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v

   If one way be better than another, that you may be sure is Nature’s way. 

– Aristotle 

   Volume 2 of this two-volume series adds additional examples of the use of green plants and 
their associated microbial communities to remove, degrade, or stabilize inorganic and organic 
contaminants entering the air, water, and soil of a multitude of ecosystems. The chapters in 
Volume 2 provide additional examples that illustrate how phytoremediation applications can 
serve as one of several useful components in the overall management and control of contami-
nants using relatively low-cost solar-driven physiological/biochemical mechanisms common 
to most plants. Many of the phytoremediation applications provided in Volume 2 also have the 
added value of providing a remediation option that offers a minimum disruption to the ecosys-
tem or habitat under repair. 

 Different forms of basic ecological restoration including phytoremediation have been used for 
centuries around the globe and refl ect part of what the philosopher Immanuel Kant described as 
the need for people to consider the potential effects of their actions on the welfare of all of human-
kind for all time. Typically, an ecosystem restoration project aims to restore an impacted area to a 
state that is as close as possible to the conditions that existed prior to the disturbance. In the case 
of phytoremediation, one good way to achieve that goal involves a contaminant management pro-
cess that assures a good match of the phytoremediation application to the type and concentration 
of contaminants and the critical site-specifi c characteristics of the area under remediation. 

 Volume 2 of this book series provides additional accounts of selected phytoremediation 
research projects and case histories from specifi c sites and/or laboratories in fi ve continents 
around the world. Volume 2 provides a diverse global perspective and includes observations and 
data collected from multiple sites in nine countries in Africa, Asia, Australia, North and South 
America, and Europe. Organic and inorganic contaminants covered include petroleum hydrocar-
bons, heavy metals/metalloids, wastewater, and nutrients. Chapters in Volume 2 also discuss the 
use of different organisms to manage and treat contaminants in soil and water including mixed 
microbial communities, cyanobacteria, rhizobia, mycorrhiza, halophytes, and lichens. 

 All forms of ecosystem restoration including phytoremediation will have to be reexamined in 
the broad context of climate change. The editors and contributing authors hope that one result of 
publishing this book will be to provide a wide range of useful experimental data derived from 
global applications of phytoremediation. Hopefully, this book can also provide new insights into 
the advantages and disadvantages of using phytoremediation to manage the continuing threat of 
ecosystem degradation resulting from the interaction of contaminants and climate change.  

  Tabuk, Saudi Arabia     Abid     Ali     Ansari, M.Sc., Ph.D.     
 Rohtak, India     Sarvajeet     Singh     Gill, M.Sc., M.Phil., Ph.D.     
 Rohtak, India     Ritu     Gill, Ph.D.     
 Syracuse, USA     Guy     R.     Lanza, Ph.D.     
 Syracuse, USA     Lee     Newman, Ph.D.     
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1.1             Introduction 

 Increasing population, industrialisation and urbanisation in 
Benin City, Nigeria are mainly responsible for the enormous 
discharge of various forms of human, animal and industrial 
wastewaters into nearby surface waters such as rivers, 
streams, lakes and ponds (   Aisien et al.  2010a ,  b ,  c ). This dis-
charge contains large amount of different pollutants that have 
serious environmental and health hazard implications on 
humans, animals, plants and microorganisms in the environ-
ment and this usually leads to great environmental challenges 
(Aisien et al.  2009 ; Benka-Coker and Ojior  1995 ). A typical 
abattoir processes both red meat (beef, mutton and pork) and 
white meat (poultry). The abattoir wastewater contains dis-
solved pollutants, including blood and urine, and also high 
concentration of suspended solids, such as pieces of fat, 
grease, hair, feathers, fl esh tissue, manure, grit and undi-
gested feeds (Massé and Massé  2000 ;    Tritt and Schuchardt 
 1992 ). These insoluble and slowly biodegradable compo-
nents represented 50 % of the pollution load. Therefore, 
every effort should be made to maximise raw blood and fat 
collection and subsequent processing into blood meal, tallow 
or other value-added alternatives (Johns  1995 ; Mittal  2004 ). 

 The wastewater may also have pathogens, including 
 Salmonella  and  Shigella  bacteria, parasite eggs and amoebic 
cysts. Abattoir wastewater contains several million colony 
forming units (cfu) per 100 cm 3  of total coliform, faecal coli-
form, and  Streptococcus  groups of bacteria. The main organic 
pollution from abattoir wastewater is the slaughter animal’s 
blood (Tritt and Schuchardt  1992 ; Osibajo and Adie  2007 ). 

Continuous discharge of untreated abattoir wastewater into 
nearby water bodies lead to increased algae growth; resulting 
in eutrophication; reduced aquatic plants and animals growth; 
increased water odour, foaming, colour, conductivity and tem-
perature; and increased heavy metal toxicity. These all will 
contribute to the very poor water quality of the water bodies. 
Several physical, chemical and biological processes have been 
involved in the transformation and consumption of organic 
matter and plant nutrients within the wetland (Aisien et al. 
 2010a ,  b ,  c    ). The reuse of treated wastewater in aquaculture/
agriculture practices is encouraged to minimise demand on 
freshwater resources. 

 Many researchers have applied various macrophytes such 
as water hyacinth ( Eichhornia crassipes ), water lettuce ( Pistia 
stratiotes L. ), water spinach ( Ipomoea aquatica ), duckweed 
(Lemna spp.), bulrush ( Typha ), vetiver grass ( Chrysopogon 
zizanioides ), common reed ( Phragmites australis ), etc. and 
microalgae including  Chlorella vulgaris  for phytoremedia-
tion of different types of wastewater to achieve a better qual-
ity water for agricultural and domestic purposes. The 
macrophytes are cost-effective universally available aquatic 
plants and with their ability to survive adverse conditions and 
high colonisation rates, are excellent tools for studies of phy-
toremediation. However, one of the major problems in using 
microalgae for wastewater treatment is the diffi culty of their 
recovery from the treated effl uent, which can be address by 
employing immobilised microalgae (Sing-Lai et al.  2010 ; Hu 
et al.  2008 ; Lu et al.  2010 ; Dipu et al.  2011 ;    Mkandawire and 
Dudel  2007 ; Lakshmana et al.  2008 ; Jing et al.  2002 ; Awuah 
et al.  2004 ). Also, it has been reported that the most important 
factor in the implementation of phytoremediation of contami-
nated water is the selection of appropriate plant that has a high 
uptake of nutrients and great capacity pollutants removal and 
grow well in polluted water (Mashauri et al.  2000 ; Baskar 
et al.  2009 ; Girija et al.  2011 ; Truong and Baker  1998 ; Fonkou 
et al.  2002 ). However, currently there seems to be neither suf-
fi cient measures nor facilities to treat abattoir wastewater in 
Benin City, Nigeria for environmental safety or to recover 
usable energy and material from abattoir by-products. 
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Therefore, in this study an integrated macrophytes and micro-
algae water treatment system was used to remediate abattoir 
wastewater in order to achieve high quality water, hence 
reducing the water quality indicators such as BOD, COD, 
DO, TDS, TSS, NO 3  − , PO 4  −3 , coliform count, etc. below the 
values obtained by other researchers. As a result, the main 
objective of this study was to investigate the effi ciency of 
phytoremediation of abattoir wastewater using integrated 
macrophytes and microalgae system and to ascertain which of 
the macrophytes ( Eichhornia crassipes ,  Ipomoea aquatica ) 
and microalgae ( Closterium turgidum, Chlorella vulgaris ) is 
the most effective in water quality enhancement of abattoir 
polluted water.  

1.2     Materials and Methods 

1.2.1     Material Collection and Preparation 

 Irorere Obazee abattoir in Evbuobanosa community, Benin 
City, Nigeria is located in 06 o  20′ 06″ N latitude and 05 o  37′ 
38″ E longitude. It has four slaughter halls for cattle and 
goat. Fifty litres of abattoir wastewater was collected between 
10.00 and 11.00 h with a clean sterilised plastic container 
from the point of discharge into the river. The wastewater 
was brought to the laboratory, mixed and allowed to settle for 
3 h. The supernatant was then diluted with distilled water in 
1–10 dilutions. This was to ensure that the concentration of 
the abattoir wastewater was favourable to the survival of the 
aquatic plants and algae. 

 The wastewater was transferred into a 30 L pre-sterilised 
aspirator bottle and allowed to fl ow from one stage to the 
other as shown in Fig.  1.1 . This was a four-stage treatment 
system. Each stage has pre-sterilised 10 L open plastic tanks. 
Besides, the retention time for each stage was 7 days. Stages 
1, 2, 3 and 4 contained fully grown 12 water hyacinth plants, 
algae, 12 water spinach plants and another 12 water hyacinth 
plants, respectively. These aquatic plants were grown in the 
wastewater exposed to sunlight. A 1.5 cm diameter plastic 
pipe with a control valve was used to facilitate the fl ow from 
one stage to another after the 7 days retention time. At the 
onset of the treatment process, the abattoir wastewater was 
allowed to fl ow into culture tank 1 (stage 1). After 7 days in 
culture tank 1, the partially treated wastewater was allowed 
to fl ow into the culture tank 2 (stage 2). This was achieved by 
opening the control valve connecting culture tank 1 to tank 2 
at the end of the 7 days. This procedure continued until the 
treated wastewater fi nally fl ows into culture tank 4 (stage 4).  

 Water samples were collected from the aspirator bottle at 
the beginning of the treatment process and each culture tank 
at the end of the retention time of 7 days. They were analysed 
in triplicate for the physiochemical and bacteriological 
parameters using APHA  2005  standard method of analysis. 
The parameters include: soluble anion; chloride (Cl − ), nitrate 
(NO −  3 ), phosphate (PO −  4 ), sulphate (SO 4  −2 ), bicarbonate 
(HCO −  3 ), heavy metals; Zinc (Zn), Iron (Fe), Lead (Pb), 
Cadmium (Cd);other parameters: total suspended solids 
(TSS), total dissolved solids (TDS), dissolved oxygen (DO), 
biological oxygen demand (BOD), chemical oxygen demand 
(COD), total hardness, alkalinity, conductivity, turbidity, 

Abattoir waste water tank 

Stage 1: First water hyacinth
culture

Stage 4: Second water hyacinth
culture

Stage 3: Water spinach culture

Stage 2: Mixed Algae
culture

  Fig. 1.1    Schematic diagram 
of the laboratory setup for the 
phytoremediation of abattoir 
wastewater       
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temperature and pH. The metals concentrations were deter-
mined using atomic absorption spectrophotometer (Perking 
Elmer AA 100). The bacteriological parameters (Coliform 
count,  E. coli  count and streptococci count) were determined 
using presumptive and confi rmative tests (APHA  2005 ).  

1.2.2     Statistical Analysis 

 The statistical analyses were carried out using one way analysis of 
variance (ANOVA) of F-Test. The correlation between the differ-
ent physiochemical and bacteriological parameters were evalu-
ated by Pearson’s coeffi cient at confi dence intervals of 95 %.   

1.3     Results and Discussion 

 The water quality values for the raw and treated abattoir 
wastewater are summarised in Table  1.1 . The results showed 
that all the water quality indicators (BOD, COD, DO, TSS, 
coliform count, etc.) of the raw (untreated) abattoir wastewa-
ter were very high and exceeded the permissible limits of 
WHO/FEPA standards for discharge of wastewater into 

 surface water. Therefore, it was quite obvious that treatment 
would be very necessary to improve the quality of the abat-
toir wastewater before it is discharged into the nearby sur-
face water. This will minimise the addition of organic and 
inorganic matters, nutrients and microbial loads, thereby 
reducing the pollution level of the surface water and make it 
more useful for both domestic and industrial purposes.

   The abattoir wastewater was treated in four stages 
 macrophytes/microalgae phytoremediation processes. The 
treatment period for each stage was 7 days; hence the entire 
processes took 28 days. The summary of the results in 
Table  1.1  showed that for each stage of the phytoremediation 
treatment process, there were signifi cant reduction of organic 
matters, nutrients and microbial loads of the abattoir waste-
water. The water from the fi nal or fourth stage showed that 
all the water quality indicators value were either within or 
below the permissible WHO/FEPA standards for the dis-
charge of wastewater into surface water. The uptake and 
accumulation of pollutants (organic and inorganic nutrients, 
microorganisms) vary from stage to stage, plant to plant, 
plant to algae and also from pollutant to pollutant. 

 The temperature increased from 28 °C in the raw abat-
toir wastewater to 28.9 and 30 °C in stages 1 and 2, 

          Table 1.1    Physiochemical and bacteriological properties of the raw and treated abattoir wastewater using aquatic plants and algae   

 Parameters  Raw sample 

 First water hyacinth 
culture (stage 1) 
and removal (%) 

 Algae culture 
(stage 2) and 
removal (%) 

 Water spinach 
culture (stage 3) 
and removal (%) 

 Second water 
hyacinth culture 
(stage 4) and 
removal (%) 

 WHO/ 
FEPA limits 

 Temperature ( o C)  28.0 ± 0.7  28.9 ± 1.1  a (3.1 %)  30.0 ± 1.0  a (6.67 %)  29.0 ± 0.8  a (3.4 %)  28.6 ± 1.3  a (2.1 %)  <40 °C 

 Turbidity (NTU)  125.0 ± 2.2  9.75 ± 1.1 (92.2 %)  36.3 ± 1.5 (71 %)  6.5 ± 0.2 (94.8 %)  4.0 ± 0.1 (96.8 %)  5–10 

 Conductivity (mS/cm)  1,640 ± 22  600 ± 13.2 (63.4 %)  492 ± 10.3 (70 %)  310 ± 8.6 (81.1 %)  175 ± 9 (89.3 %) 

 Total suspended solid (mg/L)  2,440 ± 33  602 ± 8.3 (75.3 %)  969 ± 12 (60.3 %)  385 ± 7.7 (84.2 %)  146.2 ± 6 (94 %)  600–1,000 

 Total dissolved solid (mg/L)  2,006 ± 21  474 ± 9.2 (76.4 %)  305.4 ± 12 (84.8 %)  152.5 ± 10 (92.4 %)  84.5 ± 8.6 (95.8 %)  200–500 

 Bicarbonate HCO −  3  (mg/L)  431 ± 10.2  159 ± 7.3 (63.1 %)  97.8 ± 6.4 (77.3 %)  68.9 ± 4.2 (84 %)  43.3 ± 3.5 (90 %) 

 Chloride Cl −  (mg/L)  285.8 ± 13  142.9 ± 8 (50 %)  81.5 ± 3.2 (71.4 %)  57.2 ± 4 (80 %)  38.6 ± 3.6 (86.5 %)  350– 

 Sulphate SO 4  2−  (mg/L)  345 ± 15.6  124.8 ± 7.2 (63.8 %)  53.7 ± 4.5 (84.4 %)  46.2 ± 8.5 (86.7 %)  30.2 ± 5.1 (91.2 %)  100–250 

 Phosphate PO 4  2−  (mg/L)  9.8 ± 0.9  5.14 ± 2.2 (47.6 %)  4.62 ± 1.2 (52.9 %)  3.39 ± 1.5 (65.4 %)  2.82 ± 0.5 (71.2 %)  5–10 

 Nitrate NO 3  −  (mg/L)  103.2 ± 0.7  43.2 ± 2. 3 (58.1 %)  30.5 ± 1.6 (70.5 %)  22.4 ± 0.8 (78.2 %)  15.8 ± 1.2 (84.7 %)  45–50 

 Alkalinity (mg/L)  222.5 ± 10  96.1 ± 8 (56.8 %)  53.2 ± 4 (76.1 %)  32.3 ± 5.3 (85.5 %)  21.4 ± 3.6 (90.3 %) 

 Total hardness (mg/L)  265 ± 7.2  90.7 ± 4.2 (65.8 %)  79.5 ± 3.9 (70 %)  56.3 ± 4.2 (78.8 %)  40.2 ± 3.2 (84.8 %)  200–500 

 pH  9.0 ± 0.2  7.8 ± 0.1 (13.3 %)  7.5 ± 0.15 (16.7 %)  7.4 ± 0.2 (17.8 %)  7.2 ± 0.12 (20 %)  6.0–9.0 

 Dissolved oxygen (mg/L)  1.2 ± 0.04  4.1 ± 0.2  a (70.7 %)  4.7 ± 0.1  a (74.5 %)  5.8 ± 0.1  a (79.3 %)  6.3 ± 0.2  a (81 %)  4–5 

 BOD (mg/L)  621.3 ± 7.5  42.7 ± 1.5 (93.1 %)  27.6 ± 0.9 (95.6 %)  15.2 ± 1.3 (97.6 %)  10.6 ± 0.3 (98.3 %)  20–50 

 COD (mg/L)  1,244 ± 13.2  98 ± 4.7 (92.1 %)  84 ± 5.8 (93.2 %)  65 ± 4.2 (94.8 %)  52 ± 3.5 (95.8 %)  1,000 

 Cadmium (mg/L)  3.6 ± 0.2  0.2 ± 0.03 (94.4 %)  0.04 ± 0.001 (98.9 %)  0.01 ± 0.002 (99.7 %)  ND (100 %)  0.01–<1.0 

 Zinc (mg/L)  2.63 ± 0.3  0.3 ± 0.001 (88.6 %)  0.02 ± 0.001 (99.2 %)  ND (100 %)  ND (100 %)  <1.0–5 

 Lead (mg/L)  4.4 ± 0.03  0.25 ± 0.03 (94.3 %)  0.04 ± 0.01 (99.0 %)  0.01 ± 0.02 (99.7 %)  ND (100 %)  0.01–0.05 

 Iron (mg/L)  5.7 ± 0.12  0.48 ± 0.05 (91.6 %)  0.09 ± 0.001 (98.4 %)  0.01 ± 0.001 (99.7 %)  ND (100 %)  0.3–0.5 

 Coliform count (MPN/100 mL)  2,400 ± 30  38 ± 2.5 (98.4 %)  2 ± 0.02 (99.9 %)  ND (100 %)  ND (100 %)  0–<1 

  E. coli  count (MPN/100 mL)  580 ± 15.2  12 ± 1.3 (97.9 %)  1 ± 0.01 (99.8 %)  ND (100 %)  ND (100 %)  0–<1 

  Streptococci  (MPN/100 mL)  450 ± 12.3  15 ± 0.6 (96.7 %)  1.6 ± 0.01 (99.7 %)  ND (100 %)  ND (100 %)  0–<1 

  Mean ± standard error of mean (SEM) of water quality indicators and percentage reduction in wastewater 
  ND  non detectable 
  a Percentage increase  
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respectively. It then decreased to 29 and 28.6 °C in stages 
3 and 4, respectively. The effi ciency of increased varied 
from 2.1 to 6.67 %. The slight increase will be as a result 
of increase microbial activities in the mixed algae culture 
(stage 2). However, the temperature values for the raw and 
treated abattoir wastewater from stage 1–4 were within 
the allowed limit of WHO/FEPA for the discharge of 
wastewater into surface water. These results conformed to 
those reported by Koottatep and Polprasert ( 1997 ) and 
Liao and Chang ( 2004 ). 

 The pH value of the abattoir wastewater was 9.0, which is 
an indication that the wastewater was alkaline. The pH of the 
abattoir wastewater decreases slightly as the water passes 
through the different stages of treatment using aquatic mac-
rophytes and microalgae. The pH ranged from 9 to 7.8, 7.8 to 
7.5, 7.5 to 7.4 and 7.4 to 7.2 for stages 1, 2, 3 and 4, respec-
tively. Therefore, the percentage pH reduction ranged from 
13.3 to 20 %. Similar results were reported by Aisien et al. 
 2010b ; Snow and Ghaly  2008 . The reduction in pH is due to 
absorption of nutrients or by simultaneous release of H+ ions 
with the uptake of metal ions present in the wastewater 
(Mahmood et al.  2005 ). The treated abattoir wastewater at 
the end of the fourth stage was almost neural and within the 
limit of WHO/FEPA standard for the discharge of wastewa-
ter into surface water. 

 Similar trends were observed for alkalinity with the effi -
ciency of reduction ranged from 56.8 to 90.3 %. These 
results were in conformity with that reported by Aisien et al. 
 2009 , Mishra et al.  2008 . The conductivity is a proxy indica-
tor of total dissolved solids, and therefore an indicator of the 
taste or salinity of the water. Table  1.1  showed that the con-
ductivity of the abattoir wastewater decreased drastically in 
the water hyacinth culture in stage 1 and gradually in subse-
quent stages. Aisien et al.  2010c  reported that the high con-
ductivity indicates the presence of high concentration of 
dissolved salts as showed in Table  1.1 . The effi ciency of 
reduction ranged from 63.4 to 89.3 %. These reductions 
indicate the removal of salts the wastewater through 
plants uptake and root absorption (Ran et al.  2012 ; Valipour 
et al.  2011 ). The conductivity values for the different treat-
ment stages were within the recommended WHO/FEPA 
standard. 

 The turbidity of the abattoir wastewater was quite high 
this can be associated with suspended matters, such as clay, 
silts, fi nely divided organic and inorganic matters, planktons 
and other microorganisms (Ignacio et al.  2010 ). The results 
from the various stages in Table  1.1  shows that it signifi cantly 
decreased in stage 1 and greatly increased in stage 2 and then 
continual decreases in stages 3 and 4. The increase in stage 2 
was as a result of the water coming in contact with a mixed 
algae culture (Alejandro et al.  2010 ). The effi ciency of reduc-
tion of the wastewater turbidity ranged from 71 to 96.8 %. 
Apart from stage 2, the turbidity of the treated water was 
either lower or within the permissible limit of WHO/FEPA. 

 The dissolved oxygen (DO) increased from 2.2 to 
4.1 mg/L, 4.1 to 4.7 mg/L, 4.7 to 5.8 mg/L and 5.8 to 
6.3 mg/L for stages 1, 2, 3, and 4 treatments, respectively. 
The percentage increase ranged from 70.7 to 81 %. This can 
be explained as the presence of plants and algae reduces dis-
solved CO 2  during the period of photosynthetic activity and 
this lead to increase in DO of water (Awuah et al.  2004 ; 
Ignacio et al.  2010 ). Also, the increase in DO might be as 
result of increased biodegradation of the wastewater constit-
uents (Aisien et al.  2009 ). The DO from each stage was 
within the favourable WHO/FEPA standard for wastewater 
discharge into river. Chapman ( 1997 ) reported that the stan-
dard for sustaining aquatic life was 5 mg/L and below this 
concentration the aquatic life is adversely affected. 

 The results of the soluble anions (HCO 3  − , NO 3  − , SO 4  2− , 
Cl −  and PO 4  3− ), heavy metals (Cd, Zn, Pb and Fe) and total 
hardness are represented in Table  1.1 . It can be seen that the 
effi ciency of reduction of the soluble anions, heavy metals 
and total hardness from stages 1 to 4 ranged from 47.6 to 
91.2 %, 88.6 to 100 % and 65.8 to 84.8 %, respectively. The 
order of reduction by the macrophytes and microalgae was 
heavy metal > total hardness > soluble anions. At the last 
stage, the heavy metals were completely removed from the 
treated abattoir wastewater. The aquatic macrophytes and 
microalgae can be considered as a hyperaccumulators for 
trace metals such as Cd, Pb, Fe and Zn, hence their excellent 
removal effi ciency. These results agreed with those reported 
by other researchers (Aisien et al.  2010c ; Mishra and Tripathi 
 2008 ; Endut et al.  2011 ; Maine et al.  2001 ; Delgado et al. 
 1995 ; Soltan and Rashed  2003 ; Sato and Kondo  1981 ). 
Their concentrations were either below or within the WHO/
FEFA standard for wastewater discharge into surface water. 

 The variations of other water quality indicators (BOD, 
COD, TSS and TDS) are shown in Table  1.1 . The effi ciency 
of reduction from stage 1 to 4 varied from 93.1 to 98.3 %, 
92.1 to 95.8 %, 72.3 to 94 % and 76.4 to 95.8 % for BOD, 
COD, TSS and TDS, respectively. These results were in con-
formity to that reported by other researchers when aquatic 
plants was used to treat other wastewater such as textile mill, 
rubber factory water, grey water (Aisien et al.  2009 ; Gamage 
and Yapa  2001 ; Koottatep and Polprasert  1997 ; Kulatillake 
and Yapa  1984 ; Endut et al.  2011 ). Chapman ( 1997 ) reported 
that both BOD and COD are important water quality param-
eters and are very essential in water quality assessment. Also, 
Aisien et al. ( 2010a ,  b ,  c ) stated that the more organic and 
inorganic matters in wastewater, the higher the BOD and 
COD. The high BOD in untreated abattoir wastewater shows 
that the water contains signifi cant amount of biodegradable 
organics such as blood, urine undigested materials, animal 
tissues, and solid waste from the slaughter (Osibajo and Adie 
 2007 ). The results showed that in all the stages there was sig-
nifi cant removal of organic matters and nutrients in the abat-
toir wastewater, hence the drastic reduction in BOD and COD 
even in stage 1 and subsequent stages. The reductions in pH 
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above encourage microbial action to degrade the inorganic 
and organic contaminants in the wastewater thereby causing 
reduction in BOD and COD (Aisien et al.  2009 ). Besides, the 
DO increases through the treatment period. The effi ciency of 
increased ranged from 70.7 to 81 %. It has been reported that 
the presence of plants in the wastewater depletes dissolved 
carbon (IV) oxide during the period of photosynthetic activity 
and increase in DO of water, thus creates aerobic conditions 
in wastewater, which supports the aerobic bacterial activity to 
reduce BOD and COD. The water quality indicators (BOD, 
COD, TDS, TSS and DO) falls either below or within the 
WHO/FEPA permissible limits for discharge of wastewater 
into surface water. 

 The microbial contaminants which were express as Coliform 
count,  E. coli  and  Streptococci  were quite high as indicated in 
Table  1.1 . These microorganisms will cause taste and odour 
problems when the untreated abattoir wastewater is released 
into the nearby surface water. It was observed that after the 
stage 2, the faecal coliform,  E. coli  and Streptococci were com-
pletely removed hence 100 % reduction. As a result, the treated 

wastewater met the zero level concentration of bacteria accord-
ing to the WHO/FEPA standard for the discharge of wastewater 
into surface water. Similar results were reported previously by 
researchers (Aisien et al.  2010b ; De-Busk and Reddy  1987 ; 
Dar et al.  2011 ). The effi ciency of reduction of all the water 
quality indicators investigated using the water hyacinth 
( Eichhornia crassipes ), water spinach ( Ipomoea aquatica ) and 
mixed algae ( Chlorella vulgaris and Closterium turgidum ) 
in the different treatment stages revealed the order of water 
hyacinth > water spinach > mixed algae. 

 Further evaluations were made to ascertain the actual rela-
tionship between some water quality indicators (conductivity, 
turbidity, TDS, TSS, BOD and COD). The linear regression 
results for the relationship between conductivity and TDS, 
turbidity and TSS, alkalinity and pH, and BOD and COD 
are represented in Figs.  1.2 ,  1.3 ,  1.4  and  1.5 , respectively. 
The correlation coeffi cients revealed a positive linear correla-
tion. This shows that as TDS increases the conductivity 
increases, and as TSS decreases the turbidity decreases. Also, 
as pH increases the alkalinity increases, and as BOD decreases 
the COD decreases. The correlation coeffi cients  R  2  were 
0.956, 0.953, 0.961 and 0.961 for relationship between con-
ductivity and TDS, turbidity and TSS, alkalinity and pH and 
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BOD and COD respectively. The very high correlation coef-
fi cients indicate a positive strong linear relationship between 
the water quality indicators of abattoir wastewater. It revealed 
that these indicators have common sources.     

 Figures  1.6 ,  1.7  and  1.8  show the regression results for the 
relationship between DO and BOD, DO and COD and DO 
and TDS, respectively. The results depict an inverse linear 
correlation. This indicates that as DO concentration increases 
the concentrations of TDS, BOD and COD decreases. The 
correlation coeffi cients  R  2  were −0.958, −0.995 and −0.973 
for relationships between DO and BOD, DO and COD, and 
DO and TDS, respectively. These correlation coeffi cients 
suggest similar sources.    

 The correlation coeffi cient of heavy metals in abattoir 
wastewater as indicated in Table  1.2  showed positive correla-
tion and also supports the fact that they are from similar sources.

   The Pearson’s correlation matrix in Table  1.2  for DO, 
BOD, COD and TDS and Table  1.3  for heavy metals (Zn, Fe, 
Pb and Cd) for abattoir wastewater revealed linear and 
inverse linear correlation between different water quality 
indicators and different correlation coeffi cient which is either 
positive or negative.

   There was signifi cant correlation regardless of which 
indicator was reduced. Also, it shows that regardless of 
which indicator reduced, the others were still signifi cantly 
correlated. This implies that both indicators are not strongly 
driven by one particular indicator, but rather by the combina-
tion of all the water quality indicators.  
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    Table 1.2    Pearson’s correlation matrix for pairs of water quality indi-
cator in abattoir wastewater   

 DO  BOD  COD  TDS 

 DO  1.00 
 BOD  −0.96  1.00 
 COD  −0.99  0.96  1.00 
 TDS  −0.97  0.99  0.98  1.00 

   Table 1.3    Pearson’s correlation matrix for pairs of water quality indi-
cator (heavy metals) in abattoir wastewater   

 Zn  Fe  Pb  Cd 

 Zn  1.000 
 Fe  0.987  1.000 
 Pb  0.993  0.998  1.000 
 Cd  0.985  0.999  0.998  1.000 
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1.4     Conclusions 

 The following conclusions can be drawn from this study:
   The entire water quality parameters (indicators) levels of the 

abattoir wastewater released into the river was higher than 
the permissible limits of WHO/FEPA. 

 Hence, the river water is unsafe for both domestic and indus-
trial usage.  

  The aquatic macrophytes ( Eichhornia crassipes ,  Ipomoea 
aquatica ) and the microalgae ( Closterium turgidum , 
 Chlorella vulgaris ) signifi cantly improved the abattoir 
wastewater quality by tremendously reducing all the 
water quality indicators.  

  The water quality indicators level were either within or 
below the WHO/FEPA recommended standard limit for 
the discharge of wastewater into surface water after virtu-
ally each treatment stage. Therefore, the macrophytes and 
microalgae treatment system can be used to treat abattoir 
wastewater for irrigation and other domestic and indus-
trial purposes.  

  The treatment effi ciency for all the macrophytes and micro-
algae applied were generally very good. The order of 
 effi cient reduction was water hyacinth > water spinach >
mixed algae.  

  There was strong positive or negative correlation between 
the water quality indicators analysed, this indicates simi-
lar sources.        
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      Abbreviations 

   BTEX    Benzene toluene, ethyl benzene, xylenes   
  COD    Chemical oxygen demand   
   K  ow     Octanol–water partition coeffi cient   
  MWF    Metal working fl uids   
  PAHs    Polycyclic aromatic hydrocarbon   
  PCB    Polychlorinated biphenyl   
  PGPB    Plant growth-promoting bacteria   
  PGPR    Plant growth-promoting rhizobacteria   
  STEM    Scanning transmision electron microscopy   
  TCE    Trichloroethylene   
  TEM    Transmision electron microscopy   
  TNT    2,4,6-Trinitrotoluene   
  VOC    Volatile organic compounds   

2.1           Introduction 

 Water is our most important resource. We need water for vari-
ous human activities such as the food supply, energetic 
resources, or industrial activities. Access to potable water has 
been problematic in the last decades (Lomborg  2001 ; The 
Millennium Development Goals Report  2008 ). Human activ-
ities are mainly responsible for global environmental change, 
especially since the Industrial Revolution, to the detriment of 
large parts of the world (Rockström et al.  2009 ).This global 
environmental change is directly related to climate change, 
which is responsible for around 20 % of the increment in the 
global water shortage (   UNESCO  2009 ). It has been estimated 

that around 70 % of fresh water is used by agriculture (Baroni 
et al.  2007 ), 20 % by industry (refrigeration, transport, as a 
dissolvent for chemicals), and 10 % for domestic use (FAO 
 2003 ). Because of that, fresh water resources are reduced. 

 Rapid industrialization, urbanization, and population in 
the last few decades have added huge loads of pollutants to 
water resources (CPBC  2008 ). The main problem of water 
pollution is that it contains not only one single pollutant, so 
its contamination is very heterogeneous and there are really 
common hotspots of contamination (French et al.  2006 ). 
Industries have different processes and consume large vol-
umes of water and chemicals causing changes in the compo-
sition and toxicity of the wastewater effl uents. Some research 
has shown that 40 % of hazardous waste sites in the United 
States are thought to be cocontaminated by organic and inor-
ganic pollutants (Sandrin and Maier  2003 ; Sandrin et al. 
 2000 ). The water pollution problem is very important, mainly 
in developing countries, due to industrial proliferation and 
modern agricultural technologies (Sood et al.  2012 ). 

 About two million tons of waste (industrial and agro-
chemical residues, human discharges) are spilled in the water 
courses every day, thus it has been estimated that the global 
residual water produced is around 1,500 km 3 . It is known 
that 1 L of residual water can pollute 8 L of fresh water, so 
the global burden of pollution could be raised to 12,000 km 3  
(UNESCO  2009 ). 

 Usually a combination of traditional techniques (chemi-
cal precipitation, ultrafi ltration, chemical oxidation and 
reduction, electrochemical treatment, reverse osmosis, coag-
ulation–fl occulation, and ion exchange) would be used (e.g., 
Volesky  2001 ; Rai  2009 ). These remediation technologies 
have specifi c benefi ts and limitations but in general none of 
them is cost effective (Volesky  2001 ; Rai  2009 ). The main 
problem of these traditional techniques is that they need 
energy and this resource also pollutes the environment. 
However, other environmentally friendly techniques have 
been developed. Phytoremediation may provide a solution 
(Batty and Dolan  2013 ). Phytoremediation is emerging as an 
innovative tool, because plants are solar-driven and thus 
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make this technology a cost-effective mode, with great poten-
tial to achieve a sustainable environment. 

 Various research has shown the ability of plants to remove 
pollutants. Since the 1970s several researchers including 
Boyd ( 1970 ), Stewart ( 1970 ), Wooten and Dodd ( 1976 ), and 
Conwell et al. ( 1977 ) have shown that aquatic plants can 
remove nutrients. Others such as Seidal ( 1976 ), Wolverton 
and McDonald ( 1976 ), and Wolverton and Mckown ( 1976 ) 
have shown plants’ ability to remove organic pollutants from 
aquatic environments.  

2.2     Phytoremediation 

 Phytoremediation is the use of plants and their associated micro-
organisms to remove, stabilize, and transform pollutants in the 
soil, water, and atmosphere (Batty and Dolan  2013 ). In this pro-
cess natural or genetically engineered plants can be used with 
their ability to accumulate, degrade, or eliminate metals, pesti-
cides, solvents, explosives, and crude oil and its derivatives 
(Flathman and Lanza  1998 ; Prasad and Freitas  2003 ). 

 There are a number of advantages in the phytoremedia-
tion strategy over traditional technologies. The most obvious 
is the signifi cantly lower energy costs of between 50 and 
90 % (Ensley  1997 ; Glass  1999 ) and their ecofriendly nature. 
There are also some limitations that can be overcome using 
plants with high biomass, faster growth rate, and ability to 
adapt to a wide range of environmental conditions. Other 
advantages and limitations of phytoremediation are com-
pared in Table  2.1 .

   The main mechanisms involved in water phytoremedia-
tion are:
 –     Phytoaccumulation : Use of plants to remove  contaminants 

from the site with its associated accumulation in leaf or 
root tissues.  

 –    Phytodegradation : Involves a plant–microbe symbiotic 
relationship that degrades organic pollutants within the 
rhizosphere.  

 –    Phytovolatilization : A process in which plants take up 
water–soluble contaminants via transpiration and convert 
them to a gaseous form that is released through the sto-
mata of the plants.    

  Phytofi ltration or rhizofi ltration  :  The main phytoremedia-
tion process occurs through the roots of plants that are able 
to absorb, concentrate, and precipitate toxic metals and 
organic chemicals in polluted water. In this process, the 
rhizosphere is highly important, in that plants, microbes, 
and sediment act together as a biogeochemical filter 
that effi ciently removes the wastewater pollutants (Hooda 
 2007 ). 

 Plants can be used as fi lters in constructed wetlands (Lytle 
et al.  1998 ; Horne  2000 ; Nwoko et al.  2004 ), for fi ltering 
large volumes of wastewater, or can be used in a hydroponic 
setup with a continuous air supply (Raskin et al.  1997 ). This 
is an indoor, contained setup and is relatively expensive to 
implement. It is most useful for bioremediation of small vol-
umes of wastewater polluted with hazardous inorganics such 
as radionuclides (Negri and Hinchman  2000 ; Dushenkov and 
Kapulnik  2000 ). 

 Figure  2.1  shows a rhizofi ltration mechanism in which 
plant roots have been rooted in esparto fi bers and metal- 
working fl uids constitute the toxic effl uent (Grijalbo et al. 
 2013 ). In the rhizofi ltration process plants need to be fi xed 
to a support and it is necessary to have water recirculation to 
improve its effi ciency. This process could not be used directly 
in aquatic effl uents such as rivers or streams.  

   Table 2.1    Advantages and limitations of phytoremediation   

 Advantages  Limitations 

 Cost- effective and eco-friendly technology as compared to traditional 
process both in situ and ex-situ 

 Process is effective with respect to the surface area covered and 
limited by the depth reached by the roots 

 It uses naturally inherent potential of naturally occurring plants and 
microbes to clean polluted sites. Help in preserving the natural state of 
environment 

 The response of plant and microbe varies under different growth 
conditions (i.e., climate, temperature, light intensity, altitude etc.) 

 It can be used to treat sites with more than one pollutant  Success of phytoremediation depends upon the tolerance plants used 
to treat pollutant. 

 After phytoremediation, the hyperaccumulating plants can be used for 
retrieval of the precious heavy metals as bio-ores 

 There exists a possibility of heavy metals re- entering the environment, 
because of their biodegradable nature 

  From Sood et al.  2012 , reproduced with permission from the  AMBIO , 41: 122–137 © Royal Swedish Academy of Sciences 2011)  

Zea mays

Roots with esparto fibre

Metal Working Fluids water
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  Fig. 2.1    Rhizofi ltration system. (from Grijalbo et al.  2013 , reproduced 
with permission from the  Journal of Hazardous Materials , 260: 
220–230 © 2013 Elsevier B.V.)       
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 The plants used in this process should have fast growing 
dense roots, be tolerant to the pollutant(s), use precipitation, 
absorption, or adsorption methods to remove the pollutant(s), 
and be able to maintain this ability for a long period of time 
(Marin et al.  2005 ). 

 Table  2.2  presents a summary of phytoremediated chemi-
cals and some research where they have been used.

2.3         Phytoremediation of Inorganic 
Pollutants in Water 

 Inorganic contaminants come from natural processes such 
as volcanic eruptions and continental dusts. They are min-
eral based and have a wide range of anthropogenic sources 
within the environment including extraction of ores, indus-
trial processing of many kinds, gas generation, landfi ll, and 
transport (e.g., Batty et al.  2010 ; Liu et al.  2009 ; Thums 
et al.  2008 ). The majority of these pollutants cannot be 
degraded into simple compounds, so they cannot be fully 
removed from the environment, but instead they can be 
transported or transformed into less toxic forms. Among 
various water inorganic pollutants, heavy metals are of 
major concern because of their persistent and bio accumu-
lative nature (Lokeshwari and Chandrappa  2007 ; Chang 
et al.  2009 ; Yadav et al.  2009 ). Heavy metals have a high 
atomic weight and around fi ve times more density than 
water. They are highly toxic and cause ill effects at very 
low concentrations. Their origin in aquatic environments is 
either natural, by slow leaching from soil/rock to water, or 
through anthropogenic sources, such as the discharge of 
untreated effl uent (waste water; Sood et al.  2012 ). 

 Plants used in phytoremediation can transform, stabilize, 
or accumulate inorganic matter. They need to be tolerant to 

high concentrations of inorganic compounds or avoid uptake 
of the pollutants (Batty and Dolan  2013 ). 

 Pollutants are taken up by biological processes in which 
different membrane transporters interact (plant nutrients or 
other compounds chemically similar to nutrients that allow 
pollutants to pass inadvertently into root cells, for example, 
arsenate that is taken up by phosphate transporters, selenate 
by sulphate transporters; Abedin et al.  2002 ). It is important 
to know that phytoaccumulation is saturable, according to 
Michaelis Menten kinetics, because it depends on a discrete 
number of membrane proteins (Marschner  1995 ). 

2.3.1     Phytovolatilization 

 Plants are able to remove inorganic pollutants through vola-
tilization, which is a process that completely removes the 
pollutant from the site as a gas, without the need for plant 
harvesting and disposal. 

 One example is the Se volatilizers. Some aquatic species, 
such as rice, rabbit foot grass, Azolla, and pickle weed are 
the foremost plants with the ability to volatilize this com-
pound (Hansen et al.  1998 ; Lin et al.  2000 ; Pilon-Smits et al. 
 1999 ; Zayed et al.  2000 ). Volatilization of Se involves assim-
ilation of inorganic Se into the organic seleno amino acids 
selenocysteine (SeCys) and selenomethionine (SeMet). The 
latter can be methylated to form dimethylselenide (DMSe), 
which is volatile (Terry et al.  2000 ). 

 The phytovolatilization process could be improved using 
plant species with high transpiration rates, which can overex-
press enzymes such as cystathionine-V-synthase that medi-
ates S/Se volatilization (Van Huysen et al.  2003 ) and by 
transferring the gene for Se volatilization from hyperaccu-
mulators to nonaccumulators (Le Due et al.  2004 ).  

   Table 2.2    Summary of phytoremediated chemicals   

 Type  Chemicals treated  Reference 

 Phytoaccumulation/extraction  Cd, Cr, Pb, Zn, radionuclides BTEX, 
pentachlorophenol, short chained aliphatic 
compounds 

 Horne ( 2000 ); Blaylock and Huang ( 2000 ) 

 Phytodegradation/transformation  Nitrobenzene, nitroethane, nitrotoluene, atrazine, 
chlorinated solvent for example DDT, 
chloroform, etc.) 

 Schnoor et al. ( 1995 ); Jacobson et al. ( 2003 ) 

 Phytostabilization  Heavymetals in ponds, phenols and chlorinated 
solvents 

    McCutcheon and Schnoor ( 2003 ); Newman et al. ( 1997 ) 

 Phytostimulation  Polycyclicaromatic hydrocarbon, BTEX, PCB, 
tetrachloroethane 

 Hutchinson et al. ( 2003 ); Olson et al. ( 2003 ) 

 Phytovolatilization  Chlorinated solvent, Hg, Se  Hutchinson et al. ( 2003 ); Olson et al. ( 2003 ) 
 Phytofi ltration  Heavymetals, organics and radionuclides. Plant 

nutrients 
 Horne ( 2000 ); Nwoko et al. ( 2004 ) 

  From Nwoko  2009 , reproduced with permission from the  African Journal of Biotechnology , 9: 6010–6016 © 2010 Academic Journals 
 BTEX = benzene, toluene, ethyl benzene, xylenes; PCB = Polychlorinated biphenyl  
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2.3.2     Hyperaccumulator Plants 

 Hyperaccumulator plants play an important role in inor-
ganic phytoremediation. In contrast with other species/
genotypes, these organisms tolerate extremely high con-
centrations of bioavailable metal (Baker  1981 ; Baker and 
Whiting  2002 ).The shoot/root or leaf/root quotient for 
metal concentration is >1 indicating preferential partition-
ing of metals to the shoot. 

 Baker et al. ( 2000 ) suggested that there are around 400 
species from 45 plant families that are hyperaccumulators. 
Such plants can accumulate As, Cu, Co, Cd, Mn, Ni, Se, Pb, 
or Zn up to levels that are 100–1,000 times those normally 
accumulated by plants grown under the same conditions 
(Brooks  1998 ; Baker et al.  2000 ; Ma et al  2001 ). 

 Table  2.3  lists some important hyperaccumulators includ-
ing the recently discovered ones.

   The use of these organisms is limited, because they are 
usually slow growing and produce low biomass. To take 
advantage of the hyperaccumulation ability and to make it a 
commercially viable technology, genetic engineering may be 
used by introducing the relevant genes into a higher biomass 
producing non accumulators (Hooda  2007 ). 

 High quantities of small organic molecules that can oper-
ate as metal-binding ligands appear in hyperaccumulator 
roots, contributing to metal detoxifi cation by buffering cyto-
solic metal concentrations. In plants, the principal classes of 
metal chelators include phytochelatins, metallothionins, 
organic acids, and amino acids (Shah and Nongkynrih,  2007 ). 

 One interesting hyperaccumulation process occurs in heavy 
metal. This involves several steps, such as the  transport of the 
heavy metal across the plasma membrane, translocation of the 
heavy metal, detoxifi cation, and sequestration at the cellular and 
whole plant levels (Shah and Nongkynrih  2007 ; Rascio and 
Navari-Izzo  2011 ). Several plant metal transporters identifi ed 
so far include ZIP1-4, ZNT1, IRT1, COPT1, Nramp (natural-
resistance–associated macrophage protein), AtVramp1/3/4, and 
LCT1 on the plasma membrane–cytosol interface; ZAT, CDF 
(cation diffusion facilitator), ABC type, AtMRP, HMT1, CAX2 
seen in vacuoles, and RAN1 seen in Golgi bodies. 

 Finally, it is important to note that living and dead bio-
mass could take part in the phytoaccumulation process. One 
example is the aquatic macrophytes that are used to remove 
heavy metal from aquatic effl uents (Umali et al.  2006 ; Rai 
 2008 ; Mashkani and Ghazvini  2009 ; Mishra et al.  2009 ). 
Depending on the type of biomass we can distinguish:
 –     Biosorption  :  It is a passive pollutant uptake. It uses dead/

inactive biological material or material derived from bio-
logical sources.  

 –    Bioaccumulation : This consists of the uptake of heavy met-
als using living cells. The problem with this biomass is that 
toxic effl uents affect biological processes, so it may not be 
a viable option in waters that are extremely polluted. Plants 
are able to tolerate different toxic concentrations, up to a 
saturation level (Eccles  1995 ); when it is exceeded, the 
plant metabolism is interrupted, and the organism dies.    
 Some differences between both methods are summarized 

in Table  2.4 .

   Table 2.3    Several metal hyperaccumulator species with respective metal accumulated   

 S.No.  Plant species  Metal  References 

 1.   Thlaspi caerulescens   Zn, Cd  Reeves and Brooks ( 1983 ); Baker and Walker ( 1990 ) 
 2.   Ipomea alpine   Cu  Baker and Walker ( 1990 ) 
 3.   Sebertia acuminata   Ni  Jaffre et al. ( 1976 ) 
 4.   Haumaniastrum robertii   Co  Brooks ( 1977 ) 
 5.   Astragalus racemosus   Se  Beath et al. ( 2002 ) 
 6.   Arabidopsis thaliana   Zn, Cu, Pb, Mn, P  Lasat ( 2002 ) 
 7.   Thlaspi goesingens   Ni  Kramer et al. ( 2000 ) 
 8.   Brassica oleracea   Cd     Salt et al. ( 1995 ) 
 9.   Arabidospsis halleri   Zn, Cd  Reeves and Baker ( 2000 ); Cosio et al. ( 2004 ) 
 10.   Sonchus asper   Pb, Zn  Yanqun et al. ( 2005 ) 
 11.   Corydails pterygopetala   Zn, Cd  Yanqun et al. ( 2005 ) 
 12.   Alyssum bertolonii   Ni  Li et al. ( 2003 ); Chaney et al. ( 2000 ) 
 13.   Astragalus bisulcatus   Se  Vallini et al. ( 2005 ) 
 14.   Stackhousia tryonii   Ni  Bhatia et al. ( 2005 ) 
 15.   Hemidesmus indicus   Pb  Chandrasekhar et al. ( 2005 ) 
 16.   Salsola Kali   Cd  De la Rosa et al. ( 2004 ) 
 17.   Sedum alfredii   Pb, Zn  Li et al. ( 2005 ) 
 18.   Pteris Vittata   As  Ma et al. ( 2001 ); Zhang et al. ( 2004 ); Tu and Ma ( 2005 ) 
 19.   Helianthus anus   Cd, Cr, Ni  Turgut et al. ( 2004 ) 

  From Hooda  2007 , reproduced with permission from the  Journal of Environmental Biology , 28: 367–376 ©Triveni 
Enterprises, Lucknow (India)  
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2.3.3         Research on Phytoremediation 
of Inorganic Pollutants 

 Inorganics that can be phytoremediated include macronutri-
ents such as nitrates and phosphates (Horne  2000 ; Nwoko 
et al.  2004 ) and plant trace elements such as Cr, Ni, Zn, Mn, 
Mo, Fe, and Cu (Lytle et al.  1998 ), non essential elements 
such as Hg, Se, Cd, Pb, V, and W (Horne  2000 ; Nwoko and 
Egunjobi  2002 ; Okeke et al.  2004 ), and radioactive isotopes 
such as  238 U,  137 Cs, and  90 Sr (Dushenkov  2000 ). 

 Constructed wetlands have been used for many inorganics 
including metals, selenium (Se), nitrates, phosphates, and cya-
nide (Horne  2000 ). Sunfl ower or  Brassica juncea  roots and 
some aquatic plants including  Eichorniacrassipes ,  Hydrocotile 
umbellate ,  Lemna minor,  and  Azollapinnata  could accumulate 
heavy metals (Dushenkov et al.  1995 ; Dushenkov and 
Kapulnik  2000 ). Other plant tissues are used in phytofi ltration 
processes, such as  Hemidesmusindicus  bark inmobilized in a 
column to remove Pb from aqueous solutions. 

 Phytoextraction is mainly used for metals and toxic 
inorganics (Se, Pb As; Blaylock and Huang  2000 ). Plants 
accumulate these metals in their tissues which are subse-
quently harvested. The harvested parts can be used for non 
food purposes (wood, cardboard) or reduced to ash and dis-
posed of in a landfi ll. 

 In phytoremediation of inorganic pollutants aquatic mac-
rophytes are commonly used. In contrast to terrestrial plants, 
these organisms have faster growth, larger biomass produc-
tion, relatively higher capability of pollutant uptake, and bet-
ter purifi cation effects due to direct contact with contaminated 
water. Another important advantage is that they interact with 
the structural and functional aspects of aquatic ecosystems, 
improving water quality by regulating oxygen balance and 

the nutrient cycle, and accumulating heavy metals (Srivastava 
et al.  2008 ; Dhote and Dixit  2009 ). 

 Different researchers have shown the potential of aquatic 
macrophytes for heavy metal removal, such as (Brook and 
Robinson ( 1998 ), Cheng ( 2003 ), Prasad and Freitas( 2003 ), 
Suresh and Ravishankar ( 2004 ), Srivastava et al. ( 2008 )), 
Dhir et al. ( 2009 ), Dhote and Dixit ( 2009 ), Marques et al. 
( 2009 ), and Rai ( 2009 ). These plants can be used in the treat-
ment of industrial effl uents and sewage waste water 
(Mkandawire et al.  2004 ; Arora et al.  2006 ; Upadhyay et al. 
 2007 ; Mishra et al.  2009 ; Rai  2010 ). Aquatic macrophytes 
have the ability to concentrate heavy metals that is much 
higher in the roots of these plants (Mishra et al.  2009 ; Paiva 
et al.  2009 ; Mufarrege et al.  2010 ). 

 Among macrophytes, Azolla should be mentioned as a 
nitrogen-fi xing  pteridophyte  that could be an excellent can-
didate for the removal, disposal, and recovery of heavy met-
als from wastewater systems (Bennicelli et al.  2004 ; Arora 
et al.  2006 ; Umali et al.  2006 ; Upadhyay et al.  2007 ; Rai 
 2008 ; Mashkani and Ghazvini  2009 ). This organism also has 
the ability to hyperaccumulate a variety of pollutants such as 
radionuclides, dyes, pesticides, and the like from aquatic 
ecosystems along with other macrophytes (Padmesh et al. 
 2006 ; Rai and Tripathi  2009 ; Mashkani and Ghazvini  2009 ; 
Sood et al.  2011 ).   

2.4      Phytoremediation of Organic 
Pollutants in Water 

 Organic contaminants are carbon based and can be released 
as a result of a wide range of activities such as gas works 
(Cofi eld et al.  2008 ; Luthy et al.  1997 ), timber treatment 

   Table 2.4    Differences between bioaccumulation and biosorption   

 Characters  Bioaccumulation  Biosoption 

 Biomass type  Living  Dead 
 Commercial applicability  Relatively less applicable because living material 

require additions of nutrients and other inputs 
 More applicable 

 Cost  Usually high  Low 
 Maintenance/storage  External energy is required to maintained culture in 

active growth phase 
 Low maintenance required and easy to store 

 Selectivity  Better  Less effective than bioaccumulation which can be 
improved by modifi cation/processing of biomass 

 Sensitivity  Nutrient dependent  Nutrient independent 
 Temperature  Severely affect the process  Does not affect the process because biomass is dead 
 Metal location  Inter and intracellular  Extracellular 
 Degree of uptake  Active process  Passive process 
 Rate of uptake  Slower  Very fast 
 Desorption  Not possible  Possible 
 Regeneration and use  Since metal is intracellularly accumulated, the chances 

are very limited 
 High possibility of biosorbent regeneration, with 
possible reuse for a number of cycles 

  From Sood et al.  2012 , reproduced with permission from the  AMBIO , 41: 122–137 © Royal Swedish Academy of Sciences 2011)  
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(Mills et al.  2006 ), and coal processing (Cooke and Dennis 
 1983 ). The types of substances released are also extremely 
variable and include trichloroethylene, strazene, 2, 
4,6- trinitrotoluene (TNT), gasoline, polycyclic aromatic 
hydrocarbon (PAHs), methyl tert-butyl ether, and polychlori-
natedphenols (Batty and Dolan  2013 ). 

 The main problem in the phytoremediation process is that 
organic compounds have a wide range of chemical composi-
tions and structures. If the compounds are in a structure that 
is available for the organisms (plants and/or microbes) the 
phytoremediation process will be successful (Batty and 
Dolan  2013 ). With some organic pollutants, plants are able 
to degrade them in the root zone; with others they can up 
take, degrade, sequestrate, or volatilize them. In most cases, 
plants are able to mineralize organic pollutants completely 
into relatively non toxic constituents, such as CO 2 , nitrate, 
chlorine, and ammonia (Cunningham et al.  1996 ). 

 Plants take up substances into their roots through a com-
bination of active and passive transport such as carrier pro-
teins (Marschner  2002 ). In some cases, these transporters are 
not able to take up the compounds because of their anthropo-
genic origin. In these cases, they are usually taken up by. 
Hydrophobic compounds could enter the plant through the 
hemicellulose of the cell wall and lipid bilayer of the plant 
membranes (Cherian and Oliviera  2005 ). Organics with a log 
K ow  (octanol–water partition coeffi cient) between 0.5 and 3 
are suffi ciently hydrophobic to move through the lipid 
bilayer of membranes but if they have a log  K  ow  < 0.5 they 
cannot pass through membranes (Pilon-Smits  2005 ). 

 The most important factor infl uencing the phytoremediation 
of persistent organic pollutants is bioavailability (Mohan et al. 
 2006 ; Reid et al.  2000 ). This problem could be reduced by agi-
tation and mixing (in bioreactor systems), and/or by the addi-
tion of surfactants (Mohan et al.  2006 ), therefore it is important 
to use the rhizofi ltration system to improve bioavailability. 

2.4.1     Phytodegradation or Rhizofi ltration 

 In the phytoremediation process the plant selected has great 
infl uence, thus the rate of degradation can be maximized 
(Batty and Dolan  2013 ). One of the most important mecha-
nisms is phytodegradation. In an aquatic environment, this is 
known as rhizofi ltration. 

 In this process plant interaction is improved with the 
activity of the rhizospheric microorganisms that contribute 
to the degradation of the organic compounds. This interac-
tion initially allows the dissipation of organic contaminants 
(Liste and Prutz  2006 ; Rezek et al.  2008 ). This plant–microbial 
relationship has a critical infl uence on phytoremediation: on 
the one hand, the microbial population degrades the pollut-
ants; however, plants support their growth by the release 
of plant exudates including organic acids and enzymes 

(Macek et al.  2000 ) or by the release of degradative enzymes 
into the rhizosphere (Schnoor et al.  1995 ). Plant exudates 
and allelopathic chemicals released by plants in response to 
pathogen activity could act as analogues or co metabolites of 
organic pollutants. They seem to be the origin of the detoxi-
fying microbial communities in the rhizosphere (Siciliano 
and Germida  1998 ), because it seems that these compounds 
induce catabolic enzymes in degrader organisms initiating 
the rhizodegradation of pollutants with a similar structure to 
the compounds exudated. This is important especially where 
microorganisms cannot utilize the pollutant as a sole carbon 
source (Hyman et al.  1995 ).  

2.4.2     Research on Phytoremediation 
of Organic Pollutants 

 Phytodegradation works well for organics that are mobile in 
plants such as herbicides, TNT, and trichloroethylene (TCE). 
Phytovolatilization can be used for volatile organic compounds 
(VOC; Winnike-McMilliam et al.  2003 ) such as TCE (Hansen 
et al.  1998 ). Much research has demonstrated the effectiveness 
of the rhizofi ltration system. Constructed wetlands have been 
used for organics such as explosives and herbicides (Schnoor 
et al.  1995 ; Jacobson et al.  2003 ). An interesting rhizofi ltration 
research (Lucas García et al.  2013 ) was made with a maize–
esparto system (Lucas García et al.  2011 ). This system was 
used to rhizoremediate an industrial effl uent that contained 
metal-working fl uids, an operationally exhausted synthetic 
fl uid, used as a coolant and lubricant in large-scale continuous 
metal-working processes. The research has shown that the sys-
tem is able to reduce COD (Chemical oxygen demand) and pH 
(ANOVA, P <0.05) signifi cantly, with both parameters below 
the regulatory limits as specifi ed by the regional law10/1993 on 
industrial waste discharges into urban sanitary sewer systems 
(city of Madrid, Spain). A quantitative analysis was also done 
which showed that total hydrocarbons in the non phytoremedi-
ated MWFs were decreased signifi cantly (ANOVA, P < 0.05) 
after the phytoremediation process. 

 Lucas García et al. ( 2013 ) also studied the fi nal toxicity of 
the phytoremediated water. For this they used two systems: the 
photosynthetic effi ciency of maize plants using PAM chloro-
phyll fl uorescence and the study of the inhibition of the biolumi-
nescence of the recombinant self-luminescent cyanobacterium 
Anabaena 4337, an ecologically relevant organism for aquatic 
environments. The fi rst one demonstrated that the initial non 
phytoremediated MWFs were quite toxic to the maize plants, 
showing a signifi cant reduction in the photosynthetic effi ciency 
of the plants; however, no signifi cant (ANOVA,  P  < 0.05) differ-
ences were observed in the main chlorophyll fl uorescence 
parameters in plants treated with the phytoremediated MWFs 
with respect to the control plants indicating that the phytoreme-
diation process signifi cantly decreased the toxicity associated 
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with the initial non phytoremediated MWF. The second assay 
also showed that the initial MWFs were extremely toxic to the 
cyanobacterium with an EC50 of 0.083; toxicity was also indi-
cated by the high dilution factor necessary to reach this EC50 
value. However, in all cases, phytoremediation produced a sig-
nifi cant (ANOVA,  P  < 0.05) reduction of the MWF toxicity as 
evidenced by the increase in the EC 50  values and decrease in 
calculated dilution factors.   

2.5     Phytoremediation of Co 
contaminated Sites 

 Most places have mixed pollution, with organic and inorganic 
compounds. This is known as a cocontaminated site. In these 
cases, phytoremediation is affected by the interaction of the 
substances, modifying the form and availability of the pollut-
ants. For example, in a place contaminated with metals and 
organics, the interaction affects and even increases the metal 
bioavailability; this has been demonstrated by (Rosner and 
Aumercier ( 1990 ). Sandrin and Maier’s ( 2003 )) shows that 
depending on the metal concentration, the biodegradation of 
organic matter by microorganisms could be inhibited. Also, the 
presence of both pollutants could affect plant–microbe interac-
tion and therefore phytoremediation success. Inorganic com-
pounds (metals) decrease the microbial biomass (Brookes and 
McGrath  1984 ) or shift the community structure (Gray and 
Smith  2005 ). On the other hand, the presence of organic pollut-
ants may also affect plant growth. To avoid these problems the 
engineered organisms could be used to obtain plants and bacte-
ria with a higher ability to degrade or tolerate these co contami-
nated plants (Batty and Dolan  2013 ).One example is  Helianthus 
anus  (Dushenkov et al.  1995 ) and  Chenopodium amaranti-
color  (Eapen et al.  2003 ) to rhizofi ltration of uranium. 

 (Cherian and Oliviera ( 2005 )) suggested that the use of trans-
genic plants may be a possible avenue for remediation of co 
contaminated sites. However, this area requires more research 
and fi eld trials before constituting a realistic alternative.  

2.6     Bioaugmentation 

 The interaction between plants and microorganisms improves 
phytoremediation. To increment the number of microorgan-
isms a bioaugmentation process could be done, consisting of 
the inoculation of different microorganisms. The best inocula-
tion is the one that uses bacteria which benefi cially affect plant 
growth, known as plant growth-promoting bacteria (PGPB) or 
plant growth-promoting rhizobacteria (Glick et al .   1999 ). 

 One benefi t of these bacteria is that they are able to produce 
chemical substances that can change environmental condi-
tions or are able to protect plants from disease (Uppal et al. 
 2008 ) by decreasing or preventing some of the negative effects 

of phytopathogenic organisms (Glick  2003 ). Some bacteria 
release biosulfactants (rhamnolipids) that make hydrophobic 
pollutants more water soluble (Volkering et al.  1998 ). Plants 
could release organic acids that can solubilize previously 
unavailable nutrients such as phosphorus (Cakmakciet al.,  
 2006 ) or contain lipophilic compounds that increase pollutant 
water solubility or enhance biosulfactant- producing bacterial 
populations (Siciliano and Germida  1998 ). 

 However, researchers such as Nie et al. ( 2002 ) have shown 
that under high contaminant levels, the growth of PGPB can 
be severely inhibited and that plant growth was inhibited and 
any positive action cancelled out (Lucy et al.  2004 ). 

 One interesting research work related to bioaugmentation 
was done with a phytoremediation system with maize–
esparto (Lucas García et al.  2011 ) inoculated with differ-
ent strains ( Enterobacter  spJF690924, the yeast 
 Rhodotoruladairenensis  AF444501, and a consortium 
made with  Pseudomonas  sp., two  Acinetobacterjohnsonii  
strains, and  Sphingobiumxenophagum with the GenBank 
numbers JF937328, JF937329, JF937331, and JF937337, 
respectively). This system has shown that the non inocu-
lated phytoremediation system has a higher reduction in 
COD, except when the consortium was inoculated. This 
review aims to discover the damage originated in physio-
logical parameters. The strains inoculated, particularly 
the consortium, improve some of these measured param-
eters, thus it seems that the inoculation with bacteria can 
protect the plants against these harmful effects.  

2.7     Pollutant Phytotoxicity 

 As has been shown, pollutants can be remediated in plants by 
different biophysical and biochemical processes (adsorption, 
transport, hyperaccumulation, and/or transformation and 
mineralization). First, elemental pollutants enter the plant 
through the normal nutrient uptake mechanism of the plant. 
Plants are protected against the toxicity effect by the degra-
dation of toxic organics and the sequestration of inorganic 
pollutants in vacuoles. Another protection is the over expres-
sion of plant existing genes or transgenic expression of bac-
terial genes (Nwoko  2009 ). In spite of these protective 
processes, the pollutants produce high negative effects on the 
plants’ biophysiological processes (photosynthesis, pig-
ments, ultra-structural cell composition). 

2.7.1     Inorganic Pollutant Phytotoxicity 

 First, we look at inorganic phytotoxicity. In this phytoreme-
diation process, the pollutants are not degraded, but are 
sequestrated instead. One example is the heavy metals intro-
duced into the aquatic system that are known to pose high 
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levels of toxicity to aquatic organisms and human beings 
(Sánchez-Chardi et al.  2009 ; Siwela et al.  2009 ). These pol-
lutants could cause DNA damage and carcinogenic effects in 
animals and humans due to their mutagenic ability 
(Knasmulier et al.  1998 ; Baudouin et al.  2002 ). When plants 
are grown in inorganic polluted water, different morphologi-
cal, physiological/biochemical, and ultra-structural altera-
tion can be shown in aquatic organisms. This damage could 
be used as a biomonitoring tool for the assessment of metal 
pollution in aquatic ecosystems (Zhou et al.  2008 ). 

 Various research has shown that exposure of heavy metals 
suppressed the vegetative growth and sporulation in different 
species of  Azolla  (Arora et al.  2004 ,  2006 ). Arora et al. 
( 2006 ) observed that under Cr pollution  A. fi liculoides  was 
most successful, producing 72 % of control biomass. The 
application of Cd, Cr, Mo, and Mn at concentrations of 3, 6, 
5, and 10 mg/ml, respectively, signifi cantly decreased the 
sporulation frequency and number of sporocarps per plant in 
 A. microphylla  and  A. caroliniana  (Kar and Singh  2003 ). 

 Only a few researchers (Sarkar and Jana  1986 ; Shi et al. 
 2003 ; Dai et al.  2006 ) have studied the infl uence of heavy 
metals in biochemical parameters: pigments, photosynthesis, 
and activities of oxidative enzymes. Sarkar and Jana ( 1986 ) 
observed that the treatment of  A. pinnata  with As, Pb, Cu, 
Cd, and Cr (2 and 5 mg L–1 each), decreased Hill activity, 
chlorophyll content, protein and dry weight, and increased 
tissue permeability with respect to the control. Shi et al. 
( 2003 ) showed that an increase in concentration of Hg and 
Cd resulted in a drop in the chlorophyll content, mainly chlo-
rophylls a and b. The damage observed in the chlorophyll 
process related to heavy metals can be a useful physiological 
tool to assess early changes in the photosynthetic perfor-
mance of  Azolla  (Sánchez-Viveros et al.  2010 ). 

 The accumulation of heavy metals is known to result in 
various types of damage at the ultra-structural level (Sela 
et al.  1988 ,  1990 ; Shi et al.  2003 ; Gaumat et al.  2008 ); for 
example, Cd accumulation engenders some small dark grains 
with a high content of cadmium, phosphate, and calcium 
along the epidermal cells (Sela et al.  1990 ). The increase of 
heavy metal (Hg and Cd) concentration and incubation time 
in  A. imbricata  showed a higher. The results showed swell-
ing of the chloroplast, disruption, and disappearance of the 
chloroplast membrane, and disintegration of chloroplasts; 
swelling of cristae of mitochondria, deformation and vacuol-
ization of mitochondria; condensation of chromatin in the 
nucleus, dispersion of the nucleolus, and disruption of the 
nuclear membrane (Shi et al.  2003 ).  

2.7.2     Organic Pollutant Phytotoxicity 

 One interesting review that shows the damage originated 
by organic pollutants was done by Grijalbo et al. ( 2013 ). 

They created a phytoremediation system with maize–esparto 
(Lucas García et al.  2011 ) inoculated with  Pseudomonas 
fl uorescens HM486749.TEM (Transmision Electron Microscopy) 
and STEM (Scanning Transmision Electron Microscopy) has 
been used to determine the effects of MWF water and inocu-
lation with Aur6 on the cell structure of leaves and roots. The 
leaf cell structure of controls without MWF water shows a 
well-organized ultra-structure. See Figs.  2.2a, b  and  2.3a, b , 
in which are shown undegraded chloroplasts (Fig.  2.2a ), and 
in such case grana interconnected with intergrana (Fig.  2.3b ). 
Also shown is a well- developed nucleus with nucleoli and 
condensed chromatin materials (Fig.  2.2a ).   

 In plants growing in spent MWFs, early senescence symp-
toms were shown, either in inoculated or non inoculated plants, 
such as thylakoid swelling and a lamellar separation (Figs.  2.2c, d  
and  2.3c, e ). It is interesting to see that in these treatments, the 
chloroplasts are beginning to degrade at the ends, being elon-
gated (Fig.  2.2c, e ) and the chloroplast membrane suffers deg-
radation even becoming broken in some chloroplast (Figs.  2.2f  
and  2.3f ). The mitochondria and the vesicles also show senes-
cence symptoms (Figs.  2.2f  and  2.3c, d, f ). 

 The LTSEM shows the presence of a vacuole with plenty 
of water and solutes, with numerous chloroplasts in controls 
(Fig.  2.4a, b ). However, plants in the presence of MWFs 
change the leaves’ hydric content and it seems that the chlo-
roplast number is reduced (Fig.  2.4c, d, g, h ).  

 It is interesting to emphasize that inoculation with the 
strain (i.e., a PGPR) might protect the plant against the MWF 
effects, as shown, for example, in (Fig.  2.4c, d, g, h ) where it 
seems to be a higher chloroplast number than that existing in 
non inoculated ones. 

 This research also shows that the organic pollutants 
of MWFs degrade cell roots’ ultra-structure, with the 
appearance of extremely degenerative organelles such as 
vesicles or mitochondria. However, the vascular bundles 
have less deformation and xyleme and floeme could be 
distinguished even in MWF water treatment (Fig.  2.5b, 
d ). In MWF water with Aur6 treatments (Fig.  2.5d ) cuti-
cle deterioration is observed, creating an irregular struc-
ture instead of an oval one such as in other treatments 
(Fig.  2.5a, b, c ).    

2.8     Conclusion 

 Phytoremediation is an emergent technique that has benefi -
cial effects on wastewater treatment. It has been proven that 
this process could be used either with organic or inorganic 
pollutants. It is important to follow up the investigation of 
these strategies in order to know the processes that improve 
them and the phytotoxicity originated. 

 Finally, it is important to emphasize that phytoremedia-
tion gives an ecological vision that is environmentally 
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  Fig. 2.2    Electron transmision micrographs of leaf mesophyll cells 
of 20-day–old corn plants non inoculated with Aur6 and grown for 5 
days with and without MWFS water. Treatments: tap water without 
Aur6 ( a, b ) and MWFS water without Aur6 ( c ,  d ,  e, f ). Starch gran-
ules (S), Chloroplast (C), Granum (G), Plasma membrane (P), 
Chloroplast membrane (CM), Mitochondria (M), Nucleus (N), 

Nucleolus (Nue), Cell wall (CW), Plasmodesme (Pl), Plastoglobuli 
(PG), Ribosome (R), Thylakoid (Thy), Vacuole (V), and Vesicle 
(Ve). Magnifi cation bars correspond to 1,000 mm ( c ), 500 mm ( a ,  b , 
 d ,  e ), and 200 mm ( g ). (from Grijalbo et al.  2013 , reproduced with 
permission from the  Journal of Hazardous Materials , 260: 220–230 
© 2013 Elsevier B.V.)       
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  Fig. 2.3    Electron transmision micrographs of leaf mesophyll cells of 
20-day–old corn plants inoculated with Aur6 and grown for 5 days with 
and without MWFS water. Treatments: tap water with Aur6 ( a, b ) and 
MWFS water with Aur6 ( c ,  d, e, f ). Starch (S), Chloroplast (C), Granum 
(G), Lipid bodies (LB), Chloroplast membrane (CM), Plasma mem-

brane (P), Mitochondria (M), Cell wall (CW), Plasmodesme (Pl), 
Plastoglobuli (Pg), Thylakoid (Thy), and Vacuole (V). Magnifi cation 
bars correspond to 500 mm ( a ,  c ,  d ,  e ) and 200 mm ( g ). (from Grijalbo 
et al.  2013  reproduced with permission from the  Journal of Hazardous 
Materials , 260: 220–230 © 2013 Elsevier B.V.)       
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  Fig. 2.4    LTSEM micrographs of 
leaf mesophyll cells of 20-day–
old corn plants inoculated and 
non inoculated with Aur6 and 
grown for 5 days with and 
without MWFS water. 
Treatments: tap water without 
Aur6 ( a, b ); MWFS water 
without Aur6 ( c, d ), tap water 
with Aur6 ( e, f ), and MWFS 
water with Aur6 ( g, h ). Bundle 
sheath cells (BSCs), Chloroplast 
(C), vascular bundles (VB), 
Nucleus (Nue), Cell wall (CW), 
Tonoplast (T), and Vacuole (V). 
Magnifi cation bars correspond to 
200 mm ( a ,  c ,  e ,  g ), 100 mm ( b , 
 d ,  h ), and 50 mm ( f ). (from 
Grijalbo et al.  2013 , reproduced 
with permission from the  Journal 
of Hazardous Materials , 260: 
220–230 © 2013 Elsevier B.V.)       
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friendly and with better aesthetic appeal than other physical 
means of remediation.     
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3.1  Introduction

Aquatic ecosystems perform numerous valuable environmen-

tal functions. They recycle nutrients, purify water, attenuate 

floods, augment and maintain streamflow, recharge ground 

water, and provide habitat for wildlife. Also, these ecosystems 

provide sources of hydroelectric power, water for municipal, 

industrial, and agricultural purposes, and sites for people rec-

reation. However, rapid population increases—accompanied 

by intensified industrial, commercial, and residential 

 development—have led to the pollution of surface waters by 

metals, fertilizers, insecticides, motor oil, toxic landfill leach-

ates, feedlot waste, industrial and municipal sewage effluents. 

At the same time, water consumption has also increased, thus 

reducing the flows available for the dilution of wastes 

(Committee on Restoration of Aquatic Ecosystems: Science, 

Technology, and Public Policy; National Research Council 

1992). Metals are a group of contaminants of great environ-

mental importance. While many authors support the idea of a 

segregation of pollutants based on their chemical characteris-

tics (organic or inorganic), its resistance to degradation (bio-

degradable, persistent or recalcitrant) or its similarities with 

preexisting biomolecules (biogenic or xenobiotics), others 

take into account their mechanism of toxic action. Thus, in 

the environment many metals generate reactive oxygen spe-

cies (ROS), such as superoxide anion (O2
−˙), hydrogen perox-

ide (H2O2), and in particular hydroxyl radical (˙OH) (Aravind 

and Prasad 2004). In Haber–Weiss cycle (Eqs. 3.1 and 3.2) 

and Fenton reaction (Eq. 3.2) metals with multiple oxidation 

states like iron, lead, copper, and chromium catalyze ˙OH 

synthesis from H2O2 and O2
−˙.

 
Me O Me On n+ -× ++ « +1

2 2  (3.1)

 Me H O Me OH OHn n+ + × -+ « + +2 2
1  (3.2)

ROS accomplish a key role regulating growth and devel-

opment of the biota, thus a change in its delicate balance can 

lead to necrosis of cells, tissues and eventually death of organ-

isms. Since ROS have the ability to oxidize the four groups of 

cellular macromolecules (proteins, lipids, polysaccharides, 

and nucleic acids), and while the degradation of a protein 

with enzymatic activity can lead to the loss of a metabolic 

pathway, or a lipid peroxidation can result in damage to the 

membranes responsible for energy metabolism or structural 

integrity, DNA damage can also generate both carcinogenic 

and teratogenic effects on organisms (Leonard et al. 2004).

On the other hand, greater knowledge about the dynamics 

of metals and their potential effects on the environment ques-

tions the “dilution paradigm” as a sustainable remediation 

strategy. This paradigm shift has been based on ethical and 

preservation issues, but is also the result of understanding 

that biogeochemical conditions determine metal mobility, 

potential dispersion within or between different environmen-

tal compartments, and mechanisms of toxic action.

Besides in a similar way to certain soluble organic con-

taminants, some organometallic compounds such as methyl- 

mercury have a high tendency to biomagnify in the food 

chain and can exert a devastating teratogenic action although 

initial levels of metal discharges are low (Tadiso et al. 2011; 

Harmelin-Vivien et al. 2012).

Inland water-bodies are complex systems that have a pro-

found influence on the characteristics and toxicity of contami-

nants. It is generally considered that aerobic or anaerobic 

degradation of organic compounds is the only effective way of 

removal, since produced mineral compounds can be integrated 

into the cycles of elements. However, the degradation process 
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mainly mediated by microorganisms has the particularity of 

altering the physicochemical conditions of the environment 

such as pH and redox potential, generating chemical species 

able to precipitate metallic ions (Eqs. 3.4 and 3.5), or organic 

and inorganic ligands that can produce coordination com-

pounds in which heavy metals act as Lewis acids.

 
2 2 22 4

2
2 2CH O SO H CO HS H O{ }+ + « + +- + -

 (3.4)

 
Pb HS PbS s H2+ - ++ « ( ) +  (3.5)

Moreover, endogenous or exogenous primary and sec-

ondary minerals such as clays behave like chemically reac-

tive surfaces providing high densities of binding sites to 

retain metals through the formation of outer or inner sphere 

complexes.

Since a proper understanding of contaminant–environment 

interactions in aquatic ecosystems requires considering abi-

otic and biotic factors, it is essential to analyze processes 

mediated by organisms.

Aquatic plants that have been studied for the remediation 

of soil and water contaminated by metals include floating 

species, such as Salvinia herzogii (Maine et al. 2004), water 

hyacinth (Eichhornia crassipes) (Mishra et al. 2008), duck-

weed (including Lemna polyrrhiza L., Lemna minor, and 

Spirodela polyrrhiza W. Koch) (John et al. 2008; Mishra and 

Tripathi 2008), mosquito fern (Azolla pinnata R. Brown) 

(Mishra et al. 2008), and water lettuce (Pistia stratiotes) 

(Maine et al. 2004; Mishra et al. 2008), emergent plants such 

as common cattail (Typha latifolia) (Das and Maiti 2008), 

giant bulrush (Schoenoplectus californicus) (Arreghini et al. 

2001; Chiodi Boudet et al. 2011), common reed (Phragmites 
australis) (Peruzzi et al. 2011), and submerged plants, such 

as pondweed (Potamogeton pectinatus or Potamogeton cris-
pus) (Badr and Fawzy 2008; Mishra et al. 2008), hydrilla 

(Hydrilla verticillata) (Bunluesin et al. 2004; Mishra et al. 

2008), and coontail (Ceratophyllum demersum L.) (Badr and 

Fawzy 2008; Bunluesin et al. 2004). Metal–plant interaction 

depends on metal bioavailability and plant structure involved 

in absorption. In the case of emergent plants and numerous 

floating species the preferential uptake structure is the root, 

where the accumulated metal translocates to other morpho-

logical structures, while in the case of submersed plants the 

root could play an auxiliary role of fixing and the uptake 

occurs through all the epidermis of the plant. Uptake and 

mobility of metals in the plant are different for different 

types and species of macrophytes, also depending on the 

metal involved (Deng et al. 2004) and its concentration.

While the basic premise for starting any mitigation project 

is eliminating the source of contamination, this approach is 

necessary but insufficient. Rivers and their floodplains are so 

intimately linked that they should be understood, managed, 

and restored as integral parts of a single ecosystem. The inter-

ception of point and nonpoint sources of contamination is 

necessary to improve ecosystem attribute. However, the costs 

of treating nonpoint sources by engineered systems are high. 

Man-made and natural wetlands have been successful, in 

some cases, in retaining suspended matter in water flowing 

through them. Also, the plants remove phosphorus, coliform 

bacteria, biochemical oxygen demand; and dissolved organic 

carbon. In situ methods are defined as destruction or transfor-

mation of the contaminant, immobilization to reduce bio-

availability, and separation of the contaminant from the bulk 

soil (Reed et al. 1992). In situ techniques are better than the 

ex-situ techniques due to their low cost and reduced impact 

on the ecosystem. Wetlands are also highly effective in reduc-

ing stream loads of metals.

The aim of this chapter is to discuss several applications 

of phytoremediation at full scale and on-site for metal excess 

in aquatic ecosystems using several macrophytes.

3.2  Plants as Promoters of a Better 
Environment

Preservation of the littoral zone in contaminated environ-

ments is crucial, since it contributes in different ways to 

metal stabilization in sediment. Thus, macrophytes could be 

a powerful tool in treatment of aquatic ecosystems receiving 

industrial effluents, municipal wastewater, or agricultural 

runoff (Rai 2009). The long-term stability that the plants pro-

vide in terms of preventing metals from leaving the site 

means that this technology is often termed phytostabiliza-

tion. Phytostabilization has a wide application in metal- 

contaminated vegetated sites.

3.3  Geophysical and Biochemical 
Processes of Stabilization

Unvegetated sediments tend to show little aggregation due to 

the weakening effect of water on the bonds holding sediment 

particles (Reddy et al. 2000). This makes them more suscep-

tible to weathering, by increasing the contact surface between 

the solid fraction and the solution phase, and facilitates also 

their transport through erosional agents. Sedimentation pro-

cesses combined with oxidation, sorption, and precipitation 

reactions are effective at removing metals from the system 

(Bednar et al. 2013).

Natural and anthropogenic events can generate local base 

levels that decrease the current velocity of rivers and favor 

sedimentation of the suspended material. Moreover, aquatic 

vegetation increases resistance to flow and significantly affects 

sediment transport. In the low-load basin, aquatic plants such 

as cattail (Typha sp.) has a substantial and significant effect on 

transport capacity since it increase sediment deposition 

(Brueske and Barrett 1994). Also, riparian vegetation plays an 
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important role in mitigation and prevention against hydromor-

phological hazards (flooding, floodplain erosion, protection of 

river infrastructures), if correctly managed (Kothyari et al. 

2009; Cavedon 2012).

The vegetated marsh zones are associated with finer grain 

particles and exhibit higher metal concentrations in contami-

nated environment in comparison to the bare mudflats 

(Daskalakis and O’Connor 1995; Zhang et al. 2001). 

However, in some cases where there is direct input of con-

taminants, no clear relationship between the proportion of 

fine-grained particles and metal concentration has been estab-

lished (Hosono et al. 2011). Natural events like tidal currents, 

winds, and storms, and human activities as dredging result in 

major sediment disturbances, leading to changes in chemical 

properties that stimulate the mobilization of contaminants 

from sediment and sediment pore water into the water col-

umn (Zhang et al. 2001; Eggleton and Thomas 2004).

Biochemical processes that lead to the formation of a 

solid phase may involve diverse and complex mechanisms. 

Chemical precipitation is determined primarily by solubility 

product of salts (Kps), by the concentration of ions forming 

the precipitate, by the pH and redox potential of the water 

solution, by the presence of complexing agents and by the 

ionic strength of the medium. However, the formation of a 

solid phase requires supersaturated solutions in a stable 

media rich in precipitation nuclei. Accumulation of organic 

matter and microorganisms in sediments can provide a high 

density of nuclei which serves for growth of the precipitates. 

Both the subsequent aggregation of nuclei in larger particles, 

leading to decreased surface/volume relationships, and rear-

rangement of atoms in the crystal lattice of the solid diminish 

solubility of salts. In this way, organic matter degradation 

may stimulate the chemical precipitation and consequent sta-

bilization of metals in the solid phase.

Suspended material includes a colloidal fraction consti-

tuted by amorphous or crystalline solids of small radius, 

humic substances, and cellular macromolecules of high 

molecular weight (Konhauser et al. 2002). Therefore, col-

loids include a heterogeneous group of compounds charac-

terized by high surface/volume ratio and high density of 

electric charge. Vegetation release substantial amounts of 

colloidal material to the water body during its life cycle. 

These compounds can interact with metals through adsorp-

tion phenomena and generation of outer sphere complexes, 

complexation and generation of inner sphere complexes 

or eventually through surface precipitation processes 

(Suteerapataranon et al. 2006). While colloids are stable in 

aqueous solution and tend to remain in suspension, changes 

in environmental conditions such as the increase of ionic 

strength can lead to flocculation and coagulation processes 

that remove from the solution both colloids as “associated” 

metals (Suteerapataranon et al. 2006; Ren et al. 2010).

Sediments accumulated by described physical and 

 biochemical processes serve as a substrate for the growth of 

aquatic vegetation. Emergent plants of the coastal area with 

high productivity produce a net enrichment of sediments 

with organic matter (Lenssen et al. 1999). In this way, ripar-

ian vegetation contributes to sediment stabilization decre-

asing risk of contamination of the water column. This 

enrichment with organic matter is often overlooked by many 

authors, partly due to the short time span out of most 

 studies—too short for the initial organic matter to be con-

sumed in the chemical processes of removing metals from 

water (Marchand et al. 2010).

In wetland sediments the organic matter accumulation 

generates a high oxygen demand. Aerobic microorganisms 

are replaced by anaerobic ones that use alternative electron 

acceptors in the process (NO3
−, MnO4

−, Fe3+, SO4
2−, CO2), 

depending on both their relative abundance in the environ-

ment and, in the situation when multiple acceptors are pres-

ent, on the energy yield of redox reactions (Konhauser et al. 

2002). Unlike aerobic degradation, where the process can be 

performed by a single type of organism, anaerobic degrada-

tion often requires a consortium of interdependent microor-

ganisms. In this way, and depending on the rate of settleable 

organic material, net accumulation of reduced forms of sul-

fur and organic matter represent a significant reserve of bind-

ing sites for metals. While some metals such as copper, 

chromium, and lead have high affinity for the organic matter/

sulfides fraction and thus can be immobilized, other metals 

such as cadmium and zinc are predominantly associated with 

the exchangeable fraction and iron and manganese oxides, 

respectively and are comparatively more bioavailable 

(Tessier et al. 1979). Several authors argue that the less 

mobile fractions of sediment tend to get rich in metals as 

time passes from contamination event. Thus although metal 

shows a greater affinity for a more mobile fraction as 

exchangeable, the “aging” that occurs in sediment generates 

a redistribution to thermodynamically more stable phase 

(McLaren and Clucas 2001; Halim et al. 2003; Evangelou 

et al. 2007). Peruzzi et al. (2011) have reported that in wet-

lands vegetated with Phragmites australis, built for munici-

pal wastewater treatment, the less available metal-organic 

fraction increased over time for Cu, Cr, Pb, Ni, Cd, and Zn, 

thus indicating their lesser availability for plant uptake. Since 

bioavailability and bioaccumulation of metals in an aquatic 

ecosystem is mainly dependent on its partitioning behavior 

or its binding strength to sediment (Eggleton and Thomas 

2004) then the input of high quantity of organic matter from 

aquatic macrophytes as a solid phase with high metal sorp-

tion capacity is decisive. Dissolved or weakly adsorbed con-

taminants are more bioavailable to aquatic biota compared to 

more structurally complex mineral-bound contaminants 

(Calmano et al. 1993; Eggleton and Thomas 2004).
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In ex situ remediation processes, changes in physico-

chemical conditions of the environment can lead to a redistri-

bution of metals from “aged” fractions of sediments to more 

mobile ones, increasing the environmental risk (Rodriguez 

Salemi et al. 2010).

3.4  Tolerant Plants Favor the Settling 
of Other Species

Metal contamination is a stress factor limiting plant growth 

and development, which leads to decreased levels of organic 

matter and nutrients of sediments and negatively affects the 

establishment of plant. Numerous studies show the recovery 

of contaminated habitats through revegetation with tolerant 

species, so implanted areas with wetland plants show an 

increase in the organic matter content of sediments, a conse-

quent improvement in infiltration and fertility in general, an 

increase in the N, P, and K available and an improve in water 

quality (Deng et al. 2004; Mitsch et al. 2005; Lei and Duan 

2008; Lottermoser and Ashley 2011; Wang et al. 2012). 

Although restoration efficiency mainly depends on species 

selected, colonization by pioneer plants could promote the 

development of aquatic communities that lead to stabiliza-

tion of metals and prevent the transfer of environmentally 

significant contaminants into food-chains.

Metallophytes are species that have evolved biological 

mechanisms to resist, tolerate, or thrive on toxic metallifer-

ous soils, and are typically endemic of these habitats. 

Metallophytes are the optimal choice for in situ restoration 

of closed mines, for the rehabilitation of metal-contaminated 

land (reclamation and rehabilitation) and to provide knowl-

edge for development of environmental technologies such as 

phytoextraction of metals from soils (Whiting et al. 2004).

Wetland plants growing in contaminated sediments pres-

ent characteristic patterns of accumulation and translocation 

of metals, thus findings on terrestrial plants cannot be directly 

extrapolated. Besides the use of native species in remedia-

tion strategies, not always considered in scientific or techni-

cal papers and essential to preserve biological diversity, 

require detailed studies for each natural ecosystem.

3.5  Metal Accumulation in Plants 
as an Avoidance Strategy

3.5.1  Emergent Macrophytes

Although high levels of metals reported in wetland sediments, 

their low bioavailability and limited transfer into the water 

column determine that macrophytes of the littoral zone typi-

cally exhibit relatively low concentrations of these contami-

nants. Whereas it was observed that in the same environment 

submerged and floating plants exhibit higher concentrations 

of metals in their organs than emergent ones, there are no 

reported hyperaccumulators in wetland habitats (Cardwell 

et al. 2002). Thus, despite its great development in biomass, 

the amount of metals accumulated by emerging plants repre-

sents only a small fraction of the total content in sediments, so 

they cannot be considered as a metal sink (Lee and Scholz 

2007; Marchand et al. 2010).

Although it is recognized that the particular properties of 

wetland sediments (organic matter content, pH, redox poten-

tial, levels of P and N) influence the bioavailability of metals, 

there are contrasting observations regarding the role played 

by each environmental factor.

Organic matter content of sediment can be negatively cor-

related with chromium uptake by the roots, as this metal can 

form inner-sphere complexes with organic matter and oxides 

making it less available to plants (Iorio et al. 2007; Valea 

2011). Moreover, association of metals with amino groups 

(–NH2) of humic compounds (Bargiela 2009) favors solubi-

lization and increases their bioavailability.

McGrath (1995) and Vicari Mellis et al. (2004) argue that 

Ni sorption to sediment is maximum with high pH and high 

content of organic matter, so acidic pH and negative redox 

potential found in highly contaminated sites could facilitate 

solubilization of essential and nonessential metals and uptake 

by plants. Armstrong (1967) reports that oxidation of imme-

diate root environment promote the uptake of essential ele-

ments and prevent the internalization of toxic components. 

Metals mobilized from the reduced sediments can precipitate 

with Fe and Mn (oxy)hydroxides on the root surface (“root 

plaque”) (Gries et al. 1990), resulting in high rhizoconcen-

trations on a small scale or even in elevated concentrations in 

bulk sediments from a vegetated marsh compared to non- 

vegetated sediments (Teuchies et al. 2013).

Some authors emphasize the antagonistic relationship 

between P and metals since chemical reactions in the rhizo-

sphere produce highly insoluble precipitates (Kabata- Pendias 

2011; Olsen 1991; Deng et al. 2004), although others report 

increases in bioavailability in the presence of soluble P (Kidd 

et al. 2007). Therefore, depending on the nature of the phos-

phorus compounds and the heavy metal species, metal bio-

availability can be favored or disadvantaged (Bolan et al. 2003).

Lambert et al. (1979) and Taiz and Zeiger (2002) state 

that mycorrhizal associations produce a remarkable increase 

in P, Zn, and Cu uptake by terrestrial plants, yet not in com-

mon symbiosis studies with aquatic plants exposed to high 

levels of nonessential metals. Another factor than can affect 

the accumulation of metals in wetland plants is the presence 

of microbial symbionts such as rhizosphere bacteria. 

Mycorrhizae provide an interface between the roots and the 

soil increasing the absorptive surface area and are effective at 

assimilating metals that may be present at toxic concentra-

tions in the soil (Meharg and Cairney 2000). However, Khan 
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et al. (2000) suggested that they play a protective role, 

restricting the uptake of metals by plants by immobilizing 

the metals in the fungal tissue.

Wetlands are complex ecosystems, so availability and 

uptake of metals by emergent plants is the result of interac-

tions between biotic and abiotic compartments that create 

conditions for immobilization or release of contaminants.

Plant metal uptake can be measured through different 

indexes. One of the most used is bioconcentration factor, 

BCF, obtained as metal concentration ratio of plant root to 

sediment. There is great variation among the reported BCF 

values for the different species of emergent macrophytes and 

heavy metals, especially related to its essentiality (Tables 3.1 

and 3.2). Thus, the species indicated in Table 3.2 shows simi-

lar behavior in the uptake of Zn and Cu. For example, 

Schoenoplectus californicus, Scirpus sylvaticus, Cyperus 
esculentum, Cyperus alternifolius, Sagittaria montevidensis, 

Equisetum arvense, Hydrocotyle americana, and Phragmites 
australis have always BCF values close to or less than unity 

over a wide range of sediment concentrations, from 28.5 to 

5,400 μg Zn/g and from 5 to 2,100 μg Cu/g. Cyperus 
eragrostis and Equisetum fluviatile have high BCF values 

(close to 4 for Zn, and between 7 and 16 for Cu) at levels of 

these metals that do not exceed the LEL (lowest effect level) 

level in sediment. Schoenoplectus validus, Typha domingen-
sis, Typha orientalis, Typha latifolia, and Eleocharis equi-
setina present high values of BCF at Zn or Cu sediment 

levels between LEL and SEL (severe effect level). For Ni, 

almost all species reported showed BCF values near or less 

than 1 especially at sediment levels above LEL, except  

T. domingensis and T. latifolia whose BCF values are between 

2 and 10 at levels of Ni slightly above LEL (Table 3.2). For 

nonessential metals Pb, Cd, and Cr the BCF values reported 

are generally lower than those for essential ones. Cyperus 

Table 3.1 List of emergent and floating macrophyte species grown in natural and contaminated environments with their scientific name, common 

name,  authors, and location of different studies

Code Species name Common name Study Authors Location

Emergent plants

Sch cal Schoenoplectus californicus Giant bulrush 1 Chiodi Boudet et al. (2011) South America

2 Valea (2011) South America

Sch val Schoenoplectus validus River bulrush 3 Cardwell et al. (2002) Oceania

Sci syl Scirpus sylvaticus Sylvan bulrush 4 Hozhina et al. (2001) Europe

Cyp esc Cyperus esculentum Yellow nutsedge 5 Yoon et al. (2006) North America

Cyp era Cyperus eragrostis Tall flatsedge 3

Cyp alt Cyperus alternifolius Umbrella sedge 6 Yang et al. (2010) Asia

Ele equ Eleocharis equisetina 7 Lottermoser and Ashley (2011) Oceania

Typ dom Typha domingensis Southern cattail 8 Maine et al. (2006) South America

3

9 Kamel (2013) Africa

13 Bonanno (2013) Europe

Typ lat Typha latifolia Broadleaf cattail 4

11 Klink et al. (2013) Europe

12 Sasmaz et al. (2008) Africa

Typ ori Typha orientalis Cumbungi cattail 3

Phr aus Phragmites australis Common reed 10 Sawidis et al. (1995) Europe

9

13 Bonanno (2013) Europe

Hyd ame Hydrocotyle americana American pennywort 5

Sag mon Sagittaria montevidensis Giant arrowhead 2

Equ arv Equisetum arvense Field horsetail 5

Equ flu Equisetum fluviatile Fluvial horsetail 4

Floating plants

E crass Eichhornia crassipes Water hyacinth 8

14 Kumar et al. (2012) Asia

9

15 Agunbiade et al. (2009) Africa

16 Kumar et al. (2008) Asia

L gibb Lemna gibba Duckweed 9

M min Marsilea minuta Dwarf waterclover 14

S mol Salvinia molesta Kariba weed 17 Ashraf et al. (2011) Asia
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Table 3.2 Metal sediment concentration (μg/g); Bioconcentration factor (BCF) and translocation factor (FT) of different emergent macrophytes

Species name Studya

Zn Cu Pb

Sed BCF TF Sed BCF TF Sed BCF TF

Sch cal 1 28.5 1.22 0.66b 9.2 0.97 0.61b – –

1 28.5 0.58 1.69b 13.5 0.88 0.22b – –

1 54.5 0.65 0.46b 21.9 0.55 0.14b – –

2 95 0.48b 0.26b 23 0.32b 0.26b – –

2 99 0.77b 0.22b 28 0.50b 0.41b – –

2 404 0.36b 0.20b 143 0.15b 0.29b – –

Sch val 3 514 3.05 0.03c 38.3 2.00 0.04c 72.5 1.74 0.03c

Sci syl 4 40 1.00 2.10 15 0.80 0.83 25 0.92 –

4 5,400 0.03 2.73 2,100 0.02 0.57 3,000 0.01 0.84

Cyp esc 5 195 0.83 1.02 20 0.80 0.63 90 0.31 0.64

5 200 0.86 0.47 21 0.48 2.80 143 0.11 1.64

5 572 0.45 1.12 300 0.50 0.13 1,451 0.29 0.06

Cyp era 3 93.4 2.14 – 17.6 1.68 – 12.9 2.84 –

3 128 4.55 – 36.6 7.19 – 77.2 1.63 –

Cyp alt 6 62 0.71 0.68 – – 29 0.20 –

6 580 0.27 0.24 – – 711 0.25 0.01

Ele equ 7 174 2.37 0.67 84 2.67 0.32 59 0.49 0.09

7 282 1.21 0.67 331 2.12 0.10 222 0.21 0.11

Typ dom 8 60 2.15 0.14c – – – –

3 93.4 3.81 0.06c 17.6 4.65 0.04c 12.9 1.64 0.07c

3 128 3.88 0.17c 36.6 3.48 0.12c 72.5 1.81 0.03c

13 294 0.29 0.27c 115 0.14 0.15c 64.2 0.12 0.09c

3 514 2.00 0.07c 38.3 1.40 0.16c 77.2 2.61 0.01c

9 1,201 0.30b 0.60c 52.7 1.00b 1.00c 12.2 0.77b 0.87c

Typ lat 4 40 0.78 1.65 15 1.33 0.24 25 0.8

11 62.2 6.00 0.10d 4.98 1.73 0.43d 10.0 1.21 0.34d

12 70.0 4.80 0.69c 45.0 1.27 0.61c 10.0 1.51 0.56c

4 2,700 0.16 0.08 1,600 0.02 0.18 900 0.05

4 5,400 0.09 0.41 2,100 0.04 0.23 3,000 0.03

4 7,800 0.06 0.09 2,200 0.26 0.17 4,900 0.49

4 8,000 0.18 0.29 2,600 0.05 0.26 5,400 0.02

4 19,000 0.23 0.08 2,600 0.06 0.19 5,400 0.11

Typ ori 3 29.7 0.45 1.52c 5.1 0.80 0.58c 14.9 0.01 0.35c

Phr aus 10 70 1.55c 0.15c 20.3 1.56c 1.08c 16.3 0.15c 0.08c

9 1,201 0.06b 4.84c 52.7 0.92b 0.91c 12.8 1.49b 0.70c

13 294 0.44 0.19c 115 0.14 0.40c 64.2 0.15 0.12c

Hyd ame 5 572 0.47 0.19 26 0.81 0.76 1,451 0.07 0.08

5 720 0.09 0.58 300 0.11 0.41 – –

Sag mon 2 241 0.57b 0.53b 87 0.46b 0.31b – –

2 1,138 0.45b 0.24b 365 0.25b 0.46b – –

Equ arv 5 2,200 0.11 0.65 990 0.11 0.21 4,100 0.07 0.13

Equ flu 4 40 16.8 0.04 15 16.7 0.16 25 4.00 0.01

4 19,000 0.25 0.25 2,600 0.22 0.12 5,400 0.04 0.12

ISQG 123 35.7 35

LEL 129 13 19

SEL 1,300 85 167

ISQG Canadian interim sediment quality guideline (μg/g) from CCME (2002), LEL lowest effect level (μg/g), SEL severe effect level (μg/g)  

(de Deckere et al. 2011)
aStudy number from Table 3.1
bBCF and TF values from corresponding studies, no calculated
cTF obtained from ratio metal concentration leaf/root
dTF obtained from ratio metal concentration low part of leaf/root
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esculentum, C. alternifolius, S. sylvaticus, E. equisetina,  

T. orientalis, E. arvense, H. americana, and P. australis have 

always BCF values of Pb below unity over a wide range of 

concentrations in the sediment (from 10 to 4,100 μg Pb/g). 

Although C. eragrostis, E. fluviatile, S. validus, T. domingen-
sis, and T. latifolia show similar behavior for Pb to that of Zn 

and Cu, its BCF values are well below of the others.

The BCF values for Cr and Cd reported were below 0.7 in 

a broad range of sediment concentrations (from 26 to 881 μg 

Cr/g, and from 0.22 to 84 μg Cd/g), with some exceptions; T. 
domingensis and T. latifolia have chromium BCF values near 

to 5 at sediment levels below or near LEL (Maine et al. 2006; 

Klink et al. 2013), and T. domingensis, T. orientalis, T. latifo-
lia, E. fluviatile, E. equisetina, and S. sylvaticus show high 

values for Cd (up to 21) at levels in sediment lower than 

LEL. Phragmites australis and S. validus have cadmium 

BCF values of 2.4 and 3.8 respectively at levels in sediment 

between LEL and SEL.

Plants have developed a defense system to deal with met-

als and can resist environmental toxic concentrations, imple-

menting avoidance or tolerance strategies (Levitt 1980). 

Avoidance includes a set of mechanisms that prevent the 

access of metals to sites of toxic action, thereby limiting its 

adverse effects on plant metabolism (i.e., immobilization in 

the rhizosphere by organic chelators, cell wall retention, 

endocytosis of metal transporters to prevent uptake). Low 

rates of metal accumulation estimated from the BCF ratio 

could be explained by the action of plant avoidance strate-

gies in an environment that also behaves as a strong metal 

immobilizer. On the other hand, when plants are unable to 

completely prevent metal uptake, mechanisms to limit their 

toxic action are implemented. The efficiency of this response 

will determine the tolerance of the species or ecotype studied 

to toxic metal concentrations. Tolerance strategies can be 

divided in three major groups: those oriented to neutralize 

nonessential metals (i.e., molecular chaperons that prevent 

substitution of essential metals by nonessential ones in 

metalloenzymes); those directed to neutralize the adverse 

effects produced by some metals (i.e., enzymatic and non- 

enzymatic response to reactive oxygen species generated by 

metals with redox activity) and those directed to retain met-

als in extra-cytoplasmic compartments such as the vacuole 

or the cell wall (Clemens et al. 2002; Carroll et al. 2004; Hall 

2002; Shanker et al. 2005; Krämer et al. 2007). In emergent 

aquatic plants the uptake of metals occurs primarily through 

the root, so it is expected that tolerance strategies involve an 

accumulation of contaminants in belowground biomass thus 

preventing transport to photosynthetic structures.

It is essential to understand the distribution of the metal 

adsorbed onto the surface in relation to the metal accumulated 

inside the cell, in order to understand the predominant removal 

mechanisms and to make decisions of the viability of the recov-

ery of the adsorbed metals (Olguín and Sánchez- Galván 2012). 

The primary cell wall is composed of an amorphous matrix of 

polysaccharides (hemicellulose and pectin), plus a small 

amount of structural proteins that bind cellulose fibers with 

varying degree of crystallization by covalent and non-covalent 

bonds (Taiz and Zeiger 2002; Caffall and Mohnen 2009).

Polysaccharides play a significant role in the immobiliza-

tion of metals, particularly those containing high amount of 

carboxyl groups are able to bind divalent and trivalent metal 

ions. These groups have a high metal binding capacity by 

forming inner sphere complexes through the inclusion of 

divalent and trivalent metals in place of calcium ions, which 

mostly pectins stabilize (Krzesłowska 2011).

Several authors (Khotimchenko et al. 2007; Colzi et al. 

2011; Krzesłowska 2011) suggest that both acetylation and 

methylation of the carboxyl groups of pectins diminish its 

affinity for heavy metals, favoring and increasing their 

 toxicity, while others suggest that the methylation level 

would not be constant but may vary response to the metal 

abundance in the environment, this being a characteristic of 

the tolerant species or ecotypes (Krzesłowska 2011).

Emergent macrophytes generally show metal accumula-

tion in belowground biomass as tolerance strategy. Metal 

mobility within the plant measured by the translocation factor 

(TF, ratio of metal concentration leaf/root) differs among met-

als and plant species, generally following a decreasing order 

Ni > Cr > Cd = Zn = Cu > Pb (from the median of the data 

reported in Table 3.2). Cardwell et al. (2002) indicated that  

T. domingensis translocates essential metals such as zinc and 

copper much more easily than nonessential such as lead and 

cadmium. Despite this, generally the concentrations of metals 

at roots are greater than in the aerial parts (Cheng et al. 2002).

All species reported in Table 3.2 showed TF values near 

or less than 1 for all metals, and generally lower than the 

respective values of BCF, except for Zn in S. sylvaticus and 

P. australis whose TF value are 2.8 and 4.8 respectively 

(Hozhina et al. 2001; Kamel 2013) at elevated sediment lev-

els, although in both cases BCF values were very low (less 

than 0.05). Metal translocation into shoots appears to be very 

restricted in all wetland plants so that harvesting plants will 

not be an effective source of metal removal in a wetland sys-

tem. However, in the view of toxicology, this could be a 

desirable property, as metals would not pass into the food 

chain via herbivores, and thus avoid potential risk to the 

environment (Deng et al. 2004).

3.5.2  Submersed Macrophytes

Rooted submersed plants have a great importance owing to 

the fact that their roots, rhizomes, and stolon can facilitate the 

colonization of bacteria, algae and other microorganisms that 

help in phytoremediation process. Submersed aquatic macro-

phytes have got ability to extract metals from the sediments 
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via their root systems and directly from the surrounding 

water. Plant uptake of trace elements by leaves of submersed 

macrophytes becomes more important when the trace ele-

ment concentrations in the surrounding environment are high 

(Guilizzoni 1991).

Most studies were conducted in laboratory or greenhouse 

settings using metal-enriched nutrient solutions (Bunluesin 

et al. 2004; John et al. 2008; Maine et al. 2004; Mishra and 

Tripathi 2008). Results from these studies were usually very 

impressive with high metal uptake or accumulation (Mishra 

and Tripathi 2008). However, it may be entirely different 

when these aquatic plants are applied to field condition such 

as lakes, reservoirs, and estuaries where both metals and 

nutrients are of much lower concentrations and other envi-

ronmental factors are far less favorable. On the other hand, 

the performance of aquatic plants in natural water bodies is 

more meaningful as degradation of natural aquatic ecosys-

tem is a worldwide concern and yet conventional physical or 

chemical treatments are not cost-effective due to the nature 

of non-point source pollution. Investigations have been con-

ducted in natural water bodies such as lakes (Kamel 2013; 

Badr and Fawzy 2008; Vardanyan and Ingole 2006), rivers 

(Borisova et al. 2014), reservoirs (Mishra et al. 2008; 

Molisani et al. 2006), estuaries (Almeida et al. 2006), and 

stormwater in detention plants (Lu 2009).

Borisova et al. (2014) examined the uptake of five metals 

(Cu, Fe, Ni, Zn, and Mn) in Ceratophyllum demersum L. 

(hornwort) and Potamogeton alpinus Balb. (pondweed) from 

Iset’ river, Ural region, Russia. Differential accumulation 

pattern was noted for metals. Higher amounts of metals were 

accumulated in C. demersum compared to P. alpinus. Also it 

was shown that in leaves of C. demersum there were high 

amount of total phosphorus, nitrogen, organics acids, and ash.

Kamel (2013) assessed heavy metal concentration in 

water and sediment of a polluted lake in Egypt along with 

two native submersed macrophytes Ceratophyllum demer-
sum and Myriophyllum spicatum. The mean values of the six 

investigated metals in the selected aquatic macrophytes were 

Zn > Pb > Cu > Ni > Co > Cd. Regarding the mean values of 

the metal concentrations among the submersed plants it 

showed the following pattern Ceratophyllum demer-
sum > Myriophyllum spicatum. The BCF (bioconcentration 

factor) value for each individual heavy metal was 

Ceratophyllum demersum > Myriophyllum spicatum. The 

highest BCF values were estimated for Zn in C. demersum 

(903.3). Translocation factors were low for both species.

Another submersed plant, Vallisneria spiralis, was prom-

ising for chromium accumulation in different parts of plant 

from chromium containing solutions and tannery effluents. 

Vallisneria spiralis also tolerates high chromium concentra-

tion, thus the plant resulted highly suitable for phytoremedia-

tion of chromium-polluted wastewater (Vajpayee et al. 2001).

Potamogeton pectinatus is a submersed aquatic plant 

that can survive in metal-polluted lakes and can accumu-

late significant amounts of cadmium (266.3 μg/g). However, 

the adverse effect of cadmium was reported on loss in 

 photosynthetic pigment. P. pectinatus showed cadmium tol-

erance through increased levels of cysteine, non-protein 

thiol, and carotenoids and an increase of protein content  

(Rai et al. 2003).

Lead concentrations in plant tissue were found to be 1,621 

and 1,327 times those in the external solution for C. demer-
sum and C. caroliniana, respectively (Fonkou et al. 2005).

Ceratophyllum demersum and Hydrilla verticillata 

showed high cadmium accumulation (7,381 and 7,942 mg 

Cd/Kg) and a high BCF (>2,500) at 1 mg/L. There was sig-

nificant growth decrease in both species with increasing 

metal concentration. But cadmium was less toxic to H. verti-
cillata and its cadmium accumulation capacity was higher 

(Bunluesin et al. 2004).

Mazej and Germ (2009) determined trace elements in 

sediment of Velenjsko Jezero Lake and their concentrations 

were found to be above the European background concentra-

tion. Given their low concentrations in the water of lake they 

concluded that the trace elements found in above-ground 

parts is predominantly the result of their translocation from 

roots to stems and leaves. Entirely submersed species (Najas 
marina and Potamogeton lucens) have been shown to accu-

mulate relatively large amounts of trace elements than the 

studied floating species. Essential metals as Zn and Cu 

appear to be more readily translocated from roots to shoots 

than other elements in submersed and floating plants. Cr 

accumulation in roots and translocation from roots to shoots 

were very low. Kähkönen et al. (1997) affirmed that there is 

usually no mobility of Cr from roots to shoots and leaves due 

to barriers or lack of transport mechanisms. The concentra-

tion of Pb was the lowest of all the trace elements in roots 

probably due to its strong binding to organic matter and other 

components and to the roots. Also, Pb mobility was low. 

Translocation factors from roots to stem or leaves were very 

low in N. marina (0.05), and P. lucens (0.1).

With regard to the uptake ability of submersed plants,  

C. demersum seems to be a promising species for remedia-

tion of sediments contaminated with metals mainly essen-

tials metals. Denny and Wilkins (1987) observed that 

tendency to use shoots as sites of metal uptake instead of 

roots increases with progression towards submergence and 

simplicity of shoot structure. However, translocation factors 

were low and metal uptake by leaves from the surrounding 

water is negligible in submersed plants because element con-

centrations in water are generally low. Most of the metals in 

the aquatic phase pass to bottom sediments in natural or arti-

ficial water bodies and become particulate, complexed, or 

chelated complex practically not bioavailable.

L. de Cabo et al.



35

3.5.3  Floating Macrophytes

Different plant species have different allocation patterns of 

metals. With the purpose of evaluating strategies for the 

remediation, we selected four species of floating macro-

phytes studied in natural or artificial contaminated water 

bodies. Metal concentrations in water, roots and leaves of 

selected floating macrophytes, metal bioconcentration factor 

(BCF), and translocation factor (TF) are presented in 

Tables 3.1 and 3.3.

Eichhornia crassipes (water hyacinth) has been listed as 

most troublesome weed in aquatic system. It is a floating 

aquatic plant, found abundantly throughout the year in very 

large amounts. It originated in tropical South America, but has 

become naturalized in many warm areas of the world: Central 

America, North America (California and southern states), 

Africa, Asia, and Australia. It is one of the most commonly 

used plants in constructed wetlands because of its fast growth 

rate and large uptake of nutrients and contaminants. While 

there are numerous references relating to the capabilities of 

heavy metal removal by E. crassipes in laboratory experi-

ments (e.g.: Mishra and Tripathi 2008; Maine et al. 2001), this 

is not true for on-site and full-scale applications. There are 

also limited data on the capacity of E. crassipes to remediate 

a broad spectrum of metals particularly the highly toxic ones. 

Eichhornia crassipes absorbs and translocates essentials met-

als Cu, Ni, and Zn (Table 3.3) and nonessentials metals Cr, Pb, 

and Cd (Table 3.3). However, water hyacinth generally locates 

the elements into the roots which imply that the plant has a 

high capacity to absorb the metals and reveals its ability to 

serve as rhizofiltration plant in phytoremediation technology. 

The concentrations of essentials metals (Zn, Cu, and Ni) in  

Table 3.3 Metal water concentration (mg/L); metal root and leaf concentration (mg/kg); Bioconcentration factor (BCF) and translocation factor 

(TF) of different macrophytes

Species name E. crass L. gibb M. min S. mol
Normal range 

in plantsa

Studyb 8 14 9 15 16 16 14 19

Zn Water ND – 340 3.28 1,600 340 – –

Root 24 – 604.5 131.88 7.09 × 105 252.4 – 128.31 1–400

Leaf 15 – 492 223 – 93 – 223

BCF – – 1.78 40 443 0.74 – –

TF 0.62 – 0.81 1.69 – 0.36 – 1.73

Ni Water 0.017 0.080 – 0.062 10.13 – 0.080 –

Root 42 16.5 48.7 0.72 2.8 × 104 14.31 5.5 – 0.89–2.04

Leaf 21 8.5 40.4 1.41 – 2.4 1 –

BCF 2,471 206 – 11.6 2,764 – 69 –

TF 0.5 0.51 0.83 1.96 – 0.16 0.18 –

Cu Water – 0.260 – 0.044 19.670 – 0.260 –

Root - 4.25 22.5 31.40 4.4 × 104 16.8 2.3 680.91 7.53–8.44

Leaf – 2.8 14.5 56.58 – 8.2 0.8 91.40

BCF – 16.3 – 714 2,237 – 8.8 –

TF – 0.66 0.64 1.80 – 0.49 3.83 0.13

Cr Water 0.022 4.670 – 1.330 – – 4.670 –

Roots 78 16.85 – 5.05 – – 0.2 –

Leaf 9 28 – 10.12 – – 10 –

BCF 3,546 3.6 – 3.8 – – 0.04 –

TF 0.11 1.67 – 2 – 0.49 3.83 –

Pb Water – 0.04 18.27 0.018 6.11 18.27 0.04 –

Roots – 2.8 16.8 0.39 9,800 52.1 2.4 162.72 0.2–2.0

Leaf – 1.4 11.3 0.65 – 13.5 1 367

BCF – 70.0 0.9 21.4 1,604 2.9 60.0

TF – 0.53 0.67 1.67 – 0.26 0.42 2.25

Cd Water – – 20.9 0.01 0.74 20.9 – –

Root – – 0.8 0.19 790 0.62 – – 0.1–2.4

Leaf – – 0.52 0.50 – 0.16 – –

BCF – – 0.04 17.3 1,067 0.030 – –

TF – – 0.65 2.63 – 0.26 – –

aKabata-Pendias (2011)
bStudy number from Table 3.1
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E. crassipes (Kumar et al. 2008) were higher than standard 

normal ranges for plants, defined by Kabata-Pendias (2011) 

associated with high levels of metals detected in water 

reservoir.

The relatively low leaf metal contents indicated the pres-

ence of a prevention mechanism to inhibit uptake until dras-

tic conditions. However, Agunbiade et al. (2009) (Table 3.3) 

detected translocation factor above 1 for essentials and non-

essential metals in coastal water at optimum removal condi-

tions (pH: 5.5–6.5; salinity below 2 % and dissolved oxygen 

above 6 mg/L). Water hyacinth plants had high bioconcentra-

tion factor with low water concentrations of the six elements. 

Also, water hyacinth has a high tolerance to toxic contami-

nants. This shows that water hyacinth can be a promising 

candidate to remove heavy metals. E. crassipes could be 

eaten by humans and animals. Then, harvesting of biomass 

must be considered in restoration or mitigation plans for spe-

cific contaminated sites.

Duckweed commonly refers to a group of floating, flow-

ering plants of the family Lemnaceae. It is fast-growing and 

adapts easily to various aquatic conditions. The different 

species (Lemna, Spirodela, Wolffia, and Wolfiella) are world-

wide distributed in wetlands, ponds, and some effluent 

lagoons. The plants can grow at temperature ranging from 5 

to 35 °C with optimum growth between 20 and 31 °C and 

across a wide range of pH (3.5–10.5) (Cayuela et al. 2007). 

Wetlands and ponds are the most common sites to find duck-

weed. The capacity of aquatic plant such as duckweed 

(Lemna sp.) to remove toxic metals from water are well doc-

umented through laboratory experiences (e.g., Sharma and 

Gaur 1995; Tripathi and Chandra 1991, Lahive et al. 2011). 

Spirodela intermedia W. Koch (duckweed) and Lemna minor 

L. (duckweed) present a high growth rate and have been used 

for the removal of Cd, Cr, and Pb from water column (Maine 

et al. 2001; Cardwell et al. 2002).

Kamel (2013) examined ability of Lemna gibba to remove 

cadmium, copper, nickel, lead, and zinc in a contaminated 

lake in Egypt. The species was tolerant to high metal concen-

trations, although copper, nickel, and lead concentrations in 

roots were higher than normal range in plants according 

Kabata-Pendias (2011). In general, concentration factors 

were low. Like the rest of the macrophytes chosen, its trans-

location factors were also low.

Kumar et al. (2012) assessed accumulation potential in 

native macrophytes growing naturally in a drain receiving 

tannery effluent. Marsilea minuta accumulated lead from the 

water mainly in roots. Lead concentration in roots was higher 

than normal concentration for plants (Kabata-Pendias 2011). 

Nickel showed the same behavior. BCF and TF were ele-

vated for copper, associated with low metal concentrations in 

the tissue, below the normal range for plants. Cr accumula-

tion from the environment was low. It is known that in many 

plant species the mobility of Cr is low due to the fact that 

there are barriers or lack of transport mechanism suitable 

for Cr transport from roots to shoots (Kähkönen et al. 1997). 

In Spirodela polyrhiza, the Cr presence decreases growth 

rate inhibiting photosynthesis (Appenroth et al. 2001). 

However, chromium translocation factor in M. minuta was 

higher than 1.

Salvinia molesta is an aquatic fern, native to south-eastern 

Brazil and is widely distributed in tropical and subtropical 

areas. It has a fast growing rate, and is tolerant to pollution, 

favorable properties in species to be used in phytoremedia-

tion. Salvinia minima (Olguín et al. 2002 and Casares 2013) 

can accumulate chromium, lead, cadmium, copper, and zinc 

in bioassays performed in laboratory conditions. Ashraf et al. 

(2011) investigated polluted soils that surround mining slag 

pile and the potential remediation ability of S. molesta among 

others native macrophytes growing in the area. Concentrations 

of copper and lead in pseudoroots and leaves were higher 

than defined toxic levels for plants (Deng et al. 2004). Also, 

the plants translocated lead and zinc. S. molesta can tolerate 

the adverse environmental conditions, colonize the water-

bodies in tailings areas and accumulate toxic metals.

According to Baker and Brooks (1989) and Srivastava 

et al. (2006), a plant can be considered as hyperaccumulator 

when the metal concentration in the shoots (stems or leaves) 

is 10,000 μg/g for Zn; above 1,000 μg/g dry mass for As, Pb, 

Cu, Ni, and Co and 100 μg/g for Cd. Then, the selected plants 

cannot be considered hyperaccumulators in natural or artifi-

cial environments. Also, translocation (Baker and Brooks 

1989) and bioconcentration factors (Weiss et al. 2006) should 

be higher than 1. In most of study cases, these factors were 

lower than 1. BCF were recorded only greater than 1 in the 

case of extremely high or low water metal concentrations 

(Kumar et al. 2008 and Maine et al. 2006) (Table 3.3). The 

differences in TF indicate the preferential accumulation–

uptake pattern of metals. TF was typically lower than 1 in all 

selected study cases (Table 3.3). However, in Agunbiade et al. 

(2009) and Ashraf et al. (2011), E. crassipes and S. molesta 

effectively transported metals from root to shoot (TF > 1) due 

to efficient metal transporter system and probably sequestra-

tion of metals in vacuoles and apoplast (Lasat et al. 1998). 

Also, Agunbiade et al. (2009) metal concentrations in plants 

respect to water concentrations were low (BCF < 1), revealing 

an excluder strategy to transport of metals from abiotic envi-

ronment to macrophytes. Both roots and aboveground bio-

mass have a kind of natural controlling mechanism regarding 

the quantity of metals taken from the environment.

The general trend shows that the root tissues accumulate 

significantly greater concentrations of metals than shoots, 

indicating plant availability of metals as well as its limited 

mobility once inside the plant. The exclusion of metals 

from aboveground tissues has been suggested as a metal 

 tolerant strategy in many plants (Deng et al. 2004). This 

strategy allows plant photosynthetic machine preservation. 
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Metal tolerant strategy is widely evolved and exists in 

 wetland plant species when they grow in metal-contaminated 

areas. As Deng et al. (2004) said for wetland emergent plants 

that can colonize heavily metal-polluted areas, the floating 

plants can tolerate metals mainly by their metal exclusion 

ability. However, the higher-than-toxic level of metal con-

centrations in leaves indicates that internal detoxification 

metal tolerance mechanisms might also exist.

Therefore floating macrophytes might have developed 

internal exclusion strategies whereby the toxic metal is pre-

vented from damaging the cell. Also, studies on metal com-

partmentalization in floating macrophyte bioassays (Casares 

2013; Mouvet and Claveri 1999; Vazquez et al. 1999) showed 

that the removal by adsorption extracellular compartment 

was higher than intracellular accumulation. Plant species 

with a high capacity for removing heavy metals in solution 

have cell walls or membranes with abundant carboxyl, sulf-

hydryl, amino, and phosphate groups and a large specific sur-

face enabling greater metal biosorption (Bates et al. 1982).

3.6  Decomposition of Plant Biomass 
and Release of Metals into 
the Environment

Wetland plants behave as transient reservoirs of nutrients, 

metals, and metalloids, so litter decomposition represents a 

pathway for the release of contaminants from plant biomass 

into water bodies (Eid et al. 2012; Schaller et al. 2011). 

During the primary stage of the decomposition process, 

microorganisms and exudates form a heterotrophic biofilm 

on plant litter (Kominkova et al. 2000) where bacteria and 

fungi can accumulate high amounts of contaminants. 

Molecular oxygen is usually considered as a primary elec-

tron acceptor in organic matter degradation. However, since 

dissolution of gases in water is a relatively slow process from 

a kinetic perspective and also considering that in metal- 

contaminated sediments, biofilms and organic matter content 

may limit oxygen diffusion. Oxygen depletion leads to 

changes in the decomposers communities, from aerobic to 

anaerobic and then less efficient microorganisms.

Organic matter accumulation in sediments will be favored 

by high sedimentation rates and high proportion of organic 

compounds in the settleable material. In the early stages of 

decomposition process, the labile organic compounds with 

low C:N:P ratios are preferentially degraded. At the advanced 

stages of decomposition, the residual compounds (waxes, 

polyphenols) with high C:N:P ratios are degraded at lower 

rates. Several authors argue that the sink/source behavior of 

plant litter depends on the metal content and the plant accu-

mulation organ. Thus, plants which translocate metals to pho-

tosynthetic structures, will produce litter with high levels of 

pollutants and in this case the more appropriate management 

strategy would be harvesting, in order to phytoextract metals. 

However, as stated previously, metal hyperaccumulation and 

high rates of translocation are not widespread among aquatic 

macrophytes in contaminated environments. Therefore, if 

accumulation exists probably involve to belowground bio-

mass. In situ decomposition in anaerobic habitats will con-

tribute to form litter with high tendency to immobilize metals. 

Thus, at the same time that metals are released during the 

decomposition by mineralization, generating new binding 

sites could immobilize them again.

3.7  Concluding Remarks

With regard to the metal uptake capacity of aquatic plants at 

full scale and on-site treatments, concentration factors found 

to be low and the exclusion strategy seems to be more wide-

spread among aquatic plants. This strategy was shared with 

other plants tolerant to stress by toxic excess. Both biocon-

centration factors such as translocation were lower than 

those calculated in bioassays conducted under laboratory 

conditions. There have been no hyperaccumulators among 

the studied plants, but there are accumulator species under 

certain conditions of pH, dissolved oxygen, and metal con-

centrations. Furthermore, translocation factors were in most 

cases less than 1. However, regarding the capacity of accu-

mulation of metals in the standing crop, the floating plants 

are most effective, followed by submersed species and then 

emergent species. The metal concentrations in leaves of vari-

ous floating species were higher than tolerable levels for 

other macrophytes. Therefore floating macrophytes might 

have developed internal exclusion strategies whereby the 

toxic metal is prevented from damaging the cell. Also, 

removal by adsorption extracellular compartment was higher 

than intracellular accumulation in floating plants.

The application of phytoremediation at full scale and on- 

site for metal excess in aquatic ecosystems using several 

macrophytes is limited mainly to the immobilization of tox-

ics in the sediments and rhizosphere-root system. The low 

translocation to the aboveground tissues main advantage is to 

avoid the dispersion of pollutants into the food chain. 

Moreover, in situ decomposition of the macrophytes used in 

phytoremediation is a valid strategy since the contribution of 

detritus favors the input of organic matter in sediment and in 

turn the complexation of metal ions in the bottom of water 

bodies contaminated. Since floating plants are those that can 

occasionally translocate, harvesting is advisable in these 

cases. On the other hand, the emergent plants are more effec-

tive for phytostabilization. In situ decomposition in anaero-

bic habitats will contribute to form litter with high tendency 

to immobilize metals. The metals released during the decom-

position could be further retained by the new binding sites 

generated in bottom sediment.
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The use of native species in remediation projects, not 

always considered in scientific or technical papers is essen-

tial to preserve biological diversity and, requires more 

detailed studies for each natural ecosystem.
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4.1             Introduction 

 Water is an indispensable resource and essential life supporting 
factor. On the hydrological map of the world, eutrophication is 
one of the great issues causing degradation of freshwater eco-
systems. The excessive nutrient enrichment of waters results in 
change of oligotrophic water bodies into mesotrophic, eutro-
phic, and fi nally hypertrophic. The major nutrient sources for 
enrichment of aquatic ecosystems are sewage, household deter-
gents, and industrial discharges, runoff from agriculture, con-
struction sites, and urban areas. Eutrophication is a threat for 
water used in fi sheries, recreation, industry, and drinking as it 
causes increased growth of cyanobacteria and aquatic macro-
phytes resulting in low oxygen, death, and decomposition of 
aquatic fl ora and fauna (Ansari and Gill  2014 ). 

 The water is an essential life supporting matter in every 
cell of an organism. It enters into the living organisms via 
absorption or ingestion. It circulates between biotic and abi-
otic components of the ecosystem. The misuse and reckless 
over consumption has resulted into the fast depletion of 
water resources. The nutrient enrichment of the water bodies 
caused from the natural and man-made sources is depleting 
the water resources at a faster pace. The eutrophication is a 
kind of nutrient enrichment process of any aquatic body 

which results in an excessive growth of phytoplankton 
(Ansari and Khan  2014 ). 

 The common household detergents are the major anthro-
pogenic source of phosphorus input into the nearby water 
bodies and sewage treatment plants (Ansari and Khan  2014 ). 
Eutrophication refers to natural or artifi cial addition of nutri-
ents to water bodies and its effects on the aquatic life. When 
the effects are undesirable, eutrophication may be considered 
a form of pollution. Based on nutrient status and productiv-
ity, an aquatic system can be classifi ed into the following 
three types: (1) Oligotrophic: water with poor nutrient status 
and productivity; (2) Mesotrophic: water with moderate 
nutrient status and productivity; (3) Eutrophic: water with 
rich nutrient status and high productivity (Naeem et al.  2014 ). 

 The European Union (EU) Water Framework Directive 
(WFD) given directions to prevent deterioration, protect 
aquatic ecosystems and to promote the sustainable use of 
water (Andersen et al.  2006 ). Hypoxia is one of the common 
effects of eutrophication in aquatic ecosystems and is becom-
ing an increasingly prevalent problem worldwide. The causes 
of hypoxia are associated with nutrient inputs from both 
point and non-point sources. Eutrophication may be defi ned 
as the sum of the effects of the excessive growth of phyto-
plankton, benthic algae, and macrophytes leading to imbal-
anced primary and secondary productivity caused by nutrient 
enrichment. Most studies about eutrophication primarily 
focused on dissolved nutrients assimilated rapidly by aquatic 
plants. The role of complex organic nitrogen leading to the 
eutrophication of tropical waters has been largely overlooked 
although nitrogen occurs predominantly as organic nitrogen, 
due to a higher rate of decomposition of organic matter 
(Berman and Bronk  2003 ). The sources of nitrogen in the 
environment serve to enhance plant growth, and nitrogen 
acts as a pollutant in water bodies, becoming a serious prob-
lem worldwide. The elevated concentrations of ammonium 
nitrate and other forms of nitrogen enhance the eutrophica-
tion of aquatic ecosystems (Glibert et al.  2004 ; Zhang et al. 
 2007 ; Naeem et al.  2014 ). 

      Phytoremediation of Eutrophic Waters 

           Abid     Ali     Ansari      ,     Subrata     Trivedi     ,     Fareed     Ahmad     Khan     ,  
   Sarvajeet Singh     Gill     ,     Rubina     Perveen     ,     Mudasir     Irfan     Dar     ,  
   Zahid     Khorshid     Abbas     ,   and     Hasibur     Rehman    

 4

        A.  A.   Ansari ,  Ph.D.      (*)  •     S.   Trivedi ,  M.Phil., Ph.D.     •     Z.  K.   Abbas, Ph.D.      
   H.   Rehman,   Ph.D.   
     Department of Biology, Faculty of Science ,  University of Tabuk , 
  Tabuk   71491 ,  Saudi Arabia   
 e-mail: aansari@ut.edu.sa; aaansari40@gmail.com   

    F.  A.   Khan ,  M.Phil., Ph.D.     •     R.   Perveen ,  M.Phil., Ph.D., Student      
M.  I.   Dar ,  Ph.D., Student   
  Department of Botany, Environmental Physiology Laboratory , 
 Aligarh Muslim University ,   Aligarh   202002 ,  UP ,  India    

    S.  S.   Gill   
  Centre for Biotechnology ,  Maharshi Dayanand University , 
  Rohtak ,  Haryana ,  India    

mailto: aaansari40@gmail.com
mailto: aansari@ut.edu.sa


42

 The domestic waste (rich in phosphate and nitrate) when 
discharged in water bodies makes them highly productive or 
“eutrophic.” Nutrient enrichment is the starting point of 
eutrophication in any water body and is followed by uncon-
trolled growth of primary producers which depletes oxygen 
owing to decomposition of algal organic matter. Lakes and 
ponds in many Indian cities are the important sources of 
freshwater for various purposes and recharge the underground 
water resources. (   Fareed et al.  2014 ). 

 Phytotechnologies involving use of plants for pollutant 
removal gained importance during the last two decades. 
Over the past many years phytoremediation technology has 
become an effective method for environmental cleaning due 
to the plants ability to accumulate the contaminants at the 
concentration level thousands times higher than background 
one. Phytoremediation is treatment technology that takes 
advantage of fact that certain species of plants fl ourish by 
accumulating contaminants present in the water. 
Phytoremediation refers to the natural ability of certain 
plants called hyper-accumulators or bio-accumulators to 
degrade or render harmless contaminants in water (Dar and 
Kumawat  2011 ). The fl oating macrophytes are applied most 
often for treatment of sewage released from different indus-
trial sources and may consider as effi cient tool for contami-
nated waters. The plants are capable to remove many toxic 
substances from water reservoirs, acquiring the pollutants 
from waters as food elements, basically through root system 
using the products of decomposition for their viability 
(Jamuna and Noorjahan  2009 ). 

 Development of aquatic plant systems for nutrient recov-
ery from eutrophic water is essentially required to control 
eutrophication. The performance of phytoremediation sys-
tem depends upon many factors such as growth performances 
of the plants selected for phytoremediation, their nutrient 
removal potential, effi ciency to grow in experimental envi-
ronment. In order to develop high-effi cient nutrients phy-
toremediation systems aquatic plant species in combinations 
can be used (Ansari et al.  2014 ). 

 Contaminants like heavy metals, nonessential metals, 
crude oil, inorganic and organic substances and their deriva-
tives could be mitigated in phytoremediation projects run-
ning across the globe as it is considered a clean, cost-effective, 
and environment friendly technology. Aquatic plants propa-
gate rapidly by consuming dissolved nutrients from water 
and are excellent for harvesting nutrients within a short 
period of time and for the treatment of waste water by absorb-
ing various nutrients like phosphates, calcium, magnesium, 
chloride from the waste water (Ansal et al.  2010 ). By har-
vesting the plants, nutrients can be permanently removed 
from the system. During the phytoremediation using aquatic 
plants an increase in pH value of water occurs usually which 
supports the growth of aquatic plants interne restoring the 
aquatic ecosystems (Patel and Kanungo  2010 ; Kaur et al. 
 2010 ). Changes in climate, particularly pH, temperature, and 

light affect the sustainability of phytoremediation systems 
(Ansari et al.  2011c ,  2014 ; Feuchtmayr et al.  2009 ). 
Aquatic plants are highly capable to remove many organic 
nutrients which they convert into the substance of the plants 
as their biomass (El-Kheir et al.  2007 ). 

 Nitrogen and Phosphorus are the macronutrients required 
for the growth and physiological development of plants as they 
are major components of many metabolic and structural com-
pounds in plant cells. These nutrients play a signifi cant role in 
the synthesis of chlorophylls, protoplasm, and nucleic acids, 
and act as the backbone for ATP. Nitrogen defi ciency causes 
decreased cell division and expansion, chlorophyll defi ciency, 
and prolonged dormancy. Nitrogen is an essential plant nutri-
ent for healthy growth and reproduction. An increase in avail-
ability of N usually boosts life production, such as increasing 
the abundance of primary producers in a water body (Camago 
and Alonso  2006 ). Aquatic plants can utilize various chemical 
forms of nitrogen ranging from simple inorganic nitrogen 
compounds such as ammonium and nitrate to organic nitrogen 
forms such as polymeric proteins (Paungfoo-Lonhienne et al. 
 2008 ). Among all the forms of nitrogen, ammonium and nitrate 
are the most common ionic (reactive) forms of dissolved inor-
ganic nitrogen in aquatic ecosystems. Nitrogen is present natu-
rally due to atmospheric deposition, surface and groundwater 
runoff, geological deposits, biological nitrogen fi xation, and 
biodegradation of organic matter (Rabalais  2002 ). 

 Various free-fl oating aquatic macrophytes were studied 
for their possible use in the removal of different ionic form of 
nutrients (Gunnarsson and Petersen  2007 ; Malik  2007 ) as 
these free-fl oating aquatic plants have very high growth rates 
and rapidly utilize the available nutrients in the water (Malik 
 2007 ). The plants having high growth rates provide a good 
estimation of their nutrient removal capacity form eutrophic 
waters (Agunbiade et al.  2009 ). Plants with high bio- 
productivity are preferred for phytoremediation systems as 
they can utilize more nutrients to support rapid plant growth 
(Liao and Chang  2004 ; Gujarathi et al.  2005 ; Malik  2007 ). 

 Many waters of developed nations have experienced 
widespread and rapid eutrophication due to the increase in 
supply of organic matter during the last half of the twentieth 
century. An aquatic system takes thousands of years to 
become eutrophic which is a natural process. However, a 
high rate of nutrients inputs due to anthropogenic activities 
signifi cantly enhances the condition in a very short period of 
time (Ansari and Khan  2002 ,  2006a ,  b ,  2007 ,  2014 ). The 
nutrient input to waters from various sources causes eutro-
phication and are responsible for degradation of aquatic eco-
systems (Ansari and Khan  2009b ) and plant biodiversity. 
The environmental factors viz. nutrients, temperature, pH, 
dissolved oxygen, carbon dioxide, light within an aquatic 
ecosystem have a major role in controlling eutrophication in 
aquatic bodies and limiting the growth and development of 
aquatic plants (Lau and Lane  2002 ; Shen  2002 ; Khan and 
Ansari  2005 ; Khan et al.  2014 ). 
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 In this experiment mono, bi, tri, tetra, and penta-cultures of 
some free-fl oating aquatic macrophytes  Eichhornia ,  Lemna , 
 Salvinia ,  Spirodela , and  Wolffi a  were applied for the treat-
ment of eutrophic waters. The selected plant species were 
grown in artifi cial nutrient media for 21 days to investigate 
their nutrient removal potential in order to develop sustain-
able nutrient phytoremediation systems for eutrophic waters. 
Selecting aquatic free-fl oating macrophytes would not only 
result in greater nutrient removal from eutrophic waters but 
also help to reduce other pollutants and to mitigate the other 
effects of eutrophication. Hence, in this study some free-fl oat-
ing aquatic macrophytes have been selected to determine their 
nutrient removal ability under controlled conditions, and to 
establish the phytoremediation systems for eutrophic waters.  

4.2     Materials and Methods 

 Plants selected for this experiment were collected from 
freshwater bodies, washed thoroughly in lab and cultured for 
1 week to acclimatize the experimental conditions. The 
experiments were conducted in large earthen pots of size 
40 × 25 cm (diameter × depth) containing 15 L of freshwater 
with macronutrients 1 mL/L (Tables  4.1  and  4.2 ). The exper-
imental pots were placed in a greenhouse in which had aver-
age conditions of 30/25 °C day/night temperatures, 65–85 % 
relative humidity, 12-h photoperiod. Natural irradiance 
(Photosynthetically Active Radiation, PAR) was provided to 
the plants and the light levels were maintained at 650 Gmol 
quanta m −2  s −1  by supplementing with artifi cial lighting. 
Growth medium in all the sets were maintained at pH 7, mea-
sured regularly with a pH meter (Elico Limited, Hyderabad) 

and NaOH or HCl were added to the growth medium to 
maintain the pH level.

    Before inoculation to experimental pots the plants were dis-
infected by immersing them in NaClO (1 % v/v) and then 
rinsed with distilled water. The fi nal volume (15 L) of the grow-
ing medium in the experimental pots was maintained using dis-
tilled water. The initial values of total fresh weight were made 
uniform and 100 g of each plant species transferred from 
the maintained stock to each experimental pot. The plants were 
placed in a nutrient-free solution for 3 days to elicit starvation-
induced maximal removal response before transfer. Earthen 
pots of each treatment were maintained in triplicate. 

 The experiments were terminated after 21 days. Plants 
removed from the experimental pots and some part of fresh 
material was taken for chlorophyll-a estimation following 
the method of Zhao ( 2000 ). And rest of the fresh material 
was dried at 80 °C in order to obtain dry matter. The nitrogen 
and phosphorus contents in dry matter of aquatic plants were 
determined using the method of Lindner ( 1944 ) and Fiske 
and Subba-Row ( 1925 ) respectively. The parameters dry 
matter, nitrogen, phosphorus, and chlorophyll-a contents in 
aquatic plants used in this experiment was taken separately 
from each plant and an average was taken according to their 
combination as mono, di, tri, tetra, and penta-culture species 
used to develop a phytoremediation system for eutrophic 
waters. Water samples were collected from a depth of 
5–10 cm below the water surface and 25 mL of water sample 
was collected each time in sterile, screw-capped plastic bot-
tles measuring 50 mL. To minimize turbidity, samples were 
fi ltered with a Whatman No. 42 fi lter paper before storage. 
After fi ltration, the samples were refrigerated at 4 °C and 
analyzed following APHA ( 2005 ) within a week of collec-
tion. All the data obtained from the research were analyzed 
statistically for signifi cance following Dospekhov ( 1984 ).  

4.3     Results 

 With the increasing interest related to the use of plants for 
phytoremediation of Nitrates and Phosphates rich waters, 
aquatic plants like  Eichhornia ,  Salvinia ,  Spirodela ,  Lemna , 
 Wolffi a  were selected in this study as they offer great poten-
tial for phytoremediation, reproduce vegetatively at a very 
rapid rate, and have relatively high rate for uptake of nutri-
ents. All the plants showed their high potential to remove 
nitrate and phosphate from eutrophic waters.  

4.4     Percent Nutrients (Nitrates 
and Phosphates) Removal 
from Eutrophic Waters 

 In mono-culture (one plant species) phytoremediation sys-
tem the nutrient removal potential was in order of  Eichhorni
a  <  Spirodela  <  Lemna  <  Wolffi a  <  Salvinia  where  Eichhornia  

   Table 4.1    Composition of stock solution of macronutrients added to 
freshwater used as growth medium   

 Macronutrients  g/L 

 NH 4 H 2 PO 4   0.23 
 KNO 3   1.02 
 Ca (NO 3 )  0.492 
 MgSO 4  · 7H 2 O  0.49 

   Table 4.2    Physicochemical characteristics of freshwater used as 
growth medium   

 Physicochemical characteristics  mg/L (Except pH and turbidity) 

 pH  7.1 
 Turbidity  12 (NTU) 
 Dissolved oxygen  7.4 
 Calcium  15.7 
 Magnesium  21.8 
 Potassium  9.3 
 Chloride  55.7 
 Phosphate  0.07 
 Nitrate  0.61 

   NTU  nephelometric turbidity unit  
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remove maximum 63 % nitrates and 55 % phosphates from 
eutrophic waters. In di-culture (two plant species) phytore-
mediation systems, nutrient removal potential was in order of 
 Eichhornia  +  Salvinia  <  Lemna  +  Spirodela  <  Eichhornia  +
  Spirodela  <  Eichhornia  +  Lemna  <  Spirodela  +  Salvinia  < 
 Eichhonia  +  Wolffi a  <  Wolffi a  +  Salvinia  <  Lemna  +  Salvinia  <  
Spirodela  +  Wolffi a  <  Lemna  +  Wolffi a  but maximum potential 
was shown by  Eichhornia  +  Salvinia  which can remove up to 
75 % nitrates and 62 % phosphates. Highest nutrient removal 
potential was observed in tri-culture (three plant species) 
phytoremediation system of  Eichhornia  +  Lemna  +  Spirodela  
which removes 92 % nitrates and 78 % phosphates from 
nutrient media (Figs.  4.1  and  4.2 , and Table  4.3 ).  

