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Preface
As the demand for profitability and competitiveness increases in the global
marketplace, industrial manufacturing operations face a growing pressure to
maintain safety, flexibility and environmental compliance. This is a result
of pushing the operational boundaries to maximize productivity that may
sometimes compromise the safe and rational operational practices. To min-
imize costly plant shut-downs and to diminish the probability of accidents
and catastrophic events, an industrial plant is kept under close surveillance
by computerized process supervision and control systems that collect data
from process units and analyze the data to assess process status. Over
the years, analysis and diagnosis methods have evolved from simple control
charts to more sophisticated statistical techniques and signal processing
capabilities. The goal of this book is to introduce the reader to the fun-
damentals and applications of a variety of process performance evaluation
approaches, including process monitoring, controller performance monitor-
ing and fault diagnosis. The material covered represents a culmination of
decades of theoretical and practical research carried out by the authors and
is based on the early notes that supported several short courses that the
authors gave over the years. It is intended as advanced study material for
graduate students and can be used as a textbook for undergraduate or grad-
uate courses on process monitoring. By emphasizing the balance between
the practice and the theory of statistical monitoring and fault diagnosis, it
would also be an excellent reference for industrial practitioners, as well as
a resource for training courses.

The reader is expected to have a rudimentary knowledge of statistics and
have an awareness of general monitoring and control concepts such as fault
detection, diagnosis and feedback control. The book will be constructed
upon these basic building blocks, introducing new concepts and techniques
when necessary. The early chapters of the book present the reader with the
use of multivariate statistics and various tools that one can use for process
monitoring and diagnosis. This includes a chapter on empirical process
modeling and another chapter on the modeling of process signals. In later
chapters, several fault diagnosis methods and the means to discriminate
between sensor faults and process upsets are discussed in detail. Then, the
statistical modeling techniques are extended to the assessment of control
performance. The book concludes with an extensive discussion on the use
of data analysis techniques for the special case of web and sheet processes.
Several case studies are included to demonstrate the implementation of
the discussed methods and hopefully to motivate the readers to explore
these ideas further in solving their own specific problems. The focus of this



book is on continuous processes. However, there are a number of process
applications, especially in pharmaceuticals and specialty chemicals, where
the batch mode of operation is used. The monitoring of such processes has
been discussed in detail in another book by Cinar et al. [41].

For further information on the authors, the readers are referred to the
individual Web pages: Ali Cinar, www.chee.iit.edu/∼ cinar/, Ahmet Pala-
zoglu, www.chms.ucdavis.edu/research/web/pse/ahmet/, and Ferhan Kayi-
han, ietek.net/. Furthermore, for supplementary materials and corrections,
the readers can access the publisher’s Web site www.crcpress.com 1.

We are indebted to all our students and colleagues who, over the years,
set the challenges and provided the enthusiasm that helped us tackle such an
exciting and rewarding set of problems. Specifically, we would like to thank
our students S. Beaver, J. DeCicco, F. Doymaz, S. Kendra, F. Kosebalaban-
Tokatli, A. Negiz, A. Norvilas, A. Raich, W. Sun, E. Tatara, C. Undey
and J. Wong, who have conducted the research related to the techniques
discussed in the book. We thank our colleagues, Y. Arkun, F. J. Doyle III,
K. A. McDonald, T. Ogunnaike, J. A. Romagnoli and D. Smith for many
years of fruitful discussions, colored with lots of fun and good humor. We
also would like to acknowledge CRC Press / Taylor & Francis for supporting
this book project. This has been a wonderful experience for us and we hope
that our readers share our excitement about the future of the field of process
monitoring and evaluation.

Ali Cinar
Ahmet Palazoglu
Ferhan Kayihan

1Under the menu Electronic Products located on the left side of the screen, click on
Downloads & Updates. A list of books in alphabetical order with Web downloads will
appear. Locate this book by a search, or scroll down to it. After clicking on the book
title, a brief summary of the book will appear. Go to the bottom of this screen and click
on the hyperlinked ‘Download’ that is in a zip file.
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p Loadings vector (m× 1)

pi PC loading i, ordered eigenvector i of XTX

P Prediction horizon in MPC

Q Weight matrix of quality variables in PLS

q Flow rate

q Number of quality variables in a data set

q Shift operator in time series models

q−1 Backward shift operator in time series models

Q↪ R Positive definite weight matrices in MPC

R Residuals block matrix in multipass sensor FDD

Ri Range of variable i

ri Residual based on the PC model for fault i

rl Autocorrelation at lag l

rs↪index Sensor index of residuals



rx↪y Crosscorrelation between x and y

RCIj↪α Residual contribution index for jth variable with confi-
dence level α

S Covariance matrix

S A Markov state

si Score distance based on the PC model for fault i

s2
i Variance of variable i

SCIj↪α Scores contribution index for jth variable with confidence
level α

SB Between–class scatter matrix

SW Within–class scatter matrix

SY Total scatter matrix

T Scores matrix (n× a)

t Scores vector (n× 1)

T Length of observation sequence in a HMM

T Temperature

T 2 Hotelling’s T 2 statistic

TRAN Matrix defined in Eq. 7.2

U Scores matrix of quality variables in PLS

v An observation symbol in a HMM

vP Plant noise

vy Output sensor noise

w FDA vectors to maximize scatter between classes

w(t− τ) A STFT window function centered at τ

W1↪ W2 Disturbance coefficients matrix to state variables and out-
puts, respectively

W Weight matrix of process variables in PLS



W Projection matrix

x̄ Sample mean of variable x

X Process variables data matrix (x×m)

Y Quality variables data matrix (x× q)

z(k) A discrete signal evaluated at time instant k

z(t) A continuous signal evaluated at time t

Greek Characters

β Low–pass filter constant

β Vector of regression coefficients

Δ Magnitude of step change

ε Random variation (uncorrelated zero-mean Gaussian), mea-
surement error

γ# CPM performance measures (#: hist, des)

κ Ridge parameter

λ A HMM

λ Forgetting factor

λi ith eigenvalue

ω Frequency

π Initial HMM state distribution

πi Classes of events such as distinct operation modes i =
1↪ · · · ↪ g

Σ Covariance matrix

σ Standard deviation

θ Model parameters vector

θE Euclidian angle between points a and b with vertex at the
origin



θM Mahalanobis angle between a and b with vertex at origin

τ Target for the mean, first–order system time constant

Φ MPC cost function

φ Autoregressive parameter, residual Mahalanobis angle

φ(k) MPC cost function at time k

φ : X → F Nonlinear map from input space X to feature space F

ψ(t) A wavelet function

ψs↪u A wavelet function with dilation parameter s and transla-
tion parameter u

Subscripts

0↪0 Initial conditions

c Coolant

f Feed

min Minimum value of a variable

m, max Maximum values of a variable

r Reference state/value

s Steady–state

Superscripts

T Transpose of a matrix

Abbreviations

AIC Akaike information criteria

ANN Artificial neural network

AR Autoregressive



ARIMA Autoregressive integrated moving average

ARL Average run length

ARMA Autoregressive moving average

ARMAX Autoregressive moving average with exogenous inputs

ARX Autoregressive model with exogenous inputs

ASM Abnormal situation management

ASR Automatic speech recognition

BESI Backward elimination sensor identification

BJ Box-Jenkins

BSSIR Backward substitution for sensor identification and reconstruction

CC Correlation coefficient

CWT Continuous wavelet transform

CLP Closed-loop potential

CPCA Consensus principal components analysis

CPM Controller performance monitoring

CQI Continuous quality improvement

CSTR Continuous stirred tank reactor

CUMPRESS Cumulative prediction sum of squares

CUSUM Cumulative sum

CV Canonical variate

CVA Canonical variates analysis

CVSS Canonical variate state space (models)

CL Centerline of SPM chart

DWT Discrete wavelet transform

DCS Distributed control system

DMC Dynamic matrix control



ECM Expected cost of misclassification

EM Expectation maximization

EWMA Exponentially weighted moving average

FDA Fisher’s discriminant analysis

FDD Fault detection and diagnosis

FFT Fast Fourier transform

FPE Final prediction error

FT Fourier transform

GUI Graphical user interface

HMM Hidden Markov model

HMT Hidden Markov tree

HPCA Hierarchical principal components analysis

HPLS Hierarchical partial least squares

HTST High–temperature short–time pasteurization

ICA Independent component analysis

KBS Knowledge–based system

KDE Kernel density estimation

LCL Lower control limit

LWL Lower warning limit

LFCM Liquid–fed ceramic melter

LQG Linear quadratic Gaussian (control problem)

LV Latent variable

MSE Mean square error

MA Moving average

MBPCA Multiblock principal components analysis

MBPLS Multiblock partial least squares



MIMO Multi–input multi–output

MM Moving median filter

MPC Model predictive control

MSPM Multivariate statistical process monitoring

MV Multivariate

MVC Minimum variance control

NAR Nonlinear autoregressive

NARMAX Nonlinear ARMAX

NLPCA Nonlinear principal components analysis

NLTS Nonlinear time series

NO Normal operation

NOR Normal operating region

O–NLPCA Orthogonal nonlinear principal components analysis

OE Output error

PC Principal component

PCA Principal components analysis

PCD Parameter change detection (method)

PCR Principal components regression

PLS Partial least squares (Projection to latent structures)

PLS Partial least squares

PRESS Prediction sum of squares

RSVS Redundant sensor voting system

RTKBS Real–time knowledge–based systems

RVWLS Recursive variable weighted least squares

RWLS Recursive weighted least squares

SPE Squared prediction error



SFCM Slurry–fed ceramic melter

SISO Single–input single-output

SNR Signal–to–noise ratio

SPC Statistical process control

SPM Statistical process monitoring

SQC Statistical quality control

STFT Short–time Fourier transform

SV Singular values or support vectors

SVD Singular value decomposition

SVM Support vector machine

UCL Upper control limit

UWL Upper warning limit

WT Wavelet transform
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Introduction

Today, a number of process and controller performance monitoring tech-
niques can provide an inexpensive, algorithmic means to assure and main-
tain process quality and safety without resorting to costly investments in
hardware. These techniques also help maximize hardware utilization and
efficiency. This book represents a compilation and overview of such tech-
niques to help the reader gain a healthy understanding of the fundamentals
and the current developments and get a glimpse of what the future may
hold. This book is intended to be a resource and a reference source for
those who are interested in evaluating the potential of these techniques for
specific applications, and learn their strengths and limitations.

The goal of statistical process monitoring (SPM) is to detect the oc-
currence and the nature of operational changes that cause a process to
deviate from its desired target. The methodology for detecting changes is
based on statistical techniques that deal with the collection, classification,
analysis and interpretation of data. This, then, needs to be followed by
process diagnosis that aims at locating the root cause of the process change
and enables the process operators to take necessary actions to correct the
situation, thereby returning the process back to its desired operation.

The detection and diagnosis tasks can be carried out on the process
measurements to obtain critical insights into the performance of not only
the process itself but also the automatic control system that is deployed
to assure normal operation. Today, the integration of such tasks into the
process control software associated with Distributed Control Systems (D-
CS) is in progress. The technologies continue to advance, especially in the
incorporation of multivariate statistics as well as recent developments in
signal processing methods such as wavelets and hidden Markov models.

This chapter will first present the motivations behind the application of
various statistical techniques to process measurements along with a histor-
ical view of the key technological developments in this area. This will be
followed by an overview of each chapter to help guide the reader.

1
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1.1 Motivation and Historical Perspective

Traditional statistical process control (SPC) has focused on monitoring
quality variables based on reports from the quality control laboratory and
if the quality variables are outside the range of their specifications, making
adjustments to recover their desired levels (hence controlling the process).
Often, on-line analyzers/sensors may not be available or may be costly for
certain quality attributes (e.g., saltiness of potato chips, trace impurity con-
tent of an aqueous stream, number average molecular weight of a polymer)
and could require analytical tests that yield results in hours or days. Today,
for swift and robust detection of abnormal process operation, the process
variables, that are much more frequently and directly measured, are used
to infer process status. In other words, system temperatures, pressures and
stream flow rates can be used as indicators of certain product properties
in an indirect but often reliable manner. An added advantage of the use of
process variables is their direct link to process faults, reducing the time for
fault diagnosis.

With the ever-increasing recognition of the consequences of plant acci-
dents on the plant personnel and the surrounding communities [216], the
use of process variables in determining the process status has become an
integral element of abnormal situation management (ASM) practices. Nat-
urally, statistical techniques have been in the forefront of tools that have
been employed by plant operators to avoid plant failures and catastrophic
events. A consortium, called ASM, led by Honeywell and several chemical
and petrochemical companies (www.asmconsortium.com) was established
in 1992 and continues to offer technology solutions on alarm management
and decision support systems.

From a historical perspective, with the introduction of univariate con-
trol charts by Walter A. Shewhart [267] of Bell Labs, the statistical quality
control (SQC) has become an essential element of quality assurance efforts
in the manufacturing industry. It was W.E. Deming who championed Shew-
hart’s use of statistical measures for quality monitoring and established a
series of quality management principles that resulted in substantial business
improvements both in Japan and the U.S. [52].

The leading edge research conducted at Kodak during the 1970s and
1980s resulted in J.E. Jackson’s landmark papers and book [120, 121, 122]
that reformulated the SQC concepts within the context of multivariate
statistics. The key element of these techniques was the Principal Compo-
nents Analysis (PCA) that was introduced much earlier by K. Pearson in
1901 [225, 226] and H. Hotelling in 1933 [113]. In fact, the history of P-
CA can be traced back to the 1870s when E. Beltrami and C. Jordan first
formulated the singular value decomposition. PCA reveals the key direc-
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tions in the data set that exhibit the largest variance, by exploiting the
cross correlations among the set of variables considered. The manifestation
of multivariate statistics in regression modeling has been the developmen-
t of partial least squares (PLS) by H. Wold [331] and later by S. Wold
and H. Martens [85]. These concepts have been introduced to the chemi-
cal engineering community by J.F. MacGregor who led the deployment of
key technological advances in continuous and batch monitoring to a variety
of industrial applications [146, 153]. These efforts were complemented by
the development of performance indexes that quantify the effectiveness of
control systems by Harris [103].

One of the most influential books on the subject of PCA was by I.T.
Jolliffe [128] who published recently a new edition [129] of his book. The
book by Smilde et al. [276] is the most recent contribution to the literature
on multivariate statistics, with special emphasis on chemical systems. Two
books coauthored by R. Braatz [38, 260] review a number of fault detection
and diagnosis techniques for chemical processes. Cinar [41] coauthored
a book on monitoring of batch fermentation and fault diagnosis in batch
process operations.

The use of mathematical and statistical modeling methods to relate
chemical data sets to the state of the chemical system is referred to as
chemometrics. A key figure in the development of chemometrics and its
application to industrial problems has been B.R. Kowalski [18, 147, 319]
who led the Center for Process Analytical Chemistry (CPAC) that was es-
tablished in 1984. To aid qualitative and quantitative analysis of chemical
data, Eigenvector Technologies Inc., a developer of independent commer-
cial software, has provided a number of software solutions, primarily as a
Matlab� Toolbox [328].

The industrial importance of monitoring technologies in the sheet and
web forming processes has been emphasized chiefly by DuPont in their
polymer manufacturing activities and by Weyerhaeuser in papermaking.
Among many academic contributions towards the fundamental develop-
ment of both control and monitoring methodologies for sheet processes, the
works of Rawlings and Chien [244], Rigopoulos et al. [250, 251], Jiao et al.
[124], Featherstone and Braatz [73] and Skelton et al. [275] are particularly
significant.

There is a substantial body of work, with a new emphasis, now origi-
nating from China and Singapore, as well as from academic institutions in
Taiwan, Korea and Hong Kong that aim to respond to the ever-increasing
demands on quality assurance in the expanding local manufacturing indus-
tries (see, for example, [28, 84]).

Many industrial corporations espoused continuous quality control (C-
QI) using six-sigma principles [4] which establish management strategies to
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maintain product quality levels. The material presented in this book pro-
vide the framework and the tools to implement six-sigma on multivariate
processes.

1.2 Outline

The book follows a rational presentation structure, starting with the fun-
damentals of univariate statistical techniques and a discussion on the im-
plementation issues in Chapter 2. After stating the limitations of univari-
ate techniques, Chapter 3 focuses on a number of multivariate statistical
techniques that permit the evaluation of process performance and provide
diagnostic insight. To exploit the information content of process measure-
ments even further, Chapter 4 introduces several modeling strategies that
are based on the utilization of input-output process data. Chapter 5 pro-
vides statistical process monitoring techniques for continuous processes and
three case studies that demonstrate the techniques.

Complementary to the statistical techniques presented before, Chapter
6 reviews a number of process signal modeling methods that originally e-
merged from the signal processing community, and shows how they can
be utilized in the context of process monitoring and diagnosis. Chapter 7
presents several case studies that show how the techniques can be imple-
mented. The special case of sensor failures and their detection and diagnosis
is considered worthy of a separate chapter (Chapter 8).

When a failure occurs during operation, the cause can be attributed not
only to the process equipment, or the sensor network but also to the con-
troller. Controller performance monitoring (CPM), considered as a subset
of plantwide process monitoring and diagnosis activities, deserves a separate
discussion. Thus, Chapter 9 provides an overview of controller performance
monitoring tools and offers a case study to illustrate the key concepts.

The final chapter (Chapter 10) focuses on web and sheet forming pro-
cesses. It demonstrates how the statistical techniques can be applied to
evaluate process and control performance for quality assurance and to ac-
quire fundamental insight towards the operation of such processes.

The Nomenclature section defines the variables and special characters as
well as the acronyms used in the book. The reader is cautioned that, given
the breadth of the subjects covered, to sustain a consistent nomenclature in
the book and still be able to maintain fidelity to the traditional (historical)
use of nomenclature for various techniques is a difficult if not an impossible
task. Yet, the use of various indices and variable definitions should be
clear within the context of each technique, and every attempt is made to
eliminate potential conflicts. In addition, given the uniqueness of web and
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sheet processes, the nomenclature in Chapter 10 should be regarded as
mostly independent of the rest of the book.

The reader should consult the Publisher’s Web site www.crcpress.com
for supplementary materials and updates.





2

Univariate Statistical
Monitoring Techniques

Traditional approaches in process performance evaluation rely on charac-
teristics and time trends of critical process variables such as controlled
variables and manipulated variables. Ranges of variation of these variables,
their frequency of reaching hard constraints, or any abnormal trends in their
behavior have been used by many experienced plant personnel to track pro-
cess performance. Variances of these variables and their histograms have
also been used. More formal techniques for process performance evalua-
tion rely on the extension of statistical process control (SPC) to continuous
processes.

The first applications of SPC were in discrete parts manufacturing.
When the measured dimensions of a machined part were significantly differ-
ent from their desirable values (exceeding the tolerances), the manufactur-
ing operation was stopped, adjustments were made and the manufacturing
unit was restarted. Work stoppage for adjustment had a cost in terms of
lost production time and parts manufactured during startup that do not
meet the specifications. Consequently, manufacturing was interrupted to
‘control’ the process when the cost of off-specification production exceeded
the cost of adjustment. The statistical techniques and graphical tools to
assess this trade-off were called statistical process control. Adjustments in
continuous processes such as distillation, reforming or catalytic cracking in
refineries do not necessitate work stoppage, but the material and/or energy
flow to the process is adjusted incrementally. Hence, there are no contribu-
tions to the cost of adjustment from work stoppage. Adjustments are made
frequently by using automatic control techniques such as feedback and/or
feedforward control [253]. To discriminate such control from SPC, the term
engineering process control has been used in the SPC community. In fact,
the task of performance evaluation has become ‘monitoring’ the operation of
the process (which may be regulated using automatic control techniques) to

7
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determine if the process is performing as desired. Consequently, the terms
statistical process monitoring (SPM) and automatic control are used in this
book.

Process monitoring is implemented as a periodically repeated hypoth-
esis testing that checks if

• the mean value of a process variable has not shifted away from its
target value, and

• the spread of a process variable has not changed significantly.

Simple graphical procedures (monitoring charts) are used to emulate hy-
pothesis testing.

Some statistics concepts such as mean, range, and variance, test of hy-
pothesis, and Type I and Type II errors are introduced in Section 2.1.
Various univariate SPM techniques are presented in Section 2.2. The crit-
ical assumptions in these techniques include independence and identical
distribution (iid) of data. The independence assumption is violated if data
are autocorrelated. Section 2.3 illustrates the pitfalls of using such SPM
techniques with strongly autocorrelated data and outlines SPM techniques
for autocorrelated data. Section 2.4 presents the shortcomings of using
univariate SPM techniques for multivariate data.

2.1 Statistics Concepts

One or more observations may be made at each sampling instant. The
collection of all observations from a population at a specific sampling time
is called a sample. Significant variation in process behavior is detected
by monitoring changes in the location (central tendency) by inspecting
the sample mean, median, or mode, and in the sample spread (scatter)
by inspecting the sample range or standard deviation. Process variables
may have different types of probability distributions. However, if a vari-
able is influenced by many inputs having different probability distribu-
tions, then the probability distribution of the process variable approaches
Normal (Gaussian) distribution asymptotically. The central limit theo-
rem justifies the Normality assumption: Consider the independent random
variables x1, x2, · · · , xm with mean μi and variance σi , i = 1, · · · ,m. If
y = x1 + x2 + · · · + xm then the distribution of

1√∑m
i=1 σ

2
i

(
y −

m∑
i=1

μi

)
(2.1)

approaches N(0, 1) as m approaches infinity. Here, N(0, 1) denotes the
Normal probability distribution with mean 0 and variance 1.
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Table 2.1. Population and sample statistics.

Statistic Population (size mp) Sample (size ms)

Mean μ = 1
mp

∑mp

i=1 xi x̄ = 1
ms

∑ms

i=1 xi

Variance σ2 = 1
mp

∑mp

i=1(xi − μ)2 S2 = 1
ms−1

∑ms

i=1(xi − x̄)2

Range Ri = max(xi) −min(xi) i = 1, · · · ,mp or ms

The characteristics of a population that follows the Normal distribution
are summarized by its mean and variance. Variance can also be inferred
from the range of variables for small sample sizes. The convention on
summation and representation of mean values is

x̄i· =
1
m

m∑
j=1

xij , x̄·· =
1
mn

n∑
i=1

m∑
j=1

xij (2.2)

where n is the number of samples (groups) and m is the number of ob-
servations in a sample (sample size). The subscripts ‘.’ indicate the index
used in averaging. When there is no ambiguity, average values are denoted
in the book using only x̄ and ¯̄x. The population and sample statistics for
variables that have a Normal distribution are given in Table 2.1.

In chemical processes, often a single measurement of a process or a
product variable is made at a sampling instant. The lack of multiple ob-
servations limits the use of classical Shewhart charts (Section 2.2.1). The
single observation at each sampling time and the existence of random mea-
surement errors have made SPM techniques based on cumulative sums,
moving averages and moving ranges attractive for performance evaluation.

Often decisions have to be made about populations based on the infor-
mation from a sample. A statistical hypothesis is an assumption or a guess
about the population. It is expressed as a statement about the parameters
of the probability distributions of the populations. Procedures that enable
decision making whether to accept or reject a hypothesis are called tests of
hypotheses. For example, if the equality of the mean of a variable (μ) to a
value a is to be tested, the hypotheses are:

Null hypothesis: H0 : μ = a
Alternate hypothesis: H1 : μ �= a

Two kinds of errors may be committed when testing a hypothesis: re-
jecting a hypothesis when it is true, and accepting a hypothesis when it is
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false. The first is called Type I or α error. It is considered as the producer’s
risk since the manufacturer thinks that a product with acceptable proper-
ties is not acceptable to ship to customers and discards it. The second error
is called Type II or β error. This is the consumer’s risk because a defective
product has not been detected and is sent to the customer. This can be
summarized as,

Type I (α) error
(Producer’s risk):

P{reject H0 | H0 is true}

Type II (β) error
(Consumer’s risk):

P{fail to reject H0 | H0 is false}

In the development of the SPM chart, first α is selected to compute
the confidence limit for testing the hypothesis. Then, a test procedure is
designed to obtain a small value for β, if possible. α is a function of sample
size and is reduced as sample size increases. Figure 2.1 displays graphically
the α and β errors for a variable that has Normal distribution. In the upper
plot, the area under the curve to the left of the line denoting the value x = a
is the α error. In the lower plot, the mean of x has shifted from x1 to x2.
The area to the right of the line x = a denotes the β error.

x

x

Critical Value

Specified

Specified

1

Sampling
Distribution of  

assuming      true at
= 

x

μ
1H

2x

Sampling
Distribution of  

assuming      true at
= 

x

μ
0H

1x

a

x

2x

Reject       if     <      0H x a 0H x aAccept       if     >      

Figure 2.1. Type I (α) and Type II (β) errors.

The value for α error can be computed for simple SPC charts such
as Shewhart charts using theoretical derivations. For more complex SPC
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techniques this is not possible and other approaches such as computation
of average run lengths (Section 2.2.1) are used to estimate α and β errors.

2.2 Univariate SPM Techniques

The SPM techniques used for monitoring a single variable include Shew-
hart, cumulative sum (CUSUM), moving average (MA), and exponentially
weighted moving average (EWMA) charts. Shewhart charts consider only
the current observation in assessing the process performance (Figure 2.2).
CUSUM and MA charts give an equal weight to all observations that they
use in performance assessment. While CUSUM charts consider all mea-
surements since the beginning of the campaign, MA charts use a sliding
window that discards old measurements. EWMA charts use a ‘functional
sliding window’ by gradually forgetting past values and emphasizing the
information in more recent observations.

Since in most chemical processes each measurement is made only once at
each sampling time (no repeated measurements), all univariate monitoring
charts will be developed for single observations except for Shewhart charts.

Shewhart Chart CUSUM Chart

Moving Average Chart EWMA Chart

Time Time

Time Time

Figure 2.2. Schematic representation of univariate SPC charts.

2.2.1 Shewhart Control Charts

Shewhart charts indicate that a special (assignable) cause of variation is
present when the sample data point plotted is outside the control limits. A
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graphical test of hypothesis is performed by plotting the sample mean, and
the range or standard deviation and comparing them against their control
limits. A Shewhart chart is designed by specifying the centerline (CL), the
upper control limit (UCL) and the lower control limit (LCL).

V
a
ri
a
b
le

Time

Individual points

Mean

k-2 kk-1

Figure 2.3. A dot diagram of individual observations of a variable.

Two Shewhart charts (sample mean and standard deviation or the
range) are plotted simultaneously. Sample means are inspected to assess
between samples variation (process variability over time) by plotting the
Shewhart mean chart (x̄ chart, x̄ represents the average (mean) of x). How-
ever, one has to make sure that there is no significant change in within sam-
ple variation which may give an erroneous impression of changes in between
samples variation. The mean values at times k − 2 and k − 1 in Figure 2.3
look similar but within sample variation at time k−1 is significantly differ-
ent than that of the sample at time k − 2. Hence, it is misleading to state
that between sample variation is negligible and the process level is constan-
t. Within sample variations of samples at times k − 2 and k are similar,
consequently, the difference in variation between samples is meaningful.

The Range chart (R chart), or the standard deviation chart, is used
(S chart) to monitor within sample process variation or spread (process
variability at a given time). The process spread must be in-control for
proper interpretation of the x̄ chart. The x̄ chart must be used together
with a spread chart.
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The assumptions of Shewhart charts are:

• The distribution of the data is approximately Normal.

• The sample group sizes are equal.

• All sample groups are weighted equally.

• The observations are independent.

If only one observation is available, individual values can be used to de-
velop the x chart (rather than the x̄ chart) and the range chart is developed
by using the ‘moving range’ concept discussed in Subsection 2.2.3.

Describing Variation The location or central tendency of a variable is
described by its mean, median or mode. The spread or scatter of a variable
is described by its range or standard deviation. For small sample sizes
(n < 6, n = number of observations in a sampling time), the range chart
or the standard deviation chart can be used. For larger sample sizes, the
efficiency of computing the variance from the range is reduced drastically.
Hence, the standard deviation charts should be used when n > 10.

Selection of Control Limits Three parameters affect the control limit
selection:

i. the estimate of average level of the variable,

ii. the variable spread expressed as range or standard deviation, and

iii. a constant based on the probability of Type I error, α.

The ‘3σ’ (σ denoting the standard deviation of the variable) control lim-
its are the most popular control limits. The constant 3 yields a Type I
error probability of 0.00135 on each side (α = 0.0027). The control limits
expressed as a function of population standard deviation σ are:

UCL = Target + 3σ, LCL = Target − 3σ (2.3)

The x̄ chart considers only the current data value in assessing the status
of the process. Run rules have been developed to include historical infor-
mation such as trends in data. The run rules sensitize the chart, but they
also increase the false alarm probability. The warning limits are useful in
developing additional run rules in order to increase the sensitivity of Shew-
hart charts. The warning limits are established at ‘2-sigma’ level, which
corresponds to α/2=0.02275. Hence,

UWL = Target + 2σ LWL = Target− 2σ (2.4)
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If r run rules are used simultaneously and rule i has a Type I error
probability of αi, the overall Type I error probability αtotal is

αtotal = 1 −
r∏

i=1

(1 − αi) (2.5)

If 3 rules are used simultaneously and αi = 0.05, then α = 0.143. For
αi = 0.01, one would have α = 0.0297.

Run rules, also known as Western Electric Rules [323], enable decision
making based on trends in data. A process is declared out-of-control if any
run rules are met. Some of the run rules are:

• One point outside the control limits.

• Two of three consecutive points outside the 2σ warning limits but
still inside the control limits.

• Four of five consecutive points outside the 1σ limits.

• Eight consecutive points on one side of the centerline.

• Eight consecutive points forming a run up or a run down.

• A nonrandom or unusual pattern in the data.

Patterns in data could be any systematic behavior such as shifts in process
level, cyclic (periodic) behavior, stratification (points clustering around the
centerline), trends or drifts.
The Mean and Range Charts

Development of the x̄ and R charts starts with the R chart. Since the
control limits of the x̄ chart depends on process variability, its limits are
not meaningful before R is in-control.

The Range Chart
Range is the difference between the maximum and minimum observa-

tions in a sample. If there are n samples of size m, then

Ri = xmax,i − xmin,i ; R̄ =
1
n

n∑
i=1

Ri (2.6)

The random variable R/σ is called the relative range. The parameters of
its distribution depend on sample size m, with the mean being d2 (Table
2.2). For example, d2 = 1.683 for m = 3. An estimate of σ (the estimates
are denoted by a hat .̂) can be computed from the range data by using

σ̂ = R̄/d2 (2.7)
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The standard deviation of R is estimated by using the standard devia-
tion of R/σ, d3:

σ̂R = d3σ = d3
R̄

d2
(2.8)

The control limits of the R chart are

UCL,LCL = R̄± 3d3
R̄

d2
(2.9)

Defining

D3 = 1 − 3
d3

d2
and D4 = 1 + 3

d3

d2
(2.10)

the control limits of the R chart become

UCL = R̄D4 and LCL = R̄D3 . (2.11)

D4 and D3 for various values of m are given in Table 2.2.

The x̄ chart
The estimator for the mean process level (centerline) is ¯̄x. Since the

estimate of the standard deviation of the mean process level σ is R̄/d2,

σ√
m

=
R̄

d2
√
m

(2.12)

The control limits for an x̄ chart based on R are

UCL,LCL = ¯̄x±A2R̄, A2 =
3

d2
√
m

(2.13)

and the values for A2 are listed in Table 2.2.

The Mean and Standard Deviation Charts
The S chart is preferable for monitoring variation when the sample size

is large or varying from sample to sample. Although S2 is an unbiased es-
timate of σ2, the sample standard deviation S is not an unbiased estimator
of σ. For a variable with a Normal distribution, S estimates c4σ, where c4
is a parameter that depends on the sample size m. The standard deviation
of S is σ

√
1 − c24. When σ is to be estimated from past data of n samples,

S̄ =
1
n

n∑
i=1

Si (2.14)

and S̄/c4 is an unbiased estimator of σ. The exact values for c4 are given
in Table 2.2. An approximate relation based on sample size m is

c4 � 4(m− 1)
4m− 3

(2.15)
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Table 2.2. Control chart constants for various values of group size m.

X̄ and R Charts X̄ and S Charts
Chart for Chart for
Averages Averages Chart for

(X̄) Chart for Range (R) (X̄) Standard Deviation (S)

Group Control Standard Control Control Standard Control
Size Limits Deviation Limits Limits Deviation Limits
m A2 d2 D3 D4 A3 c4 B3 B4

2 1.880 1.128 - 3.267 2.659 0.7979 - 3.267
3 1.023 1.693 - 2.574 1.954 0.8862 - 2.568
4 0.729 2.059 - 2.282 1.628 0.9213 - 2.266
5 0.577 2.326 - 2.114 1.427 0.9400 - 2.089
6 0.483 2.534 - 2.004 1.287 0.9515 0.030 1.970
7 0.419 2.704 0.076 1.924 1.182 0.9594 0.118 1.882
8 0.373 2.847 0.136 1.864 1.099 0.9650 0.185 1.815
9 0.337 2.970 0.184 1.816 1.032 0.9693 0.239 1.761
10 0.308 3.078 0.223 1.777 0.975 0.9727 0.284 1.716
11 0.285 3.173 0.256 1.744 0.927 0.9754 0.321 1.679
12 0.266 3.258 0.283 1.717 0.886 0.9776 0.354 1.646
13 0.249 3.336 0.307 1.693 0.850 0.9794 0.382 1.618
14 0.235 3.407 0.328 1.672 0.817 0.9810 0.406 1.594
15 0.223 3.472 0.347 1.653 0.789 0.9823 0.428 1.572
16 0.212 3.532 0.363 1.637 0.763 0.9835 0.448 1.552
17 0.203 3.588 0.378 1.622 0.739 0.9845 0.466 1.534
18 0.194 3.640 0.391 1.608 0.718 0.9854 0.482 1.518
19 0.187 3.689 0.403 1.597 0.698 0.9862 0.497 1.503
20 0.180 3.735 0.415 1.585 0.680 0.9869 0.510 1.490
21 0.173 3.778 0.425 1.575 0.663 0.9876 0.523 1.477
22 0.167 3.819 0.434 1.566 0.647 0.9882 0.534 1.466
23 0.162 3.858 0.443 1.557 0.633 0.9887 0.545 1.455
24 0.157 3.895 0.451 1.548 0.619 0.9892 0.555 1.445
25 0.153 3.931 0.459 1.541 0.606 0.9896 0.565 1.435

UCLX̄ ,LCLX̄ = ¯̄X ± A2R̄ UCLX̄ ,LCLX̄ = ¯̄X ± A3S̄

UCLR = D4R̄ UCLS = B4S̄

LCLR = D3R̄ LCLS = B3S̄

σ̂ = R̄/d2 σ̂ = S̄/c4

D3 = 1 − 3d3/d2 D4 = 1 + 3d3/d2

The S Chart

The control limits of the S chart are

UCL,LCL = S̄ ± 3
S̄

c4

√
1 − c24 . (2.16)
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Defining the constants

B3 = 1 − 3
c4

√
1 − c24 and B4 = 1 +

3
c4

√
1 − c24 (2.17)

the limits of the S chart are expressed as

UCL = B4S̄ and LCL = B3S̄ (2.18)

The values for B3 and B4 are listed in Table 2.2.

The x̄ Chart
When σ̂ = S̄/c4, the control limits for the x̄ chart are

UCL,LCL = ¯̄x± 3
c4
√
m
S̄ (2.19)

Defining the constant A3 = 3
c4

√
m

, the limits of the x̄ chart become

UCL = ¯̄x+A3S̄ and LCL = ¯̄x−A3S̄ (2.20)

with the values of A3 given in Table 2.2.

Average Run Length
The average run length (ARL) is the average number of samples (or

sample averages) plotted in order to get an indication that the process is
out-of-control. ARL can be used to compare the efficacy of various SPC
charts and methods. ARL(0) is the in-control ARL, i.e. the ARL to gen-
erate an out-of-control signal even though in reality the process remains
in-control. The ARL to detect a shift in the mean of magnitude Δσ is
represented by ARL(Δ) where Δ is a constant and σ is the standard devi-
ation of the variable. A good chart must have a high ARL(0) (for example,
ARL(0) = 400 indicates that there is one false alarm on the average out of
400 successive samples plotted) and a low ARL(Δ) (bad news is displayed
as soon as possible).

For a Shewhart chart, the ARL is calculated from

ARL = E[R] =
1
p

(2.21)

where p is the probability that a sample exceeds the control limits, R is the
run length and E[·] denotes the expected value. For an x̄ chart with 3σ
limits, the probability that a point will be outside the control limits even
though the process is in control is p = 0.0027. Consequently, the ARL(0) is
ARL = 1/p = 1/0.0027 = 370. For other types of charts such as CUSUM,
it is difficult or impossible to derive ARL(0) values based on theoretical
arguments. Instead, the magnitude of the level change to be detected is
selected and Monte Carlo simulations are carried out to compute the run
lengths, their averages and variances.
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2.2.2 Cumulative Sum (CUSUM) Charts

The cumulative sum (CUSUM) chart incorporates all the information in a
data sequence to highlight changes in the process average level. The values
to be plotted on the chart are computed by subtracting the overall mean
μ0 from the data and then accumulating the differences. The quantity

Si =
i∑

j=1

(xj − μ0) (2.22)

is plotted against the sample number i. CUSUM charts are more effective
than Shewhart charts in detecting small process shifts, since they combine
information from several samples. When several observations are available
at each sampling time (sample size m > 1, the observation xj is replaced
by the sample average at time j, x̄j). The CUSUM values can be computed
recursively

Si = (xi − μ0) + Si−1 (2.23)

If the process is in-control at the target value μ0, the CUSUM Si should
meander randomly in the vicinity of 0. If the process mean is shifted, an
upward or downward trend will develop in the plot. Visual inspection of
changes of slope indicates the sample number (and consequently the time)
of the process shift. Even when the mean is on target, the CUSUM Si may
wander far from the zero line and give the appearance of a signal of change
in the mean. Control limits in the form of a V-mask were employed when
CUSUM charts were first proposed in order to decide that a statistically
significant change in slope has occurred and the trend of the CUSUM plot
is different than that of a random walk. CUSUM plots generated by a
computer became more popular in recent years and the V-mask has been
replaced by upper and lower confidence limits of one-sided CUSUM charts.

One-sided CUSUM charts are developed by plotting

Si =
i∑

j=1

[x̄j − (μ0 +K)] (2.24)

where K is the reference value to detect an increase in the mean level. If
Si becomes negative for μ1 > μ0, it is reset to zero. When Si exceeds the
decision interval H , a statistically significant increase in the mean level is
declared. Values for K and H can be computed from the relations:

K =
Δ
2
, H =

dΔ
2

(2.25)
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Given the α and β probabilities, the size of the shift in the mean to be
detected (Δ), and the standard deviation of the average value of the variable
x (σx̄), the parameters in Eq. 2.25 are:

δ =
Δ
σx̄

and d =
( 2
δ2

)
ln
(1 − β

α

)
(2.26)

A two-sided CUSUM chart can be generated by running two one-sided
CUSUM charts simultaneously with the upper and lower reference values.
The recursive formulae for high and low side shifts that include resetting to
zero are

SH(i) = max
[
0, x̄i − (μ0 +K) + SH(i− 1)

]
SL(i) = max

[
0, (μ0 −K) − x̄i + SL(i− 1)

]
(2.27)

respectively. The starting values are usually set to zero, SH(0) = SL(0) =
0. When SH(i) or SL(i) exceeds the decision interval H , the process is
out-of-control. ARL-based methods are usually utilized to find the chart
parameter values H and K. The rule of thumb for ARL(Δ) for detecting
a shift of magnitude Δ in the mean when Δ �= 0 and Δ > K is

ARL(Δ) = 1 +
H

Δ −K
(2.28)

2.2.3 Moving Average Monitoring Charts for Individ-
ual Measurements

Moving average (MA) charts are developed by selecting a data window
length (l) that includes the consecutive samples used for computing the
moving average. A new sample value is reported, the data window is moved
by one sampling time increment, deleting the oldest data and including the
most recent one. In MA charts, averages of the consecutive data groups
of size l are plotted. The control limit computations are based on aver-
ages and standard deviation values computed from moving ranges. Since
each MA point has (l − 1) common data points, the successive MAs are
highly autocorrelated (autocorrelation is presented in Section 2.3). This au-
tocorrelation is ignored in the usual construction of these charts. The MA
control charts should not be used with strongly autocorrelated data. The
MA charts detect small drifts efficiently (better than x̄ chart) and they
can be used when the original data do not have Normal distribution. The
disadvantages of the MA charts are slow response to sudden shifts in level
and the generation of autocorrelation in computed values.

Three approaches can be used for estimating S for individual measure-
ments:
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1. If a rational blocking of data exists, compute an estimate of S based
on it. It is advisable to compare this estimate with the estimates
obtained by using the other methods to check for discrepancies.

2. The overall S estimate. Use all the data together to calculate an
overall standard deviation. This estimate of S will be inflated by the
between-sample variation. Thus, it is an upper bound for Ŝ. If there
are changes in process level, compute S for each segment separately,
then combine them by using

Sw =

√√√√∑h
i=1(mi − 1)S2

i∑h
i=1(mi − 1)

(2.29)

where h is the number of segments with different process levels and
mi is the number of observations in each sample.

3. Estimation of S by moving ranges of l successive data points. Use
differences of successive observations as if they were ranges of n ob-
servations. A plot of S for group size l versus l will indicate if there is
between-sample variation. If the plot is flat, the between-sample vari-
ation is insignificant. This approach should not be used if there is a
trend in data. If there are missing observations, all groups containing
them should be excluded from computations.

The procedure for estimating S by moving ranges is:

1. Calculate moving ranges of size l, l = 2, 3, · · · , using 25 to 100 obser-
vations.

MR(k) =| max(xi) −min(xi) | , i = (k − l + 1), k (2.30)

2. Calculate the mean of the ranges for each l.

3. Divide the result of Step 2 by d2 (Table 2.2) (for each l).

4. Tabulate and plot results for all l.

Process Level Monitoring by Moving Average (MA) Charts
In a moving average chart, the averages of consecutive groups of size l

are computed and plotted. The control limit computations are based on
these averages. Several original data points at the start and end of the
chart are excluded, since there are not enough data to compute the moving
average at these times. The procedure for developing the MA chart consists
of the following steps:
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1. Compute the moving average MA(k) of span l at time k as

MA(k) =
x(k) + x(k − 1) + · · · + x(k − l + 1)

l
(2.31)

2. Compute the variance of MA(k)

V (MA(k)) =
1
l2

k∑
i=k−l+1

V (xi) =
σ2

l
(2.32)

Hence, σ = S̄/c4
√
l or σ = MR/d2, using MR for R̄. The values for

the parameters c4 and d2 are listed in Table 2.2.

3. Compute the control limits with the centerline at x̄:

UCL,LCL = x̄± 3S̄
c4
√
l

or = x̄± 3MR

d2
(2.33)

In general, the span l and the magnitude of the shift to be detected are
inversely related.

Spread Monitoring by Moving Range Charts
In a moving range chart, the range of two consecutive sample groups of

size l are computed and plotted. For l ≥ 2,

MR(k) =| max(xi) −min(xi) | , i = (k − l + 1), k (2.34)

The computation procedure is:

1. Select the range size l. Often l = 2.

2. Obtain estimates of MR and σ = MR/d2 by using the moving ranges
MR(k) of length l. For a total of n samples:

MR =
1

n− l + 1

n−l+1∑
k=1

MR(k) (2.35)

3. Compute the control limits with the centerline at MR:

LCL = D3MR, UCL = D4MR (2.36)

The values for the parameters D3 and D4 are listed in Table 2.2 and
σR = d3R̄/d2, and d2 and d3 depend on l.
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2.2.4 Exponentially Weighted Moving Average Chart

The exponentially weighted moving average (EWMA) z(k) is defined as

z(k) = wx(k) + (1 − w)z(k − 1) (2.37)

where 0 < w ≤ 1 is a constant weight, x(k) is the sample at time k, and the
starting value at k = 1 is z(0) = x̄. EWMA attaches a higher weight to more
recent data and has a fading memory where old data are discarded from
the average. Since the EWMA is a weighted average of several consecutive
observations, it is insensitive to nonnormality in the distribution of the
data. It is a very useful chart for plotting individual observations (m = 1).
If x(k) are independent random variables with variance σ2, the variance of
z(k) is

σ2
z(k) = σ2

( w

2 − w

)[
1 − (1 − w)2k

]
(2.38)

The last term in brackets in Eq. 2.38 quickly approaches 1 as k increases and
the variance reaches a limiting value. Often the asymptotic expression for
the variance is used for computing the control limits. The weight constant
w determines the memory of EWMA, the rate of decay of past sample
information. For w = 1, the chart becomes a Shewhart chart. As w → 0,
EWMA approaches CUSUM. A good value for most cases is in the range
0.2 ≤ w ≤ 0.3. A more appropriate value of w for a specific application can
be computed by considering the ARL for detecting a specific magnitude
of level shift or by searching w which minimizes the prediction error for
a historical data set by an iterative least squares procedure. 50 or more
observations should be utilized in such procedures. EWMA is also known
as geometric moving average, exponential smoothing, or first-order filter
(Section 6.2.1).

Upper and the lower control limits for an EWMA chart are calculated as

UCL(k) = μ0 + 3σz(k)

CL = μ0 (2.39)
LCL(k) = μ0 − 3σz(k)

2.3 Monitoring Tools for Autocorreleated
Data

Whenever there are inertial elements (capacity) in a process such as storage
tanks, reactors or separation columns, the observations from such processes
exhibit serial correlation over time. Successive observations are related to
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each other. Characteristics of process disturbances in continuous processes
include:

• Changes in level – typical forms of disturbance trajectories include
step changes and exponential (overdamped) variations usually ob-
served, for example, in feed composition, temperature or impurity
levels,

• Drifts, ramps, or meandering trajectories that describe catalyst deac-
tivation, fouling of heat transfer surfaces,

• Random variations such as erratic pump or control valve behavior.

The process mean μ(k) at time k varies over time with respect to the
target or nominal value for the mean τ :

μ(k) − τ = φ(μ(k − 1) − τ) + ε(k) + δ0(k)Γ (2.40)

where ε(k) is an iid random variation in the mean, ‘driving force’ for random
disturbances, φ is an autoregressive parameter −1 ≤ φ ≤ 1, and Γ is the
magnitude of an abrupt (step) or sustained incremental (ramp) level change
in the variable. The serial correlation is mathematically described by the
autoregressive term φ.

The strength of correlation dies out as the number of sampling intervals
between observations increases. In other words, as the sampling interval
increases, the correlation between successive samples decreases. In some
industrial monitoring systems, a large sampling interval is selected in order
to reduce correlation. The penalty for this mode of operation is loss of
information about the dynamic behavior of the process. Such policies for
circumventing the effects of autocorrelation in data should be avoided.

Statistics for Correlated Data
The correlation between observations made at different times (auto-

correlation) is described mathematically by computing the autocorrelation
function, the degree of correlation between observations made k time units
apart (k = 1, 2, · · · ). The correlation coefficient is a measure of the linear
association between two variables. It does not describe a cause-and-effect
relation. The autocorrelation depends on sampling interval. Most statis-
tical and mathematical software packages include routines for computing
correlation and autocorrelation.

The sample correlation function between two variables x and y is de-
noted by rx,y and it is equal to:

rx,y =
∑n

k=1(x(k) − x̄)(y(k) − ȳ)[∑n
k=1(x(k) − x̄)2

∑n
k=1(y(k) − ȳ)2

]1/2
(2.41)
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where x̄ and ȳ are the sample means for x and y, respectively.
If the variable y is variable x shifted by l sampling times, the correlation

between time shifted values of the same variable are described by

rx(k),x(k−l) = rl =
∑n−l

k=1(x(k) − x̄)(x(k − l) − x̄)∑n
k=1(x(k) − x̄)2

(2.42)

Since the time series of only one variable is involved and the time lag l
between the two time series is the parameter that changes, the autocorre-
lation coefficient is represented by rl. The upper limit of the summation in
the denominator varies with l. In order to have an equal number of data
in both series, n− l values are used in the summation.

The plot of autocorrelation rl versus lag l is called autocorrelation func-
tion or correlogram. Usually the autocorrelation for l = n/5 lags are com-
puted. Confidence intervals on individual sample autocorrelations can be
computed for hypothesis testing: The approximate 95 % confidence interval
for an individual rt based on the assumption that all sample autocorrela-
tions are equal to zero is ±2/

√
n.

A simple procedure is used for determining the number of lags l with
non-zero autocorrelation:

• Compute the first l = n/5 autocorrelations.

• Compute the confidence interval ±2/
√
n

• Check if any autocorrelation coefficient is outside the confidence lim-
it. Visual inspection of the plot of the autocorrelation function and
numerical comparison of the autocorrelation coefficients with the con-
fidence limits are the popular methods for the assessment of autocor-
relation in data.

In general, the magnitude of rl decreases as l increases.

Effects of Autocorrelation on SPC Methods
A process described by

x(k) = μ(k) + ε1(k)
μ(k) − τ = φ(μ(k − 1) − τ) + ε2(k) + δ(k0)Δ (2.43)

where ε1(k) and ε2(k) are iid random variables, φ is the autoregressive
parameter with −1 ≤ φ ≤ 1, μ(k) is the process mean at time k, and τ is
the target or nominal value for the mean. Here, ε1(k) denotes the inherent
variability in the process due to causes such as measurement errors and
ε2(k) the random variation in the mean, ‘driving force’ for the disturbances.
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Table 2.3. ARL for detecting a fault of magnitude δ by CUSUM and EWMA
charts for two levels of φ.

CUSUM EWMA
δ σε1 φ = 0.25 φ = 0.75 φ = 0.25 φ = 0.75
0 0.9 383 188 355 186
0 0.1 130 35 136 36

0.5 0.9 37 37 37 37
0.5 0.1 32 27 31 27
1 0.9 11 16 10.7 14
1 0.1 11 16 4.3 15.6
2 0.9 4.4 7 4.2 6.7
2 0.1 4.6 8 4.2 7.5

Simulation studies were conducted to determine the effect of low and high
values of φ and low and high values of σε on the ARL of CUSUM and
EWMA charts [104]. The chart parameters were CUSUM: K = 0.5 and
H = 5; and EWMA: w = 0.18 and UCL = 2.9σz. The ARLs for a step
change in the mean introduced at k0 = 1 with a magnitude of Δ = (1−φ)Δ∗

(hence, the ultimate mean shift magnitude is Δ∗) were tabulated.
A subset of the ARL results from this study listed in Table 2.3 indicate

that the in-control ARL are very sensitive to the presence of autocorrela-
tion, but the detection capabilities of CUSUM and EWMA for true shifts
are not significantly affected. In the absence of autocorrelation, the ARL(0)
for CUSUM is 465 and that for EWMA is 452. The ARL(0) for low levels
of autocorrelation (φ = 0.25) are 383 and 355, respectively, and they drop
drastically to 188 and 186 for high levels of autocorrelation (φ = 0.75),
increasing the false alarm rates by a factor of 2.5.

The effects of autocorrelation on monitoring charts have also been re-
ported by other researchers for Shewhart [186] and CUSUM [343, 6] charts.
Modification of the control limits of monitoring charts by assuming that
the process can be represented by an autoregressive time series model (see
Section 4.4 for terminology) of order 1 or 2, and use of recursive Kalman
filter techniques for eliminating autocorrelation from process data have also
been proposed

[66].
Two alternative methods for monitoring processes with autocorrelated

data are discussed in the following sections. One method relies on the
existence of a process model that can predict the observations and computes
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the residuals between the predicted and computed values at each sampling
time. As described in Section 2.3.1, it assumes that the residuals will have a
Normal distribution with zero mean and consequently regular SPM charts
could be used on the residuals to monitor process behavior. The second
method uses a process model as well, but here the model is updated at each
sampling time using the latest observations. As outlined in Section 2.3.2,
it is assumed that model parameters will not change significantly while
there are no drastic changes in the process. Hence, SPM is implemented
by monitoring the changes in the parameters of this recursive model.

2.3.1 Monitoring with Charts of Residuals

Autocorrelation in data affects the accuracy of the charts developed based
on the iid assumption. One way to reduce the impact of autocorrelation
is to estimate the value of the observation from a model and compute
the error between the measured and estimated values. The errors, also
called residuals, are assumed to have a Normal distribution with zero mean.
Consequently regular SPM charts such as Shewhart or CUSUM charts could
be used on the residuals to monitor process behavior. This method relies
on the existence of a process model that can predict the observations at
each sampling time. Various techniques for empirical model development
are presented in Chapter 4. The most popular modeling technique for
SPM has been time series models [1, 202] outlined in Section 4.4, because
they have been used extensively in the statistics community, but in reality
any dynamic model could be used to estimate the observations. If a good
process model is available, the prediction errors (residual) e(k) = y(k)−ŷ(k)
can be used to monitor the process status. If the model provides accurate
predictions, the residuals have a Normal distribution and are independently
distributed with mean zero and constant variance (equal to the prediction
error variance).

Conventional Shewhart, CUSUM, and EWMA SPM charts can be devel-
oped for the residuals [1, 202, 173, 259]. Data points that are out-of-control
or unusual patterns on such charts indicate that the model does not rep-
resent the process any more. Often this implies that the original variable
x(k) is out-of-control. However, the model may continue to represent the
process when x(k) is out-of-control. In this case, the residuals chart does
not signal this behavior.

To reduce the burden of model development, use of EWMA equations
have been proposed as a forecasting model [202]. The accuracy of predic-
tions will depend on the representation capability of the EWMA model
for a specific process [70, 176, 261]. If the observations from a process are
positively correlated and the process mean does not drift too quickly, then
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the EWMA predictor would provide a good one-step-ahead forecast. If the
EWMA model is a good predictor, then the sequence of prediction errors
e(k) should be uncorrelated.

Considering the fact that e(k) indicates only the degree of disparity
between observations collected and their model predictions, the residual-
s charts may not be reliable for signaling significant variations in process
mean. Plots of residuals are good in detecting upsets such as events that
affect observations directly (for example sampling and measurement er-
rors). They may perform poorly in detecting shifts in the mean, especially
when the correlation is high and positive. One alternative is to develop a
Shewhart chart for the EWMA prediction errors and use it along with a
Shewhart chart of the original data. This way, the chart of the original
observations gives a clearer picture of process dynamics (the process is out-
of-control if the confidence interval excludes the target), while the residuals
chart displays process information after accounting for autocorrelation in
data (the residuals may remain small if the model continues to describe the
process behavior accurately).

2.3.2 Monitoring with Detection of Changes in Model
Parameters

An alternative SPM framework for autocorrelated data is developed by
monitoring variations in time series model parameters that are updated at
each new measurement instant. Parameter change detection with recursive
weighted least squares was used to detect changes in the parameters and
the order of a time series model that describes stock prices in financial
markets [263]. Here, the recursive least squares is extended with adaptive
forgetting.

