
more information – www.cambridge.org/9780521898331





GRAPH STRUCTURE AND
MONADIC SECOND-ORDER LOGIC

A Language-Theoretic Approach

The study of graph structure has advanced significantly in recent years: finite graphs
can now be described algebraically, enabling them to be constructed out of more basic
elements. One can obtain algebraic characterizations of tree-width and clique-width, two
graph complexity measures that are important for the construction of polynomial-time
graph algorithms. Separately the properties of graphs can be studied in a logical language
called monadic second-order logic. In this book, these two features of graph structure are
brought together for the first time in a presentation that unifies and synthesizes research
over the last 25 years. The authors not only provide a thorough description of the theory,
but also detail its applications, on the one hand to the construction of graph algorithms, and
on the other to the extension of formal language theory to finite graphs. This extension
combines algebraic notions (equational and recognizable sets) and logical ones (graph
transformations specified by logical formulas). Applications of these tools to languages
of words and terms are also presented.

Consequently the book will be of interest to graduate students and researchers in graph
theory, finite model theory, formal language theory and complexity theory.
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This series is devoted to significant topics or themes that have wide application in math-
ematics or mathematical science and for which a detailed development of the abstract
theory is less important than a thorough and concrete exploration of the implications and
applications.

Books in the Encyclopedia of Mathematics and Its Applications cover their subjects
comprehensively. Less important results may be summarized as exercises at the ends of
chapters. For technicalities, readers can be referred to the bibliography, which is expected
to be comprehensive. As a result, volumes are encyclopedic references or manageable
guides to major subjects.
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Foreword
by Maurice Nivat

The genesis of this great and beautiful book spans more than 20 years. It collects and
unifies many theoretical notions and results published by Bruno Courcelle and others
in a large number of articles.

The concept of a language to communicate with a computer, a machine or any
kind of device performing operations is at the heart of Computer Science, a field
that has truly thrived with the emergence of symbolic programming languages in the
1960s. Formalizing the algorithms that enable computers to calculate an intended
result, to control a machine or a robot, to search and find the relevant information in
response to a query, and even to imitate the human brain in actions such as measuring
risk and making decisions, is the main activity of computer scientists as well as of
ordinary computer users.

The languages designed for these tasks, which number by thousands, are defined
in the first place by syntactic rules that construct sets of words and to which are
then attached meanings. This understanding of a language was first conceived by
structural linguists, in particular Nicolaï Troubetskoï, Roman Jacobson and Noam
Chomsky, and has transformed Linguistics, the study of natural languages, by giving
it new directions. It has also been extended to programming languages, which are
artificial languages, and to the Lambda Calculus, one of many languages devised by
logicians, among whom we can cite Kurt Gödel, Alonzo Church and Alan Turing,
who aspired to standardize mathematical notation and to mechanize proofs. This same
idea has inspired all research on computation theory and programming. Thanks to the
results of this research, planes can fly with continuously monitored flight parameters,
providing us with unprecedented reliability: this is so because millions of lines of
code have been formally proved to be correct.

Words are strings of symbols taken from finite alphabets. They constitute the basic
elements. They can represent all the information one might wish to capture, use,
process, disseminate or share in a world that is fast becoming more and more “digital,”
as Gérard Berry emphasized recently in his lectures at the Collège de France.

Most information, though represented always by words, is nevertheless structured
hierarchically and can thus be presented in a natural way as a tree or as a graph. Most
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of the countless electronic chips that make up computers but are also used in an
ever-growing number of other machines as well, from washing machines to nuclear
power plants, calculate on graphs: by connecting vertices, their edges can represent
virtually any relationship of subordination, analogy, neighborhood or causality. From
the early 1960s, the algorithms for graphs (and for trees, which are particular graphs)
have been developed swiftly, and most of the current computing applications are based
on these algorithms. Thousands of them have been designed by numerous researchers
and engineers, and they fuel a burgeoning literature.

It was around 1980 that Bruno Courcelle, a former student of the prestigious Ecole
Normale Supérieure (Rue d’Ulm in Paris), a logician by training, and a young but
already established researcher, tackled a seemingly impossible task: to build a theory
of tree languages that would classify all of these algorithms and present them in a
unified and rational way. Bruno Courcelle is not a “problem solver” who happened to
discover more-or-less elegant and clever answers to questions; he likes well-founded
and harmonious theories, and is always looking for unifying concepts. Armed with a
knowledge of logic and with a familiarity with Fundamental Computer Science, and
in particular with Formal Language Theory which he gained during his years as a
researcher at INRIA(Institut National de Recherche en Informatique etAutomatique)
while preparing his thesis, Bruno Courcelle got down to work with perseverance and
determination.

Upon his arrival at Bordeaux-1 University in 1979 (LaBRI, the Laboratoire Borde-
lais de Recherche en Informatique, was created in 1988), Bruno Courcelle found an
excellent work environment. The concept of attribute grammar, which is important in
compilation, provided the model that he has used to develop an algebraic approach to
graph grammars and a logical approach to the proof of properties of the graphs they
generate. The first published work he devoted to attribute grammars is the source of
the theory presented here, based on Logic and Universal Algebra.

The impact of his work surpassed all expectations, even taking into consideration
the remarkable qualities of method and rigor that characterize Bruno Courcelle. For
when the first elements of his theory began to spread among those who work on design-
ing and improving graph algorithms, these researchers realized that Bruno Courcelle
had provided a convenient formal framework in which many problems could be
solved. In particular, Bruno’s theory brought a logical lightening to the profound
works of Paul Seymour and his collaborators on graph minors. Other researchers
have been inspired by his theory to study new problems and invent new algorithms.
A daunting theory that was originally seen as arcane and abstract proved to be rich
and fertile. In 2004, Bruno Courcelle was awarded by INIST (an institute depending
on the Centre National pour la Recherche Scientifique) and the ISI-Web of Science
(Thomson-Reuters) the prize of the “most cited researcher in Computer Science in
France.”

I am not going to analyze his work further; in any case Chapter 1 is a long overview
that is perfectly readable, even by those who are well versed neither in algebra nor in
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mathematical logic. I would rather emphasize that the work of a computer scientist,
as of any scientist, can be very diverse. The quest for new results is one endeavor,
but bringing up to date the underlying structures, unifying concepts and simplifying
the presentation of results, is quite another. The rapid, sometimes frantic, growth of
publications in Computer Science has led most researchers to choose the former in
pursuit of better results and more efficient algorithms. It gives me great pleasure to
preface a work that is of the opposite nature: a long book produced by a comprehensive
study, which leads to a very interesting result: the formation of a theory that brings
order, that explains and simplifies a vast collection of results obtained by others and,
at the same time, that proposes methods, yields results and raises new questions.

While still a student I was very struck when I first read André Lichnérowicz’s
book on linear algebra. I had already taken courses in linear algebra which, I confess,
were not very helpful, and suddenly this book made everything clear. The mysterious
operations which we were taught to perform on the square tables called “determinants”
started making sense; the concepts of both vector space and the dimension of a vector
subspace finally allowed me to understand what it meant to agonize over a determinant
and, moreover, why this notion is important. Lichnérowicz’s book is a classic that has
enabled generations of students to learn linear algebra with ease, and it has become a
mathematical tool widely used by engineers and technicians who are not professional
mathematicians. I believe that this book will get the same reputation, quickly become
a classic and provide an easy access to the burgeoning world of graph algorithms and
its numerous applications throughout the sciences and beyond.

The comments above were written two years ago, when Bruno Courcelle’s book
was only 500 pages long, and I cannot change what I wrote then: it is a great and
beautiful book that is going to take its place very soon on the library shelves of all the
departments of Computer Science around the world. But now the book is 700 pages
long and has two authors, Bruno and Joost Engelfriet. What happened is that Bruno
sent the previous version to Joost to read and suggest corrections and improvements.
Joost is a very old acquaintance of both Bruno and myself, and we have always known
him as one of the most knowledgeable researchers in the field of grammars, automata
and transducers on words and trees. And Joost had so many things to suggest that it
is another book that I present today: thicker, with new results and a number of proofs
that have been replaced by simpler and more elegant ones. Obviously the cooperation
between Bruno and Joost was a very fruitful one indeed.

Knowing Joost as I do, this is not a surprise: when I asked him to referee papers
submitted to the journal Theoretical Computer Science, in most cases Joost’s report
was longer and sometimes richer than the refereed article. His comments always led
to a major improvement of the original text. Clearly Bruno’s manuscript inspired
Joost. And we all have to be grateful to him for, as usual, his comments and the work
he did on the manuscript resulted in a major improvement and a sizable enlargement.

Thus today I am very happy to thank the two authors of this beautiful book, which I
consider to be a wonderful source of knowledge in Computer Science. It is a theoretical
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book, and for that reason some people may find it hard to read, but reading it is worth
the pain, because the formalism introduced and the methods presented have already
led to many new algorithms on graphs (as the number of citations of Bruno’s published
papers show) and they will lead to many others in the future. To anyone interested in
graph algorithms I can only recommend that they read this book first.

For indeed this book lies at the very heart of Computer Science, which is the
expressiveness of the languages used to represent and manipulate information and
information structures, graphs being among the most widely used information struc-
tures. Progress in the efficiency, liability and simplicity of algorithms comes mainly
from the use of better representations, better structures and a better understanding of
the different ways in which one can describe sets of data and express their properties.
This book provides a huge number of conceptual tools to design and study graph
algorithms that no one should ignore.

In thenameof theyoungbut fast-growing science that inFrenchwecall Informatics,
in the name of all future researchers in this field, I just say to Bruno and Joost: Thanks,
you have done a good job!



Introduction

This book contributes to several fields of Fundamental Computer Science. It extends
to finite graphs several central concepts and results of Formal Language Theory
and it establishes their relationship to results about Fixed-Parameter Tractability.
These developments and results have applications in Structural Graph Theory. They
make an essential use of logic for expressing graph problems in a formal way and
for specifying graph classes and graph transformations. We will start by giving the
historical background to these contributions.

Formal Language Theory

This theory has been developed with different motivations. Linguistics and compila-
tion have been among the first ones, around 1960. In view of the applications to these
fields, different types of grammars, automata and transducers have been defined to
specify formal languages, i.e., sets of words, and transformations of words called
transductions, in finitary ways. The formalization of the semantics of sequential and
parallel programming languages, that uses respectively program schemes and traces,1

the modeling of biological development and yet other applications have motivated the
study of new objects, in particular of sets of terms.2 These objects and their specifying
devices have since been investigated from a mathematical point of view, indepen-
dently of immediate applications. However, all these investigations have been guided
by three main types of questions: comparison of descriptive power, closure properties
(with effective constructions in case of positive answers) and decidability problems.

A context-free grammar generates words, hence specifies a formal language. How-
ever, each generated word has a derivation tree that represents its structure relative to
the considered grammar. Such a tree, which can also be viewed as a term, is usually

1 Traces are equivalence classes of words for congruences generated by commutations of letters; see
the book [*DiekRoz]. For program schemes, see [*Cou90a]. The list of references is divided into two
parts. The first part lists books, book chapters and survey articles: the * in, e.g., [*DiekRoz] indicates a
reference of this kind. The second part lists research articles and dissertations.

2 In Semantics, one is also interested in infinite words, traces and terms. In this book these will not be
considered.
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the support of further computation, typically a translation into a word of another lan-
guage (this is the case in linguistics and in compilation). Hence, even for its initial
applications, Formal Language Theory has had to deal with trees as well as with
words. In Semantics, terms are even more important than words. Thus, sets of terms,
usually called tree languages3, and transductions of terms, called tree transductions,
have become central notions in Formal Language Theory.

Together with context-free grammars, finite (also called finite-state) automata are
among the basic notions of Language Theory, in particular for their applications to
lexical analysis and pattern matching. They were also used early on (around 1960) for
building algorithms to check the validity of certain logical formulas, especially those
of monadic second-order logic, in certain relational structures. On the other hand,
monadic second-order logic can be used to specify and to classify sets of words and
terms.4 There are deep relationships between monadic second-order formulas and
finite automata that recognize words and terms (see [*Tho97a]). The fundamental
result is that every language that is specified by a sentence of monadic second-order
logic (expressing a property of words) can be recognized by a finite automaton, and
vice-versa. Moreover, the finite automaton can be constructed effectively from the
sentence. This means that monadic second-order logic can be viewed as a high-level
specification language that can be compiled into “machine code”: a finite automaton
that recognizes the words that satisfy the specification. The same result holds for
terms, with respect to finite automata on trees. As a consequence of this fundamental
relationship, monadic second-order logic is now one of the basic tools used in Formal
Language Theory and its applications, in addition to context-free grammars, finite
automata and finite transducers (which are finite automata with output).

The extension of the basic concepts of Formal Language Theory to graphs is a
natural step because graphs generalize trees. However, graphs have already been
present from the beginnings in several of its fields. In compilation, one uses attribute
grammars that are context-free grammars equipped with semantic rules ([*AhoLSU],
[*Cre]). These rules associate graphs (called dependency graphs) with derivation
trees. An attribute grammar is actually the paradigmatic example of a context-free
graph grammar (based on hyperedge replacement rewriting rules, [*DreKH]). In
the semantics of parallelism, traces are canonically represented by graphs, and an
important concern is to specify them by finite automata ([*DiekRoz]).

One starting point of the research presented in this book has been the develop-
ment of a robust theory of context-free graph grammars, of recognizability of sets of
graphs (to be short, an algebraic formulation of finite automata) and of graph trans-
ductions. In order to use the theory of context-free grammars and recognizability in
arbitrary algebras initiated by Mezei and Wright in [MezWri], we choose appropriate

3 In addition to being words, terms have canonical representations as labeled, rooted and ordered trees.
They are thus called “trees” but this terminology is inadequate.

4 This logical language and the related one called μ-calculus ([*ArnNiw]) are also convenient for
expressing properties of programs.
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(and natural) operations on graphs. Thus, graphs become the value of terms that are
built with these (infinitely many) operations. Roughly speaking, a context-free graph
grammar is a finite set of rules of the form A0→ f (A1, . . . ,An), n ≥ 0, where each
Ai is a nonterminal of the grammar and f is one of the chosen graph operations. The
rule means that if the graphs G1, . . . ,Gn are generated by respectively A1, . . . ,An, then
A0 can generate the graph f (G1, . . . ,Gn). Such grammars have useful applications
to Graph Theory: they can be used to describe many graph classes in uniform ways
and to prove by inductive arguments certain properties of their graphs. Still roughly
speaking, a set of graphs is recognizable if there is a finite automaton that recognizes
all the terms that evaluate to a graph in the set. Thus, the automaton does not work
directly on the given graph, but rather on any term that represents that graph. In a
similar way one can define graph transductions through the use of tree transducers.
Note that, to describe a set of graphs or a graph transduction in a finitary way, one can
necessarily use only finitely many graph operations. As we will see, that is a rather
severe, but natural restriction.

Our main goal will be to show that the fundamental use of monadic second-order
logic as a high-level specification language carries over to graphs, not only for the
specification of recognizable sets of graphs, but also for context-free sets of graphs
and for certain types of graph transductions. This gives a new dimension to the above-
mentioned fundamental result for words and terms, because the properties of graphs
that can be specified in monadic second-order logic are more varied and useful than
those of words and terms.

We will specify a set of graphs by a monadic second-order sentence, and a graph
transduction by a tuple of monadic second-order formulas that define an “interpreta-
tion” of the output graph in the input graph. From such a specification we will show
how one can construct a finite automaton on terms, or a tree transducer in the second
case, that is related to the specification as explained above. Note that the logic “acts”
directly on the graphs, whereas the automata and transducers work on the terms that
denote these graphs. Thus, monadic second-order logic can be viewed as playing the
role of “finite automata on graphs” and “finite transducers of graphs” in our Formal
Language Theory for Graphs.

Graph algorithms

The above-mentioned developments have important applications for the construction
of polynomial-time algorithms on graphs. In his 16th NP-completeness column, pub-
lished in 1985 [John], Johnson reviews a number of NP-complete graph problems that
become polynomial-time solvable if their inputs are restricted to particular classes of
graphs such as those of trees, of series-parallel graphs, of planar graphs to name a
few. For many of these classes, in particular for trees, almost trees (with parameter
k), partial k-trees, series-parallel graphs, outerplanar graphs and cographs, the
efficient algorithms take advantage of certain hierarchical structures of the input
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graphs. Because of these structures, these graphs are somehow close to trees.5 The
notion of a partial k-tree has emerged as a powerful one subsuming many other types
of “tree-like graphs.” (The cographs have a canonical hierarchical structure but they
are not included in the class of partial k-trees for any fixed k .) Many articles have
produced polynomial-time algorithms for NP-complete problems restricted to partial
k-trees. In 1994, Hedetniemi has compiled a list of 238 references [*Hed] on partial
k-trees and algorithms concerning them. The notion of a partial k-tree has also been
used with a different terminology (tree-width, tree-decomposition) by Robertson and
Seymour in their study of the structure of graph classes that exclude fixed graphs as
minors. They formulate this notion in terms of particular decompositions of graphs,
called tree-decompositions, that are at the basis of the construction of polynomial-
time algorithms. Each tree-decomposition has a width, and a graph is a partial k-tree
if and only if it has tree-width at most k , which means that it has a tree-decomposition
of width at most k .

The recent theory of Fixed-Parameter Tractability (the founding book by Downey
and Fellows [*DowFel] was published in 1999) now gives a conceptual framework to
most of these results. The notion of a fixed-parameter tractable algorithm specifies
how the multiplicative constant factor of the time-complexity of a polynomial-time
algorithm depends on certain parts of the data. It happens that for most of the
graph algorithms based on tree-decompositions, the exponent of the polynomial is 1:
these algorithms are linear-time in the size of the input graphs, with multiplicative
“constant” factors that depend exponentially (or more) on the widths of the input
tree-decompositions.

The explanation for this fact is one of the main goals of this book. We will show
that, for a certain natural choice of graph operations, tree-decompositions correspond
to terms, and tree-decompositions of width at most k correspond to terms that are built
from a finite subset of those operations. Ageneral algorithmic result that encompasses
many of the above-mentioned results, follows from the fundamental relationship
between monadic second-order logic and finite automata discussed before: if the
considered problem is specified by a monadic second-order sentence (and this is
the case for many NP-complete graph problems not using numerical values in their
inputs), then a finite automaton on the terms that encode the tree-decompositions of
width at most k can be constructed (for each k) to give the answer to the considered
question (for example, Is the given graph 3-colorable?) where the input graph is
given by a tree-decomposition (or a term encoding it). The linearity result follows
because finite automata can be implemented so as to work in linear time (and because
a tree-decomposition of a graph can be found in linear time).

5 These classes can actually be generated by certain context-free graph grammars and the corresponding
hierarchical structures of the generated graphs are represented by their derivation trees. There is thus
a close relationship between the algorithmic issues and the extensions of language theoretic concepts
discussed above.
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We will extend the case of tree-width bounded graphs (already discussed in
[*DowFel]) to another type of graph decompositions, based on another natural choice
of graph operations. This leads to the notion of clique-width of a graph. Clique-width
is more powerful than tree-width in the sense that every set of graphs of bounded
tree-width has bounded clique-width but not vice-versa, an example being the set of
cographs. On the other hand, in the above general result, the monadic second-order
sentences must be restricted to use quantifications on sets of vertices (instead of both
vertices and edges), so fewer graph problems can be specified. The algorithms are
cubic-time instead of linear-time because, for these graph operations, cubic time is
needed to find a term for a given graph.

The theory that will be exposed in the nine chapters of this book has arisen from
the confluence of the two main research directions presented above. The remainder
of this introduction will present in a more detailed way, but still informally, the main
concepts and results.

The role of logic

We will study and compare finitary descriptions of sets of finite graphs by using con-
cepts from Logic, Universal Algebra and Formal Language Theory. We first explain
the role of Logic. A graph6 can be considered as a logical structure (also called
relational structure) whose domain (also called its universe) consists of the vertices,
and that is equipped with a binary relation that represents adjacency. Graph proper-
ties can thus be expressed by logical formulas of different languages and classified
accordingly.

First-order formulas are rather weak in this respect because they can only express
local properties such as that a graph has maximum degree or diameter bounded by
a fixed integer. Most properties of interest in Graph Theory can be expressed by
second-order formulas: these formulas can use quantifications on relations of arbitrary
arity. Unfortunately, little can be obtained from the expression of a graph property
in second-order logic. Our favorite logical language will be its restriction called
monadic second-order logic. Its formulas are the second-order formulas that only use
quantifications on unary relations, i.e., on sets. They can express many useful graph
properties like connectivity, p-colorability (for fixed p) and minor inclusion, whence
planarity. Such properties are said to be monadic second-order expressible, and the
corresponding sets of graphs are monadic second-order definable.

These logical expressions have interesting algorithmic consequences as explained
above, but only for graphs that are somehow “tree-like” (because 3-colorability
is NP-complete and expressible by a monadic second-order sentence). Monadic
second-order sentences are also used in Formal Language Theory to specify lan-
guages, i.e., sets of words or terms. The fundamental result establishes that monadic
second-order sentences and finite automata have the same descriptive power. But

6 In order to simplify the discussion, we only discuss simple graphs, i.e., graphs without parallel edges.
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monadic second-order formulas are even more important for specifying sets of graphs
than for specifying languages because there is no convenient notion of graph automa-
ton. They replace finite automata, not only for specifying sets of graphs, but also
for specifying graph transformations. Such transformations, called monadic second-
order transductions, generalize the transductions of terms and words defined by finite
automata with output called finite transducers.7 Independently of these language the-
oretic applications, monadic second-order transductions are technically useful for
constructing monadic second-order formulas because the inverse image of a monadic
second-order definable set of relational structures under a monadic second-order
transduction is monadic second-order definable.

However, monadic second-order logic alone yields no interesting results. In order
to be useful for the construction of algorithms, the expression of a graph property by
a monadic second-order sentence must be coupled with constraints on the graphs of
interest such as having bounded tree-width or bounded clique-width. The language
theoretical issues to be discussed below will also combine monadic second-order sen-
tences and the very same constraints. Hence, we will study certain hierarchical graph
decompositions, such as tree-decompositions, that fit with monadic second-order
logic.

Graph algebras

Graph decompositions will be formalized algebraically by terms written with appro-
priate graph operations. Hence, we will use concepts from Universal Algebra in
addition to ones from Logic.

For treating graphs as algebraic objects, i.e., as elements of appropriate algebras
(words and traces are elements of monoids), we will define graph operations that
generalize the concatenation of words. We will consider two natural ways to “con-
catenate” two graphs. One way is to “glue” them together, by identifying some of
their vertices. The other way is to “bridge” them (or rather, “bridge the gap between
them”), by adding edges between their vertices. Clearly, to obtain single valued oper-
ations, we have to specify which vertices must be “glued” or “bridged.” By means
of labels attached to vertices, we will specify that vertices with the same label must
be identified, or that edges must be created between all vertices with certain labels.
Hence, we will define “concatenation” operations on labeled graphs. To allow the
flexible use of vertex labels, we also define (unary) operations that modify these
labels. Terms written with these operations evaluate to finite (labeled) graphs. The
value G of a term t = f (t1, t2) is a certain combination, specified by f , of the values
of its subterms t1 and t2. These values are, roughly speaking, subgraphs of G (only
“roughly” because the labels of the vertices of the graphs defined by t1 and t2 may
differ from their labels in the resulting graph G). The same holds for all subterms of
t, hence, t represents a hierarchical decomposition of G.

7 In particular, the rational transductions that are transductions of words defined either by finite(-state)
transducers or, algebraically, in terms of homomorphisms and regular languages.
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Based on the idea of “gluing” graphs (and using the numbers 1, . . . ,k + 1 as
labels), we will define, for each k , a finite set of graph operations, FHR

[k+1], that
generates exactly the graphs of tree-width at most k . Hence, these operations formal-
ize algebraically an existing combinatorial notion. They yield a graph algebra (that
generalizes the monoid of words) having countably many operations. We will call it
the HR algebra for reasons explained below. Another countable family of graph oper-
ations, also indexed by positive integers and based on the idea of “bridging” graphs,
will yield a different graph algebra, called the VR algebra, and a graph complexity
measure called clique-width. By definition, a graph has clique-width at most k if it is
generated by the analogous finite set of graph operations FVR

[k] . As observed before,
clique-width is more powerful than tree-width in the sense that every set of graphs of
bounded tree-width has bounded clique-width but not vice-versa. Many definitions
and results will be similar for these two graph algebras. We will explain below why
both algebras are interesting.

The introduction of graph operations is essential for our project of extending to
graphs the basic concepts of Formal Language Theory in a clean way. We will use for
that the algebraic notions of an equational set and of a recognizable set. An equational
set is a component of the least solution of an equation system written with set union
and the operations of the considered algebra. Equation systems formalize context-free
grammars that generate elements of the algebra: if such a context-free grammar has,
e.g., three rules A→ f (B,C), A→ g(A) and A→ a for the nonterminal A, where
B and C are two other nonterminals, f and g are operations of the algebra and a is
a constant of the algebra, then the corresponding equation system has the equation
A = f (B,C)∪ g(A)∪ {a} (where A, B and C now stand for sets of elements of the
algebra). The context-free languages are actually the equational sets of the monoids
of words over their terminal alphabets (due to the least fixed-point characterization
of context-free grammars of [GinRic] and [ChoSch]). A recognizable set is a set
saturated by a congruence having finitely many classes. The regular languages are
thus the recognizable sets of the monoids of words. When all elements of the algebra
can be denoted by a term (which is the case for the HR and VR algebra), a set is
recognizable if and only if there exists a finite automaton on terms that recognizes all
the terms that evaluate to an element of the set.

The chart of Figure I.1 shows some relationships between the notions defined
above. An arrow means “used for a definition or a construction.”

Two graph algebras

Since we will define two graph algebras, we will obtain two types of equational sets,
called the HR- and theVR-equational sets. For each k , the set of graphs of tree-width at
most k is HR-equational (because it is generated by the finite set of operations FHR

[k+1]),
and similarly, the set of graphs of clique-width at most k is VR-equational. There are
also two types of recognizable sets of graphs, the HR- and the VR-recognizable
sets. Every HR-equational set is VR-equational and every VR-recognizable set is
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Figure I.1 The main notions.

HR-recognizable, but not vice-versa. The class of HR-equational sets is incomparable
with the class of HR-recognizable sets, and similarly for the VR algebra.

These facts show some important differences with the case of words. For words,
we have a unique algebraic structure based on a single operation, and the class of
recognizable sets (the regular languages) is properly included in that of equational
sets (the context-free languages). But graphs are intrinsically more complicated than
words: this explains why we need countably many operations and not just one. We
will explain next why we have two algebras and two (robust) classes of equational
sets that both generalize the class of context-free languages.

The two graph algebras have been defined initially in such a way that their equa-
tional sets coincide with existing context-free sets of graphs: the HR-equational sets
are actually (but not by definition) those generated by certain context-free graph
grammars based on a rewriting mechanism called hyperedge replacement (that uses
“gluing” of graphs) and we call the corresponding algebra the HR algebra to refer to
this fact; the other algebra, called the VR algebra, has been designed similarly so that
its equational sets are those generated by the context-free graph grammars based on
vertex replacement (that uses “bridging” of graphs); see [*DreKH] and [*EngRoz]
respectively for these two types of graph grammars.

Many properties of the equational and recognizable sets of graphs of both kinds are
just particular instances of those of the equational and recognizable sets in arbitrary
algebras. By using this algebraic approach, we generalize the context-free languages
without having to define a graph rewriting mechanism and check that such rewriting
is actually context-free (the general notion of context-free rewriting is defined in
[Cou87]). Similarly, we generalize the regular languages without having to define
any notion of graph automaton and to look for the closure properties of the class of
sets of graphs that are recognized by such automata.

Monadic second-order logic and the VR graph algebra

We first discuss the equational sets and the recognizable sets of the VR algebra, and
their relationships with monadic second-order logic.
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Two main results of this book are the Recognizability Theorem and the Equation-
ality Theorem. They relate two ways of handling graphs: the “logical way” by which
graphs are characterized in terms of what they are made of and contain (vertices,
edges, paths, minors, subgraphs with particular properties) and the “algebraic way”
by which sets of graphs are characterized more globally by means of equation systems
and congruences. In the latter approach, graphs are treated as elements of algebras
and related with other elements that are not necessarily among their subgraphs.

The Recognizability Theorem says that if a set of graphs is monadic second-order
definable, then it is VR-recognizable. The Equationality Theorem says that a set of
graphs is VR-equational if and only if it is the image of the set of finite trees under a
monadic second-order transduction8. We now describe some consequences of these
two results.

The Recognizability Theorem entails that if a graph G is defined by a term t writ-
ten with operations of the VR algebra belonging to any fixed finite set F , then one
can check in time O(|t|) whether or not G satisfies a fixed monadic second-order
property. This fact, based on a compilation of monadic second-order formulas into
finite automata over F , is one of the keys9 to the construction of fixed-parameter
tractable algorithms for the verification of monadic second-order properties of graphs
of bounded clique-width (whence also of graphs of bounded tree-width since bounded
tree-width implies bounded clique-width). Another consequence is the Filtering The-
orem, which says that the graphs of a VR-equational set that satisfy a fixed monadic
second-order property (for example planarity) form a VR-equational set. This is based
on a Filtering Theorem that holds in all algebras and says that the intersection of an
equational set and a recognizable one is equational (generalizing the corresponding
fact for context-free and regular languages). Since the emptiness of an equational set
is decidable, we get as another corollary that the monadic second-order satisfiability
problem is decidable for each VR-equational set L. This means that one can decide
whether or not a given monadic second-order sentence is satisfied by some graph in L.

The Equationality Theorem entails that the class of VR-equational sets of graphs is
preserved under monadic second-order transductions, because the class of monadic
second-order transductions is closed under composition. This corollary strengthens
the Filtering Theorem. It is similar to the fact that the image of a context-free language
under a rational transduction is context-free.

Monadic second-order logic and the HR graph algebra

The Recognizability and Equationality Theorems have versions relative to the HR
algebra. To describe them, we must go back to the initial definition of monadic
second-order formulas (MS formulas in the sequel) interpreted in graphs: they only

8 This means, informally, that it is the set of graphs “defined inside finite trees” by a fixed finite tuple of
monadic second-order formulas. These transductions are based on, and extend, the model-theoretical
notion of “interpretation.”

9 The other one is a polynomial-time algorithm that finds a term evaluating to a given graph G if one
exists.
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use quantifications on vertices and sets of vertices. This is due to the chosen represen-
tation of a graph by a relational structure whose domain is its set of vertices. However,
we can also express logically the properties of a graph G via its incidence graph
Inc(G). The vertices of this (bipartite) graph are the vertices and the edges of G, and its
adjacency relation links a vertex and the edges incident with it. Thus, monadic second-
order formulas to be interpreted in Inc(G) (MS2 formulas in the sequel) can also use
quantifications on edges and sets of edges. A graph property is MS2-expressible
if it is expressible by an MS2 formula, and the corresponding set of graphs is
MS2-definable. The notation MS2 refers to this extension of the initially defined
language (referred to as MS in the sequel). It is strictly more expressive. For exam-
ple, the existence of a perfect matching is MS2-expressible but not MS-expressible.
However, MS2 formulas are not more expressive than MS formulas for properties of
words, of trees and of certain types of graphs such as planar graphs and, for each k , of
graphs of degree at most k . These facts show the existence of deep links between struc-
tural graph properties (such as planarity) and the expressive power of MS2 versus MS
sentences.

The Recognizability Theorem for the HR algebra says that every MS2-definable
set of graphs is HR-recognizable, and the Equationality Theorem says that a set of
graphs is HR-equational if and only if the set of its incidence graphs is the image
of the set of finite trees under a monadic second-order transduction. We obtain an
algorithmic consequence similar to the one we have discussed for MS-expressible
problems and the VR algebra: if a graph is defined by a term t over FHR

[k] for some
fixed k , then one can check in time O(|t|) whether or not it satisfies a fixed MS2 prop-
erty. Since there exists a polynomial-time algorithm that decomposes appropriately
the input graphs, we obtain, for each MS2 property, a fixed-parameter tractable veri-
fication algorithm, tree-width being the parameter. The algorithm for MS properties
applies to larger classes of graphs, because bounded tree-width implies bounded
clique-width, but to less properties than this one, because not every MS2-expressible
property is MS-expressible. The notions of tree-width and clique-width are thus
both useful, for solving different problems. We also have a Filtering Theorem for
the HR-equational sets and MS2-expressible properties, whence the decidability of
the MS2-satisfiability problem for each HR-equational set. The Equationality The-
orem for the HR algebra entails that the class of HR-equational sets of graphs is
preserved under the monadic second-order transductions that transform incidence
graphs.

A graph is uniformly k-sparse if its number of edges is at most k times its number
of vertices, and the same holds for all its subgraphs. Another main result of this book
is the Sparseness Theorem: MS2 formulas are not more expressive than MS formulas
for properties of uniformly k-sparse graphs, for each fixed k . The above-mentioned
types of graphs are uniformly k-sparse for some k .
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Logical and language theoretical issues

Tree-width and clique-width are closely related with the decidability of monadic
second-order satisfiability problems for particular sets of graphs. The satisfiability
problem of MS2 sentences for the set of graphs of tree-width at most some fixed k
is decidable (because it is decidable for each HR-equational set), and the same holds
for MS sentences and the set of graphs of clique-width at most k . Some converse
results also hold: bounded tree-width is a necessary (but not sufficient) condition for
a set of graphs to have a decidable MS2-satisfiability problem, and a similar result
holds for clique-width and MS sentences. Their proofs use monadic second-order
transductions and deep results of Graph Theory.

The Recognizability and Equationality Theorems contribute to establishing the
foundations of a sound and robust extension of the theory of formal languages to
the description of sets of finite graphs. In this extension, monadic second-order logic
plays a major role. From the above informal (and simplified) statements, this extension
may seem to be straightforward. However, graphs are intrinsically more complex than
words and terms, and some results do not extend as one could expect or hope. We
give two examples. First, the set of all graphs is not equational in any of the two
graph algebras, whereas the set of all words over a finite alphabet is (almost trivially)
context-free. Second, there are uncountably many VR- and HR-recognizable sets of
graphs, and this fact prevents any exact characterization of these sets in terms of
graph automata or logical formulas. Such a characterization would generalize nicely
the classical characterization of the recognizable (i.e., the regular) languages in terms
of finite automata and monadic second-order sentences, but it cannot exist. These
examples are related to the fact that the sets of operations of the two graph algebras
are infinite, and that this infiniteness is somehow unavoidable.10

Graph structure

Graph structure is a flexible concept covering many different cases. Graph decom-
positions form an important type of structuring. We have already discussed those
that yield the notions of tree-width and clique-width in connection with algorith-
mic applications. There exist other types of graph decomposition that are useful for
algorithmic purposes or for proving results. Examples are the modular decomposi-
tion defined by Gallai [Gal], the decomposition in 3-connected components defined
by Tutte [*Tut] and the clique-sum decomposition used by Robertson and Seymour
([*Gro], [RobSey03]). The existence of an embedding in a fixed surface, or of a
homomorphism into a fixed graph (a proper vertex coloring with p colors of a loop-
free graph can be defined as a homomorphism of this graph into the complete graph
Kp) is a type of structure. Finally, the nonexistence in a graph of particular induced

10 One can generate all finite graphs by a finite number of graph operations, but the Recognizability
Theorem fails for the corresponding algebra. So this algebra is useless for our purposes.



12 Introduction

subgraphs, minors or vertex-minors is also an important type of structural property.
(See [*Die] for minors and [Oum05] for vertex-minors.) There exist nontrivial rela-
tions between these different notions, for example: the graphs without a fixed planar
graph as a minor have tree-width bounded by a value computable from this graph
and those embeddable in a fixed surface are characterized by finitely many excluded
minors [*Die]; forbidding certain induced subgraphs implies bounded clique-width
([BraDLM], [BraELL]).

Monadic second-order sentences can express many such structural properties. The
expression of p-colorability (for fixed p) is immediate. It is easy to construct a monadic
second-order sentence expressing that a given graph has no minor or no induced sub-
graph isomorphic to a fixed graph. Hence the sets of planar graphs and of graphs of
tree-width at most k (for all k) are MS-definable because each of them is characterized
by finitely many excluded minors. A set of graphs defined by finitely many excluded
inducedsubgraphs (this is thecaseofcographs)orbyan infinitebutMS-definable setof
minimal excluded induced subgraphs is also MS-definable. The latter observation
applies to comparability graphs ([Cou06a], [Gal]) and to perfect graphs ([*ChuRST],
[ChuRST]). Their definitions are not directly expressible by monadic second-order
sentences, and finding the minimal excluded induced subgraphs requires difficult
proofs.

In many situations concerning graph structure, we need more than a yes or no
answer. For example, that a graph does not contain K5 or K3,3 as a minor implies
that it is planar, but this negative fact, when it is valid, does not help to find a planar
embedding. In other words, we are not only interested in checking that a given graph
“has some structure,” e.g., has a planar embedding or a tree-decomposition of width
bounded by a fixed integer, but we are also interested in having a monadic second-
order transduction that constructs from the given graph some planar embedding or
some tree-decomposition. Such transductions may be difficult to construct. Some
constructions are given in [Cou96a], [Cou99], [Cou00], [Cou06b], [Cou08a], and
challenging questions remain open in this area.

To conclude with this aspect, we can state that many constructions of monadic
second-order formulas and transductions use in an essential way results of Graph
Theory, and even very deep ones in some cases. Conversely, the methods developed
in this book bring new results in Graph Theory apart from algorithmic applications.
For example, the infinite set of minimal excluded induced subgraphs that characterizes
the comparability graphs has a certain regularity that we can formalize by observing
that this set is VR-equational. Such applications deserve further study.

The main contributions of this book

We will now summarize the main ideas and results to be developed in this book. We
define two graph algebras called the HR algebra and the VR algebra, from which we
get two classes of equational and two classes of recognizable sets of graphs. The terms
of these algebras denote graphs and formalize certain hierarchical decompositions
from which we get the graph complexity measures called tree-width and clique-width.
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Monadic second-order logic in its two variants denoted by MS and MS2 can be
used to express formally graph properties and thus to specify sets of graphs. The
Recognizability Theorem says that every MS-definable set of graphs is recognizable
in the VR algebra and that every MS2-definable set is recognizable in the HR algebra.
We obtain from it fixed-parameter tractable algorithms for checking MS and MS2

properties with, respectively, clique-width and tree-width as parameters. It entails
that the corresponding monadic second-order satisfiability problems are decidable
for the equational sets of the two algebras. The Sparseness Theorem says that MS
and MS2 logic have the same power for defining sets of uniformly k-sparse graphs.

Graph transformations called monadic second-order transductions can be specified
by MS or by MS2 formulas. The Equationality Theorem says that they generate from
the set of trees, respectively, the equational sets of the VR and of the HR algebra. This
shows the robustness of this theory that combines algebraic and logical notions. Its
main definitions and results are actually formulated for relational structures which
generalize graphs and incidence graphs, but several problems are open regarding this
extension.

We will only consider finite graphs and finite relational structures. Another book
would be necessary to cover the rich existing theory of countable structures that is
important in Program Semantics.

Summary

The letters GT, UA, LT, L and A indicate that a chapter deals mainly with Graph
Theory, Universal Algebra, (Formal) Language Theory, Logic and Algorithmic
applications respectively.

Chapter 1 presents an overview of the main definitions and results in an informal
way, with the help of examples.

Chapter 2 (GT, UA) defines two families of graph operations and the associated
graph complexity measures of tree-width and clique-width. The two corresponding
graph algebras, called the HR algebra and the VR algebra, are first defined as single
sorted algebras and, later on, they are “refined” into many-sorted algebras.

Chapter 3 (UA, LT) defines and studies the equational and recognizable sets of
many-sorted algebras in general. Its main result is the (algebraic version of the)
Filtering Theorem.

Chapter 4 (GT, LT) applies the definitions and results of Chapter 3 to the graph
algebras defined in Chapter 2 and establishes results which do not follow solely from
the general algebraic definitions.

Chapter 5 (L, UA, GT) introduces monadic second-order logic and develops tools
for expressing graph properties by monadic second-order formulas. Definitions and
proofs are given for relational structures. In particular, the Recognizability Theorem
is proved for a many-sorted algebra of finite relational structures. The particular cases
of this theorem for the HR and the VR graph algebras follow as immediate corollaries.

Chapter 6 (L, LT, A) is devoted to algorithmic applications. It reviews the parsing
algorithms that construct the necessary expressions of the input graphs by terms over
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the operations of the HR and of the VR algebra. It develops in detail the “compilation”
of monadic second-order formulas into finite automata intended to run on the terms
resulting from the parsing step. This construction is hopefully more usable than the
one of Chapter 5. It yields alternative proofs of weaker versions of the Recognizability
Theorem.

Chapter 7 (L, LT, GT) defines monadic second-order transductions and estab-
lishes their main properties: closure under composition and preservation of monadic
second-order definability under inverse monadic second-order transductions; we call
this latter result the Backwards Translation Theorem. The Equationality Theorem
characterizes the VR- and the HR-equational sets as the images of the set of trees
(equivalently of terms over any rich enough functional signature) under monadic
second-order transductions of appropriate types. Four types of transductions come
from the two possible representations of a graph by a relational structure for the input
and the output. The Equationality Theorems characterize bounded clique-width and
bounded tree-width in a way that does not depend on the graph operations chosen
in Chapter 2. Hence, VR- and HR-equationality as well as the properties of having
bounded clique-width and tree-width are robust in the sense that they are stable under
the monadic second-order transductions that are respectively specified by MS and by
MS2 formulas.

Chapter 8 (L, LT) shows that the classical automata-theoretic characterization
(recalled in Chapter 5) of the monadic second-order definable sets of terms (hence,
also of words) extends to monadic second-order transductions. More precisely, these
transductions are characterized in terms of two-way finite-state transducers on words,
and of tree-walking transducers on terms, where “tree” refers to the representation of
terms by labeled ordered trees. Characterizations of the VR-equational (equivalently
of the HR-equational) languages of words and terms are obtained. Every (functional)
monadic second-order transduction of graphs of bounded tree-width can be realized
by a tree-walking transducer on the level of terms (of the HR algebra), i.e., it can be
realized by parsing the input graph, applying the tree transducer to the resulting input
term, and evaluating the output term of the transducer to produce the output graph.
The same result holds for clique-width and the VR algebra. This can be viewed as a
generalization of the Recognizability Theorem to graph transductions.

Chapter 9 (L, GT, UA, A) extends to finite relational structures the definitions
and results of Chapters 2 to 7. It contains in particular an extension to relational
structures of the Equationality Theorem. Although many results extend easily from
graphs to relational structures, some seemingly difficult questions remain open.
Additionally, this chapter proves the Sparseness Theorem, which establishes that,
for expressing properties of uniformly k-sparse graphs (or relational structures11) by
monadic second-order formulas, quantifications over sets of edges (or sets of tuples,

11 Relational structures are used to prove the case of the theorem that concerns graphs. A relational
structure is uniformly k-sparse if its number of tuples is at most k times the cardinality of its domain,
and the same holds for all its substructures.
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respectively) bring no additional power: every MS2 formula can be translated into an
equivalent MS formula.

A concluding section reviews some open problems and some results not presented
in the previous chapters.

The references section is organized in two parts: the first part (with reference
labels starting with *) lists books, book chapters and survey articles. The second lists
research articles and dissertations.

All necessary definitions will be given, but the reader is expected to be familiar with
the basic notions of Logic (mainly first-order logic), Universal Algebra (algebras,
congruences), Formal Language Theory (context-free grammars, finite automata),
and Graph Theory (basic notions). Chapters 2 to 9 present detailed proofs of results
that have been published in articles. It was not an easy task to elaborate consistent
definitions and notations for many different notions from various fields, namely
Language Theory, Universal Algebra, Logic and Graph Theory. By giving precise
definitions and carefully written proofs, our first aim is to give a robust foundation to
the field described in this introduction. Our second aim is that these definitions and
proofs can be adapted to related notions, implemented and improved by researchers
without too much effort.

The web page www.labri.fr/perso/courcell/TheBook.html will maintain reference
updates, new results answering the open questions and errata.
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1

Overview

This chapter presents the main definitions and results of this book and their
significance, with the help of a few basic examples. It is written so as to be readable
independently of the other chapters. Definitions are sometimes given informally, with
simplified notation, and most proofs are omitted. All definitions will be repeated with
the necessary technical details in subsequent chapters.

In Section 1.1, we present the notion of equational set of an algebra by using as
examples a context-free language, the set of cographs and the set of series-parallel
graphs. We also introduce our algebraic definition of derivation trees.

In Section 1.2, we introduce the notion of recognizability in a concrete way, in
terms of properties that can be proved or refuted, for every element of the considered
algebra, by an induction on any term that defines this element. We formulate a concrete
version of the Filtering Theorem saying that the intersection of an equational set and a
recognizable one is equational. It follows that one can decide if a property belonging
to a finite inductive set of properties is valid for every element of a given equational
set. We explain the relationship between recognizability and finite automata on terms.

In Section 1.3, we show with several key examples how monadic second-order
sentences can express graph properties. We recall the fundamental equivalence of
monadic second-order sentences and finite automata on words and terms.

In Section 1.4, we introduce two graph algebras. They are called the VR and the HR
algebra because their equational sets are those that are generated by the context-free
vertex replacement and hyperedge replacement graph grammars respectively. The
cographs and the series-parallel graphs are respectively our current examples of a
VR- and an HR-equational set. We state (a weak version of) the Recognizability
Theorem which says, in short, that monadic second-order definability implies rec-
ognizability. From it we obtain a logical version of the Filtering Theorem where the
recognizable sets are defined by monadic second-order sentences.

In Section 1.5, we review the basic definitions of Fixed-Parameter Tractability
and state the algorithmic consequences of the (weak) Recognizability Theorem. This
theorem actually has two versions, relative to the two graph algebras defined in
Section 1.4, and yields two Fixed-Parameter Tractability Theorems.
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In Section 1.6, we describe the consequences of the Recognizability and Filtering
Theorems for the problem of deciding whether a given monadic second-order sentence
is satisfied by some graph of tree-width at most a given k or, more generally, by some
graph of an equational set.

In Section 1.7, we introduce the notion of a monadic second-order transduc-
tion by means of examples that have some graph theoretic content, and we state
the Equationality Theorem for the VR algebra. It gives a characterization of the
VR-equational sets, and in particular of the sets of graphs of bounded clique-width,
that is formulated in purely logical terms.

In Section 1.8, we consider monadic second-order formulas interpreted in inci-
dence graphs (as opposed to in graphs “directly”). These formulas can use edge set
quantifications. We compare the corresponding four types of monadic second-order
transduction and state the Equationality Theorem for the HR algebra: it is based on
monadic second-order transductions that transform incidence graphs.

In Section 1.9, we define relational structures and extend to them some results
relative to graphs represented by their incidence graphs. We introduce betweenness
and cyclic ordering as examples of combinatorial notions that are based on linear
orderings but are defined in a natural way as ternary relations.

1.1 Context-free grammars

By starting from the standard notion of a context-free grammar, we introduce the
notion of an equational set and define two equational sets of graphs. We define the
equational sets of a (one-sorted) algebra and the corresponding sets of derivation
trees.

1.1.1 Context-free word grammars

By using context-free grammars, one can specify certain formal languages, namely the
context-free languages, in a finitary way. Context-free grammars are usually defined
as rewriting systems satisfying particular properties, conveyed by the term “context-
free” and axiomatized in [Cou87]. However, the Least Fixed-Point Characterization
of context-free languages due to Ginsburg and Rice [GinRic] and to Chomsky and
Schützenberger [ChoSch] is formulated in terms of systems of recursive equations
written with the operations of union and concatenation over languages. This algebraic
view has been developed by Mezei and Wright [MezWri] and has many advantages.
First, it is more synthetic in that it deals with languages rather than with words
produced individually by derivation sequences. Second, it puts the study of context-
free languages in the more general framework of recursive definitions handled as
least solutions of systems of equations, and, last but not least, it is applicable to any
algebra. This latter aspect is especially important for the extension to graphs.
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We recall how context-free languages can be characterized as the components
of the least solutions of certain systems of equations in languages. A context-free
grammar G is a finite set of rewriting rules defined with two alphabets, a terminal
alphabet A and a nonterminal alphabet N . For every S in N , the context-free language
over A generated by G from S is denoted by L(G,S).