   However, in tri-culture phytoremediation systems nutri-
ent removal potential was in the following order:  Eichhornia  
+  Lemna  +  Spirodela  <  Lemna  +  Spirodela  +  Wolffi a  <  Salvinia  

+  Eichhornia  +  Spirodela  <  Eichhornia  +  Lemna  +  Salvinia  <  
Wolffi a  +  Salvinia  +  Eichhornia  <  Spirodela  +  Wolffi a  +  Eichho
rnia  <  Eichhornia  +  Lemna  +  Wolffia  <  Wolffia  +  Salvinia  +
 Lemna  <  Lemna  +  Spirodela  +  Salvinia  <  Spirodela  +  Wolffi a  +  
Salvinia . In tetra-culture (four plant species) phytoremedia-
tion systems the nutrient removal potential was in order of 
 Salvinia  +  Eichhornia  +  Lemna  +  Spirodela  <  Spirodela  +
  Wolffi a  +  Salvinia  +  Eichhornia  <  Eichhornia  +  Lemna  +  Spiro
dela  +  Wolffi a  <  Lemna  +  Spirodela  +  Wolffi a  +  Salvinia  <  Wolff
ia  +  Salvinia  +  Eichhornia  +  Lemna  and maximum was 88 % 
for nitrates and 75 % for phosphates of  Salvinia  +  Eichhornia  +  
Lemna  +  Spirodela . The penta-culture (fi ve plant species) 
(using a combination of  Eichhornia  +  Lemna  +  Spirodela  + 
 Wolffi a  +  Salvinia ) phytoremediation system effi ciently 
removes 85 % nitrate and 81 % of phosphate from the eutro-
phic water (Figs.  4.1  and  4.2 , and Table  4.3 ).  
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4.5     Percent Nutrient Uptake by Aquatic 
Plants from Eutrophic Waters 

 In mono-culture (one plant species) phytoremediation system 
the nitrogen and phosphorus uptake was highest (7.2 and 
0.85 %) in  Eichhornia . In di-culture (two plant species) phy-
toremediation systems, nitrogen and phosphorus uptake was 
highest (7.6 and 0.95 %) in  Eichhornia  +  Salvinia . Highest (8.3 
and 0.97 %) nitrogen and phosphorus was observed in 
 Eichhornia  +  Lemna  +  Spirodela  tri-culture (three plant spe-
cies) phytoremediation system (Figs.  4.3  and  4.4 , and 
Table  4.4 ).  

   In tetra-culture (four plant species) phytoremediation sys-
tems the nutrient uptake was maximum (7.25 and 0.88 %) in 
 Salvinia  +  Eichhornia  +  Lemna  +  Spirodela . The penta- 
culture (fi ve plant species) phytoremediation system  Eichho
rnia  +  Lemna  +  Spirodela  +  Wolffi a  +  Salvinia  effi ciently took 
up nitrogen and phosphorus (6.9 and 0.79 %); however, other 
systems were more effi cient in taking up the nutrients from 
eutrophic waters (Figs.  4.3  and  4.4 , Table  4.4 ).  

4.6     Dry Weight Accumulation 
and Chlorophyll-a Content in Aquatic 
Plants Grown in Eutrophic Waters 

 In mono-culture (one plant species) phytoremediation sys-
tem the dry matter accumulation and chlorophyll-a content 
were highest (335 and 1.34 mg/g of fresh matter) in 
 Eichhornia . In di-culture (two plant species) phytoremedia-
tion systems, dry matter accumulation and chlorophyll-a 
content were highest (338 and 1.41 mg/g of fresh matter) in 

 Eichhornia  +  Salvinia . Highest (342 and 1.40 mg/g of fresh 
matter) dry matter accumulation and chlorophyll-a content 
were observed in  Eichhornia  +  Lemna  +  Spirodela  tri-culture 
(three plant species) phytoremediation system (Figs.  4.5  and 
 4.6 , and Table  4.5 ).  

   In tetra-culture (four plant species) phytoremediation sys-
tems dry matter accumulation and chlorophyll-a content was 
maximum (324 and 1.28 mg/g of fresh matter) in  Salvinia  +  
Eichhornia  +  Lemna  +  Spirodela . In penta-culture (fi ve plant 
species) phytoremediation system ( Eichhornia  +  Lemna  +  Sp
irodela  +  Wolffi a  +  Salvinia ) effi ciently accumulate dry mat-
ter and chlorophyll-a content (328 and 0.87 mg/g of fresh 
matter), however, other systems were more effi cient in accu-
mulating dry matter and chlorophyll-a content grown in 
eutrophic waters (Figs.  4.5  and  4.6 , Table  4.5 ).  

4.7     Discussion 

 The study indicates that under controlled conditions multi- 
species phytoremediation systems are more effi cient in 
removing the nutrients from eutrophic waters than the mono- 
species phytoremediation systems. However, in all types of 
phytoremediation systems tri-culture phytoremediation sys-
tem ( Eichhornia  +  Lemna  +  Spirodela ) showed its highest effi -
ciency and may be used for lowering high nutrient levels in 
eutrophic water. Freshwater aquatic plants are highly capable 
to remove nitrates and phosphates from waters but the 
response may be species dependent (Sooknah and Wilkie 
 2004 ; Zhang et al.  2009 ; Konnerup and Brix  2010 ). Aquatic 
plants are highly sensitive to pH, temperature and nutrient 
concentration of the growing media. Nitrate and phosphate 
removal potential of selected aquatic plants were studied in 

    Table 4.3    Percent nutrients (Nitrates and Phosphates) removal from eutrophic waters by mono, di, tri, tetra, and penta-culture species phytore-
mediation systems   

 Mono-culture 
(single species)  Di-culture (two species)  Tri-culture (three species)  Tetra-culture (four species)  Penta-culture (fi ve species) 

 % Nutrient 
Removal 

 % Nutrient 
Removal 

 % Nutrient 
Removal 

 % Nutrient 
Removal 

 % Nutrient 
Removal 

 N  P  N  P  N  P  N  P  N  P 
 E  63  55  E + L  62  57  E + L + Sp  92  78  E + L + Sp + W  74  61  E + L + Sp + W + Sa  85  81 
 L  53  50  E + Sp  67  48  E + L + W  65  54  L + Sp + W + Sa  71  62 
 Sa  47  44  E + W  58  53  E + L + Sa  71  62  Sp + W + Sa + E  81  69 
 Sp  59  51  E + Sa  75  62  L + S + W  85  73  W + Sa + E + L  66  57 
 W  49  38  L + Sp  70  56  L + Sp + Sa  61  55  Sa + E + L + Sp  88  75 

 L + W  40  32  Sp + W + Sa  58  49 
 L + Sa  51  44  Sp + W + E  68  57 
 Sp + Sa  61  56  W + Sa + E  70  61 
 Sp + W  45  38  W + Sa + L  63  55 
 W + Sa  56  51  Sa + E + Sp  83  72 

  E =  Eichhornia , L =  Lemna , Sa =  Salvinia , Sp =  Spirodela , W =  Wolffi a   
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free-fl oating aquatic macrophytes 
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grown in mono, di, tri, tetra, and 
penta-cultures species phytore-
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    Table 4.4    Nutrient (Nitrogen and Phosphorus) uptake (mg/100 mg of dry matter) by aquatic plants grown in mono, di, tri, tetra, and penta-culture 
species phytoremediation systems   

 Mono-culture 
(single species)  Di-culture (two species)  Tri-culture (three species)  Tetra-culture (four species)  Penta-culture (fi ve species) 

 % Nutrient 
uptake 

 % Nutrient 
uptake 

 % Nutrient 
uptake 

 % Nutrient 
uptake 

 % Nutrient 
uptake 

 N  P  N  P  N  P  N  P  N  P 
 E  7.2  0.85  E + L  5.8  0.75  E + L + Sp  8.3  0.97  E + L + Sp + W  6.25  0.72  E + L + Sp + W + Sa  6.9  0.79 
 L  5.3  0.69  E + Sp  6.5  0.83  E + L + W  5.6  0.75  L + Sp + W + Sa  5.67  0.67 
 Sa  6.1  0.56  E + W  4.8  0.65  E + L + Sa  6.9  0.78  Sp + W + Sa + E  6.75  0.81 
 Sp  6.4  0.61  E + Sa  7.6  0.95  L + S + W  7.4  0.92  W + Sa + E + L  5.47  0.62 
 W  4.5  0.71  L + Sp  6.8  0.88  L + Sp + Sa  5.0  0.57  Sa + E + L + Sp  7.25  0.88 

 L + W  4.9  0.60  Sp + W + Sa  4.7  0.61 
 L + Sa  4.1  0.62  Sp + W + E  5.8  0.70 
 Sp + Sa  5.3  0.68  W + Sa + E  6.2  0.72 
 Sp + W  4.4  0.56  W + Sa + L  5.3  0.65 
 W + Sa  4.2  0.63  Sa + E + Sp  7.6  0.87 

  E =  Eichhornia , L =  Lemna , Sa =  Salvinia , Sp =  Spirodela , W =  Wolffi a   
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  Fig. 4.6    Chlorophyll-a contents 
(mg/g of fresh matter) in 
free-fl oating aquatic macrophytes 
grown in mono, di, tri, tetra, and 
penta-cultures species phytore-
mediation systems       

    Table 4.5    Dry matter and chlorophyll-a contents (mg/g of fresh matter) in aquatic plants grown in mono, di, tri, tetra, and penta-culture species 
phytoremediation systems   

 Mono-culture 
(single species)  Di-culture (two species)  Tri-culture (three species)  Tetra-culture (four species)  Penta-culture (fi ve species) 

 DM  Chl-a  DM  Chl-a  DM  Chl-a  DM  Chl-a  DM  Chl-a 
 E  335  1.34  E + L  302  1.15  E + L + Sp  342  1.40  E + L + Sp + W  292  1.08  E + L + Sp + W + Sa  328  0.87 
 L  250  1.06  E + Sp  318  1.29  E + L + W  275  0.97  L + Sp + W + Sa  284  0.94 
 Sa  265  0.94  E + W  287  0.97  E + L + Sa  313  1.19  Sp + W + Sa + E  316  1.17 
 Sp  282  1.21  E + Sa  338  1.41  L + S + W  337  1.32  W + Sa + E + L  287  0.82 
 W  301  0.81  L + Sp  326  1.33  L + Sp + Sa  265  0.87  Sa + E + L + Sp  324  1.28 

 L + W  250  0.93  Sp + W + Sa  264  0.80 
 L + Sa  267  0.71  Sp + W + E  285  1.02 
 Sp + Sa  293  1.07  W + Sa + E  310  1.13 
 Sp + W  258  0.81  W + Sa + L  271  0.93 
 W + Sa  282  0.85  Sa + E + Sp  324  1.26 

  E =  Eichhornia , L =  Lemna , Sa =  Salvinia , Sp =  Spirodela , W =  Wolffi a , DM = Dry matter, Chl = Chlorophyll  
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mono, bi, tri, tetra, and penta-culture species phytoremedia-
tion systems to investigate the best combination to develop a 
sustainable phytoremediation system for eutrophic water. 
Free-fl oating aquatic macrophytes are highly capable for mor-
phological and physiological adaptations to aquatic environ-
ment. They have very high potential to take up and accumulate 
nutrients through their roots, stems, and leaves and can 
remove different ionic forms of nutrients especially of nitro-
gen and phosphorus from aquatic ecosystems (Smith  2007 ; 
Ansari and Khan  2006a ,  2011 ,  2013 ; Ansari and Gill  2014 ). 

 Growth responses of aquatic plants refl ect the primary 
productivity which has been considered as a strong indicator 
of eutrophication (Smith  2007 ; Ansari and Khan  2006a ). The 
signifi cant enhancement in dry matter, chlorophyll-a, nitro-
gen, and phosphorus in selected aquatic plants is a direct 
effect of composition of growth medium (Smith  2007 ). 
Waste water containing different forms of nutrients when 
discharged into the aquatic ecosystems changes the natural 
quality and quantity of water bring about correspond-
ing changes in natural fl ora and fauna of the ecosystem 
(Azzurro et al.  2010 ). 

 Contamination of water has become one of the most seri-
ous problems of today’s civilization. Phytoremediation is 
cost effective technique that uses plants to remediate con-
taminants from waste water. According to World Health 
Organization approximately 1.1 billion people do not have 
access to safe drinking water and within 15 years, three- 
fourths of the world’s population will face the same problem. 
Contamination of water by different pollutants alters ecosys-
tem structure and function. As such there has been a great 
deal of research into fi nding cost effective methods for the 
removal of contaminants to improve the quality of water 
(Abdel-Ghani and EI-Chaghaby  2008 ; Al-Anber and Matouq 
 2008 ). Phytoremediation is a very useful and cost-effective, 
eco-friendly, and effi cient technology in which aquatic plants 
are used to remediate contaminated water. There are several 
species of aquatic plants known for their phytoremediation 
abilities for polluted waters (Riffat et al.  2007 ; Nouri et al. 
 2009 ,  2011 ). Potential utility for phytoremediation of nutri-
ents by aquatic macrophytes like  Eichhornia crassipes , 
 Salvinia natans ,  Spirodela polyrrhiza ,  Lemna minor , etc. has 
been tested (Ansari and Khan  2011 ,  2013 ; Sooknah and 
Wilkie  2004 ; Zimmels et al.  2006 ; Lu et al.  2010 ). 

 Phytoremediation systems using aquatic macrophytes are 
the major options that have been applied for simultaneously 
handling of wastewater with the nutrients used for poultry 
and aquacultural projects (Naphi et al.  2003 ; Ansal et al. 
 2010 ). Aquatic macrophytes may produce many generations 
of progeny over a very short period of time and multiply their 
biomass and can remove more than 75 % of total phosphorus 
and nitrogen in a eutrophied water body (Ansari and Khan 
 2008 ,  2009a ; Cheng et al.  2002 ). The use of plants for nutri-
ent uptake is especially valuable because following site 

remediation, it is possible to identify practical and value- 
added uses for the plant material (Cheng et al.  2002 ; Fang 
et al.  2007 ; Gulcin et al.  2010 ). 

 Phytoremediation systems depend on many factors, 
including retention time, season, temperature, pH, diversity 
of species, nutrients loading, hydraulic regimes, plant har-
vesting, light intensity, etc. (El-Shafai et al.  2007 ; Ansari and 
Khan  2009a ; Lu et al.  2010 ). Light reduction in the water 
column and enhanced organic matter load into the sediments 
are two main consequences of eutrophication (Olive et al. 
 2009 ). Temperature is important environmental factor 
directly related with the functioning of an aquatic ecosystem 
(Ansari et al.  2011b ). pH controls absorption of nutrients and 
biochemical reactions taking place in living organisms 
(Ansari et al.  2011a ). The potential of aquatic plants for phy-
toremediation of various pollutants in water has been deter-
mined (Xia and Xiangjuan  2006 ; Mishra et al.  2007 ). Aquatic 
plants are reported for their effi ciency to remove about 
60–80 % nitrogen (Fox et al.  2008 ) and about 69 % of potas-
sium from water (Zhou et al.  2007 ). The pH and temperature 
signifi cantly control the bio removal of nutrients from waters 
using aquatic plants (Uysal and Fadime  2009 ). 

 A recent meta-analysis examined the effects of nutrients 
on absolute and relative production of large aquatic ecosys-
tems and found rise in productivity due to increasing eutro-
phication (Faithfull et al.  2011 ). A global climate change 
also enhances freshwater eutrophication (Dokulil and 
Teubner  2011 ). Some major problems that humanity is fac-
ing in the twenty-fi rst century are related to water quantity 
and/or water quality issues (UNESCO  2009 ). Thousands of 
aquatic ecosystems around the world are suffering due to the 
excessive inputs of nutrients from human-related uses of the 
land causing changes in their ecological structure and func-
tion (Moss et al.  2011 ; Esteves  2011 ). 

 Many lake managers have adopted the options of increas-
ing macrophytes abundance in order to restore the quality of 
eutrophic waters (Lau and Lane  2002 ). The process of eutro-
phication is directly related with discharge of nutrients in 
household wastes and sewages, industrial wastes, agricul-
tural and urban runoffs (Ansari and Khan  2006a ). A strict 
control on effl uents from the different nutrient sources can 
mitigate the problem of eutrophication (Stone  2011 ). The 
nutrient removal by waste water treatments before release 
and biological control using free-fl oating macrophytes may 
be the cost effective measures to control the eutrophication 
in aquatic ecosystem.  

4.8     Conclusions 

 Multi-species phytoremediation systems are more effi cient 
in removing the nutrients from eutrophic waters than the 
mono-species phytoremediation systems. However, in all 

A.A. Ansari et al.



49

types of phytoremediation systems tri-culture phytoremedia-
tion system ( Eichhornia  +  Lemna  +  Spirodela ) were showed 
highest effi ciency in lowering high nutrient levels from 
eutrophic waters. By removing the rapidly growing free- 
fl oating aquatic macrophytes, absorbing high nutrient con-
tents especially nitrates and phosphates from the growing 
medium, and replacing old with fresh plants at regular inter-
vals, the eutrophic aquatic ecosystem can be restored. This is 
a preliminary experiment to investigate the nutrients (N and 
P) removal potential of various free-fl oating aquatic macro-
phytes in different combinations. Further we will study the 
growth of selected aquatic plants (in mono, bi, tri, tetra, and 
penta-species culture) in response to varying pH, light, tem-
perature, and nutrient concentrations of growing medium. To 
develop a sustainable nutrient phytoremediation system to 
improve the quality of eutrophic waters, all the selected 
plants (in different combinations) will be tested in natural 
environmental conditions.     
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5.1             Introduction 

 One of the burning problems of our industrial society is the 
high consumption of water and the high demand for clean 
drinking water. Numerous approaches have been taken to 
reduce water consumption, but in the long run it seems only 
possible to recycle wastewater into high-quality water. It 
seems timely to discuss alternative water remediation tech-
nologies that are fi t for industrial as well as less developed 
countries to ensure a high quality of drinking water (Schroder 
et al.  2007 ). On the other hand, soil and water pollution asso-
ciated with landfi lls has reached a very important magnitude. 

 In the last few decades, pollution associated with both 
point and non-point sources have been identifi ed as a serious 
threat to water quality around the world (Wang et al.  2012 ). 
Using vegetative buffer strips to reduce the delivery of non- 
point sources of pollutants from agricultural land to inland 
water systems has been recognized as a best management 
practice in the management of agroecosystems (Wang et al. 
 2012 ). On the other hand, constructed wetlands are engi-
neered systems that have been designed and constructed to 
utilize the natural processes involving wetland vegetation, 
soils, and their associated microbial assemblages to assist in 
treating wastewater (Vymazal  2007 ). Both systems apply 
plants capable of reduce nutrients from surface and subsur-
face water by assimilation, sedimentation, removal and dis-
sipation, and temporary storage. 

 Municipal wastewater treatment and animal manure 
 produce liquid and solid products. Treated and non-treated 

effl uents are generally discharged into surface water, 
although increasingly, treated wastewater is used as a source 
of non- potable water or for indirect drinking water reuse. 
The effect of wastewater inputs over aquatic systems includes 
increases in total suspended solids (TSS), biochemical oxy-
gen demand (BOD), and nutrients (Basílico et al.  2013 ), and 
in pathogens and metals. Treated sewage sludge can be 
applied as an organic carbon and nutrient-rich soil amend-
ment or in land- reclamation projects. However, numerous 
organic contaminants, including pharmaceuticals, deter-
gents, fragrances, antimicrobials, pesticides, and industrial 
products have been detected in wastewater end products and 
are known as anthropogenic organic contaminants (AOCs). 
The potential impacts of the environmental presence of 
AOCs on humans and wildlife include reproductive impair-
ment, immune defi ciencies, and antibiotic resistance among 
pathogenic bacteria (Kinney et al.  2010 ). 

 Depending on the characteristics of the effl uents and the 
system itself, disposal or reuse options of the treated waste-
water includes gravity or pressure-dosed irrigation, soil infi l-
tration, greywater reuse, or surface water discharge, among 
others (Reed et al.  2006 ). 

 The aim of this chapter is to discuss several applications of 
phytoremediation for waste and wastewater treatment through 
natural systems using macrophytes. Phytoremediation tech-
niques are a low-cost alternative for waste and wastewater 
treatment and in many cases it could be coupled with nutrient 
recovery and biomass production (Srivastava et al.  2008 ).  

5.2     Phytoremediation Applications 

5.2.1     Domestic and Municipal Wastewater 

 Domestic and municipal sewage is a relevant source of liquid 
wastes and its safe, economical, and effective treatment is 
one of the most challenging problems faced worldwide 
(Valipour et al.  2009 ), in fact billions of people do not get 
even sanitation services (WHO  2012 ). Domestic wastewater 
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is a complex mix of solids and solutes, including wastes 
from kitchens, bathrooms, laundry, and fl oor drain (Henry 
 1999 ). Beyond the high variability in the composition of 
these wastewaters, these are characterized by high concen-
trations of TSS, chemical oxygen demand (COD), BOD, 
nitrogen, phosphorus, total organic carbon (TOC), presence 
of human pathogens (Henry  1999 ), metals (Arroyo et al. 
 2010 ), organic contaminants among which highlights emerg-
ing contaminants such as pharmaceutical and personal care 
products (PPCP) (Matamoros and Bayona  2006 ). Kadlec and 
Wallace ( 2009 ) provide typical values for several water qual-
ity variables of municipal wastewater. The effects of the dis-
charge of municipal wastewater treatment plants (WTP) on 
the receiving aquatic ecosystems depend largely on the mag-
nitude of the discharge and the characteristics of the receiv-
ing water body. Unfortunately, situations of streams of 
low-order receipt WTP effl uents with high nutrient levels 
and high relative discharge values are still common (Fig.  5.1 ).  

5.2.1.1     On-Site Systems 
 On-site management of domestic wastewater includes sev-
eral modalities depending on available land or climate limi-
tations, among others. Reed et al. ( 2006 ) classify on-site 
treatment options into four major categories: conventional 
on-site systems; modifi ed conventional on-site systems; 
alternative on-site systems; and on-site systems with addi-
tional treatment. Phytoremediation techniques would be cat-
egorized as alternative systems. A common feature to almost 
all on-site wastewater treatment is the incorporation of a pre-
treatment, which in most cases consists of a septic tank. In 
rural regions, the connection to sewer systems is unfeasible. 
An approach to wastewater management consists in the use 

of septic tank followed by a soil infi ltration area (O’Luanaigh 
et al.  2010 ). This confi guration or its variants (e.g., a septic 
tank followed by a cesspool) can also be found in vast urban 
and suburban areas of developing countries where sewers do 
not cover all urban areas. 

 Before selecting an alternative for wastewater treatment 
site characteristics, among which highlights permeability, 
depth, texture, structure, and pore sizes of soil, should be 
assessed (Reed et al.  2006 ). Also, terrain slopes, the exis-
tence and characteristics of surface water bodies, groundwa-
ter levels, vegetation, and landscape of the region should be 
considered (Reed et al.  2006 ). The segregation of black and 
greywaters allows the reuse of greywaters and the adequate 
treatment of each fraction in relation to its chemical and 
microbiological characteristics. Several phytoremediation 
alternatives for on-site treatment of domestic wastewater has 
been studied and includes the use of evaporation tanks, con-
structed wetlands (Ye and Li  2009 ; Paulo et al.  2013 ) and 
land application (Tzanakakis et al.  2009 ) among others. 

   Evapotranspiration Systems 
 These systems require the use of water-tolerant plant species 
also capable to evaporate large amounts of water. There are 
two modalities of evapotranspiration systems: evapotranspi-
ration (ET) and evapotranspiration-absorption (ETA) systems 
(Reed et al.  2006 ). Basically ET consists of impermeable 
recipients containing several layers of different granular sub-
strates such as gravel, coarse and fi ne sand, and a topsoil 
layer, where plants grow. In the case of ETA, there is no 
impermeable barrier (geomembrane, concrete). In both sys-
tems confi guration promotes not only water loss through tran-
spiration by plants but also by the direct evaporation of water 

  Fig. 5.1    La Choza Stream 
(Argentina) receiving effl uents 
by a modifi ed natural open 
channel from a WTP located 
upstream. Site location: 
–34.66503, –58.982715       
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rising by capillary. The area required to build this alternative 
can be estimated by the following equation (Reed et al.  2006 ):

  
A Q P= - +( )/ PrEt    ( 5.1 )    

where  A  is the bed area,  Q  is the annual fl ow, Et is the annual 
potential evapotranspiration, Pr is the annual precipitation 
rate, and  P  is the annual percolation. It should be noted that 
for ET systems, Pr = 0. As can be seen, the application of 
these systems is limited by the amount of available land. 
Another obvious limitation for the use of these alternatives is 
that are meaningful only in warm or temperate climates. 
Paulo et al. ( 2013 ) describe a system for treating domestic 
sewage for nine persons, based on the use of an evaporation 
tank planted with  Musa cavendishii  (banana tree), 
 Xanthosoma sagittifolium  (“Taioba”), and  Canna  species. In 
this case the function of the septic tank is supplied by the 
same evaporation tank. The authors report good overall sys-
tem performance during the 400 days of the study and low 
maintenance requirements (trimming of the plants). The sys-
tem was effi cient in the reduction of COD load; no odors 
were generated and solids accumulation was not signifi cant.  

   Constructed Wetlands (CWs) 
 Constructed wetlands are commonly used for the treatment 
of domestic or municipal wastewater as secondary or tertiary 
treatment (Vymazal  2009 ; Brix and Arias  2005 ). Types of 
CW includes free water surface (FWS), characterized by a 
water surface exposed to the atmosphere and subsurface fl ow 
(SSF), shallow basin and channels fi lled with porous media 
(sand and/or gravel). All types of CWs could be used for on- 
site treatment of domestic or institutional wastewater but in 
most cases systems consists in horizontal or vertical SSF-CW 
or hybrid systems with the combination of both. The depth of 
the porous media is in the range of 0.3–0.9 m in horizontal 
SSF-CW but often deeper in vertical fl ow systems. 
Advantages of SSF over FWS-CW consist in avoid the 
 proliferation of mosquitoes and other insect vectors and 
eliminates exposure to the wastewater (Reed et al.  2006 ). 
Wastewater application varies from continuous fl ow (most 
common) to recirculation and batch alternatives. 

 Species selection for the use in planted systems should be 
done taking into account native plant species. In the case of 
FWS-CW several plant species can be used, among which 
may be mentioned:
   Emergent species:  Typha  spp.,  Phragmites  spp., 

 Schoenoplectus  spp.,  Carex  spp.,  Hydrocotyle  spp., 
 Scirpus  spp.,  Cyperus  spp.;  

  Submerged species:  Ceratophyllum demersum ,  Elodea  spp., 
 Potamogeton  spp.,  Myriophyllum  spp.,  Valisneria 
americana ;  

  Floating species:  Lemna  spp.,  Spirodela  spp.,  Echhornia  
spp.,  Pistia stratiotes ,  Salvinia  spp., among others.    

 Design alternatives for SSF-CW includes the use of 
 Phragmites  or  Scirpus  if N removal is a project requirement 
or even  Typha  (require higher surface) (Reed et al.  2006 ). 

 The use of small-scale constructed wetlands to treat effl u-
ent from one or more houses could be a valid alternative that 
can be applied taking into account weather factors and avail-
ability of land. Such systems may be effective for organic 
matter and nutrients. Gikas and Tsihrintzis ( 2012 ) found 
removal of 96.4 % for BOD, 94.4 % for COD, 90.8 % for 
total nitrogen (TN), 92.8 % for ammonia, 61.6 % for ortho-
phosphates, and 69.8 % for total phosphorus (TP) in a sys-
tem designed for two families (eight persons) with three 
treatment stages: two settling tanks in series, a vertical fl ow 
CW (VFCW), and a zeolite tank. The results of the use of 
constructed wetlands to remove N and P are often variable. 
Gill et al. ( 2011 ) report an N removal of only 29 and 30 % in 
secondary and tertiary treatment wetlands. In relation to TP, 
the authors found that removal averaged from 28 to 45 % 
(higher P removal during summer), with effl uent concentra-
tions still found to be high (>5 mg/L on average). 

 Constructed wetlands are also effective in the removal of 
metal from domestic wastewater. Yousefi  et al. ( 2013 ) found 
metal removal rates of 42 % and 58 % in a constructed wet-
land treating effl uents from a university campus, in relation 
to hydraulic retention times of 2 and 6 days, respectively, the 
measured metals were lead and cadmium. In this study, metal 
removal differences in absence/presence of reeds planted in 
a granular media were statistically signifi cant (35 % and 
65 %, respectively).  

   Land Application 
 The soil is recognized as a biological, physical, and chemical 
fi lter (Reed et al.  2006 ). Land application systems (also land 
treatment systems, LTS) consist in the discharge of partially 
treated wastewater into vegetated soils. These slow rate sys-
tems combine both treatment and reuse of the effl uent and 
are designed and operated according to the “zero discharge” 
concept (Tzanakakis et al.  2009 ). 

 Assuming that septic tank effl uent should be treated, the 
allowable hydraulic loading rate for LTS is about 10 mm/day 
and the mass loading rates for BOD, TSS, and TN are 1.5 g/
m 2 /day, 0.8 g/m 2 /day, and 0.55 g/m 2 /day, respectively (Reed 
et al.  2006 ). To treat greywater septic tank effl uent, the allow-
able hydraulic loading rate is 15 mm/day and the mass load-
ing rates for BOD, TSS, and TN are 1.8 g/m 2 /day, 0.6 g/m 2 /
day, and 0.22 g/m 2 /day, respectively (Reed et al.  2006 ). 

 In order to reduce environmental risks associated with 
nutrients releases from land application systems; additional 
management practices should be adopted. Tzanakakis et al. 
( 2009 ) recommend the use of plant species with high values 
of water use effi ciency; the adjustment of N application rates 
to the system capacity for assimilation; interruption of effl u-
ent application when plant growth declines or ceases; and the 

5 Phytoremediation of Water and Wastewater: On-Site and Full-Scale Applications



54

adoption of suitable pre-application treatment schemes 
 (constructed wetlands or retention ponds) aiming to reduce 
the nutrient concentration in the effl uent.   

5.2.1.2     Higher Scale Applications 
 Concepts of phytoremediation could also be implemented in 
full-scale applications for centralized treatment of municipal 
wastewater. Brix et al. ( 2011 ) describe a full-scale system 
built in Thailand incorporating a multistage constructed wet-
land. The system was designed for the treatment of 400 m 3 /
day of wastewater from a business and hotel area. After few 
years of operation, the system allowed the removal of TSS, 
BOD, TN, TP, oil and grease, and fecal coliform bacteria from 
wastewater. However, the authors indicate a high variability 
of fecal coliform bacteria in infl uent and effl uent, a high con-
centration of oil and grease in effl uent, and a poor TN removal. 

 Technical and operational problems that can occur in full- 
scale wastewater treatment systems include clogging of 
granular media, bypass, lack of ammonia removal, mosqui-
toes proliferation (only in Free Water Surface Constructed 
Wetlands), and water quality problems due to metal sulfi de 
precipitation (in SSF-CW) (Reed et al.  2006 ).   

5.2.2     Feedlots 

 The development of modern agriculture with an improved 
production effi ciency and specialization has led to the pro-
duction of an excess of manure in small areas. A daily 
manure production (5–6 % of the animal body weight) is 
equivalent to almost twice the food it eats. Open lot livestock 
production, in general beef cattle feeding operations or feed-
lots, constitutes a contributor to surface water impairment 
due to the accumulation of manure, and transport of con-
taminants (Rizzo et al.  2012 ) beyond constitutes a produc-
tion method questionable from bioethical standpoint. 

5.2.2.1     Feedlot Runoff Characteristics 
 Chemicals of concern in cattle feedlot manure and effl uent 
may include endogenous chemicals such as hormones, non- 
endogenous natural and synthetic chemicals used to main-
tain the health and optimum growing conditions for animals. 
Furthermore, there is potential risk for animals (and hence 
manure and effl uent) to be unintentionally exposed to chemi-
cals in the environment or via contaminated feed products 
(Khan et al.  2008 ). 

 Cattle manure effl uents are composed of solids (Koelsch 
et al.  2006 ), dissolved organic matter, microorganisms, nutri-
ents, salts, steroidal hormones, antibiotics, ectoparasiticides, 
mycotoxins, heavy metals, and dioxins (García et al.  2012 ). 
Due to high levels of potential pollutants being released 
toward surface water or groundwater (Garcia et al.  2006 ; 
Garcia and de Iorio  2003 ), the feedlots were specifi cally 

defi ned as “point sources” of water pollution. The main by- 
products from cattle feedlots are the manure harvested from 
the surface of the pens and liquid effl uent collected during 
rainfall runoff events. Feedlot runoff quality is weather 
dependent. Rainfall intensity and duration and, soil retention 
capacity affect quality and quantity runoff (Koelsch et al. 
 2006 ). Depending on variations in management and weather, 
manure harvesting rates have been reported to vary between 
0.41 and 1.05 t dry weight per head per year (Khan et al. 
 2008 ). García et al. ( 2012 ) found that surface runoff was the 
dominant process in the feedlot pen soil. 

 Nutrients represent one of the most ubiquitous compo-
nents of wastewater from feedlot operation. Then, nutrient 
management is critical at animal feedlots. Since feedlot pens 
do not sustain vegetation, vegetative treatment area must be 
an alternative approach to prevent and control the release of 
manure—contaminated runoff (Koelsch et al.  2006 ). 
Ikenberry and Mankin ( 2000 ) defi ned a VTA (vegetative 
treatment areas) as a band of planted or indigenous vegeta-
tion situated down-slope of cropland or animal production 
facilities that provides localized erosion protection and con-
taminant reduction. Planted or indigenous vegetation includes 
pasture, grassed waterways, cropland, or constructed wet-
lands that are used to treat runoff through  settling, fi ltration, 
adsorption, and infi ltration. The VTA also allows the recy-
cling of nutrients by plants (Fajardo et al.  2001 ). 

 Also, good practice strategies should help reduce nutrient 
imbalances in feedlots and manure storage areas:
•    Alternative feed rations and effi cient utilizer of on-farm 

feeds can offset nutrient inputs as purchased feeds and 
forages.  

•   Exporting of manure nutrients to off-farm users can 
increase managed nutrient outputs.  

•   Manure treatments allow disposal of manure nutrients in 
agricultural soils. Some treatment options enhance the 
value of manure nutrients and complement manure mar-
keting efforts.    
 The aims of several studies were to evaluate the ability of 

different plants to remediate a feedlot effl uent. Vymazal 
( 2007 ) compared nutrients removal by constructed wetlands 
with free-fl oating plants (FFP), free water surface CWs with 
emergent plants (FWS) and sub-surface CWs with horizontal 
(HSSF or HF) and vertical (VSSF or VF) fl ows. Removal of 
total nitrogen in studied types of constructed wetlands varied 
between 40 and 50 % depending on CWs type and in fl ow 
loading. Vertical-fl ow constructed wetlands remove success-
fully ammonia-N but very limited denitrifi cation takes place 
in these systems. On the other hand, horizontal-fl ow con-
structed wetlands provide good conditions for denitrifi cation 
but the ability of these systems to nitrify ammonia is very 
limited. Therefore, various types of constructed wetlands may 
be combined (hybrid systems) with each other in order 
to exploit the specifi c advantages of the individual systems. 
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The major phosphorus removal processes are sorption, pre-
cipitation, plant uptake (with subsequent harvest) and peat/soil 
accretion. Removal of phosphorus in all types of constructed 
wetlands is low unless special substrates with high sorption 
capacity are used. Removal of total phosphorus varied between 
40 and 60 % in all types of constructed wetlands with removed 
load ranging. Removal of both nitrogen and phosphorus via 
harvesting of aboveground biomass of emergent vegetation 
is low but it could be substantial for lightly loaded systems 
(cca 100–200 g N/m 2 /year and 10–20 g P/m 2 /year).  

5.2.2.2    Nutrients Removal 
 Aquatic systems for wastewater treatment are large basins 
fi lled with wastewater undergoing some combination of phys-
ical, chemical, and/or biological treatment processes that ren-
der the wastewater more acceptable for discharge to the 
environment. Solids removal via settling basins removed a 
mean of 64 % of the total solids, 84 % of the TN, 80 % of the 
total P and 34 % of potassium (K) (Koelsch et al.  2006 ). 
Facultative lagoons obtain necessary oxygen for treatment by 
surface reaeration from the atmosphere, combine sedimenta-
tion of particulates with biological degradation, and produce 
large quantities of algae, which limits the utility of their effl u-
ent without further treatment. Aerated lagoons use mechanical 
equipment to enhance and intensify the biodegradation rate. 
They do not produce the intense algal load on downstream 
processes and have smaller areal requirements than facultative 
systems. Free water surface (FWS) constructed wetlands have 
also been used, though rarely, for similar reasons (USEPA 
 2008 ). Oxic and anoxic decantation ponds are often used to 
reduce the pollution load of the effl uent in intensive farming 
systems. However, some studies have reported that the levels 
found in these effl uents generate a high impact on surface 
waters. Rizzo et al. ( 2012 ) found that the presence of aquatic 
plants increases the removal rates of nutrients, organic matter 
and heavy metals from wastewater in approximately 10–17 
days for a feedlot effl uent with high organic load. 

 The main mechanisms of nutrient removal from wastewa-
ter in constructed wetlands are microbial processes such as 
nitrifi cation and denitrifi cation as well as physicochemical 
processes such as the fi xation of phosphate by iron and alumi-
num in the soil fi lter. Moreover, plants have a role in nutrient 
removal. Helophytes are adapted to anoxic rhizosphere con-
ditions and can survive because of their ability to supply their 
root system with oxygen from the atmosphere. The release of 
oxygen causes the formation of an oxidative protective fi lm 
directly on the root surface. This fi lm protects the sensitive 
root areas from being damaged by toxic components in the 
anoxic, usually extremely reduced rhizosphere. On the other 
hand, the macrophytes in constructed wetlands favor aerobic 
processes such as nitrifi cation near roots. In the zones that are 
largely free of oxygen, anaerobic processes such as denitrifi -
cation, sulfate reduction, and/or methanogenesis take place. 

In subsurface horizontal fl ow systems the oxidized nitrogen 
is immediately reduced, preventing the enrichment of nitrite 
and nitrate (Stottmeister et al.  2003 ). 

 Wang et al. ( 2012 ) compared the effi ciency of trees with 
pasture buffer strips at reducing nitrate-nitrogen from sur-
face and groundwater fl ow emanating from the disposal area 
of Cattle feedlots. Both systems were signifi cantly effi cient 
at reducing nitrate (NO 3 -N), principally through a signifi cant 
reduction in soil surface runoff volume (50–57 %) together 
with a reduction in NO 3 -N concentration (7–13 %) to give an 
average reduction in total NO 3 -N load of 53–61 %. 

 Lee et al. ( 2004 ) studied the subsurface fl ow constructed 
wetlands performance at different high loading rates of 
swine effl uent. The wetland vegetated with water hyacinth 
exhibited higher removal rates than most other wetlands, 
although it gave low reduction effi ciencies. Subsurface fl ow 
constructed wetlands removed TP 47–59 %, and TN 
10–24 %. Total N organic was mainly removed by physical 
mechanism. In this wetland, the nitrifi cation was low (1.4 kg/
ha/day), due to low oxygen supplied by the plants, although 
the denitrifi cation could proceed very well, as shown by the 
very low effl uent nitrate N, 1.1–1.7 mg/L. The low growth 
rate of water hyacinth also made the TN removed by plant 
uptake very low, only about 0.5 kg/ha/day. The TP removal 
was also dominated by physical mechanisms. The low 
growth rate of water hyacinth in this experiment with an 
extreme high organic load could be toxic to the plants. With 
respect to relative importance of nutrient uptake by plants, 
Payer and Weil ( 1987 ) state that up to 45 % of phosphorus 
may be removed in this way, whilst Schwer and Clausen 
( 1989 ) report approximately 2.5 % of P removal and 15 % of 
N removal. Equally, the vegetation cover facilitates retention 
of suspended solids and the nutrients bound to them. 

 Duckweed ( Lemna punctata ) ponds have been success-
fully used in the swine waste polishing in small farm of sub- 
temperate climate (southern Brazil). These ponds received 
the residue after a retention time of 30 days. The removal of 
total Kjeldahl N and total P were 98 % and 98.8 % respec-
tively. Statistical relationships between the treatment effi -
ciency and the seasons were not found (Mohedano et al. 
 2012 ). However, in a humid subtropical with cold winters 
zone (Shangai, China), another duckweed species ( Spirodela 
oligorrhiza ) was capable of removing 83.7 % and 89.4 % of 
TN and TP, respectively, from 6 % swine lagoon water in 8 
weeks. In winter, nutrients could still be substantially 
removed in spite of the limited duckweed growth which was 
probably attributed to the improved protein accumulation of 
duckweed plants and the nutrient uptake by the attached bio-
fi lm (algae and bacteria) on duckweed and walls of the sys-
tem (Xu and Shen  2011 ). However, several plants successfully 
used in growing seasons almost disappear during the winter. 
The climate affects plants nutrient removal ability and per-
formance ponds.  
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5.2.2.3    Solids Removal 
 Extensive research has been conducted on solids removal by 
VTA. Total solids are commonly quickly reduced by 
70–90 %. The quick reduction can be attributed to a signifi -
cant reduction in fl ow velocity due to vegetation retarding 
the fl ow and producing soil conditions conducive to infi ltra-
tion. Variations occur due to site-specifi c conditions such as 
vegetation, slope, soil type, size and geometry of fi lter strip, 
and infl uent solids concentration (Koelsch et al.  2006 ). On 
the other hand, Rizzo et al. ( 2012 ) found more than 70 % of 
suspended matter removal in both treatments with and with-
out plants for a feedlot effl uent. The suspended solids were 
removed entirely by physical processes, involving sedimen-
tation, fi ltration, and adsorption in subsurface fl ow con-
structed wetland (Lee et al.  2004 ).  

5.2.2.4    COD and BOD Removal 
 Averaged COD concentration of infl uent in swine wastewaters 
was 1,160 mg/L (Lee et al.  2004 ). The excellent COD removal 
by a subsurface fl ow constructed wetland was accomplished 
by a good cooperation between physical and microbial mecha-
nisms, where the former mechanism made 52–74 % of contri-
bution, and the latter 26–48 % (Lee et al.  2004 ). The main 
removal mechanisms were physical separation and microbio-
logical uptake. The organic solids could be settled out and 
retained in the wetland cell for a longer time, thus allowing an 
easy biodegradation by attached bacteria in rhizosphere. The 
treatment of soil infi ltration showed reductions of 92 and 93 % 
in COD and 90 % or more BOD5 after waste effl uent had been 
passed through soil columns (Nuñez Delgado et al.  1995 ). 

 The BOD removal percentages were higher than 90 % 
and COD removal was near to 65 % in treatment with 
 E. crassipes  and  H. ranunculoides  in the treatment of waste-
water from a feedlot effl uent (Rizzo et al.  2012 ). The higher 
effi ciency in the removal of organic load in macrophyte sys-
tems could be due to the better conditions of oxygenation 
provided by macrophytes.  

5.2.2.5    Steroidal Hormones Removal 
 Steroidal hormones potentially present in feedlot manure 
and effl uent include endogenous hormones and some syn-
thetic hormones applied in agriculture. Endogenous hor-
mones are commonly identifi ed in animal excretions 
including manure and urine (Hoffmann et al.  1997 ). Both 
natural and synthetic steroidal hormones are used in many 
countries as hormonal growth promotants in cattle (Song 
et al.  2009 ). They are used to improve feed effi ciency, rates 
of weight gain, and relative proportions of muscle and fat 
(Lefebvre et al.  2006 ). Reports of hormonally related abnor-
malities in a wide range of species have accumulated. 
Chemical contaminants are believed to be responsible for 
many of these abnormalities, acting via mechanisms leading 
to alteration in endocrine function. This phenomenon, known 
generally as “endocrine disruption,” has been identifi ed by 

the World Health Organization as an issue of global concern 
(Khan et al.  2008 ). 

 Song et al. ( 2009 ) concluded that the performance of wet-
lands when operating in unsaturated condition was superior 
to that when operating in water-saturated condition in con-
structed wetlands. Biodegradation of estrogens is expected 
to proceed much faster in aerobic horizons. Mass balance 
calculations indicated that the removal of estrogens in con-
structed wetlands was very likely attributable largely to 
biotic processes, a combination of both microbial degrada-
tion and plant uptake. Shi et al. ( 2010 ) found that the pres-
ence of duckweed and algae in wastewater treatment systems 
accelerates the removal. Estrogens can be quickly sorbed 
onto algae or duckweed and then the estrogens can be 
degraded by microorganisms.  

5.2.2.6    Antibiotics Removal 
 Antibiotics are used in veterinary medicine to treat and pre-
vent disease, and for other purposes including growth pro-
motion in food animals (Prescott et al.  2000 ). Many antibiotic 
compounds are only partially degraded during metabolism 
by humans and other animals, and thus are excreted largely 
unchanged. Accordingly, animal excrements following anti-
biotic use for treatment or growth promotion are considered 
to be important sources of these compounds to some affected 
environments (Khan et al.  2008 ). Antibiotics in the environ-
ment are suspected to induce antibiotic resistance in bacteria, 
which may cause severe health problems due to an increasing 
ineffectiveness of antibiotic drugs. An antibiotic- resistant 
strain of  Clostridium perfringens  was detected in the ground-
water below plots of land treated with swine manure. 
 Myriophyllum aquaticum  (parrot feather) and  Pistia stra-
tiotes  (water lettuce), were used for studying phytoremedia-
tion of tetracycline (TC) and oxytetracycline (OTC) from 
aqueous media. TC and OTC are two of the most commonly 
used tetracyclines in veterinary medicine. The authors sug-
gest the involvement of root-secreted enzyme(s)/metabolite(s) 
in degrading/transforming the antibiotics (Gujarathi et al. 
 2005 ). When subjected to stress, plants produce reactive oxy-
gen species (ROS) as a part of the defense response. The oxi-
dative response is also used to degrade organic pollutants. 
Gujarathi et al. ( 2005 ) suggests involvement of reactive oxy-
gen species (ROS) in the antibiotic modifi cation process.  

5.2.2.7    Pathogen Organisms Removal 
 Microbiological contamination is a key parameter pertaining 
to the treatment requirements and safe reuse of effl uent. 
There are few literature data on pathogens in feedlot effl uent 
and most studies have measured only bacterial indicator 
organisms. These bacterial counts are fairly high. However, a 
range of pathogens has been measured in manure, soils and 
water bodies impacted by feedlot runoff. These include 
 Salmonella  spp., pathogenic  Escherichia coli  H157:O157, 
 Leptospira  spp.,  Campylobacter  spp.;  Cryptosporidium 
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 parvum ,  Giardia lamblia , and helminthes worms. Pathogenic 
contamination of recycled feedlot effl uent and the associated 
risk of disease outbreaks are the most concerning aspects of 
using recycled water for a cattle drinking supply. 

 Fajardo et al. ( 2001 ) report fecal coliform removal rates 
between 64 and 87 % when using small-scale simulated run-
off events with stockpiled manure. Lim et al. ( 1997 ) found 
that all fecal coliforms were removed in the fi rst 6.1 m of a 
vegetative treatment area used to treat runoff from a simu-
lated pasture. Average fecal coliform removal in the study 
reported was 76.6 % (Ikenberry and Mankin  2000 ). 

 Kadlec and Wallace ( 2009 ) listed the effi ciency of the 
elimination of coliforms and streptococci in various systems 
of constructed wetlands. More than 90 % of the coliforms 
and more than 80 % of the fecal streptococci were elimi-
nated. The fi ndings of Thurston et al. ( 1996 ) regarding the 
comparison of a pond system with a subsurface fl ow planted 
soil fi lter. The planted soil fi lter is more effi cient at eliminat-
ing bacteria than the  Lemna  pond.  

5.2.2.8    Metal Removal 
 Some metals in livestock excreta may be derived from the 
animal diet, either intentionally or as a result of contamina-
tion. However, metals are more likely to be derived from the 
ingestion of contaminated soil by the animal. Practices such 
as using composted municipal waste as feedlot bedding also 
have the potential to contribute to the presence of heavy met-
als in contaminated manure (Khan et al.  2008 ). Rizzo et al. 
( 2012 ) found that the presence of  E. crassipes  and  H. ranun-
culoides  increases the removal rates of Cu, Zn, and Cr from 
wastewater in approximately 10–17 days for a feedlot effl u-
ent with high organic load. Due to the fact that suspended 
matter could be associated with metals, their removal from 
the water column could mitigate the action of suspended 
matter as a vector of contaminants.   

5.2.3     Landfi lls 

 During the past decade much effort has been made to test a 
diverse range of techniques to remediate gas emissions, soil 
and groundwater contamination in landfi lls, and metals by 
industrial waste or illegal dumping. In such cases phytore-
mediation using a vegetation cover has been frequently used 
to mitigate the effects of leachates (Nagendran et al.  2006 ). 

 The composition of leachate is site specifi c and can vary 
signifi cantly due to the different waste sources and stages of 
waste decomposition (Christensen et al.  2001 ). Landfi ll’s 
leachate is normally a potentially highly polluting liquid 
because it contains high concentrations of dissolved and sus-
pended organic matter, inorganic chemicals, and metals 
(Licht and Isebrands  2005 ). In addition, leachate has a high 
COD and BOD (Licht and Isebrands  2005 ; Andreottola and 
Cannas  1992 ). 

 Phytoremediation techniques by using vegetative caps are 
useful when the completed landfi ll closes, especially if spe-
cies with high leaf area index and transpiration activity are 
selected (Borjesson  1999 ). Vegetative caps, are used as 
evapotranspiration landfi ll covers and are designed to store 
water until it is either transpired through vegetation or evap-
orated from the soil surface (Blight and Fourie  2005 ; Licht 
et al.  2001 ; Nixon et al.  2001 ; Albright et al.  2004 ; Preston 
and McBride  2004 ). Therefore, as the vegetative layer inter-
rupts the fl ow patterns minimizing percolation, groundwater 
contamination can be reduced (Hupe et al.  2001 ). In addi-
tion, vegetative caps are useful against erosion, prevent run-
off and dust blow, sequester CO 2 , meliorate climate and, as 
an extended greenery, add aesthetic value to the place. It is a 
win-win technology, being at the same time cost effective 
and environmental friendly (Nagendran et al.  2006 ). 

 When trees are employed, poplar ( Populus  spp.) and wil-
low species ( Salix  spp.) are normally used because they have 
an optimal evapotranspiration performance. Poulsen and 
Møldrup ( 2005 ) showed that such plantations can increase 
the evapotranspiration and thereby reduce percolation rates 
by up to 47 % in comparison with a grass cover. 

 In metal contaminated soils, higher plants used as cover, 
can be useful for metals uptake into their biomass. If necessary, 
plants can subsequently be harvested and removed from the 
site (Pulford and Watson  2003 ). Moreover, plants can stabilize 
inorganic contaminants in the rhizosphere, preventing contam-
inants to pollute the groundwater (Alvarenga et al.  2008 ). 

 There are good examples around the world of cities that 
have recovered landfi lls as compensatory mitigation actions. 
Germany, Hong Kong, Korea, and the USA, among others, 
have successfully converted landfi lls to parks featuring rec-
reational, educational, and conservation activities. Nature 
reserves, sports fi elds, golf courses, ski slopes, sculpture gar-
dens, etc. have been created with the successful installation 
of green covers as initial stages in habitat restoration or cre-
ation programs (Zedler and Callaway  1999 ). Some others 
famous landfi ll-to-park site projects are underway in NYC, 
USA like Staten Island’s Freshkills and Jamaica Bay. Over 
400 acres of land on the eastern coast of Brooklyn are under 
a long-term restoration process to turn the toxic Jamaica Bay 
landfi lls into a family friendly park. The sites operated as 
working landfi lls in the 1950s and 1960s, though oil con-
taminated with PCBs and metals leached into Jamaica Bay 
and the landfi lls were closed in 1980. Now, a prairie-like 
landscape composed of native grasses, fl owers, and saplings 
is the result of a restoration effort since 2004. 

 In closed landfi lls the principal restoration targets are to 
produce a dense, self sustaining vegetation cover, returning a 
damaged ecosystem to a more natural condition helping to 
reestablish native populations, communities, and ecosystem 
processes (Byers et al.  2006 ). 

 The most appropriate restoration technique for ecological 
diversity is considered to be a combination of interventions 
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followed by natural successional stages (Simmons  1999 ). 
Sites restored with a mixture of herbs, grasses, shrubs, and 
trees show a more attractive appearance than only grass spe-
cies and thereby contribute to biodiversity and to the visual 
amenity of the area (Simmons  1990 ). 

 A mixture of native plants are usually preferred, because 
native vegetation is more adapted than alien plants to regional 
conditions, and more resilient to disturbances such as extreme 
weather, species competition, and disease. In temperate cli-
mates the combination of warm- and cool-season species in 
the selected plant mixture guarantees water uptake through-
out the entire growing season, which enhances transpiration. 

 Seed mix of native warm and cool season grasses generate 
a diverse grassland community which provides habitat for 
 several species of grassland birds with declining populations. 
Seed mix examples from commercial vendors are available 
(e.g.,  Andropogon gerardii ,  Schizachyrium scoparium ,  Panicum 
virgatum ,  Sorghastrum nutans ,  Elymus canadensis , and 
 Chamaecrista fasciculata ). 

 Because seed mix should be selected based on their toler-
ance of the chemical contamination in the soils adjusted to site 
specifi c and seasonal conditions, it is necessary to know which 
plants to use at a local level. In countries where this informa-
tion is not available, plants that grow spontaneously on dump 
sites are potential candidates to be proposed (Fig.  5.2 ).  

 Figure  5.2  shows spontaneous and alien plants growing 
on an unclosed landfi ll in Buenos Aires province (Argentina). 
Most of them are hydrophilic pioneers having the potential 
to cover disturbed sites quickly (Fig.  5.2 , Table  5.1 ), such an 
information can be useful when designing the fi nal vegeta-
tive cap.

5.3         Harvested Biomass Use 

 Globally, both food shortages as water pollution problems 
treatable through phytoremediation occur simultaneously in 
the same location. Therefore, the use of aquatic plants as a 
food source for cattle is a promising alternative. The plant 
biomass in wetlands can subsequently be put to viable 
 economic use, for example as a source of energy or as raw 
material for the paper industry. These are issues that will nat-
urally vary from one country to the next depending on the 
various socioeconomic and climatic conditions that apply 
(Stottmeister et al.  2003 ). Among aquatic plants, the fl oating 
ones are easier to manage and harvest. Aquatic plants present 
a high growth rate. For example, the total biomass duckweed 
harvested was 5.30 times that of the starting amount after 8 
weeks (Xu and Shen  2011 ). The duckweed ponds constructed 
for swine waste polishing produced over 68 t/ha/year of dry 
biomass, with 35 % of crude protein content, which repre-
sents a productivity of 24 t CP ha/year. Due to the high rate of 
nutrient removal, and also the high protein biomass produc-
tion, duckweed ponds reveal a great potential for the polish-
ing and valorization of swine waste (Mohedano et al.  2012 ). 

 Composting and compaction has been proposed as a post-
harvest biomass treatment by some authors (Kadlec and 
Wallace  2009 ) especially for biomass harvested after treat-
ments of wastewater rich in nutrients. 

 Combustion is a crude method of burning the biomass, 
but it should be under controlled conditions, whereby vol-
ume is reduced to 2–5 % and the ash can be disposed of prop-
erly. Combustion is an important sub routes for organized 

  Fig. 5.2    Spontaneous plants growing on an unclosed landfi ll in Buenos 
Aires province temporarily covered with a plastic liner       

   Table 5.1    Spontaneous plants growing on an unclosed landfi ll in 
Buenos Aires metropolitan area   

 Native species  Exotic 

 Forbs:  Solidago chilensis ,  Verbena 
intermedia ,  Aster squamatus , 
 Physalis viscosa ,  Baccharis 
pingrae ,  B. salicifolia ,  Pluchea 
sagittalis ,  Salpichroa origanifolia , 
 Oxypetalum solanoides  

 Forbs:  Chenopodium 
ambrossioides ,  Brassica 
campestris ,  Chenopodium album , 
 Carthamus lanatus ,  Carduus 
acanthoides ,  Centaurium 
pulchellum ,  Lotus glaber  

 Grasses:  Paspalum dilatatum , 
 Jarava plumosa ,  Echinochloa 
polystachya ,  Cortaderia selloana , 
 Stipa neesiana ,  Typha  sp. 

 Grasses:  Cynodon dactylon , 
 Sorghum halepense ,  Lolium 
multifl orum ,  Setaria geniculata , 
 Festuca arundinacea ,  Dactylis 
glomerata  

 Shrub:  Solanum glaucophyllum  
 Tree:  Salix humboldtiana  
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generation of electrical and thermal energy. Recovery of this 
energy from biomass by burning could help make phytoex-
traction more cost-effective.  

5.4     Concluding Remarks 

 Waste and wastewater produce an enormous amount of 
organic matter relatively easy to remedy. Also, the effl uents 
represent a source of emerging contaminants and pathogens 
more diffi cult for treatment. Application of plants in reme-
diation of soils and water constitutes a valuable tool. 
However, the treatment selection depends upon climate, 
hydrology, type of soil, type of effl uent, geomorphological 
features, inundation level, and applied plants. Native plants 
are more resilient to disturbances, ensure a more diverse 
community, and are visually more enjoyable. However, one 
of the major complications of phytoremediation of substrates 
having excess organic matter and nutrients is the overgrowth 
of vegetation. Then, the programmed harvest should be taken 
into account and the fate of harvested material should be con-
sidered in management plan. Obtaining energy, composting, 
use as livestock feed and fertilizer are some of the possible 
destinations. However, the presence of toxics and pathogens 
must be analyzed prior to the use of harvested material.     
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6.1             Introduction 

 Environmental pollution has different origins; industrial 
activities, metal complexes and effl uents, chemical dis-
charges, and sediments are all results of human activities and 
discharges to rivers, sea, land, soil, air, and in several 
instances, contact with animals, plants, and humans (   Karigar 
et al.  2011 ). In the search for biological agents and processes 
for bioremediation, metabolism pathways of bacteria are 
highly involved and are the keystone in microbial–algae 
interactions. Mechanisms as active transport effl ux pumps, 
biotransformation, biomineralization, and intra- and extra-
cellular sequestration, and the production of enzymes and 
membrane characteristics are parts in this complex web of 
interactions. Bioremediation and phytoremediation now 
appear as appealing technologies inasmuch as they are based 
on the use of living organisms, microorganisms, plants, and 
their enzymatic set (Karigar et al.  2011 ). In this chapter, we 
enlist different examples and recent research advances about 
algae–bacteria consortia. Additionally, we documented 
previous experiences in our laboratory working with algae–
bacteria consortia for Chromium removal isolated from 
natural algal populations along the Pacifi c coast of Colombia 
(Peña- Salamanca et al.  2011    ).  

6.2     Algae–Bacteria Interactions 

 Algae–bacteria interactions, wherein phytoplankton may 
represent a microhabitat for aquatic bacteria, were fi rst stud-
ied by Cole (Cole  1982 ). In a schematic form, the interac-
tions occurring in the phycosphere are principally bacterial 
metabolism products and chelators with algae cells, and alle-
lopathic substances from algae to bacteria. Algae can present 
exosymbionts and endosymbionts; planktonic bacteria attach 
and develop chemotaxis with them. Natural processes such 
as  lysis , excretion, and mechanical damage provide nutrients 
(and substances) to the growth media that contribute in the 
same measure (In uptake form) to Planktonic bacteria. 
However, additional processes including  enzymatic attack 
and dissolution are also found in this web of interactions. At 
present, environmental bioremediation has been used to 
explore the bacterial consortia role in many different ways. 
For example, in contaminants such as BTEX (Littlejohns 
and Daugulis  2008 ), Crude oil (Tang et al.  2010 ; Rahman 
et al.  2002 ), hydrocarbonates (Diesel) (Richard and Vogel 
 1999 ), PAHs (Vázquez et al.  2013 ), Phenol (Ambujom 
 2001 ), Nitrates (Rajakumar et al.  2008 ), organophosphate 
pesticides (Yañez-Ocampo et al.  2009 ), TNT (trinitroaro-
matic compounds; (Robertson and Jjemba  2005 ), and Toxic 
and heavy metals (Singh et al.  2012 ; Johnson et al.  2007 ), 
many bioremediation processes are in evaluation. 

 Several genera such as  Achromobacter  ( A. anthropic  
Richard and Vogel  1999 ),  Acinetobacter  sp. ( A. baumannii  
Kim et al.  2009 ,  A. johnsonii  Robertson and Jjemba  2005 ), 
 Alcaligenes  sp. (Rajakumar et al.  2008 ),  Arthrobacter  sp. 
(Iwahashi et al.  2003 ),  Bacillus  (sp. YW4,  B. subtilis ,  B. 
cereus  Rajakumar et al.  2008 ),  Brevundimonas  (Vázquez 
et al.  2013 ),  Burkholderia  sp.,  Buttiauxella  ( B. Izardii  strain 
MHF ENV 19),  Clostridium  sp.  Klebsiella  ( K. pneumonidae , 
 K. oxytoca  Kim et al.  2009 ),  Enterobacter  ( E. agglomerans ), 
 Escherichia  ( E. coli ),  Hydrogenophaga  sp.,  Pseudomonas  
(sp. KW1,  P. mendocina ,  P. aeruginosa ,  P. putida ,  P. denitrifi cans , 
 P. fl uorescens III ,  P. stutzeri ,  P. gessardii ,  P. migulae T ,  P. lini 
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T ,  P. frederiksbergensis ,  P. fragi T ,  P. paucimobilis ,  P. vesicu-
laris ,  P. capacia  Ambujom  2001 ),  Rhodococcus  (Ambujom 
 2001 ),  Pedobacter  ( P. piscium ),  Sphingomonas  ( S. paucimo-
bilis  Wang et al.  2004 ),  Stenotrophomonas  ( S. rhizophila ,  S. 
maltophilia  Kim et al.  2009 ),  Streptomyces  (Ambujom 
 2001 ), and  Xanthomonas  ( X. maltophilia  Wang et al.  2004 ), 
are involved with a high level of effi ciency. 

 In the same way, bacterial–microalgal and bacterial–fun-
gal consortiums (e.g.,  Ceriporiopsis subvermispora  and 
bacterium  Cellulomonas  sp.,  Azospirillum brasilense ; 
including artifi cial consortiums— Scenedesmus obliquus  
GH2 and Sphingomonas GY2B and  Burkholderia cepacia  
GS3C, Pseudomonas GP3A and  Pandoraea pnomenusa  
GP3B (Tang et al.  2010 )), have been treated with different 
environmental contaminants and have contributed valuable 
information regarding the development of systems from 
matrices recovery (land and water). 

 Ahemad ( 2012 ) describes seven mechanisms of microbial 
cell and heavy metal interaction: Biotransformation, Bio-
accumulation, Biomineralization, Biosorption, Bioleaching, 
Biodegradation of chelating agents, and microbially enhanced 
chemisorption of metals. According to Cole ( 1982 ) indirect 
interactions with the host bacteria occur in the phycosphere as 
endosymbiosis processes. 

6.2.1     Algae–Bacteria Consortiums: Taxa, 
Characteristics, and Biochemistry 

 The algae–bacteria consortia are being studied recently with 
details in selected groups of bacteria (Taxa). Goecke et al. 
( 2013 ), using phylogenetic studies, determined at species 
level what taxa are involved in important interactions 
between algae and bacteria. They defi ned algae as an impor-
tant environment for bacteria, and distributed them among 
six bacterial phyla: Bacteriodetes (42 spp.), Proteobacteria 
(36 spp.), and Firmicutes, Actinobacteria, Verrumicrobia, 
and Planctomycetes (23 spp.). They concluded that the spe-
cies and strains carry out similar metabolic functions and 
then colonize similar algae taxa and groups. Additionally, 
Alphaproteobacteria in the Roseobacter clade could to be the 
most adapted because it is the most widely reported and 
described around microalgae in relation to phytoplankton. 

 In a study case, Beceiro-González et al. ( 2000 ) showed the 
interaction between metallic species and biological sub-
strates; they started with  Chlorella vulgaris  and arsenic(III) 
and determined that the algae has the capacity for selective 
separation of As(III). phosphate and nitrates showed chemi-
cal similarity to arsenate and arsenate. Compounds play an 
important role in the interaction mechanisms. The authors 
demonstrated that  C. vulgaris  and As(III) have two interac-
tions in the bigger process: As(III) retention process and 
As(III) transformation process. the fi rst one presents two 

compounds: Absorption (transport across the membrane) and 
Adsorption (Binding to the cell-wall surface). The second 
one, Absorption (Oxidation into the cell and subsequent 
expulsion, only when the cell is alive) and Adsorption (oxida-
tion in the cell–wall surface in cells with and without). 50 % 
of As remains in  C. vulgaris;  25 % exists as retained by the 
algae. The total As(III) separation by  C. vulgaris  turns out to 
be higher than that proposed, and would be approximately 
75 %. This kind of work helps us to understand the impor-
tance of bacteria contributions to the algae process, as Cole 
showed in his review; different strategies between allelo-
phatic, metabolic secondaries and chemotactic substances are 
involved in the retro alimentation metabolism in algae. 
Bacteria can assimilate to different ions and contaminants, 
and change the structure to convert them in other substances. 
Iqbal et al. ( 1993 ) worked with a unicellular red algae 
 Porphyridium cruentum  and the interactions with strains of 
bacteria living in the capsule: this study showed the impor-
tance of the presence of bacteria in the production of polysac-
charide (inhibitory effects depending from strain).  P. cruentum  
confi rmed that the most important factor for bacterial growth 
within the algal cultures was their extracellular polysaccha-
ride and that there was no competition between algae and 
bacteria for any other nutrient present in the medium; coexist-
ing bacteria did not affect growth and starch production of the 
algal member but did increase biomass accumulation. In con-
clusion, they proved that algal productivity (growth and poly-
saccharide production) is independent of bacteria. In contrast, 
bacteria are dependent for growth on  P. cruentum.  

 In  2009 , Nakajima et al. studied an ecological mechanism 
that evolved in an endosymbiotic association, and conducted a 
long-term microcosm culture with the stages of the ecosystem 
development using  Chorella vulgaris ,  Eschericha coli,  and 
 Tetrahymena thermophila  for a period of three years. In their 
study, they showed experimental evidence that an auto-/hetero-
trophic endosymbiosis evolves in a mature stage of ecosystem 
development through the advantage of effi cient material/energy 
transfers among participating organisms and proximity. 

 The autonomous dynamics of ecosystem development 
favored the association, not the experimental operation. 
Hollants et al. ( 2013 ) pointed out a host specifi city and 
coevolution of Flavobacteriaceae endosymbionts within 
 Bryopsis ; they examined 128 green algal samples of 
Flavobacteriaceae endosymbionts, including 146  Bryopsis  
samples covering 23 different species, and 92 additional 
samples of Bryopsidales (genera  Avrainvillea ,  Boodleopsis , 
 Caulerpa ,  Chorodesmis ,  Codium ,  Derbesia ,  Halimeda , 
 Rhipilia ,  Tydemania,  and  Udotea ), Dasycladales 
( Acetabularia ,  Bornetella,  and  Neomeris ), Cladophorales 
( Aegagropila ,  Anadyomene ,  Apjohnia ,  Boergesenia , 
 Boodlea ,  Chaetomorpha ,  Cladophora ,  Cladophoropsis , 
 Dictyosphaeria ,  Ernodesmis ,  Microdyction ,  Rhizoclonium , 
 Siphonocladus,  and  Valonia ), and Ulvales ( Ulva ). 
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 They provide strong evidence for a non random associa-
tion between  Bryopsis  and its Flavobacteriaceae endosymbi-
onts, whereby more closely related host species predominantly 
harbor genetically similar endosymbiosis, suggestive of 
coevolution; they recognized that this physiological ground 
remains unknown and proposed the possibility that 
Flavobacteriaceae endosymbionts offer the algal host an 
adaptive advantage. Other important endosymbiosis was 
investigated recently; Liang et al. ( 2013 ) studied a new algae–
bacteria interaction, a combined system of  Chlorella vulgaris  
and  Bacillus licheniformis . They demonstrated that the sys-
tem achieved better removal effi ciencies of NH 4  +  and TP than 
a single algae or bacteria system did.  B. licheniformis  could 
promote the growth of  C. vulgaris  in the combined system. 
They examined pH and Chl  a ; when pH was reduced to acid 
from neutral, the removal effi ciency of both substances was 
higher (together) with the same behavior in Chl  a . In conclu-
sion, all this indicates that an algae–bacteria combined sys-
tem has potential in nutrient removal from wastewater and pH 
control is crucial in the process. In wastewater artifi cial treat-
ment, Karya et al. ( 2013 ) proposed a Photo-oxygenation to 
support nitrifi cation in an algal–bacterial consortium in a 
mixed culture of  Scenedesmus  and nitrifi ers; without aeration 
an open photo bioreactor can be maintained, for the microor-
ganism culture achieved 100 % nitrifi cation, algae produce 
oxygen at a rate of 0.46 kg/m 3 /day (which is higher than in 
highest rate in algae or stabilization ponds), the maximum 
ammonium conversion rate was 7.7 mg/L h, the infl uent alka-
linity was 400 mg CaCO 3 /L, and on either side of the reactor 
a light intensity of ±60 μmol/m 2 s, a mass balance showed that 
ammonium removal was mainly by nitrifi cation (81–85 %) 
rather than by uptake for algae growth. 

 Tang et al. ( 2010 ) showed the construction of an artifi cial 
microalgal–bacterial consortium that effi ciently degrades 
crude oil, using  Scenedesmus obliquus  GH2,  Sphingomonas  
GY2B,  Burkholderia cepacia  GS3C, and a mixed culture GP3 
( Pseudomonas  GP3 and  Pandoraea pnomenusa  GP3B). For 
the consortium construction, bacteria combined with a unial-
gal culture. The algae showed different effects on oil degrada-
tion, signaling a possible reason for these advantages. 
Degradation properties of mixed cultures versus pure cultures 
may produce some extracellular matter that can inhibit the 
activity of the inoculated microbes. In the same way, another 
possibility is that the intermediate products produced by the 
different degradation mechanism for the same carbon source 
by different strains could inhibit the degradation ability of 
other strains. They demonstrated that the combination of four 
oil component-degrading bacteria combined with axenic  S. 
obliquus  GH2 produced a highly effi cient, broadly hydrocar-
bon-utilizing artifi cial microalgal–bacterial consortium. In 
 1999 , Safonova et al., using a collection of algal strains, tested 
the ability of growth in a mineral media (1 % of black oil): 
alcanotrophic bacteria were stimulated to grow, and in conse-

quence bacteria stimulated the algae growth.  Phormidium  sp. 
ES-19 stimulates cell growth in  Stichococcus minor  ES-19. 
This growth stimulation was observed in 17 strains and was 
found not only for the  Chlorella  sp. ES-3m-2 strain. The 
Natural association of algae (AS-45 and AS-47) with the addi-
tion of  Rhodococcus  sp. 7HX and artifi cial association of 
 Kirchneriella obese  ES-60 with alcanotrophic bacteria D1-7 
destroyed the black oil more effi ciently in comparison with 
 Rhodococcus  sp. 7HX; a total of 15 algae genera were tested 
and in the presence of bacteria, the number of algal strains 
with a high resistance level increased, and was found to restore 
the growth of sensitivity to black oil algae strains and to stimu-
late growth in tolerant strains. the representatives of 
Chlorophyceae and Cyanophyceae were most tolerant to black 
oil, whereas the majority of Xantophyceae were sensitive. 

 Tujula et al. ( 2010 ) examined the variability and abun-
dance of the epiphytic bacterial community associated with 
 Ulvacean  alga; quantifi cation of the  Alphaproteobacteria , 
 Gammaproteobacteria,  and  Bacteroidetes  showed that the 
fi rst one comprised on average 70 % of the cells in the micro-
bial community. four distinct morphotypes were noted; the 
average proportion of the third-mentioned cells was 13 % 
and very few of the second-mentioned cells (<1 %) were 
detected in this study. The marine–alphaproteobacterial lin-
age, which includes  Roseobacter  (12 %), was selected as it 
was represented by many of the DGGE (denaturing gradient 
gel electrophoresis) band sequences determined; the consis-
tent detection of these sequences indicates that this sub pop-
ulation may have an important role in the function of the 
bacterial community on  U. australis  (marine bacteria sessile 
host interactions). The key members of the epiphytic com-
munity (from DGGE analysis) were affi liated with 
 Alphaproteobacteria  and the  Bacteriodetes  and were related 
to the importance of bacteria for the normal morphological 
growth of  Ulva . Many bacteria were observed in microcolo-
nies in association with the algal intracellular cell-wall junc-
tions (data not shown) and were related to the accumulation 
of nutrients in the depression between cells on the algal sur-
face. In Addition,  Alphaproteobacteria  was the most abun-
dant group on the surface of  U. australis  but it is diffi cult to 
relate that dominance with functional phenotypes, because 
they are morphologically and metabolically extremely 
diverse. Admiraal et al. ( 1999 ) worked with microbenthic 
algae and bacteria in a metal–polluted stream, examining 
short-term toxicity of Zinc; colonized glass-discs and sam-
ples of natural assemblages on coarse sand were used to test 
zinc tolerance. This parameter was characterized by measur-
ing inhibition of  14 C-incorporation in microalgae and inhibi-
tion of  3 H-thymidine incorporation in bacteria. Algae from 
the strongly polluted site were only slightly affected by the 
highest test concentrations of zinc, in contrast to other algal 
communities. The high resistance shown by the community 
in extreme pollution levels, suggests a strong degree of resilience, 
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part of that in micro- and macrobenthic communities to 
metal stress. It could be due to inorganic waste, providing 
material for the sorption and chelation of metal ions. 
Alternatively, the input of this organic waste may also stimu-
late heterotrophs to secrete protective mucus or detoxify 
metals to such a degree that benthic organisms could survive 
in this habitat. Table  6.1  summarizes the algal–bacterial spe-
cies and Interaction levels.

6.2.1.1       Bacterial Taxa Characteristics 
 Table  6.2  summarizes the most important characteristics of 
bacteria taxa implicated in interaction-type consortiums with 
algae species. The majority belong to marine bacteria, and 
most of them are part- or entero-bacteria groups, and physi-
cally are gram-positive and gram-negative with a short 
advantage from this last group. The major descriptions about 
this taxa explain the extreme media, habitat or niche, where 
these bacteria can live. In a recent investigation, most bacte-
ria found in associations of this type belong to 
 Alphaproteobacteria  and Roseobacter clade,  Proteobacteria,  
and  Firmicutes .

6.2.1.2        Types of Methodologies to Taxa 
Identifi cation and Algae–Bacteria 
Interaction 

 Table  6.3  summarizes the most common methodologies used 
to understand algae–bacteria interactions. It is common to 
choose strains directly from labs and banks of strains; in 
those cases the experimentation is designed with artifi cial 
experiments and long time periods, but when the type and 
taxon of bacteria are unknown, it uses 16S rRNA sequences 
and DGGE and then makes comparisons in GeneBank, 
generally.

6.2.2         Interaction Between  Bostrychia 
calliptera  and Bacterial Consortia 

6.2.2.1     Experimental Description and Important 
Results 

 In order to determine the effect of algae–bacteria association 
in the chromium bioaccumulative process in Buenaventura 
Bay, bacterial populations associated with  Bostrychia callip-
tera  from the mouth of the Rio Dagua, Colombia (3° 51′39.3″ 
N; 77° 03′ 56.7″ W and 3° 51′50″; N 77° 04′07.9″) were 
monitored in vitro. Specimens of algae were obtained 
from material adhering to the pneumatophores of  Avicennia 
germinans  (Verbenaceae) and  Rizophora mangle  
(Rhizophoraceae). Tests were conducted in synthetic seawa-
ter with two levels of chromium, 5 and 10 ppm, using biore-
actors (125 mL Erlenmeyer fl asks) with artifi cial seawater, in 
four treatments including unprocessed plant material (Algae–
Bacteria), antibiotic plant material (algae), sediment and/or 

suspended material from the algae surface (Bacteria) and a 
control without the presence of  B. calliptera  or bacteria 
(White). The experimental design was a two-factor factorial 
model with repeated measures on one factor. We monitored 
the behavior of microbial populations and the rate of decrease 
in the concentration of chromium in ppm, using plaque 
counts and atomic absorption spectroscopy (AAS), respec-
tively (Rengifo-Gallego et al.  2012 ). 

 Signifi cant differences were obtained for the bacteria 
population to the total concentration of chromium in the sys-
tems Algae–bacteria and bacteria, with the Algae–bacteria 
being the most effi cient system in the degradation of the 
chromium concentration to 5 ppm and more effective in the 
treatment bacteria at 10 ppm. From the results, it was con-
cluded that there is a possible positive interaction between 
the bacteria associated with the surface of the red alga  
B. calliptera  in the process of accumulation of chromium in 
environmental levels and greater effi ciency of metal degra-
dation in the bacteria system at higher levels in ex situ condi-
tions (Rengifo-Gallego et al.  2012 ).  

6.2.2.2    Discussion 
 In evaluating the chromium percentage removal in the 
algae–bacteria association with two chromium concentra-
tions, bacterial growth appeared to be different in both 
metal concentrations examined; the microbial population 
was higher in the second concentration (10 ppm) and in 
the rate of chromium removal. this was approximated at 
both concentrations (62.85 % and 68.55 % at 5 to 10 ppm, 
respectively) at the same value. This would mean, for the 
fi rst case, that under natural conditions, the selection pres-
sure on the bacterial consortium rests on the same concen-
tration of the contaminant and while controlling—in 
in vitro conditions—the concentration of bacterial cells 
per milliliter and the second, any similarity in the percent-
age of removal is supported by the results found by Acosta 
et al. ( 2005 ). They indicate that in the case of the 
 Cryptococcus neoformans  and  Helminthosporium  sp. 
Fungus, the metal removal rate in the hexavalent state is 
not dependent on the total concentration in the medium 
but on the innate ability of the species; in this case both 
the alga  B. calliptera  as the bacterial consortium have 
limited absorption capacity of up to 4.5 ppm in liquid 
medium for 192 h (Rengifo-Gallego et al.  2012 ). 

 The results allow us to observe that an Alga-Bacterium 
system has higher system effi ciency regarding an Alga–
Antibiotic system, indicating that the bacteria associated 
with  B. calliptera  possess participation in the bioaccumula-
tive process of the algae, given that the percentage reduction 
of chromium is higher in Algae systems than in bacteria 
(87 % at 10 ppm) in bacteria-free systems, such as seaweed 
antibiotic (65.3 %, 10 ppm). Therefore, the fi ndings suggest 
the existence of a possible positive interaction between the 
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bacterial consortium found in the  B. calliptera  surface and 
the chromium reduction process, as demonstrated in the 
work of Arias and Tebo ( 2003 ), Cervantes ( 1991 ), Kwak 
et al. ( 2003 ), and Paul ( 2004 ). 

 At a higher than normal concentration ( normal for natu-
ral bacteria habitat  10 ppm) the Algae–bacteria system is 
more effi cient than the CBN system, allowing us to identify 
the importance of bacterial presence on the surface of algae, 
compared to the levels of degradation presented in an iso-
lated algae and bacterial consortium. Bacterial concentration 
was higher in algae-free media (CBN combination) on the 
algae surface, likewise the number of morphotypes observed, 
thus allowing the identifi cation of the importance of these 
microorganisms in terms of the algae life cycle, as was 
observed by Tujula et al. ( 2010 ) in  Ulva . 

 Bacteria with the ability to reduce chromium (VI) to 
Cr(III) (Cervantes  1991 ; Arias and Tebo  2003 ; Kwak et al. 
 2003 ) and bio adsorb (Cabrera et al.  2007 ; Rabbania et al. 
 2005 ), we could consider that in the Algae–bacteria system, 
bacteria can act as a mediator in the reduction process, 
changing the oxidation state of the Cr (VI) to Cr (III), facili-
tating seaweed biosorption (Acosta et al.  2005 ); it was also 
determined that the Bacteria system was able to bio adsorb 
chromium, confi rming the observations of Lee et al. ( 2006 ) 
and a reduction in the capacity of the metal is suspected, 
inasmuch as authors including Zhu et al. ( 2008 ) report the 
reduction of chromium by various bacterial groups 

 Fude et al. ( 1994 ) reported the formation of an associated 
amorphous precipitate surface bacteria, that was identifi ed as 

related metal precipitates to the reduction process; this fea-
ture was observed as gray clusters for effi ciency testing and 
would be related to extracellular reduction of Chromium. 
According to Shen and Wang ( 1993 ), Cr (III) formed by 
 Escherichia coli  ATCC 33456 from the reduction of Cr (VI) 
probably adheres to the surface of cells, indicating that previ-
ous studies showed that when the Cr (VI) is reduced to Cr 
(III), Cr (III) cannot be removed intracellularly when the cell 
membrane remains intact. Aaseth et al. ( 1982 ), allowed us to 
reinforce the deduction that the chromium reduction in this 
case could be presented extracellularly.  

6.2.2.3    Conclusions 
 There is a positive interaction between the red alga  Bostrychia 
calliptera  and bacterial consortium probably associated with its 
surface as a biofi lm, with the capacity for Bio-adsorption/reduc-
tion of Cr (VI) within a period of 7 days (89.91 %) in vitro. 

 The chromium removal effi ciency was 87 % for Algae- 
bacteria (AB) to 10 ppm, 68.55 % for natural bacterial con-
sortium (CBN) to 10 ppm, 65.3 % for Alga–antibiotic 
10 ppm, and 62.85 for CBN to 5 ppm in 7 days, demonstrat-
ing a higher removal effi ciency of Algae–bacteria consortia. 
In contrast we found a removal effi ciency of 89.91 % (in 12 
days) for a selected bacterial consortium to 7 ppm. 

 These results suggest further studies to evaluate the effec-
tiveness of this consortium for heavy-metal removal pro-
cesses. The study also confi rms the role of this consortium in 
the process of reducing Chromium for biotechnological 
applications.       

   Table 6.2    Bacterial taxa descriptions   

 Taxon 

 Type of bacteria 

 Entero bacteria  Marine bacteria  Gram-positive  Gram-negative 

 Bacteriodetes  X  X  X 
 Proteobacteria  X  X  X 
 Firmicutes  X  e.g.,  Lactobacillus  sp.,  Clostridium  sp.  Mayor  Without cell wall 
 Actinobacteria  X 
 Verrucomicrobia  X  X  X 
 Planctomycetes  X  No peptidoglycan 
 Alphaproteobacteria  X  Major 
 Roseobacter clade (Alphaproteobacteria)  X  X 
  Achromobacter  sp.  X  X  X 
  Arthrobacter  sp.  X 
  Microbacterium  or Cellulomonas/
Oerskovia 

 X 

  Escherichia coli   X  X  X 
  Bacillus licheniformis   X 
  Rhodococcus  sp.  X  X 
  Sphingomonas   X  X 
  Burkholderia cepacia   X  X 
  Pandoraea pnomenusa   X 
  Flavobacteriaceae   X  X 

6 Interaction Algae–Bacteria Consortia: A New Application of Heavy Metals Bioremediation
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7.1  Introduction

The use of plants for remediation of soils and waters con-

taminated with heavy metals, has gained acceptance in the 

past two decades as a cost-effective and noninvasive tech-

nique (Mojiri 2012). This approach is emerging as an innova-

tive tool with great potential that is most useful when 

contaminants are within the root zone of the plants (top 

3–6 ft). Furthermore, phytoremediation is energy efficient, 

cost-effective, aesthetically pleasing technique of remedia-

tion sites with low to moderate levels of pollution. The tech-

nique of phytoremediation exploits the use of either naturally 

occurring metal hyperaccumulator plants or genetically engi-

neered plants (Setia et al. 2008). A variety of contaminated 

waters can be phytoremediated, counting sewage and munic-

ipal wastewater, agricultural runoff/drainage water, industrial 

wastewater, coal pile runoff, landfill leachate, mine drainage, 

and groundwater plumes (Olguin and Galvan 2010).

A rising method for polluted area remediation is phytoex-

traction (Ok and Kim 2007). Phytoextraction is the uptake of 

contaminants by plant roots and translocation within the 

plants. Contaminants are generally removed by harvesting the 

plants, and it has been recognized as an appropriated approach 

to remove pollutants from soil, sediment, and sludge (Singh 

et al. 2011). Plants may play a vital role in metal removal 

through absorption, cation exchange, filtration, and chemical 

changes through the root. There is evidence that wetland 

plants such as Typha latifolia, Cyperus malaccensis, and 

Phragmites australis can accumulate heavy metals in their 

 tissues (Mojiri et al. 2013a; Yadav and Chandra 2011).

Introduced Phragmites is a vigorous plant that, once 

established, rapidly takes over, creating dense patches that 

consume available growing space and push out other plants, 

including the native subspecies. It also alters wetland hydrol-

ogy, increases the potential for fire, and may reduce and 

degrade wetland wildlife habitat due, in part, to its dense 

growth habit (Swearingen and Saltonstall 2010).

Phragmites australis (Fig. 7.1), or Common Reed, is a 

large perennial rhizomatous grass that grows 5–20 ft 

(1.5–3 m) tall. Its leaves are broad and sheath like, 0.4–1.6 in. 

(1–4 cm) wide at their base. Phragmites has gray-green foli-

age during the growing season. New stems grow in the spring, 

and its rhizomes spread horizontally during the growing sea-

son. It flowers in late June, with bushy panicles and seeds 

forming by August to early fall. During this time, energy 

stores are translocated from the leaves and stems to the rhi-

zomes of the plant. Phragmites australis is a strong colonizer, 

producing an abundance of wind-dispersed seeds, though its 

seed viability is typically low and it exhibits an interannual 

variation in fecundity (URI CELS Outreach Center 2012).

Burkea et al. (2000) studied release of metals by the 

leaves of the Salt marsh grasses Spartina alterniflora and 

Phragmites australis.

The aims of the study were to investigate the heavy metals 

removal from urban waste leachate by Common Reed and 

optimization of process parameters using the response sur-

face methodology (RSM).
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7.2  Materials and Methods

7.2.1  Sample Preparation

The plants were transplanted into pots containing 10 L of 

mixed urban waste leachate and water (mixed 80 percent-

ages of waste leachate with 20 % of water; V:V), and aera-

tion was done in 2011. Central composite design and 

response surface methodology were used in order to clarify 

the nature of the response surface in the experimental design 

and explain the optimal conditions of the independent vari-

ables. Different number of Phragmites australis transplant-

ing in each pot (2–4) and different lengths of time for taking 

samples (24–72 h) were used.

7.2.2  Laboratory Analysis

The plant tissues were prepared for laboratory analysis by Wet 

Digestion method (Campbell and Plank 1998). Iron (Fe), man-

ganese (Mn), and cadmium (Cu), and nickel (Ni) in waste leach-

ate and plant tissues were carried out using a flame atomic 

absorption spectrometer (Varian Spectra 20 Plus, Mulgrave, 

Australia) in accordance to the Standard Methods (APHA 2005). 

Waste leachate and water properties are shown in Table 7.1.

7.2.3  Statistical Analysis

Central composite design (CCD) and Response surface 

methodology (RSM) were employed in order to clarify the 

nature of the response surface in the experimental design and 

elucidate the optimal conditions of the independent  variables. 

CCD was established through Design Expert Software 

(6.0.7). The behavior of the system is described through 

equation 1 an empirical second-order polynomial model:

 

Y x x x x
i

k

i i
i

k

ii i
i i j

ij i ij= + + + +
= = = ¹ =
å å ååb b b b e0

1 1

2

1 1

.
 

(7.1)

where Y is the response; Xi and Xj are the variables; β0 is a 

constant coefficient; βj, βjj, and βij are the interaction coeffi-

cients of linear, quadratic, and second-order terms, respec-

tively; k is the number of study factors; and e is the error 

(Mojiri et al. 2013b).

The results were completely analyzed by analysis of vari-

ance (ANOVA) in the Design Expert Software. Number of 

Phragmites australis transplanting (2, 3, and 4) and times for 

taking samples (24, 48, and 72 h) were used. To carry out an 

adequate analysis, three dependent parameters (reducing Fe, 

Mn, Cu, and Ni concentration in leachate) were measured as 

responses (Table 7.2).

Descriptive statistical analysis including mean compari-

son of Fe, Mn, Cu, and Ni accumulation in the roots and 

shoots of the plants using Duncan’s Multiple Range Test 

(DMRT) was conducted using the SPSS software.

7.3  Results and Discussions

Waste leachate properties before the experiment, the results of 

the experiments, ANOVA results for response parameter, and 

comparing the means of Fe, Mn, Cu, and Ni accumulation in 

Phragmites australis roots and shoots are shown in Tables 7.2.

In this work, the RSM was used for analyzing the correlation 

between the variables (number of Phragmites australis trans-

planting and the lengths of time for taking samples) and the 

important process response (the amount of removed Fe, Mn, 

Cu, and Ni). Predicted vs. actual values plot for metal removals 

are shown in Figs. 7.2 and 7.3. Considerable model terms were 

preferred to achieve the best fit in a particular model. CCD per-

mitted the development of mathematical equations where pre-

dicted results (Y) were evaluated as a function of the number of 

Phragmites australis transplanting (A) and the lengths of time 

for taking samples (B). The results were computed as the sum 

of a constant, two first order effects (terms in A and B), one 

interaction effect (AB), and two second-order effects (A2 and 

B2), as shown in the equation (Table 7.3). The results were ana-

lyzed by ANOVA to determine the accuracy of fit.

The model was significant at the 5 % confidence level 

because probability values were less than 0.05. The lack of 

fit (LOF) F-test explains variation of the data around the 

modified model. LOF would be significant, if the model did 

not fit the data well. Generally, large probability values for 

LOF (>0.05) explained that the F-statistic was insignificant, 

implying a significant model relationship between variables 

and process responses.

Fig. 7.1 Common reed in a wetland

A. Mojiri et al.
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7.3.1  Iron (Fe) Removed

Iron is a natural constituent of the Earth’s crust and is  

present in varying concentrations in all ecosystems. They 

are stable and persistent environmental contaminants since 

they cannot be degraded or destroyed. Human activity 

has drastically changed the biogeochemical cycles and 

 balance of some metals (Anusha 2011). Iron (II) ions have 

a high solubility in the aquatic environment and can be 

absorbed by plants and living organisms (Bulai and 

Cioanca 2011).

The amount of removed Fe ranged from 11.67 mg/kg 

(two plants transplanting, and 24 h of time for taking sam-

ples) to 25.01 mg/kg (four plants transplanting, and 72 h of 

time for taking samples). The phytoremediation of Fe 

increased when the number of plants transplanting and time 

for taking samples were increased.

7.3.2  Manganese (Mn) Removed

Manganese ions exist in wastewaters from numerous indus-

tries, chiefly pyrolusite (MnO2) treatment, ink and dyes, 

glass and ceramics, paint and varnish, steel alloy dry cell bat-

teries, firework and match, and in metal galvanization plant 

waste matters (Taffarel and Rubio 2009).

The amount of removed Mn ranged from 3.08 mg/kg (two 

plants transplanting, and 24 h of time for taking samples) to 

9.81 mg/kg (four plants transplanting, and 72 h of time for 

taking samples). The phytoremediation of Mn increased 

when the number of plants transplanting and time for taking 

samples were increased.

7.3.3  Copper (Cu) Removed

Copper can be found in many wastewater sources including 

printed circuit board manufacturing, electronics plating, 

painting manufacturing, and printing operations. This com-

pound can be removed from wastewater by some methods 

(Yahyaa and Rosebi 2010).

The amount of removed Cu ranged from 2.24 mg/kg (two 

plants transplanting, and 24 h of time for taking samples) to 

6.31 mg/kg (four plants transplanting and 72 h of time for 

taking samples). The phytoremediation of Cu increased 

when the number of plants transplanting and time for taking 

samples were increased.

7.3.4  Nickel (Ni) Removed

In the environment, Ni is found primarily combined with 

oxygen (oxides) or sulfur (sulfides) (Ministry of the 

Environment 2001). Elevated levels of Ni (Ni++) can pose a 

major threat to both human health and the environment 

(Hussain et al. 2010).

Table 7.1 Waste leachate and water properties

pH EC (dS m−1) N (mg/L) BOD5 (mg/L) Fe (mg/L) Mn (mg/L) Cu (mg/L) Ni (mg/L)

Water

7.04 0.20 ND – ND ND ND ND

Urban waste leachate

6.12 26.32 0.64 28.18 57.03 14.31 7.9 1.29

ND: not detected, MDL: 10 μg/L

Table 7.2 Experimental variables and results for the removal metals

Variables Response

Run A: number of plants 

transplanting

B: Time for taking 

samples (h)

Amount of Fe 

removed. (mg/kg)

Amount of Mn 

removed. (mg/kg)

Amount of Cu 

removed.(mg/kg)

Amount of Ni 

Removed (mg/kg)

1 2.0 48.0 15.809 4.946 3.605 0.426

2 3.0 48.0 18.601 6.026 4.941 0.598

3 3.0 48.0 18.742 5.941 5.009 0.584

4 3.0 48.0 18.697 6.123 4.932 0.590

5 3.0 72.0 22.072 8.063 4.982 0.764

6 2.0 24.0 11.670 3.081 2.241 0.311

7 3.0 48.0 18.691 6.001 3.872 0.598

8 4.0 72.0 25.013 9.810 6.318 0.914

9 2.0 72.0 19.898 6.525 4.004 0.689

10 4.0 24.0 16.761 5.292 4.023 0.537

11 4.0 48.0 20.786 6.984 4.218 0.701

12 3.0 48.0 18.532 6.014 4.928 0.601

13 3.0 24.0 13.761 3.633 2.919 0.398

7 Heavy Metals Phytoremediation from Urban Waste Leachate by the Common Reed (Phragmites australis)
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The amount of removed Ni ranged from 0.31 mg/kg (two 

plants transplanting, and 24 h of time for taking samples) to 

0.91 mg/kg (four plants transplanting and 72 h of time for 

taking samples). The phytoremediation of Ni increased when 

the number of plants transplanting and time for taking sam-

ples were increased.

7.3.5  Uptake of Heavy Metals by 
Common Reed

Metal accumulating plant species can concentrate heavy 

metals like Cd, Zn, Co, Mn, Ni, and Pb up to 100 or 1,000 

times more than those taken up by non-accumulator 

(excluder) plants. The uptake performance by plant can be 

greatly improved (Tangahu et al. 2011).

The concentrations of Fe (ppm) in the roots of Phragmites 
australis were 2.40, 3.98, and 6.10, and in the shoots of 

Phragmites australis were 1.13, 4.67, and 7.98, after 24, 48, 

and 72 h, respectively.

The concentrations of Mn (ppm) in the roots of Phragmites 
australis were 1.10, 1.10, and 4.71, and in the shoots of 

Phragmites australis were 0.50, 1.89, and 5.29, after 24, 48, 

and 72 h, respectively.

The concentrations of Cu (ppm) in the roots of Phragmites 
australis were 0.96, 1.89, and 4.09 and in shoots of 

Phragmites australis were 0.33, 1.32, and 4.50, after 24, 48, 

and 72 h, respectively.

The concentrations of Ni (ppm) in the roots of Phragmites 
australis were 0.10, 0.31, and 0.60, and in the shoots of 

Phragmites australis were 0.03, 0.13, and 0.61, after 24, 48, 

and 72 h, respectively.

7.3.6  Translocation Factor (TF)

The efficiency of phytoremediation can be quantified by cal-

culating translocation factor. The TF expresses the capacity 

of a plant to store the MTE in its upper part. This is defined 

as the ratio of metal concentration in the upper part to that in 

the roots (Chakroun et al. 2010). The translocation factor 

indicates the efficiency of the plant in translocating the accu-

mulated metal from its roots to shoots. It is calculated as fol-

lows (Padmavathiamma and Li 2007).

 

Translocation Factor TF Shoot

Root

( ) = C

C  
(7.2)

where Cshoot is the concentration of the metal in plant shoots 

and Croot is the concentration of the metal in plant roots.

Based on Table 7.4, translocation factors (TF) were more 

than 1 in treatment number 3, and in treatment number 2 just 

for Fe. A translocation factor value greater than 1 indicates 

the translocation of the metal from root to above-ground part 

(Jamil et al. 2009). According to Yoon et al. (2006), only 

plant species with TF greater than 1 have the potential to be 

used for phytoextraction.

7.4  Conclusions

Phytoremediation of heavy metals from urban waste leachate 

by Phragmites australis was studied. CCD and RSM were 

used in the design of experiments, statistical analysis and 

optimization of the parameters. The factors were number of 

Phragmites australis transplanting (2, 3, and 4) and time for 

taking samples (24, 48, and 72 h); while the responses were 

Table 7.3 ANOVA results for response parameter

Response Final equation in terms of actual factors Prob. R2 Adj.R2 SD CV PRESS Prob.LOF

Fe removal 1.444 + 2.406A + 0.231B + 0.018A2 − 0.0006B2 + 0.0002AB 0.0001 0.9968 0.9946 0.25 1.38 2.93 0.0075

Mn removal 0.901 − 0.060A + 0.050B + 0.129A2 + 0.00002B2 + 0.011AB 0.0001 0.9910 0.9830 0.23 3.73 3.12 0.0044

Cu removal −3.161 + 2.511A + 0.074B − 0.332A2 − 0.0005B2 + 0.005AB 0.0146 0.8220 0.6962 0.58 13.44 13.26 0.2568

Ni Removal −0.089 + 0.124A + 0.004B − 0.0005A2 + 0.00002B2 − 0.00001AB 0.0001 0.9876 0.9787 0.02 3.90 0.02 0.0051

Prob probability of error, R2 coefficient of determination, Ad. R2 adjusted R2, Adec. P. adequate precision, SD Standard deviation, CV Coefficient 

of variance, PRESS predicted residual error sum of square, Prob. LOF probability of lack of fit

Where A is number of Phragmites australis transplanting, and B is time for taking samples

Table 7.4 Comparison the heavy metals TF in Phragmites australis after 24, 48, and 72 h

Metals 

(mg/L) Time (h) Plants TF Time (h) Plants TF Time (h) Plants TF

24 Root Shoot – 48 Root Shoot – 72 Root Shoot –

Fe 2.401a+ 1.132e 0.47 3.981a 4.676e 1.17 6.103a 7.989e 1.30

Mn 1.102b 0.502f 0.45 2.109b 1.891f 0.89 4.711b 5.295f 1.12

Cu 0.966c 0.334g 0.34 1.893c 1.324g 0.69 4.091c 4.505g 1.10

Ni 0.101d 0.039h 0.38 0.313d 0.132h 0.42 0.602d 0.611h 1.01

+Numbers followed by same letters in each column are not significantly (P < 0.05) different according to the DMR test

A. Mojiri et al.
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removals of Fe, Mn, Cu, and Ni. The findings clarified that 

the Phragmites australis is an effective accumulator plant for 

phytoremediation of Fe, Mn, Cu, and Ni. Statistical analysis 

via Design Expert Software (6.0.7) showed that the optimum 

conditions for the number of Phragmites australis is trans-

planting and the time for taking samples were 4.00 and 

72.00 h, respectively. For the optimized factors, the amount 

of removed pollutants Fe, Mn, Cu, and Ni (ppm) were 25.04, 

9.62, 6.11, and 0.90 mg/kg, respectively.
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8.1             Introduction 

 Environmental issues such as increase in population, indus-
trialisation, excessive generation of wastewater are posing a 
major threat to the sustainability of developing countries. 
Discharge of pollutants/polluted water without appropriate 
treatment into freshwater resources has led to the degrada-
tion of pristine water bodies. This unregulated release of 
agricultural, sewage and industrial wastewater magnifi es the 
problem of water pollution, besides making the water unfi t 
for drinking, irrigation and aquatic life (Egun  2010 ). Since in 
developing countries, like India, a large proportion of rural 
population is dependent on freshwater bodies for drinking 
and their day to day activities, this assumes signifi cance even 
in the health sector. 

 Continuous increase in the demand for water due to increas-
ing population, industrialisation and agricultural use coupled 
with a high degree of variability in the availability of water in 
developing countries is reducing per capita accessibility of 
water. According to the reports from India, 26.5 billion litres 
of untreated wastewater is discharged into water bodies every 
day, with a huge gap between available treatment capacity and 
sewage generated; only 30 % of total sewage generated is 
being treated in urban areas, leaving aside the rural scenario 
(CPCB  2009 ). Apart from insuffi cient treatment capacity, this 
untreated wastewater is usually rich in nutrients especially 

nitrogen (N) and phosphorus (P) in the form of nitrate, nitrite, 
ammonia/ammonium and phosphorus, which leads to the 
eutrophication of water bodies (Yang et al.  2008 ). 

 In general, the treatment of wastewater involves three 
stages: primary treatment that mainly involves the settling 
and the removal of solids, secondary treatment for the 
removal of organic content and tertiary treatment to reduce 
the levels of phosphorus and nitrogen. The technologies for 
wastewater treatment, such as the activated sludge process 
with N and P removal, are too costly to provide a satisfactory 
solution for the growing sewage water problems in develop-
ing countries (Wei et al.  2008 ). Therefore, there is an urgent 
need to develop eco-friendly and economic technologies for 
wastewater treatment, which would require simple infra-
structure, lesser inputs and with potential acceptance at com-
mercial level. The methods employed for wastewater 
treatment comprise physical, chemical and biological, which 
are put to use depending upon the extent and type of pollu-
tion. In general, both physical and chemical methods are 
costly. Another disadvantage of chemical methods is the 
increase in the overall load of dissolved constituents. In this 
respect, the use of biological methods alone or in combina-
tion for wastewater treatment is a better option. 

 Phytoremediation is the use of plants or microorganisms 
(microalgae/cyanobacteria/bacteria/fungi) for the removal of 
contaminants (nutrients, organic compounds, heavy metals) 
from the wastewaters (Rawat et al.  2011 ;    Sood et al.  2012 ; 
Renuka et al.  2013a ). It is a promising technology and may 
offer an inexpensive alternative to conventional forms of ter-
tiary wastewater treatments. The use of microorganisms for 
wastewater treatment has an edge over the macrophytes, 
which suffers from the serious drawback of disposal of huge 
generated biomass. Therefore, the use of photosynthetic 
microorganisms/microalgae is promising as they play an 
important role in the self purifi cation of natural waters. The 
microalgae use solar energy to supply oxygen required for 
aerobic degradation and recycle the nutrients responsible for 
eutrophication into potentially valuable biomass. Among 
microalgae, cyanobacteria (blue green algae), can be better 
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candidates for wastewater treatment, because of their wide 
distribution and ability to sustain in adverse environmen-
tal conditions. Their unique characteristics further prove 
their potentialities;
    (a)    They have simple growth requirements, therefore, N and 

P rich wastewaters can be used as cultivation media for 
their biomass production.   

   (b)    These are photoautotrophic organisms, have ability to fi x 
atmospheric CO 2 , therefore help in the mitigation of 
greenhouse gases.   

   (c)    Due to their oxygenic photoautrophic nature, they supply 
oxygen to photosynthetic bacteria and heterotrophs which 
degrade other organic compounds during secondary treat-
ment. Therefore, they not only help in treating the waste-
water in totality but also support the growth of other 
micro/macro communities residing in the same habitat.   

   (d)    They serve dual roles of bioremediation of wastewater 
and generating biomass for various applications viz. 
feed, pharmaceutical, nutraceutical, industries biofuel 
and biofertilizers (Rawat et al.  2011 ).    

  The use of cyanobacteria in wastewater treatment is an 
eco-friendly process with no secondary pollution as long as 
the biomass produced is reused, and it allows effi cient nutri-
ent recycling (Munoz and Guieysse  2008 ). This solar driven 
technology is also cost effective as compared to other physi-
cal and chemical remediation methods (Han et al.  2007 ). The 
high requirement of N and P for the growth of cyanobacteria 
further strengthens their ability to use the nutrient rich waste-
water as a medium for multiplication of these organisms. At 
the same time, assimilated nitrogen and phosphorus can be 
recycled into algal biomass as biofertilizer (Pittman et al. 
 2011 ), after retrieval of heavy metals and treated water can 
be discharged into water body or can be utilised in hydro-
electric water plants. 

 The use of cyanobacteria for wastewater treatment is not 
new to the scientifi c community; this idea was proposed by 
Caldwell ( 1946 ). Oswald reported their role in wastewater 
treatment in  1955 . In the last decade, researchers have been 
engaged in screening the cyanobacterial diversity from 
 various wastewaters, with an aim to develop eco-friendly 
wastewater treatment technologies (   Magana-Arachchi et al. 
 2011 ; Tiwari and Chauhan  2006 ).  

8.2     Cyanobacterial Diversity 
in Aquatic Bodies 

 Cyanobacteria constitute a broad group of prokaryotic pho-
tosynthetic organisms with some of them possessing the 
unique ability of nitrogen fi xation. They are ubiquitous and 
can be found in almost every type of habitat (aquatic and ter-
restrial; freshwater, marine, damp soil, bare soil and desert). 
They occur as plankton and sometimes in the form of 

phototropic biofi lms. They are able to survive in extreme 
environmental conditions because of their unusual character-
istics such as
    (a)    Presence of outer mucilaginous sheath outside the cell 

wall helps them to survive in harsh conditions.   
   (b)    Nitrogen fi xing ability helps them to survive in low N 

conditions.   
   (c)    Production of allelochemicals that helps to compete with 

other organisms in vicinity.     
 The huge diversity of cyanobacteria in various ecological 

habitats has been explored by scientists worldwide (Pandey 
and Pandey  2002 ; Mukherjee et al.  2010 ; Dadheech et al. 
 2013 ). Many of the studies available reveal the dominance of 
cyanobacteria in different freshwater and contaminated habi-
tats and/or reservoirs. 

8.2.1     World Scenario 

 Table  8.1  summarises the reports on cyanobacterial diversity 
in various aquatic bodies of different countries. Lopez- 
Archilla et al. ( 2004 ) studied the phytoplankton diversity of 
a hypereutrophic shallow lake, Santa Olalla (southwestern 
Spain) and reported the presence of several species of green 
algae, diatoms, euglenoids and cyanobacteria. Among 
Cyanophyta, Nostocales and Chroococcales dominated the 
environment. Dadheech et al. ( 2013 ) studied the cyanobacte-
rial diversity of Lake Bogoria, Kenya employing micro-
scopic, sequencing and metagenomic studies. They revealed 
that most of the phylogenetic lineages of cyanobacteria 
occurred exclusively in the Bogoria hot springs suggesting a 
high degree of endemism. The prevalent phylotypes were 
mainly members of the Oscillatoriales ( Leptolyngbya , 
 Spirulina ,  Oscillatoria -like and  Planktothricoides ) and 
Chroococcales (Dadheech et al.  2013 ). Different reports on 
eutrophic lakes of China (Taihu, Chaohu and Ulungur Lakes) 
revealed the invariable predominance of  Microcystis  sp. (Ye 
et al.  2009 ; Shi et al.  2010 ; Lin et al.  2011 ). Magana-Arachchi 
et al. ( 2011 ) studied the cyanobacterial diversity of Gregory 
Lake, Nuwara Eliya, Sri Lanka which is eutrophied due to 
agricultural and industrial activities. They reported the 
occurrence of species of  Synechococcus ,  Microcystis , 
 Calothrix ,  Leptolyngbya ,  Limnothrix . Miller and McMahon 
( 2011 ) investigated the genetic diversity of cyanobacteria of 
four eutrophic lakes and reported the presence of species of 
 Microcystis ,  Aphanizomenon ,  Chroococcus ,  Anabaena  and 
 Cylindrospermopsis  (Table  8.1 ). Taton et al. ( 2003 ) studied 
the cyanobacterial diversity of Fryxell, Antarctica, employ-
ing 16s RNA. Different cyanobacterial species were:  Nostoc  
sp.,  Hydrocoryne  cf.  spongiosa ,  Nodularia  cf.  harveyana , 
 Leptolyngbya  spp.,  Phormidium  cf.  autumnale . Analyses of 
cyanobacterial diversity of Pamvotis, Greece using PCR 
amplifi cation of internal transcribed spacers (ITS) region 
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revealed the presence of species of  Microcystis  sp.,  Anabaena  
sp./ Aphanizomenon  sp. The study of cyanobacterial diversity 
of Loosdrecht Lake, Netherlands using analysis of small sub-
unit rRNA gene sequences revealed a diverse consortium of 
cyanobacteria belonging to  Aphanizomenon ,  Planktothrix , 
 Microcystis ,  Synechococcus  (Zwart et al.  2005 ). A eutrophic 
lake (due to agricultural and urban run-off) Mendota, 
Wisconsin, USA harboured  Aphanizomenon  and  Microcystis  
as commonly occurring cyanobacterial species which 
showed alternate dominance (Beversdorf et al.  2013 ).

8.2.2        Indian Scenario 

 The reports on cyanobacterial diversity in different aquatic 
bodies (lakes) of India are summarised in Table  8.2  
and Fig.  8.1 . The studies on cyanobacterial diversity of fresh-
water lakes and water bodies of Himalayan region revealed 
the presence of species belonging to Chroococcaceae, 
Oscillatoriaceae, Nostocaceae and Rivulariaceae (Sidhu and 
Ahluwalia  2011 ).  Oscillatoria sancta ,  Lyngbya major  were 
the dominant forms followed by  Chroococcus minutes , 
 Aphanothece castagnei ,  Microcystis aeruginosa  among non- 
heterocystous and  Nostoc punctiforme ,  Calothrix braunii  

and  Anabaena iyengarii  among the heterocystous forms. 
Seasonal variation in phytoplanktonic diversity in Kitham 
Lake, Agra, Uttar Pradesh was studied by Tiwari and 
Chauhan ( 2006 ), which mainly receives organic pollutants. 
The lake harbours microalgae belonging to different divi-
sions and among cyanobacteria genus  Oscillatoria  was rep-
resented by maximum species. Pichhola Lake, Udaipur, 
Rajasthan (India), receives sewage and industrial effl uent 
and harbours different types of microalgae including cyano-
bacteria. Species of  Microcystis  sp. and  Coccochlaris  sp. 
were found to be the dominant ones (Sharma et al.  2011 ). 
In another study on Baghdara and Swaroop Sagar Lakes 
(Udaipur, Rajasthan), Pandey and Pandey ( 2002 ) observed 
difference in the cyanobacterial diversity in both the lakes 
was due to the difference in nature of contaminated sources. 
They found that high species diversity in Lake Baghdara was 
due to the input of nutrients from natural resources, whereas 
lower species diversity in Swaroop Sagar Lake was due to 
eutrophication caused due to as a result of mixing of sewage. 
 Microcystis aeruginosa ,  Phormidium s p. and  Anabaena fl os -
 aquae  were the dominant taxa of the Swaroop Sagar Lake 
(Pandey and Pandey  2002 ).

    Akoijam and Singh ( 2011 ) reported that Lohtak Lake 
in Manipur is a reservoir for various kinds of organisms 

      Table 8.1    Cyanobacterial diversity of some aquatic bodies of the world   

 Location  Type of contamination  Commonly occurring cyanobacterial genera  References 

 Shallow lake, Santa Olalla, 
Southwestern Spain 

 NA   Anabaena  spp.,  Anabaenopsis  spp.,  Aphanocapsa 
delicatissima ,  Aphanothece clathrata ,  Chroococcus disperses , 
 Leptolyngbya  sp.,  Limnothrix amphigranulata ,  Merismopedia 
tenuissima ,  Microcystis aeruginosa ,  Oscillatoria  sp., 
 Pseudanabaena limnetica ,  Raphidiopsis mediterranea  

 Lopez-Archilla 
et al. ( 2004 ) 

 Lake Bogoria, Kenya  NA   Leptolyngbya ,  Spirulina ,  Oscillatoria -like,  Planktothricoides , 
 Synechocystis ,  Arthrospira and Anabaenopsis  

 Dadheech 
et al. ( 2013 ) 

 Lake Taihu and Lake Chaohu, China  NA   Microcystis   Shi et al. ( 2010 ) 
 Lake Ulungur, Xinjiang, China  NA   Microcystis  spp.  Lin et al. ( 2011 ) 
 Lake Taihu, China  Agricultural 

intensifi cation and 
industrial pollution 

  Microcystis  sp.  Ye et al. ( 2009 ) 

 Lake Gregory, Nuwara Eliya, Sri 
Lanka 

 Agricultural and 
industrial activities 

  Synechococcus  sp.,  Microcystis aeruginosa ,  Calothrix  sp., 
 Leptolyngbya  sp.,  Limnothrix  sp. 

 Magana-Arachchi 
et al. ( 2011 ) 

 Mendota, Kegoonsa, Wingra and 
Monona Lakes 

 Agricultural and 
urban run off 

  Microcystis ,  Aphanizomenon ,  Chroococcus ,  Anabaena and 
Cylindrospermopsis  

 Miller and 
McMahon ( 2011 ) 

 Lake Fryxell, McMurdo Dry 
Valleys, Antarctica 

 NA   Nostoc  sp.,  Hydrocoryne  cf.  spongiosa ,  Nodularia  cf. 
 harveyana ,  Leptolyngbya  spp.,  Phormidium  cf.  autumnale  

 Taton et al. ( 2003 ) 

 Lake Pamvotis (suburban 
Mediterranean Lake), Greece 

 NA   Microcystis  sp.,  Anabaena  sp./ Aphanizomenon  sp.  Vareli et al. ( 2009 ) 

 Lake Loosdrecht, the Netherlands  NA   Aphanizomenon ,  Planktothrix ,  Microcystis ,  Synechococcus , 
 Prochlorothrix hollandica ,“ Oscillatoria limnetica  like”, 
 Limnothrix / Pseudanabaena  group 

 Zwart et al. ( 2005 ) 

 Western basin of Lake Erie  NA   Microcystis and Planktothrix   Rinta-Kanto and 
Wilhelm ( 2006 ) 

 Lake Mendota, Wisconsin, USA  Agricultural and urban 
run off 

  Aphanizomenon  and  Microcystis   Beversdorf et al. 
( 2013 ) 

   NA  not available  
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including cyanobacteria. Species of  Anabaena ,  Nostoc , 
 Calothrix ,  Cylindrospermum  and  Mastigocladius  were com-
monly occurring either as planktonic, benthic, epilithic or 
epiphytic forms. Phytoplankton diversity of polluted eutro-
phic lake in Ranchi revealed  Microcystis ,  Gloeocapsa , 
 Spirulina infl ata  as dominant forms due to continuous infl ux 
of sewage water (Mukherjee et al.  2010 ). Heavy metal con-
taminated sites and wetland of Sambalpur, Odisha (Odissa) 
is also inhabited by cyanobacterial strains (Mishra and Das 
 2011 ). The family Chroococcaceae was represented by 
nine genera, followed by Nostocaceae, Rivulariaceae, 
Oscillatoriaceae, Scytonemataceae and Stigonemataceae. 
The most abundant cyanobacterial species were  Anabaena 
variabilis ,  Calothrix  sp.,  C. elenkini ,  Chroococcus minimus , 
 Dermocarpa  sp.,  Gloeothece  sp.,  Gloeotrichia  sp., 
 Microcystis  sp.,  Synechocystis crassa ,  Westiellopsis prolifi ca  
(Mishra and Das  2011 ). 

 Jagtap et al. ( 2012 ) studied the microalgal diversity 
of Urban Lakes of Solapur City, Maharashtra, India. 

They observed the species of  Oscillatoria raoi ,  O. amoena , 
 O. amphibia ,  O. salina ,  O. limosa ,  O. tenuis ,  Lyngbya com-
mune ,  L. corticola ,  L. major ,  Gloeocapsa decorticans , 
 G. samoensis ,  Nostoc linckia ,  Phormidium fragile ,  Microcystis 
incerta ,  Oocystis gigas ,  Scytonema  sp.,  Spirulina  sp. 
 Oscillatoria  was represented by maximum number of spe-
cies. In the lakes at Nagpur, Maharashtra, India,  Anabaena , 
 Oscillatoria ,  Lyngbya ,  Phormidium  and  Microcystis  were 
reported as dominant forms (Maske et al.  2010 ). At Vellayani 
Lake, Thiruvananthapuram, Kerala,  Microcystis  and 
 Scenedesmus  were observed to be the most dominating gen-
era throughout the year (Aneesh and Manilal  2013 ). 

 Tables  8.1  and  8.2 ,  Microcystis ,  Planktothrix ,  Oscillatoria , 
 Phormidium ,  Nostoc ,  Anabaena ,  Gloeocapsa  and 
 Chroococcus  were among the most commonly reported cya-
nobacteria in the water bodies (lakes) of world and India 
receiving contaminants from different sources. The available 
reports refl ected that  Microcystis  was invariably present in 
all eutrophic lakes.  

     Table 8.2    Cyanobacterial diversity in different aquatic bodies (lakes) of India   

 Location  Type of contamination  Commonly occuring cyanobacteria  References 

 Lakes and freshwater 
bodies of lower western 
Himachal 

 Freshwater lakes and water bodies   Oscillatoria sancta ,  Lyngbya Chroococcus 
minutus ,  Aphanothece castagnei ,  Microcystis 
aeruginosa Nostoc punctiforme ,  Calothrix 
braunii  and  Anabaena iyengarii  

 Sidhu and 
Ahluwalia 
( 2011 ) 

 Kitham Lake, Agra  Water reservoir with organic pollution   Oscillatoria  spp.  Tiwari and 
Chauhan ( 2006 ) 

 Lake Pichhola, 
Udaipur, Rajasthan 

 Artifi cial freshwater lake sewage systems, 
overgrowth of hyacinths, industrial waste 
pollution, deforestation and heavy lakeshore 
development 

  Microsystis  sp. and  Coccochloris  sp.  Sharma et al. 
( 2011 ) 

 Swaroop Sagar Lake 
Udaipur, India 

 Sewage inputs   Microcystis aeruginosa ,  Phormidium  sp.  and 
Anabaena fl os - aquae  

 Pandey and 
Pandey ( 2002 ) 

 Loktak Lake, Manipur  Loktak Lake is the largest freshwater wetland 
in the North-Eastern region of India 

  Anabaena ,  Nostoc ,  Calothrix ,  Cylindrospermum  
and  Mastigocladus  

 Akoijam and 
Singh ( 2011 ) 

 Eutrophic lake of Ranchi  infl ux of sewage water   Microcystis ,  Gloeocapsa ,  Spirulina infl ata   Mukherjee et al. 
( 2010 ) 

 Wetlands of Sambalpur 
District, Odisha 

 Wetland contaminated with industrial 
untreated wastewater 

  Anabaena variabilis ,  Calothrix  sp.,  Calothrix 
elenkini ,  Chroococcus minimus ,  Dermocarpa  
sp.,  Gloeothece  sp.,  Gloeotrichia  sp., 
 Microcystis  sp.,  Synechocystis crassa , 
 Westiellopsis prolifi ca  

 Mishra and Das 
( 2011 ) 

 Urban Lakes of Solapur 
City, Maharashtra, India 

 Sewage water   Oscillatoria raoi ,  O. amoena ,  O. amphibia ,  O. 
salina ,  O. limosa ,  O. tenuis ,  Lyngbya commune , 
 L. corticola ,  L. major ,  Gloeocapsa decorticans , 
 G. samoensis ,  Nostoc linckia ,  Phormidium 
fragile ,  Microcystis incerta ,  Oocystis gigas , 
 Scytonema  sp.,  Spirulina  sp. 

 Jagtap et al. 
( 2012 ) 

 Anbazari and Phutala 
Lake, Nagpur, India 

 Anthropogenic impacts such as fi shing, 
boating, swimming, immersion of idols, 
fl owers, garlands, etc. 

  Anabaena ,  Oscillatoria ,  Lyngbya ,  Phormidium 
and Microcystis  

 Maske et al. 
( 2010 ) 

 Padmatheertha Pond 
and Vellayani Lake, 
Thiruvananthapuram city, 
India 

 NA   Microcystis  sp.  Aneesh and 
Manilal ( 2013 ) 

   NA  not available  
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8.2.3     Characteristics Features Involved 
in the Dominance of Cyanobacteria 
in Contaminated Habitats (Fig.  8.2 ) 

    Commonly occurring cyanobacteria include:
    (a)     Microcystis  spp.

 –    Presence of mucilage outside cell wall.  
 –   Release of allelochemical microcystin.      

   (b)     Oscillatoria  spp.
 –    Presence of mucilaginous layer outer to the cell wall.  
 –   Release of allelochemicals—anatoxin and fatty acids.      

   (c)     Phormidium  spp.
 –    Release of allelochemicals.      

   (d)     Nostoc  spp. and  Planktothrix  spp.
 –    Presence of mucilaginous sheath.  
 –   Release of allelochemicals.      

   (e)     Anabaena  spp.
 –    Presence of mucilaginous sheath outside cell wall.  
 –   Release of allelochemicals viz. extracellular peptides, 

anatoxin, hydroxamate chelators, microcystin.      
   (f)     Gloeocapsa  spp. and  Chroococcus  spp.

 –    Presence of mucilaginous sheath.          

  Fig. 8.1    Site map of different lakes of India and commonly occuring cyanobacteria       
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8.3     Role of Cyanobacteria in Wastewater 
Treatment 

 The dominance and diversity of cyanobacterial genera in dif-
ferent aquatic bodies illustrates the tolerance of this group to 
a wide variety of contaminants. This has generated an inter-
est in scientifi c community to explore their potential in 
wastewater treatment. 

8.3.1     Water Quality Improvement 

 Table  8.3  is a compilation of reports on role of cyanobacteria 
in water quality improvement which indicates that various 
cyanobacterial species are effi cient in improving the quality 
of different types of wastewater. El-Bestawy ( 2008 ) studied 
the role of  Anabaena variabilis ,  Anabaena oryzae  and 
 Tolypothrix ceylonica  in the improvement of water quality in 

  Fig. 8.2    Photomicrographs of commonly occurring cyanobacterial genera in eutrophic water bodies ( a )  Microcystis  sp. ( b )  Chroococcus  sp. ( c ) 
 Gloeocapsa  sp. ( d )  Oscillatoria  sp. ( e )  Phormidium  sp. ( f )  Planktothrix  sp. ( g )  Anabaena  sp. ( h )  Nostoc  sp.       
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domestic-industrial wastewater. Highest reduction in BOD 
and TDS (89.29 % and 38.84 %, respectively) was recorded 
with  Anabaena variabilis , while highest reduction in COD 
(73.68 %) with  Anabaena oryzae  and total suspended solids 
(TSS) (64.37 %) with  Tolypothrix ceylonica  was found in 7 
days. The growth and wastewater treatment potential of 
 Spirulina platensis  was investigated in anaerobically treated 
swine wastewater by Cheunbarn and Peerapornpisal ( 2010 ). 
Maximum reduction of 45 % and 23 % in BOD and COD 
was observed on 12th day with 10 % dilution with NaHCO 3  
and NaNO 3  at 8.0 g/L and 1.5 g/L, respectively. In another 
study,  S. platensis  (Leb 52 Strain) removed 81.02 % of COD 
from wastewater diluted 12.5 % with Zarrouk medium in 28 
days (Magro et al.  2012 ). Pandi et al. ( 2009 ) studied the 
water quality improvement in Retan chrome liquor by 
 Spirulina fusiformis . The cyanobacterium was able to remove 
17–22.6, 18–22.5, 15–23, 73.8–78.9, 82.4–88.5 and 93–99 % 
of TS, TDS, TSS, BOD, COD and Cr (VI) in retan chrome 
liquor with varying Cr concentrations 100–300 ppm. Another 
cyanobacterium,  Nostoc muscorum  was able to reduce BOD 
and COD up to 53.5 and 68.5 % respectively from distilleries 
effl uent in 30 days (Ganapathy et al.  2011 ). Nagasathya and 
Thajuddin ( 2008 ) studied the wastewater treatment potential 

and water quality improvement of paper mill effl uent by 
 Phormidium tenue , which removed 14.5, 17.6 and 45.26 % 
of salinity, BOD and COD, respectively, in 20 days. Shankar 
et al. ( 2013 ) reported that  Oscillatoria annae  removed 
36.4 % salinity and BOD from tannery effl uent in 15 days 
(Table  8.3 ). However,  Oscillatoria annae  with coir pith 
proved more effi cient in reducing salinity and BOD by 54.5 
and 62.7 % (Shankar et al.  2013 ). An integrated system of 
 Bacillus  sp. immobilised chemo autotrophic activated car-
bon oxidation (CAACO) and algal batch reactor removed 98, 
95, 93, 86 and 100 % of BOD, COD, TOC, volatile fatty acid 
(VFA) and sulphide respectively from tannery effl uent after 
30 days (Sekaran et al.  2013 ). There are reports where 
researchers have employed consortia of different microor-
ganisms, including cyanobacteria to treated contaminated 
wastewater (Safonova et al.  2004 ; Bernal et al.  2008 ; Renuka 
et al.  2013b ). The consortium of microalgae containing green 
algae, cyanobacteria ( Chlorella  spp.,  Scenedesmus  sp., 
 Stichococcus  spp.  Phormidium  sp.) and bacteria 
( Rhodococcus  sp. and  Kibdelosporangium aridum ) removed 
85, 73, 96, 97 and 51 % of phenols, anionic surface active 
substances, oil spill, BOD and COD respectively from indus-
trial wastewater (Safonova et al.  2004 ). Bernal et al. ( 2008 ) 

      Table 8.3    Improvement of water quality by cyanobacteria   

 Type of cyanobacteria/consortia  Type of wastewater  Parameters  % removal  Time duration  References 

  Anabaena variabilis A. oryzae   Domestic-industrial wastewater  BOD  89.29  7 days  El-Bestawy ( 2008 ) 
 COD  73.68 

  Spirulina platensis   Anaerobically treated swine wastewater  BOD  45  12 days  Cheunbarn and 
Peerapornpisal ( 2010 )  COD  23 

  S. platensis   Wastewater diluted with standard 
growth medium 

 COD  81.02  28 days  Magro et al. ( 2012 ) 

  S. fusiformis   Retan chrome liquor  TS  17–22.6  Pandi et al. ( 2009 ) 
 TDS  18–22.5 
 TSS  15–23 
 BOD  73.8–78.9 
 COD  82.4–88.5 

  Nostoc muscorum   Distillery effl uent  BOD  53.5  30 days  Ganapathy et al. ( 2011 ) 
 COD  68.5 

  Phormidium tenue   Paper mill effl uent  Salinity  14.5  20 days  Nagasathya and 
Thajuddin ( 2008 )  BOD  17.6 

 COD  45.2 
  Oscillatoria annae  (with coir pith)  Tannery effl uent  Salinity  54.5  15 days  Shankar et al. ( 2013 ) 

 BOD  62.7 
 Consortium of cyanobacterium 
with green algae and bacteria 

 Industrial wastewater  Phenols  85  NA  Safonova et al. ( 2004 ) 
 Anionic 
surface 
active 
substances 

 73 

 Oil spill  96 
 BOD  97 
 COD  51 

 Cyanobacteria dominated 
consortia 

 Sewage wastewater  BOD  99  14 days  Renuka et al. ( 2013b ) 
 COD  87 
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studied the improvement of water quality of dairy sewage 
using mixture of native microalgae including cyanobacteria 
inhabiting the wastewater treatment plant. They observed 
that the mixture of native microalgae was able to remove 
69 % of dissolved organic carbon, 88 % of COD, 88.6 % of 
TSS, 91.4 % of turbidity, 97.3 % of BOD and 99.9 % of fae-
cal coliforms from dairy sewage wastewater. Recently, 
Renuka and co-workers ( 2013b ) reported 99 and 89 % reduc-
tion in COD and BOD of sewage wastewater by treatment 
with a cyanobacteria dominated consortium of native strains 
(Species of  Phormidium ,  Limnothrix ,  Anabaena , 
 Westiellopsis ,  Fischerella  and  Spirogyra ) (Table  8.3 ).

8.3.2        Nutrient Removal 

 Cyanobacteria require higher amount of nutrients (N, P) for 
their growth, therefore, wastewaters rich in nutrients can be 
used as growth media for their cultivation and indirectly they 
sequester these nutrients from wastewater, thereby help in the 
remediation. Canizares-Villanueva et al. ( 1994 ) reported that 
 Phormidium  sp. was able to remove 48, 30, 100 and 63 % of 
PO 4 –P, NO 3 –N, NH 4 –N and total P from anaerobically treated 
swine wastewater. However, 95 and 62 % removal of NH 4 –N 
and PO 4 –P, respectively, was reported by  Phormidium  spp. 
inoculated on wastewater mixed with swine manure (Pouliot 
et al.  1989 ). In another report,  Phormidium  sp. removed 99 % 
of N and P from secondary treated wastewater in 7 days and 4 
days, respectively (Su et al.  2012 ). Kamilya et al. ( 2006 ) eval-
uated the nutrient removal potential of  Spirulina platensis  and 
 Nostoc muscorum  from fi sh culture effl uent. They observed 
that  N.  muscorum   was able to remove 83.6, 44.2, 14.17 and 
41.79 % of NH 4 –N, NO 2 –N, NO 3 –N and PO 4 –P respectively 
from the effl uent, while, 92.4, 48.7, 50.39 and 47.76 % 
removal of NH 4 –N, NO 2 –N, NO 3 –N and PO 4 –P, respectively, 
was obtained with  S. platensis  in 7 days (Table  8.4 ). Apart 
from monocultures, Silva-Benavides and Torzillo ( 2011 ) uti-
lised co-culture of  Planktothrix  sp. and  Chlorella  sp. to phy-
toremediate municipal wastewater. They observed that this 
co- culture of  Planktothrix  sp. and  Chlorella  sp. could remove 
100 and 88 % of PO 4 –P and total N from municipal wastewa-
ter. Recently, a microalgal consortium of fi lamentous strains 
(species of  Phormidium ,  Limnothrix ,  Anabaena ,  Westiellopsis , 
 Fischerella  and  Spirogyra ) has been reported to remove 90, 
100 and 97 % of NH 4 –N, NO 3 –N and PO 4 –P, respectively, 
from sewage wastewater. The above studies indicate that cya-
nobacterial members can effi ciently remove nutrients (mainly 
N and P) effectively from various types of wastewaters.

8.3.3        Heavy Metal Removal 

 Heavy metals are among the most dangerous substances 
in the environment because of their high level of durability 

and harmful effects on living organisms. The disturbance of 
aquatic ecosystems elicited by heavy metal pollution 
from industrial and domestic sources has severe conse-
quences, including the loss of biological diversity, as 
well as increased bioaccumulation and magnification of 
toxicants in the food chain (He et al.  1998 ). Microalgae 
are efficient in absorbing heavy metals from wastewaters 
in actively growing cultures (Table  8.5 ). Many studies are 
focused on heavy metal removal under lab conditions; 
however, the reports on heavy metal removal from natu-
ral systems are scarce and need attention. Dwivedi et al. 
( 2010 ) investigated the potential of green algae and blue 
green microalgae for accumulation of metals (Cr, Cu, Fe, 
Mn, Ni and Zn) and metalloid (As). The maximum accu-
mulation of Cr was shown by  Phormidium bohneri  fol-
lowed by  Oscillatoria tenuis ,  Chlamydomonas angulosa , 
 Ulothrix tenuissima  and  Oscillatoria nigra . Blue green 
algae represented the dominant community where Cr 
concentration was higher. The removal of Cr (VI) of 60.9 
and up to 99 % was reported by  Spirulina platensis  and  S. 
fusiformis,  respectively, in different types of wastewater 
(Pandi et al.  2009 ; Magro et al.  2012 ). El-Bestawy ( 2008 ) 
studied the metal removal efficiency of  Anabaena varia-
bilis ,  Anabaena oryzae  and  Tolypothrix ceylonica . 
Highest Zn and Cu removal of 86.12 and 94.63 % was 
recorded in the culture of  Tolypothrix ceylonica  grown in 
domestic-industrial wastewater.  O. quadripunctulata  
removed 37, 32.1, 34.6 and 20.3 %, and 50, 32.1, 34.6 
and 33.3 % of Cu, Zn, Pb and Co from sewage wastewa-
ter and petrochemical effluent, respectively (Ajayan et al. 
 2011 ). El-Sheekh et al. ( 2005 ) observed that  Nostoc mus-
corum ,  Anabaena subcylindrica  and mixed culture of  N. 
muscorum  and  A. subcylindrica  significantly removed 
heavy metals from sewage wastewater, Verta Company 
and salt and soda company wastewater.  Nostoc muscorum  
and  Anabaena subcylindrica  individually were able to 
remove 64.4, 22.2, 84.6 and 64.1 % and 33.3 %, 33.3 %, 
86.2 % and 40 % of Cu, Co, Pb and Mn, respectively 
from sterilised sewage wastewater. However, the mixed 
culture of  N. muscorum  and  A. subcylindrica  removed 
75 %, 11.8 %, 100 % and 61.5 % of Cu, Co, Pb and Mn 
from sewage wastewater. Since, the initial concentration 
of heavy metals were different in all the sewage wastewa-
ter used, hindering generalisations on the degree of 
removal or quantitative estimates or comparisons 
(El-Sheekh et al.  2005 ).

   A basic generalisation regarding the reports on wastewa-
ter treatment (Tables  8.3 ,  8.4  and  8.5 ), reveals that cyanobac-
teria vary in their potential, in terms of improvement of water 
quality parameters, nutrient sequestration and heavy metal 
removal. This observed variation could be due to their differ-
ence in genetic constitution of different cyanobacteria, dif-
ference in composition and constitution of wastewaters, and 
experimental and environmental set up. Although  Microcystis  
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    Table 8.4    Nutrient removal potential of different cyanobacteria alone or in consortia   

 Type of cyanobacteria/consortia  Wastewater used  Parameter studied  % Removal  Time duration  References 

  Nostoc muscorum  
  Spirulina platensis  

 Fish culture effl uent  NH 4 –N  83.6  7 days  Kamilya et al. ( 2006 ) 
 NO 2 –N  44.2 
 NO 3 –N  14.176 
 PO 4 –P  41.79 
 NH 4 –N  92.4 
 NO 2 –N  48.7 
 NO 3 –N  50.39 
 PO 4 –P  47.76 

  Phormidium  sp.  Anaerobically treated 
swine wastewater 

 PO 4 –P  48  4 days  Canizares- Villanueva et al. ( 1994 ) 
 NO 3 –N  30 
 NH 4 –N  100 
 Total P  63 

  Phormidium  spp.  Swine manure mixed 
wastewater 

 NH 4 –N  95  1 day  Pouliot et al. ( 1989 ) 
 PO 4 –P  62 

  Phormidium  sp.  Secondary treated 
wastewater 

 N  99  7 day 
 4 days 

 Su et al. ( 2012 ) 
 P  99 

 Co-culture of  Planktothrix  sp. 
and  Chlorella  sp. 

 Municipal wastewater  PO 4 –P  100  4 days 
 4 days 

 Silva-Benavides and Torzillo ( 2011 ) 
 Total N  80 

 Cyanobacteria dominated 
microalgal consortium 

 Sewage wastewater  NH 4 –N  90  14 days  Renuka et al. ( 2013b ) 
 NO 3 –N  100 
 PO 4 –P  97 

    Table 8.5    Removal of heavy metals by microalgae   

 Medium  Microalgae  Heavy metal  Percent removal  References 

 Tannery effl uent   Oscillatoria tenuis   Cr  NA  Dwivedi et al. ( 2010 ) 
  Spirulina platensis   Wastewater diluted with standard growth medium  Cr (VI)  60.9  Magro et al. ( 2012 ) 
  Spirulina fusiformis   Retan chrome liquor  Cr (VI)  93–99  Pandi et al. ( 2009 ) 
  Nostoc  sp.  Wastewater  Cr (VI)  NA     Colica et al. ( 2010 ) 
 Sewage petrochemical effl uent   Oscillatoria quadripunctulata   Cu  37  Ajayan et al. ( 2011 ) 

 Co  20.3 
 Pb  34.6 
 Zn  32.1 
 Cu  50 
 Co  33.3 
 Pb  34.6 
 Zn  32.1 

 Sewage wastewater   Nostoc muscorum   Cu  64.4  El-Sheekh et al. ( 2005 ) 
 Co  22.2 
 Pb  84.6 
 Mn  64.1 

 Sewage wastewater   Anabaena subcylindrica   Cu  33.3  El-Sheekh et al. ( 2005 ) 
 Co  33.3 
 Pb  86.2 
 Mn  40.0 

 Sewage wastewater  Mixed culture of  Nostoc muscorum  
and  Anabaena subcylindrica  

 Cu  75  El-Sheekh et al. ( 2005 ) 
 Co  11.8 
 Pb  100 
 Mn  61.5 
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was the dominant cyanobacterial genus (Tables  8.1  and  8.2 ), 
reports on its application in wastewater treatment are not 
available. This could be due to release of toxin in the aquatic 
ecosystem by this cyanobacterium, and its tendency to form 
algal bloom. Such type of reasons may be responsible for 
researchers to become biased during the selection of cyano-
bacteria for bioremediation.   

8.4     Limitations and Constraints 

 Although the idea of exploitation of photosynthetic organ-
isms for wastewater treatment originated long back in the 
late 1950s, this technology has still to go a long way before 
it can be actually commercially accepted. The main limita-
tions are: 

  Inconsistent composition of wastewater at different sites : 
One of the major limitations is the variation in both composi-
tion and concentration of constituents present in all types of 
wastewaters i.e. domestic wastewater from one contaminated 
site differs in its physico-chemical composition from other 
contaminated site. Therefore, any selected promising strain 
of cyanobacteria may or may not perform and treat waste-
water with the same effi ciency as recommended by the 
researcher/scientists/technologists based on another site. 

  Variation in indigenous fl ora and fauna of contaminated site : 
There is huge variation in the native micro fl ora inhabiting a 
particular locality (Lopez-Archilla et al.  2004 ; Mishra and 
Das  2011 ). Therefore, the treatment potential of selected 
stains varies and depends on their ability to compete and 
establish in the containment sites. 

  Dependency of cyanobacterial strains on environmental 
conditions : Being prokaryotic and autotrophic organisms, 
the phytoremediation potential of cyanobacteria is directly 
infl uenced by the environmental factors that affect their 
growth (Muller  1994 ). Hence, environmental factors such 
as-light, temperature, pH etc. can indirectly affect the treat-
ment effi ciency of selected promising strains, which in turn 
will be variable at different geographical locations.  

8.5     Conclusions 

 Available reports clearly indicate that cyanobacteria are an 
important part of aquatic ecosystem and are dominant in 
most contaminated habitats. This is attributed to their inher-
ent potential to survive in such eutrophic and adverse habi-
tats and resilience to environmental extremes. Reports on 
their wastewater treatment potential refl ect that cyanobacte-
ria are effi cient in treating various wastewaters in terms of 

nutrient removal, water quality improvement as well as 
heavy metal removal. However, these areas still needs more 
in depth understanding. The indigenous differences in the 
characteristics and composition of various wastewaters are 
the main factors responsible for varied response of cyano-
bacteria in terms of their remediation potential. Therefore, 
more strains of cyanobacteria need to be screened for their 
bioremediation potential which not only easily establish 
themselves in these habitats, but also show a relatively con-
sistent performance on scale-up of such technologies.     
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9.1             Rhizobia and Stress of Different Types 

 The Earth’s population is expected to reach 9.1 billion by 
2050 and, as a consequence, unprecedented increases in crop 
productivity will be needed in order to feed all of the world’s 
people (FAO  2009 ). Furthermore, the climate changes and 
anthropogenic activities, such as urban development, road 
construction, industrial processes, mining, and inadequate 
agricultural practices, are resulting in the eutrophication and 
pollution of soils and fresh water resources, soil degradation, 
loss of soil fertility, and desertifi cation (McLauchlan  2006 ; 
Spiertz  2010 ; Gordon et al.  2010 ). These factors will exacer-
bate the need for increases in crop production that must be 
achieved despite a signifi cant deterioration of considerable 
prime agricultural land and likely utilizing large areas of 
land now considered marginal. 

 Plant growth is often limited under stressful conditions, 
and as a consequence, plant growth is invariably lower than 
it would be in their absence (Glick et al.  2007a ). In general, 
plant growth may be inhibited or limited by different types of 
biotic or abiotic stresses, such as extremes of temperature, 
fl ooding, drought, heavy metals and other organic com-
pounds, salinity and by the presence of phytopathogens (bac-
teria, fungi, or viruses) (Abeles et al.  1992 ). In this context, 
it is a challenge to increase the productivity of marginal soils 
through low-input sustainable agricultural practices. 

 Some soil bacteria, called plant growth-promoting bacte-
ria or PGPB (Bashan and Holguin  1998 ), can help plants to 

grow by alleviating or avoiding the negative effects of both 
biotic and abiotic stresses on plant growth and their use has 
been suggested as a promising approach (Kloepper et al. 
 1989 ; Frommel et al.  1991 ; Glick  1995 ,  2012 ). PGPB can 
simply be defi ned as root colonizing bacteria that exert ben-
efi cial effects on plant development by direct mechanisms, 
indirect mechanisms, or a combination of the two (Glick 
 1995 ; Gupta et al.  2000 ). The direct mechanisms of plant 
growth promotion may involve the synthesis of substances 
by the bacterium or facilitation of the uptake of nutrients 
from the environment (Glick et al.  1999 ). On the other hand, 
indirect promotion of plant growth occurs when PGPB 
decrease or prevent the deleterious effects of phytopatho-
genic microorganisms on plants by a variety of different 
mechanisms (Glick  1995 ,  2012 ; Glick et al.  1999 ; Cartieaux 
et al.  2003 ). PGPB may fi x atmospheric nitrogen (N) and 
supply it to plants; synthesize and secrete siderophores 
which can solubilize and sequester iron from the soil and 
provide it to plant cells; synthesize different phytohormones, 
including auxins, cytokinins, and gibberellins; solubilize 
minerals such as phosphorus which then become more read-
ily available for plant growth; and may synthesize an enzyme 
that can modulate plant ethylene levels (Brown  1974 ; 
Kloepper et al.  1989 ; Glick  1995 ,  2012 ; Patten and Glick 
 1996 ,  2002 ; Glick et al.  1999 ). These soil bacteria are 
extremely important in agricultural terms since when they 
are present in the plant rhizosphere they act as an environ-
mentally friendly and less expensive means of improving 
soil health and promoting plant growth. 

 Within the PGPB group, there are soil bacteria, collec-
tively known as rhizobia, able to form root nodules and fi x 
atmospheric N in association with legumes. The relationship 
between rhizobia and legume plants has been studied for over 
100 years. Historically, symbiotic rhizobia–legume associa-
tions were studied extensively, from physiological, biochem-
ical, and molecular biological perspectives, as a classic 
example of mutualistic associations between two organisms. 
Currently, rhizobia include 13 genera with 98 species of 
α- and β-proteobacteria (Weir  2012 ), with a continuing 
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increase in this number as new rhizobia are discovered. 
Rhizobia are studied largely due to their ability to effi ciently 
fi x atmospheric N and their highly effi cient symbiotic asso-
ciation with legumes. Hence, the use of rhizobial inoculants 
is considered an important component of sustainable agricul-
ture. Furthermore, the use of rhizobial inoculants is remark-
ably inexpensive compared to the use of N-chemical 
fertilizers and therefore important for sustainable agricultural 
practices in legume production in developing countries 
(Zahran  2006 ) where grain legumes are cultivated on a very 
large scale (Graham and Vance  2003 ). In addition, the use of 
effi cient strains in the symbiotic rhizobium–legume associa-
tion not only benefi ts the legume plants but also increases the 
soil fertility with fi xed N, thereby enhancing crop productiv-
ity for subsequent cultivation of non-legumes. 

