframe, the size and power of 
IT organizations grew rapidly. The same thing happened in the area of CAPE 
tha t  we have noted previously. 

In the current  next phase, the Internet  has the empowering impact  tha t  PCs did 
in the mid-eighties. In particular,  the IT organizations of today and business 
organizations in general, face another jolting period of change. Authorities 
ranging from Peter  Drucker to Information Week are making pronouncements 
about IT. Peter  Drucker says that  IT is moving to the point! where its role can be 
liked to the role of printing and publishing once tha t  new technology was 
mastered and reduced to an efficient and well-resourced commodity. Information 
Week has said the position of Chief Information Officer will go away and the 
competency of running a business will refocus on the older and more tradit ional 
competencies. 

There may be an element of cheek in what  Peter  Drucker and Information Week 
said, but  there is also a reality. What  will surely happen is tha t  the design and 
construction of IT applications and infrastructure will increasingly be outsourced. 
The new competency will be to manage this enormous outsourcing of what  has 
become a major factor in supporting business operations. What  will happen will 
parallel what  happened in the process industries in an earlier era. There are also 
lessons to be learned from these earlier experiences. It is a fact tha t  modern IT 
applications are complex. There are many parameters  of performance that  are 
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critical. Some of the t radi t ional  ones are scalability and uptime. But there are 
many  others. In fact, books (e.g. [15]) have been wr i t t en  on metrics for E- 
Commerce. These a t tempts  to write down a set of metrics for E-Commerce or E- 
Business have been useful, but  they only represent  a point in time as the 
concepts and the technology of enterprise IT continue to unfold. 

6.5.2.5 IT out s ide  the  Enterprise:  Appl i ca t ion  Serv ice  Prov iders  

The recent t rend  of outsourcing as much IT inf ras t ruc ture  and application 
systems as possible and reduce a company's activities to its core competencies 
has led to a new model of handl ing software systems employed in an enterprise.  
Since current  applications are growing more and more complex and their  tasks 
are becoming mission critical for every company, running  and mainta ining them 
has become very expensive and resource consuming. Detai led knowledge is 
necessary to operate those systems and large inves tments  have to be made to 
provide a suitable ha rdware  infrastructure.  According to a study of the Gar tner  
Group [11] one single workspace in an MLE costs up to $10.000. Only one third of 
these costs originate from investments  in ha rdware  or software systems. Two 
thirds  are due to the resources tha t  are needed to install, configure, and main ta in  
this IT infras t ructure .  

Obviously, there is a large potential  for saving money in outsourcing these 
activities to specialised companies, which have their  core competencies in tha t  
area. This has given rise to a novel group of IT-services, namely application 
service providing. An application service provider (ASP) delivers software 
functionali ty as external  service to a company. Therefore, an ASP can be defined 
as a company tha t  1) develops and delivers a service shared  by multiple 
customers; 2) provides these services for a subscription or usage-based fee; and 3) 
supplies these services from a central  location, over the In te rne t  or a private 
network, as opposed to running  on the customer's  premises  [23,34,35]. 

Usual ly the ASP provides and manages  the server side soft- and hardware  
inf ras t ruc ture  thereby leveraging the customers '  IT infrastructure.  This 
dramat ical ly  reduces the total cost of ownership (TOC) for the software systems 
tha t  are now hosted at the ASP. This will have a major impact  on the handling of 
software in the industries.  Forres ter  Research es t imates  tha t  the ASP marke t  
will reach a volume of $21 billion in 2001 s tar t ing from $1 billion in 1997. Major 
software vendors such as Microsoft, Oracle, HP, SAP and IBM have adopted this 
idea and are making  progress in implement ing this new business model into 
their  products [4]. 

It is impor tan t  to dis t inguish this new class of IT services from the mainframe- 
oriented services, which were popular  some twenty or th i r ty  years  ago. In those 
t imes powerful ha rdware  was expensive and only large companies could afford 
their  own mainf rame systems. Powerful desktop solutions were not available. 
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Therefore, companies owning data processing centres sold computing time on 
their  machines to their  customers. But the applications running on these 
machines were running more or less stand-alone and were not integrated in the 
customers' IT infrastructure.  Calculations were performed in batch mode often 
allowing no real interaction. This is the major difference to the ASP model. 
Modern Internet  technology enables the ASP to operate the machines and the 
software in their  location and to fully integrate it into the customers 
environment.  The users on the client side can interact  freely with the systems as 
if the systems were executed in their  own environment.  

Looking at the ASP landscape, we can identify three main areas where ASP 
solutions are in use today. The first class of applications making use of this new 
approach are desktop-based software systems. A good example is Mircrosoft's 
activities for making their  office products ASP-enabled. These activities are 
mainly focused on delivery and management  of desktop applications, The second 
class of ASP applications are electronic commerce (EC) applications. Many of the 
EC software vendors offer hosting services for their  products. The adoption of the 
ASP model to EC applications has been ra ther  easy because these systems were 
designed to be web-enabled (i.e. accessible through web-interfaces) from the 
beginning. This was not the case for the third class of applications, the enterprise 
resource planning (ERP) systems. Originally ERP systems were designed as 
corporate wide client-server systems but not as real web-enabled applications. 
Nevertheless, since these systems are extremely complex, using the ASP 
approach here is attractive. This is why the ERP vendors are investing lots of 
resources for web-enabling their applications. Nevertheless, integrat ing these 
systems in a corporate environment (which is still necessary) remains  a critical 
task. 

Therefore, a new concept for next generation ASP applications is required tha t  
facilitates easy integration and flexible combination of different functionalities. 
The basis for this new generation is the idea of component-based software 
architectures. Software components are software entities tha t  are executed 
somewhere in a distributed environment (e.g. the Internet)  and offer a specific set 
of services through well-defined interfaces. This technology enables the creation 
of ASP-hosted web services, which can be used as building blocks for more 
complex client side applications. Such technology facilitates the seamless 
.integration of internal  and external services to create applications tha t  bring 
together data coming from vendors, partners,  and internal  sources. This idea has 
been adopted in the .NET architecture by Microsoft and will be supported by 
many forthcoming products [25]. Other technologies tha t  have been employed in 
the CAPE-OPEN context are also suitable for implementing these ideas (see 
Sections 6.5.4.1 and 6.5.5.1). 

Another critical issue when dealing with the ASP approach is security. From the 
t ransmission point of view the problem of security is solved. There are various 
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technologies available on the market  ensuring that  data t ransmit ted over the 
Internet  cannot be spied on. Examples for such technologies are the Secure 
Socket Layer (SSL) Protocol or Pretty Good Privacy (PGP) for file encryption. A 
more critical issue is the question what  will happen with the user data after 
transmission on the ASP's machines. The ASP has to access the data in order to 
perform calculations with it. Usually, this must  be done on decrypted data which 
is a problem when sensitive data is involved. Therefore, the user must either 
simply t rust  the ASP or suitable protection mechanisms have to be developed. 

6.5.2.6 A br ie f  His tory  of Process  S i m u l a t i o n  Appl i ca t ions  

In the remainder of this chapter, we shall consider specifically emerging business 
models for process simulation applications. Looking at the historic development 
of CAPE tools and especially process simulators, we observe a similar evolution 
compared to IT in general. When flowsheeting tools became widespread some 
twenty years ago, they were deployed on mainframes, since PCs were just in 
their infancy. Only very large companies were able to afford the cost of 
mainframes and process simulators operated on in-house machines. Most end- 
users relied on service providers and paid solely for the use they were making of 
both the hardware and the software enabled by these service providers. 
Interestingly, such service providers were not subsidiaries of flowsheeting tools 
suppliers but mostly independent companies or subsidiaries from hardware 
suppliers. Connection to such providers relied on mostly unreliable phone 
networks and rather  crude modems by today's standards. Costs of running the 
simulation of a distillation column (converging or not) were in the range of 
several hundred Euros per run. 

Progressively, PCs have become the typical hardware on which flowsheeting tools 
are executed. The price of hardware has been steadily decreasing while 
performance has increased dramatically. It is more difficult to assess if and how 
software costs have also been drastically changing. PC-based process simulators 
have used the classical ways of buying and licensing so far. The software was 
installed in the customer's network and used traditional licensing models. 
Licenses have been acquired for each PC, giving an unlimited usage on each 
single machine (in contrast to the times of mainframes when each simulation had 
to be paid for separately). Thus there was a direct contact between the simulation 
tool provider and the end-user rather  than going through some intermediary. 
User support for instance was also progressively given directly by the software 
supplier. 

But the problems concerning TCO of software apply to process simulation 
software as well. Maintenance of these systems and the required hardware have 
become expensive so that  other models such ASP have become more attractive. 
The process simulation software faces the same problems as other systems that  
where not designed with the ASP approach in mind. They were not web-enabled, 
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and web-enabling these systems would mean a fundamental  change in their 
design, which has not been accomplished so far. In process simulation software, 
not only web-enabling is an interesting problem field. Opening these systems up 
for integration with other applications is also desirable because designing and 
simulating a process is a very complex task, which typically involves many 
different tools with strong interrelations. Most of these tools are highly 
specialised, expensive, and require much expertise to run and maintained them. 
Therefore, process simulation can be seen as a good candidate (1) for applying 
component techniques for mutual  integration and data exchange and (2) for using 
ASP techniques cutting down maintenance and integration costs. 

However, the situation in the 1990s w.r. t ,  software for CAPE applications was 
that  no component-based architectures were used, because most existing systems 
had a FORTRAN core which is not even object-oriented. The tools used for 
process simulation were closed, monolithic applications, which made it almost 
impossible to include new components from other vendors or to combine these 
tools [7]. But this is very desirable, as the manual  exchange of data between 
those applications is tedious and error prone. Additionally, these tools were (and 
still are) highly heterogeneous because they may run on simple PCs using 
Windows or mainframes using Unix. To combine these tools, each of them must  
be divided up into standardised components with defined interfaces. Not only the 
problem of integrating the simulators is solved by such an approach but by doing 
so the systems are also moving one big step forward to web-enabled applications. 
Therefore, they will then be usable in an ASP environment. 

Recent announcements made by main suppliers of simulation software lead us to 
believe that  the pay-per-use business model may be back on stream, but using 
completely different technologies originating from the ASP area. Web-based 
distribution models are appearing that  resemble what  occurred twenty years ago 
but on a much more powerful and flexible level. The CAPE-OPEN standard is 
one possible means of accomplishing that  goal by providing a complete set of 
s tandard component interfaces for process simulation software and will open up a 
new class of business models for process simulation software. 

6.5.3 B U S I N E S S  A S P E C T S  

The market  of process simulators is dominated by a few major providers such as 
AspenTech Inc., AEA Technology Hyprotech and Simulation Sciences Inc., at 
least for the off-line share of the simulation market.  Exact figures are difficult to 
obtain but 70% to 80% of the market  may reasonably be considered as shared by 
these three companies. Concentration in this market  has been going on steadily 
in the recent years. Or at least the concept of providing a whole range of solutions 
for an enterprise ra ther  than just simulation tools has been implemented. That 
can be achieved through a string of well considered acquisitions, a simulation 
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company buying a number of niche suppliers. That  can also be done by 
integrating simulation companies within technological conglomerates providing a 
large range of software related products. 

Typically an industrial  end-user is tied up with a single simulation package 
provider or maybe two at the most when considering the links per business 
branch within a company. Global supply agreements are often entered where a 
number of licenses are provided up-front and then costs for additional licenses 
are fixed. These licenses may be proposed as a bundle, that  is not only licenses 
for basic process simulation tools, but also for additional CAPE tools more 
specific to a number of applications. 

One-to-one relationships between an end-user company and a simulation tool 
provider are common place. The simulation tool provider shapes the licensing 
contract to the specificities of each end-user and more so when the client is a 
large one. So a unique relationship tends to exist which is usually strengthened 
by a number of years of relationship. But with the change of technology to a more 
flexible and open environment this relationship could be subject to a fundamental 
change in the CAPE domain. 

One reason for this change is that  component technology in connection with 
industry standards such as CAPE-OPEN will open up the market  for many small 
software vendors offering specialised niche products. Developing such products 
will become attractive for such vendors because when using the CAPE-OPEN 
standard they can implement a component, which may then be used in all 
simulators supporting the CAPE-OPEN standard. As two major simulator 
vendors (AspenTech and AEA Hyprotech) already support the standard this is 
likely to happen. A market  survey has revealed some 2000 possible component 
providers. 

Customers will then be able to pick the components that  optimally suit their 
needs and employ them in their simulation in a plug-and-play manner. As the 
next logical step, these components could be made available for download over 
the internet  (after paying a fee) and then be installed on a client's machine. 
Finally, combining the products of different component vendors, component 
marketplaces could be created on the web offering a wide variety of simulation 
software components through a single web-site. We will come back to the idea of 
a component marketplace later in this chapter discussing possible requirements 
and business models. 

As mentioned above, software components in connection with current internet 
technology pave the way for ASPs in process simulation. ASP could come in 
different flavours in that  application domain. One option would be the 'classic' 
ASP model where hosting and executing the simulator with all its components is 
done on the ASP's machines. But the fully component based CAPE-OPEN 
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s tandard would also facilitate the ASP model for single components. Therefore, a 
possible scenario would be a simulation run on your local machine with some 
components (e.g. a powerful numerical solver, a CFD calculation or just a 
component that  is needed very seldom) performed on a remote computer (e.g. a 
massive parallel machine). Finally, these ASP components could be offered in a 
marketplace together with 'normal' simulation components. In combination with 
flexible licensing models, this could form a very flexible environment for 
simulation users enabling them just to buy or rent  the software they need and 
combine them in a plug-and-play manner.  We will come back to these ideas later. 
As an overall consequence of the new technology and s tandards  in the process 
simulation domain new service providers, besides classic software vendors, will 
be likely to arise. The basis for one class of services offering computational 
services will be ASP technology. The other class of services tha t  will enter the 
market  are information services. They could come in form of online simulation 
databases, component dictionaries with intelligent search mechanisms and many 
others. Using the technologies mentioned above they can be integrated in modern 
component based simulation environments. Later  we will present  more details on 
these services and possible business models. Additionally, these services might be 
combined with a marketplace for creating a one-stop full service simulation 
portal [18,28]. 

6.5.4 CONTEXT: SOFTWARE C O M P O N E N T S  FOR THE CHEMICAL 
INDUSTRY 

New technologies have to be assessed in order to unders tand  their  value for 
business models in the CAPE domain. 

6.5.4.1 S o f t w a r e  c o m p o n e n t s  

Modern software systems, especially large enterprise systems, tend to grow more 
and more complex but require on the other hand increased flexibility. This 
flexibility facilitates easy integration of new subsystems or the extraction of 
functionality of parts  of the system to be used elsewhere. Additionally, managing 
interdependencies between different subsystems in a complex enterprise 
environment has become a challenging task for software engineers. Therefore, 
the component-based approach for design and implementat ion has become 
popular and has proven useful [13]. 

Software components can be considered as the next step beyond objects. There 
are several definitions of a software component which are similar but which each 
emphasise part icular  aspects. Some definitions can be found in [12,33]. Based on 
these definitions the term "software component" is used in this chapter as 
follows: "A software component is an executable, stand-alone piece of software 
with a clearly defined interface and behaviour." The component's interface allows 
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other pieces of software (e.g. other components) to access its functionality. There 
are different middleware approaches facilitating the implementation and 
deployment of software components by providing low level communication 
infrastructure, component lifecycle management,  transaction services, and 
similar services. The most prominent middleware systems are (D)COM, COM+ 
and the .NET framework by Microsoft [24,25], CORBA created by the Object 
Management Group [26], and Enterprise Java Beans by Sun Microsystems [17]. 
In addition several proprietary middleware systems exist. Additional information 
on middleware is presented in Chapter 4.1. 

The fact that  software components are stand-alone pieces of software, which can 
be delivered and deployed, in a given environment makes them a good candidate 
for being traded on the web in a component marketplace. In fact several concepts 
and technical architectures for web-based component marketplaces have been 
developed [1,5,14,36]. However, all of these marketplaces follow a horizontal 
approach, i.e. the type of components that  can be sold is not limited to specific 
domains. The horizontal approach can become a problem for various reasons; for 
example, the more generic a component is, the more technical understanding of 
the developer and the more customisation for usefulness in a specific domain is 
necessary. 

6.5.4.2 C A P E - O P E N  c o m p o n e n t s  

The challenges for software engineering concerning integration and flexibility 
aspects of complex software systems depicted above are also relevant to the 
CAPE domain, especially to process simulation. Process simulators are tools 
designed to create mathematical models of manufacturing facilities for processing 
and/or transforming materials. Chemical manufacturing through continuous or 
batch processing, polymer processing, and oil refining are examples of such 
processes. Process simulators are central for designing new processes; they are 
also used extensively to predict behaviour of existing or proposed processes. [16] 
and [20] give an overview of trends and state-of-the-art approaches for 
simulation-based process engineering. 

This problem was addressed by the European CAPE-OPEN (see for example, 
Chapter 4.3) initiative in which the chemical industries and major vendors of 
process simulation software have accomplished a s tandard of open interfaces for 
process simulation software [2,3]. The overall outcome of CAPE-OPEN was the 
definition of a conceptual design and interface specifications for simulators, 
which consist of an assembly of relatively large software components. As 
illustrated in Figure 1 and discussed in more depth in Chapter 4.3, CAPE-OPEN 
has identified the following standard components of a process simulator from a 
conceptual point of view [6]. 
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Modular Process Modeling 
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Figure 1. CAPE-OPEN simulator components 

�9 Unit  Operation Modules (Units) represent  the behaviour of physical 
process steps or apparatuses  (e.g. a mixer or a reactor). They are linked to 
the simulation flowsheet, which represents an abstraction of the plant  
structure, and they compute the chemical results of the process steps they 
represent.  The overall process model which represents the plant  is 
assembled from predefined unit  libraries. 

�9 Physical Properties (Thermodynamics) Packages: an important  
functionality of a process simulator is its ability to calculate 
thermodynamic and physical properties of mater ials  (e.g. density or boiling 
point). Typically, they consist of a database containing many simple 
properties for a set of chemical species and a set of calculation routines for 
more complex properties based upon specific mathemat ica l  models. 

�9 Numerical  Solvers: the mathemat ica l  process models of a unit  operation or 
a complete plant  are large systems of equations and highly non-linear. An 
analytical solution is impossible. Therefore, iterative, numerical  
approaches are either used to solve the equations of a single unit  operation 
module or to solve the overall flowsheet. 

�9 Simulator Executive" the simulator core controls the set-up and execution 
of the simulation, i.e. analysing the flowsheet and calculate the units. 
Furthermore,  it is responsible for a consistent flowsheet set-up and error 
checking. The simulator executive itself is not a component but  a platform 
tha t  co-ordinates the actions performed on the various components 
described above. 

The semantics of these components and their  interdependencies have been 
defined in terms of UML diagrams, COM and CORBA interface definitions, and 
textual  descriptions [8]. 
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6.5.5 R E Q U I R E M E N T S  F O R  A C A P E - O P E N  C O M P O N E N T  
M A R K E T P L A C E  

As explained above, component technology in combination with internet 
technology and industry domain standards such as CAPE-OPEN can be used for 
t rading software components over the web. For creating such a marketplace and 
associated IT services an overview of electronic business transactions as 
applications of a classic three-phase model for business transactions [28] will be 
presented. Then the requirements  for customers, vendors and intermediaries (e.g. 
a marketplace owner) will be discussed and possible business models will be 
derived. Some of the services and business models presented here would also be 
valuable outside a marketplace context. Therefore, possible combinations of these 
services will be discussed as well. 

6.5.5.1 A m o d e l  o f  an  e l e c t r o n i c  b u s i n e s s  t r a n s a c t i o n  

During a commerce process, the involved part icipants  usually go through three 
phases [28]. Firstly, a par ty looks for potential business partners.  A buyer wants 
to find relevant suppliers of the product he/she is looking for; a seller might want  
to find potential  customers for the products he/she can supply. After locating 
potential  (new) partners,  the second step is to come to an agreement  tha t  is 
acceptable to all partners.  Par tners  might bargain about the price, might find a 
compromise about the delivery dates, and might negotiate about quality aspects 
of the products. The aim is to finalise a contract tha t  specifies the business deal. 
Therefore, this second phase concerns negotiation about details of the agreement 
[31]. If the negotiation is successful then a business deal is struck and the 
outcome is a contract which will then have to be processed by the partners in the 
third phase, e.g. concerning logistics, payment  etc. The general model that  can be 
extracted from the above observations is one of three phases, see Figure 2. 

Figure 2. Three Phases of a Commerce Process [28] 
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The s e a r c h  p h a s e  is about finding business partners; the n e g o t i a t i o n  p h a s e  is 
about finding agreements leading to a contract; the f u l f i l m e n t  p h a s e  concerns 
the execution of the contract. It is important to state tha t  not all of the three 
phases are present in every commerce process. For example, if it is clear who the 
negotiation par tner  is, then no search needs to take place. Furthermore, the 
three phases do not need to occur in a strictly sequential order. It is possible to 
jump back, e.g. if it becomes clear that  a certain negotiation is a dead end, then a 
business par tner  might want  to come back to the earlier search results and start  
new negotiations. 

The three-phase model is independent of any technological means, i.e. it is valid 
for traditional commerce processes as well as for electronic commerce 
interactions (see its application in the MEMO-Mediat ing and Monitoring 
Electronic Commerce-Project [http://www.abnamro.com/memo/]). For example, a 
buyer might look for potential suppliers in the yellow pages, in the catalogues of 
chambers of commerce or on the internet. In this chapter we will concentrate on 
electronic marketplaces for business-to-business electronic commerce. The current 
practices in such marketplaces can best be discussed using an example of an 
existing business-to-business marketplace of the chemical industry called 
chemUnity [http://www.chemunity.com]. A buyer's request containing 
information about the product he/she wants to purchase, its type and 
concentration, the delivery address and time is t ransferred via the marketplace 
to all potential suppliers as specified by the buyer. Suppliers have a fixed amount 
of time (usually 25 hours) to react. Those who choose to send an offer will be 
taken into account. The marketplace based on the buyer's selection criteria 
determines the best offer. If the best offer is within the price range indicated by 
the buyer, then the transaction is completed and the following obligations exist: 
The seller must  supply the product(s) indicated in the original request whereas 
the buyer must  provide the payment according to the offer received. 

Abstracting from the example, we can state general observations concerning the 
three phases in electronic marketplaces as follows. 

The search phase consists of (extended) keyword search based on some 
classification, e.g. a product catalogue, a list of companies in a certain branch etc. 
Using these kinds of search mechanisms presupposes good knowledge of the 
search items by the search party and an appropriately structured search domain. 
For example, if a company would like to find new business contacts or would like 
to find suppliers of certain products that  have different names in different 
companies, then keyword-based search is clearly insufficient. More intelligent 
search mechanisms are available [19] but will not be discussed here. 

The protocols of electronic negotiations that  are usually supported in electronic 
marketplaces are auctions or electronic catalogues [31]. In the latter case, the 
option is one of "take it or leave it" - either to order at the price specified in the 
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catalogue or not to enter  into the business t ransact ion at all. Auctions can be 
useful for settings as described above. However, even in the example of 
chemUnity certain problems are obvious. Such a model cannot support complex 
negotiations. For example, the cheapest supplier might  not be the one offering 
the best quality, the cheapest supplier might not be trustworthy, the third 
cheapest supplier might be able to deliver much quicker than  the cheapest one 
etc. Furthermore,  if negotiations concern frame contracts, then a different 
negotiation protocol is required. Highly interactive exchanges that  occur in 
tradit ional  commerce can be transferred to electronic commerce where, on the 
one hand, the potential  of information technology can be exploited to offer new 
functionalities and support effective interactions and, on the other hand, 
information technology cannot (and indeed should not) replace the human 
negotiator by an automated software agent but  ra ther  support human 
negotiators in their  tasks [30,31]. 