Consider an autocorrelated process described by an autoregressive mod-
el AR(p),

y(k) = φ1y(k − 1) + · · · + φpy(k − p) + φp+1 + ε(k) (2.44)

where ε(k) is an uncorrelated zero-mean Gaussian process with variance σ2
ε

and φp+1 is the constant term (bias) parameter. The parameter change
detection (PCD) method monitors the magnitude of changes in model pa-
rameters φ(k) and signals an out-of-control status when the changes are
greater than a specified threshold value. The estimate φ̂p+1(k) for a gener-
al AR(p) model contains the process variable level ȳk implicitly as

φ̂p+1(k) = ȳk

(
1 −

p∑
i=1

φ̂i(k)

)
(2.45)



28 Chapter 2. Univariate Statistical Monitoring Techniques

The first step in the PCD monitoring scheme is to establish the null hy-
pothesis H0. An AR model is developed from calibration data. The model
information includes the model parameter vector φ̂o(n), the inverse covari-
ance matrix Po(n), and the noise (disturbance) variance σ̂2

ε . Based on this
information, the mean and variance of the model parameters are comput-
ed. The test against the alternate hypothesis involves updating of model
parameters recursively at each measurement instant through recursive vari-
able weighted least squares (RVWLS) with adaptive forgetting filter (Eqs.
2.46 – 2.49) as new measurement information becomes available. RVWLS
with adaptive forgetting algorithm is summarized next.

For the AR(p) model Eq. 2.44, the (p + 1) × 1 column vector x(k) is
defined as x(k) = [y(k − 1) y(k − 2) · · · y(k − p) 1]T where [.]T denotes
the transpose. RVWLS with adaptive forgetting is given by Eqs. 2.46 –
2.49:

φ̂(k) = φ̂(k − 1) +
P(k − 1)x(k)

(λ(k − 1) + x(k)T P(k − 1)x(k))
ε̂(k) (2.46)

P(k) =
1

λ(k − 1)

[
P(k − 1) − P(k − 1)x(k)x(k)T P(k − 1)

(λ(k − 1) + x(k)T P(k − 1)x(k))

]
(2.47)

λ(k) =
[
1 − x(k)T K(k)

]
(2.48)

K(k) =
P(k − 1)x(k)

(λ+ x(k)T P(k − 1)x(k))
(2.49)

The unit delay of the forgetting factor λ in Eqs. 2.46 – 2.49 is necessary to
avoid a solution of a quadratic equation at each time step for λ(k). This
improves the steady-state performance of the filter and allows tracking when
model parameters are changing. A λ value close to 1 averages out the effect
of ε(k) while a λ close to 0 tracks more quickly parameter variation in time.
The steady-state performance of the RVWLS when the parameters are not
time-varying deteriorates due to the estimation noise, if the value of λ is
kept away from unity. A good compromise for λ is when 0.95 ≤ λ ≤ 1.0,
which is not suitable to track fast changes in the parameters. Therefore,
a scheme is needed to make λ small when the parameters are varying and
make it close to 1 at other times.

Detection, Estimation and Discrimination
Assume that n observations are available to form the calibration data set.

The parameter estimates φ̂o(n) and the variance estimate σ̂2
ε of the noise

process ε(k) are computed. Under the null hypothesis H0, the distribution
of the parameter estimates after time n becomes φ̂(k) ∼ N(φ̂o(n),Po(n)σ̂2

ε ),
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k ≥ n. The sequential change detection algorithm is based on

P
(
| φ̂d

i (k) |, | φ̂d
i (k + 1) |, · · · , | φ̂d

i (k + nc) | > γ
√
poii(n)σ̂ε

)
≤ 0.5nc

(2.50)
where φ̂d

i (k) = φ̂i(k)− φ̂oi(n), i = 1, · · · p+ 1, k > n and poii(n) represents
the ith diagonal of the inverse covariance matrix Po(n). The design param-
eters nc and γ depend on the AR parameters: The parameter γ is a positive
valued threshold that is adjusted to reduce false alarms. The parameter nc

represents the length of a run necessary for declaring the process to be out-
of-control. The stopping time for the sequential detection is the time when
nc successive parameter estimates are outside the limits in either positive
or negative direction. The most common value for the run length nc is 7.
Once a change is detected, estimation is performed by reducing the value
of the forgetting factor λ(k) to a small value λo at that time step and then
setting λ = 1 until the filter is converged. Updated parameter estimates
are utilized to distinguish between a level and a structure change in the
underlying AR model. Proper values must be selected for n, Na, λo, nc,
and γ to design the SPM charts. The RL distribution under change and
no change conditions are used for assessing the performance of the SPM
schemes and selecting the values of the PCD method parameters.

The filter is initialized using the null hypothesis. Change detection is
done by using the stopping rule suggested by Eq. 2.50. Two indicators
are utilized to summarize the conclusions reached by the detection phase.
One indicator signals if a change is detected in model parameters and if so
which parameter has changed. The second indicator signals the direction of
change (positive or negative). Determining the values of the two indicators
concludes the detection phase of the PCD method.

If the alternate hypothesis is accepted at the detection phase, estimation
of change by PCD method is initiated by reducing the forgetting factor to
a small value at the detection instant. This will cause the filter to converge
quickly to the new values of model parameters. Shewhart charts for each
model parameter are used for observing the new identified values of the
model parameters. At this point the out-of-control decision made at the
detection phase can be reassessed. If the identified values of the parameters
are inside the range defined by the null hypothesis, then the detection
decision can be reversed and the alarm is declared false.

The discrimination phase of the method runs in parallel with the es-
timation phase. It tries to find out whether the change experienced is in
the autoregressive parameters or in the constant term (level) of the auto-
correlated process variable. The parameter estimates from the estimation
phase are used to estimate the level parameter ȳk (Eq. 2.45). If the al-
ternate hypothesis is accepted, the change experienced involves variation
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in the process mean. If the null hypothesis is accepted, then the change
experienced does not involve the level of the process variable. If the null
hypothesis is accepted, and a subset of the AR model parameters except
the constant term parameter show signs of change, it is deduced that the
AR process exhibits only a structure change. If the alternate hypothesis is
accepted and a subset of the identified AR parameters (including the con-
stant term parameter) are out-of-control, then a combined structure and
level change is experienced.

Example The PCD method is used for monitoring a laboratory-scale
spray dryer operation where fine aluminum oxide powder is produced by
drying dilute solutions of water and aluminum oxide. On-line particle size
and velocity, inlet hot air and exhaust air temperatures were measured.
The SPM scheme based on on-line temperature measurements checks if
the process is operating under the selected settings, and producing the
desired particle size distribution [213]. AR(3) models are used for both
temperatures. The exhaust air temperature is modeled by

T (k) = 0.5885T (k− 1) + 0.2385T (k− 2) + .. (2.51)
.. + 0.1595T (k− 3) + 1.5384 + e(k)

with the standard deviation of e(k) equal to 0.4414 for the in-control data
used in developing the model (Hypothesis H0) and 0.4915 for the data with
the slurry pump speed disturbance (Figure 2.4).

Figure 2.4 shows new process data where the slurry pump speed was
deliberately increased to 150% of its original value at the end of 90 sec,
while keeping all remaining process variables at their desired settings. Due
to the increased load for evaporation, the exit temperature of the air drops
below its desired level. Figure 2.4 also illustrates how well the AR(3) mod-
els generated under Ho perform in predicting the responses, despite the
slurry pump speed disturbance. Good prediction is expected, since the AR
model has a root at 0.99 for the exit temperature, acting as integrator. The
residual Shewhart charts for level and spread obtained from H0 (the AR(3)
model) perform poorly. Residual CUSUM charts signal out-of-control sta-
tus for level and spread (Figure 2.5). The level residual CUSUM (Figure
2.5a) first signals a positive deviation (false alarm).

The performance of the PCD method is displayed with Shewhart charts
of parameters for the same disturbance (Figure 2.6) with solid lines describ-
ing the 95% control limits and the dashed lines describing the symmetric
PCD scheme detection thresholds. The first AR parameter of the exit tem-
perature model (φ̂1) is diagnosed as changing in the positive direction by
the PCD method at 111.5 sec (Figure 2.6, top left). The level residual
CUSUM (Figure 2.5a) first detects an out-of-control status in the positive
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Figure 2.4. Process data (circles) and model predictions (solid line) for the
exit air temperature from the spray dryer.

Figure 2.5. CUSUM monitoring charts of exit temperature residuals: (a)
Level (mean), (b) Spread.

direction at 96 sec and then detects a negative shift at 102 sec. However,
the behavior of the constant parameter in Figure 2.7 clearly indicates a bias
shift in the negative direction.

To diagnose the kind of disturbance(s) experienced by the exit and inlet
temperatures, the charts based on the implicit levels are depicted in Figure
2.7. The implicit level points calculated are shown by circles. While the
level parameter remains essentially the same for the inlet temperature (not
shown), the implicit level of the exit temperature changes drastically after
102 sec. As a result, only a structure change is detected for the inlet
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Figure 2.6. Shewhart charts for model parameters φ1, φ2, φ3, and φ4

(constant), respectively.

temperature, while changes in both level and structure are detected for the
exit temperature.

2.4 Limitations of Univariate Monitoring Tech-
niques

In the era of single-loop control systems in chemical processing plants, there
was little infrastructure for monitoring multivariable processes by using
multivariate statistical techniques. A limited number of process and qual-
ity variables were measured in most plants, and use of univariate SPM
tools for monitoring critical process and quality variables seemed appropri-
ate. The installation of computerized data acquisition and storage systems,
the availability of inexpensive sensors for typical process variables such as
temperature, flow rate, and pressure, and the development of advanced
chemical analysis systems that can provide reliable information on quality
variables at high frequencies increased the number of variables measured at
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Figure 2.7. Diagnostic chart of dryer air exit temperature based on the
implicit level parameter.

high frequencies and enabled a data-rich plant environment. This change
accentuated the limitations of univariate SPM techniques for monitoring
multivariable processes. The critical limitation is the exclusion of the cor-
relation among various variables from the quantitative information provided
by univariate SPM tools.

The outcome of this limitation is illustrated by monitoring a two-variable
process (Figure 2.8). Shewhart charts of variables x1 and x2 are plotted a-
long with the x1−x2 biplot. The biplot shows on the x1 versus x2 plane the
observed values of x1 and x2 for each sampling time. The sampling time
stamps are not printed for simplifying the picture. Note the single data
point marked by a circled cross. According to their Shewhart charts, both
variables are in-control at all times. However, the biplot provides a different
assessment. If one were to use the confidence limits of the Shewhart charts
which form a rectangle that makes the borders of the biplot, the assessment
is identical. But if it is assumed that the two variable process has a multi-
variate Normal distribution, then the confidence limits are represented by
the ellipse that is mostly inside the rectangle of the biplot. However, most
of the area inside the rectangle is outside the ellipse, and the ends of the el-
lipse extend beyond the corners of the rectangle. Based on the multivariate
confidence limits, data points outside the ellipse are out-of-control. Hence,
the data point marked by a circled cross indicates an out-of-control situa-
tion. In contrast, the portions of the ellipse outside the rectangle (upper
left and lower right regions in the biplot) are in-control. While defective
products (represented by the data point marked by a circled cross) would
be shipped out as conforming to the specifications if univariate charts were
used, good products with x1, x2 characteristics that are inside the ellipse
but outside the rectangle would be discarded as defective.

The elliptical confidence region is generated by slicing the probability
distribution ‘bell’ in Figure 2.9 by a plane parallel to the x1, x2 base plane
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Figure 2.8. Monitoring of a two-variable process by two univariate Shewhart
charts and a biplot of x1 vs x2.

of the figure. The probability distributions of x1 or x2 are the familiar
‘bell-shaped curves’ obtained by projecting the three-dimensional bell to
the f(x1, x2) − x1 or f(x1, x2) − x2 vertical planes, respectively. Their
confidence limits yield the familiar Shewhart chart limits. But, the slicing
of the bell at a specific confidence level, given by the value of f(x1, x2),
yields an ellipse. The lengths of the major and minor axes of the ellipse are
functions of the variances of x1 and x2, while their slopes are determined
by the covariance of x1 and x2.

The shortcomings of using univariate charts for monitoring multivari-
able processes include too many false alarms, too many missed alarms and
the difficulty of visualizing and interpreting ‘the big picture’ about the pro-
cess status. Plant personnel are expected to form an opinion about the
process status by integrating and interpretation from a large number of
charts that ignore the correlation between the variables.

The appeal of multivariate process monitoring techniques is based on
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x1

f( x1, x2 )

x2

Figure 2.9. The plot of the probability distribution function of a two-
variable (x1, x2) process.

their ability to capture the correlation information neglected by univariate
monitoring techniques. Simple charts (no more complicated than Shewhart
charts) can summarize the status of the process. While the mathematical
and statistical techniques used are more complex, most multivariate process
monitoring software shield these computations from the user and provide
easy-to-interpret graphs for monitoring a process.

2.5 Summary

Various univariate statistical process monitoring techniques are discussed
in this chapter. The philosophy and implementation of Shewhart charts
are presented first. Then, cumulative sum (CUSUM) charts are introduced
for monitoring processes with individual measurements and for detecting
small changes in the mean. Moving average (MA) charts are presented and
extended to exponentially weighted moving average (EWMA) charts that
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attach more importance to recent data. Most chemical processes generate
autocorrelated data. The impact of strong autocorrelation on univariate
SPM techniques is reviewed and two SPM techniques for autocorrelated
data are introduced. Finally, the limitations of univariate SPM techniques
for monitoring multivariable processes are discussed. The statistical foun-
dations for multivariate SPM techniques are introduced in Chapter 3, vari-
ous empirical multivariable model development techniques are presented in
Chapter 4, and the multivariable SPM methods for continuous processes
are discussed in Chapter 5.



3

Multivariate Statistical
Monitoring Techniques

Many process performance evaluation techniques are based on multivariate
statistical methods. Various statistical methods that provide the founda-
tions for model development, process monitoring and diagnosis are present-
ed in this chapter. Section 3.1 introduces principal components analysis and
partial least squares. Canonical variates analysis and independent compo-
nents analysis are discussed in Sections 3.2 and 3.3. Contribution plots that
indicate process variables that have made large contributions to significant
changes in monitoring statistics are presented in Section 3.4. Statistical
methods used for diagnosis of source causes of process abnormalities de-
tected are introduced in Section 3.5. Nonlinear methods for monitoring
and diagnosis are introduced in Section 3.6.

3.1 Principal Components Analysis

Principal Components Analysis (PCA) is a multivariable statistical tech-
nique that can extract the strong correlations of a data set through a set of
empirical orthogonal functions. Its historic origins may be traced back to
the works of Beltrami in Italy (1873) and Jordan in France (1874) who inde-
pendently formulated the singular value decomposition (SVD) of a square
matrix. However, the first practical application of PCA may be attributed
to Pearson’s work in biology [226] following which it became a standard
multivariate statistical technique [3, 121, 126, 128].

PCA techniques can be used either as a detrending (filtering) tool for
efficient data analysis and visualization or as a model-building structure
to describe the expected variation under normal operation (NO). For a
particular process, NO data set covers targeted operating conditions dur-
ing satisfactory performance. PCA model is based on this representative

37
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data set. The model can be used to detect outliers in data, provide da-
ta reconciliation and monitor deviations from NO that indicate excessive
variation from normal target or unusual patterns of variation. Operation
under various known upsets can also be modeled if sufficient historical data
are available to develop automated diagnosis of source causes of abnormal
process behavior [242].

Principal components (PC) are a new set of coordinate axes that are
orthogonal to each other. The first PC indicates the direction of largest
variation in data, the second PC indicates the largest variation unexplained
by the first PC in a direction orthogonal to the first PC (Figure 3.1). The
number of PCs is usually less than the number of measured variables.

X1

X3

X2

PC1

PC2

Figure 3.1. PCs of three-dimensional data set projected on a single plane.
From [242], reproduced with permission. Copyright c© 1996 AIChE.

PCA involves the orthogonal decomposition of the set of process mea-
surements along the directions that explain the maximum variation in the
data. For a continuous process, the elements of the n × m data matrix
XD are xD,ij where i = 1, · · · , n indicates the number of samples and
j = 1, · · · ,m indicates the number of variables. To remove magnitude and
variance biases in data, XD is mean-centered and variance-scaled to get X.
Each row of X represents the time series of a process measurement with
mean 0 and variance 1 reflecting equal importance of each variable. If a
priori knowledge about the relative importance about the variables is avail-
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able, select variables can be given a slightly higher scaling weight than that
corresponding to unit variance scaling [25, 94]. The directions extracted by
the orthogonal decomposition of X are the eigenvectors pi of XTX or the
PC loadings

X = t1pT
1 + t2pT

2 + · · · + tapT
a + E (3.1)

where E is n × m matrix of residuals. The dimension a is chosen such
that most of the significant process information is taken out of E, and E
represents random error. If the directions are extracted sequentially, the
first eigenvector is lined in the direction of maximum data variance and the
second one, while being orthogonal to the first, is aligned in the direction of
maximum variance of the residual, and so forth. The residual is obtained at
each step by subtracting the variance already explained by the PC loadings
already selected, and used as the ‘data matrix’ for the computation of the
next PC loading.

The eigenvalues of the covariance matrix of X define the corresponding
amount of variance explained by each eigenvector. The projection of the
measurements (observations) onto the eigenvectors define new points in
the measurement space. These points constitute the score matrix , T whose
columns are ti given in Eq. 3.1. The relationship between T,P, and X can
also be expressed as

T = XP , X = TPT + E (3.2)

where P is an m × a matrix whose jth column is the jth eigenvector of
XTX, and T is an n× a score matrix.

The PCs can be computed by spectral decomposition [126], computa-
tion of eigenvalues and eigenvectors, or singular value decomposition. The
covariance matrix S (S=XT X/(m− 1)) of data matrix X can be decom-
posed by spectral decomposition as

S = PΛPT (3.3)

where P is a unitary matrix1 whose columns are the normalized eigenvectors
of S and Λ is a diagonal matrix that contains the ordered eigenvalues λi of
S. The scores T are computed by using the relation T = XP.

Singular value decomposition of the data matrix X is given as

X = UΣVT (3.4)

where the columns of U are the normalized eigenvectors of XXT , the
columns of V are the normalized eigenvectors of XTX, and Σ is a ‘di-
agonal’ matrix having as its elements the singular values, or the positive

1A unitary matrix A is a complex matrix in which the inverse is equal to the conjugate
of the transpose: A−1 = A∗. Orthogonal matrices are unitary. If A is a real unitary
matrix then A−1 = AT .
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square roots of the magnitude ordered eigenvalues of XT X. For an n×m
matrix X, U is n× n, V is m×m and Σ is n×m. Let the rank of X be
denoted as r, r ≤ min(m,n). The first r rows of Σ make a r × r diago-
nal matrix, the remaining n − r rows are filled with zeros. Term by term
comparison of the second equation in Eq. 3.2 and Eq. 3.4 yields

P = V and T = UΣ . (3.5)

For a data set that is described well by two PCs, the data can be
displayed in a plane. The data are scattered as an ellipse whose axes are in
the direction of PC loadings in Figure 3.1. For higher number of variables
data will be scattered as an ellipsoid.

The selection of appropriate number of PCs or the maximum significant
dimension a is critical for developing a parsimonious PCA model [120, 126,
258]. A quick method for computing an approximate value for a is to add
PCs to the model until the percent of the cumulative variation explained by
including additional PCs becomes small. The percent cumulative variation
is given as

% Cumulative V ariance =
∑a

i=1 λi∑r
i=1 λi

(3.6)

A more precise method that requires more computational time is cross-
validation [155, 332]. It is implemented by excluding part of the data,
performing PCA on the remaining data, and computing the prediction error
sum of squares (PRESS) using the data retained (excluded from model
development). The process is repeated until every observation is left out
once. The order a is selected as that minimizes the overall PRESS. Two
additional criteria for choosing the optimal number of PCs have also been
proposed by Wold [332] and Krzanowski [155], related to cross-validation.
Wold [332] proposed checking the ratio,

R =
PRESSa

RSSa−1
(3.7)

where RSSa is the residual sum of squares based on the PCA model after
adding the ath principal component. When R exceeds unity upon addition
of another PC, it suggests that the ath component did not improve the
prediction power of the model and it is better to use a − 1 components.
Another approach is based on the SCREE plots that indicate the dimension
at which the smooth decrease in the magnitude of the covariance matrix
eigenvalues appear to level off to the right of the plot [253].

PCA is simply an algebraic method of transforming the coordinate sys-
tem of a data set for more efficient description of variability. The conve-
nience of this representation is in the equivalence of data to measurable
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and meaningful physical quantities like temperatures, pressures and com-
positions. In statistical analysis and modeling, the quantification of data
variance is of great importance. PCA provides a direct method of orthogo-
nal decomposition onto a new set of basis vectors that are aligned with the
directions of maximum data variance.

The empirical formulations proposed for the automated selection of a
usually give good results in finding a that captures the dominant correla-
tions or variance in the data set with minimum number of PCs. But this
is essentially a practical matter dependent on the particular problem and
the appropriate balance between parsimony and information detail. One
approach is demonstrated in the following example.

Example Let m = 20 and n = 1000 and generate XD1 by Gaussian
random assignment of simulated data. Let X1 be the corresponding mean-
centered and variance-scaled data set, which is essentially free of any struc-
tured correlation among the variables. PCA analysis of X1 identifies the or-
thogonal eigenvectors U1 and the associated eigenvalues {λ1, ..., λ20} while
separating the marginally different variance contributions along each PC.
For this case a = 0 and the complete data representation is basically the
random contributions, X1 = X1R = E. Now generate a new set of data
XD2 by a combination of XD1 and time-variant multiple (five) correlat-
ed functions within m = 20. X2 is the corresponding mean-centered and
variance-scaled version of XD2. Note that mean-centering along the rows
of XD2 removes any possibility of retaining a static correlation structure
in X2. Thus, X2 has only random components and time dependent corre-
lated variabilities contributing towards the overall variance of the data set.
Figure 3.2 shows the comparison of two cases in terms of both eigenvalues
and variance characteristics associated with sequential PCs. Eigenvalues
are presented in a scaled form as λi/λ1 and the variance contributions are
plotted as fractional cumulative values as in Eq. 3.6. Random nature of X1

is evident in the similarity of eigenvalue magnitudes where each subsequent
value is only marginally smaller than the previous one. As a result, contri-
butions to overall variance with additional modes essentially form a linear
trend confirming similarity in variabilities explained through each PC. On
the other hand, the parts of the plots showing the characteristics of X2

reflect the distinct difference between the first three eigenvalues compared
to the rest. The scaled eigenvalue plot shows that the asymptotic trend
(slope) of the initial higher values when compared to the smaller values
differentiate the first three eigenvalues from the rest suggesting that a ≈ 3.
With a = 3, almost 70% of the total variance can be captured. Note that
starting with a + 1, the relative contributions of additional PCs can not
be clearly differentiated from the contributions of higher orders. For some
practical cases, the distinction between dominant and random modes may



42 Chapter 3. Multivariate Statistical Monitoring Techniques

not be as clear as this example demonstrates. However, combined with
specific process knowledge, the two plots presented here are always useful
in selecting the appropriate a.

Figure 3.2. Scaled eigenvalues (left) and cumulative contributions of se-
quential PCs towards total variance for two simulated data sets. First data
set has only normally distributed random numbers (circles) while the sec-
ond one has time dependent correlated variables in addition to random
noise (diamonds).

Partial Least Squares

Partial Least Squares (PLS) projections to latent structures, develops
a biased model between two blocks of variables X and Y. PLS selects
latent variables so that variation in X which is most predictive of the Y is
extracted. The PLS approach was developed in the 1970s by H. Wold for
analyzing social sciences data by estimating model parameters using the
Nonlinear Iterative Partial Squares (NIPALS). The method was further
developed in the 1980s by S. Wold and H. Martens for more complex data
structures in science and technology applications. PLS works on the sample
covariance matrix (XTY)(YTX) [338]. The original PLS methodology
provides a linear multivariate model. The modeling algorithm is described
in Section 4.3. Nonlinear extensions can be developed by using variable
transformations in the X and/or Y blocks if the nonlinearity is within
these blocks or by using a nonlinear functional form in the so-called inner
relation if the nonlinearity is between the X block and the Y block [61].
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3.2 Canonical Variates Analysis

Canonical correlation analysis identifies and quantifies the associations be-
tween two sets of variables [126]. Canonical correlation analysis is conduct-
ed by using canonical variates. Consider n observations of two random vec-
tors x and y of dimensions p and q forming data sets Xp×n and Yq×n with
Cov(X) = Σ11, Cov(X) = Σ22, and Cov(X,Y) = Σ12. Also Σ12 = ΣT

21

and without loss of generality p ≤ q.
For coefficient vectors a and b form the linear combinations u = aTX

and v = bTY. Then, for the first pair u1, v1 the the maximum correlation

max
a,b

Corr(u1, v1) = ρ1 (3.8)

is attained by the the linear combination (first canonical pair)

u1 = eT
1 Σ−1/2

11 X v1 = fT
1 Σ−1/2

22 Y (3.9)

The kth pair of canonical variates k = 2, 3, · · · p,

uk = eT
k Σ−1/2

11 X vk = fT
k Σ−1/2

22 Y (3.10)

maximizes Corr (uk, vk) = ρk among those linear combinations uncorre-
lated with the preceding k − 1 canonical variables. Here ρ2

1, ρ
2
2, · · · ρ2

p are
the eigenvalues of covariances Σ−1/2

11 Σ12Σ−1
22 Σ21Σ

−1/2
11 and e1, e2, · · ·ep

are the associated p× 1 eigenvectors. ρ2
i are also the eigenvalues of covari-

ances Σ−1/2
22 Σ21Σ−1

11 Σ12Σ
−1/2
22 with the corresponding q × 1 eigenvectors

f1, f2, · · · fp. Detailed discussion of canonical variates and canonical corre-
lations analysis are provided in most multivariate statistical analysis books
[126].

Canonical variates will be used in the formulation of subspace state–
space models in Section 4.5.

3.3 Independent Component Analysis

Independent Component Analysis (ICA) is a signal processing method for
transforming multivariate data into statistically independent components
expressed as linear combinations of observed variables [91, 119, 134]. Con-
sider a process with m zero-mean variables x = (x1 x2 · · · xm)T . The
zero-mean independent variables s = (s1 s2 · · · sl)T are defined by

x = As (3.11)
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where A is the mixing matrix of dimension m× l that will be determined.
For n samples, Eq. 3.11 becomes

X = AS (3.12)

where the dimensions of X and S are m × n and l × n, respectively. The
mathematical problem to solve is the estimation of S and A from X. A
separating matrix Wl×m is calculated to achieve this so that the compo-
nents of the reconstructed data matrix Y = WX become as independent
as possible from each other. The limitations of ICA are:

1. The signs, powers and orders of independent components (IC) can
not be estimated.

2. Only non-Gaussian ICs can be estimated, only one of them can be
Gaussian.

These limitations have little impact for their use in process monitoring
because the estimations in limitation (1) is crucial only when an exact
reconstruction of ICs is necessary and if the original signals are Gaussian,
arbitrarily selecting one of the ICs as Gaussian yields ICs that are useful
for monitoring [138].

To perform ICA, measured variables xi are first transformed to uncorre-
lated, unit-variance variables zj called sphering or prewhitening. This can
be implemented by PCA. The relationship between z and s is expressed as

z = Mx = MAs = Bs (3.13)

where M is the sphering matrix and B = MA. Since si are mutually
independent and and zj are mutually uncorrelated

E[zzT ] = BE[SST ]BT = BBT = I (3.14)

if the covariance of s, E[ssT ], is an identity matrix. Hence, B is an or-
thogonal matrix according to Eq. 3.14. Since M is determined by PCA,
estimation of A is reduced to the estimation of the orthogonal matrix B.

Kurtosis or the fourth-order cumulant is used in computing B. The
fourth-order cumulant κ4(u) of a zero-mean variable u is

κ4(u) = E[u4] − 3E[y2] (3.15)

The columns of B are obtained by minimizing or maximizing κ4(bT z) under
the constraint ‖b‖ = 1 by using a gradient method [51, 138]. A learning
algorithm based on the gradient method has the form

b(l + 1) = b(l) ± μ
{
E
[
4
(
b(l)T z

)3
z
]
− 12‖b(l)‖2b(l) + 2λb(l)

}
(3.16)
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where μ denotes a learning-rate parameter, λ a Lagrangian multiplier, and l
an iteration index. A fixed-point algorithm can be used instead of a learning
algorithm for finding the local extrema of the fourth-order cumulant [138].
The fixed-points b of Equation 3.16 satisfy

E
[
4
(
bT z

)3
z
]
− 12‖b‖2b + 2λb = 0 (3.17)

and are obtained by iteration:

b(l + 1) = λ′
{
E
[(

b(l)T z
)3

z
]
− 3‖b(l)‖2b(l)

}
(3.18)

The fixed-point algorithm for ICA is summarized by Kano et al. [138]:

1. Transform measured variables x to unit-variance uncorrelated vari-
ables z using Eq. 3.13. PCA can accomplish this transformation.

2. Start with a random initial vector bi(0) of unit norm ‖b‖ = 1. For
i ≥ 2, bi(0) is projected using

bi(0) = bi(0) − Bi−1BT
i−1bi(0) (3.19)

and then it is normalized so that ‖bi(0)‖ = 1.

Start with l = 0.

(a) bi is updated using

bi(l + 1) = E
[(

bi(l)T z
)3

z
]
− 3bi(l) (3.20)

The expected value is estimated by using a large number of sam-
ples.

(b) bi(l + 1) is projected using

bi(l + 1) = bi(l + 1) − Bi−1BT
i−1bi(l + 1) (3.21)

and normalized so that ‖bi(l + 1)‖ = 1.

(c) If |bi(l + 1)T bi(l)| is close enough to 1 go to the next step,
otherwise let l = l + 1 and go back to Step (a).

3. Let bi = bi(l + 1), i = i + 1 and go back to Step 2. This iteration
ends when i = l.

4. The independent components Y are obtained from

Y = BTZ = BTMX (3.22)

where B = Bl.
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3.4 Contribution Plots

Multivariate process monitoring techniques use measurements of process
variables to detect significant deviations in process operation from the de-
sired or normal operation (NO) and trigger the need to determine special
causes affecting the process. Multivariate monitoring charts such as T 2

and SPE charts (Section 5.1) indicate when the process goes out of con-
trol, but they do not provide information on the source causes of abnormal
process operation. The engineers and plant operators need to determine
the actual problem once an out-of-control situation is indicated. Miller
et al. [197, 198] have introduced variable contributions and contribution
plots concept to address this need. Contribution plots indicate the process
variables that have contributed significantly to inflate T 2-statistic (or D),
squared prediction error SPE-statistic (or Q) and scores. The fault diag-
nosis activity is completed by using process knowledge (of plant personnel
or a knowledge-based system) to relate these process variables to various
equipment failures and disturbances.

Contributions of process variables to the T 2-statistic.
Two different approaches for calculating variable contributions to T 2-

statistic have been proposed. The first approach introduced by Miller et
al. [198] and by MacGregor et al. [146, 177] calculates the contribution of
each process variable to a separate score. T 2 can be written as

T 2 =
m∑

i=1

t2i
λi

=
m∑

i=1

t2i
s2i

(3.23)

where, as before, ti denotes the scores, λi the eigenvalues of S, m the
number of variables, and s2i the variance of ti (the ith ordered eigenvalue
of S). Each score can be written as

ti = pT
i (x − x̄) =

m∑
j=1

pi,j(xj − x̄j) (3.24)

where pi is the loading, the eigenvector of S corresponding to λi, and
pi,j , xj , and x̄j are associated with the jth variable. The contribution of
each variable xj to the score of PC i is given by Eq. 3.24

pi,j(xj − x̄j) (3.25)

Considering that variables with high levels of contribution that are of the
same sign as the score are responsible for driving T 2 to higher values, on-
ly those variables are included in the analysis [146]. For example, only
variables with negative contributions are selected if the score is negative.
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The overall contribution of each variable is computed by summing over
all scores with high values. For each score with high values (using a thresh-
old value of 2.5, for example) the variable contributions are calculated [146].
Then, the values over all the l high scores are summed for contributions
that have the same sign as the score:

1. For all l high scores (l ≤ m):

i. Compute the contribution of variable xj to the normalized score
(ti/Si)2

contT
2

i,j =
t2i
s2i
pi,j(xj − x̄j) =

t2i
λi
pi,j(xj − x̄j) (3.26)

ii. Set contT
2

i,j to zero if it is negative (sign opposite to the score ti)

2. Calculate the total contribution of variable xj

CONT T 2

j =
l∑

i=1

(contDi,j) (3.27)

The second approach was proposed by Nomikos [217] and implement-
ed on batch process data. This approach calculates contributions of each
process variable to the T 2-statistic rather than contributions of separate
scores.

CONT T 2

j =
m∑

i=1

t2i
s2i
pi,j(xj − x̄j) (3.28)

Contributions of process variables to the SPE-statistic.
Contribution to the SPE-statistic is calculated using the individual

residuals. The contribution of variable j to the SPE at time k is

CONT SPE
j (k) = (xj(k) − x̂j(k))

2 (3.29)

For a data set of length n:

CONT SPE
j = (xj − x̂j)(xj − x̂j)T =

n∑
i=1

(ei,j)
2 (3.30)

where x̂j is the vector of predicted values of the (centered and scaled)
measured variable j (with n observations) and ej denotes the residuals.

It is always a good practice to check individual process variable plots
for those variables diagnosed as responsible for flagging an out-of-control
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situation. When the number of variables is large, analyzing contribution
plots and corresponding variable plots to reason about the faulty condi-
tion may become tedious and challenging. This analysis can be automated
and linked with real-time diagnosis [219, 304] by using knowledge-based
systems.

3.5 Linear Methods for Diagnosis

Fault diagnosis determines the source cause(s) of abnormal process oper-
ation. The fault may be one of many that are already known because of
previous experience or a new one. Fault diagnosis activity usually compares
the performance of the process (trajectories of process variables) under the
current fault to process behavior under various faults (fault signatures) to
determine the current fault. A combination of statistical techniques and
process knowledge should first be used to catalog process behaviors (fault
signatures) from historical data. Pattern-matching methods for this ac-
tivity have been proposed [270, 271, 273]. It is important to consider the
effects of data compression methods used for storing historical data when
such data are used for pattern matching and cataloging of faults [272].
The identification of fault signatures for faults that have not been deter-
mined by plant personnel may necessitate unsupervised learning. This can
be achieved by clustering (Section 3.5.1). Once data clusters with various
faults have been determined, discrimination and classification are used for
fault diagnosis [63, 79]. Two linear statistical techniques, discriminant anal-
ysis (Section 3.5.2) and Fisher’s discriminant analysis (Section 3.5.3), are
introduced to illustrate the strengths and limitations of these techniques.
Neural networks have also been used for fault classification and diagnosis
[252, 311, 312]. NN-based classification is useful when a small number of
faults in a closed set are to be diagnosed, but for more complex cases with
multiple faults or new faults NN do not provide a reliable framework and
they may converge to local optima during training. Support vector ma-
chines (SVM) provide another nonlinear technique for event classification
and fault diagnosis (Section 3.6.3).

3.5.1 Clustering

Searching the data for groupings (classes) according to some characteristics
is an important exploratory process. Cluster analysis performs grouping
(classification) on the bases of similarity measures [126]. Items and cases are
usually clustered by indicating proximity using some measure of distance or
angle. Variables are usually grouped on the basis of measures of association
such as correlation coefficients.
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The distance d(x,y) between two items x = [x1 x2 · · · xm]T and y =
[y1 y2 · · · ym]T can be expressed as the Euclidian distance,

d(x,y) =
√

(x − y)T (x − y) (3.31)

or the statistical distance (or Mahalanobis distance),

d(x,y) =
√

(x − y)T S−1(x − y) (3.32)

where S is the covariance matrix, or the Minkowski metric,

d(x,y) =

[
m∑

i=1

|xi − yi|p
]1/p

(3.33)

Other distance measures include the Canberra metric and the Czekanowski
coefficient [126]. Clustering can be hierarchical such as grouping of species
and subspecies in biology or nonhierarchical such as grouping of items. For
fault diagnosis nonhierarchical clustering is used to group data to k clusters
corresponding to k known faults.

k-means clustering is a popular nonhierarchical clustering method that
assigns each item to the cluster having the nearest centroid (mean). It was
proposed by MacQueen [178], and consists of

1. Partitioning the items into k initial clusters or specifying k initial
mean values as seed points.

2. Proceeding through the list of items by assigning an item to the clus-
ter whose mean is nearest (using a distance measure, usually the
Euclidian distance)

3. Recalculation of the mean for the cluster receiving the new new item
and the cluster losing the item.

4. Repeating Steps 2 and 3 until no more reassignments take place.

The traditional hierarchical and nonhierarchical (e.g., k -means) clus-
tering algorithms [69] have a number of drawbacks that require caution in
their implementation for time series data. The hierarchical clustering algo-
rithms assume an implicit parent-child relationship between the members
of a cluster which may not be relevant for time series data. However, they
can provide good initial estimates of patterns that may exist in the data set.
The k -means algorithm requires the estimate of the number of clusters (i.e.,
k) and its solution depends on the initial assignments as the optimization
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can get stuck in local minima. Furthermore, time series data are inher-
ently autocorrelated that violates the key assumption of independent data
elements for traditional clustering algorithms. Beaver and Palazoglu [14]
[16] proposed an agglomerative k -means algorithm that overcomes these
drawbacks and can also present the results in terms of a dendrogram, thus
facilitating the selection of final cluster solution depending on the desired
level of resolution. The algorithm is referred to as k -PCA Models as it uses
dynamic PCA as the prototype model for time series data. It is applied
to data collected from the operation of a pilot-plant that exhibits cyclic
dynamic response [15] and shows how the periods of faulty and normal
operations can be distinguished from one another.

Displaying multivariate data in low-dimensional space can be useful for
visual clustering of items. For example, plotting the scores of the first few
pairs of principal components as biplots of the first versus the second or
the third principal components can cluster normal process operation and
operation under various faults. Examples of biplots and their interpretation
for fault diagnosis are presented in Chapter 7.

Pattern-matching methods to catalog process behaviors (fault signa-
tures) from historical data have been proposed [271, 270, 273]. For high-
dimensional data, distance measures may not be enough to describe the
locations of specific clusters with respect to one another. Angle measures
provide additional information [243, 154].

3.5.2 Discriminant Analysis

Statistical discrimination and classification separate distinct sets of objects
(or events), and allocate new objects (or events) into previously defined
groups of objects, respectively [126]. Discrimination uses discrimination
criteria called discriminants for converting salient features of objects from
several known populations to quantitative information separating these
populations as much as possible. Classification sorts new objects or events
into previously labeled classes by using rules derived to optimally assign
new objects to the labelled classes. A good classification procedure should
yield few misclassifications. The probability of occurrence of an event may
be greater if it belongs to a population that has a greater likelihood of oc-
currence. A good classification rule should take these ‘prior probabilities
of occurrence’ into consideration and account for the costs associated with
misclassification.

Consider a data set with g distinct events such as normal process oper-
ation and operation under g−1 different faults. The operation type (class)
is determined on the basis of m measured variables x = [x1 x2 · · · xm]T

that are random variables. Denote the classes by πi, i = 1, · · · , g, their
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prior probability by pi i = 1, · · · , g and their probability density function-
s by fi(x). Assume that fi(x) are multivariate Normal density functions
with population and sample means μi and x̄i, respectively and population
and sample variances Σi and Si, respectively. The cost of misclassification
is c(k|i), the cost of allocating an object to πk (for k = 1, · · · , g) when it
belongs to πi (for i = 1, · · · , g). If Rk is the set of x’s classified as πk, the
probability of classifying an event as πk when it actually belongs to πi is

P (k|i) = P (classifying event as πk|πi)

=
∫

Rk

fi(x)dx i, k = 1, · · · , g (3.34)

with P (i|i) = 1 −∑g
k=1,k �=i P (k|i). The notation P (a|b) indicates the con-

ditional probability of observing a, premised on the presence of b. The
conditional expected cost of misclassification (ECM) of an event in π1 to
any other class is

ECM(π1) =
g∑

k=2

P (k|1)c(k|1) (3.35)

This conditional expected cost of misclassifying an event belonging to π1

occurs with prior probability p1 (the probability of π1). The conditional
overall expected cost of misclassification is computed by multiplying each
ECM(π1) with its prior probability and summing over all classes

ECM = p1ECM(π1) + · · · + pgECM(πg)

= p1

g∑
k=2

P (k|1)c(k|1) + p2

g∑
k=1, k �=2

P (k|2)c(k|2)

+ · · · + pg

g−1∑
k=1

P (k|g)c(k|g)

=
g∑

i=1

pi

⎛⎝ g∑
k=1, k �=i

P (k|i)c(k|i)
⎞⎠ (3.36)

The determination of the optimal classification procedure becomes selection
of mutually exclusive and exhaustive classification regions R1, R2, · · · , Rg

such that the ECM in Eq. 3.36 is minimized [126]. The classification re-
gions that minimize Eq. 3.36 are defined by allocating x to that population
πk, k = 1, · · · , g for which

g∑
i=1, i�=k

pifi(x)c(k|i) (3.37)
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is smallest [3, 126]. If all misclassification costs are equal, the event indi-
cated by data x will be assigned to that population πk for which the sum∑g

i=1, i�=k pifi(x) is smallest. Hence, the omitted term pkfk(x) is largest,
and the minimum ECM rule for equal misclassification costs becomes [126]:

Allocate x to πk if pkfk(x) > pifi(x) for all i �= k.

given prior probabilities, density functions, and misclassification costs (when
they are not equal). This classification rule is identical to the rule that max-
imizes the ‘posterior’ probability P (πk|x) (P (x) comes from πk given that
x was observed) where

P (πk|x) =
pkfk(x)∑g
i=1 pifi(x)

=
(prior) × (likelihood)∑
[(prior) × (likelihood)]

(3.38)

with k = 1, · · · , g. If the populations follow Normal distributions with
mean vectors μi, covariance matrices Σi, and generalized variance |Σi|
(determinant of the covariance), fi(x) is defined as

fi(x) =
1

(2π)p/2|Σi|1/2
exp

[
−1

2
(x − μk)TΣ−1

k (x − μk)
]

(3.39)

for i = 1, · · · , g and all misclassification costs are equal, then x is allocated
to πk if

ln pkfk(x) = ln pk − p

2
ln(2π) − 1

2
ln |Σk| − 1

2
(x − μk)T Σ−1

k (x − μk)

= max
i

ln piFi(x) (3.40)

The constant p/2 ln(2π) is the same for all populations and can be ignored
in discriminant analysis. The quadratic discrimination score for the ith
population d Q

i (x) is defined as [126]

d Q
i (x) = ln pi − 1

2
ln |Σi| − 1

2
(x−μi)

TΣ−1
i (x−μi) i = 1, · · · , g (3.41)

The generalized variance |Σi|, the prior probability pi and the Mahalanobis
distance contribute to the quadratic score d Q

i (x). Using the discriminant
scores, the minimum total probability of misclassification rule for Normal
populations and unequal covariance matrices becomes [126]:

Allocate x to πk if d Q
k (x) is the largest of all d Q

i (x), i = 1, · · · , g.
In practice, population mean and covariances (μi and Σi) are unknown.
Computations are based on historical data sets of classified observations,
and sample mean (x̄i) and covariance matrices (Si) are used in Eq. 3.41.
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A simplification is possible if the population covariance matrices Σi are
equal for all i. Then, Σi = Σ and Eq. 3.41 reduces to

d Q
i (x) = ln pi − 1

2
ln |Σ| − 1

2
(xT Σ−1x) + μT

i Σ−1x − 1
2
μT

i Σ−1μi (3.42)

Since the second and third terms are independent of i, they are the same for
all d Q

i (x) and can be ignored in classification. Since the remaining terms
consist of a constant for each i (ln pi−1/2μT

i Σμi) and a linear combination
of the components of x, a linear discriminant score is defined as

di(x) = μT
i Σ−1x − 1

2
μT

i Σ−1μi + ln pi (3.43)

An estimate of di(x) can be computed based on the pooled estimate of Σ
[126]:

d̂i(x) = x̄T
i S−1

pl x̄ − 1
2
x̄T

i S−1
pl x̄i + ln pi i = 1, · · · , g (3.44)

where

Spl =
1

n1 + n1 + · · · + ng − g
[(n1 − 1)S1 + · · · + (ng − 1)Sg] (3.45)

and ng denotes the data length (number of observations) in class g. The
minimum total probability of misclassification rule for Normal populations
with equal covariance matrices becomes [126]:

Allocate x to πk if d̂k(x) is the largest of all d̂i(x), i = 1, · · · , g.

3.5.3 Fisher’s Discriminant Analysis

Fisher suggested to transform the multivariate observations x to another
coordinate system that enhances the separation of the samples belonging
to each class πi [74]. Fisher’s discriminant analysis (FDA) is optimal in
terms of maximizing the separation among the set of classes. Suppose that
there is a set of n(= n1 + n2 + · · ·+ ng) m-dimensional (number of process
variables) samples x1, · · · ,xn belonging to classes πi, i = 1, · · · , g. The to-
tal scatter of data points (ST ) consists of two types of scatter, within-class
scatter SW and between-class scatter SB. The objective of the transforma-
tion proposed by Fisher is to maximize SB while minimizing SW . Fisher’s
approach does not require that the populations have Normal distributions,
but it implicitly assumes that the population covariance matrices are equal,
because a pooled estimate of the common covariance matrix (Spl) is used
(Eq. 3.45).
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FDA for data belonging to two classes
The transformation is based on a weighted sum of observations x. In

the case of two classes, the linear combination of the samples (x) takes
values z11, · · · , z1p1 for the observations from the first population π1 and
the values z21, · · · , z2p2 for the observations from the second population π2.
Denote the weight vector that transforms x to z by w. FDA is illustrated
for the case of two normal populations with a common covariance matrix
in Figure 3.3. First consider separation using either x1 or x2 axis. The
diagrams by the abscissa and ordinate indicate that several observations
belonging to one class (π1) are mixed with observations belonging to the
other class (π2). The linear discriminant function z = wTx defines the
line in the upper portion of Figure 3.3 that observations are projected on
in order to maximize the ratio of between-class scatter and within-class
scatter [63, 126].

Points and projections

x
1

x 2

Probability density functions for projections

 f
1
 

 f
2

π
2
 

π
1
 

× 

× 
x

1

x
2

y =  wTx 

y
2 y

1
 0.5(y

1
+y

2
)

Classify as π
2
 Classify as π

1
 

Figure 3.3. Fisher’s discriminant technique for two populations (g = 2),
π1(∗) and π2(◦), with equal covariances.

The separation of the two sets of z’s can be assessed in terms of the
difference between z̄1 and z̄2 expressed in standard deviation units:

separation =
|z̄1 − z̄2|

sz
(3.46)
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where s2z is the pooled estimate of the variance,

s2z =
1

n1 + n2 − 2

⎡⎣ n1∑
j=1

(z1j − z̄1)2 +
n2∑

j=1

(z2j − z̄2)2

⎤⎦ . (3.47)

The linear combination that maximizes the separation is [126]

ẑ = wT x = (x̄1 − x̄2)
T S−1

pl x (3.48)

which maximizes the ratio

(z̄1 − z̄2)2

s2z
=

(wT x̄1 − wT x̄2)2

wT Splw
=

(wT d)2

wTSplw
(3.49)

over all possible coefficient vectors w where d = (x̄1 − x̄2). The maximum
of the ratio in Eq. 3.49 is T 2 = (x̄1 − x̄2)T S−1

pl (x̄1 − x̄2) [126]. For two
populations with equal covariances, FDA corresponds to the particular case
of the minimum ECM rule discussed in Section 3.5.2. The first terms in
Eqs. 3.43 and 3.44 are the linear function obtained by FDA that maximizes
the univariate between-class scatter relative to the within-class scatter (Eq.
3.48) [126].

The allocation rule of a new observation x0 to classes π1 or π2 based on
FDA is [126]

Allocate x0 to π1 if

(x̄1 − x̄2)T S−1
pl x0 ≥ 1

2
(x̄1 − x̄2)TS−1

pl (x̄1 + x̄2) (3.50)

Allocate x0 to π2 otherwise.

Separation of Many Classes (g > 2)
The generalization of the within-class scatter matrix SW for g classes is

SW =
g∑

i=1

(ni − 1)Si (3.51)

where ni denotes the number of observations in class i and

Si =
1

ni − 1

ni∑
j=1

(xij − x̄i)(xij − x̄i)T x̄i =
1
ni

ni∑
j=1

xij (3.52)

represents the covariance matrix and the mean vector for class i [63].
SW /(n1 + n2 + · · · + ng − g) = Spl is an estimate of Σ. The w that
maximizes wTSBw/wT Splw also maximizes wT SBw/wTSW w.
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Define the between-class scatter matrix SB and the total scatter matrix
ST as [63, 118]:

SB =
g∑

i=1

ni(x̄i − x̄)(x̄i − x̄)T (3.53)

ST =
g∑

i=1

ni∑
j=1

(xij − x̄)(xij − x̄)T (3.54)

where x̄ is the total mean vector

x̄ =
1
n

g∑
i=1

nix̄i =
1
n

g∑
i=1

ni∑
j=1

xij (3.55)

and n =
∑g

i=1 ni denotes the total number of observations in all classes.
Equation 3.54 can be rewritten by adding −x̄i + x̄i to each term and re-
arranging the sums so that the total scatter is the sum of the within-class
scatter and the between-class scatter as [63]:

ST =
g∑

i=1

ni∑
j=1

(xij − x̄i + x̄i − x̄)(xij − x̄i + x̄i − x̄)T

=
g∑

i=1

ni∑
j=1

(xij − x̄i)(xij − x̄i)T +
g∑

i=1

ni(x̄i − x̄)(x̄i − x̄)T(3.56)

= SW + SB

The first FDA vector w1 that maximizes the scatter between classes
(SB) while minimizing the scatter within classes (SW ) is obtained as

max
W �=0

WTSBW
WT SWW

(3.57)

under the assumption of SW being invertible [63, 36]. The second FDA
vector is calculated to maximize the scatter between classes while minimiz-
ing the scatter within classes among all axes perpendicular to the first FDA
vector (w1). Additional FDA vectors are determined if necessary by using
the same maximization objective and orthogonality constraint. These F-
DA vectors wa form the columns of an optimal W that are the generalized
eigenvectors corresponding to the largest eigenvalues in

SBwa = λaSW wa (3.58)

where the magnitude ordered eigenvalues λa indicate the degree of overall
separability among the classes by linearly transforming the data onto wa
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[63, 36]. The eigenvalues in Eq. 3.58 can be computed as the roots of the
characteristic polynomial det(SB − λaSW ) = 0 and then solving (SB −
λaSW )wa = 0 directly for the eigenvectors wa [63].

Classification with FDA
FDA is used to diagnose faults by modifying the quadratic discrimina-

tion score for the ith population defined in Eq. 3.41 in the FDA framework
such that

d Q
i (x0) = ln pi − 1

2
(x0 − x̄i)T Wa

(
WT

a SiWa

)−1
WT

a (x0 − x̄i)

− 1
2

ln
[
det

(
WT

a SiWa

)]
(3.59)

where Wa contains the first a FDA vectors [36]. The allocation rule is:

Allocate x0 to πk if d Q
k (x0) is the largest of all d Q

i (x0), i = 1, · · · , g.
The classification rule in conjunction with Bayes’ rule is used [126, 36]

so that the posterior probability (Eq. 3.38) assuming
∑g

i=1 P (πk|x) = 1
that the class membership of the observation x0 is i. This assumption may
lead to a situation where the observation will be classified wrongly to one
of the fault cases which were used to develop the FDA discriminant when
an unknown fault occurs. Chiang et al. [36] proposed several screening
procedures to detect unknown faults. One of them involves FDA related
T 2-statistic before applying Eq. 3.59 as

T 2
i,a = (x − x̄i)T Wa

(
WT

a SiWa

)−1
WT

a (x − x̄i) (3.60)

so that it can be used to determine if the observation is associated with
fault class i. The threshold for T 2

i,a is defined as

T 2
α,a =

a(n− 1)(n+ 1)
n(n− a)

Fα(a, n− a) (3.61)

where Fα(a, n − a) denotes the F distribution with a and n − a degrees
of freedom [126]. Chiang et al. [36] introduced another class of data that
are collected under NO to allow the class information in the known fault
data to improve the ability to detect faults. The first step then becomes
the detection of an out-of-control situation. A threshold for NO class is
developed based on Eq. 3.61 for detection; if T 2

i,a ≥ T 2
α,a, there is an

out-of-control situation. One proceeds with calculation at thresholds for
each class i using Eq. 3.61. If T 2

i,a ≥ T 2
α,a for all i = 1, . . . , g, then the

observation x0 does not belong to any fault class i, and it is most likely
associated with an unknown fault. If T 2

i,a ≤ T 2
α,a for some fault class i,
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then x0 belongs to a known fault class. Once this is determined, Fisher’s
discriminant score in Eq. 3.59 can be used to assign it to a fault class πi

with the highest d Q
i (x0) of all d Q

i (x0), i = 1, · · · , g.
FDA and PCA can also be combined to avoid assigning an unknown

fault to one of the known fault classes [118, 36, 260]. PCA is widely used
for fault detection as discussed in Chapter 5. Chiang et al. [36] proposed
two algorithms incorporating FDA and PCA. In the first algorithm (P-
CA/FDA), PCA is used to detect unknown faults and FDA to diagnose
faults (by assigning them to fault classes). The NO class and classes with
fault conditions are used to develop the PCA model. When a new obser-
vation x0 becomes available, T 2

a value is calculated based on PCA as

T 2
a = xT

0 Paλ
−1
a PT

a x0 (3.62)

where λa is (a × a) diagonal matrix containing eigenvalues and P are the
loading vectors. A set of threshold values based on NO and the known fault
classes using Eq. 3.61 is calculated. If T 2

a ≤ T 2
α,a, it is concluded that this

is a known class (either NO or faulty) and FDA assignment rule is used to
diagnose the fault class (or NO class if it is in-control).

The second combined algorithm (FDA/PCA) deploys FDA initially to
determine the most probable fault class i. Then it uses PCA T 2-statistic
to find out if the observation x0 is truly associated with fault class i.

3.6 Nonlinear Methods for Diagnosis

This section introduces artificial neural networks, kernel-based techniques
and support vector machines to establish the basis of monitoring techniques
to be discussed in the subsequent chapters.

3.6.1 Neural Networks

Artificial neural networks (ANNs) can be used for modeling nonlinear sys-
tems, classification and fault diagnosis. ANNs have been inspired from the
way the human brain works as an information-processing system in a highly
complex, nonlinear and massively parallel fashion. Other names for ANNs
include parallel distributed processors, connectionist models (or networks),
self-organizing systems, neuro-computing systems and neuromorphic sys-
tems. ANNs have a large number of highly interconnected nodes also called
as processing elements or artificial neurons. The first computational model
of a biological neuron, the binary threshold unit was proposed by McCul-
loch and Pitts in 1943 [192]. Interest in ANNs was gradually revived in
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1980s when Rumelhart et al. [257] popularized a much faster learning pro-
cedure called back-propagation, which could train a multi-layer perceptron
to compute any desired function.

ANNs are nonlinear ‘black-box’ systems. This nonlinearity is distribut-
ed throughout the network. ANNs have the ability to adapt, or learn, in
response to variations in their environment through training. They can
be retrained to deal with minor changes in the operational and/or envi-
ronmental conditions. When operating in a non-stationary environment,
ANNs can be designed to adjust their synaptic weights in real-time. This
is valuable in adaptive pattern classification and adaptive control. ANNs
perform multivariable pattern recognition tasks very well. They can learn
from examples (training) by constructing an input-output mapping for the
system of interest. In the pattern classification case an ANN can be de-
signed to provide information about similar and unusual patterns. Training
and pattern recognition must be made by using a closed set of patterns.
All possible patterns to be recognized should be present in the data set.
A properly designed and implemented ANN is usually capable of robust
computation. Its performance degrades gracefully under adverse operating
conditions and when some of its connections are severed. ANNs have some
serious limitations as well. Training ANNs may take long times when struc-
turally complex ANNs or inappropriate optimization algorithms are used.
ANNs may not produce reliable results if the size of input-output data is
small. Their accuracy for modeling and classification improve when large
amounts of historical data rich in variations are available. Training may
cause the network to be accurate in some operating zones, but inaccurate
in others. While trying to minimize the error during training, the opti-
mization may get trapped in local minima. Like all data-based techniques,
there is no guarantee of complete reliability or accuracy. In fault diagnosis
applications, for example, ANNs may misdiagnose some faults 1% of the
time while other faults in the same domain 25% of the time. It is hard to
determine a priori (when back-propagation algorithm is used) what faults
will be prone to higher levels of misdiagnosis. There are practical problems
related to training data set selection [152, 165].