 The interaction between a legume and a rhizobium is 
highly regulated, and a great deal of communication occurs 
between the two organisms as the symbiosis is being estab-
lished. Generally speaking, two main developmental pro-
cesses are required for the formation of symbiotic N-fi xing 
nodules: bacterial infection and nodule organogenesis (Gage 
 2004 ; Oldroyd and Downie  2008 ). These processes must be 
coordinated in both a spatial and a temporal manner to ensure 
nodule formation at the site of bacterial infection (Oldroyd 
and Downie  2008 ). However, these processes are very sensi-
tive to several environmental stresses, such as fl uctuations in 
pH, temperature, nutrient availability, and water defi ciency 
which greatly infl uence their growth, survival and metabolic 
activity as well as their ability to enter into symbiotic asso-
ciations. For example, early events in the symbiosis process 
such as molecular signaling, rhizobial attachment, root hair 
curling, infection thread formation, and nodule initiation, are 
particularly sensitive to high temperatures, salinity, acidity, 
heavy metals, and other environmental stresses (Graham 
et al.  1982 ; Zhang and Smith  1996 ; Ibekwe et al.  1997 ; 
Hungria and Stacey  1997 ; Hungria and Vargas  2000 ; Zheng 
et al.  2005 ). Moreover, during the infection process rhizobia 
also have to deal with adverse conditions within the host 
cells and with the plant’s innate immunity which may inter-
fere with the symbiosis (Soto et al.  2009 ). Nevertheless, 
some rhizobial strains have evolved or acquired various 
mechanisms in addition to its ability to fi x atmospheric N, 
which allow them to counteract the negative effects associ-
ated with the environmental stresses, thereby contributing to 
the growth of leguminous plants under stressful conditions. 

 As a result, it should be possible to utilize some of the PGPB 
traits found in rhizobia to facilitate the use of rhizobia in phy-
toremediation protocols. Phytoremediation is the use of plants 
to remediate polluted soils, a sustainable and economical tech-
nology that is currently receiving considerable global attention 
(Glick  2010 ). However, among other considerations, the suc-
cess of phytoremediation of metals relies on a plant’s ability to 
tolerate the accumulation of high concentrations of metals, 

while yielding a large plant biomass (Grčman et al.  2001 ). 
Therefore, plant–microbe associations have been the objective 
of particular attention due to the potential of microorganisms to 
facilitate plant growth in the presence of metal stress or their 
effect on metal mobilization/immobilization, consequently 
enhancing metal uptake and plant growth. From this perspec-
tive, the use of the legume–rhizobium symbiosis as a tool for 
bioremediation of both metals (Sriprang et al.  2002 ,  2003 ; 
Pastor et al.  2003 ; Dary et al.  2010 ) and some organic com-
pounds (Doty et al.  2003 ) is of great interest. Rhizobia can 
enhance phytoremediation through nitrogen fi xation or by pro-
duction of plant growth- promoting factors, and this can lead to 
increased soil fertility and to metal extraction or stabilization 
(Carrasco et al.  2005 ; Zheng et al.  2005 ; Ike et al.  2007 ; Pajuelo 
et al.  2008b ; Dary et al.  2010 ). 

 The intrinsic potential of rhizobia to express high-level 
tolerance toward toxic metals along with their ability to 
transform atmospheric N into a usable form of N makes 
them one of the most important organisms in agronomic 
practices for legume improvement in soils polluted with met-
als. Moreover, rhizobia can promote the growth of plants at 
elevated concentrations of a heavy metal via mechanisms 
other than improved N nutrition (Reichman  2007 ). Rhizobia 
also may facilitate the growth and yield of legumes by other 
mechanisms, such as synthesis of siderophores and phyto-
hormones (Boiero et al.  2007 ; Wani et al.  2007d ; Avis et al. 
 2008 ), solubilization of inorganic phosphate (Khan et al. 
 2007 ; Ahmad et al.  2008 ), synthesis of ACC deaminase to 
lower ethylene levels (Tittabutr et al.  2008 ; Duan et al.  2009 ), 
and depression of plant diseases (Khan et al.  2002 ; Chandra 
et al.  2007 ). Thus, the potential use of rhizobia as plant 
growth-promoting rhizobacteria for the remediation of metal 
contaminated sites is a promising strategy for the improve-
ment of legumes in metal contaminated soils. The mecha-
nisms found in some rhizobia strains and their potential to 
enhance phytoremediation in legume plants is discussed in 
the following sections.  

9.2     Rhizobial Mechanisms 
for Overcoming Stress 

9.2.1     Auxins 

 Multiple mechanisms in rhizobia assisting development and 
growth of legumes may play an important role to help plants 
overcoming either biotic or abiotic stresses. Rhizobia, like 
other soil bacteria, produce a number of secondary metabo-
lites that, at low concentrations can activate the stress 
response system in plants leading to higher resistance against 
pathogens as well as other stressors. One of the mechanisms 
that explain the direct effects of plant growth-promoting bac-
teria on plants is the production of plant growth regulators 
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including auxins (such as indoleacetic acid or IAA) (Brown 
 1974 ; Patten and Glick  1996 ,  2002 ). 

 In plants, auxins play a central role in cell division, elon-
gation, fruit development, and senescence (Phillips et al. 
 2011 ). However, plants under stress show a progressive 
decline in the level of IAA in their root system (Shakirova 
et al.  2003 ) and application of additional exogenous auxins 
supplies a suffi cient amount of the hormone for normal plant 
development and growth in saline conditions (Kabar  1987 ; 
Gulnaz et al.  1999 ), contributing in the alleviation of the 
adverse effects of salt stress (Gul et al.  2000 ; Khan et al. 
 2004 ; Egamberdieva  2009 ). Thus, regulation of the auxin 
levels in plant roots may be a strategy to help plants to 
 overcome stress. 

 In earlier works, it was suggested that root-colonizing 
bacteria that produce phytohormones, when bound to a 
developing seedling may act as a mechanism for plant growth 
stimulation (Frankenberger and Arshad  1995 ). These micro-
organisms when associated with various plants synthesize 
and release auxin as secondary metabolites because of the 
rich supplies of substrates exuded from the roots compared 
with non-rhizospheric soils (Kampert et al.  1975 ; Shahab 
et al.  2009 ). Today, it has been estimated that more than 80 % 
of the soil bacteria are able to produce auxins, especially 
IAA, indolebutyric acid, or similar compounds derived from 
tryptophan metabolism (Solano et al.  2008 ). IAA, one of the 
most studied phytohormones-produced by bacteria, works as 
a reciprocal signaling molecule in plant–microbe interac-
tions (Ahmed and Hasnain  2010 ). Moreover, the majority of 
root associated bacteria that display benefi cial effects on 
plant growth produce IAA (Hayat et al.  2010 ). 

 Many rhizobial strains are reported to produce auxins in 
variable amounts (Costacurta and Vanderleyden  1995 ; 
Frankenberger and Arshad  1995 ; Mehnaz and Lazarovits 
 2006 ; Vargas et al.  2009 ). It was also suggested that rhizobia 
are able to produce IAA via different pathways (see Spaepen 
and Vanderleyden  2011  for review the different pathways). 
In a study focused on interactions between rhizobacteria and 
the orchid  Dendrobium moschatum  revealed that strains 
belonging to the genus  Rhizobium  were among the most 
active IAA producers (Tsavkelova et al.  2007 ). It was also 
documented that nodulated plants contain higher concentra-
tions of IAA compared to the non-nodulated ones (Hirsch 
and Fang  1994 ; Ghosh and Basu  2006 ) probably due to the 
high concentration of IAA produced by rhizobium in the 
nodules (Spaepen et al.  2007 ). Moreover, plant cells take up 
some of the IAA that is secreted by the bacteria and, together 
with the endogenous plant IAA, can stimulate plant cell pro-
liferation and elongation (Glick et al.  2007b ). It was also 
reported that IAA produced by rhizobia is transported to 
other parts of the plant and might be involved in several 
stages of the symbiotic relationship (Wheeler et al.  1979 ; 
Badenochjones et al.  1983 ; Hunter  1989 ). In the symbiotic 

rhizobium–legume association, production of IAA by rhizo-
bia may play a fundamental role in nodulation and competi-
tive ability. For example, Boiero et al. ( 2007 ) showed that 
IAA-synthesizing rhizobia are more effective at plant nodu-
lation than IAA negative mutants. Ali et al. ( 2008 ) also 
observed that IAA signifi cantly affected the length of mung 
bean, fresh and dry mass of roots and shoots, the number of 
nodules, and the nitrogenase activity. Also in  Rhizobium 
leguminosarum  bv.  viciae , the introduction and overexpres-
sion of the indole-3-acetamide (IAM) biosynthetic pathway 
resulted in  Vicia hirsuta  root nodules containing up to 60-fold 
more IAA than nodules invoked by the wild-type strain as 
well as its nitrogen fi xation capacity increased (Camerini 
et al.  2008 ). Interestingly, the augment of the IAA produc-
tion may contribute to the increase of stress tolerance. For 
instance, the inoculation of  Medicago truncatula  plants with 
an  Ensifer meliloti  strain overexpressing the IAM biosyn-
thetic pathway showed higher IAA content in nodules and 
roots and were more resistant to salt stress (Bianco and Defez 
 2009 ). In addition, inoculation of  M. truncatula  with the 
IAA-overproducing strain resulted in better plant growth 
under phosphorus defi ciency because of the release of 
organic acids by the bacterium (Bianco and Defez  2010 ). 

 In non-legumes, IAA produced by rhizobia may stimulate 
plant root system, increasing its size and weight, branching 
number and the surface area in contact with soil, resulting in 
the development of more expansive root architecture (Dazzo 
and Yanni  2006 ). Inoculation with auxin-producing bacteria 
may also result in high plant IAA levels and the stimulation 
of adventitious root formation (Mayak et al.  1999 ; Solano 
et al.  2008 ). Plants with a more extensive root system have 
an increased ability to take up nutrients uptake from the soil 
(Mañero et al.  1996 ). However, bacterial IAA can also inhibit 
primary root growth (Schlindwein et al.  2008 ). In fact, IAA 
exerts a stimulatory effect on plant growth when it is within 
a specifi c concentration range, outside that range, plant 
growth is inhibit or unaffected. Additionally, exogenous IAA 
may also induce resistance in plants against some soil-borne 
diseases. For example, Fernández-Falcón et al. ( 2003 ) sug-
gested that the exogenous application of IAA to banana 
plants induces resistance to Panama disease and that the 
resistance is more effective when performed using low doses 
and frequent applications of IAA. Similar result was obtained 
by Sharaf and Farrag ( 2004 ) where application of exogenous 
IAA reduced the infection rate of tomato plants by  Fusarium 
oxysporum lycopersici . Interestingly, a low level of IAA was 
suffi cient to stimulate rooting system development as well as 
to be helpful to plant mineral and nutrient uptake and bacte-
rial colonization (Biswas et al.  2000 ). Altogether, the posi-
tive effects that IAA-producing rhizobia demonstrated on the 
success of their symbiosis may be an advantage to counteract 
the negative effects of stress on the both nodulation and 
nitrogen fi xation processes.  
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9.2.2     Cytokinins 

 Cytokinins, like auxins, play an important role regulating 
various aspects of plant growth and development (   Ferguson 
and Lessenger  2006 ; Frugier et al.  2008 ; Hussain and 
Hasnain  2011 ). Cytokinins are involved in the regulation of 
metabolite transport, cell division, and chloroplast differen-
tiation; induce stem morphogenesis and retard leaf senes-
cence; and in roots, cytokinins control the functioning of the 
aboveground organs (Kulaeva and Kusnetsov  2002 ; 
Romanov  2009 ). Plants grown under salt stress decrease the 
supply of cytokinin from root to shoot and also the recovery 
of diffusible auxin from maize coleoptile tips (Itai et al. 
 1968 ). In other studies the exogenous application of plant 
growth regulators, including cytokinins, produced some ben-
efi t in alleviating the adverse effects of salt stress and they 
also improve germination, growth, fruit setting, fresh vegeta-
ble and seed yields, and yield quality (Dhingra and Varghese 
 1985 ; Khan and Weber  1986 ; Gul et al.  2000 ). A number of 
bacterial genera from plant rhizosphere, including both phy-
topathogenic and plant growth-promoting bacteria, have 
been reported to produce cytokinins (de Salamone et al. 
 2001 ; Tsavkelova et al.  2006 ; Pertry et al.  2009 ), In contrast 
to auxins production, PGPB able to produce cytokinins are 
less common, possibly because there is no simple method 
available to detect and quantify cytokinins; thus, there are 
only a limited number of reports of bacterial cytokinins 
affecting plant growth. In rhizobia, the production of cytoki-
nin, however, should be a more common trait, since this hor-
mone is involved in nodule development, as it is required to 
initiate the cortical cell divisions necessary to form a root 
nodule, and may also mediate rhizobial infection in legumes 
(Frugier et al.  2008 ). To date, several studies indicate the 
involvement of cytokinin in the development of the symbio-
sis between legume plants and nodule bacteria. Oldroyd 
( 2007 ) reported that cytokinin production in plants is 
enhanced by rhizobia through regulation of the expression of 
Nod factor pathway, acting as a mechanism to coordinate 
epidermal and cortical responses during nodule formation. 
However, the activation of the cell cycle by cytokinins, which 
lead to cortical-cell division, is not fully understood. 

 Treatment of plants with exogenous cytokinins induces 
expression of early nodulin genes related to nodulation 
(   Dehio and Debruijn  1992 ; Bauer et al.  1996 ;    Fang and 
Hirsch  1998 ; Ferguson and Mathesius  2003 ) and the control 
of a pre-infection stage, recognition, is determined by highly 
specifi c plant Nod signals, possibly, in combination with 
cytokinins (Oldroyd  2007 ). Heckmann et al. ( 2011 ) verifi ed 
that exogenous cytokinin induced formation of discrete and 
easily visible nodule primordial in  Lotus japonicum  roots, 
suggesting that cytokinins may partially replace Nod fac-
tors (Bauer et al.  1996 ). Some researchers have noted a 
direct relationship between cytokinins concentration and the 

process of nodulation (Pavlova and Lutova  2000 ; Akimova 
and Sokolova  2012 ). These results demonstrate that cytoki-
nins aren’t only involved in nodule formation but also in rhi-
zobial infection via local and systemic mechanisms (Frugier 
et al.  2008 ; Heckmann et al.  2011 ). Taken together, these 
data demonstrate that cytokinins play an important role in 
symbiotic relations; they may act as a secondary signal that 
is synthesized in epidermal cells perceiving the Nod factor 
and is then translocated to underlying cortex cells (Murray 
et al.  2007 ; Oldroyd  2007 ; Tirichine et al.  2007 ; Frugier et al. 
 2008 ). In addition, Nod factors are known as the initial com-
munication signals between rhizobia and leguminous plants, 
however under stressed conditions the production of Nod 
factors may be stimulated or suppressed which may affect 
the rhizobium–legumes symbioses. For example, the produc-
tion of Nod factors by  Rhizobium leguminosarum  bv.  Trifolii  
have been found to be disrupted by pH, temperature, and 
both P and N concentration (McKay and Djordjevic  1993 ). 
Thus, cytokinins produced by rhizobia may be an advantage 
or an alternative pathway to counteract the negative effects 
caused by the different types of stresses on Nod factors bio-
synthesis, which is an essential step for the successful estab-
lishment of a symbiotic relationship between both partners.  

9.2.3     Ethylene 

 A well-established mechanism that promotes plant growth 
and development is the modulation of the ethylene levels in 
plant tissues. In fact, the effi cacy of a large number of PGPB 
in promoting growth and productivity of plants, especially 
under stress conditions, via lowering plant ethylene levels 
has been demonstrated (Burd et al.  2000 ; Glick  2005 ; 
Safronova et al.  2006 ; Shaharoona et al.  2006b ). Ethylene is 
a gaseous plant hormone produced endogenously by almost 
all plants that plays a key role in inducing multifarious physi-
ological changes in plants aspects of fruit ripening, seed ger-
mination, tissue differentiation, the formation of root and 
shoot primordia, lateral bud development, leaf abscission, 
fl owering wilting, and the response of plants to both biotic 
and abiotic stresses (Abeles et al.  1992 ). Under stress condi-
tions, the endogenous production of ethylene is substantially 
accelerated which adversely affects the growth of a plant 
(Abeles et al.  1992 ). Therefore, for normal growth and devel-
opment regulation of ethylene production in plant tissues is 
essential (Safronova et al.  2006 ). 

 Two naturally occurring mechanisms that can modulate 
plant ethylene levels are the enzyme 1-aminocyclopropane- 
1-carboxylate (ACC) deaminase and the production of the 
ACC synthase enzyme inhibitor rhizobitoxine. Some bacte-
ria are able to decrease the ethylene levels in plant root (and 
shoot) tissue mediated by the bacterial enzyme ACC deami-
nase, through the cleavage of ACC (the immediate precursor 
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of ethylene in plants) to ammonia and α-ketobutyrate, both 
of which are readily metabolized by the bacteria. Glick et al. 
( 1998 ) proposed a model that explains the role of ACC 
deaminase in plant growth promotion. Briefl y, PGPB that 
express the enzyme ACC deaminase bind to either the seed 
coat or root of a developing plant. In this way, these bacteria 
act as a sink for ACC, lowering ethylene levels in plant tis-
sues, and thereby increasing the growth of plant roots and 
shoots and reducing the inhibitory effects of ethylene synthe-
sis (Glick et al.  1998 ; Glick  2004 ). On the other hand, rhizo-
bitoxine, an enol-ether amino acid (enzyme inhibitor), 
inhibits the enzyme ACC synthase, one of the key enzymes 
in the ethylene biosynthetic pathway, and thus decreases the 
ethylene levels in plants (Yuhashi et al.  2000 ). Therefore, the 
use of bacteria, which possess one of these mechanisms, can 
help in sustaining plant growth and development, especially 
under stress conditions. 

 In case of leguminous plants, ethylene is also known for 
its negative role in nodulation (Ma et al.  2002 ; Middleton 
et al.  2007 ), as it inhibits the formation and functioning of 
nodules (Duodu et al.  1999 ; Nandwal et al.  2007 ; Ding and 
Oldroyd  2009 ). Ethylene may also be involved in several 
phases of symbiosis, including the initial response to bacte-
rial Nod factors, nodule development, senescence, and 
abscission (Csukasi et al.  2009 ; Patrick et al.  2009 ). Although 
not all legumes respond similarly, addition of exogenous eth-
ylene to most nodulating plants reduces the frequency of 
nodule primordia formation (Nukui et al.  2000 ; Oldroyd 
et al.  2001 ). Ethylene controls the epidermal responses dur-
ing the nodulation process and thus negatively regulates mul-
tiple epidermal responses in order to inhibit rhizobial 
infection (Nukui et al.  2004 ; Sugawara et al.  2006 ). Ethylene 
is also involved in the development of infection threads, espe-
cially the infection thread initiation and elongation (Gage 
 2004 ). In the presence of ethylene, the number of infected 
root hairs does not change; however, many infection threads 
are aborted and the epidermis or outer cortex and nodule pri-
mordia does not form (Lee and Larue  1992 ). This leads to a 
reduction in infection as well as in the number of nodules in 
legumes. It was shown that endogenous ethylene interferes 
with nodulation in legumes (Prayitno et al.  2006 ). Ethylene 
production signifi cantly increases in roots infected by 
 Rhizobium  or  Bradyrhizobium  and decreases the number of 
nodules that form on the infected plants (Gonzalez-Rizzo 
et al.  2006 ; Middleton et al.  2007 ). Due to the importance of 
the nodulation process, it is essential to regulate the ethylene 
level in the plant roots in order to achieve a successful symbi-
otic association (Lohar et al.  2009 ). By inhibiting ACC syn-
thase and reducing the production of ethylene, rhizobitoxine 
is responsible for sustained plant growth, development and 
productivity even under unfavorable conditions. For exam-
ple,  Bradyrhizobium elkanii  is known to suppress ethylene 
biosynthesis in the host plant  Mactroptilium atropurpureum  

and enhance nodulation by producing rhizobitoxine (Yuhashi 
et al.  2000 ; Yasuta et al.  2001 ). Similar to the rhizobitoxine 
effect, several bacteria including both rhizobia and free-liv-
ing bacteria containing ACC deaminase that are able to lower 
ethylene synthesis by degrading its precursor ACC have also 
been reported to promote nodulation in leguminous plants 
(Ma et al.  2004 ; Shaharoona et al.  2006a ; Saleem et al.  2007 ; 
Nascimento et al.  2012a ). Furthermore, it has been reported 
that ACC deaminase- producing rhizobial cells reduce ethyl-
ene concentrations in the infection threads and increase the 
persistence of infection threads by suppressing the defense 
signals in the plant cells (Ma et al.  2004 ). Therefore, ACC 
deaminase activity or rhizobitoxine production may be help-
ful in sustain plant growth and development by reducing 
stress-induced ethylene production and thereby increase the 
nitrogen supply for legume plants due to a more effective 
nodulation. This may have particularly interest when plants 
are growing under stressful conditions and when ethylene 
may reach to levels that may inhibit nodulation. For instance, 
several rhizobial species including  Mesorhizobium , 
 Sinorhizobium , and  Rhizobium  species were reported to pos-
sess ACC deaminase (Sullivan et al.  2002 ; Ma et al.  2003a ; 
Di Gregorio et al.  2006 ), which in some cases was shown to 
assist plant survival and metal uptake. 

 Moreover, inoculation of various plant species with those 
bacteria possessing ACC deaminase activity lead to increased 
root growth and/or enhanced formation of lateral roots and 
root hairs. For instance, strains of  R. leguminosarum  bv. 
 viciae  and  M. loti  expressing ACC deaminase increased the 
number of lateral roots in  Arabidopsis thaliana  (Contesto 
et al.  2008 ). In addition, an augment of the root system was 
observed in chickpea plants when inoculated with an ACC 
deaminase-transformed  M. ciceri  strain LMS-1 either in con-
trol or stress conditions (Nascimento et al.  2012a ,  c ). In addi-
tion, it is well established that changes in root morphology 
are common adaptation mechanisms of plants exposed to 
environmental stresses (Potters et al.  2007 ), such as extremes 
temperature, high salinity, drought, and nutrient defi ciency, a 
process in which phytohormones are known to play a key 
role (Spaepen et al.  2007 ). Furthermore, phytohormones, 
such as auxins and ethylene, play a role in plant responses to 
heavy-metals (Hong-Bo et al.  2010 ). Therefore, production 
of ACC deaminase and IAA is likely to be an important and 
effi cient way for rhizobia to manipulate their plant hosts 
especially under either biotic or abiotic stresses.  

9.2.4     Siderophores 

 Bacterial activities that facilitate the uptake of nutrients by 
plants can facilitate plant growth under stressful conditions. 
These activities include the production of siderophores and 
the solubilization of phosphates. 
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 Iron, an element essential for growth, is mostly unavail-
able for direct assimilation by plants, because it is mainly 
present in soil in a hard-to-solubilize mineral form, Fe 3+ . 
This form is also unavailable to bacteria which, in order to 
obtain iron for their growth and development, release low- 
molecular weight iron-binding molecules, or siderophores 
(Hilder and Kong  2010 ). Siderophore-producing bacteria 
can promote plant growth either directly by improving plant 
iron nutrition, or indirectly by inhibiting the growth of patho-
gens in the rhizosphere by limiting their iron availability 
(Glick  1995 ; Solano et al.  2008 ; Ma et al.  2011a ). Most rhi-
zobial biofertilizer strains are poor rhizospheric colonizers 
due to their inability to compete with the indigenous soil 
microfl ora for nutrients, the major one being iron, in the 
iron-limited soil environment (Verma and Long  1983 ). Some 
free-living rhizobia and bradyrhizobia not only produce and 
import their own siderophores but also benefi t from utiliza-
tion of heterologous siderophores (produced by other micro-
organisms) present in the soil. For example,  Bradyrhizobium 
japonicum  strain 61A152, a citrate producer (Guerinot et al. 
 1990 ), is able to utilize iron bound to hydroxamate-type sid-
erophores like ferrichrome and rhodotorulic acid, produced 
by soil fungi (Plessner et al.  1993 ). Utilization of heterolo-
gous siderophores is considered to be an important mecha-
nism to attain iron suffi ciency as well as in the suppression 
of plant pathogens. In fact, there are several reports of the 
synthesis of siderophores and its subsequent inhibition of 
pathogen growth in the rhizosphere by siderophore-produc-
ing rhizobia (Sessitsch et al.  2002 ; Chandra et al.  2007 ; 
Ahemad and Khan  2010 ). It was also reported that soil bac-
teria were induced to synthesize siderophores in heavy 
metal- contaminated soils because of Fe defi ciency (Imsande 
 1998 ; Glick  2003 ). Furthermore, the siderophores produced 
by soil bacteria, including rhizobia (Rajkumar and Freitas 
 2008 ; Wani et al.  2007d ,  2008a ,  b ), are used as metal chelat-
ing agents that regulate the availability of iron and in turns 
help plants to alleviate the toxicity of metals. Although 
plants are also able to produce siderophores, these sidero-
phores bind to iron with much lower affi nity compared to the 
ones produced by bacteria (Glick  2003 ). Therefore, micro-
bial siderophores play an important role in sequestering met-
als, as reported by Braud et al. ( 2009 ), where the production 
of pyoverdin and pyochelin by  Pseudomonas aeruginosa  
increased the concentrations of bioavailable Cr and Pb in the 
rhizosphere, thus making them available for maize uptake. 
Likewise, Tank and Saraf ( 2009 ) observed that the inocula-
tion with Ni resistant- siderophore producing  Pseudomonas  
increased the plant growth and reduced Ni uptake in chick-
pea plants. Considering all these data, it can be hypothesized 
that by inoculating the plants with siderophore-producing 
microbes, it should be possible to improve plant growth in 
metal-contaminated soils.  

9.2.5     Phosphorus 

 Phosphorus (P) is one of the major mineral nutrients required 
by plants whose defi ciency is often limiting for crop produc-
tion. In nature, P is found in a variety of organic and inorganic 
forms that are very poorly soluble. It is one of the less soluble 
elements in the natural environment, with less than 5 % of the 
total soil P content being available to plants (Dobbelaere 
et al.  2003 ). Furthermore, in acid soils and in mining or 
metal-polluted areas, most of P present in soil is immobilized 
and thus unavailable for plants (Rodriguez and Fraga  1999 ; 
Shilev et al.  2001 ). Many soil microorganisms can solubilize 
mineral P, generally via the production of organic acids (Zaidi 
et al.  2009 ), so it is thought that solubilization of P is more 
effi cient in basic soils than in naturally acid soils (Solano 
et al.  2008 ). It was estimated that these microorganisms con-
stitute about 20–40 % of the cultivable population of soil 
microorganisms and that a signifi cant proportion of them can 
be isolated from rhizosphere soil (Chabot et al.  1993 ). 

 According to Rodríguez and Fraga ( 1999 ), the genus 
 Rhizobium  is one of the major P solubilizers. Like  Rhizobium  
species, other rhizobia also possess this trait, suggesting that 
this trait is a common feature among rhizobia. For example, 
isolates belonging to the genera  Bradyrhizobium , 
 Mesorhizobium ,  Ensifer , and  Rhizobium  all have the ability 
to solubilize inorganic and organic P under in vitro condi-
tions (Alikhani et al.  2006 ). However, these rhizobial isolates 
differ in their P-solubilizing ability. In this study, 
 R. leguminosarum  bv.  viciae  was the most prominent P solu-
bilizer, followed by  M. ciceri ,  M. mediterraneum ,  E. meliloti , 
and  R. leguminosarum  bv.  phaseoli . Interestingly, none of 
the 70 strains of  Bradyrhizobium  tested were able to solubi-
lize inorganic P, which confi rms previous studies (Antoun 
et al.  1998 ). Also, the two species nodulating chickpea,  
M. ciceri  and  M. mediterraneum , are known as good phos-
phate solubilizers (Rivas et al.  2006 ). The results of in vitro 
tests for P solubilization are, however, not always related to 
effects in vivo, which makes the screening for PGP activity 
diffi cult. On the other hand, the results obtained in vitro are 
sometimes similar to the results obtained following plant 
inoculation. For example, the most effi cient P solubilizer 
strain, PECA21, selected among several rhizobia belonging 
to different genera, as expected improved the P content of 
chickpea and barley plants as well as their dry matter, N, K, 
Ca, and Mg content (Peix et al.  2001 ). 

 In addition, it was also suggested that co-inoculation with 
P-solubilizing bacteria and rhizobia may enhance phosphate 
availability and thus improve the plant growth. For example, 
Taurian et al. ( 2013 ) verifi ed that co-inoculation with a native 
P-solubilizing strain  Pantoea  sp. J49 and  Bradyrhizobium  
resulted in promotion of peanut plant growth mostly 
probably due to PGPB’s ability to solubilize phosphate. 
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Similarly, co-inoculation with  Rhizobium  and  Bacillus  sp. 
enhanced the availability of phosphate and exerted positive 
effects on the growth and yield of wheat (Akhtar et al.  2013 ). 
Furthermore, co-inoculation with  Pseudomonas  solubiliz-
ing-P and rhizobia resulted in some positive adaptative 
responses of maize plants under salinity (Bano and Fatima 
 2009 ). Another example of the role of P solubilization was 
observed by Wani et al. ( 2007c ) where the high P solubiliza-
tion (via pH reduction) by  Bacillus  sp. PSB1 strain resulted 
in the mobilization of large amounts of both Pb and Zn. 
Altogether, solubilization of phosphate through soil bacteria 
may be useful to help plants in P-acquisition and thus pro-
moting plant growth and vigor, especially in soils where P is 
scarce or limited due to an imbalance with other nutrients, as in 
the case of hydrocarbon contaminated soils (Hall et al.  2011 ).   

9.3     Lowering Ethylene Levels 
in Stressed Plants 

 As mentioned above, ethylene levels in plant tissues increase 
as part of a plant’s response to different types of stresses, 
such as extreme temperatures, water stress, ultraviolet light, 
insect damage, disease, and mechanical wounding, all of 
which may cause some stress symptoms as well as inducing 
defense responses in the plant. In addition, ethylene has been 
reported as an autoregulator of the nodulation process 
(Oldroyd and Downie  2008 ). It is well established that high 
concentrations of ACC or ethylene in root tissues negatively 
affect the nodulation process in legume plants (Ma et al. 
 2004 ; Middleton et al.  2007 ). On the other hand, inhibitors of 
ethylene synthesis or its physiological activity enhances nod-
ulation (Tirichine et al.  2006 ). These studies clearly demon-
strate that ethylene acts as a negative regulator of nodulation, 
and reduction in ethylene concentration has a stimulatory 
effect on the formation and development of nodules in 
legumes (Ding and Oldroyd  2009 ). Thus, a potential target 
for normal or extreme root growth is to regulate or limit the 
biosynthesis of ethylene. This can be achieved by the use of 
soil microbes with the ability to reduce ethylene levels in 
plant roots, through different mechanisms. In rhizobia, two 
alternative mechanisms to lower ethylene levels in plant roots 
have been identifi ed: (1) inhibition of the enzyme ACC syn-
thase or (2) cleavage of ACC into ammonia and α-ketobutyrate. 

9.3.1     Rhizobitoxine 

 Rhizobitoxine, an enol-ether amino acid [2-amino-4-(2-
amino- 3-hydroxypropoxy)-trans-3-butenoic acid] is a natu-
rally occurring structural analog of the commonly used 
ethylene inhibitor aminoethoxyvinylglycine (AVG). In 
recent years, rhizobitoxine has been implicated in inducing a 
positive effect on the legume–rhizobium symbiosis although 

when it was fi rst discovered it was regarded as a phytotoxin. 
Rhizobitoxine blocks ethylene synthesis in two ways; fi rst, it 
inhibits β-cystathionase necessary for methionine biosynthe-
sis (Sugawara et al.  2006 ) and second, it inhibits the enzyme 
ACC synthase in the ethylene biosynthesis pathway (Yasuta 
et al.  1999 ; Yuhashi et al.  2000 ; Sugawara et al.  2006 ; 
Tittabutr et al.  2008 ). By inhibiting ACC synthase, rhizobi-
toxine reduces the production of ethylene in plant roots. 

 In the genus  Bradyrhizobium , slow-growing  Bradyrhi-
zobium  strains generally produce rhizobitoxine (Minamisawa 
et al.  1997 ). Interestingly, among bradyrhizobia able to pro-
duce rhizobitoxine,  B. elkanii  accumulates rhizobitoxine in 
cultures and in nodules, while  B. japonicum  does not 
(Kuykendall et al.  1992 ). Rhizobial spp. which produce rhi-
zobitoxine (Owens et al.  1972 ; Ratcliff and Denison  2009 ), 
have been found to be relatively more effective in enhancing 
nodulation and competitiveness for nodule formation (Duodu 
et al.  1999 ; Okazaki et al.  2003 ,  2004 ; Sugawara et al.  2006 ). 
For example, enhanced nodulation and competitiveness of 
 B. elkanii  variants producing rhizobitoxine has been estab-
lished in  Amphicarpaea edgeworthii  and  Vigna radiata  
(Parker and Peters  2001 ) and in  Macroptilium atropurpu-
reum  (Yuhashi et al.  2000 ). Rhizobitoxine not only promotes 
nodulation but also benefi ts rhizobia living inside nodules by 
allowing more rhizobial reproduction or by enhancing the 
synthesis of poly-3-hydroxybutyrate to support lateral repro-
duction (Ruan and Peters  1992 ; Ratcliff et al.  2008 ). 
However, the effect of rhizobitoxine on nodulation has been 
contradictory and is both legume- and rhizobia- dependent. 
For example, nodulation of  Glycine max  is generally not sen-
sitive to ethylene (Xie et al.  1996 ; Schmidt et al.  1999 ), while 
nodulation of  Vigna radiata  is sensitive (Duodu et al.  1999 ). 
Other reports have shown that there is not a signifi cant differ-
ence in nodule number between plants inoculated with  B. 
elkanii  USDA61 and plants inoculated with rhizobitoxine-
defi cient mutants during nodulation of  G. max ,  G. soja ,  
V. unguiculata , and  M. atropurpureum  (Xiong and Fuhrmann 
 1996 ). It is possible that variances in the performance of rhi-
zobitoxine may be due to the differences in the abilities of 
the legume genotypes and rhizobial strains forming symbio-
sis with their host plant. In contrast, the rhizobitoxine pro-
ducing strain BS KT-24 is considered to exhibit better 
survival and nodulation protection besides competitiveness 
for pigeon pea and other legumes grown under abiotic stress 
(Kanika et al.  2010 ). From this perspective, rhizobitoxine is 
thereby responsible for sustained plant growth, development, 
and productivity even under unfavorable conditions. 
Rhizobitoxine production by rhizobium is of interest for its 
application in the development of rhizobial inoculants as a 
successful rhizobial inoculant not only has to be a superior 
nitrogen fi xer but also has to possess greater competitiveness 
when compared to indigenous strains. Overall, rhizobitox-
ine-producing strains exhibit better survival, nodulation, and 
competitiveness for legumes grown under abiotic stress.  
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9.3.2     ACC Deaminase 

 ACC deaminase (EC 4.1.99.1) is a multimeric sulfhdryl 
enzyme with a monomeric subunit molecular mass of 
approximately 35–42 kDa. This enzyme can cleave ACC 
into ammonia and α-ketobutyrate (Honma and Shimomura 
 1978 ). Moreover, it is widespread among a varied range of 
bacterial and fungal strains, and may also be found in some 
plants (Glick et al.  2007a ; McDonnell et al.  2009 ). In some 
strains, the ACC deaminase (encoded by  acdS  gene) has 
been isolated and characterized. A wide range in the level of 
ACC deaminase is found within different bacteria. For exam-
ple, rhizobia that express the enzyme ACC deaminase typi-
cally exhibit only a low level of enzyme activity compared 
with free-living plant growth-promoting bacteria (i.e., 10- to 
30-fold less than free-living bacteria). This suggests that 
there may be at least two types of ACC deaminase-producing 
bacteria (Glick and Stearns  2011 ). There are free-living bac-
teria that bind relatively nonspecifi cally to plant roots and 
have a high level of ACC deaminase activity, protecting 
plants from different stresses by lowering ethylene levels 
throughout the plant. Alternatively, rhizobia bind tightly to 
the roots of specifi c plants and have a low level of enzyme 
activity that facilitates nodulation by locally lowering ethyl-
ene levels (Ma et al.  2003b ; Okazaki et al.  2004 ). Despite the 
difference in the level of ACC deaminase activity, the ACC 
deaminase activity in rhizobial strains is suffi cient to facili-
tate the nodulation process in the host plants; however, it is 
generally insuffi cient to decrease the high levels of ethylene 
formed in plant roots due to various environmental stresses. 
Even within rhizobial strains, which have been identifi ed as 
expressing ACC deaminase activity under free-living condi-
tions, the extent of ACC deaminase activity in different 
strains of rhizobia varies greatly (Duan et al.  2009 ). 

 Genes encoding ACC deaminase have been reported in 
many rhizobial species (Kaneko et al.  2000 ,  2002 ; Sullivan 
et al.  2002 ; Ma et al.  2003a ,  2004 ; Nukui et al.  2004 ; Contesto 
et al.  2008 ; Duan et al.  2009 ; Farajzadeh et al.  2010 ; 
Nascimento et al.  2012b ). Although the presence of the  acdS  
gene in several rhizobia strains, not all strains display enzyme 
activity when it is induced by ACC, suggesting diverse types 
of regulation or requires different elements for induction. 
Presently two different modes of regulation of the  acdS  gene 
have been hypothesized. One, and apparently the most com-
mon among rhizobacteria, is through the leucine-responsive 
regulatory protein-like gene (lrpL) that is present in several 
 Rhizobium  spp. strains (Ma et al.  2003b ,  2004 ). Other, and 
particularly reported only in strains belonging to the genus 
 Mesorhizobium , is through the transcriptional regulation of 
the NifA2 protein (Nukui et al.  2006 ) exclusively under sym-
biotic conditions (Uchiumi et al.  2004 ; Nukui et al.  2006 ; 
Nascimento et al .   2012b ). Nevertheless, in both cases the 
ACC deaminase knockout mutant strains showed a decreased 

ability to nodulate its host plant when compared to its respec-
tive wild-type strain (Ma et al.  2003b ; Uchiumi et al.  2004 ), 
indicating that the presence of such gene improves symbiotic 
effi ciency and increases nodulation in legumes. 

 Furthermore, an improvement of both nodulation effi -
ciency and bacterial competiveness was obtained in  Lotus  
spp. plants when they were inoculated with strain  M. loti  
MAFF303099 that had been genetically transformed to con-
stitutively express an exogenous copy of the ACC deaminase 
gene (Conforte et al .   2010 ). Similarly, expression of an exog-
enous  acdS  gene in either  E. meliloti  strains or  Rhizobium  sp. 
strain TAL1145 increased their nodulation abilities in alfalfa 
and  Leucaena leucocephala , respectively (Ma et al.  2004 ; 
Tittabutr et al.  2008 ), suggesting that modulation of the ethyl-
ene levels in root tissues through ACC deaminase is an effec-
tive strategy to increase nodulation and competitiveness of 
the bacterium. Another strategy to increase nodulation is the 
use of a combination of rhizobial strains and ACC deaminase- 
containing rhizobacteria. For example, Remans et al. ( 2007 ) 
used specifi c PGPB mutant strains for co- inoculation along 
with rhizobia and observed that PGPB ACC deaminase activ-
ity played an important role in enhancing nodulation in com-
mon beans. Further, Shaharoona et al. ( 2006a ) reported that 
co-inoculation with a PGPB carrying ACC deaminase activ-
ity and  Bradyrhizobium japonicum  resulted in up to 48 % bet-
ter nodulation in mung bean plants compared with  B. 
japonicum  alone. Besides co-inoculation with ACC deami-
nase-containing PGPB and rhizobia promotes nodulation, it 
was also reported that by adjusting ethylene levels, an 
improvement of plant growth and yield was obtained in dif-
ferent plants even when under stress conditions. For example, 
co-inoculation of plants with rhizobia and ACC deaminase-
containing rhizobacteria strains enhanced nodulation and 
plant growth (Dey et al.  2004 ) even under stress conditions 
(Ahmad et al.  2011 ). Similar results were obtained with 
chickpea and lentil plants when inoculated with a consortium 
of rhizobia and rhizospheric bacteria with high ACC deami-
nase activity (Shahzad et al.  2010 ; Zahir et al.  2011 ). 
Furthermore, plants inoculated with bacteria containing ACC 
deaminase have been found resistant to the harmful effects of 
stress ethylene, generated under undesirable environments, 
including in the presence of metals (e.g., Grichko and Glick 
 2001 ; Mayak et al.  2004 ; Reed and Glick  2005 ; Cheng et al. 
 2007 ; Hao et al.  2007 ; Bonfante and Anca  2009 ; Belimov 
et al.  2009 ). Taking all these results into account, it is possible 
to conclude that PGPB containing ACC deaminase can be 
employed to improve the resistance of plants to environmen-
tal stresses by lowering the content of stress-induced ethylene 
in plants. Furthermore, rhizobia expressing ACC deaminase 
naturally or through genetically engineering, or in co-inocu-
lation with ACC deaminase- containing rhizobacteria are 
more competitive and increase nodulation in legumes, and 
consequently contribute to plant growth and development.   
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9.4     Phytoremediation with Rhizobia 

9.4.1     Examples 

 At low concentrations, many metals and metalloids can serve 
as important components in life processes, often involved in 
important enzyme functions. However, above certain thresh-
old concentrations, these metals can become toxic and induce 
morphological and physiological changes in microbial com-
munities (Frostegard et al.  1996 ), to nitrogen fi xers (Chaudri 
et al.  2000 ; Pereira et al.  2006a ; Paudyal et al.  2007 ) and to 
the growth and development of various agronomic crops 
(Bose and Bhattacharyya  2008 ; Liu et al.  2009 ) including 
legumes (Wani et al.  2007a ,  2008a ). It was reported that the 
presence of metals in high concentration in soils has substan-
tial deleterious effects on both survival and nitrogen- fi xing 
effi ciency of symbiotic rhizobia (Alexander et al.  1999 ; 
Broos et al.  2004 ; Younis  2007 ). For example, it was observed 
that there was a reduction in the population of  Rhizobium 
leguminosarum  bv.  trifolii  able to form a symbiosis with 
white clover ( Trifolium repens  L.) grown in soil polluted with 
metals (McGrath et al.  1988 ). In other studies, nitrogen-fi x-
ing rhizobia could survive in metal contaminated soils but 
failed to fi x N with clover plants (Giller et al.  1989 ; Hirsch 
et al.  1993 ). In addition, nitrogen fi xation decayed signifi -
cantly in white clover (Broos et al.  2004 ), chickpea (Wani 
et al.  2007a ), greengram (Wani et al.  2007b ), pea (Wani et al. 
 2008c ), and lentil (Wani et al.  2008d ) when grown in soils 
treated with metals. Nevertheless, reports of changes in rhi-
zobial populations due to high concentration of metals as 
well as effects of metals on legume plants are confl icting 
(Wani et al.  2008a ,  b ). For instance, Paudyal et al. ( 2007 ) 
revealed that aluminum, even in small concentrations had 
negative effects on rhizobial growth, while other studies only 
observed inhibition of rhizobial strains multiplication at ele-
vated Al concentrations (Wood and Cooper  1988 ; Chaudri 
et al.  1993 ; Broos et al.  2004 ). In addition, following metals 
uptake by plants and translocation to various organs, they can 
directly interact with cellular components and disrupt meta-
bolic activities causing cellular injury or even plant death. 
For example, cadmium has an adverse effect on legume nod-
ule metabolism even at low concentrations (Pereira et al. 
 2006b ; Younis  2007 ), and it inhibits nitrogenase activity as 
well as affects legume metabolic activities (Balestrasse et al. 
 2004 ; Bibi and Hussain  2005 ; Noriega et al.  2007 ). Although 
toxic levels of metals are known to reduce the formation of 
root nodules in legumes as well as the nitrogen fi xation effi -
ciency, once symbiosis is established, metals may accumu-
late in nodules and therefore be an alternative and less 
expensive method to remove metals from the soil. 

 Because of the importance of legumes and their associ-
ated rhizobial bacteria as components of the biogeochemical 

cycles in agricultural and natural ecosystems, it is important 
to use both symbiotic partners with some degree of tolerance 
to metals to achieve a successful symbiotic interaction in 
metal contaminated soils. Of the two symbiotically interact-
ing partners, rhizobia in particular is reported to tolerate 
higher levels of metals (Wani et al.  2009 ) and hence could 
help to remediate heavy metal polluted soils besides provid-
ing a good system to understand metal–microbe interactions 
(Ike et al.  2007 ). Since nitrogen fi xation is considered to be 
the most important trait of rhizobia compared to other 
microbes used in metal phytoremediation, metal tolerance 
ensures rhizobia survival and formation of effective legume, 
and therefore improved plant growth under such conditions. 

 Legumes have been found to be the dominant portion of 
the plant species that survive in long-term metal- contaminated 
soils (Del Rio et al.  2002 ). Some legume plants, including 
species of the genera  Vicia ,  Cytisus ,  Astragalus ,  Lupinus  are 
known to grow on soils polluted by relatively high concen-
trations of metals (Prasad and Freitas  2003 ). For instance, 
legumes have been identifi ed as naturally occurring pioneer 
species on As contaminated sites (Carrasco et al.  2005 ; 
Reichman  2007 ) and free-living rhizobia are commonly 
found in soils with high As (Carrasco et al.  2005 ). Although 
root nodulation of inoculated legumes grown in As contami-
nated soil is generally signifi cantly reduced or absent 
(Carrasco et al.  2005 ; Mench et al.  2006 ), the rhizobium–
legume interaction has been used to remediate soils contami-
nated with As and other metals (Pajuelo et al.  2008a ; Mandal 
et al.  2008 ). Alfalfa ( Medicago sativa  L.), the most widely 
grown perennial legume in the world, is a deep-rooted peren-
nial species that may have strong potential for the remedia-
tion of a number of organic contaminants (Muratova et al. 
 2003 ; Chekol et al.  2004 ), mainly due to its ability to grow 
and uptake heavy metals in low pH soils (Peralta-Videa et al. 
 2002 ,  2004 ). For example, results using the symbiotic 
alfalfa–rhizobium association suggest that this relationship 
can stimulate the rhizosphere microfl ora to degrade polycy-
clic aromatic hydrocarbons (PAH) and its application may be 
a promising bioremediation strategy for aged PAH- 
contaminated soils (Teng et al.  2011 ). In spite of some 
legumes being tolerant to various metals, most of them fall 
into the category of metal excluders that accumulate only 
very low concentrations of metals in shoots and an almost 
undetectable amount in grains (Wani et al.  2008a ). In fact, 
plants used to clean up metal polluted soils should exhibit 
two basic properties: (1) they must be able to take up and 
accumulate high concentration of metals, and (2) they must 
be able to produce a large biomass. 

 Rhizobia, particularly those with both increase metal 
resistance and plant growth-promoting abilities are of great 
interest for their ability to help in the phytoremediation of 
metals by increasing plant growth and development. To 
begin with, several reports indicate that rhizobial strains 
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belonging to different genera including  Azorhizobium , 
 Bradyrhizobium ,  Mesorhizobium ,  Ensifer , and  Rhizobium  
are metal resistant when they are isolated from metal con-
taminated soils (Figueira et al.  2005 ; Zheng et al.  2005 ; 
Chaintreuil et al.  2007 ; Wani et al.  2008a ,  2009 ; Mandal 
et al.  2008 ; Pajuelo et al.  2008a ; Vidal et al.  2009 ). In fact, 
metal tolerant rhizobial strains can effectively nodulate their 
host plant and increase the metal levels in the plant 
(Martensson and Witter  1990 ; Obbard and Jones  1993 ). 
More recently, it has been shown that a  Ensifer meliloti  strain 
with high tolerance to As is able to form effective symbiosis 
with  Medicago sativa  (Pajuelo et al.  2008a ). In other studies, 
rhizobial species isolated from nodules of greengram 
( Bradyrhizobium  spp.), lentil ( Rhizobium  spp.), chickpea 
( Mesorhizobium  spp.), and pea ( Rhizobium  spp.) have shown 
greater tolerance to one or more metals and, when tested in a 
greenhouse environment, substantially increased the growth, 
symbiotic properties, and nutrient uptake of inoculated 
legumes grown in metal treated soils (Wani et al.  2008a ,  b ,  d , 
 2009 ). Furthermore, a substantial reduction in metal uptake 
by various plant organs was also observed in the inoculated 
legumes, which in turn decreased the metal toxicity and con-
sequently improved the overall performance of legumes in 
metal contaminated soils. In addition, in  Mimosa pudica , the 
uptake of Pb, Cu, and Cd was enhanced in inoculated plants 
with  Cupriavidus taiwanensis  compared to non-inoculated 
plants (Chen et al.  2008 ) revealing the effi cacy of using nod-
ulated plants to remove metals. Altogether, nodules could 
serve as metal buffer areas which provide plants with an 
extra place to stock metals and reduce the risk of direct expo-
sure of the plant to metals, suggesting that in addition to fi x-
ing nitrogen, the rhizobial strains could also assist plant 
growth via adsorption and tolerance to metals (Mamaril et al. 
 1997 ). In addition, Wani and Khan ( 2013 ) isolated a rhizo-
bium strain RL9 possessing not only high tolerance to sev-
eral heavy metals but also plant growth-promoting traits, 
such as production of IAA and siderophores. It was observed 
that lentil plants inoculated with this strain and grown in the 
presence of nickel had higher growth, nodulation, chloro-
phyll, leghemoglobin, nitrogen content, seed protein, and 
yield compared to plants grown in the absence of bioinocu-
lant. Also, strain RL9 decreased the nickel uptake in lentil 
plants compared to plants grown in the absence of bioinocu-
lant. Overall, it appears those strains that nodulate their hosts 
may increase metal accumulation in root nodules, while 
those that remain in the rhizosphere may reduce metal toxic-
ity in the rhizosphere through different mechanisms. For 
example, it was suggested that released exopolysaccharides 
(EPS) could bind to a variety of metals, such as Mn(II), and 
consequently serve as a bioremediation tool, as reported for 
zinc uptake by hyperaccumulator plant  Thlaspi caerules-
cens  (Lopareva and Goncharova  2007 ). The EPS is consid-
ered one of the factors involved in protection of rhizobial 

species from stressed environments (Lopareva and 
Goncharova  2007 ). 

 In some cases, increased biomass in inoculated plants is 
also due to plant growth-promoting traits expressed by the 
bacterial partners during symbiosis. Thus, the potential of 
rhizobia in metal resistance/reduction and their ability to 
facilitate legume growth by several mechanisms other than 
nitrogen fi xation in metal-stressed soil make them a suitable 
choice for cleanup of the metal contaminated sites and hence 
may further help in reducing problems associated with the 
legumes when grown in ruined soils. 

 In a recent study, a screening of rhizobacteria isolated 
from maize ( Zea mays  L.) in Rio Grande do Sul State (South 
Brazil) revealed that the positive effects of these strains on 
shoot and root weight and nutrient uptake of maize plants 
were attributed to IAA production, phosphate solubilization, 
or even other less known traits that stimulate plant growth 
(Arruda et al.  2013 ). Many PGPB, including rhizobia, are 
reported to possess two or more plant growth-promoting 
properties; these traits may interact synergistically, e.g., IAA 
synthesis and ACC deaminase, IAA synthesis and P solubi-
lization or IAA synthesis and siderophore production. 
However, precisely how this occurs is as yet unclear. Also, 
the regulation of plant hormone levels, such as either by 
reducing the high levels of ethylene or by the synthesis of 
auxin or cytokinins, may result in plant growth promotion, 
since they are implicated in virtually all aspects of plant 
growth and development, ranging from seed germination to 
shoot growth and leaf abscission. In fact, apparently both 
mechanisms are intimately linked. The bacterial IAA pro-
duction stimulates the activity of the enzyme ACC deami-
nase involved in the degradation of the ethylene precursor 
ACC and in turn the lowering of ethylene levels in plant roots 
also relieves the suppression of auxin response factor synthe-
sis, which acting together can directly or indirectly increases 
plant growth (Glick  2005 ; Lugtenberg and Kamilova  2009 ). 
In addition, there is substantial evidence suggesting that rhi-
zobacteria containing ACC deaminase activity protect plants 
from both biotic and abiotic stresses and dramatically 
increase plant biomass; which is a desirable parameter for 
plants to be used for phytoremediation (Burd et al.  1998 ). It 
was also reported that ACC deaminase-containing rhizobac-
terial species can assist nodulation by  Rhizobium  (Belimov 
et al.  2009 ) and exhibit an increase in plant biomass as well 
as longer roots in spite of growth inhibition caused by heavy 
metals (Di Gregorio et al.  2006 ; Safronova et al.  2006 ). In 
addition, ACC deaminase-containing bacteria, by lowering 
growth inhibitory ethylene concentrations, could facilitate 
plant growth in the presence of different metals and organic 
contaminants (Glick  2003 ; Glick et al.  2007a ; Glick and 
Stearns  2011 ), suggesting the importance of the use of bacte-
ria with ACC deaminase activity to facilitate the phytoreme-
diation of metals. All these results suggested that rhizobia 
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with ACC deaminase activity may be valuable for use in 
phytoremediation due to their enhanced nodulation abilities 
and positive effects on plant growth. Under stressful condi-
tions, as the case of the presence of high concentration of 
metals, the IAA overproducing rhizobial strains by increas-
ing the root system of plants grown in metal contaminated 
soils can also promote nodulation and consequently, to fi x 
N. For example, the production of IAA by  Agrobacterium 
tumefaciens  CCNWGS0286 decreases in the presence of 
copper and zinc, but detectable levels of IAA were obtained 
in the presence of 2.0 mM Zn 2+. . Moreover, the legume 
growth was higher when inoculated with the wild-type strain 
than when inoculated  A. tumefaciens  mutant strain with 
lower IAA production even in the presence of Zn 2+  (Hao 
et al.  2012 ). On the other hand, by providing iron to plants, 
microbial siderophores help plants to alleviate the toxicity of 
metals, e.g., as reported for As uptake by fern (Wang et al. 
 2007 ). For example, Roy and Chakrabartty ( 2000 ) evaluated 
the production of siderophores by a  Rhizobium  sp. infl u-
enced by the concentration of Al 3+ . Besides increasing iron 
availability, rhizobial siderophores also reduced Al 3+  toxicity 
to the bacterium through the formation of a complex mecha-
nism. Similarly, Rogers et al. ( 2001 ) proved the effectiveness 
of the hydroxamate siderophore vicibactin produced by 
 R. leguminosarum  bv.  viciae  in alleviating aluminum toxicity. 

 As a result of these properties, PGPB when applied to 
seeds or incorporated into soil reduce the toxicity of heavy 
metals (Wani et al.  2007c ; Cardón et al.  2010 ) and conse-
quently enhance the growth and yield of plants (Wani et al. 
 2008d ). Therefore, synthesis of IAA and siderophores, ACC 
deaminase and P-solubilization are promising traits that not 
only effectively promote plant growth but also are essential 
to the legume–rhizobia symbioses through effective nodula-
tion and nitrogen fi xation. Besides rhizobia ability to fi x N, 
all these processes can act together and therefore may 
enhance phytoremediation, by facilitate legume grow in 
metal-stressed soils, which became the basis of using this 
symbiosis for phytoremediation.  

9.4.2     Interaction with Mycorrhizae 
and Bacterial Endophytes 

 The term “endophytic bacteria” refers to bacteria living 
within plant tissues in contrast to rhizospheric bacteria living 
on or around the plant roots. Some endophytes are diazotro-
phic and can provide fi xed nitrogen to the host plant 
(Reinhold-Hurek and Hurek  1998 ). Interestingly, a study of 
the rhizospheric bacteria and shoot endophytes of the nickel 
hyperaccumulator  Thlaspi goesingense  revealed that the 
 species in the two communities were strikingly different 
(Idris et al.  2004 ). Moreover, many reports attest to the role 
of rhizospheric bacteria in phytoremediation, but bacterial 

endophytes offer several advantages over rhizospheric 
 bacteria. A rhizospheric population is diffi cult to control, and 
competition between microbes often reduces the numbers of 
the desired strains unless metabolism of the pollutant is 
selective for the added bacterium. Endophytes, in contrast, 
live in the internal tissues of the plant, and their population is 
selected or controlled by the plant. Therefore, the use of 
endophytes that naturally inhabit the plant would reduce the 
problem of competition. 

 Bacterial endophytes possess similar mechanisms to rhi-
zospheric PGPB (Becerra-Castro et al.  2011 ; He et al.  2013 ), 
but can establish a more intimate association with plants and 
in turn they may promote plant growth and development in a 
higher extent than the rhizospheric bacteria. For instance, 
Fürnkranz et al. ( 2012 ) reported bacterial endophytes suit-
able as inoculants for plant growth promotion, biocontrol, 
and enhancing stress tolerance in Styrian oil pumpkins. The 
bacterial endophytes can assist their host plants in improving 
plant growth through various mechanisms including the pro-
duction of plant growth-promoting substances such as IAA, 
siderophores, ACC deaminase, or phosphate solubilization 
(Ryan et al.  2008 ). Likewise to the benefi ts of these features 
shown by PGPB in promotion of plant growth under different 
environmental stress conditions, bacterial endophytes pos-
sessing these plant growth-promoting traits may have an 
extraordinary role in the facilitation of phytoremediation. 
Furthermore, the bacterial endophytes seem to be more toler-
ant to higher metals concentrations than the rhizospheric iso-
lates. In fact, several studies showing the high resistance to 
diverse metals of bacterial endophytes as well as their ability 
to help plants to overcome the negative effects of metals tox-
icity makes them one of the most promising agents to facili-
tate phytoremediation (Luo et al.  2011 ; Li et al.  2012 ). For 
example, some bacterial endophytes were found to be able to 
produce IAA to improve host plant growth in polluted soils 
and enhanced the phytoremediation (Sheng et al.  2008 ; Chen 
et al.  2010 ; Zhang et al.  2011 ). Moreover, certain bacterial 
endophytes have also been shown to alter metal availability 
to the plant by producing siderophores and organic acids 
(Saravanan et al.  2007 ; Long et al.  2011 ). It was also reported 
that siderophores produced by  Streptomyces tendae  F4 sig-
nifi cantly enhanced uptake of Cd by sunfl ower plant (Dimkpa 
et al.  2009 ). Zhang et al. ( 2011 ) have confi rmed that an ACC 
deaminase-producing endophytic bacteria and Pb-resistant 
conferred metal tolerance onto plants by lowering the synthe-
sis of metal-induced stress ethylene and promoted the growth 
of rape. Similar results were obtained by Ma et al. ( 2011b ) 
with ACC deaminase producing bacterial endophytes inocu-
lated in  Allysusm serpyllifolium  and  B. juncea  grown under 
Ni stress. Also, the bacterial endophyte  Pantoea  sp. Jp3-3 
enhanced Cu tolerance in guinea grass (Huo et al.  2012 ). 

 It was reported that co-inoculation of rhizobia and bacte-
rial endophytes suppressed  Phytophthora  root rot in chickpea 
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plants, suggesting that dual-inoculation with these microor-
ganisms may act as biocontrol agents and therefore an alter-
native to the use of pesticides (Misk and Franco  2011 ). So, it 
is possible that bacterial endophytes used in combination 
with rhizobia may also assist in phytoremediation of metals. 
Considering the bacterial endophytes’ abilities to tolerate and 
transform toxic to less toxic forms of metals, it is possible 
that a plant–microbe partnership including symbiotic nitro-
gen fi xers and some endophytic bacteria may be an alterna-
tive option to traditional methods of phytoremediation 
(Pajuelo et al.  2008b ; Rajkumar et al.  2009 ). 

 Another benefi cial association is the one that occurs 
between plants and arbuscular mycorrhizal (AM) fungi, 
which plays a major role in terrestrial environments and in 
the sustainability of agro-ecosystems. Several processes with 
regard to plant stress resistance and the provision of mineral 
nutrients are related to AM fungi (Fester and Sawers  2011 ). 
Today, it has been estimated that 80 % of all plant species 
can be colonized by AM fungi (Öpik et al.  2006 ). In this 
sense, the majority of legumes form symbiotic associations 
with both P acquiring AM fungi and atmospheric N-fi xing 
rhizobia, which are of agronomic and ecological importance 
(Vance  2001 ; Scheublin and van der Heijden  2006 ). The tri-
partite symbiosis between the host plant, AM fungi, and 
N-fi xing bacteria can affect the uptake of N by the host plant. 
In such symbiotic association, N and P are supplied by the 
micro-symbionts to the host plant. Accordingly, the associa-
tion between each micro-symbiont is affected by the interac-
tion effects between the host plant and the micro- symbionts 
as well as by the interactions effects between both micro-
symbionts. The synergistic benefi ts between AM fungi and 
rhizobia on plant growth and development have been reported 
in several legume plants (Azcón et al.  1991 ; Andrade et al. 
 2004 ; Ahmed et al.  2006 ; Yasmeen et al.  2012 ). Several 
reports revealed that dual-inoculation improves plant growth 
compared to single and non- inoculation (Gong et al.  2012 ). 
For example, plant height, leaf number, pod number, plant 
biomass, and shoot and root P concentration increased sig-
nifi cantly as a consequence of mycorrhizal infection (Ahmed 
et al.  2006 ). Furthermore, a study conducted by Azcón et al. 
( 1991 ) revealed that most of the combinations (different AM 
fungal species with  Ensifer meliloti ) increased the concen-
tration and/or content of N in  Medicago sativa  shoots but 
effectiveness was dependent on the AM fungal species. 
These data clearly indicate that the best performance on pro-
motion of plants growth depends upon the consortium cho-
sen. In addition, AM fungi are able to alleviate the effects of 
different stresses on plant growth and yield production by 
signifi cantly increasing the uptake of water and nutrients 
including N by the host plant (Miransari et al.  2007 ,  2008 , 
 2009a ,  b ; Daei et al.  2009 ). For example, Andrade et al. 
( 2010 ) recently assessed the infl uence of AMF on the growth 
of coffee seedlings under Cu and Zn stress and found that 

mycorrhizal coffee seedlings grew faster, exhibited improved 
mineral nutrition (P and K) and had higher yields than non-
mycorrhizal seedlings. In addition, it was also observed that 
higher P accumulation in plant tissues through AM fungi 
colonization led to reduction in internal Mn toxicity through 
ATP-dependent sequestration of Mn or formation of low-
solubility P-Mn complexes (Nogueira et al.  2007 ). While 
AM fungi can often colonize plant roots in metal contami-
nated soil (Jamal et al.  2002 ; Vivas et al.  2003 ,  2006 ; Vogel-
Mikus et al.  2005 ), their effects on metal uptake by plants are 
confl icting. In slightly metal contaminated soils, most stud-
ies show that AM fungi increased shoot uptake of metals 
(Weissenhorn et al.  1995 ), while in severely contaminated 
soil, AM fungi typically reduce shoot metal concentration 
and protect plants against the harmful effects of metals 
(Malcova et al.  2003 ). On the other hand, AM fungi increased 
As uptake in the hyperaccumulating fern  Pteris vittata  
(Trotta et al.  2006 ) via the phosphate uptake system (Wang 
et al.  2002 ). Thus, the benefi ts of mycorrhizae may be asso-
ciated with metal tolerance, and also with metal plant nutri-
tion. In degraded and contaminated soils that are often poor 
in nutrients and with low water holding capacity, mycorrhi-
zae formation would be of great importance. In addition, AM 
fungi may also reduce metal availability and toxicity to the 
plant host by the precipitation of metal oxalates in their inter-
cellular spaces. For example, González-Guerrero et al. 
( 2008 ) reported that AM fungi accumulated heavy metals in 
their vacuoles leading to a reduction of the toxic effects of 
heavy metals in plants. Also the “dilution effect” has been 
pointed out as a mechanism to reduce the metal phytotoxic-
ity in plants by the AM fungi, which consist in AM fungi 
ability to promote plant growth through an enhancement of 
nutrient acquisition together with the reduction of metals 
concentrations in the aboveground tissues (Chen et al.  2007 ; 
Orlowska et al.  2011 ). 

 Considering dual inoculations, some reports indicate that 
co-inoculation with rhizobia and AM fungi may directly 
inhibit pathogen growth and reproduction and activate the 
plant’s defense system by increasing pathogen defense- 
related gene expression (Gao et al.  2012 ). In addition, bene-
fi ts of nitrogen-fi xing bacteria and AM fungi consortia in the 
protection of host plants against the detrimental effects of 
metals have been reported (Andrade et al.  2004 ; Ahmed et al. 
 2006 ; Al-Garni  2006 ). Therefore, rhizobia–AM fungi–
legume tripartite symbiosis could be a new approach to 
increase the metal tolerance of legumes. Also, a consortium 
constituted by ACC deaminase-containing  Bacillus subtilis , 
 Ensifer meliloti , and  Rhizophagus irregularis  revealed higher 
mycorrhizal colonization and rhizobial nodulation in 
 Trigonella foenum-graecum  plants grown under drought 
stress, resulting in improved nutrient uptake and plant growth 
(Barnawal et al.  2013 ). Thus, ACC deaminase by alleviating 
the negative effects caused by drought stress contributes to 
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help simultaneously mycorrhizal colonization and rhizobia 
nodulation. It is possible that inoculation with microbial con-
sortia where the mode of action of each inoculant, such as the 
ability to endure metal stress as well as the potential to pro-
mote plant growth through several plant growth-promoting 
traits, may act synergistically in metal- contaminated soils, 
leading to a successful phytoremediation process.   

9.5     Conclusions 

 Rhizobia have been widely studied due to their role as 
legume symbionts. More recent research has suggested that 
rhizobia can be benefi cial to crops through their action as 
PGPB for both non-legumes and host legume plants. Several 
strains of rhizobia resistant to various metalloids and metals 
have been isolated from polluted soils. Some of these bacte-
ria are fully able to nodulate legumes and fi x nitrogen even in 
the presence of moderate metal concentrations. Due to their 
multiplicity of biological activities, rhizobia are an ideal 
inoculant for raising the productivity of legumes in metal- 
contaminated soils. Also, inoculation of legumes with bacte-
rial consortia resistant to heavy metals (including rhizobia, 
mycorrhiza, bacterial endophytes, and other PGPB) has 
proved to be a promising and cost-effective technology for 
metal phytoremediation, allowing the re-vegetation of metal- 
contaminated areas with moderate levels of pollution. 
Despite the high expectations in the use of rhizobia or con-
sortia with other soil microorganisms, the interactions 
between plant and rhizobia and that between rhizobia and 
other soil microorganisms in the presence of metals are not 
fully understood. Therefore, it is required an extra effort to 
understand how these synergistic interactions occur as well 
as how to combine the major advantages of each inoculant 
present in the consortia in order to (1) obtain consistency in 
the results in the fi eld and (2) maximize the legume phytore-
mediation process.     
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10.1             Introduction 

 The rapid development of industrialization results in over-
all environmental contamination with persistent organic 
and inorganic wastes (Chaudhry et al.  1998 ). Among these, 
heavy metals are playing a vital role in polluting the envi-
ronment. Heavy metals are present in soils as natural com-
ponents or as a result of human activity, for example mine 
tailings, metal smelting, electroplating, gas exhausts, 
energy and fuel production, downwash from power lines, 
severe agricultural practices, and sludge dumping pollute 
the soil with large quantities of toxic metals (Seaward and 
Richardson  1990 ; Förstner  1995 ; Kumar et al.  1995 ; 
Srivastava  2007 ). A list of sources causing heavy metal 
pollution is shown in Table  10.1 . These heavy metals have 
a relatively high density and are toxic or poisonous at low 
concentrations (Lenntech  2004 ; Duruibe et al.  2007 ). 
Heavy metals include mercury (Hg), cadmium (Cd), arse-
nic (As), chromium (Cr), thallium (Tl), and lead (Pb). 
Industries such as mining, petroleum, coal, and garbage 
burning create heavy metal pollution in the environment, 
which cannot be easily degraded or destroyed. In a very 
small amount they enter our bodies via food, drinking 
water, and air (Duruibe et al.  2007 ). As a trace element, 
some heavy metals are needed in small concentration to 
maintain the metabolism of the human body (Garbisu and 
Alkorta  2003 ). However, at higher concentrations they can 
lead to poisoning (Alkorta et al.  2004 ). Heavy metals such 
as lead and mercury are never desirable in any amount in 
our body. Elevated levels of mercury can cause various 
health problems (Clarkson  1992 ). Mercury is a toxic heavy 

metal which has no known function in human biochemistry 
or physiology and does not occur naturally in living organ-
isms (Ferner  2001 ; Nolan  2003 ; Young  2005 ; Duruibe 
et al.  2007 ). Monomethylmercury has detrimental effects 
on brain and the central nervous system in humans. 
However, fetal and postnatal exposures of this form of 
mercury resulted in abortion, congenital malformation, 
and other abnormalities in children. However, cadmium is 
a bio-persistent heavy metal, which once absorbed by an 
organism is deposited in the body for many years, as far as 
over decades for humans. In humans and animals, its 
excessive exposure leads to renal disfunction, lung dis-
eases, bone defects, etc. (Levine and Muenke  1991 ; 
Gilbert-Barness  2010 ).

   Various physicochemical methods have been applied to 
clean up the heavy metals from the environment but these 
methods are very expensive and cost-effective. Moreover, 
these methods when applied to the soil are of high impact but 
are detrimental to soil texture and fertility (Negri and 
Hinchman  1996 ; Chaudhry et al.  1998 ). Heavy metals are 
only transformed from one oxidation state or organic com-
plex to another. Microorganisms can be used for the biore-
mediation of metals as they reduce metals in their 
detoxifi cation mechanism (Garbisu and Alkorta  2001 ; 
Edwards et al.  2013 ). 

 Phytoremediation can prove to be an important strategy 
for the removal of the heavy metal from the environment. 
It is the study of using green plants for the removal of 
harmful environmental contaminants. This new technol-
ogy offers a potentially cost-effective cleanup of contami-
nated groundwater, terrestrial soil, sediments, sludge, etc. 
Various studies have been carried out for the removal of 
the heavy metals from the contaminated soils by using 
phytoremediation strategies (Table  10.2 ) The purpose of 
this chapter is to explore the use of a new technology to 
remove heavy metals from those environments, where it is 
concentrated. Its toxicity has been enhanced and its mobil-
ity into sensitive organisms increased with the increase in 
heavy metal pollution in the environment. The present 
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   Table 10.2    Plants used for phytoremediation of heavy metal contamination   

 Sr. No.  Plants used  Contaminants  References 

 1   Trifolium alexandrinum   Cd, Pb, Cu, and Zn  (Ali et al.  2012 ) 
 2   Tithonia diversifolia  and  Helianthus annuus   Pb and Zn  (Adesodun et al.  2010 ) 
 3   Thlaspi caerulescens   Zn, Cd, and Ni  (Assunção et al.  2003 ) 
 4   Pteris cretica cv Mayii  (Moonlight fern) and  Pteris vittata  

(Chinese brake fern) 
 As  (Baldwin and Butcher  2007 ) 

 5   Alyssum  and  Thlaspi   Ni  (Bani et al.  2010 ) 
 6   Aspalathus linearis  (Rooibos tea)  Aluminum  (Kanu Sheku et al.  2013 ) 
 7   Helianthus annuus  (sunfl ower)  Zinc and cadmium  (Marques et al.  2013 ) 
 8   Pelargonium roseum   (Ni), cadmium (Cd), or lead (Pb)  (Mahdieh et al.  2013 ) 
 9   Brassica napus  and  Raphanus Sativus   Cd, Cr, Cu, Ni, Pb, and Zn  (Marchiol et al.  2004 ) 
 10   Thlaspi caerulescens   Cd and Zn  (Perronnet et al.  2003 ) 
 11   Pteris vittate  L.  Arsenic  (Ma et al.  2001 ; Tu et al.  2002 ) 
 12   Solanum nigrum   Cd  (Chen et al.  2014 ) 

technology of phytoremediation is centered on plants that 
have been genetically engineered with bacterial genes. 
These genetically engineered plants having these genes 
encode enzymes that catalyze the alteration of heavy metal 
electrochemical form especially in case of mercury. This 
new strategy is intended to allow the detoxifi cation and 
controlled translocation of mercury from locations where 
it may threaten human health or the integrity of ecosys-
tems. It has been predicted that as the fi eld of genetic engi-
neering advances, engineered organisms will replace 
mechanical tools for many applications, including in the 
remediation of environmental pollution. These “clean 
technologies” will result in reductions to the release of 
toxic substances so inexorably linked to industrial pro-
cesses yet so toxic to organisms.

10.2        Processes of Phytoremediation 

 There are fi ve different types of major processes involved in 
phytoremediation. These include phytoextraction, rhizofi l-
tration, phytovolatilization, phytostabilization, and phyto-
degradation. A short overview of all these process can be 
seen in Fig.  10.1 .  

10.2.1     Phytoextraction 

 Phytoextraction is the use of plants to uptake contaminants 
into their biomass. In this process plants uptake the contami-
nants by roots and accumulate in the aerial parts or shoots of 

   Table 10.1    Heavy metals and their sources of contamination   

 Sr. No.  Heavy metals  Sources  References 

 1  As  Timber treatment, paints and pesticides, semiconductors, petroleum 
refi ning, wood preservatives, animal feed additives, coal power plants, 
volcanoes, mining, and smelting 

 (Bissen and Frimmel  2003 ; Walsh 
et al.  1979 ) 

 2  Cu  Timber treatment, fertilizers, fungicides, electroplating industry, 
smelting and refi ning, mining, biosolids 

 (Liu et al.  2005 ) 

 3  Cd  Anthropogenic activities, smelting and refi ning, fossil fuel burning, 
application of phosphate fertilizers, sewage sludge 

 (Alloway  1995 ; Kabata-Pendias  2001 ) 

 4  Pb  Batteries, metal products, mining and smelting of metalliferous ores, 
burning of leaded gasoline, municipal sewage, industrial wastes 
enriched in Pb, paints 

 (Gisbert et al.  2003 ; Seaward and 
Richardson  1990 ) 

 5  Cr  Timber treatment, leather tanning, pesticides and dyes, electroplating industry  (Knox et al.  1999 ; Gowd et al.  2010 ) 
 6  Hg  Fumigants and fertilizers, volcano eruptions, forest fi re, emissions from 

industries producing caustic soda, coal, peat, and wood burning 
 (Lindqvist  1991 ) 

 7  Zn  Dyes, paints, timber treatment, fertilizers and mine tailings, 
electroplating industry, smelting and refi ning, mining 

 (Liu et al.  2005 ) 

 8  Ni  Alloys, batteries and mine tailings, volcanic eruptions, land fi ll, forest 
fi re, bubble bursting, and gas exchange in ocean 

 (Knox et al.  1999 ) 

 9  Cd, Pb, and As  Over application of fertilizers and pesticides  (Atafar et al.  2010 ) 
 10  Pb  Commercial organic fertilizer  (Wang et al.  2013 ) 
 11  Cd, Cu, Ni, and Zn  Urban and industrial wastewater used in agricultural practices  (Hani and Pazira  2011 ) 
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the plant and fi nally it is harvested and disposed of (Vishnoi 
and Srivastava  2007 ). The plant-based remediation technol-
ogy is one of the largest technologies to remediate the heavy 
metal pollution from the environment (Raskin et al.  1997 ). 
Phytoextraction can be natural and induced. In natural phy-
toextraction there is low biomass of hyperaccumulators and 
it may require decades to reduce the heavy metal concentra-
tion in soil, e.g.,  Thlaspi caerulescens  (Mahmood  2010 ). In 
induced phytoextraction there is high-biomass of hypoaccu-
mulators. Metal hyperaccumulation is triggered through soil 
amendments that increase the metal phyto availability and 
translocation from root to shoot e.g., sunfl ower, ryegrass, 
and various species of  Brassica  (Salt et al.  1995a ). All plant 
species cannot be used for phytoremediation. Only the 
hyperaccumulating plants can be used for metal remediation. 
A plant that is able to take up more metals than normal plants 
is called a hyperaccumulator, which can absorb more heavy 
metals that are present in the contaminated soil. This process 
helps in the reduction of erosion and leaching of the soil. 
With successive cropping and harvesting, the levels of con-
taminants in the soil can be reduced (Vandenhove et al. 
 2001 ). Various studies emphasized to estimate the metal 
accumulation capacity of high- biomass plants that can be 
easily cultivated using agronomic practices. Particularly, on 
the evaluation of shoot metal- accumulation capacity of the 
cultivated  Brassica  (mustard) species. Certain varieties of 
 Brassica juncea  concentrated toxic heavy metals (Pb, Cu, 

and Ni) to a level up to several percent of their dried shoot 
biomass (Kumar et al.  1995 ).  Zea mays  and  Ambrosia arte-
misiifi lia  were also identifi ed as good accumulators of Pb 
(Huang and Cunningham  1996 ; Raskin et al.  1997 ). 

 A major setback to the improvement of phytoextraction 
technology is that the shoot metal accumulation in the hydro-
ponically cultivated plants greatly exceeded the metal accu-
mulation. This phenomenon is explained by the low 
bioavailability of heavy metals in soils (Cunningham et al. 
 1995 ).  Trifolium alexandrinum  effectively extracted the 
selected heavy metals from the simulated heavy metal- 
contaminated soil, as evident from the difference of heavy 
metal concentration values between control and experimen-
tal plants.  T. alexandrinum  has many advantages for phytore-
mediation. It produces considerable biomass and has a 
relatively short life cycle. It has resistance to prevailing envi-
ronmental and climatic conditions and above all offers mul-
tiple harvests in a single growth period (Ali et al.  2012 ). 
Effect of EDTA on phytoremediation has also been studied. 
The seedling of  Brassica napus  was able to accumulate large 
quantity of heavy metals in the presence of EDTA. EDTA 
enhances shoot metals accumulation but does not affect plant 
growth (Zaier et al.  2010 ). Phytoextraction can be improved 
by inoculating some plant-growth benefi cial bacterium 
 Phyllobacterium myrsinacearum  RC6b with plants, e.g., the 
plant species  Sedum plumbizincicola  affects plant growth 
and enhances Cd, Zn, and Pb uptake (Ma et al.  2013 ). They 
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  Fig. 10.1    Different processes of phytoremediation       
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suggested that the metal mobilizing can be improved by 
using inoculants such as  P. myrsinacearum  RC6b for the 
multimetal polluted soils. Similarly, the biomass production 
and shoot Ni concentrations in  Alyssum serpyllifolium  subsp. 
 malacitanum  was found to be higher when inoculated with 
two bacterial strains LA44 and SBA82 of  Arthrobacter  than 
non-inoculated plants (Becerra-Castro et al.  2013 ). The phy-
toextraction effi ciency can also be affected by fungicidal 
sprays, soil pH, planting density, and cropping period 
(Puschenreiter et al.  2013 ; Simmons et al.  2014 ). 

 Roots play a major role in drawing out elements from the 
soil and deliver to the shoots (Raskin et al.  1997 ). Scanty 
information is available on the mechanisms of mobilization, 
uptake, and transport of most environmentally hazardous 
heavy metals, such as Pb, Cd, Cu, Zn, U, Sr, and Cs. Before 
the plant accumulates metals from the environment, it must 
be mobilized into the environment. Various factors are 
involved in the mechanism of phytoextraction. 

10.2.1.1     Phytoavailability of Metals 
 The fi rst step of phytoextraction is the phytoavailability of 
metals in soil. The bioavalability of metals is increased in 
soil through several means (Ghosh et al.  2011 ). There are 
some factors involved by which the plant uptakes the heavy 
metals from soil (a) quantity factor (the total content of the 
potentially available metals in soil), (b) the intensity factor 
(the activity and ionic ratios of metals in the soil solution), 
and (c) reaction kinetics (the rate of transfer from soil to the 
liquid phase to the plant roots) (Brümmer et al.  1986 ). These 
metals make a complex structure with the soil. Several 
approaches have been studied and are accomplished in a 
number of ways. To chelate and solubilize the soil-bound 
metal some metal-chelating molecules can be secreted into 
the rhizosphere. Phytosiderophores are iron-chelating com-
pounds, which have also been studied well in plants 
(Kinnersely  1993 ). Based on their ability, the phytosidero-
phores can chelate other heavy metals also other than iron 
(Meda et al.  2007 ). These phytosiderophores are released in 
response to iron defi ciency and can mobilize Cu, Zn, and Mn 
from soil. The Cu toxicity in barley is a signal that activates 
phytosiderophores release by plant roots, whereas, phytosid-
erophores release is induced by Cu toxicity which is strongly 
attenuated by Cd toxicity (Kudo et al.  2013 ). Metal-chelating 
proteins called metallothioneins (Robinson et al.  1993 ) may 
also function as siderophores in plants. Certain metals induce 
the synthesis of these proteins in the plant cells. 
Metallothioneins can tightly bind with zinc, copper, cad-
mium, mercury, or silver reducing the availability of diffus-
ible forms within the cells and therefore decreasing their 
toxic potential (Cherian and Goyer  1978 ). The contribution 
of phytosiderophores in toxic metal possession by the roots 
of phytoextracting plants remains largely unexplored. A Ni 
hyperaccumulator,  Alyssum lesbiacum , uses histidine, an 

excellent Ni chelator, to acquire and transport Ni (Kramer 
et al.  1996 ). Phytosiderophores such as mugineic acid and 
avenic acid (which are exuded from roots of graminaceous 
plants in response to Fe and Zn defi ciency) can mobilize Cu, 
Zn, and Mn (Römheld  1991 ). The Cd and P phytoavailability 
of kangkong ( Ipomoea aquatica  Forsk.) with Alfred stone-
crop ( Sedum alfredii  Hance) can be induced while inoculated 
with arbuscular mycorrhizal fungi (Hu et al.  2013 ).  

10.2.1.2     Uptake of Metals by the Roots 
 The absorption of metals into roots can occur by means of 
symplastic and apoplastic pathways (Tandy et al.  2006 ; Lu 
et al.  2009 ). In contrast to the apoplastic pathway in which 
metal ions or metal–chelate complex enters the root through 
intercellular spaces, the symplastic pathway is an energy- 
dependent process mediated by specifi c or generic metal ion 
carriers or channels. Plant roots can solubilize soil-bound 
toxic metals by acidifying their soil environment with pro-
tons extruded from the roots. A similar mechanism has been 
observed for Fe mobilization in some Fe-defi cient dicotyle-
donous plants (Crowley et al.  1991 ). The soil-bound metal 
ions are reduced by the roots by some enzymes known as 
reductases bound to the plasma membrane results in the 
metal availability. For example in case of a pea plant defi -
cient in Fe or Cu, it shows an increased capability to reduce 
Fe 3+  and Cu 2+  and which later on fastens increase in uptake of 
Cu, Mn, Fe, and Mg from the soil (Welch et al.  1993 ). The 
mycorrhizal fungi associated with the roots and root- 
colonizing bacteria also shows increase in the bioavailability 
of metals. It is believed that the rhizospheric microorganisms 
help the plant to uptake the mineral nutrients such as Fe 
(Crowley et al.  1991 ), Mn (Barber and Lee  1974 ), and Cd 
(Salt et al.  1995b ). In a recent report by Lindblom et al. 
( 2014 ), two rhizosphere fungi  Alternaria seleniiphila  (A1) 
and  Aspergillus leporis  (AS117) inoculated with selenium 
(Se) hyperaccumulator  Stanleya pinnata  and non- 
hyperaccumulator  Stanleya elata  were studied. They con-
cluded that rhizosphere fungi affect the growth and Se and/or 
S accumulation in these plant species. But some metal ions 
such as Ca 2+  and Mg 2+  that are present at higher concentra-
tions in the soil solution do not require mobilization as they 
enter the roots through any of the extracellular (apoplastic) 
or intracellular (symplastic) pathways (Clarkson and Luttge 
 1989 ). Recently, a new Mn-hyperaccumulating plant species 
 Celosia argentea  Linn. has been reported (Liu et al.  2014 ), 
which shows higher Mn accumulatation and tolerance level. 
They found that as the Mn supply level ranged from 2.5 
(control) to 400 mg/L, the biomass and the relative growth 
rate of  C. argentea  were insignifi cantly changed. In one of 
the study conducted by Foster and Miklavcic ( 2014 ) on the 
uptake and transport of ions via differentiated root tissues a 
physical model was proposed. This model  indicates both the 
forced diffusion and convection by the transpiration stream. 
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The reducing diffusive permeabilities result in altering ion 
concentration profi les in the pericycle and vascular cylinder 
regions. However, the increased convective refl ectivities 
affect predominantly ion concentrations in the cortex and 
endodermis tissues. They concluded that the ion fl uxes and 
accumulation rates are predicted by the self- consistent elec-
tric fi eld that arises from ion separation.  

10.2.1.3     Transportion from Root to Shoot 
 In non-hyperaccumulator plants the metal is generally stored 
within the root cells and is not available for the xylem load-
ing. Whereas, in case of hyperaccumulators roots effi ciently 
transport metals to the shoots, e.g., in case of  Sedum alfredii  
ecotype, xylem plays an important role in Cd uptake as com-
pared to the non-hyperaccumulating ecotypes (Lu et al. 
 2009 ). The translocation of Cd uptake and Cd phytoextrac-
tion has been recently studied by Hu et al. ( 2013 ) in another 
species of  Sedum plumbizincicola . In this study they found 
that the rate of Cd uptake was more from roots to the shoots 
when NO 3–  treatment was given. For the translocation of 
metals from roots to shoot via xylem, fi rstly, they must have 
to cross the Casparian band on endodermis, which is a water- 
impervious barrier that blocks the apoplastic fl ux of metals 
from the root cortex to the stele. Therefore, to cross this bar-
rier and to reach the xylem, metals must move symplasti-
cally. The xylem loading process is mediated by membrane 
transport proteins (Huang and Van Steveninck  1989 ; Clemens 
et al.  2002 ). However, in metal accumulators, xylem loading 
as well as translocation to shoot is facilitated by complexing 
of metal with low-molecular weight chelators (LMWCs), 
e.g., organic acids (Senden et al.  1995 ), phytochelatins 
(Przemeck and Haase  1991 ), and histidine (Krämer et al. 
 1996 ). The metal translocation patterns of important heavy 
metals such as Cr, Ni, Cu, Cd, and Pb in plant species 
 Solanum melongena  has recently been studied by Wiseman 
et al. ( 2014 ). They examined tissue patterns of metal (Cr, Ni, 
Cu, Cd, and Pb) concentrations associated with elemental 
deposition and soil-to-root and root-to-shoot transfers. They 
concluded that copper easily translocates to roots in water-
logging soils as compared to Cd which has highest soil-to- 
root and root-to-shoot translocation. Metal chelators and 
transporters regulate metal homeostasis in plants. Studies 
have been carried out on HMA2 gene characterization from 
various plants for their potential application in phytoreme-
diation. The membrane transporter protein helps the plants to 
become metal-resistant and metal-hyperaccumulator. 
Whereas, the other gene HMA3 contributes towards metal 
detoxifi cation by Cd sequestration into the vacuole and the 
HMA4 gene triggers the process of metal hyperaccumula-
tion. Both the genes HMA2 and HMA4 play an important 
role during root-to-shoot metal translocation (Park and Ahn 
 2014 ). The uptake of gold nanoparticles (AuNPs) followed 

by translocation and transport into plant cells in case of pop-
lar plants ( Populus deltoides  ×  nigra , DN-34) has been 
recently studied and found that these gold nanoparticles 
accumulated in the plasmodesma of the phloem complex in 
root cells (Zhai et al.  2014 ).  

10.2.1.4     Metal Unloading, Traffi cking, 
and Storage in Leaves 

 Metal is transported to the apoplast (free diffusional space out-
side the plasma membrane) of leaves from where it is distrib-
uted within the leaf tissue via apoplast or transporters- mediated 
uptake by symplast (inner side of the plasma membrane in 
which water (and low-molecular-weight solutes) can freely 
diffuse) (Mahmood  2010 ). At any point of the transport path-
way metals make a complex with organic ligands and thus the 
metal converts into a less toxic form (Peers et al.  2005 ). Metals 
are sequestered in extracellular or subcellular compartments 
of the leaves. About 35 % of the Cd taken up by  T. caerules-
cens  was found in the cell walls and the apoplast in leaves 
(Cosio et al.  2005 ), whereas in Ni hyperaccumulator  Thlaspi 
geosingense , Ni is sequestered in the cell wall as well as in 
vacuoles (Krämer et al.  2000 ; Mahmood  2010 ). Leaf tri-
chomes may be the major sequestering sites for Cd in  Brassica 
juncea  (Salt et al.  1995b ); for Ni in  Alyssum lesbiacum  
(Krämer et al.  1997 ); and for Zn in  Arabidopsis halleri  
(Küpper et al.  2000 ). Different approaches have been envis-
aged by Clemens et al. ( 2002 ) for engineering the plant metal 
homeostasis network to increase the metal accumulation in 
plants. For example, keeping in view the importance of vacu-
oles as the metal storage organelle, engineering tonoplast 
transporters in specifi c cell types might enhance the metal 
accumulation capability. Alternatively, creation of artifi cial 
metal sinks in shoots via expression of the cell wall proteins 
with high-affi nity metal binding sites might be explored to 
increase the metal demand in shoots thus enhancing the accu-
mulation in leaves (Clemens et al.  2002 ). Metal translocation 
can also be affected by fertilizer treatment. While working on 
cadmium translocation in  Oryza sativa  Sebastian and Prasad 
( 2014 ) they found that ammonium phosphate–sulfur fertiliza-
tion affects the shoot growth. Due to fertilizer treatment an 
increase in photosynthetic pigments was recorded that altered 
the activity of antioxidant enzymes which ultimately results in 
steady photosynthetic rate. 

 The molecular mechanisms for heavy metal adaptation 
has been well studied in some model plants such as  A. halleri  
or  Thlaspi/Noccaea  spp. (Becher et al.  2004 ; Dräger et al. 
 2004 ; Hanikenne et al.  2008 ; Plessl et al.  2010 ; van de Mortel 
et al.  2006 ). A network of transporters tightly controls uptake 
into roots, xylem loading, and vacuolar sequestration 
(Broadley et al.  2007 ; Verbruggen et al.  2009 ). Although 
these transporters are thought to balance the concentration of 
essential metals such as Zn, they also unselectively transport 

10 Phytoremediation of Heavy Metals: The Use of Green Approaches to Clean the Environment



120

toxic elements such as Cd (Mendoza-Cozatl et al.  2011 ; 
Verbruggen et al.  2009 ). Inside the cells, metals are chelated 
with small molecules such as the low molecular weight, 
cysteine- rich metallothioneins or non-translationally synthe-
sized, glutathione-derived phytochelatins (Cobbett and 
Goldsbrough  2002 ). Remarkable similarity in copy number 
expansion and transcriptional regulation was found for the 
xylem loading transporter HEAVY METAL ATPASE 4 
(HMA4) in  A. halleri  and  N. caerulescens , indicating paral-
lel evolutionary pathways in these two Brassicaceae species 
(Hanikenne et al.  2008 ; Ó Lochlainn et al.  2011 ). Moreover, 
HMA4 was recently found to be involved in maintenance of 
Zn homeostasis also in poplar (Adams et al.  2011 ). This 
example of cross-species functionality suggests that well- 
studied pathways might also act in  S. caprea  metal 
tolerance.   

10.2.2     Rhizofi ltration 

 Plant roots absorb or adsorb, concentrate, and precipitate 
toxic metals from contaminated sites (waste water, surface 
water). Both terrestrial and aquatic plants show these type of 
activities (Yadav et al.  2011 ). In rhizofi ltration it is the root 
system of plants that interacts with the contaminants or pol-
luted site for making that area pollution free (Krishna et al. 
 2012 ). It is a potential technique for the removal of wide 
range of organic and inorganic contaminants, and it also 
reduces the bioavailability of the contaminant in the food 
chain. During the rhizofi ltration, the contaminant remains 
on/within the root. The different plant species that have been 
used for rhizofi ltration so far are listed in Table  10.3 . These 

contaminants are to be taken up and translocated into other 
portions of the plant by the roots, which depends on the con-
taminant, its concentration, and the plant species. This mech-
anism is supported by the 
synthesis of certain chemicals within the roots, which cause 
heavy metals to rise in plant body. The precipitation of the 
metals/contaminants on the root surfaces is due to the pres-
ence of some internal factors within the soil such as root exu-
dates and pH (Day et al.  2010 ; Krishna et al.  2012 ). As the 
plants absorb metals contaminants from the soil, roots or 
whole plants are harvested for disposal (Prasad and Freitas 
 2003 ). Various exudates such as simple phenolics and other 
organic acids are released during root decay, which results in 
change of metal speciation (Ernst  1996 ). This leads to the 
increased precipitation of the metals. The organic com-
pounds in the root exudates can stimulate microbial growth 
in the rhizosphere (Pivetz  2001 ). Genes plays an important 
role in the plants to make it effi cient for metal accumulation. 
For example glutathione and organic acids metabolism path-
ways play a key role in making the plant metal tolerant. 
Other environmental factors such as light, temperature, and 
pH also affect metal accumulation effi ciency (Rawat et al. 
 2012 ). Rhizofi ltration can be done in situ i.e. in surface water 
bodies and ex situ by means of engineered tanks having sys-
tem of contaminated water and the plants. Both the systems 
require an understanding of the contaminant speciation and 
interactions of all contaminants and nutrients (Terry and 
Banuelos  2000 ; Akpor et al.  2014 ). The hydroponically cul-
tivated roots of terrestrial plants are found to be more effec-
tive than the normal plant-based systems. For an ideal 
rhizofi ltration mechanism, a plant should have rapidly grow-
ing roots that have the ability to remediate toxic metals in 

   Table 10.3    Plant species used for the rhizofi ltration of heavy metal contaminants   

 Sr. No.  Contaminants  Plant species  References 

 1  Cd and Pb   Brassica juncea   (Qiu et al.  2014 ) 
 2  Sb   Cynodon dactylon   (Xue et al.  2014 ) 
 3  Pb   Oxycaryum cubense  (Poep. & Kunth) Palla  (Alves et al.  2014 ) 
 4  Pb   Azolla pinnata   (Thayaparan et al.  2013 ) 
 5  Al, Fe, and Mn   Pistia stratiotes  L.  (Veselý et al.  2012 ) 
 6  As   Cynara cardunculus   (Llugany et al.  2012 ) 
 7  Pb   Carex pendula   (Yadav et al.  2011 ) 
 8  Cd   Setaria italica  (L.) Beauv.  (Chiang et al.  2011 ) 
 9  Cd and Pb   Pistia stratiotes  L.,  Salvinia auriculata  Aubl.,  Salvinia minima  Baker, and 

 Azolla fi liculoides  Lam 
 (Veselý et al.  2011 ) 

 10  Cu, Ni, and Zn   Eichhornia crassipes  (Mart.) Solms  (Hammad  2011 ) 
 11  Al, Fe, Zn, and Pb   Typha domingensis   (Hegazy et al.  2011 ) 
 12  Mn   Cnidoscolus multilobus ,  Platanus mexicana ,  Solanum diversifolium ,  Asclepius 

curassavica  L., and  Pluchea sympitifolia  
 (Juárez-Santillán et al.  2010 ) 

 13  U (Uranium)   Helianthus annuus  L. and  Phaseolus vulgaris  L. var.  vulgaris   (Lee and Yang  2010 ) 
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soluble form. For example some varieties of sunfl ower and 
 B. juncea  have high effi ciency for rhizofi ltration (Dushenkov 
et al.  1995 ). For the improvement of the rhizofi ltration, 
attempts have been made to grow young plant seedlings in 
aquaculture for removing heavy metals. From the last few 
years studies have been conducted on the ability of plant 
roots to tolerate, remove, and degrade pollutants. The roots 
degrade the contaminants by releasing root exudates and 
some oxidoreductive enzymes such as peroxidases and lac-
cases (Agostini et al.  2013 ). Due to the root’s environmental 
compatibility and cost- effectiveness it has great potential to 
remediate contaminated soils and groundwater. So, research 
has been carried out to develop genetically engineered roots 
for the remediation of the polluted sites especially organic 
pollutants and heavy metals. By using this technology, hairy 
roots can be produced to increase the phytoremediation effi -
ciency. However, with the help of the rhizospheric bacteria 
this effi ciency can be used to improve more tolerance level to 
pollutants (Zhou et al.  2013 ). Recently, Al-Shalabi and 
Doran ( 2013 ) has studied hairy root effi ciency for hyperac-
cumulation of Cd and Ni in plants.

10.2.3        Phytovolatilization 

 It involves the use of plants to uptake the contaminants from 
the soil and transforming them into volatile form and 
released into the atmosphere through transpiration (Ghosh 
and Singh  2005 ). Plants take up organic and inorganic con-
taminants with water and pass on to the leaves and volatilize 
into the atmosphere (Mueller et al.  1999 ). Mercury is the 
fi rst metal that has been removed by phytovolatilization. 
The mercuric ion is transformed into less toxic elemental 
mercury (Henry  2000 ). Transgenic technology has been 
applied by inserting an altered mercuric ion reductase gene 
( merA ) into  Arabidopsis thaliana , for the production of a 
mercury- resistant transgenic plants that volatilized mercury 
into the atmosphere (Rugh et al.  1996 ). Some of the other 
toxic metals such as Se, As, and Hg can be biomethylated to 
form volatile molecules and liberated into the atmosphere. 
Phytovolatilization has also been done by using plant–
microbe interactions for the volatilization of Se from soils 
(Karlson and Frankenberger  1989 ).  Brassica juncea  has 
been identifi ed as an effi cient plant for removal of Se from 
soils (Bauelos and Meek  1990 ). The plant species  Pteris vit-
tata  L. (Chinese Brake fern) has been reported as an arsenic 
(As) hyperaccumulator that can also accumulate a large 
amount of Se. Some anti-oxidative enzymes such as cata-
lase, ascorbate peroxidase, and peroxidase contribute 
towards hyperaccumulation of Se (Feng and Wei  2012 ). 
Some chemicals such as organochlorines (OCs), 1,4-dichlo-
robenzene (DCB), 1,2,4-trichlorobenzene (TCB), and 

γ-hexachlorocyclohexane (γHCH) are persistent chemicals 
in the environment. Their uptake depends mostly on their 
hydrophobicity, solubility, and volatility. The uptake of 
organochlorines (OCs) has been studied in  Phragmites aus-
tralis  under hydroponic conditions (San Miguel et al.  2013 ). 

 Studies have been carried out also on some other volatile 
organic compounds (VOCs) such as 1,4-dioxane. It has been 
found that dioxane (2.5 μg/L) was effectively removed by 
using phytovolatilization (Ferro et al.  2013 ).  

10.2.4     Phytostabilization 

 Phytostabilization is the process in which plants immobi-
lize the contaminants in the soil or ground water using 
absorption, adsorption onto the surface of the roots, or by 
the formation of insoluble compounds. This process 
reduces the mobility of contaminants and ultimately pre-
vents their migration into the groundwater or into the air 
(Soudek et al.  2012 ). It depends on the ability of the roots 
to limit contaminant’s mobility in the soil (Berti and 
Cunningham  2000 ). It decreases the amount of water per-
colation through the soil matrix, forms hazardous leachate. 
It helps in preventing soil erosion and prevents spreading of 
toxic metal to other areas. It is not a process of removal of 
metal contaminants from the sites, but more the stabiliza-
tion and reduction of the contamination. For an effi cient 
phytostabilization system a plant needs a dense root system 
(Cunningham and Ow  1996 ).  Sorghum bicolor  L is one of 
the plant species which is able to accumulate large quanti-
ties of metals in shoots grown in hydroponic conditions. 
Heavy metals such as Cd and Zn were found to be accumu-
lated primarily in roots. But as the concentration of the 
metals increased in the solution their transfer to the shoots 
increased (Soudek et al.  2012 ). Similarly, in copper- 
contaminated soil,  Oenothera glazioviana  had high toler-
ance to copper and shows low upward transportation 
capacity of copper. Therefore, this plant has a great poten-
tial for the phytostabilization of copper from the copper-
contaminated soils and a high commercial value without 
risk to human health (Guo et al.  2014 ). Other plants such as 
 Sesbania virgata  have also been reported as excellent phy-
tostabilizers for metals such as copper, zinc, and chromium 
from the metal-contaminated soils. The main accumulation 
of heavy metals appeared in plant roots, and more Zn is 
removed from soils. When supplied in a mixture of Cu and 
Zn,  Sesbania  plants absorb the highest concentrations of 
these metals. In contrast, Cr was more absorbed in the indi-
vidual treatments (Branzini et al.  2012 ). In one of the study 
conducted on  B. juncea  by Pérez-Esteban et al. ( 2013 ), 
phytostabilization ability can be enhanced by the addition 
of manure in the contaminated soil.  
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10.2.5     Phytodegradation 

 Phytodegradation is the uptake and degradation of contami-
nants within the plant, or the degradation of contaminants in 
the soil, ground water, or surface water, by enzymes. This 
process involves the use of plants with associated microor-
ganisms to degrade organic pollutants, such as 
2,4,6- trinitrotoluene (TNT) and polychlorinated biphenyls, 
herbicides, and pesticides so that they can be converted from 
toxic form to nontoxic form (Lee  2013 ; Kukreja and Goutam 
 2013 ). Hybrid poplars are capable of degrading 
 trichloroethylene, which is one of the most common pollut-
ants (Newman et al.  1997 ). Some enzymes such as dehaloge-
nase, peroxidase, nitroreductase, laccase, and nitrilase 
produced by the plants also helps in degradation of pollutants 
(Schnoor et al.  1995 ; Morikawa and Erkin  2003 ; Boyajian 
and Carreira  1997 ). Kagalkar et al. ( 2011 ) biodegrades the 
triphenylmethane dye Malachite Green by using cell suspen-
sion cultures of  Blumea malcolmii  Hook. This degradation 
was occurred due to the induction of enzymes such as lac-
case, veratryl alcohol oxidase, and DCIP reductase. The tex-
tile dye Red RB and Black B has also been achieved by using 
water hyacinth ( Eichhornia crassipes ) (Muthunarayanan 
et al.  2011 ). Plants such as  Hydrilla verticillata  and 
 Myriophyllum verticillatum  are effi cient in degrading chemi-
cal contaminants such as bisphenol A(BPA) within the con-
centration of 1–20 mg/L (Zhang et al.  2011 ). Recently it has 
been reported that some chemical contaminants such as poly-
cyclic aromatic hydrocarbons (PAHs), which are present in 
the terrestrial environment can be degraded by using a water 
hyacinth ( Eichhornia crassipes ) in combination with some 
chemicals such as sodium sulfate (Na 2 SO 4 ), sodium nitrate 
(NaNO 3 ), and sodium phosphate (Na 3 PO 4 ) (Ukiwe et al. 
 2013 ). They resulted that 99.4 % (pH 2.0) of acenaphthrene 
and 90.4 % (pH 4.0) of acenaphthrene was degraded after 
using NaNO 3  and Na 2 SO 4  with  E. crassipes , respectively.   

10.3     Improvement of Phytoremediation 
Effi ciency of Plants 

10.3.1     Plant–Microbe Interactions to Enhance 
the Phytoremediation Effi ciency 
of Plants 

 As the microbes are the fi rst organisms which come in contact 
with the contaminated sites therefore they have to develop 
their own mechanism to grow in such sites and become toler-
ant to these pollutants. These microbes play an important role 
in degradation of the complex chemical compounds to the 
simpler chemicals which can be easily absorbed by the plant 
systems. Some bacteria have stress-tolerant genes, which 
make them resistant towards the heavy metals and some bac-
teria have enzymes such as metal oxidases and reductases to 
make them tolerant against these contaminants. To improve 
the phytoremediation effi ciency of the plants researchers 
have made efforts by using the plant and soil–microbe inter-
actions (Table  10.4 ). They selected biodegradative bacteria, 
plant growth-promoting bacteria, and other bacterial strains 
that resist soil pollutants (Wenzel and Jockwer  1999 ; Glick 
 2003 ). As most of the mineral nutrients are taken up by the 
plants through the rhizosphere where these microbes interacts 
with the plant root surface (Dakora and Phillips  2002 ). The 
root exudates provide source of carbon for the microbes and 
also take part in direct detoxifi cation by forming chelates with 
metal ions (Bashan et al.  2008 ). Rhizosphere has a large quan-
tity of microbes and has high metabolic activity (Anderson 
et al.  1993 ). The rate of exudation is increased by the presence 
of essential microorganisms in the rhizosphere and promoted 
by the uptake and assimilation of certain nutrients (Gardner 
et al.  1983 ). Various plant growth promoting rhizobacteria 
(PGPR) hydrolyse 1-aminocyclopropane-1-carboxylate 
(ACC) which is a precursor of the plant hormone ethylene 

   Table 10.4    Plant–microbe interaction used for heavy metal phytoremediation   

 Sr. No.  Name of metals  Associated plants  Associated microbes  References 

 1  Cd, Pb, and Zn   Brassica napus    Enterobacter  sp. and  Klebsiella  sp.  (Jing et al.  2014 ) 
 2  Cd, Zn  Yellow lupine plants   Rhizobium  sp.,  Pseudomonas  sp.,  Clavibacter  sp.  (Weyens et al.  2014 ) 
 3  Cd and Pb   Brassica juncea    Enterobacter  sp  Qiu et al.  2014  
 4  Cd, Pb, and Zn   Brassica napus    Enterobacter  sp. and  Klebsiella  sp.  (Jing et al.  2014 ) 
 5  Cd, Zn   Helianthus annuus    Ralstonia eutropha  and  Chrysiobacterium humi   (Marques et al.  2013 ) 
 6  Multimetal contaminants   Agrostis capillaris  and 

 Festuca rubra  
 Bacterial consortium  (Langella et al.  2014 ) 

 7  Cd   Trifolium repens; Solanum 
nigrum  

 Coinoculation of  Brevibacillus  sp. and AM 
 Fungus;  Pseudomonas  sp. Lk9 

 (Vivas et al.  2003 ; Chen 
et al.  2014 ) 

 8  Cr (VI)   Cicer arietinum    Kocuria fl ava   (Singh et al.  2014 ) 
 9  As   Pteris vittata   Mycorrhization  Glomus mosseae  or 

  Gigaspora margarita  
 (Trotta et al.  2006 ) 

 10  Ni   Brassica campestris    Kluyvera ascorbata  SUD165  (Burd et al.  1998 ) 
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due to the presence of an enzyme 1-aminocyclopropane-
1-carboxylate (ACC) deaminase (Arshad et al.  2007 ). The 
application of microbes for metal solubilization from the pol-
luted sites is a potential approach for increasing metal bio-
availability to the plants, e.g., some bacterial strains such as 
 Proteus  sp.,  Bacillus  sp.,  Clostridium  sp.,  Alcaligenes  sp., and 
 Coccobacillus  sp. have been studied earlier for remediation 
of cadmium from the environment (Venkatesan et al.  2011 ). 
The phytoremediation will be more effective if bacteria can 
degrade the soil pollutant as well as promote the growth of 
plants. Recently similar efforts have been done by working on 
the spinach. In which the plant–microbe interaction in soil 
contaminated with Cd showed improved the spinach growth 
and Cd uptake as compared to control (Ali et al.  2013 ). 
Similar studies have been carried out by taking some plants 
like  Alyssum murale, Brassica napus , and  Thlaspi caerules-
cens  inoculated with rhizobacteria for the removal of Ni, Cd, 
Zn, respectively from the contaminated sites (Abou-Shanab 
et al  2006 ; Sheng and Xia  2006 ; Gonzaga et al.  2006 ).

10.3.2        Transgenic Technology to Enhance 
the Phytoremediation Effi ciency 
of Plants 

 As the phytoremediation of pollutants is a slow process and 
accumulation of toxic metabolites also leads to the cycling of 
these metabolites into the food chain. From the last few 
decades, work has been carried out to develop transgenic 
plants to overcome the inbuilt constraints of plant detoxifi ca-
tion capabilities. So transgenic technology is the new 
approach for phytoremediation, which enhances metal uptake, 
transport, and accumulation as well as plant tolerance 

capacity to abiotic stresses (Karenlampi et al.  2000 ). A list of 
the gene/genes used to raise the transgenic plants is listed in 
Table  10.5 . In this way,  Nicotiana tabacum  was the fi rst 
transgenic plant that shows the ability to tolerate heavy metal 
stress. In which the metallothionein gene was taken from a 
yeast that gives tolerance to cadmium, and  Arabidopsis thali-
ana  that overexpressed a mercuric ion reductase gene for 
higher tolerance to mercury (Eapen and D’Souza  2005 ). 
Similarly, transgenic alfalfa plants pKHCG co-expressing 
human CYP2E1 and glutathione S-transferase (GST) genes 
were developed for the phytoremediation of heavy metals 
and organic polluted soils. These plants showed tolerance to 
a mixture of cadmium (Cd) and trichloroethylene (TCE) and 
metabolized by the introduction of GST and CYP2E1 in 
combination (Zhang et al.  2013 ). Earlier, Bañuelos et al. 
( 2005 ) has developed Indian mustard ( Brassica juncea  (L.) 
Czern.) lines by introducing overexpressed genes encoding 
the enzymes adenosine triphosphate sulfurylase (APS), 
ç-glutamyl-cysteine synthetase (ECS), and glutathione syn-
thetase (GS) to improve their ability to remove selenium 
(Se). They found that these lines accumulate more Se in their 
leaves than wild type. Metal tolerance can also be signifi -
cantly increased by overexpressing some proteins involved 
in intracellular metal sequestration (Eapen and D’Souza 
 2005 ). According to Kiyono et al. ( 2012 ) when  Arabidopsis  
was introduced with a bacterial  merC  gene from the Tn 21 - 
encoded  mer  operon resulted in more resistant to cadmium 
than the wild type and accumulated signifi cantly more cad-
mium. Similarly, transposon TnMERI1 of  Bacillus megate-
rium  strain MB1 was used to make the transgenic  Arabidpsis  
for the expression of a specifi c mercuric ion binding pro-
tein (MerP) to increase the tolerance and accumulation 
capacity for mercury, cadmium, and lead (Hsieh et al.  2009 ). 

   Table 10.5    Various transgenic plants raised by using various gene/genes to improve the heavy metal phytoremediation effi ciency   

 Sr. No.  Gene  Source of gene  Target plant  Heavy metal  References 

 1   gcsgs    Enterobacter  sp.  Brassica juncea  Cd and Pb  (Qiu et al.  2014 ) 
 2  P450 2E1  Human  alfalfa plants  Hg  (Zhang et al.  2013 ) 
 4   ScMTII    Saccharomyces cerevisiae    N. tabacum   Cd and Zn  (Daghan et al.  2013 ) 
 5   ScYCF1    Saccharomyces cerevisiae    Populus alba   Cd, Zn, and Pb  (Shim et al.  2013 ) 
 6   PvACR3    Pteris vittata    Arabidopsis thaliana   As  (Chen et al.  2013 ) 
 7   TaVP1    N. tabacum    Arabidopsis thaliana   Cd  (Khoudi et al.  2013 ) 
 8   YCF1  and AsPCS1  Garlic and baker’s yeast   Arabidopsis thaliana   As and Cd  (Guo et al.  2012 ) 
 9  APS1   A. thaliana    Brassica juncea   Se and Cd  (Kubachka et al.  2007 ) 
 10  OASTL  A. thaliana  Arabidopsis  Cd  (Dominguez-Solis et al.  2004 ) 
 11  SMT  Astragalus bisulcatus   Arabidopsis  and  Brassica 

juncea  
 Se  (LeDuc et al.  2004 ) 

 12  gshI and gshII 
and APSI 

  E. coli    Arabidopsis thaliana  and 
 Brassica juncea  

 As and Cd  (Bennett et al.  2003 ) 

 13  TaPCS1  Wheat   Nicotiana. glauca   Pb, Cd, Zn, Cu, 
and Ni 

 (Gisbert et al.  2003 ) 

 14  HisCUP1  Yeast   Nicotiana tabacum   Cd  (Thomas et al.  2003 ) 
 15  NtCBP4   N. tabacum    N. tabacum   Ni, Pb, and Ni  (Sunkar et al.  2000 ) 
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The root-colonizing bacterium  Pseudomonas fl uorescens  has 
been engineered to express XplA gene to degrade explosive 
chemicals like Hexahydro-1,3,5-trinitro-1,3,5-triazine 
(RDX) in the rhizosphere (Lorenz et al.  2013 ). The overex-
pression of  AsPCS1  and  YCF1  genes in transgenic 
 Arabidopsis thaliana  leads to increased tolerance and 
 accumulation of heavy metals and metalloids and found to 
be more tolerant to arsenic and cadmium (Guo et al.  2012 ). 
The transgenic white poplar plants plant obtained by the 
transfer of PsMTa1 gene from  Pisum sativum  for a 
metallothionein- like protein shows resistance to heavy metal, 
surviving high concentrations of CuCl 2  than the wild type 
(Balestrazzi et al.  2009 ). There are some specifi c genes 
which are induced by the presence of particular toxic chemi-
cals in the environment are known as “pollutant-responsive 
elements” (Soleimani et al.  2011 ). The barley promoter gene 
HvhsplT in the presence of heavy metals fused to reporter 
gene was used to make a transformed tobacco plant which 
could be used as a bioindicator for monitoring heavy metal 
pollution (Mociardini et al.  1998 ).

10.4         Conclusion 

 Phytoremediation is a cost-effective technique for the 
removal of heavy metals from the contaminated soils/sites. 
During the last two decades a large number of researchers 
have worked on phytoremediation using plants, microorgan-
isms, plant–microbe interactions, and transgenic plants. 
Nowadays biotechnology is a powerful tool used in phytore-
mediation to improve the metal uptake effi ciencies of the 
plants, but it is limited to the lab conditions or at a very small 
scale. The studies reviewed in this chapter have remarkably 
contributed towards our knowledge on various phytoreme-
diation strategies. Moreover, the application of transgenic 
technology and plant-microbe interactions are feasible strat-
egies for the improvement of plants for heavy metal toler-
ance, their accumulation in the plant parts and also to 
metabolize the heavy metal pollutants. Hence, it is better to 
create or fi nd an appropriate plant system for environmental 
cleanup.     
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11.1             Introduction 

 Legumes constitute a major portion of human food through-
out the world. In addition, they are good source of oils, fi bers, 
timber, and raw materials for many products. Legumes 
belong to family  Fabaceae , are well known for their ability 
to fi x atmospheric nitrogen and to enhance soil nitrogen, 
consequently leading to the increase in crop growth and 
yield especially both in conventional or derelict soils. It is 
known that the interaction between rhizobia and legumes 
provides nutrients to plants, increases soil fertility, facilitates 
plant growth, and restores derange ecosystem (   Abd-Alla 
 1999 ). These characteristics together make the legume an 
extremely interesting and valuable crop. 

 Divalent cationic heavy metals may be essential for vari-
ous metabolic activities of plants and microbes including rhi-
zobia at very lower concentrations (Arora et al.  2009 ; Mandal 
and Rabindranath  2012 ), therefore, regarded as essential met-
als. At higher concentrations they induce toxicity symptoms 
in plants. Nonessential heavy metals, however, pose greater 
survival threat, reducing growth and crop productivity besides 
contamination of food products (Nellessen and Fletcher 
 1993 ; Salt et al.  1995 ; Akinola and Ekiyoyo  2006 ). Cadmium 
is a readily available nonessential heavy metal with high 
mobility and enrichment ratio in plant tissues. Excessive soil 
Cd concentration causes undeniable damage to rhizobia, 
legumes, and their symbiosis. Cadmium and other heavy met-
als affect the survival and ability of rhizobia to form nitrogen-
fi xing nodules (Arora et al.  2009 ; Corticerio et al.  2012 ). 
Plants often are screened for their ability to resist the 

Cd-induced toxicity to manage growth and productivity 
inducing several internal defense mechanisms. Alternatively, 
plants do employ different level of avoidance mechanisms to 
retain Cd in soil, root, effl ux excess metal, or defoliate 
Cd-contaminated lower leaves. Cocultivation of legumes is 
reported to increase Cd contamination in neighboring crops 
in Cd-polluted areas (Liu et al.  2012 ,  2013 ). Besides, the 
identifi cation of mechanisms that improve rhizobial tolerance 
to Cd, its persistence in soil, and ability to improve nodula-
tion effi ciency with rhizobia in Cd-contaminated soils is an 
important issue that requires urgent attention for maintaining 
soil fertility in metal- polluted lands. Symbiotic relationship 
of AM fungi with roots is important in many facets for plant 
growth and productivity. AM fungi colonization with the 
roots sieve nonessential heavy metal uptake or excess of 
essential heavy metal uptake while increasing plant access to 
other minerals (e.g., phosphorus) and moisture, therefore, 
releasing effects of Cd toxicity on  Rhizbium –legume symbio-
sis in heavy metal- contaminated sites (   Takas  2012 ). 

11.1.1     Heavy Metals, Cadmium, and Biological 
Functions 

 The term “heavy metal” encompasses metals and metalloids 
with the density greater than 5 g/ml. The reason for the choos-
ing certain mono/divalent cations for biological function while 
other expelling as “nonessential” is yet not well understood. 
However, the role of “essential” or “benefi cial” metal ions as 
cofactors or in signaling or shaping metabolism is obvious. 
Therefore, relying on these facts metal ions were categorized 
as essential, nonessential, or benefi cial elements. The role of 
nonessential metal ions especially in concern with heavy met-
als is more important as these were regarded to accelerate rate 
of mortality, reduce potential survival, and induce toxicity 
symptoms. Since these heavy metals are not vital for plant 
growth, they are considered as nonessential elements 
(Velaiappan et al.  2002 ). On the other hand essential mineral 
elements fi nd their role in several metabolic reactions, as 
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enzyme cofactors of signaling species. Although, they also 
become toxic beyond a threshold limit (Fig.  11.1 ).  

 Recently, another class of heavy metals with their benefi -
cial effect is recognized with no direct role in metabolism, 
but their presence signifi cantly improves plant health and 
immunity of plant. These were categorized as benefi cial 
heavy metals. The roles of *Co and †Se are disputed among 
physiologists to be considered as essential or not. Table  11.1  
shows the types of heavy metals/minerals based on the essen-
tiality criteria in plants with their biological roles.

   Cadmium is toxic to both plants and human beings 
(Shukla et al.  2007 ). Currently, Cd contamination has posed 
a serious threat to safe food production. It mainly gets accu-
mulated in human kidney and poses a risk of pulmonary 
emphysema and renal tubular damage (Ryan et al.  1982 ; 
Friberg et al.  1986 ). Extreme cases of chronic Cd toxicity 
can result in osteomalacia and bone fractures as character-
ized by disease Itai-Itai, anemia, mainly in women over 40 
and induce hormosis (low-dose stimulation and high-dose 
inhibition) in plant (Calabrese and Baldwin  2004 ). Toxicity 
of Cd is a major growth-limiting factor for plants (Mohan 
and Hosetti  2006 ). Leaf margins appear with red–brown col-
oration on the veins and leaves, chlorosis is one of the most 
important symptoms of Cd toxicity which is due to the con-
sumption with several micronutrients namely, Fe, Ni, Cu 
(   Baccaouch et al.  1998 ; Siedlecka and Krupa  1999 ) uptake 
through the plasma membrane, leading to a defi ciency in 
these essential metal ions in growth metabolism. Cadmium 
has numerous negative effects on plants cells such as mem-
brane distortion, activity inhibition of several group of 
enzymes such as those of photosynthetic Calvin cycle 
(Sandalio et al.  2001 ), nitrogen metabolism (Boussama et al. 

 1999 ), sugar metabolism (Verma and Dubey  2001 ), and 
 sulfate assimilation (Lee and Leustek  1999 ), where leaf 
 senescence is accelerated (Siedlecka and Krupa  1999 ). 
Cadmium toxicity is also associated with the disturbance in 
the uptake and distribution of macro- and micronutrients in 
plants (Sandalio et al.  2001 ). Cadmium can affect hormonal 
imbalance and water movement by reduction in the size and 
number of xylem vessels (Poschenrieder and Barcelo  1999 ). 
It antagonizes Zn (Lachman et al.  2004 ; Kumari et al.  2011 ) 
and blocks the Ca-channels (Swandulla and Armstrong 
 1989 ) that share the chemical and electronic properties with 
Cd. In leafy and fruity vegetables Cd is reported at level of 
0.6 μg/g tissue fresh mass (Sharma et al.  2009 ). 

 Cadmium is a soft, hazardous, heavy metal, and it occurs 
naturally in the earth’s crust. It is placed in II-B group and 
period fi fth of periodic table. It is located at the end of the 
second row of transition elements with atomic number 48, 
atomic weight 112.4, density 8.65 g/cm 3 , melting point 
320.9 °C, and boiling point 765 °C. Together with Hg and 
Pb, Cd is one of the big three heavy metal poisons and is not 
known for any essential biological function. Cadmium falls 
under the category of nonessential divalent cations, most 
abundant and readily available to plant body eliciting toxic 
responses in aerial parts (Kabata-Pendias  2011 ). 

 There are several sources of Cd in soil. Cd reaches into the 
soil either through anthropogenic processes or via natural (letho-
genic and pedogenic factors) ways (Table  11.2 ). Like other 
heavy metal ions it could be tolerated at low concentration levels, 
depending upon species and variety, but at higher concentrations 
it is toxic, therefore follows bell-shaped relationship of toxicity 
(Marshner  2012 ). Soil contaminated with the Cd above the per-
missible limit leads to a decline in agricultural yield.

  Fig. 11.1     Bell-shaped curve  for plant responses to heavy metal uptake       
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   Cadmium a nonessential element for a crop is one of the 
most hazardous heavy metals that exist in the polluted fi eld. 
The pollution of environment with toxic heavy metals 
including Cd is spreading fast throughout the world along 
with industrial revolution (FWPCA  1968 ). Cadmium ions 
are taken up readily by plant roots and translocated to the 
above- ground vegetative parts (Shamsi et al.  2008 ). The 
nontoxic level of Cd on soil ranges from 0.04 mM to 
0.32 mM. Beyond a certain level of Cd 2+  in soil, the yield of 
crops decrease and the quality of fi eld products gets 
degraded (Hassan et al.  2005 ). The uptake pattern also 
depends upon the Cd salt and plant species raised in such 

soil. For instance; in Chinese cabbage the order of Cd uptake 
for different Cd compounds is CdSO 4  > CdCl 2  > CdO > 
CdCO 3 , whereas in rice it is CdCl 2  > CdSO 4  > CdO > CdCO 3  
in loamy-sand drab soil with pH 8.2 (Jikai et al.  1982 ). 
Cereals and vegetables are most susceptible to increased 
contamination through raised levels of Cd in the soil, cereal 
grains ranged from 0.013 to 0.22 mg/kg, grasses ranged 
from 0.07 to 0.27 mg/kg and protein rich legumes crops var-
ies from 0.08 to 0.28 mg/kg soil (Kabata- Pendias and 
Pendias  2001 ). Besides being very toxic to plant metabo-
lism and growth, the enrichment ratio of Cd is more com-
paring to the other toxic heavy metals.   

    Table 11.1    Classifi cation of metal(oid)s and their role in plant system   

 S. No.  Nonessential  Biological signifi cance 

 1.  Pb, Cd, Hg, Al, Cr, As, U, Ti  No biological role. Toxic after a threshold tolerance level 
 Essential  Biological signifi cance 

 1.  Fe (iron) 
 Fe 2+  or Fe 3+  

 In chlorophyll synthesis, component of cytochromes, ferridoxin catalase, peroxidase, nitrogenase, 
photosynthetic and respiratory chain, leg-hemoglobin 

 2.  Zn (zinc) 
 Zn 2+  

 In auxin biosynthesis, component of several enzymes or activator (e.g., carbonic anhydrase), maintains 
ribosomal structure 

 3.  Mo (molybdenum) 
 MoO 4+  

 In nitrogen fi xation and nitrate reductase reduction (nitrate reductase) 

 4.  B (boron) 
 BO 3  3−  or B 4 O 7  2−  

 Absorption of calcium, role in root nodulation, formation of cell wall 

 5.  Cu (copper) 
 Cu 2+  or Cu 2  

 Part of enzymes (e.g., Superoxide dismutase) participates in several oxidation-reduction reactions of 
electron transport 

 6.  Mn (manganese) 
 Mn 2+  

    Part of enzymes (e.g., oxygen evolution in photosynthesis, chloroplast integrity) 

 7.  Mo (molybdenum) 
 MoO 2  2+  

 Part of nitrogenase; nitrogen fi xation, in conversion of inorganic phosphate to organic form 

 8.  Ni (nickel) 
 Ni 2+  

 Nitrogen (urieds) metabolism; its role is disputed among physiologists 

 Benefi cial  Biological signifi cance 
 9.  *Co (cobalt) 

 Co 2+  
 Part of nitrogenase; nitrogen fi xation 

 10.  †Se (selenium) 
 Se 6+ , Se 4+  

 Improves antioxidant activity 

 11.  Ca (calcium) 
 Ca 2+  

 In secondary signaling, cell-wall formation, photosynthates allocation, microbial activity stimulation, 
also work as enzyme activator 

 12.  Na (sodium) 
 Na 2+  

 Regeneration of phospho-enol pyruvate in CAM and C 4  plants. It could substitute K in certain cases 

 13.  Va (vanadium)  Essential for green algae 
 14.  Si (silicon)  Cell wall formation, prevents cuticular water loss, improves plant structural defense 

   Table 11.2    Sources of heavy metal pollution   

 Types  Sources  References 

 Natural sources  Emissions     EMEP/EEA ( 2009 ) and EEA ( 2010 ) 
 Transport of continental dust  Crusius et al. ( 2011 ) 
 Withering of metal-enriched rocks  Kimball et al. ( 2010 ) 

 Anthropogenic sources  Agrochemicals  Dragovic et al. ( 2008 ) 
 Waste disposal     Fergusson and Kim ( 1991 ) 
 Industries  Adelekan and Abegunde ( 2011 ) 
 Atmospheric deposition  Batisani and Yamal ( 2010 ) 
 Smelting and mining  Cortez et al. ( 2010 ) 
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11.2     Effects of Cadmium Toxicity 

11.2.1     Cadmium Toxicity on Soil Rhizobial 
Population and Legumes Growth 

 Higher concentrations of heavy metals severely damages 
metabolic activities of plants including legumes, e.g., soy-
bean, pea,  Medicago sativa , and chick pea (Dewdy and Ham 
 1997 ; Sandalio et al.  2001 ; Drazic et al.  2006 ; Hasan et al. 
 2008 ). Nonessential heavy metals are even more toxic to 
plants at lower concentrations, for instance, Cd (Bahmani 
et al.  2012 ). For instance, cadmium competes with mineral 
uptake causing defi ciency of mineral elements (Gadd  2007 , 
 2010 ), induces oxidative stress, inhibits enzyme activities 
(Stobart et al.  1985 ), alters membrane functions (Sandmann 
and Bfl ger  1980 ) and net photosynthesis (Clijsters and Van 
Assche  1985 ; Pandey and Tripathi  2011 ; Chen et al.  2011 ; 
Irfan et al.  2013 ). Soil heavy metal contamination causes 
 signifi cant alteration in the population and activity of soil 
microbes (Chaudri et al.  1993 ; Paudyal et al.  2007 ; Wani 
et al.  2008a ,  b ; Khan et al.  2009b ; Krujatz et al.  2011 ) to 
reduce the soil fertility. This indirectly depletes the soil nutri-
ent uptake and plant health (Terry  1981 ; Karpiscak et al. 
 2001 ). Adverse effects of metal-enriched soil have been 
observed in several legumes also (Wani et al.  2007a ,  b , 
 2008a ;    Wani and Khan  2010 ). The direct effect of heavy met-
als has been reported to limit the growth of  Rhizobium  and 
host legumes (Heckman et al.  1987 ; Broos et al.  2005 ). In 
some legume crops excess heavy metals delay the nodulation 
processes (Reichman  2007 ). The decreasing effect of Cd on 
plant roots inoculated with sensitive and resistant strain 
refl ected the difference of nearly 27 % on nodulation and N 
level of  S. meliloti  (Sepehri et al.  2006 ). Contamination with 
heavy metals had shown inhibition of nitrogen fi xation of by 
the strain of  Rhizobium leguminosarum  in  Trifolium repens  
(Hirsch et al.  1993 ) and in faba bean (Chaudri et al.  2000 ). 
The reduction in the activity of nitrogenase in fi eld and pot 
trials with decreased nodulation, nitrogen metabolism, and 
plant growth was also reported (Ahmad et al.  2012 ). Besides, 
heavy metals at toxic level interfere the induction of root 
hairs, mineral absorption, normal metabolism, and growth 
morphology. The interaction of  Rhizobium  in the nodules of 
chickpea was found to be very sensitive to heavy metals 
resulting in a decrease in dry mass of chickpea and green 
gram (Rana and Ahmad  2002 ). Faizan et al. ( 2011 ) reported 
that the application of Cd enhanced the seedling mortality of 
six cultivars of chickpea at higher inoculum level. The dam-
aging impact of excessive uptake of Cd on plant growth was 
marked in various plant species viz.  Glycine max  (Dewdy 
and Ham  1997 ),  Pisum sativum  (Sandalio et al.  2001 ), 
 Medicago sativa  (Drazic et al.  2006 ),  Vigna radiata  (Wahid 
et al.  2007 ) and  Cicer arietinum  (Hasan et al.  2008 ). Higher 

concentrations of Cd decreased the growth of the whole 
plant (Prasad  1995 ). Besides morphological challenges, Cd 
reduces the net photosynthesis, chlorophyll content, activi-
ties of carbonic anhydrase and nitrate reductase (Tantrey and 
Agnihotri  2010 ), at the cost of stress biochemistry, i.e., lipid 
peroxidation, production of ROS, membrane disfunctioning, 
and rise in proline level (Perveen et al.  2011 ; Vijayaragavan 
et al.  2011 ).  

11.2.2     Cadmium-Induced Cytotoxic Changes 

 Heavy metals have also been recognized as potent mutagens 
as they possess genotoxic potential (Winder  1989 ). Among 
heavy metals Pb, Hg, and Cd are of special concern as they 
are found to be genotoxic (Matsumoto and Marin-Morales 
 2004 ). Cadmium and Pb are found normally in soil in at least 
trace quantities. However, due to anthropogenic activities 
their concentration has been increased in the soil. The most 
pronounced effect of heavy metals on plant development is 
growth inhibition, which is inseparably connected with cell 
division. Cadmium along with other heavy metals induced 
various degrees of mutations in  Pisum sativum  with strong 
genotoxic effects Von Rosen ( 1954 ). Heavy metal exposure 
shows various anomalies in plants such as chromosome 
lesion or division anomalies (Ramel  1973 ) and poor stem 
and root elongation (Fargasova  1994 ). Dimitrova ( 1993 ) 
reported that high concentration of Pb, Zn, Cd, and Cu sup-
pressed the growth of vegetative organs. Mutagenic potential 
of heavy metals (Pb, Cd, and Hg) in causing changes in the 
banding patterns of M 2  seed storage protein in  Vicia faba  
plants was reported by George ( 2000 ). Cadmium toxicity 
induces abnormalities such as stickiness, precocious move-
ments, secondary associations, and laggards in addition to 
other abnormalities such as unequal separation, scattering, 
nonsynchronous division, and micronuclei and binucleate 
cells. in soybean (Kumar and Rai  2007 ). Formation of micro-
nuclei was the most prominent type of aberration in  Vicia 
faba  as a result of Cd toxicity (Baeshin and Qari  2003 ).  

11.2.3     Generation of Reactive Radicals 
and Oxidative Stress 

 Cadmium induces production of toxic metabolites and reac-
tive oxygen species (ROS) such as superoxide (O 2   . − ), hydro-
gen peroxide (H 2 O 2 ), hydroxyl radicals (  .  OH), singlet oxygen 
(O 2  1 ), and hydroperoxyl radical (H 2 O  .  ). This results in growth 
inhibition and photosynthesis (Shamsi et al.  2008 ). To sur-
vive against Cd stress, the plants evolved defense mecha-
nisms of mitigating these radicals and repairing the 
ROS-induced damages (Overmyer et al.  2003 ). These are 
specifi c but complex mechanisms involving morphological, 
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physiological, and biochemical adaptation. In particular, the 
ROS-combating antioxidant system consists of superoxide 
dismutase (SOD), peroxidase (POD), catalase (CAT), ascor-
bate peroxidase (APX), and glutathione reductase (GR), and 
nonenzymatic system consists of glutathione (GSH) and 
ascorbic acid (Gill and Tuteja  2010 ). Plants’ resistance to 
environmental stresses is dependent on the nature and the 
amount of antioxidants. Reactive oxygen radicals at supra-
optimal level starts stress signaling at the cost of growth sig-
naling claiming induction of defense mechanisms. Declined 
growth, chlorophyll content, photosynthesis, and stomatal 
conductance (g s ), along with enhanced malondialdehyde 
(MDA) content, SOD, and POD activities, were found in 
soybean plants exposed to Cd stress (Shamsi et al.  2008 ).    In 
addition Cd caused signifi cant inhibition in the activity of 
POD, CAT in assistance with nitrate reductase (NR) and 
nitrite reductase (NiR) activities in  Arachis hypogea  seed-
lings are under Cd stress compromising the plant growth 
(Damodharam et al.  2009 ) (Fig.  11.2 ).   

11.2.4     Morpho-anatomical Changes Under 
Heavy Metal Stress 

 Several workers have observed the changes in the morpho-
logical and molecular level of many crops by addition of Cd 
and other heavy metals. Ahmad et al. ( 2005 ) observed the 
effect of different concentrations of Cd and Pb on morpho-
logical and anatomical features of  Trigonella foenum grae-
cum  at pre-fl owering, fl owering, and postfl owering stages. 
Size of stomata and stomatal pore and the density of stomata 
on both epidermises were signifi cantly reduced under metal 
stress at all the developmental stages. Trichome length on 
both the epidermises increased while their density decreased 
under metal stress. Under Cd stress, proportion of pith and 
vasculature decreased but cortex increased in the stem. While 
on the other hand, lead stress, proportion of pith, and vascu-
lature increased but cortex decreased in the stem. In the root, 
proportion of vasculature and pith increased and cortex 
decreased in response to both Cd and Pb stresses. Dimensions 
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  Fig. 11.2    Cadmium-induced toxicity processes at cellular level       

 

11 Phytoremediation Using Leguminous Plants: Managing Cadmium Stress with Applications…



136

of vessel element and xylem fi ber in the wood of stem and 
root decreased under the Cd and Pb stresses. Plants grown 
under Cd and Pb stresses refl ected more pronounced decrease 
in the density of stem and root vasculature with the age 
advancement (Ahmad et al.  2005 )   

11.3     Strategies to Recover Heavy Metal 
Toxicity 

 A distinct group of plants have been shown to tolerate high 
metal concentrations. These hyper-accumulating plants are 
capable of sequestering metals in their tissues at remarkable 
high concentrations that would be toxic to most organisms, 
being important for phytoremediation of polluted soils. The 
majority of research carried out so far has focused on physiolog-
ical mechanism of metal uptake, transport, and  sequestrations, 
but little is known about the genetic basis of hyper-accumulation. 
There are known cases of major genetic polymorphism in which 
some members of species are capable of hyper-accumulation 
and others are not. This is in contrast to the related phenomenon 
of metal tolerance. Plant species those possess any metal toler-
ance are polymorphic, and evolving tolerance only in local 
populations on metalliferous soils (   Pollard et al.  2002 ). 

11.3.1     Plant Strategies to Augment Heavy 
Metal Stress 

 Alteration in root morphology, direction of growth, and acti-
vation of pumps to effl ux metal ions are the important strate-
gies to avoid metal uptake. Secondarily, plant growth 
promoting microorganisms (PGPMs) potentially could sieve 
at the interface of root and soil further diluting the metal 
uptake through root system. Arbuscular mycorrhizial fungi, 
phosphate solubilizing bacteria (PSB), root noodling 
Rhizobia, etc., are good examples of rhizo-fi lteration of toxic 
level of heavy metals (Ganesan  2012 ). Plants growing in a 
community could dilute the toxicity effect of these metals to 
escape the survival threat of several sensitive species (Rather 
 2013 ). Pulses, on the other hand have been found to redirect 
the Cd accumulation in the neighboring crops (Liu et al. 
 2012 ,  2013 ). Inoculation of AM fungi with Rhizobial strain 
further detoxifi es the metal in soil and discourages its uptake. 
However, it is not possible for a plant growing in heavy metal-
polluted area to completely avoid the toxic level of essential 
or nonessential heavy metal. Therefore, plants growing in 
such area are naturally selected inducing defense mechanisms 
to counter their toxicity. The activation of defense is a costly 
trade-off and channelizes the growth metabolisms, hence, 
plants often compromises growth, get threatened or elimi-
nated from the community (Rather  2013 ). In agriculture pro-
grams often crops have been screened against locally 
prevailing different stress factors. Alternatively, plants spe-
cies rich in sulfur compounds or other chelating agents could 

reach to such a limit that they could hyper-accumulate these 
heavy metals (Na and Salt  2011 ). These crops potentially 
could be used or optimized in phytoremediation programs for 
heavy metal detoxifi cation of polluted sites and phyto-min-
ing, which is considered as a safe and natural alternative of 
other strategies of metal decontamination of such sites. Often 
agricultural crops are discouraged for such programs. 
Although some degree of hyper-accumulation occurs in all 
members of the species that can hyper-accumulate, their evi-
dence of quantitative genetic variation in the ability to hyper-
accumulate, both between and within population (   Pollard 
et al.  2002 ). The genetic basis of Cd tolerance and hyper-
accumulation investigated in  Arabidopsis halleri  has demon-
strated that Cd tolerance may be governed by more than one 
major gene (Bert et al.  2003 ). The mechanism of Cd tolerance 
and hyper-accumulation in  Thalaspi caerulescens  hairy roots 
has been shown to be due to the ability of this plant species to 
withstand the effects of plasma membrane depolarization 
(Boominathan and Doran  2003 ).  

11.3.2     Role of AM Fungi in Prevention 
of Cadmium Toxicity in Legumes 

 The importance of legumes has been attributed in determi-
nation of N economy of various ecosystems (Makoi et al. 
 2009 ) including arable lands by forming root nodules (Ma 
et al.  2006 ). Nonessential heavy metals and excess of essen-
tial heavy metals have strong negative correlation with plant 
growth (Vyas and Puranik  1993 ; Shetty et al.  1994 ). 
Cadmium, being nonessential metal inhibits nodule forma-
tion and nitrogen fi xation in legumes (Hernandez et al. 
 1995 ), decreases nutrient uptake (Obata and Umebayashi 
 1997 ), photosynthetic activity (Kumar and Kumar  1999 ), 
and fi nally biomass production (Leita et al.  1993 ). The del-
eterious effect of heavy metals taken up by soil environment 
could be discouraged by use of PGPR (Khan et al.  2009a ,  c ; 
Kumar  2012 ) or mycorrhizae (Heggo et al.  1990 ; Saraswat 
and Rai  2011 ) called as rhizo-remediation (Kuiper et al. 
 2004 ). Soil microbial pool detoxifi es heavy metals such as 
Cd, Hg, and Pb (Aiking et al.  1985 ). Plant root–mycorrhi-
zhal symbiosis is one of the important associations among 
plant–microbe interaction. It is so important that over 95 % 
of the plant families are known to have some sort of mycor-
rhizal association under normal conditions. The use of 
mycorrhizae could potentially minimize the fertilization 
and water. It aids nutritional supplementation to the host 
plant at the cost of carbohydrate. The nutritional availability 
where on the one hand strengthens plant immunity against 
abiotic and biotic stress, fungus protects plants from certain 
root pathogens, metal toxicity, and water-stress. Role of 
mineral nutrition in minimizing Cd accumulation by plants 
in agricultural fi elds is discussed by Sarwar et al. ( 2010 ). 
Among different fl owering plants which associate AM fungi 
with them, legumes are of special mention. Legumes 
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s ubstantially contribute to the soil N pool and productivity 
in terrestrial ecosystems (Cleveland et al.  1999 ). It is also 
observed that AM fungus, when associating themselves in 
the tripartite relationship with  Rhizobium -legume roots, 
strengthens the nodulation frequency and nitrogen fi xation 
effi ciency of host plant. Since heavy metals persist in soil 
for a long time they are very resistant to chemical degrada-
tion or physical removal or immobilization (Kroopnick 
 1994 ). The site-specifi c management, excavation, and dis-
posal is cumbersome and uneconomic (Parker  1994 ; Elliott 
et al.  1989 ).    Bioremediation in this context is better substi-
tute (Leyval et al.  2002 ) involves microbes, level type of 
contamination, and climatic conduciveness (Brar et al. 
 2006 ). Researches have shown that AMF inoculation sig-
nifi cantly improved the tolerance of legumes to heavy metal 
toxicity in different growing conditions (Chen et al.  2007 ). 
Mycorrhizae and Rhizobia colonization besides protection 
of plant growth also secretes phytohormones viz. cytokinins 

and gibberellins, which induce cell division, stem elongation, 
seed germination, and other functions of host plants. Positive 
benefi ts of composite inoculation of AM fungi and 
 Rhizobium  with legumes grown in metal-contaminated soil 
are also reviewed by Muleta and Woyessa ( 2012 ). The dia-
grammatic representation of role of legume mycorrhization 
in preventing  Rhizobium  symbiosis and plant growth under 
heavy metal stress is shown in Fig.  11.3 . Various provisions 
and mechanisms of tripartite association in legume improve-
ment are tabulated in Table  11.1 .  