The fulfilment phase is the one that  is usually covered best in any electronic 
marketplace.  Payment  models are supported (e.g. payment  by credit card) and an 
integration with the companies' logistic systems is achieved. If all goes well after 
the contract has been finalised then such a model is sufficient. However, if 
disagreements occur between the part ies as to which obligations need to be 
fulfilled, whether  certain duties have been carried out according to the 
agreements  made during the negotiation etc., there is hardly any support to help 
solving such problems. No history behind an agreement  is usually provided that  
could help the part ies themselves or an independent third par ty to understand 
why certain agreements  have been reached and where the specific problem lies. 
To summarise,  there are potential problems with respect to current  practises for 
all three phases. Nowadays there exist a number  of electronic marketplaces for 
different branches. Therefore, a (new) marketplace requires additional 
functionalities for all phases to make it attractive to part icipants and to 
distinguish it from its competitors, e.g., 

�9 Search: To capture different relations between concepts, semantic search 
mechanisms need to be provided so that  similar and related information 
can be found. 

�9 Negotiate: A new negotiation protocol is required tha t  is interaction-based 
and supports the communication-intensive exchanges in complex 
negotiations. 

�9 Fulfil: Different payment  models should be provided to capture the 
different needs of various application contexts. Furthermore,  a monitoring 
component could help to observe the interactions and trace them back in 
case of conflicts. 

We have discussed before tha t  software components are good candidates for being 
sold in a web-based marketplace due to their  properties. We have also pointed 
out tha t  for making a marketplace attractive, additional services should be 
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offered which can be effectively designed for a vertical, i.e. domain-specific, 
marketplace only. 

Next we will define the requirements for a CO marketplace from three different 
viewpoints. 

�9 Firstly, the component users, i.e. operating companies and others, will 
view the marketplace mainly as a platform for buying the components they 
are interested in without having to search individually for the vendors that  
can provide them. 

�9 Secondly, the component vendors see the marketplace mainly as a forum 
for intelligent presentation. They can be found by interested customers 
and can find prospective clients. Furthermore, vendors will get a notion of 
the requirements in the market, thereby being able to quickly adapt to 
changing needs. 

�9 Thirdly, the marketplace provider is interested in an efficient management  
of the marketplace and the related data. Effective interactions must  be 
ensured to attract  participants willing to pay for joining the marketplace. 

These different viewpoints lead to different requirements tha t  will be discussed 
in the following three sections. 

6.5.5.2 R e q u i r e m e n t s  o f  c o m p o n e n t  u s e r s  

In each marketplace, the customers are the ones that  determine whether the 
market  is successful of not. Every business model depends on the customer 
buying the goods offered, regardless of how the money is actually earned. Thus 
special attention has to be paid to the customers' needs. The most important 
issue here is that  the CAPE-OPEN standard must  be easy to use. There are 
several aspects considering this: 

S u i t a b l e  c o m p o n e n t s  m u s t  be  e a s y  to  f ind  

A typical CAPE-OPEN simulator executive (COSE) will contain a basic set of 
units and solvers, maybe in a CAPE-OPEN compliant form or as proprietary 
parts of the simulator (e.g. AspenPlus). This means tha t  if a user (probably a 
process engineer) needs additional components he/she is looking for some very 
specific features. These features highly depend on the engineer's software 
environment and the task in work. This can be the required interplay between 
the COSE and other components already in use or special features of the model 
the component implements. The component user will need a component 
dictionary combined with advanced product search facilities that  reflect the 
complicated domain of process simulation. 

While the CAPE-OPEN standard offers the possibility for small and medium- 
sized enterprises to participate in the simulation component market  as vendors, 



576 

the component user  will surely not want  to search through the product lists of 
more t ha n  a few suppliers. Therefore central ised locations are needed where 
users can s tar t  their  search for components. 

Therefore, a marketplace  should offer a broker functionali ty so tha t  a company 
does not have to negotiate with each vendor about similar  products.  The broker 
should be able to search through the products of several or all vendors using a 
given specification for a component. It should then  be able to present  a list of 
solutions to the customer or to select a specific product  according to the needs of 
the customer.  The engineering company can thereby easily access a file of 
components  wi thout  much overhead. 

Sometimes a company will not find a component for a given task.  The desired 
component  could be a slight var ia t ion of an existing component  as well as a 
complex and not yet developed implementa t ion  of a model. CAPE-OPEN offers 
the possibility for vendors and suppliers to tailor these components to the specific 
need of a customer, which then can be in tegrated as plug-and-play component. 
Using the broker functionality or through direct contact wi th  a vendor the 
customer should be able to negotiate about the tai loring of such a component. 
Here it will be vital  to produce an exact specification of the component to develop. 
A marketplace  has to support  these negotiations in a s t ruc tured  way to ensure 
tha t  the customer gets the required product. The CAPE-OPEN structures have to 
be reflected wi thin  the negotiation. On the other hand, the negotiation support 
mus t  be flexible enough to specify conditions tha t  are impor tan t  to the customer 
but  tha t  are not par t  of CAPE-OPEN. 

F l e x i b l e  l i c e n s i n g  m o d e l s  are n e e d e d  

The CAPE-OPEN s tandard  offers the possibility for a wide range of simulation 
components - from easy but  necessary variat ions of s tandard  uni ts  up to complex 
and specialised s imulat ion or solver components. These different components 
should be handled in the same way. The simple ones should be accessible without 
dis turbance of the work process, some components will be often used by a process 
engineer  and should be added to her/his default set of components while others 
will only be used once in a very specialised si tuation.  Some components might 
need calculation power tha t  can be offered by an ASP and do not run in the 
engineer 's  local network. 

The CAPE-OPEN s tandard  offers a flexibility tha t  can be used to realise a huge 
set of different license models for components. The license models in the process 
s imulat ion domain have to be more flexible t han  current  license models for 
software where the use of the software is usually restr icted to a certain time and 
a certain set of individual or concurrent  users. To reflect the different application 
si tuations,  license models are required in which the actual use of the component 
is paid. 
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It is often not suitable to explicitly buy each component, in part icular concerning 
standard components. The component user wants to select the necessary 
component and use it immediately. To support this, components should be 
bundled into groups that  can be bought as a whole. Again it will certainly not be 
useful to create fixed bundles of components-the user should not be forced to buy 
a set of components of which he only needs some. To offer the greatest flexibility, 
negotiations for component bundles should be offered. This should include 
dynamic bundles that  develop during the use of components. Here the customer 
buys a number of components from a given larger set. A number of components 
from this set can be used so that  the customer can choose those components that  
are useful for him/her and skipping those that  are not required. Licensing 
approaches should support these bundles both for static as well as for dynamic 
sets. 

Component  label l ing  ensures  s tandard compl iance  

Before buying or renting a component, the customer has to know that  it is really 
CAPE-OPEN compliant. Should it be otherwise, plug-and-play with such a 
component would not be possible. Additionally, the CAPE-OPEN standard does 
not cover every aspect of process simulators, e.g. performance aspects or 
suitability for a specific COSE. Therefore, the components should be labelled to 
guarantee s tandard compliance and other specific aspects. These labels should 
contain the information whether the component can work in an arbitrary COSE 
and whether the component supports additional features of the COSE that  are 
not part  of the CAPE-OPEN standard. 

Easy and fast dep loyment  of software c o m p o n e n t s  

The deployment of the CAPE-OPEN component in the COSE should work 
without problems. As the standard does not specify how the deployment has to be 
done, this should be incorporated with the COSE and the marketplace. For the 
customer, there should be a way to select the necessary components using a web- 
browser and plug them directly into the COSE in use. Special features of the 
component according to a specific COSE should be considered. 

User support  

User support for customers should be available regarding the standard 
definition. The standard specification documents have to be accessible in an easy 
way and additional documents have to be supplied. These documents are special 
collections containing frequently asked questions and answers (FAQs) and "HOW 
TO"-documents that  explain common tasks that  arise with the standard. 

In addition to buying ready-to-use components from component vendors, some 
companies might want  to develop their own CAPE-OPEN compliant components 
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to incorporate in-house software and knowledge into a COSE. To support this, 
there should be self-training tools and migration guidelines tha t  supplement 
t raining courses and consulting. Other additional services could include online 
process and proper ty  databases or expert forums helping in creating a model for 
a specific process. 

6.5.5.3 R e q u i r e m e n t s  of c o m p o n e n t  vendors  

Until  now we have looked at customers that  buy a CAPE-OPEN component to 
use it with a COSE. Now we take a look at component vendors. Here vendor 
means a software company or operating company as the developer of in-house 
software. A vendor develops CAPE-OPEN compliant components and uses the 
marketplace to offer these components. Here other requirements for the 
marketplace arise: 

Support  for c o m p o n e n t  d e v e l o p m e n t  

As in the case of the customers the marketplace should offer a wide range of 
support for the CAPE-OPEN standard.  The developer should find all necessary 
information for development at the marketp lace- the  marketplace should 
especially be linked with the CO-LaN. 

Make c o m p o n e n t s  avai lable  and find cus tomers  

Small and medium-sized enterprises (SMEs) can use the marketplace to enter 
the market  of CAPE software. Small but specialised companies can use the 
s tandard  to bring their  own expertise to the customer. For example, it has been 
hard  up to now to use a custom tailored model for a unit  within the simulation of 
a whole plant. With CAPE-OPEN, this model can be plugged into the COSE and 
cooperate with the rest of the structural  plant  model. For small companies 
developing such components, it is vital to find customers. A marketplace gives 
the opportunity to do so. 

For SMEs as well as for large software vendors it is vital tha t  the customers find 
the components offered. Therefore a marketplace can make the components and 
data  about them available so that  a customer can search the components 
according to his or her needs. The vendors therefore have to specify information 
about the components that  can be used in a search. 

Large software vendors might be interested to offer their  own marketplace of 
components. Since not even large vendors will offer components for every 
situation, they will be interested to augment  their  own set of components with 
niche products tha t  they cannot/do not want  to offer. Here small and large 
vendors can cooperate to offer a marketplace that  is highly attractive to 
customers. 
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A marketplace can be used not only to offer products but also to find customers 
looking for a specific new component. Combined with the above mentioned broker 
functionality, vendors can be able to find orders for new products that  do not yet 
exist. Again, a detailed negotiation between customer and vendor or between 
broker and vendor is necessary to specify the exact requirements for the 
component. Only if a marketplace actively supports these features, smaller 
software vendors will be able to find new customers. It opens up the market  for 
software companies specialised in developing hand-tailored software in the 
CAPE-domain. 

Additional services 

If the marketplace offers the possibility to test a component as CAPE-OPEN 
compliant, the customer can be sure to buy components with a certain quality. A 
testing facility therefore makes the marketplace more attractive for the 
customer. As we have already seen the CO compliance alone might not be enough 
as a quality indicator. Component labelling according to other quality factors 
such as performance checks and specifications should therefore be available. 

As a marketplace collects a large amount of information about the market  of 
software components the marketplace provider (e.g. a large software vendor) can 
easily and automatically create market  surveys that  can be used to show up the 
potential for new products or the modification of existing products. 

6.5.5.4 R e q u i r e m e n t s  of marketplace provider 

This section will describe the requirements of the marketplace provider. We will 
present the requirements independent of the provider's original role, i.e. the 
marketplace could be provided by a large vendor company, by a consortium of 
users or niche providers, or by an independent organization. 

Firstly, the marketplace has to manage data for various aspects. On the one 
hand, there is static data such as product and company profiles, which will not 
change very often. The marketplace has to provide a coherent and 
understandable data model, so that  search on the profiles is facilitated and the 
results are comparable [27]. For example, the data model for products must  be 
able to represent very different but very specific descriptions of the products. On 
the other hand, dynamic data that  is created during a business transaction must  
also be managed. Dynamic data are, for example, the results of a search, the 
messages exchanged during a negotiation, and the traces recorded during the 
fulfilment. 

To make the marketplace more competitive the marketplace provider has to offer 
additional services. One example are t rust  services that  can be provided by the 
marketplace provider itself or by a trusted third party (TTP) such as a bank, an 
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insurance company, or an umbrel la  organisat ion [9,10,21,22]. The TTP will act as 
the monitor of the marketplace  [29]. The TTP can monitor  the messages, which 
are exchanged between business par tners  during the negotiat ion or fulfilment 
phase [29]. In case of a conflict, the TTP has to provide the da ta  which has been 
recorded for the given business transaction.  This data  can then  be used to resolve 
the conflict. From a technological point of view, the marketp lace  needs, therefore, 
tooffer  interfaces tha t  allow the TTP to monitor a t ransact ion.  

Finally, the marketp lace  provider can take  over a more active role as an 
in termediary  between customers and suppliers of components.  As the provider 
knows what  the customers  are looking for, the provider can provide this 
information about current  user  demands to the vendors. This can also be done in 
the opposite direction, i.e. new products offered by vendors can be advertised to 
potential  customers who have recently been looking for a similar  component. 
These functionalit ies can be supported technically by da ta  mining applications. 
Data  mining is a mechanism to detect pa t t e rns  in large da ta  sets. In this context, 
it can be used to detect repeat ing demands  of customers for similar products. 
Fur thermore ,  the marketplace  provider can support  the customer during the 
negotiation phase by conducting pre-negotiations with potent ia l  suppliers, so tha t  
the customer does not have to deal with many vendors s imultaneously when 
he/she is looking for one component. 

All of the three types of requi rements  can be fulfilled in different ways. Based on 
the requirements ,  we can derive new (future/emerging) business models, which 
are described in the next section. 

6.5.6 BUSINESS  MODELS 

Based on requirements ,  a number  of services can be derived. These services can 
become the basis for various business models. Depending on the type of service 
these business models could be applied by three kinds of companies: component 
vendors, marketplace  owners, or independent  service providers. However, there 
could be intersections between these groups. A marketplace  owner could possibly 
be a completely independent  company. But  it seems more likely that  a large 
software vendor(s) or a user  group would operate such a marketplace.  The same 
holds for the independent  service providers, which could offer their  services to be 
plugged into a marketplace  or to be used directly by the software vendors and 
users. 

6.5.6.1 C o m p o n e n t  d ic t ionar ies  

As we have seen for the requirements  of component users  as well as those of 
suppliers, the most impor tan t  thing is to have a platform for offering and finding 
components. Therefore, the most impor tant  service tha t  has to be offered is a 
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component dictionary, that  includes information about components and its 
vendors. This service will be a par t  of the CO-LaN tha t  will not offer features 
such as advanced search mechanisms. In part icular  the advanced search will be 
the added value of a component dictionary, the complex field of CAPE 
components needs more than  a search based on 5 categories (e.g. vendor, 
operating system, unit  type) to reflect the often fine-grained differences between 
units or mathemat ical  models. 

The business models related to component dictionaries are similar to those of 
internet  search engines: The search engine is an ideal advertising platform or an 
integrated feature to another service. Another option would be to charge fees for 
entering or retrieving component information into the dictionary. Thus it is 
possible to have the dictionary as a stand-alone service or as par t  of a 
marketplace.  While the stand-alone service will have to concentrate on offering a 
most complete list of components, the integrated service will have to support the 
vendors tha t  participate in the marketplace. 

6.5.6.2 A S P  s e r v i c e s  

The ASP can fulfil different roles each of them offering different business models. 
Mostly, an ASP will offer several of activities mentioned here and make its 
money from a combination of the business models presented here [18]. The ASP 
could be a software vendors itself, the marketplace owner or an independent 
provider. 

The ASP may own and mainta in  the software (component) and charge licence 
fees to the users. The charges can be base on various license models depending on 
his relation to the customer. The customer can hold a permanent  licence for 
unlimited access (maybe for a limited time) to the software as the s tandard 
model. More flexible approaches such as pay-per-time, pay-per-use combined 
with a monthly base fee or software bundling are more advanced options. 

The ASP may host the software (i.e. execute it on his machines) and provide 
access via the Internet  or a private network for the customer. Additionally, the 
ASP takes care of maintaining hardware,  software, and other services, e.g. doing 
backups. Depending on the security and availability, the ASP can guarantee the 
customer has to pay a monthly fee. 

The ASP may host and/or own data-related services such as the component 
directory mentioned above or any other kind of online database. Access to such a 
service may be charged on a transaction base or as by monthly fee. A variant  of 
this model would be data push services where the ASP automatically provides 
data to the customer without letting the client explicitly ask for it (e.g. stock 
quotes). Charging models are similar to the lat ter  case. 
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If the ASP has programming competency it can also offer customisation and 
integration services. This means that it is responsible for writing software that 
connects the ASP's server site application with the ones running locally in the 
clients network. 

As the ASP is able collect user data it can use this information to make money by 
selling it (e.g. by using data mining techniques, see below) 

6.5.6.3 Community platform 

A business opportunity that has already been taken up in some of the existing 
marketplaces is that of providing community-building services [32]. Participants 
in a marketplace share similar interests. For example, customers want to buy 
software components for the chemical industry that  adhere to a certain standard 
and quality. By setting up and maintaining such a community platform, the 
marketplace provider can supply services to a large group of users (be it vendors, 
customers, or other participants) with similar demands. The main service is that 
of providing information. In the present context, that could be, for example, 
information about the CO standard, about the participants in the marketplace, 
about specific components, about usage and set-ups of such components. A set of 
frequently asked questions could be provided which prevents the provider from 
having to answer similar questions by different parties while being able to 
broadcast relevant information in an efficient way. The information provider 
could, therefore, enable consulting via such a community platform. Furthermore, 
individual consulting could be offered, targeted at specific groups of participants. 
Access to the community could be restricted by charging a membership fee to all 
companies or individuals wanting to participate thereby generating revenue. 
This model has been applied by various business-to-business marketplaces. 

6.5.6.4 Certification Authority 

One of the key arguments for using software components in combination with an 
software standard such as CAPE-OPEN is that plug-and-play interoperability is 
possible. This facilitates easy and inexpensive integration of third party software 
into the customers system. However, for plug-and-play to work, standard 
compliance of the software components must be ensured. This can be 
accomplished by performing tests for standard compliance on the software and 
granting a label or certificate if the test is successfully passed. 

In the case of CAPE-OPEN, labelling is first performed by the CO-LaN 
organisation but it is planned that this activity will later be performed by other 
companies (e.g. a large software vendor). The business model in this case will be 
to charge a component supplier for performing and evaluating a compliance test 
for the software component. This basic model is already implemented by the CO- 
LaN organization. Additional tests with regard to suitability for running in 
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specific simulators or performance issues may also be included in more advanced 
(and more expensive) test suites. 

For the component vendor, going through these tests will be attractive because 
the label will guarantee a certain level of quality of his software. Additionally, 
the labelling company may maintain a detailed dictionary compliant components 
(see above), which can be seen as marketing ins t rument  for the vendor. The 
certification authority could generate additional revenue by charging the vendor 
for entering his data in a dictionary or by providing certification data to a 
dictionary owner. 

6.5.6.5 Broker  p la t form 

Since the interactions between vendors and customers as described before are not 
direct but take place via a marketplace, an intermediary mediates between the 
parties. This mediating role can be fulfilled by a broker system. Such broker 
system would then support the three phases of a business transaction, namely 
search, negotiate, fulfil [27]. The broker could also play an active role since it 
acquires a large amount of knowledge about the market  exchanges. For example, 
the broker could find out business needs, bundle the requirements and sell this 
information to the vendors. Pre-negotiations could take place about standard 
requests that  could be offered to the customers. Therefore, customers would not 
have to negotiate about all requests themselves with many different vendors. 
Apart from mediating, the broker could also act as a monitor. Conflict resolution 
could be offered to the participants by monitoring the contract fulfilment. 
Traceability can be used as a tool to find out what  happened before, i.e. to see the 
history behind agreements, which is helpful for all participants involved in the 
business interactions [29,31]. Similar to the community platform access fees for 
the broker platform could be charged. Another option would be a transactions 
based fee scheme here based on the value of the business transactions. 

6.5.6.6 Data  m i n i n g  

Another business opportunity is offered by the data gathered at the marketplace. 
It contains valuable information about the behaviour of suppliers and customers 
in the marketplace. New demands or trends can be detected by analysing this 
data. Furthermore,  the credibility of a vendor or a customer can be judged on the 
traces of previous business transactions. For example, a customer could be 
marked as less credible if he/she has often refused to pay for the delivered 
components. On the other hand, the quality of the components of a specific 
vendor may be considered low if customers often complain about them. All this 
information is gathered during the operation of the marketplace in the 
negotiation and fulfilment phases and can be offered to the participants as an 
additional service. Of course, all parties have to agree to allow the collection of 
this kind of information and to present it to the participants of the marketplace. 
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Vendors and customers will certainly agree to it, as not only negative s ta tements  
as given in the examples before can be deduced from the data. Positive 
s t a tements  about the quali ty of a vendor or the credibility of customer can be 
made as well. 

The marketplace  provider can also gather  information about the efficiency of 
specific licence models or negotiation strategies.  The provider as an intermediary 
be tween vendors and customers knows which models are used more frequently 
t h a n  others. The information about the most successful licence models can be 
offered to vendor companies tha t  then  may result  in the change of licence models. 

6.5.7 C O N C L U S I O N  

The discussion in this chapter  shows tha t  t rends in computer-aided process 
engineer ing software are parallel  to t rends in general  IT. This also applies to the 
most recent trend, the one towards opening up global marke ts  through electronic 
business including eMarkets  for CAPE software components to include more 
vendors, and Application Service Providing to enable more customers.  

However, the complexity of CAPE software requires addit ional  steps towards 
making  such innovative and beneficial solutions possible. One of the most crucial 
requirements ,  addressed in our case by the CAPE-OPEN s tandard  and the 
re la ted methods and software tools, is the management ,  method and tool support 
for a broadly accepted and learnable s tandard.  In part icular ,  a global web-based 
service can be developed this way. 

On the solid ground of such a s tandard,  the marketplace  provider can be a 
vendor, a coalition of customers, an independent  organisat ion (e.g. a Trusted 
Third Party), or various combinations of the above. Most important ly for 
continuous innovation, SME's can enter  the marke t  previously dominated by few 
vendors, and the large vendors can offer innovative combinations of their  own 
and of th i rd-par ty  products. In this way, a well-designed eMarket-Place for CAPE 
software can play a critical role in the fast-moving process industr ies  once it has 
gained an initial critical mass to be broadly used and accepted. The Global CAPE 
OPEN consort ium is actively pursuing this avenue. 
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P a r t  VII: C a s e  S t u d i e s  

7.1 Case  s t u d i e s  in design and analysis 
B. Bayer, M. Eggersmann, R. Gani & R. Schneider 

7.2 A p r o t o t y p e  for  o p e n  a n d  d i s t r i b u t e d  s i m u l a t i o n  w i t h  COM and 
CORBA 

V. Siepmann, K.W. Mathisen & T.I. Eikaas 

The chapters of this part present the modern use of CAPE tools and 
architectures on representative process examples. The designers and 
developers of these examples from the Global CAPE Open project have also 
written these chapters. 

Chapter 7.1 (Bayer et al) highlights the need for a number of CAPE 
methods and tools during the lifecycle stages of conceptual process design. 
Two case studies are presented. For each of these case studies, the activity 
model, the workflow and the dataflow are presented, highlighting the need 
for different tools and how they can be used efficiently through appropriate 
interfaces. The two case studies deal with the conceptual design of processes 
for the production of methyl acetate and production of polyamide6. 

Chapter 7.2 (Siepmann et al.) highlights the need for open simulation 
environments with a prototype describing two alternative COM CORBA 
bridges. The prototype highlights, for example, wrapping around an 
external third party software (in this case, a Fluent CFD simulation 
package) for multilevel modelling purposes. 
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Chapter  7.1: Case Studies  in Des ign  & Analys i s  

B. Bayer, M. Eggersmann, R. Gani & R. Schneider 

7.1.1 INTRODUCTION 

The objective of this chapter is to highlight the need for interfaces and standards 
through the description of the activities during the conceptual design stage of the 
process design lifecycle involving the design of two processes. Two case studies 
have been used to highlight this. The case studies do not provide numerical 
results but point out the work-flow and data-flow associated with the solving of 
the conceptual design problems related to these case studies. In this way, the 
reader can get an idea of the need for standard interfaces when solving practical 
design problems. 

The first process (case study)involves conceptual design for the production of 
methyl acetate while the second process (case study) involves the production of 
polyamide-6. Both case studies employ a number of commercial software as well 
as software developed in-house (in academic institutions). More details on these 
software can be found in chapters of parts III, IV and V. 

A description of the various stages of the process design lifecycle is described in 
chapter 2.3. 