The basic structure of ANNs typically includes multi-layered, inter-
connected neurons (or computational units) that nonlinearly relate input-
output data. A nonlinear model of a neuron, which forms the core of the
ANNs is characterized by three basic attributes (Figure 3.4):

1. A set of connections (synaptic weights) describing the amount of in-
fluence a node has on nodes in the next layer; a positive weight causes
one unit to excite another, while a negative weight causes one unit to
inhibit another. The signal xj at the input synapse j connected to
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neuron k in Figure 3.4 is multiplied by weight wkj (see Eq. 3.63).

2. A summation operator of input signals, weighted by the respective
synapses of the neuron.

3. An activation function with limits on the amplitude of the output of a
neuron. The amplitude range is usually given in a closed interval [0,1]
or [-1,1]. Activation function ϕ(·) defines the output yk of a neuron
(see Eq. 3.65) in terms of the activation potential υk (see Eq. 3.64).
Typical activation functions include the unit step change and sigmoid
functions.
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Figure 3.4. A nonlinear model of a single neuron as illustrated in [107].

A neuron k can be described by the following set of equations [107]:

uk =
m∑

j=0

wkjxj (3.63)

υk = uk + bk (3.64)

and
yk = ϕ(υk) (3.65)

where x1, x2, . . . , xj , . . . , xm are the input signals; wk1, wk2, . . . , wkj , .., wkm

are the synaptic weights of neuron k, uk is the linear combiner output of the
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input signals, bk is the bias, υk is the activation potential (or induced local
field), ϕ(·) is the activation function, and yk is the output signal of the neu-
ron. The bias is an external parameter providing an affine transformation
to the output uk of the linear combiner.

Several activation functions are used as appropriate to the task at hand:

1. Threshold Function. Also known as McCulloch-Pitts model [192]

ϕ(υ) =
{

1, υ � 0
0, υ < 0. (3.66)

2. Piecewise-linear Function.

ϕ(υ) =

⎧⎨⎩
1, υ � + 1

2
υ, + 1

2 > υ > − 1
2

0, υ � − 1
2

(3.67)

where the amplification factor inside the linear region of operation is
assumed to be the unity.

3. Sigmoid Function. This S-shaped function is by far the most common
form of activation function used. A typical expression is

ϕ(υ) =
1

1 + e−aυ
(3.68)

where a is the slope parameter.

4. Hyperbolic Tangent Function. This is a form of sigmoid function but
it produces values in the range [−1,+1] instead of [0, 1]

ϕ(υ) = tanh(υ) =
eυ − e−υ

eυ + e−υ
. (3.69)

Processing units (neurons) are linked to each other to form a network as-
sociated with a learning algorithm. A neural network can be formed with
any kind of topology (architecture). In general, three kinds of network
topologies are used [107]:

• Single-layer feedforward networks include input layer of source nodes
that projects onto an output layer of neurons (computation nodes),
but not vice versa. They are also called feedforward networks. Since
the computation takes place only on the output layer nodes, the input
layer does not count as a layer (Figure 3.5(a)).
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• Multi-layer feedforward networks contain an input layer connected to
one or more layers of hidden neurons (hidden units) and an output
layer (Figure 3.5(b)). The hidden units internally transform the data
representation to extract higher-order statistics. The input signals
are applied to the neurons in the first hidden layer, the output signals
of that layer are used as inputs to the next layer, and so on for the rest
of the network. The output signals of the neurons in the output layer
reflect the overall response of the network to the activation pattern
supplied by the source nodes in the input layer. This type of network
is especially useful for pattern association (i.e., mapping input vectors
to output vectors).

• Recurrent networks differ from feedforward networks in that they have
at least one feedback loop. An example of this type of network is given
in Figure 3.5(c) which is one of the earliest recurrent networks called
Jordan network [131]. The activation values of the output units are
fed back into the input layer through a set of extra units called the
state units. Learning takes place in the connection between input and
hidden units as well as hidden and output units. Recurrent networks
are useful for pattern sequencing (i.e., following the sequences of the
network activation over time). The presence of feedback loops has
a profound impact on the learning capability of the network and on
its performance [107]. Applications to chemical process modeling and
identification have been reported [32, 310, 345].

Techniques for network architecture selection for feedforward networks
have been proposed [151, 166, 234, 317, 318]. Once the network architecture
is specified, an input-output data set is used to train the network. This
involves the computation of appropriate values for the weights associated
with each interconnection. The data are propagated forward through the
network to generate an output to be compared with the actual output, and
based on error magnitudes the weights are adjusted to minimize the error.
The overall procedure of training can be seen as learning for the network
from its environment through an interactive process of adjustments applied
to its weights and bias levels. A number of learning rules such as error-
correction, memory-based, Hebbian, competitive, Boltzmann learning have
been proposed [107] to adjust network weights.

There are two learning paradigms that determine how a network relates
to its environment. In supervised learning (learning with teacher), a teacher
provides output targets for each input pattern, and corrects the network’s
errors explicitly. The teacher has knowledge of the environment (in the
form of a historical set of input-output data) so that the neural network
is provided with desired response when a training vector is available. The
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desired response represents the optimum action to be performed to adjust
neural network weights under the influence of the training vector and er-
ror signal. The error signal is the difference between the desired response
(historical value) and the actual response (computed value) of the network.
This corrective algorithm is repeated iteratively until a preset convergence
criterion is reached. One of the most widely used supervised training algo-
rithms is the error back-propagation or generalized delta rule [257, 321]. The
alternative is learning without a teacher in which the network must find the
regularities in the training data by itself. This paradigm has two subgroup-
s: Reinforcement learning and unsupervised learning. In Reinforcement
learning/Neurodynamic programming, where learning the relationship be-
tween inputs and outputs is performed through continued interaction with
the environment to minimize a scalar index of performance [19]. In unsu-
pervised learning, or self-organized learning there is no external teacher to
oversee the learning process. Once the network is tuned to the statistical
regularities of the input data, it forms internal presentations for encoding
the input automatically [17, 107].

There are many educational and commercial software packages available
for development and deployment of ANNs. Some of those packages such
as Gensym’s NeurOn-Line� Studio include data preprocessing modules to
filter or scale data and eliminate outliers [89].

Autoassociative Neural Networks
Autoassociative neural networks provide a special five-layer network

structure (Figure 3.6) that can implement nonlinear PCA by reducing vari-
able dimensionality and producing a feature space map that retains the
maximum possible amount of information from the original data set [150].
Autoassociative neural networks use conventional feedforward connections
and sigmoidal or linear nodal transfer functions.

The network has three hidden layers, including a ‘bottleneck’ layer which
is of a smaller dimension than either the input layer or the output layer.
The network is trained to perform an identity mapping by approximating
the input information at the output layer. Since there are fewer nodes in
the bottleneck layer than the input or output layers, the bottleneck nodes
implement data compression and encode the essential information in the
inputs for its reconstruction in subsequent layers. In the NLPCA framework
and terminology, autoassociative neural networks seek to provide a mapping
of the form

T = G(X) (3.70)

where G is a nonlinear vector function composed of f individual nonlinear
functions G = [G1 G2 · · · Gf ] analogous to the loading vectors P. The
inverse transformation that reconstructs the input information and restores
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the original dimensionality of the data is implemented by a second nonlinear
vector function H = [H1 H2 · · · Hm] where m is the number of variables

X̂j = Hj(T) and E = Y − Ŷ (3.71)

where the residual E indicates the loss of information that is minimized by
the selection of functions G and H. The number of bottleneck nodes is
similar to the number of principal components retained for the selection of
the subspace dimension that retains relevant information in data.

The limitations of autoassociative NNs to implement NLPCA is dis-
cussed by Malthouse [183]. Their use in process monitoring problems is
reported in [55, 61].

3.6.2 Kernel-Based Techniques

If one does not wish to bias the boundaries of the NO region of a system,
kernel density estimation (KDE) can be used to find the contours under-
neath the joint probability density of the PC pair, starting from the one
that captures most of the information. Below, a brief review of KDE is
presented first that will be used as part of the robust monitoring tech-
nique discussed in Section 7.7. Then, the use of kernel-based methods for
formulating nonlinear Fisher’s discriminant analysis (FDA) is discussed.

A kernel is a function K such that for all u,v ∈ X

K(u,v) = 〈φ(u) · φ(v)〉 (3.72)

where φ is a mapping from the input space X to an (inner product) feature
space F and 〈·, ·〉 denotes the inner product. Some of the popular kernels
are:

• Linear support vector machines: K(u,v) = vT u

• Nonlinear support vector machines: K(u,v) = (τ + vT u)d

• Radial basis function kernel: K(u,v) = exp (−‖u− v‖2
2/σ

2)

• Multi-layer perceptron: tanh (κ1vT u + κ2)

Kernels are symmetric functions. Mercer’s theorem provides a characteri-
zation of kernels: a symmetric function K(u,v) is a kernel function if and
only if the matrix

K =
(
K(ui,vi)

)n

i,j=1
(3.73)

is positive semi-definite (has nonnegative eigenvalues) [42]. Mercer’s condi-
tion holds for all σ values in the radial basis function kernels and positive
values of τ in polynomial kernels, but not for all positive choices of κ1 and
κ2 in multi-layer perceptron kernels [287].
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Kernel Density Estimation

The density function f of any random quantity x gives a natural description
of the distribution of a data set x and allows probabilities (P ) associated
with x to be found as follows [268],

P{a < x < b} =
∫ b

a

f(x)dx ∀ a < b (3.74)

A set of observed data points is assumed to be available as samples
from an unknown probability density function. Density estimation is the
construction of an estimate of the density function from the observed da-
ta. In parametric approaches, one assumes that the data belong to one
of a known family of distributions and the required function parameters
are estimated. This approach becomes inadequate when one wants to ap-
proximate a multi-model function, or for cases where the process variables
exhibit nonlinear correlations [127]. Moreover, for most processes, the un-
derlying distribution of the data is not known and most likely does not
follow a particular class of density function. Therefore, one has to estimate
the density function using a nonparametric (unstructured) approach.

The histogram is perhaps the most common yet the simplest density
estimator. While its computational ease and graphical representation are a
benefit for univariate signals, the visualization of higher dimensional data
becomes problematic. To construct the histogram, one has to choose an
origin and a bin width. The selection of these parameters determines the
degree of smoothing inherent in the procedure. An alternative density esti-
mate is the naive estimator which can be unsatisfactory as its bin width still
needs to be established to produce a density estimate. Despite the simplici-
ty of the histogram and naive estimates, their discontinuous representation
of the density function causes difficulty if the derivatives of the estimate or
smooth representation of the estimate are required [268]. Thus, a kernel or
a wavelet density estimation method may be preferred [265, 262].

Kernel estimate with kernel K is defined by

f̂(x) =
1
nh

n∑
i=1

K

(
x− xi

h

)
(3.75)

Here, h denotes the window width, and is also referred to as the smoothing
parameter. The quality of a density estimate is primarily determined by
the choice of the parameter h, and only secondarily by the choice of the
kernel K [265, 21]. For applications, the kernel K is often selected as a
symmetric probability density function, e.g., the Normal density.

To decide how much to smooth is a critical step in density estimation. A
number of alternative measures exist to estimate h [265]. The appropriate
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choice is, in fact, influenced by the purpose for which the density estimate
is to be used. For robust monitoring (see Section 7.7), h is selected using
least squares cross-validation [256, 21].

Kernel-Based FDA

One way to extend discriminant analysis to nonlinear cases is to use kernel-
based FDA. Kernel methods embed data into a feature vector space and
detect linear relationships in that space. The linear relations include regres-
sion, classification or principal components. If the feature space is selected
‘properly’, pattern recognition can be easy. Kernel-based algorithms are
structured as two modules: A kernel function that implements embedding
of data into the feature space and a learning algorithm that learns in the
linear feature space. Kernel methods exploit information about the inner
products between data items. The inner products in feature space can be
very complex, but if the kernel is given, there is no need to specify what
features of the data are being used. Usually the kernel function type such
as polynomials, radial basis functions or splines is selected in advance ac-
cording to the nature of the application and its parameters are computed
for the specific problem information. Mercer’s theorem is used to charac-
terize if a symmetric function is a kernel. A Bayesian framework has been
developed for SVM classifiers, Gaussian processes and kernel FDA [306].

3.6.3 Support Vector Machines

When linear classification tools do not provide reliable fault diagnosis, non-
linear techniques are needed. Neural network based classification has been
implemented for over a decade for cases where a small number of faults
in a closed set are to be diagnosed [252, 63]. A shortcoming of NN-based
FD is the possibility of converging to local optima during training. Sup-
port Vector Machines (SVM) with kernel-based learning methods provide
another powerful alternative. SVMs are learning systems based on statis-
tical learning theory [308] that use a space of linear functions in a high
dimensional feature space F for classification problems. Support vectors
are representative training data points that provide the best hyperplanes
for separating various classes in the data. The aim of support vector (SV)
classification is to devise a computationally efficient way of learning ‘good’
separating hyperplanes in the feature space [42].

To learn nonlinear relations with a linear machine, a set of nonlinear
features are selected and the data are ‘rewritten’ in a new representation.
This is achieved by applying a fixed nonlinear mapping of the data to a
feature space where the linear machine can be used. The set of hypotheses
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considered can be functions

f(x) =
g∑

i=1

wiφi(x) + b (3.76)

where wi are weights, g the dimension of the feature space, b the bias, and
φ : X → F is nonlinear map from the input space X to some feature space
F [42]. The nonlinear machine can thus be constructed in two steps: (1) a
fixed nonlinear mapping transforms data into the feature space F and (2)
a linear machine is used to classify them in the feature space.

Consider a system with k pattern classes. The general pattern recog-
nition problem with k classes is to construct a decision function given l
independent and identically distributed samples of an unknown function
(x1,y1), · · · , (xl,yl) where xi (in the attribute space X) is of length d and
yi is of length k. The decision function f(x, α) is chosen from a set of func-
tions selected a priori and is defined by the parameter α for the problem
at hand. To select α, the loss L(y, f(x, α)) is minimized. For example, for
the binary pattern recognition problem (k = 2), a hyperplane is construct-
ed to separate the two classes labeled y ∈ {−1, 1} so that the distance
between the hyperplane and the nearest point (the margin) is maximized.
This yields the following optimization problem:

min JP (w, ξ) = 1
2 〈w ·w〉 + C

∑l
i=1 ξi

such that yi(〈w · xi〉 + b) ≥ 1 − ξi, i = 1, · · · , l (3.77)
ξi ≥ 0, i = 1, · · · , l

where w is the weight vector and ξi are the slack variables. The regu-
larization parameter C adjusts the trade-off between the two terms of the
objective function JP in Eq. 3.77. The first term represents model com-
plexity and the second term model accuracy that is related to classification
error in the training data. For small values of C, the model does not have
enough detail to describe the data. Large values of C cause over-fitting.
Methods for selecting optimal values of C have been developed by taking
into account the kernel function used, the noise level and the characteristics
of the feature space [130].

Linear learning machines can be expressed in a dual representation,
enabling expression of the hypotheses as a linear combination of the training
point (xi) so that the decision rule can be evaluated by using just inner
products between the test points (x) and the training points:

f(x) =
l∑

i=1

αiyi〈φ(xi) · φ(x)〉 + b . (3.78)
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Kernels are used to compute the inner product 〈φ(xi) ·φ(x)〉 directly in the
feature space as a function of input points and to merge the two steps of
the nonlinear learning machine.

The dual solution to this problem is:

max JD(α) =
∑l

i=1 αi − 1
2

∑l
i,j=1 yiyjαiαjK(xi,xj) (3.79)

such that
∑j

i=1 αiyi = 0, 0 ≤ αi ≤ C, i = 1, · · · , l
where φ denotes a mapping φ : X → F and the kernel function K(u,v) =
〈φ(u) · φ(v)〉 has been introduced instead of the linear relationship in Eq.
3.77. The resulting decision function is

f(x) = sign

[(
l∑

i=1

αiyiK(x,xi)

)
+ b

]
(3.80)

In both the dual solution and decision function, only the inner product
in the attribute space and the kernel function based on attributes appear,
but not the elements of the very high dimensional feature space. The
constraints in the dual solution imply that only the attributes closest to the
hyperplane, the so-called SVs, are involved in the expressions for weights
w. Data points that are not SVs have no influence and slight variations in
them (for example caused by noise) will not affect the solution. ξi provides
a more quantitative leverage against noise in data that may prevent linear
separation in feature space [42]. Imposing the requirement that the kernel
satisfies Mercer’s conditions (K(xi,xj)l

i,j=1 must be positive semi-definite)
means that the matrix yiyj(K(xi,xj)l

i,j=1 is also positive semi-definite.
Consequently, the optimization in Eq. 3.79 is convex and has a unique
solution that can be found efficiently, ruling out the problem of local minima
encountered in training neural networks [42].

The k-class pattern recognition problem with SVMs was initially solved
by using one-against-the-rest and one-against-one classifiers. Recently, k-
class SVMs have been proposed [324]. The optimization problem Eq. 3.79
is generalized to yield the decision function

f(x, α) = arg max
n

⎡⎣ ∑
i:yi=n

Ai〈xi · x〉 −
∑

i:yi=n

αn
i 〈xi · x〉 + bn

⎤⎦ (3.81)

where

Ai =
k∑

m=1

αm
i

and the inner product 〈xi · x〉 can be replaced with the kernel function
K(xi,xj) [324].
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3.7 Summary

Various statistical methods that provide the foundations for model devel-
opment, process monitoring and fault diagnosis are presented in this chap-
ter. Linear techniques such as principal components analysis, partial least
squares, canonical variates analysis and independent components analysis
enable the development of powerful multivariate techniques for detection
of abnormal process operation. Once an abnormality is detected and val-
idated, its source cause must be determined. One approach is the use
of contribution plots that indicate process variables that have made large
contributions to significant changes in monitoring statistics. When these
variables are identified, process knowledge is used to pin down the source
cause of the abnormality. The other alternative is the use of statistical
classification methods such as Fisher’s discriminant analysis for diagnosis
of source causes directly. Both detection and diagnosis techniques can be
developed using a nonlinear approach. Nonlinear methods like neural net-
works, kernel density estimation and support vector machine are introduced
in the last section to provide insight into the deployment of such monitoring
and diagnosis tools.
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source nodes

Output layer of
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(a) Single-layer feed-
forward network.
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(b) Multi-layer feedforward net-
work.

Input layer of
source nodes

Layer of output
neurons

Layer of hidden
neuronsState units

(c) Recurrent network as in [131].

Figure 3.5. Three fundamentally different network architectures.
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Figure 3.6. Network architecture for determination of f nonlinear factors
using an autoassociative neural network. σ indicates nodes with sigmoidal
functions, ∗ indicates nodes with sigmoidal or linear functions [150].





4

Empirical Model
Development

Process models may be developed by using either first principles such as
material and energy balances, or process input and output information (da-
ta). First principles (fundamental) models describe the internal dynamics
of the process based on physical, chemical or biological laws, and explain
the behavior of the process. But the cost of model development is high.
They may be biased by the views and speculations of the model developer,
and are limited by the lack of information about specific model parameters.
Often, some physical, chemical or transport parameters are computed
using empirical relations, or they are derived from experimental data. In
either case, there is some uncertainty about their accuracy. As details are
added to the model, it may become too complex and too large to run model
computations on the computer within an acceptable amount of time. Fun-
damental models developed may be too large for computations that are fast
enough to be used in process monitoring and control activities. These activ-
ities require fast update of model predictions so that regulation of process
operation can be made in a timely manner.

The alternative model development paradigm is based on developing
relations based on process data. Input-output models are much less expen-
sive to develop. However, they only describe the relationships between the
process inputs and outputs, and their utility is limited to features that are
included in the available data sets. There are numerous well-established
techniques for linear input-output model development. Methods for devel-
opment of linear models are easier to implement and more popular. Since
most monitoring and control techniques are based on the linear framework,
use of linear models is a natural choice. The design of experiments to collect
data and the amount of data available have an impact on the accuracy and
predictive capability of the model developed. Data collection experiments
should be designed such that all key features of the process are excited in

73
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the frequency ranges of interest. These models can be used for interpolation
but they should not be used for extrapolation.

Nonlinear empirical models are more accurate over a wider range of op-
erating conditions and they are more appealing for processes with strong
nonlinearities. Various nonlinear input-output model development tech-
niques have been proposed during the last fifty years, but they have not
been widely accepted. The model structures are dependent on the type of
nonlinearities in the data. Since the model may have terms that are com-
posed of combinations of inputs and/or outputs, exciting and capturing
the interactions among variables is crucial. Hence, the use of routine oper-
ational data for model development, without any consideration of exciting
the key features of the model, may yield good fits to the data, but pro-
vide models that have poor predictive ability. The amount of data needed
for model development is the smallest for first principle models, moderate
for linear input-output models, and the largest for nonlinear input-output
models.

As manufacturing processes have become increasingly instrumented in
recent years, more variables are being measured and data are being recorded
more frequently. This yields data overload, and most of the useful infor-
mation may be hidden in large data sets. The correlated or redundant
information in these process measurements must be refined to retain the
essential information about the process. Process knowledge must be ex-
tracted from measurement information, and presented in a form that is easy
to display and interpret. Various methods based on multivariate statistics,
systems theory and artificial intelligence are presented in this chapter for
data-based input-output model development.

Models are developed to satisfy different types of objectives. One case is
the interpretation and modeling of one block of data such as measurements
of process variables. Principal components analysis (PCA) may be useful
for this to retain essential process information while reducing the size of
the data set. A second case is the development of a relationship between
two groups of data such as process variables and product variables, i.e.,
the regression problem. PCA regression or partial least squares (PLS) re-
gression techniques would be good candidates for addressing this problem.
Discrimination and classification are activities also related to process mon-
itoring that lead to fault diagnosis. One can consider PCA and PLS based
techniques as well as artificial neural networks (ANN) and knowledge-based
systems for such problems. Since all these techniques are based on process
data, the reliability of data is critical for obtaining dependable results from
the implementation of these techniques.

ANNs (Section 3.6.1) provide one framework for nonlinear model de-
velopment. Extensions of PCA and PLS to develop nonlinear models have
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also been proposed. Several nonlinear time series modeling techniques have
been reported. Nonlinear system science methods provide a different frame-
work for nonlinear model development and model reduction. This chapter
focuses on linear data-based modeling techniques. References are provided
for their extensions to the nonlinear framework.

Various multivariate regression techniques are outlined in Section 4.1.
Section 4.2 introduces PCA-based regression and its extension to capture
dynamic variations in data. PLS regression is discussed in Section 4.3.
Input-output modeling of dynamic processes with time series models is
introduced in Section 4.4 and state-space modeling techniques are presented
in Section 4.5.

4.1 Regression Models

Models between groups of variables such as process measurements xm×1

and quality variables yq×1 can be developed by using various regression
techniques. Here, the subscripts indicate the vector dimensions (number
of variables). If n samples have been collected for each group of variables,
the data matrices are Xn×m and Yn×q. The existence of a model pro-
vides the opportunity to predict process or product variables and compare
the measured and predicted values. The residuals between the predicted
and measured values of the variables can be used to develop various SPM
techniques (residuals-based univariate SPM was discussed in Section 2.3.1)
and tools for identification of variables that have contributed to the out-of-
control signal.

Consider a process with two measured variables (m = 2) and one quality
variable (q = 1) that are related by a linear model. The term linear is used
to indicate that the equation that relates the regressors x = [x1 x2]T to
the response (dependent) variable y1 is a linear function of the equation
parameters β. The model equation that can be used for predicting new
values of y1 given values of x are

ŷ1 = β0 + β1 x1 + β2 x2 (4.1)

where β0 is the constant (intercept) term. The relationship may be more
complex where interactions of the variables (x1x2) or polynomial terms of
regressors (for example, x2

1 or x3
2) can also be included in the model. For

example, a second-order model with interaction for the same variables as
above is:

ŷ1 = β0 + β1 x1 + β2 x2 + β11x
2
1 + β22 x

2
2 + β12 x1x2 (4.2)

The interaction implies that the effect caused by changing one regressor
variable depends on the level of the other regressor variable in the term.
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The response surface of the models with such nonlinearities are not linear
any more, but as long as the equation is linear in regression coefficients β,
it is considered a linear regression model.

The model equation for multivariable linear regression can be general-
ized and written in a compact form by using matrices for each of the q
dependent variables y for the n data sets

yn×1 = Zn×(m+1)β(m+1)×1 + εn×1 β = (ZT Z)−1ZT y (4.3)

where ε is the random error which accounts for measurement error and
effects of other variables not explicitly considered in the model, and

Z =

⎡⎢⎢⎢⎣
1 z11 z12 · · · z1m

1 z21 z22 · · · z2m

...
...

...
. . .

...
1 zn1 zn2 · · · znm

⎤⎥⎥⎥⎦ (4.4)

with the first column of Z being a multiplier of the constant term in β. It
is assumed that E(ε) = 0 and V ar(ε) = σ2I. The value of the dependent
variable for a new observation at zo is ŷ = zoβ.

The equations for various dependent variables y can be developed sepa-
rately since it is assumed that they do not affect each other. The equations
can be expressed in compact form as

Yn×q = Zn×(m+1)β(m+1)×q + εn×q (4.5)

with
E(εi) = 0 and Cov(εiεj) = σijI i, j = 1, 2, · · · , q (4.6)

and the covariance matrix Σ = [σij ], but the observations from different
trials are uncorrelated [126]. Multivariable linear regression is usually used
for steady-state data, but by adding lagged values of variables one can
extend it for time-varying data. However, time series models and state-
space models are more useful for developing dynamic system models.

Colinearity among process variables can have a significant impact on
the accuracy of the multivariable regression model and predictions. Colin-
earity causes numerical difficulties in computing the inverse (XT X)−1 or
(ZT Z)−1 because some columns of X are almost identical and consequent-
ly the determinant is almost zero. This causes uncertainty and sensitivity
in the estimates of β. The standard errors of the estimates of regression
coefficients β associated with the colinear regressors become very large.
Colinearity can be detected by standardizing all predictor variables (mean-
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centered, unit-variance) and computing correlations and coefficients of de-
termination.

vij =
xij − x̄j

dj
d2

j =
m∑

i=1

(xij − x̄j)2 , i = 1, · · · , n , j = 1, · · · ,m (4.7)

There is significant degree of colinearity among some predictor variables if
the following conditions hold:

1. The correlation between any two predictors exceeds 0.95 (only colin-
earity between two predictors can be assessed).

2. The coefficient of determination R2
j of each predictor variable j re-

gressed on all the other predictor variables exceeds 0.90, or the vari-
ance inflation factor V IFj = (1 − R2

j )
−1 is less than 10 (variable j

is colinear with one or more of the other predictors). V IFj is the
(j, j)th diagonal element of the matrix VT V−1 where V = [zij ]. R2

j

can be computed from the relationship between R2
j and V IFj .

3. Some of the eigenvalues of the correlation matrix VT V are less than
0.05. Large elements of the corresponding eigenvectors identify the
predictor variables involved in the colinearity.

4. The determinant of XT X has a value between 0 and 1. In this case,
the smaller the value of the determinant, the higher the degree of
colinearity.

5. One or more eigenvalues of XT X having values near 0 implies the
presence of colinearity.

Regression techniques that can deal with colinear data include stepwise
regression, ridge regression, principal components regression, and partial
least squares (PLS) regression. The last two approaches are discussed in
Sections 4.2 and 4.3.

Stepwise regression
Stepwise regression is one of the early techniques that can deal with co-

linear data [108, 203]. Predictor variables are added to or deleted from the
prediction (regression) equation one at a time. Stepwise variable selection
procedures are useful when a large number of candidate predictors is avail-
able. It is expected that only one of the strongly colinear variables will be
included in the model. Major disadvantages of stepwise regression are the
limitations in identifying alternative candidate subsets of predictors, and
the inability to guarantee the optimality of the final model.
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Ridge Regression
The regression coefficients are biased by introducing a parameter along

the diameter of ZT Z [109]. The computation of regression coefficients β in
Eq. 4.3 is modified by introducing a ridge parameter κ:

β =
[
ZTZ + κI

]−1
ZT y . (4.8)

Standardized ridge estimates βj with j = 1, · · · ,m are calculated for a range
of values of κ and plotted versus κ. This plot is called a ridge trace. The
β estimates usually change dramatically when κ is initially incremented by
a small amount from 0. As κ is increased, the trace stabilizes. A κ value
that stabilizes all β coefficients is selected and the final values of β are
estimated.

A good estimate of the κ value is obtained using

κ =
m MSE∑m

j=1(β
∗
j )2

(4.9)

where β∗
j s are the least squares estimates for the standardized predictor

variables, and MSE is the least squares mean squared error, SSE/(n −
m− 1).

Ridge regression estimators are biased. The trade-off for stabilization
and variance reduction in regression coefficient estimators is the bias in the
estimators and the increase in the squared error.

Nonlinear regression models are generated when one or more of the
coefficients β are part of a nonlinear term [12] such as

ŷ = β0e
β1x (4.10)

Chemical reaction rate terms are a familiar example to most chemists and
chemical engineers. Sometimes, it is possible to make the equation linear by
using a transformation such as taking the log. Otherwise, the computation
of regression parameters become more complex.

4.2 PCA Models

Principal components regression (PCR) is one of the techniques to deal with
ill-conditioned data matrices by regressing the dependent variables such
as quality measurements on the principal components scores of regressor
variables such as the measured variables (flow rates, temperature) of the
process. The implementation starts by representing the data matrix X
with its scores matrix T using the transformation T = XP. The number
of principal components to retain in the model is determined as in the
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PCA to reduce the effect of noise and to optimize the predictive power of
the PCR model. This is generally done by using cross-validation. Then,
the regression equation becomes

Y = Tβ + E (4.11)

where the optimum matrix of regression coefficients β is obtained as

β̂ = (TTT)−1TTY (4.12)

In contrast to the inversion of XT X when some of the x are colin-
ear, the inversion of TTT does not cause any problems due to the mutual
orthogonality of the scores. Score vectors corresponding to small eigenval-
ues can be left out in order to avoid colinearity problems. Since principal
components regression is a two-step method, there is a risk that useful pre-
dictive information would be discarded with a principal component that is
excluded. Hence caution must be exercised while leaving out vectors corre-
sponding to small eigenvalues. If regression based on the original variables
x is preferred, the most important variables can be selected by inspecting
the variables that contribute to the first few loadings and avoiding those
that provide duplicate information.

To include information about process dynamics, lagged variables can
be included in X. The (auto)correlograms of all x variables should be
developed to determine first how many lagged values are relevant for each
variable. Then the data matrix should be augmented accordingly and used
to determine the principal components that will be used in the regression
step.

Nonlinear extensions of PCA have been proposed by using autoasso-
ciative neural networks discussed in Section 3.6.1 (an illustrative exam-
ple is provided in Section 7.7.1) or by using principal curves and surfaces
[106, 161].

4.3 PLS Regression Models

Partial least squares (PLS) regression, develops a biased regression model
between X and Y. In the context of chemical process operations, usually X
denotes the process variables and Y the quality variables. PLS selects latent
variables so that variation in X which is most predictive of the product
quality data Y is extracted. PLS works on the sample covariance matrix
(XTY)(YTX) [86, 87, 111, 172, 188, 334, 338]. Measurements of m process
variables taken at n different times are arranged into a (n × m) process
data matrix X. The q quality variables are given by the corresponding
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(n × q) matrix Y. PLS modeling works better when the data are fairly
symmetrically distributed and have fairly constant ‘error variance’ [67].
Both X and Y data blocks are usually centered and scaled to unit variance
because in PLS the influence of a variable on model parameters increases
with the variance of the variable. The PLS model can be built by using
the nonlinear iterative partial least squares algorithm (NIPALS). The PLS
model consists of outer relations (X and Y blocks individually) and an
inner relation (linking both blocks) (Figure 4.1). The outer relations for
the X and Y blocks are respectively

X = TPT + E =
a∑

i=1

tipT
i + E (4.13)

Y = UQT + F =
a∑

i=1

uiqT
i + F (4.14)

where E and F represent the residuals matrices. Linear combinations of x
vectors are calculated from the latent variable scores ti = wT

i x and those
for the y vectors from ui = qT

i y so that they maximize the covariance
between X and Y explained at each dimension. wi and qi are the weight
vectors and pi are the loading vectors of X. The number of latent variables
can be determined by cross-validation [332] or more pragmatic techniques
discussed in Section 3.1.

X

E F

Y

W
T

P
T

T

Q
T

U

Figure 4.1. The matrix relationships in PLS as shown by [67]. T and U
are PLS scores matrices of X and Y blocks, respectively, P contains the X
loadings, W and Q are weight matrices for X and Y blocks, respectively,
and E and F are residual matrices of X and Y blocks.

For the first latent variable, PLS decomposition is started by selecting
yj , an arbitrary column of Y as the initial estimate for u1. Usually, the



4.3. PLS Regression Models 81

column of Y with greatest variance is chosen. Starting in the X data block,
for the first latent variable:

wT
1 =

uT
1 X

‖uT
1 u1‖ , t1 =

Xw1

‖wT
1 w1‖ (4.15)

In the Y data block:

qT
1 =

tT
1 Y

‖tT
1 t1‖ , u1 =

Yq1

‖qT
1 q1‖ (4.16)

Convergence is checked by comparing t1 in Eq. 4.15 with the t1 from
the previous iteration. If their difference is smaller than a prespecified
threshold, one proceeds to Eq. 4.17 to calculate X data block loadings p1

and weights w1 are rescaled using the converged u1. Otherwise, u1 from
Eq. 4.16 is used for another iteration. If Y is univariate, Eqs. 4.16 can be
omitted, and q1 = 1. The loadings of the X data block and are computed
and the scores and weights are rescaled:

pT
1 =

tT
1 X

‖tT
1 t1‖ , p1n =

p1o

‖p1o‖ (4.17)

t1n = t1o‖p1o‖ , w1n = w1o‖p1o‖ (4.18)

where the subscript o refers to old and n to new values. The regression
coefficient bi for the inner relation is computed using

b1 =
tT
1 u1

‖tT
1 t1‖

(4.19)

When the scores, weights, and loadings have been determined for a latent
variable (at convergence), X- and Y-block matrices are adjusted to exclude
the variation explained by that latent variable. Equations 4.20 and 4.21
illustrate the computation of the residuals after the first latent variable
and weights have been determined:

E1 = X − t1pT
1 (4.20)

F1 = Y − b1t1qT
1 (4.21)

The entire procedure is repeated for finding the next latent variable and
weights starting with Eq. 4.15. The variations in data matrices X and Y
explained by the earlier latent variables are excluded from X and Y by
replacing them in the next iteration with their residuals that contain unex-
plained variation. After the convergence of the first set of latent variables
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to their final values, X and Y are replaced with the residuals E1 and F1,
respectively, and all subscripts are incremented by 1.

Several enhancements have been made to the PLS algorithm [48, 93,
169, 184, 336, 333, 339]. Commercial software is available for developing
PLS models [328, 269].

Nonlinear PLS Models
To model nonlinear relationships between X and Y, their projections

should be nonlinearly related to each other [336]. One alternative is the
use of a polynomial function such as

ui = c0i + c1iti + c2it2
i + εi (4.22)

where i represents the model dimension, c0i, c1i, and c2i are constants,
and εi is a vector of errors (innovations). This quadratic function can be
generalized to other nonlinear functions of ti:

ui = f(ti) + εi (4.23)

where f(·) may be a polynomial, exponential, or logarithmic function.
Another structure for expressing a nonlinear relationship between X

and Y is splines [333] or smoothing functions [75]. Splines are piecewise
polynomials joined at knots (denoted by zj) with continuity constraints
on the function and all its derivatives except the highest. Splines have
good approximation power, high flexibility and smooth appearance as a
result of continuity constraints. For example, if cubic splines are used for
representing the inner relation:

u = b0 + b1t+ b2t
2 + b3t

3 +
s∑

j=1

bj+3(t− zj)3+ (4.24)

where the s knot locations and the model coefficients bi are the free param-
eters of the spline function. There are l + s + 1 coefficients where l is the
order of the polynomial. The term bj+3(t − zj)3+ denotes a function with
values 0 or bj+3(t− zj)3 depending on the value of t:

bj+3(t− zj)3+ =
{
bj+3(t− zj)3 : t > zj

0 : t < zj
(4.25)

The desirable number of knots and degrees of polynomial pieces can be
estimated using cross-validation. An initial value for s can be n/7 or

√
(n)

for n > 100 where n is the number of data points. Quadratic splines can be
used for data without inflection points, while cubic splines provide a general
approximation for most continuous data. To prevent over-fitting data with
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higher-order polynomials, models of lower degree and higher number of
knots should be considered for lower prediction errors and improved stabil-
ity [333]. B splines provide an attractive alternative to quadratic and cubic
splines when the number of knots is large [49]. Other nonlinear PLS mod-
els that rely on nonlinear inner relations have been proposed [61, 96, 288].
Nonlinear relations within X or Y can also be modeled.

4.4 Input-Output Models of Dynamic Pro-
cesses

Time series models have been popular in many fields ranging from modeling
stock prices to climate. They could be cast as a regression problem where
the regressor variables are the previous values of the same variable and past
values of inputs. They are ‘black box’ models that describe the relation-
ship of the present value of the output to external variables but do not
provide any knowledge about the physical description of the processes they
represent. It will be assumed that data are collected using a fixed sampling
rate (the sampling time between any two consecutive samples is identical).
Time series models relate the current value of the observed variable to

• Past values of the observed variable: Autoregressive terms (up to
order p) AR

• Integrated AR terms (up to order d) I

• Past values of the prediction error or past values of the predicted
values: Moving average terms (up to order r) MA

• Past values of control signals and known disturbances: Exogenous
variables X.

The prediction error e(k) is the difference between the observed and
the predicted values at a specific time e(k) = y(k)− ŷ(k). An autoregressive
- integrated - moving average model is represented as ARIMA(p, d, r). For
example, ARIMA(0,1,1) = IMA(1,1) indicates:

(y(k) − y(k − 1)) = e(k) + θe(k − 1) (4.26)
y(k) = y(k − 1) + e(k) + θe(k − 1)

where θ is a parameter for the MA term. Many processes can be approx-
imated by an ARIMA(p, d, r) with p, r ≤ 2 and d = 0 or 1. Time series
models are often developed by using a data set consisting of individual
observations over time.
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Figure 4.2. Model identification strategy suggested by Ljung [171].

Model development (also called system identification) involves several
critical activities including design of experiments and collection of data,
data pretreatment, model fitting, model validation and acceptability of the
model for its use. A vast literature has been developed over the last 50
years in various aspects of model identification [99, 170, 174, 246, 278]. A
schematic diagram in Figure 4.2 where the ovals represent human activities
and decision making steps and the rectangles represent computer-based
computations and decisions illustrates the links between critical activities.

A short list complements the process outlined in Figure 4.2:

• Design and perform experiments, collect data,

• Plot data and autocorrelation functions, postulate structure of time
series model,

• Estimate model parameters:

– Form one-step-ahead predictor,

– Compute ‘least squares’ estimates,
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• Validate model.

Model identification is an iterative process. There are several software pack-
ages with modules that automate time series model development. When
a model is developed to describe data that have stochastic variations, one
has to be cautious about the degree of fit. By increasing model complexity
(adding extra terms) a better fit can be obtained. But, the model may
describe part of the stochastic variation in that particular data which will
not occur identically in other data sets. Consequently, although the fit to
the ‘training’ data may be improved, the prediction errors may get worse.

Inputs, outputs and disturbances will be denoted as u, y, and d, re-
spectively. For multivariable processes where u1(k), u2(k), · · · , um(k) are
the m inputs, the input vector u(k) at time k is written as a column vector.
Similarly, the p outputs are defined by a column vector:

u(k) =

⎛⎜⎝ u1(k)
...

um(k)

⎞⎟⎠ , y(k) =

⎛⎜⎝ y1(k)
...

yp(k)

⎞⎟⎠ (4.27)

Disturbances d(k) and residuals e(k) are also represented by column vectors
with appropriate dimensions in a similar manner.

A general linear discrete-time model for a variable y(k) can be written
as

y(k) = η(k) + w(k) (4.28)

where w(k) is a disturbance term such as measurement noise and η(k) is
the noise-free output

η(k) = G(q, θ)u(k) (4.29)

with the rational function G(q, θ) and input u(k). q is called the shift
operator and q−1 the backward shift operator such that

y(k − 1) = q−1y(k) (4.30)

and θ represents the model parameters such as fi and bi in Eq. 4.31.
The function G(q, θ) relates the inputs to noise-free outputs whose values
are not known because the outputs are corrupted by measurement noise.
Assume that relevant information for the current value of output y(k) is
provided by past values of y(k) with a window length (number of previous
sampling times) ny and past values of u(k) for nu previous instances. The
relationship between these variables is

η(k) + f1η(k − 1) + · · · + fnyη(k − ny)
= b1u(k) + b2u(k − 1) + · · · + bnuu(k − (nu − 1)) (4.31)
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where fi, i = 1, 2, . . . , ny and bi, i = 1, 2, . . . , nu are parameters to be
determined from data. Writing Eq. 4.31 by using two polynomials in q

η(k)
(
1 + f1q

−1 + · · · + fnyq
−ny

)
= u(k)

(
b1 + b2q

−1 + · · · + bnuq
−(nu−1)

)
(4.32)

and defining the polynomials

F (q) = (1 + f1q
−1 + · · · + fnyq

−ny)

B(q) = (b1 + b2q
−1 + · · · + bnuq

−(nu−1)) (4.33)

Equation 4.31 can be written in a compact form as

η(k) = G(q, θ) u(k) with G(q, θ) =
B(q)
F (q)

(4.34)

If there is a delay in the effects of inputs on the output by nk sampling
times, Eq. 4.31 is modified as

η(k) + f1η(k − 1) + · · · + fnyη(k − ny) (4.35)
= b1u(k − nk) + b2u(k − (nk + 1)) + · · · + bnuu(k − (nu + nk − 1))

The disturbance term can be expressed in the same way

w(k) = H(q, θ)ε(k) (4.36)

where ε(k) is white noise and

H(q, θ) =
C(q)
D(d)

=
1 + c1q

−1 + · · · + cncq
−nc

1 + d1q−1 + · · · + dnd
q−nd

(4.37)

The model (Eq. 4.28) can be written as

y(k) = G(q, θ)u(k) +H(q, θ)ε(k) (4.38)

where the parameter vector θ contains the coefficients bi, ci, di and fi of the
transfer functions G(q, θ) and H(q, θ). The model structure is described
by five parameters ny, nu, nk, nc, and nd. Since the model is based
on polynomials, its structure is finalized when the parameter values are
selected. These parameters and the coefficients are determined by fitting
candidate models to data and minimizing some criteria based on reduction
of prediction error and parsimony of the model.

The model Eq. 4.38 is known as the Box-Jenkins (BJ) model [23]. It
has several special cases:
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• Output Error (OE) model. When the properties of disturbances
are not modeled and the noise model H(q) is chosen to be identity
(nc = 0 and nd = 0), the noise source w(k) is equal to e(k), the
difference (error) between the actual output and the noise-free output.

• AutoRegressive Moving Average model with eXogenous in-
puts (ARMAX). If the same denominator is used for G and H

A(q) = F (q) = D(q) = 1 + a1q
−1 + · · · + anaq

−na (4.39)

Hence, Eq. 4.38 becomes

A(q)y(k) = B(q)u(k) + C(q)ε(k) (4.40)

where A(q)y(k) is the autoregressive term, C(q)ε(k) is the moving
average of white noise, and B(q)u(k) represents the contribution of
external inputs. Use of a common denominator is reasonable if the
dominating disturbances enter the process together with the inputs.

• AutoRegressive model with eXogenous inputs (ARX). A spe-
cial case of ARMAX is obtained by letting C(q) = 1 (nc = 0).

These models are used for prediction of the output given the values of
inputs and outputs in previous sampling times. Since white noise cannot
be predicted, its current value ε(k) is excluded from prediction equations.
Predicted values are denoted by a ˆ (hat) over the variable symbol. To
emphasize that predictions are based on a specific parameter set θ, the
nomenclature is further extended to ŷ(k | θ).

The computation of parameters θ is usually cast as a minimization prob-
lem of prediction errors e(k, θ) = y(k) − ŷ(k | θ) for given sets of data over
a time period. For n data points

θ̂n = arg min
θ

1
n

n∑
i=1

e2(i, θ) (4.41)

where argmin denotes the minimizing argument. This criteria must be
modified to prevent over-fitting of data. The objective function in Eq. 4.41
can be reduced by adding more parameters to the model. The resulting
model may fit the data used for model development very well including part
of the noise in the data. But the over-fitting may cause large prediction
errors when new data are used with the model. Several criteria have been
proposed to balance model fit and model complexity. Two of them are
given here to illustrate how accuracy and parsimony are balanced:
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• Akaike’s Information Criterion (AIC)

min
l,θ

(
1 +

2 l
n

) n∑
i=1

e2(i, θ) (4.42)

where l is the number of parameters estimated (dimension of θ).

• Final Prediction Error (FPE)

min
l,θ

(
1 + l/n

1 − l/n

1
n

) n∑
i=1

e2(i, θ) (4.43)

The merits and limitations of these and other criteria are discussed in the
literature [170, 278]

Nonlinear Time Series Models
The linear model structures discussed in this section can handle mild

nonlinearities. They can also result from linearization around an operating
point. Simple alternatives can be considered for developing linear models
with better predictive capabilities than a traditional ARMAX model for
nonlinear processes. If the nature of nonlinearity is known, a transformation
of the variable can be utilized to improve the linear model. A typical
example is the knowledge of the exponential relationship of temperature
in reaction rate expressions. Hence, the log of temperature with the rate
constant can be utilized instead of the actual temperature as a regressor.
The second method is to build a recursive linear model. By updating model
parameters frequently, mild nonlinearities can be accounted for. The rate
of change of the process and the severity of the nonlinearities are critical
factors for the success of this approach. Another approach is based on the
estimation of nonlinear systems by using multiple linear models [11, 82, 83].

Time series modeling is extended to nonlinear models by using a vari-
ety of structures. These models have the capability to describe patholog-
ical dynamic behavior and to provide accurate predictions over a wider
range of operating conditions compared to linear models. ANNs were
introduced in Section 3.6.1. Various other nonlinear model developmen-
t paradigms include Volterra kernels [185, 315], cascade (block-oriented)
models [97, 157, 187, 314], polynomial models, threshold models [297], and
models based on spline functions. Polynomial models include bilinear mod-
els [72, 201], state-dependent models [233], nonlinear autoregressive moving
average models with exogenous inputs (NARMAX) [30, 31, 167, 231], non-
linear polynomial models with exponential [98] and trigonometric functions
(NPETM), and multivariate adaptive regression splines (MARS) [76]. A
unified nonlinear model development framework is not available, and search
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for the appropriate nonlinear structure is part of the model developmen-
t effort. Use of a nonlinear model development paradigm which is not
compatible with the types of nonlinearities that exist in data can have a
significant negative effect on model development effort and model accuracy.

A new methodology has been proposed for developing multivariable
additive NARX (Nonlinear Autoregressive with eXogenous inputs) models
based on subspace modeling concepts [50]. The model structure is similar
to that of a Generalized Additive Model (GAM) and is estimated with a
nonlinear Canonical Variates Analysis (CVA) algorithm called CANALS.
The system is modeled by partitioning the data into two groups of variables.
The first is a collection of ‘future’ outputs, the second is a collection of
past input and outputs, and ‘future’ inputs. Then, future outputs are
predicted in terms of past and present inputs and outputs. This approach
is similar to linear subspace state-space modeling [159, 211, 307]. The
appeal of linear and nonlinear subspace state-space modeling is the ability
to develop models with error prediction for a future window of output
(window length selected by user) and with a well-established procedure that
minimizes trial-and-error and iterations. An illustrative example of such
modeling is presented based on a simulated continuous chemical reactor
that exhibits multiple steady-states in the outputs for a fixed level of the
input [50].

4.5 State-Space Models

State variables are the minimum set of variables that are necessary to de-
scribe completely the state of a system. The n state variables of a system
at time t is represented as x(t) = [x1(t) x2(t) · · ·xn(t)]T . In quantitative
terms, given the values of state variables x(t) at time t0 and the values of
inputs u(t) (Eq. 4.27) for t > t0, the values of outputs y(t) can be comput-
ed for t > t0. All process variables of interest can be included in a model
as state variables while the measured variables can form the set of output
variables. This way, the model can be used to compute all process variables
based on measured values of output variables and the state-space model.

In this section, classical state-space models are discussed first. They
provide a versatile modeling framework that can be linear or nonlinear,
continuous- or discrete-time, to describe a wide variety of processes. State
variables can be defined based on physical variables, mathematical solution
convenience or ordered importance of describing the process. Subspace
models are discussed in the second part of this section. They order state
variables according to the magnitude of their contributions in explaining
the variation in data. State-space models also provide the structure for
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developing state estimators where one can estimate corrected values of state
variables, given process input and output variables and estimated values of
process outputs.

State-space models relate the variation in state variables over time to
their values in the immediate past and to inputs with differential or differ-
ence equations. Algebraic equations are then used to relate output variables
to state variables and inputs at the same time instant. Consider a system
of first-order differential equations (Eq. 4.44) describing the change in state
variables and a system of output equations (Eq. 4.45) relating the outputs
to state variables:

dx
dt

= ẋ(t) = f(x(t),u(t)) (4.44)

y(t) = h(x(t),u(t)) (4.45)

If x(t) and u(t) are known at time t0, ẋ(t0) can be computed using Eq.
4.44. For an infinitesimally small interval δt, one can compute x(t0 + δt)
using Euler’s method

x(t0 + δt) = x(t0) + δt · f(x(t0),u(t0)) (4.46)

Then, the output y(t0 +δt) can be computed using x(t0 +δt) and Eq. 4.45.
This computation sequence can be repeated to compute values of x(t) and
y(t) for t > t0 if the corresponding values of u(t) are given for subsequent
values of time such as t0 + 2δt, · · · , t0 + kδt. The model composed of Eqs.
4.44–4.45 is called the state-space model, the vector x(t), the state vector,
and its components xi(t), the state variables. The dimension of x(t), n, is
the model order.

State-space models can also be developed for discrete-time systems. Let
the current time be denoted as k and the next time instant where input
values become available as k + 1. The equivalents of Eqs. 4.44–4.45 in
discrete time are

x(k + 1) = f(x(k),u(k)) k = 0, 1, 2, · · · (4.47)

y(k) = h(x(k),u(k)) (4.48)

For the current time k, the state at time k + 1 is now computed by the
difference equations 4.47–4.48. Usually, the time interval δt = t(k+1)−t(k)
between the two discrete times is a constant equal to the sampling time.

Linear State-Space Models

The functional relations f(x,u) and h(x,u) in Eqs. 4.44–4.45 or Eqs.
4.47–4.48 can be restricted to be linear. The linear continuous state-space
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model becomes

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) (4.49)

where the dimensions of the coefficient matrices are An×n, Bn×m, Cp×n

and Dp×m, respectively.
The linear discrete-time model for k = 0, 1, 2, · · · is

x(k + 1) = Fx(k) + Gu(k)
y(k) = Cx(k) + Du(k) (4.50)

Matrices A and B are related to matrices F and G as

F = eAT G =
∫ T

0

eAτBdτ (4.51)

where the sampling interval T = δt is assumed to be equal for all values of
k. Since the coefficient matrices have constant elements, these models are
called linear time-invariant models. Mild nonlinearities in the process can
often be described better by making the matrices in model equations (Eqs.
4.49 and 4.50) time dependent. This is indicated by symbols such as A(t)
or F(k).

Disturbances

Some disturbances can be measured, but the presence of others is only
recognized because of their influence on process and/or output variables.
The state-space model needs to be augmented to incorporate the effects
of disturbances on state variables and outputs. Following Eq. 4.28, the
state-space equation can be written as

ẋ(t) = f(x(t),u(t),w(t))
y(t) = h(x(t),u(t),w(t)) (4.52)

where w(t) denotes disturbances. It is necessary to describe w(t) in order
to compute how the state variables and outputs behave in presence of dis-
turbances. If the disturbances are known and measured, their description
can be appended to the model. For example, the linear state-space model
can be written as

ẋ(t) = Ax(t) + Bu(t) + W1w1(t)
y(t) = Cx(t) + Du(t) + W2w2(t) (4.53)
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where w1(t) and w2(t) are disturbances affecting the state variables and
outputs, respectively, and W1 and W2 are the corresponding coefficient
matrices. This model structure can also be used to incorporate modeling
uncertainties (represented by w1(t)) and measurement noise (represented
by w2(t)).

Another alternative is to develop a model for unknown disturbances to
describe w(t) as the output from a dynamic system with a known input
uw(t) that has a simple functional form.

ẋw(t) = fw(xw(t),uw(t))
w(t) = hw(xw(t),uw(t)) (4.54)

where the subscript w indicates state variables, inputs and functions of the
disturbance(s). Typical choices for input forms may be an impulse, white
noise or infrequent random step changes. Use of fixed impulse and step
changes lead to deterministic models, while white noise or random impulse
and step changes yield stochastic models [171]. The disturbance model is
appended to the state and output model to build an augmented dynamic
model with known inputs.

Linearization of Nonlinear Systems

The behavior of a nonlinear process can be approximately described
by a linear model in the vicinity of a known operating point developed
by linearizing the nonlinear model. The nonlinear terms of the model are
expanded by using the linear terms of Taylor series and the equations are
written in terms of deviations of process variables (the so-called deviation
variables) from the operating point to obtain the linear model. The model
can then be expressed in state-space form [253].

Consider the state-space model, Eqs. 4.44–4.45, and assume that it has
a stable stationary solution (a steady-state) at x = xss,u = uss:

f(xss,uss) = 0 (4.55)

If f(x,u) has continuous partial derivatives in the neighborhood of the
stationary solution x = xss,u = uss, then for � = 1, · · · , n:

f�(x, u) = f�(xss,uss) +
∂f�

∂x1
(xss,uss)(x1 − xss,1) + · · · (4.56)

+
∂f�

∂xn
(xss,uss)(xn − xss,n) +

∂f�

∂u1
(xss,uss)(u1 − uss,1)

+ · · · + ∂f�

∂um
(xss,uss)(um − uss,m) + rk(x − xss,u− uss)
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where ∂f�

∂xi
(xss,uss) indicates that the partial derivative with respect to xi

is evaluated at (xss,uss) and rk denotes the higher order nonlinear terms
that are assumed to be negligible. Define Jacobian matrices A and B that
have the partial derivatives in Eq. 4.56 as their elements:

A =

⎛⎜⎝
∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn

∂x1
· · · ∂fn

∂xn

⎞⎟⎠ , B =

⎛⎜⎝
∂f1
∂u1

· · · ∂f1
∂um

...
. . .