 Microbes themselves deploy several strategies to 
check metal uptake viz. cell wall biosorption, incorpora-
tion into enzymes and pigments (Gadd  2009 ,  2010 ), 
removal by efflux pumps and metal binding proteins and 
peptides (Silver  1996 ). Low molecular weight organic 
acids are secreted by plant roots such as oxalate and 
citrate to mobilize metals in soil. Synergy with AM fungi 
improves this mobilization to detoxify these meals as 

Cd toxicity induced
oxidative stress,

necrosis, chlorosis,
senescence, reduced

photosynthesis, growth
and yield

AM fungi mediated stable Rhizobial
symbiosis, metal sieving, moisture

retention, nutrient availability,
AM secreeted hormonal induction

Am fungi-Rhizobium
mediated better nutrition,

antioxidation,
photosynthetic rate,

growth and yield

Reglated transport of
minerals and water

AM fungi-Rhizobium
medicated improved root
growth, nodulation & N-
fixation

Scarce root growth on
HM-polluted site, less
nodulation & N-fixation

Non-contaminated soil

Mycorrhizo-remediation

HM-Contaminated soil

  Fig. 11.3    Role of AM fungi– Rhizobium -mediated alleviation of Cd toxicity in legumes       
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fungi are aided with plethora of diverse phytochleatins 
(PCs), metallothionines (MTs), and organic acids (Joner 
et al.  2000a ,  b ) and easily change their strains as per 
requirement as compared to complex eukaryotes. Site-
specific optimization of AM fungi-mediated mycorrhiza-
remediation is effective tool for restoring the 
eco-economics of soil and plant (   Takas  2012 ) particularly 
in legumes (Muleta and Woyessa  2012 ). However, con-
tradictory reports regarding increase or decrease of metal 
concentration of mycorrhized plant are available (   Gildon 
and Tinker  1983 ; Heggo et al.  1990 ; Tonin et al.  2001 ; 
Karimi et al.  2011 ). Enhanced uptake of heavy metals is 
the part of phytoremediation and reclamation of contami-
nated soil, whereas, heavy metal sieving via fungal mat is 
desired in the crop plants to check metal accumulation 
(   Rivera-Becerril et al.  2002 ; Jamal et al.  2002 ; Audet and 
Charest  2007 ) in the plant tissue for safe food. Muleta 
( 2010 ) discussed the dependency of legumes on mycor-
rhizal associations. This association has shown to supply 
high P for nodulation and N-fixation as P is known as 
critical element for nodule formation (Barea and Azcon-
Aguilar  1983 ). The effect of dual inoculation of AMF and 
bacteria remarkably improve the heavy metal tolerance 
of plant (Vivas et al.  2003a ,  b ; Muleta  2010 ). The mecha-
nisms of heavy metal tolerance by mycorrhizal legumes 
were discussed by Malcova et al. ( 2003 ), Cardoso and 
Kuyper ( 2006 ), and Garg and Aggarwal ( 2011 ).  

11.3.3     Benefi ts of Tripartite Relation 
for Soil Health 

 Evidence of existence of symbiosis of plant roots with AM 
fungus has been found in fossils dating back 460 million years. 
Mycorrhizal symbiosis predates the evolution of nodulation 
by approximately 400 million years. The sharing of two sym-
biotic pathways was shown to be present in cereals and essen-
tial for mycorrhizal signaling (Hayat et al.  2012 ). AM fungus 
ensures the absorption of N, P, K, and S uptake besides the 
absorption of mineral elements, e.g., Cu, Fe, Ni, Co, and Zn. 
The fungal hyphae keeps check on the root uptake of excess 
level of Zn, Cd, and Mn from soil. This protects the plant roots 
and enhances the plant’s ability to re-vegetate and stabilize the 
soils of reclaimed mines that may be high in heavy metals. 
Increased stability of  Rhizobium –legume symbiosis ensures 
the fi xation of optimum level of nitrogen from air. The glyco-
protein glomalin excreted by fungal hyphae act as glue leading 
soil particles to stick together, or aggregate. Soil aggregates 
are resistant to breakdown by water and enhance the soil’s 
physical characteristics, such as soil erosion by water and air. 
The fungal hyphae also physically entangle nonaggregated 
soil particles together, facilitating other bacterial and fungal 
compounds to form these particles into aggregates besides 
enriching rhizosphere with the activity of other benefi cial 
microbes such as PGPRs (Kumar  2012 ). These aggregates are 
important for the soil food web (Table  11.3 ).

   Table 11.3    Mechanism and ways of heavy metals (including Cd) rhizo-remediation and legume growth improvement in tripartite association   

 A.   Rhizobium associated metal rhizo - remediation  
 1.  Strengthening plant immunity to combat metal stress providing N-feed 
 2.  Heavy metal dilution incorporating them in  Rhizobium  metabolism 
 3.  Bio-sorption of heavy metals in cell wall, other structural components, e.g., pigments, or as enzyme cofactors 
 4.  Plant growth induction through the secretion of phytohormones 
 B.   Mycorrhiza-mediated metal detoxifi cation rhizo - remediation  
 1.  Sieving of heavy meals to reach into roots of legumes 
 2.  Detoxifi cation of heavy metals through the secretion of organic acids, metallo-thionines, etc. 
 3.  Nutritional supplementation to strengthen plants’ internal resistance viz. phosphates, mineral elements, and soil organic compounds 
 4.  Enrichment of rhizosphere with PGPRs 
 5.  Plant growth improvement through secretion of phytohormones 
 6.  Protection from root disease-causing pathogens 
 7.  Protection from water stress 
 8.  Incorporation of heavy metals in fungal metabolism (metal sink) 
 9.  Protection of  Rhizobium –legume symbiosis 
 C.   Plant strategies and defense mechanisms to overcome metal stress  
 1.  Root growth direction and morphology 
 2.  Root metal retention and other 
 3.  Transportation to metabolically inactive parts 
 4.  Cellular detoxifi cation and sequestration to vacuoles 
 5.  Secretion of phyto-chelatins (PCs) and metalothionines (MTs) 
 6.  Antioxidant enzymes (CAT, POX, SOD, GR, etc.) and molecules (glutathione, ascorbate etc.) 
 7.  Reactive oxygen species quenching metabolites and osmo-protectants (proline, polyamines, betains, and sugar alcohols) 
 8.  Root excretion of organic acids 
 9.  Effl ux of heavy metals activating metal exporters 
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11.4         Conclusion 

 The necessity of increased establishment and capacity of 
nitrogen fi xing nodules in legumes becomes more important 
in stressed habitats, for instance, heavy metal-contaminated 
sites. Therefore, the research advancement regarding the isola-
tion, characterization, and selection of metal-resistant rhizo-
bial strains and legume varieties is accelerating rapidly. 
Besides, research work is also going on to screen and optimize 
the legume varieties with resistant  Rhizobium  strain to restore 
the soil fertility in heavy metal stressed habitats particularly 
emphasizing the protection of nitrogen fi xing activity (   Coba 
de la Peña and Pueyo  2012 ). The role of glutathione in the 
resistant  Rhizobium  strain was confi rmed against Cd stress for 
effective symbiosis and bioremediation of metals (Sofi a et al. 
 2012 ; Mandal and Bhattaccharyya  2012 ). The site-specifi c 
optimization of mycorrhization of plants has also emerged as 
a promising strategy for metal detoxifi cation which might 
improve the legume production in such disturbed cropping 
locations (   Takas  2012 ).    Molecular studies of signaling in this 
perspective will further disclose the mechanism of interaction 
of AM fungi with Rhizobium enable restoration of nitrogen 
fi xation, would enlighten our current understanding.     
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12.1             Current Problem of Worldwide 
Contamination of Soils with Copper 

    Copper occurs in the environment at trace levels; its average 
concentrations in the earth crust and world average content 
in topsoils, reported by various authors, remain in the ranges 
24–68 mg/kg and 14–30 mg/kg, respectively. The origin of 
copper present in soil is usually both natural and anthropo-
genic. The main natural sources of soil Cu are parent rocks, 
or more precisely the products of their weathering, supplied 
by the infl ux with water and airborne deposition. Typical 
concentrations of Cu in granitic igneous rocks are lower than 
those in basic or ultrabasic rocks, such as basalt or peridotite. 
Limestones are usually relatively poor in Cu. Fine-textured 
sedimentary rocks, such as clays and shales, thanks to their 
sorption properties, contain higher concentrations of Cu than 
sandstones or loose sandy rocks. Accordingly, light-textured 
soils are naturally poorer in Cu than clays or clayey loams 
(Adriano  1986 ; Kabata-Pendias and Pendias  2001 ; FOREGS 
 2005 ; Alloway  2013 ). 

 According to FOREGS ( 2005 ), based on the data from 
840 sampling sites, the concentrations of Cu in European 
topsoils vary in a broad range (0.8–256 mg/kg) and are 
strongly related to regional and local geology, with additional 
impacts from anthropogenic pollution. The median total Cu 
content in topsoil is 13.0 mg/kg. Soils with low Cu content 

(below 8.0 mg/kg) are typical for southern Fennoscandia, the 
Baltic states, and the Quaternary plain of northern Central 
Europe, with a well-marked southern limit of the glacial 
drift. Separate zones with low soil Cu also occur in northeast-
ern Italy and central Portugal. Soils enriched in Cu, contain-
ing over 20 mg/kg Cu, are typical for the Mediterranean 
zone, as well as for southwest England and Ireland. 

 An important anthropogenic source of local soil enrich-
ment in Cu is deposition of airborne dust released from metal 
ore mining smelting, processing, and waste disposal. Urban 
and industrial areas are affected by a wide variety of activi-
ties, such as traffi c, housing, and metal industry that may 
contribute to increased Cu concentrations in soils. Particular 
sources of such enrichment are often diffi cult to unambigu-
ously identify. Considerably enhanced concentrations of Cu 
in soils of agricultural lands, distant from industrial and 
urban sites, may be caused by common agricultural prac-
tices: the use of pesticides, in particular fungicides contain-
ing Cu as an active ingredient, and the use of contaminated 
sewage sludge, solid wastes, or fertilizers as soil amend-
ments (Kabata-Pendias and Pendias  2001 ; Alloway  2013 ). 

 The source and nature of soil enrichment in Cu is of cru-
cial importance for its fate in the environment, its bioavail-
ability, environmental risk, and hence for the decisions on 
need for soil remediation and its most appropriate methods. 

 Signifi cant soil pollution with copper occurs both in 
Europe and in the world, only on a local scale. This applies 
mainly to heavily industrialized and urban areas, with his-
torical or currently operating copper ore mines, smelters, and 
metallurgical plants. 

 In the areas of historical mining and ore processing, 
beginning from Roman and medieval times, metallic Cu was 
produced in crude, highly polluting technologies, and certain 
amounts of Cu were released to the environment from vari-
ous facilities, usually scattered over the land. Throughout the 
centuries, the gangue rock material was disposed on mine 
spoils, and processing wastes and slags were dumped on 
heaps, in tailings impoundments, and in landfi lls. As an effect 
of land redevelopment, this waste material used to be spread 
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over the soil surface, for its leveling or road hardening, which 
led to Cu dispersion in the environment. Ore smelting pro-
cesses released huge amounts of Cu-rich dust that was subse-
quently deposited on the areas adjacent to smelters (Thornton 
 1996 ; Li and Thornton  2001 ; Karczewska and Bogda  2006 ; 
Wilson and Pyatt  2007a ,  b ; Chopin and Alloway  2007 ; Abreu 
et al.  2008 ). Small-sized aerosols were transported over a 
long distance, sometimes thousands of kilometers (Hong 
et al.  1996 ). For historical mining areas, it is often quite dif-
fi cult to distinguish between natural soil enrichment in Cu 
and the effects of human activities, related to various stages 
of ore processing. The assessment of associated environmen-
tal risk will also be diffi cult because the potential mobility 
and bioavailability of soil Cu depend on its origin and specia-
tion. Typically, the solubility of Cu in metallurgical dust is 
greater than that in the unprocessed ores. 

12.1.1     Present Mining and Ore Processing 
as a Source of Soil Pollution 

 Copper ore mining areas are intrinsically enriched in Cu. 
In those areas where Cu occurs in shallow ore deposits, 
exploited by open-pit mining, soil enrichment in Cu may 

be caused both by natural rock mineralization, and by 
depositions of dust released from ore mining, transporta-
tion, crushing, and further processing, as well as from 
the dispersion of mining wastes in the environment 
(Salomons  1995 ; Thornton  1996 ; Bech et al.  1997 ; 
Lottermoser  2003 ; Ikenaka et al.  2010 ). Cu-rich dust can 
also be blown away from waste dumps and tailing impound-
ments (Kabała et al.  2008 ). Copper originating from these 
sources occurs usually in the same form as in the ore itself, 
i.e. as sulfi de, oxide, carbonate, or silicate minerals. In the 
areas of underground Cu mining, associated with deep ore 
deposits, the enrichment of soils in Cu is usually purely 
anthropogenic. 

 Almost 90 % of global copper production is based on sul-
fi de ores. Oxide and carbonate ores are of local importance 
(USGS  2013 ; InfoMine  2014 ). Copper ores are usually poly-
metallic, and contain considerable amounts of other ele-
ments such as Ni, Co, Sn, W, Mo, Zn, Pb, Sb, Bi, As, Se, Te, 
and Au, Ag, and Hg. Table  12.1  provides information about 
the largest copper mines in the world. Undoubtedly, in the 
surroundings of these mines, the enrichment of soils in Cu 
occurs on the largest scale. However, no aggregated data 
on the ranges of Cu content in rocks and soils, or its spatial 
distribution patterns, in those areas are available.

   Table 12.1    The largest copper mines in the world, by yearly production in 2013 (InfoMine  2014 )   

 No.  Mine  Country  Deposit type  Mine type 

 Yearly Cu 
production, 2013 

 Yearly Cu 
capacity, 2012 

 10 3  metric tons 

 1.  Escondida  Chile  Porphyry  Surface  1,194  1,150 
 2.  El Teniente  Chile  Porphyry  Underground  450  433 
 3.  Collahuasi  Chile  Porphyry  Surface  445  520 
 4.  Antamina  Peru  Skarn  Surface  427  450 
 5.  Los Pelambres  Chile  Porphyry  Surface  420  470 
 6.  Los Bronces  Chile  Porphyry  Surface  416  416 
 7.  Grasberg Complex  Indonesia  Porphyry  Surface and underground  415  750 
 8.  Radomiro Tomic (Codelco Norte)  Chile  Porphyry  Surface and underground  380  840 
 9.  Chuquicamata (Codelco Norte)  Chile  Porphyry  Surface/underground  339 
 10.  Morenci  USA  Porphyry  Surface  301  420 
 11.  Cerro Verde  Peru  Porphyry  Surface  300  320 
 12.  Taimyr (Norilsk—Polar Division)  Russia  Mafi c intrusive (basal)  Underground  297  430 
 13.  Kansanshi  Zambia  Structurally-controlled 

vein-hosted 
 Surface  271  285 

 14.  Tenke Fungurume  DR Congo  Sediment hosted  Surface  264  No data 
 15.  Andina  Chile  Porphyry  Surface  237  300 
 16.  Mopani  Zambia  Sediment hosted  Underground and surface  212  No data 
 17.  Bingham Canyon  USA  Porphyry  Surface  211  280 
 18.  Rudna (KGHM)  Poland  Sediment hosted  Underground  209  215 
 19.  Polkowice- Sieroszowice (KGHM)  Poland  Sediment hosted  Underground  205  No data 
 20.  Candelaria  Chile  Hydrothermal 

(iron-oxide-Cu-Au) 
 Surface and underground  191  No data 

  The data on mine capacities refer to the year 2012, according to ICSG  2013   
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12.1.2        Soil Contamination in the Surroundings 
of Copper Smelters 

 Copper metallurgy was for many centuries, and particularly 
in the twentieth century, a large source of emissions contain-
ing Cu and other metals, such as Pb, Cd, sometimes Ni and 
highly toxic, semimetallic As. Since most of the copper 
deposits mined presently are sulfi de ones, their processing 
releases considerable amounts of SO 2 , which, if not 
entrapped, may lead to strong soil acidifi cation, thereby 
causing highly increased solubility of Cu. High concentra-
tions of copper and other metals, together with the effects of 
soil acidifi cation and sometimes enhanced salinity, were 
responsible for the formation of barren lands, highly vulner-
able to water and wind erosion. 

 Such effects have been reported from several areas in the 
world. Industrial barren lands are frequently associated with 
historical smelting sites. The best known examples from 
North America are nickel and copper smelters in Sudbury 
(Ontario, Canada) that started operation in the eighteenth to 
nineteenth centuries (McCall et al.  1995 ), and smelters in the 
United States: MT and Anaconda-Deer Lodge Valley in 
southwestern Montana (Burt et al.  2003 ), the Asarco smelter 
in Tacoma (Washington) (Crecelius et al.  1974 ) and Copper 
Hill and Duck Town in Tennessee (Quinn  1991 ), the largest 
US emitters of metals and sulfur dioxide in the 1970s and 
1980s. In Australia, one of the important producers of cop-
per, there were hot disputes about the environmental impacts 
of the Port Kembla copper smelter in New South Wales 
(Martley et al.  2004 ). The largest European center of Cu 
mining and processing is that situated in SW Poland (Fore- 
Sudetic Monocline, i.e. the area of Legnica and Głogów), 
where Permian sedimentary Cu deposits are mined and pro-
cessed by the company KGHM Polska Miedź S.A. (KGHM 
 2013 ). Dust and sulfur dioxide discharged into the atmo-
sphere from two smelters in the last decades of the twentieth 
century caused severe environmental pollution within a large 
area of a 1,000 ha. There are several other copper metallurgy 
centers in Europe that also exerted a considerable impact on 
soils in their surroundings, such as Falun in central Sweden 
(Ek et al.  2001 ), where mining and ore processing activities 
lasted for over 1,000 years, nickel and copper smelter 
Harjavalta in Finland (Derome  2000 ; Nieminen et al.  2002 ; 
Nikonov et al.  2001 ), several smaller centers in the UK, such 
as Devon Great Consols Mine in the Tamar valley in Devon 
(Lombi et al.  2004 ), and near Avonmouth (Spurgeon and 
Hopkin  1996 ). In the south of Europe, Rio Tinto in Spain is 
one of the greatest ore smelting centers, where over the cen-
turies copper has been produced from polymetallic ores. The 
main environmental concern in Rio Tinto is contamination of 
water, sediments, and soils with arsenic rather than with cop-
per (Sáinz et al.  2004 ). 

 The countries of South America, Asia, and Africa, which 
currently host the world’s largest copper industry plants, have 
been affected by their activities to various extents. Most of 
the most modern smelters are equipped with highly effi cient 
installations of air protection, and therefore their possible 
environmental impacts should be substantially reduced. On 
the other hand, however, due to their high costs, such instal-
lations will be placed in service only when their operation is 
enforced by effi cacious legal regulations. The list of the ten 
most polluting industrial plants in the world, published by 
Blacksmith Institute ( 2008a ,  b ) includes, among others, the 
Zambia Consolidated Copper Mines in Kabwe, shut down in 
1994, the Chinese Shenyang Smelting center (running from 
1936 to 2003), Russian Copper Company smelters in Norilsk 
and in Karabash (the Chelyabinsk region of Russia’s Ural 
Mountains), as well as Romanian plants Copsa Mica. The 
center of mining and metallurgy Severonikiel in Monchegorsk 
(the Kola Peninsula) is considered one of the most polluted 
areas in Russia (Barcan  2002 ; Kozlov  2005 ; Kozlov and 
Zvereva  2007 ). Several papers confi rm considerable soil pol-
lution caused by the Chinese smelters at Guixi, Huangshi, 
and Shuikoushan (Hu et al.  2006 ; Yan et al.  2007 ; Wei et al. 
 2009 ), as well as by others, for example in Peru (e.g. the 
region of Ilo), South Korea, Indonesia, and in other countries. 
The Blacksmith Institute’s database contains more than 350 
sites polluted by ore mining and smelting, that potentially put 
more than 6.7 million people at risk. Most of the modern 
facilities, built or modernized in 1990s or later, including the 
majority of smelters in Chile, currently the world’s largest 
copper producer, cause a much smaller impact on the envi-
ronment. However, it would not be possible to completely cut 
out all the hazardous effects of mining and metallurgy on the 
environment (Ginocchio  2000 ). The world production of 
metallic copper has reached recently (in 2011) 17 million 
tons per year (USGS  2013 ), half of which is produced in 
Asia, 30 % in China and 9 % in Japan. Not earlier than 20 
years ago, Cu production in Asia remained below three mil-
lion tons. Such rapid development of the Cu smelting indus-
try, particularly in China, as well as in India and South Korea, 
is quite a new phenomenon, and information on the impact 
exerted on the soil environment by new facilities is for the 
time being diffi cult to acquire. Table  12.2  shows the current 
list of the largest copper smelters in the world.

   Massive depositions of airborne particulate matter, 
together with gaseous sulfur dioxide, have strongly affected 
the environment in the immediate vicinities of large copper 
smelters, leading to the development of industrial barren 
lands, almost completely deprived of plant cover. A brief 
description of 36 such objects, published by Kozlov and 
Zvereva ( 2007 ), shows that most of those areas developed 
in the 1970s, and 25 of them evolved in the surroundings 
of either Cu or Cu-Ni smelters, mainly in Russia 

12 Phytoremediation of Copper-Contaminated Soil



146

(Kola Peninsula and the Southern Ural region), the United 
States, and Canada, as well as in Poland, Chile, and Slovakia. 
In many of the listed areas, plant cover has already been par-
tially restored due to organized reclamation, or by slow pro-
cesses of spontaneous succession, after the closure of 
installations or substantial reduction of their emissions. 

 The spatial extent of serious environmental impacts caused 
by copper smelters depends on a set of various factors, of 
which the most important are local topography and height of 
chimneys, as well as the kinds and quantities of pollutants 
released to the atmosphere, and in particular the size of metal-
laden particles. The largest smelters, operating for many 
years, have caused soil contamination within distances of 
several kilometers, and sometimes even more. The amounts 
of contaminants deposited on the land surface, and hence the 
concentrations of Cu in soils, generally decrease along with 
increasing distance from the emission source, according to 
typical logarithmic dependence, related to a normal particle 
size distribution of dust (Zwoździak and Zwoździak  1982 ; 
Hutchinson and Whitby  1977 ). Environmental impacts 
caused by the emissions from three major Sudbury copper 
smelters, i.e. Copper Cliff, Coniston, and Falconbridge, were 
found at tens of kilometers. Copper (and nickel) concentra-
tions in soils at the distance of 13.4 km away from the Copper 
Cliff smelter still exceeded 1,000 mg/kg (Table  12.3 ).

   The extent of impacts exerted by the Russian smelter 
Severonickel was assessed by Barcan and Kovnatsky ( 1998 ) 
as 20 km, and Cu content in topsoils at the distance of 
10–15 km from the smelter remained in the range of 
51–384 mg/kg. The emissions from the Norwegian Sulitjelma 
smelter caused apparent soil enrichment in airborne Cu over 
25 km away from the plant (Løbersli and Steinnes  1988 ), 
which should be assigned to the high frequency of strong 
winds in the coastal zone of the sea. Numerous reports indi-
cate a signifi cant impact of copper smelters on the soil envi-
ronment at a distance up to 10 km, as it was proved for example 
for the smelter Legnica in Poland (Roszyk and Szerszeń  1988 ; 
Szerszeń et al.  1993 ; Karczewska  1996 ) and the copper 
smelter in Port Kembla, Australia (Martley et al.  2004 ). The 
range of this impact is sometimes much smaller, as in the case 
of the smelters at Tharsis, Ríotinto, and Huelva, SW Spain, 
where it was assessed as 2–3 km (Chopin and Alloway  2007 ). 

 Some of the world’s largest emitters of Cu have already 
been closed, and most of those still operating have radically 
reduced the amounts of emitted dusts and gases. An example 
illustrating reduction of emissions from all divisions of 
KGHM, presently the largest copper producer in Europe, is 
presented in Table  12.4 .

   Copper, similarly to Pb and As, usually accumulates in top-
soil, where it is strongly bound, and therefore the problem of 

   Table 12.2    The largest copper smelters in the world (2012), according to ICSG  2013 , extended   

 No.  Smelter  Country  Smelting process  Year of foundation 
 Yearly Cu capacity 
 10 3  metric tons 

 1.  Guixi (Jiangxi Copper Corp.)  China  Outukumpu Flash  1977  900 
 2.  Birla Copper  India  Outukumpu Flash, Ausmelt, Mitsubishi Cont.  1998  500 
 3.  Codelco Norte  Chile  Outukumpu/Teniente Conv.  1952  450 
 4.  Hamburg  Germany  Outukumpu, Contimelt, Electric  1948  450 
 5.  Beshhi/Ehime (Toyo)  Japan  Outukumpu Flash  1905  450 
 6.  Saganoseki/Ooita  Japan  Outukumpu Flash  1916  450 
 7.  El Teniente  Chile  Reverberatory/Teniente Conv.  1905  400 
 8.  Jinchuan  China  Reverberatory/Kaldo Conv.  1960  400 
 9.  Xiangguang Copper  China  Outukumpu Flash  2007  400 
 10.  Norilsk (Nikelevy, Medny)  Russia  Reverb., Electric, Vanyukov  1942  400 
 11.  Sterlite (Tuticorin)  India  Isasmelt Process  1996  400 
 12.  Ilo  Peru  Isasmelt Process  1983  360 
 13.  Onahama/Fukushima  Japan  Reverberatory  1965  354 
 14.  Altonorte (La Negra)  Chile  Normanda Continuous  1993  350 
 15.  Jinlong (Tongdu)  China  Flash Smelter  1997  350 
 16.  Yunnan  China  Isasmelt Process  1958  350 
 17.  Naoshima/Kagawa  Japan  Mitsubishi Cont.  (1917) 1974  342 
 18.  Pirdop  Bulgaria  Outukumpu Flash  1958  330 
 19.  Onsan II  S. Korea  Mitsubishi Cont.  1979  320 
 20.  Huelva  Spain  Outukumpu Flash  1970  320 
 21.  Garfi eld  USA  Konnecott/Outukumpu  1906  320 
 22.  Głogów I and II a   Poland  Blast Furnace/Outukumpu Flash Electrorefi ning  1971  460 

   a The complex of two smelters [(KGHM  2013 ),   www.kghm.pl    ]  
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soil contamination in smelter-affected areas will still exist for 
a long time, even though the emissions have been drastically 
reduced. The concentrations of the three above- mentioned 
elements in soils surrounding the Legnica and Głogów copper 
smelters remain in fact unchanged for many recent years 
(Karczewska et al.  2010 ; Szerszeń et al.  1991 ,  2004 ).  

12.1.3     Cu Contamination of Urban Soils 

 Soil contamination in the urban environment and associated 
human health implications caused by heavy metals has been 
recently a matter of emerging studies (   Wong et al.  2006 ). 
High spatial variability of soil properties and frequent occur-
rence of local contamination are the characteristic features of 

soils in urban and industrialized centers (Pasieczna et al. 
 2003 ; Wong et al.  2006 ; Kabała et al.  2009 ). Pollution of 
urban soils may be caused by emissions from traffi c (fossil 
fuel combustion, wear and tear of vehicular parts, leakage of 
motor oils), industry-specifi c activities, disposal of munici-
pal waste (incineration and landfi lling), and the corrosion of 
constructions. Moreover, soils in the urban environment are 
usually highly disturbed, and various exogenous materials, 
often polluted, of unknown origin, may be used for land lev-
eling and landscaping. Organic waste materials commonly 
used for soil improvement and fertilization in urban parks, 
lawns, and allotments (   Alloway  2004 ; Kabała et al.  2009 ) are 
often rich in metals. High Cu concentrations in soils of the 
old city centers may also be derived from historical, ancient 
activities (Alexandrovskaya and Alexandrovskiy  2000 ). 

 Studies carried out by a number of authors in various cit-
ies show that the mean Cu concentrations in surface levels of 
urban soils are usually much higher than the values of the 
local geochemical background (Ajmone-Marsan and Biasioli 
 2010 ). Locally, urban soils contain extremely high levels of 
copper, recorded from the industrial parts of the towns, and 
also from the parks, recreational areas, and allotments. 
Table  12.5  summarizes the data on Cu concentrations in soils 
reported from various cities. A review study published by 

   Table 12.3    Examples of Cu concentrations in topsoil at various distances from copper smelters   

 Smelter  Country  Distance (km)  Depth (cm)  Cu (mg/kg)  Reference 

 Sudbury: Coniston 
Smelter 

 Canada  1.5  0/5  2,007/1,864  Hutchinson and Whitby ( 1977 ) 
 7.4  1,425/1,621 
 19.3  730/597 
 49.8  31/27 

 Severonickel  Russia  3–10  Forest litter and mineral soil 
to the depth of max. 15 

 246–4,622  Barcan and Kovnatsky ( 1998 ) 
 10–15  51–384 
 Over 20  13–34 

 Harjavalta  Finland  0.5  Humus layer/mineral soil 0–5  2,304/259  Derome and Lindroos ( 1998 ) 
 3  1,079/29.1 
 4  525/4.3 
 8  125/1.3 

 Sulitjelma  Norway  1  3–5  2,500  Løbersli and Steinnes ( 1988 ) 
 27  10 × BL 
 37  10 

 Las Ventanas I Chagres  Chile  2.6–8  0–20  113–384  De Gregori et al. ( 2000 ) 
 13.5–26  62–89 

 Legnica  Poland  1  0–20  750–986  Karczewska ( 1996 ) 
 2  250–280 
 3  100–248 
 4  75–101 

 Głogów  Poland  0.5  0–20  Up to 1,710  Kabała and Singh ( 2001 ), 
Karczewska ( 1996 )  1  0–18  369 

 3  426 
 6  0–27  115 

   BL  background level  

   Table 12.4    The amounts of gaseous and particulate pollutants released 
into the atmosphere from mining and smelting facilities of KGHM S.A. 
during the period 1980–2010 (KGHM  2013 )   

 Pollutant  1980  1990  2000  2010 

 Sulfur dioxide (t/year)  154,245  48,719  6,202  4,518 
 Copper (t/year)  2,968  204  23  10.6 
 Lead (t/year)  3,119  124  14  4.9 
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Ajmone-Marsan and Biasioli ( 2010 ) revealed that soils with 
Cu content over 120 mg/kg (Italian soil quality standard for 
residential and recreational areas) were present in 47 cities of 
the 153 covered by the analysis. According to Italian legal 
regulations, such soils should be considered for remediation. 
The highest concentrations of Cu in urban soils were found 
in industrial cities in the UK (Newcastle upon Tyne and 
Wolverhampton) and in large, industrialized European cities 
(Berlin, Glasgow, and Turin). Extremely high levels of Cu, 
vastly exceeding the value of 1,000 mg/kg, were recorded 
locally from urban soils in Gibraltar (12,500 mg/kg), 
Newcastle upon Tyne (12,107 mg/kg) and Wolverhampton 
(2,750 mg/kg), Berlin (12,300 mg/kg) and Stockholm 
(1,315 mg/kg) (Table  12.5 ), as well as in Osnabrück 
(1,570 mg/kg) and Jakobstad (2,612 mg/kg) (Ajmone- 
Marsan and Biasioli  2010 ).

   All cases of such strong soil contamination with copper 
should be carefully examined from the standpoint of envi-
ronmental hazards and human health risks. In some cases, 
soil remediation should be recommended. Particular concern 
should be given to highly Cu-enriched soils of allotment gar-
dens in Berlin (Cu up to 1,280 mg/kg) (Birke and Rauch 
 2000 ), Wroclaw (up to 595 mg/kg) (Kabała et al.  2009 ) and 
Glasgow (up to 484 mg/kg) (Hursthouse et al.  2004 ).  

12.1.4     Fertilizers and Pesticides as Sources 
of Cu in Agricultural Soils 

 Cu-based pesticides and some fertilizers may contribute to 
signifi cant increase of Cu concentrations in agricultural 
soils, particularly if applied repeatedly for many years. 

    Table 12.5    Cu concentrations in urban soils   

 City   N   Depth (cm)  Usage 

 Total Cu (mg/kg) 

 Reference  Range  Mean 
 Median 
(or geometric mean) 

 Aviles  40  0–15  Various  19–1,040  x  (63)  Ordóñez et al. ( 2003 ) 
 Aveiro (Portugal)  26  0–10  Parks  8–61  18  16     Madrid et al. ( 2006 ) 
 Bangkok  30  0–5  Various  5–283  42  27  Wilcke et al. ( 1998 ) 
 Beijing  771  0–20  Various  2–282  24  (21)  Zheng et al. ( 2008 ) 
 Berlin  2,182  0–20  Various—city  ?–12,300  80  31  Birke and Rauch ( 2000 ) 
 Gibraltar  120  0–15  Various  <1–12,500  x  40  Mesilio et al. ( 2003 ) 
 Glasgow  27  0–10  Parks  24–113  73  71  Madrid et al. ( 2006 ) 

 80  0–5, 5–10  Parks and allotments  58–484  140  x  Hursthouse et al. ( 2004 ) 
 Hong Kong  236  0–10  Parks and lawns  1–277  16  10  Lee et al. ( 2006 ) 
 Ibadan  106  0–15  Various  7–248  47  32     Odewande and Abimbola 

( 2008 ) 
 Ljubljana  25  0–10  Parks  21–78  33  31  Madrid et al. ( 2006 ) 
 Mexico City  135  Traffi c  15–398  x  54  Morton-Bermea et al. ( 2009 ) 
 Moscow  3  0–10  Various  99–125  111  108  Alexandrovskaya and 

Alexandrovskiy ( 2000 ) 
 Montreal  8  0–15  Polluted soils  32–640  x  >100  Sauvé et al. ( 1996 ) 
 Newcastle upon Tyne  163  0–5  Various  20–12,107  233  77  Rimmer et al. ( 2006 ) 
 Poznań  350  0–20  Various  3–120  16  11  Grzebisz et al. ( 2002 ) 

 29  0–20  Traffi c  12–149  86  82  Diatta et al. ( 2003 ) 
 Richmond upon Thames  214  0–15  Various  38–1,130  x  (30)  Kelly et al. ( 1996 ) 
 Seville  32  0–10  Parks  30–72  48  47  Madrid et al. ( 2006 ) 

 62  0–10, 10–20  Parks  14–698  73  x  Hursthouse et al. ( 2004 ) 
 Stockholm  42  0–5  Various  7–1,315  71  x  Linde et al. ( 2001 ) 
 Torino  25  0–10  Parks  44–123  87  83  Madrid et al. ( 2006 ) 

 70  0–10  Urban  34–283  90  76  Biasioli et al. ( 2006 ) 
 40  0–10, 10–20  Parks  20–293  111  x  Hursthouse et al. ( 2004 ) 

 Uppsala  25  0–10  Parks  8–90  36  31  Madrid et al. ( 2006 ) 
 Warsaw  36  0–20  Various  7–65  25  x  Pichtel et al. ( 1997 ) 
 Wolverhampton  178  0–15  Residential  10–841  x  (62)  Kelly et al. ( 1996 ) 

 25  0–15  Industrial  18–2,750  x  (139) 
 58  0–15  Recreational  12–387  x  (55) 

 Wrocław  120  0–20  Allotments  13–595  63  39  Kabała et al. ( 2009 ) 
 12  0–5  Lawns  8–52  22  16  Dradrach et al. ( 2012 ) 
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Various Cu-based fungicides, such as copper sulfate, 
Bordeaux mixture (CuSO 4  + Ca(OH) 2 ), Cu-oxychloride, and 
many other preparations based on copper oxide and copper 
salts have been used since the end of the nineteenth century 
to control fungal diseases in fi elds, orchards, vineyards, and 
various plantations. Their regular application and subsequent 
wash-off from the treated plants have resulted in extensive 
Cu accumulation in vineyard soils (Komarek et al.  2010 ). 
The average yearly dosage of Cu applied with fungicides in 
French vineyards is as high as 5 kg/ha. There are numerous 
reports that confi rm considerable Cu enrichment of vineyard 
soils and apparent increase of Cu concentrations in soils 
along with increasing vineyard age (Mirlean et al.  2009 ; 
Komárek et al.  2010 ; Pavlovic  2011 ). The highest Cu con-
centrations occur usually in the surface soil layers (Pietrzak 
and McPhail  2004 ; Wightwick et al.  2006 ; Mirlean et al. 
 2007 ), where they may be as high as in the range 500–
1,000 mg/kg. The maximum value of 3,216 mg/kg was 
reported from a subtropical region in Brazil (Mirlean et al. 
 2007 ). Compared with those values, Cu content in vineyard 
soils in the Czech Republic, Slovenia, and Serbia, in the 
range 20–265 mg/kg (Table  12.6 ), should be assessed as 
relatively low. Comprehensive review papers on contamina-
tion of vineyard soil have been recently published by 
Komárek et al. ( 2010 ) and Mackie et al. ( 2012 ).

12.1.5        Other Sites with Cu-Contaminated Soils 

 A particular example of sites considerably contaminated 
with copper, chromium, and arsenic is wood treatment facil-
ities in which wood preservatives (Cu sulfate or chromated 

Cu arsenate (CCA)) were used for many years to protect 
wood against insect and fungal attacks (Mench and Bes 
 2009 ). Many of the large facilities that presently apply CCA, 
or used to apply it in the past, caused local soil pollution 
with Cu (Zagury et al.  2003 ; Mench and Bes  2009 ; 
Kumpiene et al.  2006 ;    Morrell and Hoffman  2004 ; Bes and 
Mench  2008 ). Cu concentrations in those soils may signifi -
cantly exceed 1,000 mg/kg (Buchireddy et al.  2009 ). Some 
of such sites have turned into derelict areas, either barren or 
with poor vegetation (Mench and Bes  2009 ). Enhanced Cu 
concentrations were also reported from the underneath of 
CCA- treated wood structures, such as wooden bridges 
(Townsend et al.  2003 ). 

 All the kinds of metallurgical plants, such as secondary 
smelters or rolling mills, should also be mentioned as 
 signifi cant sources of copper release into the environment 
(Lepp et al.  1997 ).   

12.2     Methods of Remediation of Soils 
Polluted with Copper 

12.2.1     The Aim of Soil Remediation 

 According to the defi nition published in the proposal of the 
EU Soil Directive ( 2006 ),  soil remediation shall consist of 
actions on the soil aimed at the removal, control, contain-
ment or reduction of contaminants so that the contaminated 
site, taking account of its current use and approved future 
use, no longer poses any signifi cant risk to human health or 
the environment.  

   Table 12.6    Cu concentrations in vineyard soils   

 Region  Country  Depth (cm)  Cu (mg/kg)  Reference 

 Victoria  Australia  0–1  9–249  Pietrzak and McPhail ( 2004 ) 
 South Australia, Murray Valley, Grampians  Australia  0–5  19–162     Wightwick et al. ( 2013 ) 
 Zelina and Plesivica  Croatia  0–10  30–700  Romić et al. ( 2004 ) 
 Reuilsur Marne, near Reims  France  0–3  264–519  Besnard et al. ( 2001 ) 

 15  Mean: 149 
 60  Mean: 18 

 Herault, southern France  France  0–15  14–251  Brun et al. ( 2001 ,  2003 ) 
 Burgundy  France  0–10  15–430  Jacobson et al. ( 2005 ) 
 Rio Grande do Sul State  Brazil  0–5  37–3,216  Mirlean et al. ( 2007 ) 
 Rio Grande  Brazil  0–5  433–517  Mirlean et al. ( 2009 ) 
 Bohemian and Moravian region  Czech Republic  0–20  20–168     Komárek et al. ( 2008b ) 
 Serra Gaúcha of Rio Grande do Sul  Brazil  0–20  51–665  Casali et al. ( 2008 ) 
 Various regions  Slovenia  0–20  87–120  Rusjan et al. ( 2007 ) 
 3 various regions  Slovenia  0–20  23–265  Pavlovic ( 2011 ) 
 Galicia (NW Spain)  Spain  0–20  25–272  Fernández-Calviño et al. ( 2008a ) 
 Galicia (NW Spain)  Spain  0–20  61–434  Fernández-Calviño et al. ( 2008b ) 
 Galicia (NW Spain)  Spain  0–10  125–603  Nóvoa-Muñoz et al. ( 2007 ) 
 Dalmatian coast  Croatia  0–20  105–553  Milko et al. ( 2007 ) 
 Vojvodina  Serbia  0–15  >60–112  Ninkov et al. ( 2012 ) 
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 The decision on the necessity of reclamation and remedi-
ation methods should be consistent with the current and 
approved future use of contaminated land. Accordingly, soil 
remediation does not necessarily mean the need for cleanup. 
Several other strategies, alternative to decontamination, may 
be applied for soil restoration to obtain the required level of 
functionality. 

 Legal regulations concerning remediation are in various 
countries quite different, and essentially independent of each 
other (Carlon  2007 ). The policy and practice of managing 
the contaminated sites vary signifi cantly across Europe, 
depending on different national approaches and various legal 
requirements. Most European countries, including Poland, 
have established national soil screening values (soil quality 
standards) aimed at regulating various issues related to land 
contamination—from setting long-term quality objectives, 
via triggering further investigations, to enforcing remedial 
actions. According to present Polish and some other coun-
tries’ regulations, excessive amounts of pollutants should be 
removed from soils wherever the standard values are 
exceeded. There is, however, a strong tendency in EU envi-
ronmental policy to move away from the arbitrary set stan-
dard values and to replace them with more general guidelines 
focusing on human health risk assessment and ecological 
risk assessment. Consequently, all the decisions concerning 
remediation need, its strategy, the most appropriate methods, 
and time requirements should be based on specifi c, site- 
related conditions, including the categories of land use and 
assessed environmental risk and human health risk. 

 Two opposing strategies may be applied to soils contami-
nated with heavy metals, including copper, with the aim of 
soil remediation:
•    Immobilization—based on reduction of environmental 

risk by limiting metal solubility, bioavailability, and 
leaching.  

•   Decontamination, i.e. removal of excessive amounts of 
pollutant (Cu) from soil, or alternatively, removal of con-
taminated soil material by excavation and landfi lling.    
 In Poland, as in several other countries, the strategy of 

 immobilization  combined with soil protection against ero-
sion was considered for many years the best way to manage 
and revitalize land contaminated with heavy metals. The 
effect of copper immobilization in the soil solid phase may 
be in fact easily obtained by improvement of those soil prop-
erties that govern Cu sorption and release from the solid 
phase, in particular by modifi cation of soil pH and cation 
exchange capacity. A fundamental soil treatment that reduces 
Cu mobility in acidifi ed soils is liming (Kabata-Pendias et al. 
 1993 ; Adriano  1986 ; Bade et al.  2012 ). Application of high 
doses of lime proved to effi ciently immobilize toxic metals, 
in particular Cu, in soils affected by emissions from the cop-
per smelters at Legnica and Głogów, even though the Cu 
concentrations in the surface soil layers considerably 
exceeded the value of 150 mg/kg, established as the Polish 

soil quality standard for agricultural lands and forests. Coal 
fl y ash also turned out to be a good soil amendment for metal 
immobilization (Ciccu et al.  2003 ; Kumpiene et al.  2007 ). It 
should be mentioned, however, that in strongly alkaline con-
ditions, at pH above 8, copper may get remobilized from the 
solid phase by the formation of easily soluble complexes 
with ammonium, hydroxyl ions, or organic substances 
(Karczewska  2002 ; Ciccu et al.  2003 ; Cuske et al.  2013 ). 

 Light-textured sandy or gravely soils, poor in organic mat-
ter, require considerable improvement of sorption properties to 
effectively reduce Cu mobility. For this purpose, a range of 
materials with very good sorption capacity may be used 
as soil amendments (Kumpiene et al.  2008 ). They induce dif-
ferent sorption processes, such as ion exchange, specifi c 
adsorption to mineral surfaces, surface precipitation, as well as 
formation of complexes with stable organic matter. Precipitation 
as salts and coprecipitation can also contribute to reducing Cu 
mobility. Organic matter rich additives, such as peat, ground 
lignite, composts, sawdust, and woodchips, as well as green 
manure, were effi cient in Cu immobilization (Ruttens et al. 
 2006 ; van Herwijen et al.  2007 ; Soler-Rovira et al.  2010 ; 
Mench et al.  2010 ). In recent years, extensive studies have also 
been carried out to examine short- and long-lasting effects of 
soil amendment with biochar, which appeared to be particu-
larly effi cient in immobilizing heavy metals in soil. 

 At this point, however, it should be emphasized that not 
all commonly available organic-rich materials may be safely 
applied to Cu contaminated soils. The well-proved high 
affi nity of Cu to organic matter may have two-sided conse-
quences, as the solubility of organically complexed Cu 
depends on the molecular size of the ligand. Various kinds of 
organic matter may, therefore, variously infl uence Cu mobil-
ity. Well-humifi ed biosolids, such as mature composts, will 
be effective in Cu immobilization. In contrast, fresh biosol-
ids, with a low degree of humifi cation, rich in low molecular 
weight organic acids, may contribute to Cu mobilization 
rather than to its retention (Ruttens et al.  2006 ; Schwab et al. 
 2007 ; Kumpiene et al.  2008 ). Hence, such organic amend-
ments as manure, fresh sewage sludge, or immature com-
posts, rich in soluble organic fractions, should not be applied 
to Cu contaminated soils. Conclusions drawn from various 
experiments carried out to examine the impact of amend-
ments rich in dissolved organic matter on Cu solubility in 
soil are, in fact, fairly inconsistent. An initial effect of Cu 
mobilization may be diminished or totally reduced via sec-
ondary sorption of soluble chelates on clay or a high molecu-
lar weight, insoluble organic fraction. 

 Various mineral amendments, such as clay-rich materials—
bentonite, montmorillonite (Lottenbach et al.  1999 ; Zhang 
et al.  2011 ), as well as natural or synthetic zeolites (Gworek 
 1993 ; Shi et al.  2009 )—proved to effectively support Cu 
immobilization. Sandy soils may also be supplied and 
ploughed with clay-rich soil material (Greinert  1995 ). 
Effi cacious chemical sorption, i.e. precipitation in the forms of 

A. Karczewska et al.



151

insoluble Cu salts or formation of ternary cation–anion com-
plexes on the surface of Fe and Al oxy-hydroxides, may be 
brought about by soil amendment with phosphate- containing 
materials, such as ground phosphate rocks or hydroxyapatite 
(Ruby et al.  1994 ; Ma et al.  1995 ; Cotter- Howells and Caporn 
 1996 ; Berti and Cunningham  2000 ; Kumpiene et al.  2008 ). 
Application of iron and aluminum rich waste materials, such 
as iron grit, iron oxides, or red mud (a waste product of bauxite 
processing), usually effi cient in immobilizing other heavy 
metals, has often failed to reduce Cu solubility in contami-
nated soils (Gray et al.  2006 ; Kumpiene et al.  2008 ). 

 Soil improvement based on an immobilization strategy 
was for a long time the only method of reclamation applied 
to metal contaminated soils, particularly those in the vicini-
ties of copper smelters in Poland and in other countries. Its 
unquestionable benefi cial effects on soil properties were 
obtained by easily available, inexpensive techniques that did 
not require any specialized equipment. Moreover, various 
waste materials were thereby utilized as soil amendments. 
These factors should be considered as very important advan-
tages of the immobilization strategy. This strategy was 
applied as a standard in various copper smelter affected areas 
all over the world, and soil liming was usually considered the 
crucial, primary step in soil reclamation (Vangronsveld et al. 
 1996 ; Winterhalder  1999 ,  2000 ; Derome  2000 ). Neutralization 
of soil pH enabled the retrieval of soil biological activity and 
successful restoration of plant cover in barren areas around 
the smelters in Sudbury, Tacoma, Harjavalta, and Falun. 

 Despite all its unquestionable outcomes, the method of 
metal immobilization in soils is often considered as tempo-
rary and therefore insuffi cient. In fact, it reduces, but does 
not eliminate, the potential risk of metal remobilization after 
possible changes of soil conditions. Therefore, the pollutants 
immobilized in soils are often referred to as a kind of time 
bomb. Moreover, insoluble metals adsorbed on the soil solid 
phase may still pose harmful effects on soil biology, for 
example on earthworms, and metal bearing particles may be 
carried away due to water or wind erosion, leading to sec-
ondary environmental pollution. 

 Particular methods of metal immobilization in soils are 
the technologies of solidifi cation and vitrifi cation that 
mechanically or physically fi x the contaminants in the soil 
solid phase. These methods are of particular importance 
when hazardous substances occur in soils at shallow depth, 
within relatively small areas. Soil solidifi cation involves 
physical encapsulation of contaminants in the soil matrix by 
injection of solidifying agents, such as cement-based mix-
tures, fl y ash, bitumen, or liquid monomers that polymerize. 
Vitrifi cation is a process requiring thermal energy, based 
on melting the soil together with contaminants at a high 
 temperature generated by electric or microwave energy 
(Mulligan et al.  2001 ; Abramovitch et al.  2003 ; Chen et al. 
 2005 ; Kumpiene et al.  2008 ; Voglar and Leštan  2010 ). Both 
these kinds of treatments can be used either in situ or ex situ, 

after soil excavation. The methods are, however, highly 
energy- consuming and expensive, and therefore they have 
rarely been applied to Cu contaminated soils.  

12.2.2     Soil Decontamination (Cleanup) 

 One of the simplest solutions for effective removal of con-
taminants from highly polluted areas may be exchange of the 
surface soil layer, i.e. the excavation and disposal (landfi lling) 
of polluted topsoil, followed by the coverage of remaining 
subsoil with extraneous uncontaminated soil or other poten-
tially productive material. Such a measure will be technically 
feasible and economically justifi ed in those cases where soil 
contamination is confi ned to the topsoil within a relatively 
small area, for example in the immediate vicinities of dust 
emitters from Cu smelting processes. The exchange of topsoil 
was accomplished, for instance, in the internal areas of the 
Legnica and Głogów copper smelters in the late 1990s, shortly 
after installing highly effi cient devices capable of separating 
dust and sulfur dioxide from the industrial waste gas. 

 The basic principle of soil cleanup involves, however, the 
removal of pollutant from the soil and recovery of decon-
taminated soil. Various technical methods have been devel-
oped for cleaning up soils contaminated with heavy metals. 
All of them are technologically much more advanced than 
the methods of metal immobilization; they are at the same 
time much more expensive. Their crucial disadvantage, how-
ever, is that they usually cause a temporary increase of metal 
solubility, thus leading to deterioration or complete destruc-
tion of living organisms, loss of biological activity, and 
worsening of soil physical and chemical properties. The only 
advantage of this type of treatment seems to be a relatively 
quick and defi nitive removal of pollutants. In cases where Cu 
is the main soil contaminant, in the absence of other much 
more toxic and hazardous substances, this type of action 
does not seem to be justifi ed. 

 Cleanup treatments aimed at removing heavy metals from 
soils can be performed in two ways:
•    In situ—at the site where contamination took place.  
•   Ex situ (off-site)—in special installations, where soil 

must be transferred after excavation.    
 From the technological standpoint, soil decontamination 

processes comprise two separate stages: (1) desorption of 
contaminant from the solid phase, associated with radical 
increase of its solubility, and (2) removal of soil solution, or 
soil extract, that contains solubilized metals, which requires 
an effective mechanism to separate the liquid and solid 
phases. The available technical methods that may be used for 
decontamination of Cu-polluted soils are:
•    Soil washing (in situ) or extraction (ex situ)  
•   Electrochemical methods—in situ  
•   Combined extraction and electrochemical method—

ex situ.    
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 Several other technologies of soil decontamination, based 
on biological processes, such as bioleaching and phytoextrac-
tion, may also be applied to metal polluted soils. These meth-
ods will be described further on, in a separate subsection. 

 In the method of soil washing in situ (soil fl ushing), water 
with or without additives infi ltrates into soil and solubilizes 
contaminants. Water application may be via surface fl ood-
ing, a system of sprinklers, or vertical and horizontal drains. 
Various reagents may be added to fl ushing water to support 
Cu solubilization: diluted mineral acids (HCl or HNO 3 ), 
organic acids that act additionally as complexing agents (cit-
ric acid, acetic acid) or chelating agents such as EDTA, NTA, 
or glycine (Fischer et al.  1992 ; Lim et al.  2004 ; Dermont 
et al.  2008 ; Leštan et al.  2008 ; Zou et al.  2009 ; Arwidsson 
et al.  2010 ). The effi ciency of extraction depends highly on 
soil permeability. 

 The same effect of metal washing from soils can also be 
achieved ex situ, in reactors or as heap leaching, where the 
soil, crushed and sieved prior to treatment, is shaken or 
leached with an excessive amount of water containing a solu-
bilizing agent. This method, which uses a high water-to-soil 
ratio, is more effective than soil washing in situ, but—
because of the costs of soil excavation and transport—is also 
much more expensive. Soils that contain over 10–20 % clay 
or that are rich in organic matter cannot be effectively decon-
taminated in this way, because of diffi culties with clay and 
humic fraction recovery from the slurry. Flotation as a sepa-
ration method may be helpful in such cases (Dermont et al. 
 2010 ), but ex situ extraction methods are usually applied to 
sandy and sandy-gravelly soils, poor in clay fractions. 

 Electrochemical methods (Page and Page  2002 ; Virkutyte 
et al.  2002 ) involve a mechanism of electrolysis for the 
removal of metals from soils. Ions and small charged parti-
cles are transported between the electrodes embedded in 
waterlogged soil that should be acidifi ed prior to treatment, 
so that metallic elements are transformed into the form of 
free cations. Electrochemical methods can be used in situ; 
then the electrodes are imbedded relatively close to each 
other, at a distance of 1–6 m (Virkutyte et al.  2002 ). Better 
results may be obtained by electrokinetic processes carried 
out ex situ (Chung  2009 ). In practice, however, the removal 
of metallic pollutants, including Cu, from soils by electro-
chemical methods poses a lot of problems. It is diffi cult to 
remove metal fractions strongly associated with the soil solid 
phase and those that occur in solution in complexed forms 
rather than as free cations (Karczewska  2002 ; Virkutyte et al. 
 2002 ; Suèr et al.  2003 ). This is a specifi c feature of copper. 
The treatment can be supported by using various additives 
(Zhou et al.  2004 ), but these methods still remain at the stage 
of laboratory or pilot scale experiments. Electrochemical 
methods are very expensive, and in environmental terms 
quite risky, as they usually require soil acidifi cation and 
application of a strong electric fi eld, which adversely affects 

soil biota. Their advantage is that, unlike the methods of soil 
washing, they can be used for treatment of clay rich soils 
with low permeability. 

 Among various soil reclamation methods, the one that 
uses conditioned zeolite, proposed by Gworek ( 1993 ), should 
also be mentioned. The method combines two concepts of 
Cu immobilization and soil decontamination. Granulated 
zeolite with a high capacity to absorb Cu, fi xed to briquetted 
carriers, is placed in soil and immobilizes the soluble Cu 
fraction. After a certain time, the briquettes can be easily 
removed from the soil (possibly by using a potato digger) 
and then regenerated. Pot experiments proved good suitabil-
ity of this method for Cu removal from soils collected from 
the surroundings of copper smelters, but the results of fi eld 
experiments were less encouraging. The method did not fi nd 
practical application due to its high costs. 

 All the technical methods of soil decontamination pre-
sented above raise many objections. The common disadvan-
tage of all described techniques is their high cost. Natural 
scientists, including soil scientists, lay emphasis on the envi-
ronmental aspects of their application. The idea itself to 
clean up soils seem to be questionable, as the effi ciency of 
decontamination treatments is directly related to the step of 
contaminant solubilization. Chemical reagents used for this 
purpose, as well as various kinds of physical operations, act 
as detrimental factors on soil biota and must cause irrevers-
ible destruction of biological activity. Therefore, the product 
obtained from decontamination is no longer soil, but a life-
less material, with altered or completely destroyed structure. 
Biologically active soil may be produced from this material, 
but this will require long-term biological reclamation.  

12.2.3     Bioleaching 

 In recent years, much attention has been paid to bioleaching, 
a biological method of soil decontamination. This method, 
based on the same principles as “ biomining ,” uses the abili-
ties of certain microorganisms to dissolve metal-containing 
minerals. In the process of biomining, several metals of value 
can be extracted from poor quality ores, unsuitable for 
 conventional processing. The technologies of biomining 
involve using consortia of acidophilic bacteria, such as 
 Acidithiobacillus ferrooxidans , and Archaea to cause oxida-
tive dissolution of sulfi de minerals. As the major ore reserves 
of copper in the world contain sulfi de minerals (such as chal-
copyrite, chalcocite, or bornite) prone to biooxidation and 
bioleaching, biomining has found technical application for 
Cu recovery from poor ores. The method was patented and 
fi rst applied in the 1960s by Kennecott Copper Corporation 
to extract copper from mine waste rock dumps at the Bingham 
Canyon mine in Utah and at the Chino mine in New Mexico. 
Since then, biomining has been successfully introduced in 
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several other mines in the world, including Chile and China 
(Watling  2006 ; Rawlings and Johnson  2007 ; Brierley  2008 ; 
Johnson  2010 ). Technical solutions for biomining involve 
two techniques: irrigated systems and stirred tanks. 

 Bioleaching can be used to leach copper from contami-
nated soils—both in situ and ex situ, on the heaps or in bio-
reactors (Johnson  2001 ,  2010 ). The technology involves 
different groups of bacteria, usually of the genera 
 Acidithiobacillus ,  Acetobacter ,  Acidiphilum ,  Arthrobacter,  
and  Pseudomonas  (Mulligan and Cloutier  2003 ; Deng et al. 
 2012 ). Several  Thiobacillus  spp. bacteria (renamed 
 Acidithiobacillus ), most often used in this process, require 
soil acidifi cation to pH 4 and the optimal temperature, in the 
range of 15–55 °C, depending on the strain. Bioleaching of 
metals from bottom sediments and other deposits under 
anoxic conditions is easier than from the soil exposed to oxi-
dizing conditions. Intensive research has recently been car-
ried out on optimization of soil bioleaching with respect to 
soil properties, including initial pH, substrate concentration, 
pulp density, hydraulic retention time, etc., as well as differ-
ent groups of bacteria and various strains to be applied 
(Naresh Kumar and Nagendran  2007 ,  2009 ). 

 Another group of biotechnologies developed for remedia-
tion of soils contaminated with metals, such as copper, is 
based on metal leaching from soil by organic acids, such as 
citric and gluconic acids, produced by fungi and actinomy-
cetes, mostly of the genus  Aspergillus , e.g.  Aspergillus niger , 
as well as other genera, including  Penicillium  and  Fusarium  
(Burgstaller and Schinner  1993 ; Valix et al.  2001 ; Deng et al. 
 2012 ). Organic acids of biological origin act both as acidify-
ing and chelating agents. Soil should be additionally sup-
plied with a carbon substrate, which is essential to accelerate 
the leaching of metals (Mulligan et al.  2001 ). 

 The methods of bioleaching are, defi nitely, closer to the 
technical approach of soil cleanup than to natural processes 
that normally occur in a terrestrial environment. Bioleaching 
has not been so far commonly applied for in situ remediation 
of soils, but if it were, it probably would not gain social 
acceptance, as in fact it cannot ensure a gentle, environment- 
friendly process of soil cleaning. Undoubtedly, the methods 
to be potentially applied for reclamation of contaminated 
soils, that might be commonly accepted by both decision- 
makers and the general public, are those referred to as “green 
technologies.” These methods are intrinsically based on 
plants, and generally termed “phytoremediation.”  

12.2.4     Position of Phytoremediation Among 
Other Remediation Methods 

 The term “phytoremediation,” derived from the Greek  phy-
ton  = plant, and Latin  remedy  = healing, applies to a group of 
technologies that use either naturally occurring or genetically 

engineered plants to improve the properties of polluted soils 
or to remove contaminants from soils. The main aim of such 
measures is restoration of contaminated sites to conditions 
suitable for public or private applications. In the 1980s and 
1990s, these environment-friendly methods of land reclama-
tion gained great popularity, social acceptance, and a lot of 
attention from scientists, particularly in the U.S. and Western 
Europe. In the vast literature concerning phytoremediation, 
several techniques are distinguished, of which two may be 
considered for application to Cu-contaminated soils: phyto-
stabilization and phytoextraction (Cunningham and Ow 
 1996 ; Chaney et al.  1997 ; Ensley  2000 ; Meagher  2000 ; Terry 
and Banuelos  2000 ; Grudziński et al.  2000 ). 

 Phytostabilization may be basically considered as an 
extension of in situ immobilization technology. It is a tech-
nique aimed to diminish the risk caused by the presence of 
contaminants in soil by the use of amendments that reduce 
contaminant solubility, and by introduction of appropriate 
plants (Terry and Banuelos  2000 ; Berti and Cunningham 
 2000 ; Chaney et al.  1997 ; Raskin and Ensley  2000 ). 
Phytostabilization focuses on long-term stabilization and 
containment of pollutants in soil by their sequestration in the 
plant rhizosphere and chemical fi xation with amendments. 
The main objective of phytostabilization is not to remove 
contaminants, but to stabilize them and reduce the risk to 
human health and to the biota. 

 Plants used for phytostabilization should be tolerant to 
high metal levels and other limiting factors (such as soil pH, 
salinity, etc.) and indicate low ability of metal uptake from 
soil and translocation to the shoots. Fast growing, perennial 
plants, forming a tight cover over the soil, with a dense or 
deep rooting system and high transpiration rates (such as 
grasses, sedges, reeds, and various tree species) are particu-
larly suitable for this purpose. Phytostabilization methods 
are widely used for biological reclamation of mining sites, 
including mine spoils and tailing impoundments, smelter- 
affected soils, different landfi lls, and repository sites, partic-
ularly when dumped material contains medium or high 
concentrations of metals. In order to obtain effective plant 
growth, it is important to chemically immobilize metals by 
chemical amendments, adjust pH to a plant-tolerable level, 
and provide nutrients necessary for plant growth. The plants 
will stabilize the surface, thereby preventing wind and water 
erosion, reduce water percolation down the soil profi le, and 
prevent animals and humans from making direct contact with 
pollutants. Plants may also help to stabilize contaminants in 
soil by precipitating toxic elements in the rhizosphere or by 
sorption on root surfaces. Root exudates, rhizospheric bacte-
ria, and mycorrhiza assist in altering the chemical forms of 
metals and reducing their solubility (Cotter-Howells and 
Caporn  1996 ; Maier  2004 ; Mench et al.  2006 ). 

 Phytoextraction is a concept of soil decontamination that 
involves the use of plants to remove (extract) pollutants, 
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especially heavy metals and metalloids, from soil by root 
uptake and subsequent transport to aerial parts of plants 
(Raskin et al.  1997 ; Terry and Banuelos  2000 ; Lasat  2002 ). 
Unlike those recommended for phytostabilization, the plants 
suitable for phytoextraction should intensively take up met-
als and translocate them to the aboveground parts to be har-
vested. The idea of phytoextraction, although impressive and 
socially acceptable, raises a number of questions and con-
cerns. The main problem is the real effi ciency of this method 
and its capacity to bring the concentrations of pollutants in 
soil to a desired level, required by legal regulations, within a 
reasonable, relatively short period of time. Another impor-
tant issue to be addressed is production of highly contami-
nated biomass that should be utilized (Sas-Nowosielska et al. 
 2008 ). Therefore, suitable and environmentally safe tech-
nologies of biomass processing should be developed together 
with optimizing phytoextraction technology. Energy bio-
mass production and utilization of metal-rich ash in smelting 
processes seem to be proper directions in this respect. 

 Practical solutions for phytoextraction, reported in the lit-
erature, and tested in the fi eld, involve the following 
methods.
•    The use of accumulating or hyperaccumulating plants 

with natural capability of intensive metal uptake from soil;  
•   The use of fast-growing, high-biomass plants;  
•   Supported (assisted, induced) phytoextraction—an 

approach based on enhanced metal uptake by plants 
induced for instance by application of metal-solubilizing 
agents (usually chelators) to the soil.    
 Possible applications of these methods for remediation of 

copper-contaminated soils will be presented below in more 
detail.   

12.3     Phytostabilization 
and Phytoextraction: Their Use 
for Reduction of Risk Caused 
by Copper Presence in Soils 

12.3.1     Phytostabilization 

 Phytostabilization is a method that combines the effects of 
immobilization of pollutants in soil with mechanical protec-
tion against erosion and direct contact with humans and ani-
mals. Plants reduce water percolation into the soil, and—in 
the case when certain amounts of metals have been inciden-
tally released from the solid phase—take them up, prevent-
ing water pollution. An amplifi ed effect of metals’ 
immobilization in soil is usually caused by their accumula-
tion by the roots, in particular fi ne roots, and by precipitation 
in the form of insoluble compounds with root exudates and 
rhizosphere-produced substances (Mench et al.  2006 ; 
Kumpiene et al.  2008 ). The presence of plants positively 

infl uences site biodiversity. It is recommended that plant 
 species and genotypes used for phytostabilization be of local, 
native origin. Phytostabilization turned out to be particularly 
effi cient in managing sites heavily contaminated with met-
als, including copper. It proved successful in the vicinity of 
the largest metal smelters, as well as in Cu mining sites—in 
rehabilitation of mining dumps and tailings impoundments. 

 Soil amendments applied to support phytostabilization 
are quite often based on waste material, mainly for economic 
reasons. Soil liming or amendment with other alkalizing 
materials is used as a principle for remediation of acidic 
soils. The other, commonly used amendments, already men-
tioned above, are: weathering clay-rich rocks, gravel sludge, 
various organic additives such as compost, stabilized sewage 
sludge, paper mill wastes, woodchips, and sawdust, waste 
materials rich in Fe, Al, Mn, and Ti oxides, and a range of 
P-containing materials (such as hydroxyapatite, phosphate 
rocks, or phosphoric acid) (Mench et al.  2010 ). Recently, soil 
amendment with biocarbon has also been extensively tested 
(Karami et al.  2011 ). Mineral fertilization may be addition-
ally benefi cial for improvement of plant growth. Intensive 
studies are presently being carried out focusing on biological 
support of plant growth by the use of mycorrhizae and plant 
growth-promoting bacteria (PGPR) (Wang et al.  2007 ; 
Grandlic et al.  2008 ; Verdugo et al.  2010 ). 

 Among the fi rst sites where the technique of phytostabili-
zation was successfully used in a large-scale fi eld application 
were tailings impoundments of the Canadian mines Copper 
Cliff (with an area of over 2,200 ha) and Elliot Lake (Peters 
 1995 ; Mench et al.  2006 ). The surface of strongly acidic tail-
ings waste, rich in sulfi des, was partly covered with a mulch 
of straw and biosolids, then limed with ground limestone or 
dolomite, amended with mineral fertilizers (740 kg/ha), and 
subsequently sown with a mixture of grasses and legumes. In 
a short time, a tight turf covered the surface, and the area was 
immediately colonized by woody species including birch, 
aspen, and willows. Native coniferous species, as well as 
some other trees, such as black locust or European larch, 
were planted in groups to form a seed source for further colo-
nization (Winterhalder  1996 ). Satisfactory growth of plants 
and succession of species from the local fl ora proved suc-
cessful phytostabilization. Cu content in the aerial parts of 
plants remained at a level typical for uncontaminated areas. 
The phytostabilization method has proved to be inexpensive, 
simple, and effective. 

 The main rules of revegetation for copper tailings 
impoundments, particularly those located in arid and semi- 
arid ecosystems, were developed in the years 2005–2010, 
under the U.S. EPA superfund basic research program (Maier 
 2004 ; Mendez and Maier  2008 ). Presently, numerous differ-
ent scale experiments aimed at optimizing phytostabilization 
of tailings impoundments are still being carried out, in both 
operating and historical copper mining sites (Mench et al. 

A. Karczewska et al.



155

 2006 ,  2010 ; Santibáñez et al.  2008 ; Karami et al.  2011 ; Spiak 
and Gediga  2009 ; Verdugo et al.  2010 ). Each of such objects 
usually requires an individual approach, because of different 
characteristics of gangue rock and different climatic condi-
tions that determine proper selection of plant species and 
may strongly affect their growth. The availability of inexpen-
sive soil amendments for phytoremediation is usually deter-
mined by specifi c local conditions. The tailings produced by 
copper ore processing are often highly acidic, particularly 
when they originate from porphyry Cu deposits. In some 
other cases, however, the tailings may contain large amounts 
of calcium and dolomite, such as those obtained from sedi-
mentary deposits mined by KGHM in Poland (Karczewska 
and Milko  2010 ). 

 Successful experiments on phytostabilization of tailings 
impoundments in the so-called Old Copper Mining Region 
in SW Poland, which remained barren for over 30 years, 
involved application of quite unusual amendments. Tailings, 
rich in calcium carbonate (40–50 %) and silicate clay, were 
amended with suitable waste materials available in the 
vicinity of the object, i.e. sandy overburden from a nearby 
quarry (aimed at loosening the structure of deposits) and 
strongly acidic phosphogypsum disposed on a nearby indus-
trial dump, supplemented by initial fertilization with nitro-
gen, and then sown with appropriate mixtures of grass and 
legumes (Spiak and Gediga  2009 ). Similarly, phytostabili-
zation of mine waste dumps and barren lands that have 
developed in various copper mining areas requires individ-
ual treatment, adapted to local, site-specifi c conditions 
(Vangronsveld et al.  1996 ; Alvarenga et al.  2008 ). 

 Phytostabilization is a basic, commonly applied in prac-
tice, and highly effective method of remediation and revital-
ization of large, often barren areas contaminated by emissions 
from copper smelters. Remediation of those soils, usually 
strongly acidifi ed, involves fi rst of all neutralization by lim-
ing or application of alkaline fl y ash, combined with soil 
amendment with various materials, usually industrial by- 
products or wastes, intended to increase copper sorption and 
precipitation (such as red mud or iron-rich wastes) and to 
enrich soil in organic matter (mature compost, composted 
sewage sludge, etc.). Then, grass or mixtures of grass with 
legumes are sown to quickly create dense plant cover on the 
soil surface. Eventually, trees or shrubs may be planted, in 
accordance with site specifi cs and its functions. The methods 
of phytostabilization were applied as pioneering measures 
for reclamation of highly contaminated areas surrounding 
copper smelters in Sudbury, Canada (Winterhalder  1996 ) and 
several others in the United States, for example in the area of 
Anaconda, Montana (Redente and Richards  1997 ). Similar 
phytostabilization measures were also effective in revegeta-
tion of barren lands in the neighborhoods of the Polish cop-
per smelters at Legnica and Głogów (in the 1980s and 1990s), 
the Harjavalta smelter in Finland (Kiikkilä  2003 ), smelters in 

Chile, for instance in the Puchuncavi valley (Goecke et al. 
 2011 ), as well as in Peru and Russia. An interesting kind of 
treatment involved in phytostabilization, tested on the forest 
soils in the vicinity of the Harjavalta smelter, was soil mulch-
ing with a mixture of compost and woodchips in order to 
convert copper into less toxic forms prior to planting the tree 
seedlings into pockets fi lled with mulch (Kiikkilä et al. 
 2001 ). The long-term effects of this treatment, however, are 
so far not known. 

 Lack of comprehensive information about the long-term 
effects of phytostabilization is often pointed out as one of the 
major shortcomings of this technique (Mench et al.  2006 , 
 2010 ; Kumpiene et al.  2008 ). Soils subject to phytostabiliza-
tion remain a kind of “time bomb” (Adriano  1986 ). The spe-
cies in which Cu occurs in the reclaimed soil may undergo 
considerable changes in various geochemical processes, such 
as mineral weathering. Moreover, the changes in Cu specia-
tion and potential mobility may also result from biochemical 
processes associated with improved soil biological activity. 
Oxidation of sulfi des present in the tailings can lead to severe 
acidifi cation, often on a scale that is diffi cult to predict on the 
basis of models (Mench et al.  2010 ). Most research on the 
remediation of soils contaminated with copper focuses on the 
fate of this particular element. At the same time, however, 
biogeochemical transformations may lead to changes in the 
availability or toxicity of other toxic components or nutri-
ents. Easily soluble fractions of the organic matter released 
into soil by the decomposition of organic amendments, plant 
residues, or forest litter act as chelating compounds, causing 
secondary mobilization of Cu and other toxic components. 
The latter kind of risk applies particularly to copper, an 
 element with known affi nity to organic matter (Nowack et al. 
 2006 ; Karczewska and Milko  2010 ). In addition, well-developed 
plant root systems may act as a sort of drainage facilitating 
the processes of metal leaching from soil. 

 Another problem that may arise in apparently well- 
phytostabilized sites is the lack of micro-organisms and soil 
fl ora and fauna, normally crucial for transformation of 
organic matter and the supply of available nutrients. Several- 
year lasting laboratory experiments often confi rmed the need 
for regular soil fertilization. Satisfactory results obtained in 
medium-term laboratory or fi eld experiments do not guaran-
tee that the same effects will occur in practice, under the 
impact of various unpredictable factors, such as weather con-
ditions. The guidelines for the practical application of phyto-
stabilization suggest that for ensuring better long-term 
results, multi-species mixtures of plants should be applied 
rather than monocultures. 

 The sites subject to phytostabilization should always be 
examined in long-term monitoring, focusing on possible 
changes of pollutant speciation, soil biological activity, and 
the dynamics of plant succession and plant quality, depend-
ing on the specifi c climatic and environmental conditions 
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(Mench et al.  2010 ). Regularly repeated assessment of 
 environmental risk and the risk to human health should be 
carried out along with any changes in soil properties and 
evolving composition of phytocenosis.  

12.3.2     Phytoextraction 

12.3.2.1     Plant Species That Accumulate 
or Hyperaccumulate Cu 

 Since the early 1990s, scientists around the world have been 
intensively working on application of selected hyperaccumu-
lating species for phytoextraction of metals and semimetallic 
elements from contaminated soils (Brown et al.  1994 ;    Brooks 
 1998 ; Chaney et al.  2005 ; Grudziński et al.  2000 ; Rascio and 
Navari-Izzo  2011 ). The phenomenon of hyperaccumulation 
may be explained as an effect of active uptake of metals from 
the soil. The term “hyperaccumulating species” has been 
precisely defi ned by plant physiologists, although the defi ni-
tion is based on arbitrarily set threshold values rather than on 
clearly specifi ed physiological features. Plant species may be 
classifi ed as hyperaccumulators if there has been at least one 
documented case of exceeded threshold concentrations of 
metal in the aerial parts of plants growing in their natural 
habitats. The minimum metal content (related to dry mass) 
for hyperaccumulation are: 1 % in the case of Ni, Zn, and 
Mn; 0.1 % in the case of Cu, Pb, Se, As, and Co; and 0.01 % 
for Cd (Brooks  1998 ). Over 400 plant species that take up 
metals in such large quantities have been identifi ed (Blaylock 
and Huang  2000 ). Most of them are metallophytes, occurring 
endemically, known primarily from the areas enriched in 
heavy metals of either lithogenic, or sometimes anthropo-
genic origin. The species that hyperaccumulate nickel are 
primarily associated with serpentine soils. Some hyperaccu-
mulators, such as  Alyssum  spp. (Ni),  Thlaspi caerulescens  
(Zn and Cd), and  Pteris vittata  (As), are extensively tested 
for their suitability for cleaning up metal-polluted soils. 

 High concentrations of copper are highly toxic to plants 
and therefore most plants have developed an effi cacious 
defense mechanism against toxicity, based mainly on the for-
mation of complexes with citric acid, phytochelatins PC2 
and PC3, and metallothioneins (Peer et al.  2005 ). 
Consequently, the majority of Cu-tolerant plant species dem-
onstrate a strategy typical for excluders, while the mecha-
nism of intensive accumulation of Cu by plants is very rare 
(Peer et al.  2005 ). The phenomenon of Cu hyperaccumula-
tion was reported from southeastern Zaire (Katanga region, 
presently DR Congo). The group of plants identifi ed as Cu 
(and Co) hyperaccumulators has nearly 40 species, including 
 Haumaniastrum katangense  (Lamiaceae) (Brooks  1998 ). 
The search for copper hyperaccumulating species under-
taken elsewhere in the world, outside Katanga and 
Copperbelt, has generally been unsuccessful. Moreover, sev-

eral recent studies have led to critical reexamination of the 
Cu/Co hyperaccumulator list (Faucon et al.  2007 ,  2009 ). The 
plants representative of species for which hyperaccumula-
tion ability was confi rmed in Katanga usually took up con-
siderably smaller amounts of Cu when they grew outside that 
region (Paton and Brooks  1996 ). Moreover, some species 
classifi ed as hyperaccumulators on the basis of Katangan 
samples will probably be deleted from the list, as their ability 
to take up extremely high amounts of Cu was not confi rmed 
under controlled conditions, and the high concentrations in 
plant samples collected from the fi eld were probably due to 
leaf surface contamination. Plant material thoroughly 
cleaned and deprived of mechanically adsorbed particles 
contained much lower concentrations of Cu than those 
reported in the literature. Only 9 % of the tested plants met 
the requirements for hyperaccumulation, i.e. Cu concentra-
tion above 1,000 mg/kg d.m. (Faucon et al.  2007 ,  2009 ). In 
China, several studies are currently being carried out focus-
ing on locally occurring, Cu-tolerant species, considered to 
be hyperaccumulators, such as  Commelina communis  and 
 Elsholtzia splendens  (Wang et al.  2004 ,  2005 ). The latter, 
however, proved to be a tolerant excluder rather than accu-
mulator, similarly to  Elsholtzia argyi ,  Silene vulgaris,  and 
 Mimulus guttatus  (Song et al.  2004 ; Peer et al.  2005 ). 

 Ineffective trials to identify Cu hyperaccumulators out-
side of Africa, and perhaps China, as well as failed attempts 
to introduce Katangan hyperaccumulating species to other 
habitat conditions, or to make them intensively take up Cu 
beyond their natural environments, put into question the con-
cept of using hyperaccumulation for decontamination of 
Cu-polluted soils.  

12.3.2.2     High-Biomass Plants 
 Another idea of phytoextraction, alternative to hyperaccu-
mulating plants, assumes that extremely high concentrations 
in plant shoots are not necessarily a prerequisite for effi cient 
removal of metals from polluted soils. Some authors posit 
that a comparable effect of aggregate metal uptake from soil 
may be achieved with plants that contain medium concentra-
tions of metals, but yield high biomass, such as willow, pop-
lar, hemp, Virginia mallow, miscanthus, and many others 
(Terry and Banuelos  2000 ;    Raskin and Ensley  2000 ). It can, 
however, be demonstrated that, in the case of most heavy 
metals beside Cd and Zn, the rates of their removal from 
heavily or moderately contaminated soils cannot guarantee 
successful decontamination within a reasonable timespan 
(Karczewska et al.  2009a ,  2011 ). This concern applies par-
ticularly to copper, toward which most of the plants execute 
a strategy of avoidance (excluding). Copper concentrations 
in plant shoots usually remain below 20 mg/kg d.m. 
(Fernandes and Henriques  1991 ; Kabata-Pendias and Pendias 
 2001 ; Reichman  2002 ; Yruela  2005 ). However, considerably 
higher Cu concentrations in nonhyperaccumulating plants 
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have also frequently been reported. The plants proposed for 
the high-biomass option of phytoextraction must be tolerant 
to high content of copper in soil and produce high biomass 
yields. The most frequently considered groups of plants that 
meet these requirements are certain species of trees and 
shrubs, as well as fast-growing annual crops that produce 
high biomass and may be further utilized, for example as bio-
fuels (Terry and Banuelos  2000 ; Raskin and Ensley  2000 ). 
Among tree species, certain varieties and clones of poplar 
( Populus  spp.) (Buczkowski et al.  2002 ; Komárek et al.  2007 , 
 2008a ) and willow ( Salix  spp.), particularly osier ( Salix vimi-
nalis ) (Pulford and Watson  2003 ; Dickinson and Pulford 
 2005 ; Klang-Westin and Perttu  2002 ; Jensen et al.  2009 ; 
Mocek et al.  2001 ), proved to be highly resistant to enhanced 
soil concentrations of heavy metals, including Cu. Annual 
biomass yield for these species, obtained from 3 to 4 year old 
plantations, usually exceeds 25–40 t d.m./ha. Different vari-
eties and clones of willow and poplar demonstrate high 
diversity of resistance to soil metals and various abilities to 
translocate metals to the shoots. Particularly high capability 
of Cu accumulation was confi rmed for  Salix nigra  (Kuzovkina 
et al.  2004 ). Among high-biomass agricultural crops, those 
particularly resistant to high metal concentrations in soils 
are: miscanthus ( Miscanthus giganteus ), cultivated as an 
energy plant; hemp ( Cannabis sativa ) and Virginia mallow 
( Sida hermaphrodita ), which represent fi ber plants; as well 
as maize ( Zea mays ) and sunfl ower ( Helianthus annus ). 
Extensive research has also been carried out on other crops, 
including cereals, with moderately high biomass, such as 
wheat ( Avena sativa ), barley (Hordeum vulgare), Indian 
mustard ( Brassica juncea ), and pea ( Pisum sativa ) (Salt et al. 
 1995 ; Ebbs and Kochian  1998 ; Wenger et al.  2002 ). 

 The deep rooting system of trees and most other high bio-
mass plants allows take-up of metals, such as Cu, not only 
from the topsoil but also from deeper layers of contaminated 
soils. Unlike in the case of hyperaccumulators, for most of 
the trees and agricultural crops, the principal rules of their 
agrotechnics, as well as the conditions required for cultiva-
tion, are well known. An important advantage of the high- 
biomass option of phytoextraction is also the possibility of 
biomass utilization for energy purposes. A fundamental dis-
advantage is a low, defi nitely unsatisfactory aggregate uptake 
of metals from soils. It may be easily proved that the poten-
tial capacity of Cu phytoextraction by high biomass plants is 
much lower compared to that which theoretically might be 
obtained with the use of hyperaccumulators. Soil fertiliza-
tion, applied to improve crop yields, can to a certain extent 
increase the amounts of plant-accumulated metals (Wu et al. 
 2004 ; Mleczek et al.  2013 ), but several studies have proved 
that due to the effect of metal “dilution” in larger biomass, 
the effi ciency of phytoextraction, expressed as aggregate 
metal uptake from soil, remained at a basically unchanged 
level (Pulford and Watson  2003 ). 

 Relatively low effi ciency of Cu phytoextraction from 
 contaminated soils was confi rmed in an experiment carried 
out with fi ve clones of willow grown on soils contaminated 
by emissions from copper smelters, containing high concen-
trations of Cu in the range 300–1,060 mg/kg Cu, with a mean 
value of 650 mg/kg Cu (Mocek et al.  2001 ; Mocek  2012 ). 
A fi eld experiment was established on soils developed from 
silty loam with slightly acidic or neutral pH (pH KCl  6.50–
6.95), fairly rich in organic matter (with a mean organic C 
content in topsoil at the level of 16.8 g/kg). Plant material 
collected from different experimental plots contained unusu-
ally high copper concentrations. The mean value of Cu con-
centrations in dry mass of leaves was as high as 429 mg/kg, 
while the twigs contained considerably less Cu: 27.5 mg/kg 
d.m. on average. It was believed that such high concentra-
tions of copper in willow leaves, together with a high yearly 
biomass yield (approximately 15–20 t d.m./ha shoots and 
20 t d.m./ha leaves), would result in great amounts of Cu 
being withdrawn from soil with harvested willow shoots. 
The calculations showed that the mean aggregate yearly 
uptake of Cu with leaves was not higher than 8.5 kg/ha and 
that with twigs was assessed as 0.6 kg/ha. This means that 
the yearly removal of Cu with harvested willow shoots was 
at the level of about 9 kg Cu/ha, whereas the top layer 
(20 cm) of soil humus horizon in the experimental area con-
tained over 2,000 kg/ha of accumulated Cu. Assuming that 
the leaves will be every year thoroughly collected and 
removed from the plantation (in fact, they fall onto the soil 
surface, forming thereby a secondary source of Cu in the top-
soil), and provided that the uptake of Cu from soil remains 
constant over time (although it would probably decrease 
after using up the best available Cu forms), the period of time 
required to bring soil concentrations to an acceptable level 
turns out to be about 220 years. These results illustrate 
clearly that the method of Cu phytoextraction by willow can-
not be applied for successful decontamination of soils con-
siderably polluted by copper smelters. 

 It should be noted, however, that cultivation of high- 
biomass, Cu-tolerant plants on contaminated soils has 
unquestionable advantages, similar to those typical for phy-
tostabilization. The plants that accumulate relatively high 
concentrations of Cu in their shoots, such as  Salix  spp., in 
fact do not meet phytostabilization requirements, as they 
extract considerable amounts of Cu from soils. Nevertheless, 
their cultivation has several positive aspects. The uptake of 
Cu from soil goes on continuously, in a “gentle” way, with-
out any drastic changes in soil properties, and thus without 
considerable impacts on biological equilibrium and the sta-
bility of the ecosystem. As a matter of fact, growing plants 
take up only the most easily soluble forms of Cu, which oth-
erwise could pose a risk to the ecosystem or might get 
leached from the soil. Although the effi ciency of phytoex-
traction, understood as a decrease in soil Cu concentration, 
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remains exceptionally low, the plants provide a sort of eco-
logical safety, as they ensure continuing removal of the most 
dangerous, mobile Cu forms. Therefore, the cultivation of 
traditional crops for energy biomass should be considered as 
a good method for the management of Cu-contaminated 
sites. It cannot result, however, in any signifi cant reduction 
of soil Cu concentrations.  

12.3.2.3     Enhanced Phytoextraction 
 Considerations on the potential use of phytoextraction as a 
method to clean up polluted soils lead to the concept of join-
ing two approaches, i.e. high biomass plants should inten-
sively accumulate heavy metals. This concept was a basis for 
developing the idea of enhanced phytoextraction. All the 
comprehensive knowledge on metal speciation and dynam-
ics in soils, as well as on the mechanisms of metal phytoac-
cumulation and phytotoxicity, should be involved in the 
studies on considerably increasing the rate of metal uptake 
by nonhyperaccumulating plants. The effect of magnifi ed 
metal accumulation by plants can be achieved using one of 
three basic mechanisms, or combinations of them:
•    Genetically based accumulation, i.e. development of 

transgenic high biomass plants with the capability of 
hyperaccumulation and hypertolerance which may be 
achieved by cloning all the relevant genes and expressing 
them in high biomass yielding crops, or—less likely—by 
genetic modifi cation of hyperaccumulating species to 
adapt them to new habitats and increase their biomass;  

•   Chemically assisted phytoextraction (induced hyperaccu-
mulation, enhanced phytoextraction), based on increasing 
metal solubility in soil by application of chelating agents, 
which further stimulates the plants to intensively take up 
soluble metals from the soil;  

•   Biologically assisted phytoextraction, based on increas-
ing soil solubility of metals caused by natural compounds 
of microbial origin released to soil by several kinds of 
bacteria.     

12.3.2.4     Genetic Modifi cation 
 The fi rst successful attempts to produce transgenic plants 
able to take up extraordinarily high amounts of metals from 
soil were undertaken by Meagher ( 2000 ), who developed 
transgenic plants expressing modifi ed bacterial mercuric 
reductase (MerA), and organic-mercurial lyase (MerB) that 
allowed plants to phytovolatilize Hg from Hg-rich soil. 
Further trials did not result, however, in development of 
plants capable of accumulating high amounts of Hg in their 
shoots (Chaney et al.  2007 ). Nevertheless, the experience 
gained from development of genetically engineered Hg vola-
tilizing plants, as an example of successful gene transfer in 
the fi eld of phytoremediation-oriented studies, prompted fur-
ther research focusing on phytoextraction of other metals, 
including Cu (Krämer and Chardonnens  2001 ; Papoyan and 

Kochian  2004 ; Cherian and Oliveira  2005 ; Eapen and 
D’Souza  2005 ; Kotrba et al.  2009 ). Considerably advanced 
studies are underway aimed at identifying and cloning the 
groups of genes responsible for metal tolerance, root-shoot 
transfer, and cellular accumulation. Examination of genes 
expressed in  Thlaspi caerulescens  and  Arabidopsis thaliana  
provided valuable knowledge on the mechanisms of hyper-
accumulation. Cloning the genes responsible for overpro-
duction of the enzyme glutathione synthetase and its 
expression in Indian mustard ( Brassica juncea ) resulted in a 
signifi cant increase of metal tolerance and accumulation of 
Cd, Zn, Cr, Cu, and Pb by this species (Zhu et al.  1999 ; 
Bennett et al.  2003 ). Despite unquestionable achievements, 
no reports have been published so far on development of a 
complete transgenic hyperaccumulator that is close to fi eld 
testing or practical application. Additionally, several ques-
tions must be raised concerning biological consequences that 
might result from potential introduction of engineered hyper-
accumulators into the environment.  

12.3.2.5     Chemically Assisted Phytoextraction 
 First, very promising results on so-called “induced hyperac-
cumulation” were published nearly 20 years ago. The tech-
nology was based on stimulation of intensive uptake of 
metals from soil after their solubilization caused by chelat-
ing agents. Extensive research work in this fi eld, initiated by 
   Huang and Cunningham ( 1996 ), was carried out in numer-
ous research centers (Blaylock et al.  1997 ; Huang et al.  1997 ; 
Chen and Cutright  2001 ; Römkens et al.  2002 ; Sas- 
Nowosielska et al.  2008 ; Karczewska et al.  2011 ), mainly in 
pot experiments, and also in fi eld trials on a semitechnical 
scale (Blaylock  2000 ). In their fi rst experiments, Huang, 
Cunningham, and Blaylock examined Pb phytoextraction by 
Indian mustard and maize, induced by application of a syn-
thetic chelating agent, EDTA (ethylene diamine tetraacetic 
acid). Not only did EDTA cause Pb mobilization into soil 
solution, but it also enabled leakage of Pb in the form of 
Pb-EDTA through the root membranes, followed by its pas-
sive transport to plant shoots powered by transpiration. Many 
other complexing agents, including low molecular organic 
acids and amino acids, as well as various plant species, were 
examined afterwards (Chen et al.  2003 ; Meers et al.  2005 ). 
The most frequently tested plants were high biomass crop 
plants with relatively high tolerance to heavy metals, in par-
ticular maize, sunfl ower, Indian mustard, rape, and turnip 
rape. The technology involves initial plant cultivation at opti-
mal possible soil conditions to enable their satisfactory 
growth and obtain a suffi ciently large biomass. This prereq-
uisite might require immobilization of metals by soil liming 
and use of appropriate amendments. Application of chelating 
agents onto the soil surface takes place when the plants are 
large enough. Then, metals are rapidly solubilized and taken 
up by plants. Their unusually high concentrations in the 
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shoots are highly toxic, and cause death of the plants shortly 
after the phytoextraction effect has been achieved. 

 The very fi rst papers that reported the results of research 
on chemically assisted phytoextraction did not touch the 
issue of adverse environmental effects that may possibly be 
caused by introduction of chelating agents into the soil. 
Therefore, the method gained common acceptance and was 
recommended as an inexpensive and environmentally friendly 
way to clean up contaminated soils (Salt et al.  1995 ; Garbisu 
and Alkorta  2001 ; Chaney et al.  1997 ; Terry and Banuelos 
 2000 ; Chen and Cutright  2001 ; Mejare and Bulow  2001 ). The 
results of subsequent studies indicated, however, that it could 
not be applied in practice due to its several unforeseen draw-
backs and unavoidable side-effects. EDTA and other syn-
thetic aminopolycarboxylic acids are not metal- specifi c, and 
therefore their effects on solubility of the target metal depends 
strongly on interactions with other heavy metals such as Pb, 
Cu, or Zn as well as other cationic elements present in the soil 
at high concentrations, such as Ca or Fe (Grčman et al.  2003 ; 
Wu et al.  1999 ; Chandra Sekhar et al.  2005 ). No wonder that 
the fi rst enthusiastic opinions on induced phytoextraction 
were followed by a number of defi nitely critical papers that 
pointed out its limited soil-, metal-, chelant-, and plant-related 
effi ciency, but in the fi rst place the unavoidable side-effects, 
which involve a long-term increase in the concentration of 
heavy metals in soil solution and the inevitable hazard of 
metal leaching into groundwater (Römkens et al.  2002 ; 
Madrid et al.  2003 ; Karczewska et al.  2009b ,  2011 ). The 
assessment made by several authors indicated that the 
amounts of metals taken up by plants are far smaller than 
those to be leached into water. In most cases, the plant uptake 
was not higher than a few percent of the pool of metals solu-
bilized due to chelation (   Grčman et al.  2001 ; Wenzel et al. 
 2003 ; Evangelou et al.  2007 ; Karczewska et al.  2011 ). 

 All the drawbacks of enhanced extraction prompted fur-
ther studies aimed at reducing its side-effects, particularly the 
long-term increase in the solubility of metals. Biodegradable 
chelating agents, such as EDDS (ethylenediamine- disuccinic 
acid), a natural amino- polycarboxylic acid, produced by 
many microorganisms (Nishikiori et al.  1984 ; Goodfellow 
et al.  1997 ), were tested in place of EDTA. Several studies 
(Karczewska et al.  2009b ; Kos and Leštan  2003 ; Luo et al. 
 2005 ,  2007 ; Meers et al.  2005 ; Tandy et al.  2006 ; Quartacci 
et al.  2007 ) confi rmed selective affi nity of EDDS to copper. 
This fact, as well as EDDS biodegradability, opened new per-
spectives for reconsidering the method of induced phytoex-
traction for possible remediation of Cu-contaminated soils. It 
was found, however, that Cu uptake by plants (maize, Indian 
mustard) from sandy and loamy soils was satisfactory only 
with application of large EDDS doses (1 mM/kg or more). As 
a consequence, a major part of complexed Cu was susceptible 
to leaching, while only a small portion of Cu was accumu-
lated by plants. Various attempts to reduce the effect of Cu 

leaching, made by several authors, were presented and dis-
cussed in detail in a review paper by Evangelou et al. ( 2007 ). 
Examined solutions included splitting the chelant dosage, its 
application in the form of slow-release granules, application 
of metal- absorbing permeable barriers, and several other 
quite sophisticated solutions, but they did not bring about a 
solution to the problem of metal leaching. Most of the authors 
of recently published review papers on chemically assisted 
phytoextraction expressed the opinion that it would not be 
reasonable to continue this approach (Evangelou et al.  2007 ). 
The main disadvantages of the method are very low effi ciency 
of Cu phytoextraction and side-effects, particularly the inevi-
table hazard to groundwater arising when the chelating agents 
are applied at rates high enough to radically increase Cu 
uptake by plants. Many papers that appear nowadays, how-
ever, obstinately continue to emphasize mainly the positive 
aspects of this method (Ciura et al.  2005 ; Sun et al.  2011 ; 
   Smolińska and Król  2012 ; Ali et al.  2013 ).  

12.3.2.6     Biologically Supported 
Phytoextraction 

 Although numerous previous attempts to apply phytoextrac-
tion for effective removal of copper from soils did not bring 
satisfactory results, research focusing on improvement 
of phytoextraction effi ciency is still being continued. 
Phytoextraction seems to be the only reasonable solution to 
the problem of soil pollution in vineyards, where in fact no 
other methods can be applied (Pietrzak and Uren  2011 ; 
Mackie et al.  2012 ). 

 Interesting research works have been recently carried out 
on a relatively new approach oriented at microbially assisted 
phytoextraction. Various groups of microorganisms may 
contribute to mobilization of metals, such as Cu, from soil, 
via complexation by either their metabolites or siderophores, 
or as a result of methylation (Gadd  2004 ). Siderophore pro-
ducing bacteria are used in practice to increase Fe and Cu 
bioavailability in poor, sandy soils. A similar effect can be 
expected in Cu contaminated soils (Wenzel  2009 ; Rajkumar 
et al.  2010 ; Kidd et al.  2009 ; Gadd  2004 ). Factually, 
Andreazza et al. ( 2010 ) demonstrated in laboratory experi-
ments that Cu-resistant bacteria  Pseudomonas putida  A1, A2 
 S. maltophilia  and  Acinetobacter calcoaceticus  A6 increased 
effi ciency of Cu phytoextraction from contaminated vine-
yard soil. Several other experiments confi rmed the new per-
spectives for microbially-assisted phytoextraction (Lebeau 
et al.  2008 ; Weyens et al.  2009 ). At the moment, these meth-
ods clearly need further, long-term studies that will allow for 
comprehensive assessment of their short- and long-term 
effects. Another direction of research that may have applica-
tion in the fi eld of phytoextraction is examining the effects of 
PGPR on the yields of Cu accumulating plants, which can 
result in increasing amounts of copper to be taken up from 
soils by those plants (Kidd et al.  2009 ; Ma et al.  2009 ).    
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12.4     Prospects for Practical Applications 
of Hyperaccumulators 

 The potential use for hyperaccumulators, estimated at about 
450 plant species (Miransari  2011 ), especially in phytoreme-
diation of areas highly polluted with trace elements, is one of 
the most important chances to shorten the generally long 
duration of this process. Many plant hyperaccumulators are 
known to be able to accumulate some trace elements in sig-
nifi cantly greater amounts than other plants (   Brooks et al. 
 1977 ; Poschenrieder et al.  2006 ), even when considering 
enhanced trace element phytoextraction (Bhargava et al. 
 2012 ). In relation to the tested element present in soil and its 
concentration, accumulation of hyperaccumulators is differ-
ent. Hyperaccumulators of Cd are able to take up >100 mg/
kg d.w. (Baker et al.  1994 ; Reeves and Baker  2000 ; Wei et al. 
 2005 ), while hyperaccumulators of As, Co, Cu, and Ni (the 
most numerous group of known hyperaccumulators) or Pb 
are able to take up >1,000 mg/kg d.w. (Reeves and Baker 
 2000 ; Ma et al.  2001 ; Srivastava et al.  2006 ; Tappero et al. 
 2007 ). To date the highest accumulation has been described 
for Mn and Zn, where concentration of these elements was 
above 10,000 mg/kg d.w. (Reeves and Baker  2000 ; Yang 
et al.  2008 ). Hyperaccumulation in plant organs is not lim-
ited only to the above-mentioned elements, because we know 
plants able to accumulate signifi cant amounts of, for exam-
ple, Al (Jansen et al.  2002 ), B (Babaoğlu et al.  2004 ), Cr 
(Zhang et al.  2007 ) or Fe (Rodríguez et al.  2005 ). 

 The use of hyperaccumulators or other plants with spe-
cifi c strategies to survive and the effective element uptake in 
Cu-polluted areas have been presented in numerous studies 
(Boojar and Goodarzi  2007 ; Jiang et al.  2004 ; Lamb et al. 
 2012 ). Cu is an element of great importance in today’s indus-
try, but this element is present in many soils in signifi cant 
amounts (especially in industrial soil). It is particularly 
important to remove Cu from the environment or to retrieve 
this element in the pure form. It stands to reason that the use 
of biological methods or biological methods in combination 
with engineering methods is necessary in practical applica-
tions (Koppolu and Clements  2003 ; Reijnders  2003 ). 
Hyperaccumulators have some signifi cant traits distinguish-
ing them from nonhyperaccumulators such as rapid accumu-
lation of trace elements, a signifi cant ability to detoxify 
elements in plant organs (especially in leaves), easy adapta-
tion to new environmental conditions and fast translocation 
of elements to aerial parts of plants (Martens and Boyd  2002 ; 
Ghaderian and Ghotbi Ravandi  2010 ; Rascio and Navari- 
Izzo  2011 ). These traits are caused by different regulation 
and expression of genes; therefore we are not able to observe 
the toxic infl uence of high concentrations of trace elements 
on plant morphology. Additionally, the signifi cant advantage 
of hyperaccumulators is connected with the possession of 

genes encoding transmembrane transporters (ZIP, YSL, or 
MTP). Some hypotheses have been proposed on the causes 
of hyperaccumulation in plants (Miransari  2011 ; Boyd  2012 ), 
but in practice the most important is the last observed result. 

 For now we know some hyperaccumulators of Cu, tested 
in different environmental and artifi cial conditions, and 
some plant species with signifi cant potential for Cu accumu-
lation from soil. The most interesting plants include 
 Lecanora polytropa  (   Purvis et al.  2008 ),  Polycarpaea longi-
fl ora ,  Hyptis capitata,  and  Nicotiana tabacum  (Nedelkoska 
and Doran  2000 ),  Elsholtzia haichowensis  (Lou et al.  2004 ), 
 Crassula helmsii  (Küpper et al.  2009 ),  Helianthus annuus  L. 
and  Kalanchoe serrata  L. (Wilson- Corral et al.  2011 ) as well 
as the moss  Scopelophila cataractae  (Nakajima et al.  2011 ), 
which have very many unique genetic and biochemical prop-
erties. The use of different hyperaccumulating plant species 
in decontamination of Cu-polluted areas is considerably lim-
ited by the generally too low biomass of these plants 
(Miransari  2011 ), but in our opinion when we are able to 
identify hyperaccumulating genes and make use of them in 
relation to high biomass- producing plants, this situation will 
change. Phytoextraction is a cost-effective method to decon-
taminate Cu-polluted areas; therefore an increase of biomass 
with simultaneous high effi ciency for the accumulation of 
one or more elements can be the starting point for the practi-
cal application of not only hyperaccumulators, but also non-
hyperaccumulators. Additionally, high concentrations of 
trace elements in modifi ed plants with “hyperaccumulation” 
genes can be interesting and a valuable substrate in phy-
tomining (Brooks and Robinson  1998 ). Within the last 20 
years, the concept of combining two traits—high biomass 
and high trace element (also Cu) accumulation capacity—in 
one plant has been the subject of many studies (   Kumar et al. 
 1995 ; Volk et al.  2006 ; Šyc et al.  2012 ). Brooks et al. ( 1998 a) 
described phytomining as a useful ‘green’ alternative method 
and proposed a model for a possible economic phytomining 
system. This method has a great potential for a wide range of 
trace elements (especially Cu, Ni, and Zn) and it is quite 
simple to perform in some stages. In the case of soil polluted 
with copper the fi rst stage is the choice and cultivation of a 
specifi c hyperaccumulator or another plant with a highly 
effi cient accumulation rate of this element. When plants 
grow, they have to be harvested and the material may be (a) 
burnt for energy, (b) smelt bio-ore for metal recovery. After 
these two procedures, the capital return is facilitated. 
According to Brooks et al. ( 1998 a), these stages can be 
repeated with or without fertilizers and/or chelates to increase 
biomass and elemental uptake by plants, respectively, if the 
soil metal concentration is high enough for other economic 
crops. If not, the last question is whether the ore body is 
exhausted. If it is, the phytomining process is completed; 
when it is not, the addition of new (fresh) soil is necessary to 
replace the destroyed topsoil, which has to be removed for 
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the next crop. Generally, as regards economic aspects of 
applied biological methods, the use of each plant (hyperac-
cumulators/nonhyperaccumulators/modifi ed plants) with 
high phytoextraction abilities, high resistance to new envi-
ronmental conditions and high biomass production in phy-
tomining could be the future of environment decontamination. 
The use of hyperaccumulators in practice is usually diffi cult 
due to the limited size of plants and problem of their harvest-
ing. As regards this conclusion and the time of phytomining, 
this method is usually used less frequently than biomining 
(Gałuszka  2005 ). 

 Nevertheless, the use of selected plant taxa in phytomin-
ing facilitates decontamination of mine tailings, sewage 
sludge, and soils. The fi rst concept of practical hyperaccu-
mulator use was presented by Chaney in 1983 and Baker and 
Brooks in 1989 (Anderson et al.  1999 ). At the beginning of 
the twenty-fi rst century we have identifi ed 24 Cu hyperac-
cumulators (for natural and induced hyperaccumulation) and 
only some of them have been analyzed as potential plants for 
use in phytomining. At this moment we know about 34 Cu 
hyperaccumulators (Bhargava et al.  2012 ) and the main 
attention is focused on combined phytoremediation and phy-
tomining as regards the costs. The use of plants with high 
biomass is the cause of higher profi ts in phytomining (bio-
mass burning), but only when phytoextraction of metals is 
high enough. On the other hand, the higher biomass is the 
cause of higher material transport costs. For this reason a 
signifi cant aspect is connected with the economic analysis 
prior to decontamination of areas polluted with Cu or other 
metals. Brooks and Robinson ( 1998 b) presented the elemen-
tal contents that would be required in used plants with fertil-
ized biomasses for the phytomining process to become 
profi table. It is relatively obvious that a decrease of biomass 
or trace element(s) phytoextraction effi ciency reduces the 
potential use of many plants (including selected hyperaccu-
mulators). It should be stressed here that phytomining, while 
being an interesting method as regards recruitment energy 
and expensive in metals industry, is fast and relatively cheap 
in comparison to other methods.  

12.5     Estimation of Real Time Necessary 
in Phytoextraction Practice 

 The presence of copper in soils worldwide varies as regards 
anthropogenic activity and the concentration of this metal in 
some mineral forms such as chalcopyrite (CuFeS 2 ), chalcoc-
ite (Cu 2 S), bornite (Cu 5 FeS 4 ), azurite (Cu 3 (CO 3 ) 2 (OH) 2 ), and 
also malachite (Cu 2 CO 3 (OH) 2 ). Regardless of the type of pol-
luted soil, concentrations of copper and other trace elements, 
cation exchange capacity, differences in water availability, 
pH, Eh, organic substances, or plant taxa used in phytoextrac-
tion, a signifi cant aspect, although ignored in many scientifi c 

works, is connected with the determination of tentative phy-
toextraction duration. An example is provided in a study by 
   Van Nevel et al. ( 2007 ), where a simple, but highly useful and 
reliable method for necessary phytoextraction time estima-
tion was presented. Those authors pointed to real drawbacks 
of phytoextraction, hindering the practical use of this method, 
or that cause prolonged duration of this process. As regards 
the usually small root system, phytoextraction is limited only 
to the decontamination of topsoil, with the effi ciency of this 
process depending not only on the used plant species/variet-
ies, but to a greater degree on the concentration and form of 
metals available for plants. Another problem is connected 
with the small biomass increase of effective accumulation of 
trace elements by plants. Based on the above-mentioned limi-
tations, it needs to be stressed that the attitude of Van Nevel 
et al. ( 2007 ) and Ernst ( 2005 ) about the more appropriate use 
of phytostabilization than phytoextraction for decontamina-
tion of soils polluted by signifi cant amounts of trace ele-
ments, especially in deeper layers of the soil profi le, is correct 
(Prasad  2003 ). Thanks to the theoretical calculations, Van 
Nevel et al. ( 2007 ) and also Sheoran et al. ( 2011 ) presented 
two signifi cant values: “A,” defi ned as the amount of metal to 
be removed per hectare (mg/ha), and “ t ,” described as phyto-
extraction time (yr). Literature sources provided some data 
concerning the calculation of phytoextraction time, presented 
also by Van Nevel et al. ( 2007 ). 

 Generally, the use of hyperaccumulating plant species is 
connected with phytoextraction time ranging from 2 to 60 
years, whereas nonhyperaccumulating plants require 
25–2,800 years. These differences both between two plant 
groups and between plants inside each group result from dif-
ferences in plants’ potential for trace element accumulation, 
biomass production and also amounts of available metals in 
soil. Taking into consideration the diverse plant needs, their 
survivability and resistance and also adaptability to new envi-
ronmental conditions, each analysis of metal accumulation 
by tested plant species/varieties should be completed by 
determination of the time required to reduce metal concentra-
tions to levels indicated by environmental law regulations. 

 Effi ciency of phytoextraction (the selection of specifi c 
plant taxa) and biomass are usually considered as major fac-
tors for this process duration; however, modifi cation of plant 
growth conditions also plays a signifi cant role. Based on the 
model by Van Nevel et al. ( 2007 ) and according to our own 
calculations, it may be stated that modifi cation of plant bio-
mass or element accumulation rates is only suffi cient for the 
reduction of phytoextraction time—but how signifi cantly? 
The phytoextraction process time can be shortened by addi-
tion to soil of selected microorganisms, fungi (Göhre and 
Paszkowski  2006 ) or chelators (Eapen and D’Souza  2005 ). 
Generally, a greater effect is observed for accumulation rate 
than plant biomass modifi cation. For example, decreasing 
Cu concentration in polluted soil (about 82 mg/kg d.w.) to a 
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normal geochemical level by the most effective  Salix  taxa as 
one of many energy plants (Labrecque et al.  1997 ; Stolarski 
et al.  2008 ) requires about 1,200–2,400 years. Modifi cation 
of biomass in these  Salix  taxa makes it possible to shorten 
this time to 530–790 years. On the other hand, genetic modi-
fi cation of plants raises considerable controversies related to 
improvement of accumulation and biomass stimulation facil-
itating the same phytoextraction effi ciency within 21–35 
years (the author’s studies). Based on the short time for par-
ticular plants as short rotation coppice (SRC), this time may 
be considered acceptable. The same situation is observed for 
other elements, such as Zn. The particular phytoextraction 
time for the most interesting  Salix  taxa growing in soil with 
about 22 mg/kg d.w. is 92 (no modifi cation), 34 (biomass 
modifi cation), and as little as 2 years (genetic modifi cation). 
Taking into consideration the previous information about 
phytomining technology, these plants could be a signifi cant 
source of metals for industry.  

12.6     Conclusions 

 The extensive research on phytoextraction carried out in 
recent decades has not brought any breakthrough or innova-
tive developments that might be applied for Cu-contaminated 
soils. Unlike zinc and cadmium, copper usually demonstrates 
poor phytoavailability and therefore its uptake by most plant 
species is very low. The trials to make phytoaccumulation of 
Cu more intensive were in fact unsuccessful. The methods of 
chemically aided phytoextraction should be considered inef-
fective and hazardous to the environment; hence, a further 
development of this approach does not seem to be reason-
able. Microbiologically supported phytoextraction still 
remains in its infancy and requires comprehensive examina-
tion. The results obtained so far, however, do not create 
grounds to expect a multiplication, or at least a radical 
improvement, of phytoextraction rates. Genetic engineering, 
although encouraging and scientifi cally sound, has not 
yielded any promising Cu-related outcomes. Moreover, there 
are several concerns about the idea of aided phytoextraction 
itself. Presuming that the plants capable of accumulating 
large Cu concentrations in their aerial parts have been suc-
cessfully engineered or stimulated, the sites where they will 
grow should be well protected to prevent uncontrolled input 
of copper into the food chain, for example via animals, and 
its secondary dispersion in the environment. Theoretical con-
siderations proved that in the vicinities of copper smelters 
the risk to human health caused by possible Cu ingestion 
may be feasible (Seeley et al.  2013 ). This seems to be an 
additional contribution to the thesis that from among several 
phytoremediation methods that might be applied for 
Cu-contaminated soil, phytostabilization will be much better 
justifi ed and—paradoxically—environmentally safer than 
various options of phytoextraction. 

 The above chapter can be concluded as follows:
•    Concentrations of Cu in European topsoils vary in a broad 

range.  
•   Excessive levels of copper concentration in soil (danger-

ous for humans, animals, and plants) need to be reduced.  
•   Soil cleanup of pollutant presence is technologically 

advanced but also expensive.  
•   Bioleaching involves different groups of bacteria.  
•   Phytoremediation represents the technologies that use 

either naturally occurring or genetically engineered plants 
to remove contaminants from soils.  

•   Phytostabilization is a kind of chemical fi xation of trace 
elements by sequestration of natural products by plants.  

•   Hyperaccumulation of copper is an effect of active uptake 
of metals from the soil—due to defense mechanism 
against toxicity—based mainly on the formation of com-
plexes with chelating molecules.  

•   Remediation of polluted soil is time consuming and in 
hyperaccumulating plants takes 2–60 years while in non-
hyperaccumulating plants it takes 25–2,800 years.        
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13.1             Introduction 

    Heavy metals and metalloids, such as selenium (Se), are 
released into the environment by mining industry, and 
 agriculture, threatening environmental and human health 
(Bañuelos  2001 ). Due to the acute toxicity of Se, there is an 
urgent need to develop low-cost, effective, and sustainable 
methods to remove it from the environment or to detoxify it. 
Plant-based approaches, such as phytoremediation, are rela-
tively inexpensive since they are performed in situ and are 
solar-driven (Bañuelos et al.  2002 ). In this review, we discuss 
specifi c advances in plant-based approaches for the remedia-
tion of contaminated water and soil. Dilute concentrations of 
Se can be removed from large volumes of wastewater by 
constructed wetlands. Plants play an important but indirect 

role in that they supply fi xed carbon and other nutrients to 
rhizosphere microbes responsible for the uptake and detoxi-
fi cation of contaminants. We discuss the potential of con-
structed wetlands for use in remediating Se in agricultural 
drainage water and industrial effl uent, as well as concerns 
over its potential ecotoxicity. 

 Plants play a more direct role in remediation of upland soil. 
Plants may be used to accumulate Se in their harvestable bio-
mass (phytoextraction). Plants can also convert and release 
Se in a volatile form (phytovolatilization) (Pilon- Smits and 
LeDuc  2009 ). We discuss how genetic engineering has been 
used to develop plants with enhanced effi ciency for Se of 
 phytoextraction and phytovolatilization. Se-hyperaccumulating 
plants and microbes with unique abilities to tolerate, accumu-
late, and detoxify metals and metalloids represent an impor-
tant reservoir of unique genes that could be transferred to 
fast-growing plant species for enhanced Se of phytoremedia-
tion (Zhu et al.  2009 ). Improved analytical techniques are 
being used to elucidate the mechanisms by which plants 
detoxify Se. This knowledge is crucial for optimizing new 
genetic engineering strategies. Finally, new strategies are 
required to improve the acceptability of using genetically 
engineered plants for remediation projects.  
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13.2     Plant-Based Approaches to Se 
Remediation 

13.2.1     Constructed Wetlands 

    Constructed wetlands have been used as a low-cost treatment 
to remove a wide range of waterborne contaminants from pol-
luted waters such as municipal wastewater and effl uents from 
electricity-generating facilities and oil refi neries in the world 
(Azaizeh et al.  2006 ). They comprise a complex ecosystem of 
plants, microbes, and sediment that together act as a biogeo-
chemical fi lter, effi ciently removing dilute contaminants from 
very large volumes of wastewater. The anoxic environment 
and organic matter production in wetlands promote biological 
and chemical processes that transform contaminants to immo-
bile or less toxic forms (Lin et al.  2010 ). Plants support 
microbially mediated transformations of contaminants by 
supplying fi xed-carbon as an energy source for bacteria and 
by altering the chemical environment in their rhizosphere 
(Azaizeh et al.  2006 ; Lin et al.  2010 ). Plants also take up and 
accumulate metals and metalloids in their tissues (Azaizeh 
et al.  2006 ; Lin et al.  2010 ). At this point, Se can be metabo-
lized to nontoxic and/or volatile forms, which may escape the 
local ground ecosystem by release to the atmosphere (Azaizeh 
et al.  2006 ; Lin et al.  2002 ,  2010 ; Shardendu et al.  2003 ). 

 An experimental wetland was constructed at the Tulare 
Lake Drainage District (TLDD) in the San Joaquin Valley 
(Calif.) in 1996. Its purpose was to evaluate the potential of 
constructed wetlands for the removal of Se from agricultural 
irrigation drainage water. Ten individual cells were tested, 
either unvegetated or vegetated singly or with a combination 
of sturdy bulrush, cattail, etc. (Lin et al.  2002 ,  2010 ; Shardendu 
et al.  2003 ). On average, the wetland cells removed 69 % of 
the total Se mass from the infl ow. Vegetated wetland cells 
removed Se more effi ciently than the unvegetated cell, with-
out signifi cant differences among vegetated cells (Lin et al. 
 2002 ,  2010 ; Shardendu et al.  2003 ). An important objective 
of the TLDD wetland project was to determine if Se concen-
trations in drainage water could be reduced to less than 2 lg/L 
before disposal into evaporation ponds, the overall goal being 
to minimize toxic effects of Se on aquatic biota and waterfowl 
in the ponds. Although the Se concentrations in the outfl ow 
were signifi cantly lower than those in the infl ow for all cells, 
the goal of 2 lg Se per liter in the outfl ow was not reached 
(Lin et al.  2002 ,  2010 ; Shardendu et al.  2003 ). 

 Microcosm experiments provide an initial means of evalu-
ating the Se remediation potential of a constructed wetland 
with a greater degree of experimental control, less cost, and 
substantially reduced environmental risk than a study of the 
wetland itself. Such a microcosm study was used to evaluate 
the potential of constructed wetlands to remediate effl uent 
containing highly toxic selenocyanate (SeCN) generated by a 

coal gasifi cation plant (Lin et al.  2002 ,  2010 ; Shardendu et al. 
 2003 ). The concentrations of Se were several orders of mag-
nitude higher than those normally treated by constructed wet-
lands. The microcosms removed 79 % Se mass, signifi cantly 
reducing the toxicity of the effl uent. Because cattail ( Typhia 
latifolia  L.) showed no growth retardation when supplied 
with the contaminated wastewater, constructed wetlands 
planted with these species show particular promise for reme-
diating this highly toxic effl uent. Although constructed wet-
lands offer a less expensive alternative to other water- treatment 
methods, the approach needs to be optimized to enhance effi -
ciency and reproducibility, and reduce ecotoxic risk. Most of 
the contaminants removed from the waste- stream are immo-
bilized in the sediment. For example, in the microcosm 
experiment discussed above, the sediment contained 63 % of 
the Se while only 2–4 % was accumulated in plant tissue (Lin 
et al.  2002 ,  2010 ; Shardendu et al.  2003 ). In the TLDD wet-
land, 41 % of the supplied Se left the wetland; the remaining 
59 % was retained in the wetland cell, partitioned between 
the surface sediment (0–20 cm; 33 %), organic detrital layer 
(18 %), fallen litter (2 %), standing plants (<1 %), and stand-
ing water (<1 %) (Lin et al.  2002 ,  2010 ; Shardendu et al. 
 2003 ). The Se in the agricultural drainage water entering the 
TLDD wetland was predominantly in the form of selenate 
(95 %); it was reduced in sediment to a mixture of elemental 
Se (45 %), organic Se (40 %), and selenite (15 %) (Lin et al. 
 2002 ,  2010 ; Shardendu et al.  2003 ). Although elemental Se is 
essentially nontoxic, some selenite and some species of 
organic Se are more toxic than selenate. There is concern 
that, since Se concentrations in the organically rich surface 
sediments increased over time, that this Se could eventually 
enter the aquatic food chain and exert ecotoxic effects.  

13.2.2     Se of Phytovolatilization 

 One very important way of increasing the effi ciency of Se 
removal and decreasing Se ecotoxicity of wetlands is to 
enhance Se volatilization by plants and microbes. Because of 
the chemical similarity of sulfur (S) and Se, plants and 
microbes are able to take up inorganic and organic forms of 
Se and metabolize them to volatile forms via the S assimila-
tion pathway. Biological volatilization has the advantage of 
removing Se from a contaminated site in relatively nontoxic 
forms, such as dimethylselenide (DMSe), which is 500–700 
times less toxic than SeOÀ2 or SeOÀ2 (Lin et al.  2002 ,  2010 ; 
Shardendu et al.  2003 ). Although the volatilized Se may 
eventually be redeposited in other areas, this is not a problem 
in California where much of the state is defi cient in Se with 
respect to the nutrition of animals, which require Se in low 
concentrations (Lin et al.  2002 ,  2010 ; Shardendu et al.  2003 ). 

 The extent of Se volatilization is highly dependent upon a 
number of environmental factors, such as the composition of 
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the microbial community, choice of macrophytes, Se specia-
tion, organic matter amendment, and other physiochemical 
conditions (Lin et al.  2002 ,  2010 ; Shardendu et al.  2003 ). 
Selenium volatilization rates increase with increasing ambi-
ent temperature (Lin et al.  2002 ,  2010 ; Shardendu et al. 
 2003 ). Not only do higher temperatures increase the vapor 
pressure of volatile DMSe, they also stimulate the metabolic 
activity of plants and microbes. The chemical form of Se 
present in the infl ow also affects the extent of Se volatiliza-
tion (Lin et al.  2002 ,  2010 ; Shardendu et al.  2003 ). This is 
because biological metabolism of Se from inorganic forms, 
the predominant Se forms in most waste streams, to volatile 
DMSe is slowed by certain rate-limiting enzymatic steps. 
For example, Se-removal is more effi cient from selenite- 
dominated water than selenate-dominated water (Lin et al. 
 2002 ; Bañuelos et al.  1997 ), because the reduction of sele-
nate to selenite is often a rate-limiting step. Certain plant and 
microbe species may not have the same rate limitations on Se 
metabolism as others. For instance, microbes living in the 
rhizosphere of plant, the highest volatilizing cell, appear to 
effi ciently metabolize Se such that 77 % of the Se was pres-
ent in organic forms. Selenium volatilization may be 
enhanced through managing hydrological conditions, judi-
cious choice of plant species, altering carbon availability to 
promote microbial activity, or seeding with microbes and 
microalgae (Lin et al.  2002 ; Bañuelos et al.  1997 ). Another 
possible approach is to genetically manipulate microbes, 
algae, or plants to increase their output of volatile Se.   

13.3     Strategies for Enhancing 
the Phytoremediation of Se 

13.3.1     Genetic Engineering 

 Recent research has shown that genetic modifi cation of plants 
can increase their phytoremediation effi ciency (Bañuelos 
et al.  2005 ,  2007 ; LeDuc et al.  2006 ; Van Huysen et al.  2004 ). 
Identifying candidate genes for transfer and/or overexpres-
sion is critical. One useful approach is to  overexpress 
enzymes catalyzing rate-limiting steps; for example, ATP 
sulfurylase (APS), which facilitates the reduction of selenate 
to selenite, is rate-limiting with respect to the production of 
reduced, organic Se compounds (Bañuelos et al.  2005 ,  2007 ; 
LeDuc et al.  2006 ; Van Huysen et al.  2004 ). Indian mustard 
plants overexpressing APS have increased tolerance and 
accumulation of selenium (Bañuelos et al.  2005 ,  2007 ; 
LeDuc et al.  2006 ; Van Huysen et al.  2004 ). However, APS 
Indian mustard does not volatilize more Se than wild type 
(Bañuelos et al.  2005 ,  2007 ; LeDuc et al.  2006 ; Van Huysen 
et al.  2004 ). This is likely due to additional downstream rate-
limiting steps in the S/Se assimilation pathway. Indeed, Se 
volatilization rates from Indian mustard are similar from 

selenocysteine (SeCys) and selenite, while volatilization 
from selenomethionine (SeMet) is many fold faster (Bañuelos 
et al.  2005 ,  2007 ; LeDuc et al.  2006 ; Van Huysen et al.  2004 ). 
This suggests the involvement of a rate-limiting step in the 
synthesis of SeMet from SeCys. To test this hypothesis, 
Indian mustard plants overexpressing cystathionine-c- 
synthase (CGS) were developed. The CGS Indian mustard 
had enhanced tolerance to selenite and volatilized Se two to 
three times faster than wild type, while at the same time accu-
mulating less Se in roots and shoots (Bañuelos et al.  2005 , 
 2007 ; LeDuc et al.  2006 ; Van Huysen et al.  2004 ).  

13.3.2     Chloroplast Engineering 

 After all the work involved in identifying key genes, trans-
forming plants, and evaluating Se of phytoremediation 
potential in laboratory and greenhouse experiments, there 
are still regulatory barriers to overcome in getting transgenic 
plants in the fi eld, remediating contaminated sites. Such con-
straints have spurred researchers to innovate new methods of 
creating transgenic plants that will be more palatable to the 
public and pose less potential risk of hybridizing with nearby 
plants or adversely affecting wildlife. One such technique 
is the use of chloroplast transformation, the use of which 
 prevents the escape of transgenes via pollen to related weeds 
and crops (Bañuelos et al.  2005 ,  2007 ; LeDuc et al.  2006 ; 
Van Huysen et al.  2004 ). This method was recently used to 
stably integrate the bacterial merAB operon into the chloro-
plast genome of tobacco. The resulting plants were substan-
tially more resistant to highly toxic organic mercury, in the 
form of phenylmercuric acetate, than wild type (Bañuelos 
et al.  2005 ,  2007 ; LeDuc et al.  2006 ; Van Huysen et al. 
 2004 ). Previously, all attempts to genetically engineer plants 
with improved phytoremediation had been based on transfor-
mation of the nuclear genome. Other important advantages 
of chloroplast transformation include the fact that codon 
optimization is not required to improve expression of bacte-
rial transgenes, very high levels of transgene expression (up 
to 46 % w/w of total protein), absence of gene silencing, 
absence of positioning effect, ability to express multiple 
genes in a single transformation event, and sequestration of 
foreign proteins in the organelle, preventing adverse interac-
tions with cytoplasm (Bañuelos et al.  2005 ,  2007 ; LeDuc 
et al.  2006 ; Van Huysen et al.  2004 ).  

13.3.3     Se of Hyperaccumulator 

 Some plants naturally hyperaccumulate metals, meaning that 
they are able to accumulate metals to ppm levels in the order 
of thousands in their shoots. Hyperaccumulating plants have 
been identifi ed for a number of metals (Freeman and Bañuelos 
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 2011 ; Valdez Barillas et al.  2012 ; Freeman et al.  2012 ). The 
phytoremediation effi ciency of most metal hyperaccumula-
tors is limited by their slow growth rate and low biomass. 
Using genetic engineering we should be able to enhance phy-
toremediation potential by transforming fast- growing host 
plants with key genes from natural hyperaccumulators. 

 One such gene is selenocysteine methyltransferase 
(SMT), cloned from the Se hyperaccumulator Astragalus 
bisulcatus (Freeman and Bañuelos  2011 ; Valdez Barillas 
et al.  2012 ; Freeman et al.  2012 ). SMT converts the amino 
acid SeCys to the nonprotein amino acid (MetSeCys). By 
doing so, it diverts the fl ow of Se from the Se amino acids 
that may otherwise be incorporated into protein, leading to 
alterations in enzyme structure and function and toxicity 
(Freeman and Bañuelos  2011 ; Valdez Barillas et al.  2012 ; 
Freeman et al.  2012 ). Transgenic plants overexpressing SMT 
show enhanced tolerance to Se, particularly selenite, and 
produced three to sevenfold more biomass than wild type 
and threefold longer root lengths (Freeman and Bañuelos 
 2011 ; Valdez Barillas et al.  2012 ; Freeman et al.  2012 ). The 
SMT plants accumulated up to fourfold more Se than wild 
type, with higher proportions in the form of MetSeCys. 
Additionally, SMT Arabidopsis and SMT Indian mustard 
volatilized Se two to three times faster when treated with 
SeCys and selenate, respectively.   

13.4     Use of Plant-Microorganisms 
in the Remediation of Se 

 The diversity and adaptability of microorganisms allows 
them to thrive in harsh, toxic environments where higher 
plants are unable to grow. As such, microbes represent a 
potential reservoir of important genes involved in metal 
detoxifi cation. Highly effi cient phytoremediating plants 
could be generated that overexpress microbial genes 
(Schmidt et al.  2013 ; Vickerman et al.  2004 ). Many such 
microorganisms have been found, but much remains to be 
learned at the molecular level. One promising strategy to elu-
cidate microbial hypertolerance and hyperaccumulation 
mechanisms is to compare natural cultures with adapted cul-
tures. The genetic and biochemical basis for this adaptation 
is an interesting target for genetic engineering. For example, 
a single-celled freshwater microalgae ( Chlorella  sp.) is inter-
esting because of its ability to effi ciently reduce selenate 
(Schmidt et al.  2013 ; Vickerman et al.  2004 ). In fact, in just 
24 h, 87 % of the selenate accumulated had been converted 
to intermediate organic compounds. This capacity to effi -
ciently reduce Se may have evolved in microalgae because 
their large surface-to-volume ratio means that their Se uptake 
rates can be relatively high while space available for storage 

of toxic Se compounds is small. Since high rates of accumu-
lation have toxic effects on long-term development, the abil-
ity to convert selenate to DMSe could be a big advantage 
(Schmidt et al.  2013 ; Vickerman et al.  2004 ). The potential 
of these microalgae for bioremediation is limited, however, 
by the fact that uptake of selenate is strongly inhibited by the 
presence of sulfate in the medium. Without sulfate, the 
 Chlorella  sp. was able to remove 90 % of supplied selenate 
through accumulation and volatilization. These high rates 
were not observed in the presence of 1 mM sulfate, where 
only 1.8 % of Se was volatilized. Without sulfur, the Chlorella 
had 2.6 times higher sulfate transporter activity, which most 
likely leads to the higher rates of selenate uptake. It has pre-
viously been observed that sulfate deprivation can lead to 
increased activity of enzymes involved in sulfate uptake and 
reduction (Schmidt et al.  2013 ; Vickerman et al.  2004 ). 
However, since the action of selenate reduction does not 
appear rate-limiting in this microalga, transforming plants 
with the Chlorella ATP sulfurylase gene may be a useful 
means to increase Se volatilization rates in higher plants. 

13.4.1     Se of Analytical Techniques 

 The successful use of genetic engineering to optimize plants 
for Se of phytoremediation depends on a thorough knowl-
edge of the uptake and metabolism of Se of interest. 
Elucidating the genetic and biochemical basis for metal/met-
alloid tolerance and accumulation strategies is often ham-
pered by the diffi culty in determining the levels of, and 
positively identifying, intermediate metabolites and com-
plexes (Montes-Bayón et al.  2002 ; Carvalho et al.  2001 ; 
Bañuelos et al.  2012 ). Fortunately, technologies are being 
developed and improved that should shed new light on these 
metabolic pathways. For example, recent work with HPLC-
ICP- MS and HPLC-ESI-MS has identifi ed selenomethylme- 
thionine (SeMM) as the predominant Se species in  Brassica 
juncea  roots supplied with SeMet (Montes-Bayón et al. 
 2002 ; Carvalho et al.  2001 ; Bañuelos et al.  2012 ). This work 
provides chemical evidence for the view that Se-Met is 
methylated to SeMM (Montes-Bayón et al.  2002 ; Carvalho 
et al.  2001 ; Bañuelos et al.  2012 ). Since roots are the primary 
site of Se volatilization, cleavage of SeMM appears to 
directly produce volatile DMSe. Similar techniques have 
also shown promise in elucidating the fate of As in plants, 
which is less well understood. In a recent study, HPLC-
ICP- MS was used to analyze As metabolites in As-treated 
Indian mustard. Arsenic species were found bound to thiols. 
The ESI-Q-TOF results strongly suggest the presence of As 
bound to PC2, PC3, and PC4 (Montes-Bayón et al.  2002 ; 
Carvalho et al.  2001 ; Bañuelos et al.  2012 ).   
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13.5     Conclusions 

 Recent research has shown that phytoremediation can be an 
effective method for removing and detoxifying heavy metals 
and metalloids such as Se from contaminated soil and water. 
The identifi cation of unique genes from natural Se hyperac-
cumulators and their subsequent transfer to fast-growing 
species is another promising approach as demonstrated with 
SMT transgenic plants. Microbial genomes may provide 
another reservoir of candidate genes for use in genetic engi-
neering strategies. Advances in optimizing plants for phy-
toremediation will depend on gaining new knowledge about 
the fate and transport of Se in plants and innovative technolo-
gies to improve the acceptability of transgenic organisms for 
phytoremediation.     
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14.1           Introduction 

 The presence of heavy metals in the soil, which are usually 
resulted by anthropogenic activities (Schachtschabel et al. 
 1992 ), can be unfavorable to the environment plant growth.  
Different strategies have been used to remediate the adverse 
effects of heavy metals on the environment and plant growth 
including the use of tolerant plants such as hyperaccumula-
tors and the use of soil microbes such arbuscular mycorrhizal 
(AM) fungi, plant growth-promoting rhizobacteria (PGPR) 
(Miransari  2011a ;  2014 ), and endophytic microbes (Shen 
et al.  2013 ). 

 Different combinations of bioremediation strategies may 
be used including the single use of hyperaccumulators, the 
single or combined use of microbial strains and species, and 
the combined use of plants and tolerant plants such as hyper-
accumulators with their symbiotic or nonsymbiotic microbes. 
Under any contaminated conditions the right plant and 
microbial species must be selected, tested, and used 
(Rajkumar et al.  2009 ). Miransari ( 2011a ) suggested that if 
the ability of hyperaccumulators is improved by their asso-
ciation with soil microbes such as mycorrhizal fungi, it can 
be more likely to remediate the polluted soils. It is because 
some of the hyperaccumulators are not able to develop a 
symbiotic association with their host plants, which have been 
attributed to the production of some exudates from the host 
plant roots. Accordingly, if the symbiotic microbe is able to 
inoculate the host plant and if such a potential is improved by 
using different techniques, the remediation ability of the host 
plant improves. 

 Different techniques are used by tolerant plants to handle 
the stress of heavy metals. For example, plants can stabilize 

the metal in the rhizosphere, can increase its solubility, and 
may also absorb high rate of the metal and accumulate it in 
their vacuoles. However, it may be a more effective method 
if the alleviating ability of the host plant is improved by their 
association with mycorrhizal fungi, plant growth-promoting 
rhizobacteria (PGPR), and endophytic bacteria, which are 
usually found in different parts of their host plants such as 
roots and the aerial parts. Accordingly, some of the latest 
fi ndings related to the use of soil microbes for the bioreme-
diation of polluted areas are presented.  

14.2     Heavy Metals 

 Heavy metals (53 elements) are categorized based on their 
density (Holleman and Wiberg  1985 ). Some of the heavy 
metals such as iron (Fe), copper (Cu), zinc (Zn), and nickel 
(Ni) are required for plant growth and crop production. 
However, at high concentration, they adversely affect plant 
growth. There are different functions for heavy metals in 
plant including their role in the redox reactions, catalyzing 
enzymatic activities, as electron carriers and their presence 
in the structure of DNA and RNA (Zenk  1996 ). 

 The adverse effects of heavy metals on the growth of 
plant is by infl uencing the functionality of enzymes and 
hence protein structure. They may also substitute a required 
element in the cellular structure of different plant tissues or 
different biochemical reactions. The activity, functionality, 
and permeability of plasma membrane are affected by heavy 
metals. The oxidative stress of heavy metals can also 
adversely affect plant growth by the production of reactive 
oxygen species (Sajedi et al.  2010 ,  2011 ). 

 Using different mechanisms, plants must be able to keep 
ion homeostasis in their tissues by detoxifying the adverse 
effects of heavy metals so that they can function properly 
(Clemens  2001 ). For example, heavy metals are chelated by 
organic products and cellular membranes are able to bind 
heavy metals. The presence of products such as metallothio-
neins and phytochelatins, inside cell, with high affi nity for 
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the absorption of heavy metals, can control their cellular 
concentration by their transfer to the vacuoles as they cross 
the tonoplast (Hall  2002 ).  

14.3     Arbuscular Mycorrhizal Fungi 

    Arbuscular mycorrhizal (AM) fungi are among the soil 
fungi, which are able to establish symbiotic association with 
most terrestrial plants. In such a symbiosis the fungal spores 
are able to germinate, in the presence of the host plant, and 
produce an extensive hyphal network. However, it has been 
indicated that even if the host plant is not present, the fungal 
spores are able to germinate but do not proceed with the next 
stages of symbiosis (Miransari  2010 ). 

 The extensive hyphal network can signifi cantly increase 
the absorbing capacity of the host plant for water and nutri-
ents. The network also produces two important organelles 
called vesicles and arbuscules. The former is a vacuolated 
organelle, which is able to store high rate of elements and 
different biochemicals. Such a property can be especially 
useful to the growth of host plant under stress. For example, 
when the plant is subjected to salt stress, to alleviate the 
stress and keep a suitable rate of K + /Na + , the fungi store a 
high rate of Na +  and Cl −  in their vesicles. The arbuscules are 
branched like structures, which are the interface for the 
exchange of nutrients with the host plant roots and hence can 
signifi cantly increase the nutrient-absorbing potential of the 
host plant (Audet and Charest  2007 ; Daei et al.  2009 ). 

 The extensive network of fungal hyphae is able to signifi -
cantly increase the absorbing potential of the host plant by 
growing around the host plant roots, in the zones and micro-
pores, where even the fi nest root hairs are not able to grow and 
absorb water and nutrients. Such a property can especially be 
useful under stress, because the increased uptake of water and 
nutrients from a higher volume of soil alleviates the adverse 
effects of stress on the growth of the host plant (Miransari 
et al.  2008 ). The alleviating effects of AM fungi under stresses 
such as heavy metals are presented in the following.  

14.4     Mycorrhizal Plant Under Stress 

 Mycorrhizal fungi can favorably affect plant growth under 
different conditions including stress by the following mecha-
nisms: (1) increasing plant water and nutrient uptake, (2) 
improving the structure of soil by the production of glomalin 
or adherence of soil particles, (3) interacting with the other 
soil microbes, (4) production of different biochemicals, (5) 
affecting plant systemic required resistance, (6) activating 
different plant genes, and (7) controlling the unfavorable 
effects of pathogens (Gaur and Adholeya  2004 ; Gonzalez- 
Chavez et al.  2004 ; Hildebrandt et al.  2006 ). 

 Under stress usually mycorrhizal plants can perform more 
effi ciently than non-mycorrhizal plants due to the favorite 
effects of the fungi, as previously mentioned on the growth 
of the host plant. However, the fungal alleviating effects are 
determined by different factors, such as the fungal and the 
host plant species, the properties of the soil and climate, etc. 
(Miransari  2010 ). 

 It has been indicated that if the fungal species are isolated 
from stress conditions, they will be more effi cient to alleviate 
the stress (Daei et al.  2009 ). The interactions between the 
fungi and the other soil microbes in the root rhizosphere are 
also an important parameter affecting the fungal perfor-
mance. Accordingly, there are some negative and positive 
interactions, which may enhance or decrease the alleviating 
potential of mycorrhizal fungi on the growth of the host plant 
under stress (Miransari  2011b ). 

 Mycorrhizal fungi with their unique abilities are able to 
alleviate the stress of heavy metals on the growth of the host 
plant by the following mechanisms. The fungi are able to: (1) 
absorb high rate of heavy metals in their hyphae, (2) infl u-
ence the availability of heavy metals in the rhizosphere, (3) 
affect plant growth and hence the absorption of heavy met-
als, and (4) activate the related stress genes in the host plant 
(Kaldorf et al.  1999 ; Khan  2005 ,  2006 ; Miransari  2011a ,  b ). 

 Hyperaccumulators as tolerant plants to the stress of 
heavy metals are able to absorb and accumulate high rate of 
heavy metals in their tissues, while their growth remains 
unaffected. However, the important point is how to improve 
the ability of hyperaccumulators to absorb higher rate of 
heavy metals. Usually the hyperaccumulators, which are 
from the Brassicaceae family, are not host to mycorrhizal 
fungi, with the exception of species such as  T. praecox , 
which are able to develop symbiosis with mycorrhizal fungi 
(Pawlowska et al.  2000 ). 

 If the symbiotic ability of  T. praecox  with the fungi increases, 
the plant can be used more effi ciently under heavy metal stress. 
According to Vogel-Mikus et al. ( 2006 ),  T. praecox  devel-
oped symbiotic association with mycorrhizal fungi and 
increased the uptake of nutrients by the host plant; however, it 
decreased the absorption of heavy metals by the host plant. 
This indicates the both alleviating effects of the fungi on the 
pollution of soil and on the growth of the host plant. 

 It is important to select the right fungal species, so that the 
process of bioremediation can be performed more effi ciently. 
Usually if the inoculum is selected from the stress areas, it 
will be able to more effi ciently handle the stress. Such spe-
cies have developed mechanisms with time, which can make 
them tolerate the stress and hence develop a symbiotic asso-
ciation with the host plant (Khan  2005 ). 

 Although mycorrhizal fungi are able to alleviate the stress 
of heavy metals in association with their host plants, high 
level of stress can adversely affect the improving abilities of 
the fungi. For example, Chen et al. ( 2003 ) indicated that 
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under non-stressed conditions  Glomus caledonium  was able 
to colonize the host plant roots at a rate of more than 70 %; 
however at concentration of 300 and 600 mg/kg Zn, the colo-
nization rate was 50 %. Similarly, Duponnois et al. ( 2006 ) 
indicated that root colonization by mycorrhizal fungi 
decreased from 60 to 20 % under Cd pollution of 560 mg/kg. 
However, the positive interactions between mycorrhizal 
fungi and fl orescent pseudomonas increased the colonization 
rate from 32 to 45 % (Miransari  2011a ). 

 The following indicate how heavy metals may be translo-
cated by the fungal hyphae to the root tissues: (1) The cellu-
lar wall or the fungal vacuoles may accumulate the heavy 
metals, (2) siderophore and glomalin may sequester the 
heavy metals in the root apoplasm or in the soil (Gonzalez- 
Chavez et al.  2004 ), (3) phytochelatins or metallothioneins 
may deposit heavy metals in the cells of fungi or plant, and 
(4) the metal transporters of plasmalemma or tonoplast in 
both symbionts may translocate heavy metals from cyto-
plasm (Galli et al.  1994 ; Schutzendubel and Polle  2002 ). 

 In the roots of mycorrhizal plants, the heavy metal content 
is subject to change indicating the role of mycorrhizal fungi 
on the expression of the related genes at transcription and 
translation levels (Repetto et al.  2003 ; Ouziad et al.  2005 ). 
The expression of  GintZnT1  in the hyphae of  G. intraradices  
indicates its alleviating role on the stress of excess Zn 
(Gonzalez-Guerrero et al.  2005 ). Under the stress of Cd and 
Cu, the expression of  GintABC1  transporters and its detoxifi -
cation effects in the fungal hyphae indicate how such a gene 
may affect the alleviation of stress (Gonzalez- Guerrero et al. 
 2006 ). Under the contamination of excess Zn, the expression 
of the related genes resulted in the production of glutathione 
S-transferase, which is a Zn transporter and can alleviate the 
oxidative stress (Smith et al.  2004 ; Hildebrandt et al.  2006 ).  

14.5     Mechanisms of Stress Alleviation 

 There are different mechanisms by which the plant can sur-
vive the stress including the plant properties or its associa-
tion with the soil microbes such as mycorrhizal fungi, PGPR, 
and endophytic microbes. As previously mentioned there are 
hyperaccumulator plants, which are able to absorb and accu-
mulate high rate of heavy metals in their tissues, while their 
growth remains unaffected. Most of such plants are not able 
to establish a symbiotic association with mycorrhizal fungi 
because of their root products. However, there are a few fam-
ily species, which are able to be in symbiotic association 
with the fungi (Assuncao et al.  2001 ). If such kind of ability 
is improved, for example, through their symbiosis with the 
fungi, it would be possible to increase the remediation poten-
tial of the host plant under stress. 

 Hyperaccumulators have some genes, which are expressed 
under the stress of heavy metals and make the plant localize the 

heavy metals in its tissues, without affecting its growth. Under 
stress plants use different mechanisms to alleviate the stress. 
Usually plants will not accumulate high rate of heavy metals 
and just hyperaccumulators are able to absorb high concentra-
tion of heavy metals and handle the stress. Among the plant 
species just 0.2 % including 450 species (most of them Ni accu-
mulators) have the ability of hyperaccumulating heavy metals 
and hence are called hyperaccumulators (Miransari  2011a ). 