Example 1.1 We consider for example the context-free grammar G with terminal
alphabet A= {a,b,c}, nonterminal alphabet N = {S,T } and rules named respectively
p,q, . . . ,w (where ε denotes the empty word):

p : S→ aST ,
q : S→ SS,
r : S→ a,
s : T → bTST ,
u : T → a,
v : T → c,
w : T → ε.

It defines two languages L(G,S) and L(G,T ) over A, i.e., two sets of words in A∗.
These languages satisfy the equations of the following system �G:

�G

{
K = aKL∪KK ∪{a},
L = bLKL∪{a,c,ε},

with K = L(G,S) and L= L(G,T ). The pair (L(G,S),L(G,T )) is thus a solution of
�G . However, it is not the only one. The pair of languages (A∗,bA∗ ∪ {a,c,ε}) is
another solution, as one can easily check.1 The Least Fixed-Point Characterization of
context-free languages establishes that the pair (L(G,S),L(G,T )) is the least solution
of �G for component-wise inclusion. �

1.1.2 Cographs

We give two examples of similar definitions of sets of graphs. We first consider as
a ground set the set Gu of undirected simple graphs.2 Two isomorphic graphs are
considered as the same object. We will use ⊕ to denote the disjoint union of two
graphs G and H . This means that G⊕H is the union of G and of a copy of H disjoint
with G (hence G⊕G �= G). We will also use the complete join, G⊗H , defined as
G⊕H augmented with undirected edges linking every vertex of G and every vertex

1 Since L(G,S) ⊆ A+ = AA∗, the pair (A∗,bA∗ ∪ {a,c,ε}) is a solution of �G that differs from
(L(G,S),L(G,T )).

2 In this book, all graphs are finite. A graph is simple if it has no two parallel edges, i.e., no two edges
with the same ends, and the same directions in the case of directed graphs. Parallel edges are also called
multiple edges. An edge with equal ends is a loop. The superscript “u” in Gu refers to undirected graphs.



1.1 Context-free grammars 19

of H . We let 1 denote any graph with one vertex and no edges. Note that both⊕ and
⊗ are commutative and associative operations.

The set of cographs C can be defined as the least set of graphs satisfying the
equation

C = (C⊕C)∪ (C⊗C)∪{1}. (1.1)

This set (it is a proper subset of Gu) has alternative characterizations (see Section 1.3.1
below). From this equation, one can derive definitions of certain subsets of C.
Consider for example the following system of two equations:{

C0 = (C0⊕C0)∪ (C1⊕C1)∪ (C0⊗C0)∪ (C1⊗C1),

C1 = (C0⊕C1)∪ (C0⊗C1)∪{1}.
(1.2)

Its least solution in P(Gu)×P(Gu) is the pair of sets (C0,C1), where C0 (resp. C1)
is the set of cographs having an even (resp. odd) number of vertices.3 We will give
general and effective methods for deriving from an equation or a system of equations
that defines a set L, an equation or a system of equations defining {x ∈ L | P(x)},
where P is a property of the objects under consideration. This is possible if P has
an appropriate “inductive behavior” relative to the operations with which the given
equation or system of equations is written.

From the definition of cographs as elements of the least subset C of Gu satisfying
(1.1), it follows that each of them is denoted by a term or, more formally, is the value
of a term in an algebra of graphs. Examples of terms denoting cographs are

1, 1⊕ 1, (1⊕ 1)⊗ 1, (1⊕ 1)⊗ (1⊕ 1).

The cograph of Figure 1.1 is the value of the term t = (1⊗ 1⊗ 1)⊗ (1⊕ (1⊗ 1)).
Since ⊗ is associative, we have written t by omitting some parentheses as usual, for
readability. These terms belong to the set T ({⊕,⊗,1}) of all terms written with the
constant 1 and the two binary operations⊕ and⊗. Equation (1.1) can also be solved
with ground set T ({⊕,⊗,1}). For this interpretation of (1.1) the unknown C denotes
subsets of T ({⊕,⊗,1}). Clearly, the set of terms T ({⊕,⊗,1}) itself is the least (in
fact, the only) solution of (1.1) in P(T ({⊕,⊗,1})).

A similar fact holds for System (1.2). Its least solution in P(T ({⊕,⊗,1})) ×
P(T ({⊕,⊗,1})) is a pair of sets (T0,T1) where T0, T1 ⊆ T ({⊕,⊗,1}) and, for each
i= 0,1, the set Ci is the set of cographs which are the values of the terms in Ti.

This example shows that a grammar, i.e., a system of equations like (1.2), specifies
not only a tuple of sets of objects, here graphs, but also denotations by terms of the
specified objects. These objects can be words, terms, trees, graphs, as we will see.
Each term is a formalization of the structure of the object it denotes, as specified by

3 We denote by P(X ) the powerset of a set X , i.e., its set of subsets.
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Figure 1.1 A cograph.

the grammar; it provides a hierarchical decomposition of that object. In many cases,
an object can be denoted by several terms that are correct with respect to the grammar.
In such a case, we say that the grammar is ambiguous. The grammars (1.1) and (1.2)
are ambiguous: since ⊕ and ⊗ are commutative and associative, most cographs are
denoted by more than one term.

As an example of structure, consider again the term (1⊗ 1⊗ 1)⊗ (1⊕ (1⊗ 1))
that denotes the cograph of Figure 1.1. It provides a decomposition of that cograph,
because the subterm 1⊗ 1⊗ 1 denotes the triangle at the left of Figure 1.1, whereas
the subterm 1⊕ (1⊗ 1) denotes the three vertices at the right of Figure 1.1 together
with the edge between two of them.

1.1.3 Series-parallel graphs

The ground set of graphs is here the set J d
2 of directed graphs G equipped with two

distinct distinguished vertices marked 1 and 2 called its sources, denoted respectively
by srcG(1) and srcG(2). These graphs may have multiple edges.4 Let e be a constant
denoting the graph with two vertices and only one edge from source 1 to source 2. The
operations are the parallel-composition, denoted by �, and the series-composition,
denoted by •. For G and H in J d

2 , the graph G �H is the union of G and an isomor-
phic copy H ′ of H such that srcG(1)= srcH ′(1), srcG(2)= srcH ′(2), and G and H ′
have nothing else in common. We define srcG�H (1) := srcG(1) and srcG�H (2) :=
srcG(2). Note that G � G has twice as many edges as G, hence G �= G � G in
general.

Series-composition is defined similarly. For G,H ∈J d
2 , we let G•H be the union of

G and an isomorphic copy H ′ of H such that srcG(2)= srcH ′(1) and G and H ′ have
nothing else in common. We let srcG•H (1) := srcG(1) and srcG•H (2) := srcH ′(2).
These operations are illustrated in Figure 1.2.

4 The letter “J” in the notations J d
2 and, below, in Jd

2, JS and related notions refers to graphs that can have
multiple edges. By contrast, the letter “G” used in the notations Gu and, below, Gu, GP, etc. refers to
simple graphs. The subscript “2” refers to the two sources, and the superscript “d” to directed graphs.
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Figure 1.2 Series- and parallel-compositions.

The set of series-parallel graphs5 is defined by the equation

S = (S � S)∪ (S • S)∪{e}, (1.3)

where by “defined” we mean that S is the least subset of J d
2 satisfying (1.3). As for

cographs, this definition gives a notation of series-parallel graphs by terms. The set
of terms is here T ({�,•,e}). Examples of terms are:

e, e � e, (e � e) • (e � e), ((e � e) • e)� (e • e).

The graph denoted by the last of these terms is shown in Figure 1.3. Note that the
subterm (e � e) • e denotes the three edges at the left of Figure 1.3, with their three
incident vertices, whereas the subterm e • e denotes the two edges at the right, with
their three incident vertices.

1.1.4 The general setting

Let F be a (functional) signature, that is, a set of function symbols such that each
symbol f is given with a nonnegative integer intended to be the number of arguments
of the corresponding function. This number is called its arity and is denoted by ρ( f ).
A function symbol of arity 0 is also called a constant symbol.

An F-algebra M is a set M equipped with total functions fM : Mρ( f )→M for all
f in F . We write it M= 〈M ,( fM)f ∈F 〉. We call M the domain and fM an operation of

5 The term “series-parallel” is also used for partial orders ([*Möhr]) and, in a wider sense, for undirected
graphs without K4 as a minor ([*Die]). Our series-parallel graphs are called two-terminal series-parallel
digraphs in [*Möhr].
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Figure 1.3 A series-parallel graph.

M; if f has arity 0, then fM is also called a constant of M. The F-algebra M is finite
if M is finite.

Let X = {x1, . . . ,xn} be a set of unknowns (or variables), intended to denote subsets
of M . A polynomial is an expression of the form p = m1 ∪ ·· · ∪mk , where each mi

is a monomial, i.e., a term written with the symbols of F ∪X and well formed with
respect to arities (the unknowns are of arity 0).

For each n-tuple (L1, . . . ,Ln) of subsets of M and each monomial m, the set
m(L1, . . . ,Ln) is a subset of M . This subset is defined by taking xi = Li and by
interpreting each function symbol f as fM, where, for all A1, . . . ,Aρ( f ) ⊆M :

fM(A1, . . . ,Aρ( f )) := { fM(a1, . . . ,aρ( f )) | ai ∈ Ai}.

Hence fM also denotes the extension to sets of the function fM : M ρ( f )→M . For a
polynomial p=m1 ∪ ·· · ∪mk we define:

p(L1, . . . ,Ln) :=m1(L1, . . . ,Ln)∪ ·· · ∪mk (L1, . . . ,Ln).

A system of polynomial equations (an equation system for short) is a system of the
form

S = 〈x1 = p1, . . . ,xn = pn〉, (1.4)

where p1, . . . ,pn are polynomials.

Example 1.2 In the particular case of the grammar G considered in Example 1.1,
we let F = {·,ε,a,b,c} and M = 〈A∗, ·,ε,a,b,c〉, where A = {a,b,c} and · denotes
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concatenation; the equation system �G can be written formally as follows:

{
x1 = a · (x1 · x2)∪ x1 · x1 ∪ a,

x2 = b · ((x2 · x1) · x2)∪ a∪ c∪ ε,

where the associativity of concatenation is no longer taken for granted. Note that
for the constant symbol a of F we have aM = a and also, according to the above
extension, aM = {a}; similarly, the constant symbol ε denotes both the empty word ε

and the language {ε}. �

Going back to the general case, a solution of a system S as in (1.4) is an
n-tuple (L1, . . . ,Ln) in P(M )n that satisfies the equations of S, which means that
Li = pi(L1, . . . ,Ln) for every i= 1, . . . ,n. Solutions are compared by component-wise
inclusion and every system has a least solution. The components of the least solutions
of such systems are called the equational sets of the F-algebra M. We will denote by
Equat(M) the family of equational sets of M.

For a signature F , we denote by T (F) the set of terms written with the symbols
of F and well formed with respect to arities. The usual notation for terms is with
the function symbols in leftmost position, their arguments are between parentheses
and separated by commas. In this notation, the term denoting the graph of Figure 1.3
is written �(•(�(e,e),e),•(e,e)).6 As is well known, terms can be represented by
certain labeled, directed and rooted trees. This representation is the reason that terms
are usually called trees in Formal Language Theory.

The set T (F) is turned into an F-algebra, denoted by T(F), by defining the
operation fT(F) by

fT(F)(t1, . . . , tρ( f )) := f (t1, . . . , tρ( f )).

This operation performs no computation; it combines its arguments which are terms
into a larger term.

For every F-algebra M, a term t ∈ T (F) has a value tM in M that is formally
defined as follows:

tM := fM if t = f and f has arity 0 (it is a constant symbol),

tM := fM(t1M, . . . , tρ( f )M) if t = f (t1, . . . , tρ( f )).

Since every term can be written in a unique way as f or f (t1, . . . , tρ( f )) for terms
t1, . . . , tρ( f ), the value tM of t is well defined. The mapping t �→ tM, also denoted by

6 For associative binary operations the more readable infix notation will be used, although it is ambiguous
as already observed. The infix notation of this term is ((e � e) • e)� (e • e).



24 Overview

valM, is the unique F-algebra homomorphism from T(F) into M.7 An F-algebra M
is generated by F if every element of M is the value of some term in T (F).

An equation system S of the form (1.4) has a least solution in P(T (F))n that is
an n-tuple (T1, . . . ,Tn) of subsets of T (F). The least solution (L1, . . . ,Ln) of S in
P(M )n is also characterized by Li = {tM | t ∈ Ti}, for each i = 1, . . . ,n. This is an
immediate consequence of a result of [MezWri] saying that the least fixed-point
operator commutes with homomorphisms. A term t in Ti represents the structure of
the element tM of Li as specified by the system S.

It follows in particular that for each i, Li = ∅ if and only if Ti = ∅. Hence the
least solutions of a system S in all algebras have the same empty components. The
emptiness of each set Ti can be decided by the algorithm that decides the emptiness
of a context-free language. Each set Ti is actually a context-free language over the
alphabet consisting of F , parentheses and comma.

We will use these definitions for algebras of graphs M in the following way:
M will be a class of graphs like Gu or J d

2 in the examples of cographs and series-
parallel graphs, and F will be a set of total functions fM : M ρ( f )→M that will be
used to construct graphs. These functions, called the operations of M, generalize
the concatenation of words. The constants will be basic graphs. For each such graph
algebra M, the class of equational sets Equat(M) generalizes the class of context-free
languages since they are characterized as the components of the least solutions of
equation systems as recalled in Section 1.1.1. There is thus no unique notion of a
context-free set of graphs because this notion depends on the considered algebra.

However, even in the case of languages, several algebras canbe considered, because
one can enrich the monoid structure of A∗ by new operations. This increases the class
of equational sets, hence defines richer notions of context-free languages, if we take
this term in the algebraic sense. The squaring function that associates with a word u
the word uu, can be such an operation. Another one is the shift that associates with
a word au the word ua, where a is a letter. The corresponding classes of equational
sets have not received specific attention.

In the case of graphs, we will show that there are only two robust classes of
equational sets, where robust means that they are closed under certain graph transfor-
mations definable by formulas of monadic second-order logic. These transformations,
called monadic second-order transductions, play the role of rational transductions in
the theory of formal languages.

Each of the two classes of context-free sets of graphs is the class of images of the set
of finite binary trees under monadic second-order transductions of appropriate forms.
Somewhat similarly, the class of context-free languages is the class of images of the
language defined by the equation L= aLbLc∪ {d}, under all rational transductions.
This language encodes binary trees. Hence trees play a major role in all three cases.

7 In general, a homomorphism from N to M, where N= 〈N ,( fN)f ∈F 〉 is another F-algebra, is a mapping
h : N → M such that for every f ∈ F and all n1, . . . ,nρ( f ) ∈ N , we have h( fN(n1, . . . ,nρ( f ))) =
fM(h(n1), . . . ,h(nρ( f ))).
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1.1.5 Derivation trees

Context-free grammars specify languages. However the real importance of the notion
of a context-free grammar is that, when a word is recognized as well-formed, the
grammar specifies one or several parse trees for this word. These trees are obtained as
results of the syntactic analysis (or parsing) of the considered word. They represent
the syntactical structures of the considered word as generated by the grammar. In
compiling applications, grammars are constructed so as to be unambiguous, and
each recognized word has a unique parse tree. This tree is the support of further
computation, in particular type checking and translation into intermediate code.

Similarly, an equation system specifies a set of objects and, as we have seen, it
additionally specifies terms that denote those objects and represent their structure. Let
S be an equation system and M=〈M ,( fM)f ∈F 〉 an algebra, and consider an algorithm
that, for each element m of M , computes a term t that denotes m as specified by S
(if such a term exists). Due to the similarity with context-free grammars, we will say
that this is a parsing algorithm for S.

However, if we view a context-free grammar G such as the one of Example 1.1
as an equation system S = �G over the signature F = {·,ε,a,b,c}, as indicated in
Example 1.2, then the terms in T (F) specified by the system �G are not the parse
trees of G (because they do not show which rules of G are applied). Nevertheless, it
is possible to view G as an equation system S ′ in a different way, such that the terms
of S ′ do correspond to the parse trees of G, or rather a variant of parse trees called
derivation trees. Let us illustrate this for the context-free grammar G of Example 1.1.

Example 1.3 We consider again the grammar G of Example 1.1. Its rules are named
by symbols p,q, . . . ,w, which we will consider as function symbols with arities defined
by ρ such that ρ(s) = 3, ρ(p) = ρ(q) = 2, ρ(r) = ρ(u) = ρ(v) = ρ(w) = 0; they
form a signature P. The arity of a rule is the number of occurrences of nonterminals
in the right-hand side of the rule.

Consider, for example, the word baaac generated from nonterminal T by the
derivation sequence D:

T ⇒ bTST ⇒ bTaSTT ⇒ baaSTT ⇒ baaaTT ⇒ baaaT ⇒ baaac,

where the rules s,p,u,r,w,v are successively applied. (The arrow⇒ denotes the one-
step derivation relation of G.) Assuming that rule w is applied to the leftmost T in
baaaTT , we associate with D the term d = s(u,p(r,w),v) of T (P). This term contains
more information than the sequence (s,p,u,r,w,v); from it one can find all derivation
sequences of the word baaac that are equivalent to D by permutations of steps. In
particular the leftmost derivation sequence uses successively rules s,u,p,r,w,v, and
the rightmost one uses rules s,v,p,w,r,u. Figure 1.4 shows the parse tree of D and
the corresponding term d.
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Figure 1.4 The parse tree of D and the term d.

Terms like d will be called derivation trees. We keep the name parse tree for the
trees like the one of Figure 1.4 (left part) that are used in the theory of parsing. (Good
textbooks exposing this theory are the “Dragon Book” by Aho et al. [*AhoLSU] and
the book by Crespi-Reghizzi [*Cre]).

The equation system�G of Example 1.1 can be rewritten into the following system:

�′G

{
K = p(K ,L)∪ q(K ,K)∪ r,

L = s(L,K ,L)∪ u∪ v∪w.

Instead of solving this system for the F-algebra M = 〈{a,b,c}∗, ·,ε,a,b,c〉 (which
is the algebra for �G in Example 1.2), we solve it for the P-algebra M′ with the
same domain {a,b,c}∗ but with the following interpretation of the symbols of P. If
we interpret the symbols p,q,s by the following operations on A∗ = {a,b,c}∗ (where
x,y,z denote words in A∗):

p(x,y) := axy,

q(x,y) := xy,

s(x,y,z) := bxyz,

and the constant symbols r,u,v,w by the following words:

r := a,

u := a,

v := c,

w := ε,
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then �′G is just an alternative writing of �G, and its least solution for the algebra
M′ is also (L(G,S),L(G,T )). But the system �′G has also a least solution (K ′,L′) in
P(T (P))×P(T (P)), and the derivation tree d is an element of L′. More generally
we define the sets of derivation trees of G respectively associated with S and T as
the sets of terms K ′ and L′. For the above interpretation of the symbols of P, we
can evaluate every term t of T (P) into a word tM′ in A∗. In particular dM′ = baaac.
Clearly, L(G,S) = {tM′ | t ∈ K ′} and L(G,T ) = {tM′ | t ∈ L′}. Thus, since a parsing
algorithm for �′G produces derivation trees of G, it corresponds to a classical parsing
algorithm of the context-free grammar G.

The system � ′G and the derivation trees of G represent the abstract syntax of
the grammar G, whereas the P-algebra M′ represents its concrete syntax. It should
be clear that the construction of �′G and M′ can be realized for every context-free
grammar G. It should be noted, however, that the signature P and the algebra M′ both
depend on G.

A term that is associated with the word baaac according to the equation system �G

in Example 1.2, is b · ((a · (a · (a · ε))) · c). That term can be obtained from derivation
tree d by (re)interpreting the symbols p,q,s as the following operations on terms in
T ({·,ε,a,b,c}): p(x,y) := a ·(x ·y), q(x,y) := x ·y, and s(x,y,z) := b ·((x ·y) ·z). Thus,
a parsing algorithm for �′G (producing derivation trees) can easily be transformed
into one for �G (producing terms). �

In fact, derivation trees can be defined for the elements of general equational sets.
The transformation of �G into �′G can be generalized into the transformation of
an arbitrary equation system S = 〈x1 = p1, . . . ,xn = pn〉 into a system S ′ = 〈x1 =
p′1, . . . ,xn = p′n〉 such that each polynomial p′i is a union of monomials of the form
r(xi1 , . . . ,xiρ(r) ) corresponding one-to-one to the monomials of pi, where r belongs
to a signature P associated with S. If m ∈ T (F ∪ {x1, . . . ,xn}) is the monomial of pi

to which r(xi1 , . . . ,xiρ(r) ) corresponds, then xi1 , . . . ,xiρ(r) is the sequence of unknowns
that occur in m. Furthermore, we impose that each r has a unique occurrence in S ′. The
least solution of S ′ in P(T (P))n defines the n-tuple of sets of derivation trees of S.

Let F be the signature over which S is written, and M the F-algebra for which S
is to be solved. The function Mρ(r)→M that interprets a symbol r in P is the one
defined8 (in the usual sense) by the unique term tr in T (F ∪{y1, . . . ,yρ(r)}) such that
(i) the variables y1, . . . ,yρ(r) occur in tr in that order and no variable yj occurs more
than once, and (ii) the monomial of S to which the monomial r(xi1 , . . . ,xiρ(r) ) of S ′
corresponds is obtained by substituting xij for yj in the term tr , for every j= 1, . . . ,ρ(r).

We obtain thus a P-algebra M′ (with the same domain as M) and the system S ′
interpreted in M′ is the same as the system S interpreted in M.

The value mapping t �→ tM′ maps each set of derivation trees Di (the i-th component
of the least solution of S ′ in P(T (P))n) to the component Li of the least solution of S

8 A function Mk →M defined by a term in T (F ∪{y1, . . . ,yk }) is a k-ary derived operation of M.
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in P(M )n. Taking M=T(F), Di is mapped to the set of terms Ti: the i-th component
of the least solution of S in P(T (F))n. Thus, a parsing algorithm for S′ can easily
be transformed into one for S. Since a parsing algorithm for S ′ produces derivation
trees that represent the syntactical structure of the elements of M as specified by the
system S, it will also be called a parsing algorithm for S; thus, from now on, parsing
algorithms produce derivation trees and/or terms.

Here is an example of the construction of S ′ from S.

Example 1.4 We let S be the following system:{
x1 = x2 ∪ a∪ f (x1,x2,x1),

x2 = h(g(x1,x1),a)∪ f (x1,x2,x1).

Then S ′ is: {
x1 = r1,1(x2)∪ r1,2 ∪ r1,3(x1,x2,x1),

x2 = r2,1(x1,x1)∪ r2,2(x1,x2,x1),

and the functions that interpret ri, j are defined by the following terms:

tr1,1 := y1,

tr1,2 := a,

tr1,3 := f (y1,y2,y3),

tr2,1 := h(g(y1,y2),a),

tr2,2 := f (y1,y2,y3).

Note that r1,1 is interpreted as the identity function and that r1,3 and r2,2 are interpreted
as the same function. The construction of S ′ from S does not depend on any F-algebra
for which S is to be solved, and hence neither do the derivation trees of S. �

1.2 Inductive sets of properties and recognizability

This section is a mild introduction to the algebraic notion of recognizability. This
notion can be defined in several equivalent ways and we begin with its most concrete
characterization, based on finite sets of properties that can be checked inductively.

1.2.1 Properties of the words of a context-free language

Let us consider the problem of proving an assertion of the form ∀w ∈L.P(w), where L
is a context-free language, an equational set of graphs or, more generally, an equational
set in an F-algebra with domain M , and where P is a property of the elements of M .
Such an assertion expresses that P is universally valid on L.
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Example 1.5 Let X := { f ,x,y} and L ⊆ X ∗ be the language defined as the least
solution (it is actually the unique solution) of the equation L = f LL ∪ {x,y}. This
language is the set of Polish prefix notations of the terms in T ({ f ,x,y}), where
ρ( f )= 2 and ρ(x)= ρ(y)= 0. It satisfies the assertion ∀w ∈ L.P(w), where property
P(w) is defined by

2|w|f = |w|− 1 ∧ ∀u ∈ X ∗(u < w⇒ 2|u|f ≥ |u|).

Here |w| denotes the length of a word w, |w|f the number of occurrences of f in w

and < the strict prefix order on words. Establishing the following facts is a routine
exercise:

(i) P(w) holds if w= x or w= y;
(ii) P(w) holds if w= f w1w2 and P(w1) and P(w2) both hold.

Then the proof that ∀w ∈ L.P(w) holds can be done by induction on the length of a
derivation sequence of a word w in L, relative to the context-free grammar with rules
A→ f AA, A→ x and A→ y.

However this proof can also be formulated in terms of equation systems. By the
Least Fixed-Point Theorem (Theorem 3.7), the least solution in P(M )n of a system S
of the form (1.4) is also the least solution of the corresponding system of inclusions:⎧⎪⎪⎨⎪⎪⎩

L1 ⊇ p1(L1, . . . ,Ln)

...
...

Ln ⊇ pn(L1, . . . ,Ln),

(1.5)

where Li ⊆M . In the above example, Facts (i) and (ii) can be restated as the inclusion

KP ⊇ f KPKP ∪{x,y}, (1.6)

where KP :={w∈X ∗ |P(w)}. Since the language L, defined by L= f LL∪{x,y}, is also
the least solution of (1.6), we have L⊆KP , which yields the validity of ∀w ∈ L.P(w).

We will say that an assertion of the form ∀w ∈ L.P(w) is provable by fixed-point
induction in order to express that this method applies, i.e., that property P satisfies
Facts (i) and (ii). A property Q may be universally valid on the language L without
this being provable by fixed-point induction. For example consider the property Q(w)

defined for w ∈ X ∗ by |w| = 1 or w �= w̃ (where w̃ denotes the mirror image of w)
and KQ := {w ∈ X ∗ |Q(w)}. It is not true that f KQKQ ⊆KQ (since x and f belong to
KQ and fxf /∈ KQ). However, L⊆ KQ. Hence the valid assertion ∀w ∈ L.Q(w) is not
provable by fixed-point induction.

In order to establish that Q is universally valid on L it suffices to find a property R
such that:
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(1) ∀w ∈ X ∗(R(w)⇒Q(w)) is true; and
(2) ∀w ∈ L.R(w) is provable by fixed-point induction.

We can take R(w) :⇐⇒ w ∈ {x,y} ∪ f X ∗{x,y}. We prove in this way a stronger
assertion than ∀w ∈ L.Q(w), which was the initial goal.

Finding such R is always possible in a trivial way, by taking R(w) to mean that w

belongs to L, which does not yield any proof since (1) is just what is to be proved and
(2) holds in a trivial way. Hence this observation is interesting if R can be found such
that (1) and (2) are “easily provable,” which is not a rigorous notion. A proof method
can be defined by requiring that R is expressed in a particular language and/or that
the proofs of (1) and (2) can be done in a particular proof system. We will give below
an example of such a situation (Proposition 1.6). �

We generalize the notion of an assertion provable by fixed-point induction to sys-
tems of equations. Let S be an equation system of the general form (1.4) and let
(L1, . . . ,Ln) be its least solution in P(M )n for some F-algebra M. Let (Pi)1≤i≤n be
an n-tuple of properties of elements of M , such that the assertion

∀i ∈ [n],∀d ∈ Li.Pi(d) (1.7)

is true. We say that this assertion is provable by fixed-point induction if

KPi ⊇ pi(KP1 , . . . ,KPn), (1.8)

for each i = 1, . . . ,n, where KPi denotes {d ∈M | Pi(d)}. It follows from the Least
Fixed-Point Theorem that the validity of (1.8) for all i implies that Li ⊆ KPi for all
i, hence that the considered assertion (1.7) is true. The proof method consisting in
proving (1.8) to establish (1.7) is thus sound.

Let us go back to context-free languages. Let the context-free language L1⊆ A∗ be
defined as the first component of the least solution (L1, . . . ,Ln) of an equation system
S = 〈x1 = p1, . . . ,xn = pn〉.
Proposition 1.6 For every regular language K such that L1 ⊆ K , there exists an
n-tuple of regular languages (K1, . . . ,Kn) such that K1⊆K and such that the assertion

∀i ∈ [n],∀d ∈ Li.d ∈ Ki

is provable by fixed-point induction.

Proof sketch: We have K = h−1(N ), where h is a homomorphism of A∗ into a finite
monoid9 Q = 〈Q, ·Q,1Q〉 and N ⊆ Q ([*Eil, *Sak]). We define Ki := h−1(h(Li)) =⋃{h−1(q) | q ∈Q, h−1(q)∩Li �= ∅}. Note that this definition does not depend on N .

9 Q= 〈Q, ·Q,1Q〉 is a monoid if the binary operation ·Q is associative with 1Q as a unit element.
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We first prove that K1 ⊆ K . We consider a word v in K1. For some word v′ in L1,
we have h(v)= h(v′). Since L1 ⊆ K , we have v′ ∈ K . Hence v ∈ K since h(v′) ∈ N
and K = h−1(N ). This achieves the first goal.

In order to prove that for each i we have pi(K1, . . . ,Kn)⊆Ki, we need only consider
a monomial α of pi (i.e., the right-hand side of a rule xi → α of the context-free
grammar S) and prove that

w0Ki1w1 · · ·Kik wk ⊆ Ki, (1.9)

where α = w0xi1w1xi2 · · ·xik wk with w0, . . . ,wk ∈ A∗. Let vj ∈ Kij for j = 1, . . . ,k .
There exist v′1, . . . ,v′k such that h(v′j)= h(vj) and v′j ∈ Lij for each j. Hence the word
v′ = w0v

′
1w1 · · ·v′kwk belongs to Li, because (L1, . . . ,Ln) is a solution of S. Letting

v =w0v1w1 · · ·vkwk we have h(v)= h(v′) hence v ∈ Ki. This proves inclusion (1.9)
and completes the proof of the proposition.

This result shows that assertions of the form L⊆ K , where L is a context-free lan-
guage and K is a regular one, can be proved by fixed-point induction. The proofs that a
“guessed” n-tuple (K ′1, . . . ,K ′n) satisfies K ′1⊆K and the inclusions K ′i ⊇ pi(K ′1, . . . ,K ′n)
establish that L1⊆K and use only algorithms on finite automata: Boolean operations,
concatenation and emptiness test.

1.2.2 Some properties of series-parallel graphs

We now show that fixed-point induction can also be used for proving universal prop-
erties of equational sets of graphs. We use the example of the set of series-parallel
graphs defined by Equation (1.3) considered in Section 1.1.3:

S = (S � S)∪ (S • S)∪{e},

where S ⊆ J d
2 . We will prove the assertions ∀G ∈ S.Pi(G), where the properties Pi

are defined as follows:

P1(G) :⇐⇒G is connected,
P2(G) :⇐⇒G is bipolar,
P3(G) :⇐⇒G is planar,
P4(G) :⇐⇒G has no directed cycle.

Adirected graph G with two sources denoted by srcG(1) and srcG(2) (cf. Section 1.1.3)
is bipolar if it has no directed cycle and every vertex belongs to a directed path from
srcG(1) to srcG(2).

Following the same method as for the language L of Example 1.5, we need only
prove that Pi(e) holds and that, for all graphs G,H in J d

2 : Pi(G) ∧ Pi(H ) implies
Pi(G � H ) ∧ Pi(G •H ).
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These facts are clearly true for properties P1 and P2. The assertions that every graph
in S satisfies P1 on the one hand and P2 on the other are thus provable by fixed-point
induction, hence P1 and P2 are universally valid on S.

Property P3 is not provable in this way because it is not true that, for all graphs
G,H in J d

2 , P3(G) ∧ P3(H ) implies P3(G �H ). For a counterexample, take H to be
an edge, G to be K5 minus one edge (K5 is a complete simple undirected graph with
five vertices) and equipped with sources in such a way that G � H is isomorphic to
K5, which is nonplanar. However, G and H are both planar, hence satisfy P3.

For proving that every series-parallel graph is planar, we can use the property Q
saying that a graph has a planar drawing with its two sources on the external face. (The
books [*Die] and [*MohaTho] give formal definitions about graphs on surfaces.) This
property is provable by fixed-point induction (with respect to the equation defining S),
hence it is true for all graphs in S. Since Q(G) implies P3(G) for all graphs G in J d

2 ,
we obtain the announced result.

The case of property P4 (the absence of directed cycles) is similar. The asser-
tion that every graph in S satisfies P4 is not provable by fixed-point induction;
however, it is true. To prove it, one takes the stronger property P2 considered
above.

This proof technique can be applied to systems of equations (and not only to single
equations) and to graph properties expressed in monadic second-order logic (see
Section 1.3). More precisely, for every such graph property P and every equational
set of graphs L:

(1) we can decide whether or not P is universally valid on L;
(2) if P is, then we can build a set of auxiliary properties, like the sets K1, . . . ,Kn

in Proposition 1.6, that yields a proof by fixed-point induction of the universal
validity of P on L.

These constructions and the verification of conditions like (1.8) can be done by
algorithms.

1.2.3 Inductive sets of properties

We now consider properties that are not necessarily universally valid on the considered
sets of graphs, so that they raise decision problems. We will consider a graph property
as a function from graphs to {True,False}.

Example 1.7 (Cographs) The property E(G) that a cograph G (cographs are defined
in Section 1.1.2) has an even number of vertices is not universally valid. However, it
satisfies the following rules:

E(1)= False,



1.2 Inductive sets of properties and recognizability 33

E(G⊕H )= (E(G)⇔ E(H )),

E(G⊗H )= (E(G)⇔ E(H )).

For Boolean values p and q, p⇔ q is defined as usual as ((p∧ q)∨ (¬p∧¬q)). It
follows that if a cograph G is the value of a term t in T ({⊕,⊗,1}) (we denote this
by G= val(t)), then the validity of E(G) can be determined by computing E(val(t′))
for all subterms t′ of t, starting with the smallest ones. This type of computation can
be done by automata on terms that we will present in Section 1.2.4.

The property F(G), defined as “G has an even number of edges,” can be checked
in a similar way by computing simultaneously E(val(t′)) and F(val(t′)) for every
subterm t′ of t. This computation uses the following rules:

F(1)= True,

F(G⊕H )= (F(G)⇔ F(H )),

F(G⊗H )=
((

F(G)⇔ F(H )
)
∧
(
E(G)∨E(H )

))
∨
((

F(G)⇔¬F(H )
)
∧
(
¬E(G)∧¬E(H )

))
.

Hence, F(G) can be checked with the help of E(G) as additional information. �

We now generalize this computation method. We introduce a definition relative
to an arbitrary F-algebra M. Let P be a set of properties, i.e., of mappings: M →
{True,False}. We say that P is F-inductive if for every P ∈P , for every f ∈F of arity
n > 0, and for every m1, . . . ,mn in M , the Boolean value P( fM(m1, . . . ,mn)) can be
computed by a fixed Boolean expression depending on P and f , in terms of finitely
many Boolean values Q(mi) with Q in P and i= 1, . . . ,n.

In the previous example, the set of properties {E,F} is {⊕,⊗}-inductive for the
algebra of cographs, but the set {F} is not. The computation of F(G⊗H ) can be
expressed by

F(G⊗H )= B(E(G),F(G),E(H ),F(H )),

where B(p1,p2,p3,p4) is the Boolean expression(
(p2⇔ p4)∧ (p1∨ p3)

)
∨
(
(p2⇔¬p4)∧ (¬p1∧¬p3)

)
.

In order to have a uniform notation, if P is finite and enumerated as {P1, . . . ,Pk},
we write

Pi( fM(m1, . . . ,mn))

= Bi, f

(
P1(m1), . . . ,Pk(m1),P1(m2), . . . ,Pk (m2), . . . ,P1(mn), . . . ,Pk (mn)

)
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to formalize the way Pi( fM(m1, . . . ,mn)) can be computed from the Boolean values
Pi(mj). In this writing, each Bi, f is a Boolean expression in the propositional variables
ph, j, 1≤ h≤ k , 1≤ j ≤ n, and Ph(mj) is substituted in Bi, f for ph, j.

An important theorem is the following one:

Theorem 1.8 (Filtering Theorem, concrete version) Let M be an F-algebra and
P be a finite F-inductive set of properties. For every equational set L of M, for every
P in P , the set LP := {x ∈ L | P(x)} is equational. If the Boolean expressions involved
in the definition of the inductivity of P are given, then the construction of a system
of equations defining LP from one defining L is effective, i.e., can be done by an
algorithm. �

The classical result saying that the intersection of a context-free language and
a regular one is context-free is a special case of this theorem. Let us consider the
language L of Example 1.5 defined by the equation L = f LL ∪ {x,y}. From this
language we want to keep only the words whose length is a multiple of 3. For i ∈
{0,1,2}, we let Li := {w ∈ L | mod3(|w|) = i}. The triple (L0,L1,L2) is the least
solution (and actually also the unique one) of the following system:

⎧⎪⎨⎪⎩
L0 = f L0L2 ∪ f L1L1 ∪ f L2L0,

L1 = f L0L0 ∪ f L1L2 ∪ f L2L1 ∪{x,y},
L2 = f L0L1 ∪ f L1L0 ∪ f L2L2.

It follows that the language L0 is context-free. A similar example for cographs is
System (1.2) in Section 1.1.2 (cf. the discussion after (1.2)).

Corollary 1.9 Let M and P be as in Theorem 1.8. For every equational set L of M,
one can decide whether or not a property P in P is universally valid on L, and whether
or not it is satisfied by some element of L.

Proof sketch: We assume that L is given by a system of equations S. By using
Theorem 1.8 we can construct a system S′ that defines LP . As noted in Section 1.1.4,
we can test the emptiness of the components of the least solution of S ′, hence in
particular of LP . We can thus decide if P is satisfied by some element of L.

Since P is inductive, so is P ∪{¬P}. We can apply the previous result to¬P. Then
P is universally valid on L if and only if L¬P = ∅, which is decidable.

Example 1.10 We again let L be the language of Example 1.5 defined by the equation
L = f LL∪ {x,y}. We know from this example that every word of L has odd length
(because |w| = 2|w|f + 1 for every w ∈ L), but we will see how the algorithm of
Corollary 1.9 “discovers” this fact. Let K0 and K1 be the sets of words in L of even
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and odd length respectively. These languages are defined by the two equations:

{
K0 = f K0K1 ∪ f K1K0,

K1 = f K0K0 ∪ f K1K1 ∪{x,y}.

It is easy to see that K0 is empty (just look at the corresponding context-free grammar).
Hence K1 = L and every word of L has odd length. �

It is useful to have a proof by fixed-point induction that a property is univer-
sally valid on an equational set although an algorithm can also give the answer,
because a proof is more informative than the yes or no answer of an algorithm:
it shows the properties of all components of the solution of the equation system
that “contribute” to the validity of the proved property. This is clear in the case of
Proposition 1.6.

We now consider one more example about graphs.

Example 1.11 (The 2-colorability of series-parallel graphs) We illustrate Theo-
rem 1.8 with the 2-colorability of series-parallel graphs. A proper vertex k-coloring
of a graph assigns to each vertex a color, i.e., an element of {1, . . . ,k} such that two
adjacent vertices have different colors. A graph is k-colorable if it has a proper ver-
tex k-coloring. We consider three properties of a series-parallel graph G defined as
follows:

γ2(G) :⇐⇒ G is 2-colorable,

σ(G) :⇐⇒ G is 2-colorable with the two sources of the same color,

δ(G) :⇐⇒ G is 2-colorable with the two sources of different colors.

The set of series-parallel graphs is defined by Equation (1.3):

S = (S � S)∪ (S • S)∪{e},

in the algebra 〈J d
2 ,�,•,e〉.

Property γ2 is not universally valid on S because γ2(e� (e • e))= False.10 The set
{γ2} is not inductive because γ2(e) = True, γ2(e • e) = True, γ2(e � e) = True and
γ2(e � (e • e))= False. It follows that the validity of γ2(G � H ) cannot be deduced
from those of γ2(G) and γ2(H ). Hence, as in the case of property F for cographs in
Example 1.7, we need additional properties. They will be σ and δ. The set {σ ,δ} is

10 One can prove by fixed-point induction that every series-parallel graph is 3-colorable in such a way
that its two sources have different colors.
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inductive; this is clear from the following facts:

σ(G •H ) = (σ (G)∧σ(H ))∨ (δ(G)∧ δ(H )),

δ(G •H ) = (δ(G)∧σ(H ))∨ (σ (G)∧ δ(H )),

σ(G � H ) = σ(G)∧σ(H ),

δ(G � H ) = δ(G)∧ δ(H ).

(1.10)

One can thus compute for every term t in T ({�,•,e}) the pair of Boolean values
(σ (val(t)),δ(val(t))) by induction on the structure of t (where val(t) is the graph in
J d

2 defined by a term t). From the pair of Boolean values associated with a term t
such that val(t) = G, one can decide whether γ2(G) holds or not, since for every
graph G in J d

2 , γ2(G) is equivalent to σ(G)∨ δ(G). This computation can be for-
malized as the run of a finite deterministic automaton on t because the considered
inductive set of properties, here {σ ,δ}, is finite. The finiteness of a set of induc-
tive properties is the essence of the notion of recognizability that we now introduce
informally. �

1.2.4 Recognizability

In Formal Language Theory, the recognizability (or regularity) of a set of finite or
infinite words or terms means frequently that this set is defined by a finite automaton
of some kind. Recognizable sets of finite words and terms are defined by finite deter-
ministic automata and this fact yields algebraic characterizations of recognizability
in terms of homomorphisms into finite algebras. In particular, a language L⊆ A∗ is
recognizable if and only if L = h−1(N ) where h : A∗ → Q is a monoid homomor-
phism, Q is a finite monoid and N ⊆ Q. (We have used this fact in the proof of
Proposition 1.6.)

This characterization has the advantage of being extendable in a meaningful way
to any algebra, whereas the notion of automaton has no immediate generalization to
arbitrary algebras. Furthermore, it fits very well with the notion of an equational set.
The Filtering Theorem shows this, as we will explain in Section 1.2.5.

Following Mezei and Wright [MezWri], we say that a subset L of an F-algebra
M (where F is finite) is recognizable if L = h−1(N ) for some homomorphism of
F-algebras h : M→Q, where Q is a finite F-algebra and N ⊆Q. We will denote by
Rec(M) the family of recognizable subsets of M.

The above definition of recognizability of L is equivalent to saying that the property
PL of the elements of M , such that PL(x) is True if and only if x ∈ L, belongs to a
finite F-inductive set of properties. In fact, assume that L is recognizable and let Q=
{q1, . . . ,qk}. Define for each i ∈ [k] the property Pi by: Pi(m) :⇐⇒ h(m)= qi. Since
h( fM(m1, . . . ,mn)) = fQ(h(m1), . . . ,h(mn)), the Boolean value Pi( fM(m1, . . . ,mn))

can be computed from the Boolean values Ph(mj), by a Boolean expression. Thus,



1.2 Inductive sets of properties and recognizability 37

{P1, . . . ,Pk} is F-inductive in M. Hence, also the set {PL,P1, . . . ,Pk } is inductive,
because PL(m) =∨qi∈N Pi(m). The other direction of the equivalence is discussed
in Section 1.2.5.

Proposition 1.6 also holds in general for recognizable sets instead of regular lan-
guages (with exactly the same proof, replacing A∗ by M). Thus, inclusions L ⊆ K
with L ∈ Equat(M) and K ∈ Rec(M) are provable by fixed-point induction, using
auxiliary properties that correspond to recognizable subsets of M . Together with
Corollary 1.9, this shows that the analogues of statements (1) and (2) at the end of
Section 1.2.2 hold for properties that correspond to recognizable sets, in arbitrary
algebras.

We now recall the link between recognizability for subsets of T (F) and finite
automata on terms (i.e., bottom-up finite tree automata). Let us consider a set
L ∈ Rec(T(F)) defined as L = h−1(N ), where h is the unique homomorphism:
T(F)→Q, Q is a finite F-algebra and N ⊆Q. (Note that h(t)= tQ.) The pair (Q,N )

corresponds to a finite deterministic and complete F-automaton A (Q,N ) (the gen-
eral definitions can be found in the book [*Com+] and in the book chapter [*GecSte],
Section 3.3) with set of states Q, set of accepting states N and transitions consist-
ing of the tuples (a1, . . . ,aρ( f ), f ,a) such that f ∈ F , a1, . . . ,aρ( f ),a ∈ Q and a =
fQ(a1, . . . ,aρ( f )).

On each term t in T (F), the automaton A =A (Q,N ) has a unique (“bottom-up”)
run, defined as a mapping runA ,t : Pos(t)→Q such that runA ,t(u)= h(t/u) for every
position11 u of t. Hence t is accepted by A if and only if h(t)= runA ,t(roott) ∈ N .

Conversely, if L is the set of terms in T (F) accepted by a finite, possibly not
deterministic, automaton B, then it is also accepted by a finite deterministic and
complete automaton A (that one can construct from B) and there is a unique pair
(Q,N ) such that A (Q,N )=A . Hence, L is recognizable in T(F).

By a recognizable set of graphs, we will mean a subset of a graph algebra that
is recognizable with respect to that algebra. No notion of “graph automaton” arises
from this definition. However, we obtain finite automata accepting the sets of terms
that denote the graphs of recognizable sets (this is true because the signature is finite).
We will give a more precise statement in Theorem 1.12 below.

1.2.5 From inductive sets to automata

Let P = {P1, . . . ,Pk } be a finite inductive set of properties on an F-algebra M, where
F is finite. We associate with P a finite deterministic and complete F-automaton
A =A (Q,N ) as follows. Its set of states is Q = {True,False}k ; its transitions, i.e.,
the operations of Q, are defined in such a way that for every f in F of arity n, we
have: fQ(q1, . . . ,qn)= q if and only if qi = (a1,i, . . . ,ak ,i), q= (b1, . . . ,bk) belong to

11 The set Pos(t) of positions of t is the set of occurrences of the symbols of F . We denote by t/u the
subterm of t issued from u and by roott the first position of t. Formal definitions are in Chapter 2.
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{True,False}k and (we use the notation introduced in Section 1.2.3):

bi = Bi, f (a1,1, . . . ,ak ,1,a1,2, . . . ,ak ,2, . . . ,a1,n, . . . ,ak ,n).

It follows that for every t ∈ T (F), tQ = (P1(tM), . . . ,Pk (tM)) ∈ {True,False}k .
Hence if we want to specify by an automaton the set of objects m ∈M that satisfy

P3(m) (to take an example), we take as set N of accepting states the set of Boolean
vectors (b1, . . . ,bk) such that b3 = True. More precisely, a term t ∈ T (F) is accepted
by A if and only if tM has property P3.

This proves the implication (2)⇒ (3) in the next result. The other direction also
holds, provided M is generated by F (as defined in Section 1.1.4).

Theorem 1.12 Let M be an F-algebra generated by F , where F is finite, and let
L⊆M . The following are equivalent:

(1) L is recognizable in M;
(2) L= {m ∈M | P(m)}, where P belongs to a finite F-inductive set of properties;
(3) the set of terms t in T (F) such that tM belongs to L is recognizable in T(F),

equivalently, is the set accepted by a finite F-automaton. �

The equivalence of (1) and (2) gives a concrete meaning to the algebraic notion
of recognizability (and does not need M being generated by F). The implication
(1)⇒ (2) was shown in Section 1.2.4. The other direction follows from the above
discussion. If h : M → Q is defined by h(m) := (P1(m), . . . ,Pk (m)), then h is a
homomorphism from M to the finite F-algebra Q, because P is inductive. And, e.g.,
h−1(N )= {m ∈M | P3(m)}.

Let us now assume that L is an equational set of M, defined by an equation system
S = 〈x1 = p1, . . . ,xn = pn〉, and that L ⊆ {m ∈ M | P3(m)}. The equivalence of (1)
and (2) implies that such an inclusion is provable by fixed-point induction, using
auxiliary properties R1, . . . ,Rn that belong to a finite inductive set of properties. In
fact, considering the proof of Proposition 1.6, with the above definition of Q, N
and h, it can be seen that every Ri is a Boolean combination of P1, . . . ,Pk and hence
P ∪{R1, . . . ,Rn} is an inductive set of properties.