...
∂fn

∂u1
· · · ∂fn

∂um

⎞⎟⎠ (4.57)

with the partial derivatives being evaluated at (xss,uss). Using Eq. 4.55,
Eq. 4.56 can be written in a compact form as

f(x,u) = A(x − xss) + B(u − uss) + r(x − xss,u− uss) (4.58)

Neglecting the higher order terms rk(x − xss,u − uss) and defining the
deviation variables

x̃ = x − xss, ũ = u − uss , (4.59)

Eq. 4.44 can be written as

˙̃x = Ax̃ + Bũ (4.60)

The output equation is developed in a similar manner:

ỹ = Cx̃ + Dũ (4.61)

where the elements of C and D are the partial derivatives ∂hi/∂xj with i =
1, · · · , p and j = 1, · · · , n and ∂hi/∂uj with i = 1, · · · , p and j = 1, · · · ,m,
respectively. Hence, the linearized equations are of the same form as the
original state-space equations in Eq. 4.49. Linearization of discrete-time
nonlinear models follows the same procedure and yields linear difference
equations similar to Eq. 4.50.

Subspace State-Space Models
Subspace state-space models are developed by using techniques that

determine the largest directions of variation in the data to build models.
Two subspace methods, PCA and PLS have already been introduced in
Sections 4.2 and 4.3. Usually, they are used with steady-state data, but
they could also be used to develop models for dynamic relations by aug-
menting the appropriate data matrices with lagged values of the variables.
In recent years, dynamic model development techniques that rely on sub-
space concepts have been proposed [158, 159, 307, 313]. Subspace methods
are introduced in this section to develop state-space models for process
monitoring and closed-loop control.
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Consider a simple state-space model without external inputs u(k)

x(k + 1) = Fx(k) + Hε(k)
y(k) = Cx(k) + ε(k) (4.62)

where x(k) is the state variable vector of dimension n at time k and y(k) is
the observation vector with p output measurements. The stochastic input
ε(k) is the serially uncorrelated innovation vector having the same dimen-
sion as y(k) and covariance E[ε(k)ε(k+ l)T ] = Δ if l = 0, and 0 otherwise.
This representation would be useful for process monitoring activities where
‘appropriate’ state variables (usually the first few state variables) are used
to determine if the process is operating as expected. The statistics used
in statistical process monitoring (SPM) charts assume no correlation over
time between measurements. If state-space models are developed such that
the state variables and residuals are uncorrelated at zero lag, the statistics
can be safely applied to these calculated variables instead of measured pro-
cess outputs. Several techniques, balanced realization [5], PLS realization
[210], N4SID [307], and the canonical variate realization [158, 209] can be
used for developing these models.

Subspace algorithms generate the process model by successive approxi-
mation of the memory or the state variables of the process by determining
successively functions of the past that have the most information for pre-
dicting the future [159]. In the canonical variate (CV) realization approach,
canonical variates analysis (Section 3.2) is used to develop the state-space
models [158] where the first state variable contains the largest amount of
information about the process dynamics, the second state variable is or-
thogonal to the first (does not repeat the information explained in the
previous state variable) and describes the largest amount of the remaining
process variation. The first few significant state variables can often be used
to describe the greatest variation in the process. The system order n is de-
termined by inspecting the dominant singular values (SV) of a covariance
matrix (the ratio of the specific SV to the sum of all the SVs [5] gener-
ated by singular value decomposition (SVD) or an information theoretic
approach such as the Akaike Information Criterion (AIC) [158] introduced
in Section 4.4.

The data used in subspace state-space model development consists of
the time series data of output and input variables. For illustration, assume
a case with only output data and the objective is to build a model of
the form Eq. 4.62. Since the whole data set is already known, it can be
partitioned as past and future with respect to any sampling time. Defining
a past data window of length K and a future data window of length J that
are shifted from the beginning to the end of the data set, stacked vectors of
data are formed. The Hankel matrix (Eq. 4.64) is used to develop subspace
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models. It expresses the covariance between future and past stacked vectors
of output measurements. Defining the stacked vectors of future (Y+

kJ
) and

past (Y−
kK

) data with respect to the current sampling time k as

Y+
kJ

=

⎡⎢⎢⎢⎣
y(k)
y(k + 1)
...
y(k + J − 1)

⎤⎥⎥⎥⎦ and Y−
kK

=

⎡⎢⎢⎢⎣
y(k − 1)
y(k − 2)
...
y(k −K)

⎤⎥⎥⎥⎦ (4.63)

the Hankel matrix (note that HKJ is different than the H matrix in Eq.
4.62) is

HKJ = E
[
Y+

kJ
Y−T

k−1K

]
=

⎡⎢⎢⎢⎣
Λ1 Λ2 · · · ΛK

Λ2 Λ3 · · · ΛK+1

...
...

...
...

ΛJ ΛJ+1 · · · ΛJ+K−1

⎤⎥⎥⎥⎦ (4.64)

where Λq is the autocovariance of y(k)’s which are q time periods apart
and E[·] denotes the expected value of a stochastic variable. The non-zero
singular values of the Hankel matrix determine the order of the system,
i.e., the dimension of the state variables vector. The non-zero and dominant
singular values of HJK are chosen by inspection of singular values or metrics
such as AIC.

Canonical variate realization requires that covariances of future and
past stacked observations be conditioned against any singularities by taking
their square roots. The Hankel matrix is scaled by using R−

K and R+
J

defined in Eq. 4.66. The scaled Hankel matrix (HJK) and its singular
value decomposition is given as

H̄JK =
[
R+

J

]−1/2
HJK

[
R−

K

]−1/2
= UΣVT (4.65)

where (
R+

J

)
= E

(
Y+

kJ
Y+T

kJ

)
(
R−

K

)
= E

(
Y−

k−1K
Y−T

k−1K

)
(4.66)

U has dimensions pJ × a and contains the a left eigenvectors of H̄JK . Σ
is a× a and contains the singular values (SV). V is Kp× a and contains
the a right singular vectors of the decomposition. The SVD matrices in
Eq. 4.65 include only the SVs and singular vectors corresponding to the a
state variables retained in the model. The full SV matrix Σ has dimension
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Jp × Kp and it contains all SVs in a descending order. If the process
noise is small, all SVs smaller than the ath SV are effectively zero and the
corresponding state variables are excluded from the model.

The state variables are given as

xk = Σ1/2VT
(
R−

K

)−1/2 Y−
k−1K

(4.67)

Once x(k) (or for the continuous case x(t)) is known, F, G (or A, B), C de-
fined in Eq. 4.62, and the stochastic input covariance Δ can be constructed
[209]. The covariance matrix of the state vector based on CV decomposition
E[x(k)x(k)T ] = Σ reveals that x(k) are independent at zero-lag.

The subspace state-space model that includes external inputs is of the
form :

x(k + 1) = Fx(k) + Gu(k) + H1w(k)
y(k) = Cx(k) + Du(k) + H2v(k) (4.68)

where F,G,C,D,H1 and H2 are system matrices, and w and v are zero-
mean noise vectors that have Normal distribution. The model, Eq. 4.68,
can be developed by using CV realization or other methods such as N4SID
[307]. When CV realization is used, these models are called canonical vari-
ates state-space (CVSS) models.

Extensions to Nonlinear State-Space Models
Various extensions of linear state-space approach have been proposed

for developing nonlinear models [227, 274]. An extension of linear CVA
for finding nonlinear state-space models was proposed by Larimore [160]
where use of alternating conditional expectation (ACE) algorithm [24] was
suggested as the nonlinear CVA method. Their examples used linear CVA
to model a system by augmenting the linear system with polynomials of
past outputs.

Subspace modeling can be cast as a reduced rank regression (RRR) of
collections of future outputs on past inputs and outputs after removing the
effects of future inputs. CVA performs this regression. In the case of a lin-
ear system, an approximate Kalman filter sequence is recovered from this
regression. The state-space coefficient matrices are recovered from the state
sequence. The nonlinear approach extends this regression to allow for pos-
sible nonlinear transformations of the past inputs and outputs, and future
inputs and outputs before RRR is performed. The model structure consists
of two sub models. The first model is a multivariable dynamic model for a
set of latent variables, the second relates these latent variables to outputs.
The latent variables are linear combinations of nonlinear transformations of
past inputs and outputs. These nonlinear transformations or functions are
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found using CANALS [305]. Using nonlinear CVA to fit dynamic models
is not new. ACE algorithm was used to visually infer nonlinear functions
for single output additive models [29]. DeCicco and Cinar [50] proposed
a CANALS-based approach where the nonlinear functions estimated are
directly utilized for prediction. Also, a collection of multiple future output-
s is considered, which leads to the latent variables model structure. The
latent variables are then linked to the outputs using linear projection type
nonlinear model structures such as projection pursuit regression [77] or a
linear model through least squares regression.

4.6 Summary

Several input-output model development techniques that extract dynamic
relations from process data are discussed in this chapter. Methods based
on multivariate statistics, systems theory and artificial intelligence are p-
resented. Various multivariate regression techniques are outlined first, to
provide the foundation for the discussion on PCA-based regression and its
extension to capture dynamic variations in data. Next, PLS regression is
introduced, with a similar extension to capture dynamic variations. Then,
input-output modeling of dynamic processes with time series models is in-
troduced. The last modeling framework presented is state-space modeling
that enables the extraction of arbitrary variables (state variables) that de-
scribe the dynamics of the system, while relating the input and output
variables. Since most chemical processes are nonlinear, the extensions of
these modeling paradigms to the nonlinear frameworks are also introduced.
Extensions of PCA and PLS to develop nonlinear models, nonlinear time
series modeling techniques and nonlinear state-space modeling techniques
are briefly introduced and references are provided for each method.





5

Monitoring of
Multivariate Processes

Multivariate SPM (MSPM) methods are gaining acceptance in monitoring
continuous processes because multivariate monitoring charts provide more
accurate information about the process, give warnings earlier than the sig-
nals of univariate charts, and are easy to compute and interpret. MSPM
relies on the statistical distance concept which is a generalization of the S-
tudent t statistic. First discussed in [226] and later proposed independently
in [112] and [179], it provides a useful statistic for representing the devia-
tion of the process from its desired state. If the process has a few variables,
the statistical distance statistic T 2 can be computed by using all variables
and its charts can be plotted for MSPM [190]. If the number of variables is
large and there is significant colinearity among some of them, the PCA or
PLS can be used. If the data used for chart development are process vari-
ables, MSPM charts are based on principal components (PC). When both
process and quality variables are used, and the two blocks of data need to
be related as well, the MSPM charts are based on the latent variables (LV)
of PLS. Both sets of charts summarize the information about the status
of the process by using two statistics, the Hotelling’s T 2 and the squared
prediction error (SPE). The details are discussed in Sections 5.1 and 5.2.
The charts are simply the plots of T 2 or SPE values computed by using the
information collected at each sampling time on the time axis. The T 2 chart
indicates the distance of the current operation from the desired operation
as captured by the PCs or LVs included in the development of the PCA
or the PLS model of the process. Since only the first few PCs or LVs that
capture most of the variation in the data are used to build the model, the
model is a somewhat accurate but incomplete description of the process.
The SPE chart captures the magnitude of the error caused by deviations
resulting from events that are not described by the model. The T 2 chart
indicates a deviation based on process behavior that can be explained by
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the model while the SPE chart indicates a significant deviation that can
not be explained by the model (the prediction error is inflated). The T 2

and SPE charts must be used as a pair and if either chart indicates a
significant deviation from expected operation, the presence of an abnormal
process operation must be declared.

If the process is out-of-control, the next step is to find the source cause
of the deviation (fault diagnosis) and then to remedy the situation. Fault
diagnosis can be conducted by associating process behavior patterns to
specific faults or by relating the process variables that have significant de-
viations from their expected values to various equipment that can cause
such deviations as discussed in Chapter 7. If the latter approach is used,
univariate charts provide readily the information about process variables
with significant deviation. Since multivariate monitoring charts summa-
rize the information from many process variables, the variables that inflate
T 2 or SPE statistics must be determined. This is usually done by using
contribution plots (Sections 3.4 and 7.4).

To include the information about process dynamics in the models, the
data matrix can be augmented with lagged values of data vectors, or model
identification techniques such as subspace state-space modeling can be used
(Section 4.5). Negiz and Cinar [209] have proposed the use of state variables
developed with canonical variates based realization to implement SPM to
multivariable continuous processes. Another approach is based on the use
of Kalman filter residuals [326]. MSPM with dynamic process models is
discussed in Section 5.3. The last section (Section 5.4) of the chapter gives
a brief survey of other approaches proposed for MSPM.

5.1 SPM Methods Based on PCA

Multivariate SPM methods with PCs can employ various types of moni-
toring charts. If only a few PCs can describe the process behavior in a
satisfactory manner, biplots could be used as visual aids that are easy to
interpret. Such biplots can be generated by projecting the data to two di-
mensional surfaces as PC1 versus PC2, PC1 versus SPE, and PC2-SPE
as illustrated in Figure 5.1.

Data representing normal operation (NO) and various faults are clus-
tered in different regions, providing the opportunity to diagnose source
causes as well [153]. Score biplots are used to detect any departure from
the in-control region defined by the confidence limits calculated from the
reference set. The axis lengths of the confidence ellipsoids in the direction
of ith principal component are given by [126]

±[S(i, i)Fa,n−a,αa(n2 − 1)/(n(n− a))]1/2 (5.1)
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Figure 5.1. The multivariate monitoring space. (a) Three-dimensional rep-
resentation, (b) Two-dimensional representation.

where S is the estimated covariance matrix of scores and Fa,n−a,α is the
F distribution value with a and n− a degrees of freedom in α significance
level, n is the number of samples in the reference set, a is the number of
PCs retained in the model. Inspection of many biplots becomes inefficient
and difficult to interpret when a large number of PCs are needed to describe
the process. Monitoring charts based on squared residuals (SPE) and T 2

become more useful. By appending the confidence interval (UCL) to such
plots, a multivariate SPM chart as easy to interpret as a Shewhart chart is
obtained.

Sometimes, plots of individual PC scores can be used for preliminary
analysis of variables that contribute to an out-of-control signal. The control
limits for new t scores under the assumption of Normality at significance
level α at any time interval k is given by [100]

±tn−1,α/2sref(1 + 1/n)1/2 (5.2)

where n and sref are the number of observations and the estimated standard
deviation of the t-score sample at sampling time k (mean is always 0) and
tn−1,α/2 is the critical value of the Studentized variable with n− 1 degrees
of freedom at significance level α/2.

Hotelling’s T 2 charts
Hotelling’s T 2 plot detects the small shifts and deviations from normal

operation defined by the model since it includes contributions of all vari-
ables that can become significant faster than the deviation of an individual
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variable. The T 2 statistic based on process variables at sampling time k is

T 2(k) = (x(k) − x̄)T S−1 (x(k) − x̄) (5.3)

where x̄ and S are estimated from process data. If the individual observa-
tion vector x(k) is independent of x̄ and S, then T 2 follows an F distribution
with m and n−m (m measured variables, n sample size) degrees of freedom
[190]:

T 2
∼

[
m(n+ 1)(n− 1)

n(n−m)

]
Fm,n−m (5.4)

If the observation vector x is not independent of the estimators x̄ and S,
but is included in their computation, then T 2 follows a Beta distribution
with m/2 and (n−m− 1)/2 degrees of freedom [190]:

T 2
∼

[
(n− 1)2

n

]
Bm/2,(n−m−1)/2 (5.5)

The T 2 charts based on PCs use

T 2(k) = tT
a (k)S−1ta(k) (5.6)

and follow an F or a Beta distribution for the same conditions leading to
Eqs. 5.4 and 5.5, with a and n−a degrees of freedom for the F distribution,
and a/2 and (n − a − 1)/2 degrees of freedom for the Beta distribution,
assuming that the data follow a multivariate Normal distribution [121, 120].
As before, a denotes the number of PCs, ta is a vector containing the scores
from the first a PCs [121] and S is the (a×a) estimated covariance matrix,
which is diagonal due to the orthogonality of the t scores [298]. The T 2

based on PCs can also be calculated at each sampling time k as [121]

T 2(k) =
a∑

i=1

t2i (k)
λi

=
a∑

i=1

t2i (k)
s2i

(5.7)

where the PC scores ti have variance λi (or estimated variance s2i from
the scores of the reference set) which is the ith largest eigenvalue of the
covariance matrix S. The term (k) that indicates the explicit dependence
on sampling time will be omitted from the T 2 equations in the remainder
of the book without loss of generality. If tables for the Beta distribution
are not readily available, this distribution can be approximated by using
[298]:

Ba/2,(n−a−1)/2,α =
(a/(n− a− 1))Fa,n−a−1,α

1 + (a/(n− a− 1))Fa,n−a−1,α
(5.8)
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A variant of T 2 statistic is the D statistic:

D(k) =
tT
a S−1tan

(n− 1)2
∼ Ba/2,(n−a−1)/2 (5.9)

Squared Prediction Error (SPE) charts
Squared Prediction Error (SPE) charts show deviations from NO based

on variations that are not captured by the model. Recall Eq.3.2 that can
be rearranged to compute the prediction error (residual) E

X = TPT + E E = X − X̂ (5.10)

where X̂ = TPT denotes the estimates of the data X. The location of the
projection of an observation (at sampling time k) on the a-dimensional PC
space is given by its score ta(k). The orthogonal distance of the observation
x(k) from the projection space is the prediction error e(k) which is squared
to compute SPE(k). The e(k) gives a measure of how close the observation
at time k is to the a-dimensional space

SPE(k) = e(k)Te(k) =
m∑

j=1

e2j(k) =
m∑

j=1

[xj(k) − x̂j(k)]
2 (5.11)

where x̂j(k) is computed from the PCA model. SPE is also called the
Q-statistic.

Statistical limits on the Q-statistic are computed by assuming that the
data have a multivariate Normal distribution [120, 121]. The control limits
for Q-statistic are given by Jackson and Mudholkar [122] based on Box’s
[22] formulation (Eq. 5.12) for quadratic forms with significance level of α
given in Eqs. 5.12 and 5.13 as

Qα = gχ2
h,α (5.12)

Qα = θ1[1 − θ2h0(1 − h0)/θ21 + zα(2θ2h2
0)

1/2/θ1]1/h0 (5.13)

where χ2
h is the chi-squared variable with h degrees of freedom and z is

the standard normal variable corresponding to the upper (1−α) percentile
(zα has the same sign as h0). θ values are calculated using the unused
eigenvalues of the covariance matrix of observations (eigenvalues that are
not retained in the model) as [327]

θi =
m∑

j=k+1

λi
j , for i = 1, 2, and 3 (5.14)
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The other parameters are

g = θ2/θ1 h = θ21/θ2 h0 = 1 − 2θ1θ3/3θ22 (5.15)

θi’s can be estimated from the estimated covariance matrix of residuals
(residual matrix used in Eq. 5.11) for use in Eq. 5.13 to develop control
limits on Q for comparing residuals. A simplified approximation for Q-
limits has also been suggested in [68] by rewriting Box’s equation (Eq.
5.12) by setting θ22 ≈ θ1θ3

Qα
∼= gh[1 − 2/9h+ zα(2/9h)1/2]3 (5.16)

SPE values for new data at time k are calculated using

SPE(k) =
m∑

j=1

(xj(k) − x̂j(k))2 (5.17)

These SPE(k) values computed using Eq. 5.17 follow the χ2 (chi-squared)
distribution [22]). This distribution can be well approximated at each time
interval using Box’s equation in Eq. 5.12 (or its modified version in Eq.
5.16).

Example The performance of univariate and multivariate process mon-
itoring charts are illustrated in Figures 5.2 and 5.3 for the polymerization
of vinyl acetate in a CSTR. The simulation uses a model developed by Tey-
mour [291], consisting of four ordinary differential equations for the reactor
temperature, solvent volume fraction, monomer volume fraction and the
initiator concentration in the reactor, and three differential equations for
the molecular weight moments of the reactor. The moments are functions
of polymer chain reaction kinetics and probabilities of polymer chain prop-
agation. They are used for calculating various polymer molecular weights,
polydispersity and conversion. The ‘measured’ variables are polydispersi-
ty, reactor temperature, conversion and the reactor initiator concentration.
The five input variables are the reactor cooling jacket temperature, the ini-
tiator concentration in the feed stream, the feed stream temperature, the
feed solvent volume fraction and the residence time. The four monitored
output variables are assumed to be available via analytical methods at one
minute intervals for the physical system. The assumption is valid for the
reactor temperature, conversion and initiator concentration, though the
polydispersity measurement in a physical system may take up to 30 min
or more to obtain via analytical monitoring techniques. The manipulated
variables are modified by adding random fluctuations to each of the inputs.
Disturbances may be added by changing the values of input variables.
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Figure 5.2. T 2 and SPE charts based on PCA for monitoring a continuous
polymerization reactor. A 5% increase in reactor feed temperature is in-
troduced for 60 min at the time instant indicated by a vertical bar on the
plot.

A 5% increase in reactor feed temperature was introduced and main-
tained for 60 min before returning the feed stream to normal operating
conditions. The multivariate charts (Figure 5.2) are the first to detect the
disturbance to the reactor operation. The T 2 statistic exceeds the 99% con-
fidence interval 25 min after the disturbance was introduced, and the SPE
statistic 20 min after the disturbance, a few minutes earlier than the T 2

chart. The initiator concentration in the reactor exceeds the statistical lim-
its of the Shewhart chart (Figure 5.3) after 35 min. Reactor temperature
and conversion readings exceed the statistical limits after approximately 40
min and the polydispersity measurement exceeds the univariate limit after
44 min.

5.2 SPM Methods Based on PLS

Large amounts of process data, such as temperatures and flow rates, are
collected at high frequency by process data collection systems. Information
on product quality variables is collected less frequently since these mea-
surements are expensive. Although it is possible to measure some quality
variables on-line by means of sophisticated devices, measurements are gen-
erally made off-line in the quality control laboratory and often involve time
lags between data collection and receiving analysis results. Process data
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Figure 5.3. Shewhart charts for monitoring a continuous polymerization
reactor. A 5% increase in reactor feed temperature is introduced for 60
min.

contain valuable information about both the quality of the product and the
performance of the process operation. PLS models provide the quantitative
relations for estimating product quality from process data. They can also
be used used to quickly detect process upsets and unexpected behavior.

Cross correlations and colinearity among process variables severely limit
the use of traditional linear regression techniques. PLS, as a projection
method, offers a suitable solution for modeling such data.

The first step in the development of a PLS model is to group the process
variables as X and the product quality variables as Y (Figure 5.4). This
selection is dependent on the measurements available and the objectives of
monitoring. The reference set used to develop the multivariate monitoring
chart will determine the variations considered to be part of normal oper-
ation and ideally includes all variations leading to desired process perfor-
mance. If routine variations in the reference set are too small, the resulting
model used for process monitoring will cause frequent alarms, and if it in-
cludes a data set that contains large variations, the sensitivity for detecting
abnormal operation will be poor. The reference data set selected should
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include the range of process variables that yield desired product quality. If
the PLS model is developed for monitoring certain process conditions, the
reference data set should include data collected under these conditions.

Since PLS technique is sensitive to outliers and scaling, outliers should
be removed and data should be scaled prior to modeling. After data pre-
treatment, the number of latent variables (PLS dimensions) to be retained
in the model is determined. Cumulative prediction sum of squares (CUM-
PRESS) versus the number of latent variables or prediction sum of squares
(PRESS) versus the number of latent variables plots are used for this pur-
pose. It is usually enough to consider the first few PLS dimensions for
monitoring activities, while more PLS dimensions are needed for prediction
in order to improve the accuracy of predictions.

The squared prediction error (SPE) can be calculated for the X and
the Y block models

SPEX,k =
m∑

j=1

(xkj − x̂kj)
2 (5.18)

SPEY,k =
q∑

j=1

(ykj − ŷkj)2 (5.19)

where x̂ and ŷ are predicted observations in X and Y using the PLS model,
respectively, k and j are the indexes for observations and variables in X or
Y, respectively.

x̂kj and ŷkj in Eqs. 5.18 and 5.19 are calculated for new observations
as follows:

ti,new =
m∑

j=1

xnew,jwi,j (5.20)
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Figure 5.4. Arrangement of data in PLS for SPM as suggested in [41].
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x̂new,j =
a∑

i=1

ti,newpi,j (5.21)

ŷnew,j = x̂new,jb (5.22)

where wi,j denotes the weights, pi,j the loadings for the X block (process
variables) of the PLS model, ti,new the scores of new observations, and b
the regression coefficient for the inner relations.

Multivariate monitoring charts based on Hotelling’s statistic (T 2) and
squared prediction errors (SPEX and SPEY ) are constructed using the
PLS models. Hotelling’s T 2 statistic for a new independent t vector is [298]

T 2 = tT
newS−1tnew ∼

a(n2 − 1)
n(n− a)

Fa,n−a (5.23)

where S is the estimated covariance matrix of PLS model scores, a the
number of latent variables retained in the model and Fa,n−a the F distri-
bution value. The control limits on SPE charts can be calculated by an
approximation of the χ2 distribution given as SPEα = gχ2

hα [22]. This
equation is well approximated as [68, 122, 218]

SPEα
∼= gh

[
1 − 2

9h
+ zα

(
2
9h

)1/2
]3

(5.24)

where g is a weighting factor and h degrees of freedom for the χ2 distribu-
tion. These can be approximated as g = v/(2m) and h = 2m2/v, where v
is the variance and m the mean of the SPE values from the PLS model.

Biplots of scores (ti vs ti+1, for i = 1, · · · , a) can also be developed.
The control limits at significance level α/2 for a new independent t score
under the assumption of Normality at any sampling time are

±tn−1,α/2sest(1 + 1/n)1/2 (5.25)

where n, sest are the number of observations and the estimated standard
deviation of the score sample at the chosen time interval and tn−1,α/2 is
the critical value of the Student’s t test with n − 1 degrees of freedom at
significance level α/2 [100, 218]. The use of PLS models will be illustrated
in Section 8.1 for sensor failure detection.

5.3 SPM Using Dynamic Process Models

MSPM techniques rely on the model of the process. If the process has sig-
nificant dynamic variations, state-space and subspace state-space models
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can represent the dynamics of the process. The subspace models can be
developed by using the methodology described in Section 4.5. Commercial
and open-source software are available for developing subspace state space
models using canonical variate (CV) realization and N4SID approaches.
MSPM techniques use the state-variables x(k) of the subspace state-space
models to generate the T 2 values and the residuals e(k) = y(k) − ŷ(k) be-
tween the measured and estimated values of the model outputs to generate
the SPE values at time k. The control limits of the charts are identical to
those given in Section 5.1.

The residuals are used in monitoring with the normalized SPE chart
(SPEN ) in this example. At time k, SPEN (k) is

SPEN (k) = (e(k) − e)T Σ−1
e (e(k) − e) (5.26)

where Σe and ē are the covariance matrix and the mean vector of residuals
respectively, which are determined for in-control data. SPE given here is
called as normalized since the SPE(k) values are scaled with their in-control
mean and variance. SPEN is distributed as

SPEN ∼ m (n2 − 1)
n(n−m)

Fm,n−m (5.27)

The in-control residual mean vector e is almost zero and in-control residual
covariance matrix Σe is diagonal.
Example The performance of MSPM charts based on CV state-space
models is illustrated by monitoring a high-temperature short-time (HTST)
pasteurization system [143, 211]. Pasteurization is a heat treatment process
of foods to secure destruction of pathogenic bacteria without markedly
affecting the physical and chemical properties of the end product. In HTST
pasteurization of milk, the standard time-temperature combination is 72oC
(161oF ) with a residence (holding) time of 15 sec before the pasteurized
milk is cooled. The process (Figure 5.5) consists of a plate heat exchanger,
a centrifugal pump, a flow diversion valve, a boiler and a homogenizer.
There are two regulatory valves, the steam injection valve to the boiler and
the hot water flow valve in preheater section.

The incoming raw product passing through the regenerator section goes
first to the preheater section where it exchanges heat with hot water for
controlling raw product temperature entering the homogenizer. After the
homogenizer, raw milk flows to the main heat exchanger and follows the
same procedure as in the generic pasteurization plant.

The primary source of heat is hot water. The hot water is heated by
direct steam injection in the hot water heater. Three PID controllers are
used to control product temperature. The first control loop regulates the
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pasteurized product
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Figure 5.5. Diagram of the NCFST pilot HTST pasteurization plant.
Reprinted from [143]. Copyright c© 2001 with permission from Elsevier.

raw product temperature leaving the preheater. The second loop controls
product temperature entering the holding tube. The last loop controls the
temperature of the pasteurized product leaving the cooler. The raw product
temperature at the exit of the preheater is controlled by manipulating the
flow of hot water through the preheat heater exchanger. The product tem-
perature at the holding tube inlet is controlled by manipulating the steam
flow rate into the hot water heat exchanger. The cooler product tempera-
ture is controlled by manipulating the flow rate of cold water through the
cooler heat exchanger. The flow diversion valve is controlled by pasteur-
ized milk temperature at the holding tube exit. The measured variables
are hot water, holding tube inlet, holding tube outlet, and preheater exit
temperatures and the steam valve and preheater valve signals.

The variables used in process modeling and fault diagnosis implemen-
tation are four temperature measurements (oC) and two PID controller
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outputs (mA). Hot water temperature, holding tube inlet temperature of
pasteurized product, holding tube outlet temperature of pasteurized prod-
uct and preheater outlet temperature of raw product are the output vari-
ables of the process. PID controller of the steam valve regulates the holding
tube inlet temperature of product, and PID controller of the preheater hot
water valve regulates the preheater outlet temperature of raw product.

Data for model formation are collected under open-loop conditions by
exciting the process with pseudo-random binary sequence (PRBS) signals
that are sent to the control valves. PRBS allows the control valves (steam
valve and preheater hot water valve) to switch between two different signal
levels depending on a switching probability, P . Two different PRBS series
are used for two actuators. First a series of random numbers r with a
uniform distribution are generated. The signal that is sent to process at
time k changes depending on the value of r(k) and P . At time k, the signal
S(k) stays at the same level as the previous signal S(k−1) if the value of the
random number r(k) is less than the switching probability P . Otherwise
S(k) will switch to the other level. To collect open loop data of the process,
uniformly distributed, different PRBS (5000× 1) were generated with P of
0.94 for each actuator. For steam control valve and preheater control valve,
the actuator command generated by the above procedure changed between
6− 11 mA and 10− 15 mA, respectively. The number of state variables in
the state-space model used for process monitoring was chosen as 12. The
design parameters, which are backward and forward time windows to build
the time-lagged data matrix, were chosen as 15 in model determination.

Three types of faults were implemented: sensor faults, actuator faults
and combination faults (single sensor-single actuator faults and multiple
sensors-single actuator faults) [143]. Experiments were conducted with d-
ifferent fault magnitudes and duration. Actuator faults to the steam valve
are used for illustration. The faults are caused by keeping the controllers ac-
tive and sending a constant signal to the actuators instead of the controller
signal for a specific time period. The controller output is put in a data file.
Therefore, the system will not know about the actuator abnormality until
controller notices deviations in the controlled variables.

Table 5.1 shows the time and duration of the faults and the detection
times of T 2 and SPE charts. The T 2 chart signals the abnormal situation
for last two failures that have larger magnitudes. SPEN chart shows all
the failures (Figure 5.6). The arrows and numbers in the figures indicate
the faults (first column of Table 5.1) and their time of occurrence.
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Table 5.1. Steam valve fault: Times and magnitudes of faults, performance
of SPM charts in terms of sampling times elapsed before detection (NA:
No Alarm generated).

Fault Time (sec) Valve Signal (mA) Duration (sec) T 2 SPEN

1 301 7.0 20 7 7
2 521 7.5 20 NA 25
3 741 11.0 20 40 11
4 961 12.0 20 19 1
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Figure 5.6. Steam valve fault: T 2 of state Variables and SPEN chart with
99% (-) and 95% (- -) confidence limits. Reprinted from [143]. Copyright
c© 2001 with permission from Elsevier.

5.4 Other MSPM Techniques

MSPM techniques based on PCA and PLS are gaining popularity and re-
placing traditional process performance assessment activities that rely on
univariate tools such as Shewhart charts. PCA techniques have been used
to monitor an LDPE reactor operation [145], high speed polyester film
production [320], Tennessee Eastman simulated process [168, 242, 342] and
sheet forming processes [249]. Several new concepts introduced in the 1990s
are being extended. MSPM of strongly autocorrelated processes based on
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state equations derived by using subspace model identification [211] is used
successfully in abnormal situation management [132, 133] and larger-scale
simulation problems such as the Tennessee Eastman process [168]. Multi-
scale PCA by using wavelet decomposition (Section 6.1) has been proposed
for monitoring processes with multi-scale data [8, 344].

Independent component analysis (ICA) is proposed as an alternative
to PCA for MSPM. Various studies indicate that ICA-based MSPM tools
are more successful for non-Gaussian data [162]. Several papers have been
published recently to illustrate the strengths and limitations of ICA for
MSPM [137, 138, 163, 164].

MSPM methods have been extended to processes that operate in multi-
ple modes. Multi-group and multi-block PLS have been proposed to moni-
tor with a single model a number of similar products manufactured across
different unit processes [189]. Dynamic PCA (DPCA) is used for a two-
step clustering method for process states in agile chemical plants [280].
Process states are first classified into modes corresponding to transitions
and steady-states. DPCA is then used to compare different modes and
transitions and to cluster them using similarity measures. Support vector
machines (SVM) have been used for simultaneous fault detection and op-
eration mode identification in multi-mode operations [40]. SVM is used
for classification together with an entropy-based variable selection method
to discriminate between data clusters corresponding to multiple operational
modes and abnormal data corresponding process faults. Angle-based classi-
fication and fault diagnosis techniques introduced by Raich and Cinar [243]
have been extended to monitor processes with multiple operating modes
[348].

When a process consists of several units that should be monitored in-
dividually along with the whole process, multi-block techniques [322] such
as consensus PCA (CPCA) [335], hierarchical PCA (HPCA) [337], multi-
block PLS (MBPLS) [319, 335] or hierarchical PLS (HPLS) [335] can be
used. In multi-block algorithms, the descriptor variables (for PCA) and the
response variables (for PLS) are divided into several blocks so as to obtain
local information (block scores) as well as global information from process
data. The CPCA and MBPLS algorithms normalize the block loadings and
super loadings, while the HPCA and HPLS algorithms normalize the block
scores and super scores [237, 322].

Moving-window PCA (MWPCA) has been proposed to monitor time-
varying processes where both the PCA model and the statistical confidence
intervals of the monitoring charts are adapted [316]. MWPCA provides
recursive adaptation within the moving window to adapt the mean and
variance of process variables, the correlation matrix, and the PCA model
by recomputing the decomposition. MWPCA is compared to recursive
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PCA and its performance is illustrated using the fluid catalytic cracking
unit (FCCU) challenge problem [193].

5.5 Summary

Multivariate SPM (MSPM) methods based on PCS, PLS, and state-space
models are presented in this chapter. Multivariate monitoring charts pro-
vide more accurate information about the process and give warnings earlier
than the signals of univariate charts. MSPM relies on the statistical dis-
tance concept T 2 that can be computed by using all variables if the process
has a few variables. MSPM techniques based on PCA (Section 5.1) or PLS
(Section 5.2) are preferred if the process has a large number of variables and
there is significant colinearity among some of them. PCA is used if only
process variables are used in the development of MSPM charts. When both
process and quality variables are used, and the two blocks of data need to
be related as well, the MSPM charts are based on the latent variables of
PLS. In both cases, the status of the process is summarized by using two
statistics, the Hotelling’s T 2 and the squared prediction error (SPE). The
charts plot T 2 or SPE values computed by using the information collected
at each sampling time on the time axis. The T 2 chart indicates the dis-
tance of the current operation from the desired operation. The SPE chart
captures the magnitude of the error caused by deviations resulting from
events that are not described by the PCA or PLS-based model. The T 2

and SPE charts are used together, and if either chart indicates a significant
deviation from the expected operation, the presence of an abnormality in
process operation must be declared.

To include the information about process dynamics in the models, the
data matrix can be augmented with lagged values of data vectors, or model
identification techniques such as subspace state-space modeling can be used
(Section 5.3). Other approaches proposed for MSPM are summarized in
Section 5.4).

If process monitoring detects an abnormality in process operation, the
next steps are to find the source cause of the deviation (fault diagnosis) and
then to remedy the situation. Fault diagnosis is achieved by associating
process behavior patterns to specific faults (Chapter 7) or by relating the
process variables that have significant deviations from their expected values
to various equipment that can cause such deviations. If the latter approach
is used, the variables that inflate T 2 or SPE statistics must be determined
since multivariate monitoring charts summarize the information from many
process variables. This is usually done by using contribution plots (Sections
3.4 and 7.4).
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Characterization of
Process Signals

Interpretation of a process signal solely based on its temporal evolution
is often risky. Subtle changes in signal characteristics and key transitions
may be missed leading to incorrect assessment of process status. In some
cases, one can attempt to extract more information from a process signal by
transforming it into a domain that might help to accentuate key features of
the signal. One such approach is the use of the Fourier transform (FT) to
determine the frequency content of a signal. Yet, it would also be interesting
to understand if the frequency characteristics of the signal may be changing
in time. In the next section (Section 6.1), wavelet transform (WT) will be
briefly introduced to show how both frequency and temporal features of a
signal can be localized. This will be followed in Section 6.2 by a discussion
on signal denoising based on wavelet transforms and a hybrid strategy that
can also deal with outliers that are often present in real-world signals. The
subsequent sections will introduce methods that help model process signals
for later use in monitoring applications. First, in Section 6.3, triangular
episodes will be discussed as a means of obtaining a symbolic representation
from an otherwise numerical time series data. A more elaborate strategy
based on a doubly stochastic model, namely the hidden Markov models
(HMMs), will be introduced in Section 6.4.2 and the chapter will conclude in
Section 6.5 with the modeling of wavelet coefficients using the HMM paving
the way for a trend analysis methodology to be introduced in Chapter 7.

6.1 Wavelets

In recent years, wavelet transform (WT) has been developed as a novel,
to use the term somewhat loosely, ‘extension’ of the traditional Fourier
transform (FT) as a means of capturing transitions in the frequency content
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of a signal in time. In signal processing, wavelets are used as a major tool
to analyze non-stationary signals [44, 182] and also well studied for signal
denoising and compression purposes [56, 90, 229]. In process applications,
following the first studies summarized in the book by Motard and Joseph
[205], there emerged also fine examples of wavelet applications in process
monitoring [8, 9], denoising [59] and compression [10, 200]. To follow the
historical development of WT, it is best to start with a brief review of FT
and its early extensions. Then, continuous and discrete WT are introduced
separately and illustrated by examples.

6.1.1 Fourier Transform

An important feature of a process signal is its periodicity, or, in other words,
its frequency content. Fourier theory indicates that it is possible to sepa-
rate individual frequency components from stationary signals (i.e., stochas-
tic signals whose statistical characteristics do not change over time) and
make a transformation from the amplitude-time domain to the amplitude-
frequency domain. This transformation is known as the Fourier Transform
(FT). The Fourier transform of a continuous stationary signal z(t) for a
given frequency ω in radians is defined as,

Z(ω) =
∫ +∞

−∞
z(t)e−iωtdt (6.1)

Often, one uses the frequency representation of FT as follows:

Z(f) =
∫ +∞

−∞
z(t)e−i2πftdt (6.2)

In effect, FT expresses a periodic signal in terms of sinusoidal basis
functions. The spectrum obtained by the transformation shows the overall
strength with which any frequency ω is contained in z(t). When applied to
aperiodic signals, it is required that the signal has finite energy, i.e.,∫ ∞

−∞
|z(t)|2dt <∞ (6.3)

For periodic signals, the basis functions (exponential building blocks) can
be related harmonically, while for aperiodic signals, one can only say that
they are infinitesimally close in frequency.

In practical applications, a process signal is sampled to yield a sequence
of discrete values, i.e., z(t) → z(k) where k = 0, 1, ..., n − 1. Thus, the
discrete signal can be expressed as a sequence, {z(k) = z0, z1, ..., zn−1}.
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For this finite sequence, the discrete Fourier transform (DFT) is defined as

Zk =
n−1∑
j=0

zje
−2πijk/n, k = 0, 1, ..., n− 1 (6.4)

It is noted that Zk is associated with the frequency fk ≡ k/n. There
are efficient algorithms for computing Zk using the fast Fourier transform
(FFT) [220].

When evaluated using real-valued inputs (data), FFT gives output-
s (spectrum) whose positive and negative frequencies are redundant. It
turns out that they are complex conjugates of each other, meaning that
their real parts are equal and their imaginary parts are negatives of each
other. Note that the original signal sequence zj can be reconstructed from
its DFT by,

zj =
1
n

n−1∑
k=0

Zke
2πijk/n j = 0, 1, ..., n− 1 (6.5)

Example Two signals are constructed using pure sinusoids with three
different frequencies. The first signal is defined as,

f1(t) = sin(2.05 · 2πt) + sin(0.1 · 2πt) + sin(1.5 · 2πt) (6.6)

This is a stationary signal because all of the frequencies are present through-
out the duration of the signal. The second signal is a non-stationary signal
that contains the same frequencies but at different time intervals, leading
to discontinuities at the points of transition:

f2(t) =

⎧⎨⎩
sin(2.05 · 2πt) 0 ≤ t ≤ 20
sin(0.1 · 2πt) 20 ≤ t ≤ 35
sin(1.5 · 2πt) 35 ≤ t ≤ 50

(6.7)

Figure 6.1 displays these signals along with their FT. One can easily observe
that while the two signals are vastly different, their FT is quite similar,
underscoring the inappropriateness of using FT for non-stationary signals.

The idea of preserving temporal information while obtaining the fre-
quency spectra of any function led to the extension of the standard FT.
This extension of FT is known as the Gabor transform or the short-time
Fourier transform (STFT) in signal processing [235]. The purpose is to
transform non-stationary signals, so that time and frequency information
is preserved. Since a non-stationary signal can be viewed as composed of
segments of stationary signals of certain length, the idea here is to decom-
pose the non-stationary signal into small segments and perform FT of each
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Figure 6.1. Two signals and their corresponding FT.

segment. For this purpose, a window function needs to be chosen. Ideally,
the width of this window must be equal to the portion of the signal where
it does not violate stationarity conditions. The STFT can be defined as
follows:

Z(τ, f) =
∫ ∞

−∞
z(t)w(t− τ)e−i2πftdt (6.8)

where w(t − τ) is a window function centered at τ (see [182] for various
window functions and their comparative merits). It can be seen that STFT
is a convolution of the signal with the window function. In STFT, the
narrower the window, the better the time resolution, but the poorer the
frequency resolution, and vice versa. This problem stems from the Heisen-
berg’s uncertainty principle which states that one cannot know the exact
time-frequency representation of a signal as no signal has finite time du-
ration and finite frequency bandwidth simultaneously. One can only know
the time intervals in which a certain band of frequencies exist, which turns
out to be a resolution problem. The FT does not have any resolution issues
in the frequency domain by the fact that window used in its kernel is the
e−2πift function which lasts for all time. In STFT, the window is of fi-
nite length, thus the frequency resolution becomes poorer. In other words,
with a narrow window selection, STFT provides good time resolution but
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poor frequency resolution, and with a wide window, good frequency resolu-
tion but poor time resolution is achieved. Naturally, the main drawback of
STFT is that once the window size is selected, it is fixed for all frequencies.
Example Figure 6.2 depicts the STFT of the two signals introduced in
the previous example. A 21-point Hanning window function is used for
this example, and the window functions overlapped half of the previous
window when translated. One can now observe the difference in the signal
characteristics as the non-stationary signal yields a STFT that sharply
delineates the transition period.

Figure 6.2. Two signals and their corresponding STFT.

6.1.2 Continuous Wavelet Transform

Historically, the first wavelet function is attributed to Haar [95] when he
replaced the sinusoidal basis functions of FT with an orthonormal function,
ψ(t), given as,

ψ(t) =

⎧⎨⎩
1 0 ≤ t < 0.5

−1 0.5 ≤ t < 1
0 t �∈ [0, 1]

(6.9)

The most important difference between the Haar basis and the sinusoids



120 Chapter 6. Characterization of Process Signals

is that e−jωt has infinite support, which means that it stretches out to
infinity, while the Haar basis has compact support since it only has nonzero
values between 0 and 1.

The Wavelet Transform (WT) was formally introduced in the late 1970s
by Morlet [45], a geophysicist with Elf-Acquitane in France. Morlet’s com-
pany was searching for oil by sending impulses into the ground and ana-
lyzing their echoes. As sound waves travel through different materials at
different speeds, geologists can infer what kind of material lies under the
surface. As Morlet analyzed these signals with FT and STFT, he was not
satisfied with the constant window sizes in STFT in providing him with
the much needed frequency resolution. Morlet proposed a new transform
function by taking a cosine wave windowed by a Gaussian (Figure 6.3):

ψ(t) = Cexp

(
− t

2

2

)
cos(5t) (6.10)

By compressing this function in time, Morlet was able to obtain a higher
frequency resolution and spread it out to obtain a lower frequency reso-
lution. To localize time, he shifted these waves in time. He called his
transform the ‘wavelets of constant shape’ and today, after a substantial
number of studies in its properties, the transform is simply referred to as
the Wavelet transform. The Morlet wavelet is defined by two parameters:
the amount of compression, called the scale, and the location in time.

Figure 6.3. The Morlet wavelet.

There are several families of wavelets, proposed by different authors.
Those developed by Daubechies [46] are extensively used in engineering
applications. Wavelets from these families are orthogonal and compactly
supported, they possess different degrees of smoothness and have the max-
imum number of vanishing moments for a given smoothness. In particular,
a function f(t) has ε vanishing moments if∫

tnf(t)dt = 0, n = 0, 1, ..., ε− 1 (6.11)
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These properties are desirable when representing signals through a wavelet
series. In addition [44],

• The function should decrease quickly towards 0 as its argument ap-
proaches infinity, and

• The function is null outside a segment of the Real line, R.

The equation for the continuous wavelet transform (CWT ) can be ex-
pressed as,

CWT (s, u) =
1√|s|

∫ ∞

−∞
z(t)ψ(s, u)dt (6.12)

where CWT (s, u) are the wavelet coefficients and ψ(s, u) is the family of
wavelets where s and u represent the dilation (scaling) and translation
(shifting) parameters, respectively. The family of wavelets represent the
translations and the dilations of the mother wavelet ψ(t) and can be ex-
pressed in the form:

ψs,u =
1√|s|ψ

(
t− u

s

)
, s, u ∈ R, s �= 0 (6.13)

The best known wavelets are the Daubechies wavelets (dbε) and the Coif-
man wavelets (coifε). In both cases, ε is the number of vanishing moments
of the functions. Daubechies also suggested the ‘symlets’ as the nearly sym-
metric wavelet family as a modification of the db family. The family ‘Haar’
is the well-known Haar basis [95]. Figure 6.4 shows a number of wavelet
functions. As can be seen, the Haar functions are discontinuous and may
not provide good approximation for smooth functions.

In general, one would be interested in not only analyzing the signal but
also in reconstructing (synthesizing) the original signal using the wavelet
coefficients. While the mother wavelet can be any function for the former
exercise, it has to satisfy more conditions to provide the latter. The wavelet
functions are designed to have large number of moments (zero-crossings),
thus, the expansion of functions on such wavelet bases needs much fewer
terms than the Taylor expansion. This property leads to very sparse de-
compositions of functions, which facilitates the applications such as filtering
and data compression. For ideal signal reconstruction, the wavelets should
satisfy the orthogonality condition if the same wavelet is to be used for
both analysis and synthesis. For more details on the properties of WT, the
reader can consult a number of excellent books [228, 235].

Figure 6.5 depicts the frequency coverage of FT, STFT and WT. While
FT provides information on the power of frequencies present in the signal,
STFT can follow the signal in fixed windows and show the presence and
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Figure 6.4. The scaling (left) and wavelet (right) functions for four wavelets,
Haar, Daubechies 4, Symlet 3 and Coiflet 3.

the power of frequencies present in each window. Furthermore, while the
tiling of STFT is linear, the tiling of WT is logarithmic [235], indicating
that the building blocks in two decompositions are different, and frequency
localization in WT is proportional to the frequency level. Thus, for WT,
time localization gets finer in the highest frequencies. The multiresolution
decomposition concept that will be discussed next allows for an arbitrary
tiling of the time-frequency plane.

Example The CWT of the signals defined in Eq. 6.6 and Eq. 6.7 are
shown in Figure 6.6. Here, the Daubechies 4 (db4) wavelet is used. The
CWT yields a three-dimensional representation similar to that of STFT
and easily discriminates between the two signals, correctly pinpointing the
times at which the signal frequency changes. For f1(t), since all frequency
components are present for the entire duration, two prominent bands are
observed spanning the time axis at different scales. Note that since there are
two higher-frequency components of the signal, the band at the lower scales
appears fuzzy as one frequency masks the other. For f2(t), the appearance
and disappearance of the low-frequency behavior are delineated clearly by
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Figure 6.5. The frequency coverage of FT, STFT and WT.

the appearance and disappearance of the band of wavelet coefficients at
higher scales. One can also see clearly the difference in the two frequencies
at the lower scales.

Figure 6.6. Two signals and their corresponding CWT.

6.1.3 Discrete Wavelet Transform

The CWT results in wavelet coefficients at every possible scale. Thus,
there is a significant amount of redundancy in the computation. But there
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is an easy way to obtain WT, which is called the discrete wavelet transform
(DWT ). DWT is a special case of the WT and is based on dyadic scaling
and translating. For most practical applications, the wavelet dilation and
translation parameters are discretized dyadically (s = 2j , u = 2jk).

A process signal z(t) can be represented through DWT as follows [44]:

z(t) =
∑

k

ckφj0,k(t) +
j0∑

j=−∞

∑
k

dj,kψj,k(t) (6.14)

with

ck ≡
∫
z(t)φ∗j0,k(t)dt

dj,k ≡
∫
z(t)φ∗j,k(t)dt

Here, the wavelet function, ψ(t) , and the scaling function, φ(t) (see Figure
6.4), are defined as

ψj,k(t) ≡ 2−j/2ψ(2−jt− k) (6.15)

φj0,k(t) ≡ 2−j/2φ(2−j0t− k), j, k ∈ Z (6.16)

In this representation, integer j indexes the scale or resolution of analy-
sis, i.e., smaller j corresponds to a higher resolution, and j0 indicates the
coarsest scale or the lowest resolution. k indicates the time location of
the analysis. For a wavelet φ(t) centered at time zero and frequency ω0,
the wavelet coefficient dj,k measures the signal content around time 2jk
and frequency 2−jω0. The scaling coefficient ck measures the local mean
around time 2j0k. The DWT represents a function by a countable set of
wavelet coefficients, which correspond to points on a 2-D grid of discrete
points in the scale-time domain.

Mallat [182] proposed an algorithm, referred to as the multiresolution
signal decomposition (MSD), to efficiently perform DWT. Its basic idea is to
use a low-pass filter (see Section 6.2.1) and a high-pass filter to decompose
a dyadic-length discrete signal (time series) into low frequency and high
frequency components, respectively. As shown in Figure 6.7, for a signal
S consisting of 128 points, one also performs a down-sampling operation
to reduce the number of points in each scale by half. It is noted that, for
discrete signals, the upper limit for the scales is bounded by the maximum
number of available details in the signal.

One can show that the relationship between high-pass and low-pass
finite impulse response (FIR) filters and the corresponding wavelet and
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Figure 6.7. The signal decomposition and reconstruction using FIR filters.
Note that g̃ and h̃ are the dual filters and S̃ is the reconstructed signal.

scaling functions can be expressed as:

ψ(t) =
√

2
∑

k

h(k)ψ(2t− k) (6.17)

φ(t) =
√

2
∑

k

g(k)ψ(2t− k) (6.18)

This approach greatly facilitates the calculation of wavelet and scaling co-
efficients as typically implemented in the Matlab� Wavelet Toolbox [199].
One can associate the scaling coefficients with the signal approximation,
and the wavelet coefficients as the signal detail.

Due to the down-sampling procedure during decomposition, the number
of resulting wavelet coefficients (i.e., approximations and details) at each
level is exactly the same as the number of input points for this level. It is
sufficient to keep all detail coefficients and the final approximation coeffi-
cient (at the coarsest level) to be able to reconstruct the original data. The
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signal reconstruction involves the reverse procedure and up-sampling which
inserts zeros in between signal values from the previous level (see Figure
6.7).

Example The DWT of the two signals defined in Eq. 6.6 and Eq. 6.7 are
shown in Figures 6.8 and 6.9, respectively. Some random noise (zero mean,
unit variance) is also added to each signal to distort the original features
slightly. Figures show the approximate and the detail coefficients of the
MSD for a three level decomposition. Following observations are made:

• The detail coefficients show the strength of the signal component
removed at each scale level. Especially in Figure 6.9, one can clearly
see how the first level removes the noise components followed by signal
components with distinct frequency behavior.

• Each approximate signal level depicts a coarser approximation of the
signal, with the last level (level 3) showing the key underlying signal
feature (mean).

• As one can see in the detail signals, each level represents a band-pass
filtered signal, thus comprising a range of characteristic frequencies.

• While high-frequency noise is expected to be removed at the first
decomposition level, one can see that the effect of noise persists in all
scales.

There are a few issues that any user should be aware of in applying the
WT to the signals of interest. Below, some of these issues are highlighted
(the reader is referred to the references mentioned earlier for a more detailed
discussion):

• It is not a straightforward task to come up with a procedure that
would lead to the best mother wavelet for a given class of signals. N-
evertheless, exploiting several characteristics of the wavelet function,
one can determine which family of wavelets would be more appropri-
ate for a specific application.

• As a general rule, all orthogonal wavelets lack symmetry. This be-
comes an issue in applications such as image processing where sym-
metric wavelets are preferable. The symmetric wavelets also facilitate
the handling of image boundaries.

• Dealing with boundaries becomes an issue in wavelet analysis of finite
array of data. These edge effects or singularities can be avoided by
using adaptive filters near the signal boundaries.
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Figure 6.8. The DWT of noisy signal 1 using Daubechies 4 wavelet.

• An important property of wavelet bases is their lack of translation-
al invariance. In other words, when a pattern is translated, its de-
scriptors are not only translated but also modified. This is a direct
consequence of the down-sampling procedure and leads to distorted
reconstruction of the underlying signal features. A possible solution is
to omit down-sampling, resulting in a redundant family of coefficients.

6.2 Filtering and Outlier Detection

The measurements of process signals inherently contain noise that consist-
s of random signal disturbances interfering with the actual signal. The
signal noise can be due to variations in voltage, current or the measure-
ment technique itself. If the signal-to-noise ratio (SNR) is small, one may
encounter misleading or biased results in subsequent data analysis steps.
Thus, denoising (noise filtering) is a crucial step in signal analysis that is
aimed at removing random signal behavior and producing a clean signal
that contains relevant process characteristics. Numerous techniques have
been proposed for filtering process signals, going back to the seminal paper
by Kalman [135] and others, [221, 309].

In addition to noise, process data may also contain outliers (gross er-
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Figure 6.9. The DWT of noisy signal 2 using Daubechies 4 wavelet.

rors) that may comprise up to 10 % of the data points in low-quality data
sets [101]. In practical applications, one might consider the observations ex-
ceeding five standard deviations as outliers, and in univariate data sets, the
outliers can be easily identified by visual inspection. However, for higher di-
mensional data sets, this task becomes cumbersome and often intractable.
Due to their influence on the actual signal characteristics, outliers need
to be removed in a systematic manner, often through methodologies that
perform this task in an unsupervised manner [26, 57].