 Among the species of  Thlaspi  family, the hyperaccumula-
tors of Ni, Zn, Cd, and Pb include 23, 10, 3, and 1 plant  species, 
respectively.  T. praecox ,  T. caerulescens , and  T. goesingense  
are the three species of Zn hyperaccumulators (Vogel-Mikus 
et al.  2005 ;  2008 ). However,  T. caerulescens  is the most well-
known hyperaccumulators of Zn with the ability to grow in the 
soils with serpentine including Zn, Cd, Co, Pb, Ni, Cr and 
absorb up to 30,000 and 1,000 mg/kg of Zn and Cd, respec-
tively, and its growth is not affected (Assuncao et al.  2001 ). 
Based on a dry weight, the accumulation of Zn, Cd, and Pb by 
this species is up to 1.5, 0.6, and 0.4 %, respectively. There are 
some specifi c metal transporters, which enable the host plant 
to absorb and transfer high rates of heavy metals to different 
plant tissues (Vogel-Mikus et al.  2005 ; Pongrac et al.  2007 ). 
Plant cellular vacuoles of  T. caerulescens  have a high ability to 
absorb Zn at high concentration (Kupper et al.  1999 ). 

 Usually hyperaccumulators are able to absorb heavy met-
als at high concentration using the following mechanisms: 
(1) production of organic molecules including organic acids, 
nicotinamide   , glutathione, cysteine, histidine, and other thi-
ols, which are able to bind heavy metals and form organome-
tallic complexes (Kupper et al.  2004 ), (2) the transport ability, 
(3) potential of compartmentation, and (4) the transfer of 
such products to the cellular vacuoles (Kupper et al.  1999 ). 

 The weak point about hyperaccumulators is that they are 
not able to produce high rate of biomass. Hence, a method, 
which may result in higher production of hyperaccumulator 
biomass, may be of practical use and increase the effi ciency 
of such plants for bioremediation. However, the strength 
point about hyperaccumulators is the presence of transporters 
such as for Zn ( ZNT1 ) with a high affi nity for heavy meals 
that enable the plant to transfer Zn across the plasma mem-
brane of root cell, in the xylem, and eventually to the leaf. The 
related plant genes must be expressed so that the transporter 
can accumulate high rate of Zn in plant (Pence et al.  2000 ). 

 The Zn transporter genes in  T. caerulescens  including 
ZNT1 and ZNT2 as well as ZTP1 (similar to ZAT of 
Arabidopsis) were isolated by Assuncao et al. ( 2001 ). 
Compared with  T. arvense , the high expression of such genes 
in  T. caerulescens  indicates that the latter is a heavy metal 
hyperaccumulator. The Zn hyperaccumulating of  T. goesin-
gense  is related to the presence of a protein called TgMTP1 
in plant cellular membrane. The high concentration of this 
protein in the vacuolar membrane of the plant shoot can 
signifi cantly increase the transport of heavy metals to the 
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vacuoles and hence increases plant hyperaccumulating abil-
ity and tolerance under stress. Zn concentration determines 
the activity of the protein to accumulate high Zn concentra-
tion in vacuoles (Gustin et al.  2009 ). 

 Different parameters such as pH, temperature, and the abil-
ity of  T. caerulescens  to produce organic acids by its roots 
determine plant ability to hyperaccumulate heavy  metals. For 
example, at pH 5–6 and during winter, the plant is able to 
absorb higher rate of heavy metals. The plant is also able to fi nd 
heavy metals in the rhizosphere more effi ciently, compared 
with non-hyperaccumulating plants. It is because the produc-
tion of organic products by the roots of  T. caerulescens  can 
increase the availability of heavy metals in the soil (Pence et al. 
 2000 ; McGrath et al.  2006 ; Milner and Kochian  2008 ). 

 Indicating the mechanisms, which can make the plant 
hyperaccumulate heavy metals, can be useful for the 
enhanced ability of hyperaccumulators under stress and for 
the important process of biofortifi cation (Hanikenne et al. 
 2008 ; Verbruggen et al.  2009 ). Briefl y, the processes of 
hyperaccumulation by tolerant plants include the following: 
plant uptake by roots, xylem loading and unloading, chelat-
ing for detoxifi cation, vacuolar uptake, homeostasis, etc. 
(Verbruggen et al.  2009 ). 

 By the bioremediation processes including extracting, 
degrading, rhizofi ltering, stabilizing, and volatilizing, the 
pollutants such as heavy metals are collected from the soil. 
By the extracting process, the heavy metals are absorbed 
from the soil by the harvestable parts of the plant. By the 
degrading processes, the pollutants are decomposed by plant 
and microbes. The rhizofi ltering process results in the 
absorption of heavy metals from the wastewaters. The stabi-
lization process is by decreasing the mobility of heavy met-
als and their subsequent immobilization as a result of 
microbial and root activities. Plant roots are also able to vola-
tilize pollutants to the atmosphere through the process of 
volatilization (Khan  2005 ). The extraction process is the 
absorption of pollutants by different plant tissues. However, 
it is more effective if the concentration of heavy metals, for 
example, is not higher than a certain amount (Khan  2006 ).  

14.6     PGPR, Endophytic Microbes, 
and Stress of Heavy Metals 

 With respect to the disadvantages of non-biological methods 
used for the remediation of polluted environments, such as 
expenses, and being environmentally non-recommendable, 
the use of biological methods, which is usually the use of 
hyperaccumulators and/or microbes, has been tested and 
proved to be useful on the remediation of polluted environ-
ments (Glick  2003 ; Kuiper et al.  2004 ; McGrath et al.  2006 ). 

 Usually under the stress of heavy metals, microbes can 
help the host plant to alleviate the stress by: (1) increasing 
the metal mobility by the production of biosurfactants 

(Herman et al.  1995 ), organic acids (Di Smine et al.  1998 ), 
and siderophores and (2) enhancing plant growth by mycor-
rhizal fungi (   Khan  2006 ) or PGPR (Zhuang et al.  2007 ). 
Under the stress of heavy metal, plants transfer most of heavy 
metals to their roots so that the aerial parts can function more 
effi ciently. Plant species, morphology, and physiology are 
also among the parameters affecting plant effi ciency under 
the stress of heavy metals (Audet and Charest  2007 ). 

 In the combined use of microbes and plants to remediate the 
environment from pollutants, the carbon (C) source is  supplied 
by plant roots to the microbial population for the absorption 
and/or degradation of pollutants including heavy metals. The 
amount of C which is supplied by the host plant and utilized by 
the microbes is equal to at least 40 % of the photosynthates 
produced by plant roots (Lynch and Moffat  2005 ). 

 PGPR and endophytic microbes are also able to alleviate 
the stress of heavy metals on the growth of their host plants 
using the following mechanisms: 
(1)  Binding heavy metals    by producing organic products 

and their subsequent increased availability and detoxifi -
cation (Dobbelaere et al.  2003 ; Dimkpa et al.  2009 ; 
Rajkumar et al.  2009 ). 

(2)  They can also adjust the concentration of heavy metals in 
the soil by affecting plant growth (Lebeau et al.  2008 ). 

(3)  The production of enzyme 1-amino-cyclopropane-1-car-
boxylate (ACC) deaminase by PGPR, which is able to 
catalyze ACC (ethylene prerequisite) to α-ketobutyrate 
and ammonium (Glick  2003 ). 

(4)  Auxin production by PGPR increases the bioavailability 
of heavy metals and their subsequent uptake by plant 
(Zaidi et al.  2006 ). 

 The endophytic microbes are able to colonize the internal 
parts of their host plant. In such kind of association, plant prop-
erties do not look symbiotic and plant growth is not also 
adversely affected but the physiological alteration enhances 
plant growth. Such physiological effects include the production 
of different products such as osmolytes, the changed stomata 
activity, the decreased potential of membrane, and the affected 
rate of phospholipids in the membrane (Sheng et al.  2008 ). 

 PGPR and endophytic microbes can affect the process of 
bioremediation of heavy metals by affecting the bioextrac-
tion and biostabilization processes by plant. By increasing 
the bioavailability of heavy metals, the process of bioextrac-
tion by plant increases and hence higher rate of heavy metals 
is absorbed by the host plant. However, the process of biosta-
bilization can affect the translocation of heavy metals in 
plant by decreasing their availability in plant roots (Rouch 
et al.  1995 ; Dimkpa et al.  2009 ; Rajkumar et al.  2010 ). 

 Interestingly, the endophytic bacteria including gram- 
negative and gram-positive have been isolated from the 
 tissues of hyperaccumulator plants under the stress of heavy 
metals showing tolerance to the stress. This can be due to the 
fact that high concentration of heavy metals in the tissues can 
make the endophytic bacteria adapt to the stress. 
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 The following mechanisms may affect the results of 
heavy metal bioaugmentation by the soil microbes: (1) the 
properties of metals, (2) the type of experiment (fi eld, green-
house, or laboratory   ), (3) the conditions of experiment, (4) 
microbial species and strains, and (5) plant species. However, 
the effectiveness of bioaugmentation process is determined 
by the following: (1) root and shoot growth affecting the pro-
cess of bioextraction and microbial activities, and (2) the 
properties of soil affecting the bioavailability of heavy met-
als and hence their uptake by plant (Lebeau et al.  2008 ). 

 The bioavailability of heavy metals is important affecting 
their uptake by plant. Parameters including the properties of 
soil, climate, heavy metal, and plant affect the bioavailability of 
plants. There is a wide range of PGPR, which can be used for 
the bioremediation of soil polluted with heavy metals includ-
ing  Pseudomonas ,  Rhizobium ,  Burkholderia ,  Agrobacterium , 
 Alcaligenes  ( Ralstonia ),  Azospirillum ,  Serratia ,  Arthrobacter , 
 Bacillus , and  Azotobacter  (Glick  2003 ,  2010 ). 

 As previously mentioned the use of endophytic microbes 
including fungi and bacteria is also useful for the bioremedia-
tion of polluted areas. For example, Shen et al. ( 2013 ) inves-
tigated the role of the endophytic fungi  Peyronellaea  under 
the stress of heavy metals on the growth of maize ( Zea mays  
L.) in a polluted soil. They indicated that the use of endo-
phytic fungi increased maize tolerance to the stress of heavy 
metals; however, the isolation of the fungi from a contami-
nated site did not affect their effi ciency on the alleviation of 
stress related to non-contaminated sites. The absorption and 
accumulation of heavy metal by the plant was also affected by 
the fungi. They found that the origin of the fungi may not 
affect their effi ciency on the alleviation of heavy metal stress.  

14.7     Conclusion and Future Perspectives 

 There is a wide range of soil microbes, which can be used for 
the bioremediation of polluted soils such as arbuscular mycor-
rhizal fungi, plant growth-promoting rhizobacteria, and endo-
phytic microbes. Different mechanisms are used by the soil 
microbes to alleviate the stress of heavy metals affecting the 
bioremediation of soil or plant growth. The important point 
about treating heavy metals in the soil is their bioavailability, 
which is affected by both microbial and plant activities. The 
use of appropriate microbe and plant strain and species is of 
great signifi cance for the process of bioremediation. The use of 
plants, which are hyperaccumulators, can signifi cantly affect 
bioremediation; however, if the symbiotic association between 
hyperaccumulators and the microbes can be improved, the effi -
ciency of bioremediation may also increase. The strategies, 
which are used for bioremediation, must have the following 
properties: (1) economically and environmentally sustainable, 
(2) useable in a large area, (3) repeatable, and (4) applicable to 
a combination of heavy metals. The important point of select-
ing microbes from stress areas and the interactions between 

them and with the host plant can also affect the results of bio-
remediation. Future research may focus on: (1) using the right 
combination of soil microbes, (2) how the applicability of 
microbes under different conditions of heavy metal stress may 
increase, (3) how the response of the host plants under stress 
may be improved, and (4) how the growth of plants including 
hyperaccumulators may increase under stress.     
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15.1             Introduction 

  Phytoremediation is a novel green technology that uses 
 specialized plants and associated soil microbes to remove, 
destroy, sequester or reduce the concentrations or toxic 
effects of contaminant in polluted environment especially 
soil and water. It refers to a group of plant-based technolo-
gies that use either naturally occurring or genetically 
 engineered plants to clean contaminated environments. This 
technology depends on the ability of both the plant and asso-
ciated microorganisms to adapt to or survive in high-metal 
environments. Polluted soil poses a severe problem to both 
ecosystem health and land development. Soil pollution 
threatens the health of human, plant and animal. Soil pollu-
tion can spread to other parts of the natural environment 
because soil is at the confl uence of many natural systems. For 
instance, groundwater that percolates through a polluted soil 
can carry soil contaminants into streams, rivers, wells and 
drinking water. Plants growing on polluted soil may contain 
harmful levels of pollutants that can be passed on to the ani-
mals and people that eat them. Dust blown from polluted soil 
can be inhaled directly by passers-by. Additionally, polluted 
soil renders valuable open land unusable for parks, recreation 
or commercial development. The fact that both soil minerals 
and soil pollutants carry small electric charges that cause 
each to bond with each other makes polluted soil very hard to 
clean. A range of technologies such as fi xation, leaching, soil 
excavation, chemical treatment, vitrifi cation, electrokinetics 
and landfi ll of the top contaminated soil, bioventing, thermal 
desorption, soil vapour extraction, biopiles, etc., have been 
used for the removal of metals. Many of these methods have 
high maintenance costs and may cause secondary pollution 
(Haque et al.  2008 ). Excavation of p olluted soil for off-site 

treatment or disposal is labour  intensive,  consumes a lot of 
time and requires the use of heavy machinery hence very 
expensive (Danh et al.  2009 ). Therefore, cheaper on-site, or 
in situ, remediation techniques have recently become the 
focus of research. One of the most interesting and promising 
of these in situ techniques is phytoremediation. Using plants 
to remediate soil pollution comprised of two components, 
one by the root-colonizing microbes and the other by plants 
themselves which absorb, accumulate, translocate, sequester 
and detoxify toxic compounds to non-toxic metabolites. 
Plants frequently lack metabolic capacity for the degradation 
of many pollutants hence the need to utilize degradation abil-
ity of soil organisms. Metal tolerance of plants is generally 
increased by symbiotic, root-colonizing, arbuscular mycor-
rhizal fungi (AMF), through metal sequestration in the AMF 
hyphae. More also excretion of the glycoprotein glomalin by 
AMF hyphae can form complex metals in the soil. Exposure 
of plants to microorganisms within the rhizoplane protects 
the plants from the toxic effect of the contaminants and also 
takes part in phytoremediation. Resistant plants can thrive on 
sites that are too toxic for other plants to grow. They in turn 
give the microbial processes the boost they need to remove 
organic pollution more quickly from the soil. 

 The mechanism responsible for the phytoremediation 
of contaminated soil has been proved to be as a result of 
increase in microbial activity. Organic toxins, those that 
contain carbon such as the hydrocarbons found in gaso-
line and other fuels, can be broken down by microbial pro-
cesses. Soil fungi, for example, improve phytoremediation 
ability of plants by increasing the absorptive area of the 
roots of plants. The effi ciency of  Tithonia diversifolia  and 
 Helianthus annuus  in remediating soils contaminated with 
zinc and lead nitrates could be improved by introducing 
mycorrhizal fungi in order to increase the absorptive area of 
the roots of these plants (   Adesodun et al.  2010 ). Plants on 
the other hand play a key role in determining the size and 
health of soil microbial populations. All plant roots secrete 
organic materials that can be used as food for microbes, 
and this creates a healthier, larger, more diverse and active 
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microbial  population, which in turn causes a faster break-
down of  pollutants. Phytoremediation reduces contaminant 
levels through microbial degradation in the rhizosphere. 
Phytoremediation systems increase the catabolic potential 
of rhizosphere soil by altering the functional composition 
of the microbial community (Siciliano et al.  2003 ). Plants, 
through their “rhizosphere effects”, support hydrocarbon-
degrading microbes that assist in phytoremediation in the 
root zone (Nie et al.  2009 ). For example, root activities in 
perennial ryegrass and alfalfa increase the number of rhi-
zobacteria capable of petroleum degradation in the soil 
(Kirk et al.  2005 ). In turn, healthy microbial communi-
ties enhance soil nutrient availability to the plants (Wenzel 
 2009 ). Phytoremediation process can also be enhanced by 
the addition of specifi c inocula of microorganism to con-
taminated soils (bioaugmentation). Also, plants that are rel-
atively tolerant to various environmental contaminants are 
often stunted in the presence of the contaminant. Therefore, 
plant growth-promoting microorganisms can be added to 
the roots of plants to remedy this situation. The best bio-
augmentation performance can be achieved by the use of 
microorganisms that are already present in the soil, since 
indigenous microorganisms are well adjusted to their own 
environment. Inoculating plants with genetically engineered 
strains of bacteria that degrade a specifi c contaminant has 
shown promising results. Biostimulation, a process which 
involves manipulating the nutrient and pH levels of the 
soil to increase microbial populations, can also be used to 
amplify the population of soil organism responsible for bio-
degradation. Hence, fertilizers can be used together with 
bioaugmentation to facilitate degradation of pollutants.  

15.2     Advantages of Phytoremediation 
Using Microbes 

     1.    Low-cost: It is less expensive than alternative 
engineering- based solutions such as soil excavation, 
incineration or land fi lling of the contaminated 
materials.   

   2.    Aesthetically pleasing and appealing to the public. Trees 
and smaller plants used in phytoremediation make a site 
more attractive, reduce noise and improve surrounding 
air quality.   

   3.    Site use and remediation can occur simultaneously.   
   4.    In situ approach: It treats the contamination in place so 

that large quantities of soil, sediment or water do not have 
to be dug up or pumped out of the ground for treatment.   

   5.    Environmentally friendly: Poses no health risk to neither 
plant, human nor animal.   

   6.    Enhance soil nutrient availability to the plants.   
   7.    It takes advantage of natural plant processes and requires 

less equipment and labour than other methods since 
plants do most of the work.   

   8.    Saves energy since the site can be cleaned up without 
digging up and hauling soil or pumping groundwater.   

   9.    Trees and smaller plants used in phytoremediation help 
control soil erosion.   

   10.    Creates a more fertile soil as soil organic matter is 
increased as a result of root secretions and falling stems 
and leaves.   

   11.    Phytoremediation does not degrade the physical or 
chemical health of the soil as compared to soil excava-
tion method that removes the organic-matter-rich topsoil 
and, because of the use of heavy machinery, compacts 
the soil that is left behind.   

   12.    Its by-product can fi nd a range of other uses. Some of 
the plants used for phytoremediation produce metabo-
lites or phenolic compounds that are of commercial 
value in the pharmaceutical industry.   

   13.    The roots of plants used create pores through which 
water and oxygen can fl ow.      

15.3     Limitations of Phytoremediation 
Using Microbes 

     1.    A long time period is required for remediation. It is a slow 
process that may take many growing seasons before an 
adequate reduction of pollution is achieved, whereas soil 
excavation and treatment clean up the site quickly. 
Multiple metal-contaminated soils require specifi c metal 
accumulator species and therefore require a wide range of 
research prior to the application. The cadmium/zinc 
model hyperaccumulator  Thlaspi caerulescens , for exam-
ple, is sensitive towards copper (Cu) toxicity, which is a 
problem in remediation of Cd/Zn from soils in the pres-
ence of Cu by application of this species.   

   2.    Scientifi c understanding of mechanisms is still limited; 
this is because the technique is still in its infancy state.   

   3.    Hyperaccumulators can be a pollution hazard themselves. 
For instance, animals can eat the hyperaccumulators and 
cause the toxins to enter the food chain. If the concentra-
tion of contaminant in the plants is high enough to cause 
toxicity, there must be a way to segregate the plants from 
humans and wildlife, which may not be an easy task.     

15.4     Environmental Contaminants 

 The following compounds have been reported as contami-
nants in soil and water: 

 Pesticides; explosives; oil; heavy metal such as arsenic 
(As), cadmium (Cd), chromium (Cr), mercury (Hg), nickel 
(Ni), lead (Pb), selenium (Se), uranium (U), vanadium (V) 
and wolfram (W); polychlorinated biphenyls; polycyclic aro-
matic hydrocarbons (PAHs); chlorinated solvents; xenobiot-
ics; munitions; semi-coke solid wastes (which contain several 
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organic and inorganic compounds such as oil products, 
asphaltenes, phenols, PAHs, sulphuric compounds); oil 
shale; and organic synthetic compounds.   

15.5     Factors that Affect Phytoremediation 

 Certain factors affect the uptake, distribution and transfor-
mation of contaminants. Some of these factors include the 
following:
    1.    Level of contamination: They work best where contami-

nant levels are low because high concentrations may 
limit plant growth and take too long to clean up.   

   2.    Plant species used for phytoremediation: Certain plants 
are better at removing contaminants than others. This 
may be due to differences in root exudate patterns, dif-
ferences in root architecture as well as differences in 
genetic composition of the plant. Tall fescue with fi brous 
root system, for example, increases the potential of soil 
microbial community to degrade hydrocarbons, whereas 
rose clover with a coarse, woody root system decreases 
it (Siciliano et al.  2003 ). Plants used for phytoremedia-
tion must be able to tolerate the types and concentrations 
of contaminants present. They also must be able to grow 
and survive in the local climate. Chemical, physical and 
microbiological plants with low biomass yield and 
reduced root systems do not support effi cient phytore-
mediation and most likely do not prevent the leaching of 
contaminants into the aquatic system.   

   3.    Depth of contamination: Small plants like ferns and 
grasses have been used where contamination is shal-
low. Because tree roots grow deeper, trees such as 
 poplars and willows are used for hydraulic control or to 
clean up deeper soil contamination and contaminated 
groundwater.   

   4.    Plant growth and development stage. Phytoremediation 
is most effective during the vegetative growth stages of 
plants. Plant vegetative growth stage is the most impor-
tant phase for phytoremediation (Nie et al.  2011 ).   

   5.    Type and properties of inoculum used for 
bioaugmentation.   

   6.    Soil condition: Soil abiotic and biotic factors may deter-
mine the survival and activity of the introduced microor-
ganisms (Juhanson et al.  2007 ). Some of the abiotic 
factors include temperature, soil pH, soil organic matter, 
soil moisture, cation exchange capacity, etc.   

   7.    Bioavailability of contaminant to the microbial commu-
nity is another factor infl uencing biodegradation of 
pollutants.   

   8.    Age of the contaminants.   
   9.    Physical and chemical properties of the contaminant. 

Contaminants that are soluble in water may pass by the 
root system without being accumulated.   

   10.    Climatic factors. Plant survival and growth are adversely 
affected by extreme climatic factors.   

   11.    Toxicity of soil.   
   12.    Bioavailability of contaminant to plants. Metal that is 

tightly bound to the organic portions of the soil may not 
be available to plants.   

   13.    Contaminant source.      

15.6     Phytoremediation Strategies 

 These technologies to be discussed below are based on the 
plant’s ability to absorb, accumulate, sequester and detoxify 
toxic metals:
    1.     Hydraulic control : In this process of phytoremediation, 

plants act like a pump, drawing the groundwater up through 
their roots to keep it from moving. It reduces the movement 
of contaminated groundwater towards clean areas off-site.   

   2.     Phytoaccumulation  ( phytoextraction ) :  Plants absorb, 
accumulate and transport pollutants from the soil to 
aboveground plant parts (shoots). Removing the metals is 
as simple as pruning or cutting the plant aboveground 
mass. Plants, and their associated soil microbes, can release 
chemicals that act as biosurfactants in the soil that increase 
the uptake of contaminants. The aboveground plant parts 
rich in accumulated metal can be easily and safely pro-
cessed by drying, ashing or composting. The plants used in 
a phytoextraction scheme should ideally have large bio-
mass production and accumulate high concentration of 
metals in the aboveground portions (Adesodun et al.  2010 ). 
Over 500 plant species (101 families) and approximately 
0.2 % of angiosperms have been reported to possess metal 
hyperaccumulation ability (Krämer  2010 ).   

   3.     Phytostabilization  involves the use of plants to reduce the 
mobility and bioavailability of contaminants in soil either 
through precipitation or adsorption onto roots. Plants 
adsorb contaminants onto their roots where microorgan-
isms that live in the soil break down the adsorbed con-
taminants to less harmful chemicals. Mycorrhizal 
association, for example, is known to inhibit transport of 
metallic cations into plant roots. Some plant species such 
as  Combretum  and  Rhus  (Anacardiaceae) have the ability 
of in situ stabilization of some metals (Regnier et al. 
 2009 ; Mokgalaka-Matlala et al.  2010 ).   

   4.     Phytodegradation  is the breaking down of contaminants 
into less toxic substances in the soil through the activities of 
microorganisms in the rhizosphere of plant roots or exter-
nally through metabolites produced by plants. For instance, 
exudates (peptides) from the bacterium  Pseudomonas 
putida  can decrease cadmium (Cd) toxicity in plants. 
Natural exudates such as siderophores, organic acids and 
phenolics released by the roots of certain plants can form 
complexes (chelates) with metals in the rhizosphere. 
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Metals such as the toxic Cr(lll) can be converted to the 
much less toxic Cr(Vl) by enzymes found on the roots of 
wetland plants. During detoxifi cation plants release gluta-
thione conjugates into the rhizosphere where they could be 
metabolized by microbes (Schroder et al.  2007 ).   

   5.     Phytovolatization  involves use of plants to take up certain 
contaminants and then converts them into gaseous forms 
that vaporize into the atmosphere. This process is driven 
by the evapotranspiration of plants. Plants that have high 
evapotranspiration rate are sought after in phytovolatiliza-
tion. Organic contaminants, especially volatile organic 
compounds (VOCs), are passively volatilized by plants. 
For example, hybrid poplar trees have been used to volatil-
ize trichloroethylene (TCE) by converting it to chlorinated 
acetates and CO 2 . Metals such as Se can be volatilized by 
plants through conversion into dimethylselenide [Se 
(CH 3)2 ]. Genetic engineering has been used to allow plants 
to volatilize specifi c contaminants. For example, the abil-
ity of the tulip tree  (Liriodendron tulipifera ) to volatilize 
methyl-Hg from the soil into the atmosphere (as HgO) 
was improved by inserting genes of modifi ed  E. coli  that 
encode the enzyme mercuric ion reductase.   

   6.     Phytofi ltration  :  This involves rhizofi ltration where con-
taminants such as metals are precipitated within the rhi-
zosphere. Metal plaque forms typically on the roots of 
wetland plants through the release of oxygen via the 
parenchyma of roots. Iron oxides, for example, can pre-
cipitate along with other metals into the metal plaque. 
Metal plaque on roots acts as a reservoir for active iron 
(Fe 2+ ), which in turn increases the tolerance of plants to 
other toxic metals (Table  15.1 ).

       The ability of the plants to degrade or metabolize xenobiotic 
pollutants can be improved by transferring genes from organ-
isms (bacteria, fungi, plant and animals) which have poten-
tial for degradation and mineralization of xenobiotic 
pollutants. That is, catabolic genes essential for the degrada-
tion of contaminants are boosted in a plant resulting in 
enhanced phytoremediation. The plants which received the 
genes are called transgenic plants. The genes are introduced 
into the candidate plants using  Agrobacterium -mediated or 
direct DNA method of gene transfer. Phytoremediation pro-
cess in plant can also be improved by constructing plants 
with enhanced secretion of enzymes capable of degrading 
xenobiotics into the rhizosphere (Gerhardt et al.  2009 ) 
(Tables  15.2  and  15.3 ).

15.7         Phytoremediators 

 PHYTOREM database (complied by Environment Canada) 
estimates that more than 750 plant species worldwide have 
potential for phytoremediation (Sarma  2011 ). Some of these 
include: 

  Bromus hordeaceus ,  Festuca arundinacea ,  Trifolium fra-
giferum ,  Trifolium hirtum ,  Vulpia microstachys ,  Bromus 
carinatus ,  Elymus glaucus ,  Festuca rubra ,  Hordeum califor-
nicum ,  Leymus triticoides ,  Nassella pulchra ,  Combretum  sp., 
 Rhus  sp.,  Phragmites australis ,  Alyssum corsicum ,  Alyssum 
murale , mustard greens,  Helianthus annuus ,  Agrostis tenuis , 
 Thlaspi caerulescens  (alpine pennycress),  Brassica juncea  
(Indian mustard),  Liriodendron tulipifera  (yellow poplar) 
and  Nicotiana glauca  (Table  15.4 ).

15.8        Phytoremediation Traits 

 Plant adaptation and responses to contaminated environ-
ments depend on many physiological, molecular, genetic and 
ecological traits. Indicators of a plant’s phytoremediation 
potential include the following:
    1.    Tolerance to high pH and salinity.   
   2.    Tolerance to extreme drought and waterlogged 

conditions.   
   3.    Good rooting system and adequate depth of root zone. 

Fibrous rooting system provides large surface area for 
root-soil contact.   

   4.    High level of tolerance with respect to the contaminant 
known to exist at the site.   

   5.    High growth rate and biomass yield.   

   Table 15.1    Phytoremediation strategies of various groups of contaminants   

 Technology  Action on contaminants  Main type of contaminant  Vegetation 

 Phytostabilization  Retained in situ  Organics and metals  Cover maintained 
 Phytodegradation  Attenuated in situ  Organics  Cover maintained 
 Phytovolatilization  Removed  Organics and metals  Cover maintained 
 Phytoextraction  Removed  Metals  Harvested repeatedly 
 Phytofi ltration  Retained in situ  Metals  Cover maintained 

   Table 15.2    General processes affecting rhizoremediation   

 Processes  Effects 

 Root exudates  Microbial growth stimulation 
 O 2 —redox reaction  Microbial growth stimulation 
 CO 2 —soil pH plant chelators 
and biosurfactants 

 Contaminant bioavailability 

 H +  & OH − —soil pH acid/base reaction  Contaminant bioavailability 
 Microbial enzymes  Plant growth 
 Ion uptake  Plant growth 
 Microbial chelator—plant 
nutrient delivery 

 Plant growth 
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   Table 15.3    Some examples of microorganisms used for phytoremediation   

 Plants  Microbes  Contaminants  References 

 Sugar beets   Pseudomonas  sp.  PCBs  Villacieros et al.  2005  
  Thlaspi goesingense    Methylobacterium  sp.  Nickel  Idris et al.  2004  
 Rock cress   Pseudomonas  sp.  PCBs  Narasimhan et al.  2003  
 Alfalfa   Pseudomonas  sp.  PCBs  Brazil et al.  1995  
 Wheat   Pseudomonas  sp.  TCE  Yee et al.  1998  
  Thlaspi goesingense    Sphingomonas  sp.  Nickel  Idris et al.  2004  
 Wild rye   Pseudomonas  sp.  Chlorobenzoic acid  Siciliano and Germida  1998  
 Pea   Pseudomonas  sp.  24-D  Germaine et al.  2006  
 Popular   Pseudomonas  sp.  MTBE, TCE, BTEX  Germaine et al.  2004 ; Moore et al.  2006  
 Pea   Pseudomonas  sp.  Naphthalene  Germaine et al.  2009  
 Barmultra grass   Pseudomonas  sp.  Naphthalene  Kuiper et al.  2004  
 Barley   Pseudomonas  sp.  Phenanthrene  Anokhina et al.  2004  
 Common reed   Sinorhizobium meliloti  P221  Phenanthrene  Golubev et al.  2009  
 Switch grass  Indigenous degraders  PCBs  Chekol et al.  2004  
 Red clover, ryegrass  Indigenous degraders  24-D  Shaw and Burns  2004  
 Ryegrass  Indigenous degraders  PCPs  He et al.  2005  
 White mustard  Indigenous degraders  Petroleum hydrocarbon  Liste and Prutz  2006  
 Hybrid poplar  Indigenous degraders  BTEX, toluene     Barac et al.  2009  
 English oak, common ash  Indigenous degraders  TCE, toluene  Weyens et al.  2009  
 Birch  Indigenous degraders  PAHs  Sipilä et al.  2008  
 Altai wild rye, tall wheat grass  Indigenous degraders  Petroleum hydrocarbon  Phillips et al.  2009  
 Corn   Gordonia  sp. S2Rp-17  Diesel  Hong et al.  2011  
 Yellow lupine   Burkholderia cepacia   Toluene  Barac et al.  2009  
 Poplar   Burkholderia cepacia   Toluene  Taghavi et al.  2005  
 Barley   Burkholderia cepacia   24-D  Jacobsen,  1997  
 Wheat   Azospirillum lipoferum  spp.  Crude oil  Muratova et al.  2005 ; Shaw and Burns  2004  
 Tall fescue grass   Azospirillum brasilense Cd   PAHs  Huang et al.  2004  
 Tall fescue grass   Enterobacter cloacae  CAL2  PAHs  Huang et al.  2004  
 Poplar   Methylobacterium populi  BJ001  TNT, RDX, HMX  Van Aken et al.  2004a ; Van Aken et al.  2004b  

   PAH  polyaromatic hydrocarbon;  TCE  trichloroethylene;  PCB  polychlorinated biphenyl;  MTBE  methyl tert-butyl ether;  BTEX  benzene, toluene, 
ethylbenzene and xylenes;  24 - D  2,4-dichlorophenoxyacetic acid;  PCP  pentachlorophenol;  TNT  2,4,6-trinitrotoluene;  RDX  hexahydro-1,3,
5-trinitro- 1,3,5-triazine;  HMX  octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine  

   Table 15.4    Some examples of phytoremediators and contaminants   

 Plants  Metals  References 

  Arabis gemmifera   Cd and Zn  Kubota and Takenaka  2003  
     Crotalaria dactylon    Ni and Cr  Saraswat and Rai  2009  
  Thlaspi caerulescens   Cd and Zn  Kupper and Kochian  2010  
  Pelargonium  sp.  Cd  Dan et al.  2002  
  Arabidopsis halleri   Cd  Kupper et al.  2000  
  Crotalaria juncea   Ni and Cr  Saraswat and Rai  2009  
  Thlaspi caerulescens   Cd, Pb and Zn  Banasova and Horak  2008  
  Brassica napus   Cd  Selvam and Wong  2009  
  Arabidopsis thaliana   Zn and Cd  Saraswat and Rai  2009  
  Thlaspi caerulescens   Zn, Cd and Ni  Assuncao and Schat  2003  
  Pistia stratiotes   Ag, Cd, Cr, Cu, Hg, Ni, Pb and Zn  Odjegba and Fasidi  2004  
  Chengiopanax sciodophylloides   Mn  Mizuno et al.  2008  
  Pteris vittata   As  Dong  2005  
  Sedum alfredii   Pb and Zn  Sun et al.  2005  
  Tamarix smyrnensis   Cd  Manousaki et al.  2008  
  Potentilla griffi thii   Zn and Cd  Hu et al.  2009  
  Rorippa globosa   Cd  Sun et al.  2010  
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   6.    High level of tolerance to waterlogging and extreme 
drought condition.   

   7.    High level of accumulation, translocation and uptake 
potential of contaminant.   

   8.    Habitat preference of plant, e.g. terrestrial aquatic or 
semiaquatic.      

15.9     Effects of the Metals 
on the Phytoremediators 

 Plants that have been successfully used as phytoremediators 
were able to tolerate, accumulate or translocate the metals by 
reasons of the following effects of the metals on the plants:
    1.    The plant physiology: Metals affect the physiology of 

plants either by promoting or inhibiting the growth of the 
plant. Some develop metal tolerance characteristics 
through apoplastic or symplastic detoxifi cation mecha-
nisms (Pilon-Smits et al.  2009 ). Some are absorbed from 
soil solution through passive transport. Hg, for example, 
may preferentially bind with sulphur- and nitrogen-rich 
ligands (amino acids) and enter inside the cells. Cd can 
induce changes in lipid profi le (Ouariti et al.  1997 ) and 
can also affect the enzymatic activities associated with 
membranes such as the H +  ATPase (Fodor et al.  1995 ).   

   2.    Biomass production of the plants that have been success-
fully used as phytoremediators.      

15.10     Responses of Microbial Communities 
to Phytoremediation 

 Different plant species have different effects on microorgan-
isms in the soil. For instance,  Alyssum corsicum ,  Alyssum 
murale  and  Brassica juncea  (Ni hyperaccumulators) have 
been reported to increase both the population and biomass of 
soil microorganisms. By absorbing nickel from the soil and 
excreting root exudates, the plants reduced nickel toxicity 
and improved the living environment of the microbes (Cai 
et al.  2007 ). Phytoremediation increased the number of 
phenol- degrading bacteria as well as metabolic diversity of 
microbial community in semi-coke polluted soil (Truu et al. 
 2003 ). Perennial ryegrass supports a general increase in 
microbial activity and numbers in the rhizosphere, some of 
which have catabolic activity towards petroleum hydrocar-
bons in petroleum-contaminated soil. Alfalfa, on the other 
hand, seems to specifi cally increase the number of microor-
ganisms capable of degrading more complex hydrocarbons 
(Kirk et al.  2005 ). Plant-dependent changes in microbial 
functionality are the result of some form of communication 
between the associated microorganisms and the plant. For 
example, bacterial products, such as lumichrome, stimulate 
root respiration and thereby increase the availability of root 
exudates for bacteria (Phillips et al.  2009 ).  

15.11     Sources of Environmental Pollution 

     1.    Increased toxic waste from increased population   
   2.    Anthropogenic activities such as agriculture   
   3.    Metal purifi cation procedure, which includes mining, 

smelting and the tailings from industries         
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16.1  Introduction

Heavy metal (HM) contamination of soil is a major environ-

mental problem all over the world. Phytoextraction, a cost- 

effective and environmentally friendly technique, was 

evidenced to be a feasible technique to remove HM from 

contaminated soils using herbaceous plants (McGrath and 

Zhao 2003; Lin et al. 2010; Lai et al. 2010) and woody plants 

(Dickinson and Pulford 2005; Mertens et al. 2006; Li et al. 

2010; Fan et al. 2011). Over 450 species of hyperaccumula-

tors, plants that can accumulate a high concentration of HM 

without damage, have been discovered in the past 20–30 

years (Lin et al. 2010). Among them, rainbow pink (Dianthus 
chinensis) was validated to accumulate high concentrations 

of cadmium (Cd) in the shoots when growing in artificial 

Cd-contaminated soils (Lin et al. 2010).

In order to shorten the period needed for decontamination, 

different chemical agents were applied to promote the effi-

ciency of phytoextraction (Lombi et al. 2001; Komárek et al. 

2010). However, they had negative effects on soil quality, 

activity of microorganisms (Römkens et al. 2002; Ultra et al. 

2005), and activity of enzymes (Epelde et al. 2008). 

Furthermore, the resulting increase in the mobility of the 

HMs may amplify their vertical movement in soils and result 

in groundwater contamination (Wu et al. 2004; Lai and Chen 

2007). The chemical-enhanced phytoextraction is thus not a 

feasible way from a sustainability standpoint.

The transpiration rate (TR) plays an important role in 

determining the accumulation of HM by plants, and higher 

TR generally leads to higher shoot Cd levels (Liu et al. 2010). 

Pulford and Watson (2003) also reported that the potential 

candidates for phytoextraction must be high biomass, have 

deep root systems, and have excellent TR. Cadmium accu-

mulation in plants is mainly driven by transpiration; however, 

the elevated Cd concentrations in soil decreased the TR and 

photosynthetic rates and further decreased the biomass of 

plants (Shi and Cai 2009). Nevertheless, forgoing negative 

effect on biomass is not beneficial for phytoextraction. 

Because the HMs in soils are partially water soluble, the 

accumulation of HM has a close relationship with the TR of 

plants (Salt et al. 1995). One can therefore improve the TR 

and biomass of plants by the management of fertilization, 

and the accumulation of HMs will increase accordingly.

According to US Environmental Protection Agency in 40 

CFR Part 503, biosolids (BS) are defined as sewage sludge 

that is beneficially reused (US EPA 2000) and could raise the 

dry weight (DW) of soybeans (Vieira 2001) and pak choi (Lu 

et al. 2012). Relative to control without applying BS, the Cd 

concentrations in the edible parts of pak choi grown in the 

Cd-contaminated soils amended with BS also increased (Lu 

et al. 2012). Experimental results of forgoing studies show 

that BS can promote both the biomass and the accumulation 

of Cd which may decline the period needed in phytoextrac-

tion. If BS are applied to HM-contaminated soils, the growth 

and accumulation of HMs in plants theoretically increase. 

A pot experiment was thus conducted in this study to assess 

the effects of applying different amounts of BS on the leaf 

area (LA) of rainbow pink. The TRs of rainbow pink grown 

in various treatments were determined to understand their 

relationship with LA.

16.2  Materials and Methods

16.2.1  Collection of Soil Samples and Analysis

Soil samples were collected from the surface soil (0–15 cm) 

of MingDao University’s organic farm. The BS, extracted 

sludge after thickening, digestion, and dewatering, was taken 
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from a wastewater treatment plant in central Taiwan. Basic 

properties of the soil and BS were analyzed after pretreat-

ment, including pH value (w/v = 1/1; Thomas 1996), 

 electrical conductivity in the saturation extraction (ECe; 

Rhoades 1996), water-holding capacity (WHC; Gardner 

1986), organic carbon (OC; Nelson and Sommers 1996), and 

cation exchange capacity (CEC; Thomas 1982). The total 

content of nitrogen (N), available phosphate (P), and avail-

able potassium (K) in the BS was also analyzed according to 

Bremner (1996), Kuo (1996), and Helmke and Sparks 

(1996), respectively.

16.2.2  Preparation of Cd-Contaminated Soils 
and Pot Experiment

A solution of Cd(NO3)2 . 4H2O was sprayed on the soil to 

achieve a target Cd concentration of 0 (Cd-CK), 10 (Cd-10), 

20 (Cd-20), and 40 mg Cd kg−1 (Cd-40). The artificial 

Cd-contaminated soils were further uniformly mixed with 0, 

2, and 5 % (w/w) sieved BS. A pot experiment was con-

ducted in a 25 °C phytotron (110 μmol s−1 m−2; day/

night = 12/12 h) at MingDao University with three replicates. 

A 1-kg mixture of soil and BS was added to a square pot, and 

one seedling of rainbow pink (D. chinensis) was planted. The 

water content of the soil was controlled at 80 % of WHC by 

weighting and adding deionized water every 2–3 days.

16.2.3  Determination of TR, LA, and Cd 
Fractions

Thirty-five days after transplanting, the water content of the 

soil was raised to 100 % of WHC, and the surface of each pot 

was sealed with aluminum foils to avoid evaporation. The 

total weight of each pot was determined 24 h later, and the 

TR was calculated. The leaves of rainbow pink were har-

vested 40 days after transplant and then divided into roots, 

leaves, and other parts. Forgoing organs were first flushed 

with tap water, followed by deionized water and oven dried 

at 65 °C for 72 h, and then determined the DW. To determine 

the LA, the dry leaves were arranged on weighted A4 paper 

and then photostated. The blacked parts were cut, weighted, 

and then the LA was further calculated using the mass ratio 

between them.

Except for those properties analyzed, a sequential extrac-

tion was conducted to separate the Cd concentration in differ-

ent fractions. Tessier et al. (1979) used exchangeable (F-I), 

carbonate bound (F-II), Fe/Mn oxide bound (F-III), organic 

matter bound (F-IV), and residual (F-V) fractions to deter-

mine the presence of HM in the soil. Briefly, the sequential 

extraction procedure involved the extraction of 1.0 g of each 

soil sample with 8 mL of 1 M MgCl2 (1 h at pH 7.0) for F-I, 

8 mL of 1 M NaOAc (5 h at pH 5.0) for F-II, 15 mL of 0.04 M 

NH2OH . HCl in 25 % HOAc (5 h at 96 °C) for F-III, and 

12 mL of 30 % H2O2 + 9 mL of 0.02 M HNO3 (5 h at 

85 °C) + 4 mL of 2 M NH4OAc (30 min at 25 °C) for F-IV. 

The residual soil sample after extraction was further digested 

with aqua regia to obtain F-V. The concentrations of Cd in the 

extracts of F-I to F-V were determined with a flame atomic 

absorption spectrophotometer (PerkinElmer AAnalyst 200). 

After digestion with aqua regia, the total concentration (Ctotal) 

of Cd in the soil samples was determined, and the recovery 

percentage (PR) was calculated. Data was acceptable once 

the PR was in the levels of 100 ± 10 %.

 

PR I II III IV V

total

%( ) =
+ + + +( )å C C C C C

C  

where Ctotal is the total Cd concentration (mg kg−1) and

CI, CII, CIII, CIV, and CV are the Cd concentrations (mg kg−1) 

in F-I, F-II, F-III, F-IV, and F-V, respectively.

16.2.4  Statistical Analysis

The differences between the LA and the TR in the different 

treatments were detected using analysis of variance 

(ANOVA), followed by the LSD (least significant difference) 

test. The level of significance was set as p = 0.05.

16.3  Results and Discussion

16.3.1  Soil Properties

The pH of the tested soil was 7.43 with moderate ECe 

(1.66 dS m−1) and OC (1.09 %). After artificially spiking, the 

total concentration of Cd in the Cd-10, Cd-20, and Cd-40 

was 10.5 ± 0.9, 18.3 ± 4.2, and 39.9 ± 1.9 mg kg−1, respec-

tively. The biosolid had a lower pH value (5.57), but a higher 

ECe (4.25 dS m−1), OC (29.8 %), and CEC (2.19 cmol(+) kg−1), 

compared with the soil. The total content of N, available P, 

and available K in the BS was 430 ± 14, 904 ± 12, and 

690 ± 0 mg kg−1, respectively.

Table 16.1 shows the effects of the application of different 

amounts of BS on the soil properties. Relative to the control 

and for most of the treatments, the application of BS 

decreased the pH and raised the ECe levels in the soils. 

For some treatments, the ECe significantly increased to  

2.1–2.6 dS m−1. Higher ECe decreases the water potential 

and is negative for the growth of plants. The effect of the 

application of BS on the ECe of soil should be taken into 

account to avoid the occurrence of saline soil (ECe ≧ 4 dS m−1). 

However, even the highest application rate of BS, the ECe 

was still in the acceptable levels. Because of the high content 

of OC in BS, the OC contents of soils increased significantly 

from 1.0–1.7 (BS-0 %) to 1.6–2.2 % (BS-2 %) and 1.7–2.4 % 

(BS-5 %). A higher content of OC has a beneficial effect on 

improving the structure of soil as the aeration and drainage 

H.-Y. Lai et al.
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will be enhanced, thereby improving the growth of the plants. 

Although the extractable P after the pot experiment was not 

determined, according to the properties of BS and in an ideal 

situation, the concentrations of extractable P will reach 

45 mg kg−1 after the application of 5 % of BS which is 

regarded as a very rich level (>34 mg kg−1) according to 

Jones (2001). There was no significant difference for most of 

the treatments on the CEC of soils.

16.3.2  Effects of BS on the Cd Fractions 
and DW

Results of sequential extraction showed that the added Cd 

was primarily present in the F-II for all the treatments and 

occupied approximately 56 % of the total concentration 

(Fig. 16.1). Approximately 38 % of the added Cd was 

detected in the F-I, followed by 6 % in the F-III, and was not 

Table 16.1 Effects of the application of biosolid on the soil properties

Soil properties

pH ECe (dS m−1) OC (%) CEC (cmol(+) kg−1)

Cd-CK

BS-0 % 7.43 ± 0.11 a 1.66 ± 0.17 b 1.09 ± 0.04 c 0.65 ± 0.03 a

BS-2 % 7.36 ± 0.04 a 1.97 ± 0.23 b 1.70 ± 0.18 b 0.66 ± 0.08 a

BS-5 % 7.29 ± 0.09 a 2.56 ± 0.21 a 2.36 ± 0.30 a 0.71 ± 0.05 a

Cd-10

BS-0 % 7.18 ± 0.15 a 1.59 ± 0.18 b 1.23 ± 0.11 b 0.74 ± 0.01 a

BS-2 % 7.07 ± 0.11 a 1.80 ± 0.23 b 1.60 ± 0.30 a 0.69 ± 0.10 a

BS-5 % 7.04 ± 0.09 a 2.20 ± 1.10 a 1.79 ± 0.30 a 0.72 ± 0.04 a

Cd-20

BS-0 % 7.24 ± 0.18 b 2.02 ± 0.59 a 1.47 ± 0.18 b 0.61 ± 0.03 c

BS-2 % 7.65 ± 0.18 a 1.90 ± 0.25 a 2.11 ± 0.49 a 0.71 ± 0.05 b

BS-5 % 7.52 ± 0.12 ab 2.22 ± 0.13 a 2.18 ± 0.41 a 0.82 ± 0.06 a

Cd-40

BS-0 % 7.49 ± 0.17 a 1.82 ± 0.57 a 1.61 ± 0.32 b 0.71 ± 0.06 a

BS-2 % 7.68 ± 0.05 a 1.64 ± 0.24 a 1.60 ± 0.26 b 0.72 ± 0.06 a

BS-5 % 7.38 ± 0.26 a 2.11 ± 0.26 a 2.34 ± 0.34 a 0.76 ± 0.05 a

Different letter indicates significantly different between BS for the same Cd treatment at p < 0.05. Replicates (n) = 3

Fig. 16.1 Effects of the 

application of biosolid on the 

fractions of Cd in the soils
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detectable in the F-IV or F-V. Possibly resulting from the 

decreases in the pH of the soil, the application of BS affected 

the concentration of Cd in the F-II. However, because the 

availability of Cd in the contaminated soil was partly con-

trolled by the period of contamination and the fractions of 

HMs may be changed to less phytoavailable speciation over 

time (Martinez and Motto 2000; Wang et al. 2003). The Cd 

in the artificially spiked soil used in this study had higher 

availability, and most of the Cd added to the soil was in the 

F-I and F-II, which had a relatively higher mobility and 

availability compared with the other fractions.

The DW of the roots and the shoots of rainbow pink were 

not significantly affected by the application of different pro-

portions of BS (Fig. 16.2). The increase of Cd concentration 

in the soils to about 40 mg kg−1 also did not significantly 

affect the DW, and the DW of the shoots of rainbow pink 

were approximately twofold greater than the roots. Forgoing 

phenomena evidenced that rainbow pink can tolerate the tox-

icity of added Cd which is in agreement with Lai and Chen 

(2004). Relative to the BS-0 %, the LA of rainbow pink 

grown in different treatments significantly increased with the 

treatment of BS, and the increases reached 1–10 % and 

10–30 % with the treatments of BS-2 % and BS-5 %, respec-

tively (Fig. 16.3). The experimental results of this study were 

contrary to those of Shi and Cai (2009) who revealed that 

elevated Cd concentrations in soil decreased the LA of pea-

nut. Accordingly and compared with the control, the TR 

increased 3–8 % and 8–16 % with the treatments of BS-2 % 

and BS-5 %, respectively, although there were no significant 

differences between them (Fig. 16.4).

There were no significant differences in the DW of 

 rainbow pink with treatments of Cd at CK to 40 mg kg−1. 

The application of BS did not significantly affect the DW of 

the roots and shoots of rainbow pink (Fig. 16.2). Concerning 

the toxic symptoms of Cd, the plants showed visible necrosis 

and whitish-brown chlorosis under Cd stress. The insignifi-

cant decrease of biomass in plants growing in HM- 

contaminated soils is one of the characteristics of a 

hyperaccumulator as opposed to a normal plant (Wei and 

Zhou 2004). The experimental results of this study showed 

that the DW of rainbow pink were not significantly changed 

at 10–40 mg Cd kg−1, thereby revealing its strong tolerance 

to Cd stress.

16.3.3  Relationship Between LA and TR

If the LA was further linear regressed with the TR, there 

were well relationships between them for most of the 

 treatments (Fig. 16.5). The experimental results of this study 

reveled that the application of BS promotes the LA, and con-

sequently, the TR of rainbow pink grown in artificially 

Cd-contaminated soils. Shi and Cai (2009) planted peanut in 

a mixture of sand and perlite and additionally supplemented 

with CdCl2. They found that the elevated Cd concentrations 

decreased the biomass and LA of peanut and infer that the 

xerophytic feathers in leaf structure led to a decrease in TR 

and photosynthetic rate and further decreased the biomass of 

plants. The phytoextraction efficiency is determined by the 

total removal of HM by plant which is the product of bio-

mass and the accumulated concentration. Plants with huge 

biomass and can accumulated high concentration of HMs 

will shorten the period needed in decontamination. However, 

they are always opposite and with an exponential decay rela-

tionship under the stress of HMs (Wei et al. 2012) because 

the stress of Cd inhibited the growth of plant.

Experimental results of this study evidenced that the 

application of BS had positive effect on enhancing the bio-

mass and LA of rainbow pink grown in Cd-contaminated 

soils and subsequently the TR. If most of the Cd in soils 

was existed in water soluble or exchangeable fractions as 

the status in this study, the efficiency of phytoextraction 

would be enhanced when amending Cd-contaminated 

soils with BS. Many previous studies used chemical agents 

to promote the accumulation of HM and thus to shorten 

the period in decontamination; however, chemical-

enhanced phytoextraction was evidenced to have negative 

effects on the microorganisms (Römkens et al. 2002) and 

10

8

6

4

2

0

2
Cd-CK Cd-10 Cd-20 Cd-40

Root

ShootBS-0%
BS-2%
BS-5%

Treatments

D
ry

 w
ei

gh
t (

g 
pl

an
t−1

)
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soil quality (Lai 2015). The primary advantages of phy-

toremediation, economic and environmentally friendly, 

will disappear because most of the chemical agents are 

costly.

To increase the feasibility of phytoremediation, there 

were more and more studies that have been conducted to 

promote the efficiency of phytoremediation by using mycor-

rhizal fungi (Leung et al. 2006, 2010; Wong et al. 2007; Wu 

et al. 2011). The other methods include the use of woody 

plants with huge biomass (Pulford and Watson 2003; 

Dickinson and Pulford 2005; Mertens et al. 2006; Li et al. 

2009; Pietrini et al. 2010; Zhivotovsky et al. 2011) and the 

application of chicken manure to promote the accumulation 

and growth of plants (Das and Maiti 2009). Biosolids are the 

precipitation from wastewater treatment plants, and landfills 

are the major disposal method in Taiwan; however, this 

method seems to be unfeasible in the future results from the 

deficient land resources in Taiwan. Because the BS is 

enriched in organic matter and nutrients, the reuse of BS 

was evidenced to raise the dry weight of soybeans (Vieira 

2001). Experimental results of this study also provided 

strong evidences.

16.4  Conclusions

The dry weight of rainbow pink was not significantly 

affected by the treatments of Cd and BS. Amendments of BS 

increased the LA and therefore the TR of rainbow pink, 

especially the BS-5 %. There was a positive linear relation-

ship between the LA and the TR. In order to enhance the 

efficiency of phytoextraction, further studies are proposed to 

investigate the relationship between LA, TR, and the accu-

mulation of Cd by rainbow pink.

Fig. 16.3 Effects of the 

application of biosolid on the leaf 

area (LA) of rainbow pink grown 

in the Cd-contaminated soils. 

Different letter indicates 

significantly different between 

BS for the same Cd treatment at 

p < 0.05. Replicates (n) = 3
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Fig. 16.4 Effects of the application of biosolid on the transpiration rate 

(TR) of rainbow pink grown in the Cd-contaminated soils. Different 
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ment at p < 0.05. Replicates (n) = 3

16 Effects of Biosolids on the Transpiration Rate of Rainbow Pink (Dianthus chinensis) Grown in Cadmium-Contaminated Soils



196

Acknowledgments The author would like to thank the National 

Science Council of the Republic of China for financially supporting this 

research under Contract No. NSC 98-2313-B-451-002-MY

References

Bremner JM (1996) Nitrogen-total. In: Sparks DL, Page AL, Helmke 

PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, 

Sumner ME (eds) Methods of soil analysis, Part 3, Chemical meth-

ods. SSSA, Inc. and ASA, Inc., Madison, WI

Das M, Maiti SK (2009) Growth of Cymbopogon citratus and Vetiver 
zizanioides on Cu mine tailings amended with chicken manure and 

manure-soil mixtures: a pot scale study. Int J Phytoremediation 

11:651–666

Dickinson NM, Pulford ID (2005) Cadmium phytoextraction using 

short-rotation coppice Salix: the evidence trail. Environ Int 

31:609–661

Epelde L, Hernández-Allica J, Becerril JM, Blanco F, Garbisu G (2008) 

Effects of chelates on plants and soil microbial community: com-

parison of EDTA and EDDS for lead phytoextraction. Sci Total 

Environ 401:21–28

Fan KC, Hsi HC, Chen CW, Lee HL, Hseu ZY (2011) Cadmium accumu-

lation and tolerance of mahogany (Swietenia macrophylla) seedlings 

for phytoextraction applications. J Environ Manage 92:2818–2822

Gardner WH (1986) Water content. In: Klute A, Campbell GS, Nielsen 

DR, Jackson RD, Mortland MM (eds) Methods of soil analysis, Part 

1, Physical and mineralogical methods, 2nd edn. ASA, Inc. and 

SSSA, Inc., Madison, WI

Helmke PA, Sparks DL (1996) Lithium, sodium, potassium, rubidium, 

and cesium. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, 

Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) 

Methods of soil analysis, Part 3, Chemical methods. SSSA, Inc. and 

ASA, Inc., Madison, WI

Jones TB Jr (2001) Laboratory guide for conducting soil test and plant 

analysis. CRC Press LLC, Boca Raton, FL

Komárek M, Vanêk A, Mrnka L, Sudová R, Szákivá J, Tejnecký V, 

Chrastný V (2010) Potential and drawbacks of EDDS-enhanced 

phytoextraction of copper from contaminated soils. Environ Pollut 

158:2428–2438

Kuo S (1996) Phosphorus. In: Sparks DL, Page AL, Helmke PA, 

Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner 

ME (eds) Methods of soil analysis, Part 3, Chemical methods. 

SSSA, Inc. and ASA, Inc., Madison, WI

Lai HY, Chen ZS (2004) Effects of EDTA on solubility of cadmium, 

zinc, and lead and their uptake by rainbow pink and vetiver grass. 

Chemosphere 55:421–430

Lai HY, Chen ZS (2007) Effects of multi-dose EDTA application on the 

phytoextraction of Cd, Zn, and Pb by rainbow pink (Dianthus chi-
nensis) in contaminated soil. Desalination 210:236–247

Lai HY, Juang KW, Chen ZS (2010) Large-area experiment on uptake 

of metals by twelve plants growing in soils contaminated with mul-

tiple metals. Int J Phytoremediat 12:785–797

Lai HY (2015) Negative effects of chelants on soil qualities of five soil 
series. Int J Phytoremediation 17:242–248

Leung HM, Ye ZH, Wong MH (2006) Interactions of mycorrhizal fungi 

with Pteris vittata (As hyperaccumulator) in As-contaminated soils. 

Environ Pollut 139:1–8

Leung HM, Wu FY, Cheung KC, Ye ZH, Wong MH (2010) The effect 

of arbuscular mycorrhizal fungi and phosphate amendment on arse-

nic uptake, accumulation and growth of Pteris vittata in 

As-contaminated soil. Int J Phytoremediat 12:384–403

Li JT, Liao B, Dai ZY, Zhu R, Shu WS (2009) Phytoremediation of 

Cd-contaminated soil by carambola (Averrhoa carambola) in field 

trails. Chemosphere 76:1233–1239

Li JT, Liao B, Lan CY, He ZH, Baker AJM, Shu WS (2010) Cadmium 

tolerance and accumulation in cultivars of a high biomass tropical 

tree (Averrhoa carambola) and its potential for phytoextraction. 

J Environ Qual 39:1262–1268

Lin CC, Lai HY, Chen ZS (2010) Bioavailability assessment and accu-

mulation by five garden flower species grown in artificially 

cadmium- contaminated soils. Int J Phytoremediat 12:454–467

Liu X, Peng K, Wang A, Lian CL, Shen ZG (2010) Cadmium accumu-

lation and distribution in populations of Phytolacca Americana L. 

and the role of transpiration. Chemosphere 78:1136–1141

Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of 

heavy metal-contaminated soils: natural hyperaccumulation versus 

chemically enhanced phytoextraction. J Environ Qual 30:1919–1926

Lu CJ, Chiu YL, Chen HL, Lai HY (2012) Effects of sludge and pH 

adjustment on Cd speciation in soil and growth and Cd accumula-

tion in Pak Choi. Soil Sediment Contam 21:510–524

Fig. 16.5 Linear relationships 

between the leaf area (LA) and 

the transpiration rate (TR) of 

rainbow pink grown in the 

Cd-contaminated soils

H.-Y. Lai et al.



197

Martinez CE, Motto HL (2000) Solubility of lead, zinc and copper 

added to mineral soils. Environ Pollut 107:153–158

McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids 

from contaminated soils. Curr Opin Biotechnol 14:277–282

Mertens J, Vervaeke P, Meers E, Tack FMF (2006) Seasonal changes of 

metals in willow (Salix sp.) stands for phytoremediation on degraded 

sediment. Environ Sci Technol 40:1962–1968

Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and 

organic matter. In: Page AL, Sparks DL, Helmke PA, Loeppert RH, 

Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) 

Methods of soil analysis, Part 3, Chemical methods. ASA, Inc. and 

SSSA, Inc., Madison, WI

Pietrini F, Zacchini M, Iori V, Pietrosanti L, Bianconi D, Massacci A 

(2010) Screening of poplar clones for cadmium phytoremediation 

using photosynthesis biomass and cadmium content analysis. Int J 

Phytoremediat  12:105–120

Pulford ID, Watson C (2003) Phytoremediation of heavy metal- 

contaminated land by trees—a review. Environ Int 29:529–540

Rhoades JD (1996) Salinity: electrical conductivity and total dissolved 

solids. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, 

Soltanpour PN, Tabatabai MA, Johston CT, Sumner ME (eds) 

Methods of soil analysis, Part 3, Chemical methods, 2nd edn. ASA, 

Inc. and SSSA, Inc., Madison, WI

Römkens P, Bouwman L, Japenga J, Draaisma C (2002) Potentials and 

drawbacks of chelate-enhanced phytoremediation of soils. Environ 

Pollut 116:109–121

Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cad-

mium mobility and accumulation in Indian mustard. Plant Physiol 

109:1427–1433

Shi GG, Cai QS (2009) Leaf plasticity in peanut (Arachis hypogaea L.) 

in response to heavy metal stress. Environ Exp Bot 67:112–117

Tessier A, Gampbell P, Bisson M (1979) Sequential extraction proce-

dure for the speciation of particulate trace metals. Anal Chem 

51:844–851

Thomas GW (1982) Exchangeable cation. In: Page AL et al (eds) 

Methods of soil analysis, Part 2, Chemical and microbiological 

properties, vol 9, Agronomy monograph. ASA, Inc. and SSSA, Inc., 

Madison, WI

Thomas GW (1996) Soil pH and soil acidity. In: Page AL, Sparks DL, 

Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston 

CT, Sumner ME (eds) Methods of soil analysis, Part 3, Chemical 

methods. ASA, Inc. and SSSA, Inc., Madison, WI

Ultra VU Jr, Yano A, Iwasaki K, Tanaka S, Mei KY, Sakurai K (2005) 

Influence of chelating agent addition on the copper distribution and 

microbial activity in soil and copper uptake by brown mustard 

(Brassica juncea). Soil Sci Plant Nutr 51:193–202

US EPA (2000) Biosolids technology fact sheet: land applied of biosol-

ids. EPA 832-F-00-064

Vieira RF (2001) Sewage sludge effects on soybean growth and nitro-

gen fixation. Biol Fertil Soils 34:196–200

Wang CX, Mo Z, Wang H, Wang ZJ, Cao ZH (2003) The transporta-

tion, time-dependent distribution of heavy metals in paddy crops. 

Chemosphere 50:717–772

Wei JL, Lai HY, Chen ZS (2012) Chelator effects on bioconcentration and 

translocation of cadmium by hyperaccumulators, Tagetes patula and 

Impatiens walleriana. Ecotoxicol Environ Safe 84:173–178

Wei SH, Zhou QX (2004) Identification of weed species with 

 hyperaccumulative characteristics of heavy metals. Prog Nat Sci 

14:1259–1265

Wong CC, Wu SC, Kuek C, Khan AG, Wong MH (2007) The role of 

mycorrhizae associated with vetiver grown in Pb/Zn-contaminated 

soils: greenhouse study. Restor Ecol 15:60–67

Wu LH, Luo YM, Xing XR, Christie P (2004) EDTA-enhanced phy-

toremediation of heavy metal contaminated soil with Indian mus-

tard and associated potential leaching risk. Agric Ecosyst Environ 

102:307–318

Wu SC, Wong CC, Shu WS, Khan AG, Wong MH (2011) Mycorrhizo- 

remediation of lead/zinc mine tailing using vetiver: a filed study. Int 

J Phytoremediat 13:61–74

Zhivotovsky OP, Kuzovkina JA, Schulthess CP, Morris T, Pettinelli D, 

Ge M (2011) Hydroponic screening of willows (Salix L.) for lead 

tolerance and accumulation. Int J Phytoremediat 13:75–94

16 Effects of Biosolids on the Transpiration Rate of Rainbow Pink (Dianthus chinensis) Grown in Cadmium-Contaminated Soils



199A.A. Ansari et al. (eds.), Phytoremediation: Management of Environmental Contaminants, Volume 2,
DOI 10.1007/978-3-319-10969-5_17, © Springer International Publishing Switzerland 2015

17.1  Introduction

17.1.1  Soil and Mining Activities

Soil is a natural resource, non-renewable at a human scale 

and with important environmental and socio-economic func-

tions. It is a complex living body with dynamics resulting 

from the interaction amongst the lithosphere, hydrosphere, 

biosphere and atmosphere representing an interface between 

organisms (biosphere and geosphere), water (atmosphere 

and hydrosphere), air and rock. The solid phase of soil pres-

ents mineral and organic phases, whereas pore space holds 

water or air. Soil has an important role in nutrient cycling, 

ecosystem productivity as well as carbon and hydrologic 

cycle being, at the same time, a matrix for plant growth and 

habitat for multiple species. Soil is also a source of nutrients 

and organic waste recycling.

Mining and smelting industries produce huge amounts of 

waste and tailings which get deposited at the surface. The 

degraded soils and the waste rocks and tailings are often very 

unstable and will become sources of pollution as they have a 

high concentration of heavy metals and other toxic chemicals. 

When exposed to environmental conditions, these materials 

give rise to the oxidation of the remaining sulphides, through 

several reactions (chemical, electrochemical and biological), 

and form ferric hydroxides and sulphuric acid combined in 

acidic mine drainage (Soucek et al. 2000). For these reasons, 

mining activities will have a direct effect on the loss of culti-

vated land, forest or grazing land and the overall loss of pro-

duction (Wong 2003). The indirect effects will include air and 

water pollution and siltation of rivers that will eventually lead 

to the loss of biodiversity, amenity and economic wealth 

(Bradshaw 1993).

Pollution that occurs as a consequence of hard rock mining 

persists for hundreds of years after the cessation of mining oper-

ations (Nagajyoti et al. 2010). Hence, areas impacted by former 

mining activities could remain nowadays severely polluted 

even if vestiges of such operations are not really apparent.

Lead, cadmium, copper, zinc, nickel, chromium and arse-

nic are the metals/metalloids most frequently reported to 

have the highest impact on organisms (Vamerali et al. 2010) 

including nervous, cardiovascular, renal and gastrointestinal 

disorders as well as cancers.

Antimony is a toxic bioaccumulative element with similar 

chemical and toxicological properties to arsenic, and moder-

ate levels of them may lead to harmful environmental effects. 

Thus, arsenic, antimony and their compounds are consid-

ered to be priority pollutants by the US EPA and the EU 

(Filella et al. 2002).

Arsenic is found associated with many types of mineral 

deposits, especially with those including sulphide minerali-

sation (Alloway 1995), and the Iberian Pyrite Belt (IPB, SW 

Iberian Peninsula, from Portugal to Spain) is one of the most 

outstanding massive sulphide provinces in the world since it 

contains more than 80 deposits and about 1,700 Mt of 

reserves (Sáez et al. 1999). The long-term and intense exploi-

tation has produced a large amount of sulphide-rich wastes 

that, in contact with precipitation water, are oxidised gener-

ating highly pollutant acid mine drainage, this phenomenon 

being responsible for the presence of acidity and metalloids 

in the soils and superficial water of the area.
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China is the highest producer of Sb with approximately 

89.8 % of the world’s share, Index 2011 (http://www.index-

mundi.com/en/commodities/minerals/antimony/antimony_

t9.html. Accessed 24 July 2013), and this results in large 

amount of this metalloid being released to the environment 

(Wilson et al. 2010; Flynn et al. 2003). Only in 2007, over 

9.45 × 105 tons of waste water, 6.72 × 105 tons of mining and 

smelting residue and 1.50 × 103 tons of arsenic–alkali residue 

were discharged into the nearby environment ((He et al. 

2012) and references therein).

17.1.2  Arsenic and Antimony 
as Environmental Contaminants

Antimony and arsenic are metalloids belonging to group 15 

of the periodic table, and they both occur naturally in the 

environment at trace levels. Due to their identical s2p3 outer 

orbital electron configuration, Sb and As present the same 

range of oxidation states in environmental systems occurring 

in four oxidation states: +V, +III, 0 and −III. More com-

monly, they occur as oxides, hydroxides or oxoanions either 

in the +V state in relatively oxic environments (antimonates 

and arsenates) or in the −III state in anoxic environments 

(Wilson et al. 2010).

Arsenic has long been recognised as a toxic element 

(Azcue and Nriagu 1994), but the understanding of Sb toxic-

ity and environmental behaviour is more limited (Wilson et al. 

2010; Filella et al. 2009). Chemical similarities between the 

two metalloids have prompted concerns over the enrichment 

of Sb in many environments, and it is often considered that it 

behaves similarly to As, but not always with justification 

(Casiot et al. 2007). The toxicities of Sb and As in the environ-

ment strongly depend upon the speciation (Filella et al. 2002) 

being the inorganic forms considered more toxic than organic 

forms and predominate over organic forms in most environ-

mental systems (Ellwood and Maher 2002). The general order 

of toxicity for Sb species is given as organoantimonials (e.g. 

methylated species) < antimonates (Sb (V)) < antimonites (Sb 

(III)) (Filella et al. 2002), which is similar to As: organoarsen-

icals (e.g. ethylated species) < arsenates (As (V)) < arsenites 

(As (III)) (Yamauchi and Fowler 1994).

Both metalloids can be strongly retained in soils (Flynn 

et al. 2003), and the extent of sorption influences the mobile 

and bioavailable fraction and consequently the extent of 

plant accumulation. The biogeochemistry of metalloids, e.g. 

arsenic, can be influenced by soil properties as the content of 

Fe, Al, Ca and P, soil organic matter and cation exchange 

capacity (CEC) (Sarkar and Datta 2006). In fact, several fac-

tors influence As and Sb retention in soil, but soil pH has an 

important influence as does the occurrence of co-occurring 

and competing ions (Wilson et al. 2010).

Background As and Sb concentrations are important to 

define the levels of soil contamination and establish remedia-

tion goals. In mining areas, the concentrations of these met-

alloids are, as expected, much higher than, that is, in urban 

areas. Concentrations of Sb and As in non-contaminated 

soils are typically below 10 mg kg−1 (Wilson et al. 2010). In 

mining areas the soil concentrations of these metalloids can 

be increased up to three orders of magnitude (Hiller et al. 

2012; Okkenhaug et al. 2011). If dealing with, for example, 

medicinal plant species (Vaculík et al. 2013), these impacted 

places with Sb and As are of high concern as metalloids can 

enter the food chain. Currently, the World Health Organization 

has set the acceptable daily intake for As at 2 mg day−1 kg of 

body weight−1 (WHO 1989) and the tolerable daily intake for 

Sb at 6 mg day−1 kg of body weight−1 (WHO 2003).

The high metalloid content may pose a greater risk to 

human health in highly contaminated areas, so research and 

management/remediation strategies need to be considered in 

these regions.

17.2  Phytoremediation of Metals 
and Metalloids

17.2.1  The Concept

Biological remediation can be, classically, divided into bio- 

and phytoremediation techniques that rely on the capabilities 

of plants and/or microorganisms to eliminate or accumulate 

contaminants from a matrix. Phytoremediation degrades, 

sequesters and/or removes contaminants from different envi-

ronmental matrices with plants handling contaminants with-

out affecting topsoil. Several advantages are intrinsically 

linked with the technology as it is a non-destructive natural 

option that does not disrupt the environment nor damage the 

soil structure, being highly accepted by the community. 

Additionally, it is cost-effective, does not need extensive 

labour or specialised equipment and can be applied any-

where (since the land is suitable for plant growing), and the 

establishment of vegetation prevents metal leaching and ero-

sion of contaminated soils. Limitations associated with phy-

toremediation are related with climatic and geological 

determinants, scope of application, removal rates as well as 

extremes of environmental toxicity, which are normally vari-

able amongst plant species.

Plants enclose the ability to remove/alter contaminants 

from environmental matrixes and detoxify by different 

mechanisms, such as phytoextraction (or phytoaccumula-

tion), phytofiltration, phytostabilisation, phytovolatilisation, 

phytodegradation, rhizodegradation and phytodesalination 

(Ali et al. 2013). Phytoextraction focuses on the uptake of 

contaminants by roots and further translocation to and accu-

mulation in above-ground biomass leading to a long-term 

cleanup of soil. Plant shoots enclosing metals/metalloids can 

be harvested and further disposed or reused for environmen-

tal applications (e.g. biomass production, phytomining).
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Phytoextraction can be performed employing hyperaccu-

mulators, (1) plants that produce low amount of above- 

ground biomass but accumulate metals to a greater extent or 

(2) plants that accumulate metals at less extent but produce 

more above-ground biomass with a total accumulation being 

comparable with hyperaccumulators (Ali et al. 2013).

The extent of metal mobility in soil is related with its 

chemical composition and sorption properties. After enter-

ing in soil, a percentage will reversibly bind to clay surfaces; 

some will precipitate with other inorganic phases such as 

phosphates or carbonates, namely, in the presence of alkaline 

pH, some will specifically adsorb onto solid surfaces; and 

some will bind to organic colloids such as humic and fulvic 

acids (Antoniadis et al. 2006). Retention of metals by soil is 

usually electrostatic, with ions with a positive charge being 

associated with negatively charged sites on the soil and vice 

versa. Soil CEC reflects the potential to retain these ions as it 

indicates a number of negative charges per unit mass.

The strong binding to soil particles or precipitation will 

cause insoluble metals/metalloids that will be mostly unavail-

able for uptake (Lasat 2002; Sheoran et al. 2011). Thus, the 

efficiency and extent of phytoextraction will be dependent of 

contaminant bioavailability for uptake, speciation and effi-

ciency of each plant species regarding metal uptake (ability 

to intercept, absorb and accumulate contaminants) (Ali et al. 

2013; Bech et al. 2012; Bhargava et al. 2012; Saifullah et al. 

2009) as plants have specific responses to metal/metalloid 

tolerance, accumulation mechanisms and genetic and envi-

ronmental factors, e.g. as light and temperature in green-

house conditions (Antoniadis et al. 2006).

Factors regulating metal and metalloid availability may 

affect plant uptake, but their concentration in plant tissues 

also depends on total and available concentrations in soils 

where plants are growing. Amongst different metals/metal-

loids, it is known that Zn, Cd, Ni, As, Se and Cu are exam-

ples of mobile elements that are readily bioavailable, whereas 

Co, Mn and Fe are moderately bioavailable and the ones 

more strongly sorbed to humic substances, i.e. Cr and Pb, are 

less available (Ali et al. 2013; Prasad 2003).

Phytoextraction can be natural (with no soil amendments) 

or induced/assisted (Ali et al. 2013) in order to increase 

metal solubility. One option is the addition of chelating 

agents, for instance, synthetic aminopolycarboxylic acids, 

e.g. ethylenediamine tetra-acetic acid (EDTA), and the natu-

ral ones such as ethylenediamine disuccinate (EDDS) and 

nitrilotriacetic acid but also natural low-molecular-weight 

organic acids such as tartaric and citric acid, as reviewed by 

Evangelou et al. (2007). By applying a chelating agent, con-

tamination levels may start to decrease as plant uptake is 

enhanced due to the dissolution of precipitated or adsorbed 

heavy metals. Chelating agents enhance metal solubility (Ali 

et al. 2013; Saifullah et al. 2009; Evangelou et al. 2007; 

Leštan et al. 2008 2011

2013; Kos and Lestan 2004; Lambrechts et al. 2011; Liu 

et al. 2008; Neugschwandtner et al. 2008) as they form 

water-soluble complexes with metals present in soil.

The performance of chelating agents depends both on 

metals to remediate and used plant species (Evangelou et al. 

2007). Indian mustard and ryegrass were tested together with 

the application of biodegradable amendments, citric acid, 

NH4-citrate/citric acid, oxalic acid, S,S-ethylenediamine dis-

uccinic acid (EDDS) or nitrilotriacetic acid, with the 

increased uptake of Cd, Cr, Cu, U, Zn and Pb (Duquène et al. 

2009). As pointed by Evangelou et al. (2007), when dealing 

with increased metal mobility, the rate of degradation 

becomes of special importance as it encloses a direct impact 

on leaching probability, this has been considered as one of 

the potential hazards intrinsically related with this technol-

ogy (Saifullah et al. 2009). It can involve the risk of drinking 

water quality deterioration and groundwater contamination 

due to its possible migration. In consequence, the addition of 

these agents should take into consideration subsurface geo-

chemical and hydrologic conditions (Cameselle et al. 2013).

Additionally, environmental persistence and environmen-

tal pollution as a consequence of using some chelating agents, 

e.g. EDTA, need a search for more degradable alternatives in 

assisted phytoextraction practices (Saifullah et al. 2009).

The chemistry of metals and/or metalloids is, normally, 

pH dependent—with higher pH, the metals bound more 

strongly to inorganic phases but became more available 

when in acidic pH. Low pH can also increase metal bioavail-

ability as their salts are soluble in acidic conditions (Ali et al. 

2013). To increase metal solubilisation, plant roots can also 

exudate phytosiderophores (Lone et al. 2008), substances 

that will increase metal mobilisation. Secretion of H+ ions by 

plant roots will lower rhizosphere pH and thus increase metal 

dissolution displacing metal cations adsorbed to soil parti-

cles (Ali et al. 2013; Alford et al. 2010).

17.2.2  Phytoremediation of Arsenic 
and Antimony in Mining Areas/Soil

Mining areas can be rehabilitated by plants with potential to 

accumulate metals and/or metalloids. Plant species spontane-

ously growing in mining areas contaminated with Sb and As 

naturally accumulate these metalloids, mainly when in an 

available form (Levresse et al. 2012). The presence of plants 

that specifically accumulate one or both metalloids has also 

been studied for biogeochemical prospecting and mine stabi-

lisation potential (Pratas et al. 2005). The mechanism of 

metal tolerance and detoxification enabled some plant spe-

cies to survive, grow and reproduce in contaminated sites 

(Pratas et al. 2005). Vaculik et al. (2013) reported shoot con-

centrations range between 1 and 519 mg kg−1 for As and 10 

and 920 mg kg−1 for Sb in medicinal plants (Fragaria vesca, 

Taraxacum officinale, Tussilago farfara, Plantago major, 

Veronica officinalis, Plantago media and Primula elatior) 
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naturally growing in old mining sites in Slovakia, Central 

Europe. Other plant species such as Dittrichia viscosa (Pérez-

Sirvent et al. 2012), Pinus sylvestris (pines), Betula pendula 

(birches), Juncus effusus (bulrush), Cytisus scoparius and the 

herbaceous Plantago major and Deschampsia flexuosa (Jana 

et al. 2012) are some examples of effective Sb and As accu-

mulators. When in the presence of a plant that specifically 

accumulates one of the metalloids, the performance of As or 

Sb uptake can be variable. Pteris cretica L. (Cretan brake 

fern), an As hyperaccumulator, simultaneously accumulate 

As and Sb under hydroponic conditions, but when Sb is pres-

ent in a medium level, As uptake is slightly enhanced, 

whereas it can be suppressed in the presence of high levels of 

Sb (Feng et al. 2011). Muller et al. (2013) also reported that 

when Pteris vittata (Chinese brake fern), another specific As 

hyperaccumulator, is in the presence of both metalloids, an 

increase of As concentration enhances Sb uptake, with metal-

loids going to different organs inside the plant.

The level of accumulation depends on the plant tissue 

(shoot or root) (Qi et al. 2011) and can be season dependent 

(Murciego et al. 2007). The accumulation levels are also 

related with the soil type, bioavailability and plant species, as 

observed for Sb (Qi et al. 2011). When in small quantities, 

some heavy metals such as Fe, Zn, Cu, Mn and Ni can be 

considered essential to organisms, whereas Cd, As, Pb, Cr 

and Hg are examples of non-essential metals/metalloids that 

can interfere with the functioning of living systems ((Ali 

et al. 2013) and references therein). Similarly with As, Sb is 

a non-essential element for plant living, and when present in 

elevated concentrations in plant tissues, they are phytotoxic 

for plant cells (Vaculík et al. 2013).

A study about Sb distribution and accumulation in plants 

from Xikuangshan Sb deposit area, a superlarge ore deposit, 

located in Hunan province, China, was carried out by Qi 

et al. (2011). The average Sb concentration was ca. 

6,000 mg kg−1, and the area presented 21 families and 34 

plant species (amongst them, 23 were perennial herbs and 

annual forbs) with concentrations between ca. 4 and 

144 mg kg−1. The team also reported that bioavailability was 

dependent from different soil sites and plant species.

17.3  Electrokinetic Process for 
Remediations of Inorganic 
Contaminants

17.3.1  The Concept

Electrokinetic (EK) process relies on the application of a 

low-level direct current density in a partially saturated or 

even saturated soil, in the order of a few mA cm−2 and/or low 

potential gradient, in the order of some V cm−1, between elec-

trodes. With this set-up, electric current will promote physico-

chemical changes in the contaminated matrix leading to the 

transport of contaminants (metals and/or organics) by mecha-

nisms as electromigration, electro-osmosis (direct or reverse) 

and electrophoresis. The transport processes include (Mateus 

et al. 2010; Ribeiro et al. 2000, 2005):

 1. Electro-osmosis, the mass flux of a pore fluid (water), i.e. 

the movement of soil moisture or groundwater, generally 

takes place from the anode to the cathode.

 2. Electromigration, a directional movement, in which 

charged species, ions and ion complexes move towards 

the electrode with an opposite charge.

 3. Electrophoresis, the movement of charged particles or col-

loids under the influence of an electric field; contaminants 

bound to mobile particulate matter are also transported.

Electro-osmosis and electromigration are non-selective 

processes implying that besides target contaminants, other 

elements (i.e. Mg, Ca and Fe associated with acid mobilisa-

tion (Ottosen et al. 2001)) are also transported. This can have 

implications in the soil nutritional status, but it can also 

decrease energy efficiency associated with EK process.

For these reasons, the electric field acts as a “cleaning 

agent”, the contaminants being moved out of the contaminated 

matrix towards one of the electrode compartments, where they 

concentrate and may be removed (Ribeiro et al. 2005).

EK remediation process has been applied at laboratory 

and/or field scales, in different (1) matrices, soil, fly ash from 

straw combustion (Ottosen et al. 2007) or from municipal 

solid waste incinerators, impregnated wood waste (Mateus 

et al. 2010; Ribeiro et al. 2000), mine waste and sediments, 

and (2) contaminants, heavy metals (Lima et al. 2008; Wang 

et al. 2007), petroleum hydrocarbons, phenols and PAH 

(Alcántara et al. 2010), chlorinated solvents and pesticides/

herbicides (Ribeiro et al. 2005, 2011).

Comparing to traditional remediation processes, EK pres-

ents advantages: (1) effective results for low permeability 

matrices (e.g. clay soils where conventional methods do not 

work), (2) effectiveness in small periods of time (Mateus 

et al. 2010; Ribeiro et al. 2000, 2005; Alcántara et al. 2010, 

2012), (3) separation of different contaminants towards one 

of the electrode compartments (Ribeiro et al. 2005) and (4) 

remediation of toxic/persistent organic compounds (e.g. 

PAH (Alcántara et al. 2010)).

The transport processes and geochemical evolution of the 

contaminated matrix are complex during EK treatment, thus 

depending on soil and contaminant characteristics, treatment 

time, applied potential and/or electrolytic dissolutions 

(Reddy and Saichek 2004).

Electrokinetic soil treatment relies on several interacting 

mechanisms, but the dominant is the electron transfer reac-

tions that occur at electrodes during the electrokinetic pro-

cess which is the electrolysis of water (Eq. 17.1):

 
H O H O g e anode2 22 2® + ( ) + ( )+ -½  (17.1)

 
2 2 22 2H O e OH H g cathode+ ® + ( )( )- -

 (17.2)
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The hydrolysis of water produces H+ and OH- ions that are 

able to move across the matrix. Hydrogen ions will be 

responsible for the pH decrease near the anode and acid front 

that will be carried towards the cathode by electrical migra-

tion, diffusion and advection. At the same time, there is a pH 

increase near the cathode due to the formation of hydroxide 

ions (Virkutyte et al. 2002).

Matrix acidification and the continuous removal of its 

constituents dramatically change its physico-chemical char-

acteristics with acid front helping to mobilise metals.

17.3.2  EK Process in the Remediation of Soil 
with Metals and Metalloids

Parameters that affect the efficiency of EK (current density, 

potential difference between electrodes, etc.) as well as the 

type of contaminant/nutrient, matrix and interactions matrix- 

contaminants have been studied in different matrices. The 

position of electrodes has also been explored with studies 

with electrodes horizontally or vertically installed in a con-

taminated soil.

The use of assisting agents allow a selective desorption of 

heavy metals and can help in the contaminant removal using 

EK process. For example, pH can be adjusted (Zhou et al. 

2005) or chelating agents can be added (Yuan and Chiang 

2008). The use of such agents is adequate, but not limited to, 

in the following situations, a particular combination of met-

als/metalloids implying a complex remediation process, 

when metals/metalloids are in insoluble form, in the  presence 

of matrices with high CEC and intrinsic slow development of 

an acid front, implying a slow metal removal.

Due to water electrolysis (Eqs. 17.1 and 17.2), the soil pH 

can decrease between 2 and 3 values near the anode section and 

increase to 8–12 near the cathode, in soils with low buffer 

capacity (Zhou et al. 2005). A consequence of increased soil pH 

is the precipitation of metal hydroxides near the cathode, thus 

reducing removal efficiencies (Zhou et al. 2005). The alkaline 

front tends to precipitate the heavy metals, an effect that should 

be attenuated by suitably adjusting the pH in the cathode com-

partment (Zhou et al. 2004a, b, 2005; Lee and Yang 2000a).

Electrolyte pH adjustment can be an option to equilibrate 

soil pH and thus promote a higher metal removal. As pH 

decreases in the anode end, the heavy metal species should 

become more available. pH adjustment with lactic acid and 

calcium chloride in the catholyte caused an efficient removal of 

Cu, 63 %, and Zn, 65 %, from a low pH soil after ca. 9 days  

of experiment (Zhou et al. 2005). But without controlling pH 

of catholyte, pH near cathode was higher than 6 resulting in the 

accumulation of Cu and Zn in soil sections (Zhou et al. 2005).

2006), due to its strong chelant capacity and high 

complex stability with elements such as Zn, Cd, Pb and As 

(Sun et al. 2001).

17.3.2.1  EK Process in the Remediation 
of Arsenic

All soluble arsenic species are anionic above pH 9, and As 

(V) is more strongly sorbed than As (III) (Virkutyte et al. 

2002). Therefore, a careful management of the pH and other 

electrolyte conditions within the electrode reservoir to 

enhance desorption and increase the electro-osmotic flow 

rate is one of the critical factors in controlling EK system 

performance (Zhou et al. 2004b; Lee and Yang 2000b; 

Saichek and Reddy 2003). Both acids and bases can be used 

to mobilise As, depending on the dominant As species (Lee 

et al. 2007; Yang et al. 2009). As (V) dissolves under alka-

line conditions but not under acidic conditions, whereas As 

(III) behaves in the opposite way (Alam and Tokunaga 2006). 

Catholyte conditioning with 0.1 M nitric acid showed 

removal efficiency for As of 62 % after 28 days, at 4 mA cm−2 

of current density (Baek et al. 2009). Remediation of As (V) 

with EK process and assisting agents, like EDTA, was 

reported by Yuan and Chiang (2008), and as potential gradi-

ent increased from 2.0 to 3.0 V cm−1, the removal efficiency 

of As(V) was increased from approximately 35 to 45 % in 

the system. Oxalate and phosphate solutions might also serve 

as mobility-enhancing agents, and EK experiments con-

ducted with mine tailings showed that in the section near the 

anode, As removal was 30 % with oxalate and 48 % with 

phosphate, after 20 days (Isosaari and Sillanpää 2012). But, 

due to the accumulation of As in the middle section, the 

respective overall removals in the entire tailing material were 

only 6 and 12 %. Potassium phosphate was also the most 

efficient in extracting arsenic from kaolinite, probably due to 

anion exchange of arsenic species by phosphate, whereas 

sodium hydroxide seemed to be the most efficient in remov-

ing arsenic from the tailing soil (Kim et al. 2005). This result 

may be explained by the fact that the sodium hydroxide 

increased the soil pH and accelerated ionic migration of the 

species through the desorption of arsenic species as well as 

the dissolution of arsenic-bearing minerals (Kim et al. 2005).

17.4  Electrokinetic Process Coupled 
with Phytoremediation

17.4.1  The Concept

One of the key aspects of innovation in the remediation field 

refers to the development of combined treatments and opera-

tional methods that contribute to improve the mobilisation 

and the transport of the contaminants out of the matrix. 

Due to its mobilisation potential, EK process can be consid-

ered an integrated tool for contaminant removal, alone 

and coupled with phytoremediation. The coupling of EK 

process with phytoremediation (also known as EK-assisted 

phytoremediation) is an innovative technique that deserves a 

deeper knowledge to enlarge the scope of EK application. 

17 Phytoremediation and the Electrokinetic Process: Potential Use for the Phytoremediation of Antimony and Arsenic



204

This technique has been developed since the 2000 decade 

(O’Connor et al. 2003) and has been optimised and success-

fully tested (Cang et al. 2011; Zhou et al. 2007).

As pointed in the review performed by Cameselle et al. 

2013, the rehabilitation of a contaminated site by phytoreme-

diation requires a long treatment time as it depends on the 

growth rate, biomass production and even adaptation of the 

plant to environmental conditions (including contaminant 

toxicity). Additionally, the action of roots is mainly in the 

range between 20 cm and 2 m and its effectiveness linked 

with the bioavailability of contaminants together with soil 

properties. Joining electrokinetics to the process may be an 

attempt to deal with limitations of phytoremediation 

(Cameselle et al. 2013). EK field may enhance the removal 

of the contaminants by increasing its bioavailability 

(enhancement of solubilisation and/or selective mobilisa-

tion) by desorption and transport of metals or metalloids, 

thus facilitating phytoextraction process. The removal of 

contaminant from soil is performed by the plant with a syn-

ergistic effect of the DC field that enhances plant activity by 

increasing bioavailability of contaminant, while the plant 

simultaneously rehabilitates soil properties changed by the 

presence of electrokinetics. The presence of plants brings 

most of the benefits of a “regular” phytoremediation scheme, 

recovery of soil properties and improvement of its structure.

17.4.2  Applications with Metals 
and Metalloids

In 2003, O’Connor and his team (O’Connor et al. 2003) cou-

pled phytoremediation with EK process by applying a hori-

zontal DC field of 30 V to a contaminated soil in order to 

evaluate the effect on Cu/Cd/As uptake by ryegrass. For that, 

two contaminated soils were used in lab scale reactors. The 

first soil was heavily contaminated with Cu and was treated 

for 98 days, whereas the second was contaminated with Cd 

and As and was treated for 80 days. With the coupled tech-

nique, a redistribution of soil metals was observed from 

anode to cathode. It also reported an increase of Cu uptake in 

the cathode region for the Cu soil. Due to the DC field, pH 

changed in the anode compartment, where the soil was acidi-

fied, but only a slight change in the other cell compartments 

was observed.

Cang et al. (2011) exposed Indian mustard (grown for 35 

days) to different voltage gradients (0, 1, 2, 4 V cm−1) of DC 

current applied in cycles of 8 h day−1 for 16 days, aiming Pb, 

Cd, Cu and Zn removal. Heavy metals presented a redistribu-

tion from anode to cathode, and the uptake of Cd, Pb and Zn 

was increased by the action of DC field, namely, in the pres-

ence of a voltage gradient of 2 V cm−1. Shoot concentration 

of Pb, Cd and Cu in the anode compartment was higher than 

in other sections due to soil acidification and thus activation 

of soil heavy metals in the anode region (Cang et al. 2011). 

The intensity of applied voltage was determinant in enhanc-

ing the uptake of a plant species as it reported an enhance-

ment with 2 V cm−1 but little or none with 1 V cm−1, 4 V cm−1 

or no applied voltage (Cang et al. 2011).

The effect of DC and alternate field (AC) was tested 

together with potato tubers in Zn-, Pb-, Cu- and 

Cd-contaminated soil (Aboughalma et al. 2008). The AC 

field did not promote a significant metal redistribution or pH 

variation between anode and cathode, an opposite pattern 

than with DC field. Overall metal uptake was enhanced by an 

electric current with AC field presenting higher accumula-

tion of heavy metals in plant shoots than DC field or no elec-

tric field. In general, AC current was more effective in 

phytoextraction as it did not change metal redistribution nor 

pH (Cameselle et al. 2013).

The effect of AC and/or DC field was also studied by Bi 

et al. (2011) with rapeseed and tobacco plants in soils spiked 

with Cd and multi-contaminated with Cd, Pb, Cu and Zn. As 

DC field induces pH alterations in soil, the team inverted the 

polarity of the field in intervals of 3 h allowing the compari-

son of AC and DC field without the “induced” variable of pH 

change. The presence of AC electric field showed a positive 

effect on rapeseed biomass enhancing the total metal uptake. 

Tobacco plants showed an opposite pattern, DC field has a 

negative effect on biomass, and AC field did not enhance 

biomass but slightly increased metal uptake. Multi- 

contaminated soil presented lower metal extraction effi-

ciency probably related with contaminant bioavailability. In 

a Pb-contaminated sandy soil, Putra et al. (2013) used a con-

tinuous DC field during 15 days to enhance Pb uptake of Poa 
pratensis L. (Kentucky bluegrass) when compared with the 

results of phytoremediation alone for 30 days.

EK process can affect root and shoot development at dif-

ferent extents. O’Connor (O’Connor et al. 2003) reported a 

slight inhibition of plant growth in the anode compartment 

due to soil acidification and movement of nutrient cations 

(e.g. Ca). Cang et al. (2011) reported a positive effect in plant 

growth for lower voltage (1 V cm−1) but also a decrease for 2 

and 4 V cm−1 comparing with control. The biomass of potato 

tubers was higher with AC current than control and this one 

higher than DC treatment, this last case explained by the 

acidic conditions and increased amount of metals in the soil 

which lead to an adverse effect on plant growth as a symp-

tom of phytotoxicity (Aboughalma et al. 2008).

EK-assisted phytoremediation was also used with chelat-

ing agents promoting metal/metalloid dissolution but avoid-

ing the risk of contaminant leaching. EK can deliver chelators 

into the soil facilitating contaminant solubilisation and trans-

port of metal complexes in the direction of root plants 

(Cameselle et al. 2013). Zhou et al. (2007) tested ryegrass 

uptake of Cu/Zn with a vertical direct current electrical field 

with the presence of EDTA/EDDS. The use of vertical DC 
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field, 1 V cm−1, controlled the migration of metal complexes 

in soil columns, favouring transport towards the soil surface 

where the plant was growing. The use of EDTA/EDDS 

increased uptake of Cu/Zn when compared with no applica-

tion of chelating agents at all tested depths, 15, 30 and 50 cm. 

Electrodes were inserted in the extremities of soil column 

with anode 5 cm below soil surface and cathode at bottom 

causing a redistribution of Cu/Zn concentration. Shoot Cu 

concentration with EDTA/EDDS together with DC field pre-

sented better results than without DC field. This work pro-

vides an alternative to a concerning situation already raised 

by scientists (please see Sect. 2.1.)—the possibility of metals 

leaching due to increased solubility provided by chelating 

agents. Phytoremediation, by itself, could be a viable option 

to take advantage of metal solubility and thus remove them 

from the contaminated soil. But its removal rate could not be 

sufficient to avoid metal leaching. By using the EK process, 

an efficient control of leaching was reported by Zhou et al. 

(2007) with low metal concentrations in pore water.

Lim et al. (2004, 2012) reported the positive effect of a 

chelator (EDTA) together with electrokinetics in the 

enhanced Pb uptake of Indian mustard. Indeed, simultaneous 

addition of EDTA with electric field increased the accumula-

tion of Pb in the shoots by 2–4 times compared with the use 

of EDTA only (Lim et al. 2004).

On one hand, EK process affects soil chemistry, most 

commonly the acidification of the soil (when a DC field is 

applied), and possible disappearance of most of the natural 

microflora due to the toxic effect of the acidic pH, but, on the 

other hand, plant growth favours increased enzymatic and 

microbial activity (Cameselle et al. 2013). Cang et al. (2012) 

carried out a study with the purpose of understanding the 

effect of electric current on physico-chemical soil properties 

and enzymatic and microbial activity and reported differ-

ences between the three soil compartments (anode, central 

compartment and cathode). NO3
-, NH4

+, available K and P 

increased compared with their initial soil concentration. 

Basal soil respiration and microbial biomass carbon signifi-

cantly increased near the anode and cathode. All tested enzy-

matic parameters (urease, invertase and phosphatase) were 

inhibited by DC field. DC field was the main factor affecting 

the soil properties, but plant growth counteracted to the same 

extent its impact on soil properties.

17.5  Case Study from a Mine Soil 
from China

17.5.1  The Problem

The present work (Couto 2015) is a consequence of the 

works carried out by Zhou et al. (2007) and Cang et al. 

(2011). The aim was to assess the potential and applicability 

of EK-assisted phytoremediation to remediate soil contami-

nated with Sb and As. Soil from a mining area located in 

southern Hunan province (China) was used. Arsenic concen-

tration was 65.8 ± 0.8 mg kg−1 and Sb 546.5 ± 0.8 mg kg−1. 

The soil pH, CEC and soil organic carbon (SOC) were 6.58, 

14.5 cmol kg−1 and 45.1 g kg−1, respectively.

17.5.2  Materials and Methods

The effect of Indian mustard and ryegrass plant species in the 

enhanced removal of Sb and As from the soil was evaluated 

in the presence of an electrical field. Each experimental box 

was divided in three different parts using a vertical nylon 

mesh—anode to central compartment to cathode (Fig. 17.1) 

Fig. 17.1 Boxes with contaminated soil and EK treatment: experiment overview (a) and details of experimental boxes with ryegrass at left and 

Indian mustard at right (b)
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with a soil proportion of 900:1,200:900 g in each box. 

Following soil fertilisation (solution of 0.99 g urea and 0.96 g 

of KH2PO4), pre-germinated seedlings were grown in each 

experimental pot during 35 days, with a proportion of 

-

eter 6 mm) were used as working electrodes as they are low 

cost, inert and widely available. Four rods (2 + 2) were verti-

cally inserted into the soil in opposite sides of the box. A volt-

age gradient was applied, 20 V, for 15 days and during 8 h per 

day. The experiment was carried out in a glass greenhouse, 

and the soil was kept at 70 % of its holding water capacity. 

Results discussed in this chapter are those from (1) plant 

effect and (2) plant with simultaneous presence of DC field.

17.5.3  Results and Discussion

At the end of the experiment, soil pH values changed slightly 

when comparing to control experiment pH (6.58) (data not 

shown). In the anode compartment pH decreased (ca. 0.5), 

whereas it increased in the cathode compartment (ca. 0.8) 

being pH variations more expressive between Indian mustard 

compartments with statistical significance at 95 %. The 

application of the electric field did not present a negative 

effect on plant biomass, and inclusive, a tendency for higher 

biomass production was found when comparing with plant 

biomass achieved without electric field, namely, for Indian 

mustard (data not shown).

Ryegrass and Indian mustard accumulated As and Sb 

(Figs. 17.2 and 17.3), and overall Indian mustard showed 

higher metal accumulation than ryegrass. For example, 

Indian mustard accumulated significantly more Sb than rye-

grass in its shoot and As and Sb in the root. Additionally, 

after applying EK, As and Sb accumulations in the shoot and 

root of Indian mustard were improved. The enhanced reme-

diation efficiency of the coupled technology was more 

expressive in the cathode compartment of Indian mustard 

shoot with, for example, more 45 % Sb uptake than in the 

central compartment. However, no significant improvement 

of As and Sb uptake was observed for ryegrass in the pres-

ence of EK treatment.

17.6  Conclusions

Soil contamination with metals/metalloids is a worldwide 

problem that needs to be addressed. There are several 

approaches that can be applied aiming soil remediation/ 

rehabilitation, and both EK and phytoremediation seem to be 

a viable option.

Results demonstrate that both plant species can accumu-

late metalloids, and for that, they are considered valuable for 

phytoremediation schemes of mining areas co-contaminated 

with As and Sb. In general, Indian mustard accumulated 

more than doubled As and Sb concentrations in their tissues 

compared to ryegrass. EK-assisted phytoremediation seems 

a suitable combination for the upgrade of mine-contaminated 

areas.

EK-assisted phytoremediation will allow deeper knowledge 

on the application of this hybrid technology, which assemble 

advantages from both processes, in the design of a remedia-

tion scheme.
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Fig. 17.2 Concentration of As and Sb in the shoot of Indian mustard 

(IM) and ryegrass (rye) with and without EK treatment
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18.1             Salt Marshes, Halophytes 
and Contaminants 

    Several studies (Morris et al.  1986 ; Bewers and Yeats  1989 ; 
Vale  1990 ) describe estuaries as effi cient fi lters of suspended 
particulate matter (SPM) and heavy metals, majorly through 
particle-solute interactions, fl occulation processes and settling 
down of metal-charged particles. Since the industrial revolu-
tion, large amounts of contaminants have been released to the 
atmosphere, soils and watercourses. Most of these emissions 
will be transferred in ultimate analysis into a water matrix, 
either by atmospheric deposition or by soil erosion, where 
they will stay dissolved or associated to sediment particles 
(Nriagu  1988 ; Viers et al.  2009 ). This is a very dynamic mech-
anism greatly infl uenced by the river hydrological conditions. 

 Salt marshes are natural deposits of heavy metals in the 
estuarine system (Doyle and Otte  1997 ; Williams et al. 
 1994 ). When located near polluted areas, these ecosystems 
receive large amounts of pollutants from industrial and urban 
wastes that either drifts downstream within the river fl ow or 
of waste dumping from the near industrial and urban areas 
(Reboreda and Caçador  2007 ). When metals enter salt 
marshes, they spread along with the tides and periodic fl oods 
and interact with the sediment and the biotic community 
(Suntornvongsagul et al.  2007 ). Most salt marsh plants accu-
mulate large amounts of metals in their aerial and below-
ground organs (Caçador et al.  1996 ). Their ability to 
phytostabilize those contaminants in the rhizosediment is an 
important aspect in the ecosystem self-remediative processes 
and biogeochemistry (Weis and Weis  2004 ). 

 In the last decades, phytoremediation has become a promis-
ing biotechnology for cleaning up contaminants, namely, met-
als (Cunningham et al.  1995 ; Cunningham and Ow  1996 ). 
Several works concerning a large variety of plant species have 
been published in the last decades identifying possible hyperac-
cumulator species (Salt et al.  1997 ; Brown et al.  1994 ). Besides 
accumulation, some other abilities have arisen as potential 
metal detoxifi cation mechanisms to less harmful forms, either 
by chelation (Duarte et al.  2007 ) or redox reactions, changing 
the metal’s oxidation states. However two important aspects 
must be considered when choosing the best phytoremediator 
species for a specifi c location and level of contamination: the 
biomass production ability and the ecology of the species 
(Redondo-Gómez et al.  2011 ). When considering contami-
nated wetland phytoremediation, the number of potential spe-
cies becomes reduced to a few due to the specifi cities of these 
environments, like tidal saltwater fl ooding and waterlogging. 
Even though a species is considered to fi t in this description and 
with a phytoremediative potential, it is also important to con-
sider its ecophysiological response (like oxidative feedback) to 
this metal accumulation. This oxidative feedback will be 
important to determine whether this species can tolerate high 
metal concentrations and with this maintain its ecophysiologi-
cal health and carry out the phytoremediative process. 

 Chromium is used in many industrial processes, and its 
unregulated use and dumping have led to water, sediment and 
biota contamination (Vale et al.  2008 ; Duarte et al.  2008 ,  2009 ). 
   Industrial activities such as plating, tanning, corrosion inhibi-
tion, glassware-cleaning solutions, wood preservation, metal 
fi nishing or chromite ore processing (COP), are the main 
sources of trivalent and hexavalent toxic chromium compounds 
(Barceloux  1999 ; Losi et al.  1994 ). Cr-elevated contents (up to 
600 ppm) in some phosphate fertilizers may be also a signifi -
cant source of this metal in soils, although the most hazardous 
addition of Cr to a soil is related to tannery sludge, which can 
contain up to 2.8 % of this metal (Kabata- Pendias and Pendias 
 2001 ). Estuarine areas are often affected by both these indus-
trial and agricultural activities, unbalancing their critical envi-
ronmental equilibrium (Pazos-Capeáns et al.  2010 ).  
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18.2     Chromium Sediment Storage 

 As stated before, one of the major sources of Cr supply to 
wetlands, and particularly in estuarine salt marshes, is the 
tidal fl ooding. When dissolved and particulate Cr reaches the 
salt marshes, it will be deposited in the sediments establish-
ing chemical bounds with it. This can be easily observed by 
its speciation (how Cr is bound to each of the sediment com-
ponents) as shown in Fig.  18.1 .  

 The sediments become this way the major storage pool of 
Cr in the estuarine system. As seen in Fig.  18.1 , Cr has high 
affi nity for the organic matter, establishing relatively stable 
chemical bounds (Duarte et al.  2008 ,  2009 ). In fact, Cr is 
well described in the literature as being a strong oxidizer of 
the organic matter, being even used as reagent for the deter-
mination of some of the organic components of the sedi-
ments and water due to this property.    This way, salt marsh 
sediments tend to store Cr in a rather stable form but which 
is accessible throughout oxidizable conditions or throughout 
organic matter hydrolysis, for example, by the microbial 
community (Duarte et al.  2008 ,  2009 ). This leads to shifts 
and fl uctuations in the bioavailability of Cr, making it acces-
sible to the biota. In fact, if the Cr concentrations in the estu-
arine environment are considered, the second largest pool of 
this metal appears in the roots of the halophytes.  

18.3     Chromium Natural Phytoremediation 

 Considering the case of polluted salt marshes, the metal 
cycling throughout the sediment and the vegetation becomes 
of great interest. According to several works and as stated 

before (Duarte et al.  2010 ; Caçador et al.  2009 ), it is possible 
to observe that the two major pools of heavy metals in the 
salt marshes are the sediment and the root system of resident 
species (Fig.  18.2 ). The higher metal budgets in roots cor-
roborate their increased ability for heavy metal accumula-
tion. The calculated root decomposition rates suggest that 
these metal pools are quite mobile particularly in  S. mari-
tima . This mobility is very important since it creates a cycle 
of metals between the sediment and the root system.    Although 
a higher fraction of biomass losses in the aboveground 
organs was found, their low metal concentration makes the 
detritus generated by the aboveground less contributing for 
the metal budgets. Conversely, the comparatively low losses 
of biomass in the root system generate less necromass, but 
with very high concentrations of metals. This necromass 
becomes important to the metal budget of the sediment, not 
only due to its input of heavy metals but also due to the 
increase of organic matter content of this matrix. The bioac-
cumulation of these elements in the belowground organs is 
rather mobile, being able to return to the sediment matrix due 
to necromass generation and mineralization processes sub-
due. The return of metals due to these decaying processes 
and consequent input of metals into the sediments, although 
in rather lower concentrations comparatively to the existent 
in this matrix, is very important to be considered not only 
due to the amount of metal released through this process but 
also by the metal forms it introduces into the sediment.  

 These organically bound metals were already reported as 
being one of the most important fractions of metals present 
in these sediments, being subjected to microbial degradation 
processes (Duarte et al.  2008 ), that can lead to more bioavail-
able metal forms and contamination of the pore waters. All 
this process is the equivalent to a phytoremediation process, 

  Fig. 18.1    Chromium speciation and total concentrations in sediment exposed to different levels of contamination during 6 days of repeated peri-
odic fl ooding with Cr-contaminated water       
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occurring everyday in natural ecosystem such as salt marsh, 
indicating the suitability of these halophytes as potential 
applications in promoted phytoremediation processes. This 
natural process is a well-documented ecological role of these 
ecosystems, contributing naturally for the estuarine depura-
tion and promoting the maintenance of the ecosystem eco-
logical status (   Caçador et al.  2013 ).  

18.4     Chromium-Assisted 
Phytoremediation 

 Recently, a new approach has also been taken based on this 
natural phytoremediation processes. This approach is based 
on the enhancement of this mechanism throughout the addi-
tion of chemical compounds (organic or inorganic) that 
would intervene in the phytoremediative process (Duarte 
et al.  2007 ,  2010 ). Plants can modify metal speciation 
throughout several processes, like radial oxygen loss (ROL) 
and exudation of organic acids (Sundby et al.  1998 ; Jacob 
and Otte  2004 ; Duarte et al.  2007 ). This last process is well 
documented for plants with agricultural interest (Jones  1998  
and paper herein referred), but there are much less papers 
investigating wetland plants. One of the groups of substances 
exudated by salt marsh plants are low-molecular-weight 
organic acids (LMWOA), such as malic, citric and acetic 
acids (Mucha et al.  2005 ). These LMWOA are able to 
bind to metals establishing complexes and changing their 
bioavailability (   Parker et al.  2001 ). These exudates have 
been related to nutrient uptake (   Marschner  1995 ), metal 

detoxifi cation (Ma et al.  2001 ) and microbial communication 
(Jones  1998 ) in agricultural ecosystems. The use of these 
LMWOA can be a useful tool in the so-called assisted phy-
toremediation processes improving the metal uptake by 
plants. As observed in Fig.  18.3 , the application of LMWOA 
improved not only the phyto-extractability of Cr but also in 
some cases its allocation within the plant (Duarte et al. 
 2010 ). Although some of the changes result directly from the 
application of the LMWOA in study, they are often products 
of reactions in which these molecules are involved at the root 
surface. Cr exhibited higher uptake upon application of 
organic acids. All of the applications showed important 
increases in the Cr uptake probably due to the interaction of 
Cr(III) with these organic ligands resulting in the formation 
of very mobile organic-bound Cr(III) complexes (Srivastava 
et al.  1999 ). Although the presence of manganese oxides 
could lead to the oxidation of Cr(III) to Cr(VI) and formation 
of Cr(VI) organic-bound complexes that are less taken up by 
plants, there are several side reactions that slow down this 
oxidation. These maintain the Cr(III) organic-bound com-
plexes as the more abundant species of Cr(III) (Bartlett 
 1991 ). This is in agreement with the present data, which 
shows a high increase of Cr uptake upon organic acids appli-
cation, due to the formation of this highly mobile organic-
bound Cr(III) complexes. Previous work showed that most of 
the Cr found in the roots was present in the form of Cr ace-
tate (Bluskov et al.  2005 ). This form is mostly stored in the 
cortex of the roots and lately translocated to the aboveground 
parts by conversion into Cr oxalate. In the plants treated with 
acetic acid, there was a very high increase in Cr content not 
only in the roots but also in the shoots. This should probably 
be attributed to this mechanism of acetate-oxalate conver-
sion, in contrast to what was found in the other LMWOA 
treatments where only the root Cr content increased.  

 The tenfold increase in Cr uptake observed when acetic 
acid is applied points out to a very promising technique for 
bioremediation of Cr-contaminated sediments. The potential 
environmental risk must be recognized at the early stage of 
LMWOA application. With this application, the labile    
complexes- associated metals could be absorbed and taken up 
directly by plants.    New techniques could facilitate the 
decomposition of these organo-metal complexes in the short 
term, increasing the proportion of free ions and enhancing 
the uptake by plants, thus minimizing the environmental 
risk. Metals can therefore be removed of the system by har-
vesting of the aboveground biomass. This points out to a 
research need to make the use of these environmental- 
friendly phytoextraction enhancers feasible for commercial 
phytoextraction. In addition, the use of natural compounds in 
contraposition to synthetic chelates sounds better for the 
public acceptance of phytoextraction as a technology to 
clean up metal-polluted soils.  

  Fig. 18.2    Chromium accumulation and exportations (due to senes-
cence) per square metre by  Spartina maritima  in a low polluted salt 
marsh, during a year life cycle (adapted from Couto et al.  2013 )       
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18.5     The Phyto-transformation 
of Chromium (VI) to (III) 

 Chromium has two states of oxidation, Cr (III) and Cr (VI). 
The latter has been classifi ed as a primary contaminant (Lytle 
et al.  1998 ) due to its mobility and reported harmful effects 
in animals and humans (Kortenkamp et al.  1996 ). Although 
this toxic effect is associated to Cr (VI) form, Cr is also an 
essential element in the nutrition of several organisms in its 
stable Cr (III) form (Katz and Salem  1994 ). This reduction of 
a toxic form to a stable nontoxic and benefi cial form has 
gathered the attention of several investigative teams. 
Abiotically, the reduction of Cr (VI) can occur by the reac-
tions with other ions, metallic or mineral surfaces and organic 
molecules (Wittbrodt and Palmer  1996 ). More important for 
phytoremediation proposes, the reduction of Cr (VI) to Cr 
(III) can be biologically mediated (Mikalsen et al.  1991 ; 
Stearns et al.  1995 ). Bacteria-mediated Cr (VI) to Cr (III) 
reduction pathway by a specifi c Cr reductase is well described 
(Shen and Wang  1993 ; Nies  1992 ; Romheld and Marschner 
 1983 ), although this mechanism has not been identifi ed in 
non-engineered plants. Some recent studies (Duarte et al. 
 2012 ) point out some halophyte species as potential phyto- 
converters and phyto-accumulators of Cr. This has implica-
tions both at ecological and cellular levels. Ecologically it 
was found that, for example,  H. portulacoides  could accu-
mulate very high Cr concentrations, in particular in the root 
system (Fig.  18.4 ).  

 Earlier reports pointed out in the same direction using 
non-halophyte-rooted aquatic plants (Gupta et al.  1999 ;    Sinha 
et al.  2003 ; Suseela et al.  2002 ) and registered signifi cantly 

higher values in the roots than their upper parts. High metal 
accumulation in the fi ne roots is also in agreement with ear-
lier reports (Sinicrope et al.  1992 ). Qian et al. ( 1999 ) also 
reported the highest concentration of Cr in the plant roots and 
lower level in shoots similar to other ten elements studied in 
twelve aquatic plants. Also fi eld-monitoring studies directed 
to this species showed that the main biological metal sink is 
the halophyte root system (Caçador et al.  2009 ; Duarte et al. 
 2010 ). This can be due to metal binding to organic ligands, 
thus reducing its mobility from roots to aerial parts. Another 
important aspect focused in this study (Duarte et al.  2012 ) 
was the  H. portulacoides -mediated Cr (VI) to Cr (III) reduc-
tion (Fig.  18.5 ). It was found that this species can convert 
large Cr (VI) amounts to its less toxic form. This was already 
pointed out as a defence mechanism in sediments colonized 
by  H. portulacoides , where a reduction of Cr (VI) to Cr (III) 
would have as consequence the retention, of this element, in 
Fe oxyhydroxide fraction, decreasing its bioavailability 
(Tanackovic et al.  2008 ). Lytle et al. ( 1998 ) found similar 
data concerning soluble Cr (VI) reduction by water hyacinth, 
suggesting that wetland plants uptake Cr in its less toxic 
form, throughout external reduction of Cr (VI) by their lateral 
fi ne roots, probably due to oxalate exudation.  

 This points out for two potential phytoremediative appli-
cations. Not only this species can accumulate large amounts 
of Cr withdrawn from its surrounding medium, but it can 
also convert high percentages of the remaining Cr (VI) into a 
less toxic form. This toxicity reduction is important not only 
for this plant species but also for the remaining surrounding 
biota, with a potentially essential role for environmental 
detoxifi cation. This phytoremediation potential must be 
allied to a healthy and tolerant metabolism.  

  Fig. 18.3    Chromium concentra-
tions in above- and belowground 
tissues of  Spartina maritima  
upon the application of LMWOA 
(10 mM) to its rhizosediments. 
Controls were supplemented with 
ultra-pure water only       
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18.6     Final Remarks 

 Salt marshes are very interesting fi eld laboratories to study 
metal biogeochemistry, namely, Cr. Salt marsh localization 
in estuarine systems, where large concentrations of indus-
trial activities are gathered, makes them target systems to 
store metals. Being preferentially bound to the organic mat-
ter present in the sediment, the removal of Cr throughout 
natural or enhanced processes occurs throughout plant-
mediated processes. Naturally, plants acquire during their 
life cycle nutrients from their sediments but also some 

 non-nutritional elements, like Cr, and store them in their 
 tissues. This natural ability can also be used and enhanced 
by the application of transporter molecules, like LMWOA, 
in order to increase the sediment-plant Cr transport. At this 
interface, it is also interesting to analyse the important root-
mediated process of phyto-conversion of Cr (VI) toxic form 
to the less toxic Cr (III). Again, halophytes acquire an 
important role with high conversion effi ciencies. All these 
passive and enhanced processes point out to a promising 
biotechnology using halophytes as potential cleaners of 
Cr-contaminated sediments, using environmental-friendly 
and low-cost technologies.     

  Fig. 18.4    Chromium concentration in  H. portulacoides  aerial organs and root tissues subjected to different Cr (VI) concentrations       

  Fig. 18.5    Cr (VI) to Cr (III) 
conversion percentage in both the 
considered treatments       
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19.1             Heavy Metal Pollution in Coastal 
Areas: An Introduction 

    The rapid pace of industrialization and urbanization of 
coastal areas has created several pollution-related prob-
lems in which heavy metal pollution is a major area of 
concern. Coastal areas are one of the most important places 
for human inhabitation (McKinley et al.  2011 ). Major 
world cities like Los Angeles, San Francisco, New York, 
Tokyo, Osaka, Beijing, Singapore, Hong Kong, Sidney, 
Mumbai, Dubai, etc. are located along the coastal regions 
around the world. With rapid urbanization and industrial-
ization, heavy metals are continuously carried to the estua-
rine and coastal areas from upstream of tributaries and 
from the industrial and sewage discharge. Major part of the 
anthropogenic metal load in coastal areas has a terrestrial 
source, mainly from mining and industrial activities along 
major rivers and estuaries (Mitra et al.  1995 ; Ridgway 
et al.  2003 ; Caeiro et al.  2005 ; Usero et al.  2005 ; Sundaray 
et al.  2011 ). 

 Water pollution by heavy metals is a global issue that 
needs to be addressed properly. The coastal areas where the 
terrestrial and marine ecosystems converge are of great sig-
nifi cance because a large number of plants and animals, both 
marine and estuarine, thrive in this dynamic and fragile habi-
tat. Heavy metal contamination could affect the water quality 
and bioaccumulation of metals in aquatic organisms, result-
ing in potential long-term implication on the health of 
humans and also the ecosystem (Fernandes et al.  2007 ; 
Abdel-Baki et al.  2011 ; Trivedi et al.  1995 ; Mitra et al.  1996 ). 
Pollution by heavy metals is a very serious problem due to 

their toxicity and ability to accumulate in the biota (Islam 
and Tanaka  2004 ). In many countries drinking water is pro-
duced and then supplied to different locations by desalina-
tion of seawater. The presence of high level of metals in 
seawater, especially coastal waters, poses severe problem for 
such activities. 

 Some heavy metals which are essential components in 
metabolism may become toxic when present in high con-
centration. Some of these heavy metals, like Hg, Cd, Pb, 
As, and Se, are not essential for most of the plants, since 
they do not perform any known physiological function. 
Other heavy metals like Zn, Co, Cu, Fe, Mn, Mo, and Ni 
are considered as essential elements because they are 
required for normal growth and metabolism of plants. 
These latter elements can easily lead to poisoning at higher 
concentrations. Heavy metal toxicity may result from alter-
ations of numerous physiological processes caused at cel-
lular or molecular level by inactivating enzymes. They may 
block functional groups of metabolically important mole-
cules, displace or substitute essential elements, and also 
disrupt membrane integrity. Heavy metal poisoning com-
monly results in the enhanced production of reactive oxy-
gen species (ROS) due to interference with electron 
transport activities, particularly in the chloroplast mem-
branes. Increase in ROS has several negative consequences 
like exposure of cells to oxidative stress leading to lipid 
peroxidation, biological macromolecule deterioration, 
ion leakage, membrane dismantling, and DNA-strand 
cleavage. 

19.1.1     Phytoremediation and Types 
of Phytoremediation (Defi nitions) 

 Bioremediation is one of the most applicable methods for the 
management of environmental contaminants by biological 
mechanisms (including microorganisms) in soil and water. 
Plant-based bioremediation technologies are collectively 
termed as phytoremediation. Thus, phytoremediation refers 
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to the use of the plants to clean up contaminated soil and 
water. Phytoremediation is also called green  remediation, 
agro-remediation, botano-remediation, or vegetative reme-
diation. Different techniques used in p hytoremediation are: 

19.1.1.1     Phytoextraction 
 Phytoextraction refers to the uptake of contaminants by plant 
roots and translocation within the plants. Contaminants are 
generally removed by harvesting the plants. It is one of the 
best methods to remove contaminants from soil, sediment, 
and sludge.  

19.1.1.2     Rhizofi ltration 
 In rhizofi ltration, plants, both terrestrial and aquatic, are used 
to absorb and concentrate contaminants including heavy 
metals from polluted aqueous sources in their roots.  

19.1.1.3     Phytostabilization 
 Phytostabilization refers to the use of plants to reduce the 
mobility or bioavailability of pollutants in the environment, 
thus preventing their migration to groundwater or their entry 
into food chains.  

19.1.1.4     Phytovolatilization 
 In this method plants are used in the uptake of contaminants 
from soil and waste water, transforming them into volatilized 
compound and then transpiring into the atmosphere.    

19.2     Phytoremediation of Heavy Metals 
from Coastal Waters (General) 

 It is reported that a common water hyacinth  Eichhornia 
crassipes  may serve as a phytoremediation tool for cleaning 
up of several metals from coastal areas. In a study at the 
coastal area of Ondo State in Nigeria, enrichment factor (EF) 
and translocation factor (TF) were evaluated for ten metals, 
namely, As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, V, and Zn. Heavy 
metal accumulation was observed in water as well as in the 
roots and shoots of  Eichhornia crassipes . The results indi-
cated that  Eichhornia crassipes  was able to accumulate high 
levels of Cr, Cd, Pb, and As both in the roots and shoots 
(Agunbiade et al.  2009 )   . Phytoremediation using halophytes 
could be a possible bioremediation technique to control heavy 
metal pollution in coastal environments. Phytoremediation 
using halophytes is being applied to recover polluted coastal 
lagoons (Madejón et al.  2006 ; Lone et al.  2008 ). 

19.2.1     Phytoremediation of Cadmium 

 Cadmium is not essential for plant growth and is very toxic 
to many organisms. In humans, cadmium causes several 
health problems such as damage to the kidneys and lung tis-

sues, emphysema, and carcinogenesis. It is also an endocrine 
disruptor and interferes with calcium regulation in biological 
systems (Degraeve ( 1981 ), Salem et al. ( 2000 ), and Awofolu 
( 2005 )). Cadmium is used in industrial operations to prevent 
corrosion of machinery. Plants show Cd toxicity like chloro-
sis, reddish veins and petioles, curled leaves, severe reduc-
tion in growth of roots and tops, and a number of tillers. 
 Echinochloa polystachya , a fast-growing perennial grass, is 
able to accumulate high levels of cadmium and is a good 
candidate for Cd phytoextraction. A study conducted in 
Saudi Arabia showed that the translocation factor (TF) was 
high for Cd in  Calotropis procera  (Badr et al.  2012 ).  Azolla 
pinnata  accumulates 740 mg kg −1  Cd (Rai  2008 ) and  Thlaspi 
caerulescens  and  Solanum photeinocarpum  accumulate 263 
and 158 mg kg −1  Cd, respectively (Lombi et al.  2001 ; Zhang 
et al.  2011 ). Hyperaccumulation of cadmium in  Arabidopsis 
halleri  (Cosio and Keller  2004 ; Kupper et al.  2000 ) and 
 Brassica juncea  (Salt et al.  1997 ) has also been reported.  

19.2.2     Phytoremediation of Arsenic 

 It is reported that over 137 million people in more than 70 
countries are affected by arsenic poisoning from drinking 
water (Arsenic in drinking water seen as threat, “USAToday.
com,” August 30, 2007). Arsenic poisoning or arsenicosis is 
caused by the ingestion, absorption, or inhalation of high lev-
els of arsenic. Initial symptoms of arsenic poisoning include 
headaches, confusion, diarrhea, and drowsiness. With 
increased poisoning, convulsions and changes in fi ngernail 
pigmentation (leukonychia striata) occur. In acute arsenic 
poisoning severe diarrhea, vomiting, blood in the urine, hair 
loss, cramping muscles, stomach pain, and more convulsions 
take place. Arsenic poisoning also affects the skin, lungs, 
kidneys, and liver (Test ID: ASU. Arsenic, 24 h, Urine, 
Clinical Information,     Mayo Medical Laboratories Catalog , 
Mayo Clinic. Retrieved 2012-09-25). 

 Arsenic is related to heart disease and cancer (Smith et al. 
 1992 ; Chiou et al.  1997 ). Cancers related to As in drinking 
water are reported in Taiwan, Argentina, Chile, Bangladesh, 
and India (WHO  2001 ). Arsenic pollution is also linked to 
chronic lower respiratory diseases and diabetes (Navas- 
Acien et al.  2008 ; Kile and Christiani  2008 ). Chronic expo-
sure to arsenic may result in defi ciency of vitamin A and 
night blindness (Hsueh et al.  1998 ). Arsenic poisoning ulti-
mately results in coma and death. As (as arsenate) is an ana-
logue of phosphate and interferes with essential cellular 
processes such as oxidative phosphorylation and ATP syn-
thesis (Tripathi et al.  2007 ). Hence, removal of arsenic from 
water is of prime importance. 

 Some marine algae, which are constantly exposed to arse-
nate in seawater, have the biochemical capability to convert 
arsenate to harmless organo-arsenic compounds intercellu-
larly (Edmonds and Francesconi  1987 ).  Pteris vittata  
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(Chinese brake fern) can accumulate up to 95 % of the arse-
nic from soil in its fronds (Ma et al.  2001 ;    Zhang et al.  2011 ). 
This hyperaccumulator fern species can be used in phytore-
mediation of arsenic (Wilkins and Salter  2003 ). Some prop-
erties like high biomass, fast growth, versatility and 
hardiness, extensive root system, high As accumulation in 
fronds, perennial, resistance to disease and pests, diverse 
ecological niches, and mycorrhizal associations of  P. vittata  
make it an ideal candidate for phytoremediation of arsenic. 
The plant is reported to accumulate approximately 
1,000 mg kg −1  As (Baldwin and Butcher  2007 ). 

 Another study suggested that the level of As in  P. vittata  is 
8,331 mg kg −1  (Kalve et al.  2011 ). Besides  P. vittata  four 
other species belonging to the genus  Pteris , namely,  P. biau-
rita, P. cretica, P.  quadriaurita, and  P. ryukyuensis , also accu-
mulate high levels of arsenic, i.e., ~2,000, ~1,800, ~2,900, 
and 3,647 mg kg −1 , respectively (Srivastava et al.  2006 ). In 
recent years much progress has been made in understanding 
As tolerance and its hyperaccumulation by  P. vittata.  However, 
more research on  P. vittata  is needed and certain technical 
barriers are to be overcome.  Corrigiola telephiifolia , which 
accumulates 2,110 mg kg −1  As, is also a known hyperaccumu-
lator species for arsenic (Garcia-Salgado et al.  2012 ). In sea-
water, marine algae can transform arsenate into nonvolatile 
methylated arsenic compounds (methanearsonic and dimeth-
ylarsinic acids). It is a benefi cial step to the primary producers 
and also to the higher trophic levels, since nonvolatile methyl-
ated arsenic is much less toxic to marine invertebrates.  

19.2.3     Phytoremediation of Lead 

 Lead is an extremely toxic heavy metal, which can cause 
severe problems in children such as impaired development, 
reduced intelligence, short-term memory loss, learning dis-
abilities, and coordination problems. High level of lead 
causes renal failure and increased risk for development of 
cardiovascular disease (Salem et al.  2000 ; Padmavathiamma 
and Li  2007 ; Wuana and Okieimen  2011 ; Iqbal  2012 ). 
Several plant species have been reported as important hyper-
accumulators of lead. A leguminous shrub  Sesbania drum-
mondii  and several  Brassica  species can accumulate 
signifi cant amounts of lead in their roots (Blaylock et al. 
 1997 ; Sahi et al.  2002 ; Wong et al.  2001 ).  Piptatherum mili-
aceum  accumulate lead directly correlating to soil concentra-
tions and do not show any symptoms of toxicity for 3 weeks. 
 Sesbania drummondii  can tolerate lead levels up to 
1,500 mg L −1  and accumulate 40 g kg −1  shoot dry weight 
(Sahi et al.  2002 ). Lead is relatively insoluble because most 
of the lead is accumulated in the stems and not in the leaves 
(Kumar et al.  1995 ). The main problem for the phytoreme-
diation of lead is its extremely low solubility (Huang et al. 

 1997 ). The aquatic weed,  Eichhornia crassipes , has phytore-
mediation potential for removal of lead from effl uent 
(Sukumaran  2013 ).  

19.2.4     Phytoremediation of Copper 

 Copper is an essential element and enzyme cofactor for oxi-
dases like cytochrome oxidase, superoxide dismutase, and 
tyrosinases but some plants and animals can accumulate even 
toxic levels of copper. High levels of copper can cause brain 
and kidney damage, liver cirrhosis and chronic anemia, and 
stomach and intestinal irritation (Salem et al.  2000 ; Wuana 
and Okieimen  2011 ).  Salix nigra  can accumulate more cad-
mium and copper but more studies are necessary to determine 
the feasibility of this species for phytoremediation (Kuzovkina 
et al.  2004 ).  Eichhornia crassipes  is estimated to accumulate 
high levels of copper and could be potentially used for phy-
toremediation (Liao and Chang  2004 ). Aquatic weed,  Typha 
latifolia , can prominently remove copper, cadmium, and 
arsenic from effl uent (Sukumaran  2013 ).  Eleocharis acicu-
laris  which hyperaccumulates Cu at 20,200 mg kg −1  may be 
considered as a potential phytoremediation species for 
removal of copper (Sakakibara et al.  2011 ).  

19.2.5     Phytoremediation of Chromium 

 High level of chromium causes cancer and extensive hair 
loss (Salem et al.  2000 ).  Crotalaria juncea  and  Crotalaria 
dactylon  can remediate Cr and Cu (Saraswat and Rai  2009 ). 
Tumbleweeds  Salsola kali  (Gardea-Torresday et al.  2005 ) 
and  Gynura pseudochina  are known to be Cr hyperaccumu-
lators (Mongkhonsin et al.  2011 ).  Pteris vittata  is a potential 
chromium phytoremediation species which accumulates 
20,675 mg kg −1  Cr (Kalve et al.  2011 ). The species is 
also considered as phytoremediation tool for arsenic 
management.  

19.2.6     Phytoremediation of Manganese 

 Manganese has been reported for its negative effects on 
the respiratory and nervous system. Symptoms of man-
ganese poisoning are hallucinations, forgetfulness, and 
nerve damage. Higher levels of manganese can also cause 
Parkinson disease, lung embolism, bronchitis, and impo-
tency. Manganese can cause both toxicity and defi ciency 
symptoms in plants.  Chengiopanax sciadophylloides  is a Mn 
hyperaccumulator species and ZIP family transporter genes 
have been isolated from this species (Mizuno et al.  2008 ). 
 Austromyrtus bidwillii  (Bidwell et al.  2002 ),  Phytolacca 
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americana  (Pollard et al.  2009 ), and  Maytenus founieri  
(Fernando et al.  2008 ) are capable of Mn hyperaccumula-
tion.  Schima superba  is capable of hyperaccumulating Mn to 
a level of 62,412.3 mg kg −1  (Yang et al.  2008 ).  

19.2.7     Phytoremediation of Nickel 

 Nickel can cause allergic dermatitis known as nickel itch. 
Inhalation of Ni can cause cancer of the lungs, nose, throat, 
and stomach. Ni is hematotoxic, immunotoxic, neurotoxic, 
genotoxic, reproductive toxic, pulmonary toxic, nephrotoxic, 
and hepatotoxic metal. Furthermore it causes hair loss 
(Salem et al.  2000 ; Khan et al.  2007 ; Das et al.  2008 ). 
Ni-hyperaccumulating plants are  Berkheya coddii  (Robinson 
et al.  1997 ; Moradi et al.  2010 ),  Sebertia acuminate  (Jaffre 
et al.  1976 ; Perrier  2004 ),  Phidiasia lindavii  (Reeves et al. 
 1999 ), and  Bornmuellera kiyakii  (Reeves et al.  2009 ).  Isatis 
pinnatiloba  can accumulate Ni to a level of 1,441 mg kg −1  
(Altinozlu et al.  2012 ). Five species belonging to the genus 
 Alyssum , namely,  Alyssum bertolonii ,  A. caricum, A. ptero-
carpum, A. murale , and  A. corsicum , hyperaccumulate Ni 
with levels of 10,900, 12,500, 13,500, 15,000, and 
18,100 mg kg −1 , respectively (Li et al.  2003 ). 

 A different study showed that  Alyssum murale  hyperac-
cumulates 4,730–20,100 mg kg −1  and  Alyssum markgrafi i  
accumulates 19,100 mg kg −1  Ni, respectively (Bani et al. 
 2010 ).  Alyssum serpyllifolium  accumulates 10,000 mg kg −1  
Ni (Prasad  2005 ). Hence it is evident that all the seven differ-
ent  Alyssum  species are capable of hyperaccumulating Ni 
and can be considered as a potential candidate for 
 phytoremediation of nickel. After phytoremediation, plant 
biomass containing accumulated heavy metals can be com-
busted to get energy and the remaining ash is called bio-ore 
which can be processed for the recovery or extraction of the 
heavy metals. Phytomining is commercially used for Ni and 
it is less expensive compared to conventional extraction 
methods. Using  Alyssum murale  and  Alyssum corsicum , we 
may grow biomass containing 400 kg Ni ha −1  with produc-
tion costs of $250–500 ha −1 . Considering Ni price of $40 kg −1  
(in 2006, Ni metal was trading on the London Metal 
Exchange at more than $40 kg −1 ), Ni phytomining is consid-
ered a highly profi table agricultural technology (crop 
value = $16,000 ha −1 ) for Ni-contaminated soils (   Chaney 
et al.  2007 ). This bio- based mining would be more attractive 
since it would be helpful in limiting environmental pollution 
(Siddiqui et al.  2009 ).  

19.2.8     Phytoremediation of Vanadium 

 Vanadium is used mainly to produce certain alloys, and V 2 O 5  
is used as a catalyst in manufacturing sulfuric acid and 
maleic anhydride and in making ceramics. The blood cells of 

some marine animals like ascidians hyperaccumulate vana-
dium which is 10 7  times higher than the vanadium found in 
seawater (Trivedi et al.  2003 ). In humans the acute effects of 
vanadium are irritation of the lungs, throat, eyes, and nasal 
cavities. Very little information is available on the phytore-
mediation of this metal. In seawater, many marine algae 
accumulate  vanadium which is utilized in the functioning of 
vanadium-dependent haloperoxidases. The levels of vana-
dium in sediments, roots, stems, and leaves of a mangrove 
species  Avicennia marina  have been reported from Mtoni, 
Msimbazi   , and Mbweni mangrove ecosystems (Mremi and 
Machiwa  2003 ). Among mushrooms,  Amanita muscaria  
concentrates vanadium to levels of 100 times (2 mmol kg −1  
dry weight) than those found in other mushrooms and higher 
plants.  

19.2.9     Phytoremediation of Zinc 

 Overdosage of zinc can cause dizziness and fatigue (Hess and 
Schmid  2002 ). The unicellular green alga,  Dunaliella salina , 
showed high tendency for zinc accumulation and is a candi-
date for phytoremediation of zinc (Magda  2008 ). Studies 
conducted in China have identifi ed  Sedum alfredii  as hyper-
accumulator for Zn and Cd, and it has been intensively inves-
tigated by various researchers in their studies conducted in 
hydroponics and/or the uncontaminated and contaminated 
soils.  Thlaspi caerulescens  (Kupper and Kochian  2010 ), 
 Arabis gemmifera, A. paniculata  (Kubota and Takenaka 
 2003 ; Tang et al.  2009 ),  Arabidopsis halleri  (Zhao et al. 
 2000 ), and  Picris divaricata  (Du et al.  2011 ) also have the 
capability to hyperaccumulate zinc.  Eleocharis acicularis  
which accumulates 11,200 mg kg −1  Zn is a potential candi-
date for zinc phytoremediation (Sakakibara et al.  2011 ).  

    19.2.10  Phytoremediation of Metals 
by Mangroves 

 Located between marine and terrestrial environments, man-
groves are transitional coastal ecosystems which are found 
mostly in the tropical and subtropical regions. In these 
regions, about 75 % of the coastline and nearly 18 million 
hectares are occupied by mangrove forests (Kathiresan and 
Qasim  2005 ). There are more than 14.5 million hectares of 
mangrove forests in the Indo-Pacifi c region (6.9 million), 
Africa (3.5 million), and the Americas (4.1 million) Sahoo 
and Dhal ( 2009 ). The mangrove ecosystems are of great eco-
logical and economic signifi cance. They serve as buffer zone 
and provide primary protection against storm surges and 
coastal erosion. Besides this, they are also an important nurs-
ery for various marine and estuarine faunas including fi sh, 
crustaceans, etc. The global economic value (USD) of man-
grove habitat is estimated as 181 billion (Alongi  2002 ). 
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 One excellent example of mangrove ecosystem is 
Sunderbans which is located in India and Bangladesh. The 
Sunderbans is the single largest block of tidal halophytic 
mangrove forest listed in the UNESCO world heritage list 
(  http://whc.unesco.org/en/list    ) which is regarded as a biodi-
versity hot spot. This region is also regarded as the world’s 
largest natural nursery where a large number of marine and 
estuarine species come to breed and the juveniles stay back 
to exploit its rich natural resources (Trivedi et al.  2007 ). 
Several researches on heavy metal accumulation by different 
fl oras and faunas in this region have been reported (Mitra 
et al.  1994a ,  b ,  1995 ,  1996 ; Trivedi et al.  1995 ). A compara-
tive study on the heavy metal accumulation by different man-
grove plants in this area was conducted (Mitra et al.  1994c ). 

 Mangroves act as sink or buffer and remove/immobilize 
metals before reaching the nearby aquatic ecosystems like the 
estuaries and creeks. Due to high proportion of fi ne clays, 
organic matter and low pH, mangrove mud effectively seques-
ter metals, often immobilized as sulfi des in anaerobic sedi-
ments. Mangroves are considered to be tolerant and signifi cantly 
adaptive to the presence of heavy metals (Chiu and Chou  1991 ; 
Walsh et al.  1979 ). A concentration of trace metals is reported 
for at least 33 mangrove species (Lewis et al.  2011 ). 

 The widely distributed fast-growing mangrove plant 
 Rhizophora mucronata  has the potential for metal 
 phytoremediation (Pahalawattaarachchi et al.  2009 ). 
 Sonneratia caseolaris , a mangrove species belonging to fam-
ily Sonneratiaceae, is found near the banks of tidal rivers in 
brackish water and provides essential congregating place for 
fi refl ies. The fermented juices of this mangrove species have 
the ability to arrest hemorrhage and the half-ripe fruit is used 
to treat coughs (Perry  1980 ). Recent studies showed that 
 Sonneratia caseolaris  possess the capacity to take up selected 
heavy metals through its roots and store certain heavy metals 
in its leaves without any sign of injury, thereby suggesting 
the potential of  Sonneratia caseolaris  as a phytoremediation 
species (Nazli and Hashim  2010 ). Bioaccumulation of heavy 
metals by certain mangrove species reveals that these plants 
can act as bio-purifi er or biofi lter (Zaman et al.  2013 ). The 
concentration of heavy metals in different parts of mangrove 
plants may be effi ciently used for water quality monitoring 
program (Mitra et al.  2004 ). Different mangroves can be 
used for phytoextraction, phytostabilization, rhizofi ltration, 
and phytovolatilization. Table  19.1  shows examples of trace 
metal bioaccumulation in mangrove tissue.

       19.2.11  Molecular Mechanisms of Metal 
Phytoremediation 

 Heavy metal ions that are incorporated to the tissues of living 
organisms can bind to macromolecules like protein. In order 
to understand the mechanism of accumulation of the metal, 
it is important to search for the metal-binding proteins. 

Since these proteins are in turn encoded by specifi c genes, 
the searching and subsequent analysis of those genes pro-
vides important clues for the hyperaccumulation of the met-
als. The analysis of the expressed sequence tags    (ESTs) 
plays an important role in elucidating the metal hyperaccu-
mulation sites. It is noted that the frequency of ESTs for a 
gene encoding metal-binding protein in each developmental 
stage and in the adult tissue roughly refl ects the level of 
mRNA expression. 

 If the cDNA encoding the metal-binding protein is avail-
able, then the recombinant metal-binding protein can be 
produced in the laboratory. In this case, the cDNA encoding 
the metal-binding protein is ligated to a cloning vector by 
the process of genetic engineering. The recombinant DNA is 
then transformed using suitable competent cells. These bac-
terial cells when grown in proper condition in appropriate 
culture medium produce the metal-binding protein of inter-
est. During the process of isolation of metal-binding protein, 
sometimes it is diffi cult to purify the protein from the mixture 
of several proteins. This situation often arises with the newly 
discovered metal-binding proteins or their genes which are 
not well characterized. In such a situation, it is a good idea 
to prepare fusion proteins. For example, vanadium- binding 
protein (CiVanabin5) was ligated to maltose-binding protein 
(MBP) to produce fusion protein CiVanabin5- MBP. This 
fusion protein was then subjected to amylose resin column 
chromatography   . The fusion protein CiVanabin5-MBP was 
eluted from the column using a buffer containing maltose. 
Subsequently, the junction between the CiVanabin5 and 
MBP was cut, and metal-binding assay was conducted using 
immobilized metal ion affi nity chromatography or IMAC 
(Trivedi et al.  2003 ). 