7.1.2 CASE STUDY: METHYL ACETATE 

7.1.2.1 Introduction 

Methyl acetate is an ester of some industrial importance. It is used mainly as a 
solvent for fast-drying lacquers and as solvent for cellulose nitrate and other 
cellulose derivatives. In 1985 the yearly production of Methyl Acetate was 17,350 
tons and one production technique is esterification of methanol and acetic acid 
with water as by-product. 

CH3OH + CH3COOH r CHaCOOCH3 + H20 
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The principal side-reaction leads to small amounts of di-methyl Ether (DME) by 
the elimination reaction of two methanol molecules: 

2 CH3OH <:> CH3OCH3 + H20 

Reaction information can be obtained from Kirk-Othmer [1], RSnnback et a/.[2], 
PSpken et al. [3] and Song et a/.[4]. Additional equilibrium mixture data is 
available in the Dortmund database. A search of the literature and in databases 
is necessary to collect all the relevant information. From the literature, at least 
six alternative flowsheets can be found (Siirola [5], Jaksland [6], Pilavachi & 
Sawistowski [7]). Examples of industrially used Mass Separation Agents for 
different separations can be found in Perry et al. [8]. A conventional flowsheet of 
the process is illustrated in Figure 1. In the separation step it involves extractive 
distillation, azeotropic distillation, a decanter and extraction. Based on an 
algorithm using thermodynamic insights Jaksland [6] proposed the alternative 
flowsheet shown in Figure 2 involving only four columns. The analysis involves 
the use of several computer aided tools. A tool is used for mixture analysis to 
identify binary and ternary azeotropes, liquid-liquid phase splits and distillation 
boundaries. Moreover a tool is used for solvent selection using Computer Aided 
Molecular Design (CAMD) technology. Several alternatives have been proposed 
applying both azeotropic, extractive and pressure swing distillation for the 
different separation tasks. 
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Figure 1: Conventional flowsheet for the methyl acetate process, Siirola [5] 
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Figure 2: Alternative flowsheet for methyl acetate production proposed by 
Jaksland [6] 

It is feasible to combine the reaction step and the separation step in a single 
reactive distil lation column. An equilibrium-based reactive distillation column 
can be set up and simulated. It has been possible to obtain approximately 90% 
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pure methyl acetate as a product. When the reactive distillation column is 
combined with a conventional distillation column, high purity methyl acetate 
product can be obtained. The flowsheet in this case is just two distillation 
columns, one reactive and one non-reactive. 

~ ~ ~ MeAc~ 
AcOH 

Catalyst "- 

reaction' 
section : 

iiiiii 

,J section ~ MeAc 
MeOH 

MeOH 

Figure 3: Methyl Acetate produced by reactive distillation 

This case study is chosen for the following reasons: 
�9 Many of the steps involved in the early phase of the conceptual design can 

be highlighted through this case study. 
�9 Esterification processes are of industrial significance. 
�9 This process has been well studied (at least six flowsheets proposed in the 

open literature). 
�9 Kinetic reaction data is available. 
�9 The system has complex physical behaviour (e.g. azeotropic mixtures). 
�9 Several CAPE tools are required for the analysis. 
�9 Both traditional and hybrid separation processes (reactive distillation) are 

involved. 

7.1.2.2 S tages  of the  p roces s  des ign  l i fecycle 

The activities, the scenarios, the data-flow, work-flow and the interface 
requirements for selected stages of the process design lifecycle related to 
conceptual design are highlighted in this section. A detailed description of other 
important stages of the process lifecycle, such as, studies related to operation and 
controllability, safety & hazards, environmental assessment, etc., can be found in 
Bayer et al. [9] 
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Mode l l ing  of  k i n e t i c  reac tor  

The main  activity here is to prepare a kinetic model of a liquid phase reactor, 
which would be needed in process simulation for design and analysis. Figure 4a 
and 4b highlight the sequence of the main activities related to the development of 
a kinetic reactor. 

Chemist 

Kinetic 
analysis 

Obt "ad~kinetic 

Determination ~'~ 
of rate law / 

J 

Modelling expert 

Property 
estimation 

Determination 
of rate law 

Kinetic 
Parameter 
estimation 

Define 
reaction model 

Figure 4a Work-flow for modelling of reaction kinetics 

The start ing point for this activity is the selection of the reaction path. Once the 
reaction pa th  has been selected the kinetics must  be studied. A kinetic analysis 
may be performed in the laboratory to produce kinetic data  or the data might be 
obtained from li terature.  From data and physical insights a suitable rate law is 
determined and through kinetic parameter  est imations the reaction model is 
defined. The reactor model can then be generated, for example, in a modelling 
testbed and used for simulations of the reactor operation. When a suitable model 
has been fixed it can be exported to a process simulator. 

If a reaction model cannot be found in l i terature such a model may be generated 
based on experimental  work. The Chemist needs access to the fundamental  
physical data of the involved compounds. These may be supplied from li terature 
or from the modelling expert. The Chemist plans the experimental  work and 
collects the data in a Spreadsheet  together with date, experimental  conditions, 
batch numbers,  etc. From the behaviour with respect to concentration and 
tempera ture  dependence, models are chosen for fitting the data. The parameters  
in the model are fitted using t h e  experimental  data, i.e. an interface is needed 
between the spreadsheet  (or other data collection program) and the parameter  
est imation tool. 
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Having a kinetic model with fitted parameters we can predict the reaction 
behaviour within certain operational limits. This forms the basis of the reactor 
design. Possible reactor designs are investigated in co-operation with a reactor 
expert who provides the fundamental models for the different reactor types. The 
modelling expert combines the reactor models and the kinetic model (and 
possibly the physical properties model) to generate the reactor model. An 
interface is thus needed between the kinetic parameter estimation tool and the 
reactor modelling tool. 

The reactor model is tested in the modelling tool by the reactor expert. The 
results from different runs should be collected in e.g. a spreadsheet, i.e. the 
modelling should be interfaced with a data collection tool. When the model is 
documented and has been tested and the reactor expert is satisfied with it, it 
should be exported as a GCO compliant unit to a process simulator. The 
modelling tool should therefore be interfaced with a process simulator (see Figure 
4b). Table 1 summarizes the interface between different types of tools that may 
be used development of the kinetic model. 

Modelling expert Reactor expert 

Model reactor -'~ 
Generate 

reactor model 

I 

Export reactor 
model to 
flowsheet 
simulator 

Literature 
search 

Generation of j~ 
alternatives for 

the reaction 

1st 1 investigation CSTR 
Model reactor 1 

Estimation of 
reaction 

product at 
different 

conditions 

Evaluation of 
reactor type 
and operating 

ranges 
I 

Figure 4c Simulation and evaluation of reactor 
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T o o l A  

Excel 

User 

Kinetic parameter 
estimation tool 
User 

Modelling tool 

Modelling tool 

Table 1. Interface between different types of tools 

Tool  B 

Kinetic parameter 
estimation tool 
Kinetic parameter 
estimation tool 
Modelling tool 

Modelling tool 

Spreadsheet 

Process simulator 

A - ) B  

Experimental data 

Kinetic model 

Kinetic model 

Reactor equations 

Results of reactor 
simulation 
Unit model 

B - ) A  

Results of reactor 
simulation 

D e f i n i t i o n  o f  t h e r m o d y n a m i c  m o d e l  

The main activity here is to set up a thermodynamic model, which can predict the 
necessary physical properties of the individual pure components and their 
mixtures. The activity diagram and thesummary of interface requirements are 
highlighted through Figure 5 and Table 2, respectively. 

In order to model the process an  accurate model of the physical behaviours is 
essential. Pure component and mixture properties are taken either from 
literature or experimental data. If l i terature data cannot be found and 
experimental work is constrained by time and/or money, physical properties can 
be estimated using CAPE tools. From an analysis of the process type and 
operating conditions a suitable properties model package can be selected. 
Relevant property model parameters  can be fitted and/or tuned from 
experimental data using a tool for parameter  estimation. 
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gi~n system 

Figure 5. Selection of Thermodynamic Model 

Many pure components are documented in the l i terature and the work will 
therefore start  with a l i terature/database search. If the properties of a compound 
are not known, experimental  work can be planned and performed. Data will often 
be collected in a spreadsheet  together with details of date, batch numbers, 
conditions, etc. The experimental  data can be fitted to the needed correlations 
using a parameter  est imation program. Thus, an interface is needed between the 
spreadsheet  (process model) and the parameter  estimation program. 
Fur thermore  an interface is needed between the parameter  estimation program 
and the compound database. Est imates of pure component properties can be 
obtained by using suitable CAPE tools. An interface is therefore also needed 
between the property prediction tool and the compound database.  

T o o l A  

User 

User 

Table 2: Interface requirements for property prediction tools 

Tool B 

Excel 

TMS 
(Thermodynamic 
Model Selection) 

A - - ) B  

Experimental data 

Compounds 
Mixture composition 
Type of operation 
Temperature and 

B - - ) A  

Suggested 
thermodynamic 
models 
Literature references 
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Tool A 

TMS 

Excel 

User 

TML 

User 

Pr0Pred 

Tool  B 

TML 
(Thermodynamic 
Model Library) 
TML 

TML 

Compound 
database 

ProPred (Pure 
component 

A - ) B  

pressure range 

Choice of properties 
model 

Tables with 
experimental data 
Objective function 
Weights and scaling 
factors 
Parameters to be 
fitted 
Optimisation 
method 
Pure component 
properties 
Mixture interaction 
parameters 
Molecular structure 
Estimation method 

B - - ) A  

Interaction 
parameters 
Residual plots 

Mixture interaction 
parameters 
Vapour pressure 
parameters 
Primary properties 
Secondary properties 

property 
prediction) 

Compound 
database 

Pure component 
properties 

(functions of more 
than one property) 
Functional (functions 
of T and P) 

The next important  step is to describe the properties of the mixture. First of all a 
literature search takes place in order to determine if interaction parameters  are 
already available. If not experimental work needs to be planned and performed. 
A chemist and the properties expert discuss the choice of properties model from 
the knowledge of mixture behaviour and which types of calculations are involved, 
for example, phase diagrams. An expert system can assist in the choice of 
properties model. The model parameters can then be fitted to the experimental 
data using a parameter  estimation tool. An interface between the expert system 
and the parameter  estimation program is useful. Mixture interaction parameters  
are transferred to the compound database, and an interface is also needed for 
this. 

S e l e c t i o n  of  s e p a r a t i o n  s e q u e n c e  

The principal activity here is to determine the separation sequence. The activity 
diagram and the summary of the interface requirements are highlighted through 
Figure 6 and Table 3, respectively. 
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A driving force based technique for process synthesis that determines a near 
optimal separation sequence is determined. First mixture data is calculated from 
a properties model. From this data the driving force (or secondary separation 
efficiency) curves are generated for each adjacent pair of key components at 
uniform pressure. This identifies feasible separation techniques and conditions of 
operation. Mixture data is analysed using ternary phase diagrams and residue 
curves. Scaling factors are applied to penalise non-sharp separations and 
compensate for diluted feed in the driving force curves. New driving force curves 
are calculated and the separation sequence is determined on this background. 

Initial information for the separation expert is the compounds present, an 
appropriate properties model and an estimated pressure throughout the system. 
Necessary data can be generated using information from a compound database 
and a tool for validation of generated process alternatives, for example, a process 
simulator. An interface is required between the compound database and the 
simulation tool. The phase composition data can be transformed into a 
composition driving force diagram. An interface is required between the 
simulation tool and a graphical tool. For many systems ternary phase diagrams 
with residue curves are also generated. An interface is therefore also required to 
transfer compound and property model information from the process simulator to 
this tool. 

The separation expert analyses the composition driving force diagrams and 
ternary phase diagrams in order to determine possible products, phase 
boundaries, ternary azeotropes, feasible separation techniques, feasible 
conditions of operation and evaluates the sizes of composition driving forces. 
From this information the separation sequence (including hybrid separation 
techniques) is determined. Both distillation columns and other unit operations 
can be included. In case of a distillation column sequence, the first column is 
analysed using a tool for Process Design (PDS). From information of compounds, 
property model, pressure, equilibrium data, column feed composition, desired 
product composition, the reflux ratio and the minimum reflux ratio, PDS 
generates scaling factors, determines near optimal feed plate location, generates 
operating lines and estimates the number of stages required. Thus, an interface 
is required between PDS and the process simulator for the validation phase of 
the design. 

The remaining columns in the separation sequence are then investigated in the 
same manner using PDS. When all the columns in the separation sequence have 
been designed, all the design data can be transferred to the process simulator 
through a suitable interface. The separation system is then verified by simulation 
using appropriate process models. 
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Table 3. Interface requirements for sc 

I Tool A Tool S 

.... User ICASSIM (Process 

Compound 
database 

User 

ICASSIM 

User 

PDS 

Simulator) 

ICASSIM 

PDS (Process 
Design Studio) 

PDS 

PDS 

ICASSIM 

Ftware tools for separation process design 

A - - ) B  

Compounds 
Properties model 
Pressure 
Pure component 
properties 
Mixture interaction 
parameters 

Compounds 
Properties model 
Pressure 
Column feed 
composition 
Desired product 
composition 
R / Rmin 

Topology of column 
sequence 
Distillation column 
designs: 
Feed plate location 
Number of stages 
Reflux ratio 

B - - ) A  

Phase composition 
data 
Driving force plots 

Ternary phase 
diagrams 
Azeotropes (binary 
and ternary) 
Heterogeneous liquid 
boiling surface 
Residue curves 
Distillation 
boundaries 
Liquid miscibility 

Feed plate location 
Operating lines 
Estimated number of 
stages 

D e s i g n  of  an e x t r a c t i v e  d i s t i l l a t ion  s y s t e m  

The main activity here is to design an extractive distillation system for 
separation of Methyl Acetate from Methanol. A suitable entrainer also needs to 
be found (selected) and the optimal design of the column system is to be 
determined. Figures 8 a -  8c show the activity diagrams for this step. The 
interfaces between tools are summarized in the Table 4. 

From a mixture analysis a list of candidate entrainers is found. Feasibility is 
checked by binary and ternary mixture analysis. An initial column design is 
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proposed by a distillation design expert and a suitable steady state model for the 
column is determined. The extractive column is first modelled in a steady state 
simulator. An optimisation problem is formulated and the extractive column is 
optimised. Then the solvent regeneration column is added to the simulation and 
the system re-optimised. By using the different candidate entrainers, the most 
suitable entrainer  can be chosen. 

For extractive distillation a suitable solvent is needed. From the problem 
definition and the compounds, which need to be separated, a l i terature study is 
performed by the properties expert to identify already used solvents. A number of 
constraints on physical properties are then formulated, e.g. boiling point range, 
azeotrope behaviour, etc. Constraints can either be formulated in order to find a 
solvent with equivalent properties to an already known solvent or in order to 
fulfil some desired properties, e.g., high selectivity and high solvent power. A list 
of feasible solvents is generated using a Computer Aided Molecular Design 
(CAMD) tool. This list is then screened with respect to availability, health and 
safety aspects, operational aspects and solvent price. From this analysis a list of 
feasible candidate solvents are generated for further analysis. 

The candidate solvents are analysed with respect to their mixture behaviour. 
Binary VLE diagrams are generated for the different combinations of solvents 
and mixture components. Ternary phase diagrams are generated to identify 
binary and ternary azeotropes, liquid-liquid phase splits, distillation boundaries 
and residue curves. An interface is required between the CAMD tool and the 
binary and ternary phase diagram analysis tool. From the analysis of the mixture 
behaviour of the different solvents the most promising candidate solvents are 
chosen. 

The separation objective and the feed flow conditions are used by the distillation 
expert in order to determine column type and approximate column parameters 
(number of plates, feed plate locations) and a start ing point for column 
parameters (reflux ratio, vapour boil-up, etc.). This information is used by the 
simulation and optimisation expert to set up and simulate a steady state column 
model. 
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Figure 8a. Extractive distillation--properties expert 

The simulation and optimisation expert formulates and solves a steady state 
simulation of the extractive column using the information from the distillation 
expert. An interface between the CAMD tool and the process simulator is useful. 
An optimisation problem is formulated, which can include capital cost models, 
utility cost, solvent price and constraints on operation and purities. From 
knowledge of feasible control variables, appropriate optimisation variables can be 
selected. The optimisation is formulated mathemat ical ly  in the optimisation 
solver. An interface between the process simulator and the optimisation solver is 
required in order to include the column model in the optimisation problem. The 
column model operating under 'optimal' conditions is then extended with a 
recovery column, which is used to recycle the solvent back to the extractive 
column. The simulation model is updated and the optimisation problem is 
extended to incorporate the new column. The outcome is a steady state 
simulation model of an extractive distillation system with optimal operating 
conditions. 
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T o o l A  

User 

Table 4. Interface requirements for integrated process design 

Tool  B A --~ B B --~ A 

User 

Process 
simulator 

ProCAMD 

Components 
Reaction models 
Separation models 
Properties model 
Simulation strategy 
Numerical solver 

! Units of measurements 
' Flowsheet topology 
Feed streams 
Unit specifications 

Unit and stream 
summary 
Convergence history 

Functional groups in 
molecule 
Thermodynamic model 
Solute 
Constraints:Normal 
boiling point;Selectivity; 
Solvent power 
Solvent loss 

List of feasible solvents; 
Compound Database 
entry 

ProCAMD Process Feasible solvents 
simulator 

Mixture information 

User 

ProCAMD 

PDS Thermodynamic model 

PDS Feasible solvents 

Ternary phase 
diagrams 
Azeotropes (binary and 
ternary) 
Heterogeneous liquid 
boiling surface 
Residue curves 
Distillation boundaries 
Liquid miscibility 

Compound 
database 

PDS UNIFAC parameters 

Process 
simulator 

PDS Mixture  information 
Pressure 

User SQP (optimiser) Objective function 
Constraints 
Optimisation variables 
Solver settings 
Solution strategy 

Optimal values of 
optimisation variables 
Value of objective 
function 
Values of constraint 
equations 
Lagrange multipliers 
Convergence history 

Process 
simulator 

SQP (optimiser) Unit and stream 
information 

Set points 
Simulation strategy 
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Simulat ion  and opt imisat ion of f l o w s h e e t  

The main  activities here are to set up and simulate a generated process flowsheet 
including the reactor, the separation system and the recycle s t reams and then to 
determine the optimal process conditions through a steady state optimisation. 
See Figure 9 and Table 5 for the activity diagram and the summary  of the 
interface requirements,  respectively. 

A flowsheet topology has been suggested in the process synthesis stage and 
steady state simulation of the process will be performed. The flowsheet is set up 
using GCO compliant models (where these exist) and custom models. When 
steady state behaviour of the flowsheet has been determined we optimise the 
operating parameters  to meet the objective within the given constraints. First we 
need to formulate an appropriate objective function and formalise the process 
constraints.  Next we need to identify appropriate optimisation variables. The 
process can then be formulated in the simulation environment  and optimised 
using a static optimisation algorithm. Finally, the result  of the optimisation 
algorithm can be analysed by doing a sensitivity analysis and by analysing the 
effect of the active constrains (Lagrange multipliers). 

A flowsheet is built in the process simulation environment by the simulation and 
optimisation expert. Steady state simulations are performed to investigate static 
behaviour. An optimisation problem is defined, which can include capital cost 
functions, operating cost functions and revenue functions, plus a number of 
constraints. The optimisation problem is integrated with the simulation problem, 
thus an interface is required between the flowsheet simulator and the optimiser. 
The optimiser will re turn  the optimal set of optimisation variables and the value 
of the objective functions. Fur thermore the Lagrange variables are given for 
sensitivity analysis. 
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Figure 9. Information flows during simulation and optimization 

Table 5. b~terface requirements for process simulation & optimisation 

T o o l A  Tool  B A - - ) B  B - - ) A  

User 

Process 
simulator 
User 

Process 
simulator 

Components 
Reaction models 
Separation models 
Properties model 
Simulation strategy 
Numerical solver 
Units of measurements 
Flowsheet topology 
Feed streams 
Unit specifications 

Unit and stream 
summary 
Convergence history 

SQP (optimiser) 

Optimiser 

Objective function 
Constraints 
Optimisation variables 
Solver settings 
Solution strategy 

Optimal values of 
optimisation variables 
Value of objective 
function 

i 

i Values of constraint 
equations 
Lagrange multipliers 

�9 Convergence history 

Simulation results (state Set-points (controlled 
variables) variables) 

, 
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7.1.3 CASE STUDY: POLYAMIDE6 

7.1.3.1 I n t r o d u c t i o n  

This case study describes the design process of a chemical plant for the 
production of polyamide6 including the polymer compounding and post- 
processing. It focuses on the workflow, the involved people and the used tools 
together with their  interactions. This case study also forms the basis for Chapter 
5.1, where it is employed to demonstrate the use of various mathemat ica l  models 
during process design. 

The design task given in this case study is to produce 40 000 tons polyamide6 per 
year with a given product quality and specification.. Polyamide6 is produced by 
the polymerisation of .-caprolactam. There are two possible reaction 
mechanisms, the hydrolytic and the anionic polymerisation [10]. Since the 
anionic polymerisation is mainly used for special polymers [11], this case study 
looks at the hydrolytic polymerisation, which is also more often applied 
industrially. This polymerisation consists of three single reaction steps: 

Ring opening of --caprolactam: 
C6HI1NO + H20 ~ C6HI3NO 2 

Poly-condensation: 
H[NH - (cH~)~ - c = o]~ o H  + ~ [ u ~  - ( c ~ ) ~  - c = o]o o ~  

H [ N H -  ( C ~ ) ~ -  C = O L .  OH + ~ O 

Poly-addition: 
H[NH-(CH2  ) 5 - C  -- O]nOg -[-C6HI2NO ~ H[NH-(CH2 ) 5 - C  : O]n+l O g  

There are different kinds of reactors that  can be used for the polymerisation: 
sequences of two or more tank reactors or plug flow reactors [12] and a special 
reactor developed for the polyamide6 production, the VK-tube [13]. The polymer 
melt at the outlet of the reactor contains monomer, oligomers and water, which 
need to be removed in order to meet the required product quality. Therefore, a 
separat ion is needed. Two separation mechanisms can be used here: The 
evaporation in a wiped-film-evaporator (WFE) or extraction with water  to remove 
�9 -caprolac tam with a successive drying step [14]. Polymer post-processing is 
done within an extruder: Additives, fillers and fibres are added in order to meet 
the specified product qualities. Within the extruder, an additional polymerisation 
of the melt  and the degassing of volatile components are possible. 

These different alternatives for reaction, separation and extrusion lead to several 
al ternative processes for the polyamide6 production. In Figure 10, a flowsheet of 
one process al ternative is given: the reaction takes place within two reactors; 
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separat ion is done by leaching and drying of polymer pellets. The cleaned pellets 
are re-melted in the ext ruder  so tha t  additives can be added. 

The case study covers the design of the reaction and separa t ion  system as well as 
the extrusion. For all process units, ma themat ica l  models are developed and used 
for s imulat ion within different simulators.  Because the design requires  very 
specific knowledge, each unit  is s tudied in detail  by different experts. 

This case s tudy was chosen for the following reasons: 

�9 The design process covers many steps performed by different roles within 
the conceptual process design phase. 

�9 Computer-aided process engineering for polymer processes is still a novel 
research area  with many  potentials  for improvements .  

�9 Through the integrat ion of the compounding and post-processing 
cooperation between actors from different companies and backgrounds can 
be examined.  

�9 The polyamide6 production is a well s tudied process. 
�9 Numerous  data  on the reaction mechanisms is available. 
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Figure 10. Flowsheet for polyamide6 production. 
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7.1.3.2 Stages  of the process  des ign l i fecycle  

This case study covers mainly the  phases of conceptual process design. Based on 
the design task, the overall structure of the process and the operation mode are 
set. Several design alternatives are synthesized, analysed, and evaluated. 
Finally, decisions for the different process sections are taken and the plant 
concept is set comprising a process description, process flow diagrams together 
with mass and energy balances and data sheets for major units. 

The different stages of this case study from the project s tart  to the decision for a 
plant concept are described in some detail in the following. The focus is set on 
technical activities, roles, used tools, and information flows; management 
activities are mainly unconsidered. This design process is presented in Chapter 
5.1 from a modelling perspective. 

Literature  survey  

Manager 

project 
start 

I 

Literature expert 

literature 
survey 

Figure 11. Literature survey. 