The equivalence of (1) and (3) implies that the membership in a recognizable set
of an element of M , given as tM, for some term t in T (F), or the validity of P(tM),
where P belongs to a finite inductive set of properties, can be checked in time O(|t|),
i.e., in time linear in the size of t.

Let us go back to Example 1.11 about the 2-colorability of series-parallel graphs.
For the inductive set P = {σ ,δ} we obtain the set of states

Q= {True,False}× {True,False} = {(σ ,δ),(σ ,δ),(σ ,δ),(σ ,δ)},

where, for readability, we use σ and δ to denote True and σ and δ to denote False.
For every state q ∈ Q we let Sq be the set of series-parallel graphs G such that
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(σ (G),δ(G)) = q, i.e., Sq = h−1(q)∩ S with h(G) = (σ (G),δ(G)) (cf. the proof of
Proposition 1.6). Thus, Sσ ,δ is the set of series-parallel graphs that satisfy σ and δ,
Sσ ,δ the set of those that satisfy σ and not δ, Sσ ,δ the set of those that satisfy δ and
not σ , and Sσ ,δ the set of those that satisfy neither σ nor δ. From Properties (1.10)
we obtain the operations �Q, •Q and the constant eQ, which determine the transi-
tions of the automaton A . For example, since the graph defined by e satisfies δ

and not σ , we have eQ = (σ ,δ). As another example, if G = H • K and both H
and K satisfy δ and not σ , then G satisfies σ and not δ; hence •Q((σ ,δ),(σ ,δ)) =
(σ ,δ).

From the defining equation S = (S � S)∪ (S • S)∪ e and the transitions of A we
obtain the following system of equations that define the sets Sσ ,δ, Sσ ,δ , Sσ ,δ and Sσ ,δ
(we omit parentheses around terms like Sσ ,δ � Sσ ,δ for better readability):

(a) Sσ ,δ=Sσ ,δ � Sσ ,δ

∪Sσ ,δ • Sσ ,δ ∪ Sσ ,δ • Sσ ,δ ∪ Sσ ,δ • Sσ ,δ

∪Sσ ,δ • Sσ ,δ ∪ Sσ ,δ • Sσ ,δ,

(b) Sσ ,δ=e ∪ Sσ ,δ � Sσ ,δ ∪ Sσ ,δ � Sσ ,δ ∪ Sσ ,δ � Sσ ,δ

∪Sσ ,δ • Sσ ,δ ∪ Sσ ,δ • Sσ ,δ,

(c) Sσ ,δ=Sσ ,δ � Sσ ,δ ∪ Sσ ,δ � Sσ ,δ ∪ Sσ ,δ � Sσ ,δ

∪Sσ ,δ • Sσ ,δ ∪ Sσ ,δ • Sσ ,δ,

(d) Sσ ,δ=Sσ ,δ � Sσ ,δ ∪ Sσ ,δ � Sσ ,δ ∪ Sσ ,δ � Sσ ,δ ∪ Sσ ,δ � Sσ ,δ

∪Sσ ,δ � Sσ ,δ ∪ Sσ ,δ � Sσ ,δ ∪ Sσ ,δ � Sσ ,δ ∪ Sσ ,δ � Sσ ,δ

∪Sσ ,δ � Sσ ,δ ∪ Sσ ,δ • Sσ ,δ ∪ Sσ ,δ • Sσ ,δ ∪ Sσ ,δ • Sσ ,δ

∪Sσ ,δ • Sσ ,δ ∪ Sσ ,δ • Sσ ,δ ∪ Sσ ,δ • Sσ ,δ ∪ Sσ ,δ • Sσ ,δ .

These equations are constructed as follows. Since eQ = (σ ,δ), the constant symbol
e is put in the right-hand side of the equation that defines Sσ ,δ and nowhere else.
Moreover, for f ∈ {�,•}, if fQ(q1,q2)= q, then we put the monomial f (Sq1 ,Sq2) in
the right-hand side of the equation that defines Sq. Thus, Sσ ,δ •Sσ ,δ is in the right-hand
side of Equation (c).

Since we have e in the right-hand side of Equation (b), we have Sσ ,δ �= ∅. Using this
fact and since we have the term Sσ ,δ • Sσ ,δ in the right-hand side of Equation (c), we
have Sσ ,δ �= ∅. And by these facts and since we have Sσ ,δ �Sσ ,δ in the right-hand side
of Equation (d), we have Sσ ,δ �= ∅. Since every term in the right-hand side of Equation
(a) contains Sσ ,δ, we have Sσ ,δ =∅. This proves that no series-parallel graph has one
coloring of type σ and another one of type δ. Moreover, according to the proof of
Proposition 1.6, this property is provable by fixed-point induction, as the reader can
easily check. Using this and the commutativity of �, we can simplify the system into
the following one:
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(b′) Sσ ,δ=e ∪ Sσ ,δ � Sσ ,δ ∪ Sσ ,δ • Sσ ,δ ∪ Sσ ,δ • Sσ ,δ ,

(c′) Sσ ,δ=Sσ ,δ � Sσ ,δ ∪ Sσ ,δ • Sσ ,δ ∪ Sσ ,δ • Sσ ,δ ,

(d′) Sσ ,δ=Sσ ,δ � Sσ ,δ ∪ Sσ ,δ � Sσ ,δ ∪ Sσ ,δ � Sσ ,δ ∪ Sσ ,δ � Sσ ,δ

∪ Sσ ,δ • Sσ ,δ ∪ Sσ ,δ • Sσ ,δ ∪ Sσ ,δ • Sσ ,δ

∪ Sσ ,δ • Sσ ,δ ∪ Sσ ,δ • Sσ ,δ.

Thus, this construction proves that every series-parallel graph either has no 2-coloring
(it is then generated by Sσ ,δ) or has one of type σ and none of type δ (it is generated
by Sσ ,δ) or has one of type δ and none of type σ (it is generated by Sσ ,δ). Let us for
clarity replace Sσ ,δ by Tσ and Sσ ,δ by Tδ . Then the set T of 2-colorable series-parallel
graphs is defined by the equation system:

⎧⎪⎨⎪⎩
T = Tσ ∪Tδ,

Tσ = Tσ � Tσ ∪ Tσ •Tσ ∪ Tδ •Tδ,

Tδ = e ∪ Tδ � Tδ ∪ Tσ •Tδ ∪ Tδ •Tσ .

The construction of this system is based on Properties (1.10). A similar construction
can be done for every equation system and every finite inductive set of properties,
which proves the Filtering Theorem (Theorem 1.8).

1.3 Monadic second-order logic

We now introduce monadic second-order logic, a logical language with which we
will specify finite inductive sets of properties. It is actually a favorite language
among logicians because it is decidable for many sets of (finite or infinite) structures.
Furthermore, it is suitable for expressing numerous graph properties.

1.3.1 Monadic second-order graph properties

We first explain how a graph can be made into a logical structure, hence can be a
model of a sentence. For every graph G, we let �G� be12 the relational structure13

〈VG ,edgG〉 with domain VG, the set of vertices. Its second component is the binary
relation edgG ⊆ VG ×VG, such that (x,y) ∈ edgG if and only if there exists an edge
from x to y if G is directed, and an edge between x and y if G is undirected.

The classical undirected graphs Kn and Kn,m are represented by the following
relational structures:14

12 In some cases, we will write G instead of �G�.
13 Relational structures are first-order logical structures without functions of positive arity. See Section 1.9

and Chapter 5 for detailed definitions.
14 [n] denotes {1, . . . ,n}.
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�Kn� := 〈[n],edgn〉,
edgn(x,y) :⇐⇒ x,y ∈ [n] and x �= y,

�Kn,m� := 〈[n+m],edgn,m〉
edgn,m(x,y) :⇐⇒ 1≤ x ≤ n and n+ 1≤ y ≤ n+m, or

1≤ y ≤ n and n+ 1≤ x ≤ n+m.

Properties of a graph G can be expressed by sentences15 of relevant logical
languages, that are interpreted in �G�. For example, if G is a directed graph, then

�G� |= ∀x∃y,z(edg(y,x) ∧ edg(x,z))

if and only if every vertex of G has at least one incoming edge and at least one
outgoing edge (we may have y = z = x). If G is a simple undirected graph, then we
have

�G� |= ∀x
(
¬edg(x,x)

)
∧¬∃w,x,y,z

(
edg(w,x)∧ edg(x,y)∧ edg(y,z)

∧¬edg(w,y)∧¬edg(w,z)∧¬edg(x,z)
)

if and only if G has no loop and no induced subgraph isomorphic to P4 (P4 is the
graph •− •− •− •). If G is assumed finite and nonempty, this property expresses
that it is a cograph. This is an alternative characterization of cographs that has no
immediate relation with the grammatical definition given in Section 1.1.2.

A simple graph G is completely defined by the relational structure �G�: we will
say that the representation of G by �G� is faithful. This representation is not faithful
for graphs with multiple edges: the graphs e and e � e (we use here the notation of
Section 1.1.3) are not the same but the structures �e� and �e � e� are. The graph
properties expressed by logical formulas via the structures �G� are necessarily inde-
pendent of the multiplicity of edges. We will present in Section 1.8 a representation
of a graph G by a relational structure denoted �G� that is faithful, where each edge
of G is also an element of the domain of �G�. The incidence between edges and
vertices is represented by two binary relations in �G� if G is directed and by only one
if G is undirected. By using this alternative representation, we will be able to express
properties that distinguish multiple edges.

The above two examples use first-order formulas whose variables denote vertices.
Monadic second-order formulas have a richer syntax and wider expressive power.
They also use variables denoting sets of vertices. Uppercase variables will denote

15 A sentence is a formula without free variables. The notation S |= ϕ means that a sentence ϕ is true in
the relational structure S; in that case S is said to be a model of ϕ.
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sets of vertices, and lowercase variables will denote individual vertices. The property

�G� |= ∃X
(
∃x.x ∈ X ∧ ∃y.y /∈ X ∧ ∀x,y(edg(x,y)⇒ (x ∈ X ⇔ y ∈ X ))

)
holds if and only if G is not connected. (We consider the empty graph as connected.)
In this sentence, X is a set variable. Let γ3 be the sentence

∃X ,Y ,Z
(
Part(X ,Y ,Z)

∧∀x,y
(
edg(x,y) ∧ x �= y ⇒ ¬(x ∈ X ∧ y ∈ X )

∧¬(x ∈ Y ∧ y ∈ Y
) ∧ ¬(x ∈ Z ∧ y ∈ Z

)))
where Part(X ,Y ,Z) expresses that (X ,Y ,Z) is a partition16 of the domain. The
formula Part(X ,Y ,Z) is written as follows:

∀x
((

x ∈ X ∨ x ∈ Y ∨ x ∈ Z
)
∧
(
¬(x ∈ X ∧ x ∈ Y )

∧¬(x ∈ Y ∧ x ∈ Z) ∧ ¬(x ∈ X ∧ x ∈ Z)
))

.

Then �G� |= γ3 if and only if G is 3-colorable. That the ends of an edge are in different
sets X ,Y ,Z means that they have different colors.

For each integer k , one can construct a similar sentence γk such that, for every
graph G, we have �G� |= γk if and only if G is k-colorable.

Many graph constructions can be expressed in terms of basic ones like choos-
ing subsets and computing transitive closures of binary relations. The example of
3-colorability illustrates the first of these basic constructions. We have given a
sentence expressing nonconnectivity. Its negation expresses connectivity, hence a
property of the transitive closure of the relation edgG ∪ edg−1

G . We now give an
explicit construction of the transitive closure of an arbitrary binary relation.

Let R be a binary relation that is either a relation of the considered relational
structure (�G� or a more general one) or is defined by a formula R(u,v) with free
variables u and v. We say that a set X is R-closed if it satisfies the condition
∀u,v

(
u ∈ X ∧R(u,v)⇒ v ∈ X

)
. The formula ϕ(x,y), defined as

∀X (x ∈ X ∧ “X is R-closed”⇒ y ∈ X ),

where “X is R-closed” is to be replaced by the formula expressing this condition,
expresses that (x,y) belongs to R∗, the reflexive and transitive closure of R, i.e., that
there exists a finite sequence z1, . . . ,zn, such that x= z1, y= zn and (zi,zi+1)∈R for all
i= 1, . . . ,n−1. We sketch the proof of this claim. If x= z1, y= zn with (zi,zi+1) ∈ R
for all i, then for every R-closed set X such that x belongs to X , we have zi ∈ X for

16 A partition may have empty components.
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all i = 1, . . . ,n, hence y ∈ X and ϕ(x,y) holds. Conversely, if ϕ(x,y) holds then one
takes X = {z | (x,z) ∈ R∗}. It is R-closed, hence y ∈ X and (x,y) belongs to R∗.

In order to have a uniform notation, we denote by TC[R;x,y] this formula ϕ(x,y).
We can use it to build a formula with free variable Y expressing that G[Y ], the induced
subgraph of G with set of vertices Y , is connected. We let CONN(Y ) be the formula

∀x,y
(
x ∈ Y ∧ y ∈ Y ⇒ TC[R;x,y]),

where R is the relation defined by the formula ϕR with free variables u,v and Y :

u ∈ Y ∧ v ∈ Y ∧ (edg(u,v)∨ edg(v,u)
)
.

The variable Y is free in ϕR, hence it is also free in the monadic second-order
formula TC[R;x,y]. It is clear that the formula CONN(Y ) expresses the desired
property. This formula can be used for expressing further properties. The follow-
ing sentence expresses that an undirected graph G has a cycle with at least three
vertices:

∃x,y,z
(
x �= y∧ y �= z∧ x �= z∧ edg(x,z)∧ edg(z,y)

∧∃Y (z /∈ Y ∧ x ∈ Y ∧ y ∈ Y ∧CONN(Y )
))

.

Together with the expressibility of connectivity, we can thus express that a simple
undirected graph is a tree.17

Aiming at the expression of planarity, we examine the monadic second-order
expressibility of minor inclusion. We consider undirected graphs. We say that H
is a minor of G, denoted by H � G if and only if H is obtained from a subgraph
G′ of G by edge contractions. A graph G is planar if and only if it has no minor
isomorphic to K5 or to K3,3. (This is a variant due to Wagner of a well-known result
by Kuratowski; it is proved in the books [*Die] and [*MohaTho].)

Lemma 1.13 Let H be a simple, loop-free, undirected graph with set of vertices [n].
A graph G contains a minor isomorphic to H if and only if there are in G pairwise
disjoint nonempty sets of vertices Y1, . . . ,Yn such that each graph G[Yi] is connected
and, for every edge of H between i and j, there exists an edge in G between u and v

such that u ∈ Yi and v ∈ Yj . �

Corollary 1.14 For every graph H as in Lemma 1.13, there exists a monadic second-
order sentence MINORH such that, for every undirected graph G, we have �G� |=
MINORH if and only if G has a minor isomorphic to H .

17 A tree is a nonempty connected undirected graph without cycles. This last condition implies that a tree
has no loops and no multiple edges. The absence of loops is expressed by the sentence ∀x(¬edg(x,x)),
but the absence of multiple edges cannot be expressed by a sentence interpreted in �G�.
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Proof: The construction follows from Lemma 1.13. One takes for MINORH the
following sentence:

∃Y1, . . . ,Yn

( ∧
1≤i≤n

(
(∃y.y ∈ Yi)∧CONN(Yi)

)
∧

∧
1≤i<j≤n

¬∃y(y ∈ Yi ∧ y ∈ Yj
)

∧
∧

(i, j)∈edgH

∃u,v
(
u ∈ Yi ∧ v ∈ Yj ∧ edg(u,v)

))
.

Corollary 1.15 An undirected graph is planar if and only if it satisfies the sentence
¬MINORK5 ∧¬MINORK3,3 . �

With this collection of examples, the reader should have a good idea of how one
can express graph properties in monadic second-order logic. However, not all graph
properties can be expressed in this language. Here are some properties of a graph G and
of subsets X ,Y of its vertex set VG that are not monadic second-order expressible.

P1 : the cardinality |X | of the set X is even;
P2 : |X | is a prime number;
P3 : |X | = |Y |;
P4 : G has a nontrivial automorphism;
P5 : G has a Hamiltonian cycle.

There are some differences between these properties, however, and we have reme-
dies in some cases. For Property P1, the remedy consists of extending the language
by adding a set predicate, Even(X ), expressing that the set X has even cardinality.
All results that we will prove for monadic second-order logic hold for the extended
language called counting modulo 2 monadic second-order logic. The notation C2MS
will refer to it (and MS will refer to formulas written without cardinality predicates).

Property P5 is actually expressible by a sentence of monadic second-order logic that
additionally uses quantifications on sets of edges, and the incidence relations between
edges and vertices. This language is based on the representation of a graph G by the
richer relational structure than �G� that we will define in Section 1.8 and denote by
�G�. It can be viewed as another extension of monadic second-order logic that we will
denote by MS2, where the index 2 recalls that there are two types of elements in the
domain of �G�, vertices and edges. There are some significant differences between
the languages MS and MS2, but our main results presented in the next sections and
their applications to the construction of fixed-parameter tractable algorithms have
formulations that apply to MS2 as well as to MS.
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Concerning the other three properties, there is nothing to do. Adding new set pred-
icates, say CardPrime(X ) expressing that |X | is a prime number, or EqCard(X ,Y )

expressing that |X | = |Y |, or Auto(X ) expressing that G[X ] has a nontrivial
automorphism, yields extensions of monadic second-order logic for which the results
to be presented in Sections 1.4, 1.5 and 1.6 fail.18

1.3.2 Monadic second-order logic and recognizability

Logical sentences express properties of relational structures of the appropriate type.
They can also be viewed as finite specifications of sets of structures, namely, their
sets of models. We first make precise the corresponding terminology. For a logical
language L (such as MS, C2MS or MS2), we say that a property of relational structures
over a fixed finite set of relation symbols is L-expressible if it can be expressed by
a sentence of L. A set L of such structures is L-definable if the membership of a
structure in L is L-expressible. These definitions are applicable to graphs represented
by relational structures. Hence, with respect to a fixed representation, we will say that
a graph property is L-expressible. Examples have been given above. Let C be a set of
graphs; an element of C will be called a C-graph. We will say that a set of graphs L⊆ C
is an L-definable subset of C (or, an L-definable set of C-graphs) if the membership
of a graph in L is L-expressible and the considered representation is faithful for
C-graphs. Hence, the connectedness of a graph G is MS-expressible with respect to
its representation by �G�, but the set of connected graphs is not an MS-definable set
of graphs, because this representation is not faithful for graphs with multiple edges.
On the other hand, the set of connected simple graphs is an MS-definable set of simple
graphs. In the first case C is the set of all graphs, and in the second case it is the set
of all simple graphs.

Let F be a finite signature. There is a bijection between T (F) and a set of labeled
trees that are simple graphs. It follows that every term t in T (F) can be faithfully
represented by a relational structure �t� over a finite set of relations (the binary edge
relation of the tree, and a unary relation for each label). We say that a set L⊆ T (F)

is MS-definable if there exists an MS sentence ϕ such that L= {t ∈ T (F) | �t� |= ϕ}.
Since the property that a finite relational structure is isomorphic to �t� for some term
t in T (F) is itself MS-expressible, the set L⊆ T (F) is MS-definable19 if and only if
the set of relational structures that are isomorphic to some structure �t� for t in L is
MS-definable.

The following fundamental theorem is due to Doner [Don] and to Thatcher and
Wright [ThaWri] (see Section 1.10 for related references). We will prove it in
Chapters 5 and 6.

18 See the end of Section 7.5.
19 Using MS2 or C2MS sentences for defining sets of terms would not yield a wider class of definable

sets.
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Theorem 1.16 A set of terms over a finite signature is MS-definable if and only if it
is recognizable, i.e., accepted by a finite automaton. �

For the two graph algebras Gu := 〈Gu,⊕,⊗,1〉 and Jd
2 := 〈J d

2 ,�,•,e〉 whose oper-
ations are defined respectively in Sections 1.1.2 and 1.1.3, we have the following
results:

Proposition 1.17 Every MS-definable subset of Gu is recognizable in Gu. Every
MS2-definable subset of J d

2 is recognizable in Jd
2. �

This proposition is a corollary of the Recognizability Theorem (stated below in
Section 1.4.3) that applies to algebras that extend Gu and Jd

2.

1.4 Two graph algebras

Up to now, we have only given two examples of graph algebras, the algebra Gu in
which we have defined the cographs and the algebra Jd

2 in which we have defined the
series-parallel graphs. These algebras are subalgebras of two larger algebras that we
now define. They will differ by the way in which graphs will be composed: the first
algebra has operations that “bridge” two disjoint graphs by creating edges between
them (vertex labels determine how these edges are created) and the second one has
operations that “glue” two disjoint graphs by fusing certain vertices specified by
labels. The operations from which cographs and series-parallel graphs are defined
illustrate these two types of graph composition.

1.4.1 The algebra of simple graphs with ports

Our first graph algebra, called the VR algebra,20 generalizes the algebra Gu. In order
to define more powerful edge creating operations than⊗, we will use vertex-labeled
graphs. We let A be a countable set of labels. In this overview chapter, we take it
equal to N , the set of nonnegative integers. This will simplify some statements; in
Chapter 2 we will assume that N ⊆A. We let G be the set of (abstract) simple directed
graphs.21 This set contains Gu because for simple graphs we consider an undirected
edge as a pair of directed opposite edges. This is coherent with the representation of
a graph G by �G� defined in Section 1.3.1. We let GP be the set of (abstract) graphs
with ports, or p-graphs for short, defined as pairs G = 〈G◦,portG〉, where G◦ ∈ G
and portG is a mapping VG◦ →A. If portG(u)= a ∈A we say that u is an a-port of
G and that a is its port label. Every graph in G will be considered as the p-graph, all

20 We give it this name because its equational sets, the VR-equational sets of graphs, are the sets of graphs
generated by certain context-free graph grammars whose rewritings are based on vertex replacement.
See [*EngRoz] or [*Eng97] for comprehensive surveys.

21 “Abstract” means that two isomorphic graphs are considered as equal. This notion will be formalized
in Chapter 2.
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vertices of which are 1-ports; hence G ⊆ GP . The operations on GP are the following
ones. First, the disjoint union:22

G⊕H := 〈G◦ ⊕H◦, portG ∪ portH 〉.
Then we define unary operations that manipulate port labels. For a,b ∈ A and

G = 〈G◦,portG〉 we let

relaba→b(G) := 〈G◦,port〉, where

port(u) := if portG(u)= a then b else portG(u).

The next unary operations add directed edges.23 For a �= b, we define

−→
adda,b(G) as 〈G′,portG〉, where VG′ = VG and

edgG′ is edgG◦ ∪ {(u,v) | (portG(u),portG(v))= (a,b)}.
This operation adds an edge linking u to v whenever u is an a-port and v is a b-port,
unless there already exists one (we only consider simple graphs). It does not add
loops.

We let 1 be a constant symbol denoting a single vertex that is a 1-port and we let
1
 denote the same graph with a loop. The only way to define loops is by means of
these constant symbols. Moreover, we let ∅ be a constant symbol denoting the empty
graph, that we denote also by ∅. We denote empty sets24 by the different symbol ∅.

We obtain the algebra GP of (abstract) p-graphs, also called the VR algebra. Its
domain is GP and its signature, denoted by FVR, is the countable set of operations
introduced above. For every term t ∈ T (FVR), we denote by tGP its value, which
is a p-graph, computed according to the definitions of the operations of FVR. The
equational sets of GP are called the VR-equational sets.

The complete join G ⊗H can be defined in terms of the operations of FVR as
follows:

G⊗H := relab2→1(
−→
add2,1(

−→
add1,2(G⊕ relab1→2(H )))),

hence by the term relab2→1(
−→
add2,1(

−→
add1,2(x1⊕ relab1→2(x2)))). Such an operation,

defined by a term with variables, is called a derived operation of the relevant algebra,
here GP.25 Note that although this operation uses the port label 2, it transforms two

22 We assume G and H are disjoint. If they are not, for instance if H =G, we replace H by an isomorphic
copy disjoint from G. It follows that ⊕ is a well-defined binary function on isomorphism classes of
graphs, i.e., on abstract graphs.

23 To add undirected edges, we use
−→
addb,a(

−→
adda,b(G)). We will denote by adda,b the unary operation that

transforms G into
−→
addb,a(

−→
adda,b(G)).

24 We consider that an empty set of numbers is not equal to an empty set of words.
25 The unary operation adda,b is also a derived operation of GP, defined by the term

−→
addb,a(

−→
adda,b(x1)).

The operations r of the P-algebra M′ in Section 1.1.5 are derived operations of the F-algebra M, defined
by terms tr .
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graphs G,H in G (G is the set of graphs, all vertices of which are 1-ports) into a graph
in the same set.

Systems of equations (that define VR-equational sets) can frequently be written
more clearly with the help of derived operations. For example, Equation (1.1) in
Section 1.1.2 can be written as the following equation:

C = (C⊕C)∪ relab2→1(
−→
add2,1(

−→
add1,2(C⊕ relab1→2(C))))∪ 1,

where C defines a subset of GP , but it is more readable as in (1.1).
For each k ∈N we denote by FVR

[k] the finite subsignature of FVR consisting of the

operations written with port labels in [k].26 Hence

FVR
[k] := {⊕,relaba→b,

−−−→
adda,b,1,1
,∅ | 1≤ a,b≤ k}.

It is not hard to see that every p-graph with n vertices and port labels in [n] is the
value of a term t in FVR[n] . In many cases, however, much fewer labels suffice, and for
algorithmic applications it is useful to use as few labels as possible.

In this perspective, we define the clique-width of a graph G, either directed or
undirected, as the minimum k such that G is the value of a term in T (FVR

[k] ). This
number is denoted by cwd(G). Trees have clique-width at most 3. Cographs have
clique-width at most 2: this is clear because the above equation that defines cographs
uses only two port labels.

Proposition 1.18 Every VR-equational set of graphs has bounded clique-width. For
each k , the set of graphs of clique-width at most k is VR-equational.

Proof sketch: Let L be a VR-equational set of graphs. It is defined by an equation
system written with port labels in some set [k]. It follows that all p-graphs belonging
to the components of its least solution are the values of terms in FVR

[k] . In particular,
the graphs in L have clique-width at most k .

Conversely consider the sets of p-graphs S and T defined by the following equation
system: {

S = (S⊕ S)∪⋃ f (S)∪ 1∪ 1
 ∪∅,

T = relab2→1(· · ·(relabk→1(S) · · ·))
(1.11)

where the union extends to all unary operations f belonging to FVR
[k] . In the equation

that defines T , all port labels are transformed into 1. The set S consists of all p-graphs
defined by terms in T (FVR

[k] ) and the set T consists of those whose vertices are all
1-ports, hence of all graphs of clique-width at most k .

26 Recall that [k] = {1, . . . ,k} for k ∈N with [0] = ∅.
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At the cost of some technicalities that we want to avoid here, the notion of clique-
width and Proposition 1.18 can be extended to graphs with ports. However, port labels
are just a tool to construct graphs. Hence Proposition 1.18 states the main facts about
the relationship between VR-equational sets of graphs and clique-width.

The Clique-Width Checking problem consists of deciding whether or not
cwd(G)≤ k for given (G,k). It is NP-complete ([FelRRS]). It is not known whether
this problem is polynomial for fixed k , when k ≥ 4, but it is when k ≤ 3 ([CorHLRR]).

1.4.2 The algebra of graphs with sources

We now define an algebra of graphs with multiple edges, called the HR algebra,27

that extends the algebra Jd
2 = 〈J d

2 ,�,•,e〉 considered in Section 1.1.3.
We consider (abstract) directed or undirected graphs, possibly with multiple edges.

They form the set J . For a graph in J , EG denotes its set of edges (and VG its set of
vertices). We let A be a countable set of labels (as in Section 1.4.1 we take it equal to
N ) that will be used to distinguish particular vertices. These distinguished vertices
will be called sources, and A is the set of source labels. (This notion of source is
unrelated with edge directions.)

A graph with sources, or s-graph for short, is a pair G= 〈G◦,srcG〉, where G◦ ∈J
and srcG is a bijection from a finite subset τ(G) of A to a subset of VG◦ . We call τ(G)

the type of G and srcG(τ (G)) the set of its sources. The vertex srcG(a) is called the
a-source of G; its source label, also called its source name, is a.

We let J S denote the set of s-graphs; J is thus the set of s-graphs having an
empty type. Clearly, J d

2 ⊆J S and the elements of J d
2 are s-graphs of type {1,2}. We

define operations on J S: first a binary operation called the parallel-composition, a
particular case of which has been defined in Section 1.1.3. For G,H ∈ J S we let

G � H := 〈G∪H ′, srcG ∪ srcH ′ 〉,

where H ′ is isomorphic to H 28 and is such that

EH ′ ∩EG = ∅,
srcG(a)= srcH ′(a) if a ∈ τ(G)∩ τ(H ′),

VG ∩VH ′ = {srcG(a) | a ∈ τ(G)∩ τ(H ′)}.

This operation “glues” G and a disjoint copy of H by fusing their sources that have
the same names. The s-graph G � H is well defined up to isomorphism. Its type is
τ(G)∪ τ(H ).

27 We give it this name because its equational sets, the HR-equational sets of graphs, are the sets of
graphs generated by certain context-free graph grammars whose rewritings are based on hyperedge
replacement. We will define them in Chapter 4, Section 4.1.5. For a thorough study, see [*DreKH] or
[*Hab].

28 H ′ isomorphic to H implies that τ(H ′)= τ(H ).
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We define unary operations that manipulate source labels. Let G = 〈G◦,srcG〉
be an s-graph. For a ∈ A, we let fga(G) := 〈G◦,src′〉, where src′(b) is srcG(b) if
b ∈ τ(G)−{a} and is undefined otherwise. We say that fga forgets the a-source: if G
has an a-source, then this vertex is no longer distinguished as a source in fga(G) and
is turned into an “ordinary,” or internal, vertex. Hence τ(fga(G))= τ(G)−{a}.

The next operation modifies source names; it is called a renaming. For a,b ∈A,
a �= b, we let

rena↔b(G) := 〈G◦,src′〉, where

src′(a) := srcG(b) if b ∈ τ(G),

src′(b) := srcG(a) if a ∈ τ(G),

src′(c) := srcG(c) if c ∈ τ(G)−{a,b},
and src′ is undefined otherwise. Hence

τ(rena↔b(G))=

⎧⎪⎨⎪⎩
τ(G) if a,b ∈ τ(G) or τ(G)∩{a,b} = ∅,
(τ (G)−{a})∪{b} if a ∈ τ(G), b /∈ τ(G),

(τ (G)−{b})∪{a} if b ∈ τ(G), a /∈ τ(G).

We can write this more succinctly as τ(rena↔b(G)) = τ(G)[b/a,a/b], where, for
every set C, we denote by C[c/a,d/b] the result of the simultaneous replacement in
C of a by c and of b by d.

We also define constant symbols: ab,
−→
ab, a, a
, ∅ to denote respectively an

undirected edge linking an a-source and a b-source, a directed edge from an a-source
to a b-source, a single vertex that is an a-source, an a-source with a loop, and the
empty graph. (Since we can change source names, it would suffice to use the constant
symbols 12,

−→
12, 1, 1
, ∅. However, using many renaming operations would make

terms denoting graphs unreadable.)
We obtain a countable signature denoted by FHR and an FHR-algebra of graphs

denoted by JS and called the HR algebra. It has domain J S. As for GP, for every
term t ∈ T (FHR), we denote by tJS the s-graph that is its value. The equational sets
of JS are called the HR-equational sets.

As for VR-equational sets, the equations that define HR-equational sets can be
shortened if they are written with derived operations. For example, the series-
composition of graphs of type {1,2} is a derived operation that can be expressed by

G •H := fg3(ren2↔3(G)� ren1↔3(H )).

We denote by FHR
[k] the finite subsignature of FHR consisting of the operations

�, fga, rena↔b, for a,b∈ [k] and of the constant symbols denoting graphs with source
names in [k].

Each s-graph G with n vertices and source names in [n] is the value of a term
in T (FHR[n] ). The least integer k such that a graph G (without sources) is the value
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of a term in T (FHR
[k+1]) is a well-known graph complexity measure called the tree-

width of G and denoted by twd(G). It has been defined previously in a combinatorial
way by Robertson and Seymour [RobSey90] and by other authors using a different
terminology. In the combinatorial definition, twd(G) is the least integer k such that
G has a so-called tree-decomposition of width k . A tree-decomposition of G is a
decomposition of G into a tree of subgraphs, where each node of the tree corresponds
to a subgraph of G; its width is the maximal number of vertices of those subgraphs,
minus 1. The notion of tree-width is important for the construction of graph algorithms
and for the study of graph minors: see the books [*Die], [*DowFel] and [*FluGro], and
the survey articles [*Bod93] and [*Bod98]. We will study this combinatorial notion in
Chapter 2 and prove the following result which is an algebraic characterization of it:

Proposition 1.19 A graph has tree-width at most k if and only if it is the value of a
term in T (FHR

[k+1]). �

By contrast clique-width, defined in terms of graph operations, has yet no alter-
native combinatorial definition. Using Proposition 1.19 the following result can be
proved in the same way as Proposition 1.18.

Proposition 1.20 Every HR-equational set of graphs has bounded tree-width. For
each k , the set of graphs of tree-width at most k is HR-equational. �

1.4.3 A weak Recognizability Theorem

The VR algebra GP has a countable signature FVR that generates it: this means that
each element is the value of some term. For each k in N , we let GPgen[k] be the
subalgebra of GP that is generated by the finite subsignature FVR

[k] of FVR. Its domain

GPgen[k] consists of the graphs with ports that are values of terms in T (FVR
[k] ). We

define similarly JSgen[k] as the subalgebra of the HR algebra JS that is generated by
the finite subsignature FHR

[k] of FHR. Its domain is J Sgen[k]. Proposition 1.17 extends
into the following theorem:

Theorem 1.21 (Weak Recognizability Theorem)

(1) Let L be a CMS-definable set of simple graphs. For every k ∈ N , the set
L∩GPgen[k] is recognizable in the algebra GPgen[k].

(2) Let L be a CMS2-definable set of graphs. For every k ∈N , the set L∩J Sgen[k]
is recognizable in the algebra JSgen[k]. �

In this statement, CMS refers to counting monadic second-order logic, i.e., the use
in monadic second-order formulas of set predicates Cardp(X ) expressing that |X | is a
multiple of p (Even(X ) is thus Card2(X )). Note that L∩GPgen[k] is the set of graphs
in L that have clique-width at most k , and similarly for L∩J Sgen[k] and tree-width
at most k− 1.
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This theorem is a consequence of the (more powerful) Recognizability Theorem
to be stated and proved in Chapter 5. The latter theorem is more powerful in several
respects. First it yields recognizability with respect to the algebras GP and JS that have
infinite signatures and not only with respect to their finitely generated subalgebras
GPgen[k] and JSgen[k]. We postpone to Chapters 3 and 4 the detailed definitions.
Second, the Recognizability Theorem can be stated and proved for an algebra of
relational structures denoted by STR, as a unique statement that entails the cases of
GP and JS.

However, Theorem 1.21 already leads to some interesting consequences. We first
state the logical version of the Filtering Theorem and its applications to decidability
results for monadic second-order sentences.Applications to fixed-parameter tractabil-
ity will be considered in the next section. We will discuss decidability results in more
detail in Section 1.6.

Theorem 1.22 (Filtering Theorem, logical version)

(1) For every VR-equational set of graphs L and every CMS-expressible graph
property P, the set LP consisting of the graphs of L that satisfy P is VR-equational.

(2) The analogous result holds for HR-equational sets and CMS2-expressible
properties. �

This result is a direct consequence of Theorems 1.8, 1.12 and 1.21; note that
each VR-equational set is equational in some algebra GPgen[k], cf. the proof of
Proposition 1.18. All constructions are effective: an equation system defining LP

can be constructed from one defining L and a sentence expressing P. Now consider
Corollary 1.9 and its proof. Since the emptiness of an equational set is decidable,
one can decide if LP is nonempty, i.e., if P is satisfied by some graph in L: the
CMS-satisfiability problem (resp. the CMS2-satisfiability problem) is decidable for
VR-equational sets (resp. for HR-equational sets) and, in particular, for the sets
CWD(≤ k) of graphs of clique-width at most k (resp. for the sets TWD(≤ k) of
graphs of tree-width at most k).

We now come back to statements (1) and (2) at the end of Section 1.2.2. The
set L¬P (we use the notation of Theorem 1.22) is also VR-equational (respectively,
HR-equational in the second case). Its emptiness can be tested. That L¬P is empty
means that P is universally valid on L. From the equation system defining L¬P , one can
also obtain a proof of this fact by fixed-point induction, according to the generalization
of Proposition 1.6 to recognizable sets. As observed in Section 1.2.5, if P belongs to a
finite inductive set P of properties, then the auxiliary properties used in that proof are
Boolean combinations of the properties in P . In Chapter 5, the proof of Theorem 1.21
shows that, more precisely, every CMS-expressible property P belongs to a finite
inductive set P of CMS-expressible properties in the algebra GPgen[k] (and similarly
for CMS2 and JSgen[k]). Hence, the auxiliary properties in the proof by fixed-point
induction are CMS-expressible (respectively CMS2-expressible).
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1.5 Fixed-parameter tractability

In this section, we describe some algorithmic applications of the Weak Recogniz-
ability Theorem. We first recall the basic definition of fixed-parameter tractability.
This notion has been introduced in order to describe in an abstract setting the fre-
quently met situation where the computation time of an algorithm is bounded by an
expression of the form f (p(d)) · |d|c, where the set of inputs is equipped with two
computable integer valued functions, a size function d �→ |d| (d is the generic input)
and a parameter function d �→ p(d), such that 0≤ p(d)≤ |d|, and where f is a fixed
computable function of nonnegative integers and c is a fixed positive integer. If these
conditions are satisfied, the considered algorithm is fixed-parameter tractable with
respect to the parameter p. If c = 1,2 or 3, we say that it is fixed-parameter linear,
quadratic or cubic, respectively.

As size of an input graph G, we will use either the number of its vertices and edges,
denoted by ‖G‖, or, in particular if G is simple, its number of vertices. Parameters
can be the degree of G, its tree-width or its clique-width. Our results will use these
last two values; other examples can be found in the books [*DowFel] and [*FluGro]
which present in detail the theory of fixed-parameter tractability.

The size |t| of a term t or the size |ϕ| of a formula ϕ is, roughly speaking, the
number of symbols with which t or ϕ is written, i.e., the length of the corresponding
word.29

Example 1.23 The subgraph isomorphism problem consists in deciding for a pair of
simple graphs (G,H ) whether H is isomorphic to a subgraph of G. It is NP-complete
(Problem GT48 in [*GarJoh]). For each fixed graph H , this problem can be solved
in time O(nm), where n= |VG| and m= |VH |. However, it is fixed-parameter linear
with respect to Deg(G), the degree of G. This follows from a result by Seese [See96]
(another proof is given in [DurGra]) saying that for every first-order sentence ϕ, one
can decide in time bounded by f (|ϕ| +Deg(G)) · |VG| whether �G� satisfies ϕ, for
some fixed computable function f . The property that G has a subgraph isomorphic to
a fixed graph H is expressible by a first-order sentence ϕH to be interpreted in �G�.
Hence the subgraph isomorphism problem can be solved in time at most f (|ϕH | +
Deg(G)) · |VG|. �

Fixed-parameter tractable algorithms that check monadic second-order graph prop-
erties can be derived from Theorems 1.16 and 1.21. The model-checking problem for
a logical language L and a class of structures C consists of deciding whether S |= ϕ,
for a given structure S ∈ C and a given sentence ϕ ∈L.

Theorem 1.24 For every finite signature F , every monadic second-order sentence ϕ

and every term t in T (F), one can decide in time at most f (F ,ϕ) · |t|whether �t� |= ϕ,
where f is a fixed computable function.

29 Formal definitions of |t| and |ϕ| will be given in Chapters 2 and 5, respectively.
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Proof: The proof of Theorem 1.16 being effective, it yields an algorithm that con-
structs from F and ϕ a finite deterministic F-automaton A accepting the set of terms
s in T (F) such that �s� |= ϕ. By running A on a given term t, one gets the answer
in time proportional to |t|. The total computation time is thus f1(F ,ϕ)+ f2(F ,ϕ) · |t|,
where f1(F ,ϕ) is the time taken to compute A and f2(F ,ϕ) is the maximum time
taken by A to perform one transition.

In other words, the model-checking problem for monadic second-order sentences
and the class of terms is fixed-parameter linear with respect to ‖F‖ + |ϕ|, where
‖F‖ is the sum of arities of the symbols in F plus the number of constant symbols
in F . This follows from Theorem 1.24 because, up to the names of the sym-
bols in F and of the variables in ϕ, there are finitely many pairs (F ,ϕ) such that
‖F‖+|ϕ| ≤ p, so that f (F ,ϕ) can be bounded by g(‖F‖+|ϕ|) for some computable
function g.

We now consider the model-checking problem for monadic second-order sentences
on graphs and its two possible parametrizations by tree-width and clique-width. For
a graph G given by a term t in T (FHR

[k] ) or in T (FVR
[k] ), one gets a fixed-parameter

linear algorithm as in Theorem 1.24 because, by Theorems 1.21 and 1.12, one can
construct from k and ϕ a finite deterministic FHR

[k] -automaton Aϕ,k that accepts the

set of terms t such that tJS satisfies ϕ, and similarly with FVR
[k] . This situation happens

in particular if G belongs to an HR- or VR-equational set of graphs and is given by a
corresponding term or derivation tree (cf. Section 1.1.5). However, if such a term or
derivation tree is not given, it must be computed from the input graph by a parsing
algorithm.

Theorem 1.25
(1) The model-checking problem for CMS sentences and the class of simple graphs

is fixed-parameter cubic with respect to cwd(G)+ |ϕ|. The input sentence is ϕ

and the size of the input graph G is its number of vertices.
(2) The model-checking problem for CMS2 sentences and the class of graphs is fixed-

parameter linear with respect to twd(G)+ |ϕ|. The input sentence is ϕ and the
size of the input graph G is its number ‖G‖ of vertices and edges.30

Proof: We first consider the parametrization by tree-width. We let n be the number
of vertices and edges of the input graph G, i.e., n := ‖G‖. There exists an algorithm
(by Bodlaender [Bod96], see also [*DowFel]) that, for every graph G and integer
k , decides if twd(G) ≤ k in time at most g(k) · |VG| (for some fixed computable
function g), and that constructs if possible a tree-decomposition of width k of G; this
tree-decomposition can be converted in linear time (in n) into a term t in T (FHR

[k+1])
that evaluates to G, cf. Proposition 1.19.

30 In many cases, ϕ is fixed because one is interested in a particular graph property, and then the parameters
are just tree-width and clique-width.
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Step 1: For given G and by repeating this algorithm for k = 1,2, . . . at most twd(G)

times one obtains an optimal tree-decomposition of G. This computation takes time
at most twd(G) · g′(twd(G)) · n for some fixed computable function g′ and builds a
term in T (F) where F := FHR

[twd(G)+1], that evaluates to G. (The function g′ takes into
account the time needed to transform a tree-decomposition into a term.)

Step 2: By using Theorems 1.21 and 1.12, one constructs a finite deterministic
F-automaton Aϕ,k , where k = twd(G)+ 1, which accepts the set of terms t ∈ T (F)

that evaluate to a graph satisfying ϕ.
Step 3: By running this automaton on t, one obtains the answer.

We now consider the parametrization by clique-width. The main difference con-
cerns Step 1. There exists an algorithm (that combines algorithms from [HliOum]
and [OumSey], see Section 6.2.3 for details) that, for every simple graph G and
every integer k , either reports (correctly) that cwd(G) > k or constructs a term in
T (FVR

[h(k)]) that evaluates to G (and hence G has clique-width at most h(k)), where

h(k) = 2k+1 − 1. This algorithm takes time g′′(k) · n3 for some fixed computable
function g′′, where n= |VG|. Note that it does not determine the exact clique-width
of G.

Step 1 of the case of tree-width is replaced by the following: for given G and
by repeating this algorithm for k = 1,2, . . . at most cwd(G) times, one obtains
a term t in T (FVR[m] ) that evaluates to G for some m ≤ h(cwd(G)). This compu-

tation takes time at most cwd(G) · f (cwd(G)) · n3, where f (k) is the maximum
of g′′(i) for i = 1, . . . ,k . The computation continues then by constructing a finite
FVR[m] -automaton (by Theorems 1.21 and 1.12) and running it on t like in Steps 2 and 3
above.

The algorithms of Theorem 1.25 are actually not directly implementable because
of the sizes of the automata to be constructed. Specifically, the automata Aϕ,k in
the two cases of Theorem 1.25 have a number of states that is not bounded by
a function of the form exp◦exp◦· · · ◦ exp(|ϕ|) with a fixed number of iterated
exponentiations (exp(n) = 2n for every n). (This is also the case for the automa-
ton constructed in the proof of Theorem 1.24.) This fact is not a weakness of
the construction, but a consequence of the fact that complicated properties can be
expressed by short formulas. This phenomenon occurs for first-order as well as
for monadic second-order logic, as proved in [FriGro04]. Concrete constructions of
FVR
[k] -automata for small values of k and simple graph properties will be presented in

Section 6.3.
A second reason that makes these algorithms difficult, if not impossible, to imple-

ment so as to run for arbitrary graphs is the time needed for parsing the input graphs,
i.e., for building terms in T (FHR

[k] ) or in T (FVR
[k] ) for given values of k that evaluate to

them. The linear algorithm by Bodlaender [Bod96] used in the proof of Theorem 1.25
takes time 232k3 ·n. We will review other more efficient, even if not linear, algorithms
in Chapter 6. The cubic algorithm of [HliOum] is not implementable either.
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1.6 Decidability of monadic second-order logic

Apart from model-checking discussed in the previous section, another major prob-
lem in Logic consists in deciding whether a given sentence holds in some relational
structure (or in a graph represented by a relational structure) of a fixed set L. In this
case, the input of the problem is an arbitrary sentence from a logical language L.
This problem is called the L-satisfiability problem for the set L. A related problem
consists in deciding if a given sentence of L belongs to the L-theory of L, that is,
to the set of sentences of L that hold for all graphs (or structures) in L. We say that
the L-theory of L is decidable if this problem is decidable. As logical languages L,
we will consider fragments and extensions of monadic second-order logic that are
closed under negation. For such languages, the L-satisfiability problem for a set L is
decidable if and only if the L-theory of L is decidable.

The main motivation for the fundamental Theorem 1.16 was to prove the decid-
ability of the MS-theory of the set of terms T (F) (more precisely, the set of structures
{�t� | t ∈ T (F)}), for every finite signature F . From Theorem 1.22 we obtain a similar
result for graphs, as observed at the end of Section 1.4.3.

Theorem 1.26 The CMS-theory of the set CWD(≤ k) of simple graphs of clique-
width at most k , or of a VR-equational set of graphs is decidable. So is the
CMS2-theory of the set TWD(≤ k) of graphs of tree-width at most k , or of an
HR-equational set of graphs. �

One obtains results which are quite powerful in that they apply to many different
sets of graphs. One might hope to use them in order to obtain automatic proofs of
conjectures or of difficult theorems in graph theory. However, the situation is not
so favorable. Let us take the example of the 4-Color Theorem, stating that every
planar graph is 4-colorable. In Section 1.3.1 we have shown the existence of two
MS sentences, π andγ4, expressing respectively that a graph is planar (Corollary 1.15)
and that it is 4-colorable. The 4-Color Theorem31 can thus be stated in the following
logical form:

Theorem 1.27 We have �G� |= π⇒ γ4 for every graph G in G. �

This means that the MS sentence π ∧¬γ4 is not satisfiable in G.
Certain conjectures can be formulated in a similar way. For example, a conjecture

by Hadwiger states that for every integer k , if a graph is not k-colorable, then it has a
minor isomorphic to Kk+1. For each k , the corresponding instance of this conjecture
is equivalent by Corollary 1.14 to the statement:

Conjecture 1.28 We have �G� |= ¬γk ⇒MINORKk+1 for every graph G in G. �

31 Its proof by Robertson et al. ([RobSanST]) has been checked by computer by Gonthier [Gon] with the
software Coq based on Type Theory.
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Robertson et al. have proved it in [RobST] for k = 5. It is known to hold for smaller
values and is otherwise open.