 There has been signifi cant progress in determining the 
molecular basis for metal accumulation, which provides a 
strong scientifi c basis to outline several strategies for phy-
toremediation of metals. Biotechnological approaches are 
now used to produce improved plant varieties for enhancing 
natural hyperaccumulation of heavy metals. After mobiliza-
tion, metals fi rst bind to the cell wall, which is an ion 
exchanger of comparatively low selectivity. Subsequently, 
transport systems and intracellular high-affi nity binding sites 
then mediate and help the uptake across the plasma mem-
brane through secondary transporters such as channel pro-
teins and/or H + -coupled carrier proteins (Chaney et al.  2007 ). 
In recent years several membrane transporter gene families 
have been identifi ed and characterized by heterologous com-
plementation screens and sequencing of ESTs and plant 
genome studies. 

 Many cation transporters have been identifi ed in recent 
years, most of which are Zn-regulated transporter (ZRT), 
Fe-regulated transporter (IRT), natural resistance-associated 
macrophage proteins (NRAMP), Al-activated malate trans-
porter (ALMT), cation diffusion facilitator (CDF), P-type 
ATPase (heavy metal associated), yellow stripe-like (YSL), 
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copper transporter, and nicotianamine synthase (NAS) 
(Guerinot  2000 ; Williams et al.  2000 ;    Talke et al.  2006 ; van 
de Mortel et al.  2006 ; Kramer et al.  2007 ; Memon and 
Schroder  2009 ; Maestri et al.  2010 ) (Table  19.2 ). After its 
entry into the plant, further movement of metal-containing 
sap from roots to the aerial parts is controlled by root pres-
sure and also transpiration pull (Robinson et al. 2003).

   Thereafter, transport of the metal to the shoot primarily 
takes place through the xylem. Because metals are extremely 
toxic at high intracellular concentrations, plants generally 
catalyze redox reactions and alter the chemistry of these 
metal ions in order to allow their accumulation in nontoxic 
forms. Two such examples are reduction of Cr 6+  to Cr 3+  in 
 Eichhornia crassipes  (Lytle et al.  1998 ) and reduction of 
As 5+  to As 3+  in  B. juncea  (Pickering et al.  2000 ). Some heavy 
metals like Zn, Cd, and Pb do not occur in different oxidation 
states. Alternatively, some intracellular metals are detoxifi ed 
by binding to low molecular mass organic compounds, by 
localization in the vacuoles as a metal-organic acid complex, 
or by binding to histidine (Persans et al.  1999 ; Kramer et al. 
 2000 ). In the case of metals like Zn, there are various mecha-
nisms for regulation of cytoplasmic metal concentration 
which include sequestration in a subcellular organelle to low 
molecular mass organic ligands, low uptake across the 
plasma membrane, and precipitation as insoluble salts and 

active extrusion across the plasma membrane into the apo-
plast (Brune et al.  1994 ). 

 The application of molecular and genetic engineering 
technologies led to the well understanding of mechanisms of 
heavy metal tolerance and/or accumulation in plants. As a 
consequence, several transgenic plants with increased resis-
tance and uptake of heavy metals were developed for the pur-
pose of heavy metal phytoremediation. Once the rate-limiting 
steps for uptake, translocation, and detoxifi cation of metals 
in hyperaccumulating plants are identifi ed, precise and 
proper construction of transgenic plants can be achieved 
with improved applicability of the phytoremediation tech-
nology (Yang et al.  2005 ). 

 An excellent biotechnological approach for enhancing the 
potential for metal phytoremediation, by the method of phy-
toextraction, may be to improve the growth rate of hyperac-
cumulator plants through selective breeding or by the transfer 
of metal hyperaccumulation genes to high biomass species. 
Recently, somatic hybrids have been generated between 
 Thlapsi caerulescens  and  Brassica napus . High biomass 
hybrids selected for Zn tolerance are capable of accumulat-
ing Zn level that would have been toxic to  B. napus  (Brewer 
et al.  1999 ). This result indicates that the transfer of the metal 
hyperaccumulating phenotype is quite feasible. It was also 
noticed that somatic hybrids from  T. caerulescens  and 

   Table 19.2    Important metal transporter genes in different plant species involved in heavy metal tolerance and accumulation (Bhargava et al.  2012 )   

 Family  Gene  Plant  Metal transported  References 

 Zn-regulated transporter (ZRT)   zip1-12    Arabidopsis thaliana   Zn  Weber et al. ( 2004 ); Roosens et al. ( 2008a ,  b ) 
  zip4    Oryza sativa   Zn  Ishimaru et al. ( 2005 ) 
  zip    Medicago truncatula   Zn  Lopez-Millan et al. ( 2004 ) 
  znt1-2    T. caerulescens   Zn  van de Mortel et al. ( 2006 ) 

 Fe-regulated transporter (IRT)   irt1    Arabidopsis thaliana   Fe  Kerkeb et al. ( 2008 ) 
  irt1-2    Lycopersicon esculentum   Fe  Bereczky et al. ( 2003 ) 
  irt1-2    T. caerulescens   Fe  Schikora et al. ( 2006 ); Plaza et al. ( 2007 ) 

 Natural resistance-associated 
macrophage proteins (NRAMP) 

  nramp1-3    Lycopersicon esculentum   Fe  Bereczky et al. ( 2003 ) 
  nramp4    Thlaspi japonicum   Fe  Mizuno et al. ( 2005 ) 
  nramp1    Malus baccata   Fe  Xiao et al. ( 2008 ) 

 Cation diffusion facilitator (CDF)   mtp1    Arabidopsis thaliana   Zn  Kawachi et al. ( 2008 ) 
  mtp1    Arabidopsis halleri   Zn  Willems et al. ( 2007 ) 
  mtp1    Thlaspi goesingense   Zn, Ni  Kim et al. ( 2004 ) 
  mtp1    Nicotiana tabacum   Zn, Co  Shingu et al. ( 2005 ) 

 Al-activated malate transporter 
(ALMT) 

  almt1    Triticum  sp.  Al  Sasaki et al. ( 2004 ) 
  almt1    Secale cereale   Al  Collins et al. ( 2008 ) 

 P-type ATPase (heavy metal 
associated) 

  hma8    Glycine max   Cu  Bernal et al. ( 2007 ) 
  hma9    Oryza sativa   Cu, Zn, Cd  Lee et al. ( 2007 ) 
  hma4    Arabidopsis halleri   Cd  Courbot et al. ( 2007 ) 
  hma3    Arabidopsis thaliana   Co, Zn, Cd, Pb  Morel et al. ( 2008 ) 

 Nicotianamine synthase (NAS)   nas2, nas3    Arabidopsis halleri   Zn  Talke et al. ( 2006 ) 
 Copper transporter   copt1    Arabidopsis thaliana   Cu  Sancenon et al. ( 2004 ) 

 Andres-Colas et al. ( 2010 ) 
 Yellow stripe-like (YSL)   ysl2    Arabidopsis thaliana   Fe, Cu  DiDonato et al. ( 2004 ) 

  ysl3    T. caerulescens   Fe, Ni  Gendre et al. ( 2006 ) 
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 B. juncea  were also able to remove signifi cant amounts of Pb 
(Gleba et al.  1999 ). 

 There are several reports on the bioengineered plants that 
are tolerant to the presence of toxic levels of As (Lee  2003 ), 
Cd (Kawashima et al.  2004 ), Se (Berken et al.  2002 ), and Zn, 
Cr, Cu, and Pb (Bennet et al.  2003 ). A combination of trans-
porter genes has also been used in rapidly growing plant spe-
cies leading to promising results. Transgenic  B. juncea  
showed higher uptake of Se and enhanced Se tolerance than 
the wild species (Pilon-Smits et al.  1999 ; Van Huysen et al. 
 2004 ). In order to enhance Se tolerance, the selenocysteine 
methyltransferase (SMT) gene has been transferred from the 
Se hyperaccumulator  A. bisulcatus  to Se-non-tolerant  B. jun-
cea . SMT transgenic plants of  B. juncea  grown in a contami-
nated soil were able to accumulate 60 % more Se than the 
wild-type plant (Zhao and McGrath  2009 ). 

 Although transgenic plant approach is promising, only 
very few studies have been performed till now under fi eld 
conditions (Zhao and McGrath  2009 ). It is also noticed that 
accumulation and tolerance of heavy metals and thus phy-
toremediation potential of a given plant are controlled by 
many genes, so that genetic manipulations to improve these 
traits in fast-growing plants will require to change the expres-
sion levels in a number of genes, rather than a single gene 
and to cross them to determine the number of genes involved 
and their characteristics. Functional assay, expression, and 
regulations of genes involved in metal hyperaccumulation, 
uptake, root-to-shoot translocation, detoxifi cation, and/or 
sequestration mechanisms need to be fully elucidated in 
order to make the transgenic metal phytoremediation tech-
nique successful.      
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20.1             Introduction 

 Rapid industrialization and urbanization have resulted in the 
generation of large quantities of aqueous effl uents, many of 
which contain high levels of toxic pollutants (Krishnani and 
Ayyappan  2006 ; Vijayaraghavan and Yun  2008 ). The deleteri-
ous effects of organic and inorganic pollutants on ecosystems 
and on human health are well known, and much expenditure 
is devoted to industrial treatment methods to prevent or limit 
discharges. Other than physical and chemical methods of 
treatment, biological methods have been in place for many 
years such as standard sewage and water purifi cation treat-
ments as well as auxiliary reed bed and wetlands approaches 
(Gadd  2009 a). Various physicochemical and biological pro-
cesses are usually employed to remove pollutants from indus-
trial wastewaters before discharge into the environment (Hai 
et al.  2007 ). In the case of treatment of adsorptive pollutants 
like heavy metals and ionic dyes, however, most of the con-
ventional treatment processes, especially chemical precipita-
tion or coagulation, become less effective and more expensive 
when the adsorbates are in a low concentration range (Crini 
 2006 ; Vieira and Volesky  2000 ; Volesky  2007 a). 

 The use of biosorbents for the removal of toxic pollutants 
or for the recovery of valuable resources from aqueous 
wastewaters is one of the most recent developments in envi-
ronmental or bioresource technology (Vijayaraghavan and 
Yun  2008 ; Volesky  2007 a; Aksu  2005 ; Sağ and Kutsal  2001 ). 
These technologies offer many advantages compared to 
the conventional ones such as low cost, high effi ciency, the 

minimization of chemical or biological sludges, the ability to 
regenerate biosorbents, and the possibility of metal recovery 
following adsorption (Volesky  2007 a). Although biosorption 
of heavy metals or dyes has become very popular, their high 
cost and low effi ciency have limited their commercial use in 
actual industrial scenarios (Vijayaraghavan and Yun  2008 ). 

 Several treatment technologies have been developed to 
remove heavy metal ions from industrial wastewaters and 
other effl uents. These include membrane processing, evapo-
ration, chemical precipitation, coagulation, ion exchange, 
electrolysis, and adsorption (Gadd  1990 ; Feng et al.  2004 ). 
However all these methods involve high operating cost and 
may produce large volume of sludge which creates further 
disposal problem. The major advantages of adsorption over 
conventional treatment methods include low cost, high 
 effi ciency, minimization of chemical sludge, regeneration of 
biosorbent, and possibility of metal recovery (Sud et al. 
 2008 a; Kaur et al.  2012 ). 

  Sorption  is a term used for both absorption and adsorp-
tion; these terms are often confused.  Absorption  is the incor-
poration of a substance in one state into another different 
state (i.e., liquids being absorbed by a solid or gases being 
absorbed by water).  Adsorption  is the physical adherence or 
bonding of ions and molecules onto the surface of the solid 
material (Gadd  2009 b).  Biosorption  may be simply defi ned 
as  the removal of substances from solution by biological 
material . Such substances can be organic and inorganic 
and in soluble or insoluble forms. Biosorption is a physico-
chemical process and includes such mechanisms as absorp-
tion, adsorption, ion exchange, surface complexation, and 
precipitation. It is a property of living and dead biomass (as 
well as excreted and derived products): metabolic processes 
in living organisms may affect physicochemical biosorption 
mechanisms, as well as pollutant bioavailability, chemical 
speciation, and accumulation or transformation by metabo-
lism-dependent properties (Gadd  2009 a).  Sorbates : a wide 
range of target sorbates have been removed from aqueous 
solutions using biosorbents including metals, dyes, fl uoride, 
phthalates, pharmaceuticals, etc. (Michalak et al.  2013 ). 
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  Biosorbents : a wide range of biomaterials available in nature 
has been employed as biosorbent for the desired pollutant 
removal. All kinds of microbial, plant, and animal biomass 
and their derivative products have received great interest in 
a variety of ways and in relation to a variety of substances 
(Volesky  1990a ; Volesky  2003a ; Al-Masri et al.  2010 ). 
However, in recent years attention has been driven toward 
the agricultural waste materials, polysaccharides, and indus-
trial waste biomaterials (Witek-Krowiak and Reddy  2013 ; 
Witek-Krowiak et al.  2011 ; Reddy et al.  2012 ; Blázquez 
et al.  2011 ). Since Hecker fi rst reported a quantitative study 
on the copper uptake by fungal spores of  Tilletia tritici  
and  Ustilago crameri  in 1902 (McCallan and Miller  1956 ; 
Muraleedharan et al.  1991 ), over 3,000 research articles on 
biosorption have been published in different journals from 
many different countries. In addition, about 70 review papers 
and some books have appeared about biosorption phenom-
ena, equilibrium and kinetic modeling, reactor operation, and 
application to real industries (John Wase and Forster  1997 ; 
Volesky  1990b ; Volesky  2004 ). However, for general read-
ers, access to these special books or perusal of the large num-
ber of papers available on this topic is challenging. In many 
review papers, biosorptive capacities of various biomass 
types have been quantitatively compared (Vijayaraghavan 
and Yun  2008 ; Aksu  2005 ; Volesky and Holan  1995a ; 
Ahluwalia and Goyal  2007 a; Bishnoi and Garima  2005 ; 
Gupta and Mohapatra  2003 ; Kaushik and Malik  2009 ; 
Lodeiro et al.  2006 ; Mack et al.  2007 ; Sağ  2001 ; Wan Ngah 
and Hanafi ah  2008 ; Romera et al.  2006 ). In some cases, the 
uptake of heavy metals by biomass reached as high as 50 % 
of its dry weight (Vieira and Volesky  2000 ; Volesky  1994 ). 
Further, a vast array of biological materials, especially bac-
teria, cyanobacteria, algae (including microalgae, macroal-
gae, seaweeds), yeasts, fungi, and lichens, have drawn much 
attention for the removal and recovery of heavy metal ions 
due to their good performance, low cost, and availability in 
large quantities. Because of their abundant chelating func-
tional groups, biological materials have greater affi nity for 
metal ions (Volesky  2007 b). 

 It was believed that by using this new method in which bio-
mass is used as a sorbent, the toxic pollutants could be selec-
tively removed from aqueous solutions to desired low levels. 
The remarkable properties of lichens in the transformation and 
detoxifi cation of organic and inorganic pollutants are well 
known, and many processes have received attention in the gen-
eral area of environmental biotechnology and microbiology. 

20.1.1     Mechanism: Biosorbent–Sorbate 
Interactions 

 The importance of any given group for biosorption of a cer-
tain pollutant by a certain biomass depends on various fac-
tors, including the number of reactive sites in the biosorbent, 

accessibility of the sites, chemical state of the sites (i.e., 
availability), and affi nity between the sites and the particular 
pollutant of interest (i.e., binding strength) (Vieira and 
Volesky  2000 ). Biosorption of metals or dyes occurs mainly 
through interactions such as ion exchange, complexation, 
adsorption by physical forces, precipitation, and entrapment 
in inner spaces (Sud et al.  2008 b; Park et al.  2010 ). 

 The biosorption process involves interaction between the 
biosorbent (solid phase) and a solvent (liquid phase) contain-
ing the dissolved species to be sorbed. This phenomenon can 
be explained by different mechanisms, complexation, chemi-
sorption, adsorption on surface and pores, ion exchange, che-
lation, adsorption by physical forces, etc. (Sud et al.  2008 a). 
The biosorption continues till equilibrium is maintained 
between the amount of sorbed species and its portion remain-
ing in the solution. The extent of biosorbent affi nity for the 
dissolved species determines its distribution between the solid 
and liquid phase. Among the different species dissolved in the 
liquid phase, metal biosorption is a two-step process, where 
the fi rst step involves a stoichiometric interaction between the 
metal ions and the reactive functional groups forming mono-
layer on the cell wall and the second step is an inorganic depo-
sition of increased amounts of metals (Kaur et al.  2012 ). 

 In general, dead biomass were preferred as biosorbent; 
most of the biosorbents used were of dead biomass; this 
exhibits specifi c advantages in comparison with the use of liv-
ing microorganisms: dead cells can be easily stored or used 
for longer time periods, dead biomass is not the subject to 
metal toxicity limitations and does not require nutrients, and 
biosorbents can be easily desorbed from the metal ions and 
reused (Baysal et al.  2009 ; Selatnia et al.  2004 ). However, the 
use of nonliving biomass in powdered form displays some 
disadvantages such as diffi culty in the separation of biomass 
from the reaction system, mass loss after regeneration, poor 
mechanical strength, and small particle size which makes it 
diffi cult to use in batch and continuous systems (Michalak 
et al.  2013 ; Arica et al.  2004 ). On the other hand, immobiliza-
tion is a straightforward method to overcome these obstacles.  

20.1.2     Process Factors Infl uencing Biosorption 

 For the industrial application of biosorption technology for 
pollutant removal, it is very important to investigate the 
removal effi ciency of a given biosorbent for the target pollut-
ant. Pollutant uptake can involve different types of biosorp-
tion processes that will be affected by various physical and 
chemical factors, and these factors will determine the overall 
biosorption performance of a given biosorbent (i.e., its 
uptake rate, its specifi city for the target, and the quantity of 
target removed) (Park et al.  2010 ). 

 These are many factors that can affect biosorption. 
Physical and chemical treatments such as boiling, drying, 
autoclaving, and mechanical disruption will affect binding 
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properties, while chemical treatments such as alkali treatment 
often improve biosorption capacity (Wang and Chen  2006 ). 
Growth and nutrition of the biomass and age can also infl u-
ence biosorption due to changes in cell size, wall composi-
tion, extracellular product formation, etc. The surface area to 
volume ratio may be important for individual cells or parti-
cles, as well as the available surface area of immobilized bio-
fi lms. In addition, the biomass concentration may also affect 
biosorption effi ciency with a reduction in sorption per unit 
weight occurring with increasing biomass concentration (de 
Rome and Gadd  1987a ). Apart from these, physicochemical 
factors such as pH, the presence of other anions and cations, 
metal speciation, pollutant solubility and form, and tempera-
ture may also have an infl uence. With living cell systems, the 
provision of nutrients and optimal growth conditions is an 
obvious requirement (Gadd  2009 a). Among these factors, the 
pH appears to be the most important regulator of the biosorp-
tive process. In general, as solution pH increases, the biosorp-
tive removal of cationic metals or basic dyes is also increased, 
while that of anionic metals or acidic dyes is reduced (Park 
et al.  2010 ). Metal biosorption has frequently been shown to 
be strongly pH dependent in almost all systems examined, 
including bacteria, cyanobacteria, algae, and fungi.  

20.1.3     Kinetics and Equilibrium Modeling 

 A variety of models have been used to characterize biosorp-
tion (de Rome and Gadd  1987a ; Sag et al.  1998 ; Volesky 
et al.  2003 ; Volesky  2003b ; Yang and Volesky  2000 ; Chen 
et al.  2007 ; Beolchini et al.  2006 ; Pagnanelli et al.  2004a ; 
Pagnanelli et al.  2004b ; Pagnanelli et al.  2003 ; Beolchini 
et al.  2001 ; Volesky and Holan  1995b ). These range from 
simple single component models, of which the Langmuir 
and Freundlich models are probably the most widely used, to 
complex multicomponent models (the bed depth-service 
time (BDST) model; Thomas model; Yoon and Nelson 
model; Clark model; Wolborska model; biosorption thermo-
dynamics); some derived from Langmuir–Freundlich mod-
els (Pagnanelli et al.  2001 ; Pagnanelli et al.  2002 ).  

20.1.4     Biomass Types 

 Investigations on the metal-binding capacity of some types 
of biomass have been accelerated since 1985 ( Volesky and 
Holan 1995c ). Indeed, some biomass types are very effective 
in accumulating heavy metals. Seaweeds, molds, yeasts, bac-
teria, and crab shells, among other kinds of biomass, have 
been tested for metal biosorption with very encouraging 
results (Regine and Volesky  2000 ). 

 A wide range of microbial biomass types have been inves-
tigated in biosorption studies, including mixed organism/ 
biomass systems (Munoz et al.  2006 ). These include archaea, 

bacteria (Pinaki et al.  2004 ; Bueno et al.  2008 ; Vijayaraghavan 
et al.  2007 ; Tuzen et al.  2008 ; Ngwenya  2007 ; Calfa and 
Torem  2008 ), cyanobacteria (Pradhan et al.  2007 ; Kiran et al. 
 2007 ; Anjana et al.  2007 ; Avery et al.  1993 ; Garnham et al. 
 1993a ; Garnham et al.  1993b ; Garnham et al.  1993c ), algae 
(Garnham et al.  1991 ; Garnham et al.  1992a ; Garnham et al. 
 1992b ; Garnham  1997 ; Mohan et al.  2007 ; Aksu and Donmez 
 2006 ) (including macroalgae, i.e., seaweeds (Davis et al. 
 2003 ; Yang and Chen  2008 ; Vilar et al.  2008 ; Senthilkumar 
et al.  2007 ; Romera et al.  2007 ; Murphy et al.  2007 ; Webster 
and Gadd  1996 ; Webster et al.  1997 )), and fungi, the latter 
including fi lamentous forms (Tobin et al.  1994 ; Gadd and 
White  1992 ;  Wu ; Kapoor and Viraraghavan  1995 ; Kiran et al. 
 2006 ; Bayramoglu and Arica  2007 ; Zhou  1999 ), as well as 
unicellular yeasts (Wang and Chen  2006 ; de Rome and Gadd 
 1991 ; de Rome and Gadd  1987b ), fruiting bodies (mush-
rooms, brackets, etc.), and lichens (Sari et al.  2007 ; 
Ekmekyapar et al.  2006a ). It is clear that the usage of biomass 
types that are effi cient, cheap, and easy to grow or harvest 
should be preferred and concentration be given to biomass 
modifi cations and/or alteration of bioreactor confi guration 
and physicochemical conditions to enhance biosorption. 

 Indeed, biomass composition does not show signifi cant 
differences between species of the same genus or order. For 
example, cell wall structure and composition (the main site 
of metal/radionuclide biosorption) is similar throughout all 
Gram-positive bacteria (Kim and Gadd  2008 ). Similarly, all 
Gram-negative bacteria have the same basic cell structure 
(Kim and Gadd  2008 ; Dmitriev et al.  2005 ); main fungal 
orders are similarly uniform in wall structure and composi-
tion, with some known variations due to varying contents of 
chitin, glucans, etc. (Gow and Gadd  1995 ). Plant and algal 
material similarly shows considerable uniformity, albeit with 
some differences between major genera (Gadd  2009 a; Davis 
et al.  2003 ). 

 Many kinds of macroalgae (seaweeds), plant materials 
(leaves, bark, sawdust), and animal materials (hair, crusta-
ceans) have also been studied (Zhang and Banks  2006 ; Nasir 
et al.  2007 ; Ahluwalia and Goyal  2007 b; Niua et al.  2007 ). 
A common rationale is that “waste” biomass will provide an 
economic advantage. A variety of sludges arise from sewage 
treatment and other waste processing applications, and these 
have also been investigated for biosorption properties (Barros 
et al.  2007 ; Gao and Wang  2007 ; Pamukoglu and Kargi  2007 ; 
Hawari and Mulligan  2006 ; Hammaini et al.  2007 ; Nadeema 
et al.  2008 ; Veglio et al.  2003 ), although metal sorbing prop-
erties may sometimes be low. Fungal biomass has also 
received attention as biosorbent materials for metal- 
contaminated aqueous solutions, because of the ease with 
which they are grown and the availability of fungal biomass 
as an industrial waste product, e.g.,  A. niger  (citric acid pro-
duction) and  S. cerevisiae  (brewing) (Gadd  2009 a). Fungal 
cell walls are complex macromolecular structures predomi-
nantly consisting of chitins, glucans, mannans, and proteins 
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but also containing other polysaccharides, lipids, and pig-
ments, e.g., melanin (Gadd  1993 ; Gadd and Griffi ths  1980 ; 
Gadd and Mowll  1985 ). This variety of structural compo-
nents ensures that many different functional groups are able 
to bind metal ions to varying degrees (Gadd  2009 a). Chitin is 
a very important structural component of fungal cell walls 
and is an effective biosorbent for metals and radionuclides, as 
are chitosan and other chitin derivatives (Gadd  2009 a). In 
 Rhizopus arrhizus , U biosorption involves coordination to 
the amine N of chitin, adsorption in the cell wall chitin struc-
ture, and further precipitation of hydroxylated derivatives 
(Tsezos and Volesky  1982 ). Chitosan is of low cost compared 
with commercial activated carbon (chitosan is derived by 
deacetylation of chitin, the most abundant amino polysaccha-
ride in nature) and strongly complexes pollutants, especially 
metals. The most common yeast biomass ( Saccharomyces 
cerevisiae ) is not usually a waste but a commercial commod-
ity (feedlot uses). Some chemical compounds of yeast cells 
can also act as ion exchangers with rapid reversible binding 
of cations. Volesky et al.  1993  working on cadmium biosorp-
tion by  Saccharomyces cerevisiae  demonstrated that this 
yeast is a reasonably potent biosorbent material for cadmium. 
Niu and Volesky  1999  examined selected bacteria, algae, and 
the fungus  Penicillium chrysogenum  and found that gold bio-
sorption from cyanide solution is higher at lower pH values, 
indicating that, in the uptake of anions, biosorbents may act 
as weak-acid ion exchangers. At pH 2, the gold uptake by 
 Bacillus  biomass was 8.0 μmol/g, by  Penicillium  7.2 μmol/g, 
and by the seaweed  Sargassum  3.2 μmol/g. The relatively 
low uptake of the anionic gold complex by  Sargassum  in this 
work contrasts with excellent uptakes of cationic gold form 
observed earlier (Kuyucak and Volesky  1989 ; Volesky and 
Kuyucak  1988 ). The results confi rmed that waste microbial 
biomaterials do have some potential for removing and con-
centrating gold from solutions where it occurs as an anionic 
gold cyanide complex. 

 Lichens are usually slow-growing organisms consisting of 
a fungus and an alga or cyanobacterium which combine in a 
symbiotic relationship with several unique physiological and 
morphological characteristics (Ates et al.  2007 a). Lichens do 
not have a complex root system, waxy cuticle, or stoma, and 
hence they obtain most of their nutrients from the atmosphere 
through wet and dry deposition (Williams et al.  1996 ). 
Lichens have been widely used as air pollution monitors 
because of their ability to strongly bind and accumulate met-
als (Akcin et al.  2001 ; Purvis et al.  2000 ). The metal ion- 
binding properties of lichens have been found that nonliving 
lichen biomass is able to bond metal ions to a greater degree 
than living lichens (Purvis et al.  2000 ) because the living 
plasma membrane excludes metals from entering the cell 
(Chettri et al.  1998 ). The mechanism cation uptake by lichen 
is generally regarded as an abiotic process governed by sur-
face complexation of cations with exposed functional groups 

on the lichen surface (Pipiska et al.  2007 a). Carboxylic, 
hydroxycarboxylic acids, and chitin have been suggested as 
metal-binding ligands in lichen (Chettri et al.  1998 ; Bingöl 
et al.  2009 ). The adsorption properties of lichen biomass of 
 Cladonia rangiformis  Hoffm. for copper(II) were investigated 
by using batch adsorption techniques. The effects of initial 
metal ion concentration, initial pH, biosorbent concentration, 
stirring speed, and contact time on biosorption effi ciency 
were studied. In the experiments, the optimum pH value was 
determined as 5.0 which was the native pH value of solution. 
The experimental adsorption data were fi tted to the Langmuir 
adsorption model. The highest metal uptake was calculated 
from Langmuir isotherm and found to be 7.6923 mg Cu(II)/g 
inactivated lichen at 15 °C. The results indicated that the bio-
mass of  C. rangiformis  is a suitable biosorbent for removing 
Cu(II) from aqueous solutions (Ekmekyapar et al.  2006b ). 

 Pipiska et al. removed Co 2+  by  Hypogymnia physodes  
(Pipiska et al.  2007 b), Dogan et al. ( 2006 ) and Turhan et al. 
( 2005 ) used  Cetraria islandica  (L.) and  Usnea longissima  
for Au(III) and Cu(II) uptake, and Ates et al. removed Ni(II) 
and Cu(II) by  Pseudevernia furfuracea  (L.) (Ates et al. 
 2007 b) from aqueous solutions. 

 Equilibrium, thermodynamic, and kinetic studies were 
carried out for the biosorption of Pb(II) and Ni(II) ions from 
aqueous solution using the lichen ( Cladonia furcata ) bio-
mass. Langmuir, Freundlich, and Dubinin–Radushkevich 
(D–R) isotherm models were applied to describe the biosorp-
tion of the metal ions onto  C. furcata  biomass. According 
to the result of these studies, Langmuir model fi tted the 
equilibrium data better than the Freundlich isotherm. The 
monolayer biosorption capacity of the biomass was found 
to be 12.3 and 7.9 mg/g for Pb(II) and Ni(II) ions, respec-
tively. From the D–R model, the mean free energy was 
calculated as 9.1 kJ/mol for Pb(II) biosorption and 9.8 kJ/
mol for Ni(II) biosorption, indicating that the biosorption of 
both metal ions was taken place by chemical ion exchange. 
Thermodynamic parameters, the change of free energy 
(∆ G °), enthalpy (∆ H °), and entropy (∆ S °) of the biosorp-
tion were also calculated. These parameters showed that the 
biosorption process of Pb(II) and Ni(II) ions onto  C. furcata  
biomass was feasible, spontaneous, and exothermic under 
studied conditions (Sarı et al.  2007 ). 

 On the other studies with lichen species, the biosorption 
characteristics of Pb(II) and Cr(III) ions from aqueous solu-
tion using the lichen ( Parmelina tiliaceae ) biomass were 
investigated. Langmuir, Freundlich, and Dubinin–
Radushkevich (D–R) models were applied to describe 
the biosorption isotherm of the metal ions by  P. tiliaceae  
 biomass. Langmuir model fi tted the equilibrium data better 
than the Freundlich isotherm. The monolayer biosorption 
capacity of  P. tiliaceae  biomass for Pb(II) and Cr(III) 
ions was found to be 75.8 mg/g and 52.1 mg/g, respectively. 
From the D–R isotherm model, the mean free energy was 
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calculated as 12.7 kJ/mol for Pb(II) biosorption and 10.5 kJ/
mol for Cr(III) biosorption, indicating that the biosorption of 
both metal ions was taken place by chemical ion exchange. 
The calculated thermodynamic parameters (DG-, DH-, and 
DS-) showed that the biosorption of Pb(II) and Cr(III) ions 
onto  P. tiliaceae  biomass was feasible, spontaneous, and 
exothermic under examined conditions (Uluozlu et al.  2008 ). 

    Bingöl et al. investigated in their study the batch removal 
of chromate anions (CrO 4  2− ) from wastewater under different 
experimental conditions using cationic surfactant-modifi ed 
lichen ( Cladonia rangiformis  (L.)). Cetyltrimethylammonium 
bromide (CTAB) was used for biomass modifi cation. The 
results of the experiments showed that biomass modifi cation 
substantially improved the biosorption effi ciency. Effects of 
pH, biosorption time, initial CrO 4  2−  concentration, biosor-
bent dosage, and the existence of the surfactant on the bio-
sorption of CrO 4  2−  anions were studied. Studies up to date 
have shown that the biosorption effi ciency of chromium 
increased as the pH of the solution decreased. In this study, 
the removal of chromate anions from aqueous solutions at 
high pH values with surfactant-modifi ed lichen was investi-
gated. From the results of the experiments, it was seen that 
the removal of chromate anions by modifi ed lichen was 61 % 
at the solution natural pH (pH 5.11), but at the same pH 
value, the removal of chromate anions by unmodifi ed lichen 
was 6 %. Also concentrations ranging from 30 to 150 mg/L 
Cr(IV) were tested, and the biosorptive removal effi ciency of 
the metal ions from aqueous solution at high pH was achieved 
more than 98 % (Bingöl et al.  2009 ). 

    Tüzen et al. evaluated the potential use of the lichen bio-
mass ( Xanthoparmelia conspersa ) to remove mercury(II) ions 
from aqueous solution by biosorption using the batch method. 
Effects of pH, contact time, biomass concentration, and tem-
perature on the removal of Hg(II) ions were studied. The 
Langmuir isotherm model defi ned the equilibrium data pre-
cisely compared to Freundlich model, and the maximum bio-
sorption capacity obtained was 82.8 mg/g. From the D–R 
isotherm model, the mean free energy was calculated as 
9.5 kJ/mol. It shows that the biosorption of Hg(II) ions onto  X. 
conspersa  biomass was taken place by chemical ion exchange. 
Experimental data were also performed to the pseudo-fi rst-
order and pseudo-second-order kinetic models. The results 
indicated that the biosorption of Hg(II) on the lichen biomass 
followed well the second-order kinetics. Thermodynamic 
parameters _ G o, _ H o, and _ S o indicated the Hg(II) sorption 
to be exothermic and spontaneous with decreased randomness 
at the solid–solution interface. Furthermore, the lichen bio-
mass could be regenerated using 1 M HCl, with up to 85 % 
recovery, which allowed the reuse of the biomass in ten bio-
sorption–desorption cycles without any considerable loss of 
biosorptive removal capacity (Tüzen et al.  2009 ). 

    Uluözlü et al. investigated the biosorption characteris-
tics of antimony(III) from aqueous solution using lichen 

( Physcia tribacia ) biomass in terms of equilibrium, thermo-
dynamics, and kinetics. Optimum biosorption conditions 
were determined with respect to pH, biomass concentration, 
contact time, and temperature. Langmuir, Freundlich, and 
Dubinin–Radushkevich (D–R) isotherm models were applied 
to the equilibrium data. The maximum Sb(III) sorption 
capacity of  P. tribacia  was found to be 81.1 mg/g at pH 3, 
biomass concentration 4 g/L, contact time 30 min, and tem-
perature 20 °C. The calculated mean biosorption energy 
(10.2 kJ/mol) using D–R model indicated that the biosorp-
tion of Sb(III) on the biomass has occurred by chemical ion 
exchange. The highest desorption effi ciency (95 %) was 
achieved using 0.5 M HCI. The biosorption capacity of  
P. tribacia  slightly decreased about 10 % after ten times of 
sorption–desorption process. The calculated thermodynamic 
parameters showed that the biosorption of Sb(III) onto  P. tri-
bacia  biomass was feasible, spontaneous, and exothermic, 
respectively. The experimental data was also examined using 
the Lagergren pseudo-fi rst-order and pseudo-second-order 
kinetic models. The results revealed that the pseudo-second-
order kinetic model provided the best description of the equi-
librium data (Uluözlü et al.  2010 ). 

    Kiliç et al. investigated the biosorption characteristics of 
Cu(II) ions from aqueous solution using  Lobaria pulmonaria  
(L.) Hoffm. biomass. The biosorption effi ciency of Cu(II) 
onto biomass was signifi cantly infl uenced by the operating 
parameters. The maximum biosorption effi ciency of  L. pul-
monaria  was 65.3 % at 10 mg/L initial metal concentration 
for 5 g/L lichen biomass dosage. The biosorption of Cu(II) 
ions onto biomass fi ts the Langmuir isotherm model and the 
pseudo-second-order kinetic model well. The thermody-
namic parameters indicate the feasibility and exothermic and 
spontaneous nature of the biosorption. The effective 15 
desorption achieved with HCl was 96 %. Information on the 
nature of possible interactions between the functional groups 
of the  L. pulmonaria  biomass and Cu(II) ions was obtained 
via Fourier transform infrared (FTIR) spectroscopy. The 
results indicated that the carboxyl (–COOH) and hydroxyl 
(–OH) groups of the biomass were mainly involved in the 
biosorption of Cu(II) onto  L. pulmonaria  biomass. The 
 L. pulmonaria  is a promising biosorbent for Cu(II) ions 
because of its availability, low cost, and high metal biosorp-
tion and desorption capacities (Kılıç et al.  2013 ). 

    Kiliç et al. determined  Pseudevernia furfuracea  ( L .)  Zopf . 
biosorption effi ciency for zinc(II). The biosorption effi ciency 
of Zn(II) onto  P. furfuracea  ( L .)  Zopf . signifi cantly affected 
the parameters, namely, pH, biomass concentration, stirring 
speed, contact time, and temperature. The maximum biosorp-
tion effi ciency of  P. furfuracea  ( L .)  Zopf . was 92 % at 10 mg/L 
Zn(II), for 5 g/L lichen biomass dosage. The biosorption of 
Zn(II) ions onto biomass was better described by the Langmuir 
model and the pseudo-second-order kinetic. The obtained 
thermodynamic parameters from biosorption of Zn(II) ions 
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onto biomass were feasible, exothermic, and spontaneous. 
The different desorbents were used to perform the desorption 
studies for Zn(II)-loaded  biomass . The effective desorptions 
of 96 % was obtained with HNO 3 . The  P. furfuracea  ( L .)  Zopf . 
is an encouraging biosorbent for Zn(II) ions with the high 
metal biosorption and desorption capacities, availability, and 
low cost (Kılıç et al.  2008 ; Hamutoglu et al.  2012 ).   

20.2     Comparison of Biological Materials 
in Biosorption Studies 

 All biological materials have greater affi nity for metal ions 
(Michalak et al.  2013 ). Apart from the abovementioned natu-
ral biosorbents, in the literature, few other biomaterials have 
received much interest, and they are rice husk, coconut shell, 
plant barks, leaves, sawdust, sugarcane bagasse, and peat 
moss (Michalak et al.  2013 ). From the above-discussed bio-
materials, special attention was given to the application of 
lichens (Michalak et al.  2013 ). Lichens are a strong alkaline 
material with negatively charged surface at higher pH. Hence, 
it can be expected that metal ions can be removed from aque-
ous solutions by precipitation, electrostatic attraction, and ion 
exchange (Michalak et al.  2013 ). In an investigation of our 
lab, it was also reported that the utilization of lichens from 
biological origin will be a promising alternative to conven-
tional adsorbents used for wastewater treatment. Lichens have 
also been found to bind metals in a strongly pH- dependent 
manner. Generally, optimum binding is observed at a pH of 
around 5.0. Little binding is seen below pH values of 2.0 for 
most metal ions; the metal ion-binding properties of lichens 
have been pointed out that nonliving lichen biomass is able to 
bond metal ions to a greater degree than living lichens. This 
strong metal-binding ability of lichen biomass from aqueous 
solutions would seem to make lichen material an ideal biosor-
bent for the removal of heavy metals (Michalak et al.  2013 ).  

20.3     Conclusion 

 Due to the accumulated knowledge and due to the extremely 
signifi cant economic margin for application in the metal 
removal/detoxifi cation process, some new biosorbent mate-
rials are currently well poised for commercial exploitation. 
However, there are no limits to expanding the science of bio-
sorption required to provide deeper understanding of the 
phenomenon and to support effective application attempts. 

 Based on all results, it can be also concluded that the 
lichen biomass can be evaluated as an alternative biosorbent 
for the treatment of wastewater containing different ions, due 
to being a low-cost biomass and having a considerable high 
sorption capacity. In addition, lichen material was chosen as 
a novel biosorbent in this study due to being naturally abun-
dant, renewable, and thus cost-effective biomass.     
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21.1  Introduction

Contamination of water by toxic pollutants through the dis-

charge of municipal and domestic wastes, industrial wastewa-

ter, landfilling sites, etc., has become a worldwide problem, 

due to its harmful effects on human health and to the fauna 

and flora of receiving water. The exponential growth of popu-

lation and civilization, variation in the productivity and con-

sumption habits, increasingly affluent lifestyles and resources 

use, and rapid development of the industries and technolo-

gies have been accompanied by the pollution of water in large 

extent, during the past several decades. Release of toxic heavy 

metals, organic pollutants, pesticides, radionuclides, petro-

leum hydrocarbons, gasoline additives, etc. into the envi-

ronment has threatened the environment in several aspects 

causing our planet in great peril. Many industrial processes 

produce pollutant-rich wastewater that remains as an impor-

tant environmental issue. Although control technologies have 

been applied to many industrial and municipal sources, the 

total quantity of these agents released to the environment 

remains staggering (Mohan and Pittman Jr 2007). Wastewater 

treatment is a problem that has plagued man ever since he dis-

covered that discharging wastes into surface waters can lead 

to many additional environmental problems. Today, a wide 

range of treatment technologies are available to restore and 

maintain the chemical, physical, and biological conditions of 

wastewaters. Conventional technologies used in removal of 

contaminants from wastewater have been found to be lim-

ited, since they often involve high capital and operational cost 

and may also be associated with the generation of secondary 

wastes causing treatment problems (Aksu 2002). Membrane 

filtration is a proven way to remove metal ions, but its high 

cost limits the use in practice (Amarasinghe and Williams 

2007). Because of the drawbacks of conventional technolo-

gies in the removal of contaminants from wastewater, a con-

siderable interest has been expressed in the potential use of a 

variety of natural biological systems to purify water in a con-

trolled manner during the past 20 years. Phytoremediation is 

a process which uses green plants to remove pollutants from 

the environment or to render them harmless (Raskin et al. 

1994). This is considered as a new and highly promising tech-

nology for the remediation of polluted sites due to its com-

petitive performance, cost-effectiveness, and environment 

friendliness. Phytoremediation technology has been applied 

to both organic and inorganic pollutants present in soil and 

water (Salt et al. 1998).

The water purification capability of wetlands is now being 

recognized as an attractive option in wastewater treatment 

due to its multi-pollutant treatment capability, low cost, and 

easy operation. Constructed wetlands (CWs) are designed to 

take advantage of many of the same processes that occur in 

natural wetlands, but do so within a more controlled environ-

ment (Vymazal 2010). Phytoremediation of constructed wet-

lands has been used to improve the quality of contaminated 

waters by acting as a sink for various contaminants dis-

charged from sewage, industrial and agricultural wastewa-

ters, landfill leachate, and storm water runoff (Rai 2008; 

Jomjun et al. 2010; Imfeld et al. 2009; Hoffmann et al. 2011; 

Vymazal 2005, 2007; Sheoran and Sheoran 2006; Brisson 

and Chazarenc 2009). However, the technology of con-

structed wetlands for wastewater treatment has not devel-

oped to its maximum, and various problems are still present 

with regard to its best management and sustainability. This 

chapter discusses the role of plants in constructed wetlands 

in order to remediate the wastewaters from various sources, 

different types of plants used in constructed wetlands, types 

of CWs, removal of various pollutants, constraints, and 

future of CWs. The main aim of this chapter is to provide a 

concise discussion of the constructed wetlands and its phy-

toremediation aspects as a plant-based cleanup technique for 

the remediation of wastewater.
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21.2  Phytoremediation: An Emerging 
Technology to Remediate 
the Polluted Environment

21.2.1  General Aspects of Phytoremediation

Phytoremediation is being recognized as an integrated eco-

nomically viable technology using green plants for the deg-

radation, removal, and detoxification of chemical pollutants 

from contaminated soils, sediments, or waters (Clayton 

2007). Phytoremediation is considered as a subcategory of 

bioremediation in which biological organisms, processes, or 

products are used for environmental detoxification with the 

help of microbes such as bacteria and fungi. The term phy-

toremediation is formed from the Greek “phyto” for “plant” 

and the Latin “remedium” for “to heal again.” This technol-

ogy has garnered increasing scientific and commercial inter-

est as a more environmentally compatible and less expensive 

method of site remediation relative to engineering-based 

methods such as excavation, soil washing, or soil incinera-

tion (Clayton 2007).

In the past two decades, phytoremediation of wetlands 

has been a significant technology to remediate wastewaters, 

since wetland sites act as a sink of various toxic contami-

nants including heavy metals, radionuclides, pesticides, 

organic carbon, particulate matter, and nutrients. Constructed 

wetlands for waste treatment are one existing practice that is 

increasingly a vital part of phytoremediation (McCutcheon 

and Schnoor 2003).

There are several processes associated with phytoreme-

diation depending on the contaminant to be treated and site- 

specific conditions. Based on the physiological action of 

plants, at least ten different processes have been identified 

that assist in the management of polluted soil, water, and air 

(McCutcheon and Schnoor 2003). Major processes include 

phytoextraction, phytodegradation, phytostimulation, phyto-

stabilization, rhizofiltration, and phytovolatilization (Clayton 

2007). Figure 21.1 illustrates the major processes of phytore-

mediation involved in the treatment of wastes.

Phytoextraction is the use of metal-tolerant plants or 

hyperaccumulators, to acquire elevated levels of inorganic 

contaminants in their aboveground tissues with subsequent 

harvest, recovery, and disposal or recycling of the metals. 

Phytodegradation describes the use of plants capable of 

enzymatic breakdown of organic, or carbon-containing, com-

pounds to simpler and less toxic chemicals either alone or in 

combination with soil microbes. Phytostabilization refers to 

the use of plants to immobilize contaminants within the soil 

profile to minimize pollutant escape or biological exposure. 

Rhizofiltration is the use of plant root systems to intercept 

or degrade waterborne contaminants. Phytovolatilization 

attributes to plants to take up organic contaminant-rich water 

and release the contaminants into the atmosphere through 

t ranspiration (Clayton 2007).

At present, phytoextraction and phytofiltration pro-

cesses are being best developed for toxic metal phytore-

mediation nearing commercialization (Raskin et al. 1997). 

Phytostabilization technology is relatively less developed 

for treating pollutants compared to the other processes of 

Fig. 21.1 Major processes of phytoremediation involved in the treatment of wastes
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 phytoremediation (Raskin et al. 1997). Phytoextraction is 

used in large scale, because of its low cost. A rhizofiltra-

tion approach has been successfully used to remove radio-

nuclides such as uranium from groundwater on sites at 

Ashtabula and Oak Ridge and to remove toxic metals includ-

ing cesium and strontium from a pond near the Chernobyl 

reactor (Raskin and Ensley 2000). Table 21.1 lists major 

processes of phytoremediation and their significance in the 

removal of toxicants from the environment (McCutcheon 

and Schnoor 2003).

21.2.2  Factors Affecting Phytoremediation

The influence of environmental factors on phytoremediation 

process is of particular concern. The success of phytoreme-

diation depends mainly on a variety of environmental factors 

including soil structure, texture, and organic matter, water 

and oxygen availability, temperature, nutrients, solar radia-

tion, and weathering. These factors tend directly to enhance 

the bioavailability of contaminants and ability of plants to 

take up, translocate, and accumulate contaminants in shoots 

and plant–microbe interactions (Hooda 2007).

Soil type is determined by various features such as 

 structure, texture, and organic matter content. Soil structure 

greatly influences the growth and survivability of plants. A 

study revealed that the toxic phenanthrene may be trapped 

and sorbed to the surface of nanopores (soil pores with diam-

eters <100 nm) and hence is not bioavailable (Alexander 

et al. 1997). Soil texture also affects the bioavailability of 

contaminants. For example, clay is capable of binding 

molecules more readily than silt or sand (Brady and Weil 

1996). Since soil structure and texture are involved in con-

trolling the bioavailability of contaminants, the selection of a 

suitable soil type becomes an important factor for the suc-

cess of a particular phytoremediation mechanism. It has been 

found that high organic carbon content (>5 %) in soil usually 

leads to strong adsorption which reduces the availability and 

a moderate organic carbon content (1–5 %) may lead to limit 

the availability (Otten et al. 1997) and, hence, soil type may 

directly affect on the phytoremediation efforts.

Phytoremediation mechanisms take place in maximum 

rate at a particular temperature. In general, the rate of micro-

bial degradation or transformation doubles for every 10 °C 

increase in temperature (Yu et al. 2007). In an experiment, 

pre-rooted weeping willows (Salix babylonica L.) were used 

to study uptake and metabolism of cyanide in response to 

change in temperature (Yu et al. 2007). The results revealed 

that the rate of cyanide metabolism for weeping willows was 

found at 32 °C with a value of 2.78 mg CN/(kg · d), whereas 

the lowest value was 1.20 mg CN/(kg · d) at 11 °C. In conclu-

sion, changes in temperature have considerably influenced 

on the uptake and metabolism of cyanide by plants.

Nutrients are considered as an essential component for the 

growth of plants and their associated microorganisms when 

the plants are growing under high stress conditions from toxic 

contaminants. The effect of fertilizers has been significant on 

phytoremediation and biostimulation in enhancing habitat 

restoration and oil degradation of petroleum- contaminated 

wetlands (Lin and Mendelssohn 1998). The oil degradation 

Table 21.1 Types of phytoremediation and their significance in the removal of contaminants

Process Significance Target toxicants Media

Phytoextraction Contaminants taken up, transported,  

and translocated above ground shoots

Heavy metals radionuclides,  

perchlorate, BTEX, PCP, and  

other organic compounds

Soil only

Phytodegradation Plants take up, store, and biochemically 

degrade or convert harmful contaminants  

to harmless by-products

 

 

Cl- and P-based pesticides,  

anilines, and nitromethane

Soil and Sediment

Wetlands

Wastewater

Surface and groundwater

Phytovolatilization Plants extract volatile metals  

and organic compounds from soil  

and volatilize them from foliage

Se, tritium, As, Hg, m-xylene,  

and chlorinated solvents

Soil and sludges

Wetlands

Groundwater

Rhizofiltration Plant roots grown in aerated water  

precipitate and concentrate  

toxic pollutants

Metals, radionuclides, organic  

chemicals, nutrients, and  

pathogens

Wetlands

Wastewater

Landfill leachates

Surface and groundwater

Phytostabilization Plants stabilize the pollutants in soils 

rendering them harmless  

and control soil pH, gas,  redox causing 

speciation, precipitation, and sorption. 

Humification and lignifications  

of organic compounds

Metals, phenols, and  

chlorinated solvents

Soil

Mine tailings

Wetlands

Leachate pond sediments
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rate in the soil is significantly enhanced by the application of 

fertilizer in conjunction with the presence of transplants. This 

vegetative transplantation can simultaneously restore oil- 

contaminated wetlands and accelerate oil degradation in the 

soil, when it is implemented with fertilization (Lin and 

Mendelssohn 1998).

The effect of solar radiation on the phytoremediation pro-

cess also is of particular concern. Photomodifications of 

PAHs by ultraviolet light can occur in contaminated water or 

on the surface of soil, increasing the polarity, water solubil-

ity, and toxicity of the contaminants prior to uptake by the 

plant (McConkey et al. 1997; Huang et al. 1997; Ren et al. 

1994). Researchers have investigated that PAHs which can 

be modified in this manner include anthracene, phenan-

threne, fluoranthene, pyrene, and naphthalene. Enhanced 

toxic effects such as reduction of growth also can result from 

penetration of ultraviolet radiation into plant tissue, followed 

by photomodifications and photosensitizations of PAHs 

1997).

Weathering processes that involve in phytoremediation 

technology are volatilization, evapotranspiration, photo-

modification, hydrolysis, leaching, and biotransformation 

of the contaminant. These processes can selectively 

reduce the concentration of easily degradable contaminants 

with the more recalcitrant compounds remaining in the soil. 

The contaminants left behind are typically nonvolatile or 

semi- volatile compounds that preferentially partition to soil 

organic matter or clay particles, which limits their bioavail-

ability and the degree of degradation (Cunningham and Ow 

1996). It is clearly documented that the contaminant bioavail-

ability is a major factor limiting the degradation of weath-

ered (>60 years) PAHs (Carmichael and Pfaender 1997).

21.3 Constructed Wetlands 

21.3.1  Introduction to Constructed Wetlands

Wetlands are highly diverse and specific ecosystems playing 

a vital role in the environment. They are identified as areas 

covered by water or that have waterlogged soils for signifi-

cant periods during the growing season (Mejáre and Bülow 

2001). Wetlands can be defined as land transitional between 

terrestrial and aquatic systems where the water table is usu-

ally at or near the surface of the land or the land is covered 

by shallow water (Mejáre and Bülow 2001). Ramsar conven-

tion has proposed that wetlands are areas of marsh, fen, peat-

land, or water, whether natural or artificial or permanent or 

temporary, with water that is static or flowing, fresh, brack-

ish, or salty, including areas of marine water, the depth of 

which at low tide does not exceed 6 m (Mejáre and Bülow 

2001). These definitions emphasized the ecological signifi-

cance of wetlands.

Wetlands are often rich in a variety of resources that are 

highly valuable for different habitats including a wide variety 

of plant and animal life such as water birds, fish, shellfish, and 

other aquatic organisms. Coastal wetlands act as an ecotone 

between the sea and freshwater and/or freshwater and terres-

trial habitats showing high species diversity. The ecological 

function of wetlands also is significant due to great perfor-

mance to regulate water regime, act as natural filters, and dis-

play amazing nutrient dynamics (Mulligan et al. 2001).

Wetlands are found to be present as natural wetlands and 

constructed wetlands. Natural wetlands usually purify and 

improve the quality of water passing through the system act-

ing as ecosystem filters (Cheng et al. 2002). Constructed 

wetlands are artificially engineered systems that are used to 

control or remove hazardous wastes from polluted waters 

under a more controlled environment. They are designed to 

take advantage of many of the same processes that occur in 

natural wetlands (Vymazal 2010), and the natural wetlands 

have been recognized to be a good volunteer to improve the 

quality of water over a million of years. Both natural and 

constructed wetlands are considered as a cost-effective and 

an alternative technology for wastewater treatment.

Wetlands are characterized by several factors including the 

presence of water, nature of soil, and the presence of vegeta-

tion (Cheng et al. 2002). The system around constructed wet-

lands is a pool of unlimited number of toxins and pollutants 

discharged from industrial, municipal, and domestic waste 

effluents. Therefore, the natural or constructed wetlands are 

best reserved for two purposes including polishing of already 

partially treated (oxidized) industrial or domestic waste and 

removal of specific pollutants, such as nitrogen, phosphorus, 

copper, lead, selenium, organic compounds, pesticides, 

viruses, or protozoan cysts from all wastes including agricul-

tural and urban storm runoff (Banuelos and Terry 1999). 

Wetland plants facilitate major mechanisms in order to remove 

such contaminants, and hence, the use of wetlands for phy-

toremediation has been developed as a cost-effective and envi-

ronmentally friendly remediation of contaminated water.

21.3.2  Hydrology of Constructed Wetlands

The ecological function of a constructed wetland depends on 

the hydrological factors including nutrient availability and 

physicochemical parameters such as soil, water pH, and soil 

within anaerobiosis (Scholz and Lee 2005). In constructed 

wetlands, all these factors are under controlled conditions to 

maintain the efficiency of biotic processes occurring within 

them. Water is the key of wetland ecosystems and the water 

budget of these systems directly affects the biological pro-

cessors resulting in great seasonal variations. The hydrology 

defines the species diversity, productivity, and nutrient 

cycling of specific wetlands, and that is very important for 
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the richness of flora and fauna or utilizing wetlands for 

 pollution control (Scholz and Lee 2005).

The stability of particular constructed wetlands is directly 

linked with their hydroperiod. Hydroperiod of a wetland is the 

seasonal shift in surface and subsurface water levels. The 

hydrologic cycle is the main hydrologic process that is occur-

ring in any wetland system. Major components of the hydro-

logic cycle include precipitation, surface water flow, 

groundwater flow, and evapotranspiration (ET). The water 

budget of a constructed wetland is the total of inflows and out-

flows of water within the system. A simple water budget of 

wetlands provides suitable tool for wastewater treatment in 

order to ensure their long-term sustainability (Hedges et al. 

2008). The water balance is important for determining confor-

mance with desired limits for hydraulic loading rate (HLR), 

hydraulic residence time (HRT), and mass balances. The 

hydraulic residence time (HRT) of a constructed wetland is the 

average time that water remains in the wetland. Hydraulic 

loading rate (HLR) is defined as the loading on a water volume 

per unit area basis. The components of a water budget are 

shown in the following equation (Scholz and Lee 2005):

D DV t P S G S G T/ = + + - - - ±n i i o oET

where ΔV = volume of water storage in a wetland, ΔV/Δt = 

change in volume of water storage in wetland per unit time 

(t), Pn = net precipitation, Si = surface inflows including 

flooded streams, Gi = groundwater inflows, ET = evapotrans-

piration, So = surface outflows, Go = groundwater outflows, 

and T = tidal inflow (+) or outflow (−).

Precipitation is the main process that provides water 

directly or indirectly for natural wetlands as well as con-

structed wetlands. Precipitation is any form of water, such as 

rain, snow, sleet, hail, or mist that falls from the atmosphere 

and reaches the ground. The loss of water to the atmosphere is 

an important component of wetland water budget. Water is 

removed by evaporation from soil or surfaces of water bodies 

and by transpiration by plants. The combined loss of water by 

evaporation and transpiration is termed evapotranspiration 

(ET). Solar radiation, wind speed and turbulence, relative 

humidity, available soil moisture, and vegetation type and den-

sity affect the rate of ET. Surface water is supplied to wetlands 

through normal stream flow, flooding from lakes and rivers, 

overland flow, groundwater discharge, and tides. Groundwater 

originates as precipitation or as seepage from surface water 

bodies. The movement of water between a wetland and 

groundwater often affects the hydrology of the wetland.

21.3.3  Chemistry of Constructed Wetlands

Wetland chemistry is strongly influenced by the physico-

chemical variables that interacted with some elements such 

as oxygen, nitrogen, sulfur, phosphorus, iron, and aluminum. 

Physicochemical parameters include dissolved oxygen, 

-

centration, and phosphorus concentration. The concentration 

of oxygen within sediments and the overlaying water is a 

critical factor. The lack of oxygen or limited oxygen condi-

tions affect the aerobic respiration of plant roots and plant 

nutrient availability (Scholz and Lee 2005). Wetland plants 

can exist in anaerobic soils showing great adaptations for 

their survival.

The nutrient availability and toxicity of a wetland is deter-

mined by the state of oxidation and reduction of ions such as 

iron, manganese, nitrogen, and phosphorus that are present 

within waterlogged soil and sediments in wetlands. The 

decomposition (oxidation) of organic matter takes place in 

the presence of any electron acceptors including O2, NO3
−, 

Mn2+, Fe3+, and SO4
2−, but the oxidation in the presence of 

oxygen is fast compared to other ions (Scholz and Lee 2005). 

A redox potential range between +400 and +700 mV is typi-

cal for environmental conditions associated with free dis-

solved oxygen. Below +400 mV, the oxygen concentration 

will begin to diminish and wetland conditions might become 

increasingly more reduced (> −400 mV) (Bradley 2001; 

Scholz and Lee 2005). In some wetlands, sulfur cycle is also 

involved in the degradation of organic matter (Bradley 2001). 

Low-molecular-weight organic compounds that result from 

fermentation (e.g., ethanol) are utilized as organic substrates 

by sulfur-reducing bacteria in the conversion of sulfate to 

sulfide (Bradley 2001).

Phosphorus that is within wetland soils exists in different 

forms as soluble or insoluble, organic or inorganic com-

plexes. The physical, chemical, and biological characteris-

tics of a wetland system depend on the solubility and 

reactivity of different forms of phosphorus. Phosphate solu-

bility is regulated by temperature, pH, redox potential, inter-

stitial soluble phosphorus level, and microbial activity 

(Scholz and Lee 2005). The phosphorus cycle is sedimentary 

rather than gaseous and predominantly forms complexes 

within organic matter in peatlands or inorganic sediments in 

mineral soil wetlands. It has been investigated that over 90 % 

of the phosphorus load in streams and rivers may be present 

in particulate inorganic form (Scholz and Lee 2005).

Biologically available orthophosphate is the soluble 

and reactive form of phosphorus which exits in primary 

inorganic form. The availability of phosphorus to plants 

and microconsumers is limited due to several effects. 

Under aerobic conditions, insoluble phosphates are pre-

cipitated with ferric iron, calcium, and aluminum limiting 

the availability of phosphorus to plants. Phosphates can 

also be adsorbed onto clay particles, organic peat, and fer-

ric/aluminum hydroxides and oxides and bound up in 

organic matter through incorporation in bacteria, algae, 

and vascular macrophytes limiting the bioavailability 

(Scholz and Lee 2005).
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Nitrogen within various oxidation states is also important 

to the biogeochemistry of wetlands. Its various oxidation 

states are capable of carrying out the oxidation of organic 

matter. The anoxic conditions in wetland environments lead 

the release of gaseous nitrogen from the lithosphere and 

hydrosphere to the atmosphere through denitrification 

(Bradley 2001). In flooded wetland soils, mineralized nitro-

gen exists in the form of ammonium (NH4
+) that is formed 

-

cess, organically bound nitrogen is converted to ammonium 

nitrogen under aerobic or anaerobic conditions. Soil-bound 

ammonium can be taken up by plant root systems and recon-

verted to organic matter (Scholz and Lee 2005).

Sulfur and its various oxidation states also are critical in 

controlling the conditions of certain wetland systems. In 

wetlands, sulfur is transformed by microbiological processes 

and occurs in several oxidation stages. Reduction may occur 

between −100 and −200 mV on the redox potential scale 

(Bradley 2001). Sulfides provide the characteristic “bad egg” 

odor of some wetland soils. Assimilatory sulfate reduction is 

accomplished by obligate anaerobes such as Desulfovibrio 

spp. Bacteria may use sulfates as terminal electron acceptors 

in anaerobic respiration at a wide pH range but highest 

around neutral (Bradley 2001).

21.3.4  Plants in Constructed Wetlands

Plants that are morphologically tolerant to grow in wet soil 

under sufficient or insufficient water conditions are referred 

to as wetland plants or macrophytes. The vegetation within 

macrophytes increases the aesthetics of the site and enhances 

the landscape creating significant wildlife habitat for a variety 

of animals such as songbirds, insects, amphibians, waterfowl, 

etc. Most wetland plant communities consist of a highly 

diverse mix of grasses, sedges, forbs (broadleaf plants), ferns, 

shrubs, and trees. Wetland plants can be classified into gen-

eral categories which include emergent, submerged, and 

floating plants based on their adaptations to life in water.

21.3.4.1  Emergent Plants
Emergent wetland plants are rooted in soil with basal por-

tions that typically grow beneath the surface of the water, but 

whose leaves, stems (photosynthetic parts), and reproductive 

organs are aerial (Fig. 21.2). Examples of emergent plants 

include cattail and rush species such as Phragmites australis, 

Phalaris arundinacea, Typha domingensis, Typha latifolia, 

Phragmites karka, Juncus pallidus, Empodisma minus, etc.

Emergent plants like cattails and rushes are adapted by 

developing more efficient cell structures with spaces between 

Fig. 21.2 Emerged wetland plant species
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cells to collect carbon dioxide. Photosynthesis moves carbon 

dioxide to the roots where it combines with other nutrients to 

produce root tissue, ethylene, and more aerenchyma tissues. 

Aerenchyma tissues contain large empty spaces that store 

oxygen and move it to different parts of the plant.

21.3.4.2  Submerged Plants
Submerged plants spend their entire life cycle beneath the 

 surface of the water and nearly all are rooted in the substrate 

(Fig. 21.3). Submerged plants can take up dissolved oxygen 

and carbon dioxide from the water column. Examples of sub-

merged plants include Ceratophyllum demersum, Myriophyllum 
spicatum, Hydrilla verticillata, Heteranthera dubia, etc.

Submerged plants have the greatest number of adapta-

tions to life in water. They have little or no mechanical 

strengthening tissue in stems and leaf petioles, and thus, 

when these plants are removed from the water, they hang 

limply. Submerged plants lack the external protective tissues, 

and the entire surface cells appear to be able to absorb water, 

nutrients, and dissolved gases directly from the surrounding 

water. Roots can easily absorb nutrients and water from the 

substrate and their main function is anchorage. The leaves of 

submerged plants are often highly dissected or divided hav-

ing the advantage of creating a very large surface area for 

absorption and photosynthesis. It also minimizes water resis-

tance and hence potential damage to the leaves.

21.3.4.3  Floating Plants
Plants whose leaves mainly float on the water surface while 

the roots are anchored in the substrate are known as floating 

plants. Much of the plant body is underwater and may or 

may not be rooted in the substrate (Fig. 21.4). Only small 

portions, namely, flowers, rise above water level. Stems con-

nect the leaves, which are circular or oval and have a tough 

leathery texture to the bottom. Floating plants include free- 

floating and floating-leaved plants such as Eichhornia 

Fig. 21.3 Submerged wetland plant species
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Fig. 21.4 Floating wetland plant species

crassipes, Pistia stratiotes, Salvinia herzogii, Wolffia colum-
biana, Lemna valdiviana, Nymphaea spp., Nuphar advena, 

Juncus effusus, etc.

Floating plants have structural adaptations that prevent 

them from sinking in water. By staying afloat, they are able 

to absorb maximum sunlight and can easily exchange gases 

with the atmosphere. Floating plants may heavily shade the 

water below, reducing the number of submersed species that 

compete with them for nutrients.

21.3.4.4  Role of Plants in Constructed Wetlands
Wetland plants play a vital role in the removal and retention 

of pollutants in wastewater. They bring necessary physical 

effects for the treatment of wastewater. The plants are capa-

ble of stabilizing the surface of the beds which provide good 

conditions for physical filtration and a huge surface area for 

the attachment and growth of microbes, prevent vertical-flow 

systems from clogging, and insulate against frost during 

winter (Brix 1994). The selection of nice looking wetland 

plants like water lily, yellow flag, etc., makes constructed 

wetlands aesthetically pleasing while they are playing a sig-

nificant role in water purification.

Aquatic plants should fulfill certain requirements to be 

selected for the use of constructed wetlands. The ecological 

adaptability of plants is very important to make sure that 

there is no any disease or weed risk to the surrounding natu-

ral ecosystems (Williams 2002). The capability of macro-

phytes to tolerate local conditions such as climate, pests, 

disease, and hypertrophic waterlogged conditions enables 

them to survive in great extent. High pollutant removal 

capacity is significant in order to achieve the goals of the 

technology. In addition, rapid propagation, establishment, 

spread, and growth also have to be taken into consideration 

when considering the suitability of different plant species in 

constructed wetlands (Williams 2002).

Wetland plants can take up nutrients through their 

 well- developed root systems and accumulate significant 

amount of nutrients in the biomass (Brix 1994). 

Eutrophication of wetlands is mainly prevented by macro-

phytes due to their capabilities to tolerate and remove high 

concentrations of nutrients. The common reed (Phragmites 
karka) and cattail (Typha angustifolia) have a large bio-

mass both above and below the surface of the substrate, 

and hence, they can take up and accumulate a large amount 

of nutrients from nutrient- rich wastewater. The uptake 

capacity of nutrients in emergent macrophytes is in the 

range of 50–150 kg P ha−1 and 1,000–25,000 kg N ha−1 year−1 

(Brix 1994).
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Aquatic plants are able to release oxygen from their roots 

into the rhizosphere, which is very important in subsurface- 

flow constructed wetlands for aerobic degradation of oxygen- 

consuming substances and nitrification (Brix 1994). 

The presence of some hollow vessels in plant tissues  provides 

oxygen to move from leaves to the root zone and to the sur-

rounding soil facilitating the active microbial aerobic decom-

position process and the uptake of pollutants from the water 

system (Brix 1994). Macrophytes have adaptations with 

suberized cell walls, and lignified layers in the hypodermis 

and outer cortex are capable of conserving internal oxygen 

minimizing the rate of oxygen leakage (Brix 1994).

21.4  Constructed Wetland 
Phytoremediation Attributes

21.4.1  Overview

Natural wetlands are not very much efficient for removal of 

pollutants from wastewater, since water often short-circuits 

through natural wetlands, giving little time for treatment 

(Terry and Bañuelos 1999). The first experiments using wet-

land macrophytes for wastewater treatment were carried out 

in Germany in the early 1950s (Vymazal 2010). Constructed 

wetlands have now been designed to increase the efficiency 

of phytoremediation process, targeting a specific pollutant or 

group of pollutants. The most important difference between 

constructed and natural wetlands is the isolation of the water 

regime from natural patterns (Terry and Bañuelos 1999). 

Physicochemical properties of wetlands provide many positive 

attributes for remediating contaminants.

Constructed wetlands are considered to be complex ecosys-

tems due to variable conditions of hydrology, soil and sediment 

types, plant species diversity, growing season, and water chem-

istry. Constructed wetlands are being particularly designed to 

remove a wide variety of pollutants including bacteria, enteric 

viruses, suspended solids, nutrients (ammonia, nitrate, phos-

phate), metals and metalloids, volatile organic compounds 

(VOC), pesticides and other organohalogens, TNT and other 

explosives, and petroleum hydrocarbons and additives. These 

pollutants should be specific and manageable for the success of 

phytoremediation (Terry and Bañuelos 1999). Figure 21.5 

summarizes the process of phytoremediation using constructed 

wetlands for the removal of pollutants from wastewater.

The vegetation of constructed wetlands is considered as a 

massive biofilm (Brix 1994 -

eters including wind velocity, light intensity, and insulation of 

snow are controlled within this biofilm. Macrophytes provide 

a large surface area for the growth of microbial biofilms that 

are responsible for important microbial processors including 

nitrogen reduction and decomposition of organic compounds. 

Indeed the vegetation is the heart of a wetland, since it plays 

a crucial role in the function of wastewater treatment.

Fig. 21.5 The big picture of phytoremediation using constructed wetlands
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21.4.2  Types of Constructed Wetland 
Treatment Systems

21.4.2.1  General Classification
The classification of constructed wetlands (CWs) is based on 

vegetation type (emergent, submerged, floating leaved, free 

floating), hydrology, and flow direction (Vymazal 2010). 

According to the wetland hydrology, CWs are classified into 

two divisions, free-water-surface and subsurface system, 

whereas the subsurface-flow CWs are further classified into 

two general types based on the flow direction, horizontal 

subsurface flow (HF) and vertical subsurface flow (VF) 

(Vymazal 2010). Various types of constructed wetlands are 

now being combined into hybrid systems, in order to achieve 

better treatment performance for removal of pollutants. 

Figure 21.6 illustrates the general classification of con-

structed wetland treatment systems.

Most of the systems are designed with horizontal subsur-

face flow (HF CWs), but vertical-flow (VF CWs) systems are 

getting more popular at present. Constructed wetlands with 

free water surface (FWS CWs) are not used as much as the 

HF or VF systems despite being one of the oldest designs in 

Europe (Vymazal 2005).

21.4.2.2  Free-Water-Surface Constructed 
Wetlands (FWS CWs)

A typical FWS CW with emergent macrophytes is a shallow 

sealed basin or sequence of basins (Fig. 21.7), containing 

20–30 cm of rooting soil, with a water depth of 20–40 cm 

(Vymazal 2010

s ignificant fraction (more than 50 %). Both planted and natu-

rally occurring macrophytes may be present in these types of 

CWs. Plants are usually not harvested and the litter provides 

organic carbon for denitrification which may proceed in anaer-

obic pockets within the litter layer (Vymazal 2010). The free-

water-surface wetland technology started in North America 

with the ecological engineering for wastewater treatment at 

the end of the 1960s and beginning of the 1970s. It has been 

reported that the IJssel Lake Polder Authority in Flevoland in 

the Netherlands constructed its first free-water- surface con-

structed wetland in 1967 (Kadlec and Wallace 2008).

The primary role of macrophytes is providing structure 

for enhancing flocculation, sedimentation, and filtration of 

suspended solids through hydrodynamic conditions, and 

plants provide essential solid surfaces for microbial activities 

to remove organic matter. The most commonly used species 

in Europe for FWS CWs are Phragmites australis (common 

reed) and Scirpus (Schoenoplectus) lacustris; in North 

America, Typha spp. (cattail), Scirpus spp. (bulrush), and 

Sagittaria latifolia (arrowhead); and in Australia and New 

Zealand, Phragmites australis, Bolboschoenus (Scirpus) 

 fluviatilis (marsh club rush), Eleocharis sphacelata (tall 

spike rush), and Scirpus tabernaemontani (soft-stem bul-

rush). These plants may not work well in the tropics. FWS 

CWs are efficient in removal of organics through microbial 

degradation and settling of colloidal particles. Suspended 

solids are effectively removed via settling and filtration 

through the dense vegetation. Nitrogen is removed primarily 

through nitrification (in water column) and subsequent deni-

trification (in the litter layer) and ammonia volatilization 

Fig. 21.6 General classification 

of constructed wetland  

treatment systems
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under higher pH values caused by algal photosynthesis. In 

this type of CWs, phosphorus retention is usually low 

because of limited contact of water with soil particles which 

adsorb and/or precipitate phosphorus. Plant uptake repre-

sents only temporal storage because the nutrients are released 

to water after the plant decay.

21.4.2.3  Horizontal Subsurface-Flow 
Constructed Wetlands (HF CWs)

A horizontal subsurface-flow constructed wetland (HF CW) 

is a large gravel- and sand-filled channel that is planted with 

aquatic vegetation (Fig. 21.8). Wastewater flows horizontally 

through the channel. The filter material filters out particles 

that are present in wastewater and microorganisms degrade 

organic materials. The water level in a HF CW wetland is 

maintained at 5–15 cm below the surface to ensure subsur-

face flow (Hoffmann et al. 2011). The flow path of the water 

is maximized due to the bed being often wide and shallow. A 

wide inlet zone is used to evenly distribute the flow. 

Pretreatment is essential to prevent clogging and ensure effi-

cient treatment.

The removal efficiency of the constructed wetland 

depends on the surface area and the cross-sectional area 

which determines the maximum possible flow. A well- 

designed inlet that allows for even distribution is important 

to prevent short-circuiting and preferential pathways. The 

outlet should be variable so that the water surface can be 

adjusted to optimize treatment performance.

The filter media acts as a filter for removing solids as well 

as a base for the vegetation. Facultative and anaerobic bacte-

ria within the system are capable of degrading most organic 

materials. The vegetation tends to transfer a small amount of 

Fig. 21.7 Layout of a free-water-surface constructed wetland

Fig. 21.8 Layout of a horizontal subsurface-flow constructed wetland system
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oxygen to the root zone so that aerobic bacteria can colonize 

the area and degrade organics as well. The plant roots play an 

important role in maintaining the permeability of the filter. 

Phragmites australis (reed) is supposed to be a good choice 

for HF CWs, since it forms horizontal rhizomes that pene-

trate the entire filter depth (Vymazal 2007). In these systems, 

the major removal mechanism for nitrogen is denitrification, 

and the removal of ammonia is limited due to lack of oxygen 

in the filtration bed (Vymazal 2007). Phosphorus is removed 

primarily by ligand exchange reactions, where phosphate 

displaces water or hydroxyls from the surface of iron and 

aluminum hydrous oxides (Vymazal 2007).

21.4.2.4  A Vertical Subsurface-Flow 
Constructed Wetlands (VF CW)

A vertical subsurface-flow constructed wetland (VF CW) is 

a planted filter bed for secondary or tertiary treatment of 

wastewater (Hoffmann et al. 2011). Pretreated wastewater is 

distributed over the whole filter surface and flows vertically 

through the filter. The water is treated by a combination of 

biological and physical processes. There is a drainage sys-

tem on the bottom of the filter to collect the treated wastewa-

ter (Fig. 21.9). Sand and gravel are used to construct the filter 

body. The filtered water of a well-functioning constructed 

wetland can be used directly for irrigation, aquaculture, and 

groundwater recharge or is discharged in surface water.

In vertical filter beds, wastewater is supplied either by 

pump or self-acting siphon device onto the surface and then 

drains vertically down through the filter layers toward a 

drainage system at the bottom. The treatment process is 

characterized by intermittent short-term loading intervals 

(4–12 doses per day) and long resting periods during which 

the wastewater percolates through the unsaturated substrate 

and the surface dries out (Hoffmann et al. 2011). The inter-

mittent batch loading enhances the oxygen transfer and 

leads to high aerobic degradation activities, so that VF CWs 

are more aerobic than HF CWs providing suitable condi-

tions for nitrification. On the other hand, VF CWs do not 

provide any denitrification (Vymazal 2007). Vertical filters 

always need pumps or at least siphon pulse loading, 

whereas horizontal- flow constructed wetlands can be oper-

ated without pumps.

The treatment process of VF CWs is based on a number of 

biological and physical processes such as adsorption, pre-

cipitation, filtration, nitrification, predation, decomposition, 

etc. (Hijosa-Valsero et al. 2010), and hence, VF CWs are 

capable of removing organics and suspended solids effec-

tively rather than HF CWs. Moreover, VF CW systems 

require less land compared to HF CWs that is usually about 

1–3 m2 PE−1 (Vymazal 2010).

21.4.2.5  Hybrid Constructed Wetlands
Hybrid constructed wetlands are highly engineered systems 

that are designed combining different types of constructed 

wetlands in order to achieve a higher treatment efficiency 

(Vymazal 2010). Hybrid systems are comprised most fre-

quently of vertical-flow and horizontal-flow constructed wet-

lands arranged in a staged manner (Vymazal 2005), and they 

are now being used in many countries around the world. 

Hybrid systems are used particularly, when removal of ammo-

nia-N and total N is required (Vymazal 2010). Horizontal-

flow systems cannot provide nitrification because of their 

limited oxygen transfer capacity. Vertical-flow  systems can 

provide good conditions for nitrification, but denitrification 

does not really occur in these systems. Therefore, in hybrid 

systems, the advantages of the horizontal- and vertical-flow 

systems can be combined to complement  processes in each 

 nitrified and partly denitrified and hence has much lower total 

N outflow concentrations (Vymazal 2005).

Fig. 21.9 Layout of a vertical subsurface-flow constructed wetland system
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21.4.3  Removal of Pollutants Through 
Constructed Wetland Phytoremediation

21.4.3.1 Nutrient Removal
Nitrogen and phosphorus are the main pollutants present at 

high concentrations in effluents of sewage, agriculture, and 

urban storm runoff. Eutrophication of lakes, rivers, estuaries, 

and coastal oceans is mainly due to the presence of excess 

nutrients, and hence, there is considerable requirement to 

control and remove such nutrients from wastewater. 

Constructed wetlands are now being recognized as an eco-

nomically viable wastewater treatment option for the removal 

of nitrogen and phosphorus in wastewater.

Nitrogen Removal
Constructed wetlands are widely being used for treating 

nitrogen-rich wastewaters, since they provide an attractive 

and economical alternative for denitrifying high-quality 

nitrified wastewater. The processes that are involved in the 

removal and retention of nitrogen during wastewater treat-

ment in constructed wetlands include NH4 volatilization, 

nitrification, denitrification, nitrogen fixation, plant and 

microbial uptake, mineralization (ammonification), nitrate 

reduction to ammonium (nitrate ammonification), anaero-

bic ammonia oxidation (ANAMMOX), fragmentation, 

sorption, desorption, burial, and leaching (Vymazal 2007). 

However, only few processes are capable of removing total 

nitrogen from wastewater at the end, whereas most 

 processes just convert nitrogen to its various forms 

(Fig. 21.10). Removal of total nitrogen by constructed 

wetland system depends on the type of CWs and inflow 

loading (Vymazal 2007).

A study revealed that in the ammonia volatilization pro-

cess, ammonium-N is in equilibrium between gaseous and 

hydroxyl forms, and volatilization of ammonia can result in 

nitrogen removal rates as high as 2.2 g N m−2 day−1 (Vymazal 

2007). Ammonification (mineralization) is the process by 

which the biological conversion of organic N into ammonia 

takes place. The ammonification process is essentially a 

catabolism of amino acids and includes several types of 

deamination reactions such as oxidative deamination and 

reductive deamination (Vymazal 2007). The oxidative deam-

ination can be written as

Aminoacids Iminoacids Ketoacids NH® ® ® 3.

This may be operative in the oxidized soil layer. The 

reductive deamination can be written as

Aminoacids Saturated acids® ® NH3.

This happens within the reduced soil layer. Ammonification 

rates are dependent on temperature, pH, C/N ratio, available 

nutrients, and soil conditions such as texture and structure 

Fig. 21.10 Nitrogen transformations in a constructed wetland system
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(Vymazal 2007). Nitrification can be defined as the biological 

oxidation of ammonium to nitrate with nitrite as an interme-

diate in the reaction sequence. Nitrification depends on tem-

perature, pH value, alkalinity of the water, inorganic C 

source, moisture, microbial population, and concentrations 

of ammonium-N and dissolved oxygen. Nitrification rates in 

wetlands were found to be in the range of 0.01–

2.15 g N m−2 day−1 with the mean value of 0.048 g N m−2 day−1 

(Vymazal 2007

nitrate is converted into dinitrogen via intermediates nitrite, 

-

trated by the following equation (Vymazal 2007):

6 4 6 2 62 3 2 2 2CH O NO CO N H O( )+ ® + +- .

oxides act as terminal electron acceptors for respiratory elec-

tron transport. Electrons are carried from an electron- 

donating substrate through several carrier systems to a more 

oxidized N form. The resultant free energy is conserved in 

ATP, following phosphorylation, and then this energy is used 

by the denitrifying organisms for respiration (Vymazal 

2007). Figure 21.10 summarizes the process of nitrogen 

transformations in a constructed wetland treatment system 

(Sim 2003).

In the recent decade, many field and laboratory studies 

have been increasingly carried out using various types of 

constructed wetland systems for the removal of total nitro-

gen from waste effluents (Beutel et al. 2009; Brisson and 

Chazarenc 2009; Ciria et al. 2005; Wießner et al. 2005; Ye 

and Li 2009; Vymazal 2005, 2007, 2010). The effects of veg-

etation and temperature in removing total nitrogen using a 

mixture of vegetation including bulrush, cattail, and mixed 

macrophytes and grasses have been studied well (Bachand 

and Horne 1999). They revealed that the average nitrate 

removal rates differ significantly between vegetation treat-

ments and mixed treatment removes over three times more 

nitrate than the single treatment. The mass balance calcula-

tions determined that the denitrification is the dominant 

mechanism. Both water temperature and available organic 

carbon apparently affect denitrification rates (Bachand and 

Horne 1999). The efficiency of different CW types to remove 

total nitrogen was also studied by Vymazal (2005, 2007) and 

revealed that the removal of total nitrogen in studied types of 

constructed wetlands varies between 40 and 50 % with 

removed load ranging between 250 and 630 g N m−2 year−1 

depending on CW type and inflow loading (Vymazal 2007).

A simple Vollenweider-type model, which can be used to 

predict wetland nitrate removal efficiency as the hydrologic 

and nutrient conditions change, has developed regarding 

nitrate retention based on seasonal temperature, hydraulic 

loading, and nitrate loading (Spieles and Mitsch 1999). 

Removal efficiency of N was studied using Juncus effusus, 

planted in a laboratory reactor where 82 and 97.6 % removal 

efficiencies were reported for ammonia and for nitrates 

(Wießner et al. 2005). In this study, the enrichment of ammo-

nia closely linked to the light, particularly during summer-

time, indicated the existence of additional N turnover 

pathways in the rhizoplane involving N2 produced by 

microbes or released by plants (Wießner et al. 2005). The 

results of this study highlighted the importance of macro-

phytes and their physiological specifics for removal of 

nitrates using constructed wetlands.

Rates of nitrate loss in wetlands are reported to be highly 

seasonal, generally peaking in the summer months (June–

August), and it correlates with water temperature and dis-

solved oxygen (Beutel et al. 2009). The macrophyte Typha 
latifolia planted in constructed wetlands has high potential 

for phytoremediation of high organic matter and ammonia-N 

content present in wastewater (Ciria et al. 2005).

A novel CW configuration with three stages, towery hybrid 

constructed wetland (THCW), has been designed to enhance 

nitrogen removal (Ye and Li 2009). The first and third stages 

are rectangle HF CWs, and the second stage is a circular three-

layer free-water flow CWs. This type of constructed wetlands 

enhances nitrification rates due to high dissolved oxygen con-

centration, and phytoremediation of nitrates is being efficient 

using macrophytes such as evergreen tree pond cypress 

(Taxodium ascendens), industrial plants mat rush 

(Schoenoplectus triqueter) and wild rice shoots (Zizania 
aquatica), and ornamental floriferous plants pygmy water lily 

(Nymphaea tetragona) and narrow- leaved cattail (Typha 
angustifolia) (Ye and Li 2009).

Phosphorus Removal
Phosphorus in wetlands occurs mainly as phosphate in 

organic and inorganic compounds. Free orthophosphate is 

the only form of phosphorus that is supposed to be utilized 

directly by algae and macrophytes (Vymazal 2007). The 

other inorganic phosphorus compounds are polyphosphates 

linearly condensed and cyclic. Organically bound phospho-

rus is present in phospholipids, nucleic acids, nucleoproteins, 

phosphorylated sugars, or organic condensed polyphosphates 

2007). The forms of 

organic P can be  generally grouped into easily decomposable 

P (nucleic acids, phospholipids, or sugar phosphates) and 

slowly decomposable organic P (inositol phosphates or phy-

tin) (Vymazal 2007). It has been observed that the wetlands 

provide an environment for the interconversion of all forms 

of phosphorus. Soluble reactive phosphorus can be taken up 

by plants and converted to tissue phosphorus or may become 

sorbed to wetland soils and sediments (Vymazal 2007). Main 

phosphorus retention mechanisms include uptake and release 

by vegetation, periphyton and microorganisms,  sorption 
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and exchange reactions with soils and sediments, chemical 

precipitation in the water column, and sedimentation and 

entrainment (Reddy et al. 1999). These mechanisms define 

the combined biological, physical, and chemical nature of P 

retention in wetlands and streams.

The macrophyte Scirpus validus is found to be the most 

effective plant species for phytoremediation of phosphorus 

compared to the removal efficiencies of Carex lacustris, 

Phalaris arundinacea, and Typha latifolia species planted in 

constructed wetlands (Fraser et al. 2004). The use of mixture 

of wetland plant species was found to be more effective than 

the use of individual plants for treating of both phosphorus 

and nitrogen present in nutrient-rich water effluents (Fraser 

et al. 2004). Floating macrophytes such as water hyacinth, 

water lettuce, and dwarf red-stemmed parrot feather that are 

planted under subsurface constructed wetland conditions 

have been found to be suitable plant species for the remedia-

tion of phosphorus from wastewater (Polomski et al. 2009).

21.4.3.2 Metal and Metalloid Removal
Constructed wetlands have been used successfully for treat-

ing heavy metals and metalloids present in wastewaters. It 

has been investigated that some of macrophytes such as 

Typha, Phragmites, Eichhornia, Azolla, Lemna, Glyceria 
grandis, Scirpus validus, Spartina pectinata, etc., are capa-

ble of uptake and accumulate a variety of heavy metals (e.g., 

Cd, Pb, Cr, Zn, Hg, Ni, etc.) and metalloids (e.g., Se) that are 

present within high concentrations in wastewater (de Souza 

et al. 1999; Lin and Terry 2003; Cheng et al. 2002

et al. 2004; Karathanasis and Johnson 2003; Liao and Chang 

2004; Maine et al. 2009; Stottmeister et al. 2003; Türker 

et al. 2014; Vymazal and Šveha 2012; Weis and Weis 2004; 

Ye et al. 2001). Some macrophytes can be used to treat more 

than one metal, and these plants can accumulate heavy met-

als in concentrations 100,000 times greater than in the asso-

ciated water (Marchand et al. 2010). Hyperaccumulators can 

tolerate, take up, and translocate high levels of certain metals 

that would be toxic to most organisms (Marchand et al. 

2010). There are four mechanisms involved in heavy metal 

ion removal in wetlands, adsorption to fine-textured sedi-

ments and organic matter, precipitation as insoluble salts, 

absorption and induced changes in biogeochemical cycles by 

plants and bacteria, and deposition of suspended solids due 

to low flow rates (Lesage et al. 2007).

Several emergent plants have been used in constructed 

wetlands to remove heavy metals successfully. Phragmites 
australis has been identified as the most suitable emergent 

plant species for toxic metal ion removal (Marchand et al. 

2010), but the performance of Phalaris arundinacea is very 

much similar to Phragmites australis as do Typha domingen-
sis, Typha latifolia, and Phragmites karka (Maine et al. 2009; 

Marchand et al. 2010; Vymazal 2007). Phragmites australis 

and Phalaris arundinacea species have also been used for 

treating alkali metals such as Na, Mg, K, and Ca, and the 

results of this study provide comprehensive information on 

the retention and sequestration of such alkali metals in veg-

etation during municipal wastewater treatment in constructed 

wetlands with subsurface horizontal flow (Vymazal and 

Šveha 2012). Phragmites australis is an invasive species in 

the Northeast USA that sequesters more metals belowground 

than the native Spartina alterniflora (Weis and Weis 2004). 

Vertical-flow constructed wetlands within Cyperus alternifo-
lius have been found to be an effective tool for the phytore-

mediation of heavy metals including Cd, Cu, Pb, and Zn 

(Cheng et al. 2002).

Water hyacinth plants (Eichhornia crassipes) in Erh- 

Chung constructed wetlands in Taiwan have been recognized 

as a good hyperaccumulator for Cd, Cu, Zn, Ni, and Pb in the 

order of Cu > Pb > Cd > Ni > Zn, and they have a high biocon-

centration of these trace elements when grown in water envi-

ronments with low concentrations of the five heavy metal 

ions (Liao and Chang 2004). In addition, CWs with floating 

aquatic plants such as Eichhornia crassipes, Pistia stratiotes, 

and Salvinia herzogii also provide good metal uptake and 

accumulation (Marchand et al. 2010).

The concentrations of Pb, Zn, Cu, and Cd accumulated 

by some emergent-rooted wetland plant species including 

Leersia hexandra, Juncus effusus, and Equisetum ramosis-
simum have been investigated in field conditions of China, 

and concentrations of Pb and Cu in both aboveground and 

underground tissues of the plants are significantly positively 

substrata, while negatively to soil N and P, respectively 

2004). The factors affecting metal accumulation 

by wetland plants are metal concentrations, pH, and nutrient 

status in substrata, and metal accumulation by wetland 

et al. 2004).

Most constructed wetlands in the USA and Europe are 

soil- or gravel-based horizontal-flow systems planted with 

macrophytes such as Typha latifolia and Phragmites austra-
lis, and they are widely used to treat storm runoff, domestic 

and industrial wastewater, and mine wastewater drainage 

(Scholz and Lee 2005). In the recent years, acid mine drain-

age has become a significant environmental problem facing 

the mining industry worldwide. Water infiltrating through 

the metal sulfide minerals, effluents of mineral processing 

plants, and seepage from tailing dams becomes acidic, and 

this acidic nature of the solution allows the metals to be 

transported in their most soluble form (Sheoran and Sheoran 

2006). The conventional treatment technologies used in the 

treatment of acid mine drainage are expensive. The use of 

wetland treatment systems is now being attractive for treat-

ing acid mine water, since it is an economically viable and 

environmentally friendly technology. These wetlands can 

absorb and bind heavy metals and make them concentrated 
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in the sedimentary deposits to take part with the geological 

cycle (Sheoran and Sheoran 2006).

Three wetland plant species, cattail (Typha latifolia), bul-

rush (Scirpus validus), and tickseed sunflower (Bidens aris-
tosa), planted in an acid mine drainage wetland in McCreary 

County, Kentucky, USA, have shown capability to bioaccu-

mulate metals such as Al, Fe, and Mn from a coal mine efflu-

ent (Karathanasis and Johnson 2003). Scirpus validus shows 

high tolerance to Al, and Fe accumulation is similar in all 

plant species (Karathanasis and Johnson 2003). A flow- 

through wetland treatment system within macrophytes, cat-

tail (Typha latifolia L.), and wetland cells that is constructed 

to treat coal combustion by-product leachate from an electri-

cal power station at Springdale, Pennsylvania (Ye et al. 

2001), can effectively remove and bioaccumulate Fe and Mn 

from the inlet water. It is also revealed that the Fe and Mn 

concentrations are decreased by an average of 91 % in the 

first year and by 94 and 98 % in the second year, respectively. 

Cobalt (Co) and nickel (Ni) are decreased by an average of 

39 and 47 % in the first year and 98 and 63 % in the second 

year, respectively (Ye et al. 2001).

Constructed wetlands are being of increasing interest to 

remove metalloids as well. The major metalloids that are 

found to be treated using constructed wetlands are boron (B) 

and selenium (Se). Turkey possesses approximately 70 % of 

the world’s total B reserves, and B contamination can be 

seen in both natural and cultivated sites particularly in the 

northwest of Turkey (Türker et al. 2014). Typha latifolia and 

Phragmites australis planted in HF CWs in Turkey have 

been recognized as effective macrophytes to treat wastewater 

from a borax reserve, and the T. latifolia was able to take up 

a total of 1,300 mg kg−1 B, whereas P. australis was able to 

uptake only 839 mg kg−1 (Türker et al. 2014).

Macrophytes Typha latifolia L. and Phragmites australis 

are effective for Se removal from wastewater (Shardendu- 

Salhani et al. 2003). In addition, saltmarsh bulrush (Scirpus 
robustus Pursh) and rabbit-foot grass (Polypogon monspe-
liensis rhizosphere bacteria also are capable 

of removing Se and Hg from wastewater (de Souza et al. 

1999). The vegetated wetlands that are constructed in 

Corcoran, California, are capable of reducing Se from the 

inflow drainage water with an average of 69.2 % (Lin and 

Terry 2003).

Several studies have been reported even in Sri Lanka 

for removal of toxic metals using constructed wetlands 

(Jayaweera et al. 2008; Kularatne et al. 2009; Weerasinghe 

et al. 2008; Mahatantila et al. 2008). Phytoremediation effi-

ciencies of water hyacinth grown under different nutrient 

conditions were investigated for removal of Fe from Fe-rich 

wastewaters in batch-type constructed wetlands (Jayaweera 

et al. 2008). The results revealed that plants grown in the 

setup without any nutrients have the highest phytoremediation 

efficiency of 47 % during optimum growth at the 6th week 

with a highest accumulation of 6707 Fe mg kg−1 dry weight 

(Jayaweera et al. 2008). Iron removal was largely due to 

phytoremediation mainly through the process of rhizofil-

tration and chemical precipitation of Fe2O3 and Fe(OH)3 

f ollowed by flocculation and sedimentation (Jayaweera 

et al. 2008). It has been found to be that the constructed 

wetlands comprising water hyacinth are effective in remov-

ing Mn through phytoextraction as the main mechanism 

(Kularatne et al. 2009).

21.4.3.3 Organic Contaminant Removal
Volatile organic compounds (VOCs), organochlorines, 

PAHs, and some pharmaceuticals are particularly concerned 

for phytoremediation in constructed wetlands. Organic 

chemicals exhibit a wide range of physicochemical proper-

ties, numerous specific toxicity effects, and often a degree of 

recalcitrance rarely encountered in common contaminants of 

domestic and agricultural sewage. Therefore, evaluating the 

physicochemical properties and biological effects of specific 

groups of organic chemicals with respect to their potential 

and observed fate in constructed wetlands may help refining 

artificial wetland design and operation modes (Imfeld et al. 

2009). Phytoremediation of organic pollutants takes place 

through several mechanisms which include accumulation 

into biomass, phytovolatilization, cellular degradation, and 

rhizosphere degradation (Williams 2002).

Volatile Organic Compounds (VOCs) 
and Hydrocarbons

mainly used to remediate hydrophilic compounds such as 

acetone and phenol (Imfeld et al. 2009). Volatilization is 

 supposed to be an important removal process for volatile 

hydrophobic compounds such as lower chlorinated ben-

zenes, chlorinated ethenes, and BTEX (benzene, toluene, 

ethylbenzene, xylene) (Imfeld et al. 2009). The removal of 

MTBE compounds using constructed wetlands is based on 

the Henry coefficient, high water solubility, and strong recal-

citrance under anaerobic conditions (Imfeld et al. 2009).

Several large-scale wetland projects currently exist at oil 

refineries, and numerous pilot studies of constructed treat-

ment wetlands have been conducted at terminals, gas and oil 

extraction and pumping stations, and refineries. Petroleum 

industry wetland studies indicate that treatment wetlands are 

more effective at removing pollutants from petroleum indus-

try wastewaters. A pilot-scale VF CW system was con-

structed at the former BP Refinery in Casper, Wyoming, in 

order to determine BTEX degradation rates in a cold-climate 

application (Wallace and Kadlec 2005). The removal rates 

for petroleum hydrocarbons in aerated subsurface-flow 

 wetlands are considerably higher than in non-aerated 
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 wetlands (Wallace and Kadlec 2005). Low-molecular-weight 

hydrocarbons such as benzene are treated by vertical-flow 

constructed wetlands achieving efficiencies between 88–89 

and 72–80 % for indoor and outdoor constructed wetlands, 

respectively (Tang et al. 2009).

Trichloroethylene (TCE) has been remediated effectively 

by phytoremediation of wetland species including cattails 

(Typha latifolia), cottonwoods (Populus deltoides), and 

hybrid poplars (Populus trichocarpa x P. deltoides) (Gordon 

et al. 1998; Williams 2002; Bankston et al. 2002; Amon et al. 

2007). Mineralization of TCE in the range of 73–96 % by 

cattails and cottonwoods was reported suggesting natural 

attenuation as a potential bioremediative strategy for TCE- 

contaminated wetlands (Bankston et al. 2002). Hybrid pop-

lars (Populus trichocarpa x P. deltoides) were used to remove 

TCE from wastewaters (Gordon et al. 1998). This study 

investigated that the cells of hybrid poplars are capable of 

metabolizing 95 % of the TCE present in influent water and 

70–90 % of the TCE is transpired (Gordon et al. 1998). 

Perchloroethylene (PCE)-contaminated groundwater was 

successfully treated by an upward-flowing subsurface con-

structed wetland through sequential dechlorination (Amon 

et al. 2007).

Pesticides and Pharmaceuticals
The capability of constructed, restored, and natural wetlands 

has been evaluated developing design guidelines to assimilate 

and process pesticides associated with agricultural runoff 

1992). Wetland plants, 

such as Ceratophyllum demersum, Elodea canadensis, and 

Lemna minor, have found evidence that phytoremediation 

may accelerate the removal and biotransformation of metola-

chlor and atrazine from herbicide-contaminated waters 

(Williams 2002). Bulrush (Scirpus validus) planted in subsur-

face-flow constructed wetlands showed effective removal of 

pesticides including simazine and metolachlor in runoff water 

(Stearman et al. 2003). A field-scale evaluation of a con-

structed wetland has been performed for removal of pesti-

cides in the Lourens River watershed of Cape Town, South 

Africa. Results indicated that the wetland is able to reduce the 

concentration of chlorpyrifos and suspended sediment enter-

ing the receiving Lourens River (Moore et al. 2002).

The efficiency of a surface-flow constructed wetland for 

the removal of pharmaceutical and personal care products 

(PPCPs) and herbicides that are discharged from a wastewa-

ter treatment plant (WWTP) into a small tributary of the River 

Besos in northeastern Spain has been studied (Reddy and 

1997). This study demonstrated that the removal 

efficiencies are often higher than 90 % for all compounds, 

with the exception of carbamazepine and clofibric acid (30–

47 %). Furthermore, a seasonal trend of pollutant removal in 

the wetland was observed for several compounds having low 

biodegradation and moderate photodegradation rates (e.g., 

1997).

Explosives
Contamination of soil and groundwater by trinitrotoluene 

(TNT) is becoming a serious problem. In the USA, TNT 

is largely discharged through military-based activities 

and ammunition manufacturing industries (Medina and 

McCutcheon 1996). Phytoremediation by constructed wet-

lands provides a promising treatment of TNT-contaminated 

groundwater and wastewater since many wetland plant 

species contain the necessary enzymes to degrade explo-

sives such as TNT (Medina and McCutcheon 1996). 

The first quantitative demonstration of 2,4,6-trinitro-

toluene (TNT) transformation by aquatic plants was con-

ducted using common wetland species Myriophyllum 
spicatum and Myriophyllum aquaticum (Williams 2002). 

Phytoremediation of 2,4,6- trinitrotoluene (TNT) and 

-

water was successfully tried out using constructed wetlands 

vegetated with some macrophytes and aquatic plants such 

as elodea, pondweed, water star grass, parrot feather, sweet 

flag, reed canary grass, and wool grass (Best et al. 1999). 

TNT was completely removed in plant treatments, and 

removal rates varied from 0.001 mg TNT g total FW−1 day−1 

in the emergent wool grass to 0.05 mg TNT g FW−1 day−1 

−1 day−1 in the 
−1 day−1 

in the submersed elodea (Best et al. 1999).

Polycyclic Aromatic Hydrocarbons (PAHs)
PAHs are aromatic hydrocarbons having two or more fused 

benzene rings arise from natural as well as anthropogenic 

sources (Haritash and Kaushik 2009). They are the one of 

widely distributed environmental contaminants bringing 

serious hazardous effects such as detrimental biological 

effects, toxicity, mutagenicity, and carcinogenicity in the 

environment, and hence, PAHs are of particular concern in 

the environment (Haritash and Kaushik 2009). The con-

structed wetland technology has been widely extended for 

the removal of polycyclic aromatic hydrocarbons (PAHs) as 

well (Haritash and Kaushik 2009; Terzakis et al. 2008; 

Fountoulakis et al. 2009).

The USEPA has identified 16 PAH compounds as prior-

ity pollutants, and urban runoff is considered as an impor-

tant pathway of releasing PAHs to water environments and 

aquatic ecosystems (Terzakis et al. 2008). Free-water-

surface (FWS) and subsurface-flow (SSF) pilot-size con-

structed wetlands have been used for treating highway 

runoff (HRO) in the central Mediterranean region, and it 

was found to be 59 % removal efficiencies of total PAHs in 

runoff (Terzakis et al. 2008). Aquatic weeds Typha spp. and 

Scirpus lacustris have been used in horizontal–vertical mac-

rophyte-based wetlands to treat PAHs (Haritash and Kaushik 

2009). Removal efficiencies of polycyclic aromatic hydro-

carbons (PAHs) and linear alkyl benzene sulfonates (LAS) 
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were evaluated in a pilot-scale constructed wetland (CW) 

system combining a free-water-surface wetland, a subsur-

face wetland, and a gravel filter in parallel (Fountoulakis 

et al. 2009). It was reported that the average removal of 

PAHs and LAS is 79.2 and 55.5 % for the SSF (subsurface-

flow) constructed wetland and 68.2 and 30.0 % for the FWS 

(free-water- surface) constructed wetland, whereas 73.3 and 

40.9 % was observed for the gravel filter, respectively 

(Fountoulakis et al. 2009).

21.4.3.4 Removal of Pathogens
Constructed wetlands are shown to be capable of removing a 

wide variety of pathogens including bacteria, viruses, and 

protozoan cysts (Greenway 2005). Wetlands act as biofilters 

through a combination of physical, chemical, and biological 

factors which all participate in the reduction of a number of 

bacteria (Ottová et al. 1997). Harmful microorganisms such 

as fecal coliform bacteria and Enterobacteriaceae can be 

effectively removed using constructed wetlands planted with 

Glyceria and Phragmites (Ottová et al. 1997).

Sedimentation is one of the mechanisms of microbial 

reduction from wetlands used for wastewater treatment (Karim 

et al. 2004). Sediments of constructed wetlands are able to 

accumulate significant concentrations of pathogens (Karim 

et al. 2004). It was investigated that the die-off rates of fecal 

coliforms in the water and sediment are 0.256 log10 day−1 and 

0.151 log10 day−1, Salmonella typhimurium in the water and 

sediment are 0.345 log10 day−1 and 0.312 log10 day−1, and the 

die-off rates of naturally occurring coliphage in water col-

umn and sediment are 0.397 log10 day−1 and 0.107 log10 day−1, 

respectively (Karim et al. 2004). Typha angustifolia has been 

tested for fecal coliform in free-water-surface (FWS) con-

structed wetlands (Khatiwada and Polprasert 1999). Major 

mechanisms influencing the removal of fecal microorgan-

isms in constructed wetlands treating sewage in tropical 

regions include the effects of temperature, solar radiation, 

sedimentation, adsorption, and filtration (Khatiwada and 

Polprasert 1999). A kinetic model for the removal of bacteria 

has been developed to evaluate the kinetics of fecal coliform 

removal vegetated with cattails (Typha angustifolia).

21.5  Limitations and Areas of Uncertainty 
in Wetland Phytoremediation

Phytoremediation in constructed wetlands is still new and 

not fully developed. Phytoremediation is generally restricted 

by limitation of rooting depth due to the shallow distribu-

tion of plant roots. Phytoremediation of soil or water requires 

that the contaminants be within the zone of influence of the 

plant roots. Only a little regulatory experience is present 

with wetland phytoremediation and it is site specific. The 

inherent characteristics of phytoremediation limit the size 

of the niche that it occupies in the site remediation market. 

Phytoremediation requires longer time period and it is cli-

mate dependent. Hence, more research is needed in terms 

of achieving the maximum phytoremediation in constructed 

wetlands. In most of constructed wetlands, phytoremediation 

of pollutants takes place effectively, when the contaminants 

are present in shallow water. This process usually favors 

nutrient addition and mass transfer is limited. High initial 

concentrations of contaminants may be phytotoxic inhib-

iting the growth of wetland plants. Harvesting and proper 

disposal plans are required for plant biomass that accumu-

lates hazardous contaminants, since the contaminants being 

treated by phytoremediation may be transferred and bioac-

cumulated in animals through food chains. The analysis of 

risk pathways also is necessary to ensure that the degree of 

risk is lessened through the use of wetlands for phytoreme-

diation that will benefit to livestock and the general public. 

Phytoremediation of mixed contaminants including both 

organic and inorganic pollutants present in wetlands is prac-

tically unsuccessful, and to make it a success, more than one 

phytoremediation method or an integrated approach may be 

required. The requirement of a greater land area for wetland 

phytoremediation competes with other remedial methods.

21.6  Current Knowledge and the Future 
of Wetland Phytoremediation

The relatively brief history of phytoremediation using con-

structed wetlands has been endeavored for most field appli-

cations in order to remediate hazardous pollutants and heal 

the Earth. The current knowledge and well understanding 

upon the limitations will enrich the future goals of phytore-

mediation in constructed wetlands. Post-harvest strategies 

are essential with pre-harvest approaches for developing a 

sustainable phytoremediation technology. The knowledge, 

experience, and field trials are necessary to forecast and cer-

tify that the wetland plants have almost detoxified contami-

nants attaining minimal residual risks to humans and the 

environment. Residual management is particularly necessary 

to alleviate some restrictions arising from the public.

Fundamental researches based on wetland phytoremedia-

tion will not be enough to solve the problem, so that it should be 

developed in large scale within new strategies and approaches 

together with integrated technology. Understanding the inter-

actions of microbes and their symbiotic effects on waste-

water treatment is also a necessity. Researchers have used 

biotechnological strategies to either enhance existing traits or 

confer novel capabilities to plants through genetic engineer-

ing. The use of genetic engineering technology is being an 

existing practice in moving phytoremediation into the fore-

front of remediation technology. Recent achievements in 

plant genomic and proteomic research significantly enrich 
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the potential of phytoremediation (McCutcheon and Schnoor 

2003). The range and reproducibility of phytotechnologies 

will be improved with additional study and refinement of 

such field trials. For a wide array of pollutants in wastewa-

ters, wetland phytoremediation attributes are an ecologically 

 compatible, cost- effective alternative, or complementary 

option for standard engineered approaches. Extensive efforts 

are ongoing to extend the range of biological capabilities and 

technical application of phytoremediation systems. The suc-

cessful transfer of the constructed wetland technologies from 

the laboratory to the field is a crucial step for the future of 

wetland phytoremediation, and the investment of this tech-

nology in the development is also an urgent necessity.
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22.1             Heavy Metal Contamination 

    Consequent to global industrialization, heavy metal pollu-
tion is a widespread problem which has become a major 
environmental concern due to hazardous effects on human 
and environmental health. Phytoremediation is an emerging 
technology that aims at metal extraction from soil, water, and 
air (Meagh  2000 ). Heavy metals are the global environmen-
tal contaminants. Air or water pollution by metals varies 
from soil pollution, because heavy metals persevere in soil 
for a longer time period as compared with the other compart-
ment of the biosphere (Lasat  2002 ). In the latest decades, the 
yearly global release of heavy metals attained 22,000 t (met-
ric ton) for cadmium, 939,000 t for copper, 783,000 t for 
lead, and 1,350,000 t for zinc (Singh et al.  2003 ). 

 Industrial    activities like production of energy and fuel, 
mining and smelting of metalliferous ores, and post produc-
tion exploitation of the materials contained in wastes result 
in heavy metal pollution. Because of the industrial revolu-
tion, a pompous increase of heavy metal accumulation was 
seen in the soil (Nriagu  1979 ). By and large, the majority 
widespread heavy metal pollutants are lead, cadmium, chro-
mium, copper, mercury, and zinc (Kabata-Pendias and 
Pendias  1989 ). Although cadmium (Cd) is less toxic than 
mercury, it is more itinerant in soil-plant system than others 
(Alloway and Ayres  1997 ). 

 Besides the other noxious substances in the industrial 
wastes, heavy metals are considered to be one of the major 
pollutants in the environment, as they have a noteworthy 
effect on its ecological quality. Human activities escort 
toward the ever-increasing level of heavy metal pollution in 
the environment. Heavy metals due to atmospheric and 
industrial pollution amass in the soil and affect the nearby 

ecosystem. Metal contamination is also caused by ground 
transportation. Highway traffi c, repairing, and deicing oper-
ations serve as constant surface and groundwater pollution 
causes. Among the well-recognized heavy metal sources 
associated with highway traffi c are the tread ware, brake 
abrasion, and corrosion (Ho and Tai  1988 ; García and Millán 
 1998 ; Sánchez et al.  2000 ). Heavy metal contaminants in 
roadside soils are derived from engine and brake pad wear 
(e.g., Cd, Cu, and Ni) (Viklander  1998 ; Turer et al.  2001 ), 
exhaust emissions (e.g., Pb) (Gulson et al.  1981 ; Al-Chalabi 
and Hawker  2000 ; Sutherland et al.  2003 ), lubricants (e.g., 
Cd, Cu, and Zn) (Birch and Scollen  2003 ), and tire abrasion 
(e.g., Zn) (Smolders and Degryse  2002 ). 

 As mentioned earlier, cadmium is an environment 
 pollutant which may be found in all ecosystems, water, air, 
and plants. Consequently, different living species including 
humans, animals, and plants are always in danger of being 
polluted by this metallic element. Cadmium concentration 
inside the body of living animals can reach an amount higher 
than its standard value because of its accumulative character-
istic. As a result different symptoms may appear (Alloway 
 1990 ; Okoronkwo et al.  2005 ). 

 Accumulation of heavy metals in soils and their transport 
through the food chains are potential threats to human health, 
especially to children’s health by ingestion of Pb-contaminated 
soil (Melamed et al.  2003 ). Three special approaches may be 
implemented for the renovation of extremely metal- 
contaminated sites (Zwonitzer et al.  2003 ). The most precise 
key is to eradicate the contaminated substrates and to restore 
with clean soil. On a large level, conversely, this kind of elu-
cidation is not practicable owing to sky-scraping overheads. 
A subsequent doable remediation approach is soil cleanup 
by means of chemical, physicochemical, or biological meth-
ods, which take away the metals from the soil. On the other 
hand, these practices may generate new problems, like the 
increased level of metal mobility and its availability to the 
biota, redeployment of the contaminants to sludge, and alter-
ation in physicochemical characters of the treated soils. 
A third form of remediation method is the in situ control of 

      Phytoremediation Using Algae 
and Macrophytes: I 

           Qaisar     Mahmood      ,     Nosheen     Mirza     , and     Shahida     Shaheen    

 22

        Q.   Mahmood ,  Ph.D.      (*) •    N.   Mirza ,  Ph.D.    •    S.   Shaheen ,  M.S., Ph.D.    
  Department of Environmental Sciences ,  COMSATS IIT , 
  Abbottabad ,  Pakistan   
 e-mail: mahmoodzju@gmail.com  

mailto: mahmoodzju@gmail.com


266

the metals using sequestering means such as minerals (e.g., 
apatite, zeolite) or industrial by-products (e.g., steel shots). 
This approach is a smart substitute to a lot of modern reme-
diation techniques, particularly for outsized industrialized 
localities and discarding grounds. Immobilization of 
 metals lessens both discharge and availability to plant. 
Experimentations have been accepted out by using extremely 
soluble types of phosphate (P, e.g., K 2 HPO 4 , DAP) 
(Hettiarachchi et al.  2001 ). Soluble P added to polluted soil 
may stimulate the formation of pyromorphite, which has 
very slight solubility. However, the accumulation of well-
soluble P heightens the possibility of eutrophication owing 
to the appliance of huge amount of such modifi cations. 
Laboratory trials by means of phosphate rock (PR) have also 
been doing well (Basta and McGowan  2004 ; Zhu et al. 
 2004 ), but PR apatite is highly insoluble and thus may not 
liberate P adequately swiftly to remediate infected soil within 
an adequate timescale. Using fi nely powdered synthetic 
hydroxyapatite in soils and solutions results in the formation 
of pyromorphite (Nriagu  1984 ; Zhang and Ryan  1999 ; Basta 
and McGowan  2004 ), but the use of synthetic hydroxyapatite 
on a fi eld scale is economically unfavorable. It has recently 
been suggested that poorly crystalline apatite, such as bone 
char apatite, might represent a low-cost, readily available 
phosphate source that could be used to remediate metal-con-
taminated soils without causing excessive P runoff (Ma et al. 
 1995 ; Ma and Rao  1997 ). Bone char is a mixed compound 
adsorbent in which carbon is distributed throughout a porous 
structure of hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2  or CaHAP). It 
contains around 76 % of CaHAP, which is not only a major 
inorganic constituent of teeth and bones but also the main 
inorganic constituent of phosphate rock (Cheung et al.  2001 ). 
The physical and chemical properties of the CaHAP have 
been widely reported; the removal mechanism has been sug-
gested to be not only an adsorption effect but also a type of 
ion-exchange reaction between the ions in solution and the 
calcium ions of the apatites (Danny et al.  2004 ). However 
bone char application to metal-contaminated soils has rarely 
been reported. In this form, the major compound, CaHAP, in 
bone char has been developed as a treatment for decontami-
nating polluted water (Gabaldon et al.  1996 ; Dhabi et al. 
 1999 ; Wilson et al.  2001 ). In particular, its potential to adsorb 
both cationic and anionic metal species including radionu-
clides from radioactive wastes and contaminated water sup-
plies is now being examined. Recently, the ability of bone 
meal addition to immobilize pollutant metals in soils has also 
been reported (Hodson et al.  2000 ). 

 The extraordinary swift alteration in environmental situa-
tion is expected to override the adaptive potential of plants. 
Heavy    metal contagion caused by natural processes or 
through a variety of industrial wastes, in addition to the 
diverse anthropogenic activities such as metal working 
industries, mining, and smelting, and the use of mineral 

 fertilizers as well as pesticides are the most severe environ-
mental troubles (Grant and Loake  2000 ).  

22.2     Remediation 
of Metal-Contaminated Soils  

 Reclamation of metal-contaminated soil can be done by 
chemical, physical, or biological methods (McEldowney 
et al.  1993 ). Numerous new physicochemical techniques are 
also used, but they are pretty costly and complicated to do 
where phytoremediation is incredibly viable to carry out. 
Among various technologies, existing so far, phytoremedia-
tion is considered to be the most environmentally friendly 
and cost-effective (Zhu and Rosen  2009 ):
•    Physicochemical methods  
•   Biological methods    

22.2.1     Physicochemical Methods 

 The most common treatment processes used include chemi-
cal precipitation, oxidation/reduction, ion exchange, reverse 
osmosis, and solvent extraction. Physical methods include 
processes where no gross chemical or biological changes are 
carried out and strictly physical phenomena are used to 
improve or treat the contaminated soils or wastewater:
    1.    Examples would be coarse screening to remove larger 

entrained objects and sedimentation (or clarifi cation). 
Nanofi ltration is a known and effi cient method for the 
separation of pollutants from water which allows us to 
close the circulation of water used in dyehouses (Ciardelli 
et al.  2002 ; Tang and Chen  2002 ; Chakraborty et al.  2003 ; 
   Kim and Park  2005 ). However, after the process of nano-
fi ltration, a concentrated mixture of dyes and auxiliary 
substances (salts, acids, alkalies, organic compounds) 
remains, which causes a serious problem.   

   2.    In the present work, Pb 2+  and Cd 2+  adsorption onto a natu-
ral polysaccharide has been studied in membrane reac-
tors. The process involves a stirred semi-batch reactor for 
the adsorption step and a microfi ltration (MF) process in 
order to confi ne the particles. Due to their lower affi nity 
for the biosorbent, Cd 2+  ions were found to break through 
the process faster than Pb 2+  cations. The experimental 
results showed the technical feasibility of the pilot. A 
mass balance model based on the Langmuir equilibrium 
isotherm was used to describe the adsorption process. 
This relation is able to predict experimental data under 
different operating conditions: the adsorbent and metal 
concentrations and the permeate fl ow rate. Based on these 
results, it is demonstrated that the biosorbent studied rep-
resents an interesting low-cost solution for the treatment 
of metal ion-polluted waters (Reddad et al.  2003 ).      
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22.2.2     Disadvantages of Physicochemical 
Methods 

 There are some disadvantages for traditional physicochemi-
cal methods to treat metal-polluted wastewater, such as:
•    Expensive cost.  
•   Low effi ciency.  
•   Labor-intensive operation.  
•   Lack of selectivity in the treating process (Tarley and 

Arruda  2004 ).  
•   Physicochemical treatment processes remain unaffected 

by the presence of toxic substances such as metals, 
whereas biological systems fail to operate in case of 
wastes predominantly inorganic or nonbiodegradable in 
nature (Mohan et al.  2008 ).    
 Scientists are paying much attention to searching the sub-

stitutable materials, which can enhance the removal effi ciency 
and reduce the treatment cost (Eccles  1999 ; Liu et al.  2007 ).  

22.2.3     Biological Methods 

 Biological methods of metal removal employ various 
microbes or plant species and are cost-effective as compared 
to physicochemical methods. Many new materials have been 
reported to be able to remove cadmium from water system, 
such as white-rot fungus (Arıca et al.  2001 ), dead biomass 
(Cruz et al.  2004 ; Zhou et al.  2007 ), rice or wheat milling by-
products (Tarley and Arruda  2004 ), brown seaweed biomass 
(Vannela and Verma  2006 ), chitin (Benguella and Benaissa 
 2002 ), and so on. These biomaterials are of low cost, or even 
the waste from industrial or agricultural by-product. Biological 
methods are generally considered as environmentally friendly. 
Furthermore, they can lead to complete mineralization of 
organic pollutants at relatively low costs (Minke and Rott 
 1999 ; Sen and Demirer  2003 ). 

 Mónica et al. ( 2005 ) has elucidated in her study that the 
use of biological processes with sulfate-reducing bacteria 
(SRB) has great potential within environmental biotechnol-
ogy. The aim of this study was to develop a bioremediation 
system, using a mixed culture of SRB, for the treatment of 
AMD from São Domingos mine as acid mine drainage 
(AMD) causes several environmental problems in many 
countries. Sulfate and heavy metal (Fe, Cu, and Zn) concen-
trations, pH, and Eh were monitored during 243 days. The 
process that was developed consisted of two stages that 
proved highly effi cient at AMD neutralization and the removal 
of sulfates and the heavy metals iron, copper, and zinc. 

22.2.3.1     Aerobic Methods 
 Aerobic treatment systems such as the conventional acti-
vated sludge (CAS) process are widely adopted for treating 
low strength wastewater (<1,000 mg COD/L) like municipal 

wastewater. CAS process is energy intensive due to the high 
aeration requirement, and it also produces large quantity of 
sludge (about 0. 4 g dry weight g −1  COD removed) that has 
to be treated and disposed of. As a result, the operation and 
maintenance cost of a CAS system is considerably high. 
Anaerobic processes for domestic wastewater treatment are 
an alternative, which is potentially more cost-effective, par-
ticularly in the subtropical and tropical regions where the 
climate is warm consistently throughout the year. Anaerobic 
wastewater purifi cation processes have been increasingly 
used in the last few decades. These processes are important 
because they have positive effects: removal of higher organic 
loading, low sludge production and high pathogen removal, 
methane gas production, and low energy consumption 
(Nykova et al.  2002 ).  

22.2.3.2     Anaerobic Methods 
 Anaerobic digestion is characterized by the complete bio-
degradation of organic matter into methane and carbon diox-
ide in discrete steps, by the combined action of numerous 
groups of microbes (McInerney and Bryant  1981 ). In the fi rst 
step, fermentative bacteria (FB) hydrolyze the polymeric 
substrates, such as polysaccharides, proteins, and lipids, and 
ferment the hydrolysis products to acetate and longer chain 
fatty acids, CO 2 , formate, H 2 , NH 4 , and H 2 S. In the next step, 
a group of organisms, called proton-reducing acetogenic 
bacteria, degrade propionate and longer chain fatty acids, 
alcohols, amino acids, and aromatic compounds to the meth-
anogenic substrates, H 2,  formate, and acetate. The degrada-
tion of these compounds with hydrogen production is 
thermodynamically unfavorable unless the concentration of 
H 2  or formate is kept low by H 2 -utilizing bacteria as metha-
nogens (McInerney and Bryant  1981 ).  

22.2.3.3     Advantages of Anaerobic Treatment 
     1.    A high degree of waste stabilization is possible.   
   2.    Low production of waste biological sludge.   
   3.    Low nutrient requirements.   
   4.    No oxygen requirements.   
   5.    Methane is a useful end product (McCarty  1964 ).     

 The feasibility of high-rate anaerobic wastewater treat-
ment (AnWT) systems for cold wastewater depends primar-
ily on:
    1.    The quality of the seed material used and its development 

under sub-mesophilic conditions.   
   2.    An extremely high sludge retention time under high 

hydraulic loading conditions because little if any viable 
biomass can be allowed to wash out from the reactor.   

   3.    An excellent contact between retained sludge and wastewa-
ter to utilize all the available capacity within the bioreactor.   

   4.    The types of the organic pollutants in the wastewater.   
   5.    The reactor confi guration, especially its capacity to retain 

viable sludge. It is not clear, as yet, whether high-rate 
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psychrophilic anaerobic wastewater treatment requires 
the development of psychrophilic or psychro-tolerant 
subpopulations, nor to what extent mesophilic sludges 
can become psychro-tolerant (McCarty  1964 ).       

22.2.4     Plant-Based Metal Adsorbents 

 The adsorption process is one of the profi cient methods to 
eliminate pollutants from effl uents (Imagawa et al.  2000 ; 
Mohan et al.  2001 ; Malik  2003 ). During adsorption, there is 
the amassing of certain element or substance in the interface 
between two phases, i.e., between the solid surface and the 
adjacent solution (Sousa et al.  2007 ; Karnitz et al.  2009 ). 
Biosorption has become known as a potential and cost-effec-
tive alternative for heavy metal exclusion from aqueous solu-
tion. Volesky ( 1990 ) has long been reviewing the use of 
algae. Agricultural by-products have also offered a potential 
alternative as biosorbents for heavy metals among the exist-
ing techniques and are yet a subject of broad studies. 
Agricultural biosorbents including soybean hulls, peanut 
hulls, almond hulls, cottonseed hulls, and corncobs have also 
been proven to take out heavy metal ions (Wartelle and 
Marshall  2000 ; Marshall et al.  2000 ). 

 Lignocellulosic materials (e.g., agricultural by-products) 
are currently used in many different technological applica-
tions (Álvarez et al.  2007 ). Metal ion binding to lignocellu-
losic adsorbents occurs through chemical functional groups, 
such as carboxyl, amino, or phenolic groups. Gardea- 
Torresdey et al. ( 1990 ) demonstrated that carboxyl groups 
found on the cell walls of dead algal biomass are partially 
responsible for Cu binding. The characteristics of each 
adsorbent depend on its physical and chemical properties. 
Some of these materials need chemical activation to be used 
as adsorbents, for example, peach pits (Molina et al.  1996 ). 

22.2.4.1     Bark 
 The effi cacy of the bark of  Eucalyptus tereticornis  (Smith) as 
an adsorbent for the removal of metal ions and sulfate from 
acid mine water was assessed. About 96 % of Fe, 75 % of 
Zn, 92 % of Cu, and 41 % of sulfate removal were achieved 
from the acid mine water of pH 2.3 with a concomitant 
increase in pH value by about 2 units after interaction with 
the tree bark, under appropriate conditions (Chockalingam 
and Subramanian  2009 ).  

22.2.4.2     Husk 
 Rice husk, an undesirable agriculture mass residue in Egypt, 
is a by-product of the rice milling industry. It is one of the 
most important agricultural residues in quantity. It represents 
about 20 % of the whole rice produced, on weight basis of the 
whole rice (Daifullah et al.  2003 ). The estimated annual    rice 

production of 500 million tons in developing countries, 
approximately 100 million tons of rice husks is available for 
utilization in these countries alone. Traditionally, rice husks 
have been used in manufacturing block employed in civil 
construction as panels and were used by the rice industry 
itself as a source of energy for boilers (Della et al.  2001 ). 
However, the amounts of rice husk available are so far in 
excess of any local uses and have posed disposal problems. It 
was chosen because of its granular structure, chemical stabil-
ity, and its local availability at very low cost and there is no 
need to regenerate them due to their low production costs. 

 Tarley and Arruda ( 2004 ) reported that adsorption of Cd 2+  
increases by almost double when rice husk as an adsorbent 
was treated with NaOH. The reported adsorption capacities 
of Cd 2+  were 7 and 4 mg g −1  for NaOH-treated and unmodi-
fi ed rice husk, respectively. Liu et al. ( 2006 ) demonstrated 
that Pb 2+ , Cr 3+ , and Cu 2+  could be effectively adsorbed by 
sulfuric acid-modifi ed peanut husk.  

22.2.4.3     Activated Carbon 
 Activated carbon is the most widely used adsorbent for this 
purpose because of its extended surface area, microporous 
structure, high adsorption capacity, and high degree of sur-
face reactivity. However, commercially available activated 
carbons are very expensive. In addition, the laboratory prep-
aration of activated carbons has been accompanied by a 
number of problems such as combustion at high temperature, 
pore blocking, and hygroscopicity. Bilal et al. ( 2013 ) have 
reviewed various low-cost adsorbents for the removal of var-
ious metals from aqueous solutions.  

22.2.4.4     Maize Tassel 
 The possibility of using maize tassel as an alternative adsor-
bent for the removal of chromium (VI) and cadmium (II) 
ions from aqueous solutions was investigated by Zvinowanda 
et al. ( 2009 ). The effect of pH, solution temperature, contact 
time, initial metal ion concentration, and adsorbent dose on 
the adsorption of chromium (VI) and cadmium (II) by tassel 
was investigated using batch methods. Adsorption for both 
chromium (VI) and cadmium (II) was found to be highly pH 
dependent compared to the other parameters investigated. 
Obtained results gave an adsorption capacity of 79.1 % for 
chromium (VI) at pH 2, exposure time of 1 h at 
25 °C. Maximum capacity of cadmium of 88 % was obtained 
in the pH range of 5–6 at 25 °C after exposure time of 1 h. 
The adsorption capacities of tassel for both chromium (VI) 
and cadmium (II) were found to be comparable to those of 
other commercial adsorbents currently in use for the removal 
of heavy metals from aqueous wastes. These results have 
demonstrated the immense potential of maize tassel as an 
alternative adsorbent for toxic metal ion remediation in pol-
luted water and wastewater (   Zvinowanda et al.  2009 ).  
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22.2.4.5     Nutshells 
 Ajmal et al. ( 2006 ) has developed new low-cost adsorbent 
using ground nutshells, an agricultural waste, for the removal 
of cadmium and lead ions from aqueous solution. Almond is 
the seed of almond tree and classifi ed into two categories: 
sweet ( Prunus amygdalus  var.  dulcis ) and bitter ( Prunus 
amygdalus  var.  amara ). In comparing the parameters of the 
models, it was observed that the affi nity of almond shells for 
adsorption of lead is stronger than affi nity for adsorption of 
cadmium. 

 Peanut shells of mesh size 10 ± 20 were modifi ed by com-
binations of treatments following a 32 factorial design. 
Treatments consisted of either no wash, water wash, or base 
wash followed by no modifi cation or modifi cation with 
0.6 M citric acid or 0.6 M phosphoric acid. The nine samples 
were evaluated for their uptake of fi ve metal ions (Cd (II), Cu 
(II), Ni (II), Pb (II), and Zn (II)) from solution. The results 
were compared with metal ion adsorption by three commer-
cial cation exchange resins, namely, Amberlite1 200, 
Amberlite1 IRC 718, and Duolite1 GT-73. The percent of 
metal ions adsorbed per gram of adsorbent was signifi cantly 
increased by each of the acid treatments; average values 
ranged from 19 to 34 % compared with nonacid-treated sam-
ples at 5.7 %. The percent of metal ions adsorbed for base- 
washed samples was higher than water-washed or unwashed 
shells. Interaction between wash and acid treatment was not 
signifi cant for most of the experimental conditions used. 
Acid-treated samples were as effective as Duolite1 GT-73 in 
the adsorption of Cd (II) and almost twice as effective in the 
adsorption of Zn (II) from solutions containing a single metal 
ion. In solutions containing multiple metal ions, citric acid 
samples were found to be most effective and selective for Cu 
(II) compared with Cd (II), Ni (II), and Zn (II). In general, 
phosphoric acid-modifi ed shells removed the most metals 
from solution for the experimental samples and were more 
effective in removing Cd (II) and Zn (II) than two of the three 
commercial resins. Acid-modifi ed peanut shells are promis-
ing as metal ion adsorbents (Wafwoyo et al.  1999 ).  

22.2.4.6     Bagasse Fly Ash 
 The bagasse fl y ash, an industrial solid waste of sugar indus-
try, was used for the removal of cadmium and nickel from 
wastewater. As much as 90 % removal of cadmium and 
nickel is possible in about 60 and 80 min, respectively, under 
the batch test conditions. Effect of various operating vari-
ables, viz., solution pH, adsorbent dose, adsorbate concen-
tration, temperature, particle size, etc., on the removal of 
cadmium and nickel has been studied. Maximum adsorption 
of cadmium and nickel occurred at a concentration of 14 and 
12 mg L −1  and at a pH value of 6.0 and 6.5, respectively. 
A dose of 10 g L −1  of adsorbent was suffi cient for the opti-
mum removal of both the metal ions (Vinod et al.  2003 ). 

 Grape bagasse generated in the wine production process 
was characterized through X-ray diffractometry, Fourier 
transform infrared spectroscopy, scanning electron micros-
copy, nuclear magnetic resonance, and thermogravimetric 
analysis. The effi ciency of this natural material for Cd (II) 
and Pb (II) adsorption was evaluated using a batch adsorp-
tion technique. Factors affecting metal adsorption such as pH 
and contact time were investigated. Maximum adsorption 
was found to occur at pH 7.0 and 3.0 for Cd (II) and Pb (II), 
respectively, and a contact time of 5 min was required to 
reach equilibrium for both metals. With these conditions, 
adsorption studies were performed using a single solution. In 
addition, to calculate the adsorption capacities for each 
metal, the Langmuir isotherm model was used. The adsorp-
tion capacities were found to be 0.479 and 0.204 mmol g L −1  
for Cd (II) and Pb (II), respectively. The results showed that 
grape bagasse could be employed as a low-cost alternative 
adsorbent for effl uent treatment (Farinella et al.  2007 ). 

 Low et al. ( 1995 ) used nitric acid-modifi ed banana pith as 
an adsorbent and reported the maximum adsorption capacity 
of 13.46 mg g −1  for Cu 2+ . Karnitz et al. ( 2007 ) showed that 
sugarcane bagasse pretreated with sodium bicarbonate could 
adsorb heavy metals effectively. The reported adsorption 
capacities of Cu 2+ , Pb 2+ , and Cd 2+  were 114, 196, and 
189 mg g −1 , respectively.    

22.3     Phytoremediation 

 Phytoextraction is the cheapest method to remediate the pol-
luted soils. The only thing that could be done with is to 
develop an appropriate gainful biological soil remediation 
method to eliminate pollutants devoid of affecting soil pro-
ductiveness. For metal remediation phytoremediation may 
possibly offer sustainable techniques. In phytoremediation 
plants are used to eliminate, transport, stabilize, and/or 
degrade noxious pollutants in soil, sediment, and water 
(Hughes et al.  1997 ). The inspiration of using plants for envi-
ronmental remediation is very ancient and cannot be traced 
to any meticulous source. In the course of progressively mes-
merizing scientifi c innovations, pooled with interdisciplin-
ary explorations, phytoremediation is considered to be 
environmentally friendly technology. The word phytoreme-
diation (“phyto” meaning plant and the Latin suffi x “reme-
dium” meaning to clean or restore) ascribes to a variety of 
technologies based on plants that may use naturally occur-
ring as well as the genetically engineered plants to clean up 
the contaminated environments (Cunningham et al.  1997 ; 
Flathman and Lanza  1998 ). Various plants which are raised 
on metalliferous soils have adopted the capacity to mount up 
substantial amounts of native metals in their tissues without 
any indication of toxicity (Baker and Brooks  1989 ; Baker 
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et al.  1991 ; Entry et al.  1999 ). Utsunamyia ( 1980 ) and 
Chaney et al. ( 1997 ) have reintroduced the phytoremediation 
technology to remove metals from contaminated soil. Baker 
et al. ( 1991 ) has conducted the fi rst fi eld tryout on Zn and Cd 
phytoextraction. Several comprehensive reviews    have been 
written, summarizing many important aspects of this novel 
plant-based technology, giving general guidance and recom-
mendations for applying phytoremediation, and highlighting 
the processes associated with applications and underlying 
biological mechanisms (Salt et al.  1995 ,  1998 ; Chaney et al. 
 1997 ; Raskin et al.  1997 ; Chaudhry et al.  1998 ;    Wenzel et al. 
 1999a ,  b ; Meagh  2000 ; Navari-Izzo and Quartacci  2001 ; 
Garbisu and Alkorta  2001 ; Lasat  2002 ; McGrath et al.  2002 ; 
   McGrath and Zhao  2003a ,  b ; McIntyre  2003 ; Singh et al. 
 2003 ; Prasad and Freitas  2003 ; Alkorta et al.  2004 ; Ghosh 
and Singh  2005 ; Pilon-Smits  2005 ). 

 Different plant species have different capacities for uptak-
ing and tolerating the heavy metals like cadmium and others 
(Roosens et al.  2003 ; Bert et al.  2002 ). The metal hyperac-
cumulators show an extra aptitude for accumulating the large 
quantity of metals in their aerial parts (   Baker and Walker 
 1990 ). This special characteristic of the metal hyperaccumu-
lators makes them extremely appropriate for phytoremedia-
tion, i.e., to use plants for cleaning up the polluted soils. In 
the preceding decade, many studies have been accomplished 
to explore the mechanisms liable for the better metal uptake 
and tolerance via natural hyperaccumulators as model plant 
species (Lombi et al.  2001a ,  b ). In general the metal hyperac-
cumulation in plants is acknowledged as a mishmash of high 
metal uptake coupled with an improved tissue tolerance 
against the detrimental effects of higher metal concentrations 
through a better antioxidative response and sequestration at 
the cellular level (Rauser  2002 ; Shaw et al.  2004 ). 
Remediation of heavy    metal-contaminated soil may possibly 
be carried out using physicochemical processes such as ion 
exchange, precipitation, reverse osmosis, evaporation, and 
chemical reduction, however, the procedures require man-
made resources and expensive chemicals (Lasat  2002 ). 

 Phytoremediation has been considered recently as useful 
technology in which plant is applied to absorb, renovate, and 
detoxify heavy metals. The phytoremediation method was 
simple, effi cient, cost-effective, and environment friendly 
(Schnoor and McCutcheon  2003 ). Research on the capability 
of plants in eliminating heavy metals from soil has been 
strengthened by using  Polygonum hydropiper  L.,  Rumex ace-
tosella  L. (Wang et al.  2003 ),  Lolium perenne  (O’Connor 
et al.  2003 ),  Brassica juncea Helianthus annuus  and     Brassica 
napus  (Solhi et al.  2005 ),  Streptanthus polygaloides ,  Sebertia 
acuminata ,  Armeria maritima ,  Aeollanthus biformifolius , 
grass, water hyacinth, and sunfl ower (Ghosh and Singh 
 2005 ). 

 Currently phytoremediation has grabbed more attention 
due to low cost of implementation and environmental bene-

fi ts. The elevated levels of heavy metals in the environment 
would affect soil and water quality which consequently ham-
pers plant growth. Conventional cleanup technologies are 
generally too expensive to be used for restoration of con-
taminated soils and are often harmful to the normal proper-
ties of soil (Holden  1989 ). The emerging phytoremediation 
techniques, with their low cost and environmental friendly 
nature, have received increasing attention in the last decades 
(Salt et al.  1998 ). Over 400 hyperaccumulation plant species 
from all over the world can accumulate high concentrations 
of metals from contaminated soils (Baker et al.  2000 ). 

22.3.1     Categories of Phytoremediation 

 Different phytoremediation technologies can be used for the 
containments (phytoimmobilization and phytostabilization) 
or elimination (phytoextraction and phytovolatilization) 
depending on the contaminants, the site conditions, the level 
of cleanup required, and the types of plant phytoremediation 
technology (Thangavel and Subhuram  2004 ). The four dif-
ferent plant-based technologies of phytoremediation, each 
having a different mechanism of action for remediating 
metal-polluted soil, sediment, or water:
    1.    Phytostabilization, where plants stabilize, rather than 

remove contaminants by plant root metal retention   
   2.    Phytofi ltration, involving plants to clean various aquatic 

environments   
   3.    Phytovolatilization, utilizing plants to extract certain met-

als from soil and then release them into the atmosphere by 
volatilization   

   4.    Phytoextraction, in which plants absorb metals from soil 
and translocate them to harvestable shoots where they 
accumulate    
  Ecological issues also need to be evaluated when develop-

ing a phytoremediation strategy for a polluted site. In par-
ticular, one has to consider how the phytoremediation efforts 
might affect local ecological relationships, especially those 
involving other crops. Since the phytoremediation plants will 
be grown under contaminated soil/water conditions, where 
other crops may not thrive because of contaminant toxicities, 
the competition problem is unlikely to arise.  

22.3.2     Phytostabilization 

 Phytostabilization uses certain plant species to immobilize 
contaminants in soil, through absorption and accumulation 
by roots, adsorption onto roots or precipitation within the 
root zone, and physical stabilization of soils. This process 
reduces the mobility of contaminants and prevents migration 
to groundwater or air. This can reestablish a vegetative cover 
at sites where natural vegetation is lacking due to high metal 
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concentrations (Tordoff et al.  2000 ). Thorough planning is 
essential for successful revegetation, including physical and 
chemical analyses, bioassays, and fi eld trials. Metal-tolerant 
species may be used to restore vegetation to such sites, 
thereby decreasing the potential migration of contaminants 
through wind, transport of exposed surface soils, leaching of 
soil, and contamination of groundwater (Stoltz and Greger 
 2002 ). Unlike other phytoremediative techniques, phytosta-
bilization is not intended to remove metal contaminants from 
a site, but rather to stabilize them by accumulation in roots or 
precipitation within root zones, reducing the risk to human 
health and the environment. It is applied in situations where 
there are potential human health impacts, and exposure to 
substances of concern can be reduced to acceptable levels by 
containment. The disruption to site activities may be less 
than with more intrusive soil remediation technologies. 
Phytostabilization is most effective for fi ne-textured soils 
with high organic-matter content, but it is suitable for treat-
ing a wide range of sites where large areas are subject to 
surface contamination (Cunningham et al.  1997 ; Berti and 
Cunningham  2000 ). However, some highly contaminated 
sites are not suitable for phytostabilization, because plant 
growth and survival is impossible (Berti and Cunningham 
 2000 ). Phytostabilization has advantages over other soil- 
remediation practices in that it is less expensive, easier to 
implement, and preferable aesthetically (Berti and 
Cunningham  2000 ; Schnoor  2000 ). When decontamination 
strategies are impractical because of the extent of the con-
taminated area or the lack of adequate funding, phytostabili-
zation is advantageous (Berti and Cunningham  2000 ). It may 
also serve as an interim strategy to reduce risk at sites where 
complications delay the selection of the most appropriate 
technique. Characteristics of plants appropriate for phytosta-
bilization at a particular site include: tolerance to high levels 
of the contaminant(s) of concern; high production of root 
biomass able to immobilize these contaminants through 
uptake, precipitation, or reduction; and retention of applica-
ble contaminants in roots, as opposed to transfer to shoots, to 
avoid special handling and disposal of shoots. Yoon et al. 
( 2006 ) evaluated the potential of 36 plants (17 species) grow-
ing on a contaminated site and found that plants with a high 
bio-concentration factor (BCF, metal concentration ratio of 
plant roots to soil) and low translocation factor (TF, metal 
concentration ratio of plant shoots to roots) have the poten-
tial for phytostabilization. The lack of appreciable metals in 
shoot tissue also eliminates the necessity to treat harvested 
shoot residue as a hazardous waste (Flathman and Lanza 
 1998 ). In a fi eld study, mine wastes containing copper, lead, 
and zinc were stabilized by grasses ( Agrostis tenuis  cv. 
Goginan for acid lead and zinc mine wastes,  Agrostis tenuis  
cv. Parys for copper mine wastes, and  Festuca rubra  cv. 
Merlin for calcareous lead and zinc mine wastes) (Smith and 
Bradshaw  1992 ). The research of Smith and Bradshaw 

( 1992 ) led to the development of two cultivars of  Agrostis 
tenuis  Sibth and one of  Festuca rubra  L which are now com-
mercially available for phytostabilizing Pb-, Zn-, and 
Cu-contaminated soils. Stabilization also involves soil 
amendments to promote the formation of insoluble metal 
complexes that reduce biological availability and plant 
uptake, thus preventing metals from entering the food chain 
(Adriano et al.  2004 ; Berti and Cunningham  2000 ; 
Cunningham et al.  1997 ). One way to facilitate such immo-
bilization is by altering the physicochemical properties of the 
metal–soil complex by introducing a multipurpose anion, 
such as phosphate, that enhances metal adsorption via anion- 
induced negative charge and metal precipitation (Bolan et al. 
 2003 ). Addition of humifi ed organic matter (OM) such as 
compost, together with lime to raise soil pH (Kuo et al. 
 1985 ), is a common practice for immobilizing heavy metals 
and improving soil conditions, to facilitate revegetation of 
contaminated soils (Williamson and Johnson  1981 ).  