The manager defines the design task; he places a team responsible for the project 
and sets a first project schedule. The first step after this project start  is to gather 
information about the process, which is going to be developed, its underlying 
chemistry, and the occurring components. This is done by a li terature expert (not 
a librarian, but a person with a technical background working on literature 
surveys and research) within a literature survey (see Figure 12). The information 
collected is available to all members of the design team. 

The output information of that  survey is a collection of books, articles, and 
patents. It covers information like: 

�9 Physical properties of the occurring substances: . -caprolactam, water, 
polyamide6, and others; 

�9 existing industrial processes (process flow diagrams); 
�9 reactions and their kinetics; 
�9 occurring side reactions; and 
�9 relation between viscosity and molecular weight. 
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Preliminary flowsheet synthesis 

Based on the results of the literature survey, some preliminary flowsheets are 
created. At this stage of the design process, simple block flow diagram are used. 
For their creation information about the occurring components, reactions 
including stoichiometry, reaction conditions as well as information about the 
product distribution and conversion is needed. This information is part  of the 
results of the l i terature survey. Furthermore, the information about the desired 
production amount and the product quality is needed. Based on that  information, 
the technical project leader creates preliminary flowsheets for the two 
alternatives for the process within a flowsheet editor (FE): one for continuous 
operation mode and one for batch mode (Figure 13). 

The next step in the scenario is the evaluation of these two alternatives. The 
economic potential for both preliminary flowsheets is calculated using a simple 
model based on the actual material  prices, the product distribution within the 
different reactors and the assumption of complete separations, which is 
implemented in EXCEL. A comparison shows tha t  for the required amount of 
40000 t/a the continuous mode is more economic. Fur ther  information that  lead 
to that  decision are heuristics about the pros and cons of batch and continuous 
processes. 

In the following, the reaction and the separation section are studied in parallel by 
a reaction and a separation expert. 

Technical project leader 

~ create I 
preliminary flowsheet 

(cont. mode) 

create preliminary flowsheet (batch mode) 

e te tai ivne~ 
Figure 13. Preliminary flowsheet synthesis. 
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A 

User 

Table 6. Information flows during preliminary flowsheet synthesis. 

B A - ~ B  B - ) A  

Flowsheet editor 

User 

Flowsheet editor 

EXCEL 

EXCEL 

Flowsheets 
(structure, 
elements) 
Flowsheets 
(structure, 
elements) 
Product amount 
Product distribution 
Separation factors 
Material prices 
Model for economic 
potential 

Economic potential 

S y n t h e s i s  of  r e a c t o r  a l t e r n a t i v e s  

The reaction expert  s tar ts  with the generat ion of some possible realizations of the 
polymerisat ion reaction. His activities during this synthesis  step are shown in 
Figure 14. For the generat ion of reasonable a l ternat ives  and their  analysis, the 
he needs some addit ional  information about the hydrolytic polymerisation of 
polyamide6. He formulates a demand for some addit ional  l i terature to the 
l i te ra ture  expert, who performs a corresponding survey (see Figure 4). This 
l i te ra ture  contains the information tha t  there are two principle al ternatives for 
the real izat ion of a polymer reaction [15] and tha t  indust r ia l  polyamide6 
productions are mainly carried out in a sequence of two or more reactors[16]. 

The reaction expert  creates four al ternat ives for the reaction section of the 
pre l iminary  flowsheet using the flowsheet editor: a CSTR, a PFR, and two 
reactor sequences (CSTR-CSTR and CSTR-PFR). The reactor sequence consisting 
of a CSTR and a PFR corresponds to the reaction sequence conducted in a VK- 
tube. The input  information for this activity are the pre l iminary  flowsheet, the 
results  from the reaction l i tera ture  survey and the expert 's  knowledge about 
reaction processes. 

Literature expert 

,,te  Uresu. 
(reaction) 

Reaction expert 

demand for 
additional | 
literature J 

generation of 
alternatives 

for the 
reaction es ma ~176 1  aOon uct 

Figure 14. Synthesis of reactor alternatives. 



615 

The separation expert needs some information about the mater ia l  s t ream at the 
reactor outlet. Therefore, based on the knowledge about occurring components 
and reactions, stoichiometry and conversions (obtained from the two l i terature 
surveys), the reaction expert makes an est imation of the reaction product (stream 
information), so that  the separation expert can star t  working immediately.  

A 

User 

Table 7. Information flows during synthesis of reactor alternatives. 

B A - - ~ B  B - - ~ A  

Flowsheet editor Flowsheets with 4 
reactor 
alternatives 
(structure, 
elements) 

A n a l y s i s  o f  r e a c t o r  a l t e r n a t i v e s  w i t h  o n e  r e a c t o r  

First  simulations only involve one reactor to unders tand the basic effects and to 
compare the different reactor types. The reaction expert s tar ts  with the 
simulation of the CSTR (1 st investigation CSTR, Figure 15) because these 
simulations are easier to realize. For the simulation of the reactor Polymers Plus 
from Aspen Tech is used [17]. The input for specifying the simulation model 
comprises knowledge about the occurring reactions, reaction conditions, and 
kinetic data. Thermodynamic data can be obtained from the Polymers Plus 
properties database; the user adds data for one specific component, the cyclic 
dimer of .-caprolactam, since for this component no data  is available in Polymers 
Plus. The reaction expert makes some assumptions to simplify the calculations 
(reactor volume, neglecting the vapour phase). 

Doing some simulation studies, he tries to meet the given product specification. 
Results are operating conditions for the CSTR, reactor size, s t ream results, some 
graphs obtained from sensitivity analyses and the simulation files themselves. 
Based on the s t ream results, the reaction expert updates the information about 
the reaction product, which builds the basis for the separat ion design. 

As simulations for polymers are not very sophisticated yet, they have to be 
validated by experiments.  When the 1 st investigation of the CSTR is finished, the 
reaction expert contacts the laboratory director to plan some experiments on the 
polymerisation reaction. They discuss which experiments should be performed to 
obtain some information about the polymerisation of . -caprolactam in a CSTR as 
well as a schedule. The laboratory director uses his knowledge about 
experimental  techniques for the characterization of polymers during that  
discussion. These experiments are performed at laboratory-scale and the results 
are passed to the reactor expert. He compares them with the simulations and 
recognizes significant differences. In a discussion with the laboratory director the 
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reaction expert finds out, that it was a mistake during the simulation not to 
consider the vapour phase in the polymerisation reactor. A second investigation 
of the CSTR within Polymers Plus follows. 

i I 

Reaction expert 

1st 
investigation CSTR 

updating I information 
about reaction 

product 

1st ) 6 investigation 
PFR 

discussion of 
experiments CSTR ) 
comparison 1 
experiments/ 
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results CSTR == 

) In Ion 

! 

Figure 15. Analysis of reactor alternatives L 
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In parallel to the experiments with a CSTR, the reaction expert has started with 
the first investigation of the PFR within Polymers Plus based on the results 
obtained from the 1 st investigation of the CSTR (which leads to an "information 
flow" from Polymers Plus to Polymers Plus as given in Table 8). Again, 
thermodynamic data and the given product specification are used. Results are 
operating conditions for the PFR, reactor size, stream results, some graphs 
obtained from sensitivity analysis and the simulation files themselves.  Since the 
reaction expert made the same assumption as in the CSTR simulation (no vapour 
phase), a second investigation of the PFR is also necessary, where the 
experimental  results of the CSTR are taken into consideration. 
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Based on the results of the first investigations of the CSTR and the PFR and the 
experimental  results, the reaction expert performs the 2 ~d investigations. The 
results are new operating conditions for the CSTR and the PFR, respectively, 
reactor sizes, s t ream results, new graphs from sensitivity analyses and modified 
simulation files. 

A 

Table 8. Information flows during analysis of reactor alternatives I. 

Flowsheet editor 

User 

B 

Polymers Plus 

Polymers Plus 

Polymers Plus 

Polymers Plus 

Properties data 
base (e.g. Polymers 
Plus) 
Polymers Plus 

A - - ) B  

Flowsheets 
(structure, 
elements) 
Occurring reactions 
Reaction conditions 
Kinetic data 
Product specification 
Assumptions 

Thermodynamic 
data 

Input and output 
files 

B - ) A  

Operating conditions 
Reactor size 
Stream information 
Graphs (sensitivity 
analyses) 
Input and output 
files 

Input and output  
files 

A n a l y s i s  o f  r e a c t o r  s e q u e n c e s  

Based on the simulations with one reactor, the reaction expert wants  to perform 
some investigations on the two reactor al ternatives consisting of two reactors. 
The investigations of the CSTR and PFR showed, tha t  the molecular weight of 
the polymer depends on the water  content within the reactor. Therefore, a 
separation between the reactors seems to be reasonable in order to a t ta in  the 
desired molecular weight. The reaction expert first discusses possible separations 
with the separat ion expert (see Figure 16). Based on the problem formulation 
(occurring components, operating conditions, separation task) and his knowledge 
about the separat ion of volatiles from polymer melts, the separat ion expert 
thinks that  a separation of the water  from the melt  should be possible by 
flashing. According to tha t  discussion result, the reaction expert creates two new 
flowsheet al ternatives for the reaction in the flowsheet editor with a separation 
between the two reactors in the al ternatives with the CSTR-CSTR and the 
CSTR-PFR sequence. 

He performs some investigations of all reactor sequence al ternatives (CSTR- 
CSTR, CSTR-PFR, CSTR-Sep-CSTR, CSTR-Sep-PFR); he uses his results, 
experiences and the files from the investigations of the CSTR and the PFR. For 
the Polymers Plus model of the separation simple splitter blocks are used as well 
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as a flash model. The results are operating conditions for the CSTRs and the 
PFRs in the sequences,  reactor sizes, stream results, new graphs from sensitivity 
analysis  and new simulat ion files. 

Based on the results of the invest igation of all four reactor alternatives, the 
reaction expert est imates  the costs of each alternative (capital investment  costs 
as well as operating costs) using the ICARUS Process Evaluator [18]. The costs 
obtained from that est imation are major criteria for the decision for one reactor 
alternative.  
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1~ discussion of 
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Figure 16. Analysis of reactor alternatives II. 
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A 

User 

Table 9. Information flows during analysis of reactor alternatives II. 

Flowsheet editor 

User 

Properties data 
base (e.g. Polymers 
Plus) 
Polymers Plus 

Polymers Plus 

B 

Flowsheet Editor 

Polymers Plus 

Polymers Plus 

Polymers Plus 

Polymers Plus 

IPE 

IPE User 

A - ) B  

Flowsheets 
(structure, 
elements) 
Flowsheets 
(structure, 
elements) 
Reaction conditions 
Product specification 

Thermodynamic 
data 

Input and output 
files 
Operating 
conditions 
Reactor sizes 
Output files 

B - ) A  

Operating conditions 
Reactor size 
Stream information 
Graphs (sensitivity 
analyses) 
Input and output 
files 

Input and output 
files 

Costs for 4 reactor 
alternatives 
(operating, capital 
investment) 

Synthes i s  of  separat ion  a l ternat ives  

In order to be able to synthesize and analyse some possible al ternatives for the 
separation of .- caprolactam, oligomers and water  out of the polymer melt, the 
separation expert needs additional information about polyamide6, water, 
monomer and oligomers and their physical properties ( thermodynamic data, 
t ransport  data). He demands some additional l i terature from the l i terature 
expert, who performs a corresponding l i terature survey and submits the results 
back (Figure 17). 
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Figure 17. Separation alternatives. 

Based on the information obtained from the additional l i terature survey and 
general knowledge about separation processes (flashing, evaporation, absorption, 
etc.), the separation expert synthesizes two alternatives for the process step of 
the removal of water, monomer and oligomers from the polymer within the 
prel iminary flowsheet: the evaporation in a wiped-film-evaporator (WFE) and the 
extraction with water  with a successive drying step. 

Table 10. Information 

T o o l A  

User 

Tool  B 

flow during synthesis of separation alternatives. 

A--~B B- -~A 

Flowsheet editor Flowsheets with 2 
separation 
alternatives 
(structure, 
elements) 

A n a l y s i s  of  s e p a r a t i o n  in a WFE 

The separation expert starts  the investigation of the degassing with a simulation 
of tha t  separation alternative using Polymers Plus. As an input  s tream into the 
separation system, he uses the est imated reaction product s t ream from the 
reaction expert; product amount  and quality are constraints he has to regard. 
Since no predefined model for a WFE is available within Polymers Plus, the 
separation expert uses a flash simulation in which mass t ransfer  limitations are 
neglected as a first approximation (1 st investigation degassing; Figure 18). 
Product amount  and quality, thermodynamic data, and the s t ream information 
about the reactor outlet from the reaction expert are the input  data for that  
simulation. After this investigation, the separation expert comes to the end, that  
the flash model within Polymers Plus is not suitable, since the polymer melt is a 
very viscous fluid and the assumption of negligible mass transfer  resistance is 
not tolerable. 
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Figure 18. Analysis of the wiped film evaporator. 

The separation expert discusses with the modelling and simulation expert the 
characteristics of the WFE and the requirements for a model. Based on an agreed 
problem formulation and all required inputs (flowsheet, production amount and 
quality, stream information, thermodynamic data), the modelling and simulation 
expert develops the model within the modelling tool ModKit [19]. From this, he 
generates a model that can be simulated with gPROMS [12]. 

During the first investigation of the degassing the separation expert realizes that 
it is difficult to reach the required purity of the polyamide6. He knows that 
degassing in the polymer extruder is a means to remove a certain content of 
volatiles. Therefore, this option should be considered already during the 
separation study. The separation expert discusses with the polymers processing 



622 

expert, if it is possible to have a combination of the WFE and an extruder in 
which the polymer is degassed. They decide to take this alternative into 
consideration. 

Using the ModKit model and the gPROMS file, the separation expert performs 
the second investigation of the WFE. He obtains simulation information about 
the operating conditions and equipment sizes of the WFE as well as sensitivities' 
The gPROMS model needs to be validated with experiments. The separation 
expert discusses with the laboratory director which experiments should be 
performed to obtain some information ~ about that  specific process step. They 
agree on a schedule; the experiments are performed at laboratory-scale. When 
the results are available, the separation expert compares them with the 
simulations. After a discussion with the laboratory director he adjusts the 
parameters  of the gPROMS model in order to fit them to the experimental 
results. A third investigation of the WFE with the gPROMS model follows. Again, 
the simulation gives information about the WFE (operating conditions, 
equipment sizes); the information about the flow rate coming from the WFE is 
needed by the polymers processing expert. 

Using all operating conditions, equipment data and other simulation results that  
can be obtained from the output files, the separation expert estimates the capital 
investment costs and the operating costs of the wiped film evaporator within the 
ICARUS Process Evaluator. 
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A 

Flowsheet Editor 

User 

Properties data 
base (e.g. 
Polymers Plus) 
Polymers Plus 

Table 12. Information flows during analysis of the WFE. 

B A - - ) B  B - - ) A  

Polymers Plus Flowsheets 
(structure, 
elements) 

Polymers Plus Product amount 
and quality 

Polymers Plus Thermodynamic 
data 

Flowsheet Editor 

User 

Properties data 
base (e.g. 
Polymers Plus) 
ModKit 

User 

gPROMS 

User 

Polymers Plus 

ModKit 

ModKit 

ModKit 

gPROMS 

gPROMS 

IPE 

IPE 

Stream 
information 
reactor outlet 
Flowsheets 
(structure, 
elements) 
Stream 
information 
reactor outlet 
Product amount 
and quality 
Thermodynamic 
data 

Model 
specification 
experimental 
results degassing 

Operating 
conditions 
Equipment data 
Output files 

Model specification 

Costs for WFE 
(capital 
investment, 
operating) 

Operating 
conditions 
Equipment data 
Stream 
information 
Graphs (sensitivity 
analyses) 
Input and output 
files 
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Analysis of separation with leaching 

The separation expert wants to perform a first investigation of the leacher and 
the dryer, but for this alternative of the separation no model is available within 
Polymers Plus. Therefore, the separation expert discusses with the modelling and 
simulation expert the characteristics of the leaching and the requirements for the 
model. Based on an agreed problem formulation and all required inputs 
(flowsheet, production amount and quality, stream information, thermodynamic 
data), the modelling and simulation expert develops the model using the 
modelling tool ModKit. Using this ModKit model, which is described in detail in 
chapter 5.1.6, and the gPROMS file generated from it, the separation expert 
performs the second investigation of the leacher. These simulations bring 
information about the operating conditions and equipment sizes of the extraction. 
The gPROMS model of the leacher needs to be validated with experiments. The 
separation expert discusses with the laboratory director which experiments 
should be performed to obtain some information about that specific process step. 
They agree on a schedule. The experiments are performed at laboratory-scale. 
When the results are available the separation expert compares them with the 
simulation results. After a discussion with the laboratory director, he adjusts the 
parameters of the gPROMS model in order to fit them to the experimental 
results. A third investigation of the leacher with the gPROMS model follows. 
Again, the simulation gives information about the leacher (operating conditions, 
equipment sizes). These results are used for the estimation of capital investment 
costs and operating costs with the ICARUS Process Evaluator (IPE). 
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Figure 19. Analysis of the leacher. 
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Table 13. Information flows 

B A - - ) B  

Flowsheet Editor 

User 

Properties data 
base (e.g. 
Polymers Plus) 
ModKit 

User 

gPROMS 

User 

ModKit 

ModKit 

ModKit 

GPROMS 

GPROMS 

IPE 

IPE 

during analysis of the leacher. 

B - - ) A  

Flowsheets 
(structure, 
elements) 
Stream 
information 
reactor outlet 
Product amount 
and quality 
Thermodynamic 
data 

Model 
specification 
Experimental 
results degassing 

Operating 
conditions 
Equipment data 
Output files 

Model specification 

Operating 
conditions 
Equipment data 
Stream 
information 
Graphs (sensitivity 
analyses) 
Input and output 
files 

Costs for leacher 
(capital 
investment, 
operating) 

Extruder  des ign  

The polymers processing expert starts with extruder design after a discussion 
with the separation expert about the possibility of having a combination of the 
WFE and an extruder in which the polymer is degassed. Therefore, the study of 
the plastics processing parts is performed in parallel to the other studies. 
Conventionally, studies like this are carried out after the design of the reaction 
and separation sections is finished. 
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The polymers processing expert demands additional l i terature regarding 
mater ial  parameters  of polyamide6 in order to be able to do some mater ial  
planning. The l i terature expert performs the corresponding l i terature survey and 
passes the results back. Additionally, the polymers processing expert searches for 
information about additives, fillers and fibres tha t  can be used for polyamide6 
compounding. 

The extruder design starts  with an estimation of the impacts of the extrusion on 
the mater ia l  (e.g. molecular weight) and determinat ion of the necessary amount  
of additives and fibres (19, 22). Based on the flow rate of the polymer melt 
obtained from the WFE simulation, thermodynamic data, and the est imated fibre 
content, the process parameters  of the extruder are calculated and an 
appropriate screw geometry is determined using MOREX, a tool for simulating 
the flow within twin screw extruders based on mathemat ica l  and physical models 
15. Those are the input for the calculation of the degassing performance and for 
the simulation of the extruder with consideration of the degassing leading to 
operation conditions and equipment data for the extruder. 

The results of the calculations need to be validated by experiments within an 
extruder in lab-scale. The required experiments are discussed between the 
polymers processing expert and the laboratory director. The experiments are 
performed. When the experimental  results are available and discussed in order to 
unders tand them and the experimental  conditions under  which they were 
obtained, the polymers processing expert uses them to optimise the extrusion 
process and the screw geometry using MOREX. 
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Figure 2. Extruder design. 
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degassing in 
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extrusion and 

screw 
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Again, a simulation gives information about extruder design (operating 
conditions, extruder data). Based on this information and the output files, the 
polymers processing expert estimates the capital investment costs and the 
operating costs of the extruder. 
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A 

Properties data 
base (e.g. 
Polymers Plus) 
User 

MOREX 

User 

Table 14. b~formation flows during extruder design. 

B 

MOREX 

IPE 

IPE 

MOREX 

A - ) B  

Thermodynamic 
data 

Product amount 
and quality 
Stream 
information 
reactor outlet 
Experimental 
results degassing 
Est. fibre content 
Information about 
additives, ... 
Operating 
conditions 
Extruder data 

B - ) A  

Process parameters 
Operating 
conditions 
Extruder data 
Input and output 
files 

Costs for extruder 
(capital 
investment, 
operating) 

Dec i s i on  for p lant  c o n c e p t  

Technical project leader 

decision for a ~'~ 
plant concept ; 

Reaction expert 

Oeos,on,ora 
plant concept ; 

Separation expert 

decision for a -'~ 
plant concept J 

Figure 20. Decision for plant concept. 

I Polymers processing expert 

~13 decision for a ~ 
T ~ plantc~ J 

The final decisions for the reactor and the separation system are taken by all 
designers together in a meeting where the influences between the different 
process parts can be discussed. All results of the different experts (reaction, 
separation, and polymers processing) need to be considered. The plant concept 
comprises a process description of that process which will be investigated in more 
detail in the following phases of the design lifecycle. PFD and pre-P&ID together 
with mass and energy balances and data sheets for major units are the main 
results and output of this case study (Figure 20). 
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7.1.4 DISCUSSION AND CONCLUSIONS 

Two case studies for design processes in chemical engineering have been 
presented. In the Methyl Acetate case study a process is designed for a basic 
chemical intermediate  by looking at major process steps in reaction and 
separation in detail and by including elements of the basic engineering phase 
such as cost estimation, safety and environmental  studies. The scope of the 
Polyamide6 is the process chain from the monomer, i.e. a chemical intermediate, 
to the final customer product. The process design takes place in different 
departments;  this leads to a high number  of interactions and dependencies 
between co-workers highlighting the workflow. 

Therefore, the two case studies complement each other in the way that  the 
Methyl Acetate study has a higher emphasis  on the use of many smaller 
specialized tools in specific parts of the conceptual design and detailed 
engineering phase, whereas the Polyamide6 study describes in more details the 
overall workflow in the conceptual design phase and focuses on the use of larger 
more generalized tools. 

Process design involves the application of different design approaches that  
require different methods and tools. Process design can simply be a scale-up of a 
laboratory experiment, supported by the use of heuristics, design equation, 
shortcuts and/or graphical methods. On the other hand, in model-based design 
mathemat ica l  models are used at different levels of detail for prediction of 
process and plant  behaviour during various stages of the process lifecycle 18. 
Within most real design processes these two approaches are combined. Both case 
studies rely heavily on the use of models. 

From case studies like this, it is possible to derive several conclusions, for 
example, needs for tool support; needs for interfaces can be identified from the 
information flows between tools; dependencies between different activities may 
imply possible changes and improvements in the workflow such as better 
communication between the designers; and, bottlenecks and weaknesses in 
existing design processes can be also identified. This discussion focuses 
exemplarily on the need and identification of tool interfaces. 

[ Lr to I 

Figure 21. Classes of tools and their interactions. 
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During a design process different alternatives are synthesized and analysed. 
Based on the analysis one design alternative is chosen. It is possible to identify a 
structure among the methods and tools used in the design phase and can be 
broadly classified as shown in Figure 21. 

Tools for analysis tools are used for evaluation of the chemical process of interest 
or parts of it under different scenarios, such as physical-chemical behaviour, 
safety, environmental, or economic consideration. Within analysis tools different 
kinds of models at various levels of detail and granulari ty are used and solved. 

Example for analysis tools are all kinds of process simulators, tools used for 
parameter  estimation, analysis of physical behaviour, analysis of the safety or 
economic potential of some design alternative, etc.. Repositories, where all kind of 
information and data is collected and stored, like physical property databases, 
model libraries, and design databases. 

Examples of synthesis tools are tools for solvent design, flowsheet design, 
modelling, etc.. This classification of synthesis and analysis corresponds to the 
structure of the design process where synthesis and analysis activities are 
performed: several design alternatives are synthesized and analysed regarding 
different scenarios. Based on the results of this analysis, the designers choose one 
(or a small number of) design alternatives, which are considered for further 
investigation. The repositories are needed for storing the information. 