Could one prove the 4-Color Theorem or this Conjecture for some fixed k ≥ 6
by an algorithm able to check the satisfiability of a monadic second-order
sentence?

This is not possible without some further analysis that would limit the size, or the tree-
width, or the clique-width of a minimal graph G that could contradict the considered
properties.32 The reason is that the MS-satisfiability problem for the set G of finite
(simple directed) graphs is undecidable: there is no algorithm that would take as input
an arbitrary monadic second-order sentence and tell whether this sentence is valid in
the logical structure �G� for some graph G in G. This undecidability result actually
holds for first-order logic (see Theorem 5.5 in Section 5.1.6 or the books [*EbbFlu]
and [*Lib04]).

From Theorem 1.26, it follows that the particular cases of these theorems or
conjectures obtained by restricting to the sets of graphs of clique-width at most k for
fixed values of k can, at least in principle, be proved by machine. However, since we
observed that the algorithms underlying Theorem 1.26 are not implementable, this
possibility is presently purely theoretical. Furthermore, the difficult open questions of
graph theory concern usually all graphs rather than graphs of bounded tree-width or
clique-width. There are, however, some exceptions. Whether the oriented chromatic
number of an oriented graph33 is equal to k is expressible by a formula of monadic
second-order logic (one formula for each k). Several articles, in particular by Sopena
[Sop] and Fertin et al. [FerRR], determine the maximal value of the oriented chromatic
number of outerplanar graphs, of 3-trees, and of the so-called “fat trees” and “fat fat
trees.” Since these four sets of graphs are HR-equational, the maximal values of the
oriented chromatic numbers of their graphs can also be determined, in principle, by
algorithms based on Theorem 1.26.

Seese raised in [See91] the question of understanding which conditions on a set
of graphs L are necessary for its MS-satisfiability problem to be decidable. The two
main results regarding this question are collected in the following theorem:34

Theorem 1.29 Let L be a set of finite, simple, undirected graphs.
(1) If L has a decidable MS2-satisfiability problem, then it has bounded tree-width.
(2) If L has a decidable C2MS-satisfiability problem, then it has bounded clique-

width. �
32 For Conjecture 1.28, Kawarabayashi [Kaw] has found such bounds for all k . It follows that each level

of the conjecture is decidable, but by an intractable algorithm.
33 An oriented graph G (i.e., a graph without loops and pairs of opposite directed edges) has oriented

chromatic number at most k if there exists a tournament (a complete oriented graph) H with k vertices
and a homomorphism h : G→ H that maps VG into VH and every directed edge u→ v of G to a
directed edge h(u)→ h(v) of H .

34 We recall (from Section 1.3.1) that the acronym C2MS refers to MS logic extended by the even
cardinality set predicate.
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Assertion (1) is proved by Seese in [See91]. He asks in this article whether every
set L having a decidable MS-satisfiability problem (which is weaker than having a
decidable C2MS-satisfiability problem) is “tree-like,” which is actually equivalent
(by the Equationality Theorem for the VR algebra presented below in Section 1.7.3)
to having bounded clique-width. Assertion (2) proved in [CouOum] is thus a partial
answer to Seese’s question.

1.7 Graph transductions

The theory of formal languages studies finite descriptions of languages (sets of words
or terms) by grammars and automata, and also finite descriptions of transforma-
tions of these objects. Motivations come from the theories of coding, of compilation
and of computational linguistics, to cite just a few. The finite devices that specify
these transformations are called transducers and the corresponding transformations
of words and terms are called transductions. Typical questions are the following:

Is a given class of transductions closed under composition? Is it closed under
inverse?

Does it preserve a given family of languages?
Is this family the set of images of a particular language (called a generator) under

the transductions of the class?
Is the equality of the transductions defined by two transducers of a certain type

decidable?

In the study of sets of words, rational transductions play a prominent role origi-
nating from the work by Nivat [Niv]. The inverse of a rational transduction and the
composition of two rational transductions are rational transductions. The families of
regular and of context-free languages are preserved under rational transductions, and
there exist context-free languages (like the one defined by the equation L= f (L,L)∪a,
where L⊆ A∗ and A consists of a, f , parentheses and comma), whose images under
all rational transductions are all context-free languages. Transductions of words are
studied in the books [*Ber] and [*Sak]. Transductions of terms, usually called tree
transductions, are studied in [*Com+] and [*GecSte].

Transducers are usually based on finite automata or on more complicated devices
like macros (see, e.g., the macro tree transducers in [EngMan99]). Can one define
similar notions for graphs? Since graphs can be denoted by terms, one can use trans-
ductions of terms to specify transductions of graphs (as, e.g., in [*Eng94, DreEng]).
However, doing this requires the input to be processed in a parsing step that is algo-
rithmically difficult (cf. Sections 1.5 and 6.2). For building the output, each term
produced by such a transduction must be evaluated into a graph. The main drawback
of the detour through terms over (necessarily) finite signatures is that it limits the input
and output graphs of transductions to have bounded tree-width or clique-width. It is
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natural to try to avoid such a detour and to define transducers that work “directly” on
graphs, by traversing them according to some rules and by starting from some speci-
fied vertex. However, no notion of finite graph automaton has been defined that would
generalize conveniently finite automata on words and terms. Monadic second-order
logic offers a powerful alternative. In this section, we define monadic second-order
transductions through examples rather than formally. These transductions have good
interactions with the HR- and VR-equational sets (our “context-free sets of graphs”)
that follow from the Equationality Theorem presented below in Section 1.7.3. It will
be shown in Chapter 8 that every (functional) monadic second-order transduction
of graphs of bounded tree-width or clique-width can be realized by a macro tree
transducer on the level of terms.

1.7.1 Examples of monadic second-order transductions

Monadic second-order transductions are transformations of graphs specified by
monadic second-order formulas. The basic notion is that of a monadic second-order
transduction of relational structures over a fixed set of relation symbols. It applies to
graphs faithfully represented by relational structures.

All examples and results presented in this section (Section 1.7) will concern simple
graphs, for which G �→ �G� is a faithful representation. Hence, we will consider
mappings f from simple graphs to simple graphs such that, for every G, the structure
� f (G)� representing its image under f is defined from �G� by monadic second-order
formulas.

The simplest case is when

� f (G)� := 〈Vf (G),edgf (G)〉,
Vf (G) := {u ∈ VG | �G� |= δ(u)},

edgf (G) := {(u,v) ∈ VG×VG | �G� |= δ(u)∧ δ(v)∧ θ(u,v)},
where δ and θ are monadic second-order formulas with free variables u, and u and v

respectively. The formula δ defines the set of vertices of f (G) as a subset of VG and
the formula θ defines the edge relation of f (G) in terms of that of G. The mapping
f is thus specified by a pair 〈δ,θ〉 of monadic second-order formulas. We will say
that f is a monadic second-order transduction and that 〈δ,θ〉 is its definition scheme.
If δ and θ are first-order formulas, we will say that f is a first-order transduction.
The general definition is actually more complicated. We introduce it step by step by
giving several examples.

Example 1.30 (Edge-complement) The edge-complement associates with a simple,
undirected and loop-free graph G, the simple, undirected and loop-free graph G such
that VG = VG and u− v is an edge of G if and only if u �= v and u− v is not an edge
of G. This transformation is a first-order transduction with definition scheme 〈δ,θ〉,
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where
δ(x) is the Boolean constant True,

θ(x,y) is the formula x �= y∧¬edg(x,y).

Example 1.31 (Elimination of loops and isolated vertices) The transformation that
eliminates loops and then, isolated vertices is a first-order transduction with definition
scheme 〈δ,θ〉, where

δ(x) is the formula ∃y
((

edg(x,y)∨ edg(y,x)
)∧ x �= y

)
,

θ(x,y) is the formula edg(x,y)∧ x �= y.

Example 1.32 (Transitive closure of a directed graph) For every directed graph
G, we let G+ be its transitive closure, i.e., the simple graph defined by

VG+ := VG ,

edgG+ := edg+G

:= {(u,v) | there is in G a nonempty directed path35 from u to v}.

Note that u has a loop in G+ if it belongs to a directed cycle in G. The mapping
G �→G+ is defined by the definition scheme 〈δ,θ〉, where

δ(x) is the formula True,

θ(x,y) is the formula36 edg(x,y)∨ ∃z(edg(x,z)∧TC[edg;z,y]).

We use here the definition of the reflexive and transitive closure of a binary relation
by a monadic second-order formula presented in Section 1.3.1.

Example 1.33 (Transitive reduction of a directed acyclic graph) A directed
acyclic graph (a DAG) is a simple directed graph without directed cycles. Every such
finite graph G has a unique minimal subgraph H such that H+ =G+. It is called the
transitive reduction of G and is denoted by Red(G). (The Hasse diagram of a partial
order 〈D,≤〉 is a graphical representation of the transitive reduction of the directed
acyclic graph 〈D,<〉.) The edge relation of Red(G) is characterized by

edgRed(G)(x,y) :⇐⇒ edg(x,y)∧¬∃z(edgG+(x,z)∧ edgG+(z,y)),

hence is defined in G by a monadic second-order formula θ ′ built with the formula
θ of the previous example. It follows that the mapping Red from directed graphs

35 That is a sequence of pairwise distinct vertices w1,w2, . . . ,wn such that u=w1, v=wn and wi→wi+1
in G for each i= 1, . . . ,n−1. A directed cycle is a sequence of this form with w1 =wn, n≥ 2, wi �=wj
for 1≤ i ≤ j ≤ n− 1.

36 The atomic formula edg(x,y) in θ(x,y) can be omitted, but putting it in makes the formula more clear.
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to directed graphs is a partial function that is a monadic second-order transduction
specified by a sentence χ and two formulas δ,θ ′ such that

�G� |= χ if and only if it is acyclic (hence
if and only if Red(G) is well defined),

�G� |= δ(u) for every u in VG (so that VRed(G) = VG),

�G� |= θ ′(u,v) if and only if Red(G) has an edge u→ v.

�

It is frequently necessary to consider functions f that assign a graph to the pair
of a graph G and a set of vertices X . In this case, the definition scheme consists of
formulas χ , δ and θ with a free set variable X called a parameter. The formula χ

expresses the conditions to be verified by G and X so that f (G,X ) be defined. Here
is an example.

Example 1.34 (The largest connected subgraph of G containing X ) The partial
function f such that f (G,X ) is the largest connected induced subgraph of G containing
a nonempty subset X of VG is a monadic second-order transduction with parameter
X . Its definition scheme is 〈χ ,δ,θ〉, where

χ(X ) is the formula (∃x.x ∈ X )∧∃Y (X ⊆ Y ∧CONN(Y )
)
,37

δ(X ,x) is the formula ∃Y (X ⊆ Y ∧ x ∈ Y ∧CONN(Y )
)
,

θ(X ,x,y) is ∃Y (X ⊆ Y ∧ x ∈ Y ∧ y ∈ Y ∧ edg(x,y)∧CONN(Y )
)
. �

In the previous example, a parameter X is necessary because the function f to be
defined does not depend only on G but also on a set of vertices. However, in some
cases, parameters may be necessary even if the output graphs depend only, up to
isomorphism, on the input graphs (and not on the values of the parameters). Here is
an example of such a case.

Example 1.35 (The DAG of strongly connected components of a directed graph)
Let G be a directed graph. Let ≈ be the equivalence relation on VG defined by

u≈ v if and only if u= v or there exists a directed
path from u to v and a directed path from v to u.

An induced subgraph G[X ], where X is an equivalence class of this relation, is
called a strongly connected component. The DAG of strongly connected components
of G is the quotient graph G/≈ defined as follows: its vertices are the strongly
connected components; there is in G/≈ an edge X→Y if and only if X �=Y and u→ v

in G for some u ∈ X and v ∈ Y . Our objective is to prove that there exists a monadic
second-order transduction associating with every graph G a graph H isomorphic to

37 The formula CONN(Y ) is defined in Section 1.3.1. We use X ⊆ Y as a shorthand for ∀x(x ∈X ⇒ x ∈ Y ).
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G/≈. Its definition uses a parameter X for denoting sets U ⊆ VG required to contain
one and only one vertex of each strongly connected component. Such sets are used
as sets of vertices of H and its edges are defined accordingly. We use the following
formulas:

Eq(x,y) is the auxiliary formula TC[edg;x,y] ∧TC[edg;y,x],
χ(X ) is defined as:

∀x,y
((

x ∈ X ∧ y ∈ X ∧Eq(x,y)
)⇒ x= y

)
∧∀x∃y

(
Eq(x,y)∧ y ∈ X

)
,

δ(X ,x) is defined as: x ∈ X ,
θ(X ,x,y) is defined as:

x ∈ X ∧ y ∈ X ∧¬Eq(x,y)∧∃z,z′
(
edg(z,z′)∧Eq(x,z)∧Eq(y,z′)

)
.

The definition scheme 〈χ ,δ,θ〉 specifies a monadic second-order transduction that
associates with a directed graph G and a “well-chosen” subset U of VG a graph f (G,U )

with vertex set U that is isomorphic to G/≈ (u ∈ U corresponds to an equivalence
class, hence to a vertex of G/≈). It is clear that for every graph G there exists a set
U satisfying χ , and that, for any two sets U and U ′ satisfying χ , the graphs f (G,U )

and f (G,U ′) are isomorphic (the corresponding bijection h : U → U ′ is defined by
h(u)= v if and only if u ∈U , v ∈U ′ and u≈ v).

This construction extends actually to every equivalence relation definable by a
monadic second-order formula in place of ≈ and proves that the mapping that
associates with a graph G its quotient G/≈ by a monadic second-order definable
equivalence relation ≈ is a monadic second-order transduction. �

In all the above examples, the set of vertices of the output graph is a subset of the
set of vertices of the input graph. The general definition of a monadic second-order
transduction includes the possibility of enlarging the input graph, by “copying it” a
fixed number of times.

A k-copying monadic second-order transduction associates with a graph G a graph
H such that

VH := (V1×{1})∪ ·· · ∪ (Vk ×{k}),
edgH := {((u, i),(v, j)) | 1≤ i, j ≤ k , (u,v) ∈ Ei, j},

where the sets V1, . . . ,Vk ⊆ VG and the relations Ei, j ⊆ VG×VG are defined in G by
monadic second-order formulas, respectively δ1, . . . ,δk and θi, j for 1 ≤ i, j ≤ k and
possibly written with parameters. Let us give an example.
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Example 1.36 (Graph duplication) For every simple directed graph G, its
duplication is the simple graph H = dup(G) defined as follows:

VH := VG×{1,2},
the edges of H are the edges of each copy of G, together with the edges
(u,1)→ (u,2) for all u ∈ VG.

The mapping dup has the definition scheme 〈δ1,δ2,θ1,1,θ1,2,θ2,1,θ2,2〉 where

δ1(x) and δ2(x) are both the Boolean constant True,

θ1,1(x,y) and θ2,2(x,y) are both edg(x,y),

θ1,2(x,y) is x= y,

θ2,1(x,y) is the Boolean constant False.

The formulas δ1 and δ2 define V1 and V2 as VG; the formulas θi, j define E1,1 :=E2,2 :=
edgG , E1,2 := {(u,u) | u ∈ VG}, and E2,1 := ∅. Informally, H consists of two disjoint
copies of G (i.e., G⊕G) together with an edge from any vertex of the first copy to
the corresponding vertex of the second copy. �

The general definition of a monadic second-order transduction combines the above
presented features. To summarize, a monadic second-order transduction associates
with a relational structure S and subsets U1, . . . ,Um of its domain DS that must
satisfy a monadic second-order formula χ(X1, . . . ,Xm), a relational structure T =
f (S,U1, . . . ,Um) defined as follows. Its domain is DT := (D1×{1})∪·· ·∪(Dk×{k}),
where each set Di is defined as {d ∈ DS | S |= δi(U1, . . . ,Um,d)} for some monadic
second-order formula δi. If R is an n-ary symbol of the relational signature of T , the
corresponding n-ary relation on DT is defined as⋃

i1,...,in∈[k]
{((d1, i1), . . . ,(dn, in)) | d1 ∈Di1 , . . . ,dn ∈Din ,

S |= θR,i1,...,in(U1, . . . ,Um,d1, . . . ,dn)},
where each θR,i1,...,in is a monadic second-order formula.

Such a transduction f is specified by a tuple of formulas called a definition scheme
of the form 〈χ ,δ1, . . . ,δk ,(θw)w∈W 〉, where W consists of all tuples (R, i1, . . . , iρ(R))
such that R is a relation symbol of T and i1, . . . , iρ(R) ∈ [k]. The following fact is clear
from the definitions:

Fact 1.37 For every monadic second-order transduction f there exists an integer k
such that, if f transforms a relational structure S into a relational structure T , then
|DT | ≤ k · |DS |. �
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We have k = 1 in the first six examples and k = 2 in the last one. We now give
another example, with k = 1 and without parameters.

Example 1.38 (The cograph denoted by a term) As a final example we con-
sider the mapping that evaluates a term t in T ({⊕,⊗,1}) into the cograph val(t)
(cf. Section 1.1.2 and Example 1.7). First of all we must explain how t is represented
by a relational structure. We let �t� = 〈Nt ,sont , lab⊕t , lab⊗t , lab1t〉 be the relational
structure such that:

• Nt is Pos(t), the set of positions of t, i.e., of occurrences of symbols from {⊕,⊗,1};
we will consider Nt as the set of nodes of a rooted labeled tree representing t and
also denoted by t;
• sont is the binary relation such that sont(u,v) holds if and only if v is a son of u in

the tree38 t;
• lab⊕t , lab⊗t and lab1t are the unary relations such that lab⊕t(u) holds if and only

if u is an occurrence of ⊕ in t (i.e., is labeled by ⊕ as a node of the tree t) and
similarly for lab⊗t and lab1t .

Since the operations⊕ and⊗ are commutative, we need not express, when v is a son
of u, whether it is the left or the right son. Hence we can use a simpler representation
than the general one to be defined in Section 5.1.1. Here is an example. We let

s :=
((

11⊗2 13
)⊕4 15

)
⊗6

(
17⊕8 19

)
,

where we number from left to right the nine occurrences of 1, ⊕, ⊗ (this numbering
is indicated by subscripts). The corresponding labeled tree is shown in Figure 1.5.
Then

�s� = 〈[9],son, lab⊕, lab⊗, lab1〉, with

son = {(6,4),(6,8),(4,2),(4,5),(2,1),(2,3),(8,7),(8,9)},
lab⊕ = {4,8},
lab⊗ = {2,6},
lab1 = {1,3,5,7,9}.

In the general case, the cograph G = val(t) that is the value of a term t in
T ({⊕,⊗,1}) can be defined from �t� as follows:

VG is the set of elements of Nt that are labeled by 1 (i.e., that are the leaves of
the tree t); for distinct vertices u and v of G, there is an edge between u and v

if and only if the least common ancestor of u and v in t is labeled by ⊗.

In the above example of s, the vertices of the cograph val(s) are 1,3,5,7,9. There
is an edge between 3 and 9 because their least common ancestor in s is 6, which is

38 We describe the relations between occurrences of symbols in t with the terminology of trees. Chapter 2
will detail the terminology about terms and the trees that represent them.
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Figure 1.5 The term s as a labeled tree.

labeled by⊗. There is no edge between 1 and 5 because their least common ancestor
is 4, labeled by ⊕.

The monadic second-order transduction that associates with �t�, for any term t in
T ({⊕,⊗,1}), the relational structure �val(t)� is specified by the definition scheme
〈True,δ,θ〉, where

δ(x) is the formula lab1(x),

θ(x,y) is the formula x �= y∧∃z(LCA(x,y,z)∧ lab⊗(z)).

In this writing, LCA(x,y,z) stands for the following formula expressing that z is the
least common ancestor of x and y:

TC[son;z,x] ∧TC[son;z,y] ∧
∀w((TC[son;w,x] ∧TC[son;w,y])⇒ TC[son;w,z]).

This formula is a straightforward translation of the definition of the least common
ancestor. Note that if x is an ancestor of y or if x = y, then LCA(x,y,x) is valid.
Furthermore, LCA(x,y,z) defines z in a unique way from x and y.

1.7.2 The main properties of monadic second-order transductions

A monadic second-order transduction is a subset f of S × T , where S and T
are classes of graphs or, more generally, of relational structures, that is specified as
explained in the examples by monadic second-order formulas. If L⊆S and f ⊆S×T ,
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we let f (L) := {T | (S,T ) ∈ f , S ∈ L} be the image of L under f . Hence, f can also
be seen as the multivalued mapping f̂ : S → P(T ) such that f̂ (G) := f ({G}). In
Examples 1.30, 1.31 and 1.32, f̂ (G) consists of a unique graph. In Example 1.33 it
consists of at most one graph and in Example 1.34 of several graphs (the connected
components). However, a monadic second-order transduction is always based on
a (single-valued) partial function that transforms parametrized relational structures
into relational structures. A parametrized relational structure is a tuple (S,A1, . . . ,An)

consisting of a relational structure S and an n-tuple of subsets of its domain DS .
From a partial function f that transforms (S,A1, . . . ,An) into f (S,A1, . . . ,An) in T
for S in S and for certain subsets A1, . . . ,An of DS , we define f as the transduction
{(S, f (S,A1, . . . ,An)) | A1, . . . ,An ⊆ DS and f (S,A1, . . . ,An) is defined}). We also say
that f and f̂ are monadic second-order transductions.

The composition of two monadic second-order transductions is the composition of
the corresponding binary relations: if f ⊆S×T and g⊆ T ×U , then f ·g := {(S,U ) |
(S,T ) ∈ f and (T ,U ) ∈ g for some T ∈ T }. If f and g are functional, we will also
use the notation g ◦ f for f · g.

Theorem 1.39 The composition of two monadic second-order transductions is a
monadic second-order transduction. �

A more precise statement showing how parameters are handled in the composition
of monadic second-order transductions will be given in Chapter 7 (see Theorem 7.14).

Theorem 1.40 (Backwards Translation Theorem) If the set L⊆ T is MS-definable
and f ⊆ S × T is a monadic second-order transduction, then the set f −1(L)
:= {S ∈ S | f̂ (S)∩L �= ∅} is MS-definable. �

Theorem 1.40 is formally a consequence of Theorem 1.39 but it is actually used
for proving Theorem 1.39 (see Chapter 7). We call Theorem 1.40 the Backwards
Translation Theorem because its proof yields an algorithm that transforms a formula
defining L into one defining f −1(L). We now give the idea of its proof. Let us
go back to the edge-complement transformation (Example 1.30). It is a first-order
transduction that transforms G into G. If P is a first-order graph property, then the
property Q defined by Q(G) if and only if P(G) is also first-order. The edge relation
of G is defined by edgG(u,v) :⇐⇒ u �= v∧¬edgG(u,v). Hence one obtains a first-
order sentence expressing Q by replacing in the given first-order sentence expressing
P each atomic formula of the form edg(x,y) by (x �= y ∧ ¬edg(x,y)). Here is an
example. We let P be defined by the sentence

∃x,y,z
(
x �= y∧ y �= z∧ x �= z∧ edg(x,y)∧ edg(y,z)∧¬edg(x,z)

)
,
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expressing that an undirected graph G has an induced path P3 (of the form •−•−•).
The sentence defining Q is then

∃x,y,z
(
x �= y∧ y �= z∧ x �= z∧ (x �= y∧¬edg(x,y)

)
∧ (y �= z∧¬edg(y,z)

)∧¬(x �= z∧¬edg(x,z)
))

.

It can actually be simplified into:

∃x,y,z
(
x �= y∧ y �= z∧ x �= z∧¬edg(x,y)∧¬edg(y,z)∧ edg(x,z)

)
,

expressing that G has an induced subgraph of the form •− • •. This construction
extends easily to monadic second-order transductions without parameters, like those
of Examples 1.31, 1.32 and 1.33.

Let us now assume that f is defined by a definition scheme of the form
〈χ(X ),True,θ(X ,x,y)〉 with one parameter X . Here χ(X ) is a formula that imposes
some conditions on the parameter X . In Example 1.34, the condition “X denotes a
singleton” might be imposed on X : the corresponding transduction associates with
each vertex its connected component.

Let β be a sentence and let L be the set of graphs such that �G� |= β. Let then
β# be the formula with free variable X obtained by replacing in β every atomic
formula edg(x,y) by θ(X ,x,y) (by using appropriate substitutions, and, if necessary,
renamings of bound variables in θ(X ,x,y)). For A ⊆ VG, the graph f (G,A) is well
defined if and only if �G� |=χ(A), and, then, f (G,A) |= β if and only if �G� |= β#(A).
It follows that f −1(L) is defined by the sentence ∃X (χ(X )∧β#(X )

)
.

1.7.3 The Equationality Theorem

The Equationality Theorems for the VR and the HR algebras (and for an algebra
of relational structures that generalizes the VR algebra) are among the main results
established in this book.

As an introduction to the Equationality Theorem for the VR algebra, we recall
that the mapping that associates the cograph val(t) with a term t in T ({⊕,⊗,1}) is a
monadic second-order transduction (Example 1.38). More generally:

Theorem 1.41 For every k , the mapping that associates with a term t in T (FVR
[k] ) the

p-graph tGP is a monadic second-order transduction. �

This implies that the set of graphs of clique-width at most k , which is a VR-
equational set, is the image of the set of terms (over some finite signature) under a
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monadic second-order transduction. The following includes a converse of this result
and is very important for the theories of graph structuring and of graph grammars.

Theorem 1.42 (Equationality Theorem for the VR algebra) A set of simple graphs
is VR-equational if and only if it is the image of the set of binary rooted trees under
a monadic second-order transduction. �

As an immediate consequence and by using Theorem 1.39, we obtain that the
image of a VR-equational set under a monadic second-order transduction is again VR-
equational. Note that this implies, as a special case, the logical version of the Filtering
Theorem (Theorem1.22): for a sentenceχ , the transduction fχ ={(G,G) | �G� |=χ} is
a monadic second-order transduction with definition scheme 〈χ ,True,edg(x,y)〉, and
fχ (L)={G ∈L | �G� |=χ} for every set of graphs L. Another immediate consequence,
using Proposition 1.18, is the following:

Corollary 1.43 A set of simple graphs has bounded clique-width if and only if it is
included in the image of the set of binary rooted trees under a monadic second-order
transduction. �

Thus, again using Theorem 1.39, the image of a set of graphs of bounded clique-
width under a monadic second-order transduction from graphs to graphs has bounded
clique-width.

In Theorem 1.42 and Corollary 1.43, one can replace “the set of binary rooted
trees”39 by “the set of trees” or by “T (F) where F is any finite signature with at least
one constant symbol and at least one symbol of arity at least 2.”

1.8 Monadic second-order logic with edge set quantifications

If a graph G is represented by a relational structure whose domain also contains the
edges, instead of by �G�, then the expressive power of monadic second-order logic
is increased, even for expressing properties of simple graphs. We will also compare
the four types of monadic second-order transductions obtained by representing input
and output graphs G either by �G� or by the alternative structure denoted by �G�.

1.8.1 Expressing graph properties with edge set quantifications

For every undirected graph G, we let �G� be the pair 〈VG ∪EG, inG〉, where40 inG =
{(e,u) | e∈EG,u∈VG, u is an end vertex of e}. If G has several edges (called multiple
edges) between two vertices, these edges are distinct elements of the domain of �G�.
39 A rooted tree is directed in such a way that the root is the unique node of indegree 0 and every node is

accessible from the root by a directed path. It is binary if each node has outdegree 0 or 2. The associated
(undirected) tree has degree at most 3.

40 Recall that VG is the set of vertices and EG is the set of edges.



1.8 Edge set quantifications 69

The structure �G� can be seen as �Inc(G)�, where Inc(G) is a bipartite directed graph
called the incidence graph of G, whose edge relation is denoted by the binary relation
symbol in. In a relational structure S =〈DS , inS〉 isomorphic to �G� for some graph G,
the elements of DS corresponding to edges are those, say u, such that (u,v) ∈ inS for
some v. The element u corresponds to a loop if and only if there is a single such v. It
follows that G can be reconstructed from S in a unique way. Thus, the representation
of G by �G� is faithful for all undirected graphs.

For directed graphs, we will use �G� := 〈VG ∪EG, in1G, in2G〉, where (e,u) ∈ in1G

(resp. (e,u)∈ in2G) if and only if u is the tail41 (resp. the head) of e. Hence �G� can be
seen as a directed bipartite graph, also denoted by Inc(G), with edges labeled either
by 1 or by 2. Loops in G are multiple edges (with different labels) in Inc(G).

In this setting, edges are considered, like vertices, as objects that form a graph and
not as the pairs of some binary relation over vertices. In particular, we do not consider
an undirected edge as a pair of opposite directed edges.

Graph properties can be expressed logically, either via the representation of a graph
G by �G�, or via the initially defined representation �G� :=〈VG,edgG〉. The represen-
tation �G� only allows quantification on vertices and on sets of vertices in monadic
second-order formulas, whereas the representation �G� also allows quantification on
edges and sets of edges. A graph property is MS2-expressible if it is expressible by a
monadic second-order formula interpreted in �G�. The index 2 refers to the possibil-
ity of “two types of quantification,” on sets of vertices and sets of edges. A property
is MS1-expressible if it is by a monadic second-order formula interpreted in �G�.
Unless for emphasizing the contrast with MS2, we will write MS instead of MS1.42

Let us stress that we do not modify the logical language, but only the representation
of graphs by relational structures. Since an incidence graph is a graph, we still deal
with a single language that we use to express formally graph properties. We now
compare the power of these two ways of expressing graph properties. It is clear
that a property of a graph G like “for every two vertices u,v, there are no more
than three edges from u to v” cannot be expressed by any sentence interpreted in
�G� because this relational structure cannot identify the existence of multiple edges,
and thus no sentence can take into account their multiplicity. However, even for
expressing properties of simple graphs, monadic second-order sentences with edge
set quantifications are more powerful. The property that a loop-free undirected graph
G has a perfect matching is equivalent to �G� |= ∃X .ψ , where ψ is a formula with
free variable X expressing that X is a set of edges and that for every vertex u there
exists a unique e ∈ X such that (e,u) ∈ inG. The formula ψ is easy to write with
first-order quantifications only. However, there is no monadic second-order sentence
ϕ expressing this property by �G� |= ϕ. The formal proof of this assertion (to be done

41 If e is an edge directed from u to v, then we say that u is its tail and that v is its head.
42 By an MS2 formula, we mean a monadic second-order formula written with the binary relation symbols

in, in1, in2, intended to be interpreted in logical structures of the form �G�. An MS1 formula is written
with the binary relation symbol edg and is to be interpreted in �G�.
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in Chapter 5) is based on the observation that the complete bipartite graph Kn,m has
a perfect matching if and only if n= m, and on the theorem saying that no monadic
second-order formula can express that two sets have the same cardinality. It is easy
to express that a given set of edges, say X , is a perfect matching, and this is what
formula ψ does. But one cannot replace “there exists a set of edges satisfying ψ” by
an MS formula without edge set quantification. The property “G has a Hamiltonian
cycle” can be expressed similarly by an MS formula interpreted in �G�. The graphs
Kn,m can be used as counter-examples, as above for perfect matchings, to prove that
this is not possible by an MS formula over �G�.

It is clear that every MS1-expressible graph property is MS2-expressible. Although
some properties of simple graphs are MS2-expressible but not MS1-expressible,
MS2 formulas are in many cases no more expressive than MS1 formulas.

Theorem 1.44 (Sparseness Theorem) Let L be a set of simple graphs that are all,
either planar, or of degree at most k , or of tree-width at most k for some fixed k .
Every MS2 sentence ϕ can be translated into an MS1 sentence ψ such that for every
graph G in L:

�G� |= ϕ if and only if �G� |=ψ .

�

This result actually extends to sets of uniformly sparse graphs, as we will prove in
Section 9.4.

1.8.2 Monadic second-order transductions over incidence graphs

For expressing properties of graphs G, we can choose between the two representing
relational structures �G� and �G�. For defining monadic second-order graph trans-
ductions, we get thus four possibilities arising from two possible representations for
the input as well as for the output. All examples of Section 1.7.1 use the first repre-
sentation for the input and the output. We give below examples using �G�. We first
fix some notation.

A graph transduction f is an MSi, j-transduction, where i, j ∈ {1,2}, if there exists
a monadic second-order transduction g such that (G,H ) ∈ f if and only if (S,T ) ∈ g,
where S is �G� if i= 1 and �G� if i= 2, and, similarly, T is �H� if j = 1 and �H� if
j= 2. Hence, the indices i and j indicate which representations are used, respectively
for the input and the output graphs.

It is clear that every MS1, j-transduction is also an MS2, j-transduction, because
every MS1 formula can be rewritten into an equivalent MS2 formula. Hence, chang-
ing 1 into 2 in this way makes “easier” the task of writing formulas to specify
a transduction. For the “output” side we get that every MSi,2-transduction is an
MSi,1-transduction, and not vice-versa as one might think, because in the former
case the transduction must define the edges (and not only the vertices) from elements
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of the input structure, either �G� or �G�. We have the following inclusions of classes
of monadic second-order transductions:

MS1,2 ⊆MS1,1 ⊆MS2,1,

MS1,2 ⊆MS2,2 ⊆MS2,1.

We will give examples proving that these inclusions are proper, that MS1,1 and MS2,2

are incomparable, that MS1,1∪MS2,2 is a proper subclass of MS2,1 and that MS1,2 is
a proper subclass of MS1,1 ∩MS2,2.

Example 1.45 (The line graph transduction) The line graph Line(G) of an undi-
rected graph G is the loop-free undirected graph H such that VH = EG and e, f are
adjacent vertices of H if and only if they have at least one common vertex as edges
of G. The mapping �G� → �H� is an MS2,1-transduction with definition scheme
〈χ ,δ,θedg〉 such that:

χ :⇐⇒ True,

δ(x) :⇐⇒ ∃z. in(x,z),

θedg(x,y) :⇐⇒ x �= y∧∃z(in(x,z)∧ in(y,z)).

Could one use �G� instead of �G� for the input? The answer is no by Fact 1.37
because for arbitrary graphs G, if H = Line(G) then we do not have |D�H�| =
O(|D�G�|) since D�H� = VH = EG and D�G� = VG.

Could one use �H� instead of �H� for the output? Again the answer is no by a
similar argument: if G = K1,n, then |D�G�| = 2n+ 1, |VH | = n, |EH | = n(n− 1)/2,
hence |D�H�| = n(n+ 1)/2 and is not O(|D�G�|).

Hence the line graph transduction is neither in MS1,1 nor in MS2,2.

Example 1.46 (Transitive closure) We have seen in Example 1.32 that the transitive
closure G �→ G+ on directed graphs is an MS1,1-transduction. It is not an MS2,2-
transduction: consider Qn, the directed path with n vertices. We have |D�Qn�| = 2n−1
and |D�Q+n �| = n(n+1)/2, hence we do not have |D�Q+n �| =O(|D�Qn�|). Consequently
the transitive closure of directed graphs is not an MS2,2-transduction.

Example 1.47 (Edge subdivision) For G simple, directed and loop-free, we let
Sub(G) be the graph of the same type such that

VSub(G) := VG ∪EG ,

ESub(G) := {(u,e),(e,v) | (e,u) ∈ in1G, (e,v) ∈ in2G}.
This transformation, called edge subdivision consists in replacing directed edges by
directed paths of length 2. We have |VSub(G)| = |VG| + |EG| and |ESub(G)| = 2|EG|.
Edge subdivision is an MS2,2-transduction because the transformation of �G� into
�Sub(G)� is a 3-copying monadic second-order transduction: a vertex v of G is made
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Figure 1.6 The different classes of monadic second-order transductions.

into a vertex (v,1) of Sub(G), and an edge e linking u to v is made into a vertex (e,1)
and into edges (e,2) and (e,3) of Sub(G) that link respectively (u,1) to (e,1) and
(e,1) to (v,1). Its definition scheme will be given in Chapter 7 (see Example 7.44).
Since |VSub(G)| is not O(|VG|), edge subdivision is not an MS1,1-transduction.

Example 1.48 (Identity) The identity mapping is trivially an MS1,1- and an
MS2,2-transduction, and hence also an MS2,1-transduction. It is not an MS1,2-
transduction, as a clear consequence of Fact 1.37. However we have the following
theorem which yields Theorem 1.44 with the help of Theorem 1.40.

Theorem 1.49 On each set of simple graphs that are planar, or of degree at most k ,
or of tree-width at most k for some fixed k , the identity is an MS1,2-transduction. �

We conclude this discussion with a diagram (Figure 1.6) relating the different
types of MS-transductions, where lines indicate strict inclusions from bottom-up. All
inclusions are clear from the definitions and the above observations. That they are
strict and that MS1,1 and MS2,2 are incomparable is proved by Examples 1.45, 1.46,
1.47 and 1.48.

The results in Section 1.7.3 are stated for MS1,1-transductions and the VR algebra.
There are analogous statements for MS2,2-transductions and the HR algebra. We first
observe a technical point: since the identity on trees or terms is an MS1,2-transduction
and since the composition of two MS-transductions is an MS-transduction, a trans-
duction from trees or terms to graphs is an MS1, j-transduction if and only if it is an
MS2, j-transduction. There are thus only two types of transductions taking trees or
terms as input to consider and we get the following fully similar results:

Theorem 1.50 For every k , the mapping that associates with a term t in T (FHR
[k] ) the

s-graph tJS is an MS1,2-transduction. �

Theorem 1.51 (Equationality Theorem for the HR algebra) A set of graphs is
HR-equational if and only if it is the image of the set of binary rooted trees under an
MS1,2-transduction. �
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As in Section 1.7.3, this implies, using the closure of monadic second-order trans-
ductions under composition (Theorem 1.39), that the image of an HR-equational set
under an MS2,2-transduction is again HR-equational (generalizing the logical version
of the Filtering Theorem for HR). Moreover, using the Equationality Theorems for
both the VR and the HR algebra, we obtain that the image of an HR-equational set
under an MS2,1-transduction is VR-equational, and the image of a VR-equational set
under an MS1,2-transduction is HR-equational. Note that if f is an MSi, j-transduction
and g is an MSj,k -transduction (i, j,k = 1,2), then their composition f ·g is an
MSi,k -transduction.

Using Proposition 1.20, Theorem 1.51 implies the following corollary:

Corollary 1.52 A set of graphs has bounded tree-width if and only if it is included
in the image of the set of binary rooted trees under an MS1,2-transduction. �

As for Theorem 1.42 and its corollary, both Theorem 1.51 and Corollary 1.52 hold
with “the set of binary rooted trees” replaced by “the set of trees” or by “T (F) where
F is any finite signature with at least one constant symbol and at least one symbol of
arity at least 2.” In these results, graphs are without ports or sources in order to have
simpler statements. Slightly more general results will be stated in Chapter 7.

From Corollaries 1.52 and 1.43 we get the following corollary from which quick
proofs that certain sets of graphs have bounded or unbounded tree-width or clique-
width can be obtained:

Corollary 1.53

(1) The image of a set of graphs of bounded tree-width under an MS2,2-transduction
(resp. under an MS2,1-transduction) has bounded tree-width (resp. bounded
clique-width).

(2) The image of a set of graphs of bounded clique-width under an MS1,1-transduction
(resp. under an MS1,2-transduction) has bounded clique-width (resp. bounded
tree-width).

(3) A set of simple planar graphs or of simple graphs of bounded degree has bounded
tree-width if and only if it has bounded clique-width. �

Statements (1) and (2) follow from Corollaries 1.52 and 1.43, by Theorem 1.39.
Since all proofs are effective, the new bound can be computed from the given
bound and the definition scheme of the MS-transduction. Using again Theorem 1.39,
statement (3) follows from Theorem 1.49 and the fact that the identity is an
MS2,1-transduction (Example 1.48). We will give in Section 2.5.5 a proof of state-
ment (3) that does not use transductions and gives a good estimate of the bound on
tree-width.

To conclude this section, let us stress the nice parallelism between two groups of
definitions:



74 Overview

(1) the VR algebra, clique-width and MS formulas;
(2) the HR algebra, tree-width and MS2 formulas.

The Recognizability Theorem and the Equationality Theorem have fully analogous
statements for both groups. Furthermore, the same graph theoretic conditions, i.e.,
those of Theorem 1.44 (and more general ones), ensure the equivalence of clique-
width and tree-width, and simultaneously of MS and MS2 formulas. The MS1,2- and
MS2,1-transductions define “bridges” between the “world of bounded clique-width”
and that of “bounded tree-width.” The facts show how intimate are the relationships
between logical and combinatorial notions.

1.9 Relational structures

Terms, graphs, labeled graphs, hypergraphs of different types are, or rather can be con-
veniently represented by relational structures. Up to now, we have only seen relational
structures with unary and binary relations that correspond to vertex- and edge-labeled
graphs. However, many of our results can be proved without any difficulty for general
relational structures.

In order to illustrate the usefulness of relational structures in Discrete Mathematics,
we will present the examples of betweenness relations and cyclic orderings, two
combinatorial notions defined in a natural way as ternary relations. Furthermore,
in a different domain, the theory of relational databases is based on the concept of
relational structure (see the book byAbiteboul, Hull and Vianu [*AbiHV]). However,
our theory will not bring much to this field for reasons that we will discuss briefly.

1.9.1 Relational signatures and structures

A relational signature (to be contrasted with the notion of a functional signature
defined in Section 1.1.4) is a finite set R of relation symbols where each symbol R
of R has an associated arity ρ(R) in N+ :=N − {0}. A relational structure of type
R, called simply an R-structure, is a tuple S = 〈DS ,(RS)R∈R〉 consisting of a finite
(possibly empty) domain DS and of a ρ(R)-ary relation43 RS for each R ∈ R. The
set of R-structures is denoted by STR(R). We let ρ(R) := max{ρ(R) | R ∈ R}. A
signature R (resp. an R-structure) is binary if ρ(R)≤ 2.

Since every k-ary function can be considered as a (k + 1)-ary relation, there is
no loss of generality in considering relational structures as opposed to more general
logical structures also containing functions. Although a constant, i.e., a 0-ary function
can be replaced by a (singleton) unary relation, it will be convenient (for instance for
representing the sources of graphs) to allow constants. In this introductory section,
however, we will only consider relational structures without constants.

43 Ak-ary relation can be defined as a subset of Dk
S or, equivalently, as a total function: Dk

S→{True,False}.
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Formulas are written with atomic formulas of the two forms x1 = x2 and
R(x1, . . . ,xρ(R)), where x1, . . . ,xρ(R) are individual variables. The notion of an
MS-expressible property of R-structures follows immediately. A subset L of STR(R),
the set of all R-structures, is MS-definable if it is the set of finite models of a monadic
second-order sentence ϕ, formally, if L= {S ∈ STR(R) | S |= ϕ}.

For expressing graph properties by monadic second-order formulas, we have
defined two relational structures associated with a graph G, denoted by �G� and �G�.
We have observed that certain graph properties are monadic second-order express-
ible via the “rich” representation �G�, but not via the “natural” one �G�. The former
properties are called MS2-expressible. A similar extension of monadic second-order
logic can be defined for relational structures. We let RInc :=R∪{ini | 1≤ i≤ ρ(R)}
with ρ(R)= 1 for R ∈R and ρ(ini)= 2 for i= 1, . . . ,ρ(R). The incidence structure
of S = 〈DS ,(RS)R∈R〉 is the RInc-structure Inc(S) defined as

〈DS ∪TS ,(RInc(S))R∈R, in1 Inc(S), . . . , ink Inc(S)〉,

where k := ρ(R) and

TS := {(R,d1, . . . ,dρ(R)) | R ∈R, (d1, . . . ,dρ(R)) ∈ RS},
RInc(S)(d) :⇐⇒ d = (R,d1, . . . ,dρ(R)) ∈ TS for some d1, . . . ,dρ(R) ∈DS ,
ini Inc(S)(d,d ′) :⇐⇒ d ∈ TS , d ′ ∈ DS and d = (R,d1, . . . ,dρ(R)) for some R ∈R
and d1, . . . ,dρ(R) such that d ′ = di.

It is clear that two R-structures S and S ′ are isomorphic if and only if Inc(S) and
Inc(S ′) are isomorphic. The incidence structure Inc(S) of S is actually a vertex- and
edge-labeled bipartite directed graph. Furthermore, each relation ini Inc(S) is func-
tional. A set of R-structures is MS2-definable if it is {S ∈ STR(R) | Inc(S) |= ϕ} for a
monadic second-order sentence ϕ over the signature RInc. As for graphs, we obtain
the notion of an MS2-expressible property of R-structures by replacing S by Inc(S).

Since the incidence structure of a relational structure is a labeled graph, the results
concerning MS2 formulas and labeled graphs of bounded tree-width transfer easily to
relational structures. It is not difficult to see that the identity on incidence structures
(of R-structures) is an MS1,2-transduction, which implies that Inc(S) has the same
MS2-expressible and MS1-expressible properties (cf. Theorems 1.49 and 1.44).

We define twdInc(S) := twd(Inc(S)) to be used as parameter. For each k , we define
STRk(R) as the class {S ∈ STR(R) | twdInc(S)≤ k} and we get the following result:

Theorem 1.54 Let R be a relational signature.

(1) The model-checking problem for CMS2 sentences and the class of R-structures
is fixed-parameter linear with respect to twdInc(S)+ |ϕ| where S is the input
structure and ϕ is the input sentence.

(2) For each k ∈ N , the CMS2-satisfiability problem for the class STRk(R) is
decidable.
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(3) If a subset of STR(R) has a decidable MS2-satisfiability problem, then it is
contained in STRm(R) for some m. �

This theorem generalizes to R-structures the parts of Theorems 1.25, 1.26 and 1.29
that concern tree-width and CMS2-expressible graph properties. Establishing anal-
ogous results for CMS properties (as opposed to CMS2 properties) raises difficult
open problems.

1.9.2 Betweenness and cyclic ordering

We now present the two combinatorial notions of betweenness and cyclic ordering
that are naturally defined as ternary relations. They raise open questions relative
to monadic second-order expressibility. All results stated below will be proved in
Section 9.1.

With a finite linear order 〈D,≤〉 such that |D| ≥ 3 we associate the following ternary
relation, called its betweenness relation:

B(x,y,z) :⇐⇒ (x < y < z)∨ (z < y < x),

where x < y means “x ≤ y and x �= y”. We denote it by B(≤). This relation satisfies
the following properties, for all x,y,z, t ∈D:

(B1) B(x,y,z)⇒ x �= y∧ x �= z∧ y �= z;
(B2) B(x,y,z)⇒ B(z,y,x);
(B3) B(x,y,z)⇒¬B(y,z,x);
(B4) B(x,y,z)∧B(y,z, t)⇒ B(x,y, t)∧B(x,z, t);
(B5) B(x,y,z)∧B(y, t,z)⇒ B(x,y, t)∧B(x, t,z);
(B6) x �= y∧ x �= z∧ y �= z⇒ B(x,y,z)∨B(y,z,x)∨B(z,x,y).

Conversely, if B is a ternary relation satisfying these properties, it is B(≤) for
some linear order on D, hence it is a betweenness relation. A set X ⊆ D3 is consis-
tent for betweenness if X ⊆ B for some betweenness relation B on D. The problem
Betweenness consisting in deciding whether a given set X ⊆ D3 is consistent for
betweenness is NP-complete ([*GarJoh]).

If X is consistent for betweenness, we define

X̂ :=
⋂
{B | X ⊆ B, B is a betweenness relation}.

The set X̂ satisfies properties (B1)–(B5). We say that X is a partial betweenness
relation on D if X̂ = X . These definitions raise the following open questions, where
a ternary relation X ⊆ D3 is identified with the R-structure 〈D,X 〉 (for some fixed
singleton R):
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Question 1.55

(1) Is the set of relational structures {〈D,X 〉 | X is consistent for betweenness}
MS-definable?

(2) Is the set of partial betweenness relations MS-definable?

For MS2 the answers to these questions are positive.