6.2.1 Simple Filters

In the signal processing literature, there are a number of filtering techniques
that can be adopted for a variety of purposes. Here, only two of them will
be considered, chiefly in the context of denoising, namely the low-pass filter
and the median filter. The goal is to introduce the reader to the concept of
filtering and also prepare the groundwork for wavelet filtering techniques
to be discussed next.

The so-called low-pass filter removes the high frequency components of
a signal and was referred to earlier in Section 6.1.3 (see also EWMA charts
in Section 2.2.4). Suppose that y(k), with k = 1, . . . n, represents the true
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signal and ŷ(k) is the noisy signal that one observes. The filter equation
represents a first-order difference equation given by,

ỹ(k) = βŷ(k) + (1 − β)ỹ(k − 1) (6.19)

Here, ỹ(k) represents the estimate of the true signal. Further, β is the filter
constant, or, in other words, the filtering bandwidth. By a judicious choice
of β, one can remove high-frequency noise components from the signal and
retain the relevant signal characteristics. Figure 6.10 shows the frequency
response of a first-order filter and how the bandwidth changes as a function
of β.

Figure 6.10. The frequency response of a low-pass filter with different filter
constants. β = 0.1 (solid), β = 0.5 (dash), β = 0.9 (dashdot)

One drawback of the first-order filter is associated with the slope of the
frequency response that indicates how sharp the cut-off is for high frequency
components. Since the frequency response attenuates rather slowly at high
frequencies, this would create a somewhat ineffective denoising performance
if the SNR is relatively low.
Example Figure 6.11 shows a noisy signal and the effect of β on the
denoising performance. As one can observe, the closer the value of β is to
1, the less effective the denoising is, since the bandwidth becomes larger,
almost reproducing the original signal. Yet, smaller values of β may also
be ineffective as the filter tends to remove relevant signal characteristics as
the bandwidth gets smaller, resulting in the removal of signal components
at moderate to low frequencies.

Since the test signal is known in this case, the performance of the fil-
tering methods can be evaluated by measuring the fidelity of the denoised
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Figure 6.11. The actual test signal, the test signal with noise and its de-
noised estimates using three different filter constants.

signal to the original signal. The mean square error (MSE) can be calcu-
lated as,

MSE =

√∑n
k=1(ỹ(k) − ŷ(k))2

n
(6.20)

As shown in Figure 6.11, the lowest MSE is associated with β = 0.5 and
one can judge the quality of denoising visually as well.

Another simple filter is the moving median (MM) filter first developed
by Tukey [299]. In this filtering technique, the median of a window con-
taining an odd number of observations is calculated as the window slides
over the entire signal. As a result, the original signal is freed from noise as
well as from outliers. Davies [47] showed that the MM filter could handle
signals that have moderate or high SNR, or contaminated with noise, which
comes from asymmetric distributions. The MM filter equation is expressed
as,

ỹ(k) = med (ŷ[l − w/2], ..., ŷ[l + w/2]) (6.21)

with l = w/2 + 1, w/2 + 2, ...n − w/2 and w + 1 is the window length.
Similar to the filter constant of the low-pass filter, the window length is the
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adjustable parameter for MM, and defines the quality of denoising as will
be illustrated in the example below.

Example Figure 6.12 shows the performance of the MM filter for three
different choices of the window length. It can be seen that a smaller window
is almost as good as the low-pass filter with β = 0.5 and longer window
lengths actually produce a signal estimate much closer to the actual signal
as the lower MSEs indicate.

Figure 6.12. The actual test signal, the test signal with noise and its
denoised estimates using the moving median filter with different window
lengths.

6.2.2 Wavelet Filters

Wavelet-based denoising methods involve taking the discrete wavelet trans-
form (DWT) of a signal, passing the resulting wavelet coefficients through
a thresholding step and then taking the inverse DWT (Figure 6.13). If a
signal has its energy concentrated in a small number of wavelet dimensions,
the magnitude of its coefficients will be relatively large compared to noise
components that have their energy spread over a large number of coeffi-
cients. This implies that, during thresholding (or shrinkage), the wavelet
transform will remove the low amplitude noise or the undesired signal com-
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ponents in the wavelet domain, and an inverse wavelet transform will then
reconstruct the desired signal with little loss of relevant features.

Figure 6.13. Wavelet-based denoising strategy.

The following thresholding methods can be defined:
1. The hard-thresholding filter, FH , selects wavelet coefficients that

exceed a certain threshold and sets the others to zero:

FH(d) =
{

1 |d| ≥ τ
0 otherwise (6.22)

2. The soft-thresholding filter, FL, is similar to the hard-thresholding
filter, but it also shrinks the wavelet coefficients above the threshold,

FL(d) =

⎧⎨⎩
d− τ |d| ≥ τ

0 |d| < τ
d+ τ |d| ≤ τ

(6.23)

The soft-thresholding is often preferred as the hard-thresholding has dis-
continuities that introduce artifacts to the denoised signal. The next step
is to determine the threshold value, τ .

Donoho and Johnstone [56] suggest τ =
√

2σ2
e log(n) for thresholding

(also called the universal threshold). Here, σ2
e is the estimate of the noise

variance and n is the length of the time series. If soft-thresholding is used
in conjunction with this threshold, then the estimates with high probability
are as smooth as the original ones and with small values for their risks in
both the bias and the variance. This approach is referred to as VisuShrink
by Donoho and Johnston [56], in reference to the good visual quality of the
reconstruction obtained by choosing the appropriate threshold and simple
‘shrinkage’ of wavelet coefficients. However, it may overly smooth the signal
for large n. Another shrinkage approach is referred to as SureShrink that
uses a hybrid of the universal threshold and the SURE threshold along
with soft-thresholding, and is derived from minimizing Stein’s unbiased
risk estimator [282].

Example Figure 6.14 displays the denoising performance of VisuShrink
and SureShrink strategies using two different wavelets. Here, the wavelet
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coefficients for the first two levels of the wavelet decomposition are selec-
tively denoised. As the number of decomposition levels (scales) increases,
the reconstructed signals tend to become smoother, losing some of the rel-
evant features. Thus, the MSE significantly improves compared with the
performance of the simple filters. One can also see that the SureShrink
with db8 performs the best for this application.

Figure 6.14. The actual test signal, the test signal with noise and its de-
noised estimates using VisuShrink and SureShrink.

6.2.3 Robust Filter

The performance of denoising methods tends to deteriorate in the presence
of outliers. Doymaz et al. [59] proposed a robust filtering strategy that
uses a median filter (MM) (see Section 6.2.1) in tandem with the coefficient
denoising method [7]. Here, this strategy is briefly reviewed and its key
benefits for denoising are pointed out.

The robust filtering strategy is depicted in Figure 6.15 in which the
primary goal of MM is to remove outliers so that the wavelet denoising
step can be more effective. It should be recognized that while MM removes
outliers, it also removes some noise elements thus complementing the sub-
sequent denoising step. This is an important issue, even in the absence
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of outliers, since the decision regarding the length of the moving window
becomes less critical and choosing it as 3 often suffices.

Figure 6.15. The schematic of the robust filtering strategy.

The denoising step in Figure 6.15 uses a novel filtering scheme that uses
two wavelet shrinkage stages. In addition to the traditional thresholding
and shrinkage, the coefficient denoising method uses a second thresholding
and shrinkage step for the wavelet coefficients. It has been proven that this
strategy has better denoising performance [7] when the coefficient denoising
step uses the Wiener filter which requires the knowledge of the statistics
of the signal and the noise. An approximation of the optimal Wiener filter
can be obtained using the diagonal elements as,

FW (d) =
d2

d2 + σ2
(6.24)

The noise variance σ2 can be estimated from the wavelet coefficients of the
noisy signal and then used in Eq. 6.24 [90]. It is known that the larger the
variations in the input data power (relative to noise variance), the greater
the loss in performance due to simple thresholding compared to optimal
Wiener weighting. In general, if the signal is smooth, it will have a larger
energy spread over the scaling coefficients, resulting in a substantial per-
formance loss. Thus, the coefficient denoising approach, by taking double
transformation and using Wiener thresholding in the space of coefficients,
spreads the energy less over the detail coefficients, resulting in better perfor-
mance than simply using the Wiener shrinkage. Naturally, this procedure
cannot be continued further, because the signal would then start to lose its
fundamental features.
Example The Bumps benchmark signal is contaminated with additive
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Table 6.1. MSE values for various filtering strategies.

MM filter Wiener Thresholding Robust Filtering
0.7474 4.422 0.4768

Gaussian white noise, N(0, 1), and 1% outliers were added using Poisson
distribution. The results [59] show that the robust filtering approach per-
forms quite well. Figure 6.16 depicts the visual performance of the robust
filtering strategy while Table 6.1 demonstrates how MSE is minimized
with this tandem approach. Using just a simple MM filter, the signal is
freed of outliers and the noise quite satisfactorily, while the wavelet Wiener
thresholding suffers from the presence of outliers significantly. The tandem
approach appears to achieve the minimum MSE.

Figure 6.16. The robust filtering technique performed on the Bumps bench-
mark signal (grey solid) with noise and outliers. The dashed signal is the
signal estimate. Reprinted from [59]. Copyright c© 2001 with permission
from Elsevier.

6.3 Signal Representation by Fuzzy Triangu-

lar Episodes

The analysis of process signals may be facilitated if the time series data can
be cast into a symbolic form. The relevant trends and generic data features
can then be extracted and monitored using this qualitative representation.
Such a transformation is often carried out by defining a set of primitives (al-
phabet) that define a visual characteristic of the signal [78, 142, 247]. Here,
the methodology proposed by Stephanopoulos and coworkers is discussed
[9, 34, 35]. They treated the problem of trend representation graphically
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by utilizing a declarative language based on the notion that at the extrema
or inflection points, the first or second derivatives, respectively, are zero.
Thus, an episode, E[a,b], is described as any part of a signal or process trend
given by

E[a,b] = {(ta, ya) , (tb, yb, )} (6.25)

with a constant sign of the first and the second derivatives,

sign

(
∂y

∂t

)
[a,b]

= constant; sign

(
∂2y

∂t2

)
[a,b]

= constant (6.26)

Here, the time series segment is defined by the time duration of the episode,
[ta, tb], and the signal magnitude, [ya, yb] (Figure 6.17). For each episode, a
triangle is created, where one side of the triangle is constructed by drawing
a line between the two end points of the episode. The other sides are drawn
by connecting the tangents of these endpoints, up to the point where the
slopes intersect. It is noted that this is a semi-qualitative representation
because the positions of the endpoints (duration, magnitude) as well as the
slopes of the tangents to the curve at the endpoints are also retained.

Figure 6.17. Definition of an episode. Reprinted from [340]. Copyright
c© 1998 with permission from Elsevier.

Cheung and Stephanopoulos [34] were able to reduce the time series
into a semi-qualitative form using seven primitive shapes that consist of
four triangles and three straight lines (Figure 6.18).

A drawback of this method is its sensitivity to high-frequency noise
in the time series, thus a filtering step becomes necessary. Cheung and
Stephanopoulos [35] overcome this problem by using a filtering process
described as qualitative scaling. In this geometric approach, the origi-
nal sequence of letters is sequentially reduced by approximating a sub-
sequence of letters within the original sequence by a trapezoid. Bakshi
and Stephanopoulos [9] point out that this is a heuristic formulation and
lacks computational speed. They offer an alternative strategy by utilizing
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Figure 6.18. Definition of primitive shapes. Reprinted from [340]. Copy-
right c© 1998 with permission from Elsevier.

wavelet analysis and scale-space filtering in conjunction with the triangular
representation. Wong et al. [340] suggest simple wavelet denoising as a
prelude to episode construction.

To obtain a fully symbolic representation of the time series, Wong et
al. [340] propose a fuzzification procedure. In fuzzy logic [346], the basic
premise is to characterize the mapping of a set of inputs to a set of outputs
by using a set of if-then rules. An attractive feature of this approach is
its ability to convert numeric data into linguistic variables. A membership
function is used to define how well a variable belongs to the output based
on the degree of membership between 0 and 1. When a set of inputs is to
be mapped to a set of outputs, a combination of if-then rules, membership
functions and logical operators are used in order to create a fuzzy model.
Based on the if-then rules and the logical operators (AND, OR, etc.), these
inputs can be combined to generate an output for each rule.

In Wong et al. [340], the quantitative values of magnitude and duration
of a triangular episode are fuzzified using symbolic variables (small, medi-
um, and large) expressed by two membership functions (Figure 6.19). With
this technique, each triangle or line in Figure 6.18 can be transformed into
nine different qualitative triangles or lines. Figure 6.20 shows the triangle,
A, now expressed as nine new triangles. For example, smA represents a
symbol with the characteristic shape described by the letter A that is s-
mall, s, in magnitude and medium, m, in duration. All letters are similarly
fuzzified with the exception of G which represents a straight line with no
change in magnitude. Hence, one only has three new fuzzified lines, sG,
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mG, and lG. Now, a new alphabet emerges with 57 symbolic characters.
The new alphabet is more versatile because it allows the comparison of
the sequences based on the size of the characters as well as their shape.
This symbolic representation will be the basis for a process trend analysis
strategy that will be introduced in Section 7.1.

Figure 6.19. Membership functions for the duration and magnitude of prim-
itive shapes. Reprinted from [340]. Copyright c© 1998 with permission from
Elsevier.

Figure 6.20. Extending the alphabet to include the fuzzified triangle A.
Reprinted from [340]. Copyright c© 1998 with permission from Elsevier.

6.4 Development of Markovian Models

The Hidden Markov Model (HMM) is a powerful statistical tool for mod-
eling a sequence of data elements called the observation vectors. As such,
extraction of patterns in time series data can be facilitated by a judicious
selection and training of HMMs. In this section, a brief overview will be pre-
sented and the interested reader can find more details in numerous tutorials



6.4. Development of Markovian Models 139

on this subject. The most notable applications of HMMs are found in the
fields of automatic speech recognition (ASR) [117, 240, 239] and bioinfor-
matics [65, 144]. In ASR, the goal is to differentiate among a vocabulary of
spoken words while recognizing the same words spoken by different people.
In biological sequence matching, one attempts to match unknown sequences
of amino acids to a known family of proteins. Given the ability of HMMs
to model time series data, a number of studies on fault detection and trend
analysis have been reported [277, 286, 340].

Before introducing the HMMs, it is imperative to understand the con-
cept of Markov chains and the probability models. Next subsection provides
a brief account of these topics.

6.4.1 Markov Chains

A (first-order) Markov process is defined as a finite-state probability model
in which only the current state and the probability of each possible state
change is known. Thus, the probability of making a transition to each state
of the process, and thus the trajectory of states in the future, depends
only upon the current state. A Markov process can be used to model
random but dependent events. Given the observations from a sequence of
events (Markov chain), one can determine the probability of one element of
the chain (state) being followed by another, thus constructing a stochastic
model of the system being observed. For instance, a first-order Markov
chain can be defined as

P (qt = Sj |qt−1 = Si, qt−2 = Si, . . .) = P (qt = Sj|qt−1 = Si) (6.27)

Here, we used the shorthand notation qt to denote the value of q at time t
as q(t) in an attempt to simplify the subsequent expressions. Here, t is used
to denote the traditional use of the time instant in the Markovian modeling
literature. The notation P (x|y) indicates the conditional probability of
observing x, premised on the presence of y. The change of the states is
captured by transition probabilities, aij , given by

aij = P (qt = Sj |qt−1 = Si), 1 ≤ i, j ≤M (6.28)

where M represents the number of states. The transition probabilities
satisfy the following relationships:

aij ≥ 0 (6.29)
M∑

j=1

aij = 1
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Figure 6.21 shows a cyclic three-state Markov chain, μ = {S1, S2, S3}.
Given an initial state and the matrix of transition probabilities, one can
not only estimate the state of the chain at any future instant but can also
determine the probability of observing a certain sequence, using the state
transition matrix. The examples below demonstrate these cases.

Figure 6.21. A three-state Markov model.

Example An analysis is presented where the consequences of brand
switching between three different brands of laundry detergent, X, Y and
Z are explored. A market survey is conducted to estimate the following
transition matrix for the probability of moving between brands each month:

A =

⎡⎣ 0.80 0.15 0.05
0.05 0.90 0.05
0.25 0.70 0.05

⎤⎦ (6.30)

For the first (current) month, market shares are given as 40%, 25% and 35%
for brands X, Y and Z respectively. This establishes the initial condition,
S1 = [0.40, 0.25, 0.35]. The expected market shares after three months have
elapsed will be estimated. Hence, after one month has elapsed, the state of
the system is given as S2 = S1A = [0.38, 0.36, 0.26] and after three months
have elapsed the state of the system is given as S4 = S3A = S2A2 =
[0.318, 0.5084, 0.1736]. Note that the elements of S4 add to one as required.
Hence, the market shares after three months have elapsed are given as
31.8%, 50.84% and 17.36% for brands X, Y and Z, respectively.
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Example The classic example of a Markov chain is the weather pattern
modeling [240]. Again, consider a three-state Markov model in which the
states, characterizing the weather on any given day t, are given as follows:
State 1: rainy; State 2: cloudy; State 3: sunny. The state transition
probability matrix is defined as,

A =

⎡⎣ 0.40 0.30 0.30
0.20 0.60 0.20
0.10 0.10 0.80

⎤⎦ (6.31)

The goal is to determine the probability of observing the sequence ‘cloudy-
rainy-sunny’ for the next three days, if the weather today is sunny. In
other words, one is interested in the probability of the observation sequence,
O = {S3, S2, S1, S3}.

P (O|Model) = P (S3, S2, S1, S3|Model)
= P (S3) · P (S2|S3) · P (S1|S2) · P (S3|S1)
= π3 · a23 · a12 · a31

= 1 · (0.2) · (0.3) · (0.1)
= 0.006(0.6%) (6.32)

Here, the notation πi = P (q1 = Si) is used for the initial state probability.

6.4.2 Hidden Markov Models

Hidden Markov models (HMMs) are doubly stochastic in nature. In other
words, the sequence of states, S = S1, S2, S3, ..., SM , of a Markov chain are
unobservable yet still are defined by the state transition matrix. In addition,
each state of the Markov chain is associated with a discrete output symbol
probability that generates an observable output sequence (outcome), O =
o1, o2, . . . , oT with length T . HMMs are finite because the number of states,
M , as well as the number of observable symbols V = v1, v2, . . . , vL of an
output alphabet, i.e., L, remain fixed for a particular model. Since it is only
the outcome, not the state visible to an external observer and the states are
‘hidden’ to an outside observer, such a system is referred to as the Hidden
Markov Model.
Example The concept of HMMs can be best explained by the urn-and-ball
example discussed by Rabiner [240]. Consider a collection of urns where
each urn contains a different proportion of colored balls which defines the
probability of drawing a specific colored ball from that urn. The data are
generated by drawing a colored ball from an urn, and then based on that
selection, a new urn is chosen and a another ball is drawn. The process
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is continued until a sequence of balls is generated. In this process, the
sequence of the chosen urns is not announced (thus, hidden) and only the
sequence of balls is known (observed).

Figure 6.22. A three-state HMM showing the state transitions and the out-
put probabilities. Reprinted from [340]. Copyright c© 1998 with permission
from Elsevier.

To illustrate the construction and properties, the three-state Markov
model depicted in Figure 6.21 is extended to express a HMM as given
in Figure 6.22. The key difference is that each state now has a set of
observation symbols, along with the probability of observing that symbol,
ol, from a given alphabet of symbols, V , in that state i, P (ol|Si).

Example For the ball-and-urn example, the observations clearly are the
balls that are drawn and each state is represented by an urn. Thus, the
observation probability corresponds uniquely to the specific urn from which
a ball is drawn. The three-state HMM given in Figure 6.22 can be used to
model the observed symbols (balls) by estimating a set of HMM parameters.

A HMM, denoted as λ, can be uniquely described (parameterized) by
M , the number of states, L, the number of observation symbols, and three
probability measures, π, A, and B.

λ = (π,A,B) (6.33)
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where

π = {P (Si|t = 1)}
A = {aij} = {P (qt+1 = Sj |qt = Si)} (6.34)
B = {bj(l)} = {P (vlatt|qt = Sj)}

An initial state distribution, π, defines the probabilities of beginning the
observation in each state. The matrices A and B are the probability density
distributions of the state transitions and the observation symbols, respec-
tively.

The number of states is usually unknown, but some physical intuition
about the system can provide a basis for defining M . Naturally, a small
number of states usually results in poor estimation of the data, while a large
number of states improves the estimation but leads to extended training
times. The quality of the HMM can be gauged by considering the residu-
als of the model or the correlation coefficients of observed and estimated
values of the variables. The residuals are expected to have a Normal distri-
bution (N(0, σ2)) if there is no systematic information left in them. Hence,
the normality of the residuals can provide useful information about model
performance in representing the data.

The number of observation symbols is more definitive as it corresponds
directly to the possible outcomes of the system being observed (e.g., the
number of different colors that the balls would have in the urns). There are
three key problems that need to be solved: training (learning), evaluation
and state estimation.

For the evaluation problem, the probability of an observation sequence
O = o1, o2, . . . , oT is determined, given the model λ, P (O|λ). This probabil-
ity can be found using the forward part of the inductive forward-backward
algorithm (Baum-Welch algorithm [13]), which is initialized by

α1(i) = πibi(o1) 1 ≤ i ≤M (6.35)

where αt(i) is the forward variable,

αt(i) = P (o1, o2, . . . , ot, qt = Si|λ) (6.36)

Then, using the forward inductive equation, the induction step is per-
formed:

αt+1(j) =

[
M∑
i=1

αt(i)aij

]
bj(ot+1) (6.37)

where αt(j) is the probability of being in state j and observing the partial
symbol sequence O = o1, o2, . . . , ot up to time t, given the HMM, λ. Then,
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we have

P (O|λ) =
M∑
i=1

αT (i) (6.38)

which yields the final result. This algorithm establishes the basis for the
classification of faults as will be illustrated in Sections 7.1 and 7.2.

In the training problem, the model parameters are estimated that best
describe the observation sequence. In other words, the observation sequence
is used to train the HMM by adjusting the model parameters. This training
is again accomplished through the Baum-Welch algorithm [13] that uses the
maximum likelihood estimation approach to adjust the parameters, π, A,
and B in order to maximize P (O|λ). The backward part of the forward-
backward algorithm is used in the training step and initialized with

βT (i) = 1 1 ≤ i ≤M (6.39)

where βk(i) is the backward variable,

βt(i) = P (ot+1, ot+2, . . . , oT , qt = Si|λ) (6.40)

The inductive backward equation is given by

βt(i) =
M∑
i=1

aijbj(ot+1)βt+1(j) (6.41)

The combination of the two inductive parts are essential in the re-estimation
of the parameters of the HMM. By maximizing the auxiliary function

Q(λ|λ̄) =
∑
Q

P (Q|O, λ)log[P (O, λ|λ̄)] (6.42)

the re-estimation formulas

π̄ = α1(i)β1(i) (6.43)

āij =
∑T−1

t=1 αt(i)aijbj(ot+1)βt+1(j)∑T−1
t=1 αt(i)βt(i)

(6.44)

b̄j(l) =

∑T−1
t−1;s.t.ot=ol

αt(i)βt(j)∑T−1
t=1 αt(i)aijbj(ot+1)βt+1(j)

(6.45)

can be derived. The use of three re-estimation formulas guarantees that the
new probability P (O|λ̄), using the estimated parameters, is greater than or
equal to the prior probability P (O|λ).
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In the state estimation problem, the aim is to find a state sequence that
best explains the real observations. For this, a new variable γ is defined in
terms of the forward (α) and backward (β) variables of the Baum-Welch
algorithm:

γt(i) =
αt(i)βt(i)∑M

i=1 αk(i)βk(i)
(6.46)

where
M∑
i=1

γt(i) = 1 (6.47)

The new variable, γt(i) represents the probability of being in state i at time
t. The size of the matrix γ is T ×M . One can then find the most likely
state at time t using γt(i):

qt = argmax
1≤i≤T

[γt(i)], 1 ≤ t ≤ T (6.48)

While this provides the most likely states for each t, there may be a problem
with the state sequence obtained from this algorithm, as the algorithm
ignores the probability of occurrence of sequences of states. This can be
remedied by using the Viterbi algorithm. Further details of these algorithms
can be found in [240]. Many algorithms are also developed as Matlab�

toolboxes, a notable one being the toolbox by Thorvaldsen [295] that focuses
on the solution of problems in bioinformatics.

6.5 Wavelet-Domain Hidden Markov Models

In DWT, the scaling coefficients are decomposed iteratively at each scale
(Figure 6.7), clearly showing the dependency between adjacent scales. For
orthogonal wavelet decomposition, it is expected that the wavelet coeffi-
cients are uncorrelated between scales. However, for most practical ap-
plications, there is a residual dependency after the signal decomposition,
even though the dependency of the wavelet coefficients may be local. This
means that, for scaling and wavelet coefficients, there exists a dependency
within and across the scales. This is consistent with the clustering and
persistence properties of the wavelet coefficients [43] that state that for a
large (small) wavelet coefficient, the adjacent coefficients are also likely to
be large (small) and that such values propagate across scales.

Given the dependency of the wavelet coefficients, one still has to find the
appropriate framework for modeling their probability density functions. A
Gaussian model is not appropriate since the wavelet decomposition tends
to produce a large number of small coefficients and a small number of
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large coefficients, the very property that one takes advantage of in data
compression and denoising. Alternatively, the marginal probability of each
coefficient can be represented by a mixture density. Instead of assigning a
statistical model to wavelet coefficients, Crouse et al. [43] suggest assigning
a set of states to each coefficient and then associating a probability density
function with each state, f(w|S). Here, one can choose a two-state model
in which the coefficients can belong either to a high-variance state, f(w|S =
1), or to a low-variance state, f(w|S = 2). This yields a two-state zero-mean
Gaussian mixture model. It should be noted that to enhance the fidelity of
the fit [279], more complex mixture models (even with nonzero means) can
also be used, naturally at the expense of increased computational burden.
This framework also allows the use of non-Gaussian densities [245].

Next, the dependencies among the wavelet coefficients need to be de-
fined. Given the persistence and clustering properties alluded to earlier,
it appears logical to assume Markovian dependencies between the adjacent
state variables (not the wavelet coefficients). Such a structure gives rise
to the hidden Markov trees (HMTs). Note that this statistical model, as
suggested by Crouse et al. [43], can also be used to describe dependencies
among the scaling coefficients (albeit with nonzero means). For this latter
case, Gaussian mixture models can reasonably explain the salient distribu-
tions of the scaling coefficients. Here, the modeling of wavelet coefficient
will be considered for simplicity.

Figure 6.23. Tree structure HMM in wavelet domain as suggested in [43].

As shown in Figure 6.23, Crouse et al. [43] proposed a model, where the
underlying backbone becomes a tree structure, and the Markov property



6.6. Summary 147

exists from the root to the leaves through the branches. The HMT model is
specified via the parameters (for the node i), μm

i , σm
i and the initial, πm

i =
P (Si = m), and the transition probabilities, am,n

i = P (Si = m|Sρ(i) = n).
Here m and n denote the two states. The subscript ρ(i) refers to the parent
node, hence Sρ(i) is the parent state. Consequently, the HMT model is
defined via the following parameters,

• πm
1 = P (S1 = m) is the probability mass function for the first node.

• am,n
i = P (Si = m|Sρ(i) = n) is the conditional probability that Si is

in state m given its parent Sρ(i) is in state n.

• μm
i and σm

i are the conditional mean and the standard deviation,
respectively, of the wavelet coefficient wi at the ith node, given Si is
in state m, with f(wi|Si = m).

The training problem determines the set of model parameters given
above for an observed set of wavelet coefficients. In other words, one first
obtains the wavelet coefficients for the time series data that we are interest-
ed in and then, the model parameters that best explain the observed data
are found by using the maximum likelihood principle. The expectation
maximization (EM) approach that jointly estimates the model parameters
and the hidden state probabilities is used. This is essentially an upward and
downward EM method, which is extended from the Baum-Welch method
developed for the chain structure HMM [43, 286].

For a limited amount of training data, to avoid over-fitting, a robust
training result can be achieved by assuming an identical distribution for a
certain number of nodes, referred to as tying. Tying can be applied with-
in and across the scales and increases the number of training data for a
certain distribution in the model by simplifying the model structure. Sim-
ply put, tying indicates that a certain number of nodes share the same
statistical distribution, the same number of states and the same distribu-
tion parameters. In signal denoising, one is interested in the shrinkage of
noisy components, and the noise components are assumed to be identically
distributed, therefore tying can significantly help capture such statistical
features. In trend analysis, however, the signal trend plays a more impor-
tant role in characterizing the process failure, and thus, tying may distort
the trend characteristics and will not be employed in the studies presented
in this book.

6.6 Summary

In this chapter, several signal characterization and modelling methods have
been introduced and discussed. It was shown that the wavelet transforma-
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tion provides a time-frequency localization of a signal, allowing for the de-
tection of varying signal characteristics manifested by changing frequency
behavior over time. The use of wavelet transformation in signal denois-
ing has been demonstrated, especially in the context of outlier removal
and robust filtering. While this chapter focused on one-dimensional signal-
s, wavelet transformation can also be extended to two-dimensional signals
(i.e., images) where one can perform similar denoising and feature extrac-
tion tasks. In Chapter 10, the denoising implementation will be illustrated
in an example concerning the full sheet profile in a paper machine. Wavelet
transformation and subsequent feature extraction of image data have been
studied for many years [285] and a recent direction is the study of nanoscale
features in atomic force microscopy (AFM) images [27, 80, 180]. The use
of hidden Markov models allows the representation of process signals via
probabilistic models and, when combined with triangular episodes and the
discrete wavelet transformation, facilitates the expression of specific signal
characteristics. This forms the basis of trend detection and fault diagnosis
strategies to be discussed in Chapter 7, next.



7

Process Fault Diagnosis

The widespread availability of Distributed Control Systems (DCS) not only
provides the framework for advanced control applications but also greatly
facilitates the continuous monitoring of chemical processes to maintain safe
and profitable plant operations. In most facilities, the plant operators are
asked to manage the operation in such a way as to ensure optimal produc-
tion levels, while attending to occasional alarm situations that may result
from equipment malfunctions. It is critical to identify such abnormal situ-
ations in a timely manner as there may be a potential for a safety hazard
that may affect not only the plant and its personnel but also the surround-
ing communities. Most operators traditionally relied on personal expertise
for such a task, and in some cases, the events exceeded the capabilities of
any human operator, thus leaving the plant vulnerable to costly shutdowns
and, in the worst case scenario, to possibly fatal accidents [216]. Today,
human expertise is complemented by computerized support systems that
comprise various data analysis and interpretation strategies that can pro-
vide guidance to the plant personnel for handling abnormal situations. The
key component of such a system is fault detection and diagnosis (FDD) that
monitors the occurrence of process failures and identifies their root causes.

7.1 Fault Diagnosis Using Triangular Episodes
and HMMs

This section builds on the techniques described in Sections 6.2 and 6.3 to
offer a strategy for process trend analysis (Figure 7.1). The problem can
be stated simply as follows: given a set of known models of the process
operating conditions, determine the likelihood of a new set of observations.

The first step of the analysis is the training where Hidden Markov Mod-
els (HMMs) representing various operating behaviors are trained using la-
beled historical data from the process. In this section, three broad operat-
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Figure 7.1. The trend analysis strategy using HMMs. The process infor-
mation (measurement) at a time instant k is first expressed as a fuzzified
sequence (FS) and then processed through a classification step. Reprinted
from [340]. Copyright c© 1998 with permission from Elsevier.

ing classes, namely, normal, abnormal and intermediate (transition between
normal and abnormal), are used for labeling. The training step starts by
segmenting the labeled time series in windows, and an overlapping moving
window (slice) is defined for the time series signal that will be analyzed for
process trends. The moving window enables the expression of the process
trend for a discrete set of windows. The choice of the window length and
the overlap period is problem dependent and will be discussed in the case
studies. Next, the time series in the selected window is subjected to de-
noising to eliminate any random behavior and to facilitate the subsequent
construction of triangular episodes. Any filtering technique can be used in
this step. The smoothed signal is then converted into semi-qualitative form
by using the triangular episodes. Finally, this semi-qualitative sequence is
transformed into a purely qualitative form by fuzzification of the quantita-
tive descriptors of the triangular episodes. With the data now being purely
symbolic in the form of a sequence of letters, two tandem HMM-based
classification methods are trained to determine whether the window can
be assigned to normal, abnormal or intermediate classes. The first HMM-
based step classifies each time series segment (window) as being explained
by normal, abnormal or intermediate HMMs. In this step, each window is
treated as if it were independent of windows that come before it or that
follow it. The second HMM-based classifier accounts for the temporal cor-
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relation among the adjacent windows and creates the final assignment.

Figure 7.2. A left-to-right HMM. Reprinted from [340]. Copyright c© 1998
with permission from Elsevier.

The first HMM-based classifier (sequence matching) uses a subclass of
HMMs called the left-to-right HMMs [240] (Figure 7.2). These models only
allow transitions to themselves or to the states to their right and the model
must begin in the first state. The output for each state will be based on the
63-character alphabet of the fuzzy triangular representation. Starting from
the first state, a sequence of varying lengths can be modeled using different
combinations of state transitions, yielding a set of HMMs to represent the
model classes (e.g., normal, abnormal and intermediate).

The structure of the second HMM-based classifier (time-correlated) is
the three-state HMM given in Figure 7.3. Instead of using the fuzzy trian-
gular episode alphabet as the output from the state, this classifier directly
uses the probability of the sequence that was calculated using the sequence
matching HMM and determines the probability of the class based on this
current window and the window of data just prior to it. The information
from the current window is utilized as well as the temporal information
from the past windows to calculate a corrected probability based upon the
knowledge of how the entire sequence has propagated up to the current
window [277].

Once the relevant HMMs are trained, the trend analysis is carried out
on the newly observed time series in real-time. The time series is windowed
and smoothed before the signal in the window can be represented in the
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Figure 7.3. The three-state HMM, where the subscripts i, n and a denote in-
termediate, normal and abnormal conditions, respectively. Reprinted from
[340]. Copyright c© 1998 with permission from Elsevier.

symbolic form. Then, the sequence of letters in the window is classified
using the EM algorithm through two classifiers. Consequently, when an
unknown sequence is evaluated by each HMM classifier, the class of the
sequence will correspond to the model with the greatest probability (Figure
7.1).

The method will be illustrated by two case studies next.

7.1.1 CSTR Simulation

The method has been demonstrated on a continuous stirred tank reactor
(CSTR) simulation to identify an abnormal inlet concentration disturbance
[340]. The jacketed CSTR, in which an exothermic reaction takes place,
is under level and temperature control. An important process variable is
the coolant flow rate through the jacket, that is related to the amount of
heat produced in the CSTR, and it indirectly characterizes the state of the
process. This variable will be monitored in this classification scheme.

The trend analysis strategy will be shown to be able to differentiate be-
tween normal and abnormal responses of the coolant flow rate and is similar
to the example used in the paper by Whiteley and Davis [325]. Here, three
categories of classification are considered: normal, intermediate and abnor-
mal. An intermediate class represents a window of data that can move
into the normal or abnormal classes in the next window and no definitive
decision between normal and abnormal can be made during that specific
time period. For normal operation, the system is able to handle a ±5%
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fluctuation in the temperature of the inlet feed stream and maintain the
outlet concentration at a predetermined quality boundary. An abnormal
situation occurs when an unmeasured disturbance in the inlet feed con-
centration develops in addition to the inlet feed temperature disturbance.
The data collected consists of 50 simulations corresponding to 25 different
steady-state operating points of normal and abnormal simulations. The
simulations were about 1 hr long and the data were sampled at 0.1 min
intervals.

In half of the simulations, a step increase of 5% in the inlet feed temper-
ature was introduced; this change is deemed to be normal and can be easily
handled by the feedback control system. In the remaining 25 simulations,
this step change was used in addition to a 5% increase in the feed concen-
tration, resulting in an abnormal process trend that cannot be handled by
the control system and leading to off-specification product.

Figure 7.4. A training set for the CSTR example. The first window at
the top shows the entire time series while the others indicate the moving
window. Thicker line indicates the abnormal trend. Reprinted from [340].
Copyright c© 1998 with permission from Elsevier.

An example of the training classification is displayed in Figure 7.4 where
normal and abnormal situation simulations are also superimposed. The sec-
ond window shows data progressing at a normal steady-state mode. When
a change in the system occurs, the coolant flow rate reacts to compensate
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for this deviation from the original steady-state. Initially, because there is
no indication of whether this response is normal or abnormal based on the
current information (third window), this window is considered to be in an
intermediate mode. Not until later can one differentiate between normal
and abnormal trends.

Figure 7.5. The normalized probabilities after the sequence matching H-
MM step. Reprinted from [340]. Copyright c© 1998 with permission from
Elsevier.

As part of the analysis, each signal was converted into individual win-
dows with a length of 6.4 min and the window moves in 36 sec intervals.
This results in 81 windows to yield a total of 4050 windows for the overall
simulation. All 4050 windows were converted into symbolic sequences using
fuzzified triangular representation as discussed before; 3159 of the sequences
were used to train the HMMs, and the rest for evaluation. Three sequence
matching HMMs were created and trained using sequences belonging to
the particular event class. The evaluation set of sequences consists of five
normal and six abnormal simulations. Figure 7.5 displays the normalized
probabilities generated from the three sequence matching HMMs, from one
of the abnormal event simulations. The dark solid lines represent the true
probability while the dashed lines represent the probability calculated by
the HMM. The y-axis for each plot is the probability (0 to 1) of belonging
to that class and the x-axis represents the time in terms of the number of
windows. The simulation begins in the normal state and the disturbance
is introduced at window 17. The abnormal coolant flow rate should be de-
tected at window 26. The erratic behavior of the probability assignments
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is expected at this step since the windowed sequences are difficult to dis-
tinguish between abnormal and normal situations due to the similarity of
the local responses.

Figure 7.6. The normalized probabilities after the time-correlated HMM
step. Reprinted from [340]. Copyright c© 1998 with permission from Else-
vier.

The time-correlated HMM is utilized to associate the individual se-
quences and eliminate the ambiguous assignments. When the time-correlated
HMM is applied to the sequence, there is a dramatic increase in the pre-
diction time-correlated probabilities of the true classes (Figure 7.6).

7.1.2 Vacuum Column

The vacuum column studied here is associated with the lubrication unit in
the Mizushima Refinery of the Japan Energy Corporation [341]. The goal
is to identify the weeping condition where the liquid is drained through
the perforations due to low gas flow rates and hence causes instability in
the operation of the column. The analysis uses temperature measurements
from the tray 12 from the bottom of the column, T127, which has been
determined by the operators to capture the weeping dynamics. Figure 7.7
depicts this temperature measurement corresponding to the normal condi-
tion and the weeping conditions.

The window length for the temperature time series is taken as 64 min
and the window moves in 4 min intervals. For the test case, initially,
the process is assumed to be operating normally. At the 54th window, a
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Figure 7.7. The temperature measurement at tray 12 for the vacuum col-
umn. The top figure represents the normal conditions and the bottom figure
represents the weeping conditions.

weeping condition is detected that lasts until window 218 when the normal
operation is recovered. A second weeping condition begins at window 273
and lasts for about 164 window lengths.

Figure 7.8. The probability of classification after the sequence matching
HMM step.
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Two sets of HMMs were trained associated with normal and weeping
event classes using historical plant data and the test signal is evaluated
as before. Figure 7.8 shows the probabilities generated from the sequence
matching HMM for the normal and the weeping conditions. Classification
after the sequence matching HMMs indicates a 8.5% misclassification of
the true class of the process versus the predicted class from the sequence
matching HMM. This percentage is calculated by associating a class to
each window by choosing the sequence matching HMM with the higher
probability and then comparing the results with the known classification.

Figure 7.9. The final probability of classification after the temporal corre-
lation HMM step.

When the time correlated HMM is introduced and the probabilities are
re-calculated, the results show a significant improvement (Figure 7.9). The
misclassification rate is reduced to 3.9%.

7.2 Fault Diagnosis Using Wavelet-Domain H-
MMs

A trend analysis strategy is proposed that takes advantage of the wavelet-
domain hidden Markov trees (HMTs) for constructing statistical models
of wavelets (see Section 6.5). Figure 7.10 depicts the strategy that can
be used to detect and classify faulty (abnormal) situations. As before, in
the training phase, time series data collected under various conditions are
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used to develop models. The monitoring phase, then, considers the on-line
signal(s) and determines the model that best explains it, thus classifying
the event associated with the model.

Figure 7.10. The trend analysis strategy using wavelet-domain HMMs.
From [286], reproduced with permission. Copyright c© 2003 AIChE.

The time series data are represented in the wavelet domain in the form
of scaling and wavelet coefficients. Ideally, modeling all these coefficients
can glean all the information regarding the observed process operating con-
dition, but will result in a large model tree structure, and increase the
computational effort in the training phase. It must be noted that for differ-
ent operating conditions, the scaling coefficients (approximation) and the
wavelet coefficients (detail) play different roles. Thus, for a specific trend
analysis application, a different set of coefficients may be chosen, leading
to a trade-off between classification accuracy and computational cost. Un-
doubtedly, such a decision can be made a priori based on the nature of the
fault.

The HMT model can also be extended from the single-tree structure
to the multi-tree structure (MHMT), which is then used in the multivari-
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Figure 7.11. A three-variable HMT showing both scaling and wavelet co-
efficient trees. From [286], reproduced with permission. Copyright c© 2003
AIChE.

ate trend analysis. To illustrate the concept, a three variable multi-tree
structure is depicted in Figure 7.11. For each measured variable, there are
two tree structures joined together, one constructed by the scaling coeffi-
cients (light nodes) and the other by the wavelet coefficients (dark nodes).
The root nodes of each tree from a single variable are connected together.
The joint structure can be used for any single variable modeling, which
includes all frequency (scale) components in this specific variable. To limit
the computational complexity, only the tree of scaling coefficients is used.
In process monitoring, magnitude of a variable contains more information
of the process, which is mainly described by its corresponding scaling co-
efficients. Also scaling coefficients at each scale represent a smooth version
of the signal with a different resolution, therefore it is not difficult to argue
that the scaling coefficients are sufficient for most of the process monitoring
applications.

The root nodes of each tree structure are connected, corresponding to
each variable under consideration. In each single tree, the deterministic
trend information and the random factors are all accounted for. The ratio-
nale behind using the multivariate tree structure is to be able to capture
the correlations among variables. Here, the connection among variables is
arbitrary, and the apparent parent-child connection does not really imply
the parent-child dependence, but it is just a way to model the relation be-
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tween two nodes. In principle, the multi-tree structure can be expanded
indefinitely, but the computational complexity may restrict the number of
variables.

The EM algorithm for the single-variable case also applies in a straight-
forward manner to the multi-tree structure, since the binary structure re-
mains unchanged in this structure expansion. For on-line process monitor-
ing, moving window is again used in the multivariable case. The complexity
of the computation increases by the number of trees compared to the single
tree at the same window size, but the multivariable system contains more
structural information, which makes it possible to reduce the window size,
and therefore, keep the computational complexity the same as or less than
the single variable case. In principle, one can use different window sizes
for variables, but the same number of data points needs to be used to each
variable to keep the same weight of contribution to the MHMT from each
variable. Using different window sizes results in having a monitoring delay
corresponding to the time of the longest window size used in the model,
but it may reduce the computational complexity if a longer window size is
needed for some of the variables. Longer window size is usually suggested
for the slow dynamics, so fewer data points within a certain time period
would be enough to characterize the variable trend. Similarly, a smaller
window size is preferred for the fast dynamics, so more data points within
a certain time period would be needed. The monitoring strategy is carried
out in the same manner as in the single-variable case.

While on-line implementation of the trend detection strategy is indeed
feasible, the training of HMT models may be rather time consuming and
inefficient. We note the following on the implementation issues:

• The presence of local minima encountered in the EM algorithm limits
the complexity of the problems that can be tackled.

• The amount of data required for training is problem dependent, and
especially when process events have somewhat similar features, more
data would be required for training to ensure the development of
models that can capture the subtleties associated with each event.

• A smaller window size reduces the computational burden in training
and can improve detection time, yet the classification performance
may deteriorate as trends may not have developed distinct features
in a short time.

• Moreover, combining detail and approximation coefficients to build
HMT models would be a natural next step in process trend detec-
tion, but this extension is hampered by computational difficulties as
mentioned before.
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• Furthermore, in the multivariable problem, while three to five vari-
ables can be handled relatively easily, one reaches a computational
bottleneck for larger problems. This can be possibly resolved by con-
sidering some of the new developments in HMM training algorithms
[254, 71].

Two case studies are presented next to illustrate this strategy.

7.2.1 pH Neutralization Simulation

The simulation of a pH neutralization process has been previously studied
by Galán et al. [81]. An acid stream (HCl solution) and an alkaline stream
(NaOH and NaHCO3 solution) are fed to a 2.5 L constant volume, well-
mixed tank, where the pH is measured through a sensor located directly in
the tank. The pH value is maintained at 7.0 by a PI controller.

Figure 7.12. The test pH response showing regions of operation. From
[286], reproduced with permission. Copyright c© 2003 AIChE.

When an unexpected event occurs, the controller may not maintain
the pH value within the allowed range of operation and its performance
degrades, thus resulting in an abnormal (faulty) operating condition. Here,
four distinct situations, other than the normal operating condition, will be
considered as follows:

• Abnormal Condition I (AI): The pH value shows a sustained deviation
of more than ∓0.5 (region 2 in Figure 7.12), which could result from
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a large and sudden change in either the flow or the pH value of the
acid stream as a result of changes in the upstream process.

• Intermediate (I): The pH value indicates deviations (region 3 in Fig-
ure 7.12), which could result from the same source as Abnormal I, but
the deviation remains within ∓0.5. This region may act as a warning
(buffer zone) for an imminent change in normal operating conditions.

• Abnormal II (AII): The pH value exhibits high amplitude, high fre-
quency oscillations (region 4 in Figure 7.12), which could be the out-
come of a sensor failure or other equipment malfunction, such as pump
cavitation.

• Abnormal III (AIII): The pH value increases slowly and reaches a
maximum point, then comes back to 7.0 slowly (region 6 in Figure
7.12), which could be the result of a temporary sensor drift.

All other operation around pH = 7 are considered as normal (N).
A moving window is used to analyze the data as before, and especially

since only a limited number of data points can be considered at one time
for the wavelet decomposition. If a short window size is chosen, one may
capture process changes quickly, but the window may not contain enough
information to sufficiently reflect the current process state, thus generating
ambiguous classifications. Longer window sizes can consider more informa-
tion, which is helpful to recognize the process trend, but may lead to large
time delays for the detection and classification of trends. Here, an adap-
tive window size is implemented that uses a short window size for rapidly
changing data and a long window size for longer lasting phenomena, based
on the spectral analysis of the signal. The window is moved every sampling
time. Sixteen separate simulation runs are used, fifteen for training purpos-
es and the last one (depicted in Figure 7.12) for testing the methodology.
There are 1200 data points in each simulation set for training and 3755
data points in the simulation for testing. The data were sampled every 45
sec.

In this example, the Haar wavelet is used with a single scaling tree and
the scaling coefficients are modeled using a two-component (M = 2) HMT
model with nonzero mixture means. The models were trained using multi-
ple observations (without tying). The wavelet coefficients were not modeled
since the approximate signal contains more distinguishing features among
the studied abnormalities, as the primary goal in this study is to detect if
the pH deviation is beyond the tolerable limit ±0.5. In other words, the de-
cision depends more on the information provided by the scaling coefficients
than the wavelet coefficient.
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Figure 7.13. The variation of window sizes as a result of the adaptive
algorithm. From [286], reproduced with permission. Copyright c© 2003
AIChE.

To keep the analysis simple, two window lengths are considered, a 32-
point window and a 64-point window. After training, five sets of models
for different operating conditions under 32- and 64-point windows are ob-
tained. Spectral analysis based on Thomson’s multitaper method [292] was
used to differentiate the short- and long-term signal behavior, then the ap-
propriate window size is chosen to analyze the test signal, since the high
frequency components are more important in short-term behavior and the
low-frequency components dominate in long-term behavior. Window size
selection for the test signal is depicted in Figure 7.13.

Figure 7.14 depicts the classification result from likelihood determina-
tion, comparing the true and calculated probabilities. It can be observed
that the HMT model yields the correct classification for most part of the
test signal. Following observations can be made:

• The abnormal condition AI (disturbance) and the abnormal condition
AIII (sensor drift) can be recognized clearly (Figures 7.14c, 7.14d).

• The instances of misclassification between sensor noise (AII) and in-
termediate operating condition (I) (Figures 7.14b, 7.14e) are notable.
As the level of noisy signal momentarily matches the level of the
signal in the intermediate region, the method results in misclassifica-
tion. Yet, since these misclassification instances are rather isolated,
the overall trend can still be inferred. Nevertheless, the model may
need further training to eliminate such instances.
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Figure 7.14. The classification results for different classes of operating con-
ditions. Solid lines represent the true probabilities while the light dashed
lines are the calculated probabilities. From [286], reproduced with permis-
sion. Copyright c© 2003 AIChE.

• The brief misclassification between the normal condition (N) and the
sensor noise (AII) (Figure 7.14a, 7.14e) is due to the switching of the
window size from 32 to 64, and as the number of data points increases
suddenly, this causes the method to consider the new signal section
as noisy. As the window moves forward, this misclassification error is
corrected immediately.

7.2.2 CSTR Simulation

A constant volume, continuous stirred tank reactor (CSTR) is simulated to
demonstrate the multivariate trend analysis strategy. In the CSTR, a sin-
gle irreversible, exothermic reaction, A → B, is assumed to occur and the
model equations are given in [232]. The disturbances are the feed concen-
tration and temperature, cAf and Tf , respectively, and the control outputs
are the tank concentration and temperature, cA and T , respectively. The
two outputs are controlled by two PI controllers via feed and coolant flow
rates, qf and qc, respectively. White Gaussian noise is added to the outputs
to simulate the real process signal. The sampling interval is assumed to be
0.1min. The normal operating condition (N) is taken as the steady-state,
cAs = cA(0) = 8.235× 10−2mol/L;Ts = T (0) = 441.81K.
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Any deviations from the assumed normal operating condition are con-
sidered as abnormal operating conditions, which would need the operator’s
attention. Here, four abnormal operating conditions are defined and two
manipulated variables, qf and qc, are monitored. Tested cases are summa-
rized below.

• In response to a sudden increase in inlet concentration cAf (AI), qf
decreases and qc increases.

• In response to a sudden decrease in inlet concentration cAf (AII), qf
increases and qc decreases.

• A sudden decrease in the pre-exponential factor (AIII) due to an
unmeasured component variation in the inlet flow, both qf and qc
decrease.

• The flow sensor for qf drifts high (AIV) without affecting the process,
so other variables, including qc, remain unchanged.

Three simulations of each operating condition are carried out for model
training. One simulation under each operating condition is used to test
the monitoring result. Each test data set includes the transient process
from normal operating condition to the abnormal operating condition. The
results use an 8-point window and the Haar wavelet. The test results are
shown in Figures 7.15, 7.16, 7.17, and 7.18. To simplify the model structure
and therefore to reduce the computational effort, only scaling coefficients
are considered in this case study. Following remarks are in order:

• The method classifies AI correctly (Figure 7.15) with a small delay.
During the delay, AI is temporally misclassified as AIV due to the
similar response of these two abnormalities in the beginning.

• The method classifies AII correctly when the process nears steady-
state (Figure 7.16). There is a brief period of misclassification during
the transient between AII and AIII due to the similar responses of
the two monitored variables. With more process information, the mis-
classification can be possibly avoided. As in (a), there is a temporary
misclassification between AII and AIV.

• The method classifies AIII correctly when process nears steady-state
(Figure 7.17). There is a short period of misclassification between N
and AIII during the transient, which is considered as N initially.

• The method classifies AIV correctly (Figure 7.18).
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Figure 7.15. The classification of the AI abnormality. Each figure corre-
sponds to the probability assignment made with respect to a model class.
The solid line is the expected probability and the light dashed line is the
calculated probability. From [286], reproduced with permission. Copyright
c© 2003 AIChE.

From the results above, one can conclude that the MHMT method for
trend analysis correctly classifies the different process operating conditions.
There are a few ambiguities in the transient region, which result from the
similar responses of manipulated variables to different process events. In
other words, the information contained in two variables is not enough to
immediately discern the transient part of the process. To eliminate such
ambiguities, additional variables may be needed in the HMT model. Sun et
al. [286] have shown the extension of the method to the multivariate case
for the CSTR simulation example.

7.3 Fault Diagnosis Using HMMs

Hidden Markov models (HMMs) provide a powerful framework for recogniz-
ing patterns in data and diagnosing process faults as shown in the previous
sections. Here, another procedure is introduced that is based on the state
estimation problem (see Section 6.4.2). The procedure determines first
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Figure 7.16. The classification of the AII abnormality. From [286], repro-
duced with permission. Copyright c© 2003 AIChE.

whether the mean values of HMM state variables for each measured pro-
cess variable have changed significantly from their in-control values. Then,
by monitoring the changing trends in the HMM states, one can identify the
faults that caused the variation in behavior. Here, the whole data set that
contains all the faults that need to be diagnosed is used for developing the
HMM. The following section demonstrates this strategy.

7.3.1 Case Study of HTST Pasteurization Process

The process of HTST pasteurization (Figure 5.5) is described in detail in
Section 5.3. The variables used here are four temperature measurements
(oC) and two PID controller outputs (mA). The hot water temperature,
preheater outlet temperature of raw product, holding tube inlet temper-
ature of pasteurized product and holding tube outlet temperature of pas-
teurized product are the output variables of the process (variables 1-4,
respectively). The input variables of the process are the PID controller
output to the steam valve (variable 5) that regulates the holding tube inlet
temperature of product and the PID controller output to preheater hot wa-
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Figure 7.17. The classification of the AIII abnormality. From [286], repro-
duced with permission. Copyright c© 2003 AIChE.

ter valve (variable 6) that regulates the preheater outlet temperature of raw
product. A series of sensor and actuator faults were tested on the process,
and the experiments were conducted with different fault magnitudes and
durations.

Sensor failures are deliberately introduced using the process control
computer software. To accomplish this, a real number is introduced to
the actual sensor reading, which is transmitted to the computer from the
process. Instead of the actual sensor reading, the altered ‘reading’ is sent to
the PID controllers. As the controllers compute the control action based on
the false sensor reading, the process receives a false corrective action and
the fault originated by the sensors propagates through the system. The
magnitude of sensor faults varies between −0.83oC and 0.83oC, and their
duration changes between 2 sec and 30 sec.

To implement actuator faults, the controllers are turned off for a specific
time period which results in a constant signal being sent to the actuators.
During the implementation of this class of faults, when the controlled vari-
ables deviate from the set-points, the controller and the actuator cannot
respond until the implementation is over.
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Figure 7.18. The classification of the AIV abnormality. From [286], repro-
duced with permission. Copyright c© 2003 AIChE.

The aim of the fault diagnosis strategy is to determine whether the mean
values of HMM state variables for each process variable change significantly
compared to in-control HMM states. The increase in probabilities of these
states is investigated when corresponding faults occur during operation.
After construction of a HMM for the given data sequence, the mean values
of M state variables (μ matrix) are checked for an abnormal increase or
decrease in the state variables. Then, the probability values which these
particular states take during a specific time period are examined using the
γ matrix (Eq. 6.46) to determine the time and duration of faults.