The data handled in the different tool classes depend on each other: data that  are 
created or changed within one tool is needed in another tool or has an influence 
on the data created there. A summary of information that  needs to be exchanged 
between the different tool classes is given in Table 15. It was obtained from 
abstracting the data flows between the actual tools within the two case studies 
presented in this chapter. Thus, this table does not give a complete overview of 
all possible information flows occurring between different tool classes, but it gives 
a good impression of needed tool interfaces. 
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T o o l  c l a s s  A 

Table 15. b~formation exchange between tool classes in the two case studies. 

Tool class B A --~ B B --~ A 

Analysis 

Analysis 

Analysis 

Repositories 

Repositories 

Analysis 

Repositories 

Synthesis 

Flowsheets 
Mathematical 
models 
Kinetic reaction 
model 
Property model 
information 
Design specification 
Process parameters 
Simulation results 
Equipment data 
Stream information 

Synthesis 

Repositories 

Synthesis 

Synthesis 

Energy 
requirements 

Model information 
Impact factors 

Component 
properties 
Thermodynamic 
data 
Flowsheets 

Experimental data 
Component 
properties 
Thermodynamic data 
Impact factors 
Flowsheets 
Equipment data 
Process parameters 
Unit models 
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Chapter  7.2: A Prototype  for Open and Dis tr ibuted  
S imulat ion  with COM and CORBA 

V. Siepmann, K.W. Mathisen & T.I. Eikaas 

7.2.1 INTRODUCTION 

The main part  of this work was done as part of the Global CAPE Open project 
[1, 2, 3] where open standards for process modelling components (PMC) have 
been developed and integrated in process modelling environments (PME). 
Main PMC's include unit operation, thermodynamics and solvers and main 
CAPE Open compliant PME's include AspenPlus [1], Hysys [9] and gPROMS 
[12], see chapter 4.4 for more details. A CAPE Open PME can also be 
abbreviated COSE (CAPE Open Simulation Environment). 

In order to really develop open simulation environments it is important  to be 
able to integrate Windows COM [5] modules and software components on 
other platforms, e.g. Unix based on CORBA [4]. Windows is the dominating 
operating systems for CAPE Open PME. To establish communication 
between PME in COM and PMC in CORBA, some sort of a bridging module 
has to be developed. Furthermore a standard or procedure for developing 
CAPE Open CORBA PMC must be defined. 

This prototype describes two alternative COM CORBA bridges, one developed 
in C++ [8, 15], and one in Python [7,13, 14]. Secondly, two alternative 
CORBA unit modules are described, both based on a CORBA C++ Unit 
skeleton. One is a in-house unit model typically used for proprietary unit 
operations and the other is a wrapping around another third party CAPE 
application such as a Fluent CFD simulation. For these reasons a prototype 
exploiting the Cape-Open interfaces for PMC in CORBA was developed. This 
technology is available on most widely used platforms, e.g. Windows, Linux, 
Unix, Solaris, Free-BSD, open-VMS, and it is especially suitable for 
heterogeneous setups. 
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7.2.2 S O F T W A R E  A R C H I T E C T U R E  

7.2.2.1 O v e r v i e w  

An overview of software components for the prototype is shown in Figure 1. 

Figure I Software architecture overview 

The modules running on Windows are shown in the upper part  of the figure 
(above the dashed line). These are either developed in C++ (using Visual C++) 
or Python (using ActivePython,[2]). The modules that  are not required to be 
running on Windows platforms are shown in the lower part of the figure. The 
modules to the left are used when wrapping a third party module or 
application, in this case a Fluent CFD simulation. One could also use the 
CORBA C++ unit skeleton to implement standalone unit modules. Finally is 
possible to develop miscellaneous CORBA units in other programming 
languages. 

However, it was experienced that  it can be quite difficult to develop COM- 
CORBA bridges in C++, and an alternative approach is to use Python. Python 
is a high level programming supporting both COM and CORBA technologies 
satisfactory in one single distribution. The Python approach includes (see 
Figure 1) a COM CAPE Open Unit Operation skeleton in Python and a 
bridge instantiation created by wrapping a CORBA CAPE Open Unit 
Operation server. The first step of this approach makes it possible to include 
a CapeML unit operation. CapeML is XML-based [16] and tailor-made for 
process modeling tasks. 
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Note that  there are different types of module connections in Figure 1. Some 
connections (i.e., blue and cyan ones) are based on the CAPE Open standards 
while red connections mean that the connected modules run in the same 
process. 

7.2.2 Sof tware  D e v e l o p m e n t  E n v i r o n m e n t  

The prototype is developed on Redhat Linux 7.0 and SuSE Linux 7.1 using 
gcc 2.95, and Windows NT 4.0 Servicepack 6. Coding has been done with the 
aid of Visual C++ 6.0 [15] and ActivePython [13]. Workspace definitions for 
Visual C++ 6.0 and GNU-style makefiles exist for the CORBA unit skeleton. 
The unit skeleton is represented by a pair of static / dynamic libraries for use 
on UNIX-like platforms. For compatibility reasons, only a static library is 
provided for Windows platforms. OmniORB v3.0.2 [11] is used as the object 
request broker, since it supplies high performance CORBA 2.3 [4] compliant 
code. 

7.2.2.3 P r oc e s s  Mode l l ing  E n v i r o n m e n t  

The Process Modelling Environment (PME) must be a CAPE Open 
Simulation Environment (COSE). Possible COSE's include AspenPlus, Hysys 
and gPROMS. For further details on COSE's, please see chapters 3.3 and 4.4. 

7.2.2.4 COM-CORBA C++ Bridge  

In order to connect CORBA CAPE Open unit operations to currently 
available simulation environments, a bridging tool is necessary. This tool 
converts the COM-calls from the executive to CORBA-calls to the external 
unit operation and, the other way, converts CORBA-calls from the external 
unit operation to compatible COM-calls to the appropriate modules located 
inside the simulation executive. Note that  the described module is not a 
general COM-CORBA bridge, but specific for CAPE Open unit operations. It 
could be possible to split the bridge in two related modules, the first one 
being a COM Unit skeleton and the second the actual bridge implementation. 
Such a split is proposed for the Python realisation and there are historical 
reasons only for not splitting in the same way for the C++ implementation. 

7.2.2.5 CORBA C++ Unit  Ske l e ton  

The CORBA unit operation skeleton in C++ enables programmers with little 
knowledge on CORBA and CAPE Open to develop a new CAPE Open 
compliant unit model or wrap an existing unit model so that  it becomes 
CAPE Open compliant. This wrapping technique can be extended so that  
existing FORTRAN unit models can be made CAPE Open compliant. 
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In summary,  the main  requirements  for the CORBA C++ unit  operation 
skeleton are: 

�9 It  mus t  provide an easy to use C++ unit  operat ion framework hiding 
CORBA from the implementing programmer.  

�9 It  mus t  cover most  possible facilities available through the CAPE Open 
specifications. 

�9 There must  be a simple way to define paramete rs  and ports as well as 
to access those. 

�9 The software architecture should be flexible to allow non-standard 
implementat ions .  

Figure 2 shows how the unit  skeleton works in a CAPE Open context. 

Figure 2 Illustration of history of process design 

The skeleton provides an implementat ion of the CORBA CAPE Open 
interfaces, which is used by the COM-CORBA bridge to supply a PME with 
implementat ions  of the COM CAPE Open interface. At the same time, it 
supports generic facilities to the specific unit  operation, including a generic 
unit  report  and helper functions to create and access parameters  and ports. 
These facilities allow the implement ing programmer  of a specific unit  
operation to concentrate on the code for initialising, calculating and 
te rmina t ing  a unit  operation. Basically these features are all to be provided 
from the specific implementa t ion to the skeleton. 

To avoid unnecessary effort and loss of performance and information through 
the skeleton, most interfaces are directly implemented one to one as classes. 
Inheri tance relations of interfaces are therefore reflected by corresponding 
inheri tances of the implement ing classes. Figure 3 shows this at the example 
of the ICapeUnitReport interface. 
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Figure 3 Illustration of the general design to implement Cape Open IDL 
interfaces in C++ 

In some cases, addit ional  classes are introduced. Fur the rmore ,  the abstract  
class GCOCorbaUnit, which directly implements  ICapeUnit, is equipped with 
C++ in ternal  methods described as generic facilities above. The abst ract  
methods InitializeO and ComputeO have to be implemented  by a sub-class, 
while TerminateO, RestoreO and SaveO are defined v i r tua l  and provide by 
default  an empty implementat ion.  Hence, they can be over- implemented on 
demand.  For future versions, default  persistence facilities might  be needed, 
e.g. saving the uni t  pa rame te r s  in an XML file. - .... 

7.2.2.6 F l u e n t  C++ U n i t  M o d u l e  

This module is a specific implementa t ion  of the CORBA C++ Uni t  Skeleton. 
In order to operate as in tended methods for initialising, calculat ing and 
t e rmina t ing  the uni t  operation mus t  be included. Dur ing  ini t ial isat ion ports 
and pa ramete r s  are declared and some addit ional  resources are allocated. 
The communicat ion to F luent  via the IO-Communicator  is ini t ial ised and 
validated.  

During calculation messages from PME via the bridge is sent  to F luent  and 
back. Fi rs t  the input  port  data  is read, in te rpre ted  and converted to F luent  
surface definition commands.  Typically the input  port  da ta  represents  
mate r ia l  s t ream vectors, e.g. in T, p, x and Ntotal coordinates. Second the 
surface definitions are sent  to F luent  via the IO-communicator .  Third the 
F luen t  calculation is invoked. Finally, when the F luen t  resul ts  are available 
the surface data  for the output  ports are converted to s t r eam vectors and 
saved. The run  is t e rmina ted  by closing the connection to Fluent .  Resources 
allocated during ini t ial isat ion are freed. 

7.2.2.7 I O - C o m m u n i c a t o r  

This module is a C++ class tha t  is compiled into the F luen t  C++ uni t  module. 
I t  is capable of s ta r t ing  a process and handl ing the s t anda rd  input,  output  
and error  channels.  
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7 .2 .2 .8  F l u e n t  

The F luent  module can be any F luen t  s imulat ion case, from one small  piece 
of process equipment  to a complicated set of process uni ts  or even plant  
sections. The F luen t  case (instance) is built  up using the Fluent  built-in 
graphical  capabilities, but  during run-t ime the F luen t  is called, s tar ted  and 
run  from the PME. With other words F luent  is run  a batch mode. Only the 
min imum set of commands to manage  a F luent  s imulat ion case can be used 
at this stage. On a longer term the following capabili t ies is desired: 

�9 Defining and reading boundary  conditions; 
�9 Obtaining different kinds of mean values for quant i t ies  on the surfaces 

(boundaries); 
�9 (Re-) Ini t ia l isat ion of quant i t ies  in the s imulat ion space. 
�9 Perform s teady-s ta te  i terat ions on the problem and check convergence; 
�9 In tegra t ing  a defined time interval  in a dynamic context 

The last  i tem emphasises  tha t  it is desired to extend the scope of the current  
CAPE-OPEN interfaces to enable dynamic s imulat ions in a dynamic-modular  
context. 

7 .2 .2 .9  M i s c e l l a n e o u s  C++ U n i t  M o d u l e s  

The CORBA unit  operation skeleton in C++ can also be used to develop a 
general  CAPE Open Unit  module. Unit  is one of the main process modeling 
components (PMC) in the CAPE Open s tandard.  However, most active 
par t ic ipants  in the CAPE Open work have focused on developing COM, not 
CORBA based uni t  modules. Experiences on developing CAPE Open units in 
CORBA have been gained by developing a model of a heat ing tank. This 
module can run  on a separate  machine from the PME and the rest  of the 
s imulat ion modules, and i l lustrates  how (geographically) distr ibuted 
s imulat ion capabilit ies are built-in when using CORBA. 

7 .2 .2 .10  M i s c e l l a n e o u s  C O R B A  U n i t s  

The main  purpose of this hybrid  (COM and CORBA) prototype is to 
demonst ra te  open simulat ion as facili tated by the CAPE Open standards.  
Our  main  approach is to use C++ in the prototype development.  However, the 
CAPE Open s t anda rd  is independent  of the p rogramming  language. This 
means  tha t  s tandalone units based on CORBA tha t  follows the CAPE Open 
s tandards  can be implemented in a number  of different programming 
languages,  e.g. JAVA, can be used. 
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7.2.2.11 Py thon  COM Unit  Ske l e ton  

The Python COM unit skeleton is developed by defining a Python class with 
the required CAPE Open interface methods and parameters. The methods 
and parameters have been described earlier in the C++ implementation. They 
have also been presented in chapter 4.1 where a COM implementation of the 
CAPE Open Unit interface standard is described. 

7.2.2.12 Py thon  Bridge  Module  

The Python Bridge module converts the COM calls to the appropriate 
CORBA syntax. 

7.2.2.13 Misce l laneous  Python  Units  

The proposed architecture may also be used to include COM CAPE Open 
units developed in Python. The Python COM unit skeleton will hide many 
technical details and make the development possible without expert's skill on 
COM programming. 

7.2.2.14 Python  CapeML Unit  

A very interesting capability of the prototype architecture is that it is possible 
to include units specified in CapeML. CapeML is an extension of XML and 
designed for process modeling tasks 
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G l o s s a r y  of  T e r m s  I 

ACL 
ACSL 
AD 
AIC 
ANS 
API 

Architecture 

ARM 
ASP 
AspenPlus 
Batch process 

BDF 
BFD 
BLAS 

BPI 
C# 

C++ 

CAMD 
CAPE 
CapeML.Model 
CAS Number 

CGI 

Agent Communication Languages (see chapter 6.1) 
Advanced Continuous Simulation Language 
Automatic differentiation 
Akaike Information Criterion (see chapter 3.4) 
Agent Name Server 
Abbreviation of application program interface, a set of routines, protocols, and 
tools for building software applications. A good API makes it easier to develop a 
program by providing all the building blocks. A programmer puts the blocks 
together. (w) 
Defines how a computer program is broken down into its constituent parts. In the 
domain of OO applications, these parts are software components or objects. (c) 
Application Resource Model 
Application Service Provider 
Aspen-Commercial process simulation package (http://www.aspentech.com) 
By definition, a batch process occurs in a finite time span, having an initial start 
condition, a path of transformation (usually involving material and energy 
transfers) and a final state. This is a definition based on type of processing and 
does not necessarily reveal the classification of the product itself. 
Backward differentiation formula (see chapter 3.2) 
Block Flow Diagram 
Basic linear algebra subroutine l ibrary- A collection of FORTRAN subroutines 
and functions for performing basic linear algebra tasks 
Business Process Improvement (see chapter 6.5) 
A hybrid of C and C++, it is Microsoft's newest programming language developed 
to compete with Sun's Java language. C# is an object-oriented programming 
language used with XML -based Web services on the .NET platform and designed 
for improving productivity in the development of Web applications.(w) 
A high-level programming language developed by Bjarne Stroustrup at Bell Labs. 
C++ adds object-oriented features to its predecessor, C. C++ is one of the most 
popular programming language for graphical applications, such as those that run in 
Windows and Macintosh environments. (w) 
Computer Aided Molecular Design 
Computer Aided Process Engineering 
See chapter 3.1 
Chemical Abstracts Service has a Chemical Abstracts Registry Number (CAS- 
number) for known chemicals. 
CGI: Abbreviation of Common Gateway Interface, a specification for transferring 
information between a World Wide Web server and a CGI program. A CGI 
program is any program designed to accept and return data that conforms to the 
CGI specification. The program could be written in any programming language, 
including C, Perl, Java, or Visual Basic. CGI programs are the most common way 

l 
Definitions in this annex are borrowed from websites with minor rewriting or simplifications. The sources are indicated: (w) for 

www.pcwebopedia.com, an online computer dictionary for intemet terms, (o) for www.omg.org, OMG's web site. (m) for Microsoff's web 
site, www.microsoft.com, (c) for www.colan.org, the CAPE-OPEN Laboratories network website. 
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CO-LaN 

COM/DCOM/C 
OM+ 

CO 
COPS 
CORBA 

COSE 
DAE 
Data 
Reconciliation 
DCS 
DIPPR 
DO 

DSL 
DTD 
Dynamic 
simulation 
EAI 

for Web servers to interact dynamically with users. Many HTML pages that 
contain forms, for example, use a CGI program to process the form's data once it's 
submitted. (w) 
CAPE-OPEN Laboratories Network (CO-LaN), a not-for-profit user-driven 
organisation for the testing and management of the CAPE-OPEN standard. 
Abbreviation of Component Object Model, a model for binary code developed by 
Microsoft for its implementation of middleware. COM enables programmers to 
develop objects that can be accessed by any COM-compliant application. COM+ 
builds on COM's integrated services and features, making it easier for developers 
to create and use software components in any language, using any tool. (m) & (c) 
CAPE OPEN project (see chapter 4.4) 
Context Oriented Process Support System 
Short for Common Object Request Broker Architecture, an architecture that 
enables pieces of programs, called objects, to communicate with one another 
regardless of what programming language they were written in or what operating 
system they're running on. CORBA was developed by an industry consortium 
known as the Object Management Group (OMG). (w) 
CAPE OPEN Simulation Executive 
Differential - Algebraic Equations 
Data reconciliation is a minimization of measurement errors subject to satisfying 
the constraints of the process model 
Distributed Control System 
Design Institute for Physical Properties 
Dynamic Optimisation. Nonlinear algebraic objective function with possible 
integral terms. Nonlinear differential and algebraic constraints. All variables are 
continuous valued. 

Domain oriented Domain-oriented (process) modelling languages provide modelling concepts, 
language which correspond to domain-specific concepts. 

Digital Subscriber Line 
Document Type Definition 
Dynamic simulation defines the behaviour of a process over time. (c) 

EJB 

EPC 
ERP 
ESO 
EVM 
Flowsheet 

GAMS 
GCO 
Generic 

Acronym for enterprise application integration. EAI is the unrestricted sharing of 
data and business processes throughout the networked applications or data sources 
in an organization. (w) 
EJB: short for Enterprise JavaBeans,(EJB) is a Java API developed by Sun 
Microsystems that defines a component architecture for multi-tier client/server 
systems. EJB systems allow developers to focus on the actual business architecture 
of the model, rather than worry about endless amounts of programming and coding 
needed to connect all the working parts. This task is left to EJB server vendors. 
Developers just design (or purchase) the needed EJB components and arrange 
them on the server.(w) 
Engineering Procurement and Construction 
Enterprise Resource Planning 
Equation Set Object 
Errors in Variables Measured (see chapter 3.4) 
A symbolic representation of process: a set of simulation blocks with connections. 
(c) 
General Algebraic Modelling System 
Global CAPE OPEN project (see chapter 4.4) 
Generic modelling languages are those that do not provide domain-specific 
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Language 
gProms 
GRID 
computing 

GUI 

HLS 

HTML 

HYSYS 
ICAS 
IDL 

IIOP 

Interface 

IRK 
IT 
J2EE 

Java 

Javascript 

concepts but concentrate on a mathematical (or systems) level. 
Commercial process simulation package (http://www.psenterprise.com) 
The growing popularity of the Internet along with the availability of powerful 
computers and high-speed networks as low-cost commodity components are 
changing the way we do computing. These new technologies enable the clustering 
of a wide variety of geographically distributed resources, such as supercomputers, 
storage systems, data sources, and special devices, that can then be used as a 
unified resource and thus form what are popularly known as "Computational 
Grids". A Grid is analogous to the electrical power grid and aims to couple 
distributed resources and offer consistent and inexpensive access to resources 
irrespective of their physical location. 
Graphical User Interface. A program interface that takes advantage of the 
computer's graphics capabilities to make the program easier to use. Well-designed 
graphical user interfaces can free the user from learning complex command 
languages. (w) 
Harwell subroutine l ibrary-  a large collection of FORTRAN subroutines for 
performing tasks from linear sparse algebra to nonlinear optimisation 
HyperText Markup Language, the authoring language used to create documents on 
the World Wide Web. HTML is similar to SGML, although it is not a strict subset. 
HTML defines the structure and layout of a Web document by using a variety of 
tags and attributes. (w) 
Commercial process simulation package (http://www.hyprotech.com) 
Integrated Computer Aided System (http://www.capec.kt.dtu.dk) 
Interface Definition Language. IDL is used to formally define the interface of a 
Software Component. It is programming language neutral, but its syntax is very 
similar to C. (c) 
Internet Inter-ORB Protocol, a protocol developed by the Object Management 
Group (OMG) to implement CORBA solutions over the World Wide Web. IIOP 
enables browsers and servers to exchange integers, arrays, and more complex 
objects. (w) 
An interface represents a communication gateway to an implementation of the 
functionality of a class or Software Component. It does not imply an 
implementation, but defines what the implementation provides. A Software 
Component may employ several interfaces, which act as different aspects or ways 
of working with the component. Multiple interfaces are used to group together 
levels or kinds of functionality.(c) 
Implicit Runge-Kutta method (see chapter 3.2) 
Information Technology 
Java 2 Platform Enterprise Edition. J2EE is a platform-independent, Java-centric 
environment from Sun for developing, building and deploying Web-based 
enterprise applications online. The J2EE platform consists of a set of services, 
APIs, and protocols that provide the functionality for developing multitiered, Web- 
based applications.(w) 
A high-level programming language developed by Sun Microsystems. Java was 
designed to take advantage of the World Wide Web. Java is an object-oriented 
language similar to C++, but simplified to eliminate language features that cause 
common programming errors. (w) 
A scripting language developed by Netscape to enable Web authors to design 
interactive sites. Although it shares many of the features and structures of the full 
Java language, it was developed independently. Javascript can interact with HTML 
source code, enabling Web authors to spice up their sites with dynamic content. 
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KQML 
Lifecycle 
process 
modelling 
Linux 

LP 

MathML 
Middleware 

MIDO 

MILP 

MINLP 

ModDev 
MODEL.LA 
Modelica 

ModKit 
MOM 
MoT 
MPC 
NET 

NLP 

Object 

(w) 
Knowledge Query Manipulation Language 
Where not only the different facets of process models (in the sense of data) are 
considered, but also their relationships and their evolution in the sense of a work 
process. 
A freely-distributable open source implementation of UNIX that runs on a number 
of hardware platforms, including Intel and Motorola microprocessors. It was 
developed mainly by Linus Torvalds. Because it's free, and because it runs on 
many platforms, including PCs, Macintoshes and Amigas, Linux has become 
extremely popular over the last couple years. (w) 
Linear Program. Linear algebraic objective function and constraints. All variables 
are continuous valued. 
MathML (see chapter 3.1) 
Middleware provides a mechanism for communication between separately 
compiled and linked Software Components that can be written in different 
programming languages and run on different processors and platforms. It thus 
provides a means of communicating between Software Components prepared by 
different authors and organizations. Middleware provides binary level standards to 
permit this communication. It allows software systems to be assembled from well- 
tested, independently developed, Software Components obtained from a variety of 
sources. (c) 
Mixed integer dynamic optimisation. Nonlinbear algebraic objective function with 
possible integral terms. Nonlinear differential and algebraic constraints. Both 
discrete and continuous valued variables 
Mixed integer linear program. Linear algebraic objective function and constraints. 
Both discrete and continuous valued variables. 
Mixed integer nonlinear program. Nonlinear algebraic objective function and 
constraints. Both discrete and continuous valued variables 
A computer aided tool for model generation (see chapter 3.1) 
A computer aided modelling tool (see chapter 3.1) 
Modelica: Modelica is the result of a standardisation effort in domain-independent 
(also called multi-domain) modelling languages, which aims at providing a 
standard language that is based on object-oriented concepts to simplify model 
development and reuse. 
See MODEL.LA (see chapter 3.1) 
Message oriented middleware 
Computer aided modelling tool-box (see chapter 3.1) 
Model predictive control 
A Microsoft operating system platform that incorporates applications, a suite of 
tools and services and a change in the infrastructure of the company's Web 
strategy. The objective of .NET is to bring users into the next generation of the 
Internet by conquering the deficiencies of the first generation and giving users a 
more enriched experience in using the Web for both personal and business 
applications. (w) 
Nonlinear Program. Nonlinear algebraic objective function and constraints. All 
variables are continuous valued 
An object is a software entity, which combines both properties (data or variables) 
and methods (procedures). Objects are created from an abstraction called a class. 
One can have many objects of the same class or type, each representing different 
instances (for example, several different distillation columns within a simulation). 
The term encapsulation is commonly used with objects. It means that the an 
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Object 
Orientation 

Object Oriented 
Languages 

ODE 
OMG 

ORB 
OTS 
Parameter 
Estimation 
PDAE 
PFD 
P&ID 
PlantData 
XML 

PMC 
PME 
POSC 
PPDB 
PRO-II 
Programming 
language 
PSE 
PUP 
RTO 
Sequential/ 
Modular 
Approach 
Simulation 
Simultaneous 
Solution or 
Equation 
oriented 
Simultaneous/ 

object's internal properties and methods are not visible except in the controlled 
way that is defined by the class interface. (c) 
Object Orientation (OO) is a way of building software based on objects and the 
relationships between them. Objects have defined behaviours and states. Objects 
are defined by classes that can be grouped hierarchically. OO promotes efficient 
code re-use and creating programs that are easier to read. Key attributes of an 
object-oriented language are encapsulation, inheritance and polymorphism. These 
benefits are provided through a class structure, which is a feature central to all OO- 
languages. It is claimed that OO handles complexity better because it provides a 
more natural correspondence between the software and real-world entities. (c) 
Object-Oriented languages provide classes, and mechanisms of inheritance and 
polymorphism. The OO languages include C++, Java, Smalltalk, C# and others. 
Visual Basic is often included because it supports most OO concepts and is widely 
used for business and engineering applications. (c) 
Ordinary Differential Equations 
Object Management Group, a consortium with a membership of more than 700 
companies. The organization's goal is to provide a common framework for 
developing applications using object-oriented programming techniques. OMG is 
responsible for the CORBA specification. (w) 
Object Request Broker 
Operator Training System 
Parameter estimation is the step after data reconciliation in which the reconciled 
values of the process variables are used to set values for the model parameters. 
Partial Differential Algebraic Equations 
Process Flow Diagram 
Piping & Instrument Diagram 
PlantData XML is an effort originally conceived in 1999, with work now starting 
in 2001, to combine existing process industry international data exchange 
standards and XML Internet standards to create a practical and easy to use 
electronic data exchange standard for the process industry. 
Process Modelling Component 
Process Modelling Environment 
Pterotechnical Open Software Corporation 
Physical Properties DataBase 
Commercial process simulation package (http://www.simsci.com) 
Modelling language where a model is directly implemented into the solver, e.g. as 
a subroutine. 
Process Systems Engineering 
Public Unit Parameters 
Real Time Optimisation 
In this approach each unit operation is represented by a set of equations grouped 
into a block (or module) and the whole flowsheet is solved one a module-by- 
module basis (in sequential way) 
See chapter 3.3 for definition 
The main idea of this approach is to collect all the equations and solve them as a 
large system of non-linear algebraic equations. 