Proposition 1.56 The set of partial betweenness relations and the set of ternary
relations that are consistent for betweenness are MS2-definable. �

For X ⊆ D3, we define the size of 〈D,X 〉 as |D| + |X | and twdInc(X ) as the tree-
width of the labeled graph Inc(〈D,X 〉). From Proposition 1.56 and Theorem 1.54(1)
we immediately obtain the next result.

Corollary 1.57 The problem Betweenness is fixed-parameter linear with respect
to twdInc. �

We now consider the similar notion of cyclic ordering. With a finite linear order
〈D,≤〉 such that |D| ≥ 3, we associate the ternary relation

C(x,y,z) :⇐⇒ (x < y < z)∨ (y < z < x)∨ (z < x < y).

Let D := {d1, . . . ,dn} with d1 < d2 < · · ·< dn, where d1, . . . ,dn are points on a circle
such that, according to some orientation of the plane, di+1 follows di and d1 follows dn.
Then C(x,y,z) expresses that, if one traverses the circle according to this orientation by
starting at x, one meets y before z. We denote by C(≤) the ternary relation associated
with ≤ in this way. A relation of this form is a cyclic ordering. A cyclic ordering C
satisfies the following properties, for every x,y,z, t of its domain D:

(C1) C(x,y,z)⇒ x �= y∧ x �= z∧ y �= z;
(C2) C(x,y,z)⇒ C(y,z,x);
(C3) C(x,y,z)⇒¬C(x,z,y);
(C4) C(x,y,z)∧C(y, t,z)⇒ C(x,y, t)∧C(x, t,z);
(C5) x �= y∧ x �= z∧ y �= z⇒ C(x,y,z)∨C(x,z,y).

Every ternary relation satisfying (C1)–(C5) is a cyclic ordering. A subset X of D3 is
consistent for cyclic ordering if X ⊆ C for some cyclic ordering on D. The problem
Cyclic Ordering, which consists of deciding if a set X ⊆D3 is consistent for cyclic
ordering, is NP-complete ([GalMeg]).

As for betweenness, for X ⊆D3, we let X̂ be the intersection of all cyclic orderings
C on D such that X ⊆C (and X̂ is undefined if there is no cyclic ordering containing
X ). A partial cyclic ordering on a set D is defined as a subset of D3 such that X̂ = X .
For cyclic ordering, we have the same results and open questions as for betweenness.
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1.9.3 Relational databases

The theory of relational databases (exposed in the book [*AbiHV]) is based on rela-
tional structures. In this theory, a relational signature R is called a database schema,
its elements are called relation schemas, and an R-structure is called a database
instance. A query is a syntactic or algorithmic description of a relation with specified
arity written in some query language and defined in terms of the relations stored in
the considered database instance. One concern is to compare the expressive pow-
ers of several such languages. Another one is to construct efficient algorithms for
evaluating these relations, that is, to list their tuples or, sometimes, only to count
them.

Theorem 1.54 yields linear-time algorithms for such computations (and for fixed
queries) in cases where the input structures are constrained to belong to STRk (R) for
some fixed k , or to satisfy some similar condition (e.g., for binary structures, to have
bounded clique-width), and formulas are required to be monadic second-order. In the
case of databases, there is usually no reason to assume that the relational structure
modeling the database instance satisfies such constraints. Constraints are rather put on
the formulas expressing queries in order to ensure the existence of efficient algorithms.
These constraints are formulated in terms of tree-width and hypertree-width of certain
graphs associated with formulas: we refer the reader to the comprehensive article
by Gottlob et al. [GotLS]. Hence, the basic concepts of relational structures and
logical formulas are the same as in the algorithms of Section 1.5, but the methods for
constructing fixed-parameter tractable algorithms are not.

1.10 References

The collective book [*Com+] by Comon et al., readable online, is a thorough study
of finite automata on terms. Another reference is the book chapter [*GecSte].

Graph grammars defined in terms of graph rewritings are surveyed in two chapters
([*EngRoz], [*DreKH]) of the first volume of the handbook of graph grammars and
graph transformations [*Roz] edited by Rozenberg.Another similar survey is the book
chapter [*Eng97]. Most of the material referred to in Sections 1.1–1.8 is surveyed in
[*Cou97], another chapter of [*Roz].

The books by Diestel [*Die] and by Mohar and Thomassen [*MohaTho] are
our main references for general graph theory and for graphs embedded on surfaces
respectively.

The books by Downey and Fellows [*DowFel] and by Flum and Grohe [*FluGro]
present in detail the theory of Fixed-Parameter Tractability and contain important
sections on tree-decompositions and their algorithmic applications. The surveys by
Grohe [*Gro] and by Kreutzer [*Kre] focus on algorithms for problems expressed by
first-order and monadic second-order sentences relative to graphs that are structured
in various ways.
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One of our objectives is to extend to finite graphs the algebraic view of Formal
Language Theory initiated by Mezei and Wright [MezWri]. The least fixed-point
characterization of context-free languages due to Ginsburg and Rice [GinRic] and to
Chomsky and Schützenberger [ChoSch] has inspired the notion of equational sets,
defined in [MezWri]. This article extends to general algebras the notion of recogniz-
ability studied for monoids by Eilenberg, Schützenberger and many others: see the
books by Eilenberg [*Eil] and Sakarovitch [*Sak].

Monadic second-order logic on words, terms and trees, either finite or infinite, and
its relationships with automata is a vast domain presented in the two book chapters by
Thomas: [*Tho90] and [*Tho97a]. From this theory, we will only use Theorem 1.16
by Doner [Don] and Thatcher and Wright [ThaWri] that generalizes to terms the
corresponding basic result established for words by Büchi [Büc], Elgot [Elg] and
Trakhtenbrot [Tra].

We will not study countable graphs and structures. For this rich topic we refer the
reader to the book chapters by Thomas ([*Tho90] and [*Tho97a]), and to the books
[*GräTW] and [*FluGräW].
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Graph algebras and widths of graphs

We will define graph operations that generalize the concatenation of words. Some of
these operations have been used in Section 1.1 to define the cographs and the series-
parallel graphs. We will define actually two signatures of graph operations, hence two
graph algebras. Both algebras will be defined in such a way that their equational sets
are exactly the sets defined by certain context-free graph grammars. (The notion of
an equational set has been presented informally in Section 1.1.4 and will be studied
in detail in Chapter 3.)

Two main types of context-free sets of graphs defined by certain graph rewriting
mechanisms have emerged from the intense research conducted from around 1980
and synthesized in the handbook [*Roz] edited by Rozenberg.

We will first define the HR graph algebra that corresponds in this respect to the
hyperedge replacement grammars. It turns out that the operations of this algebra
yield an exact characterization (as equational sets) of the sets of graphs of tree-width
bounded by fixed integers. The terms built with the operations of the HR algebra
can be seen as algebraic expressions of tree-decompositions. (Tree-width and the
corresponding tree-decompositions are important for the construction of efficient
graph algorithms and also for the characterization of the graphs that exclude a fixed
graph as a minor.)

The second algebra, called the VR algebra, is defined so that its equational sets
are those generated by the (context-free) vertex replacement grammars. A new graph
complexity measure called clique-width has arisen in a natural way from the definition
of the VR algebra, without having (yet) any independent combinatorial charac-
terization. Clique-width and tree-width are interesting parameters yielding fixed-
parameter tractable algorithms for problems expressible in monadic second-order
logic.

This chapter introduces by necessity many definitions and a lot of notation. We
define algebras and terms in Section 2.1, graphs in Section 2.2, the HR algebra
in Section 2.3, tree-decompositions and their relationships with the HR algebra in
Section 2.4, the VR algebra and clique-width in Section 2.5. The HR and VR algebras
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are one-sorted, but for defining the notion of recognizability, we will need the many-
sorted versions of these algebras that we define in Section 2.6.

2.1 Algebras and terms

For every set A, we denote by Seq(A) the set of finite sequences of elements of A and
by s = (a1, . . . ,an) the generic sequence. Its length is n, denoted by |s|. The empty
sequence of length 0 is denoted by (). The concatenation of two sequences is denoted
by ·, hence (a1, . . . ,an) · (b1, . . . ,bm)= (a1, . . . ,an,b1, . . . ,bm).

If A is an alphabet, i.e., a set1 of letters (or symbols), an element of Seq(A) is
called a word over A. The notations A∗, a1a2 · · ·an and ε replace respectively Seq(A),
(a1, . . . ,an) and (). The · representing concatenation is frequently omitted. The i-th
element of a sequence s (in particular of a word s) is denoted by s[i]. A language
over A is subset of A∗. (A language in general is a set of words or a set of terms, see
Definition 2.2 below.)

If k belongs to N , the set of natural numbers (including 0), then [k] denotes the
set {1, . . . ,k}, so that [0] = ∅. The set N −{0} of positive integers is denoted by N+.

Definition 2.1 (Algebras) A functional signature F is a set of function symbols, each
being given with a natural number called its arity. We denote by ρ( f ) the arity of f .
We say that f is a constant symbol if it has arity 0. We let Fi := { f ∈ F | ρ( f )= i},
F+ := F −F0 and ρ(F) :=max{ρ( f ) | f ∈ F}. A signature is unary (resp. binary) if
ρ(F)≤ 1 (resp. ρ(F)≤ 2).

Let F be a (finite or infinite) functional signature. An F-algebra M is a set M
equipped with total functions fM : Mρ( f )→ M for f ∈ F . If f ∈ F0, then fM is a
function with no arguments, hence an element of M that we call a constant. We write
M= 〈M ,( fM)f ∈F 〉. We call M the domain of M and the functions fM (for f in F+)
its operations. The domain may be empty unless F0 is nonempty.

The graph algebras Gu = 〈Gu,⊕,⊗,1〉 and Jd
2 = 〈J d

2 ,�,•,e〉 have been defined in
Section 1.1. In these cases and in many others we denote an operation fM by f , that
is, we do not distinguish an operation from the symbol denoting it. Algebras of terms
and words are defined below (Definitions 2.2 and 2.7).

Asignature H is a subsignature of F , which we denote by H ⊆F , if H is a subset of
F and the arity of f in H is the same with respect to H and to F . If M is an F-algebra
and N is an H -algebra, then we say that N is a subalgebra of M, which we denote by
N⊆M, if H is a subsignature of F , N ⊆M and fN = fM � N ρ( f ) for every f ∈H (in
particular fN = fM if f ∈ F0).

A homomorphism h : M→ N, where M and N are two F-algebras, is a map-
ping h : M → N such that for every f ∈ F and m1, . . . ,mρ( f ) ∈ M , we have

1 Alphabets and signatures will always be finite or countably infinite.
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h( fM(m1, . . . ,mρ( f )))= fN(h(m1), . . . ,h(mρ( f ))). In particular, h( fM)= fN if f ∈ F0.
If h is a bijection, it is an isomorphism and M,N are isomorphic algebras.

The Cartesian product of two F-algebras M and N is defined as the F-algebra
M × N := 〈M × N ,( fM×N)f ∈F 〉, where fM×N((m1,n1), . . . ,(mρ( f ),nρ( f ))) :=
( fM(m1, . . . ,mρ( f )), fN(n1, . . . ,nρ( f ))) for all m1, . . . ,mρ( f ) in M and n1, . . . ,
nρ( f ) in N .

A monoid is an F-algebra M such that F = {·,1}, where · is binary, 1 is a constant
symbol, and the operation ·M is associative with unit element 1M. The symbol ε will
also be used to denote the unit element.

Definition 2.2 (Terms) Let F be a functional signature. The set T (F) of terms over
F is the unique subset L of F∗ (here we consider F as an alphabet) such that:

L=
⋃
f ∈F

f L · · ·L, (2.1)

where, in each f L · · ·L, we have ρ( f ) occurrences of L.2 This way of writing terms,
due to Łukaciewicz, is called Polish prefix notation. This notation is unambigous,
which means that every element of L has a unique expression of the form ft1 · · · tρ( f )

for f ∈ F and t1, . . . , tρ( f ) ∈ L. Inductive definitions and proofs will be based on this
fact. The set of subterms of a term t is defined by the following induction:

Subterm(t) := {t}∪ Subterm(t1)∪ ·· · ∪ Subterm(tρ( f )),

if t = ft1 · · · tρ( f ) and t1, . . . , tρ( f ) are terms.
For signature F , a language over F is a subset of T (F); since T (F)⊆ F∗, it is also

a language over the alphabet F .
Let M be an F-algebra. Every term t ∈ T (F) evaluates into an element of M

denoted by tM. Formally, we have:

tM := fM(t1M, . . . , tρ( f )M),

if t = ft1 · · · tρ( f ) and t1, . . . , tρ( f ) ∈ T (F); the value tM is defined in a unique way
because Polish prefix notation is unambigous. We will also denote by valM : T (F)→
M the mapping that associates tM with t ∈ T (F). Let F ′ ⊆ F . A subset of M is
generated by F ′ if it is a subset of valM(T (F ′)). The subalgebra of M with signature F ′
and domain valM(T (F ′)) is called the subalgebra of M generated by F ′. In particular,
we say that M is generated by F ′ if M = valM(T (F ′)).

We let T(F) be the F-algebra with domain T (F) such that:

fT(F)(t1, . . . , tρ( f )) := ft1 · · · tρ( f ),

2 There is a unique set L ⊆ F∗ satisfying Equality (2.1), see Proposition 3.15. If F is finite, then L is a
context-free language.



2.1 Algebras and terms 83

for all f ∈ F and t1, . . . , tρ( f ) ∈ T (F). It is called the initial F-algebra because, for
every F-algebra M, the mapping valM is the unique homomorphism : T(F)→M.
This homomorphism is surjective if and only if M is generated by F . We also define
S(F) as the F-algebra 〈F∗,( fS(F))f ∈F 〉 such that each operation fS(F) is defined like
fT(F), that is:

fS(F)(u1, . . . ,uρ( f )) := fu1 · · ·uρ( f ),

for all f ∈ F and u1, . . . ,uρ( f ) in F∗. Then T(F) is the subalgebra of S(F) generated
by F .

We now introduce some definitions relative to the internal structure of terms.

Definition 2.3 (Positions and occurrences of symbols) Since every term t over F
is a word, it has a length |t| in N , also called its size. A position of t is an integer3

i in the set [|t|]. It is an occurrence of the symbol t[i]. We denote by Pos(t) the set
of positions of t and by Occ(t, f ) the set of occurrences in t of a symbol f . Hence
Pos(t) =⋃{Occ(t, f ) | f ∈ F}. The leading symbol of t is t[1]. The height of t is
defined inductively as follows:

ht( f )= 0 if f ∈ F0,

ht( ft1 · · · tρ( f ))= 1+max1≤i≤ρ( f ) ht(ti) otherwise.

Definition 2.4 (Notational improvements) In order to improve readability, we
will write terms with commas and parentheses. For example the term fghabcggbcc,
where ρ( f ) = 3, ρ(g) = 2, ρ(h) = 1, ρ(a) = ρ(b) = ρ(c) = 0, will be written
f (g(h(a),b),c,g(g(b,c),c)). (We have used this notation in Chapter 1 in the definition
of terms.)

With this notation the arities of the symbols occurring in a term need not be specified
because they can be determined from the term (whereas for parsing Polish prefix
notation, one needs to know the arities of symbols). In other words, we use in terms
the same notation as for function application in the metalanguage.

Another notational variant will be used. If f is a binary function symbol intended to
denote an associative operation, we will write t1ft2 instead of f (t1, t2). This notation
is ambiguous because the two different terms f ( f (t1, t2), t3) and f (t1, f (t2, t3)) are
denoted in the same way by t1ft2ft3, but this ambiguity does not matter if we use
this notation in cases where f denotes an associative operation. This notation can be
used for a single associative binary operation. For writing terms with several such
operations, we add parentheses. For example, we will write (1⊕1⊕1)⊗ (1⊕1⊕1)
the term ⊗⊕ 1⊕ 11⊕ 1⊕ 11 that denotes the cograph K3,3 (cf. Section 1.1.2).
Another notation for this term is ⊗(⊕(1,⊕(1,1)),⊕(1,⊕(1,1))). We might also use
the notation ⊕(1,⊕(1,1))⊗⊕(1,⊕(1,1)).

3 Positions can also be designated by finite sequences of integers called Dewey sequences. This method
is used in many articles and books, e.g., [*Cou83], [*Com+] and [*GecSte].
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Definition 2.5 (Terms with variables) We will use terms written with first-order
variables, i.e., variables that can denote arbitrary elements of the domains of algebras
(and not functions or relations). If X is a set of variables (implicitly, of first-order
variables), then T (F ,X ) is the set of terms over F ∪X , where variables are symbols
of arity 0. We always assume implicitly that F ∩X = ∅.

Let X = {x1, . . . ,xn} be a set of variables listed in this order and t be a term in
T (F ,X ). In every F-algebra M, the term t defines an n-ary total function tM : M n→M
such that for all m1, . . . ,mn in M , tM(m1, . . . ,mn) is the value of t in M computed by
considering xi as a constant symbol denoting mi. This function will also be denoted
by λm1, . . . ,mn · tM(m1, . . . ,mn) or by λx1, . . . ,xn · t if M is known from the context.
(This notation has the advantage of specifying the list of argument variables.) Such a
function is called a derived operation of M. A term t with variables is linear if each
variable has at most one occurrence in t. A derived operation is linear if it is defined
by a linear term.

We denote by Xn the standard set of variables {x1, . . . ,xn} (listed in this order) and
similarly Yk := {y1, . . . ,yk }.

Definition 2.6 (Substitutions, contexts and subterms) If t ∈ T (F ,X ), if v1, . . . ,vn

are pairwise distinct variables in X and t1, . . . , tn ∈ T (F ,X ), then we denote by
t[t1/v1, . . . , tn/vn] or equivalently by t[ti/vi; i ∈ [n]] the result of the substitu-
tion in t of ti for each occurrence of vi. A variable vi may have no or several
occurrences in t, hence an argument ti may disappear or be duplicated. For
example, if t = fgav1v1v3, then t[t1/v1, t2/v2, t3/v3] = fgat1t1t3 for all terms t1, t2, t3
in T (F ,X ).

This operation has the following semantic meaning: if s= t[t1/v1, . . . , tn/vn]where
t, t1, . . . , tn ∈ T (F ,{v1, . . . ,vn}), then for every F-algebra M, the mapping sM is the
composition of the derived operations : M n → M associated with t, t1, . . . , tn, i.e.,
sM(m)= tM(t1M(m), . . . , tnM(m)) for every m ∈M n.

A context over F ∪X is a term t in T (F ,X ∪{w}) where w is an auxiliary variable
assumed not to belong to X and that has a unique occurrence in t. The term w is the
empty context. We denote by Ctxt(F ,X ) the set of contexts over F ∪ X , and write
Ctxt(F) instead of Ctxt(F ,∅). If c ∈Ctxt(F ,X ) and t ∈ T (F ,X ) then c[t] denotes the
result of the substitution in c of t for w. The actual choice of w as auxiliary variable is
irrelevant provided w /∈ X . This variable does not appear in the notations Ctxt(F ,X )

and c[t].
If t ∈ T (F ,X ) and i ∈ Pos(t), then t can be written in a unique way as t = αt′β,

where α,β ∈ (F ∪ X )∗, |α| = i − 1 and t′ ∈ T (F ,X ). We call t′ the subterm of t
issued from position i, and we denote it by t/i. (Hence t/1= t.) Let w be a variable
(not in X ) to be used for defining contexts as terms. The term c = αwβ belongs to
Ctxt(F ,X ) and we have t = c[t′]. We will denote it by t ↑ i and call it the context of
t issued from i. Hence, we have t = (t ↑ i)[t/i]. For example, if t = fgav1v1v3 (with
ρ( f )= 3,ρ(g)= 2,ρ(a)= 0) then t/2= gav1 and t ↑ 2= f wv1v3.
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If t ∈ T (F ,X ), we denote by ListVar(t) the word in X ∗ obtained by deleting from t
all symbols from F . Every term t in T (F ,Xn) such that ListVar(t)= xi1 · · ·xik is equal to
t̃ [xi1/y1, . . . ,xik /yk ] for a unique term t̃ in T (F ,Yk ) such that ListVar(̃t )= y1y2 · · ·yk .
For t = fgax3x3x1 with f ,g,a as above, we have ListVar(t)= x3x3x1, t̃ = fgay1y2y3,
i1 = i2 = 3 and i3 = 1. It is clear that tM = λm1, . . . ,mn ·̃ tM(mi1 , . . . ,mik ).

Definition 2.7 (Three algebras of words) The set of words A∗ over an alphabet A is
an FA-algebra where the signature FA consists of a binary symbol · to be interpreted
as the concatenation, a constant symbol ε to be interpreted as the empty word ε

and a constant symbol a to be interpreted as the word a for each a ∈ A. We let
W(A) := 〈A∗, ·,ε,(a)a∈A〉 be the corresponding algebra. It is generated by FA (every
word in A∗ is the value of some term in T (FA)). The algebra 〈A∗, ·,ε〉 is the free
monoid generated by A.

However, two other algebraic structures on A∗ will be relevant to our purposes.
We let UA := A∪{ε} be the unary signature such that ρ(ε)= 0 and ρ(a)= 1 for each
a in A. We then let Wright(A) := 〈A∗,ε,(ra)a∈A〉, where ra(w) := wa for every a ∈
A and w ∈ A∗. Dually, Wleft(A) := 〈A∗,ε,(la)a∈A〉, where la(w) := aw for every
a ∈ A and w ∈ A∗.

These two algebras are generated by UA and, for each of them, a word in
A∗ is the value of a unique term in T (UA). It is clear that if a1, . . . ,an ∈ A and
t = an(an−1(· · ·(a1(ε)) · · ·)) then a1 · · ·an−1an = valWright(A)(t) and anan−1 · · ·a1 =
valWleft(A)(t). Hence, we have two bijections from T (UA) to A∗, which are
isomorphisms from T(UA) to Wright(A) and Wleft(A).

Definition 2.8 (Effectively given sets, signatures and algebras) We will use infinite
signatures for defining graph algebras. We now discuss effectivity questions in order
to obtain algorithms and not only abstract formalizations.

An encoding of a finite or countable set A is a triple (|A|,encA,ξA) such that |A|
belonging to N ∪{ω} is the cardinality of A, encA is a decidable subset4 of N and ξA

is a bijection : A→ encA. Since encA = ξA(A), an encoding is uniquely determined
by the bijection ξA, which will therefore also be called an encoding.

We fix standard encodings (ω,N ,ξ) of sets like N , N ×{0,1}, N ×N and Seq(N )

where we assume that ξ and ξ−1 are computable. For instance, for the set N , the
mapping ξ is the identity on N , and for the set N ×{0,1} we define ξ(i,b) := 2i+b.
The set {True,False} has the standard encoding (2,{0,1},ξ) with ξ(True) := 1 and
ξ(False) := 0, and similarly for any fixed finite set. The set {x1,x2, . . . } of standard
variables (see Definition 2.5) has the standard encoding (ω,N ,ξ) with ξ(xi) := i. Let
A,A′,A1, . . . ,Ak be encoded sets. Standard encodings of sets like A∪A′ (for A and A′
disjoint), A× A′ and Seq(A) are derived in the obvious way from ξA,ξA′ and those
of N ×{0,1}, N ×N and Seq(N ), respectively. To be precise, for a,a1, . . . ,am ∈ A

4 This means that the membership problem of encA is decidable, i.e., an algorithm can check whether or
not an element of N belongs to encA.
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and a′ ∈ A′ we let ξA∪A′(a) := 2ξA(a) and ξA∪A′(a′) := 2ξA(a′)+ 1, ξA×A′(a,a′) :=
ξN×N (ξA(a),ξA′(a′)), and ξSeq(A)(a1, . . . ,am) := ξSeq(N )(ξA(a1), . . . ,ξA(am)). A sub-
set B of A is a decidable subset of A if ξA(B) := {ξA(b) | b ∈ B} is a decidable subset
of encA (and hence of N ). The standard encoding of B is the restriction of ξA to B,
i.e., the triple (|B|,ξA(B),ξA � B). A function f : A1 × ·· · × Ak → A is computable
(implicitly, via the encodings of A1, . . . ,Ak ,A) if the mapping

f̃ : encA1 ×·· ·× encAk → encA,

such that f̃ (x1, . . . ,xk ) := ξA( f (ξ−1
A1

(x1), . . . ,ξ
−1
Ak

(xk )), is computable. For example,
B is a decidable subset of A if and only if the mapping g : A→ {True,False} is
computable, where g(a) is defined to be True if a ∈ B and False otherwise.

Encoded sets will be given as input to algorithms and they will be produced as output
by algorithms. An encoded set is effectively given if it is specified by its cardinality
|A| ∈N ∪ {ω} and an algorithm that decides the membership of an element of N in
encA. It is semi-effectively given if it is specified by a membership algorithm only. If
an encoded set A is finite and effectively given, then the set encA can be computed,5

but if it is only semi-effectively given, then that is not possible in general. Conversely,
if the finite set encA is given, then it is effectively given (i.e., its cardinality can be
computed and a membership algorithm for encA can be constructed).

A signature F is effectively given if the set F is effectively given and the arity
mapping ρ : F→N is computable, i.e., the mapping ρ̃ := ρ ◦ξ−1

F is computable (and
an algorithm computing ρ̃ must be specified). It follows that the set of terms T (F)

is semi-effectively given by its standard encoding as a decidable subset of Seq(F).
If the integer i encodes the word f1 · · · fm, with f1, . . . , fm ∈ F , then the sequence
(ξF ( f1), . . . ,ξF( fm)) of integers that encode its function symbols can be computed
from i, because ξ−1

Seq(N )
is computable. It can then be checked if that sequence encodes

a term t in T (F), and if this is the case, the integers encoding its subterms can be
computed because ξSeq(N ) is computable. In a similar way, the sets of terms T (F ,Xn)

are effectively given, where Xn is the set of standard variables {x1, . . . ,xn}. With the
standard encoding of T (F), the algebra T(F) of terms over F is a semi-effectively
given F-algebra, according to the next definition, as can easily be verified.

An F-algebra M is effectively given (respectively semi-effectively given) if its
signature F is effectively given, its domain M is effectively given (respectively semi-
effectively given) and its operations fM are computable in the following uniform way:
the mapping ζM : SeqM→M is computable (and an algorithm computing ζ̃M must
be specified), where SeqM is the decidable subset of F × Seq(M ) consisting6 of all
tuples ( f ,x1, . . . ,xp) such that f ∈ F , p= ρ( f ) and x1, . . . ,xp ∈M , and ζM is defined

5 Enumerate the elements i of N , test whether i belongs to encA, and halt when |A| elements of encA have
been found.

6 When an encoding of a set is not mentioned, as here for Seq(M ) and SeqM, we silently assume that its
standard encoding is used.
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by ζM( f ,x1, . . . ,xp) := fM(x1, . . . ,xp). It follows in particular that each operation is
computable. Furthermore, the mapping valM : T (F)→M is also computable. The
derived operations of M are computable in a similar way (with a term t in T (F ,Xp)

instead of a function symbol f in Fp).
If M is semi-effectively given and generated by F , then there exists a computable

“parsing” mapping π : M→ T (F) that associates with every element m in M a term
t such that valM(t) = m. To compute π̃(x) it suffices to enumerate the elements of
N until some integer is found that encodes a term t such that ξM (valM(t))= x, and
this equality can be checked since valM is computable. If M is finite and effectively
given, such a mapping π̃ , or equivalently π itself, can be computed once and for all
into a table.

2.2 Graphs

We assume that the basic terminology of graph theory is well known. In this section we
mainly fix notation and give some definitions that are not standard. We pay particular
attention to the distinction between a concrete graph with specified sets of vertices
and edges, and an abstract graph, which is the isomorphism class of a concrete graph.

There are many types of graphs. They can be directed or not, with or without loops
and/or multiple edges; they can be “decorated” with labels, colors or weights. We
give formal definitions for a few basic cases and we indicate how they extend to
“decorated” graphs.

Definition 2.9 (Graphs) A directed graph G consists of a set of vertices VG, a set
of edges EG and a mapping vertG that associates with every edge e in EG an ordered
pair of vertices vertG(e)∈VG×VG. An undirected graph G is a triple 〈VG,EG,vertG〉
as above except that vertG(e) is a set of one or two vertices for each edge e in EG.7

In many cases, we leave vertG implicit and only use VG and EG. We always
assume that VG ∩EG =∅, and when we discuss several graphs G,H , we assume that
VG∩EH =∅ except when specified otherwise (e.g., for line graphs; cf. Section 1.8.2,
Example 1.45). If G is directed and vertG(e)= (u,v) (we may have u= v) we often
write e : u→ v and say that e links u to v or that e is from u to v. If G is undirected
and vertG(e) = {u,v} (possibly u = v) we write e : u− v and say that e links u and
v or that e is between u and v. (We write u→G v or u−G v if it is useful to specify
the graph G.) If e : u→ v or e : u− v we say that e is incident with u and v, and
that u and v are the end vertices (or ends) of e. In the former case, we say that u is
the tail of e and v its head. In both cases we say that u and v are adjacent or that
they are neighbors. The degree of a vertex is the number of its incident edges, and
(in the directed case) its indegree (outdegree) is the number of its ingoing (outgoing)

7 For a more precise set theoretical formalization, one could choose a countable set U containing N that
is closed under pairing (i.e., is such that (x,y) and {x,y} are in U if x,y ∈ U ), and require for all graphs
G that VG and EG are contained in U . In this way, the collection of all graphs forms a set.
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edges, i.e., the edges of which it is the head (the tail). A vertex is isolated if it has
degree 0. The degree of a graph is the maximal degree of its vertices, and similarly
for the indegree and outdegree of a graph. Two (distinct) edges e and f are parallel
if vertG(e)= vertG( f ). A graph is simple if it has no pair of parallel edges. Parallel
edges are also called multiple edges. We say that e is a loop if e : u→ u or e : u− u,
and in this case say that u has a loop. A graph is loop-free if no vertex has a loop.

For a simple directed graph G, one can identify an edge e with the ordered pair
vertG(e). Such a graph can be specified more simply as a pair 〈VG,edgG〉, where
edgG ⊆ VG ×VG is the binary relation such that (u,v) ∈ edgG if and only if e : u→
v for some edge e. Every binary relation on a set V defines a graph with set of
vertices V .

A simple undirected graph G can be specified similarly as a pair 〈VG,edgG〉, where
edgG is the symmetric relation such that (u,v)∈ edgG if and only if e : u−v for some e
in EG . It follows that a simple undirected graph can be considered as a simple directed
graph with a symmetric edge relation, i.e., such that every edge (u,v) that is not a
loop has an opposite edge (v,u). However, this identification is not always convenient
for our grammatical and logical treatments. In many cases, we will consider directed
and undirected graphs as distinct species and use explicit codings between directed and
undirected graphs whenever appropriate.

For G = 〈VG,EG,vertG〉, directed, we denote by und(G) the undirected graph
〈VG ,EG ,vertund(G)〉 such that vertund(G)(e) = {u} if e : u→G u and vertund(G)(e) =
{u,v} if e : u→G v, u �= v, and call it the undirected graph underlying G. Even if G
is simple, the graph und(G) may have pairs of parallel edges (coming from pairs of
opposite directed edges). An orientation of an undirected graph is a directed graph
obtained by choosing a direction for each edge (i.e., choosing a head and a tail).
Hence, G is an orientation of H if and only if und(G)=H . The core of a graph G is
the graph core(G) obtained from und(G), or from G if G is undirected, by deleting
loops and by fusing parallel edges. Thus, core(G) is simple, loop-free and undirected.

Aclique is a simple, loop-free, undirected graph, such that any two distinct vertices
are adjacent. We denote by Kn the isomorphism class of cliques with n vertices. (Graph
isomorphisms are formally defined in Definition 2.10 below.) A clique in a graph G
(directed or not) is a set of vertices of G such that any two vertices are adjacent.

Let G be an undirected graph, and u,v ∈ VG. A walk from u to v (or, linking u to v)
is a sequence of edges (e1, . . . ,en) such that, for some sequence of vertices (u0, . . . ,un)

with u= u0 and un= v, we have vertG(ei)= {ui−1,ui} for each i= 1, . . . ,n. This walk
is a path if ui �= uj for every i and j �= i. It will be convenient to view, for n = 0,
the empty sequence () as an empty path from u to u for each vertex u. A cycle is a
walk (e1, . . . ,en) such that n≥ 1, u0 = un, ei �= ej if i �= j and ui �= uj if 0≤ i < j < n.
In cases where this does not create ambiguity, especially for simple graphs (such as
trees), we will designate a path by the sequence (u0,u1, . . . ,un) of its vertices. This
sequence is not empty, even if n= 0.
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If G is a directed graph, the notions of walk, path and cycle are those relative to
und(G). Adirected walk is a walk (e1, . . . ,en) as above such that vertG(ei)= (ui−1,ui)

for each i. The notions of directed path and of directed cycle (also called a circuit)
follow accordingly.

A graph G is connected if any two vertices are the ends of a path.
Agraph G is finite if the set VG∪EG is finite. We will mostly consider finite graphs.

However, certain expressions of graph properties by logical formulas will be valid
for infinite graphs. We will indicate if finiteness is crucial for the validity of such
formulas.

We denote by ∅ the empty graph, such that V∅ = E∅ = ∅ (where ∅ denotes the
empty set). The empty graph is connected.

We define the size ‖G‖ of a finite graph G as |VG| + |EG|. This notion will be
used for analyzing algorithms. In many cases, and in particular for algorithms taking
simple graphs as input, the appropriate notion of size will be |G| := |VG|.
Definition 2.10 (Isomorphisms) Let G and H be graphs, either both directed or
both undirected. An isomorphism h : G→ H is a pair of bijections (hV ,hE), where
hV : VG → VH , hE : EG → EH , vertH (hE(e)) = (hV (u),hV (v)) if e : u→ v, and
vertH (hE(e)) = {hV (u),hV (v)} if e : u− v. If G and H are simple, it suffices to
specify hV because, if (hV ,hE) is an isomorphism : G→H , then hE is determined in
a unique way from hV by the conditions of the definition. In this case, an isomorphism :
G→ H can be more simply defined as a bijection hV : VG → VH such that some
bijection hE : EG→ EH exists that makes (hV ,hE) into an isomorphism. We denote
by G $ H the existence of an isomorphism : G→ H and we say that G and H are
isomorphic.

All our results will concern graphs up to isomorphism. To establish them, we will
need to perform constructions on graphs with specific sets of vertices and edges.
Hence we refine our terminology as follows: a graph G = 〈VG,EG,vertG〉 is called a
concrete graph. By an abstract graph, we mean the isomorphism class, denoted by
[G]iso, of a concrete graph G. We say that a concrete graph G is isomorphic to an
abstract graph [H ]iso if G $ H , i.e., if G belongs to the isomorphism class [H ]iso;
this is also written as G $ [H ]iso.

A graph property is a property of concrete graphs invariant under isomorphism,
hence a property of abstract graphs. By a class of graphs we mean a set of concrete
graphs closed under isomorphism, hence equivalently, a set of abstract graphs.8 In
most circumstances we will leave implicit the distinction between a concrete and an
abstract graph. Roughly speaking, statements concern abstract graphs while proofs,
usually starting with “Let G = 〈VG,EG,vertG〉 be a graph,” deal by necessity with
concrete graphs.

8 We will never use “class” in the set-theoretical sense of a collection of objects that may not form a set.
By the footnote in Definition 2.9, every collection of graphs is a set.
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Definition 2.11 (Concrete and abstract labeled graphs) A labeled (or colored)
graph is a graph equipped with additional information, formalized as follows. A
labeling function (or coloring function) of a concrete graph G is a mapping γ from
VG ∪EG into a set �. In most cases, � will be finite.

For example, finite automata recognizing words can be seen as labeled graphs: a
finite automaton is a directed graph such that certain vertices, called its states, are
labeled as initial or final (or accepting). A state may be labeled as both initial and
final. Furthermore, each transition, i.e., each edge of the corresponding graph, has a
label which is a letter from a finite alphabet or the symbol ε denoting the empty word.

The following notion of labeled graph includes these graphs. Let K and � be two
finite disjoint9 sets of labels. A (K ,�)-labeled graph is a graph, directed or not, such
that:

• each edge has one and only one label, which belongs to �; and
• each vertex has a possibly empty set of labels belonging to K .

The corresponding labeling function maps VG∪EG into� :=P(K)∪�. Such a graph
G is simple if no two edges have the same pair (ordered if G is directed, unordered
if G is undirected) of end vertices and the same label. We may have parallel edges
with different labels. For example, a finite automaton over an alphabet A is a simple,
directed, (K ,�)-labeled graph where K = {initial, final} and �= A∪{ε}.

If R is a binary relational signature (cf. Section 1.9.1) then R-structures correspond
bijectively to simple, directed (R1,R2)-labeled graphs, where Ri is the set of symbols
in R of arity i. The graph G corresponding to an R-structure S = 〈DS ,(RS)R∈R〉 has
vertex set DS , it has an edge from u to v labeled by R inR2 if and only if (u,v)∈RS , and
a vertex u has label R in R1 if and only if u ∈ RS . Conversely, every simple, directed
(K ,�)-labeled graph G is associated in this way to a binary relational R-structure
such that (R1,R2)= (K ,�).

According to the definition, a (K ,∅)-labeled graph has no edges. However, we will
call (K ,∅)-labeled a graph with unlabeled edges (equivalently, with all edges having
the same label) and vertices with labels in K . In this way, we need not specify a
default edge label.

We now define isomorphisms of labeled graphs, from which follows the notion of
an abstract labeled graph. If G and H are concrete graphs with labeling functions γG

and γH , we say that an isomorphism h : G→H is an isomorphism of labeled graphs
if γH (hV (u))= γG(u) for every u ∈ VG, and similarly for hE . Hence, we can define
abstract labeled graphs as isomorphism classes of concrete labeled graphs. We use
the same terminology as in the case of unlabeled graphs.

These definitions apply to weighted graphs, where a weight function is a total or
partial function from VG ∪ EG to the set of real numbers or to another set usually
equipped with an algebraic structure. Each time we will use labeled or weighted

9 The assumption that K and � are disjoint simplifies some definitions and statements but is not essential.
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graphs, we will specify the particular properties of the labeling or weight functions
under consideration.

Definition 2.12 (Subgraphs) Let G and H be concrete graphs, either both directed
or both undirected. We say that H is a concrete subgraph of G, written H ⊆ G, if
VH ⊆VG, EH ⊆EG and vertH (e)= vertG(e) for all e∈EH . It is an induced subgraph,
written H ⊆i G, if EH is the set of edges of G having their ends in VH , and it is a
spanning subgraph if VH = VG. If G and H are abstract graphs, saying that H is a
subgraph of G means that H is isomorphic to a concrete subgraph of a concrete graph
isomorphic to G.

If G is labeled and H ⊆G, then the edges and vertices of H have the same labels
as in G.

The induced subgraph of a concrete graph G with set of vertices X ⊆VG is denoted
by G[X ]. We let G−X :=G[VG−X ] and G−u :=G−{u} if u is a vertex. If F ⊆EG,
then the subgraph G[F] of G is such that EG[F] = F and VG[F] is the set of vertices
incident with an edge in F , and its subgraph G− F is defined by VG−F = VG and
EG−F = EG−F ; we let G− e :=G−{e} if e is an edge.

Definition 2.13 (Trees) A tree is a nonempty connected undirected graph without
cycles. It is thus simple, loop-free and every two vertices are linked by a unique
path. A rooted tree is a directed graph T such that und(T ) is a tree, all vertices have
indegree 1 except one which has indegree 0; this vertex is called the root of T and
is denoted by rootT . In a rooted tree, every vertex is accessible from the root by a
unique directed path. The edge directions of a rooted tree T are defined in a unique
way from und(T ) and rootT . Any vertex of a tree can be chosen as a root so as to
turn the tree into a rooted tree. Hence, in many cases, we will specify a rooted tree as
a pair (U ,r) consisting of a tree U and a vertex r.

A forest (a rooted forest) is a (possibly empty) graph, each connected component
of which is a tree (a rooted tree). A rooted forest has thus a (possibly empty) set
of roots, and can be defined by the pair (F ,R) of a forest F and a set of vertices R
containing one and only one vertex from each connected component. Every subgraph
of a (rooted) forest is a (rooted) forest, and every nonempty connected subgraph of a
(rooted) tree is a (rooted) tree. The height ht(H ) of a rooted forest H is the maximal
length (i.e., number of edges) of a directed path of H .

In many cases, we will discuss simultaneously a graph and a tree representing
its structure. It will be convenient to call the vertices of the tree nodes in order to
distinguish them from the vertices of the graph.

Since it is a simple graph, a tree or a forest H can be specified as a pair H =
〈NH ,edgH 〉, where NH is the set of its nodes. If H is a rooted forest and u ∈ NH , we
denote by H/u the subtree issued from u. It is the rooted tree such that NH/u is the
set of nodes reachable from u by a directed path (this path may be empty, so that u
belongs to NH/u) and edgH/u = edgH ∩ (NH/u×NH/u). If H is labeled or weighted,
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then H/u inherits the labels or weights of H in the obvious way. For a rooted forest
H we will denote by sonH the relation edgH , and will use the classical terminology
for rooted trees: leaf, son, father, ancestor, descendant, least common ancestor of two
nodes, etc. More precisely, for u,v ∈NH we say that u is an ancestor of v, or that v is
a descendant of u, which we denote by v ≤H u, if there is a directed path in H from
u to v, i.e., if v ∈ NH/u; in order to exclude the equality10 u = v, we say that u is a
proper ancestor of v, or that v is a proper descendant of u, and write v <H u. We
also say that v is below u and that u is above v if v ≤H u; to exclude equality, we say
that v is strictly below u or that u is strictly above v. A topological order on H is a
linear order ≤ on its set of nodes that contains ≥H (i.e., v ≤H u implies u≤ v).

A computation on H is a bottom-up computation if it processes sequentially the
nodes of H , in such a way that the computations done at node u can use results of
computations done at some nodes v below u. Hence, it can be done in any order on
the nodes such that v is processed before u if v <H u, that is, in the reverse order of
any topological order.

A spanning tree of an undirected graph G is a spanning subgraph of G that is a tree.
If F ⊆ EG and G[F] is a spanning tree of G, then we say that F forms the spanning
tree G[F]. A spanning tree of a directed graph G is, by definition, one of und(G).
A rooted spanning tree is a rooted tree T such that und(T ) is a spanning tree. The
direction of an edge of a rooted spanning tree need not coincide with its direction in G
when G is directed. A rooted spanning tree T is normal if every two vertices that are
adjacent in G are comparable with respect to ≤T . Every nonempty connected graph
has a normal spanning tree that can be constructed by a depth-first traversal starting
from any given vertex.11

Definition 2.14 (Syntactic trees of terms) Let t ∈ T (F). Its syntactic tree is the
concrete labeled rooted tree T denoted by Syn(t) such that NT = Pos(t) and:

(i) rootT is 1, the first position of t;
(ii) a node u of T is labeled by f ∈ F if and only if u ∈Occ(t, f ), i.e., if and only if

t[u] = f (u is a positive integer and the symbol at occurrence u in t is the u-th
element of t, since we use Polish prefix notation for terms);

(iii) there is in T an edge u→ v labeled by i in N+ if and only if t = αft1 · · · tρ( f )β

for some α,β ∈ F∗ and f ∈ F such that |α| = u− 1 (so that u ∈ Occ(t, f )),
t1, . . . , tρ( f ) ∈ T (F) and v= |αft1 · · · ti−1|+1; hence the outdegree of u is ρ( f ).
(We have t/u= ft1 · · · tρ( f ) and t/v = ti.)

Hence Syn(t) is an (F ′, [ρ(F ′)])-labeled graph for every finite subsignature F ′
of F such that t ∈ T (F ′). Figure 2.1 shows the tree Syn(t) for the term t =
10 For every partial order ≤ we denote by < the corresponding strict partial order, i.e., x < y if and only

if x ≤ y and x �= y. This convention applies to all partial orders defined here or below: ≤H , ≤t , etc.
11 Every countable connected graph has a normal spanning tree that is not necessarily obtained by depth-

first search (Theorem 8.2.4 of [*Die]).
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Figure 2.1 A syntactic tree.

f (g(a,b),h(g(x1,a)),g(x1,x2)) that belongs to T ({ f ,g,h,a,b},{x1,x2}). The set of
nodes of Syn(t) is [11]. The symbol t[i] at position i in t is indicated between
parentheses.

For each u ∈ Pos(t), the tree Syn(t)/u is an induced subgraph of Syn(t) and is
isomorphic to Syn(t/u). (Its set of vertices is the set of descendants of u in Syn(t).)
The corresponding bijection hu : NSyn(t/u)→NSyn(t)/u ⊆NSyn(t) is defined by hu(i)=
i+ u− 1. If for example t = g( f (a,b), f (a,b)) then we have t/2 = t/5 = f (a,b).
The two mappings h2 and h5 such that h2(1) = 2, h2(2) = 3, h2(3) = 4, h5(1) = 5,
h5(2)= 6, h5(3)= 7 are isomorphisms from Syn( f (a,b)) to the two subtrees Syn(t)/2
and Syn(t)/5 of Syn(t). More generally, two subterms t/u and t/v of a term t are equal
if and only if Syn(t)/u$ Syn(t)/v.

Similarly, if u ∈ Pos(t), then the syntactic tree of the context t ↑ u is isomorphic
(up to the label of u) to the subgraph of Syn(t) that is induced by the set of vertices
consisting of u and those that are not descendants of u. We denote by Syn(t) ↑ u the
labeled graph obtained from this subgraph by changing the label of u into the special
variable w (or another special variable if this is more convenient). Then Syn(t ↑ u) is
isomorphic to Syn(t) ↑ u: a position i of t ↑ u corresponds to i in Pos(t) if 1≤ i ≤ u,
and to i+|t/u|− 1 if u < i ≤ |t|.

We will use for positions in terms the terminology relative to trees: leaf, son,
ancestor, root. In particular, if u is an occurrence in t of f ∈ Fk , then it has a
sequence of k sons, (u1, . . . ,uk ), (ui will be called the i-th son of u) and we have
t/u= f (t/u1, . . . , t/uk).

The syntactic tree T = Syn(t) of t ∈ T (F) can be specified by the tuple
〈NT ,(soniT )1≤i≤r , labT 〉, where r is the maximal arity of a symbol that has an
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occurrence in t, soniT (u,v) holds if and only if v is the i-th son of u, and labT (u)= t[u].
If F is finite, this tuple can be replaced by a relational structure over a binary relational
signature (see Chapter 5). We will usually denote NT by Nt instead of by NSyn(t), ≤T

by ≤t , soniT by sonit , etc., when T is the syntactic tree of t. Moreover, for a node
u ∈ Nt , we will denote the set of nodes of Syn(t)/u by Nt/u, to distinguish it from
Nt/u which is the set of nodes of Syn(t/u); similarly, Nt ↑ u will denote the set of
nodes of Syn(t) ↑ u.

The term t can be recovered from any labeled rooted tree that is isomorphic to
the syntactic tree Syn(t). We will call such a tree a syntactic tree of t, as opposed to
its syntactic tree. Thus, the mapping t �→ [Syn(t)]iso is injective, which shows that
terms can be represented by abstract labeled rooted trees. A labeled rooted tree T is
a syntactic tree of some term over F if and only if:

every node u of T has exactly one label f from F , its outdegree is ρ( f ) and its
outgoing edges are numbered by 1, . . . ,ρ( f ), such that each number in [ρ( f )]
labels a single edge.

For a finite signature F , a mapping t �→ val(t) from T (F) to some finite
set M is computable inductively on the structure of t if val( f (t1, . . . , tk)) =
vf (val(t1), . . . ,val(tk )) for all f ∈ F and t1, . . . , tk ∈ T (F) where k = ρ( f ) and vf

is a fixed mapping : M k → M . Equivalently, the mapping val is equal to valM for
some F-algebra M with domain M (and vf = fM). Such a mapping val can be com-
puted bottom-up on the syntactic tree of t, and in linear time (in the size of t) if
the mappings vf are computable in constant time (that is in time depending only on
“fixed” parameters).