First, the performance of HMMs in representing HTST data is assessed
using the model residuals and the correlation coefficients of observed and
estimated values of process variables. This is done by checking the nor-
mality of residuals of some important process variables (e.g., holding tube
inlet temperature and steam valve setting, variables 3 and 5, respective-
ly). It appears that the residuals are autocorrelated most of the time. The
normality property is affected by the extreme values of faulty signals since
the model may not perform well to estimate the measurements at times of
fault implementation. If the observation sequence contains many outliers,
the residuals will likely not belong to Normal distribution.
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Table 7.1. Performance of HMMs with different number of states.

M SPE r (holding tube inlet) r (steam valve)
30 112.87 0.9667 0.9374
50 60.95 0.9890 0.9825
70 33.69 0.9971 0.9969
90 28.57 0.9972 0.9939

As noted before, the number of HMM states (M) is an indicator of model
performance. Low M values are not considered for HTST pasteurization
data because they possess poor predictive capabilities. On the other hand,
large M values lead to increased computational effort and can cause over-
fitting of the data. Table 7.1 shows the squared prediction errors (SPE) of
a data set by HMM with different M values. Table 7.1 also depicts the r
values (correlation coefficient) for the holding tube inlet temperature and
the steam valve opening. When a large M is used, some states become
too specific for certain process behavior. For example, each temperature
increase in holding tube inlet sensor can be represented by different states
even though there are other faults with the same magnitude causing similar
reactions in the system. Real process data may show strong autocorrelation,
cross correlation and also include noise. In those cases, HMMs may require
high numbers of states to truly capture the process behavior. For the HTST
data, 50 states were selected for modeling.

Sensor faults are introduced in the holding tube inlet temperature sen-
sor. This is the controlled variable of the process, thus, any deviation in
its measurements causes the controllers to respond to that change and in-
fluence process operation. The actuator faults are introduced in the steam
control valve. This is the manipulated variable, thus, any fault would cause
all process variables to behave abnormally depending on the magnitude and
duration of the fault. When there is a fault in the holding tube inlet sensor,
the steam valve that supplies the heating medium into the system responds
right away. The hot product is then introduced to the holding tube. For
consumer health purposes, the temperature at the exit of the holding tube
is critical and it is very strongly correlated with the holding tube inlet tem-
perature. Any kind of fault related to both holding tube inlet sensor and
steam valve may compromise consumer health and thus needs to be closely
monitored.

Figure 7.19 displays the mean values of HMM states of process variables
for data collected under normal operating conditions. For example, mean
values of states for steam valve signals (variable 5) change between -2 and
+2 approximately. Mean values of HMM states of process variables for
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Figure 7.19. Mean values of HMM states for the normal operating condi-
tion.

data sequences with steam valve actuator faults are displayed in Figure
7.20 (Case I). Mean values of states for steam valve signals (variable 5)
vary between -5 and +7 approximately. Therefore, HMM state variables
can be monitored to determine their behavior with respect to their mean
values for particular process variables under various operating conditions.
Table 7.2 depicts the magnitude, duration and time of occurrence of six
different faults implemented to the steam valve for the first case study.
The length of data sequence T used for HMM development is 114. Figure
7.20 shows the mean values of HMM states for the data sequence collected
under faults implemented to the steam valve as given in Table 7.2. State 36
of steam valve signals (variable 5) in Figure 7.20 has the highest mean value
among the HMM states and state 44 has the lowest mean value. Figure
7.21 shows the probability values associated with these particular states.
It is clearly seen that state 44 indicates faults in which the steam valve
signals are low, i.e., 6 mA. On the other hand, state 36 indicates the faults
in which steam valve signals are higher, 12 mA. HMM state 6 has large
values among the states of both hot water temperature sensor (variable 1)
and holding tube inlet temperature sensor (variable 3) (Figure 7.20). This
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Figure 7.20. Mean values of HMM states for steam valve actuator fault.

state gets a low mean value for steam valve signals (variable 5 in Figure
7.20). As seen in Figure 7.21, state 6 gets high probability value after fault
6 (magnitude of 12 mA with duration of 8 sec in Table 7.2), which causes
an increase in both temperature sensors. This is a typical behavior when a
fault occurs in the steam valve of the HTST pasteurization system. Since
the steam valve opens up to 12 mA and introduces large amounts of steam
into the heater, the hot water temperature and consequently the product
temperature in holding tube inlet increase.

In the second case study, the faults in holding tube inlet temperature
sensor (variable 3) are investigated (Case II, Table 7.3). For the HMM
development, the length of data sequence, T , is taken as 131. Figure 7.22
shows the mean values of HMM states for six process variables. State 43
of steam valve signals (variable 5) has the lowest value among all HMM
states and the highest value for the holding tube inlet temperature sen-
sor (variable 3). Whenever a fault occurs in the holding tube inlet sensor,
the steam valve responds promptly. Consequently, the same HMM state
variable represents the changes in both variables. Since the faults in the
sensor show positive magnitudes, they cause a reduction in signal magni-
tudes to the steam valve. Figure 7.23a shows the probability values of state
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Figure 7.21. Probabilities of states 44, 36 and 6 for steam valve actuator
fault.

43 during process operation. State 43 indicates the faults with magnitudes
of 0.83oC, which cause stronger responses than the faults numbered 1, 3,
and 5 with fault magnitudes of 0.39oC in Table 7.3. State 35 of steam
valve (variable 5), which has the largest value, indicates all faults except
the first one (Figure 7.23b). The probabilities become 1 during the time
intervals after the faults occur. This state contributes to situations where
the steam valve opens and injects additional steam just after the closing
action because of increasing temperature in the holding tube inlet sensor.
The second largest mean value belongs to HMM state 13 among the hold-
ing tube inlet temperature states. The final plot in Figure 7.23c shows the
probability values of state 13 during the operation. This state indicates
faults 2, 3, 4, 5 and 6. The first fault in the holding tube inlet is hard to
detect since it does not cause significant deviation in any of the process
variables. In the case of holding tube inlet sensor faults, the same HMM
states contribute to changes in the holding tube inlet temperature measure-
ments and steam valve actuator behavior. This situation is not observed
in HMM of data sequences with the faults in steam valve (Case I).

The HMM strategy can be modified by considering a moving window
to detect changes with low magnitudes and duration. It has been shown
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Table 7.2. Steam valve faults.

Fault Fault Time (sec) Steam Valve Signal (mA) Duration (sec)
1 266 6.0 2
2 418 12.0 2
3 570 6.0 4
4 724 12.0 4
5 878 6.0 8
6 1036 12.0 8

Table 7.3. Holding tube inlet temperature sensor faults.

Fault Fault Time (sec) Temperature Signal (oC) Duration (sec)
1 63 +0.39 2
2 215 +0.83 2
3 367 +0.39 4
4 521 +0.83 4
5 675 +0.39 8
6 833 +0.83 8

by Tokatli and Cinar [296] that such a strategy performs better than fault
diagnosis methods that are based on parity-space as well as state-space
identification [143].

7.4 Fault Diagnosis Using Contribution Plots

When T 2 or SPE charts exceed their control limits to signal abnormal pro-
cess operation, variable contributions can be analyzed to determine which
variable(s) caused the inflation of the monitoring statistic and initiated
the alarm. The variables identified provide valuable information to plant
personnel who are responsible for associating these process variables with
process equipment or external disturbances that will influence these vari-
ables, and diagnosing the source causes for the abnormal plant behavior.
The procedure and equations for developing the contribution plots was p-
resented in Section 3.4.

The decomposition technique given in [146] can be extended to the T 2

and SPEN values of state variables. The state variables are calculated by
Eq. 4.67 in which the past data vector is used. When the T 2 or SPE chart
of the state variables gives an out-of-control signal, contribution plots can
be inspected to find the responsible variable for that signal.
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Figure 7.22. Mean values of HMM states for holding tube inlet temperature
sensor fault.

The contribution of output (process) variable yj on state variable xi at
time k is

conti,j =
xi

Σsti,i

TRANi,jy
−
jK

(7.1)

TRAN is used to calculate state variable vector x by utilizing Y−
K which

is composed of K past values of the process variables. Based on Eq. 4.67,
matrix TRAN is given as

TRAN = Σ1/2VT (R−
K)1/2 (7.2)

The total contribution of variable yj:

CONT T 2

j =
n∑

i=1

conti,j (7.3)

where j = 1, . . . , p number of process variables and n is the number of state
variables. Unlike the computation of score variables in PCA, the state
variables at each time are calculated by using not only the present value
of the process variables, but also the past values of the process variables
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Figure 7.23. Probabilities of state 43, 35, and 13 for holding tube temper-
ature sensor fault.

over the past data window K. The total contribution of each variable on
state variable xj is calculated by summing up all the contribution of the
variable coming from its past values. This procedure is repeated for all
state variables xi (i = 1, . . . , n).

The computed values of the contributions of each process variable and
its past values on all the state variables are plotted on a bar chart. The pro-
cedure is repeated for all process variables Yj (j = 1, . . . , p). Their contri-
butions are plotted on the same bar plot to decide which variable(s) caused
the out-of-control alarm in the multivariate T 2 chart of state variables. Use
of state variables in SPM and their contribution plots are introduced and
illustrated in [211] and [219], respectively.

The contribution of process variable yj on the SPEN statistics at time
k is determined by dividing the squared error associated with jth variable
by the SPEN value at time k:

CONT SPE
j =

[(ej − ej)2/Σej,j ]
SPEN

(7.4)

where ej and Σej,j are the mean and variance of jth error term, respectively.



7.4. Fault Diagnosis Using Contribution Plots 177

The contribution of each process variable is determined and plotted on a
bar graph to decide which variable(s) caused the inflation of the SPEN

value at that particular time.
Investigating the dynamic pattern of contribution plots is more effec-

tive in fault diagnosis rather than the single snapshot of contributions of
variables at a particular time. The contributions can be plotted over time,
following an alarm signal in MSPM charts. The variation of the contribu-
tions over time can also be summarized by plotting the sum of the contribu-
tions over a time period [301]. Rapid detection of the variables responsible
for inflating the monitoring statistics is necessary because the contribu-
tions smear over time as the effects of the abnormality spreads over other
variables. On the other hand, inspection of contributions over a period is
desirable to filter out instantaneous spurs caused by measurement noise or
errors. In the test case summarized below a sequence of contribution plots
following the detection of an abnormal situation is given to illustrate the
smearing over time.

Example Consider the HTST pasteurization example discussed in Sec-
tion 5.3. In all contribution plots, the six process variables are hot water,
preheater, holding tube inlet and holding tube outlet temperatures, and
control signals to steam valve and preheater valve shown as the first, sec-
ond, third, fourth, fifth and sixth process variable in the horizontal axis,
respectively. The vertical axis is the total contribution of each process vari-
able. The same fault is repeated at different times for the same duration
but with increasing magnitude. For the steam valve fault, T 2 chart did
not alarm the faults or alarmed the faults later than the SPE charts or
the alarm signal persisted for shorter periods of time (Table 5.1). The T 2

chart alarmed the third and fourth faults later than the SPEN chart. The
contribution plots of T 2 (Figures 7.24 and 7.25) showed that the holding
tube inlet temperature sensor and the hot water temperature sensor (vari-
able 1) caused the alarms. Since the out-of-control situation in T 2 chart is
for 2 and 3 sampling times, the information gathered from the contribution
plots did not help to diagnose the fault in the steam valve. They did not
provide information about the other process variables either. The variable
contributions on SPEN for the first and second faults in the steam valve
(Figure 7.26 and 7.27) showed that the contribution of hot water temper-
ature sensor (variable 1) leads for 2 or 3 sampling times, then the holding
tube inlet temperature (variable 3) follows it. However, the contribution
plots did not show the steam valve (variable 5) as a contributor even in the
later sampling times.

In the third fault at time 741 in steam valve fault, the contribution
plots of SPEN showed the holding tube inlet temperature sensor as the
cause of the alarms (Figure 7.28). In the fourth fault at time 961 in steam
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Figure 7.24. Contribution plots of T 2 for the steam valve fault 3 (Table
5.1). Sampling time of the snapshot after the fault is introduced (a) 40,
(b) 41. Reprinted from [143]. Copyright c© 2001 with permission from
Elsevier.

valve fault I, just after the fault was introduced, SPEN chart gave an
out-of-control alarm which was caused by holding tube inlet and holding
tube outlet temperature sensors according to the contribution plots (Figure
7.29). Obviously, this can not be caused by the fault in the steam valve.
After 6 sampling times, contribution plots showed that the reason for the
alarms in SPEN chart after time 961 is the hot water temperature sensor
and then the holding tube inlet temperature, which is the expected result
of a fault in the steam valve.

Fault diagnosis of the HTST pasteurization system has also been con-
ducted by using parity relations [143], providing a comparative illustration
of the use of HMMs (Section 7.3.1), contribution plots and parity space.
The parity-space-based diagnosis issued alarms for the faults at the same
time or after the multivariate charts in this case study and indicated the
reasons behind the out-of-control alarms [143]. A fault diagnosis system
that uses several of these techniques simultaneously and integrates their
findings by using a decision maker seems more powerful than any single
technique used.

Analysis of contribution plots can be automated and linked with fault
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Figure 7.25. Contribution plots of T 2 for the steam valve fault 4. Sampling
time of the snapshot after the fault is introduced (a) 19, (b) 20, (c) 21.
Reprinted from [143]. Copyright c© 2001 with permission from Elsevier.

diagnosis by using real-time knowledge-based systems (KBS). The integra-
tion of statistical detection tools, contribution plots and fault diagnosis by
a supervisory KBS has been illustrated for both continuous [219] and batch
processes [302, 303].

7.5 Fault Diagnosis with Statistical Methods

Contribution plots presented in Section 7.4 provide an indirect approach
to fault diagnosis by first determining process variables that have inflated
the detection statistics. These variables are then related to equipment
and disturbances. A direct approach would associate the trends in process
data to faults explicitly. HMMs discussed in the first three sections of
this chapter is one way of implementing this approach. Use of statistical
discriminant analysis and classification techniques discussed in this section
and in Section 7.6 provides alternative methods for implementing direct
fault diagnosis.

When a process can be represented by a few PCs, the biplots of PCs
and SPE provide a visual aid to identify data clusters that indicate normal
operation or operation under a specific fault (Figure 5.1). An integrated
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Figure 7.26. Contribution plots of SPEN for steam valve fault 1 at (Table
5.1). Sampling time of the snapshot after the fault is introduced (a) 7, (b)
8, (c) 9, (d) 10, (e) 11, (f) 15. Reprinted from [143]. Copyright c© 2001
with permission from Elsevier.

statistical method was developed for processes that need to be described
by a higher number of PCs or for automation of diagnosis activities by
utilizing PCA and discriminant analysis techniques [242]. PCA is used to
develop a model describing normal operation (NO). This PC model is used
to detect outliers from NO, as excessive variation from normal target or
unusual patterns of variation. Operation under various known upsets is also
modeled using PCA provided that sufficient historical data are available.
These fault models are then used to isolate source causes of faulty operation
based on the proximity of current process operation to one of the data
clusters indicating a specific fault. Using PCs for several sets of data under
different operating conditions (NO and with various upsets), statistics can
be computed to describe distances of the current operating point to regions
representing other conditions of operation. Both scores distances and model
residuals are used to measure such distance-based statistics. In addition,
angle-based criteria can also be used. The FDD system design includes the
development of PC models for NO and abnormal operation with specific
faults, and the computation of threshold limits using historical data sets
collected during normal plant operation and operation under specific faults.
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Figure 7.27. Contribution plots of SPEN for steam valve fault 2. Sampling
time of the snapshot after the fault is introduced (a) 25, (b) 26, (c) 27, (d)
28, (e) 29. Reprinted from [143]. Copyright c© 2001 with permission from
Elsevier.

The implementation of the FDD system at each sampling time starts with
monitoring. The model describing NO is used with new data to decide
if the current operation is in-control. If there is no significant evidence
that the process is out-of-control, further analysis is not necessary and the
procedure is concluded for that measurement time. If score or residual
tests exceed their statistical limits, there is significant evidence that the
process is out-of-control. Then, the PC models for all faults are used to
carry out the score, residuals, and/or angle tests, and discriminant analysis
is performed by using PC models for various faults to diagnose the source
cause of abnormal behavior.

The method was developed for monitoring continuous processes devi-
ating from their steady-state operation and determining the most likely
source causes from a closed set of candidate causes. Stationarity, ergod-
icity and lack of significant autocorrelation should be established before
utilizing this method. The method does not rely on visual inspection of
plots; consequently, it is suitable for processes described by large sets of
variables. The method was illustrated by monitoring the Tennessee East-
man industrial challenge problem [58].
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Figure 7.28. Contribution plots of SPEN for steam valve fault 3. Sampling
time of the snapshot after the fault is introduced (a) 11, (b) 14, (c) 15, (d)
16, (e) 17, (f) 18. Reprinted from [143]. Copyright c© 2001 with permission
from Elsevier.

PC models for specific faults can be developed using historical data sets
collected when the process was experiencing that fault. When current mea-
surements indicate out-of-control behavior, a likely cause for this behavior
is assigned by pattern matching by using scores, residuals, angles or their
combination.

Score Discriminant Assuming that PC models retain sufficient variation
to discriminate between possible causes in scores that have independent
Normal distributions, the maximum likelihood that data x collected at a
specific sampling time are from fault model i is indicated by the minimum
distance. This minimum can be determined for example by the maximum
of di expressed by quadratic discrimination (Eq. 3.41)

di(t) = ln pi − 1
2

ln |Σi| − 1
2
(t − t̄i)TΣi

−1(t− t̄i) (7.5)

where t = xPi is the location of original observation x in PC space for
fault model i, t̄i and Σi are the mean and the covariance along PCs for
fault model i, and pi is the adjustment for overall occurrence likelihood of
fault i [126].
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Figure 7.29. Contribution plots of SPEN for steam valve fault 4. Sampling
time of the snapshot after the fault is introduced (a) 1, (b) 6, (c) 7, (d)
8, (e) 9, (f) 10. Reprinted from [143]. Copyright c© 2001 with permission
from Elsevier.

Residual Discriminant For situations where the data collected are not de-
scribed well by PC models of other faults but will be within the residual
threshold of their own class, it is most likely that x is from the fault model
i with minimum

ri/ri,α where ri = tT
i (I − PPT)ti (7.6)

ri is the residual computed using the PCA model for fault i and ri,α is the
residual threshold at level 100α based on the PCA model for fault i.

Combined Distance Discriminant Combining the information available in
scores and residuals usually improves the diagnosis accuracy [206]. Compar-
ing the combined information to the confidence limits of each fault model,
x is most likely to be from the fault model i with minimum

ci

(
ri
ri,α

)
+ (1 − ci)

(
ti
ti,α

)
(7.7)

where ti and ri are the score distance and residual for fault i based on the
PC model, respectively, ti,α and ri,α are the score distance and residual
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thresholds using the PC model, respectively, for fault i, and ci is a weight
between 0 and 1. ci is set equal to the fraction of total variance explained
by scores in order to weigh scores and residuals according to the amount of
variation in data explained by each. The combined discriminant value thus
calculated gives an indication of the degree of certainty for the diagnosis.
A value less than 1 indicates a good fit to the chosen model. If no model
results in a statistic less than 1, none of the models provide an adequate
match to the observation. When a group of observations fail to fit within
any of the known groups, they could be considered as a new group and
added to the discrimination scheme.

The statistical distance discrimination schemes described are simple to
implement. Relating increasing distance with lower likelihoods, they have
an intuitive appeal. They can use a large number of correlated variables
to choose between many possible source populations. Disjointedness and
overlap of sets can be accommodated. Unlike other diagnosis methods,
additional source populations can easily be incorporated into the discrimi-
nation scheme without retraining the whole diagnosis system.

Example The test statistics using different types of discriminants can be
plotted versus sample number in semilog plots. Figure 7.30 shows (a) resid-
ual, (b) score (plotted as the negative of the discriminant) and (c) combined
score-residual discriminants at each sampling time during a run with distur-
bance A (random variations in feed temperature) of the Tennessee Eastman
industrial challenge problem. The minimum and maximum (dashed line),
and average (solid line) statistics comparing a sample to all possible groups
are shown along with the discriminant for the actual disturbance (stars).
Correct diagnosis is made when the statistic for the true group coincides
with the minimum value. The correct diagnosis is never made for this case
with residuals (Figure 7.30a). The combined discriminant (Figure 7.30c)
diagnoses the disturbance erratically and score discriminant (plotted as log
of its absolute value) (Figure 7.30c) diagnoses the disturbance correctly
most of the time.

Figure 7.31 illustrates the fault isolation process when disturbance 3
(step change in feed temperature) is introduced. Score discriminants are
calculated using PC models for the various known faults (Figure 7.31c); this
semilog plot shows the negative of the discriminant. The most likely fault
is chosen over time by selecting the fault corresponding to the maximum
discriminant (curve with the lowest magnitude). Figure 7.31d reports the
fault selected at each sampling time. Fault 3, which is the correct fault,
has been reported consistently after the first 10 sampling times.

Angle-Based Discriminants for Diagnosis
The angles between principal coordinate directions of current data and
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Figure 7.30. Test statistics based on distance discriminants when the pro-
cess is subjected to disturbance A: (a) Residuals, (b) Scores, and (c) Com-
bined statistics. Minimum and maximum values (dashed lines), average
values (solid line), statistics of disturbance A (stars). Reprinted from [243].
Copyright c© 1997 with permission from Elsevier.

regions corresponding to operation with different faults can be used for fault
diagnosis, to complement distance-based methods [243]. The method uses
angles between different coordinate systems and a similarity index defined
by using the angle information [154].

Euclidean and Mahalanobis Angles The Euclidean angle θE between two
points a and b (with coordinates a and b and the vertex at the origin) is
defined using vector products,

cos(θE) = (aT b)/(‖a‖‖b‖) where ‖a‖ =
√

aTa (7.8)

Adjusting the angle definition for a weighted distance, the Mahalanobis
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Figure 7.31. Detection and diagnosis of process upsets, (a) Detection of
outliers based on residuals, (b) Detection based on T 2 test of scores, (c)
Diagnosis statistics considering each possible disturbance, (d) Index of cho-
sen disturbance for each observation. Reprinted from [243]. Copyright
c© 1997 with permission from Elsevier.

angle (θM ) between points a and b with the vertex at the origin is

cos(θM ) = (aT S−1b)/(d(a, 0)d(b, 0)) (7.9)

where S is the covariance matrix and d(a,b) =
√

(a − b)TS−1(a − b) is
the Mahalanobis distance for points a and b. A constant Mahalanobis angle
around the line joining point a with the origin is a hyperconical surface,
with distortion given by the matrix S.
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Angular Discriminant For distance-based discriminants, the diagnosis can
be posed as a minimization of distance penalties. For angular information,
a suitable discriminant can be stated as:

min
i

|θi| (7.10)

where θi is the angle between the test point and the mean of the ith group,
with the vertex positioned at the mean of NO. Looking at the absolute value
has the effect of ignoring on which side of the target mean a point may lie,
relative to the line joining the mean and the origin. Decision boundaries
for angular discriminants describe open-ended conical regions in space.

Choice of Angular Mahalanobis Weighing A major task, as in distance-
based discriminants, is finding a suitable dispersion matrix and choice of
coordinates or dimensions to retain. In general, distance-based discrimi-
nants use a covariance matrix. Estimation of the covariance is done by the
method derived for a multivariate Normal distribution which provides the
most likely estimate. However, there are some difficulties in using the usual
estimate for highly correlated variables. Mahalanobis-style weighing uses
the inverse of the covariance matrix, which can be mathematically unsta-
ble or physically unsuitable as it amplifies the importance of measurements
that have the smallest change. Use of PCA can work around the inver-
sion problem, but are generally also derived from the multivariate Normal
distribution.

Residual Mahalanobis Angle The residual Mahalanobis angle φ is defined
by replacing S−1 with I − PP′ as the weighing matrix:

dr(a,b) =
√

(a − b)T (I − PPT )(a − b) (7.11)

cos(φ) = (aT (I − PPT )b)/(dr(a, 0)de(b, 0)) (7.12)

Example Use of angle-based diagnosis is illustrated by introducing a-
gain disturbance A (random noise in feed temperature) of the Tennessee
Eastman industrial challenge problem. Figure 7.32a shows the minimum
and maximum angles (dashed lines), and the average angle (solid line) for
all 21 possible disturbances along with the angle to the correct disturbance
(indicated by ×). The diagnosis at each sampling time is made by selecting
the disturbance with the minimum angle to the observation, as plotted in
Figure 7.32b. Most samples are correctly diagnosed as coming from distur-
bance A (class 10), with a few misclassifications at the beginning and end
of the run. A geometric explanation for this behavior could be that the
trajectory of data over time is curved, so the samples near the middle of
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Figure 7.32. (a) Test statistics based on angle discriminants: minimum
and maximum values (dashed lines), average values (solid line), statistics
of disturbance A (×), (b) Disturbance/fault diagnosed when the process is
subjected to disturbance A. Reprinted from [243]. Copyright c© 1997 with
permission from Elsevier.

the run are within angular bounds while those at the beginning and end of
the run are at larger angles.

Table 7.4 lists the average percentage of observations correctly diag-
nosed using angles, score, residual and combination of scores and residuals
discriminants with new data not used in model development. In gener-
al, half of the observations were correctly diagnosed, with step and ramp
disturbances 10 to 40% better classified than random disturbances. As ex-
pected, diagnosis with new data was slightly less successful than diagnosis
using observations from training.

A related topic is the comparison of PC models and statistical tests
for overlap between disturbance regions. Krzanowski [154] describes the
derivation of angles between coordinate axes from different models, and
proposes the minimum angle between models as a benchmark for simple
analysis. Use of angles to evaluate overlap between regions is discussed in
[243]. The similarity index can be used to evaluate discrimination models
by selecting a threshold value to indicate where mistakes in classification
of data from the two models involved may occur. It can also be used to
compare models built from different operating runs of the same process for
monitoring systematic changes in process variation during normal opera-
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Table 7.4. Percentage success in diagnosis of various disturbances with
new data. Reprinted from [243]. Copyright c© 1997 with permission from
Elsevier.

Disturbance Type Score Residual Combination Angle
1 Step 94 0 69 100
2 Step 41 0 0 93
3 Step 0 100 92 29
4 Step 0 0 0 74
5 Step 37 0 48 98
6 Step 70 0 73 93
7 Step 93 0 51 62
8 Random 1 0 0 99
9 Random 14 0 0 12
A Random 57 0 25 88
B Random 0 0 0 31
C Random 7 0 9 0

C and F Random 33 0 41 0.9
D Ramp 0.7 0 0 87
E Random 0 100 62 0
F Random 0 14 0 44
G Random 33 0 13 47
H Ramp 76 0 66 97
I Ramp 0 0 0 98
J Random 0 14 0 44
K Random 73 0 0.9 32

tion. The similarity index has a range from 0 to 1, increasing as models
become more similar. It provides a quantitative measure of difference in
covariance directions between models and a description of overall geometric
similarity in spread.

Discrimination and Diagnosis of Multiple Disturbances
Detection and diagnosis of multiple simultaneous faults is an important

concern. Most FDD techniques rely on the assumption of a single fault. In
a real process, combinations of faults may occur. An intervention policy to
improve process operation may need to take into account each of the con-
tributing faults. Diagnosis should be able to identify major contributors
and correctly indicate which, if any, secondary faults are occurring [241]. In
fault diagnosis, where process behavior due to different faults is described
by different models, it is useful to have a quantitative measure of similarity
or overlap between models, and to predict the likelihood of successful diag-
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nosis. Similarity measures serve as indicators of the success in diagnosing
combinations of faults. They can identify combinations of faults that may
be masked or falsely diagnosed, and provide information about the success
rates of different diagnosis schemes incorporating single and combinations
of faults. Using these guidelines, multiple faults occurring in a process can
be analyzed a priori with respect to their components, and accommodated
within the diagnosis framework.

In comparing multivariate models, much work has been reported for
testing significant differences between means when covariance is constant.
Testing for differences in covariance is more difficult yet crucial; diagnosis
can be successfully done, whether or not means are different, as long as
there is a difference in covariance [79]. Testing for eigenvalue models of
covariance adds new complications, since the statistical characteristics are
not well known, even for common distributions. Simplifying assumptions
for special cases can be made, with significant loss of generality [194].

Overlap of Means An important statistical test in comparing multivariate
models is for differences in means. This corresponds to comparison of ori-
gin of coordinates rather than the coordinate directions. Many statistical
tests have been developed for testing means, but most of them can become
numerically unstable when significant correlation exists between variables.
In order to work around the instability, overlap between eigenvalue-based
models can be evaluated. Target factor analysis can assign a likelihood on
whether a candidate vector is a contributor to the model of a multivariate
data set. A statistic is defined to test if a specific vector is significantly
inside the confidence region containing the modeled data [181]. For overlap
of means, the test can determine whether the mean from one model, μ1,
significantly overlaps the region of data from another (second) model [242].
Mean overlap analysis can be used to test if an existing PC model fits a
new set of observations or if two PC models are analogous.

If there is no overlap between regions spanned by two different faults,
two alternative schemes might handle multiple faults modeled by PCA. In
one method, the combination fault is idealized as being located between
the regions of the underlying component faults; allocations of membership
to the different independent faults contributing to the combination may
provide diagnosis of underlying faults. The second method is based on a
more general extension of the discrimination scheme by introducing new
models for each multiple-fault combination of interest. The measures of
similarity in model center and direction of spread can be useful to determine
the independence of the models used in diagnosis.

Masking of Multiple Faults When the region spanned by the model for one
(outer) fault contains the model for another (inner) fault, their combination
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will not be perfectly diagnosed. Idealizing the two fault regions as concen-
tric spheres, the inner model region is enveloped by the outer model. As
a result, only the outer fault will be diagnosed and the inner fault will
be masked. Overlap of regions is likely to exist for most processes under
closed-loop control, the multiple fault scenario is further complicated for
such processes.

Faults causing random variation about a mean value (such as excessive
sensor noise) move a process less drastically off-target than step or ramp
faults. Similarity measures should indicate that the random variation faults
have more overlap with other models, particularly with each other. Ramp
or step faults tend to be the outer models and mask secondary random
variation faults.

7.6 Fault Diagnosis Using SVM

Support vector machines (SVM) have been used for many classification and
diagnosis problems in applications such as medical diagnosis, image recogni-
tion hand-written character recognition, bioinformatics and text categoriza-
tion [42]. Their use in chemical process fault diagnosis has been reported
in recent years. In one application, the performances of Fisher discrimi-
nant analysis, SVM, and proximal SVM for fault diagnosis are investigated
[37]. Proximal SVM determines ‘proximal’ planes that separate the differ-
ent classes to reduce the computational burden. The fault classification
performance was evaluated by using the Tennessee Eastman process sim-
ulator. The authors report the data sets had irrelevant information when
all variables were used and the classification with SVM and PSVM were
poor. When relevant variables were selected by using genetic algorithms
and contribution plots, and used for fault classification, the percentage of
misclassifications dropped and SVM and PSVM outperformed FDA [37].
The authors report misclassification for the testing data set to drop from
38% to 18% for FDA, and from 44-45% to 6% for SVM and PSVM. By in-
corporating time lags into SVM and PSVM for auto-correlated data, they
reduced the overall misclassification with SVM and PSVM to 3%.

A study that integrates SVM with genetic-quasi-Newton optimization
algorithms reported the application of the methodology to rayon yarn data
(two classes) and wine data (three classes) with very low misclassification
rates (0.1%) [156].
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7.7 Fault Diagnosis with Robust Techniques

A number of practical issues arise when a process monitoring strategy is
implemented in a real-time environment. Specifically, the data collected
from a Distributed Control System (DCS) are high dimensional, noisy, have
strongly correlated variables and, in most cases, the correlation structure
may be nonlinear. Furthermore, such process data often contain outliers
(gross errors) as a result of process characteristics, faulty sensors, equip-
ment failures, transient effects, or during the transference of values acquired
by analog/digital converters. When developing an operator support system
(OSS), such issues need to be tackled directly to ensure intelligent moni-
toring capabilities.

The OSS has to provide the means for suppressing noise and outliers,
detecting in-control and out-of-control operations, and render sensor recon-
struction when some sensors become unavailable. Thus, the elements of a
robust monitoring strategy would be (i) robust filtering, (ii) dimensionality
reduction, (iii) fault detection and isolation and (iv) sensor reconstruction.
This strategy is depicted in Figure 7.33. Each step in this strategy will
be reviewed in the next section, followed by an application to a pilot-scale
distillation column.

7.7.1 Robust Monitoring Strategy

The elements of the robust monitoring strategy builds on the methods
discussed previously (e.g., PCA in 3.1 and signal filtering in 6.2.3). Here,
only the key variations will be introduced.

Robust Filtering The robust filtering step uses the tandem filtering ap-
proach discussed in Section 6.2.3 where the moving median filter is used
along with wavelet coefficient denoising to remove outliers and noise arti-
facts from the measured signal. Then, the ‘clean’ process signal is presented
to the subsequent steps for monitoring.

Nonlinear PCA To address the nonlinearity in the identity mapping of
multivariate data, a nonlinear counterpart of the PCA can be used (see
Section 3.6.1). As the versions of NLPCA make use of the neural network
(NN) concept to address the nonlinearity, they suffer from the known over-
parameterization problem in the case of noise corrupted data. Data with
small SNR will also give rise to extensive computations during the training
of the network. Shao et al. [266] used wavelet filtering to pre-process the
data followed by IT-net to detect the non-conforming trends in an industrial
spray drier.

The approach presented here is based on Kramer’s work [150] where his
method uncovers both linear and nonlinear correlations independent of the
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Figure 7.33. The schematic of robust monitoring strategy. Reprinted from
[60]. Copyright c© 2001 with permission from Elsevier.

structure of nonlinearity present in the data. This is indeed the NLPCA
built on autoassociative NNs discussed in Section 3.6.1. This architecture
constructs lower dimensional features which are nonlinear combinations of
the original process variables, but it does not encourage explicitly the de-
velopment of principal components which measure distinct dimensions in
the data, as in the case for PCA. To provide a strategy in line with the
features of linear PCA, an orthogonalization needs to be performed. This
is accomplished using the Gram-Schmidt orthogonalization method that
can be found in many textbooks on linear algebra [92]. The Gram-Schmidt
procedure is performed as follows: Given a non-orthogonal set of vectors,
{U1, U2, · · · , Up},

1. Let T1 = U1

2. Compute vectors T1, T2, · · · , Tp successively using the formula,

Ti = Ui −
(
Ui · T1

T1 · T1

)
T1 −

(
Ui · T2

T2 · T2

)
T2 − · · · −

(
Ui · Ti−1

Ti−1 · Ti−1

)
Ti−1

(7.13)
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where ‘·’ denotes the dot product.

The set of vectors {T1, T2, · · · , Tp} constitutes an orthogonal set. The pro-
cedure requires designation of a vector from which all other vectors are
constructed so as to be orthogonal to the initially chosen vector. In this
case, there is no restriction on which vector has to be chosen first.

In summary, the orthogonal nonlinear principal component analysis (O-
NLPCA) algorithm develops orthogonal components directly from an auto
associative neural network using the Gram-Schmidt process. The mecha-
nism by which it incorporates the orthogonalization procedure resembles
‘cascade control’ where a faster inner loop rejects a disturbance before it
affects the outer loop. Figure 7.34 depicts the schematic of the O-NLPCA
proposed by Chessari [33]. The procedure is implemented in such a way
that the mapping layer of network is designated as the inner loop, and the
whole network is regarded as the outer loop. In order for the network to
generate orthogonal outputs at the bottleneck layer, one of the outputs is
chosen to be an ‘anchor’ vector so that the remaining outputs are orthog-
onalized with respect to this anchored vector. Choice of the anchor vector
is random so as to eliminate biasing towards one vector. Once the orthog-
onalized outputs are obtained, the inner loop can map the inputs onto this
set of bottleneck outputs. The training should not be carried out until
the error is minimized below a certain threshold because these vectors may
not satisfy the overall identity mapping objective. Training with a small
number of iterations encourages the construction of orthogonal nonlinear
principal components (secondary objective) without intervening with the
identity mapping (the main objective). The drawback of having such a
structure is that the overall training of the network takes longer than the
original form of the NLPCA. Also if too many passes are allowed in the
inner loop, not only does the overall convergence slows down, but also the
secondary objective will not be met.

Fault Detection and Isolation Stork et al. [284], and Stork and Kowalski
[283] proposed two algorithms to identify multiple sensor disturbances us-
ing backward elimination sensor identification (BESI), and to distinguish
between process upsets and sensor malfunctions via redundant sensor vot-
ing system (RSVS), respectively. In the BESI approach, once the SPE
is violated at a given time, every sensor is sequentially removed from the
model matrix followed by calculation of the upper control limit. If the ra-
tio of the SPE/SPElimit is less than one, then algorithm terminates and
points to the sensor/s that are left out for the out-of-control signal. Oth-
erwise, the procedure is continued until SPE/SPElimit ratio drops below
one. This approach is computationally expensive to carry out multiple P-
CA calculations at each time the SPE is violated. Moreover, it is almost



7.7. Fault Diagnosis with Robust Techniques 195

Figure 7.34. The O-NLPCA structure. Reprinted from [60]. Copyright
c© 2001 with permission from Elsevier.

impossible to incorporate it within the nonlinear PCA framework since ev-
ery time the SPElimit is exceeded, a new neural network would need to
be trained to check the ratio of SPE/SPElimit. On the other hand, the
RSVS approach is a three step procedure: (i) identification of the redun-
dancies among process sensors and determination of minimum redundancy
bandwidth, (ii) ordering of sensors with redundant sensors in close prox-
imity and (iii) application of probabilistic and/or empirical rules using the
disturbance pattern identified for a new process measurement. Prior to
applying the RSVS, disturbances need to be identified (via BESI, for in-
stance) correctly and then RSVS can distinguish whether the disturbance
is a sensor malfunction or a process upset. Stork and Kowalski point out
that [283] false alarms might lead the RSVS to misdiagnose the source of
the disturbance. In what follows is a new fault detection and identification
technique that reduces computational load, suits both linear and nonlin-
ear PCA, provides reconstructed values for sensors identified as faulty, and
potentially eliminates false negative situations.

The technique is referred to as Backward Substitution for Sensor Iden-
tification and Reconstruction (BSSIR) and it is based on the principle that
process upsets and sensor failures can be identified in the presence of re-
dundancy among sensor arrays. Due to process characteristics, these mea-
surements may have strong correlations among each other, particularly the
ones in close proximity and measuring the same variable. Therefore, when
a disturbance affects the process, it would be sensed by a group of sensors
rather than just by one. However, if a sensor malfunctions (e.g., due to
complete failure, bias, precision degradation, or a drift), then this will only
affect the individual sensor performance, at least initially. If the malfunc-
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tioning sensor is associated with a manipulated (or a controlled) variable
of a feedback control system, the information conveyed to the controller
will be inaccurate. As a result, such a sensor malfunction may eventually
manifest itself in more than one sensor.

Once a calibration model for the process space is built using the lin-
ear/nonlinear PCA, over the course of operation, the SPE can be used to
monitor the process against any unanticipated disturbances and/or sensor
failures. At times when the SPElimit is violated, instead of evaluating the
variable contribution to the SPE, one can go one step back in each sensor
array and calculate the SPE again. Subsequently, the SPE values are or-
dered from minimum to maximum. In other words, following vectors are
defined first,

x1− = [x1(k − 1) x2(k) · · · xm(k)] → x̂1− = x1−aaT

x2− = [x1(k) x2(k − 1) · · · xm(k)] → x̂2− = x2−aaT (7.14)
...

xm− = [x1(k) x2(k) · · · xm(k − 1)] → x̂m− = xm−aaT

where xi− denotes a row vector containing measurements for all sensors at
time k, but k − 1 sample for sensor j; x̂j− is the model estimate. The rj
represents the corresponding SPE:

r1 =
∑

(x1− − x̂1−)2

r2 =
∑

(x2− − x̂2−)2

...
rm =

∑
(xm− − x̂m−)2

Then, the sensor index of ordered sum of squared residuals can be expressed
as

rs,index = index{sort(r1, r2, · · · , rm)} (7.15)

The sensor with rs,index(1) is first reconstructed using the calibration mod-
el and the constrained optimization algorithm described below in sensor
reconstruction. After the first iteration, if the SPE remains above its lim-
it, then rs,index(1, 2) are reconstructed together. This procedure continues
until either the SPE falls below its limit or the number of reconstructed
sensors equals the number of principal components retained for the calibra-
tion model. Meanwhile, the reconstructed values are saved for use in the
subsequent instant the SPE goes beyond its limit.

Now that the affected sensors are isolated, the root cause for the alarm
can be explored. In other words, is the alarm due to a sensor malfunction,
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or a disturbance? The criterion is the correlation coefficient (CC) defined
as

CC =
Cov(xi, xj)
σxiσxj

(7.16)

where Cov(x,xj) denotes the covariance between xi and xj , and σx is the
standard deviation for each vector. For the jth sensor, the most correlated
sensor pairs can be found by ordering CCs between the jth sensor and
other sensors. To calculate the correlation coefficient at time the SPElimit

is triggered in the test set, a Q× 1-size moving window, which contains the
current sample and Q − 1 past samples for each sensor array, is formed.
The CCs calculated during plant operation are then compared with the
ones obtained from the training data. Starting from the first test sample, if
a threshold of 10% or more degradation is observed in the CCs between the
jth sensor and the two most correlated ones, then sensor j is most likely
malfunctioning, because a failure in one sensor should not interfere with
other sensor readings unless that sensor is conveying information to one
of the controllers in the system. Otherwise, the cause that triggered the
SPE to exceed its limit will be due to a disturbance in the process, since
a disturbance would typically propagate through the process and affect
multiple correlated sensors.

Sensor Reconstruction Following the fault detection procedure discussed
above, the maintenance of unavailable sensors is needed as soon as they
are detected. However, if the sensor that conveys information to one of the
controllers were to be faulty, it is essential that its value be reconstructed
from the remaining sensors on-line. Sensor reconstruction can be performed
using the calibration model based on the PCA/NLPCA.

Here, after detecting and identifying the failed sensor/s, the unavail-
able sensor values are reconstructed using the calibration model and a
constrained optimization algorithm from the remaining sensors. Each u-
navailable sensor value can be estimated by solving the following problem:

min‖xi − x̂i‖ i = 1, 2, · · · ,m (7.17)

such that
LB ≤ x̂fs,i ≤ UB, SPE ≤ Ω1−α

where x̂ denotes the estimation obtained from the calibration model, xfs

represents the failed sensor, and x̂fs,i is the reconstructed value of ith failed
sensor. LB and UB are the lower and upper bounds for the missing sensor,
and Ω1−α is the 100(1 − a)% upper control limit of the SPE. Equation
7.17 can be solved easily since only the forward evaluations of the trained
O-NLPCA network are required. Hence, a one-dimensional search over the
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missing values that satisfy the constraints will provide a solution to the
problem effortlessly. Meanwhile, the values of the remaining sensors are
kept constant while the optimization is carried out. Multiple sensor failures
can also be accommodated in an analogous way provided that the dimension
of the bottleneck is equal to or less than the number of the available sensors.
In this case, however, the problem becomes a multidimensional search for
values of the missing sensors that satisfy Eq. 7.17.

7.7.2 Pilot-Scale Distillation Column

A pilot-scale distillation column located at the University of Sydney, Aus-
tralia is used as the case study [60]. The 12-tray distillation column sepa-
rates a 36% mixture of ethanol and water. The following process variables
are monitored: temperatures at trays 12, 10, 8, 6, 4, and the reflux stream,
bottom and top levels (condenser), and the flow rates of bottoms, feed,
steam, distillate and reflux streams. The column is operated at atmospher-
ic pressure using feedback control. Three variables are controlled during
the operation: top product temperature, condenser level, and bottom lev-
el. Temperature at tray 8 is considered as the inferential variable for top
product composition. To maintain a desired product composition, PI con-
trollers cascaded on flow were used to manipulate the reflux, top product
and bottom product streams.

The column was operated four times at various operating conditions.
The first three data sets corresponding to a total of 12.8 hr of operation
were used to train the O-NLPCA network, and the fourth one was used for
model validation. However, prior to building a calibration model, both the
training and the testing data were processed through the robust tandem
filter to remove noise and suppress possible outliers.

The O-NLPCA network has 8-6-10-12 neurons in each layer, yielding
a prototype model with 6 principal components (PCs). For comparison,
the linear PCA was also applied to the same data. As a performance
criterion, the root mean square of error (RMSE) was evaluated to compare
the prediction ability of the developed PCA and O-NLPCA models on the
training and validation data. While the linear PCA gave 0.3021 and 0.3227
RMSE on training and validation data sets, respectively, the O-NLPCA
provided 0.2526 and 0.2244 RMSE. This suggests that to capture the same
amount of information, the linear PCA entails utilization of more principal
components than its nonlinear counterpart. As a result, the information
embedded in the nonlinear principal components addresses the underlying
events more efficiently than the linear ones.

To define the NO region (NOR) of the plant, kernel density estimation
(KDE) is used. The joint probability density of the first and second, and
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Figure 7.35. The screen shot of the on-line monitoring strategy, indicating
normal operation of the column. Reprinted from [60]. Copyright c© 2001
with permission from Elsevier.

second and third PCs were estimated. The NOR is defined to be the 95%
contour underneath the surface of the joint probability density. In addition,
the SPE plot with 90% warning limit, and two-sided 99% individual con-
fidence limits for the filtered process variables were also constructed using
KDE to facilitate fault detection and isolation. Any violations of the 90%
limit in the SPE will initiate the BSSIR algorithm to isolate the sensors
that cause an out-of-control signal, and to distinguish between malfunc-
tioning sensors and process upsets. The next step is to reconstruct those
malfunctioning sensor/s using the constrained optimization algorithm and
the trained O-NLPCA network. While searching over the values of the
failed sensor/s, two criteria are to be met: the value of the SPE should
stay below its 90% confidence limit, and the sensor/s values should remain
within their previously defined intervals. Following the reconstruction, the
scores and the SPE are recalculated and plotted.

To filter incoming process data, a window length of 500 samples was
used. The window size is maintained constant by forgetting the first entry
of the data vector and appending the new measurement vector to the end.
To test the strategy for tracking sensor failures, a complete failure case
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is simulated. Sensor 11 (temperature at tray 4) was forced to completely
fail between 621 and 877 sampling intervals. The sensor value, which was
∼ 80oC, was first decreased to 30 (in time segment 621-700) and then
to zero (in time segment 701-877). To test the disturbance monitoring,
flooding condition was generated by reducing the steam supply from ∼ 1.15
to ∼ 0.74 kg/min for 1.5 min (between 1103-1120 sampling instants), and
then increased to ∼ 1.7 kg/min for the rest of the operation.

Figure 7.36. The screen shot of the on-line monitoring strategy, indicating
sensor failure. Reprinted from [60]. Copyright c© 2001 with permission
from Elsevier.

In Figure 7.35, the normal operating condition is captured. The subplots
in the figure are the scores plot (upper left) between 1st and 2nd PCs, the
scores plot (lower left) between 2nd and 3rd PCs, the SPE plot (upper
right), and the sensor diagnostic plot (lower right) that shows faulty sensors.
The trends show that the process is operating normally, hence, no violations
are indicated in the SPE and the scores plot.

Figure 7.36 shows how the monitoring strategy responds when sensor
11 fails. This event is well captured in the scores plot between 2nd and 3rd
PCs, and the SPE plot. When the magnitude of SPE is greater than 85,
its value is plotted at 85 so that the sum of squared residuals corresponds to
normal operation, and the 90% and 95% upper control limits are visible. In
addition, the lower right subplot depicts the sensor number and its failing
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Figure 7.37. The screen shot of the on-line monitoring strategy, indicat-
ing the flooding condition. Reprinted from [60]. Copyright c© 2001 with
permission from Elsevier.

instant. Sensors that are suspected as failed or influenced by a process
upset are plotted using a bar chart that shows their normalized squared
residuals at the instant of failure. The figure also shows the SPE plot
when the faulty sensor was reconstructed using Eq. 7.17.

Next, flooding is introduced. As the flooding progresses through the
column stages (Figure 7.37), sensors 5 and 12 were highlighted as faulty,
whereas sensors 2, 6, 10, and 11 were isolated as signifying a process up-
set. Since there was no actual sensor failure, this shows that the BSSIR
algorithm could not distinguish correctly between sensor failure and pro-
cess upset leading to false positive identification. The reasons for this could
be that the correlation among sensors is not sufficiently strong, resulting
in large deviation in the CC between the sensor labelled as faulty and the
most correlated one; or that the CC criterion measures the degree of linear-
ity among variables, hence if some variables are nonlinearly correlated, the
CC will again be small. Nevertheless, this ambiguity in the fault detection
strategy is noted.
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7.8 Summary

Several fault diagnosis methodologies have been demonstrated to stress the
variety and availability of techniques that can be deployed in practical appli-
cations. First, hidden Markov models (HMMs) have been developed either
to solve the state estimation problem for detecting faults or, in conjunc-
tion with wavelets and triangular episodes, to solve the maximum likelihood
problem for assigning fault classes. Next, multivariate statistical techniques
have been used to develop fault diagnosis strategies that are based on PCA
and contribution plots that are also extended to robust strategies to deal
with measurement noise/outliers and nonlinear correlations among process
variables.



8

Sensor Failure Detection
and Diagnosis

Sensor auditing is an important component of statistical process monitoring
(SPM). The sensors generate a wealth of information. This information is
used for monitoring and controlling the process. Misleading information can
be generated if there is a bias change, drift or high levels of noise in some
of the sensors. Erroneous information often causes control actions that are
unnecessary, resulting in the deterioration of product quality, safety and
profitability [224]. Identifying failures such as a broken thermocouple is
relatively easy since the signal received from the sensor has a fixed and
unique value. Incipient sensor failures that cause drift, bias change or
additional noise are more difficult to identify and may remain unnoticed
for extended periods of time. Consequently, early detection and diagnosis
of such faults followed by timely reporting of the analysis can assist plant
operators in improving product quality, process safety and profitability.

The fundamental idea is to utilize additional relevant process informa-
tion for assessing the correctness of information generated by a sensor. This
approach is known as the functional redundancy and it is more attractive
than physical redundancy by duplicating sensors and using a voting log-
ic to select the correct information. Several techniques based on statistics
and system theory have been developed for validation of sensor information
by functional redundancy. In most of these techniques, it is assumed that
detailed process information is available a priori. Often, this knowledge
is in the form of an accurate state-space model [39, 230]. In many cases,
this type of accurate representation of a chemical process based on first
principles is not available.

This chapter introduces two sensor audit strategies that can detect and
diagnose sensor faults. The first strategy (Section 8.1) focuses on sensor
auditing by using calibration and test data sets that are processed either
by developing PLS models (for data with low autocorrelation) or canoni-
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cal variates state-space (CVSS) models (for strongly autocorrelated data)
The software that implements these techniques can be integrated with a
knowledge-based system (KBS) to diagnose the cause of the abnormal in-
formation received from the sensors and to discriminate between sensor
faults and process upsets. The second fault detection and diagnosis (FDD)
strategy (Section 8.2) uses PCA models to assess the contribution of each
sensor to the T 2 and SPE of the calibration model. This information is
used to first isolate the sensors causing out-of-control signal and then dis-
tinguish between process upsets and sensor failures. It also reconstructs
estimated values for malfunctioning sensors.

8.1 Sensor FDD Using PLS and CVSS
Models

Two variants of a technique which relies on input-output models developed
from operation data are presented: the first uses PLS and the second CVSS
models. PLS regression based on the zero lag covariance of the process
measurements was introduced in Section 4.3. A Multipass PLS algorith-
m is developed for detecting simultaneous multiple sensor abnormalities.
This algorithm is only suitable for process measurements where the suc-
cessive measurements are not correlated. The negligible autocorrelation
assumption is justified for a continuous process operating at steady-state
and having only random noise on measurements.

CVSS models introduced in Section 4.5 for process data with strong
autocorrelation and crosscorrelation. One-step ahead residuals generated
from the CVSS model will be used for sensor audit. A multipass version of
the technique is developed to identify submodels by eliminating successively
the corrupted measurements from both the calibration and test data sets
and fitting a different CV state-space model.

Multipass PLS Algorithm for Sensor Audit
The Multipass PLS based sensor monitoring technique was proposed by

Negiz and Cinar [208]. The use of residuals obtained from multivariate
calibration techniques in sensor audit is due to Wise et al. [329]. However,
their technique was not suitable for identifying and isolating simultaneous
multiple sensor faults. The proposed algorithm addresses this fault isolation
problem by eliminating the adverse effects of corrupted measurements of
other sensors which can cause false alarms. The technique consists of two
main steps. First, a calibration model is obtained by using a data set
collected over a period of time without known sensor faults and operating
under acceptable operating conditions. Then, new (test) data are used with
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the calibration model to perform the sensor audit.
Assume that p sensors are monitored. The calibration data set is col-

lected for n time steps and the measurements are stored in the block matrix
X after being scaled to unit-variance and zero-mean columns. x(k) is the
p × 1 vector of observations at the kth sampling time. The transpose of
x(k) is the kth row of X.

Denote by X̂•i the ith n×1 column vector which contains the predicted
values of the ith (i = 1, ..., p) sensor from the X block excluding itself (the
ith column of X) given as

X̂•i = Xβ̄i (8.1)

where the p× 1 vector β̄i is the zero augmented PLS regressor vector given
as

β̄i = [βi(1) · · · βi(i− 1) 0 βi(i) · · · βi(p− 1)]T (8.2)

The p − 1 nonzero elements of the regressor vector βi for each variable i
are computed by using PLS algorithm where the predicted variable block
Y contains the measurements of the ith sensor taken from X, and the
predictor block denoted by X contains the observations from the remaining
p−1 sensors. Equations 8.1 and 8.2 are defined such that the n×pmatrix X
which contains the measurements from all the p sensors is utilized directly.
These PLS regressions are repeated for i = 1, · · · , p. For the ith sensor, the
p− 1 elements of the regressor vector βi are [329]

βi = b1w1qT
1 +

npls(i)∑
l=2

bl

⎡⎣l−1∏
j=1

[I − wjpT
j ]

⎤⎦wlqT
l (8.3)

where the quantities bl, wl, ql, pl for l = 1, . . . , npls are as defined in
the PLS algorithm, and npls(i) denotes the number of PLS components
retained to model of the ith sensor. The vectors q are scalars with absolute
values equal to unity, because the dependent variable block Y in the PLS
algorithm has a single column. Define

B̄ =
[
β̄i · · · β̄p

]
=

⎡⎢⎢⎢⎣
0 · · · βp(1)

β1(1) · · · βp(2)
... · · · ...

β1(p− 1) · · · 0

⎤⎥⎥⎥⎦ (8.4)

Then, the residual n× p block matrix R is given as

R = X− X̂ = X(I − B̄) = XMPLS (8.5)
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where the p × p matrix MPLS represents the transformation from the o-
riginal variables (X) to the unscaled residuals (R). The residuals can be
scaled to unit variance by noting that their ‘in-control’ covariance is

Cov(R) = MT
PLSCov(X)oMPLS (8.6)

The unit variance residual block Rs is

Rs = X MPLS diag(MT
PLS Cov(X)o MPLS)

− 1
2 (8.7)

The correlation matrix (Cov(Rs)) becomes

Cov(Rs) = diag(MT
PLS Cov(X)o MPLS)

− 1
2 MT

PLS • (8.8)

Cov(X)o MPLS diag(MT
PLS Cov(X)o MPLS)

− 1
2

The PLS residual transformation given by Eq. 8.7 is diagonally dominant.
Hence, if a change occurs in the mean or variance of any sensor in X, its
corresponding residual will be affected the most. This result will be used
in resolving multiple sensor faults occurring simultaneously.