The basic idea of this approach is based on solving a simplified, linearised set of 
Modular or two- equations for each unit operation in an inner-loop thereby allowing the solution of 
tier approach interconnected unit operations simultaneously. In the outer-loop, a rigorous model 
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Smalltalk 

SOAP 

Software 
Component 

Speciality 
products 

SpeedUP 
SQP 
STEP 
MOF 

Three-tier 

Two-tier 

UDDI 

UML 

VeDa 
Visual Studio 

is used to update the linearised model. 
An object-oriented operating system and programming language developed at 
Xerox Corporation's Palo Alto Research Center. Smalltalk was the first object- 
oriented programming language. Although it never achieved the commercial 
success of other languages such as C++ and Java, Smalltalk is considered by many 
to be the only true object-oriented programming environment, and the one against 
which all others must be compared. (w) 
Simple Object Access Protocol provides a way for applications to communicate 
with each other over the Internet, independent of platform. Unlike OMG's IIOP, 
SOAP piggybacks a DOM onto HTTP in order to penetrate server firewalls. SOAP 
relies on XML to define the format of the information and then adds the necessary 
HTTP headers to send it. (w) 
A software component is a defined set of functionality provided by some 
implementation of compiled software. The software component functionality is 
defined through a specified interfaces. Access to the interface is by the 
middleware technology. A software component is capable of being used and re- 
used in different software applications. (c) 
The word 'specialty' refers to the type of product being manufactured irrespective 
of process used to make it. The name, 'specialty' arises from the special functional 
properties that these products bring when added to other 'bulk' materials. 
Examples are chemicals that impart special fragrances or flavours to their 
substrates or modify the rheological behaviour of (bulk) fuel (e.g. diesel). 
Commercial simulation package (see chapters 3.1 and 5.3) 
Sequential (or successive) quadratic programming (see chapter 3.4) 
See chapter 4.1 for definition (also visit http://www.STEPlib.com) 
The MOF, or MetaObject Facility, standardizes a meta-model - the concepts that 
are used to build application models. UML models, which are built from the MOF 
metamodel, interchange easily because of this commonality. Another part of the 
MOF specification defines a repository for metamodels and models. (o) 
Three-tier: a special type of client/server architecture consisting of three well- 
defined and separate processes, each running on a different platform: 1. The user 
interface, which runs on the user's computer (the client). 2. The functional modules 
that actually process data. This middle tier runs on a server and is often called the 
application server.3. A database management system (DBMS) that stores the data 
required by the middle tier. This tier runs on a second server called the database 
server. (w) 
Two-tier architecture: A simple client-server relationship is referred to as a two- 
tier architecture. 
Universal Description, Discovery and Integration. A Web-based distributed 
directory that enables business to list themselves on the Internet and discover each 
other, similar to a traditional phone book's yellow and white pages. (w) 
Unified Modelling Language (UML) is the software notation that emerged from 
collaborative efforts of Rational Software and two other leading companies in 
analysis of object based software design. UML merges the methods formerly 
known as Objectory (Ivar Jacobson), OMT (James Rumbaugh), and the Booch 
Method (Grady Booch).It provides different views of planned and proposed 
software systems. It has been accepted as a standard notation by OMG. (c) 
See chapter 3.1 for details 
Microsoft Visual Studio is a complete enterprise-class development system 
including tools for Basic, C++ and J++ development and Web applications 
creation. (m) 
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Windows 

WSDL 

WWW 
XMI 

XML 

A family of operating systems for personal computers. Windows dominates the 
personal computer world, running, by some estimates, on 90% of all personal 
computers. The remaining 10% are mostly Macintosh computers. Like the 
Macintosh operating environment, Windows provides a graphical user interface 
(GUI), virtual memory management, multitasking, and support for many 
peripheral devices. (w) 
Web Services Description Language, an XML-formatted language used to describe 
a Web service's capabilities as collections of communication endpoints capable of 
exchanging messages. WSDL is an integral part of UDDI, an XML-based 
worldwide business registry. WSDL is the language that UDDI uses. WSDL was 
developed jointly by Microsoft and IBM. (w) 
World Wide Web 
XMI: short for XML Metadata Interchange, is a stream format for interchange of 
metadata including UML models. It's useful for transferring the model from one 
step to the next as your design and coding progress, or for transferring from one 
design tool to another. Because XMI streams models into XML datasets, it also 
serves as a mapping from UML to XML. (o) 
xXtensible Markup Language, a specification developed by the W3C. XML is a 
pared-down version of SGML, designed especially for Web documents. It allows 
designers to create their own customized tags, enabling the definition, 
transmission, validation, and interpretation of data between applications and 
between organizations. (w) 
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ASP services 
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CORRIGENDUM 

The chapter "3.5: Frameworks for Discrete/Hybrid Production Systems" by L. 
Puigjaner, A. Espufia & G.V. Reklaitis belongs to Part III, unfortunately it could not 
be placed in sequence, and has been placed at the end of the book, pages 663-700. 

We apologize for any inconvenience this may cause. 

Elsevier Science B.V. 
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Chapter 3.5: Frameworks  for Discrete /Hybrid  Product ion  
Sys tems  

L. Puigjaner,  A. Espufia & G.V. Reklaitis 

3.5.1 I N T R O D U C T I O N  

In a recent review (Antsaklis, 2000) the term "Hybrid" has been identified as 
meaning in general, heterogeneous in nature  or composition, and the term 
"hybrid systems" meaning systems with behaviour defined by entities or 
involving a combination of continuous and discrete parts. Thus, a "hybrid 
dynamical  system" is considered to be a dynamical system where the behaviour 
of interest  is determined by interacting continuous and discrete dynamics. Such 
systems generate variables that  are combinations of continuos or discrete values 
and through them cause interaction with other systems and environments .  
Fur thermore,  this discrete or continuous-valued information is time dependent,  
where the time may also take on continuous or discrete values. One could also 
dist inguish between information, which is t ime-driven in some cases, and event- 
driven in others. The consideration of all these elements embraces a var iety of 
disciplines tha t  include process and control engineering, mathemat ics  and 
computer science. 

The coexistence of continuous and discrete systems requires the development of 
models tha t  accurately describe the behaviour of such hybrid systems. Hybrid 
models may be used to significant advantage in the context of manufactur ing,  
communication networks, computer synchronisation, traffic control and chemical 
processes among others. Here, we will concentrate in those related to flexible 
chemical manufactur ing systems. 

In chemical processes, al though hybrid systems have a central role in embedded 
control systems tha t  interact with the physical plant, they also arise in complex 
flexible manufactur ing structures by virtue of the hierarchical organization of the 
whole enterprise management  system. In these systems, a hierarchical  
framework is needed to manage complexity. Generally, higher levels in the 
hierarchy require less detailed models of the behavior occurring at the lower 
levels, thus  creating the need for interaction of discrete and continuous 
components. In general, there will be different types of models and at different 
level of detail, as it will be described next. 
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This chapter discusses the characteristics of frameworks for discrete/hybrid 
production systems. First  existing s tandards  and generic models are indicated. 
Next sources of information and information flow are described. Then, existing 
modeling frameworks embodying different approaches are presented. The 
exploitation of information for model improvement  is discussed in the next 
section. The last section outlines the use of models for decision-making and 
optimization. 

3.5.2 E X I S T I N G  S T A N D A R D S  

Chemical plants constitute in part  large hybrid systems. A rigorous model of a 
single unit  of a chemical plant may easily encompass several hundred of 
nonlinear differential equations and several thousand algebraic equations. The 
associated modeling effort requires open structures,  interoperabili ty and strict 
adherence to existing standards.  A summary  of those s tandards  is given below. 

3.5.2.1 G e n e r i c  m o d e l s  

Generic models related to the integration of manufactur ing entities can be 
classified in two types of architecture (Sararaga et al., 1999): 

�9 Enterprise reference architectures: these are used to manage the 
development and the implementat ion of an integration system for the 
whole enterprise. 

�9 Architectures for designing physical systems: these are associated with a 
specific system. The most interesting architectures for our study are the 
CIM architectures and the functional control architectures: 

o The CIM architectures are hierarchical and deterministic models of 
scheduling and control. 

o The functional architectures for control identify the components, 
specify the integration rules and present s tandard  interfaces for 
developing interoperable components. 

An enterprise reference architecture models the whole cycle of an integration 
project at the enterprise level, from its conception through its definition, 
functional design, detail design, implementat ion and operation, to its 
obsolescence. 

Most of the architectures and methodologies developed in the Enterprise 
Engineering area are summarized as follows. 
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�9 ARIS  (Architecture for Information Systems) by IDS Scheer. ARIS focuses 
on enterpr ise  modeling room, on operative and information technologies, 
with the objective to construct the information system of the enterprise.  

�9 CIM-OSA (CIM Open System Architecture) by ESPRIT program. This 
open archi tecture  supplies: a general definition of CIM field, an 
implementa t ion  guide, a description of the system components and 
subsystems,  and a modular  s t ructure  matching the in terna t ional  
s tandards .  The CIMOSA reference model has been val idated in different 
projects: VOICE in the automation sector, TRAUB in the machine-tool 
sector and VOICE II in the a luminum smelt ing sector. 

�9 GRAI-GIM (GRAI In tegra ted  methodology) by GRAI Laboratory.  Init ial ly 
this archi tecture  was developed for modeling the decision s t ructure  of a 
manufac tur ing  enterprise  with focus on strategy,  tactical and operat ional  
scheduling. Subsequently,  it was extended to support  the design of CIM 
systems, becoming an integrated methodology for modeling of business 
processes, tha t  establishes a s t ructured and clear approach for analyzing 
and designing this type of systems. 

�9 IEM (Integrated Enterpr ise  Modeling) by IPK Fraunhofer  Inst i tute .  IEM 
supports the construction of enterprise models for process reengineering,  
and so, it also allows modeling the process dynamic to evaluate  the 
operative options. 

�9 P E R A  (Purdue Enterpr ise  Reference Architecture) by Purdue  Applied 
Control Laboratory.  This model is the most complete life cycle for 
developing CIM systems. It involves explicitly the organizat ion and the 
staff in the model, searching these critical factors in the integrat ion of the 
whole system (Figure 1). 
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Figure 1. The Purdue Reference Model (PRM) architecture. 

T h e  w h e e l  o f  CASA/SME (Computer and Automated Systems 
Association/Society. The new wheel of the manufac tur ing  enterprise is a 
graphic index of the knowledge and management  aspects needed in the 
cur rent  manufac tur ing  environment.  It describes the main six elements to 
obtain a competitive manufacturing:  the clients, the staff and management  
resources, the systems and the shared knowledge, the processes, the 
resources and the responsibilities, and the manufac tur ing  infrastructure.  
G E R A M  (Generalized Enterprise  Reference Architecture and 
Methodology) by IFAC/IFIP (Internat ional  Federat ion of Automatic 
Control / In terna t ional  Federat ion for Information Processing) Task Force. 
G ERAM defines those methods, models and tools required for developing, 
designing, constructing and mainta ining an integrated enterprise in a 
changing environment  It is not a new proposal. It organizes all the 
knowledge of enterprise  integrat ion instead of redefines it. In this way, the 
previous archi tectures  mainta in  their  identity, but they can contrast  the 
overlapped and complementary profits with the other architectures 
through GERAM. 

3.5.2.2 CIM A r c h i t e c t u r e s  

The main characterist ics  of CIM archi tectures are summarized in the following 
descriptions. 
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�9 FAM (Factory Automation Model) by ISO (Internat ional  S tandards  
Organization).  It establishes a hierarchical  s t ructure  with six levels 
(Enterprise,  Factory/shop floor, Section/Area, Cell, Station and Equipment)  
for modeling a production shop floor. In each level, the upper  level 
objectives are subdivided into simple tasks, and the lower level 
information is evaluated. 

�9 A M R F  (Advanced Manufactur ing  Research Facility) by NBS (National 
Bureau of Standards).  This hierarchical  s t ructure  with five levels (Factory, 
Area, Cell, Station, Equipment)  has been developed with ha rdware  and 
software of different manufacturers .  The upper level tasks  are broken 
down through the hierarchy, and in the lowest level those tasks  are a set of 
simple executable actions. 

�9 ICAM (Internat ional  Computer  Aerospace Manufactur ing)  program model 
by U.S. Air Force. This model is a functional s t ructure  with five levels, 
tha t  follows s t ructured method development for applying computer-aided 
technologies to manufactur ing,  as a manne r  of improving productivity. 

�9 C O P I C S  (Communicat ion-Oriented Production Information and Control 
System) by IBM. COPICS involves the main activities in relat ion with 
manufac tur ing  scheduling and control, with special a t tent ion to 
communications,  database managemen t  and presentat ions.  

�9 D i g i t a l  E q u i p m e n t  C o r p o r a t i o n  mode l .  This approach defines a 
control system as a set of functional modules with their  corresponding data  
flows. All this information allows the es tabl i shment  of the shop floor 
layout. As a result,  functional and physical models for a manufac tur ing  
system and its subsystems are obtained. 

�9 S i e m e n s  mode l .  This model in tegrates  the main technical  and 
managemen t  functions for manufac tur ing  through the information flow. It 
dist inguishes a vertical information flow for interconnecting the different 
levels of the hierarchical  model, and a horizontal information flow for 
controlling and synchronizing the activities of each level. Moreover, it 
incorporates the Computer  Aided Organizat ion (CAO) concept tha t  
involves accounting, staff and industr ia l  accounting areas,  and Computer  
Aided Indus t ry  (CAI) tha t  involves CIM and CAO. 

�9 U P C  CIM model. This approach solves the problem of co-ordination of the 
different activities, considering hierarchical  s t ructures  which are built  
under  a modular  philosophy (Puigjaner and Espufia, 1998). Figure 2 shows 
the h ierarchy flowchart between the different levels. A large Real-t ime 
Data  base Management  system is accessible to any level, feeds the 
knowledge base supporting the expert systems at two levels and provides 
information to the optimization module. 

Figure 3 shows the CIM archi tecture against  a mult i - layer  optimisat ion 
f ramework tha t  follows ISA SP88 and SP95 s tandards.  
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Figure 2. Flowchart of the hierarchical decision-making 

Figure 3. Multi-layer Optimization Framework. 

3.5.2.3 I n f o r m a t i o n  s t r u c t u r e :  ISA S P 8 8  

Processes have always been made up of physical objects, vessels, pumps, valves, 
t ransmi t te rs ,  and controllers represent  physical objects joined together by pipe 
and wire. Normally the physical plant  objects constitute a na tu ra l  hierarchical  
s t ructure.  The object vessel can, for example, have the sub-objects agitator and 
heater .  The heater  can have its own sub-objects such as a t empera tu re  sensor 
and control valve. 
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In the batch industr ies  the methods to describe objects and procedures have 
differed from indust ry  to industry,  and sometimes even from project to project. 
That  has served as incentive to s tandardize how batch control procedures must  
be implemented (NAMUR NE33, ASTRID, ISA S88.01, ISA S88.02, GAMP 
guidelines). 

The ISA S88.01 introduced an object-oriented methodology to modeling the batch 
processes and a common set of definitions. S88.01 offers opportunit ies to define 
process control applications in a modular  fashion. The application of ISA S88 in 
batch control will be presented later in detail. 

3.5.2.4 I n f o r m a t i o n  m a n a g e m e n t :  ISA S P 9 5  

Open simulat ion and optimization in a real time environment  requires  
specification of the data flows between the s imulat ion models and applications at 
levels 2, 3 and 4 in the hierarchical computer system structure (ISA-dS95.01- 
1999) shown in Figure 4. 

Data flows should lead to a reference model. The ISA model is mainly logical and 
does not focus on the software architecture. Interoperabi l i ty  requires the 
extensive and detailed identification of data flows so tha t  formal software 
interface support ing these flows can be defined. The following modules are 
contemplated: 

�9 Coordination (Supervisory Control at level 2) 
�9 Data reconciliation (Supervisory Control at level 2) 
�9 Model predictive control (Supervisory Control at level 2, sub-scenario of 

what  one may call Advanced control). 
�9 Scheduling and planing (Plant Production Scheduling and Operat ional  

Management  Level 4A). 

The following modules will also be described: 
Faul t  detection and diagnosis (Supervisory Control at level 2). 

It is not intended to describe some supervisory control subtasks  as s tandalone 
(independent) scenarios. For example: 

�9 Pa rame te r  est imation (although it may be par t  of Data Reconciliation, 
Faul t  Detection and Diagnosis, or possibly even Model predictive control) 

�9 State est imation (although it may be par t  of Model predictive control, 
Faul t  Detection and Diagnosis, or possibly even par t  of Data  
Reconciliation). 

�9 Real-time optimization (although Model Predictive Control includes 
optimization). 

�9 Optimization (a term tha t  is really too broad to be used in this context) 
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�9 Data  acquisition. 

The interact ion can take place between simulators  (or optimizers) and any other 
external  software (not just  real-t ime control systems) exchanging information 
with each other during the simulation (or optimization). So the impor tant  bit as 
far as GCO is concerned is what  interfaces the s imulator  (or optimizer) needs to 
provide to allow this type of i n t e r a c t i o n - ( n o t  the real- t ime issues, which have 
al ready been considered by many other s tandardiza t ion efforts, e.g. OPC). 

(LEVEL 4) 

(LEVEL 3) 

(LEVEL 2) 

EVEL I) 

(LEVEL 0) 

~ LEVEL 4B L 
MANAGEMENT 

DATA 
PRESENTATION I 

I i  LEVEL 4A 
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7 .... . . . . . .  i~ ~ " 
I . . . . . . . . . . . .  " i i  ~ 

I T , J I o~.~ 

I ....... ~ ~8~ 
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Figure 4. A hierarchical computer control system structure for an industrial 
plant. From ISA-dS95.01-1999, Enterprise-Control System Integration. Part 1: 

Models and Terminology. 

The "communication" with other external  software is realized with OPC and 
utilized in real- t ime issues. These specifications are contemplated at a general  
level. Our purpose is to specify the type of "specific" information in the Process 
Indus t ry  tha t  is exchanged through these s tandards.  In this way, OPC will be 
tool for the interaction.  

There are two main general  modes of external  software interact ing with process 
simulators:  
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�9 The s imula tor  replaces the plant  and it is uti l ized for val idat ion purposes  
and for operator  t raining.  

�9 The s imula tor  runs  in parallel  with the plant  and aids the other  sys tems to 
make decisions or to evaluate  actions (decision support).  

The informat ion tha t  is exchanged in each one of the above in teract ion modes is 
as follows: 

�9 In the operators '  t ra in ing  case, the s imula t ion is dynamic.  The external  
software sends the s imulator  t ime-varying control actions and receives 
"plant" measurements .  There are several levels at  which s imula tors  can 
in te rac t  with operators.  Depending on the level, the t ime r equ i r emen t  
change, and also the operat ion dynamics.  Tha t  is, at some levels it is 
possible t ha t  the s imulat ion could be in a s teady-s ta te  mode. 

�9 In a decision suppor t  tool context, the s imula t ion  can be e i ther  s teady s tate  
or dynamic.  

3.5.3 S O U R C E S  OF I N F O R M A T I O N  

3.5.3.1 P r o c e s s  M o n i t o r i n g  

The decis ion-making process concerning possible modification of a system 
requires  knowledge about  its actual  cur ren t  state. This r equ i r emen t  is even more 
impor t an t  in hybrid manufac tu r ing  s t ructures .  The re levant  informat ion  is 
obtained by collecting a data  set, improving its accuracy and refining it. The 
refined informat ion is used for process moni tor ing  which may ini t ia te  fu r ther  
analysis,  diagnosis and control actions, opt imizat ion and general  m a n a g e m e n t  
planning.  

Data  collected on indus t r ia l  plants  is typically subject to var ia t ion  in quali ty.  
This is i nhe ren t  in all indus t r ia l  data  collection because the sampl ing and tes t ing  
equipment ,  schedules and techniques are exposed to a wide range of influences. 
Such influences will give rise to a raw data  set conta ining missing da ta  points,  
gross errors,  and outliers,  all of which need to be t r ea ted  to obtain a useable  da ta  
set (Bagajewicz, 2001). 

Gross errors are caused by an i n s t rumen t  or tes t ing procedure tha t  gives an 
incorrect  response for an extended length of time. The resul ts  are therefore not 
represen ta t ive  of the process state. If the errors are large enough to dis tor t  the 
real t rend,  they should be excluded from data  analysis.  Gross errors  cause 
problems when the variable is being used in a da ta  informat ion  extract ion 
procedure such as principal  component  analysis  (PCA) or any other  data  
compression technique.  Gross errors in even one variable can therefore be of 
critical impor tance  to the usefulness of an entire  data  set if advanced da ta  
analysis  tools are to be used. The data  collection sys tems need to be designed to 
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detect the onset of gross errors and alert the operators. Outliers in data occur 
even in the best data collection systems. They need to be detected and eliminated 
so as not to distort statistical tests conducted in the data. This distortion occurs 
because the outliers increase the apparent  measuring error (residual variance) 
and consequently affects the sensitivity of confidence tests. Missing data disrupts 
the regularly spaced nature  of sampled process data and prevents the use of 
various data analysis techniques that  assume regular  sampling. Consequently, 
missing data should be replaced with realistic estimates of process readings 
before using the data in analysis. 

Process monitoring and Trend Detection focuses on identifying the trends in the 
behavior of a process in real-time. Various methods based on multivariate 
statistics (Principal Component Analysis, Part ial  Least  Squares, Canonical 
Variates Analysis), system Theory (Canonical Variates State Space Modeling, 
Observers, State Estimators,  Hidden Markov Models, Wavelets), artificial 
intelligence (Knowledge-Based Systems, Neural  Networks, Fuzzy Logic) have 
been reported for process monitoring and trend analysis. As the process moves 
from normal operation to abnormal operation, it is imperative that  this 
identification is made quickly and correctly. Since most processes are monitored 
by relying on models built from process data as opposed to models derived from 
fundamenta l  equations, using several techniques s imultaneously and seeking 
some consensus among their results is more advantageous than relying on any 
single technique. 