22.3.3     Phytofi ltration 

 Phytofi ltration is the use of plant roots (rhizofi ltration) or 
seedlings (blastofi ltration) to absorb or adsorb pollutants, 
mainly metals, from water and aqueous waste streams 
(Prasad and Freitas  2003 ). Plant roots or seedlings grown in 
aerated water absorb, precipitate, and concentrate toxic met-
als from polluted effl uents (Dushenkov and Kapulnik  2000 ; 
Elless et al.  2005 ). Mechanisms involved in biosorption 
include chemisorption, complexation, ion exchange, micro 
precipitation, hydroxide condensation onto the biosurface, 
and surface adsorption (Gardea-Torresdey et al.  2004 ). 
Rhizofi ltration uses terrestrial plants instead of aquatic plants 
because the former feature much larger fi brous root systems 
covered with root hairs with extremely large surface areas. 
Metal pollutants in industrial-process water and in ground-
water are most commonly removed by precipitation or fl oc-
culation, followed by sedimentation and disposal of the 
resulting sludge (Ensley  2000 ). The process involves raising 
plants hydroponically and transplanting them into metal- 
polluted waters where plants absorb and concentrate the met-
als in their roots and shoots (Dushenkov et al.  1995 ; Salt 
et al.  1995 ; Flathman and Lanza  1998 ; Zhu et al.  1999 ). Root 
exudates and changes in rhizosphere pH may also cause met-
als to precipitate onto root surfaces. As they become satu-
rated with the metal contaminants, roots or whole plants are 
harvested for disposal (Flathman and Lanza  1998 ; Zhu et al. 
 1999 ). Dushenkov et al. ( 1995 ), Salt et al. ( 1995 ), and 
Flathman and Lanza ( 1998 ) contend that plants for phytore-
mediation should accumulate metals only in the roots. 
Dushenkov et al. ( 1995 ) explain that the translocation of 
metals to shoots would decrease the effi ciency of rhizofi ltra-
tion by increasing the amount of contaminated plant residue 
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needing disposal. However, Zhu et al. ( 1999 ) suggest that the 
effi ciency of the process can be increased by using plants 
with a heightened ability to absorb and translocate metals. 
Several aquatic species have the ability to remove heavy 
metals from water, including water hyacinth ( Eichhornia 
crassipes , Zhu et al.  1999 ), pennywort ( Hydrocotyle umbel-
lata  L., Dierberg et al.  1987 ), and duckweed ( Lemna minor  
L., Mo et al.  1989 ). However, these plants have limited 
potential for rhizofi ltration because they are not effi cient in 
removing metals as a result of their small, slow-growing 
roots (Dushenkov et al.  1995 ). The high water content of 
aquatic plants complicates their drying, composting, or 
incineration. In spite of limitations, Zhu et al. ( 1999 ) indi-
cated that water hyacinth is effective in removing trace ele-
ments in waste streams. Sunfl ower ( Helianthus annuus  L.) 
and Indian mustard ( Brassica juncea  Czern.) are the most 
promising terrestrial candidates for removing metals from 
water. The roots of Indian mustard are effective in capturing 
Cd, Cr, Cu, Ni, Pb, and Zn (Dushenkov et al.  1995 ), whereas 
sunfl ower removes Pb (Dushenkov et al.  1995 ), U 
(Dushenkov et al.  1997a ), 137 Cs, and 90 Sr (Dushenkov 
et al.  1997b ) from hydroponic solutions. A novel phytofi ltra-
tion technology has been proposed by Sekhar et al. ( 2004 ) 
for removal and recovery of lead (Pb) from wastewaters. 
This technology uses plant-based biomaterial from the bark 
of the plant commonly called Indian sarsaparilla ( Hemidesmus 
indicus ). The target of their research was polluted surface 
water and groundwater at industrially contaminated sites. 
Cassava waste biomass was also effective in removing two 
divalent metal ions, Cd (II) and Zn (II), from aqueous solu-
tions (Horsfall and Abia  2003 ). Modifi cation of the cassava 
waste biomass by treating it with thioglycolic acid resulted 
in increased adsorption rates for Cd, Cu, and Zn (Abia et al. 
 2003 ). Several species of Sargassum biomass (nonliving 
brown algae) were effective biosorbents for heavy metals 
such as Cd and Cu (Davis et al.  2000 ). Plants used for phyto-
fi ltration should be able to accumulate and tolerate signifi -
cant amounts of the target metals, in conjunction with easy 
handling, low maintenance costs, and a minimum of second-
ary waste requiring disposal. It is also desirable for plants to 
produce signifi cant amounts of root biomass or root surface 
area (Dushenkov and Kapulnik  2000 ).  

22.3.4     Phytovolatilization 

 Some metal contaminants such as As, Hg, and Se may exist 
as gaseous species in the environment. In recent years, 
researchers have sought naturally occurring or genetically 
modifi ed plants capable of absorbing elemental forms of 
these metals from the soil, biologically converting them to 
gaseous species within the plant, and releasing them into the 
atmosphere. This process is called phytovolatilization. 

Volatilization of Se from plant tissues may provide a mecha-
nism of selenium detoxifi cation. As early as 1894, Hofmeister 
proposed that selenium in animals is detoxifi ed by releasing 
volatile dimethyl selenide from the lungs, based on the fact 
that the odor of dimethyl telluride was detected in the breath 
of dogs injected with sodium tellurite. Using the same logic, 
it was suggested that the garlicky odor of plants that accumu-
late selenium may indicate release of volatile selenium com-
pounds. This is the most controversial of phytoremediation 
technologies. Hg and Se are toxic (Suszcynsky and Shann 
 1995 ), and there is doubt about whether the volatilization of 
these elements into the atmosphere is desirable or safe 
(Watanabe  1997 ). The volatile selenium compound released 
from the selenium accumulator  Astragalus racemosus  was 
identifi ed as dimethyl diselenide (Evans et al.  1968 ). 
Selenium released from alfalfa, a selenium non-accumulator, 
was different from the accumulator species and was identi-
fi ed as dimethyl selenide. Lewis et al. ( 1966 ) showed that 
both selenium non-accumulator and accumulator species 
volatilize selenium. Selenium phytovolatilization has 
received the most attention to date (Lewis et al.  1966 ; Terry 
et al.  1992 ; Banuelos et al.  1993 ; McGrath  1998 ) because 
this element is a serious problem in many parts of the world 
where there are Se-rich soils. According to, the release of 
volatile Se compounds from higher plants was fi rst reported 
by Lewis et al. ( 1966 ). Terry et al. ( 1992 ) report that mem-
bers of the Brassicaceae are capable of releasing up to 40 g 
Se ha −1  day −1  as various gaseous compounds. Some aquatic 
plants, such as cattail ( Typha latifolia  L.), have potential for 
Se phytoremediation (Pilon- Smits et al.  1999 ). Volatile Se 
compounds such as dimethyl selenide are 1/600 to 1/500 as 
toxic as inorganic forms of Se found in soil (DeSouza et al. 
 2000 ). The volatilization of Se and Hg is also a permanent 
site solution, because the inorganic forms of these elements 
are removed, and gaseous species are not likely to redeposit 
at or near the site (Atkinson et al.  1990 ; Heaton et al.  1998 ). 
Furthermore, sites that utilize this technique may not require 
much management after the original planting. This remedia-
tion method has the added benefi ts of minimal site distur-
bance, less erosion, and no need to dispose of contaminated 
plant material (Heaton et al.  1998 ). Heaton et al. ( 1998 ) sug-
gest that the transfer of Hg (O) to the atmosphere would not 
contribute signifi cantly to the atmospheric pool. This tech-
nique appears to be a promising tool for remediating Se- and 
Hg-contaminated soils. Volatilization of arsenic as dimethyl-
arsenite has also been postulated as a resistance mechanism 
in marine algae. However, it is not known whether terrestrial 
plants also volatilize arsenic in signifi cant quantities. Studies 
on arsenic uptake and distribution in higher plants indicate 
that arsenic predominantly accumulates in roots and that 
only small quantities are transported to shoots. However, 
plants may enhance the biotransformation of arsenic by rhi-
zospheric bacteria, thus increasing the rates of volatilization 
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(Salt et al.  1998 ). Unlike other remediation techniques, once 
contaminants have been removed via volatilization, there is a 
loss of control over their migration to other areas. Some 
authors suggest that the addition to atmospheric levels 
through phytovolatilization would not contribute signifi -
cantly to the atmospheric pool, since the contaminants are 
likely to be subject to more effective or rapid natural degra-
dation processes such as photodegradation (Azaizeh et al. 
 1997 ). However, phytovolatilization should be avoided for 
sites near population centers and at places with unique mete-
orological conditions that promote the rapid deposition of 
volatile compounds (Heaton et al.  1998 ). Hence the conse-
quences of releasing the metals to the atmosphere need to be 
considered carefully before adopting this method as a reme-
diation tool.  

22.3.5     Phytoextraction 

 Phytoextraction, also called phytoaccumulation, refers to the 
uptake and translocation of metal contaminants in the soil by 
plant roots into aboveground components of the plants. The 
terms phytoremediation and phytoextraction are sometimes 
incorrectly used as synonyms, but phytoremediation is a con-
cept, whereas phytoextraction is a specifi c cleanup technol-
ogy (Prasad and Freitas  2003 ). Certain plants, called 
hyperaccumulators, absorb unusually large amounts of met-
als compared to other plants and the ambient metal concen-
tration. Natural metal hyperaccumulators are plants that can 
accumulate and tolerate greater metal concentrations in 
shoots than those usually found in non-accumulators, with-
out visible symptoms. According to Baker and Brooks 
( 1989 ), hyperaccumulators should have a metal accumula-
tion exceeding a threshold value of shoot metal concentra-
tion of 1 % (Zn, Mn), 0.1 % (Ni, Co, Cr, Cu, Pb, and Al), 
0.01 % (Cd and Se), or 0.001 % (Hg) of the dry weight shoot 
biomass. Over 400 hyperaccumulator plants have been 
reported, including members of the Asteraceae, Brassicaceae, 
Caryophyllaceae, Cyperaceae, Cunoniaceae, Fabaceae, 
Flacourtiaceae, Lamiaceae, Poaceae, Violaceae, and 
Euphorbiaceae. Recently Environment Canada has released 
a database “Phytorem” which contains a worldwide inven-
tory of more than 750 terrestrial and aquatic plants, both wild 
and cultivated species and varieties, of potential value for 
phytoremediation. These plants are selected and planted at a 
site based on the metals’ present and site conditions. After 
they have grown for several weeks or months, the plants are 
harvested. Planting and harvesting may be repeated to reduce 
contaminant levels to allowable limits (Kumar et al.  1995 ). 
The time required for remediation depends on the type and 
extent of metal contamination, the duration of the growing 
season, and the effi ciency of metal removal by plants, but it 
normally ranges from 1 to 20 years (Kumar et al.  1995 ; 

Blaylock and Huang  2000 ). This technique is suitable for 
remediating large areas of land contaminated at shallow 
depths with low to moderate levels of metal contaminants 
(Kumar et al.  1995 ; Blaylock and Huang  2000 ). 

 Two basic strategies of phytoextraction are being devel-
oped: chelate-assisted phytoextraction, which we term 
induced phytoextraction, and long-term continuous phytoex-
traction. If metal availability is not adequate for suffi cient 
plant uptake, chelates or acidifying agents may be added to 
the soil to liberate them (Cunningham and Ow  1996 ; Huang 
et al.  1997 ; Lasat et al.  1998 ). However, side effects of the 
addition of chelate to the soil microbial community are usu-
ally neglected. It has been reported (Wu et al.  1999 ) that 
many synthetic chelators capable of inducing phytoextrac-
tion might form chemically and microbiologically stable 
complexes with heavy metals, threatening soil quality and 
groundwater contamination. Several chelating agents, such 
as EDTA (ethylenediaminetetraacetic acid), EGTA (ethylene 
glycol-O,O′-bis-[2-amino-ethyl]  N,N, N ′, N ′,-tetra acetic 
acid), EDDHA (ethylenediamine di o-hydroxyphenylacetic 
acid), EDDS (ethylene diamine disuccinate), and citric acid, 
have been found to enhance phytoextraction by mobilizing 
metals and increasing metal accumulation (Tandy et al.  2006 ; 
Cooper et al.  1999 ). The increase in the phytoextraction of 
Pb by shoots of  Z. mays  L. was more pronounced than the 
increase of Pb in the soil solution with combined application 
of EDTA and EDDS (Luo et al.  2006 ). Although EDTA was, 
in general, more effective in soil metal solubilization, EDDS, 
less harmful to the environment, was more effi cient in induc-
ing metal accumulation in  B. decumbens  shoots (Santos et al. 
 2006 ). However, there is a potential risk of leaching of met-
als to groundwater and a lack of reported detailed studies 
regarding the persistence of metal-chelating agent complexes 
in contaminated soils (Lombi et al.  2001a ,  b ). 

 Use of high biomass crops such as the willow  Salix vimi-
nalis  to extract metals for soil remediation has been proposed 
as an alternative to the low biomass-producing hyperaccumu-
lating plants. High yields compensate for the moderate heavy 
metal concentrations in the shoots of such species. The fi rst 
long-term trials reported were using  Salix viminalis  to extract 
heavy metals from two contaminated soils: one calcareous (5 
years) and one acidic (2 years). Total metals extracted by the 
plants were 170 g Cd ha ±1 and 13.4 kg Zn ha ±1 from the 
calcareous soil after 5 years and 47 g Cd ha ±1 and 14.5 kg 
Zn ha ±1 from the acidic soil after 2 years; in the fi rst year 
outputs were negligible. After 2 years, Salix had performed 
better on the acidic soil because of larger biomass production 
and higher metal concentrations in shoots. Addition of ele-
mental sulfur to the soil did not yield any additional benefi t 
(Hornung  1997 ). In the long term, application of Fe chelate 
improved the biomass production. Cd and Zn concentrations 
were signifi cantly higher in leaves than stems, highlighting 
the necessity to collect leaves as well as shoots. On both soils, 
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concentration in shoots decreased with time, indicating a 
decrease in extraction effi ciency (Hammer et al.  2003 ).  

22.3.6     Successful Factors for Phytoextraction 
of Heavy Metals 

 As a plant-based technology, the success of phytoextraction 
is inherently dependent on several plant characteristics, the 
two most important being the ability to accumulate large 
quantities of biomass rapidly and the capacity to accumulate 
large quantities of environmentally important metals in the 
shoot tissue (Kumar et al.  1995 ; Cunningham and Ow  1996 ; 
McGrath  1998 ; Pilon-Smits  2005 ). Effective phytoextraction 
requires both plant genetic ability and the development of 
optimal agronomic practices, including:
    1.    Soil management practices to improve the effi ciency of 

phytoextraction   
   2.    Crop management practices to develop a commercial 

cropping system    
  Ebbs et al. ( 1997 ) reported that  B. juncea , while having 

one-third the concentration of Zn in its tissue, is more effec-
tive at removing Zn from soil than  Thlaspi caerulescens , a 
known hyperaccumulator of Zn. The advantage is due pri-
marily to the fact that B.  juncea  produces ten times more 
biomass than  T. caerulescens . Plants for phytoextraction 
should be able to grow outside their area of collection, have 
profuse root systems, and be able to transport metals to their 
shoots. They should have high metal tolerance, be able to 
accumulate several metals in large amounts, exhibit high 
biomass production and fast growth, resist diseases and 
pests, and be unattractive to animals, minimizing the risk of 
transferring metals to higher trophic levels of the terrestrial 
food chain (Thangavel and Subhuram  2004 ). Phytoextraction 
is applicable only to sites containing low to moderate levels 
of metal pollution, because plant growth is not sustained in 
heavily polluted soils. The land should be relatively free of 
obstacles, such as fallen trees or boulders, and have an 
acceptable topography to allow normal cultivation practices, 
utilizing agricultural equipment. Selected plants should be 
easy to establish and care for, grow quickly, have dense can-
opies and root systems, and be tolerant of metal contami-
nants and other site conditions which may limit plant growth. 
Basic et al. ( 2006a ,  b ) investigated the parameters infl uenc-
ing the Cd concentration in plants, as well as the biological 
implications of Cd hyperaccumulation in nine natural popu-
lations of  T. caerulescens . Cd concentrations in the plant 
were positively correlated with plant Zn, Fe, and Cu concen-
trations. The physiological and/or molecular mechanisms for 
uptake, transport, and/or accumulation of these four heavy 
metals interact with each other. They specifi ed a measure of 
Cd hyperaccumulation capacity by populations and showed 
that  T. caerulescens  plants originating from populations with 

high Cd hyperaccumulation capacity had better growth, by 
developing more and bigger leaves, taller stems, and pro-
duced more fruits and heavier seeds. Liu et al. ( 2006 ) con-
ducted a survey of Mn mine tailing soils and eight plants 
growing on Mn mine tailings. The concentrations of soil Mn, 
Pb, and Cd and the metal-enrichment traits of these eight 
plants were analyzed. It was found that  Poa pratensis , 
 Gnaphalium affi ne ,  Pteris vittata ,  Conyza canadensis , and 
 Phytolacca acinosa  possessed specially good metal- 
enrichment and metal-tolerant traits. In spite of the high con-
centration of Mn  in P. pratensis , its life cycle was too short, 
and its shoots were too diffi cult to collect for it to be suitable 
for soil remediation. The effectiveness of phytoextraction of 
heavy metals in soils also depends on the availability of met-
als for plant uptake (Liu et al.  2006 ). The rates of redistribu-
tion of metals and their binding intensity are affected by the 
metal species, loading levels, aging, and soil properties (Han 
et al.  2003 ). 

 Understanding the mechanisms of rhizosphere interac-
tion, uptake, transport, and sequestration of metals in hyper-
accumulator plants will lead to designing novel transgenic 
plants with improved remediation traits (Eapen and D’Souza 
 2005 ). Moreover, the selection and testing of multiple hyper-
accumulator plants could enhance the rate of phytoremedia-
tion, giving this process a promise for bioremediation of 
environmental contamination (Suresh and Ravishankar 
 2004 ). Phytoremediation has been combined with electroki-
netic remediation, applying a constant voltage of 30 V across 
the soil. The combination of both techniques could represent 
a very promising approach to the decontamination of metal- 
polluted soils (O’Connor et al.  2003 ).  

22.3.7     Translocation of Absorbed Pollutants 

 Translocation from root to shoot requires a membrane trans-
port step from root symplast into xylem apoplast. The imper-
meable suberin layer in the cell wall of the root endodermis 
(Casparian strip) prevents solutes from fl owing straight from 
the soil solution or root apoplast into the root xylem (Taiz 
and Zieger  1999 ). Organic pollutants pass the membrane 
between root symplast and xylem apoplast via simple diffu-
sion. Transpiration stream concentration factor (TSCF) is the 
ratio of the concentration of a compound in the xylem fl uid 
relative to the external solution and is a measure of uptake 
into the plant shoot. Entry of organic pollutants into the 
xylem depends on similar passive movement over mem-
branes as their uptake into the plants. Mass fl ow in the xylem 
from the shoot creates negative tension in the xylem that 
pulls up water and solutes (Taiz and Zieger  1999 ). Plant tran-
spiration depends on plant properties and environmental 
conditions. Plant species differ in transpiration rate, due to 
metabolic differences (e.g., C3/C4/CAM photosynthetic 
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pathway) and anatomical differences (e.g., surface to volume 
ratio, stomatal density, rooting depth) (Taiz and Zieger 
 1999 ). Transpiration is maximal at high temperature, moder-
ate wind, low relative air humidity, as well as light intensity 
(Taiz and Zieger  1999 ). 

 Plant can tolerate wide range of environmental condi-
tions. Enzyme and protein constitution of plants are of 
immense benefi t for phytoremediation. Sedentary nature of 
most plants is of advantage since they can over time develop 
mechanisms to acquire nutrients, detoxify pollutants, and 
control local geochemical conditions. Infi ltration is a pri-
mary pathway in contaminant migration to groundwater, and 
plants play an important role in regulating water content in 
soil. Roots of plants supplement microbial nutrient and pro-
vide aeration to the soil, consequently increasing microbial 
population compared to non-vegetated area. Above all, phy-
toremediation gives better aesthetic appeal than other physi-
cal means of remediation (Nwoko  2010 ).  

22.3.8     Mechanism of Metal Uptake by Plant 

 Heavy metal pollution of the environment is increasing 
manyfold day by day, due to industrialization and drastic 
increase in population; anthropogenic input of heavy metals 
into the environment such as synthetic fertilization, fossil 
fuel burning, pesticide use, smelting industries, mining, and 
exhaust from automobiles; and emissions from municipal 
wastes (Revathi and Venugopal  2013 ; Sebastiani et al.  2004 ). 
Due to the persistent nature and biomagnifi cation potential 
of heavy metal, their contamination in environment gets 
increased many a times (Dalvi and Bhalera  2013 ; Revathi 
and Venugopal  2013 ). 

 The toxicity of heavy metals threatens the existence and 
prevalence of life on Earth. Higher concentrations of essen-
tial as well as nonessential heavy metals that adversely affect 
the biochemical and physiological processes within the plant 
may result in appearance of toxicity symptoms, inhibited 
growth, and ultimately death of the plant (Dalvi and Bhalera 
 2013 ; Revathi and Venugopal  2013 ; Hall  2002 ). However, 
many of the heavy metals such as Fe, Zn, Cu, Ni, and Co are 
essential micronutrients and are integral part of various pro-
teins and enzymes (Dalvi and Bhalera  2013 ). Considering 
the threads of heavy metal pollution, an effective, viable, and 
affordable solution is needed. 

 Phytoremediation is viable, economical, aesthetically 
pleasant, and environment friendly which has proved an 
effective mean of remediating heavy metal contamination 
(Sebastiani et al.  2004 ). Worldwide, there are about 400 
plant species that are capable of accumulating metal con-
tamination and can be used for remediating metal- 
contaminated soil and water (Memon and Schröder  2009 ; 

Smits  2005 ). Various plants such as  Pteris vittata  L.,  Piricum 
sativum  L. (As),  Brassica juncea  L. (Cr),  Acanthopanax 
sciadophylloides ,  Maytenus founieri  (Mn),  Sasa borealis , 
 Alyssum  sp. (Ni),  Clethra barbinervis  (Co),  Chenopodium 
album  L.,  Vetiveria zizanioides  L.,  Thlaspi rotundifolium  ssp. 
 cepaeifolium ,  T. caerulescens ,  Sesbania drummondii  (Pb), 
 Clethra barbinervis ,  Ilex crenata ,  Thlaspi caerulescens , 
 Arabidopsis halleri  (Cd, Zn),  Marrubium vulgare  L. (Hg), 
and  Brassica juncea  Czern L. (Se) (Memon and Schröder 
 2009 ; Gonzaga et al.  2006 ; Jonnalagadda and Nenzou  1997 ; 
Zhang et al.  2007 ; Assunçao et al.  2003 ; McGrath et al. 
 2006 ; Baker et al.  2000 ; Reeves et al.  2001 ; Memon et al. 
 2001 ; Rotkittikhun et al.  2007 ; Sahi et al.  2002 ; Celestino 
et al.  2006 ; Fernando et al.  2007 ; Jimenez et al. 2006) have 
proved their potential in remediating the heavy metal- 
contaminated sites. Phytoremediation also reduces the risk 
of exposure of hazardous contamination and thus is expand-
ing rapidly (Maiti et al.  2004 ). 

 Various plant species have evolved a variety of in vitro 
and in vivo tolerance and accumulation mechanisms. Some 
plants effectively prevent metal from entering in their aerial 
parts and contain them in their roots. Some plants transport 
and accumulate metals in their aerial parts/aboveground tis-
sues, and metal concentration in their tissues is almost the 
same as in the soil. These plant species accumulate metal 
concentration in their aboveground tissues far higher than 
the concentration in the soil. 

 Several heavy metal tolerance mechanisms within the 
plants have been suggested by various researchers (Mazen 
 2004 ; Hall  2002 ) including: (1) synthesis of metal-binding 
compounds such as amino acids, citric acid, malic acid, and 
phytochelatins (PCs) (Reilly  1972 ; Thurman and Rankin 
 1982 ; Brookes et al.  1981 ; Grill et al.  1985 ,  1987 , Rtiegsegger 
and Brunold  1992 ; Cobbett and Goldsbrough  2002 ; Hall 
 2002 ); (2) alterations of membrane structures (De Vos et al. 
 1988 ); (3) complex formation in vacuoles (Fernando and 
Fernando  1994 ); and (4) synthesis of stress metabolites 
including proteins (Neumann et al.  1994 ). It is also evident 
that of the abovementioned mechanisms more than one 
mechanism may be working together in the same species 
(Hall  2002 ). 

 The following aspects of metal uptake by the plants are 
being discussed in the subsequent sections:
    1.    Rhizosphere   
   2.    Transport through membranes   
   3.    Translocation within plant     

22.3.8.1     Mechanisms Wherein Rhizosphere 
Helps in Metal Uptake 

        1.    Exudation and/or complex formation in rhizosphere   
   2.    pH alteration of rhizosphere   
   3.    Mycorrhizal association     
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   Exudation and/or Complex Formation in Rhizosphere 
 Generally the bioavailability of metals in the soil solution is 
thought to be as free metal and/or free ion or radical. Plants 
in their rhizosphere (0.2 mm near roots) solubilize and facil-
itate their speciation of metals through exudation or chelate 
formation (Dalvi and Bhalera  2013 ). Mostly two strategies 
are observed in different plant species, i.e., dicots and non- 
graminaceous monocots reduce the metals and bring them 
in the radical form and later release/excrete organic acids 
(histidine and citrate) with which these metal radicals form 
complexes and plants either absorb the free metal radicals or 
metal chelators like malate and citrate and/or metal com-
plexes (Revathi and Venugopal  2013 ; Hall  2002 ), e.g., buck-
wheat under Al stress secreted/exudated oxalic acid and 
accumulated Al-oxalate (nontoxic) in the leaves (Hall  2002 ), 
whereas graminaceous monocots excrete mugineic and ave-
nic acids (chelates), with which metal forms complexes and 
plants absorb these complexes (Reichman  2002 ). Most 
common root exudates are protons, bicarbonates, CO 2 , alle-
lopathic compounds, siderophores, mucilage, sugars, H 2 O, 
and organic and inorganic acids (Dalvi and Bhalera  2013 ).  

   pH Alteration of Rhizosphere 
 Depending upon plant species, age of the plant, nutrient con-
centration, and the buffering capacity of the soil, plant can 
alter the pH of its rhizosphere by 2.5 units from the bulk soil 
solution (Reichman  2002 ). This is done by imbalance uptake 
of anions/cations, H +  and/or OH - excretion, enzyme, amino 
acid and/or organic acid production, and/or CO 2  production 
by the microbes present in the rhizosphere of the plant 
(Revathi and Venugopal  2013 ). As a result, metal solubiliza-
tion, speciation, and availability to the plant get ensured in 
the rhizosphere as compared to the soil solution. It is evident 
that plants alter the pH of rhizosphere to increase or decrease 
the bioavailability of metal of concern (Reichman  2002 ).  

   Mycorrhizal Association 
 Under heavy metal stress mutualistic association of fungi and 
plant roots has been reported (Dalvi and Bhalera  2013 ). For 
plants capable of growing on heavy metal contamination, two 
most common mycorrhizal associations are arbuscular 
mycorrhizas (AM) and ectomycorrhizas (ECM) (Dalvi and 
Bhalera  2013 ). The mycorrhizal fungi avail the benefi ts of 
shelter and photosynthesis from the plant and in return 
increase the bioavailability of metal to the plant, by producing 
chelators and/or by altering the pH and by increasing the sur-
face area of roots for plant. Such associations are found in 
 Vaccinium macrocarpon ,  Trifolium pratense  (Mn), and  Betula  
sp. (Zn). These associations are plant specifi c, metal contami-
nation type, and fungal species specifi c (Reichman  2002 ). 

 It is observed that overexpression of metal transporters 
and overproduction of metal-chelating agents such as citrate, 
metallothioneins, and phytochelatins facilitate metal toler-

ance and accumulation within the plant. Plants under metal 
stress form more phytochelatins (PC) and metallothioneins 
(MT) and, hence, are widely studied by many scientists.   

22.3.8.2     Transport Through Membranes 
 Transport and uptake of each metal through cell membrane 
depends upon electrochemical potential gradient for each 
metal ion between root cells and rhizosphere, across the 
plasma membrane. Mostly, it is found in the range of 0.12 
and 0.18 mV. Secondly, low activity of metal ions within the 
cytoplasm is maintained to avoid harmful redox reactions 
which can occur due to the prevalence of free ionic forms of 
metals. These two factors maintain a balanced passive gradi-
ent for metal uptake (Reichman  2002 ; Jabeen et al.  2009 ). 
Figure  22.1  shows a hypothetical scheme of cellular trans-
port of metal within plant.  

 Various metal- and protein-specifi c transporters are 
involved in infl ux and effl ux of heavy metals, details of 
which are shown in Table  22.1 .

   For metal tolerance, plants sequester the metal concentra-
tions away at places within the cell where the metals cannot 
interact with metabolically active cellular substances.  

22.3.8.3     Translocation Within Plant 
     1.    Cellular exclusion   
   2.    Complex formation at the cell wall–plasma membrane 

interface   
   3.    Metal distribution within plant parts   
   4.    Cellular complexation and compartmentation:

    (a)    Phytochelatin complexation   
   (b)    Metallothionein complexation   
   (c)    Organic and amino acids   
   (d)    Vacuole compartmentation         
 Various metal tolerance mechanisms in plants have been 

illustrated in Fig.  22.2 .  

   Cellular Exclusion 
 Metals translocate within the plant by two routes, either 
through apoplastic free spaces, e.g., in Al-resistant grasses, 
or through symplastic route, i.e., in Al-sensitive  T. aestivum  
(Reichman  2002 ), while in some plant species, both apoplas-
tic and symplastic transports of metals have been observed.  

   Complex Formation at the Cell Wall–Plasma 
Membrane Interface 
 Signifi cant proportions of metal contamination have been 
found accumulated within the space of cell wall–plasma 
membrane interface, i.e., Cu was found bounded by the cell 
wall and plasma membrane in  T. pratense  and  Lolium multi-
fl orum  and higher concentrations of Zn, Pb, Fe, Si, and Cu 
with no accumulation of these metals in the cytoplasm were 
found in the cell walls of  Minuartia verna  ssp. (Reichman 
 2002 ). Pectic sites, extracellular carbohydrates, and histidyl 

Q. Mahmood et al.



277

groups of cell wall prevent the translocation of heavy metal 
and prevent their fl ow toward cell membrane (Dalvi and 
Bhalera  2013 ; Memon and Schröder  2009 ), as polygalact-
uronic acid in the pectins of cell wall serves as cation 
exchanger. Although cell wall is thought as a potential site 
for heavy metal accumulation, their role in the tolerance 
against heavy metal stress is not fully understood (Dalvi and 
Bhalera  2013 ; Memon and Schröder  2009 ). Under Cd stress, 

cell membrane changes are reported in wheat, sunfl ower, and 
 Nutella  (Hall  2002 ). ABC transporters are considered as the 
main transporters responsible for controlling the transloca-
tion of heavy metals through cell membrane. Pleiotropic 
drug resistance (PDR) and multidrug resistance-associated 
protein (MRP) are the two active ABC subfamilies of ABC 
transporters responsible for the sequestration of heavy met-
als, after chelation (Dalvi and Bhalera  2013 ).  

Trafficking and Chelation in 
Cytosol

Apoplast

Metal Ions

Metal Uptake by Transporters

Metal Sequestration

Transporters

Uptake in Plastids 
by Transporters 
and chaperones

Uptake in Golgi apparatus by 
Transporters and Chaperones

Movement into Cell vacuole by
transporters and chelators

Binding 
with 
Proteins

Transport to 
Mitochondria by
chaperones and 
transporters

  Fig. 22.1       Schematic diagram of 
cellular transport of metals 
within plant       

    Table 22.1    Various transporters of metals reported in plants   

 Metal  Transporter  Plant  Reference 

 Zn  ZIP   A. thaliana ,  O. sativa   (Filatov et al.  2006 ; Ishimaru et al.  2005 ; Roosens et al. 
 2008 ; Memon and Schröder  2009 ) 

 Cu, Zn, Cd, 
Co, Pb 

 P-type ATPase   A. thaliana ,  A. halleri ,  L. esculentum   (Memon and Schröder  2009 ; Bernal et al.  2007 ; Courbot 
et al.  2007 ; Lee et al.  2007 ; Roosens et al.  2008 ; Talke 
et al.  2006 ; Willems et al.  2007 ; Xing et al.  2008 ) 

 Cd, Zn  Fe-regulated transporter (IRT)   A. thaliana ,  T. caerulescens ,  L. 
esculentum ,  O. sativa ,  N. tabacum  

 (Hodoshima et al.  2007 ; Memon and Schröder  2009 ; 
Kerkeb et al.  2008 ; Plaza et al.  2007 ) 

 Zn  Cation diffusion facilitator 
(CDF) 

     A. thaliana ,  A. halleri ,  T. goesingense , 
 N. tabacum ,  P. trichocarpa ,  P. deltoides  

 (Kawachi et al.  2008 ; Memon and Schröder  2009 ; 
Shingu et al.  2005 ; Willems et al.  2007 ) 

 Fe, Cd  Natural resistance-associated 
macrophage proteins (Nramp) 

  A. thaliana ,  A. halleri ,  T. caerulescens , 
 G. max ,  O. sativa  

 (Memon and Schröder  2009 ; Lanquar et al.  2005 ) 

 Metal stress  ABC transporters   A. thaliana ,  O. sativa   (Memon and Schröder  2009 ) 
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   Metal Distribution Within Plant Parts 
 It is believed that depending upon the metal toxicity, extent 
of toxicity, and plant species, plant combats the metal 
 contamination through its nonuniform distribution within 
oneself. Some plants accumulate    high amounts of metal in 
roots (perhaps this is to keep contamination away from 
metabolism in the shoot), while some plants accumulate 
metals in their aerial parts and ultimately old leaf drop in 
deciduous plants may be the tolerance mechanisms adopted 
by such plant species (Reichman  2002 ; Hall  2002 ).  

   Cellular Complexation and Compartmentation 
   Phytochelatins Complexation 
 Phytochelatins (PCs) are cysteine-rich nonprotein metal- 
binding peptides having structure (γ Glu-Cys)  n  -Gly where 
 n  = 2–11 is produced by plants. PCs are found in gymno-
sperms, dicots, monocots, and algae (Memon and Schröder 
 2009 ; Reichman  2002 ; Hall  2002 ; Memon et al.  2001 ; Jabeen 
et al.  2009 ; Clemens  2006 ) and are mostly studied under 
Cd stress, i.e., Cd is the strongest inducer of PCs (Dalvi and 
Bhalera  2013 ). They are synthesized non-transitionally on 
glutathione (enzyme) substrate. Glutathione synthesis is 

 initiated due to the presence of metal ions. They are widely 
distributed and synthesized in  A. thaliana , higher plants, and 
yeast under metal stress (Memon and Schröder  2009 ). 
Phytochelatins are the ones that belong to class 3 of MTs. 
They are involved both in the homeostasis of essential metals 
and in the detoxifi cation of heavy metals within plant. After 
synthesis the PC–metal complex is transported by ABC 
transporters and/or H +  to the vacuole, where this complex 
behaves resistant    and upon favorable conditions (presence of 
sulfi de/sulfi te ions) PC–metal complex degrades and releases 
metal (Dalvi and Bhalera  2013 ). Under metal stress PC syn-
thesis has been reported in  Zea mays  (Cd and Cu),  Silene 
vulgaris  (Cu), and  H. lanatus  (As) (Reichman  2002 ; Hall 
 2002 ). The gene of PCs synthesis has been identifi ed in 
 Arabidopsis  and yeast (Clemens  2006 ).  

   Metallothionein Complexation 
 Metallothioneins (MTs) are low molecular weight, cysteine- 
rich, metal-binding proteins. Their function is the regulation 
of essential metals and the detoxifi cation of metal contami-
nation (Memon and Schröder  2009 ; Reichman  2002 ; Hall 
 2002 ; Clemens  2006 ; Jabeen et al.  2009 ). MTs originally 

Metal

Metal

High Metal

Cell Wall

ATP

ADP + Pi

Low Metal

Vacuole

Acids

Metalothianins

PCs PC-M PC-M-S

High MetalHSPs

MTs

M

H+

Cytosol

Ectomycorrhizal Sheath

Metal

Metal Metal
1

2 3 4

5

6

7

8

  Fig. 22.2    Summary of heavy metal avoidance and tolerance mecha-
nisms (Redrawn after Dalvi and Bhalera  2013 ). (1) Restriction of metal 
movement to roots by mycorrhizas, (2) binding to cell wall and root 
exudates, (3) reduced infl ux across plasma membrane, (4) active effl ux 

into apoplast, (5) chelation in cytosol by various ligands, (6) repair and 
protection of plasma membrane under stress conditions, (7) transport of 
PC–M complex into the vacuole, (8) transport and accumulation of 
metal in vacuole       
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were found in animals, and it initiated their search in plants 
as a detoxifi cation mechanism. MT-like genes have been iso-
lated from several plants species such as wheat, maize, soy-
bean, rice,  Brassica napus , and tobacco. However their role 
and function is not fully understood, as much information is 
not available about their role in the detoxifi cation of heavy 
metals (Dalvi and Bhalera  2013 ; Memon and Schröder  2009 ; 
Memon et al.  2001 ). 

 Metallothionein are grouped into three classes:
    1.    Class 1 MTs are found in mammals, contain 61 amino 

acids, but are defi cient of histidine or aromatic amino 
acid. Under metal stress conditions they predominantly 
are expressed in the roots.   

   2.    Class 2 MTs are found in yeast or cyanobacteria. Under 
metal contamination, they are expressed in the leaves and/
or aerial parts of the plant.   

   3.    Class 3 MT phytochelatins belong to class 3 MTs 
(Reichman  2002 ; Hall  2002 ).      

   Organic and Amino Acids 
 Carboxylic and amino    acids such as citric, malic, and histi-
dine (His) are the ligands which have crucial role in the 
detoxifi cation and tolerance of heavy metals especially Cd, 
Cu, Ni, and Zn, within plants (Hall  2002 ; Dalvi and Bhalera 
 2013 ) moving from roots to leaves, citrate, and His are the 
principal ligands responsible for the translocation of heavy 
metals in the xylem sap. Under Ni stress 36-fold increase of 
histidine concentration in the xylem of  Alyssum lesbiacum  
was found (Clemens  2001 ; Hall  2002 ).  

   Vacuole Compartmentation 
 Compartmentation in the vacuole is the most viable and 
probable site (Memon and Schröder  2009 ; Jabeen et al. 
 2009 ). Excess of metal contamination results in the vacuola-
tion of metal contamination using ABC transporters in the 
tolerant plants such as  F. rubra  and  D. caespitosa  (Hall  2002 ; 
Reichman  2002 ). Mostly metal contamination is pumped 
into the vacuole, e.g., Zn dumping into the vacuoles of 
grasses and  H. vulgare , Cu and Al in  Zea mays , and Zn and 
Cd in  Nicotiana tabacum  (Reichman  2002 ). Zn, Cd, and Mo 
are found in vacuole, whereas Ni accumulates in cytosol and 
causes leaf damage (Hall  2002 ). In  H. annuus  on exposure of 
Mn stress, plant developed leaf trichomes, whereas in the 
trichomes of  Vicia faba  under Mn stress, metallothionein 
gene was detected.     

22.3.9     Future of Phytoremediation 

 Since the last decade phytoremediation has gained accep-
tance as a technology and has been acknowledged as an 
important area of research. Basic processes of phytoremedia-

tion are still largely not clear and hence require further basic 
and applied research to optimize its fi eld performance. 
Information collected from basic research at physiological, 
biochemical, and genetic level in plants will be helpful in 
understanding the processes of passive adsorption, active 
uptake, translocation, accumulation, and chelation mecha-
nisms. Research aimed at better understanding of the interac-
tive roles among plant roots and microbes will help scientists 
to utilize their integrative capacity for soil decontamination. 
Further, genetic evaluation of hyperaccumulators growing in 
metal-contaminated soil and associated microbes would pro-
vide the researchers with a gene pool to be used in genetic 
manipulation of other non-accumulators and production of 
transgenics. However, new knowledge and plant material 
obtained from research is already being implemented for 
phytoremediation in the fi eld. The fi rst fi eld tests with trans-
genics are showing promising results. As more results dem-
onstrating the effectiveness of phytoremediation become 
available, its use may continue to grow, reducing cleanup 
costs and enabling the cleanup of more sites with the limited 
funds available. 

 Currently a great deal of research is in progress in this 
direction and its impact will soon be felt in phytoremediation 
market. An interesting development in phytoremediation 
could be the adoption of an integrated approach both for 
research and commercial purposes. Presently phytoremedia-
tion research is carried out by scientists with expertise in 
only certain fi elds, e.g. plant molecular biology, plant bio-
chemistry, plant physiology, ecology, plant biochemistry, 
plant physiology, ecology, toxicology, or microbiology, but 
phytoremediation being an integrated technology will be 
benefi ted more by a team of researchers with different back-
grounds. Commercially to enhance public acceptance, phy-
toremediation can be integrated with landscape architecture 
such as remediation of partially contaminated urban sites that 
may be combined with an attractive design so that the area 
may be used as a park or some other recreational place by the 
public after the remediation process (Pilon-Smits  2005 ). It is 
obvious that phytoremediation is an effective technology for 
removing and detoxifying metals and metalloids such as Cd, 
Se, and As from environment for re- cultivation and reclama-
tion of polluted sites. Phytoremediation works best when 
supplemented by nonbiological remediation technologies for 
decontamination of most polluted sites. Because pollutant 
distribution and concentration are heterogeneous for sites, 
the most effi cient and cost-effective remediation solution 
may be a combination of different technologies such as exca-
vation of the most contaminated spots followed by polishing 
the site with the use of plants. The identifi cation of unique 
genes from natural hyperaccumulators and their subsequent 
transfer to fast-growing species is another promising approach. 
To improve phytoremediation a number of agronomic 
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enhancements are also possible ranging from traditional crop 
management techniques (use of pesticides, soil amendments, 
fertilizers, etc.) to approaches more specifi c to phytoremedi-
ation such as improving metal solubility in soils through the 
use of chelators. Finally, advances in optimizing plants for 
phytoremediation will depend on gaining new knowledge 
about the fate and transport of metals/metalloids in plants 
and innovative technologies to improve the acceptability of 
transgenic plants for phytoremediation.   

22.4     Role and Mechanism of Algae 
in Heavy Metal Accumulation 

 There is an increased interest in employing algae for bio-
monitoring eutrophication and organic and inorganic pol-
lutants. Chlorophyll produced during the growth of algae 
was estimated spectrophotometrically to judge the total 
nitrogen content in water collected from aquatic systems 
suggesting on eutrophication levels (Ben-Chekroun and 
Baghour  2013 ). A number of algal species have been 
employed in the phytoremediation of various pollutants 
including heavy metals. 

 Knowing the positive aspects and potential of phytoreme-
diation, it has been commercialized for the decontamination 
of metal-contaminated soil and water. Role of rhizosphere in 
heavy metal reclamation cannot be undermined as it is well 
documented that rhizosphere is involved in various biogeo-
chemical processes such as alleviation of biotic/abiotic stress 
in plants, nutrient uptake, and metal detoxifi cation. Thus, 
plant-associated microbes, algae, and fungi which mostly are 
plant and metal contamination specifi c are playing their role 
in improving the effi ciency of the phytoremediating plant 
(Rajkumar et al.  2012 ). They not only tolerate the metal con-
tamination but provide numerous benefi ts to both the plant 
and soil (Rajkumar et al.  2012 ). The survival, existence, and 
population of rhizospheric algae, fungi, and/or microbes 
depend not only upon the properties of rhizosphere but also 
on the nutrients available which surely are metal contamina-
tion and plant specifi c. 

 Algae being aquatic organisms are found capable of the 
removal of heavy metal contamination (Perales-Vela et al. 
 2006 ; (Wenzel  2009 ; Gadd  2000 ; Rajkumar et al.  2010 ; Kidd 
et al.  2009 ; Ma et al.  2011 ; Khan et al.  2009 ; Uroz et al. 
 2009 ). Brown algae have been found effi cient in hyperaccu-
mulation of certain metals (Table  22.1 ). The direct function 
of rhizosphere-associated algae is the alteration of metal 
concentration and/or accumulation within plant tissues, and 
indirectly they are involved in the increase in the root/shoot 
biomass. Similarly, fungi through antioxidant enzymatic 
activities alter the biochemical and physiological processes 
of plant tolerance to heavy metals (Rajkumar et al.  2012 ; 
Yamane et al.  2004 ; Jiang and Zhang  2002 ; Glick  2010 ; Aafi  

et al.  2012 ; Miransari  2011 ; Ma et al.  2011 ; Rajkumar et al. 
 2010 ; Yang et al.  2012 ; Wenzel  2009 ). 

 Generally in organisms under heavy metal stress, various 
defense systems, such as exclusion, compartmentalization, 
complex formation, and binding protein synthesis, i.e., 
metallothioneins (MTs) and phytochelatins (PCs), and ulti-
mately translocation of metal complexes to the vacuoles are 
operational (Ben-Chekroun and Baghour  2013 ; Grill et al. 
 1985 ,  1987 ,  1989 ). In  Thalassiosira weissfl ogii and 
Thalassiosira pseudonana , PC synthesis was observed 
which forms glutathione and has great affi nity for metal ions 
(Ben-Chekroun and Baghour  2013 ; Ahner et al.  2002 ; Payne 
 2000 ). Similarly, in  Chlorella vulgaris , proline concentration 
was increased under Cu and Cr stress (Ben-Chekroun and 
Baghour  2013 ; Sharma and Dietz  2006 ; Krämer et al.  1996 ). 
During heavy metal remediation and/or metal removal pro-
cess, algae undergo through two mechanisms, i.e., exclu-
sion—restricted or no entry of metal ions—and, secondly, 
complex formation of metal ions, once they get entered with 
the cell of oneself. Complex formation helps in minimizing 
or decreasing the toxic effects of heavy metal contamination 
(Perales-Vela et al.  2006 ; Cobbett and Goldsbrough  2002 ). 
Metal extraction by algae mainly involves extracellular poly-
mers especially carbohydrates, whereas metals complex for-
mation by algae involves glutathione-derived peptides, i.e., 
class III metallothioneins (Mt III), are involved. Mt III is    
quick and energy requiring response of algae to heavy metal 
stress as a result of which heavy metal get transported to the 
vacuole of algae (Perales-Vela et al.  2006 ). 

 Algae are believed as exhibiting various heavy metal reme-
diation and detoxifi cation mechanisms, e.g., they deal with 
heavy metal stress either through low concentration uptake 
for metabolism or non-active adsorption–biosorption (Ben-
Chekroun and Baghour  2013 ). Several green algae species, 
i.e.,  Enteromorpha  and  Cladophora , in various parts of the 
world have been identifi ed for the phytoremediation of heavy 
metals (Ben-Chekroun and Baghour  2013 ; Al-Homaidan 
et al.  2011 ). Due to the phytoremediational capacity for heavy 
metals, they are being considered as biomonitor as they are 
found as both plant and metal specifi c (Ben-Chekroun and 
Baghour  2013 ; Gosavi et al.  2004 ; Rainbow  1995 ), e.g., 
 Cyanophyta  and  Chlorophyta  are hyperaccumulators and 
hyper-absorbents for arsenic (As) and boron (B). Similarly, an 
identifi ed algal colony is found in phytoremediation of arsenic 
(As) contamination in symbiotic association with the roots of 
 Arundo donax  L. (   Mirza et al.  2010a ,  b ). 

 It is also believed that algae can synthesize heavy metal 
binding peptides, through gene encoding and enzyme synthe-
sis with the appearance and prevalence of class II metallo-
thioneins (Mt II) (although not well reported). But the 
presence of Mt III and expected Mt II makes algae an interest-
ing potential for the remediation of heavy metal- contaminated 
wastewater (Gaur and Rai  2001 ). Isolation and identifi cation 
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of plant-associated algae is laborious as it would require iso-
lation and identifi cation of thousands of algal species and fur-
ther research efforts are still needed to understand and explore 
the process completely. The metal detoxifi cation mechanisms 
have been reported for various algal species which have been 
reported in Table  22.2 .

22.4.1       Approximate Costs of Different 
Remediation Processes 

 Generally the chemical and physical managements perma-
nently affect the soil properties, devastate biodiversity, and 
may perhaps leave the soil futile as a medium for plant devel-
opment. These remediation methods can be costly. Cost of 
different remediation technologies has been summarized by 
Glass ( 1999 ). Vitrifi cation has a process cost of US $75–425 
ton −1  and requires long-term monitoring, land fi lling requires 
US $100–500 ton −1 , and transport/excavation/monitoring of 
the project is also requisite. A lump sum of US $100–500 
ton −1  is needed in case of chemical treatment, whereas the 
recycling of contaminants is a major problem standing on its 
shoes. A constant monitoring and a process cost of US $20–
200 ton −1  are considered necessary for electrokinetics, 
whereas only US $5–40 ton −1  is needed for phytoextraction 
and proper disposal of the generated phytomass.   

22.5     Role of Rhizosphere 

 The prime goal of microbial association with metal-toler-
ant plants seems to be mutualistic relationship helping in 
cleaning up of metal-polluted environment as a result of the 
bioaccumulation (Jing et al.  2007 ; Glick  2010 ). Plant metal 
extraction potential from the metalliferous soil could be 
determined by the metal concentration in the shoots and 
leaves or biomass production (Singh et al.  2001 ; McGrath 
and Zhao  2003a ,  b ). Application of synthetic chelators 
such as ethylenediaminetetraacetic acid and nitrilotriace-
tate and elemental sulfur is a commonly used soil practice 
in the fi eld of phytoremediation (Puschenreiter et al.  2001 ; 
Chen et al.  2004 ). 

 In phytoremediation rhizosphere is the site from where 
plants absorb mineral nutrients where microorganisms act 

together with plant products like root exudates along with a 
mixture of organic acid anions, phytosiderophores, sugars, 
vitamins, amino acids, purines, nucleosides, inorganic ions, 
molecules in gaseous form, enzymes, and root border cells 
(Dakora and Phillips  2002 ). Plants treated with metal- 
resistant rhizosphere bacteria have reported to reduce metal 
toxicity (Madhaiyan et al.  2007 ). 

 In phytoremediation the contaminated soil is utilized for 
plant growth where metal accumulation, harvesting, and 
removal of aboveground portions of the plants cause perma-
nent elimination of metals from soils (Nandakumar et al. 
 1995 ). Some studies proposed that the volume of land fi lling 
material could be reduced by incineration of harvested plant 
tissue. Thus incineration is an important technique due to 
extraction of metals from the metal-rich ash and serves as a 
source of revenue and reduces the expense of remediation 
(Cunningham and Ow  1996 ). 

 The term “rhizosphere” was introduced by the German 
scientist Hiltner ( 1904 ). Rhizosphere is a borderline between 
soil and plants, which plays an important role in the agro- 
environmental structure (Wang et al.  2002 ), in which physio-
chemical and biological characteristics of soil and biomass 
activity and community structure of microorganisms are sig-
nifi cantly affecting each other (Sörensen  1997 ). 

 The rhizosphere is an environment around plants where 
plant growth and health could be enhanced by pathogenic 
and benefi cial microorganisms (Lynch  1990 ). The rhizo-
sphere is usually occupied by microbial groups and other 
microbes like protozoa, bacteria, fungi, nematodes, algae, 
and microarthropods (Lynch  1990 ; Raaijmakers  2001 ). 
Proper understanding of the ecosystem is necessary for the 
treatment through benefi cial integration of microorganisms 
by a suitable selection of microbes (Díaz et al.  1996 ). 

 It has been proved plant roots attract soil microorganisms 
through their exudates which ultimately results in a variation 
between the rates of metabolic activity of the rhizosphere 
microbial communities from those of the non-rhizosphere 
soil (Brimecombe et al.  2001 ). Generally, the plants rhizo-
bacteria migrate from the soil to the rhizosphere of living 
plant and colonize around plants roots (Kloepper and Schroth 
 1978 ). These rhizobacteria show symbiotic behavior of 
plants and act as plant growth-promoting microbes (Kapulnik 
 1991 ). Natural activities of    colonizing and multiplying of 
free-living bacterial species along the surface of the roots of 

   Table 22.2    Metal detoxifi cation mechanisms in algae   

 Metal  Detoxifi cation strategy  Reference 

 Cd, Cu, Ag, Hg, Zn, and Pb  Metallothioneins (MTs) and phytochelatins (PCs)  Clemens et al. ( 1999 ), Vatamaniuk et al. 
( 1999 ), Ha et al. ( 1999 ), Volland et al. ( 2012 ) 

 Ni  Histidine  Krämer et al. ( 1996 ) 
 Pb, Cu, Cd, Zn, Ca  Cell wall components (alginates and guluronic acid, sulfated 

polysaccharides and alginates) 
 Sekabira et al. ( 2011 ), Davis et al. ( 2000 ), 
Gupta et al. ( 2013 ) 
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the inoculated plants enhance the growth rate of plants 
(Mishra et al.  2008 ). 

 The root exudation and related microbes increase the bio-
availability of heavy metals by their rhizospheric mobilization 
(Wenzel et al.  1999a ,  b ). Bacteria are the most common type 
of soil microorganism due to their rapid growth and extensive 
utilization of substances like carbon or nitrogen sources. 
Rhizospheric microbes may play a dual role in soil ecological 
potential both constructively and destructively. In    the rhizo-
sphere the activities and varieties of harmful and benefi cial 
are closely related to the quality and quantity of rhizodeposits 
(Somers et al.  2004 ). 

 The careful application of appropriate heavy metal- 
tolerant, plant growth-promoting, and nitrogen-fi xing rhizo-
bacteria enhanced the effi ciency of phytoremediation (Khan 
 2001 ). Many research works revealed the fact that high lev-
els of heavy metals in the environment affected the soil and 
water quality retards plant growth enormously. Therefore the 
use of rhizospheric microorganisms may play an important 
role for the remediation of heavy metal toxicity (Burd et al. 
 2000 ). Heavy metals disturb the natural ecology of plants by 
causing dormant growth and reduce cell membrane activi-
ties, denaturation of protein, and functional disturbances 
(Leita et al.  1995 ). 

 Plants and microbes possess a strong valuable relation-
ship but also possess strong competition for resources, 
including nutrients and water, and also can cause diseases 
(Kaye and Hart  1997 ). So many plant growth-promoting, 
benefi cial, and free-living soil bacteria are usually referred to 
as rhizobacteria and are present in association with the roots 
of various plant species (Glick et al.  1999 ). In both natural 
and synthetic ecosystems, plant-associated bacteria play an 
important role in host variation for any change in environ-
ment. These microorganisms enable plants to tolerate high 
concentrations or stress of metals by causing modifi cation in 
plant cell metabolism (Welbaum et al.  2004 ). Several authors 
have pointed out that bacterial plant growth could be 
enhanced by the activation of biosorption or bioaccumula-
tion mechanism in heavy metal-contaminated soils, in addi-
tion to other plant growth-promoting factors that integrated 
the production of ACC deaminase and phytohormones for 
improved plant growth (Zaidi et al.  2006 ; Madhaiyan et al. 
 2007 ; Kumar et al.  2009 ). 

 It has been proved through experiments that seedling 
growth of  Triticum aestivum  grains could be improved by 
inoculation with two pseudomonad strains from rhizosphere, 
as compared with non-inoculated plants at different lead 
concentrations (Hasnain et al.  1993 ). Similarly,  Sedum alfre-
dii , a terrestrial hyperaccumulator of toxic heavy metals like 
zinc, cadmium, copper, and lead from wastewater, evidently 
improved the condition of phytoremediation in the presence 
of naturally occurring rhizospheric bacteria, also by using 
antibiotic ampicillin (   Xiong et al.  2008 ).  

22.6     Conclusions 

 In view of heavy metal contamination of the environments, 
phytoremediation is the cheapest method to remediate the 
polluted soils and waters. Plants are the natural biomaterials 
that can effectively uptake metals along their nutrients thus 
acting as natural biofi lters rendering contaminated soils and 
waters fi t for reuse. For metal remediation, phytoremediation 
may possibly offer sustainable techniques. Plants are used to 
eliminate, transport, stabilize, and/or degrade noxious pollut-
ants in soil, sediment, and water. Different phytoremediation 
technologies can be used for the containments (phytoimmobi-
lization and phytostabilization) or elimination (phytoextrac-
tion and phytovolatilization) depending on the contaminants, 
the site conditions, the level of cleanup required, and the types 
of plant phytoremediation technology. 

 Phytoremediation is inherently dependent on several plant 
characteristics, the two most important being the ability to 
accumulate large quantities of biomass rapidly and the capacity 
to accumulate large quantities of environmentally important 
metals in the shoot tissue. Effective phytoextraction of soils 
requires both plant genetic ability and the development of opti-
mal agronomic practices, including soil management practices 
(to improve the effi ciency of phytoextraction) and crop man-
agement practices (to develop a commercial cropping system). 

 There is an increased interest in employing algae for 
 biomonitoring eutrophication and organic and inorganic pol-
lutants. Brown algae have been found effi cient in hyperac-
cumulation of certain metals due to their macroscopic nature. 
The direct function of rhizosphere-associated algae is the 
alteration of metal concentration and/or accumulation within 
plant tissues and indirect involvement in the increase in 
the root/shoot biomass. Algae are believed as exhibiting 
 various heavy metal remediation and detoxifi cation mecha-
nisms, e.g., they deal with heavy metal stress either through 
low concentration uptake for metabolism or non-active 
adsorption–biosorption. 

 The prime goal of microbial association with metal-toler-
ant plants seems to be mutualistic relationship helping in 
cleaning up of metal-polluted environment as a result of the 
bioaccumulation. Plant roots attract soil microorganisms 
through their exudates which ultimately results in a variation 
between the rates of metabolic activity of the rhizosphere 
microbial communities from those of the non-rhizosphere 
soil. Future research is anticipated to be aimed at better 
understanding of the interactive roles among plants roots and 
microbes that will help scientists to utilize their integrative 
capacity for environmental remediation. Genetic evaluation 
of hyperaccumulators growing in metal-contaminated soil 
and associated microbes would provide the researchers with 
a gene pool to be used in genetic manipulation of other non- 
accumulators and production of transgenics.        
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23.1             Introduction 

 Phytoremediation, an emerging green technology, is the use 
of certain plant species to remediate contaminated soil and 
groundwater. It is a biological treatment utilizing any type of 
plant either terrestrial or marine plant. Organic as well as 
inorganic contaminants can be remediated using this tech-
nology. Phytoremediation has received increasing attention 
after the discovery of hyperaccumulating plants which are 
capable to accumulate, translocate, and concentrate high 
amount of certain toxic elements in their aboveground/har-
vestable parts. Phytoremediation is an attractive alternative 
to current remediation methods that are energy intensive and 
very expensive.  

23.2     Phytoremediation Processes 

 Phytoremediation is based on different biological mecha-
nisms occurring in plants and their associated microorgan-
isms. These mechanisms involve photosynthesis, 
transpiration, metabolism, and mineral nutrition. At present, 
the following processes of this green technology as applica-
ble for the remediation of toxic compounds are:
    1.    Phytoextraction: In this process, pollutant uptakes by 

plants are translocated to and stored in the harvestable 
biomass or aboveground part of the plants. This process is 
usually observed in hyperaccumulating plants resistant to 
contaminants (Blaylock and Huang  2000 ).   

   2.    Phytostabilization: In this plant reduces the mobility and 
phytoavailability of pollutants in the soil sediments and 
groundwater but does not remove them from contami-
nated sites. These contaminants then are rendered in the 
stable form (   ITRC  2001 ).   

   3.    Phytovolatilization: This process involves the uptake of 
pollutants from soil and water and releases them from 
aerial plant parts in the form of gas (Terry et al.  1992 ).   

   4.    Phytodegradation (phytotransformation): It is a kind of 
plant defense mechanism against environmental contami-
nants. The hyperaccumulating plants modify, inactivate, 
degrade, or immobilize the pollutants through their 
metabolism (EPA  1999 ).   

   5.    Rhizofi ltration: This process is concerned with the reme-
diation of contaminated groundwater rather than the pol-
luted soil. Usually, aquatic plants performed this process. 
The hyperaccumulating plants absorb and adsorb pollut-
ants from aquatic environment (EPA  1999 ).      

23.3     Plants Having Phytoremediation 
Potential 

 Researchers have    recognized various plant groups having 
potential to remediate different types of contaminants pres-
ent in soil and water resources. Many aquatic fl oating macro-
phytes, grasses/legumes, forbes, trees, shrubs, and vines are 
found to be hyperaccumulators/accumulators of organic as 
well as inorganic contaminants in different polluted sites. 
Some plants are listed in Table  23.1 .

23.3.1       Phytoremediation Mechanism 
of Organic Contaminants 

 Hyperaccumulator plants  possess genes that regulate the 
amount of metals taken up from the soil by roots and depos-
ited at other locations within the plants. These genes govern 
process that can increase the solubility of metals in the soil 
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surrounding the roots as well as the transport proteins that 
move metals into root cells. Plants contribute a number of 
processes to remove or stabilize pollutants from soil and 
water (Davies  1983 ). Basically there are two major mecha-
nisms which plants utilize to remove contaminants:
    1.    Direct uptake of contaminants and subsequent accumula-

tion of non-phytotoxic metabolites into plant tissues   
   2.    Release of exudates and enzymes that stimulate microbial 

activity resulting in the enhancement of microbial trans-
formations in the rhizosphere    

23.3.2       Direct Uptake 

 Direct uptake of organics by plants is a surprisingly effi cient 
removal mechanism for moderately hydrophobic organic 
compounds, but all organic compounds are not equally 
accessible to plant roots in the soil environment. Plants are 
known to take up many pollutants, in particular weak elec-
trolytes and compounds with intermediate lipophilicity. The 
inherent ability of the roots to take up organic compound can 
be described by the hydrophobicity (or lipophilicity) of the 

   Table 23.1    Hyperaccumulator/accumulator    plant species of organic and inorganic contaminants   

 Scientifi c name  Uptake of trace element  References 

 Aquatic macrophytes 
  Lemna gibba   As, U, Zn  Fritioff and Greger ( 2003 ) 
  Lemna minor   As, Zn, Cu, Hg  Kara ( 2004 ), Fritioff and Greger ( 2003 ) 
     Eichhornia crassipes   As, Fe, Cu, Zn, Pb, Cd, Cr, Ni, Hg     Dixit and Dhote ( 2010 ) 
  Salvinia rotundifolia   Pb  Banerjee and Sarkar ( 1997 ), Dhir ( 2009 ) 
  Spirodela polyrhiza   Pb, Cu, Zn  Loveson et al. ( 2013 ) 
  Salvinia cucullata   Cd, Pb     Phetsombat et al. ( 2006 ) 
  Azolla caroliniana   Zn  Deval et al. ( 2006 ) 
  Typha angustata   Zn, Cu, Pb  Kumar et al. ( 2008 ) 
  Ipomoea aquatica   Zn, Cu, Pb  Kumar et al. ( 2008 ) 
  Hydrilla verticillata   As, Cd  Ghos ( 2010 ) 
 Forbes 
  Brassica juncea   Pb, Zn, Ni, Cr, Cd, Ur  McCutcheon and Schnoor ( 2003 ) 
  Helianthus annuus   Pb, Ur, Sr, Cr, Cd, Cu, Mn, Ni, Zn  McCutcheon and Schnoor ( 2003 ) 
  Thlaspi caerulescens   Cd, Zn, Ni 
  Digitalis purpurea   Cd  McCutcheon and Schnoor ( 2003 ) 
  Arabidopsis thaliana   Zn, Cu, Pb  Reeves and Baker ( 2000 ) 
  Arabidopsis halleri   Zn  Reeves and Baker ( 2000 ) 
  Chenopodium amaranticolor   Uranium  Eapen et al. ( 2003 ) 
 Trees, shrubs, and vines 
  Gleditsia triacanthos   Pb     Gawronski et al. ( 2003 ) 
  Ilex  spp.  Cd  IERE ( 2003 ) 
  Liquidambar styracifl ua   Perchlorate  McCutcheon and Schnoor ( 2003 ) 
  Populus  spp.  Chlorinated solvents, atrazine, DDT, carbon tetrachloride  McCutcheon and Schnoor ( 2003 ) 
  Populus tremula   Pb  McCutcheon and Schnoor ( 2003 ) 
  Salix  spp.  Perchlorate  IERE ( 2003 ) 
  Viola  spp.  Metals (Cd)  IERE ( 2003 ) 
  Zea mays   Cd, Pb  Mojiri ( 2011 ) 
  Jatropha curcas   Cd, Cr, Ni  Jyoti Luhach and Smita Chaudhary ( 2012 ) 
  Cyperus rotundus   Pb, Zn  Anh-Bui et al. ( 2011 ) 
 Algal species 
  Chlorella sorokiniana   Heavy metals Cd, Cu, Zn     Yoshida et al. ( 2006 ) 
  Spirogyra hyalina   Cd, Hg, Pb, As, Co  Kumar and Oommen ( 2012 ) 
  Phormedium bohner   Cr  Dwivedi et al. ( 2010 ) 
  Ascophyllum nodosum   Co, Ni, Pb  Holan and Volesky ( 1994 ) 
  Caulerpa racemosa   Boron (B)  Bursali et al. ( 2009 ) 
  Daphnia magna   As  Irgolic et al. ( 1977 ) 
  Laminaria japonica   Zn  Fourest and Volesky ( 1997 ) 
  Platymonas subcordiformis   Sr  Mei et al. ( 2006 ) 
  Sargassum fi lipendula   Cu  Davis et al. ( 2000 ) 
  Sargassum natans   Pb  Holan and Volesky ( 1994 ) 
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target compounds (Suthersan  1999 ). This parameter is often 
expressed as the log of the octanol-water partitioning coeffi -
cient,  K  ow . Very polar compounds have diffi culties crossing 
biomembranes and therefore are subjected to limited uptake. 
Very lipophilic compounds quickly cross biomembranes, but 
then sorb to the roots. Therefore, compounds with intermedi-
ate lipophilicity are best translocated in upper plant parts, 
which explains the bell-shaped relation between log  K  ow  and 
the transpiration stream concentration factor (TSCF, concen-
tration ratio between xylem solution and external solution) 
(   Briggs et al.  1982 , Burken and Schnoor  1998 , Trapp  2000 ). 
Different plant roots show some differences in different soil 
conditions, but generally the higher a compound’s log  K  ow , 
the greater the root uptake. 

 Once an organic chemical is taken up, a plant can store the 
chemical and its fragments in new plant structures via lignifi ca-
tion, or it can volatilize, metabolize, or mineralize the chemical 
all the way to carbon dioxide, water, and chlorides. Different 
plants exhibit different metabolic capacities, e.g., during the 
herbicide application, the crop species are capable of metaboliz-
ing the pesticide to nontoxic compound, whereas the weed spe-
cies either lack this capacity or metabolize it at a too slow rate 
which results to the death of weed species (Suthersan  1999 ).  

23.3.3     Degradation in Root Zone 

 In the root zone of plants, indigenous microorganisms are 
found in mutual relationship. This microfl ora is distinctly 
different from the characteristic soil population because 
plant creates a unique subterranean habitat for microorgan-
isms. Different plant species often established somewhat dif-
ferent subterranean fl oras. The roots of the plant exude a 
wide spectrum of compounds including sugars, amino acids, 
carbohydrates, and essential vitamins (Suthersan  1999 ). 
These exudates may also be acetates, esters, benzene deriva-
tives, and enzymes that may act as growth- and energy-yield-
ing substrates for the microbial population in the root zone. 
This process allows microbial population for enhanced deg-
radation of organics by the provision of appropriate benefi -
cial primary substrate for the metabolic transformation of 
contaminants. In addition to the plant exudates, the rapid 
decay of fi ne-root biomass can become an important addition 
of organic carbon to soil which in turn may increase micro-
bial mineralization rates (Suthersan  1999 ).  

23.3.4     Phytoremediation Mechanism 
of Heavy Metals 

 Most metals interact with the inorganic and organic matter 
that is present in root-soil environment. Heavy metals have so 
many chemical and physical forms in the soil environment. 
The chemistry of the metal and its mobility will inherently 

impact the toxicity in the environment. Phytoremediation of 
heavy metal-contaminated soil can be divided into phytosta-
bilization and phytoextraction approaches (Suthersan  1999 ). 

23.3.4.1     Phytostabilization of Heavy Metals 
 This involves the reduction in the mobility of heavy metal by 
minimizing soil erodibility and decreasing the potential for 
wind-blown dust and reduction in contaminant solubility by 
the addition of soil amendments. The density of vegetation at 
the contaminated site will signifi cantly hold the soil and pro-
vide a stable cover against erosion. Phytostabilization has 
made available a variety of matters like alkalizing agents, 
phosphates, organic matter, and biosolids to the system to 
render the metals insoluble and unavailable to leaching. 
Materials with a calcareous character or a high pH can be 
added to infl uence the acidity, e.g., lime and gypsum. Specifi c 
binding conditions can be infl uenced by adding concentrated 
Fe, Mn, or Al compounds (ITRC  2001 , Suthersan  1999 ).  

23.3.4.2     Phytoextraction of Heavy Metals 
 The utilization of nonedible or unusual plants that have 
potential to accumulate very high concentration of metals 
from contaminated soils in their biomass provides the basis 
for this phytoremediation technique. These plants are called 
hyperaccumulator plants, and they have the ability to tolerate 
high concentration of toxic metals in aboveground plant tis-
sues (Blaylock and Huang  2000 ). In these plants, metals are 
translocated to the shoot and tissue via the root. The success 
of phytoextraction depends on the use of an integrated 
approach to soil and plant management. Nowadays, disci-
plines of various fi elds like physiology, agronomy, soil 
chemistry, soil fertility, and plant genetic engineering are 
being used to increase both the rate and effi ciency of heavy 
metal extraction (Suthersan  1999 ).   

23.3.5     Algae in Phytoremediation 

 Algae play an important role in controlling metal concentra-
tion in lakes and oceans (   SIGG  1985 ,  1987 ). The algae pos-
sess many features for the selective remediation of heavy 
metals which include high tolerance to heavy metals, ability 
to grow both autotrophically and heterotrophically, large sur-
face area/volume ratios, phototaxy, phytochelatin expres-
sion, and potential for genetic manipulation. The use of 
microalgae is more benefi cial as they are able to serve a mul-
tiple role such as bioremediation as well as generating bio-
mass for biofuel production simultaneously with carbon 
sequestration (Olguiin  2003 ; Mulbry et al.  2008 ). Wastewater 
remediation using microalgae is also an eco-friendly process 
as it does not release any kind of secondary pollution (Munoz 
and Guieysse  2006 ; Pizarro et al.  2006 ; Mulbry et al.  2008 ). 

 Metal absorption ability of macroalgae has been recog-
nized for many years throughout the world. Recently, several 
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species of green algae  Enteromorpha  and  Cladophora  have 
been utilized to measure heavy metal levels in many parts of 
the world. Rawat et al. ( 2011 ) have recognized microalgae as 
the most promising organism for bioprocess due to multi-
plicity of reactions.    Mitra et al. ( 2012 ) have reported four 
algal divisions, viz., chlorophyta, cyanophyta, euglenophyta, 
and heterokontophyta as accumulators of boron and arsenic. 
 Chara vulgaris  is observed for strong phytoextraction ability 
of Congo red dye from its aqueous solution.  Chlorella  sp. 
was observed in reducing harmful nutrients in the aquacul-
ture wastewater (Ahmad et al.  2013 ).  Gracilaria edulis  was 
reported as a phytoremediation agent to improve shrimp 
pond water quality by Lavania et al. ( 2012 ). The brown algae 
( Phaeophyta ) are particularly effi cient accumulator of met-
als due to high levels of sulfated polysaccharides and algi-
nates within their cell walls for which metals show a strong 
affi nity (Davis et al.  2002 , Nielsen et al.  2005 ) suggested that 
 Fucus serratus  often dominate the vegetation of heavy 
metal-contaminated habitats. Marine green microalgae 
 Platymonas subcordiformis  had a very high strontium uptake 
capacity; however high concentration of strontium causes 
oxidative damage (Mei et al  2006 ). The blue green alga 
 Phormidium  can successfully hyperaccumulate heavy metals 
like Cd, Zn, Pb, Ni, and Cu (Wang et al.  1995 ).  Caulerpa 
racemosa  var.  cylindracea  can be used for the removal of 
boron (B) from aqueous solution (Bursali et al.  2009 ). Green 
microalgae  Dunaliella salina  have high tendency to accumu-
late Zn, Cu, and Co. However, this alga shows lower accu-
mulation tendency to Cu and Co than Zn (   Magda A Shafi k 
 2008 ). Two marine algae  Thalassiosira weissfl ogii  and 
 Thalassiosira pseudonana  produce phytochelatins in great 
amounts due to the higher activity of phytochelatin synthase, 
which has greater affi nity for the glutathione substrate or 
metal ions (Ahner et at.  2002 ;    Yoshida et al.   2006 ) reported 
 Chlorella sorokiniana  incapable of taking up the heavy metal 
ions Cd 2+ , Zn 2+ , and Cu 2+  in dark laboratory conditions. 
 Chlorella vulgaris  studied by Mamun et al. ( 2012 ) was found 
to have a potential to reduce nutrient content, chemical oxy-
gen demand (COD), total nitrogen (TN), and total phospho-
rus (TP) of wastewater.  

23.3.6     Heavy Metal Accumulation 
and Tolerance Mechanism in Algae 

 Organisms utilize different defense mechanisms in response 
to heavy metal stress. These include exclusion, compartmen-
talization, making complexes, and the synthesis of binding 
proteins such as metallothionein (MTs) or phytochelatins 
(PCs) and translocate them into vacuoles (Mejare and Bulow 
 2001 ). Some potential ligands for heavy metals like carbox-
ylic and amino acids, such as citrate, malate, and oxalate, 
histidine (His) and nicotianamine (NA), and phosphate 
derivatives are found to play an important role in tolerance 

and detoxifi cation Sharma and Dietz ( 2009 ), Singh and 
Chauhan ( 2011 ). The adsorption, phytoremediation, and 
affi nity of algae for heavy metal cations in wastewater treat-
ment because of its high negatively charged surface (cell 
wall components) have been acknowledged for a long time 
(Sekabira et al.  2011 ).  

23.3.7     Aquatic Macrophytes 
in Phytoremediation 

 A number of aquatic plant species have been investigated for 
the remediation of toxic contaminants such as As, Zn, Cd, 
Pb, Cr, Hg, etc. Rahman and Hasegawa (  2011 ).  Ceratophyllum 
demersum , submerged aquatic macrophytes, were reported 
as accumulator of arsenic. The accumulation was highest at 
pH 5 and decreased as pH values increased. Toxic effect was 
evident by plant necrosis and negative biomass production 
(   Khang et al.  2012 ). Phetsombat et al. ( 2006 ) studied  Salvinia 
cucullata  (an aquatic fern) and reported it as an accumulator 
of cadmium and lead. The accumulation study showed the 
signifi cant increase of both metals when the exposure time 
and concentration of these metals were increased in medium. 
Roots of  S. cucullata  had higher Cd and Pb contents than 
leaves, suggesting that the metals were bound to the root cells 
and were partially transported to the leaves. The toxicity 
symptoms of Cd and Pb to  Salvinia cucullata  showed chloro-
sis on leaves. Ghosh ( 2010 ) investigated two macrophytes 
 Hydrilla verticillata  and  Ipomoea aquatica  as strong accu-
mulators of cadmium.  Azolla caroliniana  was reported as an 
effi cient accumulator of Zn 2+  through liquid medium by 
Deval et al. ( 2012 ). 

 Heavy metals (Pb, Ni, and Cd) from municipal waste leach-
ate were effi ciently remediated by  Typha domingensis  (   Mojiri 
et al.  2013 ). Loveson and coworkers ( 2013 ) studied a fl oating 
macrophyte  Spirodela polyrhiza  in    polluted wetland and found 
it an effi cient tool in removing heavy metals from wetland 
water.     Azolla  (an aquatic pteridophyte) was found to be a bio-
remediation agent. It is an ideal choice because of its multipli-
cation rate, global distribution, high biomass production, high 
protein content, and its growth habitats (Sarita Sachdeva and 
Anita Sharma  2012 ). It can uptake and accumulate nutrients 
directly from fl ood water and has high affi nity for P, Fe, and 
K. It accumulates these nutrients several times more than its 
requirement and then slowly releases these nutrients as it 
decomposes. Based on its capacity, it has also been used for 
the treatment of wastewaters (   Wagner  1997 ).  

23.3.8     Terrestrial Plants in Phytoremediation 

 A number of grasses/legumes, herbs, shrubs, and trees have 
been investigated having potential to remediate various pol-
lutants from soil.  Cerastium arvense ,  Claytonia perfoliata , 
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and  Stellaria calycantha  were found to uptake and accumu-
late cadmium.  Lupinus albus , a nitrogen fi xing legume, has 
been found capable to take up arsenic, primarily in the root 
structure. This legume is capable to grow in acidic soils with 
low nutrient availability (   Esteban et al.  2003 ). Yan et al. 
( 2013 ) have suggested two perennial grasses  Arrhenatherum 
elatius  and  Sonchus transcaspicus  suitable for the phytosta-
bilization of metal-polluted soils.     Arrhenatherum elatius  
accumulated metals like Ni, Cu, Cd, Co, Mn, Pb, Cr, and Zn 
in roots, while in  S. transcaspicus , metals were preferentially 
accumulated in shoots.    Anh-Bui et al. ( 2011 ) reported  Pteris 
vittata  L.,  Pityrogramma calomelanos  L.,  Cynodon dactylon  
L.,  Eleusine indica  L.,  Cyperus rotundus  L., and  Equisetum 
ramosissimum  as hyperaccumulators of heavy metals. 
 Cyperus rotundus  L. and  Equisetum ramosissimum  accumu-
late very high Pb (0.15–0.65 %) and Zn (0.22–1.56 %). 

 A study carried out by Mojiri ( 2011 ) on  Zea mays  for 
phytoremediation indicates that corn is an effective accumu-
lator plant for phytoremediation of cadmium- and lead- 
polluted soils.  Brassica napus  cv. Westar (canola),  Hibiscus 
cannabinus  cv. Indian (canaf), and  Festuca arundinacea  
Schreb. cv. Alta (tall fescue) were found to reduce total soil 
selenium (   Gary et al.  1996 ). A bush/small tree  Jatropha cur-
cas , belonging to the family Euphorbiaceae, was found 
effective in removing cadmium, chromium, and nickel pres-
ent in oily sludge of petroleum refi nery (Jyoti Luhach and 
Smita Chaudhary  2012 ).   

23.4     Conclusion 

 It is clear that phytoremediation is an eco-friendly and eco-
nomic technology which is quite signifi cant and helpful for 
minimizing the pollutants such as heavy metals, toxic ele-
ments, and other harmful chemicals from soil and water 
resources. It can be useful to sustain environment 
cleanliness.     
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24.1             Introduction 

 Plants not only take up nutrients but also absorb metal and 
metalloid elements from the rhizosphere. Phytoremediation 
refers to the utilization of green plants to remove, transform, 
or stabilize contaminants, including toxic metals and organic 
pollutants in water, sediments, or soils (Cherian and Oliveira 
 2005 ). Phytoremediation has been accepted and utilized 
widely because of its cost-effectiveness, permanently remov-
ing the pollutants and protecting the nature (Chen et al. 
 2009a ). Compared to physical approaches (e.g., excavation 
and landfi ll), phytoremediation can reduce costs by 50–65 % 
for remediating one acre of lead (Pb)-contaminated soil 
(Ensley  1997 ). The major disadvantage of chemical approach 
(e.g., soil washing) is secondary pollution for the remedia-
tive sites. Phytoremediation is an environment-friendly 
approach since vegetation is benefi cial for ecosystem 
 restoration by improving green coverage (Pilon-Smits and 
Freeman  2006 ). However, phytoremediation does have a few 

disadvantages and limitations. Firstly, it required a long time 
to grow plants and clean up hazardous metal-polluted soils. 
Generally, it takes approximately 13–16 years to completely 
phytoremediate a hazard waste site (Salt et al.  1995 ; Boyd 
 1996 ). Secondly, the use of invasive or nonnative plant spe-
cies may affect biodiversity. Thirdly, the toxic plant biomass 
harvested from the phytoremediation process needs proper 
handling and disposal. Therefore, the fi eld application of 
phytoremediation needs to be regulatory concerned (Henry 
 2000 ; Ghosh and Singh  2005 ). 

 Generally, the technique for phytoremediating a metal- 
contaminated soil mainly includes phytoextraction, phyto-
stabilization, and phytovolatilization. Phytoextraction refers 
to the use of the so-called hyperaccumulator plants to remove 
toxic metals/metalloids from soil by concentrating and 
extracting metals/metalloids in harvestable tissues such as 
shoots. The roots of natural hyperaccumulator plants can 
absorb, concentrate, and transport large amounts of metals/
metalloids from soil into aboveground biomass. These plant 
species can usually accumulate 100 times more metal/metal-
loid than typically measured in shoots of common non- 
accumulating plants (Reeves and Baker  2000 ; Lasat  2002 ). 
Phytostabilization refers to the use of plants to immobilize 
metals or reduce the bioavailability of metals in soil. The 
plants used for phytostabilization prefer to stabilize metals 
by accumulation in roots or precipitation within the rhizo-
sphere rather than removing them from contaminated 
soil (Pulford and Watson  2003 ; Mench et al.  2006 ). 
Phytovolatilization refers to the use of plants to take up met-
als from the soil, transforming them into a volatile form and 
then transpiring them into the atmosphere. This approach 
can be used for the removal of volatile heavy metals, such as 
mercury (Hg) and selenium (Se) (McGrath et al.  2002 ). With 
the uncovering of the mechanism of metal metabolism in 
plants, the goal-directed genetic modifi cation of plants pro-
vides a powerful tool to improve the effi ciency of phytore-
mediation by enhancing the accumulation and transformation 
of heavy metals in plants (Kotrba  2013 ).  
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24.2     Phytoremediation of Metal-/
Metalloid-Contaminated Soils Using 
Natural Plants 

24.2.1     Phytoextraction 

 The key of using phytoextraction successfully is to fi nd 
hyperaccumulator plants. The ideal hyperaccumulator plant 
should have the following characteristics: (1) rapid growth 
rate with high biomass yield; (2) the ability to accumulate, 
translocate, and tolerate high concentrations of metal/metal-
loid in harvestable tissue; and (3) availability and habitat pref-
erence (Nanda Kumar et al.  1995 ; Garbisu and Alkorta  2001 ; 
Sarma  2011 ). Hyperaccumulator plant species are usually 
identifi ed from metal-/metalloid-polluted areas or naturally 
mineralized areas where the high concentrations of heavy 
metals stimulate the evolutionary adaptation of plants in sites. 
Metal    transfer factors (TFs) from soil, the ratio of metals 
between soil and plant parts, is an important criterion for the 
selection of plant species for phytoremediation, and TFs > 1 
means higher accumulation of metals in plants than soil 
(Barman et al.  2000 ). With the increasing reports of novel 
hyperaccumulators during the last decade, the threshold crite-
ria for the identifi cation of a typical hyperaccumulator plant 
remain controversial. Ent et al. ( 2013 ) analyze the literature 
of hyperaccumulator plants and recommend that the dried 
foliage of a hyperaccumulator plant should concentrate at 
least more than 100 μg/g for cadmium (Cd), Se, and thallium 
(Tl); 300 μg/g for cobalt (Co), copper (Cu), and chromium 
(Cr); 1,000 μg/g for nickel (Ni), lead (Pb), and arsenic (As); 
3,000 μg/g for zinc (Zn); and 10,000 μg/g for manganese 
(Mn), with plants growing naturally. According to these crite-
ria, more than 500 plant species can be considered as hyper-
accumulators of one or more metal elements (Ent et al.  2013 ). 
Generally   , several plant genera and families (e.g., Fabaceae, 
Asteraceae, Rubiaceae, Brassicaceae, Scrophulariaceae, 
 Pteris ,  Thlaspi , and Chenopodiaceae) show great potential to 
hyperaccumulate one or more heavy metal species. The 
updated metal hyperaccumulators have been well summa-
rized by    Rascio and Navari-Izzo ( 2011 ) and Ent et al. ( 2013 ). 
Chinese brake fern ( P. vittata ) was identifi ed as As hyperac-
cumulator plants and has been successfully applied in phy-
toremediating many industrial contaminated fi elds (Ma et al. 
 2001 ). Notably, several metals can be synergetically accumu-
lated by the same plant.  Thlaspi caerulescens  and  Arabis 
paniculata  can accumulate both Zn and Cd (Brown et al. 
 1994 ; Tang et al.  2009 ). Some metals show antagonistic 
effects in plant uptake. For instance, Se decreases Cd uptake 
by maize plants (Shanker et al.  1996 ). However, in other 
plants (e.g.,  Triticum aestivum  and  Pisum sativum ), Se seems 
to enhance the uptake of Cd (Landberg and Greger  1994 ). 
Therefore, the phytoaccumulators should be selected care-
fully before the fi eld application of phytoextraction. 

 Phytoextraction depends on the absorption, translocation, 
and metabolism of toxic metals in plants. The uptake of heavy 
metals or metalloids from soil by plant roots is the fi rst step of 
phytoextraction. The effi ciency of metal/metalloid uptake 
into plant roots relies on the bioavailability of metals/metal-
loids in soil. Because of the complicated interaction between 
metal/metalloid and the plant–soil system, the mechanisms of 
metal/metalloid bioavailability in soil are not completely 
understood yet. Some metals in cationic forms, such as Cd 2+ , 
Zn 2+ , Fe 2+ , Mn 2+ , Ni 2+ , and Cu 2+ , are soluble and readily bio-
available for root uptake. These metal cations are supposed to 
enter into root cells from soil solutions through specifi c trans-
porters, which are proteins located in plant cell membrane 
(Hall and Williams  2003 ; Verbruggen et al.  2009 ; Krämer 
 2010 ). Other metals, such as Pb, prefer to exist in precipitated 
compounds as phosphates or carbonates, which are insoluble 
and unavailable for root uptake. Binding with the soil matrix 
can signifi cantly restrict the bioavailability of metals (Han 
et al.  2006 ; Han  2007 ). Soil pH seems to be the predominant 
factor for solubility of metals in soils (Chuan et al.  1996 ). 
Plant roots are able to cause acidifi cation of the rhizosphere 
by excreting H + , which stimulates the release of metal ions 
from soil particles into solution (Lasat  2002 ). In addition, 
plant roots can exude a class of organic compounds (e.g., 
malate, acetate, and deoxymugineic acid), which combine 
with metals to improve the bioavailability of metals in soils 
(Lasat  2002 ). Therefore, a set of synthetic chelates (e.g., 
EDTA, HEDTA, DTPA, EGTA, NTA, EDDS, and EDDHA) 
with high affi nity for metals have been utilized to stimulate 
metal uptake by plant roots, which is called chelate- assisted 
phytoextraction (Han et al.  2004 ; Evangelou et al.  2007 ; Chen 
et al.  2009b ). However, the addition of synthetic chelates or 
the acidic modifi cation of rhizosphere may result in the 
increased release of metals into groundwater, which should 
be regulatory concerned (Hsiao et al.  2007 ; Quartacci et al. 
 2007 ; Leštan et al.  2008 ; Neugschwandtner et al.  2008 ). In 
addition, recent studies suggest that plant-associated microbes 
(e.g., plant growth-promoting bacteria, mycorrhizae) can pro-
mote plant root uptake of heavy metals by producing various 
metabolites (e.g., 1-aminocyclopropane-1-carboxylic acid 
deaminase, indole-3- acetic acid, siderophores, organic acids, 
etc.). The microbe- assisted phytoextraction has been well 
reviewed by Rajkumar et al. ( 2012 ). 

 Phytoextraction requires high-effi ciency translocation of 
metals/metalloids from roots to harvestable shoots. Once 
entering into plant roots, metal ions are transported to shoots 
through the vascular system in xylem (Mendoza-Cózatl et al. 
 2008 ). Compared to non-hyperaccumulating plants, hyper-
accumulators show higher metal concentrations in xylem sap 
(Lasat et al.  1998 ). The process of enhanced active loading 
of metals into xylem is mediated by several transporters, 
such as P-type ATPase, heavy metal transporting ATPases 
(HMAs), multidrug and toxic compound extrusion (MATE) 
(or effl ux) membrane proteins, and oligopeptide transporters 
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(OPTs) (Verbruggen et al.  2009 ). The status of metals can be 
variable in xylem sap. Most Zn and Cd present as free ionic 
form in hyperaccumulators  T. caerulescens  and  Arabis hal-
leri , respectively (Salt et al.  1999 ; Ueno et al.  2008 ). In Ni 
hyperaccumulator  Alyssum montanum , histidine can chelate 
Ni 2+  to form histidine–Ni 2+  compounds for the transportation 
into xylem, which is also supported by the fact that several 
Ni hyperaccumulators respond to Ni 2+  exposure by a large 
dose-dependent increase in histidine concentrations in xylem 
(Clemens et al.  2002 ; Ghosh and Singh  2005 ). 

 After transporting to shoots along xylem sap, metals are 
redistributed and relocated in leaf cells. Hyperaccumulators 
detoxify excessive metals by metabolizing or capturing them 
in different tissues or organelles to maintain concentrations 
within the safe range in plants. There are various locations 
for heavy metals in different hyperaccumulators. For exam-
ple, about 96 % of total As was found in pinnae in As hyper-
accumulator  Pteris vittata . The X-ray absorption near edge 
structure (XANES) analyses showed that approximately 
75 % of the As in fronds was present in the As(III) oxidation 
state and the rest as As(V) (Lombi et al.  2002 ). In Cd hyper-
accumulator  T. caerulescens , the majority of Cd is located in 
cells on the way of water migration from the vascular cylin-
der to epidermal cells (Wójcik et al.  2005 ). In the leaf of Zn 
hyperaccumulator  Sedum alfredii , 91–94 % of Zn was found 
in cell walls and the soluble fraction, while only 6–9 % of Zn 
was distributed in the cell organelle fraction (Li et al.  2006 ). 
Vacuoles are suggested to be the target organelle to sequester 
phytochelatin (PC)-conjugated metals. The transportation of 
PC–metal complexes is mediated by different transporters, 
such as cation diffusion facilitators (CDF), HMA, Ca 2+ /cat-
ion antiporter (CaCA), and ATP-binding cassette (ABC) 
transporters, located in vacuole membrane (Verbruggen et al. 
 2009 ; Rascio and Navari-Izzo  2011 ).  

24.2.2     Phytostabilization 

 The successful phytostabilization aims to stabilize the vegeta-
tion cover and limit metal uptake by crops and to immobilize 
heavy metals in plant roots or rhizosphere in order to prevent 
metal migration to groundwater or to surrounding areas 
(Mench et al.  2000 ; Mukhopadhyay and Maiti  2010 ). Unlike 
phytoextraction, phytostabilization tends to stabilize metals 
by accumulation in roots or precipitation within the rhizo-
sphere rather than removing them from contaminated soil. 
Therefore, phytostabilization is relatively easier to implement 
than other phytoremediative techniques. However, mandatory 
monitoring is required because heavy metals still remain in 
soil (Ghosh and Singh  2005 ; Padmavathiamma and Li  2007 ). 

 The major mechanism of phytostabilization is that plant 
accumulates and captures large amounts of metals/metalloids 

in root cells with little translocation to shoots. The mecha-
nisms of metal uptake by plant roots are similar to those of 
hyperaccumulators mentioned above. The major difference 
with hyperaccumulators is that metals/metalloids are seques-
tered in root cells by forming insoluble complexes to limit 
their translocation to shoots. Therefore, the plants used in 
phytostabilization should have high-density and fast- growing 
root system. Some tree species have been documented 
as potential candidates for the phytostabilization of heavy 
metals from soil. EXAFS (extended X-ray absorption fi ne 
structure) spectroscopy analysis suggests that Pb can be 
bound within the ligno-cellulosic structure in the roots of 
 Juglans regia  (Marmiroli et al.  2005 ). In a fi eld test, two wil-
low species ( Salix fragilis  and  Salix triandra ) showed great 
potential for the phytostabilization of heavy metal- 
contaminated soils under the optimal growth conditions 
(Tack et al.  2005 ). Another manipulating mechanism of phy-
tostabilization is that root exudates (e.g., organics) cause 
metals to precipitate in the rhizosphere (Yang et al.  2005 ; 
Alkorta et al.  2010 ). Therefore, soil amendments by the addi-
tion of organic matter in phytostabilization are not only ben-
efi cial for plant growth but also promote the formation of 
insoluble metal complexes that reduce metal bioavailability 
(Clemente et al.  2003 ; Adriano et al.  2004 ). Soil liming can 
also stimulate the precipitation of metal ions by elevating soil 
pH. Therefore, the combination of several amendments is 
benefi cial for phytostabilization. For instance, the simultane-
ous application of compost, cyclonic ashes, and steel shots 
was effective for amendment-assisted phytostabilization of 
metal-contaminated soil (Ruttens et al.  2006 ). 

 The original vegetation on metal-contaminated sites may 
be damaged due to the phytotoxicity of heavy metals, which 
causes soil erosion leading to metal leaching to groundwater 
and sediment (Quinton and Catt  2007 ). The restoration of the 
ecosystem on sites during the process of phytostabilization 
can limit metal leaching and spread by improving soil struc-
ture (Lei and Duan  2008 ). In this kind of case, plants are 
metal-tolerant species with the ability of excluding heavy 
metals rather than accumulating them. Some excluder plants 
have been identifi ed, such as  Silene vulgaris  (Ni excluder) 
(Wenzel et al.  2003 ),  Hyparrhenia hirta  (Cu excluder) 
(Poschenrieder et al.  2001 ),  Armeria maritima  (Co excluder) 
(Brewin et al.  2003 ),  Oenothera biennis  and  Commelina 
communis  (Cd excluders) (Wei et al.  2005 ), and  Taraxacum 
mongolicum  (Zn excluder) (Wei et al.  2005 ). 

 Hydraulic control is an important physiological mecha-
nism of metal phytostabilization as well. During the process of 
plant transpiration, fast-growing deep-rooted trees (e.g., pop-
lar, cottonwood, willow) can draw as much as 200 gallons of 
water per day (EPA  2000 ; Quinn et al.  2001 ). The rapid water 
uptake by roots is able to minimize the migrating rate of met-
als to groundwater by lowering an aquifer level (EPA  2003 ).  
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24.2.3     Phytovolatilization 

 Several metal species, such as Se, As, and Hg, can exist as 
gaseous forms in the environment. Volatile Se compounds, 
such as dimethylselenide, are 1/600 to 1/500 as toxic as inor-
ganic forms of Se (Padmavathiamma and Li  2007 ).  Typha 
latifolia  and some members of the  Brassicaceae  are capable 
of metabolizing various inorganic or organic species of Se 
(e.g., selenate, selenite, and Se-methionine [Met]) into gas-
eous Se forms (e.g., dimethylselenide), which can be volatil-
ized and released into the atmosphere (Pilon-Smits et al. 
 1999 ; Terry et al.  1999 ; Bañuelos  2000 ).  S -Adenosyl- l - 
Met : l -Met  S -methyltransferase (MMT) is the key enzyme 
responsible for the process of Se phytovolatilization 
(Tagmount et al.  2002 ). As a hyperaccumulator,  P. vittata  is 
a plant species that is effective at volatilizing As. When  
P. vittata  grows in As-contaminated soil, vapor samples from 
chambers covering the shoots contain signifi cantly volatil-
ized As (37 % for arsenite and 63 % for arsenate) (Sakakibara 
et al.  2007 ). Phytovolatilization has been successfully imple-
mented in tritium ( 3 H) which is a radioactive isotope of 
hydrogen (Dushenkov  2003 ). Phytovolatilization of Hg 
mainly comes from the test of transgenic plants, which will 
be discussed in detail in the following section. 

 Phytovolatilization seems to be an easy approach to 
remove some metals/metalloids from soil; it is limited due to 
the loss of control over the migration of the volatilized ele-
ments from plants. The volatilized elements would not only 
pose a risk to human health nearby the contaminated site but 
also deposit on the ground again. Therefore, it has been sug-
gested that phytovolatilization may be not an ideal tool for 
the remediation of metal-/metalloid-contaminated sites 
(Chen et al.  2009b ).   

24.3     The Potential of Using Transgenic 
Plants for the Phytoremediation 
of Metal-/Metalloid-Contaminated 
Soils  

 The extensive application of natural hyperaccumulators is 
always limited due to their relatively low biomass yield or in 
adaptation to various metal-/metalloid-contaminated sites. 
Many genes involved in metal uptake, translocation, and 
sequestration have been identifi ed from hyperaccumulators. 
Transferring these genes into candidate plants provides 
promising strategy for genetic engineering of plants to 
improve phytoremediation traits (Eapen and D’Souza  2005 ). 

 Metal transporters are indispensable in metal uptake and 
homeostasis in plants. The transporters responsible for metal 
accumulation in plants have been well summarized by Kotrba 
et al. ( 2009 ). For example, overexpression of  NtCBP4  coding 
for a calmodulin-binding protein results in the increased 
uptake and translocation of Pb 2+  to shoots (Arazi et al.  1999 ). 

Transferring Zn transporter gene  ZAT  from  Thlaspi goesin-
gense  to  Arabidopsis thaliana  leads to twofold higher Zn 
accumulation in roots (van der Zaal et al.  1999 ). The 
increased Fe tolerance has been obtained by overexpressing 
metal transporter AtNramp1 (Curie et al.  2000 ). The    cross 
kingdom gene transfer may also help plants enhance metal 
accumulation or tolerance. The  znt  gene codes for Zn 2+ , Cd 2+ , 
and Pb 2+  P1-ATPase responsible for the metalloresistance of 
 E. coli  based on metal effl ux from the cell. A. thaliana  
expressing  zntA  showed enhanced tolerance to Cd 2+  and Pb 2+  
(Lee et al.  2003 ). The yeast protein YCF1 is a member of 
ABC transporter family involved in the transfer of Cd into 
vacuoles by conjugation with glutathione (Li et al.  1997 ). 
The introduction of YCF1 into  A. thaliana  resulted in the 
increased tolerance of transgenic plants to Cd and Pb 
(Song et al.  2003 ). In addition, in transgenic tobacco 
expressing yeast  FRE1  and  FRE2  genes coding for ferric 
reductase, Fe accumulation enhanced 1.5 times than wild 
type (Samuelsen et al.  1998 ). The overexpression of a 
mammalian  hMRP1  gene coding for ABC-type multidrug 
resistance- associated transporter in tobacco showed improved 
Cd 2+  tolerance (Yazaki et al.  2006 ). 

 Phytochelatins (PCs), metallothioneins (MTs), and metal- 
binding proteins are the main players which are vital in the 
detoxifi cation of metals in plants. It has been extensively 
reported that the overexpression of PC synthase gene homo-
logues improved metal accumulation and tolerance in differ-
ent plant species (Gisbert et al.  2003 ; Li et al.  2004 ; Martínez 
et al.  2006 ; Peterson and Oliver  2006 ; Mendoza-Cózatl et al. 
 2008 ).    Transferring mammalian Methyltransferase gene in 
plants resulted in the enhanced metal tolerance without an 
increase in metal accumulation in plant tissues (Cherian and 
Oliveira  2005 ; Eapen and D’Souza  2005 ). These reports 
suggest that overexpression of MT may be suitable for 
improving phytostabilization rather than phytoextraction. 

 The genetically modifi ed phytovolatilization has been 
mainly focused on Hg and Se contamination. One of the best 
biological systems for detoxifying Hg 2+  or MeHg compounds 
involves two enzymes referred to as mercuric ion reductase 
(MerA) and organomercurial lyase (MerB). In some 
Hg-resistant microbes, MerB catalyzes the reaction of MeHg 
to Hg 2+ , and then MerA transforms Hg 2+  to elemental Hg that 
can volatilize out of cells (Nascimento and Chartone-Souza 
 2003 ). Therefore, transgenic plants containing  merA  and  merB  
might be capable of completing the process of Hg 0  volatiliza-
tion. Because elemental Hg has much lower toxicity than Hg 2+  
or MeHg, these transgenic plants probably have the ability to 
remediate mercury-contaminated soil by taking up MeHg or 
Hg 2+  and transforming them to Hg 0  that can be released into 
the air. The research group of Richard Meagher at the 
University of Georgia has confi rmed the feasibility of this 
technique. They successfully developed a transgenic poplar 
( Liriodendron tulipifera ) species that contains  merA  and 
 merB . The transgenic poplar grows rapidly and has the ability 
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to take up Hg 2+  and MeHg effectively and volatilize Hg 0  to the 
atmosphere. The rate of mercury volatilization by this trans-
genic plant was ten times higher than that of control plant 
(Bizily et al.  2000 ). Selenocysteine methyltransferase (SMT) 
catalyzes the biosynthesis of MetSeCys, which can be further 
converted to volatile dimethyldiselenide (DMDSe) in hyper-
accumulating plant species (Zhu et al.  2009 ). Transgenic 
plants overexpressing  SMT  showed enhanced Se accumula-
tion and effi cient volatile forms from leaves (LeDuc et al. 
 2004 ; Bañuelos et al.  2006 ). Cystathionine γ-synthase (CGS) 
is responsible for the formation of another volatile Se form 
dimethylselenide (DMSe) (Zhu et al.  2009 ). Transgenic Indian 
mustard expressing  CGS1  from  A. thaliana  showed increased 
DMSe formation and evaporation (Huysen et al.  2003 ).  

24.4     Regulatory Concerns 
for the Application 
of Phytoremediation 

 Although phytoremediation is a novel, cost-effective, and 
environment-friendly technique to clean up heavy metal- 
contaminated soils, regulatory standards have not yet been 
developed specifi cally for phytoremediation applications. The 
regulatory concerns should be conducted throughout the whole 
process of phytoremediation in order to optimize its application. 

 Before starting the application of phytoremediation, the 
geostatistical assessment of metal-contaminated soils should 
be performed. The fi rst step is soil sampling for the determina-
tion of metal concentrations. It is recommended that samples 
should be collected in a way that takes into account of sites 
representing the most relevant characteristics of the soil envi-
ronment. The sampling spots are defi ned in terms of the dif-
ferent environmental conditions, i.e., vegetation, soil type, 
altitude, parent material, etc. It is better to collect soil samples 
from different soil layers in a spot rather than from only one 
layer in order to determine the metal distribution in the soil 
(Chen et al.  2010 ). After getting the metal concentrations in 
soil samples, a set of statistical analyses are needed to make 
the assessment of metal contamination in site. Principal com-
ponent analysis (PCA) and cluster analysis (CA) are the most 
appropriate statistical methods to identify the origin of heavy 
metals and the correlations between heavy metals at a con-
taminated site, respectively (Micó et al.  2006 ; Idris  2008 ; 
Franco-Uría et al.  2009 ; Li et al.  2009 ). The data from geosta-
tistical analysis can be integrated to produce spatial distribu-
tion maps of metal contaminants by using geographic 
information system (GIS) techniques. These maps provide 
valuable information for hazard assessment and for decision 
support (Korre et al.  2002 ). The degree of total metal pollution 
can be evaluated from the soil pollution index (SPI) distribu-
tion maps (Lee et al.  2006 ). Then the appropriate phytoreme-
diation techniques can be selected according to the site 
assessment based on geostatistical analyses. 

 Several aspects of regulatory concerns should be noted 
during the application process of phytoremediation because 
each application will be site specifi c and must be evaluated 
on a case-by-case basis by a regulator. In order to fi nish the 
installation and operation of phytoremediation systems suc-
cessfully, compliance with applicable regulations is manda-
tory (Chen et al.  2010 ). Firstly, native plant species with 
potential for specifi c metal extraction are preferentially con-
sidered when selecting remediating plants. However, the 
safety issues with regard to releasing exotic or transgenic 
plants into the environment should be evaluated. In the 
absence of suffi cient literature and/or local experience, it is 
prudent to conduct small-scale tests to determine optimum 
plant species before choosing a plant species for a site (Henry 
 2000 ; Ghosh and Singh  2005 ). Secondly, according to the 
progress of phytoremediation, incorporation with other 
remedial techniques (e.g., soil amendment and intercropping 
systems with multiple plant species) can improve the effi -
ciency of phytoremediation. Thirdly, remote sensing tech-
nology can be utilized for the long-term monitoring of 
phytoremediation. Accumulated metals can signifi cantly 
change plant physiological status (Shiyab et al.  2009 ). The 
traditional biochemical assay is time/labor consumptive and 
needs large amounts of plant materials. Spectral refl ectance 
is a nonintrusive technique that has been used to monitor 
plant physiological status under heavy metal stress (Merzlyak 
et al.  2003 ; Sridhar et al.  2007a ,  b ; Su et al.  2007 ). For exam-
ple, spectral refl ectance around 680 nm and 550 nm can 
refl ect chlorophyll content in Cd-treated plants (Sridhar et al. 
 2007b ). The spectral refl ectance in the 700–1,300 nm region 
is well corrected with the number of mesophyll cells in the 
leaves of Cr-treated  P. vittata  (Sridhar et al.  2007a ). 
   Normalized difference vegetation index (NDVI) defi ned as 
( R  810  −  R  680 )/( R  810  +  R  680 ) can be used to detect the changes of 
biomass and leaf internal structure of barley due to the phy-
toextraction of Zn (Sridhar et al.  2007b ). Water index (WI) 
defi ned as  R  900 / R  970  had been reported to be highly correlated 
with relative water content of the plant under heavy metal 
stress (Sridhar et al.  2007b ). A spectral index  R  1110 / R  810  can 
be used to monitor internal leaf structural changes caused by 
the accumulation of certain heavy metal species (Sridhar 
 2004 ; Sridhar et al.  2007b ). The detailed manipulating 
mechanism of remote sensing technology in monitoring the 
phytoremediation of metal-contaminated soils has been 
described in detail by Chen et al. ( 2010 ). 

 After fi nishing the process of phytoremediation, the 
handling of plant biomass is the most important thing. For 
phytostabilization, conventional farming operation is indis-
pensable to maintain the normal growth of plants in site 
because they will not be harvested. But for phytoextraction, 
the handling and disposal of a huge quantity of metal- 
accumulating biomass is a big challenge, which needs great 
concern. Volume reduction of plant materials is supposed to 
be the fi rst step of postharvest biomass treatment (Blaylock 
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and Huang  2000 ). According to the literature, compaction 
and pyrolysis are feasible approaches to recycle metals from 
harvested biomass (Bridgwater et al.  1999 ; Sas-Nowosielska 
et al.  2004 ). In addition, incineration is an ideal alternative 
technique to dispose the biomass harvested after phytoextrac-
tion. It may be possible to recycle the metal residue from the 
ash. But the recycling of different metals from ash needs to 
be studied further (Sas-Nowosielska et al.  2004 ). Gasifi cation 
is a new technology, in which harvested biomass can be sub-
jected to a series of chemical reactions to produce clean and 
combustive gas for generating thermal and electrical energy 
(Lyer et al.  2002 ). Although these techniques are theoreti-
cally feasible in the disposal of harvested biomass after phy-
toextraction, the analysis of cost/benefi t and environmental 
acceptability should be conducted before proceeding.  

24.5     Conclusions 

 Based on the current reports, phytoremediation is emerging 
as a potential approach for remediating metal-/metalloid- 
contaminated soils. Public acceptance of a phytoremediation 
project on a site can be very high because it is benefi cial to 
the ecosystem on-site. However, the selection of different 
styles of phytoremediation should be site by site according to 
the site assessment. More fi eld tests and mechanism studies 
of phytoremediation are much needed. First, the identifi ca-
tion of plant species with the ability of hyperaccumulating 
multiple toxic metals will be desired. Second, the further 
understanding of the detailed mechanisms for the accumula-
tion/tolerance of metals in plants is essential for mining valu-
able genes to improve transgenic-assisted phytoremediation. 
Third, more quantitative data analyses about the fi eld trial 
are useful for constructing models of phytoremediation. 
Finally, more studies on regulatory requirements, site assess-
ment, and risk evaluation are essential to improve the estab-
lishment of regulatory standards for phytoremediation.     
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25.1             Introduction 

 Terms like  phytoextraction , usually defi ned as the utilization 
of plants to transport and concentrate pollutants from the soil 
into the harvestable parts of roots and aboveground shoots 
   (Kumar et al. 1995; quoted by Hernández-Allica et al. 2008), 
 ecoremediation  (ERM) which comprises methods of protec-
tion or restoration of the environment by means of natural 
processes existing in ecosystems (Bulk and Slak 2009), and 
 phytoremediation  have gained an important place in the 
modern environmental dynamics for ecosystem management 
and resource usage. 

 Phytoremediation is a term applied to a group of tech-
nologies that use plants to reduce, remove, degrade, trans-
form, or immobilize environmental pollutants, primarily 
those of anthropogenic origin, with the aim of restoring area 
sites to a condition suitable for private or public applications 
of ecosystem services (Peer et al.  2005 ). 

 Interest in phytoremediation as a method to reduce 
contamination has been growing rapidly in recent years. 
Several technologies have been utilized to remove heavy 
metals and other toxic organic compounds from soil and 
water in many countries like the United States, Russia, and 

most of European countries (Uera et al.  2007 ). This set of 
technologies became a promising alternative for the decon-
tamination of petroleum-polluted soils, especially in the 
tropics where climatic conditions enhance plant growth and 
microbial activity and where fi nancial resources can be lim-
ited (Merkl et al.  2005 ). 

 Phytoremediation using tropical terrestrial plants offers a 
suitable alternative for pollution cleanup, considering its 
wide diversity and specifi c characteristic of adaptation to 
adequate or harsh conditions throughout its life cycle. This 
includes acclimation to receive high or low levels of solar 
radiation; longer photoperiods along entire year (12 h); over-
coming extended drought, high precipitation, and/or distinct 
wet and dry seasons; and rich and higher microorganism 
diversity. Additionally, such conditions promote high respi-
ration rates of plants, resulting in comparably lower net pho-
tosynthesis rates. 

 Sun et al. ( 2004 ) underline in their study how tropical 
plants were selected for their ability to tolerate high salinity 
and remove specifi c hydrocarbons in coastal topsoil prior to 
further investigation of the phytoremediation feasibility in 
deep contaminated soils. 

 This chapter on  Phytoremediation Using Terrestrial 
Plants  includes the main features regarding tropical native 
plants and its uses for this type of technology, emphasizing 
on their potential, diversity, experiences with different spe-
cies, and other characteristics that allow an improved 
approach to understanding the prospective of using tropical 
terrestrial plants to reduce pollution of different environmen-
tal components. 

 Moreover, constructed wetlands have become an effi cient 
phytoremediation technology for pollutant removal, taking 
advantage that plants in a natural wetland provide a substrate 
(roots, stems, and leaves) upon which microorganisms can 
grow as they break down organic materials and uptake heavy 
metals. Engineered wetland phytoremediation is an aestheti-
cally pleasing, solar-driven, passive technique useful for 
cleaning up wastes including metals, pesticides, crude oil, 
polyaromatic hydrocarbons, endocrine disruptors, and landfi ll 
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leachates, becoming an increasingly recognized pathway to 
advance the treatment capacity of wetland systems, espe-
cially in tropical conditions, where this treatment capacity 
can be enhanced (Zhang et al.  2010 ). This chapter will pro-
vide an overview of constructed wetlands’ main applications 
for phytoremediation and discuss some experiences using 
tropical native plants, specifi cally in Colombia.  

25.2     Phytoremediation Using Native 
Plants in the Tropics 

25.2.1     Inventory of Tropical Plants Suitable 
for Phytoremediation 

 Phytoremediation involves more effort than planting vegeta-
tion and awaits for the contaminant to disappear. It requires an 
understanding of the processes that need to occur, the plants 
selected, and what needs to be done to ensure plant growth 
(USEPA  2001 ). Selection of appropriate technology is based 
on the environmental chemistry of the contaminant, along 
with the uses and type of soil or aqueous streams contami-
nated as they might infl uence to a great extent on biomass 
production (Cunningham and Ow 1996; Dushenkov  2003 ). 

 Several species of plants can stimulate microbial growth 
and facilitate biodegradation of hydrocarbons, particularly 
those that cannot be taken up because of their hydrophobic-
ity (Paquin et al.  2002 ). Others have been reported as effi -
cient absorbing different metals with unknown biological 
function such as cadmium, chromium, and lead inter alia 
(Tangahu et al.  2011 ), principally those from tropical envi-
ronments where long plant-growing seasons and increased 
soil temperature can accelerate degradation (Paquin et al. 
 2002 ). Plants can counteract, absorb, or stabilize different 
contaminants, making them unavailable for other organisms 
(Merkl et al.  2004 ). Therefore, if the contaminant is not phy-
totoxic, phytoremediation mechanisms become a suitable 
tool of sustainable management. 

25.2.1.1     Commonly Used Plants 
for Phytoremediation 

 Plant selection criteria for most phytoremediation prospects are 
evapotranspiration potential, enzymes produced, growth and 
survival rate, biomass production, root system, and their ability 
to tolerate the contaminant (Paquin et al.  2002 ; Prasad  2003 ). 
Mechanisms and effi ciency of this technology, called phytore-
mediation, depend on the type of contaminant, bioavailability, 
and substrate properties (Cunningham and Ow 1996). 

 More than 400 taxa were reported hyperaccumulating 
heavy metals (Suresh and Ravishankar  2004 ) and other con-
taminants, ranging from annual herbs to perennial shrubs 
and trees. Owing to their multiple ramifi ed root systems 
with abundant room for microbial activity, Poaceae family is 

considered to be particularly suitable for phytoremediation 
(Aprill and Sims  1989 ). In addition, the deep roots in 
Fabaceae family members and their ability to grow in poor- 
nutrient soils thanks to the independency on nitrogen because 
of the symbiosis with nitrogen-fi xing  Rhizobium  spp. make 
them suitable too (Merkl et al.  2004 ). Other families such as 
Brassicaceae, Asteraceae, and Solanaceae have gained popu-
larity in phytoremediation as a result of their cosmopolitan 
status or helpful enzymes produced. A recompilation of 
some recurrent selected plants for different investigations in 
phytoremediation is given in Table  25.1 .

25.2.1.2        Tropical Plants 
 Bioremediation, in general, is considered a promising tech-
nology for the tropics because climatic conditions favor 
microbial growth and activity. Also, plant biomass produc-
tion is high in the tropics, provided that adequate nutrients 
are available. The screening of plant species for their ability 
to grow and establish in contaminated soil is one of the fi rst 
steps in the selection of species for phytoremediation in the 
tropics (Merkl et al.  2004 ) as they have evolved in a very 
large number due to the abundant taxa. Moreover, there are 
still many parts of the tropics in which no plant collections 
have focused on metalliferous soils (Reeves  2003 ). 

 This highly selective process has revealed more tropical 
plant species with potential importance for both phytoreme-
diation and phytomining; it is certain that others remain to be 
discovered through further fi eld exploration and detailed soil 
and plant analysis as little or no analytical work has been 
done (Reeves  2003 ). A list of some selected plants for phy-
toremediation in tropics is given in Table  25.2 .

25.2.2         Potential of Tropical Plants 
for Phytoremediation 

 Numerous factors infl uence phytoremediation, including the 
type and amount of contaminant, soil characteristics, water 
content, nutrient availability, species and plant growth, of 
which none should be ignored (Merkl et al.  2005 ). The inter-
play of these factors has to be further studied in the tropics, 
where climatic and edaphic conditions vary from those where 
phytoremediation studies have concentrated so far. In tropical 
regions, evapotranspiration is a very important factor to take 
into account, since volatile contaminants are mainly removed 
through this pathway (Olguin and Sanchez-Galvan  2010 ). 
Furthermore, the minimal differences present in tropics, 
among growth seasonality and nutrient translocation as com-
pared to temperate and colder regions, increase the potential 
in these areas to fi nd more plants suitable for remediation. 

 Phytodecontamination of organic pollutants involves sev-
eral processes leading to volatilization, degradation, or accu-
mulation in aerial parts that have to be burned once harvested 
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   Table 25.1       Common plants used in phytoremediation   

 Classifi cation  Binomial name 

 PTERIDOPHYTA 
 Pteridopsida 

 Polypodiales 
 Dryopteridaceae   Dryopteris fi lix - mas  (L.) Schott, 1834 

 Pteridales 
 Pteridaceae   Pteris vittata  (L.) 

 Salviniales 
 Azollaceae   Azolla pinnata  (R. Br.) 

 MAGNOLIOPHYTA 
 Liliopsida 

 Commelinales 
 Pontederiaceae   Eichhornia crassipes  (Mart.) Solms, 1883 

 Acorales 
 Acoraceae   Acorus calamus  (L.) 

 Alismatales 
 Araceae   Colocasia esculenta  (L.) Schott, 1832 

  Lemna minor  (L.) Griff, 1851 
 Magnoliopsida 

 Asterales 
 Asteraceae   Ageratum conyzoides  (L.) 

  Berkheya coddii  
  Blumea lacera  (Burm.f) D.C. 
  Mikania cordata  (Burm.f) B.L.Rob., 1934 

 Brassicales 
 Brassicaceae   Alyssum murale  (Waldst. and Kit.) 

  Arabidopsis thaliana  (L.) Heynh. 
  Brassica chinensis  (L.) 
  Brassica oleracea  (L.) 
  Cochlearia pyrenaica  (Bab.) Dalby 
  Thlaspi caerulescens  (J. Presl and C. Presl) 

 Caryophyllales 
 Aizoaceae   Mesembryanthemum crystallinum  (L.) 

  Sesuvium portulacastrum  (L.) 
 Amaranthaceae   Amaranthus cruentus  (L.) 

  Beta vulgaris  (L.) 
 Chenopodiaceae   Atriplex halimus  (L.) 

  Atriplex nummularia  (Lindl.) 
 Tamaricaceae   Tamarix smyrnensis  (Bunge) 

 Fabales 
 Fabaceae   Kummerowia striata  (Thunb.) Schindl 

  Medicago sativa  (L.) 
 Lamiales 

 Bignoniaceae   Jacaranda mimosifolia  (D. Don) 
 Lamiaceae   Clerodendrum trichotomum  (Thunb.) 

  Aeollanthus biformifolius  (De Wild.) 
 Malpighiales 

 Euphorbiaceae   Ricinus communis  (L.) 
 Salicaceae   Populus  spp. (L.) 

  Salix  spp. (L.) 
 Malvales 

 Malvaceae   Hibiscus tiliaceus  (L.) 
 Myrtales 

 Myrtaceae   Eucalyptus  spp. (L’Her.) 

 Poales 
 Cyperaceae   Cyperus papyrus  (L.) 
 Poaceae   Brachypodium sylvaticum  (Huds.) Beauv. 

  Chloris barbata  (L.) Sw. 
  Chrysopogon zizanioides  (L.) Roberty 
  Cynodon dactylon  (L.) Pers. 
  Festuca arundinacea  (Schreb.) 
  Polypogon monspeliensis  (L.) Desf. 
  Sorghum sudanense  (Piper) Stapf 
  Zea mays  (L.) 

 Rosales 
 Urticaceae   Urtica dioica  (L.) 

 Solanales 
 Solanaceae   Lycopersicon esculentum  (Mill.) 

  Nicotiana glauca  (Graham) 
  Solanum nigrum  (L.) 

(Mougin  2002 ), but the impact of each process has not been 
elucidated. In Venezuela, planting  Brachiaria  is already a 
commonly used strategy to treat petroleum-contaminated 
soil, yet the ability to enhance the degradation of hydrocar-
bons is to be investigated (Merkl et al.  2004 ). 

 As stated before, there are still several issues unsolved or 
partially understood about phytoremediation, which is why it is 
recommended to set up long-term studies in order to gain full 
insight of the diverse mechanisms occurring, allowing to draw 
recommendations on the convenience and frequency of harvest-
ing and on the advantages of using specifi c species. The huge 
biodiversity that is commonly found in tropical and subtropical 
regions represents a challenge for fi nding new species with out-
standing characteristics for tolerance to toxic and recalcitrant 
pollutants or to extreme environmental conditions, such as high 
temperature or salinity (Olguin and Sanchez-Galvan  2010 ).  

25.2.3     Uses of Tropical Plants 
in Phytoremediation 

25.2.3.1     Main Features 
 Phytoremediation for environmental cleanup is being recog-
nized as a suitable alternative solution. Plants function in phy-
toremediation in two ways, the major one being facilitation of 
favorable conditions for microbial degradation, specifi cally 
root-colonizing microbes, and the second aspect is the root 
itself, providing an inexpensive mean to access contaminants 
in subsurface soil and water (Suresh and Ravishankar  2004 ). 
In general terms, that would be the same for tropical and non-
tropical areas, with the difference of more suitable conditions 
for greater microbial activity and biomass production in tropi-
cal regions owing the warmth and humidity among other envi-
ronmental features promoting plant and microbial growth.  
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   Table 25.2    Tropical plants used in phytoremediation   

 Classifi cation  Binomial name   

 PTERIDOPHYTA  Role in phytoremediation 

 Pteridopsida 
 Pteridales 

 Pteridaceae   Pteris vittata  (L.)  Phytoextraction and accumulates Mg 
 Salviniales 

 Azollaceae   Azolla pinnata  (R. Br.)  Accumulates Pb, Cu, Cd, Fe 
 MAGNOLIOPHYTA 

 Liliopsida 
 Commelinales 

 Commelinaceae   Tradescantia spathacea  (Sw.)  Wastewater treatment 
 Pontederiaceae   Eichhornia crassipes  (Mart.) Solms, 1883  Accumulates Cr, Pb, Cu, Cd, Fe 

 Zingiberales 
 Heliconiaceae   Heliconia psittacorum  (L.f.)  Wastewater treatment. Accumulates metals. Transforms N 

and eliminates ionic charge 
 Alismatales 

 Araceae   Colocasia esculenta  (L.) Schott, 1832  Wastewater treatment. Accumulates metals 
  Lemna minor  (L.) Griff., 1851  Accumulates metals 

 Magnoliopsida 
 Apiales 

 Araliaceae   Hydrocotyle umbellata  (L.)  Accumulates Pb, Cu, Cd, Fe 
 Asterales 

 Asteraceae   Helianthus annuus  (L.)  Accumulates Pb and U. Removes  137 Cs and  90 Sr in 
hydroponic reactors 

 Brassicales 
 Brassicaceae   Brassica napus  (L.)  Remediation of soils contaminated with  137 Cs 

  Brassica juncea  (L.)  Hyperaccumulates metals 
 Ceratophyllales 

 Ceratophyllaceae   Ceratophyllum demersum  (L.)  Accumulates metals. Removes TNT 
 Fabales 

 Fabaceae   Centrosema brasilianum  (L.) Benth.  Phytoremediation of crude oil 
  Calopogonium mucunoides  (Desv.)  Phytoremediation of crude oil 
  Medicago sativa  (L.)  Tolerance toward B 
  Phaseolus acutifolius  (A. Gray)  Accumulates  137 Cs 
  Vicia faba  (L.)  Remediation of petroleum hydrocarbons 

  Lamiales  
  Bignoniaceae    Jacaranda mimosifolia  (D. Don)  Tolerance toward B 

 Malpighiales 
 Salicaceae   Salix  spp. (L.)  Phytoextraction of heavy metals. Wastewater and runoff 

treatment 
 Malvales 

 Malvaceae   Hibiscus tiliaceus  (L.)  Phytoremediation of PAHs 
 Myrtales 

 Myrtaceae   Eucalyptus  spp. (L’Her.)  Removes Na and As 
 Poales 

 Poaceae   Brachiaria brizantha  (Hochst. ex A. Rich.) Stapf  Phytoremediation of crude oil 
  Chrysopogon zizanioides  (L.) Roberty  Phytoremediation of PAHs. Wastewater treatment 
  Cyperus haspan  (L.)  Wastewater treatment 
  Gynerium sagittatum  (Aubl.) P. Beauv.  Wastewater treatment. Hyperaccumulates metals 

 Solanales 
 Solanaceae   Datura innoxia  (Mill.)  Accumulates Ba 

  Nicotiana glauca  (Graham)  Tolerance toward B 
  Solanum nigrum  (L.)  Hairy cell cultures detoxify PCBs 

 Urticales 
 Cannabaceae   Cannabis sativa  (L.)  Hyperaccumulates metals 
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25.2.3.2     Advantages 
 Phytoremediation techniques tend to be more publicly 
acceptable, aesthetical, and less disruptive than the current 
physical and chemical counterparts (Tangahu et al.  2011 ). 
Advantages of this technology are its effectiveness in con-
taminant reduction, low cost as it generally does not need 
specialized equipment or key personal for its application 
(Macek et al.  2000 ), and the fact of being applicable for a 
wide range of contaminants including organic and inorganic, 
and overall it is an environmental friendly method (Prasad 
 2003 ; Mougin  2002 ). Phytoremediation is probably the 
cleanest and cheapest technology effectively employed in 
the remediation of hazardous sites and even contributes to 
the improvement of poor soils such as those with high metal 
or high salt levels (Tangahu et al.  2011 ), and the treated soil 
can be reused if the target pollutant levels are reached. 

 When bioavailable, and in relatively low concentrations, 
the most common contaminants can be degraded by microor-
ganisms which have developed numerous degradation path-
ways. On the contrary, aging of the pollutant seems to limit 
biodegradation and the availability is reduced (Mougin 
 2002 ). Therefore, consortia between microorganisms and 
plants might be an asset given that where one’s ability is 
impaired, the other could help.  

25.2.3.3     Disadvantages 
 Currently, commercial applications of phytotechnologies are 
being hindered by the perception that it might require an 
excessive amount of time to be effective (Paquin et al.  2002 ; 
Prasad  2003 ). However, this can be countered if being dem-
onstrated the minimal risk to the environment during the 
operation contrary to the use of conventional technologies 
where the risk of contamination by leaching can be high 
(Robinson et al.  2003 ). 

 The limitations of phytoremediation are that the contami-
nants below the rooting depth cannot be extracted by the plant 
root system (Suresh and Ravishankar  2004 ), plants cannot 
grow at high toxic levels of contaminants (Prasad  2003 ; Suresh 
and Ravishankar  2004 ), and in some cases the long-term 
application of the process, as it could take years to regulate the 
contamination levels (Mougin  2002 ) because of the limit of 
contaminant each plant can process (Tangahu et al.  2011 ). 

 It is clear that there is still a lot of development to be done 
for the phytoremediation technologies, especially in tropical 
areas (Dushenkov  2003 ), but the fi eld is a fast-developing 
one, and in the near future of phytoremediation, it can 
become an integral part of environmental management and 
risk reduction at a world scale (Prasad  2003 ; Reeves  2003 ; 
Dushenkov  2003 ).  

25.2.3.4     Biomass Disposal 
 When plants containing heavy metals are harvested, they can 
either be eliminated or treated to recycle the metal com-

pounds. In such plants where a substantial translocation to the 
aerial parts occurs, a great part of the biomass produced is 
considered contaminated according to the nature of the ele-
ment being absorbed, and therefore, it should be eliminated 
as a dangerous or radioactive material carrying out extra costs 
and affecting the overall effi ciency (Prasad  2003 ). 
Furthermore, as it might be needed, several growth cycles 
before the results of the remediation process can be evident; a 
lot of biomass might be obtained, boosting the importance of 
planning in advance the use of such matter. The most interest-
ing alternative is the biodiesel production as plant oil would 
be generated available to produce thermal energy while the 
affected soils are being remediated (Tangahu et al.  2011 ).    

25.3     Phytoremediation Applications: 
Constructed Wetlands 

25.3.1     Constructed Wetlands 

 Wetlands are defi ned as a portion of land where the water table 
is at/or above the ground surface long enough to maintain 
saturated soil conditions and the growth of related vegetation 
(Crites et al.  2006 ). Wetland’s capability for changing waste-
water characteristics has been verifi ed in a number of studies 
in a variety of geographical settings, by using preexisting nat-
ural marshes, swamps, strands, bogs, peatlands, cypress 
domes, and systems specially constructed for wastewater 
treatment; therefore, the term constructed wetlands (CWs), 
which Vymazal ( 2010 ) describes as engineered systems that 
have been planned and built to benefi t from natural interaction 
between vegetation, soil, and microorganisms for pollutant 
removal, is designed specifi cally to take advantage of many of 
the same processes that occur in nature, but to do so within a 
more controlled environment. 

25.3.1.1     Constructed Wetland Classifi cations 
 CWs for wastewater treatment may be classifi ed according 
to the life form of the dominating plant (Fig.  25.1 ) into sys-
tems with free-fl oating, fl oating-leaved, rooted emergent and 
submerged macrophytes (Vymazal  2010 ), conditions that 
can be combined with different fl ow settings, which accord-
ing to WSP ( 2008 ) are distinguished into three types of con-
fi gurations, that also differ from one another in system 
layout, removal effi ciency of certain pollutants, area require-
ments, technical complexity, applications, and costs: 
    (a)     Surface fl ow or free-water surface  ( FWS )  constructed 

wetland : large, shallow lagoons that may contain  sub-
merged ,  emergent, or fl oating plant species . The micro-
organisms responsible for biological treatment of the 
wastewater form biofi lms on the stems and leaves of the 
plants. These systems can be used for secondary treat-
ment of wastewater, but they are most commonly used as 
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tertiary treatment, in order to remove nutrients like nitro-
gen and phosphorous.   

   (b)     Horizontal subsurface fl ow  ( HSSF )  constructed wet-
land : also known as vegetated submerged bed systems, it 
consists of shallow basins fi lled with coarse sand or 
gravel as fi lter media. Native or foreign wetland plants 
are grown on the surface of the fi lter bed, and pretreated 
wastewater fl ows through the bed horizontally below the 
surface. Several investigations have revealed the great 
prospective of these treatment systems and the potential 
of reusing their effl uent for irrigation or other purposes.   

   (c)     Vertical fl ow  ( VF )  constructed wetland : shallow sand fi lter 
beds with a distribution system on the surface that allows 
the wastewater to percolate vertically through the unsatu-
rated media as plants support the vertical drainage process. 
An important feature of this type is the intermittent hydrau-
lic loading with resting intervals between discharges, 
which provides an effective aeration mechanism because 
pores of the fi lter bed refi ll with oxygen during the inter-
vals. As a result, high nitrifi cation rates can be achieved in 
the fi lters, and denitrifi cation can be carried out by recircu-
lating the effl uent into the primary treatment unit.    

25.3.1.2       Removal Mechanisms in Constructed 
Wetlands 

 CWs have been found to be effective in treating organic mat-
ter (OM), suspended solids (SS), nitrogen (N), and phospho-
rous (P), as well as for metal and pathogen reduction. The 
diversity of treatment mechanisms in CWs includes biologi-
cal processes (microbial metabolic activity and plant uptake) 
and physicochemical processes (sedimentation, adsorption, 
and precipitation), processes that when combined effectively 
remove pollutants in wastewater. Biodegradation occurs 
when dissolved organic matter is carried into biofi lms 
attached on submerged plant stems, root systems, and fi lter-

ing media by diffusion and dispersion process. SS are 
removed by fi ltration and gravitational settlement (Wetlands 
International  2003 ; WSP  2008 ). Each different wastewater 
component has its own removal pathway, some mechanisms 
being more suitable depending on the pollutant to be removed, 
transformed, or retained. The main mechanisms and its asso-
ciated removed contaminant are resumed on Table  25.3 .

   For example, nitrogen removal is achieved by two major 
processes, which includes physicochemical and biological 
methods. In CWs, denitrifi cation process may remove 
60–70 % of the overall removed nitrogen, and 20–30 % may 
be derived from plant uptake or assimilation and adsorption 
(Lee et al.  2009 ).  

25.3.1.3    Performance of CWs 
for Phytoremediation 

 Performance criteria for phytoremediation in CWs may be 
based on the contaminant concentration in the system outfl ow 
or on the total percent mass removal of it. Either way, it is 
important that the selected criteria truthfully refl ect the actual 
performance of the CW relative to the objectives and intended 

  Fig. 25.1    Phytoremediation processes and nitrogen fl ows on a constructed wetland       

   Table 25.3    Removal mechanisms for determined pollutants in CW   

 Removal mechanism  Removed contaminant 

 Bioconversion  OM, SS, N, P 
 Predation  Pathogens 
 Adsorption  OM, SS, N, P 
 Sedimentation  OM, SS, N, P, pathogens 
 Filtration  OM, SS, N, P, pathogens 
 Plant uptake  N, P 
 Volatilization  N 
 UV radiation  Pathogens 
 Excretion of antibiotics by plants  Pathogens 
 Ammonifi cation, nitrifi cation/
denitrifi cation (limited) 

 N 
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uses of the wetland treatment system and potential use of its 
effl uent (Dipu et al.  2010 ). 

 In general, CWs require little operation and maintenance 
(O&M) when compared with technical treatment systems 
(WSP  2008 ). Vymazal ( 2010 ) made a thorough review of a 
great number of CWs, resulting in the average removal effi cien-
cies presented on Table  25.4  for different types of CWs and 
depending on the pollutant. Treatment effi ciency for OM (bio-
logical oxygen demand, BOD) and particulates (total suspended 
solids, TSS) is high in all types of CWs. Normally, CWs are not 
designed to remove P (total phosphorous, TP), which is why 
Vymazal’s review ( 2010 ) shows low P retention in all types of 
CWs. Most studies on P cycling in wetlands have shown that 
soil/peat accumulation is the major long-term P sink.

   Removal of N is usually low given that nitrifi cation is 
scarce or does not take place in HSSF CWs or 
FWS. Volatilization may be a signifi cant route for N removal 
in CWs with open water surface where algal assemblages 
can create high pH values during the day through their pho-
tosynthetic activity. VF CW systems consist of almost 
entirely aerobic conditions, which promote high nitrifi cation, 
but no denitrifi cation takes place. In order to achieve effec-
tive removal of total N, hybrid systems could be imple-
mented, combining VF CWs followed by HSSF CWs which 
could provide suitable conditions for reduction of nitrate 
formed during nitrifi cation. If plants are harvested, plant 
uptake can be considered as a viable mechanism for nutrient 
removal, but it may only achieve around a small percentage 
of the infl ow nutrient load (Vymazal  2010 ). 

 CWs may need to be designed to meet higher level of 
performance in order to address local environmental objec-
tives or other pollutant control issues. The integrity of good 
design may be jeopardized during construction, leading to 
reduced performance and impacts on the long-term sustain-
ability of the system. Also, even though it requires minimum 
O&M attention, unawareness of minimal activities required 
on-site can reduce its performance (Melbourne Water  2010 ).   

25.3.2     Subsurface Flow Constructed Wetlands 
for Phytoremediation 

 The most relevant technology using phytoremediation strat-
egy is CWs (Dipu et al.  2010 ). Horizontal subsurface fl ow 
constructed wetlands (HSSF CWs) are the predominant 

wetland concept in Europe (Vymazal  2008 ; GTZ  2010 ). 
Progressively, this technology has become an important low- 
impact alternative to be implemented rather than conven-
tional wastewater treatment processes during the last few 
years and has also demonstrated a consistent capacity to 
remove organic carbon and particulate matter effi ciently 
from sewage in several regions around the world, with inter-
esting results on tropical conditions, given that those type of 
environments and its associated biodiversity can potentially 
enhance CW performance for pollutant removal and trans-
formation (Ascúntar et al.  2009 ). HSSF CWs showed an 
increase rate of contaminant uptake in warmer climates; 
therefore, this treatment has been expected to operate more 
effi ciently in tropical regions (Chek Rani et al.  2011 ). 

 In HSSF CWs, rhizosphere processes have been success-
fully used to treat industrial and domestic effl uents using 
specifi c aquatic macrophytes. One of the integrated compo-
nents of this process is the need of adaptive and effi cient 
plants, which are fed by absorbing nutrients from wastewater 
at a faster rate, turning this vegetative material to a desirable 
subproduct. The plants hold themselves in the inter-porous 
particles of the support media through their roots and rhi-
zomes creating a complex network of underground stem. 
Roots grow rapidly and provide air pockets through the sup-
port media, providing a host area for many biological com-
munities to colonize, develop, and mineralize wastewater 
components and by-products (Chavan and Dhulap  2012 ). 

25.3.2.1    Support Media 
 There are basically two different concepts of fi lling material 
for HSSF CWs, the sand-based and gravel-based beds. 
Gravel-bed systems are widely used in America, North 
Africa, South Africa, Asia, Australia, and New Zealand. The 
sand-bed systems have their origin in Europe but nowadays 
are used all over the world (GTZ  2010 ). The media depth and 
the water depth in these wetlands have ranged from 0.3 to 
0.9 m in operational systems in the United States (Crites 
et al.  2006 ). Systems that use sand instead of gravel can 
increase the P retention capacity, but selecting this media 
would reduce the hydraulic conductivity through the porous 
media (Chek Rani et al.  2011 ). 

 The HSSF CW average bed typically contains up to 0.6 m 
of support media. This is sometimes overlain with a thin 
layer of fi ne gravel that is 76 to 150 mm deep or other materi-
als can be used like inert ash (Ascúntar et al.  2009 ). This top 

   Table 25.4    Treatment effi ciency of various types of CWs   

 CW type 

 Average removal effi ciencies (%) 

 BOD  TSS  TP  TN  NH4–N 

 Free-water surface (FWS) CW  72–74  68–77  34–50  41–58  39–53 
 Horizontal subsurface fl ow (HSSF) CW  ~75  ~75  ~50  33–43  30–39 
 Vertical fl ow (VF) CW  ~90  ~89  ~56  ~43  30–73 
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material facilitates initial rooting medium for the vegeta-
tion and is kept under dry condition during normal opera-
tions. Table  25.5  shows the commonly used materials for 
HSSF CW.

   Natural soil may not be suitable as a substrate for wastewa-
ter treatment in CWs. Several studies with this type of support 
media have reported clogging problems, causing overfl ows, 
erosion, and defi cient plant growth. Effective volume can be 
reduced in a soil-based CW by obstruction of its interstices, 
which could rapidly decrease the hydraulic retention time 
(HRT) of the treatment unit and increase fl ow velocities, gen-
erating short-circuiting and overfl ows (Sundaravadivel and 
Vigneswaran  2009 ). Thus, a combination of gravel and coarse 
sand are preferred as support media and, currently, in several 
CWs, only gravel is used as support media.  

25.3.2.2    Plant Role and Selection 
 It is diffi cult to predict when and under what circumstances 
the plant contributions will be more relevant, and this may be 
the reason for the controversy surrounding their actual roles. 
Most studies relate to the overall effect of plants on CW sys-
tems, with much less focus on the specifi c plant species or 
mechanisms and their involvement on CW effi ciency. It is 

important to consider that such studies are diffi cult to con-
duct under fi eld conditions because of the complexity of the 
outdoor facility, with multiple variables affecting its perfor-
mance, such as inlet wastewater quality, media composition, 
climate, fauna and fl ora, etc. (Shelef et al.  2013 ). Tanner 
et al. ( 2006 ) and Sundaravadivel and Vigneswaran ( 2009 ) 
agree that the roles provided by CW plants can be assigned 
to determine part of the plant as seen on Table  25.6 .

   The choice of plants is an important issue in CWs, as they 
must survive the potential toxic effects of the wastewater and 
its variability. The most widely used CW design in Europe is 
the horizontal subsurface fl ow system vegetated with the 
common reed ( Phragmites australis ), although other plant 
species, such as cattails ( Typha  spp.), bulrushes ( Scirpus  
spp.), and reed canary grass ( Phalaris arundinacea ), have 
been used for both domestic and industrial wastewater treat-
ments (Calheiros et al.  2007 ). 

 In tropical countries, locally available species of 
 Phragmites ,  Cyperus , bulrush, and  Typha  have been the 
most common choice to date. Most recently, Konnerup et al. 
( 2009 ) successfully used  Heliconia psittacorum  and  Canna 
generalis  in order to increase the aesthetic value of wetlands 
and to increase the local people’s awareness of wastewater 

   Table 25.5    Constructed wetland support media characteristics   

 Media type 
 Effective size, 
D10 (mm)  Porosity ( n ) 

 Hydraulic 
conductivity (ks, m/s)  Suggestion 

 Coarse sand  2  0.32  1.2 × 10 −2   Low-TSS wastewater 
 Gravelly sand  8  0.35  5.8 × 10 −2   Combined in different bed 

layers from top to bottom  Fine gravel  16  0.38  8.7 × 10 −2  
 Medium gravels  32  0.40  11.6 × 10 −2  
 Coarse rock  128  0.45  115.7 × 10 −2   For inlet and outlet structures 

   Table 25.6    Major roles of macrophytes in CWs   

 CW plants  Role  Common species 

 Aerial plant tissues  • Enhancing wildlife and aesthetic values 
 •  Infl uence on microclimate (insulation during 

harsh climate conditions) 
 • Aesthetic appearance 
 •  Nutrient and other pollutant storages 

(e.g., heavy metals) 

  Heliconia psittacorum  (L.f.) 

 Plan tissues on support 
media 

 •  Producing litter as a source of organic carbon for 
denitrifi cation and other microbial processes 

 • Surface area for attached microorganisms 

  Cyperus papyrus  (L.) 
  Colocasia esculenta  (L.) Schott, 1832 

 Roots and rhizomes  • Promoting the settling and retention of suspended solids 
 • Dispersing fl ow to minimize short-circuiting 
 •  Providing surfaces for the development 

of microbial biofi lms 
 •  Transporting into their root zone by excretion 

of photosynthetic oxygen to enhance bioconversion 
 • Assimilating pollutants 
 • Release of nutrients in slowly available organic forms 
 • Release of antibiotics 

  Chrysopogon zizanioides  (L.) Roberty 
  Cyperus haspan  (L.) 
  Gynerium sagittatum  (Aubl.) P. Beauv. 
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treatment in Thailand (Chek Rani et al.  2011 ). Ascúntar 
et al. ( 2009 ) also used  Heliconia psittacorum  in Colombia 
on a pilot-scale CW for secondary treatment of domestic 
wastewater with high effi ciency for removal of solids 
(>90 %) and organic matter (>60 %). Furthermore in 
Colombia, Madera et al. ( 2015 ) assessed three native species 
( Gynerium sagittatum ,  Colocasia esculenta,  and  Heliconia 
psittacorum ) for landfi ll leachate treatment at bench scale 
under tropical conditions obtaining high removal effi cien-
cies (>80 %) for heavy metals like Cd(II), Pb(II), Hg(II), and 
Cr(VI).  