The mean and variance of the residuals for each variable is computed
using R in Eq. 8.5. The null distribution of the residuals is assumed to
be iid and normal. This null hypothesis is tested against significant auto-
correlation in the residuals for each variable by using their autocorrelation
coefficients at various lags. If 5% of those autocorrelation coefficients are
between ±1.96/

√
n, where n is the number of data points, then with 95%

confidence the distribution is iid. To assess the normality of this distri-
bution a standard quantile test is appropriate. The marginal normal dis-
tributions for each residual are characterized by computing its mean and
variance from the respective column of the residual matrix R. If there is a
significant autocorrelation for residuals, then the procedure that generates
the residuals should be modified.

After the PLS model is developed with the in-control (calibration) da-
ta set, the statistics for the residuals are computed for setting the null
hypothesis. A test sample block of size nt × p is taken from the process
measurements. The residual statistics for the test sample are then gener-
ated by using the PLS model developed. The statistical test compares the
residual statistics of the test sample with the statistics of the calibration
for detecting any significant departures.

Denote by R•i the ith n × 1 residual vector column from the n × p
residual block matrix R. The statistic for testing the null hypothesis of the
equality of means from two normal populations with equal and unknown
variances is [64]

R̄•itest
− R̄•imodel

σ̂pi

√
1/n+ 1/nt

∼ tn+nt−2 (8.9)
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where R̄•itest
and R̄•imodel

denote the maximum likelihood estimates of the
residual means for the variable i in the test sample and the calibration set,
σ̂pi is the pooled standard deviation of the two residual populations for
the ith variable, n and nt denote the sizes of the calibration and testing
populations, and tn+nt−2 is the t distribution with the N +Nt − 2 degrees
of freedom.

The statistic for testing the hypothesis of equality of variances from two
normal populations with unknown means is [64]

σ̂2
itest

σ̂2
imodel

∼ Fnt−1,n−1 (8.10)

where Fnt−1,n−1 is the F distribution with respective degrees of freedom.
The level of the test for all the testing statistics is chosen to be 5% and
two-sided. This portion of the testing procedure is similar to the algorithm
in [329].

Detection of Simultaneous Multiple Sensor Faults with Multipass
PLS Algorithm

The flowchart of the multipass sensor audit algorithm is given in Figure
8.1. The model stated in the first block can be a PLS model as discussed so
far in this section or a CVSS model. The algorithm checks if the residual
mean and/or variance are out of the statistical limits (based on t and F
probability distributions) for each sensor variable (Figure 8.1). Since the
mathematical structure of PLS allows the corrupted variable to affect the
predictions of the remaining ones, false alarms might be generated unless
the corrupted variable is taken out from both the calibration and the test
data block. The information loss due to taking the variable out of both
the calibration and the test sample set is compensatory since the testing
procedures are based on the iid assumption of the residuals and not on the
minimum prediction error criterion by the model. The variable with the
highest corruption level is discarded by comparing the ratios of its residual
variance and its residual mean to their statistical limits which are based on
Eqs. 8.9 and 8.10.

Example The proposed algorithm is applied to detect multiple sensor
failures such as drift, noise, bias and bias plus noise for simulation data
obtained from a HTST pasteurization model [211]. The sensors associated
with the measurement of each process variable are numbered as listed in
Table 8.1.

Calibration data are generated by the simulator by setting the nominal
values of process inputs (residence time in the holding tube, and the steam
temperature) such that the product has at least 15 sec residence time and
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Figure 8.1. The multi-pass PLS or CVSS sensor audit algorithm for detect-
ing simultaneous faults suggested in [290].

the holding tube exit temperature is around 77oC (170oF ) and by random-
ly manipulating the nominal inputs around their steady-state values. The
calibration data are scaled to zero-mean and unit-variance, and a separate
PLS model is obtained for each variable by using the remaining six variables
(X) by following the modeling process of Eqs. 8.1–8.5 to obtain the calibra-
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Table 8.1. Process Variables in the HTST Pasteurization Model

Variable Description

1 Temperature at the exit of the holding tube (oC)
2 Temperature at the inlet of the holding tube (oC)
3 Feed temperature to the tank (unpasteurized product) (oC)
4 Exit temperature from the tank (unpasteurized product) (oC)
5 Temperature at the inlet of the steam heater (oC)
6 Steam temperature (oC)
7 Residence time in the holding tube (sec)

tion models. The residual means and variances for these calibration models
which includes all of the seven variables are given with respect to each
variable in Figure 8.2, respectively. The dashed lines indicate the upper
and lower 95 percentile points of the t and F distributions for the residual
means and variances, respectively. The assumption in obtaining those two
statistics is checked with the prescribed autocorrelation coefficient test as a
function of the lag time. No significant correlation is detected for the resid-
uals of variable 1 since all of the correlation coefficients are within expected
bounds (Figure 8.2c). The autocorrelation tests for the other variables also
indicate no significant correlation. The order of the PLS model is increased
until 95% of the variability in X is used to predict Y.

Based on the calibration PLS model, the 7 × 7 transformation given in
Eq. 8.7 is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

7.91 −2.91 −0.04 −0.03 −4.18 −2.29 −0.37
−2.69 8.08 0.01 −0.03 −1.66 −4.37 0.16
−0.07 0.08 1.01 −0.15 −0.02 0.00 −0.10
−0.15 −0.08 −0.16 1.02 0.16 0.10 0.11
−2.79 −1.21 −0.03 0.14 5.84 0.12 −0.41
−2.45 −3.95 0.00 0.05 0.09 6.65 0.84
−0.09 0.00 −0.12 0.15 −0.02 0.16 1.04

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8.11)

The diagonal entries in the transformation matrix (Eq. 8.11) are the max-
imum entries across their corresponding column or row. This diagonal
dominance ensures that scaled residual of a specific variable will show a
change the most if a change occurs in the original variable that correspond-
s to it. Therefore the ratio of the original residual to its detection limits,
which is a linear function of its standard deviation, is a proper statistic to
observe this impact without scaling of the original residuals. The hypothe-
sis testing is done for a new data set by comparing its variability with that
of the calibration set.
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Figure 8.2. The residual statistics for calibration model. (a) Residuals
means, (b) residuals variances, (c) autocorrelation coefficients of residuals
of variable 1. Variable numbers are based on Table 8.1.

Consider an illustrative example. When the HTST pasteurization data
shown in Figure 8.3 are inspected, the operator would decide to take action
because the temperature at the exit of the tube is drifting upwards (Figure
8.3a) and the residence time is below the specified limit (Figure 8.3b). In
reality these data were artificially produced by adding noise to the flow
sensor (variable 7) and a drift to the product temperature sensor (variable
1).

A plot of the residuals means and variances of the corrupted data (Fig-
ure 8.4) shows that variables 1, 2, 4, 5, and 6 may be drifting (both the
means and variances of residuals are out of bounds); variable 3 may be bi-
ased (residual mean out of bounds but residual variance within the bounds);
variable 7 may be corrupted by noise (residual variance out of bounds but
residual mean within the bounds). In Figure 8.4c, the ratios of the residual
variances to the detection limits are plotted for each variable, in order to
assess which variable should be excluded from the model. Variable 1 shows
the highest ratio and therefore is excluded from the model with a sensor
drift diagnosis since both its residual mean and variance is out of detec-
tion limits. The calibration data set for the remaining variables are used to
develop the new PLS regression model and the test data of the remaining
variables are used to generate the residuals and their statistics. The new
means and variances excluding variable 1 (set to zero) are shown in Figure
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Figure 8.3. Simulated test data set for the HTST pasteurization system.
(a) Holding tube outlet temperature, (b) residence time in holding tube.

.

8.5.
All remaining residuals means are within their statistical bounds (Figure

8.5a), whereas the residual variance of variable 7 is out (Figure 8.5b). The
ratios of the variances to the detection limits (Figure 8.5c) indicate that
variable 7 is corrupted by noise. The plot of the residuals means and
variances excluding variables 1 and 7 (Figure 8.6), indicates that they are
all within the limits. Consequently, the responses observed in Figure 8.3
for the variables 1 and 7 were the result of a drift in the holding tube exit
thermocouple and a noise corruption in the flow rate sensor.

Drift in a sensor or a combination of bias change and noise inflation
would affect both the means and variances of the residuals. To determine
which one of these sensor faults has occurred, an additional test is per-
formed. The data for the variable under study is filtered by using a moving
average filter in order to eliminate the effects of process/instrument noise.
If the filtered data have a non-stationary mean (changing over time as a
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Figure 8.4. Plots of residuals statistics for test data. (a) Residuals means,
(b) residuals variances, (c) residuals variance ratios to detection limits.
Variable numbers are based on Table 8.1.

ramp), then the sensor is drifting. If the mean of the filtered data is sta-
tionary, the sensor has a bias change and increased noise.

The PLS-based sensor fault diagnosis algorithm is based on the zero-
lag correlation structure (Gaussian covariance). The PLS model residuals
should not have significant autocorrelation. Otherwise, the conditions for
the statistical tests given by Eqs. 8.9 and 8.10 are violated and the Mul-
tipass PLS algorithm should not be used for sensor auditing. Instead, the
CVSS model should be used to capture the dynamic behavior of the auto-
correlated process measurements and the one-step-ahead residuals based on
the CVSS model calibration data are used to generate the residuals statis-
tics. The functional redundancy generated by the CVSS model provides
residuals which are essentially iid. The residual statistics generated from
the CVSS model of the calibration data set is used to test the hypothesis
of no change against the hypothesis of change for a test data set. Sen-
sor auditing equivalent to the PLS-based methodology (consistent with the
residuals statistics testing schemes given in Eqs. 8.9 and 8.10) is developed
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Figure 8.5. Plots of residuals statistics for test data after elimination of
Sensor 1 data. (a) Residuals means, (b) residuals variances, (c) residuals
variance ratios to detection limits. Variable numbers are based on Table
8.1.

Figure 8.6. Plots of residuals statistics for test data after elimination of Sen-
sor 7 data. (a) Residuals means, (b) residuals variances. Variable numbers
are based on Table 8.1.

by inspecting the test data in batches of length nt. However, the CVSS
form can also be utilized to generate the residuals on-line. In this case, the
statistical hypothesis tests (Eqs. 8.9 and 8.10) have to be modified. The
statistical thresholds obtained with the assumption of normal marginal dis-
tributions should be modified, since the central limit theorem is no longer
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applicable. Appropriate marginal distribution functions of the residuals
can be developed in terms of Lambda distributions. Using thresholds on
the means and variances based on the Lambda distributions solves the on-
line implementation of the sensor auditing scheme [207]. The details of
the CVSS model-based sensor auditing method and a case study based on
experimental data are given in [212].

Either method can be embedded in a real-time KBS in order to diagnose
the source cause of an abnormal sensor reading to discriminate between
sensor failures and process upsets caused by disturbances and equipment
failures [290].

Example Monitoring of polymerization of vinyl acetate in a continuous
stirred tank reactor illustrates the performance of such an integrated mon-
itoring system. The simulation is based on a model developed by [291]
that consists of four ordinary differential equations for the reactor temper-
ature, solvent volume fraction, monomer volume fraction and the initiator
concentration in the reactor, as well as three differential equations for the
molecular weight moments of the reactor. The moments are functions of
the polymer chain reaction kinetics as well as the probabilities of polymer
chain propagation, and are used for the calculation of the various poly-
mer molecular weights, polydispersity and conversion. Variables that are
‘measured’ and displayed by the KBS include the polydispersity, reactor
temperature, conversion and the reactor initiator concentration. The five
manipulated variables are the reactor cooling jacket temperature, the ini-
tiator concentration in the feed stream, the feed stream temperature, the
feed solvent volume fraction, and the residence time. The four monitored
system output variables are assumed to be available via analytical methods
at one minute intervals for the physical system. The assumption is valid for
the reactor temperature, conversion and initiator concentration, though the
polydispersity measurement in a physical system may take up to 30 min
or more to obtain via analytical monitoring techniques. The manipulated
variables are modified by adding random fluctuations to each of the inputs.
A case study illustrates the synergy between the multivariable monitoring
charts and the sensor audit routine.

A bias is added to the reactor conversion measurement with a magnitude
of about 5 % of the current reactor conversion (sensor 2). Immediately
after the bias change is introduced to the sensor, both the univariate chart
for reactor conversion and the multivariate T 2 and SPE charts (Figure
8.7) indicate an abnormality. A CVSS model is developed to generate
the residuals for sensor audit. The KBS automatically begins the sensor
validation routine to determine the source cause of the inflated T 2 and SPE
statistics. Figure 8.8 shows that the residuals mean for sensors 1 (initiator
concentration), 2 (reactor conversion), and 4 (polydispersity) have exceeded
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Disturbance

Disturbance

Figure 8.7. T 2 and SPE charts after a bias change is introduced to the
reactor conversion sensor. The time of occurrence of the disturbance is
indicated by a short vertical bar [290].

their statistical limits. Sensor 2 has the highest ratio of the residual mean
to the limit, and is therefore removed from the calibration set and test data
sets and a new CVSS model is developed automatically by the software.

After the new CVSS model is constructed, the T 2 and SPE statistics
immediately return to within the NO limits (Figure 8.9). The statistical
limits for the T 2 and SPE are automatically recalculated by the KBS,
depending on the number of sensors monitored by each statistic. The u-
nivariate chart for the reactor conversion continues to indicate that the
process is operating out of control. However, the sensor audit routine has
successfully shown that only the reactor conversion measurement is biased
and the remaining sensors are operating correctly as indicated by the in-
control residual means and variances after sensor 2 is removed from the
model and test data sets (Figure 8.10). The KBS reveals that the reactor
conversion (sensor 2) is corrupted by a bias change.

8.2 Real-Time Sensor FDD Using PCA-Based

Techniques

In this section, a calibration model will be constructed using the principal
components analysis (PCA) (see Chapter 3). A common approach to isolate
process disturbances is to check the contribution of each sensor to the sum
of squared prediction error (SPE) of the calibration model.

Sensor failures are usually localized in nature however a process upset
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Figure 8.8. The residual means and variances (dotted line) for the test data
set and the statistical limits (solid line) after a bias change is introduced
to the reactor conversion sensor. Variables shown are reactor initiator con-
centration (1), reactor conversion (2), reactor temperature (3) and reactor
polydispersity (4) [290].

can manifest itself in multiple sensors. To distinguish between process up-
sets and sensor failures, Stork and Kowalski [283] proposed the redundant
sensor voting system (RSVS). This strategy utilizes the work proposed by
Stork et al. [284], which is called backward elimination for sensor identifica-
tion (BESI). In the BESI approach, once the SPElimit is violated at a given
time, every sensor is sequentially removed from the model matrix followed
by calculation of the upper control limit. If the ratio of the SPE/SPElimit

is less than one, then algorithm terminates and points to the sensor/s that
are left out for the out-of-control signal. Otherwise, the procedure is con-
tinued until SPE/SPElimit ratio drops below one. The drawbacks of this
approach are that, first, it is computationally expensive, and, second, it is
almost impossible to incorporate it within a nonlinear PCA framework s-
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New model New model

Figure 8.9. T 2 and SPE charts indicating normal operating conditions
after Sensor 2 is removed from the calibration and test data sets. The time
when the new model was developed is indicated by a short vertical bar
[290].

ince every time the SPElimit is exceeded, a new neural network needs to be
trained to check the ratio of SPE/SPElimit, and, finally, the SPE space
may not reveal all process upsets. On the other hand, the RSVS approach
is a three-step procedure:

1. identification of the redundancies among process sensors and deter-
mination of minimum redundancy bandwidth,

2. ordering of sensors with redundant sensors in close proximity, and

3. application of probabilistic and/or empirical rules using the distur-
bance pattern identified for a new process measurement.

Prior to applying the RSVS, disturbances need to be identified correctly
(via BESI, for instance) and then RSVS can distinguish whether the distur-
bance is a sensor malfunction or a process upset. Stork and Kowalski [283]
stated that false alarms might lead the RSVS to misdiagnose the source of
the disturbance.

In the following, the importance of using the T 2 and the SPE together
will be emphasized. This will be followed by a novel strategy, enhanced by
sensor reconstruction, that aims to first isolate the sensors causing out-of-
control signal and then to distinguish between process upsets and sensor
failures. The proposed strategy reduces computational load, and can ac-
commodate both linear and nonlinear PCA, provides reconstructed values
for malfunctioning sensors, and potentially eliminates false negative situa-
tions.



218 Chapter 8. Sensor Failure Detection and Diagnosis

Figure 8.10. The residual means and variances (dotted line) for the test
data set and the statistical limits (solid line) after Sensor 2 is removed from
the calibration and test data sets. Variables shown are reactor initiator con-
centration (1), reactor conversion (2), reactor temperature (3), and reactor
polydispersity (4) [290].

8.2.1 Methodology

When the process undergoes changes, deviation from the NO region (NOR)
is observed as no such features are generalized by the calibration model.
Yet, fault detection and isolation based on the information captured by
the latent space is somewhat insensitive to changes in the sensor arrays
or to small process upsets. Presence of a bias, precision degradation or a
drifting failure in a sensor array may cause the measure based on the latent
space to remain within the control perimeter, thus, leading to false negative
situations. This can be seen by examining the expression for the first latent
variable,

t1 = Xp1 (8.12)
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The ith latent variable can be explicitly written as follows:

ti = x1pi,1 + x2pi,2 + . . .+ xnpi,n (8.13)

Because each latent variable is a linear combination of all variables, a fault
in one of the sensors, or small process upsets may not be amplified sufficient-
ly to trigger the alarm and give an indication to out-of-control signal. On
the other hand, the SPE measure is more sensitive to such changes com-
pared to the T 2 or the scores plot. This is due to the fact that the error
of any type will be propagated to all latent space, thus in the de-mapping
part of the PCA, i.e.,

X = t1pT
1 + t2pT

2 + . . .+ tapT
a (8.14)

all estimated variables will be influenced by any type of disturbance in the
input sequence.

Figure 8.11. SPE vs T 2 plot to illustrate process disturbance detection.
Reprinted from [62]. Copyright c© 2001 with permission from Elsevier.

Hence, at the time instant the disturbance occurs, it is more likely to
manifest itself in the SPE by violating the upper control limit than that of
the T 2 (Figure 8.11, region I). However, significant changes in the process
or in the sensor characteristics can trigger the alarm in both of these mea-
sures (Figure 8.11, region II). Nevertheless, there might be process upsets
undetected by the SPE due to the extrapolating feature of the calibration
model. In such cases, the latent space will capture these changes but no
violation in the SPE will be observed (Figure 8.11, region III). This feature
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of the PCA model is noticed first and plays an important role in uncov-
ering more of the underlying process upsets that exist in the benchmark
example presented next. At any given time, if multiple disturbances occur,
depending upon the characteristics of the fault, either statistics will be able
to indicate such abnormal conditions.

Figure 8.12. The flowchart for the strategy to distinguishing between pro-
cess upsets and sensor failures. Reprinted from [62]. Copyright c© 2001
with permission from Elsevier.

It should be noted that it is possible to capture and isolate multiple
sensor malfunctions of different types (complete failure, precision degrada-
tion, bias, and drifting) at any given time. If a sensor failure and a process
upset (pump failure, flooding, or fouling for instance) occur simultaneous-
ly, the method is capable to distinguish between these two disturbances as
will be seen in the case study (see Section 8.2.2). However, the proposed
strategy is incapable of distinguishing among multiple process upsets per
sample instant. Angle-based methods of discrimination of samples between
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possible groups [243] can be utilized to quantitatively determine the source
of multiple process upsets.

The strategy is depicted in Figure 8.12. Once the calibration model
is built, the system can be monitored through these steps and in case of
abnormal behavior, the algorithm will initiate a search to interrogate the
affected sensors. Sensors identified to be causing the problem are checked
against a criterion to distinguish whether the root cause of the out-of-
control trending is due to a sensor malfunction or a process upset.

Identification of the Source of Disturbances

Process upsets and sensor failures can be identified in the presence of re-
dundancy among sensor arrays [283]. In well-instrumented process settings,
there may be many sensors at various locations measuring the same or d-
ifferent quantities such as flow rates, temperatures, pressures, etc. Due to
process characteristics, these variables may be cross-correlated with each
other and/or autocorrelated in time. Particularly, the ones in close prox-
imity and measuring the same variable may have as low as 0.90 or a higher
correlation coefficient. Therefore, when a process upset occurs in the pro-
cess, its aftereffect will be detected by a group of sensors rather than only
by one of them. However, if a sensor malfunction is the case, then this will
only appear in the individual sensor response. Nevertheless, if the malfunc-
tioning sensor is measuring a manipulated variable in the control system,
the information conveyed to a controller would be inaccurate. As a result,
a sensor malfunction may manifest itself in more than one sensor.

Once a calibration model for the process is built using the linear/nonlinear
PCA, over the course of operation, the SPE can be used to monitor the
process against any unanticipated process changes and/or sensor failures.
At times when the SPElimit is violated, a search will be initiated to find
out if the underlying cause is due to a sensor malfunction. The correlation
coefficient, (CC), will be used as the criterion (see also Section 7.7.1),

CC =
Cov(xi, xj)
σxiσxj

(8.15)

For the jth sensor, the most correlated sensor can be found by ordering
CCs between the jth sensor and other sensors. To calculate the correlation
coefficient when the SPElimit is exceeded in the test set, a Q × 1-size
moving window, which contains the current sample and Q−1 past samples
for each sensor, is formed. The CCs calculated amid plant operation are,
then, compared with the ones obtained from the training data. Starting
from the first test sample, if a threshold of 10% or more degradation is
observed in the CCs between the jth sensor and the most correlated one,
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then we will suspect that sensor j is malfunctioning, because a failure in one
sensor should not interfere with other sensor readings unless that sensor is
conveying information to one of the controllers in the system. If degradation
less than the threshold is observed, and no sensor is isolated other than the
malfunctioning ones, the search will proceed to the latent space to check if
a process upset is present. In Figure 8.11, the points that appear in region I
and II may either be due to a process upset or a sensor failure. In addition
to malfunctioning sensors revealed by the SPE space, one also needs to
identify the ones affected by a process upset, particularly when the points
spot in region I in Figure 8.11. The latent space is searched again for a
process upset following the reconstruction of the malfunctioning sensors.

Calculation of Variable Contributions

To find variables that triggered the T 2
limit or the SPElimit, one needs to

find the contribution of each variable the model and the residual spaces.
Two approaches will be offered here.

First, the overall average contribution to the modeling space is defined.
To detect process upsets in the latent space, the overall average contribution
per variable [146] is calculated:

C(i, j) =
a∑

κ=1

{xs(i, j)p(j, κ)} t(i, κ)
var(t(κ))

(8.16)

where xs(i, j) denotes scaled values of real observations for ith measurement
of jth variable; p(j, κ) is loading of variable j in κth principal component;
var(t(:, κ)) is the eigenvalue of the same latent variable; and C(i, j) is
the sum of the contribution of variable j to all latent variables. Bracketed
summation term in Eq. 8.16 is carried out only if the sign of {xs(i, j)p(j, κ)}
equals the sign of the overall score at observation i. As pointed out by
Kourti and MacGregor [146], the way the overall average contribution is
calculated is different than the calculation for T 2. If the T 2

limit is exceeded
at time i, the sign of each weighted variable j should be the same as that
of κth latent variable in order for that variable to have any contribution
to the overall scores space. This feature makes this approach superior to
the method that uses the contribution to T 2 in determining the variables
responsible for the out-of-control trending in the modeling space.

The second approach makes use of the contribution to residual space.
Process upsets and changes in sensor characteristics can be identified by
analyzing the residual space. To investigate variables being affected by such
disturbances, the contribution of each variable that ultimately triggers the
SPE limit should be calculated as follows:

R(i, j) = |x(i, j) − t(i, κ)p(j, κ)| i = 1, . . . , n; j = 1, . . . ,m (8.17)
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where R(i, j) represents the residual of jth variable at time i.
To identify variables causing T 2 and SPE to exceed their thresholds

in validation part of the calibration model, the scores contribution index
(SCI), and the residual contribution index (RCI) are defined (similar to
the one proposed by Raich and Cinar [243]). The SCI and RCI of each
variable at any time are defined as the ratio of its contribution values over
the contribution upper control limits, which are found by the KDE. Here,
the confidence limit for each variable contribution can be defined as

Cj,α ≈ Ωj,α (8.18)

and
Rj,α ≈ Ψj,α (8.19)

hence,

SCIj,α =
Cj

Ωj,α
(8.20)

and
RCIj,α =

Rj

Ψj,α
(8.21)

where Ωj,α, and Ψj,α are estimated probability densities of the jth variable
contribution to the latent-space and the residual-space, respectively, and α
denotes the confidence level. Thus, if the SCIj,α or the RCIj,α at time i
exceeds unity, then, variable j is said to be contributing to either of those
measures to exceed their limits.

Sensor Reconstruction

In any industrial setting, sensor failure is likely in the midst of plant opera-
tion. Maintenance of unavailable sensors is therefore needed as soon as they
are detected. However, if the sensor that conveys information to one of the
controllers were to be faulty, it is essential that its value be reconstructed
from the remaining sensors on-line. Sensor reconstruction can be performed
using the calibration model based on the PCA/NLPCA [60, 150, 214].

Here, after identifying the malfunctioning sensor/s, their values are re-
constructed using the calibration model. Each unavailable sensor value can
be estimated by solving the optimization problem introduced in Section
7.7.1. By minimizing Eq. 7.17, a one-dimensional search is established over
the missing values to obtain a solution to the problem. Meanwhile, the
values of the remaining sensors are kept constant while the optimization is
carried out. Multiple sensor failures can also be accommodated in an anal-
ogous way provided that retained number of principal components is equal
to or less than the number of the available sensors. In this case, however,
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Table 8.2. Known disturbances in the test set. Reprinted from [62]. Copy-
right c© 2001 with permission from Elsevier.

Sensor No. Time Instant Disturbance Type
1 210-342 Sensor Malfunction
5 50-342 Sensor Malfunction

6-9 33,92-93,156,331-332 Process upset (cold cap)

the problem becomes a multidimensional search for values of the missing
sensors that minimizes Eq. 7.17.

8.2.2 Case Study

This study involves a data set collected from an LFCM unit of a slurry-fed
ceramic melter (SFCM) [330]. The SFCM vitrifies a mixture of the origi-
nal wastes, contaminated zeolite and glass forming additives of the nuclear
fuel reprocessing campaigns. The data set comprises 792 observations mea-
sured over 21 process variables. The melter temperature is monitored at
20 locations, and the resistance and power dissipated between each of the
electrode pairs, glass tank level and feed flow rate are also recorded. In
all, 29 variables are measured, but among these only the temperatures and
glass level recordings are reported [328]. Although the process is sampled
at a much faster rate, the recordings were taken at 5 min intervals.

A 20-variable process data (temperature recordings only) is considered.
This benchmark data set is composed of measurements recorded from tem-
perature sensors. The first 450 measurements are used to build the PCA
model and the remaining 342 samples are utilized as a test set. Known
disturbances reported for the test set are given in Table 8.2. It was point-
ed out that not all the disturbances in the test set have been previously
identified.

In the model building step, data were first mean-centered. The PCA
model utilizes 5 LVs to capture 97% of the variability in the system. To
monitor the process, scores plot between the 1st and 2nd LVs, and the SPE
vs T 2 plots are considered. KDE with a bivariate Gaussian kernel with a
smoothing parameter h = 45, is utilized to define the NOR, the SPElimit,
and the T 2

limit. 95% upper control limit is chosen for these measures, to
detect unmodeled disturbances in the system (see Figure 8.13). It is noted
that the NOR determined by KDE has almost an ellipsoidal shape, which
implies a near Normal distribution of the first two latent variables.

In the validation part of the calibration model, the data set is mean-
centered using the mean of the training data. Samples are sequentially
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Figure 8.13. The NOR using the scores plot and the SPE/T 2 graph.
Reprinted from [62]. Copyright c© 2001 with permission from Elsevier.

processed following the proposed strategy depicted in Figure 8.12. As long
as the incoming samples show no out-of-control trending, the algorithm
performs the usual PCA calculation. However, in case the T 2

limit or the
SPElimit are violated, a search to investigate the underlying cause is ini-
tiated. The proposed strategy, thereby, is responsible for detecting the
abnormal events, isolate the sensors being affected by its consequences,
and differentiate between sensor failures or process upsets. If there is a
sensor malfunction, the algorithm minimizes Eq. 7.17 so as to provide re-
constructed values. After processing all the test data, results tabulated
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in Table 8.3 were obtained with 95% UCL on the SPE/T 2. Bold-faced
numbers are the ones matching the instances reported in Table 8.2. The
algorithm identified malfunctioning sensors correctly, and uncovered more
number of process upsets than listed in Table 8.2. When both sensors were
in failure mode, we found that the reconstructed values of few instances
also indicate a process upset in the process.

Remark The algorithm diagnosed the first two points (210 and 211) of
failing instants in sensor 1 as a process upset instead of a sensor failure.
This may be due to the fact that the weight of these two consecutive points
in 100-sample size moving window are not affecting the CC between sensor
1 and its closest neighbor (sensor 2) to deteriorate more than the 10%
threshold.

Figure 8.14. Process upsets revealed by sensors over the course of operation.
Reprinted from [62]. Copyright c© 2001 with permission from Elsevier.

The impact of process upsets on the sensors can be visualized by dis-
playing the affected sensors over time as in Figure 8.14. The process upsets
are expected to manifest themselves by influencing more sensors at any
given instant. For instance, one can observe that at those instants listed
in Table 8.2 (e.g., t = 33), there were a few more sensors in addition to
sensors 6–9 affected by the cause. Figure 8.14 also reveals a much more
pronounced disturbance effect, captured by sensors 17–19 in the cold-cap
region, which starts at observation no. 55 and lasts till the end of the test
set. Although there is no reported incidence to validate the major process
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Table 8.3. Disturbances identified by proposed strategy using 95% UCL on
SPE/T 2. Reprinted from [62]. Copyright c© 2001 with permission from
Elsevier.

Sensor No. Fault Process Upset
1 212-342 146-147, 152, 210–211, 220, 226–228,

340
2 151–152, 155, 220
3 33, 69–70, 151–152, 155, 220, 247–248
4 33, 70, 81, 116, 119, 147, 222, 312
5 50–342 33, 151-154
6 10, 92, 151–153, 208, 291, 314, 320, 331
7 33, 92, 152–153, 156, 207, 272, 317,

320, 331
8 10, 33, 151, 153, 156
9 10, 33, 63, 83–85, 90–97, 116, 120–121,

150, 156–158, 160, 228-230, 232–235,
238–242, 250, 263, 272, 293, 301-302,
314, 317–318, 321, 331–333

10 91–92, 94, 156–157, 173, 257
11 33, 66, 90–93, 121, 156, 173, 207, 209,

232-233, 239–240, 242–243, 250, 283,
286, 302, 304–305, 311–312, 317, 332

12 33, 92–93,121, 156, 173, 207, 234, 240,
302–303, 317, 331

13 33, 97, 121, 156–157, 226, 228, 232-
234, 239, 242, 249-250, 290, 301–303,
305, 316–318, 332

14 33, 12–121, 156–157, 230, 233–235,
301–302, 321, 331–332

15 28, 33, 56, 93, 100, 109, 116–118, 120–
121, 156–157, 229, 230, 233, 300–302,
314, 317, 321, 327–329, 331–332

16 28, 33, 93, 97, 120, 156–157, 230, 232–
233, 301–302, 317, 321, 331–332

17 55-79, 81-91, 92-93, 94-118, 123, 128-
130, 143, 146-152, 155–156, 158-159,
161-181, 209-213, 219-224, 241, 244,
246, 249, 254-256, 265-269, 271, 273-
274, 277-287, 292, 294-297, 300, 304-
308, 313-315, 318-324, 326-328, 330,
335, 337-342

18 28, 33, 55-57, 59-91, 92-93, 94-130,
135-155, 156, 157-181, 185-204, 207-
261, 263-324, 326-342

19 28, 33, 55-57, 59-91, 92-93, 94, 156,
157-169, 171-180, 185-205,207-330,331-
332, 333-342

20 151–154
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Table 8.4. Source of identification for the sensors affected by the process
upset. Results are obtained after reconstruction of faulty sensors, and for
those points that belong to region II in Figure 8.15b. Reprinted from [62].
Copyright c© 2001 with permission from Elsevier.

Sample No. Latent Space Residual Space
33 9, 18, 19 3, 4, 5, 7, 8, 9, 11, 12, 13,

14, 15, 16, 18
64 18 17, 18, 19
92 9, 12 6, 7, 9, 10, 11, 17, 18, 19
93 9, 12 6, 7, 9, 10, 11, 17, 18, 19
151 9, 11, 12 9, 15, 16, 17, 18, 19
152 1, 2, 3, 5, 6, 7, 8, 20 17, 18, 19
155 – 2, 3, 17, 18, 19
156 8, 9, 11, 12, 13 7, 9, 10, 12, 13, 14, 15, 16,

17, 18, 19

upset in these sensors, the scores plot after reconstructing the failed sen-
sors and the SPE/T 2 plot (Figure 8.15) consistently indicate the presence
of such a process upset. Moreover, similar, but less pronounced, behav-
ior was also observed at t = 10, 28, 120− 121, 151−153, 157, 173, 207, 228−
230, 232−235, 238−240, 242, 247, 250, 301−303 and 320−321. While these
instances also point to the presence of possible process upsets, it should al-
so be recognized that the ones revealed by one or two uncorrelated sensors
may be due to small changes in signal characteristics, such as noise.

An interesting realization is the fact that points that fall in region II of
the SPE/T 2 (Figure 8.15) were not always caused by the same group of
sensors that were affected by the disturbance. Table 8.4 gives few instances
when the system was undergoing the disturbances. As one can see, both
latent and residual spaces are characterized rarely by the same group of
sensors. Furthermore, both the SPE (in region I) and the T 2 (in region III)
are capturing different type of disturbances. These findings suggest that
fault identification and isolation methods, which utilize the information
from the residual or latent space only, will not be able to reveal all the
disturbances.

The importance of reconstructing the faulty measurements plays a cru-
cial role in identifying the process upsets inherent in the system. Without
reconstruction, these events might go undetected that eventually lead to
false negative situations. Thereby, to remedy the masking effect of the
faulty measurements that inflate the T 2 and the SPE, reconstruction is
vital. As a particular aspect of this example, it was found that the under-
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Figure 8.15. Process status for the validation data set. Reprinted from [62].
Copyright c© 2001 with permission from Elsevier.

lying reasons that led to a drift from the NOR were not due to the faulty
sensors. This realization is a strong indication to present process upsets
masked by the failed sensors. It is worth mentioning that due to the mask-
ing problem, these disturbances were not correctly identified before in the
literature. Therefore, it can be pointed out that the reported list of process
upsets may be incomplete.
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8.3 Summary

Process sensors are a key element of monitoring strategies as they provide
a wealth of information about process status. However, they are also sub-
ject to various modes of failure, which can complicate the detection and
diagnosis of faults and catastrophic events. In this chapter, two sensor
auditing strategies were presented that can aid in the isolation of failed
sensors. Based on the concepts of PLS, CVSS and PCA, these sensor audit
strategies play a substantial role in discriminating between actual process
disturbances and sensor malfunctions, thus helping operators locate the
true root cause of process faults. The second method has also shown that
the malfunctioning sensors can be reconstructed using measurement infor-
mation from other sensors.



9

Controller Performance
Monitoring

The objective of controller performance monitoring (CPM) is to develop
and implement technology that provides information to plant personnel for
determining if appropriate performance targets and response characteris-
tics are being met by the controlled process variables. Typical operating
targets include limits on deviation from the set-point, limits on manipu-
lated variable moves, variances of controlled and manipulated variables,
frequency of soft constraint violations and frequency of reaching hard con-
straints. These targets can be used as criteria for assessing controller per-
formance. Additional criteria are developed by considering the dynamic
response characteristics such as decay ratio, overshoot, response time and
response characteristics of the output error and the manipulated variable.
Several additional criteria are defined for multivariable systems including
the extent of dynamic interactions and loop shaping. Many of these crite-
ria may not be automated easily and various techniques that can compute
indexes indicating controller performance have been proposed.

The initial design of control systems includes many uncertainties caused
by inaccuracies in process models, estimations of disturbance dynamics and
magnitudes, and assumptions concerning the operating conditions [253].
The control algorithm and the tuning parameter values are chosen by using
this uncertain information, leading to process performance that can differ
significantly from the design specifications. Even if controllers perform well
initially, many factors can cause their abrupt or gradual performance deteri-
oration. Sensor or actuator failure, equipment fouling, feedstock variations,
product changes and seasonal variations may affect controller performance.
It is reported that as many as 60% of all industrial controllers have some
kind of performance problem [105]. It is often difficult to effectively mon-
itor the performance and diagnose problems from trends in raw process
data [148]. These data show complicated response patterns caused by dis-

231
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turbances, noise, time-varying systems and nonlinearities. In addition, the
scarcity of engineers with control expertise to evaluate routinely the large
number of control loops in chemical processes makes the analysis of raw
data virtually unmanageable. These facts stress the necessity of efficien-
t on-line techniques in controller performance monitoring and diagnosis.
Development of on-line tools that can be automated and provide easy to
interpret results by plant personnel are desirable.

CPM ensures proper performance of the control systems to enable the
process to operate as expected and manufacture products that meet their
specifications. CPM and control system diagnosis activities are a subset of
the plantwide process monitoring and diagnosis activities. CPM and diag-
nosis rely on the interpretation of data collected from the process. When
an abnormality is detected in process data, it is necessary to determine if
it is caused by a control system related cause as opposed to process equip-
ment failure. The sequence of events and interactions can be more complex
if for example an equipment failure triggers process variations that are
further amplified by the feedback of the control system. This chapter fo-
cuses on CPM and diagnosis will be limited to determining if source causes
are associated with the controller. Controlled variables should meet their
operating targets such as specifications on output variability, effectiveness
in constraint enforcement, or closeness to optimal control. A comprehen-
sive approach for assessing the effectiveness of control systems includes: (i)
Determination of the capability of the control system; (ii) Development of
statistics for monitoring controller performance; (iii) Development of meth-
ods for diagnosing the underlying causes of changes in the performance of
the control system [105].

Performance criteria must be defined to determine the capability of a
control system. A benchmark is established for assessment by using data
collected during some period of process operation with acceptable perfor-
mance. Once these are achieved, controller performance can be monitored
over time to detect significant changes. Since control system inputs are ran-
dom variables, the outputs of the performance measure will be stochastic
as well. Therefore, statistical analysis tools should be used to detect sta-
tistically significant changes in controller performance. When performance
degradation is detected, the underlying root causes have to be identified.
Methods for isolating problems associated with the controller from those
arising from the process would be very useful. This chapter focuses on CPM
of single loop, multivariable and model predictive control (MPC) systems.
Diagnosis is illustrated for MPC and is limited to distinguishing between
root cause problems associated with the controller and problems that are
not caused by the controller [264].

Integration of CPM with diagnosis was reported for single-loop cases
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[281]. A recent review [293] summarizes various advances in plantwide CPM
for single-loop controllers and integrates CPM with detection of periodic
and nonperiodic oscillations in plant operation, valve stiction and root cause
of plant disturbances. Diagnostic tools for performance degradation in
multivariable model-based control systems have been proposed [141]. Very
few uses of KBSs for CPM and diagnosis have been reported [125, 139,
264]. Review papers summarize various approaches for CPM of single-loop,
multi-input-multi-output (MIMO), and MPC controllers [236, 238], and
detection of valve stiction problems [123, 255]. CPM of MIMO processes by
using projections to subspaces [195, 196], and valve stiction by qualitative
shape analysis illustrate the diversity of techniques proposed for CPM and
diagnosis.

An overview of single-loop CPM is presented in Section 9.1. Section
9.2 surveys CPM tools for multivariable controllers. Monitoring of MPC
performance and a case study based on MPC of an evaporator model and
a supervisory knowledge-based system (KBS) is presented in Section 9.3
to illustrate the methodology. The extension of CPM to web and sheet
processes is discussed in Section 10.3.

9.1 Single-Loop Controller Performance Mon-

itoring

An elegant CPM method based on minimum variance control (MVC) and
the variance of the controlled variable computed from routine process da-
ta proposed by Harris [102] has initiated the recent interest in CPM. The
variance of a controlled variable is an important performance measure, s-
ince many process and quality criteria are based on it. The theoretically
achievable absolute lower bound on the variability of the output can be an
appropriate benchmark to measure the performance of a regulatory control
system. This benchmark is achieved by a system under MVC. Using MVC
as performance benchmark, one can assess the performance of a control loop
and make statements on the potential of improvements resulting from re-
tuning of controller parameters or implementing more sophisticated linear
feedback controllers [53]. A good performance relative to MVC indicates
that further tuning or re-design of the control algorithm is neither necessary
nor helpful. In this case, further reduction of process variability can only
be obtained by implementation of feedforward control or re-engineering of
the process. A poor performance might result from constraints such as un-
stable or poorly damped zeros of the process transfer functions or control
action limits and indicates the necessity of further analysis such as process
identification and controller re-design [115].
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Various performance indices have been suggested [54, 53, 149, 20, 148]
and several approaches have been proposed for estimating the performance
index for SISO systems, including the normalized performance index ap-
proach [53], the three estimator approach [175], and the filtering and cor-
relation analysis (FCOR) approach [115]. A model free approach for linear
quadratic CPM from closed-loop experiments that uses spectrum analysis
of the input and output data has been suggested [136]. Implementation
of SISO loop based CPM tools for refinery-wide control loop performance
assessment has been reported [294].

The most popular tool for monitoring single-loop feedback and feedfor-
ward/feedback controllers is based on relative performance with respect to
minimum variance control (MVC) [53, 102]. The idea is not to implement
MVC but to use the variance of the controlled output variable that would
be obtained if MVC were used as the reference point. The variation of the
inflation of the controlled output variance indicates if the process is operat-
ing as expected or not. Furthermore, if the variance with a MVC is larger
than what could be tolerated, this indicates the need for modification of
operating conditions or process.

Following the MVC framework [102, 148], consider a process described
by a linear discrete-time transfer function model:

y(k) = P (q−1)u(k) +
∑

i

Di(q−1)di(k) + v(k) (9.1)

where y(k) is the output, u(k) is the input, di(k) is the ith measured dis-
turbance, and v(k) represents the additive effect of noise and unmeasured
disturbances at the output. The argument (k) represents discrete time in-
stants. P (q−1) and Di(q−1) are stable polynomials corresponding to the
transfer functions between the output and the manipulated input or mea-
sured disturbance i, respectively. The manipulated input is computed by
the controller

u(k) = C(q−1)e(k) +
∑

i

Cf,i(q−1)di(k) (9.2)

where C(q−1) and Cf,i(q−1) are the feedback and feedforward controller
transfer functions. The output deviation (error) from the set-point r(k) is

e(k) = r(k) − y(k) (9.3)

By using Eqs. 9.1 and 9.2, the error e(k) can be written as

e(k) =
r(k) −∑

i(Di(q−1) + P (q−1)Cf,i)di(k) − v(k)
1 + P (q−1)C(q−1)

(9.4)
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The dynamic response of e(k) can be expressed as an autoregressive moving
average (ARMA) model or a moving average (MA) time series model:

e(k) =
θ(q−1)
φ(q−1)

a(k) = [1 + ψ1(q−1) + ψ2(q−2) + . . .]a(k) (9.5)

where a(k) is a random noise sequence with variance σ2 and ψi are the
coefficients of the MA model or the impulse weights. Harris and his co-
workers [53, 102] have noted that the variance of the closed-loop output is
given by

σ2
e = [1 + ψ2

1 + ψ2
2 + . . .+ ψ2

f + . . .]σ2
a (9.6)

The output error variance for MVC becomes

σ2
mv = (1 + ψ2

1 + ψ2
2 + . . .+ ψ2

f )σ2
a (9.7)

where f denotes the number of time intervals equivalent to the process time
delay. Harris [53] defines a performance index

η(f) = 1 − σ2
mv

σ2
y

(9.8)

The index η(f) gives the ratio of the variance in excess of that could be
achieved under MVC to the actual variance. If η(f) is close to 0 the con-
troller performs closely to the performance of MVC, and η(f) values closer
to 1 indicate poor controller performance.

Kozub and Garcia [149] point out that in many practical cases, rating of
output error characteristics relative to MVC is not practical or achievable.
They propose autocorrelation patterns for first-order exponential output
error decay trend:

e(k) =
1

1 − λq−1
a(k) with λ = exp (−T

τ
) (9.9)

where T is the sampling interval and τ is the first-order response time
constant. The autocorrelation pattern is given by

ρe(k) = λk (9.10)

which can be compared to the autocorrelation pattern of the error e(k).
They define a closed-loop potential (CLP ) factor defined as

CLP =
σ2

mv

σ2
e

(9.11)



236 Chapter 9. Controller Performance Monitoring

For the closed-loop performance bound given in Eq. 9.9, the variance of
the output error is

σ2
e =

1
1 − λ2

σ2
a (9.12)

which yields a bound limit for the CLP by noting that σ2
mv = σ2

a if f = 0:

CLP = 1 − λ2 (9.13)

These indexes can be extended to consider the variance ratios of the k-step-
ahead forecast error to the variance of e(k). A performance index similar
to CLP , CLPk is defined as [148]:

CLPk =
(1 + ψ2

1 + ψ2
2 + . . .+ ψ2

k)σ2
a

σ2
e

(9.14)

Other enhancements for indexes that originate from the same concepts have
been proposed [20, 110, 248] and applications to refinery control loops have
been reported [294]. Lynch and Dumont [175] have presented a methodolo-
gy based on Laguerre networks to model the closed-loop system for comput-
ing the minimum achievable variance, an on-line delay estimator, and static
input-output estimator for assessing process nonlinearity. Likelihood ratio
tests have been proposed to determine if the output error response char-
acteristics are acceptable based on specified dynamic performance bounds
[300]. But Kozub [148] warns that this approach is conceptually and com-
putationally too demanding compared to other methods and that reliance
on only settling-time specification to construct the likelihood ratio tests
[300] may be misleading.

Time series models of the output error such as Eq. 9.5 can be used to
identify the dynamic response characteristics of e(k) [148]. Dynamic re-
sponse characteristics such as overshoot, settling time and cycling can be
extracted from the pulse response of the fitted time series model. The pulse
response of the estimated e(k) can be compared to the pulse response of
the desired response specification to determine if the output error charac-
teristics are acceptable [148].

Cross correlation analysis is proposed for assessing the dynamic sig-
nificance of measured disturbances and set-point changes with respect to
closed-loop error response, and testing the existence of plant-model mis-
match for models used in controller design [281].
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9.2 Multivariable Controller Performance Mon-

itoring

CPM of multivariable control systems has attracted significant attention
because of its industrial importance. Several methods have been proposed
for performance assessment of multivariable control systems. One approach
is based on the extension of minimum variance control performance bounds
to multivariable control systems by computing the interactor matrix to
estimate the time delay [103, 116]. The interactor matrix [103, 116] can be
obtained theoretically from the transfer function via the Markov parameters
or estimated from process data [114]. Once the interactor matrix is known,
the multivariate extension of the performance bounds can be established.
For example, Harris and co-workers [103] propose

η = 1 − E[yT
MV WyMV ]
E[yT

t Wyt]
(9.15)

where W is a positive-definite weighting matrix, Y is the vector of out-
puts and E[.] denotes expectation. As an extension of this approach, a
filtered optimal H2 control law with desired closed-loop dynamics has been
proposed [114]. Alternatively, multivariate MVC performance might be es-
timated via multivariate time series analysis [105]. A pass/fail likelihood
ratio test was proposed to determine if performance specifications like set-
tling time, decay ratio, minimum variance, or frequency-domain bounds
are met [300]. Huang and Shah [115] proposed as benchmark user-specified
closed-loop dynamics, like settling time or overshoot. Covariance-based
performance indexes and a user-defined benchmark have been presented by
Qin and co-workers [195, 196, 238].

Another group of approaches focuses on model-based control systems.
The ratio of the desired and achieved controller objective functions, set-
tling time, and constraint violations based criteria have been proposed for
a Dynamic Matrix Control (DMC) type model predictive controller [223].
Diagnosis tools for source causes of poor controller performance have also
been suggested. A different group of tools for detecting and diagnosing
controller performance problems have been suggested by using multivari-
ate statistical tests on the prediction error for detection and casting the
diagnosis problem as a state estimation problem [141].

The third class of techniques include a frequency-domain method based
on the identification of the sensitivity function (S(s)) and the complemen-
tary sensitivity function (T (s)) from plant data or CPM of multivariable
systems [140]. Robust control system design methods seek to maximize
closed-loop performance subject to specifications for bandwidth and peak
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magnitude of S(s) and T (s). Estimates of these transfer functions can be
obtained by exciting the reference input with a zero-mean, pseudo-random
binary sequence, observing the process output and error response, and de-
veloping a closed-loop model. Performance assessment is based on the
comparison between the observed frequency response characteristics and
the design specifications. Selection of appropriate model structures, exper-
imental design and model validation which will ensure reasonable estimates
of S(s) and T (s) are discussed in [140]. The method has been automat-
ed and embedded in a real-time knowledge-based system for supervisory
multivariable control [139]. Since the technique is intrusive, it should be
used after one of the nonintrusive techniques discussed earlier indicates a
controller performance problem. Because the procedure checks controller
performance against design criteria, controller design and tuning via loop
shaping techniques provide an automated controller modification opportu-
nity for maximizing performance.

9.3 CPM for MPC

CPM for model predictive control (MPC) systems has been studied in re-
cent years. The availability of a model for MPC offers new alternatives for
CPM of MPCs in contrast to multivariable control CPM that is usually
data-driven, relying only on routinely collected process data. This section
starts with a summary of some CPM techniques proposed in the litera-
ture. These techniques are extended and integrated to a comprehensive
MPC performance assessment and monitoring methodology and diagnosis
of types of causes for poor process performance [264]. Use of real-time KB-
Ss for integrating CPM and diagnosis is also presented. Integration of CPM
and diagnosis is illustrated by using an evaporator control case study. MPC
calculations in this work are performed using a slightly modified version of
the Matlab� MPC Toolbox [204] to allow for nonlinear plant models and
a stepwise calculations necessary for on-line monitoring.

Model predictive control is based on real-time optimization of a cost
function. Consequently, CPM methods that focus on the values of this cost
function can be developed. The MPC cost function Φ(k) is

Φ(k) =
P∑

j=N1

[ŷ(k + j) − r(k + j)]T Q[ŷ(k + j) − r(k + j)]

+
M∑

j=1

[Δu(k + j − 1)]TR[Δu(k + j − 1)] (9.16)

where r(k), ŷ(k), and Δu(k) are vectors of reference trajectories, predicted
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outputs, and change in manipulated variables at time k, respectively. Q
and R are weighting matrices representing the relative importance of each
controlled and manipulated variable. Control moves at each sampling time
are obtained by calculating a control sequence that minimizes Φ(k). There-
fore, it is reasonable to measure MPC performance by calculating values
of Φ(k) using plant data. A performance measure based on Φ(k) can be
defined as

Jactual(k) = eT (k)Qe(k) + ΔuT (k)RΔu(k) (9.17)

where e(k) = ŷ(k) − r(k) is the vector of controlled variable errors and
Δu(k) is the vector of control moves at time k. Φ(k) is a random variable
because of measurement noise and disturbances. Consequently, the expect-
ed value of the cost function is more suitable for measuring the controller
performance achieved:

Jach = E[Jactual(k)] = E[eT (k)Qe(k) + ΔuT (k)RΔu(k)] (9.18)

Here E[.] is the expectation operator and e(k) and Δu(k) are comput-
ed from the data set under examination. The LQG benchmark [115], the
historical performance benchmark [222], and the model-based performance
benchmark [222, 347] are some of the methods that have been proposed in
the literature for CPM of MPC.

LQG-Benchmark The achievable performance of a linear system charac-
terized by quadratic costs and Gaussian noise can be estimated by solving
the linear quadratic Gaussian (LQG) problem. The solution can be plotted
as a trade-off curve that displays the minimal achievable variance of the
controlled variable versus the variance of the manipulated variable [115]
which is used as a CPM benchmark. Operation close to optimal perfor-
mance is indicated by an operating point near this trade-off curve. For
multivariable control systems, H2 norms are plotted. The LQG objective
function and the corresponding H2 norms are [115]

ΦLQG(λ) = E[e(k)T Qe(k)] + λE[Δu(k)T RΔu(k)] (9.19)

‖GY ‖2
Q = E[e(k)TQe(k)] ‖Gu‖2

R = E[Δu(k)T RΔu(k)] (9.20)

The trade-off curve is obtained by calculating the H2 norms for different
values of λ and plotting ‖GY ‖2

Q versus ‖Gu‖2
R. Once the trade-off curve is

calculated, the H2 norms under the existing control system are computed
and compared to the optimal control represented by the trade-off curve.

The LQG benchmark is limited to a special group of MPCs character-
ized by the equality of control (M) and prediction (P ) horizons and lack of
feedforward components and constraints. It may be considered as a limit of
achievable performance in terms of input and output variance to evaluate
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various types of controllers. SinceM and P are two independent and impor-
tant tuning parameters and incorporation of constraints and feedforward
control are important advantages of MPC over conventional controllers, al-
ternatives to the LQG benchmark have been developed for monitoring the
performance of these more interesting MPC implementations.

Historical Benchmark A priori knowledge that the performance was
good during a certain time period is necessary to use this approach [222].
For the block of input and output data of this period, the historical bench-
mark Jhist is given by an equation of the same form as Eq. 9.18 where e(k)
and Δu(k) are taken from the historical data set. The objective function
for the performance achieved (Jach) is calculated by using again Eq. 9.18
where e(k) and Δu(k) are taken from data collected during the period of
interest. The performance measure is defined as the ratio

γhist =
Jhist

Jach
(9.21)

Model-based Performance Measure Two alternatives that rely on a
process model, the design case and the expected performance, have been
proposed:

Design Case Approach. Patwardhan et al. [222] have suggested the com-
parison of the achieved performance with the performance in the design
case that is characterized by inputs and outputs given by the model. The
design cost function Jdes has the same form as Eq. 9.18 where e∗(k) and
Δu(k)∗ are substituted for e(k) and Δu(k) to indicate the predicted devia-
tions of model outputs from the set-points (an estimate of the disturbance
is included) and the optimal control moves, respectively. Jach is the same
as that in historical benchmark Eq. 9.18 and is calculated using plant da-
ta. Performance variation between the real plant (Jach) and model (Jdes)
is expressed by

γdes =
Jdes

Jach
(9.22)

Expected Performance Approach. Zhang and Henson [347] have proposed an
on-line comparison between expected and actual process performance. The
expected performance is obtained by implementing controller actions on the
process model. The expected performance incorporates estimates of state
noise, but no output disturbances. The actual and expected performance
are compared on-line over a moving horizon PC of past data using the ratio
[347]:

IMPC(k) =
Jexp(k)
Jact(k)

(9.23)
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The actual performance is defined as

Jact(k) =
PC∑
j=1

eT (k + j − PC)Qe(k + j − PC) (9.24)

The expected performance uses Eq. 9.24 as well, after replacing e with e∗.
The ratios γdes and IMPC are very similar. In general, they are smaller
than 1 due to imperfect models, sensor noise, or other uncertainties.