A parsing algorithm for a finite signature F takes as input a word in F∗ and either
outputs the answer that this word is not a term in T (F) or constructs its syntactic
tree if it is (with the appropriately linked data structure that makes it easy to traverse
this tree later on). Textbooks on compilation (e.g., [*AhoLSU] and [*Cre]) present
such algorithms. Let us only note that the natural order on positions of a term t
(defined as integers) is a topological order of its syntactic tree. By reading the word
t from right to left and by using a pushdown to store the necessary information, one
can evaluate t in a given algebra, compute the unique run on it of a deterministic
automaton (see Section 3.3), build its syntactic tree or, more generally, perform a
bottom-up computation.12 Such a computation takes linear time on t given as a word
if it takes linear time on the syntactic tree of t.

Definition 2.15 (Quotient graphs and minors) Let G be a concrete graph, directed
or not. Let ≈ be an equivalence relation on VG. The quotient graph of G by ≈ is
obtained, informally, by fusing any two equivalent vertices into a single one. We
do not fuse or delete edges. However, we wish to define this graph as a concrete

12 In this book, we will not give any more details on data structures and implementations of algorithms.
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graph by specifying its vertices. We denote by [u] the equivalence class of u ∈ VG.
A cross-section of ≈ is a set X ⊆ VG that has one and only one element u in each
equivalence class [u].

For every cross-section X of≈, we define the concrete quotient graph (G/≈)X as
the graph H such that:

VH := X ,

EH := EG,

vertH (e) := (u,v) or {u,v} or {u}
if vertG(e) is (u,v) or {u,v} or {u} respectively.

If the edges of G are labeled, then their labels are transferred to those of H in the
obvious way. If G is a (K ,�)-labeled graph, then a vertex of H inherits all labels of
the vertices of G that are equivalent to it.

For any two cross-sections X and Y , the graphs (G/≈)X and (G/≈)Y are isomorphic
in a canonical way (u in X is mapped to u′ in Y such that u≈ u′, and the correspondence
between the edge sets E(G/≈)X and E(G/≈)Y is the identity). Hence, we will write
G/≈ instead of (G/≈)X if X need not be specified and we will consider it as the
quotient graph of G by≈. (This definition will facilitate the description of the quotient
construction as a monadic second-order transduction to be done in Section 7.1.1,
cf. Example 1.35 in Section 1.7.1.)

If G and G′ are isomorphic by an isomorphism h that maps an equivalence relation
≈ on VG to an equivalence relation≈′ on VG′ (i.e., h(u)≈′ h(v) if and only if u≈ v),
then (G/≈)X and (G′/≈′)Y are isomorphic for any two cross-sections X and Y of ≈
and ≈′. Hence in such a case the quotient by an equivalence relation is well defined
on abstract graphs.

Edge contraction is a particular type of quotient. Let G be a concrete graph and
F ⊆ EG . We let≈F be the equivalence relation generated by the set of pairs vertG(e)
for e in F . A cross-section of ≈F is thus a set of vertices X that has one and only
one element in each connected component of the subgraph of G with vertex set
VG and F as set of edges. For a cross-section X of ≈F , we define (G/F)X as the
graph ((G−F)/≈F )X = (G/≈F )X −F . Again (G/F)X and (G/F)Y are canonically
isomorphic if X and Y are any two cross-sections. We will use the simplified notation
G/F if we need not specify any cross-section. We let G/e := G/{e} if e is an edge.
Contracting a loop is the same thing as deleting it.

A concrete graph H is a minor of a concrete graph G if H = (G′/F)X for some
concrete subgraph G′ of G, some set F ⊆ EG′ and some cross-section X of ≈F

relative to G′. Note that VH = X ⊆ VG′ ⊆ VG and EH = EG′ − F ⊆ EG′ ⊆ EG, but
the incidences are not the same in H and in G. We denote this relation by H � G.
Here is some further notation: H �c G means H = (G/F)X (hence G′ = G in the
initial definition). We say that H is a proper minor of G if F �= ∅ or G′ �=G or both
conditions hold.
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Proposition 2.16 Let H be a minor of a concrete graph G. The following are
equivalent:

(1) H =G;
(2) VH = VG and EH = EG;
(3) |VH | = |VG| and |EH | = |EG|.

Then H is a proper minor of G if and only if H � G, i.e., H � G and H �=G.

Proof: Let H � G. By the definition we have VH ⊆ VG and EH ⊆ EG.
(1)=⇒ (3) is clear, and (3)=⇒ (2) is immediate from the two above inclusions,

since graphs are finite. We now prove (2)=⇒ (1). Let H = (G′/F)X with VH = VG

and EH = EG. As observed above, VH = X ⊆ VG′ ⊆ VG and EH = EG′ −F ⊆ EG′ ⊆
EG. Hence VG′ = VG, F = ∅, and EG′ = EG. Since G′ ⊆ G, we have G′ = G and
F = ∅. Hence, by definition, H = (G′/F)X =G.

Proposition 2.17

(1) The relation � is a partial order on concrete graphs.
(2) A concrete graph H is a proper minor of a concrete graph G if and only if H is

obtained from G by a nonempty sequence of edge deletions K �→ K − e, vertex
deletions K �→ K − u and edge contractions K �→ K/e (where K is a concrete
graph, e ∈ EK and u ∈ VK ).

Proof: (1) It is clear that G�G. Let us assume H �G�H . We have VH ⊆VG ⊆VH

and EH ⊆ EG ⊆ EH hence H =G by (2)=⇒ (1) of Proposition 2.16.
Next we consider transitivity. We let K � H � G. By the definitions we have

K �c H ′ ⊆ H �c G′ ⊆ G. We first prove that if K �c H �c G then K �c G. We let
K = (H/L)Y and H = (G/F)X with Y ⊆X . We have K = (G/(L∪F))Y , which gives
K �c G.

To complete the proof we verify that, if H ′ ⊆ H �c G′ with H = (G′/F)X then
H ′�c G′′ ⊆G′ and H ′ = (G′′/F ′)Y , where G′′, F ′ and Y are defined as follows. We
construct G′′ by removing from G′:

(a) the vertices that yield vertices in VH −VH ′ by the contraction of the edges of F ;
(b) the edges incident with vertices removed in Step (a);
(c) the edges of EH−EH ′ that have not been removed by Step (b). We let F ′ =F∩EG′′

and Y = X ∩VG′′ . The verification that H ′ = (G′′/F ′)Y is easy.

Then going back to the proof of transitivity, we have K �c H ′ ⊆H �c G′ ⊆G, hence
K �c H ′�c G′′ ⊆G′ ⊆G, hence K �c G′′ ⊆G and K � G as was to be proved.

(2) “If” is clear from (1) because an edge deletion, a vertex deletion (we delete
a vertex and all incident edges) and an edge contraction transform a graph G into a
minor H of it, such that |VH |+ |EH |< |VG|+ |EG|, whence H � G.
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“Only if”. A subgraph of G can be obtained from it by edge and vertex deletions.
If H = (G/F)X and F = {f1, . . . , fn} then H can be obtained from G by the successive
contractions of f1, . . . , fn. We omit the details.

On abstract graphs the minor relation � can be defined as follows:

H � G if and only if H and G are the isomorphism classes of concrete graphs H ′
and G′ such that H ′� G′.

Proposition 2.18 The relation � is a partial order on abstract graphs.

Proof: Let G and H be abstract graphs. Clearly G � G. Assume that H � G � H ,
which means that H ′�G′ and G′′�H ′′ where H = [H ′]iso = [H ′′]iso, G= [G′]iso =
[G′′]iso and G′,G′′,H ′,H ′′ are concrete. By the definitions we have |VH ′ | ≤ |VG′ | =
|VG′′ | ≤ |VH ′′ | = |VH ′ | hence |VH ′ | = |VG′ | and similarly for sets of edges. It follows
from (3)=⇒ (1) of Proposition 2.16 that H ′ =G′. Hence H =G.

Transitivity follows in a similar way from Proposition 2.17(1) and the fact that if
concrete graphs satisfy G′ � H ′ $ H ′′, then there is a concrete graph G′′ such that
G′ $G′′� H ′′.

Remark 2.19 The definitions of edge contraction and minor inclusion apply to infi-
nite graphs. Proposition 2.16 is no longer valid because Assertion (3) does not imply
Assertion (2) if G is infinite. However Proposition 2.17(1), the proof of which uses
no cardinality argument, is valid for infinite graphs. Proposition 2.18 is not valid:
the minor relation on infinite abstract graphs is only a quasi-order because we may
have H �G �H and G �=H . As an example13 take H =Kω, the complete undirected
graph with countably many vertices, and G the union of two disjoint copies of Kω.
However, even on finite concrete graphs, the minor relation is usually referred to
as a quasi-order. The reason is that it is usually defined on concrete graphs G,H as
follows:

H is a minor of G if and only if H is isomorphic to a concrete graph H ′ such
that H ′� G.

This definition is a mixture of concepts relative to concrete and abstract graphs. A
cleaner situation occurs if we separate definitions relative to abstract graphs from
those relative to concrete graphs. �

We now review basic definitions and facts concerning graph classes defined by
excluded (or forbidden) minors.

Definition 2.20 (Well-ordered sets) Let 〈D,≤〉 be a partially ordered set. We say that
≤ is Noetherian if there is no strictly decreasing infinite sequence, i.e., no sequence
(di)i∈N such that di ∈D and d0 > d1 > · · ·> di > · · · . We say that D is well-ordered

13 This example also works for the subgraph relation.
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by ≤ if this partial order is Noetherian and has no infinite antichain, i.e., no infinite
subset of pairwise incomparable elements.

Let ≤ be an arbitrary partial order on a set D. For every A⊆D, we define:14

Forb(A) := {d ∈D | a≤ d for no a in A},
Obst(A) := {d ∈D | d /∈ A and for all d ′ ∈D if d ′ < d then d ′ ∈ A}.

Hence, Obst(A) is the set of ≤-minimal elements of D − A. A subset A of D is
≤-closed, or is an ≤-ideal, if d′ ≤ d and d ∈ A imply d ′ ∈ A.

Proposition 2.21 Let 〈D,≤〉 be a partially ordered set.

(1) If D has no infinite antichain, then Obst(A) is finite for every A⊆D.
(2) If D is Noetherian and A is an ≤-ideal, then A= Forb(Obst(A)).
(3) If D is well-ordered by ≤, then every ≤-ideal A is Forb(B) for some finite set B,

and in particular for B=Obst(A).

Proof: (1) Clear since Obst(A) is, by definition, an antichain.
(2) Let D, ≤ and A be as in the statement. Let d ∈ D − A. Since there is no

infinite strictly decreasing sequence in D, the set {e | e ≤ d and e /∈ A} contains a
minimal element d ′. Hence d ′ ∈ Obst(A) and d /∈ Forb(Obst(A)). This proves that
Forb(Obst(A))⊆ A. In this proof we have not used the hypothesis that A is≤-closed.
We will use it for proving the opposite inclusion.

We now assume that some d belongs to A∩ (D−Forb(Obst(A))). Then d ′ ≤ d for
some d ′ ∈Obst(A). But d ′ /∈ A, and this contradicts the hypothesis that A is≤-closed.
Hence A⊆ Forb(Obst(A)), which completes the proof.

(3) Immediate consequence of (1) and (2).

These definitions and results can be applied to graphs as follows. We let D be
the set of abstract simple and loop-free undirected graphs, partially ordered by minor
inclusion. This order is Noetherian because H �G implies |VH |+|EH |< |VG|+|EG|
by Proposition 2.16. The Graph Minor Theorem proved by Robertson and Seymour
establishes that D is well-ordered by �. (See the book [*DowFel], Section 7.6, for
an overview of the proof and references.)

It follows that if a class C of simple, loop-free, undirected graphs is a �-ideal, i.e.,
is closed under taking minors, then there exists a finite subset K of D such that C is
the class of graphs in D that have no minor isomorphic to a graph in K. This applies
to the class C of planar graphs and the corresponding set K is {K5,K3,3} (see [*Die]
Section 4.4 or [*MohaTho] Section 2.3). The Graph Minor Theorem also holds for
directed graphs [RobSey04] but this instance is seldom used.

Definition 2.22 (Union and intersection of graphs) Two concrete graphs H and
K are compatible if the mappings vertH and vertK agree, i.e., vertH (e)= vertK (e) for

14 Here “Forb” stands for “Forbidden” and “Obst” for “Obstruction.”
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every e ∈ EH ∩EK . This implies in particular that the ends of an edge in EH ∩EK are
in VH ∩VK .

If H and K are compatible, we can define their union M :=H ∪K as the graph such
that VM := VH ∪VK , EM := EH ∪EK and vertM := vertH ∪ vertK . Clearly, H and K
are subgraphs of M . We can also define their intersection as the graph N := H ∩K
such that VN := VH ∩ VK , EN := EH ∩ EK and vertN := vertH � EN = vertK � EN .
Clearly H ∩K is a subgraph of both H and K . If H ⊆ G and K ⊆ G, then H and K
are compatible and we have H ∩K ⊆H ⊆H ∪K ⊆G.

Two concrete graphs G and H are disjoint if VG ∩VH = ∅ and EG ∩EH = ∅. This
implies that they are compatible, that G∩H =∅ (the empty graph) and that G∪H
is defined.

It is clear that the union and the intersection of two concrete graphs are not always
defined. In the next section we will define the disjoint union, a binary operation that
is well defined for any two abstract graphs.

2.3 The HR algebra of graphs with sources

In this section we define operations on abstract graphs that generalize the parallel-
composition and series-composition used in Section 1.1.3 to define series-parallel
graphs. Sources are distinguished vertices that allow to glue graphs in uniquely
defined ways. Thus graphs are built from smaller graphs like words are built by
concatenating shorter words. But graphs are intrinsically more complex than words,
and so we cannot build them by means of a single concatenation operation. We need
countably many operations. However, finite sets of these operations generate signifi-
cant graph classes. In particular, there is for each k a finite subset of these operations
that generates the graphs of tree-width at most k .

The acronym HR stands for hyperedge replacement and will be justified in
Chapter 4.

2.3.1 The HR graph operations

We make the definitions of Section 1.4.2 more precise by paying attention to the
distinction between abstract and concrete graphs.

Definition 2.23 (Disjoint union of abstract graphs) Let G,H ,K be concrete graphs.
We write G=H ⊕K if H and K are disjoint and G=H ∪K . For abstract graphs G,
H and K we write G=H ⊕K if G$H ′ ⊕K ′, where H ′ $H , K ′ $K and the graphs
H ′ and K ′ are disjoint concrete graphs.15 There is not a single such pair of concrete
graphs (H ′,K ′). However, G is uniquely defined as an abstract graph because any

15 One can also take H ′ =H and choose K ′ disjoint with H .
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two pairs (H ′,K ′) and (H ′′,K ′′) satisfying these conditions yield isomorphic graphs
H ′ ⊕K ′ and H ′′ ⊕K ′′. The following facts are clear from the definitions: for every
concrete graph G, we have G=G∪G but G⊕G is undefined unless G is empty; for
every finite16 nonempty abstract graph G the graph G⊕G is defined and different
from G.

Disjoint union is not powerful enough to generate interesting classes of graphs
from finitely many basic abstract graphs. In order to “glue” graphs, we introduce
distinguished vertices that we call sources.

Definition 2.24 (Graphs with sources) Let A be a fixed countable set, the elements
of which will be used as names (or labels) of distinguished vertices. We assume that
N ⊆ A and that A is ordered linearly by an ordering that extends the usual order
on N .17 A concrete graph with sources, or a concrete s-graph in short, is a pair
G = 〈G◦,slabG〉 consisting of a concrete graph G◦ and a partial injective function
slabG : VG◦ →A. We will simplify the notation VG◦ into VG, and similarly for other
notations. The domain of slabG is a set of vertices denoted by Src(G) and called the
set of sources of G, and τ(G) := slabG(Src(G)) is the type of G, a finite subset of
A. If slabG(u)= a, then we say that u is the a-source of G and that a is the name (or
label) of source u. We will also use the bijection srcG : τ(G)→ Src(G) defined as
the inverse of slabG. A graph is an s-graph of empty type. The set of vertices that are
not sources, called the internal vertices, is denoted by IntG.

For example, a series-parallel graph as defined in Section 1.1.3 is an s-graph with
two sources, a 1-source and a 2-source. A rooted tree (Definition 2.13) can be defined
as a tree with one source, the vertex selected as root.

Isomorphisms of concrete s-graphs are defined in the obvious way, and still denoted
by$. (We mean by this that if G$H , the bijection hV : VG→ VH maps Src(G) onto
Src(H ) and that slabH (hV (u)) = slabG(u) for every u in Src(G).) Hence the above
terminology and notation concerning sources apply to abstract s-graphs. The type of
an abstract s-graph is well defined.

We denote by J Su and J Sd the classes of undirected and directed abstract
s-graphs.18

Definition 2.25 (Parallel-composition) Let G,H be concrete s-graphs. We say that
H is a subgraph of G, written H ⊆ G, if H◦ ⊆ G◦ and slabH = slabG � VH (so that
τ(H )⊆ τ(G)).

16 We have G = G⊕G if G is the abstract graph isomorphic to the union of countably many disjoint
copies of a concrete graph H .

17 Additionally, we assume that A is effectively given (see Definition 2.8) and that the linear order < on
A is decidable. The latter means that the mapping f : A×A→{True,False} such that f (a,b)= True
if a < b and False otherwise, is computable.

18 As explained in Section 1.4, the letter J in notations like J S and JS is intended to remind the reader
that the graphs of the corresponding algebras may have multiple edges. By contrast, the letter G in GP
and GP refers to algebras of simple graphs.
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Figure 2.2 From left to right: H , K and H �K .

Let G,H ,K be concrete s-graphs. We write G = H �K , and we say that G is the
parallel-composition of H and K , if and only if:

(1) H ⊆G, K ⊆G, G◦ =H ◦ ∪K◦;
(2) VH ∩VK = Src(H )∩ Src(K);
(3) EH ∩EK = ∅;
(4) slabG = slabH ∪ slabK .

These conditions imply that slabH and slabK agree and that slabH (v) �= slabK (w)

if v ∈ Src(H )−VK and w ∈ Src(K)−VH . From the definitions, we get the following:

Proposition 2.26 For concrete s-graphs G,H ,K , we have G = H �K if and only if
the following conditions hold:
(1) VG = VH ∪VK ;
(2) VH ∩ VK = Src(H ) ∩ Src(K), and if u ∈ VH ∩ VK then srcG(a) = srcH (a) =

srcK (a)= u for some a ∈A;
(3) u ∈ Src(G) if and only if u ∈ Src(H )∪ Src(K); and its name (as a source) is the

same with respect to G and to H and/or to K .
(4) EG = EH ∪EK , EH ∩EK = ∅;
(5) vertG(e)=

{
vertH (e) if e ∈ EH ,
vertK (e) if e ∈ EK .

�

We have τ(H �K)= τ(H )∪τ(K); if τ(H )∩τ(K)=∅, then (H �K)◦ =H ◦⊕K◦.
Parallel-composition is not defined for all pairs of concrete s-graphs. We will turn

it into a total binary function on abstract s-graphs, more or less as we did for disjoint
union in Definition 2.23.

Definition 2.27 (Parallel-composition of abstract s-graphs) Let H and K be
abstract s-graphs. The abstract s-graph H �K , called the parallel-composition of
H and K , is the isomorphism class of H ′�K ′ for any two concrete s-graphs H ′
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and K ′ such that H ′ $ H , K ′ $ K and H ′�K ′ is defined. For any two pairs
(H ′,K ′) satisfying these conditions, the resulting s-graphs H ′�K ′ are isomor-
phic. Hence H �K is well defined for any two s-graphs H and K . Informally
we will say that H and K are “glued at their sources with the same name.” See
Figure 2.2 for an illustration. (In this figure and in Figure 2.3, the graphs H , K
and G have three sources; their possible internal vertices and incident edges are not
shown.)

It is clear that for all s-graphs G, H and K , we have τ(G�H )= τ(G)∪ τ(H ) and
(G�H )�K = G�(H �K). Since parallel-composition is associative, we will use
infix notation without parentheses for it. Note also that, for G finite, G = G�G if
and only if EG = ∅ and all vertices are sources.

Definition 2.28 (Quotient s-graphs) The notion of a quotient graph has been
defined for graphs in Definition 2.15. For a concrete s-graph G and an equivalence
relation ≈ on VG such that no two distinct sources are equivalent, we define its
(concrete) quotient s-graph G/≈ of the same type as G, as follows. For every cross-
section X of ≈ we let (G/≈)X be the concrete s-graph H such that H ◦ := (G◦/≈)X
and, for every a ∈ τ(G), srcH (a) = u if u ∈ X and u ≈ srcG(a). Any two cross-
sections yield isomorphic quotients. We denote (G/≈)X by G/≈ when X need not
be specified.

The following proposition is an immediate consequence of the definitions. It
describes the “gluing of sources” by a quotient.

Proposition 2.29 If H and K are disjoint concrete s-graphs, then the abstract s-graph
[H ]iso � [K]iso is equal to [L/≈]iso, where L is the concrete s-graph such that L◦ =
H ◦ ∪ K◦, srcL(a) = srcH (a) if a ∈ τ(H ), srcL(a) = srcK (a) if a ∈ τ(K)− τ(H ),
and ≈ is the equivalence relation generated by the pairs (srcH (a),srcK (a)) for all
a ∈ τ(H )∩ τ(K). �

Definition 2.30 (Source manipulating operations) Let h : A→ A be a partial
injective function that is the identity outside of a finite subset C of A (hence
Dom(h) ⊇ A− C and h(C) ⊆ C).19 For example, h(d) = d for d /∈ {a,b,c}, h(c)
is undefined, h(a)= b and h(b)= a (or h(b)= c). For every concrete s-graph G, we
let apph(G) be the s-graph H such that H ◦ :=G◦ and slabH := h ◦ slabG. It follows
that Src(apph(G))⊆ Src(G), τ(apph(G))= h(τ (G)) and |τ(apph(G))| ≤ |τ(G)|. The
mapping apph commutes with isomorphisms hence applies to (abstract) s-graphs. It
will be convenient actually to distinguish two main cases.

The first case is when h(a) is either undefined or equal to a, for every a ∈ A.
Hence B :=A−Dom(h) is finite and we will denote apph by fgB. The effect of fgB

is to make internal all a-sources for a ∈ B. We have Src(fgB(G))= Src(G)− srcG(B)

19 Dom(h) is the definition domain of h, i.e., the set of elements a such that h(a) is defined.
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Figure 2.3 From left to right: G, fgc(G) and renh(G).

and τ(fgB(G)) = τ(G)− B. Clearly fgB(G) = G if B ∩ τ(G) = ∅. We call fgB a
source forgetting operation. It will be technically useful to allow B = ∅ in fgB. The
corresponding operation is the identity. We will write fgb instead of fg{b}.

In the second case, h is a bijection : A→ A and D := {a ∈ A | h(a) �= a} is
finite; thus, h permutes the finite subset D of A and is the identity outside of D. For
D ⊆ C ⊆ A (and C possibly infinite), h is called a finite permutation of C; if C is
finite it is just called a permutation of C. We denote by Permf (C) the set of finite
permutations of C. If h is a finite permutation of A, we denote apph by renh and call it a
source renaming operation. We have Src(renh(G))= Src(G), τ(renh(G))= h(τ (G))

and |τ(renh(G))| = |τ(G)|. We have renh(G) = G if h is the identity on τ(G). The
effect of renh is to turn an a-source into an h(a)-source for each a. Only finitely many
source names are modified by renh. See Figure 2.3 for an example where h(a)= d,
h(b)= a, h(c)= c and h(d)= b.

In the general case, we have that apph(G) = renh′( fgB(G)) where B is the set
A−Dom(h) and h′ is any bijection : A→A that extends h (the existence of which
follows from Lemma 2.37 below). Thus, apph is a derived operation.

Each operation fgB is defined in a finitary way since B is required to be a finite
set. Each operation renh can also be specified in a finitary way because D= {a ∈A |
h(a) �= a} is a finite set. Hence it can be written ren{b1→c1,b2→c2,...,bn→cn}, where D=
{b1, . . . ,bn} = {c1, . . . ,cn} and ci = h(bi) for all i = 1, . . . ,n. We will also abbreviate
ren{a→b,b→a} into rena↔b, and for n= 0, ren{} is the identity. Since A is countable,
the set of operations of the forms fgB and renh is countable.

Definition 2.31 (Basic s-graphs) We now specify some basic (abstract) s-graphs that
will be the values of the constant symbols a and a
 for a ∈A. These symbols denote
s-graphs consisting of a vertex that is the a-source, and, in the latter case, that has also
a loop. (We need not distinguish directed and undirected loops.) If a,b∈A, a �= b, the
constant symbol ab denotes an s-graph consisting of two vertices, an a-source and a
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b-source, linked by a single undirected edge, and
−→
ab denotes the similar s-graph with

an edge directed from the a-source to the b-source. We can consider ab and ba as the
same symbol. Assuming fixed a linear order < on A, we will only use ab with a < b.
It will be useful for some constructions to have also a constant symbol ∅ denoting
the empty graph. Every term evaluating to a nonempty graph can be transformed into
an equivalent one without ∅, by means of properties of the operations �, renh and
fgB that will be stated in Proposition 2.48.

Definition 2.32 (The HR algebra of s-graphs) We have defined a binary operation
� that “glues” s-graphs, and unary operations fgB and renh that transform them by
modifying their source names. We have also defined constant symbols that define
basic s-graphs, directed or not, having at most one edge. We obtain thus two algebras,
one with domain J Su, the set of (abstract) undirected s-graphs, and the other one
with domain J Sd, the similar set of directed s-graphs. We let:20

FHR+ := {�, fgB,renh | B ∈Pf (A), h ∈ Permf (A)},
FHRu

0 := {a,a
,ab,∅ | a,b ∈A, a < b},
FHRd

0 := {a,a
,
−→
ab,∅ | a,b ∈A, a �= b},

FHRu := FHR+ ∪FHRu
0 ,

FHRd := FHR+ ∪FHRd
0 .

These signatures are countably infinite. We let JSu denote the FHRu-algebra with
domain J Su and JSd denote the FHRd-algebra with domain J Sd. In order to simplify
notation, we will not distinguish the operations of these algebras from the correspond-
ing symbols in their signatures. We call JSu and JSd the (undirected or directed)
HR algebra.

Every term t in T (FHRu) has a value in J Su denoted by tJSu or by valJSu (t)
according to the notation of Definition 2.2. If t is in T (FHRd), then its value t

JSd

(or val
JSd (t)) belongs to J Sd. In both cases and for other graph algebras, we will use

the generic notation val(t), the relevant algebra being understood from the context.
We will say that the term t evaluates to the s-graph val(t) or that t denotes or defines
val(t). Two terms t and t′ are equivalent if val(t)= val(t′).

We now extend these definitions to (K ,�)-labeled graphs (cf. Definition 2.11)
equipped with sources, called (K ,�)-labeled s-graphs (or labeled s-graphs if we
need not specify K and �). We always assume that (K ∪�)∩A=∅. Each vertex has
a possibly empty set of labels that belong to K and each edge has a unique label in �.
If G and H both have an a-source, then we take as set of labels of the a-source of
G � H the set γG(srcG(a))∪ γH (srcH (a)), i.e., we take the labels from G and those
from H . The operations that manipulate source names are the same.

20 For a set X , Pf (X ) denotes the set of finite subsets of X .
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We will use the constant symbols
−→
abλ, abλ and a
λ to denote an edge labeled by

λ ∈ � that is, respectively, directed from the a-source to the b-source, undirected
between the a-source and the b-source, and a loop incident with the a-source. For
specifying vertex labels, we will use the constant symbol aκ to denote the s-graph
with a single vertex that is the a-source and is labeled by κ ∈K . We denote by FHRu[K ,�]
and by FHRd[K ,�] the corresponding modifications of the signatures FHRu and FHRd.
(The modifications concern only the constant symbols.) We denote by J Su[K ,�] and

J Sd[K ,�] the sets of abstract directed and undirected (K ,�)-labeled s-graphs, and by

JSu[K ,�] and JSd[K ,�] the corresponding algebras.

Let us stress that we have defined algebras of abstract s-graphs. We have no
algebraic structure on concrete s-graphs because the parallel-composition of two
concrete s-graphs is not always defined. The terms “graph” and “s-graph” will mean
“abstract graph” and “abstract s-graph” respectively. In many statements, we will
refer to JS, J S, FHR without specifying the variant, relative to directed or undi-
rected s-graphs. Any such statement will cover two statements, one for directed
s-graphs and one for undirected s-graphs. For example, the statement “every term
t ∈ T (FHR) evaluates to an s-graph val(t) in J S” means that if t belongs to T (FHRu),
then val(t) ∈ J Su, and also that if t belongs to T (FHRd), then val(t) ∈ J Sd. The
same convention applies to the algebras of labeled graphs.

Every term in T (FHR) is written with finitely many source names. We make this
precise as follows. For C ⊆A, we let:

FHR
C+ := {�, fgB,renh | B ∈Pf (C), h ∈ Permf (C)},

FHRu
C0 := {a,a
,ab,∅ | a,b ∈ C, a < b},

FHRd
C0 := {a,a
,

−→
ab,∅ | a,b ∈ C, a �= b},

FHRu
C := FHR

C+ ∪FHRu
C0 ,

FHRd
C := FHR

C+ ∪FHRd
C0 .

The notation FHR
C will mean ambiguously FHRu

C as well as FHRd
C . Since FHR is the

union of the signatures FHR
C for all finite subsets C of A, and FHR

C ⊆ FHR
C ′ if C ⊆C ′,

every finite subsignature of FHR is a subsignature of FHR
C for some finite set C.

Hence, every term in T (FHR) belongs to T (FHR
C ) for some finite set C. We denote by

J Sd[C] the set of s-graphs in J Sd that have their type included in C. We obtain an
FHRd

C -algebra denoted by JSd[C], and similarly, J Su[C] and JSu[C] for undirected
s-graphs. We use JS[C] and J S[C] for denoting simultaneously the FHR

C -algebras of
directed and undirected s-graphs and their domains. For (K ,�)-labeled s-graphs, we
will denote by FHR

C,[K ,�] and JS[K ,�][C] the corresponding signatures and algebras,
defined by restricting source names to belong to C.

The signature FHR is effectively given (Definition 2.8). In fact, we can assume that
the countable set A is effectively given with a fixed bijection ξA onto N (one could
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take A=N , but more flexibility will be convenient in some proofs). Each function
symbol of FHR can be formally written as a sequence in Seq(N ∪P), where P is a finite
auxiliary set of symbols. For example, the renaming operation ren{a→b,b→c,c→a} with
a,b,c ∈A can be written as (ren,a,b,b,c,c,a), where ren ∈ P and a,b,c are integers
that encode respectively a, b and c (i.e., a= ξA(a) and similarly for b and c). These
sequences form an infinite decidable subset of Seq(N ∪ P) and can be encoded as
integers by the standard encoding of that set, with a computable arity mapping.

The algebra JS is also effectively given. Although that should be intuitively clear,
let us look at some details. Without loss of generality, we can describe an s-graph
by a concrete s-graph G with vertex set [n] and edge set [n+ 1,p] for some p ≥ n
(we have p = n and [n+ 1,p] = ∅ if G has no edges). The mappings vertG and
slabG can be written as sequences of triples and of pairs of integers. For exam-
ple, the directed s-graph G = a• → • ← • → •b can be written as the sequence
(4,0,5,1,2,0,6,3,2,0,7,3,4,0,0,1,ξA(a),0,4,ξA(b)), where the first occurrence of
4 indicates the number of vertices, the integers 5,6,7 represent edges and are fol-
lowed by the associated pairs of vertices, and 0 separates the different objects of the
sequence. Several such sequences can describe the same s-graph. As the description
of an s-graph we can take the first sequence that describes it, with respect to some
standard linear order on Seq(N ). Hence, we obtain a bijection between s-graphs and a
decidable subset21 of Seq(N ), whence an encoding ξJ S of J S in N . The operations
of JS are computable via this encoding (cf. Definition 2.8). The algebra JS is thus
effectively given. It should, however, be stressed here that when discussing efficiency
of algorithms we will not use this encoding to represent s-graphs, but rather the usual
representation by a traditional data structure like an incidence matrix.22 The notion
of an effectively given algebra will only play a role when the efficiency of algorithms
is not an issue.

These remarks clearly extend to labeled graphs.

Proposition 2.33 Let C ⊆A and let G be an s-graph such that τ(G)⊆C and |VG| =
|C|. Then G is the value of a term t over FHR

C of size �(|VG| + |EG|). Furthermore,
if G is (K ,�)-labeled, then it is the value of a term over FHR

C,[K ,�].

Proof: We first consider an undirected G. We extend the mapping srcG : τ(G)→VG

to a bijection : C→ VG. Each vertex can be identified with an element of C. Now let
B= C− τ(G). We let t be the term

fgB(x1y1 � · · ·� xmym � z1 � · · ·� zp � w1

 � · · ·� wq


),

21 An algorithm can check if a sequence in Seq(N ) actually describes some s-graph and another one can
check if two sequences describe the same s-graph; hence an algorithm can check if a sequence is the
description of an s-graph.

22 These representations are equivalent: an algorithm can find, for every concrete s-graph G given by an
incidence matrix, the integer that encodes the s-graph [G]iso, and vice versa. However, the algorithms
that translate one representation into the other are not efficient.
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Figure 2.4 An s-graph G.

where the nonloop edges of G are ei : xi − yi (with xi < yi; < is a fixed strict linear
order on A) for i = 1, . . . ,m, its isolated vertices are z1, . . . ,zp, and the loops are
e′j : wj−wj for j= 1, . . . ,q. Because we allow multiple edges and loops, we may have
{xi,yi} = {xj,yj} or wi =wj for i �= j; also, we may have wi ∈ {x1, . . . ,xm,y1, . . . ,ym}.
Note that t = fgC(∅) if G=∅.23 It is clear from this construction and the definitions
that val(t)=G.

For directed s-graphs, we use constant symbols −→xiyi instead of xiyi. The construc-
tion extends in an obvious way to labeled s-graphs; a vertex label κ can be attached
to a vertex a by adding �aκ to the parallel-composition in t.

It is clear from these constructions that

|t| = 2(|EG|+ |IsolG|)≤ 2(|EG|+ |VG|),

where IsolG is the set of isolated vertices of G, whereas, for every term t evaluating
to an s-graph G:

|EG|+ |VG| ≤ 3|t|.
For a (K ,�)-labeled graph, with K �= ∅, we have

|t| ≤ 2(|EG|+ |K | · |VG|),

and the second inequality is also valid.

This proposition entails that the algebra JS is generated by its signature FHR. The
construction used in its proof is equivalent to the specification of an s-graph as a
list of vertices and edges, and of sources with their names. It yields no interesting
structuring similar to that of series-parallel graphs described in Chapter 1.

Example 2.34 Let G be the s-graph shown in Figure 2.4, and of type τ(G) =
{1,2,3,4}. The construction of Proposition 2.33 gives:

G = val(
−→
12 �
−→
21 �
−→
23 � 4 � 3
 � 3
) and

und(G)= val(12 � 12 � 23 � 4 � 3
 � 3
).

�
23 Here and from now on, we use the convention that t1 � · · ·� tn denotes ∅ if n= 0.
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For the algorithmic applications that we will detail in Chapter 6, it is useful to
denote graphs by terms in T (FHR

C ) such that C is of smallest possible cardinality. It
is also necessary for finding for a given graph such a term for a set C of fixed size,
as efficiently as possible (cf. Definition 2.46). Since there are close relationships
between these terms and the well-developed theory of tree-decompositions, as we
will see in Section 2.4, we will get answers to these algorithmic questions.

Definition 2.35 (The type and extended type of a term) The type of a term t in
T (FHR) is τ(t) := τ(val(t)). If u∈Pos(t), then the type of u is τ(u) := τ(t/u). Clearly
τ(t)= τ(roott) (where roott denotes the first position of t, cf. Definition 2.14). Let
us collect some observations already made above about types:

τ(t1 � t2)= τ(t1)∪ τ(t2),
τ( fgB(t1))= τ(t1)−B,

τ(renh(t1))= h(τ (t1)),

τ(a)= τ(a
)= {a},
τ(ab)= τ(

−→
ab)= {a,b},

τ(∅)= ∅.

These rules can be used to determine the types of all positions in a term t, by using
a bottom-up computation on the syntactic tree of this term. We can also compute in
this way the set τ̂ (t) defined as

⋃{τ(t/u) | u ∈ Pos(t)}. This is the set of all names of
the sources of s-graphs defined by the subterms of t.

We have noted in Definition 2.32 that every term t in T (FHR) belongs to T (FHR
C )

for some finite set C ⊆A. We let μ(t) denote the minimal such set, where minimality
is relative to set inclusion. This set is well defined because FHR

C ∩FHR
D ⊆ FHR

C∩D for
all C,D⊆A. It can be computed inductively by the following rules:

μ(t1 � t2) = μ(t1)∪μ(t2),
μ(fgB(t1)) = μ(t1)∪B,

μ(renh(t1)) = μ(t1)∪{a ∈A | h(a) �= a},
μ(c) = τ(c) for every constant symbol c.

We call μ(t) the extended type of t and |μ(t)| the width of t denoted by wd(t). We
will establish in Section 2.4.5 its relationship with tree-width. Both τ(t) and τ̂ (t) are
included in the extended type of t, as shown next.

Lemma 2.36 For every t ∈ T (FHR), we have τ(t)⊆ τ̂ (t)⊆ μ(t).

Proof: We prove that if C is a finite subset of A and t ∈ T (FHR
C ), then τ(t) ⊆ C.

Then also τ̂ (t)⊆C, because t/u ∈ T (FHR
C ) for every u. The proof is by induction on

the structure of t and uses the above rules for τ .
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(1) If t is a constant symbol, then τ(t)⊆ C by definition of FHR
C .

(2) If t= t1 � t2, then τ(t)= τ(t1)∪τ(t2)⊆C since, by induction, we have τ(t1)⊆C
and τ(t2)⊆ C.

(3) If t = fgB(t1), then τ(t)= τ(t1)−B⊆ C by the induction hypothesis.
(4) If t = renh(t1), then τ(t)= h(τ (t1)). We have τ(t1)⊆C by the induction hypoth-

esis. By the definition of FHR
C , h is a permutation of C and so h(τ (t1)) ⊆

h(C)= C.

However, the inclusion τ̂ (t) ⊆ μ(t) may be strict: take, for example, t1 =
fg{a,b}(a). Then τ̂ (t1) = {a} ⊂ {a,b} = μ(t1). As another example, take t2 =
ren{a→b,b→c,c→a}(a). Then τ̂ (t2)= {a,b} ⊂ {a,b,c} =μ(t2). The term t1 can actually
be replaced by the equivalent term t′1 = fga(a) for which μ(t′1)= {a}. Similarly, the
term t2 can be replaced by the equivalent term t′2= rena↔b(a), for whichμ(t′2)={a,b}.
In order to generalize these observations, we say that a term t is reduced if for every
subterm t′ of t we have the following:

(a) if t′ = fgB(t
′′) then B⊆ τ(t′′);

(b) if t′ = renh(t′′) then h is permutation of τ(t′′)∪ h(τ (t′′)).

Lemma 2.37 Let g : B→ B′ be a bijection between finite sets B and B′. There exists
a bijection f : B∪B′ → B∪B′ such that f � B= g.

Proof: Since g is a bijection, |B− B′| = |B′ − B|. Let B− B′ = {b1, . . . ,bn} and
B′ −B= {b′1, . . . ,b′n}. We define f (b)= g(b) for every b∈ B, and f (b′i)= bi for every
i ∈ [n].

It is clear that the function f can be constructed in a canonical way from g and a
fixed strict linear order < on A (where B and B′ are subsets of A): in the above proof,
we take bi < bi+1 and b′i < b′i+1 for every i ∈ [n− 1].
Proposition 2.38 Every term t in T (FHR

C ) is equivalent to a reduced term t in T (FHR
τ̂ (t));

we have μ(t)= τ̂ (t)= τ̂ (t).

Proof: The proof is by induction on the structure of t. If t is a constant symbol,
then t = t. If t = t1 � t2, then t = t1 � t2. If t = fgB(t1), then t = fgB′( t1), where
B′ = B ∩ τ(t1). If t = renh(t1), then t = renh′( t1), where h′ is a permutation of
τ(t1)∪h(τ (t1)) that coincides with h on τ(t1). This permutation exists by Lemma 2.37.
The following assertions can be proved by this induction:

val(t)= val(t), τ̂ (t)= τ̂ (t) and μ(t)= τ̂ (t).

To prove the last equation, it suffices by Lemma 2.36 to show that μ(t) ⊆
τ̂ (t), i.e., that t ∈ T (FHR

τ̂ (t)
). Hence t belongs to T (FHR

τ̂ (t)), which completes the
proof.
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Remark 2.39 (1) For each finite set C, FHR
C is a finite subsignature of FHR.

Two FHR
C -algebras that are subalgebras of JS can be defined. The first is JS[C]

(cf. Definition 2.32). Its domain is the set J S[C] of s-graphs of type included in
C. The second is the subalgebra JSgen[C] of JS[C] that is generated by FHR

C . Its
domain J Sgen[C] consists of the s-graphs that are the values of terms over FHR

C . We
will prove in Section 2.4.5 (Theorem 2.83) that its s-graphs are those in J S[C] of
tree-width at most |C|− 1.

(2) For constructing a term t over FHR evaluating to a given s-graph G, we must
use a set of labels μ(t) such that τ(G)⊆ μ(t). But the source names in μ(t)− τ(G)

can be chosen arbitrarily and changed like bound variables in logical formulas. In
most cases, we are interested in defining graphs (without sources). If a graph G is
defined by a term t in FHR

C , and C ′ is in bijection with C, then G = val(t′) for some
t′ ∈ T (FHR

C ′ ). The term t′ is obtained from t by replacing, in each operation symbol,
every source name (it belongs to C) by the corresponding element of C′.

(3) We have not formulated Definition 2.35, Lemma 2.36 and Proposition 2.38
for labeled graphs because the extensions are obvious. In the sequel, we will leave
implicit the extensions to labeled graphs when they are obvious.

2.3.2 Construction of the s-graph defined by a term

The mapping val : T (FHR)→J S is defined by induction on the structure of terms in
T (FHR) in a straightforward manner because the constant symbols of FHR evaluate
to fixed (abstract) s-graphs and its function symbols define the unary and binary oper-
ations of Definitions 2.27 and 2.30. However, this definition is not fully satisfactory
for several reasons: it does not construct val(t) as a precise concrete s-graph, it does
not relate the subterms of t to the corresponding subgraphs of val(t) and it gives no
tool to verify that a given concrete s-graph G is isomorphic to val(t) where t is a
given term. For the latter verification, we must construct val(t) as a concrete s-graph
by applying Definitions 2.27, 2.30 and 2.31 and look for an isomorphism between G
and this concrete s-graph.

The construction we will define remedies these drawbacks, yields a clear corre-
spondence between terms and tree-decompositions (to be developed in Section 2.4.5)
and is directly translatable into a monadic second-order transduction (see Chapter 7
and Section 1.7). We first explain the idea.

The edges of a concrete s-graph G defined by a term t in T (FHR) are in bijection
with the occurrences in t of constant symbols of the forms ab,

−→
ab or a
. We say

that such an occurrence describes the corresponding edge. Hence, one part of the
correspondence between G and t will be a bijection between EG and these occurrences.
The description of vertices is more complicated. We first take an example. Let t be
the term fga(ab)�bc. The vertex x is common to the edges described by ab and bc.
It is described by the occurrences of these two symbols, and also by occurrences of
others. Here is the definition: a vertex is described by u in Pos(t) if it is a source of
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the value of t/u. In the example above, the vertex x is described by all occurrences of
the symbols of t. The a-source of val(ab) is described by the occurrence of ab only.
The c-source of val(bc) is described by the occurrences of bc and of �.24

We will construct a concrete s-graph isomorphic to val(t) by defining its vertices as
equivalence classes of pairs (u,a) such that u ∈ Pos(t) and a ∈ τ(val(t/u)), hence, as
a quotient of an s-graph Exp(t) called the expansion of t. Furthermore, by selecting
in each equivalence class a canonical representing element, we will get a canonical
concrete s-graph cval(t). We now give the formal definitions.

Definition 2.40 (The expansion of a term and its quotients) Let t ∈ T (FHR)

be a term with its syntactic tree specified as 〈Nt ,son1t ,son2t , labt〉 (cf. Defini-
tion 2.14) where Nt is Pos(t), the set of positions of t. Each u ∈ Nt has a type
τ(u) := τ(val(t/u)) ⊆ μ(t) (we use here Lemma 2.36). The types of all nodes can
be computed bottom-up on the syntactic tree of t (cf. Definition 2.35), in linear time
(provided μ(t)⊆ C with C fixed). We let Exp(t) denote the concrete s-graph called
the expansion of t and defined as follows:25

VExp(t) := {(u,a) | u ∈ Nt , a ∈ τ(u)},
EExp(t) := {u ∈ Nt | labt(u)= ab,

−→
ab or a
 for some a,b ∈A},

vertExp(t)(u) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{(u,a),(u,b)} if labt(u)= ab,(
(u,a),(u,b)

)
if labt(u)=−→ab,

{(u,a)} if labt(u)= a
 and t ∈ T (FHRu),(
(u,a),(u,a)

)
if labt(u)= a
 and t ∈ T (FHRd),

srcExp(t)(a) := (roott ,a) for every a ∈ τ(t)= τ(roott).

We let Rt be the binary relation on VExp(t) defined as follows:

Rt := {((u,a),(vi,a)
) | labt(u)= �, sonit(u,vi), i ∈ {1,2}}

∪{((u,a),(v,a)
) | labt(u)= fgB, son1t(u,v)}

∪{((u,h(a)),(v,a)
) | labt(u)= renh, son1t(u,v)}.

We let ≈t be the equivalence relation generated by Rt . The vertex set of val(t) will
be defined as the quotient set of VExp(t) by ≈t . With these definitions we have the
following proposition:

Proposition 2.41 For every term t ∈ T (FHR), we have

val(t)= [Exp(t)/≈t]iso.

24 We could also decide that the a-source of val(ab) is described by the occurrence of fga. This idea
works well for terms defining graphs (without sources) because each vertex corresponds to a unique
occurrence of an operation fga. It will be used in Chapter 6.

25 Clearly, Exp(∅) is the empty graph.
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Proof: Let t ∈ T (FHR). For every u in Nt , we define Vu := {(w,a)∈VExp(t) |w≤t u},
Eu := {w ∈ EExp(t) | w ≤t u} and Rt,u := Rt ∩ (Vu × Vu). We let also ≈t,u be the
equivalence relation on Vu generated by Rt,u.

We let Exp(t) � u be the s-graph H of type τ(u) such that H ◦ is the subgraph of
Exp(t)◦ with vertex set Vu, edge set Eu, and such that srcH (a)= (u,a) for every a in
τ(u).

Claim 2.41.1 For every u in Nt , if (u,a)≈t,u (u,b), then a= b.

Proof: For fixed t, by bottom-up induction26 on u. �

It follows that the quotient graph (Exp(t) � u)/≈t,u is well defined for every u in Nt .

Claim 2.41.2 For every u in Nt , we have

val(t/u)= [(Exp(t) � u)/≈t,u]iso.

Proof: For fixed t, by bottom-up induction on u. In the case where u is an occurrence
of � we use Proposition 2.29 with H :=(Exp(t)�v1)/≈t,v1 and K :=(Exp(t)�v2)

/≈t,v2 , where sonit(u,vi) for i ∈ {1,2}. �

We now complete the proof of the proposition. If u= roott , then we have Exp(t) � u
= Exp(t) and ≈t,u is ≈t . Hence Claim 2.41.2 yields the result.

This proposition will entail (in Section 7.4) that the mapping val, from terms to
graphs, is a monadic second-order transduction.

In the above proposition, we have shown how to construct from a term t a concrete
s-graph isomorphic to val(t). Actually, for each cross-section X of ≈t we have a
particular concrete s-graph, defined as (Exp(t)/≈t)X . However, we can define a
canonical cross-section, whence, a canonical concrete s-graph isomorphic to val(t).