3.5.3.2 P l a n t  a n d  P r o c e s s  S i m u l a t i o n  

Chemical processing plants have been tradit ionally categorized into continuous 
and batch plants. An uninter rupted  flow of material  through the plant 
characterizes continuous plants, which are most commonly operated in a steady- 
state manner.  By contrast, in batch plants, discrete quanti t ies of material  
undergo physicochemical transformations.  The process parameters  usually vary 
overtime, operat ing conditions may be different from one batch to next and 
available resources may be allocated differently to create a variety of production 
routes. Thus, batch plants are more dynamic and flexible than  continuous ones. 
In practice, continuous and batch operations can both be present  in chemical 
production facilities to benefit from the advantages of each and/or because of the 
hybrid nature  of the underlying physical-chemical processes themselves. It is 
therefore necessary to consider this hybrid nature  of the continuous-discrete 
interactions taking place in chemical processing plants within an appropriate 
framework for plant  and process simulation (Engell et al., 2000). 

A common tool tha t  is needed is the computer modeling and simulation of such 
interactions between continuous and discrete elements of chemical plants. This is 
addressed in the next section. 
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3.5.4 O R G A N I Z I N G  I N F O R M A T I O N :  M O D E L I N G  F R A M E W O R K S  

The discrete t ransi t ions occurring in chemical processing plants  have only 
recently been addressed in a systematic  manner .  Barton and Pantel ides  (1994) 
did pioneering work in this area. A new formal mathemat ica l  description of the 
combined discrete/continuous simulation problem was introduced to enhance the 
unders t and ing  of the fundamenta l  discrete changes required to model processing 
systems.  The modeling task is decomposed into two distinct activities: modeling 
fundamenta l  physical behavior, and modeling the external  actions imposed on 
this physical system result ing from interact ion of the process with its 
envi ronment  by disturbances,  operation procedures, or other control actions. 

The physical behavior of the system can be described in terms of a set of integral  
and par t ia l  differential and algebraic equations (IPDAE). These equat ions may 
be continuous or discontinuous. In the la t ter  case, the discontinuous equations 
are modeled using s ta te- t ransi t ion networks (STNs) and resource-task networks 
(RTNs) which are based on discrete models. Otherwise,  other f rameworks  based 
on a continuous representa t ion of t ime have appeared more recently (Event 
Operat ion Network among others). The detailed description of the different 
representa t ion  frameworks is the topic of the next section. 

3.5.4.1 P r o c e s s  R e p r e s e n t a t i o n  F r a m e w o r k s  

The representa t ion  of State  - T a s k -  N e t w o r k  (STN) proposed by Kondili et al. 
(1993) was originally intended to describe complex chemical processes aris ing in 
mult iproduct /mult ipurpose batch chemical plants.  The establ ished 
representa t ion  is s imilar  to the flowsheet representa t ion  of continuous plants,  
but  is intended to describe the process itself r a the r  than  a specific plant.  

The distinctive characterist ic  of the STN is tha t  it has two types of nodes; mainly,  
the state nodes, represent ing the feeds, in termedia tes  and final products-and the 
task  nodes, represent ing the processing operations which t ransform mater ia l  
from input  s tates  to output  states. State and task nodes are denoted by circles 
and rectangles respectively (Figure 5). 

Feed 2 

~ TlO 

F eedl ~ .  T20 

~ ~  --~' Tll ~ "  T21 

..... ~ Prod 1 

Figure 5. S ta te - task  ne twork  representat ion of  chemical  processes.  

This representa t ion  is free from the ambiguit ies  associated with recipes networks  
where only processing operations are represented.  Process equipment  and its 
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connectivi ty is not explicitly shown. 
represented .  

Other  available resources are not 

The STN represen ta t ion  is equally suitable for ne tworks  of all types of processing 
tasks  -cont inuous ,  semicont inuous or batch. The rules followed in its 
construct ion are: 

A task has as many input  (output) s ta tes  as different types of input  
(output) mater ial .  
Two or more s t reams  enter ing the same state  are necessari ly of the same 
mater ia l .  If mixing of different s t reams is involved in the process, then this 
operat ion should form a separa te  task. 

The STN represen ta t ion  assumes  tha t  an operat ion consumes mater ia l  from 
input  s ta tes  at  fixed ratio and produces mater ia l  for the ou tpu t  state also at a 
known fixed proportion. The processing time of each operat ion is known a priori 
and considered to be independent  of the amoun t  of mater ia l  to be processed. 
Otherwise ,  the same operat ion may lead to different s tates (products) using 
different processing times. 

Sta tes  may be associated to four main  types of storage policies: 

�9 Unl imi ted  In te rmedia te  Storage. 
�9 Finite In te rmed ia te  Storage. 
�9 No In te rmed ia te  Storage. 
�9 Zero Wait  (the product  is unstable).  

An a l te rna t ive  representa t ion;  the Resource-Task Network  (RTN) was proposed 
by Pante l ides  (1994). In contras t  to the STN approach,  where a task consumes 
and produces mater ia l s  while using equipment  and util i t ies dur ing its execution, 
in this representa t ion ,  a task is assumed only to consume and produce resources. 
Processing i tems are t rea ted  as though consumed at the s ta r t  of a task and 
produced at the end. Fur thermore ,  processing equ ipment  in different conditions 
can be t rea ted  as different resources, with different activities consuming and 
genera t ing  them - t h i s  enables a simple representa t ion  of changeover  activities. 
Pante l ides  (1994) also proposed a discrete-time scheduling formulat ion based on 
the RTN which, due to the uniform t r ea tmen t  of resources, only requires the 
descript ion of three types of constraint ,  and does not dis t inguish between 
identical  equ ipment  items. He demons t ra ted  tha t  the integral i ty  gap could not be 
worse than  the most efficient form of STN formulation,  but the ability to capture 
addi t ional  problem features in a s t ra ight forward  fashion are at tractive.  
Subsequen t  research has shown tha t  these conveniences in formulat ion are 
overshadowed by the advantages  offered by the STN formulat ion in allowing 
explicit exploitat ion of const ra int  s t ruc ture  through algori thm engineering.  
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The STN and RTN representat ions use discrete-time models. Such models suffer 
from a number  of inherent  drawbacks: 

�9 The discretization interval must  be fine enough to capture all significant 
events, which may result  in a very large model. 

�9 It is difficult to model operations where the processing time is dependent  
on the batch size 

�9 The modeling of continuous operations must  be approximated and 
minimum run-lengths give rise to complicated constraints.  

Therefore, a t tempts  have been 
continuous time representat ion.  

made to develop frameworks based on a 

A realistic and flexible description of complex recipes has been recently improved 
using a flexible modeling environment  (Graells et al., 1998) for the scheduling of 
batch chemical processes. The process s tructure (individual tasks,  entire 
subtra ins  or complex s tructures  of manufactur ing  activities) and related 
materials  (raw, intermediate  or final products) is characterised by means  of a 
Processing Network, which describes the material  balance. In the most general  
case, the activity carried out in each process consti tutes a general  Activity 
Network. Manufactur ing  activities are considered at three different levels of 
abstraction: the Process level, the Stage level and the Operat ion level. 

This hierarchical  approach permits the consideration of mater ial  s tates (subject 
to mater ial  balance and precedence constraints) and temporal  states (subject to 
time constraints)  at different levels. 

At the process level, the Process and Materials  Network  (PMN) provides a 
general description of production s t ructures  (like synthesis  and separat ion 
processes) and materials  involved, including in termediates  and recycled 
materials.  An explicit material  balance is specified for each of the processes in 
terms of a stoichiometric-like equation relat ing raw materials,  in termedia tes  and 
final products (Figure 6). Each process may represent  any kind of activity 
necessary to t ransform the input materials  into the derived outputs.  

Between the process level and the detailed description of the activities involved 
at the operation level, there is the Stage level. At this level is described the block 
of operations to be executed in the same equipment.  Hence, at the stage level 
each process is split into a set of the blocks (Figure 7). Each stage implies the 
following constraints:  

�9 The sequence of operations involved requires a set of implicit constraints  
(links). 

�9 Unit  ass ignment  is defined at this level. Thus, for all the operations of the 
same stage, the same unit  ass ignment  must  be made. 
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A common size factor is a t t r ibuted to each stage. This size factor 
summar ises  the contribution of all the operations involved. 

Process 1 ~ / /  

~ 2/3 

1/2 

1/3 

3(RM-1) + 6 ( R M - 2 ) ~  BP-1 + IP-1 

Process 2 

IP-1 * 2 (RM-3) ~ 5 (FP-1) 

J Process 3 

2 (RM-4) ~ FP-2 

Figure 6. PMN describing the processing of two products 

1/3 

2/3 

Stage 1 

J Stage 2 

Process 1 

Stage 3 

1/2 

Figure 7. Stage level. Each stage involves different unit assignment opportunities. 

The Operation level contains the detailed description of the activities 
contemplated in the network (tasks and subtasks). While implicit time 
constraints  (links) must  be met at this level, as indicated in Figure 8 by the thick 
arrows. The detailed representat ion of the s tructure of activities defining the 
different processes is called the Event Operation Network (EON). It is also at this 
level tha t  the general util i ty requirements  (renewable, non-renewable, storage) 
are represented.  
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Figure 8. Operation level: operation links are shown. 

The Event Operation Network representation model describes the appropr ia te  
t iming of process operations. A continuous t ime representa t ion  of process 
activities is made using three basic elements: events, operat ions and links. 

Events  designate those t ime ins tants  where some change occurs. They are 
represented  by nodes in the EON graph, and may be l inked to operations or other 
events  (Figure 9). Each event n is associated to a t ime value Tn and a lower 
b o u n d  Tn rain (1). 

Operat ions comprise those t ime intervals  between events (Figure 10). Each 
operation m is represented  by a box linked with solid arrows to its associated 
nodes: in i t ia |  N I  m and final NF m nodes. Operat ions establ ish the equal i ty links 
between nodes (2) in terms of the characterist ic  propert ies of each operation: the 
operation time, TOP and the wait ing time TW. The operation t ime will depend on 
the amount  of mater ia ls  to be processed; the uni t  model and product  changeover.  
The wait ing t ime is the lag t ime between operations,  which is bounded by 
equat ion (3). 

Figure 9. Nodes can be connected to other nodes or operations. 

rain 
T . > T ,  (1) 

T N F m  - -  T N I  m - -  T O P  m "-  T W  m 2 )  
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Figure 10. The time description for Operations 

0 < TWm < Tl~max 
- -  - - ~ , ,  m (3) 

Finally, links are established between events by precedence constraints.  A 
dashed arrow represents  each link k from its node of origin NOb to its destiny 
node NDk and an associated offset time ATK. The e v e n t - e v e n t  links can be 
expressed by the inequali ty constraint  (4) 

T NDk ~ T NOk -k- A T k 

N O ?  ..... aTk ... .   NDk 
Figure 11. Event to event link and associated offset time representation 

(4) 

Despite its simplicity, the EON representat ion is very general and flexible and it 
allows the handl ing of complex recipes (Figure 12). The corresponding TOP, 
according to the batch size and material  flowrate also represents  t ransfer  
operations between production stages. The necessary time Overlapping of 
semicontinuous operations with batch units is also contemplated in this 
representa t ion through appropriate links. 

Other  resources required for each operation (utilities, storage, capacity, 
manpower,  etc.) can be also considered associated to the respective operation and 
timing. 

Simulat ion of plant  operation can be performed in terms of the EON 
representat ion from the following information contained in the process recipe and 
production s tructure characteristics: 

�9 A sequence of production runs or jobs (Orp) associated to a process or 
recipe p. 

�9 A set of ass ignments  (Xujpr) associated to each job and consistent with the 
process p (Xujpr <_ xujp). 

�9 A batch size (Brp) associated to each job and consistent with the process p 
(B rp min <~ Brp < Brpmax). 

�9 A set of shifting times (Tn 'nin) for all the operations involved. 
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Figure 12. The recipe described as a structured set of operations. The E O N  
representation allows the handling of complex synthesis problems. 

These decisions may be generated automat ical ly  by using diverse procedures for 
the de terminat ion  of an initial  feasible solution. Hence, s imulat ion may be 
executed by solving the corresponding EON to determine  the t iming of the 
operations and other resources requirements .  

The effective s imulat ion of batch processes requires representa t ion  of the 
dynamics of the individual batch operations, the decision logic associated with 
the s tar t  and stop of operations, as well as the decisions associated with the 
ass ignment  of equipment  and other resources to specific operations as defined 
through the product recipe. The BATCHES (Batch Process Technologies) 
s imulat ion f ramework does accommodate the above ment ioned batch process 
features and uses advances in combined discrete-continuous dynamic s imulat ion 
methodology to follow the progress of the batch plant  over t ime. 

A BATCHES simulat ion model consists of three main building blocks: a recipe 
network, an equipment  network and a set of processing directives (Mockus and 
Reklaitis,  1996). The equipment  network defines the equipment  specifications 
and the connectivity or t ransfer  l imitat ions between the equipment .  The recipe 
for the manufac ture  of a product is modeled as a network of tasks  and each task  
as a sequence of subtask.  A task  consists of all of the operat ions performed in a 
single i tem of equipment:  a subtask consists of a model of one of these operations. 
Tasks have associated with them requi rements  of specific types of equipment  and 
selection priorities. BATCHES provide a l ibrary of models of various types of 
operations (heating, cooling, decanting, batch reaction, etc.). Subtasks  may have 
associated with them addit ional  requi rements  for resources types and levels such 
as operator types and uti l i t ies as well as definition of conditions under  which the 
subtask  is to be terminated .  These may be s tate  dependent  (a specific 
t empera tu re  or composition level is achieved) or directly specified (completion 
t ime or duration). Processing directives consist of information tha t  drives the 
execution of the process over time. These include information such as the 
amounts  and sequences in which the various products are made, the due date 
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and a m o u n t  for finished product  delivery, or the amounts  and frequency of raw 
mate r ia l s  deliveries or other  resource releases. 

BATCHES uses a dynamic solution s t ra tegy under  which the dynamic models 
associated wi th  all of the subtasks  tha t  are active in a given t ime period are 
solved s imul taneous ly  using a DAE solver. As the solver advances through time, 
the occurrence of subtask  t e rmina t ion  or s ta r t  events is tes ted at each solver t ime 
step. As events  are identified and occur, the set of active subtask  models is 
reconfigured and the solution process continued. This computa t iona l  approach is 
effectively a decomposition s t ra tegy as only the models of the subtasks  active at a 
given point  in t ime are actual ly  included in the in tegra t ion  step executed. To 
accommodate  stochastic pa ramete rs ,  BATCHES allows Monte Carlo sampl ing of 
s imula t ion  pa rame te r s  from a l ibrary of dis t r ibut ions  using establ ished 
techniques  from the discrete event  s imula t ion l i terature .  It also provides l inkages 
to physical  propert ies  es t imat ion  capabilities. More complex decision processes, 
such as solution of an ass ignment  or scheduling model, can be accommodated by 
defining event  conditions under  which the s imulat ion is in ter rupted,  the 
informat ion  necessary to execute the decision model is assembled,  the decision 
model solved, and the s imulat ion of resul t ing actions t rans fe r red  back to the 
s imula t ion  executive. 

3.5.5 E X P L O I T I N G  I N F O R M A T I O N  F O R  M O D E L  I M P R O V E M E N T  

3.5.5.1 P a r a m e t e r  E s t i m a t i o n  

Hybrid sys tems require an accurate modeling envi ronment  capable of continuous 
model upda t ing  and improvement .  

One f u n d a m e n t a l  task in real t ime model improvement  is model p a r a m e t e r  
es t imat ion  (PE). This task  could ei ther  be the sole aim of the user  (that is, one 
only requires  es t imates  of some process pa rame te r s  wi thout  a data  reconciliation 
step), or a sub task  of data  reconciliation (the process model used for data  
reconcil iat ion (DR) contains some unknown  or uncer ta in  p a r a m e t e r  tha t  mus t  be 
determined) .  If the uncer ta in  pa r ame te r  is re la ted to the other  variables in a non- 
l inear  re la t ionship,  the two tasks  (DR, PE) must  be performed s imultaneously,  
o therwise  the pa rame te r s  could be es t imated  with corrupted data. In the case 
where  the re la t ionship  is l inear  the two tasks  can be performed sequentially,  first 
DR and then  PE. 

3.5.5.2 D a t a  R e c o n c i l i a t i o n  

Data  reconciliation (DR) is a procedure tha t  adjusts  the values of the raw 
m e a s u r e m e n t s  to be consis tent  with the conservation's  laws and other exact 
const ra ints ,  so tha t  the random error is e l iminated and the variable variance is 
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reduced.  However  the presence of gross error  on the da ta  can inva l ida te  the DR 
procedure.  The reader  is referred to chapter  3.4 for a discussion on "data  
reconcil iat ion framework".  

3.5.5.3 G r o s s  E r r o r  D e t e c t i o n  

The a d j u s t m e n t  of process data  leading to be t te r  e s t ima tes  of the process var iab le  
t rue  value is normal ly  performed in two steps. Non-random m e a s u r e m e n t  errors,  
such as pe rs i s t en t  gross errors, mus t  first be detected,  then  removed or corrected.  
Next, the  measuremen t ( s )  and/or constraint(s)  t h a t  contain the gross error  m u s t  
be identif ied Indeed, meaningful  da ta  reconcil iat ion can be achieved if and only if 
there  is no gross error  present  in the data.  

Thus  the funct ional i ty  of gross error detection encompasses  the detect ion of the 
gross error,  the ident if icat ion of the var iable  subject to error  and if possible the 
correction of the error  encountered.  On the other  hand  GED could r e t u r n  
informat ion  about  the type of gross error  t h a t  has  been identified,  namely ,  a 
process-re la ted error  or m e a s u r e m e n t - r e l a t e d  error. GED mus t  be per formed 
prior to DR step since a key assumpt ion  dur ing DR is t ha t  errors are no rma l ly  
dis t r ibuted.  The res idual  vector (e) in Eq. (5) affect the violat ion of the 
cons t ra in t s  by the m e a s u r e m e n t  and is the  f u n d a m e n t a l  vector used in gross 
error detect ion wi th  its covariance matr ix .  In order to m a i n t a i n  the  degree of 
r edundancy  and observabil i ty,  it is preferable,  if possible, to compensa te  the  
m e a s u r e m e n t  r a t h e r  t han  e l imina t ing  the var iable  in error. 

f ( x , .  ) = e (5) 

The first  step in the development  of da ta  reconciliation, p a r a m e t e r  es t imat ion ,  
Gross error  detect ion or variable  classification is the  p repara t ion  of a process 
model. This model is general ly  based on balance  equat ion (energy, mass ,  
components) .  This use case allows the in t roduct ion of the ent i re  model  
cons t ra in t s  t ha t  r ep resen t s  the whole p lan t  and the model p a r a m e t e r s .  

3.5.6 E X P L O I T I N G  M O D E L S  FOR D E C I S I O N - M A K I N G  & 
O P T I M I Z A T I O N  

Modeling hybr id  processes can become very complex depending on the  level of 
detai l  requi red  to adequa te ly  represen t  real-life operat ions,  and very difficult to 
s t anda rd ize  if it involves a very wide var ie ty  of operat ions,  as is the  case wi th  
large-scale processes. Also, a major l imi ta t ion  of p resen t  solutions is t h a t  they  do 
not adequa te ly  reflect the d is t r ibuted  n a t u r e  of the problem (Puigjaner ,  1999) in 
t e rms  of organiza t ion  and production uni t s  (plants,  product ion d e p a r t m e n t s ,  and 
lines, ba tch  units).  As a consequence, i n t e rna l  d i s tu rbances  occurring at  any  level 
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of this organizational context or external per turbat ions caused by the market  
environment  may create frequent and irrecoverable readjus tments  in real-life 
industr ia l  operations. A realistic answer to this si tuation inevitably entails 
appropriate  consideration of the interaction between various planning levels 
linked to the batch control system: 

�9 Plant  management  and scheduling control, including planning, scheduling 
and plant wide optimization; 

�9 Subplant  co-ordination between major production areas, including local 
schedule adjus tments  and recipe modifications; 

�9 Switching and supervisory control of process units, including appropriate 
handling of emergencies; 

�9 Individual equipment  regulatory and fault diagnosis actions. 

All these levels should operate on real time process information base which must  
be supported with data reconciliation and trend tracking capabilities (Pekny et 
al., 1991). 

3.5.6.1 S c h e d u l i n g  and P lann ing  

The complex problem of what  to produce and where and how to produce it is best 
considered through an integrated, hierarchical approach which also 
acknowledges typical corporate structures and business processes (Rickard et al  
1999). The scheduling problem is in essence a complex decision problem, which 
involves many factors. As a result  the decision to adopt a part icular  schedule is 
best made within a framework that  provides some assessment  of the merits and 
properties of the proposed schedule. Thus, a practical scheduling tool should not 
only generate a Gant t  Chart  and a Resource use Diagram corresponding to "the" 
solution, ra ther  it should allow an assessment  of the impact of that  schedule in 
context. A detailed simulation most readily provides that  context. For this reason 
it is desirable to integrate a scheduling and planning tool with a simulation 
capability. A scheduling tool with integrated simulation capability allows ready 
evaluation of the flexibility of the proposed schedule, and for instance to see the 
impact of variat ions in the products, operating conditions, environmental  and 
safety factors that  might not be explicitly taken in to account in the scheduling 
formulation. Of course, from the simulation point of view, it is also necessary to 
have a tool, which allows the correct simulation of the system under  
consideration. 

The information flows, which occur between the components of a scheduling 
system and various users, are shown in Figure 13. The Scheduling and Planning 
system receives from the management  information system (ERP, MRP) in level 4 
(Figure 4), detailed information on due dates, forecasts and orders, and re turns  to 
the ERP system the predicted inventory s tatus and the work plan. The 
scheduling system also sends the predicted schedule to the supervisory control 
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system, which launches  the realized schedule. Finally,  operators ,  engineers  and 
manage r s  have access to informat ion about  the schedule th rough  a G r a p h i c a l -  
User  interface.  On the other  hand  the end user -opera t iona l  staff can manage  the 
information,  create new schedules and analyze the results .  

The problem of shor t - te rm scheduling can be formula ted  as follows: 

Given: 
�9 The product ion recipe. 
�9 The available uni ts  for each task,  the uni ts  connectivi ty and the i r  

availabil i ty.  
�9 The list of amount ,  t ime and kind of ut i l i t ies consumpt ion  requi red  by each 

un i t  avai lable for each task  (could be var iable  wi th  the a m o u n t  of ma te r i a l  
being processed). 

�9 The m a r k e t  r equ i remen t s  expressed as specific amoun t s  of products  at  a 
given in s t an t  of t ime (product orders) and other  l imi ta t ions  on shared  
resources.  

Determine:  
�9 The opt imal  sequence of tasks  performed in each un i t  (under  specific 

performance criteria) 
�9 The a m o u n t  of mate r ia l  being processed at  each t ime in each unit .  
�9 The processing t ime of each task  in each unit .  
�9 The use of ut i l i t ies  as function of time. 

Therefore,  this  problem involves: 
�9 The a s s ignmen t  of uni ts  and resources to tasks.  
�9 The sequencing of the tasks  assigned to specific units .  
�9 The de te rmina t ion  of the s ta r t  and end t imes for the execution of all tasks.  
�9 The resources consumpt ion  at  any time. 
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Figure 13. Data flows between the scheduling system and other systems 

Additional issues which might arise, include: 

Considerat ion of exclusion times, i.e., t ime periods during which 
ass ignment  of some equipment  is not allowed due to maintenance 
requirements .  
Discrepancies between the proposed schedule and what  is actually 
achievable. Discrepancies may be caused by processing t ime variations, 
rush  orders, failed batches, equipment  breakdowns, etc. So, the schedule 
should be adjusted to incorporate this new information. This is called 
reactive scheduling. 