IMPC is a stochastic variable and statistically significant changes in the
controller performance can be detected by statistical analysis. IMPC is
assumed to be generated by an ARMA model

A(q−1)IMPC (k) = C(q−1)z(k) (9.25)

where C(q−1) and A(q−1) are monic polynomials and z(k) is a zero-mean,
uncorrelated, Gaussian noise signal [347]. Polynomials A and C and the
variance of z can be estimated from a sequence of IMPC values computed
by using data collected in a time interval in which the controller performs as
expected. IMPC is highly serially correlated and the AR part is first-order
[347]:

(1 − a1q
−1)IMPC(k) = z(k) (9.26)

Defining

ΔIMPC(k) ≡ Â(q−1)
Ĉ(q−1)

IMPC(k) (9.27)

where Ĉ(q−1) and Â(q−1) are estimated polynomials, the estimated noise
variance is used to compute 95% confidence intervals on ΔIMPC(k) [347].
Violation of these control limits indicates a statistically significant change
in controller performance. According to Eqs. 9.26 and 9.27, ΔIMPC(k) is
a prediction residual and should have a Normal distribution. Prediction
residuals are used to monitor variations in autocorrelated random variables
using well-established SPM charts.

A Comprehensive Technique for MPC Performance Monitoring
The essential step in the LQG benchmark is the calculation of various

control laws for different values of λ and prediction (P ) and control (M)
horizons (P = M). This is a case study for a special type of MPC (un-
constrained, no feedforward) and a special parameter set (M = P ) to find
the optimal value of the cost function and an optimal controller parameter
set. Using the same information (plant and disturbance model, covariance
matrices of noise and disturbances), studies can be conducted for any type
of MPC and the influence of any parameter can be examined. These studies
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Table 9.1. Categorization of techniques to be used (ff – feedforward).

Controller Specification Assessment Monitoring Diagnosis
unconstrained, no ff LQG γhist(k) γdes(k)

unconstrained, ff comparative study γhist(k) γdes(k)
constrained, no ff comparative study γhist(k) γdes(k)

constrained, ff comparative study γhist(k) γdes(k)

can be automated and the corresponding value of the cost function can be
reported as function of the underlying parameter set [264].

A value of the cost function suitable to be the historical benchmark
and a design case that performs acceptably is selected. Two performance
measures for on-line monitoring are defined after a benchmark is obtained.
γhist(k) is extended for computation at each sampling time to determine
controller performance. γdes(k) is extended for computation at each sam-
pling time to assist in diagnosis of types of causes for poor performance.
CPM is implemented by using the LQG benchmark or a benchmark ob-
tained from case studies and γhist(k). When the controller performance is
declared poor, γdes(k) is used to make diagnostic decisions.

Tools for controller performance assessment (CPA), CPM, and diag-
nosis are available for four types of MPCs by obtaining benchmarks for
constrained cases and controllers including feedforward components, and
establishing statistical analysis to the historical and model-based perfor-
mance measures γhist(k) and γdes(k) (Table 9.1).

The tuning parameters of MPC include P , M , and α that determines
the desired speed of approach to the set-point by using a relationship be-
tween the set-points and the reference trajectory r(k + l) = αsp(k + l −
1) + (1 − α)sp(k + l). In addition, weight matrices and input constraints
can be used to adjust the aggressiveness of the controller. The minimum
achievable value of the cost function J can be found by varying M , P , and
α if the weight matrices and constraints are fixed to specific values. For
P = M (LQG benchmark), the largest value of P (= M) minimizes the
cost function. However, M = 2 and P = 20 seems to be the optimum com-
bination for the parameter ranges under examination for the evaporator
control case study. The minimal value of J can be used as a benchmark.
A quantitative measure of the performance is given by γhist. Systemat-
ic comparative studies may be computationally too intensive, especially if
limits on control moves and weight matrices are considered. Therefore, one
might want to select M and P first and then continue to seek the bench-
mark value by varying other parameters. The absolute optimum may be
missed because of the interdependencies of parameters, but the trade-off is
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significant reduction in the computational burden.
For on-line monitoring, γhist is computed at each sampling time. In

analogy to the calculation of Jact [347], the achieved cost function (Jach) is
calculated over a moving horizon PC of past data

Jach =
1
PC

[ PC∑
j=1

(eT (k + j − PC)Qe(k + j − PC)) (9.28)

+ΔuT (k + j − PC)RΔu(k + j − PC)
]

where e(k) is the vector of control errors at time k. The performance
measure γhist(k) at sampling time k is

γhist(k) =
Jhist

Jach(k)
(9.29)

Since γhist is a random variable, SPM tools can be used to detect statistical-
ly significant changes. γhist(k) is highly autocorrelated. Use of traditional
SPM charts for autocorrelated variables may yield erroneous results. An
alternative SPM method for autocorrelated data is based on the develop-
ment of a time series model, generation of the residuals between the values
predicted by the model and the measured values, and monitoring of the
residuals [1]. The residuals should be approximately normally and indepen-
dently distributed with zero-mean and constant-variance if the time series
model provides an accurate description of process behavior. Therefore, pop-
ular univariate SPM charts (such as x-chart, CUSUM, and EWMA charts)
are applicable to the residuals. Residuals-based SPM is used to monitor
γhist(k). An AR model is used for representing γhist(k):

A(q−1)γhist(k) = ε(k) (9.30)

where A(q−1) is monic polynomial with ai, i = 1, · · · , na and ε(k) is a
zero-mean, uncorrelated, Gaussian noise signal. Equation 9.30 is used to
estimate the value of γ̂hist(t) at time k, γhist(k). The residuals are

eγ(k) = γhist(k) − γ̂hist(k) (9.31)

The AR model and the variance of eγ(k) can be estimated from an ‘in-
control’ data set using software such as Matlab� System Identification
Toolbox [191]. A standard x-chart is designed using control limits at ±3
standard deviations (3σ limits) to monitor the residuals eγ(k) and conse-
quently γhist(t).
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Table 9.2. Groups of root cause problems.

Group I Group II
(a) change in controller specifications change in process dynamics
(b) change in measured disturbances change in unmeasured disturbance

(b) input saturation change in noise covariance

The model-based performance measure γdes is used in the proposed
method as model-based performance measure after modifying the cost func-
tions for on-line monitoring. Jdes(k) and Jach(k) are computed using Eq.
9.28 with e∗ and e, respectively.

γdes(k) =
Jdes(k)
Jach(k)

(9.32)

Statistical monitoring similar to that for γhist(k) is developed to detect
significant changes over time.

Diagnosis
γdes is monitored for diagnosing the causes of performance degradation.

Some root causes affect the design case controller while others do not. For
instance, increases in unmeasured disturbances, actuator faults, or increase
in the model mismatch do not influence the design case performance. Ac-
cordingly, Jdes remains constant while Jach increases, reducing the model-
based performance measure. Root cause problems such as input saturation
or increase in measured disturbance, on the other hand, affect the design
case performance as well. This leads to an approximately constant value of
the model-based performance measure, if the effect is quantitatively equal
(which happens for a good process model). The three techniques intro-
duced can be classified according to the type of controller and the indexes
used for CPA/CPM and diagnosis activities (Table 9.1).

When degradation in performance is indicated, diagnosis can be per-
formed by inspecting γdes(k). Assuming that only one source cause occurs,
if γdes(k) has not changed significantly, the reason for the overall degrada-
tion does affect both the design and achieved performance cost function to
the same extent. Thus, the cause belongs to Group I (Table 9.2). If the
model-based performance measure shows a degradation as well, the cause
belongs to group II. If multiple causes can occur simultaneously, then the
diagnosis logic becomes more complex.

Subgroups are defined to further distinguish between the root cause
problems in Group I. All changes in the controller (e.g., tuning parame-
ters, estimator, constraints) are assumed to be performed manually, since
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the action taken is known and the root cause of the effect does not need
to be identified by diagnosis tools (Subgroup Ia). Changes in measured
disturbances and input saturation make up subgroup Ib. Additional in-
formation is needed to distinguish between them. Input saturation can be
determined by looking at manipulated variable trajectories. A saturation
effect in a manipulated variable indicates input saturation as underlying
root cause and rules out the increase in measured disturbances.

Discrimination between performance degradation due to increases in
unmeasured disturbances and changes in process parameters is a question
of model validation. Consider an idealized case where disturbances can be
regarded as white noise. If the model is perfect, the innovation sequence is
white noise as well [2]. Imperfect models change the color of the innovation
sequence that can be detected using various methods.

Figure 9.1. Diagnosis logistics.

If it is assumed that changes in controller specifications are done man-
ually and do not need to be identified by the diagnosis tools, the sequence
of detection and diagnosis follows the path in Figure 9.1. Performance is
monitored over time using the performance measure based on γhist. Once
a degradation is detected, γdes is used to distinguish between root cause
problems of Group I and Group II. Information about the trend of ma-
nipulated variables is used to distinguish between problems resulting from
constraints and increases in measured disturbances.
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Example A case study illustrates the application of CPM and diagnosis
to MPC of a forced circulation evaporator using a detailed model [264].
First, a historical benchmark is found. Then, performance monitoring and
diagnosis are performed simultaneously for two different cases differing by
the use of linear and nonlinear plant models. The fundamental assump-
tion of a known plant and disturbance model while assessing the initial
performance is perfectly valid for the first case study and questionable for
the second. The impact of linearity assumption and other effects resulting
from nonlinearity are shown and discussed [264]. A forced circulation evap-
orator model is used. It is a linear state-space model in deviation variables
obtained from linearization around normal operating conditions [215]. The
system has three controlled variables (separator level (L2), product com-
position (X2), and operating pressure (P2)); three manipulated variables
(product flow rate (F2), steam pressure (P100), and cooling water flow rate
(F200)); and five disturbances (circulation flow rate (F3), feed flow rate (F1),
feed composition (X1), feed temperature (T1), and cooling water inlet tem-
perature (T200)). Two cases are summarized to display the performance of
the integrated CPM and diagnosis method presented. Details are provided
elsewhere [264].

Decrease of the Saturation Limit. The saturation limit of P100 is set to
zero at k = 300 min. γhist indicates a performance degradation (Figure
9.2). A linear plant simulation model and a linear MPC model are used.
Because γdes does not decrease, the source cause of the degradation belongs
to Group I. To distinguish between an increase in measured disturbances,
an increase in the measurement noise and an input saturation as the source
cause, the trend of the manipulated variables is observed (Figure 9.3). The
effect of input saturation can be seen clearly between k = 300 min and
k = 350 min. After k = 350 min the MPC being aware of this limit tries
to stay at the operation point by rearranging the use of the manipulated
variables. However, the input saturation is correctly identified to be the
root cause problem.

Real-time Diagnosis with G2� – Increase in Measured Disturbance. G2� is
a commercial knowledge-based system (KBS) development tool for build-
ing real-time KBS [88]. It can be used for developing supervisory KBS for
building process models, monitoring and control systems, fault diagnosis
algorithms, on-line operator interaction, and integration of these functions.
Expert knowledge and reasoning can be represented by rules that can make
inferences based on process data. Procedures containing a certain sequence
of actions can be programmed, for instance, for automating checks on d-
ifferent variables. Communication between G2� and external systems is
handled by the G2� Standard Interface (GSI) that provides the necessary
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Figure 9.2. Effect of input saturation on γhist.

Figure 9.3. Effect of input saturation on the manipulated variables.
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Figure 9.4. Snapshot of G2� screen – Increase in the measured disturbance.

network protocol information for communication between G2� and exter-
nal functions written in C. In this work, software modules developed in
Matlab� are converted to C with the Matlab� C compiler and linked to
G2� [289]. The increase in measured disturbance is implemented on F3 at
k = 300 min. The disturbance data sequence of this variable is increased
by a factor 4. The increase in the measured disturbance causes performance
degradation as indicated by γhist. Since γdes does not decrease, the actual
cause of degradation belongs to Group I. Trends in manipulated variables
are observed to distinguish between the possible subgroups. A performance
degradation due to constraints is ruled out since the manipulated variables
are not saturated. The diagnosis logistics (Figure 9.1) are implemented as
a rule base in G2� to support the operator. Figure 9.4 shows the G2�

screens with the message box, the manipulated variable trajectories,and
the CPM measures. The result of inferencing by G2� and the diagnostic
results are displayed in the message box.

9.4 Summary

Controller performance monitoring (CPM) ensures proper performance of
the control systems for safe and profitable operation of a process and man-
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ufacture of products within specifications. CPM and control system di-
agnosis activities are a subset of the plantwide monitoring and diagnosis
activities and they rely on the interpretation of process data. A compre-
hensive approach for assessing the effectiveness of control systems includes
the determination of control system capability, development of statistics
for monitoring its performance, and development of methods for diagnosing
the underlying causes of changes in performance. Many new techniques and
tools have been developed in recent years to enhance CPM. This chapter
focused on CPM of single-loop, multivariable and model predictive con-
trol (MPC) systems. Diagnosis was limited to distinguishing between root
cause problems associated with an MPC system and problems that are not
caused by the controller. Monitoring of MPC performance and a case study
based on MPC of an evaporator model and a supervisory knowledge-based
system (KBS) is presented to illustrate the methodology. The extension of
CPM to web and sheet processes is discussed in Section 10.3.
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Web and Sheet Processes

Sheet forming processes measure performance data mostly through scan-
ning sensors that traverse in the cross-direction (CD) as the sheet is formed
in the machine direction (MD), thus creating a zigzag pattern of discrete
data path. However, there are some rare applications that have the ca-
pability for full sheet measurement at each sampling time. Figure 10.1
shows the difference between the two and the resulting spatio-temporal
form of process data. Representing the scanner generated data as a two-
dimensional full matrix Y(n, k) is a practical approximation that greatly
simplifies the necessary calculations for process performance tracking and
evaluation. Nature of the process data Y(n, k) may be the thickness of
the sheet, its moisture, basis weight (mass/area), brightness or any other
pertinent measure of process performance or product value. The process
itself may involve manufacturing of metal sheets, glass, plastic film, fabrics
or pulp and paper sheets.

A unique characteristic of the process data for sheet forming processes is
the presence of two independent variables, space n and time k. In most cases
the target of the process is to maintain the uniformity of Y for all n and
k. For some applications a predefined constant CD profile ytarget

CD (n) may
be the desired target. Therefore, the objective is to analyze the deviation
of Y from its target and extract meaningful information from the results
to be used for process control or performance evaluation and diagnostics.
While the space variable n is well defined between the front and back ends
of the cross-direction the time variable k is flexible in terms of its origin
and end. Most sheet forming processes are continuous and thus k may be
treated as an indefinite discrete variable. At the same time, for practical
reasons, all sheets are cut to finite lengths for packaging and transportation
or for post-processing. Therefore, the time index k may also be treated as
a finite length temporal variable.

251
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Figure 10.1. Sheet process data measurement.

10.1 Traditional Data Analysis

In terms of orientation to appreciate the traditional basics of sheet forming
process data it is useful to briefly review the conventional steps of data
analysis for a univariate system. Consider the set of hypothetical data
shown in Figure 10.2. There are 40 data points with X as the independent
variable and Y as the dependent variable. The means are Xm and Ym re-
spectively. Clearly there is a trend in Y as a function of X . Let the function
(Y −Ym) = f(X−Xm) represent the trend in an optimal manner and be the
correlation model for the segment of observed data. The residual of data
when compared to the model is a measure of scatter or variability around
the dominant trend. Close observation of the residual indicates that the
variability in the range X < Xm is smaller than the variability in the range
X > Xm. This simple yet useful approach has three basic components: (1)
establishing and removing the data means, (2) establishing the correlated
trend in dependent variable, (3) analyzing the scatter around the correla-
tion model as a function of the independent variable. Complete evaluation
of data and quantifying its pertinence for process improvement may require
further effort which may be extensive depending on the complexity of the
problem. However, in general these are the three basic steps for initial
analysis of process data that directly apply to sheet forming processes as
well.

10.1.1 MD/CD Decomposition

As an example consider the basis weight measurement in paper manufac-
turing where the uniformity of sheet density, tracked as gm/m2, must be
closely maintained at a fixed target. Figure 10.3 is a three-dimensional rep-
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Figure 10.2. General approach to univariate function analysis.

resentation of a typical data set for a roll of sheet showing measurements
at 54 cross-direction (CD) locations for 110 machine-direction (MD) scans,
N = 54 and K = 110. Typically total CD distance may be about 5 m and
the MD length may correspond to approximately 30min of production. CD
data length increments usually match the size of CD adjustment actuators
while each data is the averaged scanner information for the corresponding
distance that is also known as the data lane. For a typical application
additional sheet properties like thickness and moisture are measured simul-
taneously. For the basis weight measurements in this example there are a
total of 54×110 = 5940 data points represented in matrix form Y(n, k). For
practical reasons, the original numbers of the data are turned into normal-
ized deviation variables by subtracting the overall mean and then dividing
by the standard deviation. For a typical paper roll the overall mean is
very close to the target basis weight, so there is not much information loss
by the use of deviation variables. However, the product value for the roll
is easily degraded by the two-dimensional variability of Y(n, k) regardless
of how close the target is satisfied by the overall average. Figure 10.4 is
the histogram of the total data set showing typical similarity to a normal
distribution. It is important to recognize that the histogram captures only
the collective variability of the individual data points without any regard
to trends and correlations that might exist with respect to specific (n, k)
locations on the sheet.

MD/CD decomposition separates the two-dimensional means one at a
time from the data matrix Y(n, k) that has N rows and K columns. First,
the averages of all spatial locations for each scan are computed to get the
MD trend as yMD(k). Then, the CD profile is computed by subtract-
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Figure 10.3. Normalized basis weight data for a roll of paper sheet.

Figure 10.4. Histogram of normalized basis weight data with comparison
to normal distribution.

ing yMD(k) from each element of the corresponding column of Y(n, k)
followed with row-by-row averaging to get yCD(n). The MD trend is an
N -dimensional row vector while the CD profile is a K-dimensional column
vector. It is useful to construct corresponding set of matrices YMD(n, k)
and YCD(n, k) where the vectors yMD(k) and yCD(n) are repeated to fill
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in the NxK dimensions. Data residual is then defined as

YR(n, k) = Y(n, k) − YMD(n, k) − YCD(n, k) (10.1)

or simply YR = Y − YMD − YCD.

Figure 10.5. Vector and matrix forms of MD trend.

Figure 10.6. Vector and matrix forms of CD profile.

Both vector and matrix forms of MD trend and CD profiles are shown in
Figures 10.5 and 10.6. MD/CD decomposition removes the most dominant
trends in data through simple averaging along each dimension. MD trend-
ing is uniquely defined as it applies exclusively to each time increment. On
the other hand CD profile calculation is specifically dependent on the time
‘window’ or the number of scans used for averaging, in this case K = 110.
Figure 10.7 shows that the remainder YR is more random than the original
data Y as should be expected.

MD/CD decomposition is a sequence of two practically independent av-
eraging or zero-order filtering operations with resulting variances that are
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Figure 10.7. Residual of data after removing MD trend and CD profile.

essentially additive, σ2
Y = σ2

YMD
+ σ2

YCD
+ σ2

YR
. For process monitoring all

three variance components σ2
YMD

, σ2
YCD

and σ2
YR

or equivalently the cor-
responding standard deviations are tracked. Reduction in variability may
come from improvements in: (a) process equipment, (b) operating practices
including the elimination of disturbances, and (c) automatic control. Ac-
cording to the normalized variances as displayed in the Figures 10.5–10.7
major contributors to process variability for this example are YCD and
YR implying the presence of effective basis weight automatic control for
yMD(k) but no active feedback correction for CD profile.

10.1.2 Time Dependent Structure of Profile Data

Analysis of full sheet data is useful for process performance evaluations
and product value calculations. For feedback control or any other on-line
application, it is necessary to continuously convert scanner data into a
useful form. Consider the data vector Y(:, k) for scan number k. It is
separated into its MD and CD components as Y(:, k) = yMD(k)+YCD(:, k)
where yMD(k) is the mean of Y(:, k) as a scalar and YCD(:, k) is the
instantaneous CD profile vector. MD and CD controllers correspondingly
use these calculated measurements as feedback data for discrete time k.
Univariate MD controllers are traditional in nature with only measurement
delay as a potential design concern. On the other hand, CD controllers are
multivariate in form and must address the challenges of controller design
for large dimensional correlated systems.

Control systems ignore short term variabilities through appropriately
designed filters. Effective length of the filter window determines how quickly
significant variations are actually detected. Defining a CD profile vector
yCD(n) for a complete roll is perhaps the simplest form of a large window
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Figure 10.8. Comparison of full roll CD profiles. Light line is a repeat of
Fig. 10.6 and heavy line is for another roll produced about 24 hours earlier.

or long time-span filter. Although yCD(n) effectively and very efficiently
captures the gross nature of CD variability it does not imply that the same
profile vector is a quasi steady-state property of the sheet. Depending on
process conditions and raw material variations CD profile usually changes
with time. For the example discussed in Section 10.1.1, a comparison of
its CD profiles with a roll manufactured approximately 24 hours earlier is
shown in Figure 10.8. In contrast, an example of typical changes in the CD
profile within the span of the same roll can be tracked through consecutive
four shorter-window averages sequentially displayed in Figure 10.9. The
110 scans, shown as a single roll average in Figure 10.6, are divided into
approximately four equal segments to capture and demonstrate the short-
term time dependence of the CD profile.

10.2 Orthogonal Decomposition of Profile
Data

In Section 10.1, it was stated that the basic steps of data evaluation are (a)
removing of mean, (b) correlating the dominant trend, and (c) analyzing
the residual scatter around the correlation. For the two-dimensional sheet
process data MD/CD decomposition is essentially the implementation of
step (a) in both the spatial and temporal modes. The resulting data com-
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Figure 10.9. Sequence of changes in short-term CD profile through the
length of a roll.

ponents yMD, yCD and YR maintain significant information about process
performance and improvement potentials, which can be evaluated through
identification and analysis of dominant trends as suggested in step (b).

Process data can be correlated or de-trended using a variety of functions.
A computationally reliable approach is the use of orthogonal functions.
Least squares fit of data with a simple reduced order function can pro-
vide valuable information about process performance in terms of dominant
contributions to variability.

Let y = [y1; y2; ...; yN ] = [y1...yN ]T be an N -dimensional mean-centered
observation vector where ȳ = 0. Let z1...zM be M orthogonal basis
functions where M < N , each basis vector zm = [zm,1...zm,N ]T is N -
dimensional, and zT

i zj = 0 for i �= j. Define the N × M dimensional
bases matrix Φ = [z1z2...zM ] through which y can be approximated as
y ≈ Φc, where c = [c1...cM ]T is the score vector measuring the projection
magnitudes of y onto the lower dimensional bases z1...zM . Least squares
approximation of c is obtained by c = Ψy where Ψ = (ΦT Φ)−1ΦT is
called the transition matrix . Now y can be expressed as y = yM + yR
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where yM = Φc is the M -dimensional low-order approximation of y and
yR is the residual. Due to the orthogonal nature of the decomposition yM

and yR are independent and therefore σ2
y = σ2

yM
+ σ2

yR
.

Separating measured data vectors or matrices into independent lower
order approximations and residual terms is useful both in process perfor-
mance evaluation, as variance contributions can be clearly separated, and
in feedback process control, as the number of decision variables can be
significantly reduced while the adverse effects of autocorrelation are elimi-
nated. In the following two sections orthogonal decomposition approaches
using Gram polynomials and principal components analysis (PCA) will be
introduced.

10.2.1 Gram Polynomials

Gram polynomials are orthogonal and defined uniquely for discrete data at
equidistant positions much like the spatial data collected in sheet forming
processes. For N data positions, discrete-point scalar components of the
mth-order polynomial vector pm = [pm,1...pm,n...pm,N ]T are defined as

pm,n =
m∑

j=0

(−1)j(m+ j)2j

(j!)2
( n
N

)j

(10.2)

p0,n = 1

p1,n = 1 − 2(
n− 1
N − 1

)

pm,n =
(N − 1)(2m− 1)

m(N −m)

[
1 − 2(n− 1)

N − 1

]
p(m−1),n

− (m− 1)(N − 1 +m)
m(N −m)

p(m−2),n (10.3)

Recursive formulations with respect to both polynomial order and data
position are given in Eq. 10.3. Zero-order is only used to account for
the data mean if needed. For a mean-centered data vector, the effective
polynomials are p1 through pN−1. First five of these are plotted in Figure
10.10 for N = 50. Note that the polynomials are explicitly defined through
the data length.

Example Consider the CD profile examined in Figure 10.6. The mea-
surement vector yCD has N = 54 data positions with the correspond-
ing Gram polynomials p1 through p53 that form Φ = [p1p2...p53] and
Ψ = (ΦTΦ)−1ΦT as defined earlier. Computationally Ψ can be easily
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Figure 10.10. Gram polynomials as basis functions, first-order through
fifth-order.

constructed row-by-row owing to the simplification arising from orthogo-
nality, where the mth row is Ψm = pT

m/(pT
mpm), which is the normal-

ized form of the corresponding polynomial. Projection magnitudes of yCD

on the Gram polynomial basis vectors are c = ΨyCD. Although all 53
components of c are needed to duplicate yCD only a few of the low-order
coefficients may be sufficient to capture the dominant trends in the mean
profile. Consider the full representation as yCD = Φc and its partitioned
form yCD = Φ[cM ; c(N−1−M)] leading to yCD = ΦMcM +ΦRcR where the
subscript M is used to designate the selection of the first M polynomial
orders and R to designate the residual. Dimensions of ΦM and cM are
N ×M and M × 1 respectively.

Orthogonal decomposition of the CD profile yCD = yCD(M) + yCD(R)

usingM = 4 and the corresponding variance contributions σ2
yCD

= σ2
yCD(M)

+
σ2

yCD(R)
reveal that approximately 50% of the variability can be attributed

to a low-frequency wave captured by 4th-order Gram polynomials. Fig-
ure 10.11 shows that the low-order approximation is in fact very effective
and that the residual profile is more balanced compared to the original CD
profile. Cumulative contributions of individual polynomial orders towards
total variance are plotted in Figure 10.12. For this particular case even the
first-order polynomial, which is simply a straight line, accounts for more
than 20% of the variance. As it is visible in Figure 10.11, the CD profile
has a distinct slant increasing from left (front of machine) to right (back),
which is captured by p1. Also plotted in Figure 10.12 are the cumulative
power spectra of yCD and yCD(R) as functions of frequency based on in-
cremental measurement length. It is confirmed again that the fourth-order
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Gram polynomial approximation has essentially removed all low-frequency
variations from the profile.

Figure 10.11. Fourth-order Gram polynomial approximation of mean CD
profile and comparison with the residual measurement signal, yCD(R) =
yCD − yCD(M).

Figure 10.12. Accounting for total CD profile variability through Gram
polynomial approximations and the cumulative power spectra for yCD and
yCD(R).

A reasonable observation after these results may be that an effective CD
controller should be able to reduce CD variability by at least a factor of 2.
Another way of stating the same observation from a performance monitor-
ing point of view would be that as long as a CD controller is functioning
properly both plots in Figure 10.12 should indicate insignificant contribu-
tions from Gram polynomials up to order 4 or 5, which would also mean
essentially similar power spectra for yCD and yCD(R).
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10.2.2 Principal Components Analysis

Principal components analysis (PCA) (see Section 3.1) provides a technique
to define orthogonal basis functions that are directly constructed from pro-
cess data, unlike Gram polynomials which are dependent on the data length
only. PCA is also uniquely suitable for extracting the dominant features
of two-dimensional data like the residual profile obtained after MD/CD
decomposition, YR.

Let Y be N ×K dimensional data (N < K) with mean-centered rows
and columns as it is for YR. Although the only requirement for PCA ap-
plication is mean-centering of columns, having the rows mean-centered as
well due to CD profile removal provides better scaling to remaining data.
Define a covariance or scatter matrix Z = YYT and let U = [u1u2...uN ]
with ui = [ui,1ui,2...ui,N ]T be the orthonormal eigenvectors of Z such that
ZU = UΛ. As Z is symmetric and UT U = UUT = IN it follows that
Z = UΛUT . Both U and Λ are easily computed through singular value
decomposition (SVD). Λ is the diagonal eigenvalue matrix containing ele-
ments λ1...λN that are sequenced in descending order λ1 ≥ λ2 ≥ ... ≥ λN .
The basis matrix U is optimal in the sense that the largest contribution
to data variance is captured through the first eigenvector, and of the resid-
ual the largest contribution to variance is then captured by the second
eigenvector, and so on. Projection of original data Y onto the new basis
vectors is calculated by A = UT Y and equivalently the data are repre-
sented through the eigenvector bases as Y = UA. Corresponding to their
directional roles N ×N matrix U and N ×K matrix A are referred to as
spatial modes and temporal scores respectively. Both A and the eigenval-
ue matrix Λ provide a measure of data variability along each eigenvector,
AAT = UT YYT U = UT ZU = Λ. For eigenvector ui the corresponding
variance contribution of data is σ2

i = (aiaT
i )/(K − 1) where (aiaT

i ) = λi

and ai is the ith row-vector of A. Similar to λi variance contributions are
also in descending order σ2

1 ≥ σ2
2 ≥ ... ≥ σ2

N .
Dominant correlations of data are usually captured by a small number

of initial eigenvectors. A simple orthogonal decomposition is accomplished
by partitioning U = [UMUR] and A = [AM ;AR] where M designates the
number of initial dominant modes to be used for approximation while R
stands for the remaining (N −M) modes or the residual. Data matrix be-
comes Y = UMAM +URAR = YM +YR. For a successful approximation,
YM captures significant variability trends and YR simply represents resid-
ual random noise. Transformation in the form Y ≈ YM uses M(N + K)
data entries and provides [1 −M(N +K)/(NK)]100 % data compression.

For the paper machine data considered earlier, the PCA analysis of the
residual matrix YR generates eigenvalues that are plotted in Figure 10.13.
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Figure 10.13. Normalized eigenvalues of YR and the cumulative contribu-
tions of modes towards total variance.

For practical purposes, the eigenvalues are normalized with respect to λ1.
Last eigenvalue is zero as the rank of the scatter matrix Z is N − 1 due to
mean centering of YR rows with CD profile removal. Variance contributions
of each mode associated with the eigenvalues are also plotted. There are
various methods of choosing the number of modes to be used for PCA
approximation. One common method is to select the point of transition
where eigenvalues start decreasing gradually after the initial faster drop.
For this case it happens at approximately M = 4. The choice of M is not
absolute as M = 6 would have provided similar results; however, smaller M
is always preferred for parsimony unless there is a practical reason to choose
a larger M . Figure 10.14 shows a few examples of the eigenvectors and the
temporal scores for YR. First two eigenvectors are capturing dominant
slant and parabolic wave behaviors while one of the latter eigenvectors
(45th) is practically high frequency noise. Eigenvectors are constructed to
have normalized magnitude while their contributions for YR reconstruction
for each temporal position are captured through associated score vectors.
Correspondingly, magnitudes of first two scores are much higher than the
45th. For process control and monitoring, the goal is to have all eigenvectors
and scores resemble the high-frequency nature of the 45th mode whether
the PCA analysis is done on Y or YR.

PCA approximation of YR with M = 4 gives YR = YRM + YRR

where the last matrix is the residual profile recreated through N − M
modes. Combining YRM with the averaging results of MD/CD decomposi-
tion generates an overall filtered approximation for the full sheet profile as
Y = YMD +YCD+YRM +YRR = YM +YRR. Last two profiles are shown
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Figure 10.14. First two and the 45th eigenvectors and scores of YR.

in Figure 10.15. YRR retains only high frequency random contributions in
Y with S2

RR = 0.24 while the filtered profile retains the rest S2
M = 0.76.

Process control and monitoring target would be to minimize overall process
variability with the majority of variance captured in YRR.

An alternative orthogonal decomposition of two-dimensional profile data
is denoising through wavelet transforms as discussed in Section 6.2.2. To
demonstrate, hard-thresholding with the wavelet function db8, as defined
in Eq. 6.22, is used on the profile YR to approximate the full profile as
YW ≈ YMD + YCD + YRW . Figure 10.16 shows the results of denoising
carried out using two levels of decomposition. Corresponding variances are
S2

W1 = 0.78 and S2
W2 = 0.71 compared to the PCA result at S2

M = 0.76.

10.2.3 Flatness of Scanner Data

Performance objective for sheet forming processes is to maintain uniformi-
ty or flatness in (Y − Ytarget

CD ). The target matrix represents ytarget
CD for

those applications where the CD set-point is not uniform, like in metal and
plastic sheets that may have a ‘frown’ thickness target almost parabolic
gradually increasing front and back ends towards the middle with relative-
ly uniform mid section. Given the full matrix form of sheet data Y, in
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Figure 10.15. 4th-order PCA approximation of Y and the residual, Y =
YM + YRR.

Figure 10.16. Filtered approximation of Y through wavelet denoising using
hard-thresholding with one level of decomposition (left) and two levels of
decomposition.

deviation form if the CD target is not uniform, MD/CD decomposition
Y = YMD + YCD + YR clearly indicates the importance of maintaining
constant average behavior, yMD = 0 and yCD = 0, in keeping Y on target.
YR contains scan-by-scan residual of data that measures point-wise devia-
tions with respect to yMD trend and yCD profile. Each column vector of
YR has deviation data that originate from local variabilities that are either
random or structured in MD and/or CD directions. Due to the traversing
nature of the scanner it is not possible to differentiate the origin of locally
structured variations between MD and CD. Regardless of this limitation it
is still informative to explore and quantify the local data trends in YR in
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order to expose the potential margin of improvement.

Figure 10.17. [Slope Parabola] as bases and the approximation of yCD.

First- and second-order Gram polynomials provide simple but powerful
orthogonal bases to test the ‘flatness’ of a profile measurement. For a profile
to be flat, it should at least have approximately 0 as the magnitudes for
its second-order Gram polynomial approximation. Consider the modified
version of the basis functions as shown in Figure 10.17 where p1 has a
positive slope for convenience (opposite of the formal definition of Gram
polynomials, see Eq. 10.3) and the basic scores are [1 1] at full scale.
Approximation of sheet data yCD indicates scores of [0.639 −0.236], which
are significant. Clearly, requiring only these scores to be 0 is not sufficient
for yCD uniformity, but it is a necessary first step.

Figure 10.18. PCA coordinates [u1u2] of the [Slope Parabola] projections
of YR (left plot) and YRM scans (columns) with M = 4.
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A similar transformation of all scan data residuals, i.e., columns of YR,
is accomplished by YR ≈ ΦB and B = ΨYR where Φ = [p1p2] and
Ψ = (ΦTΦ)−1ΦT . B is the 2×K scores matrix measuring the magnitudes
of slope and parabola bases for each residual scan contained in YR. A
phase-plane scatter plot of B provides a concise view of flatness in terms
of deviations from the target [0 0]. Further characteristics of the scores are
measured through a PCA decomposition by establishing equivalent dom-
inant eigenvectors U. Through SVD of Z = BBT , the two basis vectors
U = [u1u2] are identified with a measure of transformed scores A = UT B.
Figure 10.18 shows the scatter plots for YR and YRM (M = 4) with the
corresponding PCA alignments and the standard deviation contours as ref-
erence. Both YR and YRM are very similar indicating the effectiveness
of fourth-order PCA approximation. Significant scatter of the scores show
that the residual scans contain structured variabilities measurable as first-
and second-order polynomials indicating non-flat behavior. Further evi-
dence of YR PCA approximation accuracy is displayed in Figure 10.19
where the phase-plane plots for YRR = YR − YRM are shown for fourth-
and sixth-order approximations. Increasing the number of PCA modes from
4 to 6 adds marginal improvement for [Slope Parabola] projections. As a
process performance objective, Figure 10.18 plots for YR and YRM should
look similar to that of YRR in Figure 10.19. During continuous process
improvement a logical followup to the minimization of [p1p2] projection-
s is to do the same with [p3p4] projections, and so on until all dominant
trends are eliminated and YR columns contain only high-frequency random
signals.

Figure 10.19. PCA coordinates of the [Slope Parabola] projections of
YRR = YR − YRM with M = 4 (left plot) and M = 6.
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The quadrants of the phase-plane plots divide projection scores into d-
ifferent characteristic patterns. For example, quadrant 1 is uphill slope and
smiling parabola, quadrant 3 is downhill slope and frowning parabola, etc.
Figure 10.20 shows the larger scores of each quadrant with a distinct shade
of gray while allowing a central elliptic region to be the lower limit for shape
classification. Slope and parabola limits of the plot are arbitrarily assigned
for demonstration purposes. Creating five distinct classifications for scores
that can be used as a simple filter is a form of masking for additional da-
ta mining. Data points of scores representing K = 110 scans provide an
overall accounting of different shape trends while differentiating almost flat
from the significantly shaped scans. Another view of the same information
is also included in Figure 10.20 as a top view of the sheet with scan colors
reflecting the designated score shade. The lower magnitude scores within
the ellipsoid limit are neutral (white) in the sheet view, though they were
gray circles in the score plot for visibility. Sheet view of the scores con-
tain temporal information indicating frequency of changes between shape
patterns. For example, first and second halves of the sheet do not have
similar patterns. The switch from lighter to darker shades imply a change
in process disturbance behavior. Obviously, the performance objective is
to have all scores within the ellipsoid limit and a sheet view without any
stripes.

Figure 10.20. Masking of YRM [Slope Parabola] projections to highlight
significant deviations and characteristic patterns.

10.3 Controller Performance

Sheet forming processes have univariate MD and multivariate CD con-
trollers. Process dynamics for both are dominated by gain and time delay.
Most of the appreciable dynamics arise from the design of signal filters and
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feedback loop interactions. Performance evaluation of MD control basically
follows the same principals as any other univariate control system. On the
other hand CD control performance evaluation is more involved reflecting
the difficulties that arise in CD controller design due to high dimensionality
and strong correlations of decision variables. In the following sections, MD
and CD control performance evaluations will be discussed. The method-
ologies presented for CD controller design and performance evaluation are
both model-based and reflect recent developments in the technology.

10.3.1 MD Control Performance

MD control performance is evaluated directly from the closed-loop time se-
ries data yMD. Let deviation variable yt represent the measurement signal
at time t. One way of representing yt in terms of previous measurements is
through a moving average (MA) correlation model

y(k) = (1 +
∞∑

j=1

ψjq
−1)a(k) (10.4)

where a(k) is the noise signal, q−1 is the backward difference operator and
ψj is a model constant. For a process with an effective time delay of h
sampling intervals, Eq. 10.4 can be restated in two parts as

y(k) = (1 + ψ1q
−1 + ... + ψh−1q

−h+1)a(k) + (10.5)
+(ψh + ψh+1q

−1 + ...+ ψh+lq
−l + ...)a(k − h)

The second term is an h-step-ahead prediction of y(k) while the first term
is the prediction error. The best a controller can do is to eliminate the devi-
ation represented by the second term. Thus, theoretical minimum variance
is S2

min = (1+
∑h−1

j=1 ψ
2
j )S2

a, which notably requires the calculations of only
h− 1 constants ψj and variance of noise, traditionally done through Yule-
Walker equations using the autocorrelation coefficients of y. For process
control purposes, total variance of measurement signal is S2 = Sy

2 + ȳ2

where the contribution of offset from target is also accounted. Normalized
performance index (NPI) is η(h) = 1−S2

min/S
2, which measures the margin

of improvement opportunity for the controller.
NPI for sheet data yMD is calculated for a range of measurement de-

lays h = 1, . . . , 20 and plotted in Figure 10.21. In most sheet processes
where data are collected with a traversing scanner the measurement delay
is 2 or 3. The plot shows that there is essentially no significant margin
for additional MD control improvement. Confirmation of MD controller
performance can be seen in Figure 10.22 where the fifth-order auto regres-
sive (AR) model of yMD is compared to the residual noisy signal. The
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Figure 10.21. Normalized performance index NPI of yMD to measure MD
control improvement potential.

var

Figure 10.22. Fifth-order AR approximation of yMD and the residual ran-
dom signal.

latter captures more than 75% of the total variance. Autocorrelation co-
efficients of yMD as a function of measurement lag are plotted in Figure
10.23 with the corresponding 95% confidence limits. Within process time
delay of lag 3, the magnitude of the coefficients is reduced below desired
limit, again confirming the general satisfactory behavior of the controller.
However, in the same plot, it is also clear that there is a cycling trend of the
autocorrelation coefficients with increasing measurement lag that suggests
possibility of a tightly tuned controller. Similar plot for the AR(5) mod-
el shows the cycling nature of yMD signal correlations more clearly. For
a well-tuned and efficiently performing controller the autocorrelation bars
should be randomly varying within the confidence limits starting shortly
after the process measurement time lag.
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A
Figure 10.23. Autocorrelation coefficients of yMD and its AR(5) model
approximation.

10.3.2 Model-Based CD Control Performance

Realistic CD control performance calculation is not possible from direct
computations only using measured process output data. Although tradi-
tionally it has been suggested that minimum variance of CD profile should
be linked to the Nyquist frequency of measurement data length, such an ap-
proach results in a rather aggressive and unrealistic estimation of what can
actually be achieved through a well designed CD controller. The reason is
the high dimensionality and correlated interactions of the control elements
or the slice actuators that render ‘perfect’ CD control impossible. Instead,
for a given process, an ‘optimal’ CD control performance can be estimated
through simulation, which can be compared to actual process output data
to calculate improvement potential in terms of a normalized performance
index. The model-based simulation approach for control performance eval-
uation is a general method that can be used for other applications which
may require more accuracy beyond methods that use direct process output
data only.

NPI for the model-based approach is defined as η = 1 − S2
Y (opt)/S

2
Y

where S2
Y (opt) is calculated through simulation using process related data as

shown in Figure 10.24. There are two parts to the calculations, disturbance
estimation and achievable performance estimation. Process disturbance is
estimated from the difference between actual process output data Y and
model prediction from control decisions U. In turn, for the optimal per-
formance estimation, D(est) is used as the input of a closed-loop simulated
control system. The process model (Model A) in the simulated control sys-
tem is the same model used in disturbance estimation, while the optimal
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Figure 10.24. Block diagram of the general approach to calculate best
achievable (optimal) controller performance through simulation.

controller reference model (Model B) can be different and simpler. It is im-
portant to emphasize that disturbance estimation calculations use only the
output of the actual implemented control system and not the algorithmic
details. Thus, it is possible to carry out these calculation without requiring
proprietary information from control vendors. For CD control application,
the design of the simulated optimal controller does not imply aggressive be-
havior to achieve minimum variance. The control tuning should be realistic
resulting in mild actions to avoid picketing while satisfying all necessary
constraints imposed by slice physical characteristics.

The paper machine example first introduced in Section 10.1.1 reflects
open-loop in CD control data. Application of model-based CD control per-
formance calculations is simplified for this case as U = 0 while the results
establish an upper limit of improvement expectations from a potential CD
control implementation. Following the procedure summarized in the block
diagram of Figure 10.24 simulation calculations provide S2

Y (opt) = 0.0644
or η = 1 − 0.0644/0.625 ≈ 0.9. This is of course a theoretical target and
the practical reality may be in the range 0.5 to 0.7, which would still be a
significant improvement.

A unique advantage of the model-based CD control performance calcu-
lations is the two-dimensional information detail for improvement potential.
Figure 10.25 shows the process variability reduction for each measuremen-
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Figure 10.25. Improvement in profile data as a result of simulated CD
control implementation. Differences in absolute values of local data show
improvements as reductions in deviation magnitudes.

t location as a difference in deviation magnitudes (|YOptCont| − |YData|),
which is a negative number at any position where original process deviation
is reduced through simulated CD control implementation. Histogram of the
collective data has a negative mean (−0.286) confirming overall improve-
ment potential. Performance analysis is based on the computed results for
the last 96 scans as the first 14 were part of the controller filter initiation,
which is a natural artifact of working with a batch data file. However, the
procedure is equally valid for on-line applications where η and the corre-
sponding visualization diagrams can be tracked in real time in terms of
moving windows of preselected scan lengths.

Another informative visualization of the results is through a 2D plot
showing CD controller effects at each location as one of three categories: (a)
significant reduction in deviation magnitude from target (dark), (b) mild
reduction or amplification (gray), or (c) significant amplification (light).
For demonstration purposes the standard deviation limits [±(S = 0.735)]
of the (|YOptCont| − |YData|) data are used as color masking boundaries
and the results are shown in Figure 10.26. Corresponding color masking
of the fourth-order PCA approximation clearly shows that the significant
improvement areas are correlated and match the strong deviation locations
of the original profile shown in Figures 10.3 and 10.15. This is a confirma-
tion that the CD controller improvement potential calculations are based
on appropriately targeted variability reduction. A simple implementation
of the masked PCA approximation as an on-line monitoring metric is to
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Figure 10.26. CD control implementation improvements showing significant
differences of (|YOptCont| − |YData|) on a 2D plot by masking the results
into three categories: [< −0.735] = dark, [−0.735 to 0.375] = gray and
[> 0.735] = light. Similar masking of the fourth-order PCA approximation
(right) emphasizes correlated improvement locations.

expect the complete 2D plot to be in gray color within quality limits that
are reasonable for the specific product. Calculated dark colors, showing
significant improvement potential locations, that cover more than 2 − 5%
of the plot would flag reduction in CD control performance.

10.4 Summary

Process data for web and sheet forming processes are in two-dimensional
form describing spatio-temporal properties that are practically described
as cross direction (CD) and machine direction (MD) for space and time,
respectively. Mean data values at discrete CD increments describe average
property profile which needs to be kept on target for optimum product
value. Both process and controller performance analyses focus on degree
of data variability in MD and CD averages as well as the residual of data
after the removal of MD/CD trends. Extraction and quantitative analysis of
structured correlations in the two-dimensional residual profile can be done
using orthogonal decomposition methods like Gram polynomials, principal
components analysis (PCA), and wavelet denoising. These methods can
identify any significant process variability information hidden within the
otherwise seemingly random nature of residual data. Rigorous CD control
application of sheet forming processes has unique complications arising from
the strong correlations of its large scale and constrained decision variables.
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Accordingly, CD control performance evaluation requires a special method
of model-based approach to compute improvement potential based on a
realistically achievable target for that particular process.
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learning paradigms, 62

error back-propagation, 62
reinforcement, 62
supervised, 62
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limitations, 59
multi-layer feedforward net-
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recurrent networks, 62
sigmoid function, 61
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Autocorrelated data, 22
parameter change detection,
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Autocorrelation coefficient, 24
Autocovariance, 95
Average run length, 17, 19

Basis functions, 116, 119, 262
Beta distribution, 102
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Box’s equation, 104

Canonical variates, 43
multipass CVSS for sensor au-
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state-space (CVSS) models,
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Canonical variates analysis, 43, 89,
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Hankel matrix, 95

CD control performance, 271
Classification, 50

with Fisher’s discriminant anal-
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with HMMs, 144, 157
Cluster analysis, 48
Colinearity, 76
Confidence limits, 100
Contribution plots, 46, 100, 174
Control

linear quadratic Gaussian (LQG),
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model predictive, 238
Control charts, see Monitoring chart-
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Control limit

lower, 12
of R chart, 15
of S chart, 16
of x̄ chart, 15
on SPE, 108
selection of, 13
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upper, 12
warning, 13

Controller performance monitor-
ing, 231

closed-loop potential, 235
CPM using minimum variance

control, 233
diagnosis of MPC performance,
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for model predictive controller-

s, 238
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expected performance ap-

proach, 240
historical benchmark , 240
LQG-Benchmark, 239
model-based performance mea-
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frequency-domain method, 237
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minimum variance control, 237
multivariable control system-
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single-loop, 233
valve stiction, 233

Correlation function, 23
Correlogram, 24, 79
Cost

function for MPC, 238
of misclassification, 50

Cross-direction (CD), 251
Cross-validation, 40
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Cumulative sum (CUSUM) charts,

11, 18
one-sided, 18
two-sided, 19

Decomposition
orthogonal, 38, 262
singular value, 39, 262
spectral, 39

Denoising, 127, 150, 193, 264
Discriminant

angular, 186
combined, 183
Euclidian angle, 185
Fisher’s, 53
Mahalanobis angle, 185
residual, 182

Mahalanobis angle, 187
score, 182

linear, 53
quadratic, 52

Distance
Euclidian, 48
Mahalanobis, 49
statistical, 49

Distribution
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χ2, 103, 108
Beta, 102
chi-squared, 103
Lambda, 214
Normal, 8, 15, 34, 96, 102

Disturbances, 91, 219
discrimination from sensor fault-

s, 195, 220
multiple simultaneous, 189

overlap of means, 190
sensors, 195

Eigenvalues, 39, 262
Eigenvectors, 39, 262
Episode, 136
Estimated

covariance matrix, 108
of residuals, 104
of scores, 101

variance, 102
Exponentially weighted moving av-

erage (EWMA) charts, 11,
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Fault diagnosis, 100
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angle-based discriminants, 184
combined distance discrimi-

nant, 183
knowledge-based systems, 178
parity relations, 178
residual discriminant, 182
robust, 191
score discriminant, 182
sensor auditing, 203
sensor faults, 204
using contribution plots, 174
using discriminant analysis, 179
using PLS, 204
using statistical methods, 179
using SVM, 191

Faults
actuator, 111, 177
incipient, 203
masking of multiple faults, 190
multiple simultaneous faults,

189
sensor, 111, 170, 195, 223

Feature space, 66
Filter

low-pass, 128
median, 128, 130, 133, 193
robust, 133

Filtering, 127, 136
Final prediction error, 88
Fisher’s discriminant analysis, 53

kernel-based, 65
Flatness, 266
Forced circulation evaporator, 246
Fourier transform

definition, 116
discrete, 117
fast, 117
short-time, 117

Functional redundancy, 203
Fuzzification, 137
Fuzzy logic, 137

Gram polynomials, 259

Hidden Markov model (HMM), 138,
141, 149, 166

state variables, 168
states, 169
training, 143

Hidden Markov tree, 147, 157, 162
Hotelling’s statistic, see Monitor-

ing charts
HTST pasteurization, 109, 167, 177,

207
Hypothesis testing, 9, 12

Type I error, 10, 13, 14
Type II error, 10

Independent component analysis,
43

mixing matrix, 44
process monitoring, 112
separating matrix, 44
sphering matrix, 44

Inner product, 64
Input-output models, 83

k-means clustering, 49
Kernel, 64

Mercer’s theorem, 64
Kernel density estimation, 64, 198
Knowledge-based systems (KBS),

178, 204, 214, 238, 246
Kurtosis, 44

Linearization of nonlinear systems,
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Jacobian matrices, 93

Machine direction (MD), 251
Markov process, 139
Masking, 273
MD control performance, 269
MD/CD decomposition, 253
Mean, 8



308 INDEX

Minimum variance control, 233
Mode, 263
Model predictive control, 238

control horizon, 239
prediction horizon, 239
tuning parameters, 242

Model-based control performance,
271

Models
ARMA, 241
Box-Jenkins, 86
first principles, 73
input-output, 73

linear, 73
nonlinear, 74

linear discrete-time transfer
function, 234

nonlinear, 96
nonlinear ARMAX, 88
nonlinear ARX, 89
nonlinear PCA, 79
nonlinear PLS, 82
output error, 87
regression, 75
state-space, 89
subspace state-space, 93
time series, 83

Monitoring charts
cumulative sum (CUSUM), 18
exponentially weighted mov-

ing average (EWMA), 22
for CPM, 243
moving average (MA), 19
multivariate, 108
Q-statistic, 103
Hotelling’s T 2, 101
score biplots, 100

Shewhart, 11
assumptions of, 13
mean (x̄), 14, 15, 17
range (R), 12, 14
standard deviation, 12, 15

Moving average (MA) charts, 11,
19

estimation of S, 19
process level monitoring, 20
spread monitoring, 21

Multivariate statistical process mon-
itoring (MSMP), 99

SPE, 103
angle-based, 113
charts, 99
D, 103
Q, 103
SPE, 99, 103, 108, 109
T 2, 99, 102

PC scores biplots, 100
PC scores charts, 101
PLS scores biplots, 108
with state variables, 109

NIPALS, 42
Normal operation (NO), 37, 100,

180
Normalized performance index, 269

O-NLPCA, 194, 198
Orthogonal decomposition, 260
Orthogonality, 102
Outliers, 128

Parameter change detection, 27
Partial least squares, 42, 79

convergence, 81
inner relations, 81
multi-block, 113
multipass PLS for sensor au-

diting, 204
nonlinear iterative algorithm

(NIPALS), 80
nonlinear PLS, 82
outer relations, 80
residuals matrices, 80, 82
weight vectors, 80

PCA, 262
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pH process, 161
Phase-plane, 267
Population, 8
Prediction error, 83
Prediction error sum of squares

(PRESS), 40
Principal components analysis, 37

consensus, 113
dynamic, 113
hierarchical, 113
loadings, 39
moving-window, 113
multi-block, 113
multiscale, 112
scores, 263

matrix, 39
vector, 258, 263

Projection to latent structures, see
Partial least squares

Pseudo-random binary sequence,
111

Quadratic discrimination score, 56

Range, 8, 14
Reference set, 101
Regression

coefficients, 76
multivariable linear, 76
nonlinear, 78
nonlinear PCA, 79
partial least squares, 79
principal components, 78
ridge, 78
stepwise, 77
with lagged variables, 79

Residuals charts, 27
CUSUM charts, 31
for CPM, 243

Ridge parameter, 78
Run rules, 14

Sample, 8

Scatter
between-class, 53
matrix

between-class, 55
total, 55
within-class, 55

within-class, 53
Sensor

auditing, 203
reconstruction, 197, 200, 223

Sheet, 251
Singular value decomposition, 39,

262
Singular values, 95
Slurry-fed ceramic melter (SFCM),

224
Small process shifts, 18
Spectral decomposition, 39
Splines, 82
Spray drier, 30
Squared prediction error (SPE),

103, 107
Standard deviation, 8
State vector, 90
State-space models

discrete-time, 90
disturbance, 91
linear, 90
linearization of nonlinear mod-

els, 92
nonlinear, 96
state variables, 89
subspace, 93

Statistical discrimination, 50
Statistical process control (SPC),

2, 7
Subspace state-space models, 93,

100
canonical variate realization,

94, 108
future data window J , 94
Hankel matrix, 94
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N4SID, 94, 108
past data window K, 94

Sum of squares
cumulative prediction (CUM-

PRESS), 107
prediction (PRESS), 107

Support vector machines (SVM),
66, 191

k-class pattern recognition, 68
decision function, 68
dual solution, 67
proximal, 191

Temporal, 251, 257
Tennessee Eastman industrial chal-

lenge problem, 181, 184,
187

Time series models, 83
autoregressive (AR), 83
autoregressive integrated mov-

ing average (ARIMA), 83
autoregressive moving aver-

age with exogenous in-
puts (ARMAX), 87

autoregressive with exogenous
inputs (ARX), 87

exogenous variables, 83
moving average (MA), 83
NARMAX, 88
nonlinear ARX, 89

Transition matrix, 258
Triangular episodes, 135, 150
Type I error, 10
Type II error, 10

Variables
deviation, 92
predictor, 76
state, 89, 90

Variance inflation factor, 77
Variation

between samples, 12

within samples, 12
Vinyl acetate polymerization, 104,

214

Wavelet filter, 131
coefficient denoising, 133
hard-thresholding, 132, 264
soft-thresholding, 132

Wavelet transform, 264
continuous, 121
discrete, 124
Multiresolution Signal Decom-

position, 124
Wavelets, 145, 157

Coiflet, 121
Daubechies, 121
Haar, 120, 162
Morlet, 120
Symlet, 121

Web, 251
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