25.3.2.3    Design Considerations for HSSF CWs 
 HSSF CWs are designed based on HRT and average design 
fl ow. The shortest detention times are usually necessary for 
BOD, nitrate N, and TSS removal from domestic wastewa-
ter, while ammonia and metal removal usually requires 
longer detention times (Crites et al.  2006 ). The design of 
HSSF CWs has evolved from early empirical rules to 
advanced models, which try to explain the complexity of 
hydrodynamics in a porous medium combined with many 
physical and biochemical processes involved in pollution 
reduction (Marsili-Libelli and Checchi  2005 ; Langergraber 
et al.  2009 ). 

 HSSF CWs have been designed using either simple “rule 
of thumb” set at 5 m 2  PE −1  or plug-fl ow fi rst-order models 
(Kadlec and Wallace  2008 ). Recently, more complex 
dynamic, compartmental models have been developed 
(Langergraber et al.  2009 ). Dimensioning HSSF CWs is 
usually based either on volume or area (Ewemoje and 
Sangodoyin  2011 ). 

 Many texts and design guidelines for HSSF CWs have 
been published such as USEPA ( 2000 ), Cooper ( 1990 ), 
WPCF ( 1990 ), Reed et al. ( 1995 ), Kadlec and Knight ( 1996 ), 
Campbell and Ogden ( 1999 ), Ellis et al. ( 2003 ), and DNR 
( 2007 ); nonetheless, there are few guidelines recorded for 
tropical climates, like Melbourne Water ( 2005 ), UN-Habitat 
( 2008 ), and Melbourne Water ( 2010 ). Consequently, there 
are still voids regarding the application, design and perfor-
mance of this technology, especially in the design phase, 
being oxygen availability and nitrogen removal the most 
common setbacks in tropical regions (Chek Rani et al.  2011 ).  

25.3.2.4    Advantages and Limitations of CWs 
 Even though the potential for application of wetland tech-
nology worldwide is enormous, the rate of adoption of it for 
wastewater treatment in tropical countries has been slow. It 
has been identifi ed that the current limitations in these 
regions are due to the fact that there is limited knowledge and 
experience with CW design and management. Table  25.7  
shows some advantages and disadvantages of implementing 
CWs for wastewater treatment.

25.4          Experiences Using CW 
for Phytoremediation 

25.4.1     Worldwide Phytoremediation 
Experiences with CWs 

 Nepal has widely implemented CWs for wastewater treat-
ment. Reed bed treatment systems (RBTS), as they call it, 
have set a valuable precedent for other larger systems in 
other parts of the country as well as systems envisaged under 
national urban development projects, becoming an important 
small-scale decentralized wastewater treatment solution 
(WATERAID  2008 ). 

 Another clear example of FWS CW implementation is the 
Putrajaya Wetlands, which were the fi rst man-made wetland 
in Malaysia, with an area of 197 ha and 12.3 million Wetland 
plants, it became one of the largest fully constructed fresh-
water wetlands in the tropics. The wetlands are strategically 
located to act as buffer to the Putrajaya Lake which drains a 
catchment area of 50.9 km 2 . This facility is also used for 
urban runoff treatment (Chai Huat  2002 ). North America has 
been using CWs for many purposes, such as the case of the 
FWS CW in Monastery Run, Pennsylvania,  USA, where 
this technology was implemented to treat alkaline mine 
drainage waters generated upstream, with positive results for 
Fe, Al, and Mn reduction (USEPA  2005 ). 

 Large-scale CW systems have been applied with excel-
lent results regarding biological performance, cultural 
acceptance and aesthetic benefi ts. Such is the case of the 
wastewater treatment plant of Liedekerke in Belgium, used 
for 70,000 PE, which has an FWS CW of 1.3 ha as a fi nal 

   Table 25.7    Advantages and disadvantages of CWs   

 Advantages  Limitations 
 • Less expensive to build than other treatment options 
 • Utilization of natural processes 
 • Simple construction, O&M 
 • Cost-effectiveness 
 • Process stability 
 • They require little or no energy to operate 
 • They can provide additional wildlife habitat 
 •  They can be aesthetically pleasing additions 

to homes and neighborhoods 

 • Large area requirement 
 •  May be economical relative to other options 

only where land is available and affordable 
 •  Design criteria have yet to be developed for 

different types of wastewater and climates 
 •  Not appropriate for treating some wastewater 

with high concentrations of certain pollutants 
 •  There may be a prolonged initial start-up period 

before vegetation is adequately established 
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process for effl uent refi ning. Since its implementation, 
12,834 birds were spotted during 2 years of operation; 132 
species, 39 families, and 29 Red List species were also 
sighted (WATERAID  2008 ). 

 Another example is the system located in Can Cabanyes, 
Granollers, near Barcelona, Spain, which consists of a 1.0 ha 
HSSF CW and is one of the restoration measures for a 
degraded zone near the river Congost. The system currently 
serves three main purposes: (1) effl uent polishing before dis-
charge, (2) landscape restoration, and (3) habitat function. 
Other restoration measures include the construction of a 
nature education center and some walkways along the wet-
land and the river. So this technology, aside from being a 
wastewater management system, becomes a center for edu-
cation, for recreation (walking, fi shing), and even for art 
activities like photography (Rousseau and Hooijmans  2010 ). 
As stated by Vymazal ( 2010 ), HSSF CWs have regularly 
been used to treat domestic and municipal wastewaters 
around the world. However, currently, HSSF CWs are used 
to treat many other types of wastewaters including industrial 
and agricultural, landfi ll leachate, and runoff waters 
(Fig.  25.2 ).   

25.4.2     Experiences with CWs 
for Phytoremediation of Specifi c 
Pollutants 

 When CWs are used for phytoremediation, different mecha-
nisms regarding plant development interact at the same time; 
this enhances the vegetation restorative capacity acting as a 

cleaning agent of pollutants (Fig.  25.3 ). Using these natural 
mechanisms, it has been possible to engineer CW treatment 
systems to remove specifi c contaminants from wastewater 
by taking advantage of the plant’s metabolism.  

 For instance, Aziz et al. ( 2011 ) stated that reed beds using 
gravel as a support media proved an excellent tolerance to a 
month treatment of leachate irrigation, which resulted in a Zn 
removal that reached 70.0 %, while Cr +6  only achieved 31.2 %. 

 Lizama et al. ( 2011 ) carried out a review on the potential 
of arsenic (As) removal in CWs, stating that this technology 
is highly suitable for this purpose and that the main environ-
mental factors infl uencing this process include pH, alkalin-
ity, dissolved oxygen, the presence of iron and sulfate, 
competing chemicals, organic carbon, and the support media; 
they also identifi ed the major removal mechanisms that con-
tribute to As removal, such as sorption, precipitation, and 
coprecipitation, but bacteria can mediate these processes and 
can play a signifi cant role under favorable environmental 
conditions. 

 Ganjo and Khwakaram ( 2010 ) used multiple cells of CWs 
with different plants obtaining results that showed how 
removal effi ciency of all studied heavy metals (Fe, Mn, Zn, 
and Cu) was much higher in  T. angustifolia  followed by  Ph. 
australis ,  B. maritimus,  and  A. donax  in triple experiment 
sand pots. This implies that the combination of different 
vegetal species can enhance the treatment performance and, 
perhaps, in a specifi c sequential order. 

 Stottmeister et al. ( 2006 ) affi rmed that the removal capac-
ities for As and Zn are larger in soil-based (gravel) wetlands 
than in hydroponic systems or in algae ponds. Although 
gravel and plants each separately has low-binding capacities 

  Fig. 25.2    Implemented HSSF 
CWs in La Voragine, Cali, 
Colombia       
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for As, it was found that the combination of both enhances 
coprecipitation of As, particularly in the oxic zones of the 
rhizosphere. Also, they found that the combination of gravel/
soil matrix and plants has a better treatment performance 
than systems with only soil or only plants without soil, which 
encourage the implementation of CWs for remediation of 
wastewater from mines and industries which emit acidity, 
As, Zn, and other heavy metals. 

 Liao and Chang ( 2004 ) found water hyacinth to be a 
promising candidate for phytoremediation of wastewater 
polluted with Cu, Pb, Zn, and Cd, while assessing the root 
system from the Erh-Chung wetlands located south of 
Taipei City. This 320 ha wetland had an average depth of 
0.88 m. The concentrations in the root tissue were found in 
the order of Cu > Zn > Ni > Pb > Cd. The absorption capacity 
for water hyacinth was estimated at 0.24 kg/ha for Cd, 
5.42 kg/ha for Pb, 21.62 kg/ha for Cu, 26.17 kg/ha for Zn, 
and 13.46 kg/ha for Ni.  

25.4.3     Experiences of Phytoremediation 
in Colombia 

 In Colombia, universities have lead the development of CW 
technology, starting with small-scale laboratory investiga-
tions, pilot-scale studies, and, gradually, large-scale facility 
implementation. Arias and Brix ( 2003 ) highlighted the 
development and research for CW technology by acknowl-
edging several Colombian experiences documented since 
1998 with worldwide availability. For instance, a laboratory- 
scale research evaluated the capacity of organic and inor-
ganic compound reduction in an experimental vertical fl ow 
CW fed with water from the Bogota River in order to assess 
the capability of this technology for pollution control on this 
water stream. It was possible to obtain COD reductions of 
37 %, BOD 10 %, total coliforms 49 %, TSS 27 %, NO 2  
83 %, and NO 3  30 %. From these results, it was concluded 
that, on laboratory scale, this technology was able to improve 

  Fig. 25.3    Phytoremediation mechanisms in CWs       
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the water quality of Bogota River (Rodríguez and Ospina 
 2005 ). Other researches like the one carried out by Arias 
et al. ( 2010 ) consisted of the design and implementation of a 
small and simple CW system to treat wastewater from a pig 
production unit at the Center Renewable Natural Resources 
“La Salada,” based on a pilot essay of phytoremediation 
using native plants. The objective was to assess the effi ciency 
of CW to reduce the pollutant load, as economic systems of 
treatment for pig farmers in Colombia. The results showed 
that the selected combination of different support media 
(gravel, sand, and rice husk) and native plants was able to 
reach a treatment effi ciency superior of 80 % for organic 
matter and solid removal, in compliance with the Colombian 
environmental regulation for wastewater discharges. 

 Pilot-scale studies, with synthetic wastewater, assessed 
organic matter removal in terms of COD and BOD 5  in six 
HSSF CWs, planted with three different macrophytes: 
 Canna limbata ,  Heliconia psittacorum,  and  Phragmites  sp.; 
the average removals of COD were 97.31 and 95.94 % for 
 Canna limbata , 94.49 and 93.50 % for  Heliconia psittaco-
rum , and  97.39 and 97.13 % for  Phragmites  sp. In BOD 5  
effi ciency was 100 and 99.36 % for  Canna limbata , 99.09 
and 97.49 % for  Heliconia psittacorum,  and 100 and 99.45 % 
for  Phragmites  sp. It was concluded that there were signifi -
cant differences in COD removal between different plants 
( P  < 0.05), but not for BOD 5  (Montoya et al.  2010 ). 

 Bench-scale study, with synthetic landfi ll leachate, 
assessed organic matter, nitrogen, and heavy metal removal 
in terms of COD, NH 4  + –N, TKN, NO 3  − –N, Pb(II), Cd(II), 
Hg(II), and Cr(VI) in 22 HSSF CWs, planted with three dif-
ferent macrophytes:  Colocasia esculenta  ( Ce ),  Gynerium 
sagittatum  ( Gs ),  and Heliconia psittacorum  ( He ) (Fig.  25.4 ); 
average removal effi ciencies of COD, TKN, and NH 4  + –N 

were 66, 67, and 72 %, respectively, and heavy metal removal 
ranged from 92 to 98 % in all units. Cr(VI) was not detected 
in any effl uent sample. The bioconcentration factors (BCFs) 
were 10 0 –10 2 . The BCF of Cr(VI) was the lowest, 0.59 and 
2.5 (L kg −1 ) for  Gs  and  He , respectively, while Cd(II) had the 
highest (130–135 L kg −1 ) for  Gs . Roots showed a higher 
metal content than shoots. Translocation factors (TFs) were 
lower;  He  was the plant exhibiting TFs >1 for Pb(II), Cr(T), 
and Hg(II) and 0.4–0.9 for Cd(II) and Cr(VI). The evaluated 
plants demonstrate their suitability for phytoremediation of 
landfi ll leachate, and all of them can be categorized as metal 
accumulators (Madera et al. 2015).  

 Ascúntar et al. ( 2009 ) assessed a pilot-scale HSSF CW 
planted with  Phragmites australis  and  Heliconia psittaco-
rum  (Fig.  25.5 ), used as a secondary treatment for the pri-
mary effl uent of an anaerobic pond that served the Ginebra 
municipality in Valle del Cauca, Colombia. Even though 
they were evaluating the system’s hydrodynamic perfor-
mance, they also monitored its effi ciency for organic matter 
removal, obtaining 68.5 % for BOD5, 63.9 % for unfi ltered 
COD, 49.4 % for fi ltered COD, and 90.4 % for TSS on the 
CW planted with  Phragmites australis . Similar results were 
obtained for the one planted with  Heliconia psittacorum .  

 On the east of Colombia, a prototype of CW simple and 
effi cient confi guration called HUMEDAR-I was imple-
mented. Its confi guration involves an anaerobic reactor of 
parallel compartments plug fl ow (RACFP), followed by a 
high-rate CW, using native and common macrophytes, sup-
ported on a recycled plastic support media of special design 
with approximately 300 m 2 /m 3  of specifi c surface (Otálora 
 2011 ). This type of system was built in an oil extraction facil-
ity for domestic wastewater treatment planted with  Bidens 
laevis  (bur-marigold or smooth beggar-ticks), registering 

  Fig. 25.4    Bench-scale CW 
treatment system for synthetic 
landfi ll leachate treatment       
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overall removal effi ciency for BOD, COD, and TSS higher 
than 80 %, in compliance with the Colombian  environmental 
regulation for wastewater discharges. 

 A successful experience was acknowledged by WSP 
( 2008 ) at the Universidad Técnica de Pereira (UTP), Pereira’s 
technical university, where CWs were implemented at the 
existing wastewater treatment plant (La Florida) as part of a 
sanitation project to mitigate the negative environmental 
impacts on the Otún river basin. 

 La Florida system originally consisted of a pretreatment 
unit and a combination of a septic tank and anaerobic fi lter, 
treating wastewater arising from a nearby small community. 
But the effi ciency of the system was low, possibly because 
groundwater infi ltration of the sewerage system diluted the 
wastewater, resulting in low infl uent concentrations of 
several contaminants. The effl uent of the system did not 
comply with the Colombian legislation, which calls for more 
than 80 % BOD 5  load removal. As a solution, several HSSF 
CWs were added as tertiary treatment units and operated in 
parallel to resolve the problem. 

 Different fi lter media and local plant types like  Typha  sp., 
 Juncus  sp., and  Renealmia alpinia  (Villegas et al.  2006 ) also 
were selected for the CWs, which then were operated under 
relatively high organic loading rates and short retention 
times (less than 1 day). Careful monitoring revealed that 
CWs with fi ne sand (0.3 mm) as fi lter media initially per-
formed well in removing organic pollutants (50–70 %) and 
bacteria (up to 2 log units of fecal coliforms). However, they 
quickly clogged up, resulting in surface fl ow. The CWs with 
gravel as fi lter media had lower removal performance in 
terms of organic contamination, but did not present opera-
tional problems. 

 A member of the local community is in charge of the 
O&M of the system. The investigation revealed that the over-
all treatment system, including the constructed wetland units, 
was meeting the requirements of the Colombian legislation, 
and thus, the combination of septic tank, anaerobic fi lter, and 
CWs was, in principle, adequate for polishing of effl uents 
from anaerobic treatment stages in tropical conditions, a con-
dition that was also registered by Villegas et al. ( 2006 ). 

 A 157 m 2  HSSF CW system was constructed for 
$14,000 in 2006 in Pasto ( L  = 17.5,  W  =9.0 m), a municipality 
in southern Colombia for a 112 m 3 /d fl ow. The CW com-
prises various pretreatment and primary treatment units, fol-
lowed by a single relatively small constructed wetland 
designed for a population of 1,000. The treatment system is 
designed to receive the wastewater of about 1,000 inhabit-
ants of a nearby community. The fi lter material is composed 
of fi ne gravel and organic soil. The local community is using 
the treated effl uent for crop production. An NGO was in 
charge of implementing such system and also carried out 
important social work with the population. Activities 
included participatory analysis of priorities to achieve better 
health and environmental protection, consultation with com-
munity leaders, hygiene promotion, and environmental edu-
cation WSP ( 2008 ). 

 More recently, Madera et al. (2015) assessed the removal 
effi ciencies of organic matter, Cd(II), Hg(II), Cr(VI), and 
Pb(II) in four HSSF CW systems planted with polyculture of 
 Gynerium sagittatum  ( Gs ),  Colocasia esculenta  ( Ce ), and 
 Heliconia psittacorum  ( He ) treating landfi ll leachate at pilot 
scale, with good removal effi ciencies for COD, DTOC, and 
BOD 5 . The removal effi ciencies were relatively good with 
higher performances for all parameters (>50 %). Regarding 

  Fig. 25.5    Pilot-scale HSSF CW 
units.  Left ,  Phragmites australis ; 
 center , unplanted;  right , 
 Heliconia psittacorum        
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Cr(VI), the concentrations found in the infl ow were always 
higher than the Colombian standard for water reuse in agri-
culture (100 μg L −1 ). The removal effi ciency of this metal 
was similar in all HSSF CWs with values ranging between 
50 and 80 %, and effl uent from CWs 3 and 4 exhibited con-
centrations lower than the Colombian standard; meanwhile, 
the other two effl uents were 20 % higher.      
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26.1             Introduction 

 As a consequence of increasing human demand for a range of 
petrogenic products including natural gas, diesel, gasoline, 
and asphalts, and the increase in activities associated with the 
exploration, and processing of petroleum, contamination of 
terrestrial and marine environments with petrogenic hydro-
carbons is a relatively common occurrence. For example 
worldwide by 2005, on average approximately nine incidents 
involving the release of petroleum into the environment were 
reported every year (Stroud et al.  2007 ). The threat that these 
accidental or deliberate oil spills have on human and environ-
mental health is illustrated by the fact that many common 
petrogenic products such as benzene, toluene, ethylbenzene, 
xylenes, and naphthalene are categorised as hazardous chem-
icals (Sarkar et al.  2005 ). There is therefore an urgent need 
to remediate hydrocarbon- contaminated sites worldwide. 
However, remediation of contaminated sites is costly; in the 
USA alone, over US $1 trillion was expected to be spent to 
clean up the environment; 90 % of these sites were contami-
nated by petrogenic hydrocarbons (Stroud et al.  2007 ). 

 A broad range of in situ and ex situ remediation methods 
including chemical, physical, and biological approaches 
have been widely used to remediate petrogenic hydrocarbon- 
contaminated site (Table  26.1 ). The use of biological 
methods to treat the contamination is becoming not only 
increasingly accepted but also preferred. This is because 
biological methods tend to be more environmentally 
friendly, cost-effective and unlike physical and chemical 
methods, biological methods are not very prone to second-
ary contamination (Table  26.1 ). In this chapter, these 

biological methods are examined in detail, with emphasis 
on two particularly promising techniques: phytoremediation 
and necrophytoremediation.

26.2        Petrogenic Hydrocarbons 

 Petrogenic hydrocarbons consist of various amounts of short, 
medium, and long chain aliphatic (i.e. alkanes, alkenes), aro-
matic (e.g. benzene, toluene, ethyl benzene, and xylene), and 
polycyclic aromatic hydrocarbons (known as PAHs; such as 
naphthalene, phenanthrene, and pyrene). Based on their gen-
eral structure, however, hydrocarbons can be divided into two 
main groups: aliphatic and aromatic. Aliphatic hydrocarbons 
(e.g. alkanes) contain both saturated and unsaturated linear or 
branched open-chain structures (Table  26.2 ) (Stroud et al. 
 2007 ), while aromatic hydrocarbons contain one or more aro-
matic rings (e.g. benzene ring). In terms of the aromatic frac-
tion, PAHs are important pollutants which contain two or 
more fused phenyl and/or pentacyclic rings (Table  26.2 ) 
(Haritash and Kaushik  2009 ).

   Sixteen PAHs have been listed as priority pollutants by 
the US Environmental Protection Agency (US-EPA) 
(Table  26.3 ), (Mougin  2002 ). These recalcitrant chemicals 
are characterised by thermodynamic stability, very low aque-
ous solubility, an effective tendency to absorb to particle sur-
faces (e.g. soil particles) in the environment, and low 
sensitivity to volatilisation and photolysis (Mougin  2002 ).

   As a result, PAHs are regarded as recalcitrant and hence 
the disposal rate of PAHs is higher than their rate of degrada-
tion in contaminated environments (Mougin  2002 ). In addi-
tion to their recalcitrance, PAHs also exhibit toxic, mutagenic, 
and carcinogenic properties, thereby representing a signifi -
cant threat to the health of living organisms including humans 
(Bamforth and Singleton  2005 ; Lors et al.  2010 ; Samanta 
et al.  2002 ). Because of these properties, signifi cant attention 
has been paid to the degradation of PAHs rather than ali-
phatic hydrocarbons in the past (Stroud et al.  2007 ). However, 
aliphatic hydrocarbons represent the major component of 
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crude oil and petrogenic products. The physicochemical  
properties of mid-length aliphatic hydrocarbons (Table  26.2 ) 
showed that they are non-polar and water insoluble. For 
example, hexadecane (i.e. model alkane) has a water solubil-
ity of 0.0009 mg L −1  and it exists as a liquid at room tempera-
ture (Table  26.2 ). Consequently, they are not easily volatilised 
or leached from soil and tend to be adsorbed to soil particles 
and organic matter. In addition, the physiochemical proper-

ties of aliphatic hydrocarbons may result in these types of 
hydrocarbons, in some instances being more persistent than 
PAHs in the soil (Table  26.2 ). For example, the hydropho-
bicity of hexadecane is much higher than phenanthrene (by 
three orders of magnitude); hexadecane also has a higher 
octanol–water partition coeffi cient (log ow  = 9.1) than phenan-
threne (log ow  = 4.16) (Table  26.2 ). This hydrophobicity plays 
an important role in hydrocarbon behaviour in soil, affecting 

      Table 26.1    A summary of the methods used for the removal of hydrocarbons from contaminated environments   

 Methods  Example of method  Advantages  Disadvantages 

 • Physical  Excavation  Fast  Expensive 
 Removing contaminants permanently  Destructive 

 Prone to secondary contamination  Ideal for high levels of contamination 
 • Chemical  Direct injection of chemical oxidants 

or surfactants into contaminated soil 
and groundwater 

 Fast  Expensive 
 Not generating large volumes 
of waste material 

 Destructive 
 Prone to second contamination 

 Ideal for high level of contamination 
 • Biological 

(bioremediation) 
 Using microbiological processes 
(living organisms such as bacteria, 
fungi, and plant) 

 Environmental friendly  Requires longer time 
 Cost-effective  Low predictability 
 Minimum site disruption  Dependent on climatic factors 
 Useful for low level of contaminants 

        Table 26.2    Physicochemical properties of selected aliphatic and aromatic hydrocarbons   

 Type  Group  Name  Formula     Structure 
 Solubility 
(mg L −1 ) 

 Melt 
point (°C) 

 Boil 
point (°C)  Log k ow  

 Aliphatic  Alkane  Tetradecane  C 14 H 30  

      

 0.000282  5.5  253  7.2 

 Model 
Alkane 

 Hexadecane  C 16 H 34  

      

 0.0009  18  287  9.1 

 Alkene  Hexadecene  C 16 H 32  

      

 N/A  3–5  274  NA 

 Alkyne  Hexadecyne  C 16 H 30  

      

 N/A  15  148  NA 

 Aromatic  PAH  Naphthalene  C 10 H 8  

      

 30  79–83  217.9  3.36 

 Model PAH  Phenanthrene  C 14 H 10  

      

 1.1  97–101  340  4.16 

 PAH  Pyrene  C 16 H 10  

      

 0.135  156  404  5.19 

 PAH  Benzo[a]Pyrene  C 20 H 12  

      

 0.0038  175–179  495  6.06 

  Stroud et al.  2007 . Used with permission from John Wiley and Sons  
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sequestration and both chemical and biological availability 
(Stroud et al.  2007 ). The presence of long length aliphatic 
hydrocarbons results in the production of oil fi lms and slicks 
which limit nutrient and oxygen exchange in the soil 
(Wasmund et al.  2009 ), resulting in a signifi cant decline in 
soil structure and important changes in microbial population 
(Militon et al.  2010 ). 

 In addition, like other hydrocarbons, aliphatic hydrocar-
bon pollution of local groundwater can lead to immense eco-
nomic loss, and ecological disaster, while also disrupting 
agricultural or aquaculture production (Tang et al.  2010 ). 
In the recent British Petroleum Deepwater Horizon oil spill 
in the Gulf of Mexico, 26.5 million litres of petroleum went 
into the surrounding environment (Simons et al.  2012 ); this 
led not only to an ecological disaster affecting marine animal 
and bird species in the Gulf of Mexico but also to signifi cant 
damage to the tourism industry as well as the fi shing industry 
(Bozeman  2011 ). In addition, as a consequence of the 
negative aspects of aliphatic hydrocarbons, the remediation 
of these types of hydrocarbons has also been widely studied 
in recent years (Adetutu et al.  2012 ; Gaskin et al.  2008 ; 
Gaskin and Bentham  2010 ; Militon et al.  2010 ; Shahsavari 
et al.  2013b ).  

26.3     Bioremediation of Hydrocarbon- 
Contaminated Soils 

 Bioremediation is defi ned as the use of living organisms 
(especially microorganisms) to remove or breakdown con-
taminants present in the environment (Iwamoto and Nasu 
 2001 ; Sarkar et al.  2005 ; Wenzel  2009 ). The main advan-
tages of bioremediation are its cost-effectiveness and non- 
invasive approach (green technology) which keeps the 
ecosystem intact (Table  26.1 ) (Alcalde et al.  2006 ; Perelo 
 2010 ). Bioremediation can be useful in contaminated envi-
ronments where cleanup by physical or chemical methods 
cannot be used because of the low level of contaminations 
(Perelo  2010 ). However, bioremediation has a number of 
limitations (Table  26.1 ). The biodegradation processes 
occurring during bioremediation are affected by a number of 
factors including hydrocarbon physicochemistry, environ-
mental conditions, bioavailability, and the presence of 
hydrocarbon-utilising microorganisms (Stroud et al.  2007 ). 
These factors and their effects on the bioremediation of 
petrogenic hydrocarbons are summarised in Table  26.4 .

   All of these factors (Table  26.4 ) need to be considered 
before selecting and applying any bioremediation method. In 
addition, each contaminated site is different and therefore 
specifi c remediation action plans must be developed for each 
site; however, there are four generic technologies which are 
outlined in Table  26.5  and discussed in more detail below.

26.3.1       Natural Attenuation Strategy 

 Natural attenuation is the simplest bioremediation method; 
the only requirement is to monitor the natural degradation 
process. This approach can be applied in specifi c circum-
stances; for example, it can be used for remote areas or 
when levels of contamination are relatively low (Pilon-Smits 
 2005 ). It is estimated that approximately 25 % of all 
petroleum- contaminated land has been remediated using 
natural attenuation (Stroud et al.  2007 ). Very recently, Aleer 

   Table 26.3    List of 16 PAH priority pollutants defi ned by US-EPA   

 Two ring  Three ring  Four ring 

 Naphthalene  Fluoranthene  Chrysene 
 Fluorene  Phenanthrene  Pyrene 
 Acenaphthene  Anthracene  Benzo[a]anthracene 
 Acenaphthylene  Benzo[b]fl uoranthene 

 Benzo[k]fl uoranthene 

 Five ring  Six ring 

 Benzo[a]pyrene  Benzo[g,h,i]perylene 
 Indeno[1,2,3-c,d]
pyrene 
 Dibenzo[a,h]
anthracene 

  Perelo  2010 . Used with permission of Elsevier  

    Table 26.4    Important factors and their impact on the degradation of petrogenic hydrocarbons in the contaminated environments   

 Factors  Impact 

 • Hydrocarbon physicochemistry  Affects the bioavailability of contaminants (complex structure 
and less soluble = less hydrocarbon degradation) 

 • Environmental conditions (e.g. nutrient, oxygen, pH, and temperature)  Affect microbial activity (optimal environmental 
conditions = higher hydrocarbon-utilising microbial activity) 

 • Bioavailability  Determines the rate of degradation (less bioavailability = less 
hydrocarbon degradation) 

 • Presence of hydrocarbon-utilising microorganisms  Determines the rate of degradation (higher hydrocarbon-
utilising microbial activity = higher hydrocarbon degradation) 
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et al. ( 2011 ) and Makadia et al. ( 2011 ) reported on the use of 
previously bioremediated soil (reused soil) and compared its 
effi cacy to biostimulation and bioaugmentation methods. 
They found that the results from the natural attenuation using 
previously bioremediated soil were similar to other bioreme-
diation methods. The authors concluded that natural attenua-
tion with reused soil represents a promising strategy for the 
bioremediation of petrogenic hydrocarbons. In this respect, 
Erkelens et al. ( 2012 ) also reported that previously bioreme-
diated hydrocarbon-contaminated soil led to a 70 % increase 
in the remediation of TNT compared with the control.   

26.4     Bioaugmentation Strategy 

 If natural attenuation is unsuitable as a remediation technol-
ogy, perhaps due to low bioremediation potential, another 
technology will be required. One of these alternate methods 
is termed bioaugmentation: in this case the addition of 
hydrocarbon degraders (mostly bacteria and to a lesser extent 
fungi) which are generally isolated or enriched in the labora-
tory from samples taken from contaminated sites (Perelo 
 2010 ; Sarkar et al.  2005 ). Although the application of bio-
augmentation to environments contaminated with petrogenic 
hydrocarbons has been extensively studied in both marine 
and terrestrial systems (Kadali et al.  2012 ; Li et al.  2012 ; 
Makadia et al.  2011 ; Sheppard et al.  2011 ; Simons et al. 
 2012 ; Tang et al.  2010 ), there exists potential question or 
concern relating to the introduction of exogenous organisms 
and the potential negative impacts of this introduction on the 
diversity and functionality of the natural ecosystem (Iwamoto 
and Nasu  2001 ). 

26.4.1     Biostimulation Strategy 

 Biostimulation, the addition of nutrients to promote the activ-
ity of indigenous microorganisms (Sarkar et al.  2005 ), repre-
sents another widely applied bioremediation technology for 

the degradation of petrogenic hydrocarbons in  contaminated 
soils. A broad range of organic and inorganic substances such 
as bulking agents (e.g. straw), nutrients, manure, sewage 
sludge (fresh and composted), and surfactants (e.g. Tween 
80) have been used as biostimulators during the bioremedia-
tion of hydrocarbons (Adetutu et al.  2012 ; Liu et al.  2010 ; 
Ros et al.  2010 ; Shahsavari et al.  2013b ). 

 It is important to note that the application of biostimula-
tion as a remediation technology has resulted in a range of 
diverse outcomes. For example, Wellman et al. ( 2001 ) indi-
cated that the degradation of diesel/motor oil (5,000 mg kg −1 ) 
in a loamy soil amended with 20 % manure was greater 
(81 % degradation) than in contaminated soil amended with 
ammonium sulphate (54 % degradation) and unamended 
contaminated soil (32 % degradation). Liu et al. ( 2010 ) 
reported that the degradation of hydrocarbons reached 56 % 
in soil amended with manure (5 % v/v) compared with only 
15.6 % in the plot control. In contrast, some researchers have 
reported no positive impact in terms of the degradation of 
pollutants as a result of the application of bioremediation 
technology. Palmroth et al. ( 2002 ) reported that a variety of 
soil amendments, including NPK fertiliser, a compost 
extract, and a microbial enrichment culture, did not signifi -
cantly enhance the rate of degradation of diesel fuel. Also 
Schaefer and Juliane ( 2007 ) showed that the addition of cof-
fee grains or horticultural waste to a soil contaminated with 
TPH (Total Petroleum Hydrocarbon) resulted in no signifi cant 
increase in the rate of degradation compared to the control 
(unamended) soil. They concluded that hydrocarbon-utilising 
microorganisms preferred to use the more readily available 
amendments rather than crude oil (Schaefer and Juliane  2007 ). 
In some instances, biostimulation through the addition of 
surfactants has been investigated (Adetutu et al.  2012 ; 
Hultgren et al.  2009 ). Adetutu et al. ( 2012 ) showed that the 
presence of Tween 80 (1 % w/w) in weathered hydrocarbon-
contaminated soil resulted in an increase in  14 C-hexadecane 
mineralisation from 1.2 % in unamended control and 8.5 % 
in amended soil with nitrogen and phosphorus to 28.9 % 
after 98 days of incubation. The addition of surfactant may, 

   Table 26.5    Bioremediation technologies used for hydrocarbon-contaminated environments   

 Technology  Key point  Advantages  Disadvantages 

 • Natural 
attenuation 

 Using indigenous 
microorganisms and 
natural condition 

 Cheapest technology  Requires extensive long-term 
monitoring 
 Not always successful 

 • Bioaugmentation  Addition of hydrocarbon- 
degrading microorganisms 

 Using high biomass of 
hydrocarbonoclastic microorganisms 

 Changes the natural microbial 
structure 
 Poor adaptation of 
hydrocarbonoclastic microorganisms 
to the contaminated site 

 • Biostimulation  Addition of nutrient  More effi cient than natural attenuation  Not always successful 
 • Phytoremediation  Using plants and their 

associated microorganisms 
 Supports hydrocarbonoclastic 
microorganisms within plant root 

 Toxicity of contaminants to the plant 
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however, lead to reduced rates of contaminant biodegradation 
as surfactant may separate the microbes from the contaminant–
water interface, resulting in the preferential consumption of 
an alternative more readily degradable substrate rather than 
hydrocarbons. In addition, the surfactant may have a toxico-
logical impact on the hydrocarbon- degrading microfl ora 
(Perelo  2010 ). As a consequence of these variable outcomes, 
it is clear that in order to achieve a reliable and safe in situ 
bioremediation it is necessary to fully characterise the con-
taminated site, environmental conditions, and the natural 
microbial community (Ros et al.  2010 ). 

 It is important to note that depending on the conditions, 
bioremediation strategies may be used in combination (e.g. 
phytoremediation and biostimulation). For example, Yousaf 
et al. ( 2010 ) reported that addition of 10 % compost enhanced 
plant tolerance towards crude oil in alfalfa and Bird’s-foot 
trefoil plants; in alfalfa, the amount of plant biomass in clean 
and contaminated soils amended with compost was 1.77 and 
2.07 g, respectively, compared to clean soil without compost 
with an average of 0.94 g after 3 months.  

26.4.2     Phytoremediation Strategy 

 Phytoremediation is defi ned as the use of plants and their 
associated microbes for environmental cleanup from organic 
or inorganic contaminants (Salt et al.  1995 ). Plants and their 
rhizosphere microfl ora deal with pollutants through a range 
of mechanisms including phytodegradation, phytovolatilisa-
tion, phytodegradation, phytoextraction, phytostabilisation, 
and rhizodegradation (Fig.  26.1 ) (Pilon-Smits  2005 ).  

 Phytodegradation refers to the use of degradative 
enzymes produced by plant tissue to degrade organic pollut-
ants (Fig.  26.1 ). Phytodegradation is useful for organics 
which are able to move within the plants. Among these com-
pounds are herbicides and TNT (Pilon-Smits  2005 ). In phy-
tovolatilisation, plant tissue takes up certain pollutants, then 
releases them in a volatile form into the air (Fig.  26.1 ). 
Phytovolatilisation can be used for the removal from soil of 
volatile organic compounds such as TCE (trichloroethylene) 
and MTBE (methyl tertiary butyl ether) and also for Se and 
Hg, metals that can exist in a volatile form (Fig.  26.1 ) 
(Pilon- Smits  2005 ). Phytoextraction is defi ned as the use of 
plants to take up the contaminants (especially metals) from 
the soil and accumulate them in harvestable plant tissues 
(Macek et al.  2000 ). After harvesting, the plant material can 
subsequently be used for wood, cardboard, and ash or if the 
metal is highly valuable, recycling of the accumulated ele-
ment can be carried out; this is termed phytomining (Pilon-
Smits  2005 ). Phytostabilisation refers to the elimination or 
reduction of the bioavailability of pollutants (e.g. metals) by 
plant roots in the environment, resulting in the prevention of 
erosion, leaching, or runoff pollutants (Fig.  26.1 ) (Pilon-
Smits  2005 ). Rhizoremediation or rhizodegradation (phyto-
stimulation) is defi ned as the use of microorganisms in the 
plant rhizosphere to remediate organic pollutants as a result 
of interactions between plants and microbes (Fig.  26.1 ). It is 
used for the remediation of soils contaminated with hydro-
phobic organics that cannot be taken up by plants but which 
can be degraded by microbes; it is believed that rhizodegra-
dation is a main route for the degradation of petrogenic 
by-products (Hall et al.  2011 ).   

  Fig. 26.1    A schematic fi gure 
showing the different 
mechanisms involved in the 
phytoremediation of organic and 
inorganic pollutants (adapted 
from Pilon-Smits  2005 )       
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26.5     Effect of Microfl ora 
in the Rhizosphere of Plants 
on the Degradation of Petrogenic 
Hydrocarbons 

 In regard to rhizoremediation, the degradation is mediated by 
the microbial biomass and associated activity (Pilon-Smits 
 2005 ). It is known that the plants and their associated rhizo-
sphere microfl ora often show a mutualistic relationship with 
each other. While hydrocarbon-utilising bacteria are sup-
ported by plant roots through the release of nutrients and 
oxygen into the soil (Macek et al.  2000 ; Yousaf et al.  2010 ), 
in the same way, these bacteria may help plants to decrease 
the phytotoxicity of contaminants to an acceptable level 
which allows plants growth under adverse soil conditions 
(Germida et al.  2002 ; Yousaf et al.  2010 ). This mutualistic 
relationship is responsible for the increased degradation of 
contaminants in soils (Macek et al.  2000 ). 

 The rhizosphere is classically    defi ned as the area around 
the root and it includes approximately 1 mm around the root 
(Pilon-Smits  2005 ); this area is under the immediate infl u-
ence of the plant root. Plant roots release a number of exu-
dates such as sugars, amino acids, organic acids, vitamins, 
tannins, alkaloids, sterols, enzymes, and growth factors 
which can be used as a source of nutrients by the microfl ora 
in the rhizosphere. It is known that 20 % of photosynthesis- 
derived organic compounds are released into the soil through 
the plant root system (Pilon-Smits  2005 ). As a result, the 
microbial populations are 5- to 100-fold higher in the rhizo-
sphere than in the bulk soil (Pilon-Smits  2005 ). This 
enhancement in the microbial population and associated 
activities in the rhizosphere is defi ned as the ‘rhizosphere 
effect’ (Germida et al.  2002 ). Extensive plant root systems 
bring this large microbial population (including hydrocar-
bon degraders) as well as nutrients in contact with the con-
taminant (Germida et al.  2002 ). Petrogenic hydrocarbons 
exhibit strong hydrophobicity and tend to tightly adsorb to 
organic matter and become potentially unavailable for bio-
degradation. However, plant roots penetration into soil 
micropores results in exposure of the contaminant to 
increased microbial activity (Hutchinson et al.  2004 ). 

 Plant roots also can enhance the degradation rate of 
petrogenic hydrocarbons as a result of increasing of bio-
availability of the contaminants by producing biosurfac-
tants (i.e. a surfactant is synthetised by living organisms). 
Zhou et al. ( 2011 ) showed that solubilisation of polycyclic 
aromatic hydrocarbons by saponin (a plant-derived non-
ionic biosurfactant) was enhanced compared to selected, 
synthetic non- ionic surfactants (e.g. Tween-20); the molar 
solubilisation ratio of saponin for phenanthrene showed a 
three- to sixfold increase when compared with synthetic 
non-ionic surfactants. 

 Plant roots also release hydrocarbon analogues as part of 
plant exudates (e.g. phenolic compounds that can play a role 
as PAH analogues) which help to stimulate the growth of 
hydrocarbon-utilising microorganisms as they are used as 
primary substrates for the degradation of petroleum hydro-
carbons (Germida et al.  2002 ; Wenzel  2009 ). This is called 
cometabolic activity and defi ned as a process by which a 
compound that cannot be consumed for the growth and 
development of microorganisms can be modifi ed or 
degraded when another growth-supporting substrate is pres-
ent (Germida et al.  2002 ). Another activity of plants which 
may play a role in enhancing the rates of contaminant 
degradation is the release of degradative enzymes such as 
dehalogenases, nitroreductases, peroxidases, laccases, and 
nitrilases in root zones (Wenzel  2009 ). These enzymes can 
degrade specifi c contaminants; Boyajian and Carreira 
( 1997 ) concluded that plant nitroreductases and laccase 
enzymes contributed to the degradation of nitroaromatic 
contaminants (e.g. trinitrotoluene) in soil. In terms of hydro-
carbon degradation, fungal peroxidases and laccases are 
known to be capable of degrading PAHs in contaminated 
soils (Haritash and Kaushik  2009 ; Mougin  2002 ). In the 
same way, these enzymes, released by plant roots into soil, 
may also contribute to PAH degradation. However, our 
knowledge about the contribution of plant enzymes to the 
degradation of petrogenic hydrocarbons is limited. 

 In addition to these potential benefi ts, plant roots also 
improve the structure and aeration of contaminated soils by 
penetrating into soil micropores, reducing soil compaction 
and producing channels for air and water (Hutchinson et al. 
 2004 ). Roots not only transfer oxygen from above ground 
into the root zone but also oxygen may diffuse through old 
root channels, close by existing roots, leading to more exten-
sive diffusion of oxygen in to the soils (Issoufi  et al.  2006 ). 

 As well as these positive effects associated with the use of 
plants in remediation petrogenic hydrocarbons, there are a 
number of potential disadvantages. The presence of petro-
genic hydrocarbons may have a direct, adverse impact on the 
growth and development of plants, including those that pre-
vent or delay seed germination, destroy photosynthetic pig-
ments, decrease the length of the roots and shoots, and alter 
the plant root architecture (Peng et al.  2009 ). As a result of 
toxicity, phytoremediation of contaminants including hydro-
carbons will often only be feasible when the soil is pretreated 
to reduce phytotoxicity or a resistant plant species is selected 
(Frick et al.  1999 ). Not all plants therefore have the potential 
for use in the degradation of petrogenic hydrocarbons. In fact 
the number of plants reported in the literature to be capable of 
phytoremediation is limited (Table  26.6 ). Among the plants, 
grasses (e.g. Italian ryegrass) and legumes (e.g. alfalfa) are 
suitable candidates for the rhizoremediation of petrogenic 
hydrocarbons. While grasses have an intensive and fi brous 
root system, legumes can fi x the nitrogen as nitrogen is an 
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important substance in the mineralisation of hydrocarbons in 
contaminated soils (Adam and Duncan  2002 ).

   Screening plants for tolerance against petrogenic hydro-
carbons in soils represents the fi rst and basic prerequisite 
step in any rhizoremediation project (Gaskin et al.  2008 ). 
The strategies used for screening plants can be as follows: 

 One strategy could be screening new plants which have 
not previously been evaluated for their ability to grow in 
hydrocarbon-contaminated soils and subsequently using the 
resistant plants in bioremediation projects. The second strat-
egy could be the use of plants which have previously been 
identifi ed as suitable for bioremediation and have been rec-
ommended in the literature (Table  26.6 ). In considering the 
potential application of phytoremediation technology, condi-
tions such as soil moisture, soil pH, oxygen availability, and 
temperature are required to be studied; these conditions can 
be unique to a specifi c site or area. Screening tests are there-
fore required to fully assess the potential for phytoremedia-
tion in the specifi c case. The third strategy is the use of a 
combination of new (unevaluated) plants together with pre-
viously identifi ed plants in a preliminary screening project. 

 In addition to assessing the potential for phytoremedia-
tion using a range of different hydrocarbons, researchers 
have used both single (Chen and Banks  2004 ; Kim et al. 
 2006 ; Kirk et al.  2005 ; Peng et al.  2009 ) and mixed (Cheema 

et al.  2010 ; Gaskin and Bentham  2010 ; Phillips et al.  2006 ; 
Wei and Pan  2010 ) plant species. 

 The effectiveness of single vs. mixed species on the degra-
dation of petrogenic hydrocarbons is still open to question. 
For example, Gaskin and Bentham ( 2010 ) found that mixed 
planting with two Australian native grasses not only had no 
additional effect on TPH reduction but also led to a reduction 
in the hydrocarbon degradation process when compared to 
the remediation of hydrocarbons using single species. In con-
trast, Cheema et al. ( 2010 ) observed that degradation rates of 
PAHs were higher when mixed plant species were used 
(98.3–99.2 % degradation for phenanthrene and 88.1–95.7 % 
for pyrene) relative to single plants (90–98 % degradation for 
phenanthrene and 79.8–86 % for pyrene). However, in order 
to preserve site biodiversity in the natural contaminated envi-
ronments (e.g. mine sites), using mixed plant species might 
be desirable (Gaskin and Bentham  2010 ). 

 Banks et al. ( 2003 ) evaluated four genotypes of sorghum 
in crude oil-contaminated soil at three stages of plant growth 
including fi ve leaf, fl owering, and maturity. They showed 
that the degradation of TPH varied among different treat-
ments and plant stages. Overall, the results of this experi-
ment revealed that the levels of TPH reduced on average by 
69 % in soils amended with sorghum species while the 
reduction was only 35 % in unplanted controls. 

 Kim et al. ( 2006 ) used tall fescue plants for the reme-
diation of PAH-contaminated soil. The results showed that 
the presence of tall fescue enhanced the degradation rate 
of PAHs relative to control by 36 %. Also, the authors 
observed that the reduction rate of <4-ring PAHs, 4-ring 
PAHs, and >4-ring PAHs of plant treated soil was higher 
with an average of 78, 68, and 61 % at the end of the study 
compared with rates in the unplanted control (70, 54, and 
49 %, respectively). 

 Peng et al. ( 2009 ) evaluated the effect of an ornamental 
plant ( Mirabilis jalapa ) on the degradation of weathered 
petrogenic hydrocarbons (up to 2 % hydrocarbons) in a 
127-day greenhouse experiment. Their results showed that 
the TPH reduction rate in planted treatments (average of 
41.61–63.20 %) was signifi cantly higher than that found in 
the corresponding controls (19.75–37.92 %). The results also 
indicated that the maximum reduction rate was observed for 
the saturated hydrocarbon fraction compared with other com-
ponents of petrogenic contaminants. Gaskin and Bentham 
( 2010 ) conducted an experiment to evaluate the potential of 
Australian native grasses in the rhizodegradation of 1 % 
(w/w) aliphatic hydrocarbons (60:40 diesel/oil). They 
reported that TPH reduction in the presence of grasses varied 
between species; TPH levels in planted treatments were lower 
relative to the unplanted control treatment for all species after 
100 days. Their fi ndings demonstrated that lemon- scented 
grass ( Cymbopogon ambiguus ) not only had the greatest TPH 
reduction rate (88 %) but also exhibited the fastest TPH 
reduction rate among grasses (about 95 % after 2 weeks). 

    Table 26.6    Plant species that have been identifi ed as potential agents 
for the phytoremediation of petrogenic hydrocarbons   

 Plant name  Plant name 

 Alfalfa ( Medicago sativa ) 
 Arctared red fescue ( Festuca rubra ) 
 Bell rhodesgrass ( Chloris gayana ) 
 Bermuda grass ( Cynodon dactylon ) 
 Big bluestem ( Andropogon gerardi ) 
 Bird’s-foot trefoil ( Lotus 
corniculatus ) 
 Blue grama ( Bouteloua gracilis ) 
 Bush bean ( Phaseolus vulgaris ) 
 Canada wild-rye ( Elymus 
canadensis ) 
 Carrot ( Daucus carota ) 
 Common buffalograss ( Buchloe 
dactyloides ) 
 Duckweed ( Lemna gibba ) 
 Indiangrass ( Sorghastrum nutans ) 
 Italian ryegrass ( Lolium 
multifl orum ) 
 Lemon-scented grass 
( Cymbopogon ambiguus ) 
 Little bluestem ( Schizachyrium 
scoparius ) 
 Maize ( Zea mays ) 

 Meyer zoysiagrass ( Zoysia 
japonica ) 
 4 O’clock ( Mirabilis jalapa ) 
 Poplar trees ( Populus deltoides 
x nigra ) 
 Prairie buffalograss ( Buchloe 
dactyloides ) 
 Perennial ryegrass ( Lolium 
perenne ) 
 Side oats grama ( Bouteloua 
curtipendula ) 
 Sorghum ( Sorghum bicolor ) 
 Soybean ( Glycine max ) 
 Sudangrass ( Sorghum vulgare ) 
 Switchgrass ( Panicum virgatum ) 
 Tall fescue ( Festuca 
arundinacea)  
 Verde kleingrass ( Panicum 
coloratum ) 
 Weeping grass ( Microlaena 
stipoides ) 
 Western wheatgrass ( Agropyron 
smithii ) 
 Willow ( Salix Viminalis ) 
 Winter rye ( Secale cereale ) 
 Wheat ( Triticum aestivum ) 

  Banks et al.  2003 ; Chen and Banks  2004 ; Frick et al.  1999 ; Gaskin and 
Bentham  2010 ; Hultgren et al.  2009 ; Peng et al.  2009 ; Shahsavari et al. 
 2013c ; Yousaf et al.  2010   
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 However, the phytoremediation of hydrocarbon- con-
taminated soils is not always successful. For example, Ferro 
et al. ( 1994 ) reported that the presence of wheatgrass did not 
enhance the mineralisation rate of  14 C-phenanthrene relative 
to a control (unplanted) soil. Zhang et al. ( 2012 ) also tested a 
wetland plant ( Juncus subsecundus ) for its ability to phytore-
mediate a soil contaminated with cadmium and PAHs (phen-
anthrene and pyrene). They found that the dissipation of 
PAHs from soils was not signifi cantly affected after 70 days 
of plant growth. Interestingly, the authors also reported that 
the reduction rate of pyrene was signifi cantly reduced in the 
rhizosphere when compared to the unplanted control soil 
(43 % for planted soil and 63 % unplanted soil) while the 
reduction rate for phenanthrene was 97 % for both soils. An 
explanation for this phenomenon could be that hydrophobic 
compounds (e.g. pyrene) are fi rstly accumulated in the rhizo-
sphere, before being dissipated with time by the rhizodegra-
dation process (Liste and Alexander  2000 ; Zhang et al.  2012 ).  

26.6     Necrophytoremediation 
Vs. Phytoremediation 

 The toxicity related to hydrocarbon by-products towards 
plants as well as low organic matter content, poor structure, 
nutrient defi ciency, and water stress, conditions which tend to 
be associated with many contaminated soils, represent impor-
tant limitations to the application of phytoremediation (Wenzel 
 2009 ). One technology which possibly overcomes these 
issues is necrophytoremediation. Necrophytoremediation is 
defi ned as the use of dead plant biomass (e.g. hay and straw) 
for the remediation of contaminated soils. 

 Necrophytoremediation may have a number of advan-
tages over the application of phytoremediation (Table  26.7 ). 
For example, necrophytoremediation is toxic independent 
and can be applied to any level of contamination. In necro-
phytoremediation, there is no need to consider the length 
of the growing season, rainfall, and temperature patterns. 
In addition, hydrocarbon-contaminated soil is frequently co- 
contaminated with high concentrations of soluble salts and 

other metal toxicities which may limit the use of phytoreme-
diation (Hutchinson et al.  2004 ); in contrast, using necrophy-
toremediation may help to not only degrade the hydrocarbon 
but also enhance the desalination of contaminated soils 
(Zhang et al.  2008 ). The authors used wheat straw in combi-
nation with  Enterobacter cloacae  and  Cunninghamella 
echinulata  (hydrocarbonoclastic microorganisms) to reme-
diate a petroleum- and salt-contaminated soil.

   Their results from a fi eld study showed that the concentra-
tion of Na and Cl ions in remediated soil decreased from 
1,597 and 1,520 to 543 and 421 mg L −1 , respectively, in the 
top 25 cm of top soil. In addition, the amended treatment led 
to a decrease in TPH from 6,320 to 2,260 mg L −1  after 45 
days. There are only a few reports of research comparing the 
effi cacy, in terms of hydrocarbon degradation of phytoreme-
diation and necrophytoremediation. Kabay ( 2010 ) showed 
that a layer of sorghum straw enhanced the degradation of a 
broad range of PAHs (e.g. 2–4 rings PAHs) while the pres-
ence of the sorghum plant itself did not enhance the degrada-
tion rate relative to the control. The authors reported that the 
addition of the straw led to an increase in the naphthalene 
dioxygenase-bacterial population which led to an increased 
biodegradation rate of PAHs. In contrast, Hultgren et al. 
( 2009 ) showed that the presence of willow plants increased 
PAHs signifi cantly while the addition of wheat straw did not 
affect the degradation of PAHs.  

26.7     Effect of Necrophytoremediation 
on the Remediation of Petrogenic 
Hydrocarbons 

 A variety of plant residues such as hay, shaved wood, and 
straw (e.g. pea straw) have been used in a number of hydro-
carbon bioremediation studies (Adetutu et al.  2012 ; Hultgren 
et al.  2009 ; Lors et al.  2012 ; Morgan et al.  1993 ; Phillips 
et al.  2006 ; Rhykerd et al.  1999 ; Shahsavari et al.  2013b ); 
however, the outcomes yielded mixed results. In some 
instances, the presence of plant residues accelerated the 
bioremediation rate of hydrocarbons in contaminated soils; 

   Table 26.7    A comparison between phytoremediation and necrophytoremediation technologies   

 Condition  Phytoremediation  Necrophytoremediation 

 Toxicity  Dependent  Independent 
 Climate  Dependent  Less dependent 
 Soil conditions (e.g. pH, aeration, and structure)  Need to be considered  Do not require consideration 
 Soil salinity  Limits to use  Does not limit application 
 Hydrocarbons levels  Limited to hydrocarbon levels (high levels kill plants)  Not limited to hydrocarbon levels 
 Plant husbandry  Required  Not required 
 Screening stage  Required  Not required 
 Usage in biopile  Cannot be used  Can be used 
 Price  –  Cheaper than phytoremediation 

as plant residues are also waste 
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however, the mechanisms which bring about this are not well 
understood. Dead plant biomass consists largely of lignin, 
cellulose, and hemicellulose (Trigo and Ball  1994 ) and during 
the decay process, a substantial amount of degradation prod-
ucts from these biopolymers are released into the soil as 
either short chain sugars or small aromatic compounds. 
These degradation intermediates can be further degraded and 
can be used by microfl ora (e.g. hydrocarbon-utilising micro-
organisms) as nutrients available for growth and activity. 
In addition, saprophytic fungi (such as white rot fungi) are 
commonly associated with decaying lignocellulosic material 
where they play a vital role in the degradation of lignin; this 
is mediated through enzymes such as lignin peroxidase, 
manganese peroxidase, and laccase (Dinis et al.  2009 ; 
Hatakka  1994 ). It is well known that these enzymes also 
degrade PAHs (Haritash and Kaushik  2009 ; Mougin  2002 ). 
It is important to note that ligninolytic enzymes from fungi 
may play an important role in the degradation of highly 
recalcitrant PAHs (with fi ve or more aromatic rings); bacte-
ria are often unable to degrade these PAHs due to low bio-
availability (Baldrian  2008 ; Field et al.  1992 ). Therefore, the 
addition of plant residues into the soil may accelerate the 
degradation of highly recalcitrant PAHs. 

 Plant residues also have their own associated microfl ora 
and when added to a soil lead to an increase in both the popu-
lation and the activity of the soil microfl ora. This results in 
enhancement of the potential of microbes to remediate petro-
genic hydrocarbons. 

 Aerobic conditions are an important factor in terms of 
maximising the degradation of petrogenic hydrocarbons in 
contaminated soils (Rhykerd et al.  1999 ). The oxygen concen-
tration in soil is affected by microbial activity, soil structure, 
water content, and depth. It is known that the bioremediation 
of hydrocarbons in soils is signifi cantly reduced when the 
amount of oxygen in soils is low (Rhykerd et al.  1999 ). Plant 
residues have low density and as a consequence when mixed 
with soils result in a reduced soil bulk density. Therefore, 
increased porosity, oxygen diffusion may result, which 
together with the formation of more water stable aggregates 
may stimulate microbial activity and possibly enhance the 
degradation of hydrocarbons (Rhykerd et al.  1999 ). 

 There are a number of published examples of the applica-
tion of necrophytoremediation. Morgan et al. ( 1993 ) reported 
that the amendment of contaminated soil with wheat straw, hay, 
wood chips, and pine bark together with the inoculation of 
white rot fungi enhanced the remediation of benzo(a)pyrene; 
wheat straw showed the greatest contribution to the minerali-
sation. They concluded that successful inoculation and biodeg-
radation of xenobiotics needs supplementary carbon sources. 

 Rhykerd et al. ( 1999 ) evaluated tillage, aeration, and the 
addition of bulking agents, including chopped Bermuda 
grass hay, sawdust, and vermiculite on the bioremediation of 
hydrocarbon (10 % w/w) contaminated soil. The results 
showed that amended soils had a more rapid reduction in 

TPH compared to the unamended control. The fi ndings also 
indicated that the degradation rate of TPH was highest in the 
tillage-hay and tillage-vermiculite treatments (90 % degra-
dation) when compared with unamended static treatment 
(77 % degradation) after 30 weeks. 

 Wu et al. ( 2011 ) evaluated the bioaugmentation of 
petroleum- contaminated soil using  Enterobacter cloacae  
alone or in the presence of wheat straw (5 % w/w) .  The 
authors reported that the addition of wheat straw to a bioaug-
mentation microcosm resulted in a 56 % reduction in TPH 
compared with a 25 and 44 % reduction in TPH in soils 
which were unamended or only bioaugmented, respectively, 
after 56 days of incubation. It was concluded that the addi-
tion of wheat straw increased the proliferation of  E. cloacae  
and produced a signifi cantly enriched community. 

 Shahsavari et al. ( 2013b ) recently investigated the effect of 
four types of plant residues including alfalfa hay, pea straw, 
wheat straw, and a combination of plant residues (containing 
20 % hay, 37.5 % pea straw, 37.5 % wheat straw, and 5 % 
gypsum)    on the bioremediation of an aliphatic hydrocarbon- 
contaminated soil. They mixed or covered the soil with dead 
plant biomass. The results of this necrophytoremediation 
study showed that all treatments amended with plant residues 
enhanced the TPH degradation signifi cantly relative to control 
soil; the soil mixed with pea straw exhibited the highest effect 
and led to reduction in TPH of 83 % relative to the control 
(53 % reduction). The result also showed that the presence of 
plant residues led to an increase of hydrocarbon- utilising 
microorganisms relative to the control; a 12-fold increase in 
the hydrocarbonoclastic microbial population was observed 
when pea straw was mixed with contaminated soil. 

 In another report by (Shahsavari et al.  2013a ), the effect 
of necrophytoremediation using pea and wheat straws on the 
remediation of phenanthrene and pyrene alone or in combi-
nation was investigated. The results showed that the presence 
of straw accelerated PAH degradation relative to their corre-
sponding control. For example, pyrene-contaminated soil 
mixed with pea straw led to a 70 % pyrene reduction while 
the reduction in corresponding control was only 15 %. Again, 
the authors reported that the number of hydrocarbon- utilising 
microorganisms in contaminated soil amended with straw 
was higher than corresponding control. For example, in 
pyrene-contaminated soil, the abundance of PAH-utilising 
microorganisms in the soil amended with pea straw was 
13-fold higher than in the corresponding control soil. 

 Like other bioremediation methods, the application of 
necrophytoremediation has not always been successful 
(Adetutu et al.  2012 ; Callaham et al.  2002 ; Hultgren et al. 
 2009 ; Phillips et al.  2006 ). For example, in a report by 
Hultgren et al. ( 2009 ), the degradation of PAHs in an aged 
creosote-contaminated soil in the presence of willow plants, 
wheat straw, and Triton X-100 (surfactant) was investigated 
in a greenhouse experiment. The results from this study dem-
onstrated that the addition of wheat straw showed no positive 
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effect on the degradation of PAHs compared with the con-
trol. Callaham et al. ( 2002 ) also found that wheat straw did 
not affect the degradation of TPH relative to control in the 
bioremediation of hydrocarbon-contaminated soils; the level 
of TPH in control and soil amended with wheat straw was 32.7 
and 32.3 g kg −1  (dry soil), respectively. Phillips et al. ( 2006 ) 
applied straw as an amendment in the phytoremediation of 
fl are pit soil (the authors did not mention the type of straw). 
They reported that the presence of amendments resulted in 
inhibition of hydrocarbon degradation in unplanted treatments. 
However, hydrocarbon degradation showed an increase 
when phytoremediation with different plants was applied.  

26.8     Hydrocarbon-Utilising 
Microorganisms 

 Hydrocarbon-utilising microorganisms, the main agents of 
remediation of hydrocarbons during phytoremediation and 
necrophytoremediation, are defi ned as microbes (mostly 

bacteria and fungi) that are capable of using petrogenic 
hydrocarbons as a source of energy. Representatives of many 
microbial genera have been reported to contain hydrocar-
bonoclastic strains, many of which have been isolated from 
either rhizosphere or bulk soils (Table  26.8 ). Common gen-
era include  Pseudomonas, Arthrobacter ,  Alcaligenes , 
 Corynebacterium ,  Flavobacterium ,  Achromobacter ,  Micro-
coccus ,  Nocardia , and  Mycobacterium  (Germida et al.  2002 ). 
Fungi such as  Aspergillus ochraceus ,  Cunninghamella ele-
gans ,  Phan erochaete chrysosporium ,  Saccharomyces cerevi-
siae , and  Syncephalastrum racemosum  have also been 
reported to exhibit hydrocarbonoclastic activity (Germida 
et al.  2002 ).

   There are a number of reports which showed that the 
‘rhizosphere effect’ led to increased microbial population of 
these hydrocarbon degraders (Gaskin et al.  2008 ; Kim et al. 
 2006 ; Kirk et al.  2005 ). It has also been shown that the popu-
lation of  Pseudomonas, Arthrobacter , and  Achromobacter  
bacteria was found to be higher in rhizosphere soil than bulk 
soil (as reviewed by Frick et al.  1999 ).  

   Table 26.8       Bacterial and fungal genera isolated from bulk or rhizosphere soil that have been shown to be 
hydrocarbonoclastic (Germida et al.  2002 )   

 Bacterial name  Fungal name 

  Achromobacter
Acinetobacter
Alcaligenes
Arthrobacter
Bacillus  
  Brevibacterium
Chromobacterium
Corynebacterium
Cytophaga
Erwinia  
  Flavobacterium  
  Micrococcus
Mycobacterium
Norcardia
Proteus  
  Pseudomonas
Rhodococcus
Sarcina
Serratia
Spirillum  
  Streptomyces
Vibrio  
  Xanthomonas  

  Acremonium
Aspergillus
Aureobasidium
Beauveria
Botrytis
Candida  
  Chrysosporium
Cladosporium
Cochliobolus
Cunninghamella
Cylindrocarpon
Debaryomyces
Fusarium  
  Geotrichum
Gliocladium
Graphium
Humicola  
  Monilia  
  Mortierella  
  Paecilomyces  
  Penicillium  
  Phoma  
  Phanerochaete  
  Rhodotorula  
  Saccharomyces  
  Scolecobasidium  
  Sporobolomyces  
  Sporotrichum  
  Spicaria  
  Syncephalastrum  
  Tolypocladium  
  Torulopsis  
  Trichoderma  
  Verticillium  
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  Fig. 26.2    The main  n -alkanes degradation pathways (adapted from Van Beilen et al.  2003 )       

26.9     Mechanisms of Microbial 
Degradation of Hydrocarbons 

 The mechanisms of degradation of hydrocarbon by microor-
ganisms are varied, but one critical division of pathways is 
based around the oxic versus anoxic nature of the degrada-
tion. Under oxic (aerobic) conditions, the fi rst step is incorpo-
ration of oxygen into the hydrocarbons; this is mediated 
through a broad range of monooxygenases and dioxygenases 
(hydroxylase) enzymes. In the degradation of n-alkanes (ali-
phatic hydrocarbons), degradation fi rst occurs by oxidation of 
a terminal methyl group, resulting in the formation of a pri-
mary alcohol which is further oxidised to the corresponding 
aldehyde and fi nally transformed into a fatty acid (Fig.  26.2 ). 
Fatty acids are conjugated to CoA and enter the β-oxidation 
pathway to produce acetyl-CoA (Rojo  2010 ). Subterminal 
oxidation has also been detected in the degradation of longer 
chained alkanes (Fig.  26.2 ). Here, the secondary alcohols are 
converted to the corresponding ketone which is oxidised by a 
Baeyer–Villiger monooxygenase to an ester. Afterwards, the 
ester is hydrolysed with an esterase to produce an alcohol and 
a fatty acid (Fig.  26.2 ) (Van Beilen et al.  2003 ).  

 A variety of aerobic bacteria such as  Pseudomonas  and 
 Rhodococcus  start to oxidise benzene ring PAHs with the con-

tributions of dioxygenase enzymes to produce  cis- dihydrodiols . 
These dihydrodiols are subjected to dehydrogenases producing 
dihydroxylated intermediates; these intermediate chemicals 
are further metabolised via catechols to carbon dioxide and 
water (Fig.  26.3 ) (Bamforth and Singleton  2005 ). In con-
trast, a few bacteria    such as  Mycobacterium  can oxidise 
PAHs through the cytochrome P450 monooxygenase enzyme 
to form  trans -dihydrodiols (Fig.  26.3 ) (Bamforth and 
Singleton  2005 ). Fungi deal with PAHs using two pathways; 
while non-ligninolytic fungi used the P450 monooxygenase 
pathway, white-rot fungi (a ligninolytic fungus) degrade 
PAHs using ligninolytic enzymes (Fig.  26.3 ).  

 These ligninolytic enzymes include lignin peroxidase, 
laccase, and manganese peroxidase; these enzymes are 
involved in the oxidation of lignin in wood and other organic 
compounds (Bamforth and Singleton  2005 ). Under anoxic 
(anaerobic) conditions anaerobic degradation of hydro-
carbons can also occur. Sulphate-reducing, denitrifying, and 
methanogenic bacterial communities all contribute to 
anaerobic degradation (Haritash and Kaushik  2009 ; 
Wentzel et al.  2007 ). However, although n-alkanes and 
PAHs (only ≤3 rings, there is no evidence the anaerobic deg-
radation of >3 ring PAHs) can be degraded anaerobically, the 
process is slow and our knowledge is limited (see Haritash 
and Kaushik  2009  and Wentzel et al.  2007  for more details).  
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26.10     Conclusion 

 This review outlined the use of phytoremediation and necro-
phytoremediation to remediate the hydrocarbon- contaminated 
soils. In terms of hydrocarbon phytoremediation, plant roots 
(rhizosphere) mainly contribute to increased rate of degrada-
tion by increasing the microbial activities. However, the toxic 
nature of many hydrocarbon compounds (especially when the 
concentration of hydrocarbons in contaminated soil is too 
high) or unfavourable growth conditions (e.g. temperature, 
soil pH, and salinity) may lead to failure in the application of 
this technology. In this case, necrophytoremediation is an 
alternative method to remediate hydrocarbon-contaminated 
soils as it is a toxic-independent method and less affected by 
environmental factors.     
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27.1  Physicochemical Characteristics 
of Industrial Wastewater

The aim of biological treatment is to oxidize the organic 

matter using microorganisms to reduce the biochemical 

oxygen demand (BOD). The reaction usually takes place in a 

reactor between microorganisms and wastewater with the 

input of dissolved oxygen in aqueous phase. The main prod-

ucts are carbon dioxide, water, and new cells (Duan and 

Gregory 2003; Puigdomenech 1997). The actual wastewater 

used in this study contains SO4
−2, Cl−, and CO3

−2 with a con-

centration of about 0.01 M of each species and the raw pH is 

around 8 to 9. In the electrocoagulation treatment the col-

loidal matter is removed by the floc formation associated 

with the aqueous solution reaction of the anodic dissolution 

of Al(III) with the cathodic production of OH− which pro-

duces Al(OH)3, as observed  in Fig. 27.3. However, when 

industrial wastewater contains biorefractory compounds, the 

removal efficiencies are quite low. Therefore, coupled meth-

ods involving activated sludge have been used for enhancing 

pollutant removal efficiency in industrial wastewater (Duan 

and Gregory 2003; Benitez et al. 2000).

Industrial effluents that contain dyes and produce colored 

wastewater are highly toxic even after conventional wastewater 

treatments. Wastewater with highly toxic compounds, especially 

organic biorefractory compounds, leads to the partial inhibi-

tion of biodegradation, as microorganisms are sensitive to 

these pollutants. As biological treatments are insufficient to 

remove the color and meet current regulations, the applica-

tion of special treatments is required (Villegas et al. 1999). 

The application of physicochemical pretreatments to indus-

trial wastewater improves the water quality while enhancing 

the biodegradability (Wang et al. 2002).

It has been observed that conventional treatment pro-

cesses which operate with physicochemical (coagulation- 

flocculation) and biological (aerobic and anaerobic) systems 

are not entirely efficient in the removal of industrial con-

taminants containing refractory organic compounds, which 

hinder or inhibit such treatments. As a result, the physico-

chemical parameters for environmental discharges are not 

always met (Barrera et al. 2005).

27.2  Electrocoagulation Treatment

Electrochemical methods have been used as coagulation 

processes to remove color and cloudiness from turbid indus-

trial wastewater. In this application, the electrochemical 

process generated numerous flocculates, achieving high effi-

ciency in clearing the wastewater (Ribeiro et al. 2000; Can 

et al. 2003). Electrochemical treatment techniques have 

attracted a great deal of attention because of their versatility 

and environmental compatibility, which makes the treat-

ments of liquids, gases, and solids possible. In fact, the main 

reagent is the electron, which is a “clean reagent” (Roa et al. 

2007; Janssen and Koene 2002).

Electrochemical reactions take place at the anode and the 

cathode of an electrolytic cell when an external direct current 

voltage is applied. The term electrocoagulation involves the 

in situ generation of coagulants by electrolytic oxidation of 

an appropriate sacrificial anode (iron or aluminum). The 

main stages involved in the electrocoagulation process using 

aluminum anodes have been previously identified (Can et al. 
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2006; Holt et al. 2002). The anodic process involves the 

oxidative dissolution of aluminum into aqueous solution as 

reaction (27.1) indicates and the reductive dissociation of 

water as reaction (27.2) shows

 Al Al e® ++ -3 3  (27.1)

 
2 4 42 2H O O H eg® + +( )

+ -
 (27.2)

It has been reported that the species present during the 

electrocoagulation depend on the source of wastewater, as in 

the case of industrial wastewater with a high content of elec-

trolytes such as sulfates, chlorides, and carbonates.

Residual water used in this study contains SO4
−2, Cl−, and 

CO3
−2 with a concentration of about 0.01 M of each of these 

species. In the electrocoagulation treatment the colloids are 

eliminated by floc formation associated with Al(OH)3 since 

the regular wastewater pH is between 8 and 9; the most prob-

able chemical species formation in the aqueous system is 

shown in Fig. 27.1.

In the case of iron or steel anodes, two mechanisms for 

the production of the metal hydroxide have been proposed 

(Rajeshwar and Ibañes 1997). In Mechanism 1, common in 

high-pH media where oxygen can be involved for further 

Fe2+ oxidation in Fe3+,

 
4 4 82Fe Fe es aq( )

+
( )

-® +  (27.3)

In Mechanism 2, in lower-pH media, there is no further 

oxidation:

 
Fe Fe es aq( )

+
( )

-® +2 2 .  (27.4)

It is interesting that in electrocoagulation papers little atten-

tion has been paid on anodic reactions. Regardless of whether 

iron or aluminum is used, the main reaction that is reported is

 
2 2 22 2H O e H OHg aq+ ® +-

( )
-
( )  (27.5)

However, this reaction has three important implications 

on the electrocoagulation technology: (a) provides hydroxyl 

ions which then react in bulk solution with iron or aluminum 

cations to form insoluble species; (b) hydrogen gas is pro-

duced which contributes in the destabilization of colloidal 

particles leading to flocculation; and (c) contribution to elec-

troflotation which is a simple process that floats pollutants 

(or other substances) by their adhesion onto tiny bubbles 

formed by the hydrogen evolution (Casqueira et al. 2006).

Figure 27.2 shows a diagram of species distribution for 

Fe(II) indicating that at pH of 8, there is the presence of 

Fe(OH)2 at 90 % and FeCO3 with 10 %.

If there is sufficient water in oxygen, then the Fe(II) is 

oxidized to Fe(III) and the flocs thus formed during electro-

coagulation can be associated with Fe(OH)3 to 95 % and 

Fe(OH)2.7 Cl0.3 according to species distribution diagram of 

Fe(III) in Fig. 27.3.

27.3  Plant Used in the Phytoremediation 
Experiments

The selection of the plant was based on the local availability; 

the relative abundance of this plant in the region makes it easy 

to get them. The choice was also made by the pollutant remo-

tion capacity and your tolerance to exposure at contaminants.

Fig. 27.1 Species distribution 

diagram of Al 0.05 M in an 

aqueous medium with SO4
−2, Cl−, 

and CO3
−2 0.01 M each species 

(Puigdomenech 1997)
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Fig. 27.2 Species distribution 

diagram of Fe(II) 0.074 M in an 

aqueous medium with SO4
−2, Cl−, 

and CO3
−2 0.01 M each species 

(Puigdomenech 1997)

Fig. 27.3 Species distribution 

diagram of Fe(III) 0.074 M in an 

aqueous medium with SO4
−2, Cl−, 

and CO3
−2 0.01 M each species 

(Puigdomenech 1997)

Myriophyllum aquaticum Vell. (Verdc) is a cosmopolite 

plant; it is a submersed macrophyte with emergent leaves, of 

easy propagation, and relatively fast growing. The species 

parrot feather has few roots, and it does not need to be rooted 

in a substrate (see Fig. 27.4). It is a native species of South 

America and its habitat is in lakes, ponds, streams, and 

canals (Susarla et al. 1999; Wersal 2010).

In previous studies, Myriophyllum aquaticum Vell. 

(Verdc) has shown a great potential to remove contaminants 

such as 2,4,6-trinitrotoluene (TNT), dichlorodiphenyltri-

chloroethane (DDT), perchlorate, pesticides, and antibiotics 

from water solutions and industrial wastewater (Susarla et al. 

1999; Bhadra et al. 1999; Gao et al. 2000a, b; Turgut and 

Fomin 2002; Gujarathi et al. 2005; Turgut 2005).

27.4  Uptake Mechanism of Metal  
and Pollutant

Phytoremediation is used for the removal of various contam-

inants such as metals, pesticides, explosives, and hydrocar-

bons from soil and water; also they decrease the mobilization 

of the pollutants through the wind and water (EPA 2001). 

The main processes that are generated for bioremediation in 
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plants are phytostabilization, rhizofiltration, phytoextraction, 

rhizodegradation, phytotransformation, and phytovolatiliza-

tion (EPA 1999; Schnoor 1997).

Hall (2002) has described that the metal detoxification 

mechanism follows four major steps:

 (a) Metal binding to the cell wall

 (b) Reduced uptake or efflux pumping of metals at the 

plasma membrane

 (c) Chelation of the metal in the cytosol by various ligands, 

such as phytochelatins, metallothioneins, and metal- 

binding proteins

 (d) The compartmentation of metals in the vacuole by 

tonoplast- located transporters

Plants have evolved mechanisms to resist and survive to 

exposure to high concentrations of potentially toxic ele-

ments, as a result of an evolutionary process (Hall 2002). 

Some mechanisms that regulate the tolerance of the exposure 

to certain compounds have not been completely understood; 

however, the most studied are related to a) the metal bioac-

cumulation (via chelating or sequestration) in which the 

ligands metallothioneins and phytochelatins play an impor-

tant role, b) antioxidant enzymatic using enzymes like super-

oxide dismutase, catalase, ascorbate peroxidase, guaiacol 

peroxidase, c) nonenzymatic antioxidant using glutathione, 

carotenoids, ascorbic acid systems, and d) homeostasis in 

the diffusion of cations, and the bacteria in the rhizosphere 

(Li et al. 2007; Márquez-García et al. 2012). Between the 

mechanisms for the detoxification of organic compounds, we 

can quote enzymatic oxidation, conjugation, reduction, or 

hydrolysis of organic pollutants. The biotransformation 

products are stored into vacuoles; they are distributed within 

the plant or are retained in insoluble cellular structures such 

as lignin (Gao et al. 2000b; Garcinuño et al. 2006).

Ederli et al. (2004) mentioned that the roots of Phragmites 
australis species were subjected to various concentrations of 

cadmium to prove the removal efficiency of the artificial 

aquatic system test, obtaining that the roots did not have 

structural changes at a concentration of 100 mM in 21 days. 

Amaya et al. (2006) reported that Typha latifolia has a 

high removal efficiency of methyl parathion in water and 

sediment samples, being tolerant to concentrations up to 

200 mg L−1 of the pesticide without significant changes in 

chlorophyll with 198.1 ± 1.79 g of biomass.

Torres et al. (2007) did a preliminary study using Pistia 
stratiotes for removal of divalent copper, which showed that 

in an aqueous solution having pH of 5 at a concentration of 

1 mg L−1, the plant survives for 2 days and is capable to 

uptake 70 % of dissolved copper.

Olguín et al. (2007) compared the NH4
+ removal (initial 

concentration of 35 mg L−1 ) using Salvinia minima and 

Spirodela polyrrhiza, they found that Spirodela polyrrhiza 

was more efficient. Romero (2007) conducted a study to 

remove chemical oxygen demand (COD) from municipal 

wastewater using two species, Phragmites australis and 

Typha domingensis, in a wetland system; it found that the 

COD removal efficiency was about 70 % in systems with the 

two species in a period of 5 days.

Carvalho et al. (2008) and Dordio et al. (2011) used Typha 

spp. for ibuprofen removal from wastewater. Dordion et al. 

(2011) observed a 60 % removal at 24 h and 99 % after 21 

days of the plant treatment.

27.5  Electrocoagulation-Phytoremediation 
Coupled System

The electrocoagulation system used for the treatment of 

industrial water had good efficiency, but if the wastewater 

has a high concentration of refractory compounds, it is very 

difficult to remove totally the contaminants; therefore, it is 

Fig. 27.4 Myriophyllum aquaticum Vell. (Verdc) (a) natural habitat, (b) laboratory culture
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necessary to use polishing treatments like phytoremediation, 

hence the relevance of hybrid system development to increase 

the efficiency remotion.

We worked with a hybrid system of electrocoagulation 

with iron and aluminum electrodes and phytoremediation 

using Myriophyllum aquaticum Vell. (Verdc) for the treat-

ment of the wastewater, which comes from 150 industrial 

discharges of different types. Before the phytoremediation 

treatment, we diluted the electrocoagulated wastewater 

because the plants were tolerant at these concentrations of 

residual contaminants.

The wastewater physicochemical characteristics that were 

evaluated for the remotion are shown in Table 27.1 and 

Fig. 27.5, in which it is observed that the industrial wastewater 

contains a high amount of COD, coloration, and turbidity.

Table 27.2 shows the pollutant removal efficiency for the 

coupled techniques, electrocoagulation using aluminum elec-

trodes and phytoremediation, for reducing the concentration 

of COD, color, and turbidity of industrial wastewater.

We observed that this process was more efficient than the 

coupled techniques, electrocoagulation using iron elec-

trodes; it was obtained by a remotion of COD, color, and 

turbidity of 92.3, 94.9, and 94.7 %, respectively.

27.6  Tolerance of the Plants 
to the Electrocoagulated Wastewater

The evaluation of the tolerance of plants to exposure to resid-

ual contaminants in the electrocoagulated wastewater with 

iron electrodes at different concentrations was made by the 

determination, before and after the exposition time, the 

weight and longitude of the plants, chlorophyll content, and 

oxidative stress biomarkers (SOD, CAT activity, and lipid 

peroxidation). The results indicate that the toxicity of elec-

trocoagulated wastewater to M. aquaticum was low when the 

plant was exposed to the dilution of 25–50 % during 15 days. 

For the electrocoagulation with iron electrode treatment, no 

significant differences were observed in weight and longi-

tude. The basal average of total chlorophyll was 

40.4 ± 3.89 mg mL−1 and chlorophyll a/b ratio was 2.84 ± 0.24.

After 15 days of contact with the wastewater, there were 

no significant differences in the total chlorophyll content or 

the chlorophyll a/b ratio between the different concentra-

tions. Research indicates that the chlorophyll end point, 

weight, and longitude are an important indication on the 

health status of the plants; the levels observed in this research 

Table 27.1 Removal efficiency of COD, color, and turbidity for  

coupled techniques, electrocoagulation with iron electrodes and phy-

toremediation from industrial wastewater

Technique COD (mg L−1) Color/PtCo (U) Turbidity (NFU)

Raw wastewater 1,680 2,489 168

Electrocoagulation 974 273 9

Phytoremediation 730 204 5

Fig. 27.5 Image of industrial (a) 

raw wastewater, (b) after treatment

Table 27.2 Removal efficiency of COD, color, and turbidity for cou-

pled techniques, electrocoagulation with aluminum electrodes and phy-

toremediation from industrial wastewater

Technique/value COD (mg L−1) Color/PtCo (U) Turbidity (NFU)

Raw wastewater 1,921.04 2,036 79.67

Electrocoagulation 1,007.33 501 16.33

Phytoremediation 147 103 4.2

27 An Integrated Electrochemical-Phytoremediation Process for the Treatment of Industrial Wastewater
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correspond to a good health level; changes in total chloro-

phyll or chlorophyll a/b ratio may directly affect CO2 uptake 

during photosynthesis (Beatriz et al. 2008; Delgado 1993).

SOD, as an antioxidant enzyme, acts as the first line of 

defense against ROS damage, two superoxide dismutase radi-

cals to H2O2 and O2, allowing that levels of superoxide radicals 

to remain low in the cell, combating oxidative stress in plants 

(Wang et al. 2008; Dordio et al. 2009; Mishra et al. 2006).

Exposure of plants treated with concentrations of electro-

coagulated water of 13 and 22 % did not cause significant 

alterations of the activity of SOD; however, the concentra-

tion of 16 and 19 % caused a significant increase; this obser-

vation may be due to the novel synthesis of enzymatic 

proteins by induction that suffers from being in contact with 

pollutants in the wastewater (Allen et al. 1997). The reduc-

tion of activity appeared higher (25 %) and is probably due 

to increased levels of H2O2 and its derivative ROS, causing 

damage to the enzyme system (Gallego et al. 1996). It is also 

considered that because of higher concentrations or a long- 

term exposure to any pollutant, SOD activity may be sup-

pressed; further, efficiency of SOD is relatively higher for 

short periods of stress (Sánchez et al. 2004). The results 

obtained in this study are similar to those reported by Wang 

et al. (2008), who observed an increase in SOD activity in 

the macrophyte Vallisneria natans, when exposed to concen-

trations of 0.4 and 1.2 mM NH4Cl, but the activity is reduced 

at higher concentrations (2, 2.8, 2 mM NH4Cl).

Xu et al. (2010) found that SOD activity in Phragmites 
australis increases when exposed to water with a chemi-

cal oxygen demand (COD) of 200 mg L−1 and decreases at 

400 and 800 mg L−1. In another study with Typha angusti-
folia, they observed the same behavior, SOD activity 

increased at concentrations of 600 mg L−1 of COD, but 

decreases to 800 mg L−1.

CAT is another important antioxidative enzyme, present 

in the peroxisomes and mitochondria of the cells, which 

degrades H2O2 to water and molecular oxygen that catalyzed 

reaction by SOD. CAT activity increase could be explained 

by a plant adaptive mechanism to maintain the H2O2 level in 

a steady state within the cells (Wang et al. 2008; Dordio et al. 

2009; Mishra et al. 2006).

In this research, the enzymatic activity increased signifi-

cantly to a concentration of 25 % of electrocoagulated water 

(Fig. 27.5). As noted, this residual concentration of contami-

nants was sufficient to produce oxidative stress in plant tis-

sues, so that with the increase of enzyme activity, the plant 

tries to maintain its homeostasis.

The increase in catalase activity has been observed in 

several studies of aquatic plants exposed to various con-

taminants. In Myriophyllum mattogrossense there is an 

increased CAT activity when exposed to concentrations of 

20 and 30 mg L−1 for ammonia (N), since this compound 

triggers the production of peroxide and therefore oxida-

tive stress (Nimptsch and Pflugmacher 2007). In 

Vallisneria natans the CAT activity increased at concen-

trations of 1.2, 2, and 2.8 mM NH4Cl (Wang et al. 2008). 

Typha spp. presented an increase of CAT when exposed to 

concentrations of 1 and 2 mg L−1 clofibric acid (Dordio 

et al. 2009)as well as when exposed to water contami-

nated with ibuprofen at concentrations of 0.5, 1, and 

2 mg L−1 (Dordio et al. 2011).

Active oxygen radicals may induce chain-like peroxida-

tion of unsaturated fatty acids in the membranes leading to 

formation of lipid peroxidation products like malondialde-

hyde (MDA). The effect of the water electrocoagulated tox-

icity on lipid peroxidation of M. aquaticum was determined 

by TBARS (thiobarbituric acid reactive substances). 

TBARS formation in plant exposed to environmental stress 

conditions is an indicator of free radical formation in the 

tissues and may be used as an index of lipid peroxidation 

(Singh et al. 2006).

The results obtained in this study showed that there is no 

significant difference when compared to control in lipid per-

oxidation levels in water electrocoagulated to concentrations 

until 19 %. This indicates a possible tolerance of M. aquati-
cum to exposure of residual pollutants in water pretreated 

with electrocoagulation.

27.7  Conclusions

The system of electrocoagulation with aluminum electrodes 

and phytoremediation used for the treatment of industrial 

wastewater had good remotion efficiency (COD 92.3 %, 

color 94.9 %, and turbidity 94.7 %). The plants were tolerant 

only at dilution of 19 % (185.06 COD) of pollutant residuals. 

The coupled techniques, electrocoagulation with iron elec-

trodes and phytoremediation, had a lower efficiency of remo-

tion COD (56.5 %), color (91.8 %), and turbidity (97 %) 

from industrial wastewater and were more toxic for the 

plants. This work finds that it is necessary to use polishing 

treatments like phytoremediation, hence the relevance of 

hybrid system development to increase the efficiency 

remotion.
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28.1             Introduction 

    Phytoremediation is a cluster of technologies where plant- 
based accumulation and stabilization activities are utilized 
for remediation of environmental pollution and restoration of 
contaminated soil (Cunningham et al.  1997 ; Flathman and 
Lanza  1998 ). Decontamination of metal polluted soil through 
metal hyperaccumulating plants has gained increased atten-
tion these days due to their capability for accumulating heavy 
metals and having application in decontamination of metal 
polluted soil. Phytoremediation acts as an integrated multi-
disciplinary approach through which cleanup of contami-
nated soils can be achieved via combination of disciplines of 
plant physiology, soil microbiology, and soil chemistry 
(Cunningham and Ow  1996 ). The primary objective of phy-
toremediation becomes reduction and removal of toxic met-
als from the soil and restoration of soil to its natural state 
(Reeves and Baker  2000 ). The current works provide an 
informational insight into these technologies where eco- 
friendly techniques are implied to phytoremediation process, 
and the hyperaccumulating capability of various weeds 
( Amaranthus  species,  Cannabis sativa ,  Solanum nigrum , 
and  Rorippa globosa ) has been compared having enough 
capability for heavy metal accumulation. Weeds are suitable 
for this purpose because of their inherent resistant capability 
and their unsuitability for fodder purpose. Metals are required 
in different metabolic processes in all organisms with varied 
level of functions; however, since certain metals are toxic, 

plants have evolved systems for regulation, uptake, and 
distribution of metals. Uptake of metals occurs primarily 
through root system of plants; hence this becomes the 
primary site for regulation of accumulation. In extreme con-
ditions, where metal concentration becomes very high in 
soil; leaves, roots and shoots display a unilateral effort by 
accumulating metal more than required by their physiology. 
Different studies have demonstrated that metal concentration 
in leaves is >0.1 mg/g dry weight for cadmium metal and 
>1 mg/g dry weight for lead, copper and nickel (Reeves and 
Baker  2000 ). Chemical and microbial entities of contami-
nated and distressed soil by heavy metals can be cleaned up 
and maintained by these accumulatory activities of such 
plants (Cunningham and Ow  1996 ). Tissues of higher plants 
accumulate a very high concentration of metals without 
showing toxicity (Klassen et al.  2000 ; Bennett et al.  2003 ). 

 Phytoremediation comprises various mechanisms: 
Phytoextraction, Phytovolatization, Rhizofi ltration, and 
Phytodegradation (Fig.  28.1 ). Phytoextraction is a mechanism 
in which plant roots absorb contaminated groundwater and 
then transport it from roots to various parts of the plant (Salt 
et al.  1998 ). The cost involved in the phytoextraction as com-
pared with the conventional soil remediation technique is ten-
fold less per hectare. It means phytoextraction is a cost- effective 
technique (Salt et al.  1995 ). The development of phytoextrac-
tion technique comes from the discovery of a variety of wild 
weeds, often endemic to naturally mineralized soils that con-
centrate high amount of essential and nonessential heavy met-
als.  Rorippa globosa  shows Cd-hyperaccumulation up to 
certain extent as shown in the work of Sun et al. ( 2007 ).  

 Rhizofi ltration is a cost-competitive technology in the treat-
ment of surface water or groundwater containing low, but sig-
nifi cant concentrations of heavy metals such as Cr, Pb and Zn 
(   Ensley  2000 ). Rhizofi ltration can be used for metals (Pb, Cd, 
Cu, Ni and Cr) which are retained only within the roots. It is a 
phytoremediative technique designed for the removal of metals 
in aquatic environments. Hydroponic technique is being used 
in which the plants fi rst grow in nutrient medium and then they 
are transferred to the metal polluted sites, where the plants 
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 accumulate and concentrate the metals in their various body 
parts especially roots (Flathman and Lanza  1998 ; Salt et al. 
 1995 ; Dushenkov et al.  1995 ; Zhu et al.  1999 ) (Table  28.1 ).

   Phytovolatization is a technique in which metals from the 
soil are taken up by the plant roots, and by the process of 
transpiration they are released in the environment. This pro-
cess works only when the metals are volatile in nature (Hg 
and Se) (USPA  2000 ). Apart from metals, this has been 
established in case of organic contaminants also, as in the 
example of Poplar tree ( Liriodendron ) which is a phytovola-
tizer and volatilizes up to 90 % of the trichloroethane 
absorbed from contaminated soil (McGrath and Zhao  2003 ). 

 Phytodegradation which is also known as phyto- 
transformation, is a process in which the breakdown of con-
taminants occurs by plants through metabolic processes 
within the plant, or in the close surrounding of the plant 
through plant root symbiotic associations (McGrath and 
Zhao  2003 ). A metabolic process known as  ex planta  occurs 
in which organic compounds are hydrolyzed into smaller 
units that can be absorbed by the plants. Some contaminants 
can be absorbed by the plant and are then broken down by 
plant enzymes. For the growth of the plant, these smaller pol-
lutant molecules can be used as secondary metabolites 
(Prasad  1995 ).  

  Fig. 28.1    Phytoremediation processes and types, adapted from Singh et al. ( 2003 ) and Suresh and Ravishankar ( 2004 )       

   Table 28.1    Natural plant metal-hyperaccumulator species and their bioaccumulation potential   

 Metals  Plant species  Amount [g/kg (d.m)]  Reference 

 Cd   Rorippa globosa   >1  Sun et al. ( 2007 ) 
 Se   Brassica juncea   2.0  Orser et al. ( 1999 ) 
 Cr   Salsola kali   2.9  Gardea-Torresday et al. ( 2005 ) 
 Pb   Thlaspi rotundifolium   0.13–8.2  Reeves and Brooks ( 1983 ) 
 Cd   Thlaspi caerulescens   10.0  Lombi et al. ( 2001 ) 
 Ni   Alyssum bertolonii   >10.0  Morrison et al. ( 1980 ) 
 Co   Haumaniastrum robertii   10.2  Brooks ( 1977 ) 
 Cu   Ipomea   12.3  Baker and Walker ( 1990 ) 
 Mn   Phytolacca acinosa   19.3  Xue et al. ( 2004 ) 
 As   Pteris vittata   22.6  Ma et al. ( 2001 ) 
 Zn   Thlaspi caerulescens   30.0  Baker and Walker ( 1990 ) 
 Zn   Chenopodium album  L.  33.5  Malik et al. ( 2010 ) 
 Pb   Amaranthus viridis  L .   >43.0  Malik et al. ( 2010 ) 
 Cu   Parthenium hysterophorus  L.  59.3  Malik et al. ( 2010 ) 

 

A. Mohan et al.



345

28.2     Heavy Metal Uptake Mechanism 
by Plants 

 Hyperaccumulatory action of  Cannabis sativa  on cadmium 
contaminated soil has been shown in certain works. Some 
projects by U. S. Department of Energy have explored bio-
availability of cadmium in the soil and they have suggested 
that it depends on soil pH, redox potential and rhizosphere 
chemistry. These factors determine the concentration of sol-
uble Cd within the rhizosphere of the plant and the amount of 
Cd available for potential uptake by the plant. Soluble Cd 
could enter roots either by movement in the cell wall free 
space (apoplastic pathway) or by transport across the plasma 
membrane (PM) of root cells and movement through the 
cytoplasm (symplastic pathway). The large membrane poten-
tial which usually exists across the PM provides a driving 
force for the inward movement of Cd into cells. There are 
various types of channels that exist within the PM which 
allow the Cd transport into the different parts of the plant. 
Secondary level of accumulation has been observed in stems 
and leaves with accumulated amount of Cd found to a lesser 
extent (Linger et al.  2005 ). The metals are absorbed from the 
soil into the roots and shoots by the process of translocation 
(phytoextraction). After uptake by roots, translocation into 
shoots is desirable because the harvest of root biomass is 
generally not feasible (U. S. Department of Energy  1994 ). 
Plant uptake-translocation mechanisms are likely to be 
closely regulated. Plants generally do not accumulate 
elements beyond near-term metabolic needs, which are small 
ranging from 10 to 15 ppm of most trace elements, suffi cient 
for most of the requirements (U. S. Department of Energy 
 1994 ). Hyperaccumulators are exceptions and can accumu-
late toxic metals much beyond these limits up to the levels of 
thousands of ppm. With this capability of hyperaccumula-
tion, these plants could successfully be used for phytore-
mediation purposes. During the process; contamination is 
translocated from roots to shoots, which are harvested, caus-
ing contamination to be removed while leaving the original 
soil undisturbed (U. S. Department of Energy  1994 ). 

 Several physiological and biochemical rationales determine 
hyperaccumulatory behavior and activity. Poly chelatin forma-
tion is one of the important basic crucial factors for the hyperac-
cumulatory behavior. Polychelatins are the best characterized 
heavy metal chelator in plants, especially in the context of Cd 
tolerance (Cobbett  2000 ). Hemp ( Cannabis sativa ) roots dem-
onstrated a strong resistance to heavy metals and have already 
shown hyperaccumulator-like potential (more than 100 mg/kg 
Cd in dry tissue), which more likely seems to depend on the 
plant development stage. High values of Cd accumulation 
achieved cannot be explained exclusively by passive ion uptake. 
Immobilization, by binding to the cell walls, is thought to play a 
minor role (Sanita di Toppi and Gabbrielli  1999 ). Polychelatins 

are known to be synthesized from glutathione (GSH) and its 
derivatives by enzyme phytochelatine synthase in the presence 
of heavy metal ions (Cobbett  2000 ; Rea et al.  2004 ). The syn-
thesis of PC occurs in cytosol. With exposure of metal to the 
root of the plant, PCs coordinate to form ligand complexes with 
these metals, which are further sequestered into the vacuole. 
GSH also has a role in defense against heavy metals. 

 The other class of signifi cantly notable chelating com-
pound is metallothioneins. They are known to have a signifi -
cant role in the detoxifi cation of metals, and the induction of 
their synthesis in the plants occurs through exposure of root 
cells to heavy metals (Rauser  1999 ; Cobbett  2000 ; Clemens 
 2001 ; Hall  2002 ; Cobbett and Goldsbrough  2002 ; Rea et al. 
 2004 ). Metallothioneins (MTs) are sulfur-rich proteins of 
60–80 amino acids, are known to contain 9–16 cysteine resi-
dues and are found in plants, animals and some prokaryotes 
(Rauser  1999 ; Cobbett  2000 ; Cobbett and Goldsbrough 
 2002 ). These cysteine-rich polypeptides exploit the property 
of heavy metals to bind to the thiol groups of proteins and 
detoxify them. Other well-known property of MTs is to par-
ticipate in Cu homeostasis (Cobbett and Goldsbrough  2002 ). 

 Universal small polycations involved in numerous pro-
cesses of plant growth and development are called as poly-
amines; they have anti-senescence and anti-stress effects. 
These distressing effects are owed due to their acid neutral-
izing and antioxidant properties, along with their membrane 
and cell wall stabilizing abilities (Zhao and Yang  2008 ). 
Technically polyamines strengthen the defense response of 
plants and modulate their activity against diverse environ-
mental stresses including metal toxicity (Groppa et al.  2003 ), 
oxidative stress (Rider et al.  2007 ), drought (Yamaguchi 
et al.  2007 ), salinity (Duan et al.  2008 ) and chilling stress 
(Cuevas et al.  2008 ; Groppa and Benavides  2008 ). The accu-
rate role of polyamines found in plants under metal stress has 
not been deduced yet. The most positive assumption regard-
ing the functionality of polyamines is the protection of mem-
brane systems and their stabilization from the toxic effects of 
metal ions particularly the redox active metals. Spermine, 
spermidine, putrescine and cadaverine are some of the 
important polyamines which have demonstrated the ability 
to scavenge free radicals in vitro (Drolet et al.  1986 ). 
Polyamines are also known to block the major vacuolar 
channels, the fast vacuolar cation channel. The accumulation 
of these vacuolar channels results in decreased ion conduc-
tance at the vacuolar membrane which facilitates metal ion 
compartmentation (   Brüggemann et al.  1998 ). 

28.2.1     General Properties of  Cannabis sativa  

  Cannabis sativa  is dioecious fl owering herb.  Cannabis  is 
rich in Cannabinoids which are psychoactive and physiologi-
cally active chemical compound produced by the dioecious 
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fl owers of the herb.  Cannabis sativa  provides antispas-
modic and muscle relaxant stimulating appetite (Zajicek 
et al.  2003 ).  Cannabis sativa  exhibits a great diversity with 
its prominence in both wild and cultivated areas, and hence 
can be utilized for the phytoremediation purpose (Mura 
et al.  2004 ). Native to central and southern Asia,  Cannabis  
prefers a warm and humid climate, but are very resilient 
and can live in many habitats, so long as the soil pH is 
between 5 and 7.  

28.2.2      Cannabis sativa  Hyperaccumulative 
Action 

 Varied studies carried out on  Cannabis sativa  provide the 
leads that it can be used as a hyperaccumulator for different 
toxic trace metals like Lead, Cadmium, Magnesium, Copper, 
Chromium and Cobalt which pose a great risk to the eco-
logical system. It has been established that the most of the 
sources of polluting metals are various anthropogenic activi-
ties such as smelting, sewage sludge distribution and auto-
mobile emissions (Foy et al.  1978 ; Chronopoulos et al.  1997 ; 
Prasad and Hagemeyer  1999 ; Dahmani-Muller et al.  2000 ). 
Hyperaccumulator plants can be used to remediate the metal 
contaminated soil from these anthropogenic activities. This 
technology implies on the aboveground harvestable plant 
tissues that have the phytoaccumulation capacity in the roots 
of plants to absorb, translocate and concentrate heavy metals 
from contaminated soil. The wild species which are endemic 
to metalliferous soil accumulate a very high concentration of 
metal from the soil (Baker and Brooks  1989 ).  Cannabis 
sativa  is also known as industrial hemp because it has the 
capability of hyperaccumulation of industrial waste. The 
potential of hemp crops is known to convert the waste land 
into cultivated land, especially the area contaminated with 
heavy metal pollution (lead, copper, zinc and cadmium) 
(Angelova et al.  2004 ). The hemp is well suited for phytore-
mediation and the fi ber quality has not been negatively 
affected by uptake of metal. 

 Cd is known to be one of the most phytotoxic heavy metal 
(Salt et al.  1995 ; Prasad  1995 ). For the soil phytoremediation, 
a good alternative is provided by Hemp plant ( Cannabis sativa  
L.). Except for roots, the highest concentrations of metal are 
found in leaves, whereas the lowest are typically observed in 
seeds (Ivanova et al.  2003 ). The photosynthesis pathway is 
infl uenced in two ways by the cadmium metal: (1) Cadmium 
metal disturbs indirectly water and ion uptake by the plant 
which has a negative effect on the plant water status (Seregin 
and Ivanov  2001 ). (2) It directly affects the chloroplast appa-
ratus after entering the leaf cells. Cd concentrations of up to 
72 mg/kg (soil) had no negative effect on germination of 
 Cannabis sativa . It has been estimated from the post-conduc-
tion experiments that up to 100 ppm there is no effect of 

cadmium metal on the morphological growth of  Cannabis 
sativa . The highest concentration of cadmium tolerance shown 
by the  Cannabis sativa  in roots is maximum 830 mg/kg and it 
does not affect the growth of the plant (Linger et al.  2005 ). 

 Plant viability and vitality is affected by cadmium metal 
in the leaves and stem of  Cannabis sativa  and was up to 
50–100 mg Cd/kg [D.M] (dry mass). Control plants and 
plants growing on soil with 17 mg Cd/kg of soil show sea-
sonal changes in photosynthetic performance. Under moder-
ate cadmium concentrations, i.e., 17 mg Cd/kg of soil, hemp 
could preserve growth as well as the photosynthesis appara-
tus and long-term acclimatization at chronicle levels to Cd 
stress occurs. Growth on high Cd concentrations, i.e., above 
800 mg/kg leads to a signifi cant loss of vitality and biomass 
production. Shi et al. ( 2012 ) worked on 18 Hemp accessions 
in order to screen the accessions that can be cultivated in 
cadmium (Cd)-contaminated soils for biodiesel production. 
Pot experiments were carried out to evaluate the ability of 
Hemp for Cd tolerance and bioaccumulation when subjected 
to 25 mg Cd/kg (dry weight, DW) soil condition, in terms of 
plant growth, pigment contents, chlorophyll fl uorescence 
and Cd accumulation at 45 days after seedling emergence. 
Pot experiment analysis was carried out and it was observed 
that most of the Hemp except USO-31, Shenyang and 
Shengmu, could grow quite well under 25 mg Cd/kg (DW) 
soil condition. A biomass of >0.5 g per plant, high tolerance 
factor (68.6–92.3 %), a little reduction in pigment content 
and chlorophyll fl uorescence under 25 mg Cd/kg (DW) soil 
stress were observed in Yunma 1, Yunma 2, Yunma 3, Yunma 
4, Qujing, Longxi, Lu’an, Xingtai, and Shuyang. The scien-
tist concluded that these cultivars could be cultivated in Cd 
contaminated soils and had a strong tolerance to Cd stress 
(Shi et al.  2012 ). Hemp has been found to be highly cadmium- 
tolerant and very useful in bioaccumulation of cadmium with 
its superior ability to accumulate cadmium in shoots. Hemp 
does have a high capacity for phytostabilization. Hemp is 
tolerant to contaminants, has the ability to accumulate metals 
along with stabilization of contaminated areas and unlike 
most plants used in bioremediation, it offers additional end 
uses. The extraction capability for heavy metals from the soil 
makes the Hemp ( Cannabis sativa ) an excellent soil phytore-
mediation agent. Worldwide, Hemp can provide both an 
economic and sustainable solution to the contamination of 
soils. The utilization of various supplements of Hemp as a 
derived food has brought attention to the invisible negative 
effects that could be caused due to potential metal accumula-
tion on the health of people of Romania reported in the recent 
years (Bona et al.  2007 ;    Linger et al.  2002 ; Mihoc et al. 
 2012 ). The work done on the translocation rate of certain 
species showed that these species have high translocation 
rate as compared to other. The work concluded by Malik 
et al. ( 2010 ) shows that  Cannabis sativa  has high transloca-
tion rate as compared to other species for the metal Zn and 
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could be used as a potential hyperaccumulator. It is estimated 
that the Translocation Factor value of  Cannabis sativa  for Zn 
is >1. Due to this the accumulation of metal Zn in shoots is 
high as compared to other heavy metals. The graph in 
Fig.  28.2  shows the hyperaccumulation by  Cannabis sativa  
in its various tissues from contaminated soil having different 
heavy metals in elevated state. Investigation of metalliferous 
tissue of  Cannabis sativa  leads that accumulation of Zinc 
metal occurs maximum in shoots and it shows hyperaccumu-
lating property by storing metal in their shoot. The least 
metal accumulated by  Cannabis sativa  was Ni in their shoot 
(Table  28.2 ). In another work it was reported that the geo-
chemical characterization of soil and the nature of crops are 
the factors on which the accumulation of heavy metals 
depends; some of them have a high potential to accumulate 
higher concentrations of heavy metals (   Linger et al.  2002 ). 
The researchers investigated and concluded that one of the 
Hemp varieties Zenit shows high bioaccumulation rate for 
iron, i.e., 1,859 mg/kg as compared to the other Hemp variet-
ies, i.e., Diana, Denise, Armanca, Silvana (Mihoc et al.  2012 ) 
and this could possibly affect the health of people. This work 
brings into light the capability of specifi c  Cannabis  varieties 
for their extraction capability. 

28.2.3        General Properties of  Solanum nigrum  

  Solanum nigrum  is commonly called as black nightshade. It 
belongs to the  Solanaceae  family.  S. nigrum  is widely used 
plant in ornamental medicine.  Solanum nigrum  L. is an 
annual herb 0.3–1.0 m in height (Wei et al.  2005 ). It is anti-
tumorigenic, antioxidant, anti-infl ammatory, hepatoprotec-
tive, diuretic and antipyretic herb. Compounds present in the 
 S. nigrum  are responsible for diverse activities. Ailments 
such as pain, infl ammation and fever are treated with  
S. nigrum  as traditionally acceptable method (Zakaria et al. 
 2006 ;    Lee and Lim  2003 ; Raju et al.  2003 ). The fl owering 
season of  Solanum nigrum  is from July to September and 
the seeds ripen from August to October. Herbal medication 
studies have proved that growth of cervical carcinoma in 
mice can be inhibited by this weed (Jian et al.  2008 ). Black 
nightshade is a fairly common herb found in many wooded 
areas.  Solanum nigrum  grows in damp shady spots (contami-
nated ground) and in waste lands (Wei et al.  2005 ). It also 
grows in cultivated lands. It is a native to Europe and Asia 
and further has been introduced in America, Australia and 
Africa through anthropogenic sources.  

28.2.4      Solanum nigrum  Hyperaccumulative 
Action 

  Solanum nigrum  is a hyperaccumulator and has shown the 
effect of cadmium toxicity on the nitrogen metabolism in 
their leaves (Wang et al.  2007 ). Cadmium is very hazardous 
to human health adversely affecting kidney and lungs. The 
activity    of nitrate reductase in plants is inhibited due to the 
effect of cadmium on the uptake and transportation of nitrates 
by affecting the nitrate assimilation (Hernandez et al.  1997 ). 
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   Table 28.2    Hyperaccumulatory nature of  Cannabis sativa  depicted by 
accumulation of various metals (mg/kg) (d.m) in industrial areas (Malik 
et al.  2010 )   

 Concentration of metal (mg/kg)  Root  Shoot 

 Lead  29 mg/kg  30 mg/kg 
 Copper  29 mg/kg  18.2 mg/kg 
 Zinc  27 mg/kg     43.9 mg/kg 
 Nickel  13.6 kg/mg  11.3 mg/kg 
 Cobalt  24.7 mg/kg  14.8 mg/kg 
 Chromium  29.7 mg/kg  14.5 mg/kg 
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 S. nigrum  could tolerate ≤12 mg/kg cadmium present in the 
soil and maintain N metabolism normal in the plant. However 
N metabolism is severely inhibited at levels of 48 mg Cd/kg. 
The nitrate reductase activity reduces signifi cantly at 24 mg/kg 
but the activities of glutamine synthetase remain normal. 
 S. nigrum  appears to be an adequate species for phytoreme-
diation of heavy metal contamination, especially Cd contam-
ination and shows the hyperaccumulating properties. The 
effect of addition of different fertilizers on the phytoreme-
diation capability of  S. nigrum  was investigated in a study 
conducted. Under pot-culture system, these experiments 
were carried out by fertilizer addition which increased the 
phytoextraction effi ciencies of  S. nigrum  to Cd by increasing 
its shoot biomass. It was found that addition of chicken 
manure decreased Cd concentrations of  S. nigrum  but 
urea amendment did not affect organic Cd concentration. 
Considering the effect of decrease of available Cd in soil 
occurring by chicken manure, urea might be a better fertil-
izer for strengthening phytoextraction rate of  S. nigrum  to 
Cd, and chicken manure could be a better fertilizer for 
phytostabilization. 

 Zn is a micronutrient for plants and at higher concentra-
tions it may become toxic (Broker et al.  1998 ; Ebbs and 
Cochin  1997 ). The Zn accumulation by  Solanum nigrum  
decreases when manure or compost is added up to 40 % but 
there will be increase in the total biomass yield (Marques 
et al.  2007a ). 

 Arbuscular mycorrhizal (AM) fungi support  Solanum 
nigrum  in its efforts to remediate the metal-contaminated 
soil. Arbuscular mycorrhizal (AM) fungi occur in the soil of 
most ecosystems, including polluted soils. The unique struc-
tures such as vesicles and arbuscules are formed by the fungi 
belonging to the phylum  Glomeromycota  (Burdett  2002 ). 
The wild weeds tolerance to biotic and abiotic stresses is 
enhanced by the presence of Arbuscular mycorrhizal fungi in 
the roots of the weeds present in contaminated area, as they 
provide a direct link between soil and roots (Joner and Leyval 
 1997 ). The availability of AMF in the roots increases the 
hyperaccumulation of metals by the plant. Arbuscular 
mycorrhizal fungi (AMF) are important root symbionts and 
partners that help in the removal of contaminants from the 
soil (Merharg and Cairney  2000 ). The fungal hyphae can 
extend into the soil and uptake large amounts of nutrients, 
including metals, to the host root. Plants provide important 
compounds for AMF survival; these fungi expand the con-
tact surface between plants and soil, contributing to an 
enhanced plant uptake of macronutrients (Li et al.  1991 ) 
such as Zn (Burkert and Robson  1994 ). AMF helps plants 
adapt to metal-contaminated soils by either excluding the 
metals or enhancing their uptake by the plant. Arbuscular 
mycorrhizal fungi (AMF) are found everywhere in most ter-
restrial ecosystem, forming close or symbiotic associations 
with the roots of majority of plant (Smith and Read  1997 ). 

With the help of extended properties of metal absorption 
from soil through AMF,  Solanum nigrum  becomes highly 
capacitive for overall extraction of metal from contaminated 
soil. Apart from high absorption capacities, it also has suffi -
cient accumulation capability and high translocation prop-
erty which make  S. nigrum  an ideal tool for phytoremediation 
approach of metal-contaminated sites. Signifi cantly higher 
level of zinc metal has been observed by workers (   Marques 
et al.  2007b ) in the  S. nigrum  supporting its hyperaccumula-
tory behavior. A good candidate for phytoremediation strat-
egy would be a species that has good translocation of the 
metallic contaminant from the root to the stems and leaves, 
which means a higher translocation factor. High transloca-
tion factors (TF <1) obtained indicates that  S. nigrum  might 
be a good Zn phytoextractor, as the main metal accumulation 
occurs in the aboveground part of the plant. 

 Shenyang Zhangshi Irrigation area (SZIA) was polluted 
with high amount of cadmium and several set of studies have 
been carried out in this area.  Solanum nigrum  was used in 
situ as a phytoremediator in Cd polluted soil (Ji et al.  2011 ). 
Assessment of the performance of the plant over the whole 
growth stage was carried out. It was analyzed through exper-
iments that aboveground biomass of single  Solanum nigrum  
L. grew by a factor of 190, from 1.6 ± 0.4 g to 300.3 ± 30.2 g 
along with 141.2 times extractable Cd increase from 
0.025 ± 0.001 to 3.53 ± 0.16 mg. The data analysis also 
showed that the percentage of biomass and extracted Cd in 
the stem increases from 20 to 80 % and from 11 to 69 %, 
respectively. After pot experimentations, analysis was car-
ried out for highest Cd concentration in each part of  Solanum 
nigrum  plant and observed that at seedling stage the aboveg-
round biomass was 16.1 ± 1.1 mg/kg, in stem it was observed 
as 12.4 ± 1.1 mg/kg and in leaf the values were 24.8 ± 2.4 mg/kg. 
The authors suggest that the results of their work provide 
reference values for the future research on the application of 
 Solanum nigrum  L. in phytoremediation or on agricultural 
strategies for phytoextraction effi ciency enhancement. The 
pot experimentation establishes  Solanum nigrum  as a Cd 
hyperaccumulator with a maximum concentration of 125 mg/
kg (Wei et al.  2005 ). 

 Graph describes the hyperaccumulating nature of  Solanum 
nigrum  in metal-contaminated soil (Fig.  28.3 ). Signifi cant 
Zn metal accumulation occurs in the root tissue of  S. nigrum  
and minimum accumulation is reported in their shoot tissue 
(Table  28.3 ). 

28.2.5        General Properties of  Rorippa globosa  

  Rorippa globosa  an annual/perennial herb belonging to 
Brassicaceae family ( Mustard Family ) and the genus  Rorippa  
(yellowcress), which grows to a height of 0.7 m (2 ft 4 in.). 
It is a fl owering plant, usually with cross shape, yellow fl owers, 
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and peppery fl avor. The fl owering season of  Rorippa globosa  
is from April to November. The  Rorippa globosa  is widely 
distributed in Europe through central Asia, Africa and North 
America. The habitat of this species is near river banks, 
moist areas, grasslands, and railroad embankments from 
near sea level to 2,500 m.  

28.2.6      Rorippa globosa  Hyperaccumulative 
Action 

 Phytoremediation-based studies work on the motive for 
screening out and breeding hyperaccumulative plants or 
hyperaccumulators that have an innate capacity to absorb 
and accumulate metals at higher levels (Baker and Brooks 
 1989 ). The leaves of  Rorippa globosa  show no phytotoxicity 
or biomass reduction when exposed to 25 μg Cd/g and the 
concentration of cadmium accumulated in leaves was up to 
218.9 μg Cd/g dry weight (DW). Analysis of this study points 
towards strong self-protection ability of  Rorippa globosa  
towards cadmium metal by adapting oxidative stress caused 
by the cadmium exposure (Sun et al.  2010 ). An attractive 

feature of  R. globosa  provides its plantation capability twice 
in a year in metal-contaminated soils.  R. globosa  can be har-
vested at its fl owering phase based on the site climatic condi-
tions and growth characteristics of the  hyperaccumulator. 
This could result with an increase in the extraction effi ciency 
of Cd in shoots of  R. globosa  by 42.8 % as compared to its 
single maturity state when the plant was transplanted into 
contaminated soils (Wei and Zhou  2006 ). 

 A comparative assessment of hyperaccumulative capabil-
ity of two different species of  Rorippa  was carried out by 
   Wei and Twardowska ( 2013 ). Six Cd treatments were experi-
mentally designed and treatment was given to two species 
 Rorippa globosa  and  Rorippa palustri . Different concentra-
tions of Cd were used, i.e., 2.5, 5, 10, 20, and 40 mg/kg along 
with a control without Cd addition. The Cd hyperaccumulat-
ing properties of  R. globosa  showed that the cadmium in the 
aboveground organs was >100 mg/kg, with enrichment fac-
tor EF >1, translocation factor TF >1 with no signifi cant bio-
mass reduction at Cd doses >10 mg/kg, and lack of such 
properties in  R. palustri , which made these species suitable 
for comparative studies (Wei and Twardowska  2013 ). The 
total root lengths were decreased by 39, 41.8, and 46.3 % 
expressing its tolerance limitation, when Cd concentrations 
were 10, 20, and 40 mg/kg. In  R. palustri  the total root 
lengths when compared with the control decreased by 55.3, 
64.1, and 64.4 %, indicating its weak tolerance (Li et al. 
 2011 ). In comparative research analysis done by hydroponic 
experiments concluded that  R. globosa  showed high toler-
ance capability and acted as a good Cd hyperaccumulator as 
compared to the  R. palustri . 

 Certain current studies show that the growth of  R. globosa  
is skewed by the antagonist effect caused by the Cd and As 
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  Fig. 28.3    Representation of 
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als by  Solanum nigrum  (Malik 
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   Table 28.3    Hyperaccumulatory nature of  S. nigrum  depicted by accu-
mulation of metals (mg/kg) (d.m) in industrial areas (Malik et al.  2010 )   

 Concentration of metal (mg/kg)  Root  Shoot 

 Lead  20 mg/kg  11 mg/kg 
 Copper  13.13 mg/kg  22.2 mg/kg 
 Zinc  134.4 mg/kg  50.6 kg/kg 
 Nickel  7.8 kg/mg  8 mg/kg 
 Cobalt  18.5 mg/kg  15.8 mg/kg 
 Chromium  81.2 mg/kg  8.9 mg/kg 
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metal exposure. It was observed that when the concentration 
of Cd in the soil was 10 mg/kg and the concentration of As 
was 50 mg/kg, the plant grows up to a height of 35.9 cm and 
the dry weight (d.w) of the shoots reaches up to 2.2 g per pot 
(Wei et al.  2005 ). At the same time the accumulation of 
cadmium in the leaves under the combined stress of Cd and 
As becomes higher as compared to the same level of stress 
caused by the cadmium itself. At low concentration of Cd 
and As in the soil, the height and the shoot biomass of 
Rorippa globosa increased but the high concentrations of 
As and Cd reduce the Cd accumulation in the shoot of the 
plant, which refl ects a synergic effect on plant growth. 
Certain plants have the unique ability to transport, uptake 
and exclude various essential or nonessential metals through 
their roots (Fayiga et al.  2004 ). Exclusion and accumulation 
are the two main strategies that are essential to build a rela-
tionship between roots and metals. From the above study, 
another attractive feature of  Rorippa globosa  comes into the 
picture; it has the ability to accumulate Cd metal into their 
various body parts like stem, root, and leaves in the presence 
of arsenic metal but at the same time it has the ability to 
exclude arsenic metal (Yang et al.  2004 ). 

 Cd hyperaccumulation capacities in  Rorippa globosa  
were investigated by Wei and Zhou ( 2006 ) in pot experi-
ments and they concluded that in order to enhance the metal 
removing effi ciency in a year, the two phase planting method 
can be utilized which measures the phytoextraction capabil-
ity of plant by harvesting the plant at its fl owering period. 
The biomass was 107.0 and 150.1 mg/kg of the Cd accumu-
lation in stems and leaves respectively, when soil Cd added 
was concentrated to 25.0 mg/kg.  R. globosa  when harvested 
at its fl owering phase yielded total dry stem and leaf biomass 
up to 92.3 % of its full maturity and the total cadmium 
concentration was up to 73.8 % and 87.7 % of that at the 
mature phase, respectively. Climatic condition of the site and 
the trait of the plant growth-based factors enable  R. globosa , 
so that it could be transplanted into the contaminated soils 
twice in 1 year, by harvesting the hyperaccumulator at its 
fl owering phase. Following the two phase planting method, 
the extraction effi ciency of the plant increased by 42.8 % as 
compared to its single maturity state. This method of two 
phase planting signifi cantly helps in increasing the Cd hyper-
accumulation in contaminated sites by using the technique of 
phytoremediation over the course of a year. 

 Conclusion could be drawn that Cd-hyperaccumulator 
has the basic characteristics of weed plants and the benign 
feature of crops. Because of the unique features like nutrition- 
competitive ability, fast growth, high effi ciency of photosyn-
thesis, a short lifecycle and anti-pests capability.  Rorippa 
globosa  has incomparable advantages compared with other 
hyperaccumulators and its utilization as a potential phytore-
mediator could have substantial advantages (Sun et al.  2007 ) 
(Table  28.4  and Fig.  28.4 ).

28.2.7         General Properties of  Amaranthus  sp. 

 Amaranthus belonging to the family Amaranthaceae com-
prises a series of wild, weedy, cultivated species and found 
worldwide in almost all agricultural environments. Amaranth 
is a very ancient crop. Its presence in Mexico dates from 
4000 B.C. in Tehuacan, Puebla (Teutonico and Knorr  1985 ), 
and thus it is one of the oldest known plants. Amaranthus 
species have different centers of domestication and origin, 
being widely distributed in North America, Central America, 
and the South American Andes, India, and Nepal where the 
greatest genetic diversity is found (Sun et al.  1999 ; Xu and 

   Table 28.4    Representation of the antagonistic effect showed by the 
Cd and As on the bioaccumulation potential of Cd hyperaccumulator 
 R. globosa  (Sun et al.  2007 )   

 Conc. of Cd and As 
(mg/kg) 

 Accumulation of Cd 
(mg/kg) in root 

 Accumulation of Cd 
(mg/kg) in shoot 

 Ck (control)  0  0 
 Cd10 + As50  0.002  0.09 
 Cd10 + As250  0  0.025 
 Cd25 + As50  0.015  0.2 
 Cd25 + As250  0.01  0.1 
 Cd50 + As50  0.022  0.25 
 Cd50 + As250  0  0.12 
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  Fig. 28.4    Representation of antagonistic effect by Cd and As on the 
bioaccumulation potential of Cd-hyperaccumulator  R. globosa  (Sun 
et al.  2007 )       
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Sun  2001 ; Zheleznov et al.  1997 ). It is estimated that there 
are 87 species of Amaranthus: 17 in Europe, 14 in Australia 
and 56 in America (Mujica and Jacobsen  2003 ). Three 
species of the genus  Amaranthus  produce edible seeds: 
 Amaranthus hypochondriacus , grown in Mexico;  Amaranthus 
cruentus , grown in Guatemala and Mexico; and  Amaranthus 
caudatus , grown in Peru. This grain was an important nutri-
ent for the Aztec, Maya and Inca. Due to its high-quality 
protein, especially its relatively high Lys content (Downton 
 1973 ) and the presence of sulfur amino acids (Segura-Nieto 
et al.  1992 ), this crop has received considerable attention as 
a supplement to cereals and legumes to prevent protein 
malnutrition and is known as pseudocereal (Barba de la Rosa 
et al.  1992 ; Zheleznov et al.  1997 ; Gorinstein et al.  2001 ).  

28.2.8      Amaranthus  sp. Hyperaccumulative 
Action 

 Hyperaccumulatory activity of various  Amaranthus  sp. has 
been investigated by various researchers. More researches 
have been carried out on the weed  Amaranthus  and it has 
been concluded that in a test of phytoextraction, the scien-
tists found a crop ( Amaranthus hypochondriacus ) which not 
only grows rapidly but also accumulates high levels of Cd 
metal (Li et al.  2009 ). When intercropped with maize, 
 A. hypochondriacus  accumulated over 50 mg/kg Cd in 
shoots and over 90 mg/kg Cd in roots from soil containing 
3 mg/kg Cd.  Amaranthus hypochondriacus  has been widely 
used as forage for cattle. It grows very fast with a very high 
biomass, having an average biomass yield of 10–15 t h/m 2  
(DW). In another experiment of monoculture,  A. hypochon-
driacus  accumulated more than 100 mg/kg Cd from soil 
containing 5 mg/kg Cd. Since this plant has long been used 
as forage species, the cultivation systems of the crop are 
well established and highly mechanized. It has great poten-
tial to effi ciently extract Cd from contaminated soils. 
 Amaranthus  has been cultivated for a long time on a large 
scale in China, producing a good quality of forage. They can 
grow in regions from the southernmost to the northernmost 
in China. The results suggested that amaranth has great 
potential in phytoremediation of farmlands in China, where 
Cd  contamination largely ranged from 2 to 8 mg/kg. The 
tested varieties of Amaranth were introduced from America, 
and they can grow in many places of the world. In the pot 
experiment, Amaranth had a dry biomass of 42–54 g per 
plant in treatment of NPK fertilizer. In the farmland, 
tested varieties of Amaranth could achieve a fresh shoot 
biomass of 120,000–225,000 kg h/m 2  for K112, 150,000–
300,000 kg h/m 2  for K472, and 120,000–195,000 kg h/m 2  
for R104 (Kong and Yue  2003 ). Obviously, the biomass 
accumulation of the Amaranth was much larger than any 
other Cd hyperaccumulators like  Viola baoshanensis  of 

6.5 t/ha (DW),  Sedum alfredii  of 5.5 t/ha (DW) and  Vertiveria 
zizanioides  of 30 t/ha (DW) (Zhuang et al.  2007 ). Easy 
cultivation of Amaranth in farmland, together with large 
biomass, is an important merit superior to many Cd hyper-
accumulators in removing heavy metal of farmland. Workers 
conducted another experiment (Li et al.  2010 ) and showed 
that Amaranth could tolerate Cd contamination as high as 
16 mg/kg. It has been further reported that amaranth favors 
high K (Li et al.  2006 ). Potassium might play a vital role in 
the large biomass achieved by Amaranth, a possibility that 
needs further rework to optimize biomass yields. Biomass 
of heavy metal accumulators is a key factor in phytoreme-
diation, however, application rates of fertilizers is an another 
factor. High aboveground tissue concentrations of heavy 
metal and high biomass production are both critical for 
successful Phytoextraction. 

 Researchers worked on three amaranth cultivars and 
tested that they could accumulate high levels of Cd in their 
tissues, especially leaves, from rather low levels of Cd in soil 
(5 mg/kg). Leaf Cd generally exceeded 100 mg/kg, the crite-
rion for a Cd hyperaccumulator. In phytoextraction, 
Amaranth cultivars might be superior to  Solanum nigrum  L., 
another reported Cd hyperaccumulator. This species could 
accumulate 103.8 mg/kg Cd in stems and 124.6 mg/kg Cd in 
leaves from soil containing 25 mg/kg Cd (Wei et al.  2005 ), a 
lower extraction effi ciency than amaranth. In this study, the 
BCF (bio concentration factor) and TF (translocation factor) 
of the three amaranth cultivars ranged from 17.7 to 29.7 and 
1.0 to 2.0, respectively. The BCFs of amaranth were higher 
than many other previously reported Cd accumulators, for 
instance, 2.4 for  Viola baoshanensis  (Liu et al.  2004 ), 3.5 for 
 Cardaminopsis halleri  (Kupper et al.  2000 ), 5.0 for  Solanum 
nigrum  L. (Wei et al.  2005 ) and 6.0 for  Rorippa globosa  
(Wei and Zhou  2006 ). Application of fertilizers often 
increased Cd content in leaf and decreased Cd in root, result-
ing in a higher TF. However, fertilizers did not greatly impact 
BCF in most cases. Lower BCFs were observed in K112 
(20.1) and R104 (20.9) with NPK treatment compared to the 
control. The BCF values are more important than shoot con-
centration, when one considers the potential of phytoextrac-
tion for a given species (Zhao et al.  2003 ). Large BCFs of 
amaranth for Cd, combined with TF >1, suggest the species 
has great potential for practical use in phytoremediation of 
Cd contaminated soil. In summary, amaranth cultivars 
(K112, R104, and K472) could grow in soil containing 5 mg/
kg Cd without visible toxic symptom, accumulating Cd in 
their harvestable aboveground tissues ranging from 95.1 to 
179 mg/kg, with BCFs of 17.7–29.7 and TF of 1.0–2.0. 
Increased Cd availability, as a result of lowered pH caused 
by fertilizers, ensured a good uptake of Cd when fertilized. 
Fertilizers containing only N or N and P combined did not 
markedly increase dry biomass of the three cultivars, leading 
to a limited increment of Cd accumulation. NPK fertilizer 
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greatly increased dry biomass, by factors of 2.7–3.8, resulting 
in a large increment of Cd accumulation. The work has been 
carried out in greenhouse pot experiment, where phytoex-
traction potential for Cd for three amaranth cultivars 
( Amaranthus hypochondriacus  L. Cvs. K112, R104 and 
K472) was conducted and the effect of application of N, NP 
and NPK fertilizer on Cd uptake of the three cultivars from 
soil contaminated with 5 mg/kg Cd was observed (Li et al. 
 2012 ). All three amaranth cultivars had high levels of Cd 
concentration in their tissues, which ranged from 95.1 to 
179.1 mg/kg in leaves, 58.9 to 95.4 mg/kg in stems and 62.4 
to 107.2 mg/kg in roots, resulting in average bioaccumula-
tion factors ranging from 17.7 to 29.7. Application of N, NP 
or NPK fertilizers usually increased Cd content in leaves but 
decreased Cd content in stem and root. Fertilizers of N or NP 
combined did not substantially increase dry biomass of the 
three cultivars, leading to a limited increment of Cd accumu-
lation. Amaranth cultivars (K112, R104, and K472) have 
great potential in phytoextraction of Cd contaminated soil. 
They have the merits of high Cd content in tissues, high bio-
mass, easy cultivation, and little effect on Cd uptake by fer-
tilization (Li et al.  2012 ). 

 Another experiment was carried out by the workers in 
order to prove the success of Amaranth weed as a good accu-
mulator of heavy metals. The experiment    conducted on the 
three amaranth hybrids ( Amaranthus paniculatus  f.  cruentus  
(Vishnevyi dzhem),  A. paniculatus  (Bronzovyi vek) and 
 A. caudatus  f.  iridis  (Izumrud)) was grown in the climate 
controlled chamber on Jonson nutrient medium supple-
mented with 2 μM Fe 3+  EDTA. The red leaf hybrid Vishnevyi 
dzhem accumulated the greatest amount of nickel. Already at 
150 μM NiCl 2  in medium, its content within the plants was 
about 2 mg/g dry wt, whereas in the presence of 250 μM 
NiCl 2 , it was equal to 4 mg/g dry wt, which exceeds fourfold 
the admissible level of toxicity for grain crops (Liphadzi and 
Kirkham  2006 ). Such high content of Ni in the aboveground 
biomass in amaranth, the intensive crop produces about 
100 t/ha of green mass, acts promising for its usage as phy-
toremediation of Ni contaminated territories. At the same 
time, in the range of relatively low NiCl 2  concentrations 
(50–100 μM) in medium, the amaranth hybrid Vishnevyi 
dzhem accumulated the lower biomass and manifested chlo-
rosis of young leaves, a typical symptom of Fe defi cit, which 
resulted from a disturbance of Fe infl ux to them. At present, 
low availability of Fe leading to the yield losses is character-
istic of one third of agricultural areas with high content of 
calcium and alkaline pH (Briat et al.  2007 ). As evident from 
the research, plant growing in the presence of 100 μM Fe 3+ -
EDTA resulted in the marked increase in the biomass of 
upper leaves and roots at similar NiCl 2  concentrations as in 
the presence of 2 μM Fe. In this case, the content of iron in 
the upper leaves rose sharply at 50 μM NiCl 2  in medium, as 
compared with plants grown at 2 μM Fe 3+ -EDTA, which suf-

fered from Fe defi cit to the greatest degree. At the high iron 
dose in medium, nickel accumulation in leaves was slightly 
reduced, although the total nickel effl ux remained unchanged 
due to the increase in the aboveground biomass. All data 
obtained indicate that the intensity of nickel accumulation in 
plants and plant tolerance to it depends largely on the level of 
iron in the cells (Shevyakova et al.  2011b ). 

 On the basis of data obtained, it seems possible that ama-
ranth plant tolerance to relatively high nickel concentrations 
(150–200 μM) in medium accompanied by its enhanced 
accumulation in plants might be determined by PA 
(Polyamine) accumulation in leaves. It is not excluded that, 
under conditions of heavy metal accumulation in the cells, 
PA functions as antioxidants, protecting cells against metal- 
induced oxidative stress (   Shevyakova et al.  2011a ; Stetsenko 
et al.  2011 ). A capacity of exogenous PA to increase the phy-
toremediation potential of amaranth plants allows us to 
explain results. According to obtained data, the relatively 
low NiCl 2  concentration (50 μM) suppressed substantially 
shoot biomass accumulation. However, at 150–250 μM 
NiCl 2 , the degree of suppression was reduced in spite of the 
presence of high nickel concentrations in medium. The 
results of experiments with PA treatments permit a sugges-
tion that, in response to severe stress exerted by 150–250 μM 
NiCl 2 , amaranth plants synthesized low-molecular organic 
compounds with chelating or protective action, such as for 
example, polyamines and this provides for active shoot bio-
mass accumulation under conditions of severe stress. Thus, 
the experiments performed showed that when you study the 
phytoremediation potential of plants accumulating nickel in 
the aboveground organs, their capacity to maintain iron 
homeostasis and antioxidant system functioning should be 
taken into consideration. The accumulation of polyamines 
and other low-molecular compounds manifesting chelating 
or stress-protectory properties should be also analyzed 
(   Shevyakova et al.  2011b ). 

 Some other workers investigated metal accumulating 
capability of another species of  Amaranthus  viz.,  Amaranthus 
paniculatus  L. These plants were grown for 1 week in 
Ni-spiked growth solutions at 0, 25, 50, 100, 150 M NiCl 2  in 
hydroponics under controlled climate conditions. Results 
showed a high tolerance to Ni in plants exposed to low Ni 
concentrations. Tolerance decreased as Ni concentration in 
the growth solutions enhanced. Ni concentrations in plant 
organs (root, stem and leaves) revealed a trend to increase in 
parallel with the enhancement of Ni content in the growth 
solution. The ability to accumulate Ni in plants was also 
evaluated by calculating the bioconcentration factor (BCF). 
An inverse relation between BCF and Ni concentrations in 
the growth solution was evidenced. Ni phytoremoval ability 
of  A. paniculatus  plants was particularly appreciable at 25 M 
NiCl 2 , where more than 65 % of the initial Ni amount was 
taken up by plants in 1 week of treatment. The capability of 
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plants to translocate Ni from roots to shoots (stem + leaves) 
was evaluated by the    translocation factor (Tf). Results 
displayed a low Tf in plants exposed to low Ni concentra-
tion, suggesting a tolerance mechanism to protect physiolog-
ical processes occurring in leaves. Overall,  A. paniculatus  
plants showed a valuable capability to phytoremediate and 
decontaminate Ni-polluted waters, particularly at low Ni 
concentrations. 

  A. paniculatus  plant showed a good tolerance to Ni, eval-
uated by the Tolerance index (Ti). Ti was higher than 0.8 at 
25 M NiCl 2 , decreasing at 50 and 100 M NiCl 2 . A marked 
reduction of Ti was observed in plants exposed at 150 M 
Ni-spiked growth solution, with a value lower than 0.4. In 
particular, the highest Ni concentrations were detected in the 
roots of plants exposed to 100 and 150 M NiCl 2 , but a 
remarkable Ni concentration was also measured at 50 M 
NiCl 2 . In stems, Ni concentration was particularly high in 
plants treated with 150 M NiCl 2 . Lower Ni concentrations 
were found in 50 and 100 M Ni-treated plants (Brooks et al. 
 1977 ). In leaves, a higher Ni concentration was found in 
plants exposed to 150 M NiCl 2  in comparison with plants 
treated with the other Ni concentrations. To evaluate the 
ability of plants to concentrate Ni from the external solutions 
in their tissues, the bioconcentration factor (BCF) was calcu-
lated. An ability to concentrate Ni more than 30-fold from 
the nutrient solution was observed in  A. paniculatus  
plants exposed to 25 and 50 M NiCl 2 . However, this value is 
on average near tenfold lower than that reported in 
Ni-hyperaccumulating plants (Galardi et al.  2007 ). The 
capability of  A. paniculatus  plants to remove Ni from the 
Ni-spiked growth solution was followed along the experi-
mental time interval. A different Ni phytoremoval trend was 
exhibited by  A. paniculatus  plants depending on the Ni con-
centration in the growth solution. In accordance with the 
tolerance responses, plants exposed to 25 M NiCl 2  exhibited 
a higher and more constant Ni removal ability along time 
compared to plants exposed to 50, 100 and 150 M NiCl 2 , 
succeeding in removing more than 65 % of the initial Ni con-
tent of the growth solution. Lower removal abilities were 
found in plants treated with 50 and 100 M NiCl 2 . Plants 
exposed to 150 M NiCl 2  showed the lowest Ni removal abil-
ity, being the Ni content at the end of the treatment period 
near 70 % of the initial one. Moreover, these plants exhibited 
a strong  reduction of Ni removal ability just after 2 days 
from the start of the Ni treatments, evidencing metabolic dis-
turbances exerted by Ni to root uptake processes. The 
absorbed metal can be translocated from roots to the aerial 
plant organs through the xylem fl uid, commonly bound to 
metal chelating compounds. To measure the capability of 
plants to transfer the absorbed metals to the shoots, the trans-
location factor (Tf) was applied. Data showed a remarkable 
higher Tf in control plants, where Ni concentration in roots 
depended only on the seed supply compared to that of plants 

treated with different Ni concentrations. This result was 
consistent with Galardi et al. ( 2007 ), even if in that work the 
ratio between Tf of control plants and that of Ni-treated 
plants was far lower than that found in these experiment. 
Among Ni-treated plants, a higher Tf was calculated in 
plants exposed to 150 M NiCl 2 . The Tf values observed for 
 A. paniculatus  in this experiment are notably lower than 
those calculated from data reported by Galardi et al. ( 2007 ) 
in different ecotypes of  Alyssum bertolonii , a Ni hyperaccu-
mulator plant, exposed to Ni in similar experimental condi-
tions. In control plants, the highest Tf can be ascribed to the 
physiological Ni demand of shoots to sustain leaf metabolic 
functions, such as enzyme activities and photosynthetic reac-
tions. On the contrary, in 150 M Ni-treated plants, a higher 
Tf can be associated with an impairment of the metabolic 
processes regulating metal transport, due to the extremely 
high Ni concentration in the roots. The lower Tf observed in 
plants exposed to 25, 50 and 100 M NiCl 2 , unrelated to the 
metal concentration in the growth solution, can be attributed 
to a tolerance response aiming at reducing metal presence in 
leaf cells, preserving physiological functions (Seregin and 
Kozhevnikova  2006 ). Results evidenced that, up to a concen-
tration of 50 M NiCl 2  in the growth solution (a Ni concentra-
tion near 150-fold higher than that allowed in waters by 
Italian law), plants can maintain adequate physiological 
functions, allowing to accumulate remarkable amounts of Ni 
in their tissues while tolerating them. Although the Ni bio-
concentration potential expressed by this plant species was 
far lower than that reported for Ni-hyperaccumulation plants, 
the good ability to remove Ni from contaminated solutions, 
especially at low Ni concentrations, represents a valuable 
characteristic to exploit for the utilization of this plant spe-
cies for the decontamination of Ni-polluted waters (Pietrini 
et al.  2013 ). 

 The results obtained from plant analysis showed that 
concentration of cadmium in shoots of  Amaranthus  in all 
treatments was very high. It is concluded that  Amaranthus  
had suitable ability for phytoremediation by Phytoextraction 
method, transmitting more cadmium from root to shoot. In 
 Amaranthus , the highest iron was observed in the strains, 
i.e., B2Cd50, B2Cd200, and B1Cd200 treatments respec-
tively. The highest concentration of zinc in  Amaranthus  
was observed in the strains, i.e., B2Cd200, B2Cd100, and 
B1Cd0 respectively. Zinc concentration in different treat-
ments of  Amaranthus  had signifi cant difference in terms of 
concentration of cadmium and consumption of inoculant. 
In a calcareous soil of Karaj region (Fine Loamy, Mixed 
Super Active Thermic Xeric Haplocambids) and in green 
house conditions, effect of culture of the plant, i.e., 
 Amaranthus  and three levels of control inoculants (BO), 
 Bacillus mycoides M1  (B1),  Micrococcus roseus M2  (B2), 
and four levels of control cadmium concentration (0, 50, 
100, and 200 mg/kg) was studied in a factorial experimental 
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design with random blocks basic design with three 
replications. Concentration of cadmium, iron and zinc 
was measured in shoot and root as a function of dry mate-
rial and photosynthetic chemical effi ciency. The analysis 
of variance analysis showed that application of inoculant 
signifi cantly ( P  < 0.01) increased phytoremediation effi -
ciency and effect of  Amaranthus  in cadmium phytoextrac-
tion was high as studied in the research. Treatments of 
cadmium increased concentration of this element in plant 
and decreased photosynthetic quenching (Fv/Fm) (Zadeh 
et al.  2008 ).   

28.3     Conclusion 

 Cleanup of heavy metal-contaminated soils can be achieved 
through the Phytoremediation-based technologies which are 
emerging and promising bio-based technique with low-cost 
inputs as compared to chemical-based technologies. 
Advancement is going on in various aspects of phytoreme-
diation and for the absorption of heavy metals, where basic 
process understanding responsible for the remediation pro-
cesses is being addressed. Weeds can act at potential level in 
metal-contaminated soil accumulating metals through their 
hyperaccumulation characteristics and hence proving their 
phytoremediation capability. In case of  Solanum nigrum , 
arbuscular mycorrhizal fungi play an important role in the 
accumulation of Zinc metal. Addition of fertilizers includ-
ing chicken manure plays an important role in stabilization 
and extraction protocols.  Cannabis sativa  shows its hyper-
accumulation nature by accumulating cadmium metal. 
 Rorippa globosa  also shows Cd-hyperaccumulation charac-
teristic by showing a unique property of antagonistic effect 
on the growth and biomass concentration in the presence of 
arsenic metal. Two phase planting is proposed in case of 
 Rorippa globosa  for effective accumulation and extraction-
based phytoremediation protocols for cadmium metal. The 
hyperaccumulating capabilities of  Amaranthus species  are 
quite noticeable for Ni and Cd metals. The role of NPK fer-
tilizer addition has also been positive on the removal capa-
bilities. The hyperaccumulating nature of plants also 
depends on type of species, soil quality, and its inherent 
control. Weeds undertaken in the current study are capable 
at suffi cient level for bioaccumulation and still they are 
capable of maintaining their growth rates and reproduction 
levels as compared with controls in studies undertaken. 
Pilot-scale studies will bring out the true application of 
these weeds; hence they should be carried out by research-
ers for recording more analysis, so they can be part of sys-
temic metallic component removal treatment plants in 
industrial and municipal level wastewaters.     

  Confl ict of Interest      No confl ict of interest reported in the current work.  
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