Lemma 2.42 Each equivalence class of ≈t contains a unique pair (u,a) such that u
is maximal for ≤t .

Proof: It follows from the definitions that if (u,a)≈t (u′,b) then (u,a)≈t (w,c)≈t

(u′,b) for some (w,c), where w is a common ancestor of u and u′, and furthermore
(u,a)≈t,w (w,c)≈t,w (u′,b). Hence, each equivalence class of≈t contains pairs (u,a)
for a unique maximal node u. If it contains (u,a) and (u,b), then (u,a)≈t,u (u,b) hence
a= b by Claim 2.41.1.

We will denote by max(u,a) the unique maximal pair equivalent to (u,a), that exists
by the previous lemma, and by Xmax the set of all such maximal pairs. This set is a
cross-section of ≈t that we call the canonical cross-section and we let cval(t) be the
concrete s-graph (Exp(t)/≈t)Xmax , called the canonical (concrete) s-graph denoted
by t.

26 The property for u is proved by using the validity of the same property for nodes strictly below u.
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We now characterize what it means for an arbitrary concrete s-graph G to be
isomorphic to val(t).

Definition 2.43 (Witnesses) Let G be a concrete s-graph and t be a term over FHR.
A witness of G $ val(t) is a mapping w : VG ∪EG→ (Nt ×μ(t))∪Nt satisfying the
following conditions:
(1) w defines a bijection from EG to the set {u ∈ Nt | labt(u) = ab,

−→
ab or a
 for

some a,b ∈A}; it is a subset of the set of leaves of the syntactic tree of t, i.e., of
occurrences of constant symbols;

(2) w defines a bijection from VG to a cross-section X of≈t (this equivalence relation
is defined in Definition 2.40);

(3) if e ∈ EG , labt(w(e)) = −→ab and vertG(e) = (x,y), then w(x) ≈t (w(e),a) and
w(y)≈t (w(e),b); if labt(w(e))= ab and vertG(e)= {x,y}, then this condition
or the one with a and b exchanged holds;

(4) if e ∈ EG , labt(w(e)) = a
 and vertG(e) is either {x} or (x,x), then w(x) ≈t

(w(e),a);
(5) x is an a-source of G if and only if w(x)≈t (roott ,a).

Proposition 2.44 Let G be a concrete s-graph and t a term over FHR. Then:
(1) w is a witness of G $ val(t) with cross-section X of ≈t if and only if (w �VG,

w�EG) is an isomorphism from G to (Exp(t)/≈t)X ; and
(2) G $ val(t) if and only if there exists a witness of G $ val(t).

Proof: Assertion (1) is easy to check from the definitions.Assertion (2) is then imme-
diate from Proposition 2.41; in the “only-if” direction, if (hV ,hE) is an isomorphism
from G to (Exp(t)/≈t)X , then w := hV ∪ hE is a witness of G $ val(t).

As an illustration, consider the term t of the proof of Proposition 2.33, where

t = fgB(� · · ·� x1y1 · · ·xmymz1 · · ·zpw1

 · · ·wq


)

is here written in Polish prefix notation (which was not the case in the proof for
readability). We let G be the associated graph.Awitnessw of G$ val(t) can be defined
as follows. Note that the first symbol fgB of t is followed by m+p+q−1 occurrences
of �. We let w(ei) :=m+p+q+ i, w(zk ) := 2m+p+q+k , w(e′j) := 2m+2p+q+ j,
and for every nonisolated vertex x, we let w(x) be equal to w(ei) or w(e′j) for some
edge ei or e′j that is incident with x.

A canonical witness of G $ val(t) is one such that X = Xmax in Condition (2)
of Definition 2.43. By Assertion (1) of Proposition 2.44 it corresponds to an iso-
morphism from G to cval(t). Thus, the canonical witnesses of cval(t) $ val(t)
correspond to the automorphisms of cval(t). A ground witness of G $ val(t) is one
such that u is a leaf of t for each pair (u,a) ∈ X . It is not hard to see that each
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equivalence class of ≈t contains at least one such pair. Hence, one can also con-
struct concrete s-graphs isomorphic to val(t) whose vertices are such pairs (u,a);
the corresponding witnesses are ground witnesses. By selecting from an equivalence
class of ≈t the pair (u,a) such that u is the leftmost leaf (according to the linear
order of positions in t), we get a unique such concrete s-graph which we denote by
gval(t); a corresponding ground witness is called a leftmost ground witness. Thus,
a leftmost ground witness of G $ val(t) corresponds to an isomorphism from G
to gval(t).

Let us say more generally that two witnesses w1 and w2 of G$ val(t) are equivalent
if w1(e)=w2(e) for every e ∈ EG and w1(x)≈t w2(x) for every x ∈ VG. Then, every
witness of G $ val(t) is equivalent to a unique canonical witness and to a unique
leftmost ground witness of G $ val(t).

Proposition 2.45 For each finite set C, the concrete s-graph cval(t) can be con-
structed from t ∈ T (FHR

C ) in linear time, i.e., in time O(|t|). One can also construct
within the same time the concrete s-graph gval(t) and a leftmost ground witness
of cval(t) $ val(t). These results extend to (K ,�)-labeled s-graphs with the same
computation times.

Proof: Let t ∈ T (FHR
C ). We know that we can compute the types of its nodes in

linear time by a bottom-up computation. Hence, we can also compute in linear time
the sources of the s-graph Exp(t) and its sets of vertices and edges. It is clear that a
pair (u,a) ∈ VExp(t) belongs to Xmax if and only if either u is the root of t or its father
is an occurrence of fgB such that a∈B. Hence Xmax, the vertex set of cval(t), can also
be computed bottom-up in linear time. It remains to compute the mapping vertcval(t).
The set Rt of Definition 2.40 is the set of edges of a rooted forest H , with set of roots
Xmax. It has at most |C| · |t| edges and can also be constructed in linear time by a
bottom-up computation on t. Then, by using depth-first traversals of its trees (there
is one such tree for each element of Xmax), one can compute the mapping max that
associates with each node (u,a) of H the root max(u,a) of the tree to which it belongs.
In particular, we obtain for every occurrence u (in t) of a constant symbol that defines
an edge, say ab, its end vertices max(u,a) and max(u,b) in cval(t). These traversals
can be done in linear time in the size of H , hence in time O(|C| · |t|). By similar
depth-first traversals, one can associate with each element x of Xmax an equivalent
pair left(x) := (u,a) such that u is a leftmost leaf. Hence, one can also construct
gval(t) and a leftmost ground witness w of cval(t) $ val(t). In fact, w(x) = left(x)
for every x ∈ Vcval(t) and w(e)= e for every e ∈ Ecval(t).

The extension of these definitions and results to labeled graphs is easy: edge labels
are specified in the constant symbols that specify edges. The different labels of a vertex
are specified by different occurrences of constant symbols. However, the depth-first
traversal that defines the mapping max can also compute the set of labels of each
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vertex: whenever one reaches a leaf (u,a) of H such that u is an occurrence of aκ in t,
one adds κ to the current set of labels of max(u,a).

Definition 2.46 (Parsing) The parsing problem relative to the HR algebra is defined
as follows:

Input: A finite set C of source names and a concrete s-graph G of type included
in C.

Output: A term t in T (FHR
C ) and a witness of G$ val(t) if they exist, or the answer

that they do not exist.

It follows from the proof of the previous proposition that an arbitrary witness can
be converted in linear time into an equivalent canonical or leftmost ground one. In
fact, if w : VG ∪EG→ VExp(t) ∪EExp(t) is a witness of G $ val(t), then the mapping
w such that w(x) = max(w(x)) if x ∈ VG and w(e) = w(e) if e ∈ EG is the unique
canonical witness of G$ val(t) equivalent to w. The algorithm sketched in the proof
of Proposition 2.45 can be adapted to compute w from w and t in linear time. Similarly,
with left instead of max, w can be converted in linear time into the unique leftmost
ground witness w of G $ val(t) equivalent to w.

By the results of the next section, the parsing problem is equivalent to that of finding
a tree-decomposition of G of width at most some given integer. We will review some
algorithms that solve it in Section 6.2. Having parsed a graph G, it is often easy
to parse a graph that is a modification of G obtained by, e.g., adding loops and
multiple edges, adding labels, changing labels or changing the direction of edges, as
shown by the following proposition. In particular, any algorithm solving the parsing
problem can easily be extended into one solving the corresponding problem for labeled
graphs.

We recall from Definition 2.9 that the core of a graph is obtained by removing edge
directions and loops, and by fusing multiple edges. If G is a labeled s-graph, we let
core(G) be the unlabeled, simple, loop-free, undirected s-graph 〈core(G◦),slabG〉.
Thus, sources and their names are not modified.

Proposition 2.47

(1) Let be given a concrete s-graph G, a term t in T (FHR
C ) and a witness w of

core(G)$ val(t). We can compute in linear time a term t in T (FHR
C ) that evaluates

to G, together with a witness of this fact.27

(2) Let be given a concrete s-graph G, a term t in T (FHR
C ) and a witness w of

G $ val(t). Let γ be a labeling function turning G into a (K ,�)-labeled s-graph
Ĝ. In linear time (for fixed C, K and �), we can compute t̂ ∈ T (FHR

C,[K ,�]) that

evaluates to Ĝ, together with a witness of this fact.
(3) Let G, t and w be as in (2) with G possibly (K ,�)-labeled. Let G′ be obtained

from G by changing certain vertex and edge labels and by reversing certain edge

27 Here, linear time means time O(|VG |+ |EG |).
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directions (if G is directed). We can compute in linear time a term t′ in T (FHR
C )

or T (FHR
C,[K ,�]) that evaluates to G′, such that w is a witness of this fact.

Proof: Let us assume that G is undirected; the proof for the directed case is similar.
(1) By the above observations, we first transform the given witness into a ground

one that we still denote by w. Moreover, since ab = ab � a, we may assume that
for every vertex x of G, if w(x) = (u,a) then the leaf u is an occurrence of a in t.
We construct t from t by the following simultaneous replacements. It is then easy to
transform w into a ground witness of G $ val(t).

For every vertex x of G, we do the following: we have w(x) = (u,a) for some
leaf u in t that is an occurrence of a constant symbol a. If x has loops e1, . . . ,em in
G with m > 0, then we replace the occurrence at u by the term a
 � · · · � a
, the
parallel-composition of m constant symbols a
.

For every edge e : x− y of core(G), we do the following: the witness w specifies
a position w(e) in t that is an occurrence of some ab. If G has edges e1, . . . ,en in G
with ends x and y, then we replace the occurrence at w(e) by the parallel-composition
of n constant symbols ab.28

(2) The proof is similar (using that also a
 = a
 � a). For every vertex x of G, if
{κ1, . . . ,κp} = γ (x) with p > 0, i.e., if κ1, . . . ,κp are the labels of x in Ĝ, then we
replace the occurrence of a by the term aκ1 � · · ·� aκp .

For every edge e of G, w(e) is an occurrence of ab or a
. If λ= γ (e), i.e., if λ is the
label of e in Ĝ, then we replace the constant symbol at w(e) by abλ or a


λ respectively.
(3)The proof is similar but we need not assume thatw is ground.At certain positions

specified by w, it suffices to replace constant symbols of the form aλ (or abλ or
−→
abλ)

by aμ (or abμ or
−→
abμ), and to replace

−→
abλ by

−→
baλ (or

−→
ab by

−→
ba for unlabeled

graphs).

These transformations do not modify the source names that are used in t, hence
they preserve the width of t.

2.3.3 Algebraic properties and derived operations defined by contexts

Three equational axioms characterize the monoid of words over any alphabet. The
situation for graphs is more complicated.

Proposition 2.48 For all s-graphs G, H , J , all unary operations fgB, fgB′ , renh, renh′
in FHR and all a,b ∈A we have:
(1) G � H =H � G;
(2) G � (H � J )= (G � H )� J ;
(3) G �∅=G;
(4) fgB(fgB′(G))= fgB∪B′(G);

28 In the directed case, there are k edges x→G y and n edges y→G x. If w(x)= (u,a) and w(y)= (v,b),

then we replace the occurrence of ab by the parallel-composition of k symbols
−→
ab and n symbols

−→
ba.



2.3 The HR algebra of graphs with sources 117

(5) fgB(∅)=∅;
(6) fg∅(G)=G;
(7) renh(renh′(G))= renh◦h′(G);
(8) renh(G � H )= renh(G)� renh(H );
(9) renh(∅)=∅;

(10) ren{}(G)=G;
(11) renh(fgB(G))= fgh(B)(renh(G));
(12) renh(ab)= cd, where {c,d} = {h(a),h(b)}, a < b and c < d;
(13) renh(

−→
ab)=−→cd, where c= h(a), d = h(b);

(14) renh(a)= c, where c= h(a);
(15) renh(a
)= c
, where c= h(a);
(16) a � a= a and a � a
 = a
;

(17) a � ab= ab, a �
−→
ab=−→ab and a �

−→
ba =−→ba.

Furthermore, for every edge label λ and every vertex label κ , we have:

(12′) renh(abλ)= cdλ; where {c,d} = {h(a),h(b)}, a < b and c < d;
(13′) renh(

−→
abλ)=−→cdλ, where c= h(a), d = h(b);

(14′) renh(aκ )= cκ , where c= h(a);
(15′) renh(a
λ)= c
λ, where c= h(a);
(16′) a � aκ = aκ , aκ � aκ = aκ and a � a
λ = a
λ;

(17′) a � abλ = abλ, a �
−→
abλ =−→abλ and a �

−→
baλ =−→baλ.

Proof: Easy to check from the definitions.

Equalities (6) and (10) could be omitted from this list because they just say that
fg∅ and ren{} are identity operations. Hence, they express properties of the syntax and
not properties of nontrivial graph operations. However, we retain them here so that
the reader will have a comprehensive list of equalities usable for proofs.

We have not listed conditional equalities, in particular the following one, which
we will number for later reference:

(18) fgb(G � H )=G � fgb(H ) if b /∈ τ(G).

Such conditional equalities are best expressed as equalities of typed terms of the
many-sorted HR algebra that we will define in Section 2.6.2. However, we will not
develop this aspect.

Let us ask the question whether the equalities of Proposition 2.48 form a complete
description of the equational29 properties of JS?

We can formulate this question more precisely, as follows. Every term
t in T (FHR,{x1, . . . ,xn}), where x1, . . . ,xn are variables (intended to denote

29 The term “equational” refers here to equational logic and term rewriting systems [*BaaNip], not to the
equational sets to be studied in Chapter 3.
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s-graphs) defines a derived operation tJS : J Sn → J S. Two terms t and t′ in
T (FHR,{x1, . . . ,xn}) are equivalent if tJS = t′

JS
.

Does there exist, for each finite set C ⊆ A, a finite set C ′ such that C ⊆
C ′ ⊆ A and a finite set of equational axioms of the form t = t′ where t, t′ ∈
T (FHR

C ′ ,{x1, . . . ,xm}) that characterizes in equational logic the equivalence of
pairs of terms in T (FHR

C ,{x1, . . . ,xn}) for all n≥ 0?

The many-sorted framework of Section 2.6.2 is perhaps necessary, or at least conve-
nient. For a quite similar algebra, an equational characterization of the equivalence
of terms without variables, hence that evaluate to constant s-graphs,30 is given in
[BauCou]. However, the intermediate steps of the transformation of a term into
another one may use functions of the signature that are not in a fixed finite superset
FHR

C ′ of FHR
C , as required. Furthermore, the (open) problem is to have C ′ as small as

possible.

Proposition 2.49 Every term t over FHR
C evaluating to a nonempty s-graph is equiv-

alent to a term t̂ over FHR
C written without fg∅, ∅ and the source renaming operations,

and such that |̂ t | ≤ |t|.
Proof: It is clear that, by using Equalities (1), (3), (5), (6) and (9) of Proposition 2.48,
we can transform a term t in T (FHR

C ) into an equivalent term t′ in T (FHR
C )with |t′| ≤ |t|

such that either t′ = ∅ or t′ is without ∅ and fg∅. The first case is excluded since
val(t) �=∅. We now eliminate the source renaming operations from t assumed to be
already without ∅ and fg∅. The construction is by induction on the size of t.

(1) If t is a constant symbol then t̂ = t.
(2) If t = t1 � t2 then t̂ = t̂1 � t̂2.
(3) If t = fgB(t1) then t̂ = fgB(t̂1).
(4) If t = renh(t1), then we distinguish several subcases:

(4.1) If t1 is a constant symbol, then t̂ is the constant symbol obtained by
Equalities (12)−(15) and (12′)−(15′) of Proposition 2.48.

(4.2) If t1= t2 � t3, then t̂ = ̂renh(t2)� ̂renh(t3) and the correctness follows from
Equality (8).

(4.3) If t1 = fgB(t2), then t̂ = fgh(B)(
̂renh(t2)) and the correctness follows from

Equality (11).
(4.4) If t1 = renh′(t2), then t̂ = ̂renh◦h′(t2) and the correctness follows from

Equality (7).

The inductive construction is well defined because in each case, t̂ is defined either
directly as in Cases (1) and (4.1) or in terms of t̂′ for terms t′ of size strictly smaller

30 Such terms are said to be ground in the theory of term rewriting systems.
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than t. For Case (4.4), we observe that if h,h′ ∈ Permf (C) then h◦h′ ∈ Permf (C). It
is clear by this inductive construction that t̂ has no occurrences of renaming opera-
tions, that t̂ is equivalent to t and that |̂t | = |t| − |t|ren, where |t|ren is the number of
occurrences of renaming operations in t.

The constant symbols a are actually useful only for defining isolated vertices. If a
term t in T (FHR) evaluates to an s-graph G without isolated vertices, then the term
t′ obtained from t by replacing each symbol a by ∅ evaluates to G, because all its
vertices are defined as the ends of edges, hence by constant symbols of the forms ab,−→
ab and a
. The constant symbols aκ are useful to define vertex labels. These labels
are not otherwise specified because the constant symbols abλ,

−→
abλ and a
λ that define

labeled edges do not specify the labels of the ends of these edges.
We will write a context over FHR as a term in T (FHR,{x1}) where the variable

x1 has a single occurrence (see Definition 2.6). Such a term defines a unary derived
operation of the algebra JS. (For all other terms t in T (FHR,{x1}), such as the term
x1 �x1, the unary derived operation tJS cannot be defined by a context.) We will prove
that each such derived operation can be concretely described as the result of gluing
a fixed s-graph to the input s-graph, followed by one forgetting and one renaming
operation. The basic idea is that all renaming and forgetting operations of a term can
be “moved outwards.”

We define two contexts as equivalent if they define the same derived operation.

Proposition 2.50 Let C be a finite set of source names. For every context c in
Ctxt(FHR

C ), there exists a context c in Ctxt(FHR
C )written without renaming operations,

and a permutation h of C such that the context renh(c) is equivalent to c.

Proof: The proof is by induction on the structure of c.
(1) If c= x1, then we let c be c and h be the identity.
(2) If c = c1 � t (or c = t � c1), where c1 ∈ Ctxt(FHR

C ) and t ∈ T (FHR
C ), then, by

the induction hypothesis, c1 is equivalent to renh1(c1) for some c1 in Ctxt(FHR
C ) writ-

ten without renaming operations, and some permutation h1 of C. It follows that c
is equivalent to renh1(c1)� t and to renh1(c1 � renh−1

1
(t)) by Equality (8) of Propo-

sition 2.48. Hence we can take h := h1 and c := c1 � t′, where t′ is a term without
renaming operations that is equivalent to renh−1

1
(t). Such a term can be constructed

by Proposition 2.49.
(3) If c= renh′(c1) and h1,c1 are obtained from c1 by the induction hypothesis, we

can take c := c1 and h := h′ ◦ h1 by Equality (7) of Proposition 2.48.
(4) If c = fgB(c1) and h1,c1 are as in the previous case, then c is equivalent to

fgB(renh1(c1)) and to renh1( fgh−1
1 (B)(c1)) by Equality (11) of Proposition 2.48. Hence,

we can take h := h1 and c := fgh−1(B)(c1).

Proposition 2.51 Let B be a finite set of source names, and let c be a context in
Ctxt(FHR

B ). For every A⊆ B there exists a set C of source names such that C ∩B=∅
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and |C| ≤ |A|, a term t over FHR
B∪C , a subset A′ of A and a permutation h of B∪C such

that for every s-graph G of type included in A we have:

cJS(G)= renh( fgA′(G � tJS)).

In other words, the restriction of cJS to s-graphs of type included in A is defined by
the context renh( fgA′(x1 � t)) that belongs to Ctxt(FHR

B∪C).

Proof: We first use Proposition 2.50 to reduce the proof to the case of contexts written
without renaming operations: a context c in Ctxt(FHR

B ) is equivalent to renk(c) for
some permutation k of B and some context c without renaming operations. If c is
equivalent on s-graphs of type included in A to a context of the form renh′( fgA′(x1 �

t)) with A′ ⊆ A and h′ ∈ Permf (B ∪ C), then c is equivalent to renk◦h′( fgA′(x1 �

t)) on the same s-graphs, because k is the identity on C (we use Equality (7) of
Proposition 2.48).

We now prove the statement for a context c without renaming operations. Such a
context is a term in T (FHR

B ,{x1}) and we let u be the occurrence in c of the variable x1.
Without loss of generality we assume that c is written with the elementary operations
fga for a in B, and not with their compositions fgD for D⊆B (see Equalities (4) and (6)
of Proposition 2.48). For convenience, the unary derived operation cJS defined by c
will also be denoted by c.

We prove the statement by induction on the structure of c, together with the addi-
tional statements that (i) C = {a | a ∈ A′}, where {a | a ∈ A} is a set of source names
in bijection with A and disjoint with B, and (ii) h is such that h(a)= a, h(a)= a for a
in A′ and h(b)= b for b /∈ A′ ∪C. Thus, C and h are determined uniquely by A′. We
will also write t instead of tJS for a term t over FHR.

(1) If c = x1, then we take A′ := ∅ and t := ∅, because c(G) = ren{}( fg∅(G �

∅))=G.
(2) If c = c1 � s, where c1 ∈ Ctxt(FHR

B ) and s ∈ T (FHR
B ), then, by the induction

hypothesis, there are A′ and t1 such that c1(G)= renh( fgA′(G� t1)) for every s-graph
G with τ(G)⊆ A. For c we take the same set A′ and the term t := t1 � renh(s). Then
renh( fgA′(G � t)) = renh( fgA′(G � t1) � renh(s)) by the fact that for all s-graphs
H ,K and every set of source names A′, we have fgA′(H � K) = fgA′(H ) � K if
τ(K) ∩ A′ = ∅ (and note that τ(renh(s)) ⊆ h(B) and h(B) ∩ A′ = ∅), see Equal-
ity (18) after Proposition 2.48. By Equalities (8) and (7) of Proposition 2.48 this
equals renh( fgA′(G � t1)) � renh◦h(s), which equals c1(G) � s because h ◦ h is the
identity.

(3) If c= fgb(c1), with b /∈ A or b ∈ A′, and A′, t1 are obtained from the induction
hypothesis, then we can take the same A′ and t := fgh(b)(t1) by Equality (18) (and
note that h(b) /∈ τ(G)) and by Equalities (4) and (11) of Proposition 2.48.

(4) If c = fga(c1), with a ∈ A− A′, and A′, t1 are obtained from the induction
hypothesis, then we can take for c the same term t := t1 and the set A′′ := A′ ∪ {a}



2.4 Tree-decompositions 121

with the corresponding permutation h′. In fact, again by Equalities (10) and (4) of
Proposition 2.48, we have that c(G)= fga(renh( fgA′(G � t1)))= renh( fga( fgA′(G �

t1))) = renh( fgA′′(G � t1)) because h(a) = a, and this equals renh′( fgA′′(G � t1))
because h′(b)= h(b) for every b ∈ (B∪C)−A′′.

The extensions of Propositions 2.49, 2.50 and 2.51 to labeled graphs are
straightforward.

Example 2.52 We let A= {a} and c be the context

fga( fga(x1 � ab)� ab � ac)� ac.

For τ(G)⊆ {a} we have (with obvious simplifications):

G = ren{}( fg∅(G �∅)),

G � ab = ren{}( fg∅(G � ab),

fga(G � ab) = rena↔ā( fga(G � ab)),

fga(G � ab)� ab � ac = rena↔a( fga(G � ab � ab � ac)),

fga( fga(G � ab)� ab � ac) = rena↔a( fga(G � fga(ab � ab � ac))),

c(G) = rena↔a( fga(G � fga(ab � ab � ac)� ac)),

by cases (1), (2), (4), (2), (3) and (2) respectively. Thus, renh = rena↔ā, fgA′ = fga,
and t = fgā(ab � āb � āc)� āc. �

2.4 Tree-decompositions

In this section, we define tree-decompositions and we establish that the terms over
FHR describe them. We get in this way a characterization of the associated graph
complexity measure known as tree-width. For the numerous equivalent defini-
tions and properties of tree-decompositions and tree-width, we refer the reader to
the two comprehensive overview articles by Bodlaender [*Bod93, *Bod98] and to
the books [*DowFel] and [*FluGro]. We only present and discuss the aspects of
tree-decompositions that will be useful in the forthcoming chapters.

2.4.1 Tree- and path-decompositions

Our definition of tree-decomposition differs from the usual one on two minor technical
points: it uses rooted trees and concerns graphs with sources. (It generalizes the
definition given in Section 1.4.2.) Since tree- and path-decompositions do not depend
on vertex or edge labels, we only define them for (unlabeled) s-graphs.
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Definition 2.53 (Tree-decompositions) Let G be a concrete s-graph. A tree-
decomposition of G is a pair (T , f ) such that T is a concrete rooted tree and f is
a mapping from NT to P(VG) satisfying the following conditions, where a box of
(T , f ) is a set f (u) for some u in NT :

(1) every vertex of G belongs to some box;
(2) every edge of G that is not a loop has its end vertices in some box;
(3) for every vertex x of G, the set f −1(x) of all nodes u of T such that x ∈ f (u), is

connected (i.e., T [ f −1(x)] is connected); this condition is called the connectivity
condition;

(4) all sources of G belong to the box f (rootT ), called the root box of the
decomposition.

An equivalent formulation of (3) is that if u and v are two nodes of T , then
f (u) ∩ f (v) ⊆ f (w) for every node w on the path in T between u and v.31 The
width of (T , f ) is defined as wd(T , f ) := max{| f (u)| | u ∈ NT } − 1. The tree-width
of G, denoted by twd(G), is the smallest width of a tree-decomposition of G.

A tree-decomposition of a concrete s-graph G is optimal if its width is equal to
twd(G). Isomorphic concrete s-graphs have isomorphic tree-decompositions, hence
the same tree-width. Tree-decompositions and tree-width are thus well defined for
(abstract) s-graphs. We denote by TWD(≤ k) the set of graphs of tree-width at most k ,
and by TWD(≤ k ,C) the set of s-graphs of tree-width at most k and of type included
in a set of source names C. The tree-width twd(L) of a set of s-graphs L is defined as
the least upper-bound of the tree-widths of its elements. We say that L has bounded
tree-width if twd(L) ∈N ∪{−1} (otherwise twd(L)= ω).

Definition 2.54 (Rich tree-decompositions) Arich tree-decomposition of an s-graph
G is a pair (T , f ) where T is as in Definition 2.53, f is a mapping : NT →P(VG∪EG)

and Condition (2) is replaced by the following one:
(2′) every edge of G belongs to a unique box and its end vertices belong to this

box.
The width of (T , f ), denoted by wd(T , f ), is defined as max{| f (u)∩ VG| | u ∈

NT } − 1. It is clear that if (T , f ) is a rich tree-decomposition of G, then (T , f ′)
such that f ′(u) := f (u)∩VG for all u is a tree-decomposition of G, having the same
width as (T , f ). Conversely, every tree-decomposition (T , f ′) can be turned into a
rich one, (T , f ), such that f ′(u) = f (u)∩ VG for every u. It suffices to define f (u)
as the set f ′(u) ∪ {e ∈ EG | u is the least common ancestor of the nodes w such
that f ′(w) contains the end vertices of e}. It follows that the tree-width of an s-
graph is the same whether we define it with respect to tree-decompositions or to rich
tree-decompositions.

31 Recall from Definition 2.13 that, in a rooted tree T , there is a unique (undirected) path between any
two nodes u and v of T . This path contains the least common ancestor of u and v.
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From a rich tree-decomposition (T , f ) of an s-graph G, we will construct
in Section 2.4.5 a term in T (FHR) evaluating to G, and conversely, a rich
tree-decomposition will be associated with each term evaluating to it.

Remark 2.55 (a) If (T , f ) is a tree-decomposition or a rich tree-decomposition of G,
then every vertex x of G belongs to a unique ≤T -maximal box f (u) of (T , f ). This
follows from Conditions (1) and (3) of the definitions and the fact that T is rooted
(otherwise ≤T is not defined). In fact, u is the least common ancestor of all nodes in
f −1(x), and it is the root of the rooted tree T [ f −1(x)].

(b) For a graph, Condition (4) of Definition 2.53 is trivially true and any node of
the tree T can be chosen as the root. Equivalently, the tree T of a tree-decomposition
(T , f ) of a graph can be defined as a tree without root.

(c) Let (T , f ) be a tree-decomposition or a rich tree-decomposition of G with
wd(T , f ) = k − 1. By Conditions (1) and (2), we have that |VG| ≤ k · |NT | and, if
G is simple, that |EG| ≤ k2 · |NT |. On the other hand, since (T , f ) can consist of a
unique box containing all vertices and since some box must contain all sources by
Condition (4), we have |τ(G)| ≤ k ≤ |VG|. This implies:

|τ(G)|− 1≤ twd(G)≤ |VG|− 1.

The tree-width of the empty graph is−1. A nonempty s-graph has tree-width 0 if and
only if it has only loops and isolated vertices, and has at most one source.

(d) The notion of a tree-decomposition depends neither on edge directions nor
on colors, labels or weights possibly attached to vertices and / or edges. Adding or
deleting a loop, or fusing two edges with the same ends into a single one does not
change the tree-width. Thus, twd(G) = twd(core(G)) for every s-graph G (for the
core of G, see Definition 2.9 and Proposition 2.47). �

Example 2.56 The following examples concern graphs.
(1)A tree T with at least one edge has tree-width 1. To see this, we choose any node

r as a root, which turns T into a rooted (hence directed) tree (cf. Definition 2.13). We
let f : NT →P(NT ∪ET ) be defined by:

(a) f (r) := {r};
(b) f (u) := {u,v,e} if e : v→ u is the unique edge with head u (which implies u �= r).

Clearly (T , f ) is a rich tree-decomposition of T and its width is 1. For constructing
a tree-decomposition of a forest F , we add edges to turn F into a tree to which we
apply the above construction. We obtain a tree-decomposition of width 1 of F .

(2) Figures 2.5, 2.6 and 2.7 show a graph G and a rich tree-decomposition (T , f ) of
this graph. The root of T is the node a in Figure 2.7, the boxes of the decomposition
are represented in Figure 2.6 as disjoint graphs with continuous lines representing
edges. A dotted edge links two vertices of these disjoint graphs that correspond to
the same vertex of G. We denote by G(T , f ) the graph representing (T , f ) as it is
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Figure 2.5 A graph G.

Figure 2.6 A rich tree-decomposition (T , f ) of G.
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Figure 2.7 The tree T .

shown in Figure 2.6 with its two types of edges. Its dotted edges form a forest. The
graph G is obtained from it by contracting all dotted edges (see Definition 2.15 for
edge contractions). The vertex x of G belongs to boxes b,c,d,e. The four vertices
(x,b), (x,c), (x,d), (x,e) of the graph G(T , f ) of Figure 2.6 get fused and yield the
vertex x of G. Nodes b,c,d,e form a path in T , hence T [ f −1(x)] is connected. The
width of (T , f ) is 3.

(3) Here are the tree-widths of some classical graphs. The graphs Kn (the cliques)
and Kn,m (the complete bipartite graphs) are defined in Section 1.3.1; Cn is a cycle
with n vertices and Gn×m is the rectangular n×m grid defined as 〈[n] × [m],edg〉
with ((i, j),(i′, j′)) ∈ edg if and only if either i′ = i + 1 and j′ = j, or i′ = i and
j′ = j+1. For n,m≥ 1 we have twd(Kn)= n−1, twd(Kn,m)=min{n,m}, twd(Cn)= 2
if n ≥ 3, and twd(Gn×m) = min{n,m}. The inequality twd(Kn) ≤ n − 1 follows
from Remark 2.55(c), and the inequalities twd(Kn,m) ≤ min{n,m}, twd(Cn) ≤ 2,
twd(Gn×m) ≤ min{n,m} follow from easy constructions (see also (6) below). The-
orem 12.3.9 of [*Die] shows that twd(Gn×n) ≥ n− 1 (with a proof technique that
can be used for finding other lower-bounds). The lower-bound twd(Gn×n) ≥ n is
proved in [*Bod98], Corollary 89. Hence we get by Corollary 2.60(1) stated below
that twd(Gn×m) = min{n,m}. The other opposite inequalities will be proved in
Section 2.4.2.

(4) Rectangular grids, hence more generally, planar graphs have unbounded tree-
width but outerplanar graphs have tree-width at most 2 (see [*Bod98]).
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(5) The incidence graph Inc(G) of an undirected graph G (already defined in
Section 1.8.1) has vertex set VG ∪EG and edges between e and x whenever x ∈ VG,
e ∈ EG and x is an end of e. The tree-width of Inc(G) is at most max{2, twd(G)}. To
see this, take a rich tree-decomposition (T , f ) of G. For each edge e of G, add to the
node u of T such that e ∈ f (u) a new son ue and extend f in such a way that f (ue)

consists of e and its ends. The resulting pair is a tree-decomposition of Inc(G), as the
reader will easily verify.

(6) Let us say that a rooted tree T is normal for a graph G if NT = VG and every
two adjacent vertices of G are comparable with respect to ≤T (like in a normal
spanning tree, except that here we do not require that two adjacent nodes of T are
adjacent in G, see Definition 2.13). A normal tree-decomposition of a graph G is a
tree-decomposition (T , f ) such that T is normal for G and f is defined as follows
from G and T :

f (u) := {u}∪ {w | u≤T w and w is adjacent in G to some v ≤T u}.

This is a tree-decomposition as one checks easily: if u ∈ f −1(w), then u≤T w and all
vertices on the path from w to u in T are in f −1(w), and so f −1(w) is connected.

As an example, a normal spanning tree T of the cycle Cn is obtained by removing an
edge and taking one of its ends as root (thus, T is a directed path). The corresponding
normal tree-decomposition (T , f ) has width 2. As another example, a normal tree
for the complete bipartite graph Kn,m, with n ≤ m, is the directed path with edges
(i, i+1) (it first enumerates the n nodes and then the m nodes of the bipartition). The
corresponding normal tree-decomposition has width n. As a final example, a normal
tree for the grid Gn×m, with n ≤ m, is the directed path with root (1,1) and edges
((i, j),(i+1, j)) and ((n, j),(1, j+1)), and the normal tree-decomposition has width n.

We will show in Corollary 2.73(3) that every nonempty graph has an optimal normal
tree-decomposition. �

Definition 2.57 (Path-decompositions and path-width) A path-decomposition
(resp. a rich path-decomposition) of an s-graph is a tree-decomposition (resp. a rich
tree-decomposition) (T , f ) such that T is a directed path (and hence its root is one
end of this path). The path-width of an s-graph G is the smallest width of its path-
decompositions. It is denoted by pwd(G). We denote by PWD(≤ k) the set of graphs
of path-width at most k , and by PWD(≤ k ,C) the set of s-graphs of path-width at
most k and of type included in a set of source names C.

A path-decomposition of an s-graph G can be specified as a sequence D ∈
Seq(P(VG)): it corresponds to (T , f ), where T = 〈[|D|],{(i, i+ 1) | i ∈ [|D| − 1]}〉
and f (i)=D[i].

Since every path-decomposition is a tree-decomposition, we have

twd(G)≤ pwd(G)≤ |VG|− 1.
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The tree-width of an s-graph may be smaller than its path-width. In particular, trees
have unbounded path-width, but tree-width at most 1. The graphs Kn, Kn,m, Cn, Gn×m

considered in Examples 2.56(3) and 2.56(6) have equal path-width and tree-width.
For every graph G we have, by a result of [BodGHK]:

pwd(G)≤ (twd(G)+ 1) · log(|VG|).

We now detail the case of the complete binary tree Tn of height n: its set of nodes
is the set of words over {0,1} of length at most n and a node u is an ancestor of w if
and only if u is a prefix of w. Hence ε is the root. For n ≥ 1, we have twd(Tn)= 1
and pwd(Tn)= �n/2�. A path-decomposition of T2 of width 1 is

D1 := ({0,00},{0,01},{0,ε},{ε,1},{1,10},{1,11}).

By induction on n, we define

Dn+1 := (00Dn+ 0) · (01Dn+ 0) · ({0,ε},{ε,1}) · (10Dn+ 1) · (11Dn+ 1),

where we use the following notation: if D is a path-decomposition of a graph G with
vertices in {0,1}∗, then D+u is the path-decomposition (of a graph with at most one
more vertex than G) obtained by adding u to each box, and uD the path-decomposition
of a graph isomorphic to G obtained by replacing each word w by uw. The reader
will verify easily that Dn is, for each n, a path-decomposition of T2n of width n. The
path-width of T2n+1 is larger than n: this follows from the characterization given in
[TakUK] of the acyclic excluded minors for graphs of path-width at most n.

2.4.2 Some properties of tree-decompositions

We review a few results that will be useful in the sequel. Proofs and references can be
found in [*Bod98]. For two disjoint sets A and B, we denote by A⊗B the complete
bipartite concrete graph with VA⊗B = A∪B and edges between each vertex of A and
each vertex of B.

Proposition 2.58 Let (T , f ) be a tree-decomposition of a concrete s-graph G and
A,B ⊆ VG. If A is a clique in the graph core(G), then A is included in some box of
(T , f ). If A∩B= ∅ and A⊗B is a subgraph of core(G), then at least one of A and B
is included in some box. �

It follows that twd(Kn) ≥ n − 1 and twd(Kn,m) ≥ n − 1 if n ≤ m. We know
from Examples 2.56(3) and 2.56(6) that twd(Kn)≤ n− 1 and twd(Kn,m)≤ n. Thus,
twd(Kn)= n−1. Since Kn+1 is a minor of Kn,n, we have (by Corollary 2.60(1) below)
twd(Kn+1)≤ twd(Kn,m) and thus twd(Kn,m)= n (if n≤m). (To prove that Kn+1 �Kn,n

we consider the graph isomorphic to Kn,n with vertices u1, . . . ,un,v1, . . . ,vn and edges
ei, j : ui − vj for all i, j ∈ [n]; we contract the edges ei,i for i = 2, . . . ,n, which yields
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a graph H with vertices u1, . . . ,un,v1; it is clear that Kn+1 is isomorphic to core(H ).
Since core(H )⊆H , we obtain from Proposition 2.17 that Kn+1 � Kn,n.)

Similarly, K3 � Cn for n ≥ 3 and so twd(Cn) ≥ 2 (and we know from Examples
2.56(3) and 2.56(6) that twd(Cn)≤ 2).

Proposition 2.59 If a graph H is obtained from a graph G by deleting or contract-
ing an edge, or by deleting a vertex and the edges incident with this vertex, then
twd(G)− 1≤ twd(H )≤ twd(G). �

The proof is easy. We obtain thus from Proposition 2.17(2) the first assertion of the
following corollary.

Corollary 2.60
(1) If H is a minor of a graph G, then twd(H )≤ twd(G).
(2) For every k there is a finite set �k of simple, loop-free, undirected graphs such

that a graph G has tree-width at most k if and only if core(G) has no minor
isomorphic to a graph in �k . �

The second assertion follows from the first assertion, the fact that twd(G) =
twd(core(G)) and a particular case of the Graph Minor Theorem recalled in
Section 2.2 (after Proposition 2.21) that is proved in [RobSey90]. The sets �k are
known for k at most 3: �1 = {K3}, �2 = {K4} and �3 consists of four graphs (see
[ArnPC]). Each set �k contains Kk+2.

Aresult in [Lag] shows that graphs in�k have size at most exp(exp(O(k5))), where
for every integer n, exp(n)= 2n. It follows that they can be, in principle, determined.
However, this upper-bound is too large to be usable in any implementable algorithm.

Proposition 2.59 and Corollary 2.60 hold for path-width instead of tree-width, with
a finite set �k instead of �k for the graphs of path-width at most k . The trees in �k

have been determined in [TakUK]: there are more than (k!)2 trees in �k , all with
(5/2) · (3k − 1) vertices.

Proposition 2.61 For each k , the set �k contains at least one planar graph. Con-
versely, for every planar graph P, the set of graphs not containing P as a minor has
bounded tree-width.

Proof: Since twd(G(k+1)×(k+1)) = k + 1 (Example 2.56(3)), the undirected grid
core(G(k+1)×(k+1)) has a minor P in �k by Corollary 2.60(2). This graph P is planar
since every minor of a planar graph is planar. The second assertion is due to Robertson
and Seymour and is proved in Theorem 12.4.3 of [*Die]. The proof yields an upper-
bound exp(O(n5)), where n is the number of vertices of P.

The set�k characterizes the graphs in TWD(≤ k). It can also be used to characterize
the s-graphs in TWD(≤ k ,C), where C is a set of at most k+1 source names. Let C be
such a set and let KC be the simple loop-free undirected s-graph of type C such that K◦C
is the clique K|C|. It follows from Proposition 2.58 and Remark 2.55(b) that an s-graph
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G of type included in C has tree-width at most k if and only if the (undirected) graph
fgC(und(G) � KC) has tree-width at most k (where und(G) := 〈und(G◦),slabG〉),
hence, if and only if the graph core( fgC(und(G)� KC)) has no minor in �k .

We conclude this review with easier results. Every graph can be decomposed
into its 2-connected components (its maximal induced subgraphs without separating
vertices), and these components form a tree. Furthermore, every 2-connected graph
can also be decomposed into a tree of so-called 3-blocks. A3-block is either a cycle, or
a bond (a set of pairwise parallel edges) or a 3-connected graph (a 2-connected graph
without separating set of two vertices). The 3-blocks of a graph, i.e., the 3-blocks of
its 2-connected components, are minors of it.

Proposition 2.62 The tree-width of a nonempty graph G is the maximal tree-width
of its connected components. It is also the maximal tree-width of its 2-connected
components and the maximal tree-width of its 3-blocks. �

The last assertion is proved in [Cou99]. The two others follow from straightforward
constructions.

2.4.3 Transformations of tree- and path-decompositions

We consider transformations of tree- and path-decompositions of a given s-graph
intended to reduce some parameters like the number of boxes without, hopefully,
increasing the width, or by increasing it in a controlled way. By iterating certain of
these elementary transformations, one can put tree-decompositions in certain normal
forms.

Definition 2.63 (Edge contractions in a tree-decomposition) Let (T , f ) be a (rich)
tree-decomposition of an s-graph G, and let e : u→ v be an edge of T . We let T/e
be the result of the contraction of e. Its set of nodes is defined as NT/e = NT − {v}:
from the two vertices u and v that are fused, we keep u as result of the fusion, and
the edges from v to w of T are made into edges from u to w in T/e. We let (T/e, fe)
be the pair such that:

fe(w) :=
{

f (w) if w ∈ NT −{u,v} = NT/e−{u},
f (u)∪ f (v) if w= u.

With these notations and hypotheses:

Lemma 2.64 The pair (T/e, fe) is a (rich) tree-decomposition of G if (T , f ) is a (rich)
tree-decomposition of G. We have

wd(T/e, fe)=max{wd(T , f ), |( f (u)∪ f (v))∩VG|− 1}
where u and v are the end vertices of e. The same result holds for (rich)
path-decompositions. �
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Remark 2.65 If E is a set of edges of a rooted tree T , then (((T/e1)/e2) · · ·)/en is
the same for every enumeration e1, . . . ,en of E. This is so because rooted trees are
directed so that each node has indegree at most 1 and when we contract an edge, we
take its tail as the vertex resulting from this contraction. We can thus define T/E, the
result of the simultaneous contraction of all edges of E. The nodes in T that are in T/E
are the roots of the rooted forest T [E]. Similarly, if (T , f ) is a tree-decomposition of
G, then (T/E, fE) is also one, where, for a root r of T [E], fE(r) is the union of all
f (u) such that u is a descendant of r in T [E]. �

We consider some conditions that can be imposed on tree-decompositions and on
path-decompositions without increasing the associated widths. In all cases, we give
an algorithm that transforms an arbitrary decomposition into one of no larger width
that satisfies the considered conditions.

Definition 2.66 (Downwards increasing decompositions) A tree-decomposition
(T , f ) of an s-graph G is downwards increasing if, for every edge u→ v of T , we
have f (v)− f (u) �= ∅. This means that f (v) is not a subset of f (u). In this case
wd(T , f )≤ k implies | f (u)∩ f (v)| ≤ k for every edge u→ v. Assuming that the box
f (rootT ) is nonempty, we also have |NT | ≤ |VG|.

A tree-decomposition (T , f ) is 1-downwards increasing if | f (v)− f (u)| = 1 for
every u,v as above. In this case, |VG| = |NT |+ | f (rootT )|− 1.

Every normal tree-decomposition (Example 2.56(6)) is 1-downwards increas-
ing. The tree-decomposition of Figure 2.6 is downwards increasing but not
1-downwards increasing.

Proposition 2.67

(1) Let (T , f ) be a tree- or a path-decomposition of an s-graph G. By apply-
ing to T a series of edge contractions, one can transform it into a tree- or
a path-decomposition of G of the same width, such that every two boxes are
incomparable for inclusion, and that is thus downwards increasing.

(2) Every graph has an optimal tree-decomposition (path-decomposition) that is
1-downwards increasing.

Proof: (1) Let (T , f ) be such that f (v) ⊆ f (u) or f (u) ⊆ f (v) for some edge
e : u→ v. By contracting this edge, we get by Lemma 2.64 a tree- or a path-
decomposition (T/e, fe) of G. Since f (u)∪ f (v) is equal to f (u) or to f (v) we have
wd(T/e, fe)=wd(T , f ). By repeating this elementary step at most |edgT | times, we
obtain a decomposition of the desired form.

(2) By (1), every graph has an optimal tree-decomposition (path-decomposi-
tion) that is downwards increasing. This decomposition can be made 1-downwards
increasing by insertion of new nodes in the tree. We omit the easy formal details.
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Definition 2.68 (Binary tree-decompositions) Let (T , f ) be a (rich) tree-
decomposition. It is binary if every node of T has outdegree at most 2. For u ∈ NT ,
we let d(u) := max{0,outdegree(u)− 2} and d(T ) :=∑u∈NT

d(u). Hence (T , f ) is
binary if and only if d(T )= 0.

Proposition 2.69 Every (rich) tree-decomposition (T , f ) of an s-graph G can be
transformed into a binary (rich) tree-decomposition (T ′, f ′) of G of the same width,
such that ht(T ′) ≤ (maxu∈NT {�log(d(u)+ 2)�}) · ht(T ). The reverse transformation
of (T ′, f ′) into (T , f ) can be done by edge contraction.

Proof: Let (T , f ) and G be as in the statement. It obviously suffices to consider the
nonrich case. If d(T )= 0 there is nothing to do. If d(T ) �= 0, we take any node u with
outgoing edges u→ v1, . . . ,u→ vp, p≥ 3, we introduce a new node u′ and we replace
the edges u→ vp−1 and u→ vp by the edges u→ u′, u′ → vp−1 and u′ → vp. We
obtain a tree T1 with d(T1)= d(T )− 1. We turn it into a tree-decomposition (T1, f1)
by defining f1(u′) := f (u) and f1(w) := f (w) for w ∈ NT . It is clear that (T1, f1) is a
tree-decomposition of G that gives back (T , f ) by contracting the new edge u→ u′.32

Since f1(u′)= f (u) we have wd(T , f )= wd(T1, f1).
By repeating this elementary transformation d(T ) times, we obtain from (T , f ) a

binary tree-decomposition (T ′, f ′) of the s-graph G of the same width that gives back
(T , f ) by d(T ) edge contractions. The height of T ′ is at most (maxu∈NT {d(u)+ 1}) ·
ht(T ), which is not the desired bound.