Once this information is processed, the result ing modified solution of the 
scheduling problem becomes the schedule implemented.  The schedule is reported 
as a sequence of recipe task to unit  ass ignments  and resource consumption time 
profiles. All this information is usually represented using a Gant t  Chart  and 
Resource Diagram 

The Gant t  chart  shows the use of the different equipment  uni ts  along time (see 
Figure 14). With this chart  it is possible see the s tar t  and end of a task, and the 
uni t  used for making  tha t  task. The colors correspond to different product 
batches and the numbers  are task identifiers. 
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Figure 14. Gantt  Chart 

The Resource Diagram shows the consumption of resources 
electricity, manpower  and others, also as a t ime function. 

like s team, 

These graphical  constructions are a major source of information for the 
production staff, but  are also needed by the sales and supply depar tments ,  for 
inventory control purposes, and plant  maintenance.  

For the evaluat ion of any plan or schedule, there are a number  of different 
performance measures  tha t  can be used according to the specific needs of an 
enterprise.  Some measures  have to do with the t ime a batch spends in the plant;  
others per ta in  to performance relat ive to specified due dates; and still others 
concern ut i l izat ion of production resources (Silver et al., 1998). 

Note tha t  these three general  goals may be in conflict with each other. For 
example,  high resource uti l izat ion may increase the t ime spent, and may degrade 
due date satisfaction. Therefore in spite of the very shor t - term na tu re  of the 
scheduling problem, larger  strategic concerns often are at issue. 

Managers  should be very concerned with the trade-off implied in the choice of 
which performance measure  to use. For example, this choice may implicit ly t rade  
off Work in Process Inventory (WPI) cost with customer sat isfaction regarding 
meet ing due dates, and amort izat ion of capital  inves tment .  These three  general  
goals can be specified in more precise performance measures .  

One performance measure  tha t  is a p r imary  focus of plant  managers  is the 
average WPI level. High WIP levels mean  tha t  more money mus t  be invested in 
inventory,  thus  adding to the operat ional  cost and incurr ing opportuni ty  costs. 
Flowtime is the t ime tha t  a batch spends from the moment  it s ta r t s  processing 
unti l  its completion, and includes any wai t ing t ime prior to processing. The 
makespan  is the total  t ime for all jobs to finish processing. 

Some performance measures  have to do with performance relat ive to each batch's  
due date. These include lateness,  earl iness and tardiness .  Lateness  is the amount  
of t ime a batch is past  its due date. Lateness  is a negat ive number  if a batch is 
early. Tardiness  equals la teness  if the batch is late, or zero if it is on t ime or 
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early. Earl iness  is the amount  of t ime prior to its due date at  which a batch's 
processing is complete. 

Managers  concerned with amort izing inves tment  in equipment  would like to see 
the equipment  continuously processing batches tha t  bring in revenue. Equipment  
ut i l izat ion and labor uti l ization are the pr imary  performance measures  of plant  
util ization. 

The selection of the performance measure  is a manager ia l  decision and has to do 
with the strategic objectives of the par t icular  enterprise.  

The information required for the Coordination/Supervisory Control level is 
basically the Schedule to be executed. This information is included in the Results 
Report  of the previous part.  Eventually,  the SPP will require information from 
the Coordinat ion/Supervisory Control level on the actual Schedule being realized 
and the production capacity of the plant  (see Table 1). 

Table 1. Information flow 
Coordination / Supervisory Control Scheduling 

Package 
Schedule information retr ieval  

& Planning 

Ask the SPP for the Schedule to be performed 
in the plant  

Responds with the Schedule 

3.5.6.2 Superv i sory  Control  

This level considers activities related to the Model Predictive Control module, 
Data  Reconciliation and the Faul t  Detection and Diagnosis modules. 

Model Predictive Control receives the sensor signals and the previous control 
inputs  to the plant.  The outputs  are the control signals to the plant  and to the set 
points of the multiloop controllers. This module determines  the optimal control 
actions. Control methods and strategies can be classified into a number  of 
different categories representa t ive  of the evolution of the field. These include the 
PID family, classical methods, such as selective controllers, model based and 
predictive techniques,  new generation advanced techniques based on optimal 
control theory, expert  systems, neural  networks, fuzzy and hybrid systems. 

A general  scheme of a model predictive control module is shown in Figure 15. The 
optimizer receives the differences between the plant 's  output  and the set points. 
The future control signals are optimized according to the predicted behavior of 
the plant  in a given time horizon. The signal is sent to the plant  via the DCS. In 
order to predict the behavior of the plant a plant  model is needed (Morari and 
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Lee, 1999). This model need to be periodically upda ted  as  the system changes 
with time. 

3.5.6.3 D a t a  R e c o n c i l i a t i o n  

Process m e a s u r e m e n t s  are subject to errors due to random errors,  as well as 
i n s t r u m e n t a t i o n  faults, such as incorrect ins ta l la t ion or calibration,  process 
leaks, etc. The main  purpose of data  reconciliation is to provide consistency 
between the measured  variables and the constraints ,  which arise from mass  and 
energy balances and are assumed to be the "true" process model. Ma themat i ca l ly  
this can be expressed as reconciling the process m e a s u r e m e n t s  by minimiz ing  a 
weighted least  squares  or max imum likelihood function of the m e a s u r e m e n t  
errors (Chouaib et al., 2000). 

3.5.6.4 P r o c e s s  F a u l t  D e t e c t i o n  a n d  D i a g n o s i s  ( P F D & D )  

The PFD&D subsys tem receives sensor data  from the p lant  as well as the control 
signals. The informat ion can be in the form of cont inuous signals ( t empera tu res ,  
flowrates,  pressures)  or discrete signals (valves open or close, pumps  on or off). 
The ou tpu ts  are a set of suspected faults. The signal corresponding to each 
suspected faul t  is considered to be b inary  (0 or 1). At the next  level of detai l  the 
size of the diagnosed fault  or its es t imated  probabil i ty could also be given. This 
output  can then  be used by the advanced control module in order to take  control 
actions, or by the operators  who take appropr ia te  action or by other  levels in the 
m a n a g e m e n t  and control s tructure,  such as the scheduling system (Ruiz et al., 
2O0O). 
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Figure 15. Scheme of the advanced control module 

Table 2. Example of a part of HAZOP analysis 
Cause Consequence Corrective Preventive actions 

actions 
Flow Low Pipe Loss of product Close the Container/pipe 

leakage Time needed for valve Maintenance 
tank charge Check the 
increased pipe 

Table 2 shows as an example a small part  of a Hazard and Operability Analysis 
(HAZOP) of a process s tream in a chemical plant. 

Based on the previous analysis there is a suspected fault called "Pipe leakage". 
The output  of the PFD&D system has different forms according to the decision 
level and associated system modules (Table 3). 

Table 3. Information to be sent from the PFD&D system to the other levels 
M o d u l e  Leve l  
Control system 2 
Scheduling 4 
system 
Supervisor 2 Check the pipe 
console 

T r a n s l a t i o n  f r o m  t h e  P F D & D  o u t p u t  
Close the valve 
Time needed for tank charge increased 
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The use of a DataBase  system simplifies the communicat ion of information 
because the same information is used by the different modules at different levels 
of detail  and from different points of view. It also assures  tha t  the actions to be 
performed are coherent and avoids redundancies.  

Figure 16 shows the data  flows in the Faul t  Detection and Diagnosis system and 
Figure 17 shows the data flows between the Faul t  Detection and Diagnosis 
system and other systems (Leonhardt  and Ayoubi, 1997; I se rmann  and Baill~, 
1997) 

Measurements-~t~ 
Control signals •1• Change Fault 

Signal -Features --Symptoms-I~ 
Processing Detection diagnosis 

Figure 16. Fault Detection and Diagnosis System 

--~Faults 

The analyt ical  knowledge about the process is used to produce quantif iable,  
analyt ical  information.  To do this, Signal Processing based on measured  process 
variables  have to be performed, to first generate  the character is t ic  values, 
consisting of parameters ,  s tate variables or residuals.  Special features can be 
extracted from these characterist ic  values. These features  are then compared 
with the normal  features  of the non-faulty process. For this purpose, methods of 
Change Detection and classification are applied. The resul t ing changes 
(discrepancies) in the described directly measured  signals, signal models or 
process models are considered as analyt ical  symptoms. In addition to symptom 
generat ion using quantif iable information, using qual i ta t ive information from 
h u m a n  operators can produce heurist ic symptoms.  In this way heuris t ic  
symptoms are generated,  which can be represented as fuzzy variables (e.g., small,  
medium, large) or as vague numbers  (e.g. around a certain value). 

The task  of Fault Diagnosis consists of de termining the type, size and location of 
the fault  as well as its t ime of occurrence based on the observed analyt ical  and 
heurist ic  symptoms.  If no fur ther  knowledge of fault  symptom causal i t ies  is 
available,  classification methods can be applied which allow a mapping of 
symptom vectors into fault vectors. If, however, a-priori knowledge of fault- 
symptom causali t ies  is available, diagnostic reasoning s t rategies  can be applied. 
Three types of s t ra tegies  are in use: 

�9 Classification methods, including geometric, statistic,  neura l  and 
polynomial classifiers, all use reference pa t te rns  for learning.  Their  
s t ructure  is not t r anspa ren t  but  they can be adapted  during use. 

�9 Inference methods are based on linguistic rules. Most of the t ime they are 
given in a fuzzy way. Expert  systems fed with fuzzy rules allow a fuzzy 
decision-making, the so-called "approximate reasoning". The problem with 
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this approach is the long time needed to develop the rules and the 
difficulties involved in adjusting the rule base. 
Adaptive neuro-fuzzy systems combine the s t rengths of both methods. The 
idea is to obtain an adaptive learning diagnosis system with t ransparent  
knowledge representation.  

Figure 17. Data flows between the Fault Detection and Diagnosis package and 
other systems 

3.5.7 B A T C H  C O N T R O L  

Batch control has the characteristics of a hybrid system in itself. Since batch 
processes typically are neither purely continuous nor discrete, but instead have 
characteristics of both, the automation of batch processes is considerably more 
complicated than that  of continuous or discrete processes. In a continuous 
process, process control is required only to monitor that  the system is working 
within the optimum limits, and if not, to apply local control in order to re turn  the 
system to within the optimal limits. In a batch process, the control system must 
also detect when a phase has been completed, and then change from one dynamic 
configuration to another  dynamic configuration, with changes in the local 
controllers for each phase. 

In batch processes there are three different types of process control: basic control, 
procedural control and co-ordination control. A combination of control activities 
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and control functions of these control types provides batch control, defined as 'a 
means  to process finite quant i t ies  of input  mater ia l s  by subject ing them to an 
ordered set of processing activities over a finite period of t ime using one or more 
pieces of equipment .  

The $88 s t anda rd  takes  into account two types of information:  equ ipmen t  
dependent  and product  dependent ,  to s t ruc ture  the descript ion of the batch 
processes in the form of three  models. These models are combined to r ep resen t  
these two types of information.  The first model is the physical hierarchy model. 
The other  is the procedural model, used to describe the procedura l  control 
e lements .  The combinat ion of the equ ipment  control funct ions and physical  
equ ipmen t  the equ ipment  enti t ies  are obtained, tha t  has  the same name  as the 
physical  model level tha t  represent .  The th i rd  model, is the recipe structure. The 
character is t ics  of these models are described next. 

A mul t i l ayer  physical hierarchical model to describe the enterpr ise ,  lower level 
groupings is combined to form higher  levels in the hierarchy.  The model has  
seven levels (Figure 18). At the top there  are the three  bus iness  levels, an 
enterpr ise ,  a site and an area level, all three  of which are outside the scope of the 
s88.01 s tandard .  The lower four levels are the process cells, units ,  equ ipment  
modules  and control modules. 

Process cells define a logical grouping of equ ipment  necessary  to produce one or 
more batches,  though not necessari ly a final product; somet imes  process cells are 
called t ra ins .  Defining process cells makes  product ion schedul ing easier.  
Considera t ions  when  s t ruc tur ing  process cells include: 

�9 Es tabl i sh  clear boundaries .  
�9 Funct ions  performed mus t  be consis tent  regardless  of wha t  product  is 

being produced. 
�9 In te rac t ion  with other  process cells min imal  and when  necessary,  

conducted at  the same or h igher  ent i ty  level i.e., process cell to process cell; 
and 

�9 Ma in ta in ing  consistency so operators  in terac t ing  wi th  s imi lar  ent i t ies  do 
so na tu ra l l y  and wi thout  confusion. 

Units are a collection of equ ipment  and control modules  in which major  
processing activities, such as react, distil, crystallize, make  solution, etc., can be 
conducted. Uni t  character is t ics  include: 

�9 Opera te  on only one batch at a time. 
�9 Cannot  acquire ano ther  unit;  and 
�9 Opera te  independent  of other  units.  
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Figure 18. $88 Physical mode 

Equipment modules are functional groups centered around a piece of processing 
equipment  tha t  carry out defined activities, such as header  control, dosing, 
weighing, jacket  service management ,  scrubber control, etc. A collection of control 
modules can become an equipment  module if the collection executes one or more 
equipment  phases.  

Control modules are the lowest grouping of equipment  capable of carrying out 
basic control. For example,  solenoids and limit switches combined can form 
Off/On valve control modules, and t r ansmi t t e r s  and valves can be combined into 
PID control modules. 

The physical  model described is used to describe the plant  in te rms of physical 
objects, the equ ipment -dependant  information. 

The procedural model describes the interact ion with upper  levels (coordination, 
scheduling and planning), which involve sequential  control activities. 

Procedures are the s t ra tegy for carrying out batch activities within a process cell. 
Procedures,  such as clean in place, do not always produce a product or a product 
in te rmedia te .  
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Unit procedures provide a s trategy for carrying out operations and methods in a 
contiguous manner  within a single unit. A unit  procedure can execute 
concurrently on different units. 

Operations are independent  processing activities that  usual ly result  in a chemical 
or physical change in the material  being handled. Operations include the 
instruct ions necessary for the initiation, organization, and completion of 
activities such as prepare reactor, charge, heat, cool, react, etc. 

Phases accomplish a specific process-oriented task, can be executed sequential ly 
or in parallel, can be self-terminating, and need to account for exception condition 
handling. When defining phases, a few of the considerations include: 

�9 Consistent  use of predefined states, such as holding, held, res tar t ing,  
failing, etc. 

�9 Consistent  use of predefined commands,  such as hold, stop, abort, etc. 
�9 Definition of the modes for each phase, and how the phase will respond to 

each mode. For example, is a single-step mode needed for troubleshooting? 
�9 Definition of exception handling and recovery mechanism's;  and 
�9 Data  collection of phase-related activities. 

The recipe model is hierarchical, the degree of details depending of the level of 
the physical model at which the recipe is specified. The s tandards  for batch 
process automat ion define four major categories of recipes: 

�9 General  Recipes, which are mainta ined at the corporate level (typically 
within the ERP system) and which permit  companies to make the same 
product in plants around the globe on a variety of equipment,  but  based on 
the same source recipe. 

�9 Site Recipes, which typically reside on manufactur ing execution systems (a 
layer tha t  lies between plant floor control and ERP systems). Site recipes 
define local site control of recipes across different hardware  platforms, 
such as those supplied by control systems manufacturers ,  Honeywell, 
Fisher-Rosemount,  Rockwell Automation,  ABB, etc. 

�9 Master  Recipes, which are the specific procedures tha t  actually execute the 
recipe in a part icular  manufactur ing  area, known as a process cell. 

�9 Control Recipes, which are the running  recipes in the process cell control 
systems. 

�9 The mas te r  recipe is more general than  the control recipe. In the mas ter  
recipe equipment  clauses, for example, are stated and quant i t ies  are 
usual ly  specified normalized. A master  recipe can also be used for 
manufac tur ing  a large number  of batches. 
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A control recipe is used for manufactur ing a single batch only. The control recipe 
is made from a master  recipe adding batch-specific information. For example the 
equipment  and the exact quanti t ies of ingredients to be used. 

The hierarchical  s t ructure makes the systems easy to unders tand  and the layer 
s t ructure  allow encapsulat ing the not relevant  details of one level to the others; 
each level contains only the relevant information for it. 

3.5.7.1 Integrat ion 

The new communication technologies and the advances in computer hardware  
have permit ted the solution of many problems in control and production 
managemen t  in the process industries,  in part  through a more effective and 
intensive data exchange between different sectors of the process. At the same 
time, this has led to a growing complexity in these systems. The development of 
applications for these systems using only the operating system and some 
programming  language is today an unaffordable task both from economic and 
technical points of view. To develop these complex applications requires the 
integrat ion of different specific subsystems developed with various tools in a 
single application that  fulfils the performances required by the system. 
In the design of the integrat ion architecture, the following aspects should be 
considered: 

�9 Open interfaces to other network levels. 
operation supports. 

�9 Time synchronization. 
�9 Data  translat ion.  
�9 Data  abstraction. 

Client/server scheme, event 

The general  communication architecture uses the client/server paradigm. At the 
higher level (near real time data) the communications are implemented over a 
higher-level protocol via a TCP/IP network. In some non-critical communication 
task the common higher-level Internet  protocols are used. The planning and 
scheduling system and the control system share a common database tha t  
contains the recipe descriptions and plant  description data. The most detailed 
level of recipe information is used mainly for the control system; while the 
planning and scheduling system uses less detailed information to perform its 
task. The advantage of this common database is that  a common interface can be 
used to input  data, so that  data consistency between the two modules is ensured 
because both systems are using the same data. Additionally the communication 
between the Planning system and the Control system is carried out using a data 
server, which manages the queues of the different messages and delivers them on 
request.  The use of a data server allows easy upgrades and changes of the 
different modules. It also allows easy monitoring of the communication between 
the different modules of the whole system. The third main advantage of this 
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system is its open archi tecture  tha t  allows communica t ing  with th i rd  par t ies  
software and hardware .  

An effective way to represent  the in tegrat ion model is th rough  the use of a 
h ierarchical  layered model (Figure 2), with each of the i tems of I tem l(a) being 
subordinate ,  or below tha t  above it in the list, in the model. At the same time, 
the aggregat ion of I tem l(b) occurs natural ly ,  going upward  in the same layered 
fashion. 

�9 The deployment  of this archi tecture  over the ne twork  is shown in Figure 
19. There are three  basic e lements  in the system platform tha t  g u a r a n t y  
connectivity, openness and reliabil i ty of each modules of the archi tecture:  

�9 The operating system guarant ies  an independent ,  quasi-paral le l  execution 
of modules and ensures  independence from the specific hardware .  

�9 The communication system ensures  the co-operation of modules in a 
s tandard ized  way. 

�9 The configuration system serves to build up a software topology of the  set 
of available modules by ins tan t i a t ing  and connecting the different 
modules. 

Any system in tegra t ion  has to be built  in te rms of these elements .  Each specific 
funct ional  software module has a common applicat ion program interface (API) 
which mus t  be made accessible to the others.  

The communication system is the only means  for informat ion in te rchange  
be tween system modules. It must  support  both, the exchange of informat ion  
between modules located on the same processor-board as well as exchange 
be tween modules located on different boards connected th rough  a bus-sys tem 
(network). A s tandard ized  protocol has to be defined to ensure  uniform data  
formats  and a fixed set of messages. 

To connect the modules over the ne twork a core bus (see Figure 20) is defined 
based on the OSI base reference model. It implements  any middleware  
technology from simple TCP/IP protocol or other  h igher  level In t e rne t  protocol 
like HTTP to CORBA. Over this middleware  technology two addi t ional  layer  
have to be buil t  one for object mapping  specific for the selected middleware  
technology and other  for message parsing. The inter-process communica t ion  is 
made th rough  DDE/OLE technology, and RPC, the same pars ing  mechan i sm is 
used to processing the cross application message. In the figure the system 
modules  are shown over the deployment  network,  also, in these figure the 
informat ion t r a n s m i t t e d  is indicated. 

Today the avai labi l i ty  of a communicat ion in f ras t ruc tu re  based on TCP/IP 
protocol and the use of s t andard  In te rne t  application protocol (HTTP, SMTP, and 
FTP) allows much easier  shar ing  of informat ion t han  was possible jus t  a few 
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years ago. A web-based communicat ion mechanism has been recently proposed 
(Nougu~s, 2000). The communication mechanism follows a three-layer  
communicat ion s t ructure  (Figure 21) tha t  uses the core bus to exchange data. 
The core bus implementa t ion  depends on the specific middleware technology used 
to dis t r ibute  the application. Here a simple TCP client server protocol are used to 
communicate  the data  server with the servlet, and the HTTP protocol to 
communicate  the client application (Browser and applets) with the web server 
and servlets. 

Figure 19. Deployment of system architecture. 

Today the availabil i ty of a communication infras t ructure  based on TCP/IP 
protocol and the use of s tandard  In terne t  application protocol (HTTP, SMTP, and 
FTP) allows shar ing information much easier than  a few years ago. A web-based 
communicat ion mechanism has been recently proposed (Nougu~s and Puigjaner,  
2001). 
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Figure 20: Network core bus. 



69'/ 

The communication mechanism follows a three-layer communication s tructure 
(Figure 21) tha t  uses the core bus to exchange data. The core bus implementat ion 
depends on the specific middleware technology used to distribute the application. 
Here a simple TCP client server protocol are used to communicate the data 
server with the servlet, and the HTTP protocol to communicate the client 
application (Browser and applets) with the web server and servlets. 

In Figure 21, a detailed modules relationship is shown and the type of 
communication between the modules is also indicated. It is impor tant  to remark  
that  the s imulator  engine, Data Server and Simulator can be run on different 
computers i.e. can be distributed object over the network. 
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Figure 21. Subsystems and information flow. 

Message exchanged between the different modules is formatted in XML syntax. 
That  way, XML parser  is implemented in each sub-module as can be seen in the 
figure. 

3.5.7.20ptimisation Techniques 

Mathematical Programming Techniques 

Many Mixed Integer Linear Programming (MILP) models have been proposed for 
scheduling problems arising in the process and related industr ies  (Pekny and 
Reklaitis, 1998; Shah, 1998, Pinto and Grossman, 1998). While a major 
advantage of the mathematical  programming app roach  is tha t  it provides a 
general f ramework for modeling a large variety of problems, its main l imitation 
lies in the potentially very large computational  effort required to solve problems 
of practical size, which can be a severe l imitation for industr ia l  applications. 
Additionally, th ,~  use of linear models to describe the manufactur ing  
environment,  objectives, constraints  and policies can lead to unsat isfactory or 
unfeasible solutions. To overcome the combinatorial explosion characterist ic of 
this type of problem, several authors have developed logic-based optimization 
methods, such as Generalized Disjunctive Programming (Raman and 
Grossmann,  1994), Constraint  Programming (Hentenrych, 1989), and/or 



698 

combinations of both with generic MILP methods to reduce de search space 
(Harjunkoski  and Grossmann,  2001). Through these means  a substant ia l  
reduction in the computat ion effort by several orders of magni tude  can at t imes 
be achieved with large size problems. 

S t o c h a s t i c  Opt imiza t ion  

Non determinist ic  methods have seen increasing application in the optimization 
of large complex plants. Improved random searh algori thms have been reported 
(Salcedo, 1992). Metaheuris t ic  algori thms (Simulated Annealing, Genetic 
Algorithms, Artificial Neural  Networks, Tabu Search) are also finding a 
widespread application in process engineering. These methods may be efficiently 
combined with rigorous approaches to find quasi optimal solutions within 
reasonable computing time for complex hybrid production scenarios 

Spec i f ic  So lu t ions  for Spec i f ic  Problems  

The development of a general  scheduling tool is an extremely ambitious objective 
and in fact given present  unders tanding  of the na ture  of scheduling problems 
consti tutes an impossible task. Production facilities tend to be very par t icular  
because company policies, objectives and constraints  are very specific and of 
different nature .  Specific constraints  in batch chemical processing made this 
si tuation even harder.  For these reasons, scheduling methods need to be adapted 
and user  interfaces rebuilt  each time a new application is encountered. However, 
the modelling of batch processes may follow a common framework and share the 
same basic simulation procedures, user interfaces and data organization and 
management .  Consequently, most of the computer code developed for the general 
case need not be rewri t ten  each time a new application is encountered, but 
instead can be reused. This is one of the main advantages  claimed by Component 
Technology. Distr ibuted components and distr ibuted computing have been 
recognized as the way to reduce software complexity and cost as well as to 
increase software flexibility and extensibility. 
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