We now modify the construction so as to obtain a binary tree-decomposition (T ′, f ′)
of height ht(T ′)≤ (maxu∈NT {�log(d(u)+ 2)�}) · ht(T ). In the case where p≥ 4, we
add two new nodes u′ and u′′ and we replace the edges u→ v1, . . . ,u→ vp by u→ u′,
u→ u′′, u′ → v1, . . . ,u′ → vq, u′′ → vq+1, . . . ,u′′ → vp where q= �p/2�. We obtain
a tree T ′′ and we define f ′′ by f ′′(u′) := f (u), f ′′(u′′) := f (u), and f ′′(w) := f (w)

for w ∈ NT . We obtain a tree-decomposition (T ′′, f ′′) of the s-graph G such that
wd(T ′′, f ′′)=wd(T , f ), d(T ′′) < d(T )−1 and that gives back (T , f ) by contracting
two edges. By repeating this step at most d(T ) times, we obtain a tree-decomposition
having the desired properties.

Remark 2.70 The transformations of Propositions 2.67 and 2.69 go in opposite
directions. This suggests the following question:

Does every graph have an optimal tree-decomposition that is binary and
downwards increasing?

To show that the answer is no, we give a counter-example. We let G be the simple
undirected graph such that VG = {1,2,3,4,1′,2′,3′,4′}, its edges are between i and j
for 1 ≤ i < j ≤ 4 and between i and j′ for 1 ≤ i, j ≤ 4, i �= j. This graph is shown in
Figure 2.8.

32 In this contraction the “new node” u′ disappears, by Definition 2.63.
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Figure 2.8 Graph G of Remark 2.70.

The graph G is the union of five cliques with sets of vertices f (0) = {1,2,3,4},
f (1)= {1′,2,3,4}, f (2)= {1,2′,3,4}, f (3)= {1,2,3′,4} and f (4)= {1,2,3,4′}. It has
a tree-decomposition (T , f ), where T consists of the edges 0→ 1, 0→ 2, 0→ 3,
0→ 4. Let (U ,g) be a downwards increasing optimal tree-decomposition. Its width
cannot be less than 3 (because by Proposition 2.58 each set f (i) is included in a box
g(u) for some u in NU ). Hence, it is 3. Assuming that U is binary, we will get a
contradiction.

Let u ∈NU be a node such that g(u)= f (0). Consider a son v of u. It must contain
one of 1′,2′,3′,4′. Assume it contains 1′. Necessarily g(v)= f (1) and v is a leaf. Now
u has at most two sons, v and v′. Without loss of generality we assume that g(v)= f (1)
and g(v′)= f (2). Hence (whether u has 2, 1, or 0 sons) there exist two nodes w and
w′ such that g(w)= f (3) and g(w′)= f (4), and none of them is below u. The father
y of u belongs to the (undirected) paths in U between u and w and between u and
w′. (We may have y=w or y=w′.) It follows that g(y) includes {1,2,4} (because y
is on the path between u and w) and g(y) includes {1,2,3} (because y is on the path
between u and w′). Hence g(y) includes {1,2,3,4} = g(u), which contradicts the fact
that (U ,g) is downwards increasing. Thus, the graph G has no optimal, binary and
downwards increasing tree-decomposition.

2.4.4 Tree-decompositions and chordal graphs

We consider the graphs that have tree-decompositions, all boxes of which induce
cliques. Efficient algorithms for chordal graphs, based on their tree-decompositions,
are presented in [Gav] and [*Gol].

Definition 2.71 (Chordal graphs) Let C be the class of nonempty, connected, simple
and loop-free undirected graphs. Let k ∈N+. A graph G in C is k-chordal if it has a
tree-decomposition, each box of which is a nonempty clique with at most k vertices.
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(The graph of Figure 2.8 is 4-chordal.) A k-perfect elimination order for a graph G
in C is an enumeration π = (v1, . . . ,vn) of VG, such that, for each i= 2, . . . ,n, the set
Ni := {vj | j < i and vj −G vi} is a nonempty clique with at most k − 1 vertices.33 A
k-perfect spanning tree is a normal (rooted) spanning tree T of G (cf. Definition 2.13)
such that for every u ∈ VG , the set Mu := {w ∈ VG | u−G w and u≤T w} is a clique
in G with at most k − 1 vertices. A graph is chordal if it is k-chordal for some k ,
and similarly perfect for a spanning tree or an elimination order means k-perfect for
some k . The clique number of a graph G is ω(G), the maximal number of vertices of
a clique in G.

A simplicial orientation of a graph G ∈ C is an acyclic orientation H of G such that
for every vertex u, the set Adj−H (u) of vertices w such that w→H u is a clique in H
(hence, a clique in G). Its indegree is the maximal indegree of its vertices.

Proposition 2.72 For every graph G belonging to C the following properties are
equivalent:

(1) G is k-chordal;
(2) G has a k-perfect elimination order;
(3) G has a simplicial orientation of indegree at most k− 1;
(4) G has a k-perfect spanning tree;
(5) G has no induced cycle with at least four vertices and its clique number is at

most k .

Proof: (1)=⇒ (2). The proof is by induction on n= |VG|. The case n= 1 requires
no proof. Otherwise, let (T , f ) be a tree-decomposition of G, each box of which
is a nonempty clique with at most k vertices. We can assume that it is downwards
increasing because the transformation of Proposition 2.67(1) preserves the property
that each box is a nonempty clique with at most k vertices. If |NT | = 1, then any linear
order on VG = f (rootT ) is a k-perfect elimination order. Otherwise, let u be any leaf
of T . The box f (u) contains a vertex v that belongs to no other box, hence the set
f (u)− {v} of its neighbors is a nonempty clique (because G is connected) with at
most k− 1 vertices. The graph G− v (i.e., G minus v and the incident edges) is also
k-chordal (it is still connected) and, by the induction hypothesis, it has a k-perfect
elimination order (v1, . . . ,vn−1). Then (v1, . . . ,vn−1,v) is a k-perfect elimination order
for G, which completes the proof.

(2)=⇒ (3). Let G ∈ C have a k-perfect elimination order (v1, . . . ,vn). We define
an acyclic orientation H of G by letting vj→H vi if and only if j < i and vj−G vi. It
is simplicial and of indegree at most k− 1.

(3)=⇒ (4). Let G ∈ C have a simplicial orientation H of indegree at most k − 1.
Since H is acyclic (and finite), it has a vertex u1 of indegree 0. Every vertex u of H is
reachable from u1 by a directed path, as one proves easily by induction on the length

33 The elimination order is usually taken to be (vn, . . . ,v1), but it is more convenient to reverse it while
keeping the well-known terminology.
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of an undirected path from u1 to u (if ui−1,ui,ui+1 are three consecutive vertices
on that path with ui−1→H ui and ui←H ui+1, i.e., ui+1→H ui, then ui−1−G ui+1

because Adj−H (ui) is a clique).
We let T be the transitive reduction of H , i.e., the graph T such that VT :=VH =VG

and ET is the set of edges w→H u such that there is no directed path in H of length
at least 2 from w to u. The vertex u1 has also indegree 0 in T . Every other vertex u
has at least one incoming edge because it is reachable from u1. If it had indegree at
least 2 in T , we would have w→T u and w′ →T u with w �= w′, hence w→H w′
(or vice versa) because Adj−H (u) is a clique, and then w→ u could not be an edge
of T . It follows that T is a rooted spanning tree of H and of G. If w→H u, then
there is a directed path in T from w to u, i.e., u≤T w. Hence T is a normal spanning
tree. It is k-perfect since Mu = Adj−H (u) and Adj−H (u) is a clique with at most k − 1
vertices.

(4)=⇒ (1). Let T be a k-perfect spanning tree of G and let (T , f ) be the associated
normal tree-decomposition (as defined in Example 2.56(6)). We have actually f (u)=
{u}∪Mu: from the definition of f , we have {u}∪Mu ⊆ f (u); for proving the opposite
inclusion, we note that, since T is perfect, if v <T w and w is adjacent to v, then w

is adjacent to every vertex u such that v <T u <T w (if u is the father of v, then both
w and u are in Mv). Since T is k-perfect, each set f (u) is a nonempty clique with at
most k vertices, hence G is k-chordal.

(2)=⇒ (5). Let G in C have a perfect elimination order π = (v1, . . . ,vn). Assume
that C is an induced cycle in G of length at least 4 with last element vi. There are vj

and vj′ in C that are adjacent to vi, that are not adjacent and are such that j, j′ < i. This
contradicts the hypothesis that π is a perfect elimination order. Since G also satisfies
(1), its clique number is at most k (by Proposition 2.58).

(5)=⇒ (1). This is proved as Proposition 5.5.1 in [*Die].

Other characterizations and properties of chordal graphs can be found in the books
[*BranLS], [*Die] and [*Gol].

Corollary 2.73

(1) Every chordal graph G is ω(G)-chordal, and its tree-width is ω(G)− 1.
(2) The tree-width of a graph G with at least one edge that is not a loop, is the minimal

tree-width of a chordal graph H such that VG = VH and core(G)⊆H .
(3) Every nonempty graph has an optimal normal tree-decomposition.34

Proof: (1) That ω(G)−1≤ twd(G) follows from Proposition 2.58. If G is chordal,
it has a tree-decomposition (T , f ), each box of which is a clique, hence G is
ω(G)-chordal and twd(G)≤ ω(G)− 1.

(2) Let m be the minimal tree-width of a chordal graph H containing core(G) as
subgraph. Then twd(G)= twd(core(G))≤m by Corollary 2.60(1).

34 Recall the definition of normal tree-decomposition from Example 2.56(6).
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Let conversely (T , f ) be an optimal tree-decomposition of G. Since G has at least
one edge that is not a loop, the width of (T , f ) is at least 1. By Proposition 2.67(1) we
may assume that (T , f ) has no empty boxes. Moreover, we may assume that (T , f )
has the special property that adjacent boxes are not disjoint. In fact, for every edge
e : u→ v of T with f (u)∩ f (v)=∅, we introduce a new node we and we replace the
edge e by the edges u→we and we→ v. We extend f by defining f (we)= {x,y} for
some x ∈ f (u) and y ∈ f (v). It is clear that this leads to a tree-decomposition of G of
the same width.

Now let H be the graph such that VH = VG and any two vertices in a same box of
(T , f ) are adjacent. Since (T , f ) has the above special property, we obtain that H is
connected, hence H ∈ C. Clearly core(G)⊆ H , (T , f ) is a tree-decomposition of H
of width twd(G), and H is chordal. This completes the proof.

(3) Let G be a nonempty graph. The result is obvious if all edges of G are loops. So,
let G have at least one edge that is not a loop, and let k := twd(G). By (2), there is a
chordal graph H such that VG=VH , core(G)⊆H , and twd(H )= k . Then H is (k+1)-
chordal by (1). Hence, by the proof of Proposition 2.72 (in particular (4) =⇒ (1)),
H has a normal tree-decomposition (T , f ) of width k . Since core(G)⊆ H , the tree
T is normal for G and if (T , f ′) is the corresponding normal tree-decomposition of
G, then f ′(u)⊆ f (u) for every u in VG. Hence (T , f ′) has width k .

Normal tree-decompositions will be used in Example 5.2(4) for defining logical
representations of tree-decompositions.

Corollary 2.74

(1) Every simple, loop-free, undirected graph G of tree-width at most k has at most
k · |VG|− k(k+ 1)/2 edges if |VG| ≥ k+ 1.

(2) For all k ,n > 0, there are less than 2kn·(log(n)+1) simple, loop-free, undirected
concrete graphs of tree-width at most k with vertex set [n].

Proof: (1) Let G be as in the statement with at least one edge (the result is obvious
for graphs without edges). Using Corollary 2.73(2), let H be a chordal graph of
tree-width at most k such that G ⊆ H and VH = VG. By Corollary 2.73(1), H is
(k+1)-chordal. Thus, by (1)=⇒ (2) of Proposition 2.72, the graph H has a (k+1)-
perfect elimination order π = (v1, . . . ,vn). We let Gi =G[{v1, . . . ,vi}]. The property
holds for Gk+1, and for each i we have |EGi | ≤ |EGi−1 |+ k (because |Ni| ≤ k), which
gives the result for each graph Gi, by induction on i, hence for G.

(2) We let G,H ,π be as in (1) with VG = [n]. It follows from the existence of π
that H is the union of at most k edge-disjoint forests,35 hence is a subgraph of the
union of k trees with set of nodes VG. The same holds for G, and the same holds,
obviously, for graphs without edges.

35 The arboricity of a loop-free graph is the least number of edge-disjoint forests of which it is the union.
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There are nn−2 trees36 with set of nodes [n], at most nk(n−2) unions of k such trees,
and at most 2k(n−1) ways to delete edges from any set of at most k(n− 1) edges, so
that there are at most 2k(n−1) · 2k(n−2)·log(n) < 2kn·(log(n)+1) graphs that are the union
of k forests with vertex set [n]. This gives the claimed result.

Since there are nn−2 trees with set of nodes [n], the upper-bound 2kn·(log(n)+1)

cannot be lowered to 2o(n·log(n)).

2.4.5 A syntax for tree-decompositions

We will establish correspondences between terms in T (FHR) and tree-
decompositions of the s-graphs they define. These correspondences will yield the
equality twd(G)= wd(G)− 1, where wd(G) is the width of an s-graph G defined as
the minimal cardinality of a set C such that G is the value of a term in T (FHR

C ).
We first give an idea of the constructions. The expression of an s-graph G as val(t)

for t ∈T (FHR
C ) yields a tree-decomposition of G based on the syntactic tree T of t. The

size of a box of this decomposition is at most |C|, which gives twd(G)≤wd(G)−1.
For the other direction, we will transform a rich tree-decomposition (T , f ) of an
s-graph G into a term that evaluates to it and is written with at most wd(T , f )+ 1
source names. Although neither of these two transformations is the inverse of the
other, they are closely related. The specific features of a tree-decomposition, such as
being binary or unary (i.e., being a path-decomposition), or its size and height, are
reflected in the corresponding terms.

Definition 2.75 (The rich tree-decomposition associated with a term over FHR)
Let t ∈ T (FHR). We recall from Definition 2.35 that μ(t) is the set of source names
in A that are used in the operations of t, and that wd(t), the width of t, equals |μ(t)|.
We denote by Xmax the canonical cross-section of ≈t (cf. Section 2.3.2) that consists
of the pairs (u,a) such that u is maximal for ≤t . The concrete s-graph cval(t) =
(Exp(t)/≈t)Xmax with vertex set Xmax is isomorphic to val(t). We take the syntactic
tree T of t (without its labels) as the rooted tree of the rich tree-decomposition (T , f )
of cval(t) to be constructed. We define f as follows.

Case 1: u is an occurrence of a constant symbol that describes an edge of the
s-graph cval(t). Then u is this edge in Exp(t) as well as in cval(t). We let

f (u) := {u}∪ {w ∈ Xmax |w≈t (u,a) for some a in τ(u)}.

Case 2: u is not an occurrence of such a symbol. Then we let f (u) be the set
{w ∈ Xmax |w≈t (u,a) for some a in τ(u)}.

In both cases, there are at most wd(t) such pairs (u,a), because τ(u)⊆μ(t); hence
| f (u)∩Xmax| ≤ wd(t).

36 A result by Cayley: see Section II.5.1 of [*FlaSed].
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For example, the decomposition associated with the term

t =−→cd � rena↔c(
−→
ab � fgb(

−→
ab �
−→
bc))

is shown in Figure 2.9. In each box f (u) the elements of τ(u) are indicated, i.e., the
names of the sources of val(t/u). The elements of Xmax are circled.

With this notation we have:

Proposition 2.76
(1) For each finite set C, if t ∈T (FHR

C ), then the pair (T , f ) defined in Definition 2.75
is a rich tree-decomposition of the s-graph cval(t) of width at most |C| − 1. It
can be constructed from t in time O(|t|).

(2) We have twd(G)≤ wd(G)− 1 for every (labeled) s-graph G.

Proof: (1) Let t ∈ T (FHR
C ) and (T , f ) be as in Definition 2.75. All conditions of the

definition of a tree-decomposition are clearly valid, except possibly the connectivity
condition (Condition (3) of Definition 2.53). For each w ∈ Xmax, the set f −1(w)

defined as {u ∈ NT | w ∈ f (u)}, is the set of nodes that are the first components
of the pairs (u,a) that are ≈t-equivalent to w. But the equivalence relation ≈t is
generated by pairs ((u,a),(v,b)) such that u and v are adjacent nodes of T . Hence
the nodes in f −1(w) induce a connected subgraph of T . This proves the connectivity
condition. It is clear that | f (u)∩Vcval(t)| ≤wd(t)≤ |C| for every u∈NT , which gives
wd(T , f ) ≤ |C| − 1. It is also clear, from the proof of Proposition 2.45, that (T , f )
can be constructed from t in time O(|C| · |t|): w ∈ f (u) if and only if w = max(u,a)
for some a in τ(u).

(2) is an immediate consequence of (1).

Remark 2.77 (1) If (u,a) is a vertex of cval(t), then it belongs to a unique maximal
box of the tree-decomposition (see Remark 2.55(a)). This box is f (u) because Xmax,
the vertex set of cval(t), is the canonical cross-section and thus consists of the maximal
pairs (u,a). See Figure 2.9 where the circled vertices are those of Xmax.

(2) The rich tree-decompositions (T , f ) produced by this construction have the
particular property that only the boxes at the leaves of T contain edges, and they never
contain more than one edge. Hence, not all rich tree-decompositions are associated
with terms by the above construction.

Furthermore, these tree-decompositions are binary but not downwards increasing.
The number of boxes is clearly not minimal; it can be reduced by edge contractions
(cf. Section 2.4.3). In particular, if u is an occurrence of a renaming operation renh,
and its son is v, then f (u)= f (v). One can thus contract the edge u→ v of T and one
gets a smaller rich tree-decomposition of the same s-graph, having the same width.

(3) If t is a term that defines a (K ,�)-labeled graph, then we perform the same
construction by neglecting the labels belonging to K ∪� that are attached to some
constant symbols. �
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Figure 2.9 The rich tree-decomposition for the term t of Definition 2.75.

A converse construction

We need some notation and a lemma. Let (T , f ) be a rich tree-decomposition of
an s-graph G. For every node u of the rooted tree T , we recall that T/u denotes
the subtree of T issued from u, with NT/u = {w ∈ NT | w≤T u}. We denote by G(u)
the s-graph defined as follows. The graph G(u)◦ is the subgraph of G◦ such that
VG(u)◦ ∪ EG(u)◦ = ⋃{ f (w) | w ∈ NT/u}. The sources of G(u) are those of G that
belong to VG(u)◦ , i.e., slabG(u) = slabG � VG(u)◦ . These sources belong to f (u) by the
connectivity condition. Clearly, G(rootT )=G.

Lemma 2.78 Let (T , f ) be a tree-decomposition of width at most k−1 of an s-graph
G and let C ⊆A be a set of cardinality k such that τ(G)⊆C. There exists a coloring
γ : VG → C that extends slabG and is injective on each box of the decomposition.
Such a coloring can be determined in linear time in the size of T , i.e., in time O(|NT |).
Proof: Let G,C,T , f be as in the statement. Obviously, there is an injective mapping
δ0 : f (rootT )→ C that extends slabG. We will prove that for every u ∈ NT the
following holds:

Every injective mapping δ : f (u)→ C can be extended into a mapping γ :
VG(u)→ C that is injective on f (w) for each w in NT/u.

The proof is by bottom-up induction on u. If u is a leaf of T there is nothing to
prove. Otherwise, let u1, . . . ,up be the sons of u. For each of them one can find
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Figure 2.10 Illustration of Lemma 2.78.

an injective mapping δi : f (ui)→ C that coincides with δ on f (ui) ∩ f (u). By the
induction hypothesis, it can be extended into γi defined on VG(ui). Then, the common
extension γ of these mappings γi and of the mapping δ is the desired coloring. This
extension exists because if x ∈ NT/ui ∩NT/uj , i �= j, then x ∈ f (ui)∩ f (u)∩ f (uj) by
the connectivity condition, and so γi(x)= γj(x)= δ(x).

For example, Figure 2.10 shows a rich tree-decomposition of width 2 that is colored
with colors a,b,c. Boxes are numbered from 1 to 5, and 1 is the root.

It is routine work to construct a linear algorithm computing γ .

Remark 2.79 Since the ends of any edge are in the same box, the mapping γ con-
structed by the proof of Lemma 2.78 is a proper (vertex) k-coloring, i.e., a coloring
γ of VG using k colors such that γ (x) �= γ (y) if x �= y and x− y is an edge. However,
this coloring is not optimal. The cycle C6 is properly 2-colorable, however it has
tree-width 2 and the above construction yields a coloring using three colors.

Definition 2.80 (The term representing a rich tree-decomposition) Let (T , f ) be a
rich tree-decomposition of width at most k−1 of a concrete s-graph G. We let C ⊆A
be a set of cardinality k that contains τ(G). Let γ : VG→ C be a vertex coloring of
G that is injective on each box and is such that γ (x)= slabG(x) for every source x of
G (Lemma 2.78).

For each u∈NT , we let G(u) be the s-graph 〈G(u)◦,slabG(u)〉 such that slabG(u) :=
γ � ( f (u) ∩ VG). (This mapping slabG(u) extends slabG(u) because all vertices of

f (u)∩VG are sources of G(u).) It follows then from the definitions that

G = fgC−τ(G)(G(rootT )). (2.2)
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By bottom-up induction on u, we construct for each u ∈ NT a term t(u) ∈ T (FHR
C )

such that G(u)$ val(t(u)) and a ground witness of this fact.
Let u have sons u1, . . . ,up, p≥ 0; we can assume that we have already constructed

t(u1), . . . , t(up) and we have

G(u)= fgB1
(G(u1))� · · ·� fgBp

(G(up))� H (u) (2.3)

where the sets Bi and the s-graph H (u) are defined as follows:

(1) Bi := {γ (x) | x ∈ f (ui)− f (u)} for i= 1, . . . ,p.37

(2) H (u) := (H ,slab), where H is the subgraph of G◦ such that VH ∪EH = f (u) and
slab := γ � VH . To optimize the construction, the isolated vertices of H (u) that
are in f (u1)∪ ·· · ∪ f (up) can be removed, including their source names.

The s-graph H (u) has at most k vertices and a term t′(u) in T (FHR
C ) evaluating to it

can be constructed by Proposition 2.33; a ground witness w′ of this fact is easy to
determine (cf. the discussion after Proposition 2.44). Hence the term

t(u) := fgB1
(t(u1))� · · ·� fgBp

(t(up))� t′(u) (2.4)

has value G(u). A ground witness w of G(u) $ val(t(u)) is easy to obtain from
ground witnesses wi of G(ui) $ val(t(ui)) and the ground witness w′. Here are
the details. Assuming that the term t(u) officially starts with p symbols �, we
define the positions v1, . . . ,vp+1 of t(u) by v1 := p+ 2 and vi+1 := vi + |t(ui)| + 1
for i ∈ [p]. Thus, t(u)/vi = t(ui) for i ∈ [p] and t(u)/vp+1 = t′(u). For i ∈ [p]
let hi be the isomorphism : Syn(t(ui))→ Syn(t(u))/vi, and let hp+1 be the iso-
morphism : Syn(t′(u)) → Syn(t(u))/vp+1 (see Definition 2.14). Moreover, let
hj((u,a)) := (hj(u),a) for a∈A. Then we define the ground witness w as follows, for
x ∈ VG(u) ∪EG(u): w(x)= hp+1(w

′(x)) for x ∈ f (u), and w(x)= hi(wi(x)) for i ∈ [p]
and x ∈ (VG(ui)

− f (u))∪EG(ui)
. For the optimized construction the definition of w

is slightly more complicated.
By Equality 2.2, the term t := fgC−τ(G)(t(rootT )) has value G. A witness w of

this fact is easy to obtain from a witness w of G(rootT ) $ val(t(rootT )): if w(x)
is (u,a) or u, then w(x) is defined as (u+ 1,a) or u+ 1, respectively. As observed
after Definition 2.46, w can be converted in linear time into a canonical witness of
G $ val(t).

This construction need not distinguish the cases of directed and undirected
s-graphs because Proposition 2.33 covers both cases. The extension to labeled graphs
is straightforward. It can also be obtained from Proposition 2.47(2).

37 If Bi =∅, we can omit fgBi
because fg∅ defines the identity mapping. If (T , f ) is downwards increasing,

we have Bi �= ∅ for all i. We can also take Bi := C− f (u) for each i= 1, . . . ,p.
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Example 2.81 Consider the rich tree-decomposition of Figure 2.10. The vertices are
colored by a,b,c. The optimized construction of Definition 2.80 gives the term

t = fgc

(
a
 � fga(ab � ac)� bc

)
� fga(ab � ac)� bc.

The full construction has a � bc instead of bc (at its two occurrences). If the loop is
in box f (1) (and not in box f (3) as shown in Figure 2.10), then the same (optimized)
construction gives the term

fgc(a � fga(ab � ac)� bc)� fga(ab � ac)� a
 � bc.

Proposition 2.82
(1) Let C be a set of k source names. The construction of Definition 2.80 associates

with every rich tree-decomposition (T , f ) of width at most k − 1 of a concrete
s-graph G of type included in C a term in T (FHR

C ) (hence of width at most k)
that evaluates to G, and a canonical witness of this fact. This construction can be
done in linear time in the size of (T , f ), i.e., in time O(|EG|+ |NT |).

(2) For every (labeled) s-graph G, we have wd(G)≤ twd(G)+ 1.

Proof: The proof of (1) is straightforward by bottom-up induction on the node u of T ,
and (2) is an immediate consequence of (1).

Propositions 2.76 and 2.82 give the following theorem:

Theorem 2.83
(1) Let C ∈ Pf (A). An s-graph G is the value of a term in T (FHR

C ) if and only if
τ(G)⊆ C and twd(G)≤ |C|− 1. The corresponding terms (with witnesses) and
tree-decompositions can be constructed from each other in linear time. The same
result holds for (K ,�)-labeled s-graphs and terms in T (FHR

C,[K ,�]).
(2) For every ((K ,�)-labeled) s-graph G, we have twd(G)= wd(G)− 1.

Proof: If w is a witness of G $ val(t) and (T , f ) is the rich tree-decomposition of
cval(t) obtained by Proposition 2.76(1), then (T ,w−1◦ f ) is a rich tree-decomposition
of G (cf. Proposition 2.44(1)). The total time is O(|t|), assuming that w−1 can be
applied in constant time.

If (T , f ) is a tree-decomposition of G of width at most |C| − 1, then a rich tree-
decomposition (T , f ′) of G of the same width can be obtained in time O(|EG|+|NT |)
by a depth-first search of T during which each edge is assigned to the first box to
which both its ends belong. Then Proposition 2.82(1) can be applied. The total time is
O(|EG|+ |NT |). Note that, in particular, if G is simple, then the total time is O(|NT |),
cf. Remark 2.55(c).

For a given s-graph G, the source names in C − τ(G) are “auxiliary” and can be
chosen arbitrarily. In particular, if τ(G)= ∅, then G has tree-width at most k − 1 if
and only if G = val(t) for some term t over FHR

[k] .
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Remark 2.84 (1) The construction of Definition 2.80 does not use the source
renaming operations renh. For the purpose of defining s-graphs by terms, they are
dispensable: not using them does not result in the necessity of augmenting the num-
ber of source names. We have already observed this fact in Proposition 2.49. In other
words, the tree-width of an s-graph can be characterized as in Theorem 2.83 in terms
of wd ′(G), where this width wd ′ is relative to the subsignature of FHR

C obtained by
omitting the source renaming operations.

(2) In Definition 2.80, a term t(u) in T (FHR
C ) (for some finite set C) is asso-

ciated with each node u of T ; if u has sons u1, . . . ,up then Equality (2.3) can
be rewritten G(u) = g(G(u1), . . . ,G(up)) where g is the linear derived operation
λx1, . . . ,xp · fgB1

(x1)� · · ·� fgBp
(xp)� t′(u). By Proposition 2.69 it is not a loss of

generality to assume that the given tree-decomposition is binary, i.e., that p ≤ 2.
With this assumption and for defining simple graphs, the number of different terms
t′(u) is finite and consequently, so is the number of different derived operations g
for each fixed set C. Without the restriction to simple s-graphs, the s-graphs H (u)
can have arbitrarily many edges and the set of derived operations g is countably
infinite.

(3) Every term in T (FHR
C ) written with the operations fga (and not with the opera-

tions fgB) that evaluates to a nonempty s-graph G has size at least |IntG|+2 · (|EG|+
|IsolG|)− 1 as one can check easily (cf. the proof of Proposition 2.33). This lower-
bound can be realized by such a term in T (FHR

C ) with C of cardinality twd(G)+ 1.
This term can be obtained by the construction of Proposition 2.82(1) from an optimal
downwards increasing tree-decomposition. We omit the details. As an example, con-
sider the term t of Example 2.81. It is (also) obtained from the optimal downwards
increasing tree-decomposition that one gets from Figure 2.10 by removing box 3 and
putting the loop in box 2.

(4) A set of s-graphs of tree-width at most k and of type included in a finite set C is
a subset of the domain of the FHR

C -algebra JS[C] and also of that of the FHR
D -algebra

JSgen[D] (cf. Remark 2.39(1)), where D is any finite set that includes C and has at
least k+ 1 elements.

(5) We recall from Section 1.4.2 that the series-composition G •H of two directed
s-graphs of type [2] can be defined as a derived operation of JS, as follows:
G •H = fg3(ren2↔3(G)� ren1↔3(H )). It follows that every series-parallel graph, as
defined in Section 1.1.3, is the value of a term over FHRd[3] . Hence, by Theorem 2.83,
series-parallel graphs have tree-width at most 2.

Conversely, the graphs of tree-width at most 2 and of type included in [2] are those
generated by the signature FHR[2] ∪ {•}. Moreover, by generalizing series-composition
to a k-ary operation, we obtain a similar characterization for graphs of tree-width at
most k . We let Hk be the signature FHR

[k] ∪ {Sk} where Sk is the generalized series-
composition defined as follows:

Sk(G1, . . . ,Gk) := fg0(ren0↔1(G1)� · · ·� ren0↔k(Gk)).
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Hence, Sk is a derived operation defined with the help of the source label 0. It is
intended to be used for s-graphs G1, . . . ,Gk of type included in [k]. It is clear that
G •H = S2(H ,G) for G and H of type [2].

The signature Hk generates the set of s-graphs of type included in [k] and of
tree-width at most k . (The simple loop-free undirected graphs in this set are called
partial k-trees, see [*Bod98] for details.) This fact is used in [ArnCPS], [CorRot]
and [CouOla]. Apparently, the signature Hk uses fewer source labels than FHR

[k+1] to
generate the same s-graphs of type included in [k]; however, the definition of Sk uses
the source label 0 /∈ [k]. �

Our next objective is to characterize s-graphs of bounded path-width as values of
particular terms over FHR.

A term t over a signature F is slim if, for every subterm of t of the form f (t1, . . . , tk ),
at most one of t1, . . . , tk is not a constant symbol. We will denote by Slim(F) the set
of slim terms over F .

Proposition 2.85 Let C ∈Pf (A). An s-graph G is the value of a term in Slim(FHR
C )

if and only if τ(G)⊆ C and pwd(G)≤ |C|− 1.

Proof: Let G be defined by a slim term t in T (FHR
C ). This means that for every

subterm of t of the form t1 � t2, the term t1 or t2 (or both) is of the form ab,
−→
ab, a,

a
 or ∅. Let T be the syntactic tree of t and (T , f ) be the rich tree-decomposition
of G constructed by Definition 2.75. If no node has outdegree 2, then (T , f ) is a
path-decomposition and the result is proved.

Otherwise let u be a node of T with two sons u1 and u2. It is an occurrence of
�, and one of the two sons, say ui, is an occurrence of a constant symbol. Note
that f (ui)∩VG ⊆ f (u)∩VG. By contracting the edge u→ ui of T we obtain a tree-
decomposition of G having the same width as (T , f ) and one less node of outdegree
2, cf. Remark 2.77(2). By repeating this step finitely many times, we obtain a path-
decomposition of G of width at most k− 1.

Let us assume conversely that (T , f ) is a path-decomposition of an s-graph G
of width k − 1. We apply the construction of Definition 2.80. Since T is a path-
decomposition, we have p ≤ 1 at each occurrence u. Let t′(u) = c1 � · · · � cn for
constant symbols c1, . . . ,cn (the construction of Proposition 2.33 is applied with
B= ∅). With the same notation as in Definition 2.80, we can write the term t(u) as

t(u)= (· · ·(((s � c1)� c2)� c3)� · · ·cn),

where s :=∅ if p= 0 and s := fgB1
(t(u1)) if p= 1.

The term t for G is then defined as t := fgC−τ(G)(t(rootT )). It is a slim term
(provided we write the parallel-compositions with parentheses as indicated).

For each finite set C, we let PHR
C be the signature consisting of the constants ∅,

ab,
−→
ab, a, a
 for a,b ∈ C, a �= b, of the unary operations rena↔b for a,b ∈ C, a �= b,



144 Graph algebras and widths of graphs

the unary operations fgB for B⊆C, and the unary derived operations λx · x � c where
c is any of the above constant symbols except ∅. It follows from Proposition 2.85
that an s-graph G is the value of a term in T (PHR

C ) if and only if τ(G) ⊆ C and
pwd(G) ≤ |C| − 1. We omit a detailed proof. Needless to say that the extension of
the previous proposition to labeled s-graphs is straightforward.

Tree-decompositions and their algebraic expressions will be used in Chapter 6 for
some algorithmic applications.

2.5 The VR algebra of simple graphs with ports

We define graph operations that generalize the complete join of two graphs used in
Section 1.1.2 for defining cographs. These operations will provide us with another
algebra of graphs that we will call the VR algebra because its equational sets
(cf. Section 1.1.4) are those generated by the context-free vertex replacement graph
grammars (see [*EngRoz] or [*Eng97]). These equational sets will be studied in
Chapter 4. A graph complexity measure called clique-width is associated in a natural
way with the definition of a graph by a term over the signature of the VR alge-
bra. Taken as parameter, it yields fixed-parameter tractable algorithms for problems
expressible in monadic second-order logic. In this section, we only consider simple,
possibly labeled graphs. This restriction is due to the way edges will be defined.

2.5.1 The VR graph operations

A simple (directed) graph will be handled as a binary relation on a finite set of
vertices,38 hence such a graph G will be defined as a pair 〈VG,edgG〉 consisting of a
set of vertices VG and a binary relation edgG ⊆ VG×VG. This relation is symmetric
if the graph is undirected. There is a loop incident with a vertex x if and only if
(x,x) ∈ edgG. Undirected graphs are just particular (directed) graphs.

Definition 2.86 (Simple graphs with ports) Let A be a fixed countable set of port
labels with the same properties as in Definition 2.24 (in particular, N ⊆A).Aconcrete
graph with ports, or a concrete p-graph in short, is a pair G= 〈G◦,portG〉 consisting
of a concrete simple (directed) graph G◦ and a mapping portG : VG◦ →A. A vertex x
is an a-port of G if portG(x)= a. We denote by π(G) the set portG(VG) (we denote
VG◦ also by VG, and similarly for other notations). The set of port labels π(G) is
called the type of G, like τ(G) in the HR algebra.

Let G and H be concrete p-graphs. We say that G is a subgraph of H if G◦ is a
subgraph of H ◦ and portG is the restriction of portH to VG (so that π(G)⊆π(H )). An
isomorphism : G→H is a bijection h : VG→VH such that for every u,v in VG we have

38 Vertex sets will be included in U , the universal set of vertices mentioned in the footnote in Definition 2.9.
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(h(u),h(v)) ∈ edgH if and only if (u,v) ∈ edgG, and portH (h(u))= portG(u). Since
these graphs are simple, isomorphisms between them can be specified by bijections
between their vertex sets only (cf. Definition 2.10) and these bijections must preserve
the vertex labelings defined by the port mappings (cf. Definition 2.11). We obtain
thus the notion of an abstract p-graph.

Every simple graph will be considered as a p-graph, all vertices of which are a-ports
for some fixed default label a, usually 1.

We now define operations on concrete and abstract p-graphs. We denote by GP
the class of abstract p-graphs and by GPu the class of undirected abstract p-graphs.
In the sequel, the term “abstract” will be omitted, except for emphasis.

Definition 2.87 (Operations on p-graphs) We define a signature of graph operations
on GP that we will denote by FVR.

Disjoint union For disjoint concrete p-graphs G and H , we let G⊕H be the graph
G◦ ∪H ◦ equipped with the port mapping portG⊕H := portG ∪portH . If G and H are
not disjoint, we replace them by disjoint isomorphic copies. In this way, we obtain a
well-defined binary operation on (abstract) p-graphs. Clearly

π(G⊕H )= π(G)∪π(H ).

Edge addition Let a,b ∈ A, with a �= b. For every concrete p-graph G, we let−→
adda,b(G) be the p-graph G′ such that VG′ := VG, edgG′ := edgG ∪ {(x,y) | x,y ∈
VG, portG(x)= a, portG(y)= b} and portG′ := portG. This operation is well defined
for all concrete p-graphs, and obviously for p-graphs as well. Clearly

π(
−→
adda,b(G))= π(G).

Note that
−→
adda,b(G) = G if a or b does not belong to π(G), or if there are already

edges from every a-port to every b-port.

For adding undirected edges, we use adda,b(G) defined as
−→
addb,a(

−→
adda,b(G)).

Hence adda,b is a derived operation of the algebra we are defining. However, to
allow an easy description of undirected p-graphs, it is more convenient to consider
adda,b as a basic operation. Note that adda,b and addb,a are two function symbols
with the same associated operation. We also have π(adda,b(G)) = π(G). None of
these operations creates loops. Loops can be specified by constant p-graphs defined
below.

Port relabeling If h : A→ A is a mapping that is the identity outside of a finite
subset of A, then we let relabh be the unary operation such that G′ = relabh(G) if
VG′ := VG, edgG′ := edgG and portG′ := h ◦ portG.
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This operation is well defined for concrete as well as for abstract p-graphs and

π(relabh(G))= h(π(G)).

A particular case deserves an easier notation. For a,b ∈ A, a �= b, we let relaba→b

denote relabh where h : A→A is defined by h(a)= b and h(c)= c for every c ∈A,
c �= a. We call this operation an elementary relabeling. We have relaba→b(G) = G
if a /∈ π(G). Furthermore, relabh ◦ relabh′ = relabh◦h′ for all mappings h,h′. We can
thus express as a single operation relabh a composition of elementary relabelings
relaba1→b1 ◦ relaba2→b2 ◦ · · · ◦ relabak→bk , and vice versa.

For C ⊆A and a mapping h : C→A that is the identity outside of a finite subset
of C (which holds in particular if C is finite), we also denote by relabh the operation
relabh′ , where h′ agrees with h on C and is the identity outside of C. For each set
C ⊆ A, we denote by [C→ C]f the set of mappings h : C→ C such that h is the
identity outside of a finite subset of C.

Basic graphs We let the constant symbols a and a
 denote p-graphs with a single
vertex that is an a-port, and, for the second, that also has an incident loop. It will be
useful for some constructions to have also the symbol ∅ to denote the empty graph.
We will see that every term denoting a nonempty p-graph can be replaced by an
equivalent one not using ∅.

The VR algebra of p-graphs We obtain thus a countably infinite (but effectively
given) signature:

FVR := {⊕,
−→
adda,b,adda,b,relabh,a,a
,∅ | a,b ∈A, a �= b, h ∈ [A→A]f },

and, for dealing with undirected graphs, its subsignature:

FVRu := {⊕,adda,b,relabh,a,a
,∅ | a,b ∈A, a �= b, h ∈ [A→A]f }.

We let GP denote the FVR-algebra with domain GP . It is effectively given. We call
GP the VR algebra, and we denote by GPu its subalgebra with domain GPu and the
operations of FVRu. Each term t over FVR evaluates into a p-graph tGP, also denoted
by val(t). It t is a term over FVR with variables, then tGP denotes the corresponding
derived operation.

The signatures FVR
C and FVRu

C for C ⊆A are obtained by restricting a,b to C and
h to [C→ C]f in the above definitions. It is easy to show (by induction on t) that
π(val(t))⊆ C for every t ∈ FVR

C , cf. Lemma 2.36.
As for the HR algebra (cf. Definition 2.32 and Remark 2.39(1)), we can define

two FVR
C -algebras that are subalgebras of GP. The first one is GP[C] of which the

domain is the set GP[C] of p-graphs of type included in C, and the second one is
the subalgebra GPgen[C] of GP[C] that is generated by FVR

C . Its domain GPgen[C]
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Figure 2.11 A graph with ports.

consists of the p-graphs that are the values of terms over FVR
C . Similar notions can

be defined for undirected p-graphs: GPu[C] and GPgen,u[C]. We will shortly extend
these definitions to labeled p-graphs.

Example 2.88 (1) The p-graph G of type π(G)= {1,2} in Figure 2.11 is the value

of the term relab3→2(
−→
add3,1(

−→
add1,2(1⊕ 1⊕ 2)⊕ 1⊕ 3
)).

(2) For each n≥ 1, the clique Kn with all vertices being 1-ports is the value of the
term tn defined inductively by:
t1 := 1,
tn+1 := relab2→1(add1,2(tn⊕ 2)) for each n≥ 1.
(3) The mapping that associates the complete join G ⊗ H with two graphs G

and H (two p-graphs of type {1}) is the derived operation tGP defined by the term
t := relab2→1(add1,2(x1⊕ relab1→2(x2))) that belongs to T (FVRu[2] ,{x1,x2}).

It follows that cographs (see Section 1.1.2) can be defined by terms in
T ({⊕,add1,2,relab1→2,relab2→1,1}). The set of cographs C is thus defined by the
equation

C = (C⊕C)∪ tGP(C,C)∪{1}.
We have already presented such definitions in Sections 1.1.2 and 1.4.1, and we will
consider them in more detail in Chapter 4.

(4) We now consider rooted trees. We let the root of a rooted tree T be a 1-port and
all the other nodes be 2-ports. The type of a rooted tree T is {1} or {1,2}. If T is the
union of pairwise disjoint rooted trees T1, . . . ,Tp augmented with a new node r that
is the root of T , and with edges from r to the roots of T1, . . . ,Tp, then we have

T = relab3→1(relab1→2(
−→
add3,1(3⊕T1⊕·· ·⊕Tp))).

It follows that rooted trees are defined by the system of two equations:

�Trees

{
S = {1}∪ relab3→1(relab1→2(

−→
add3,1(3⊕F))),

F = S ∪ (F ⊕ S).
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This system defines the set S of rooted trees and the set F of nonempty rooted
forests.

Definition 2.89 (Clique-width) The clique-width of a p-graph G is the minimal
cardinality of a set C such that G is the value of a term in T (FVR

C ). (We generalize
the definition given for graphs in Section 1.4.1.) It is denoted by cwd(G). A term
t ∈ T (FVR

C ) with |C| = cwd(G) is called an optimal clique-width term for G.
It is easy to check that the clique-width of an undirected p-graph is the minimal

cardinality of a set C such that this graph is the value of a term in T (FVRu
C ). In

fact, for a term t over FVR
C , if val(t) = G and t′ is obtained from t by changing

every
−→
adda,b into adda,b, then val(t′) is the undirected p-graph 〈und(G◦),portG〉with

und(G◦)= 〈VG ,edgG ∪ edg−1
G 〉.

Since the type of val(t) is included in C for every term t in T (FVR
C ), every p-graph

G has clique-width at least |π(G)|. By a proof similar to the one of Proposition 2.33
(see Proposition 2.104(1) below), we obtain that every p-graph is the value of a term
in T (FVR

C ) for every set C such that π(G) ⊆ C and |C| = |VG|. Hence the algebra
GP is generated by its signature FVR, and every p-graph G has clique-width at most
|VG|. More precise results will be given in Section 2.5.4.39

If a p-graph G is the value of a term t in FVR
C and h ∈ [A→ A]f is injective on

C, then relabh(G)= val(t′) for some term t′ ∈ T (FVR
h(C)

); this term is obtained from
t by replacing every port label a of C by h(a). If, in particular, h is the identity
on π(G), then G = val(t′). This can be used to prove the following easy analogue
of Theorem 2.83(1): a p-graph G is the value of a term in T (FVR

C ) if and only if
π(G)⊆C and cwd(G)≤ |C|. (For the proof of this fact, the only-if direction is clear;
for the if-direction, let G= val(t) for some t ∈ T (FVR

D ) with |D| ≤ |C|. Choose some
h ∈ [A→A]f with h(D)⊆ C that is injective on D and is the identity on π(G)⊆D.
Then G = val(t′) and t′ ∈ T (FVR

C ).)
In particular, if G is a graph (i.e., π(G)= {1}), then G has clique-width at most k

if and only if G = val(t) for some term t over FVR
[k] .

The clique-width cwd(L) of a set of p-graphs L is the least upper-bound (possiblyω)
of the integers cwd(G) for G ∈ L. We say that L has bounded clique-width if cwd(L)∈
N . The class of all graphs has unbounded clique-width: this fact follows from the
exact characterization of the clique-width of square grids in Proposition 2.106(1), and
also by a different proof based on Corollary 2.122 and using a counting argument.

The linear clique-width of a p-graph G is the minimal cardinality of a set C such that
G is the value of a slim term in T (FVR

C ). It is denoted by lcwd(G). The notion of linear
clique-width is thus similar to that of path-width, characterized in Proposition 2.85
by means of slim terms over FHR

C . The linear clique-width of a set of p-graphs is the
least upper-bound of the linear clique-widths of its elements.

39 Clique-width is defined in [CouOla] in terms of the operations relaba→b and not in terms of the larger
set of operations of the form relabh. However the corresponding values are the same as we will prove
in Section 2.5.6 (Proposition 2.118).
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Linear clique-width is to clique-width what path-width is to tree-width. It
plays a central role in the NP-completeness proof ([FelRRS]) of the Clique-
Width Checking Problem, i.e., of the problem of checking that cwd(G) ≤ k for
given (G,k).

Definition 2.90 (Labeled graphs with ports) We let K and � be two finite, disjoint,
sets of labels such that (K ∪�) ∩A = ∅, and we let GP[K ,�] be the set of sim-
ple40 directed [K ,�]-labeled graphs equipped with port labels, called [K ,�]-labeled
p-graphs. In a [K ,�]-labeled p-graph, each edge has one and only one label in � and
each vertex has, in addition to its port label in A, a possibly empty set of labels from
K . Hence, we extend Definition 2.11 to graphs with ports (as we did in Definition 2.32
for graphs with sources). We will apply to [K ,�]-labeled p-graphs the disjoint union
⊕ and the relabeling operations relabh, generalized from Definition 2.87 to GP [K ,�]
in the obvious way, and edge addition operations that depend on edge labels: for every

λ ∈� and a,b ∈A with a �= b, we define an operation
−→
adda,b,λ that adds λ-labeled

edges from every a-port x to every b-port y (if a λ-labeled edge already exists from
x to y, then no other edge is added between these vertices).

We also define new constant symbols (in addition to ∅). For M ⊆K∪� and a∈A,
the constant symbol aM denotes the p-graph with a single vertex that is an a-port,
has label κ for each κ ∈ K ∩M and an incident λ-labeled loop for each λ ∈�∩M .
Hence, a∅ defines the same p-graph as a, and a{ι} defines the same p-graph as a
 if ι
is taken as default edge label.

The operations⊕, relabh and
−→
adda,b,λ do not modify the labels from K and � once

they have been specified for a vertex or a loop by some constant aM or, for an edge

that is not a loop, at the moment of its introduction by an operation
−→
adda,b,λ.

We denote the corresponding signature by FVR[K ,�] and its restriction to operations

using port labels in C by FVR
C,[K ,�]. The clique-width of a [K ,�]-labeled p-graph G is

defined as the minimal cardinality of a set C of port labels such that G is the value of
a term over FVR

C,[K ,�]. Specialized definitions for undirected41 p-graphs and for linear
clique-width are straightforward to set up.

Example 2.91 Let G be the (∅,{λ,μ})-labeled graph with vertex set {1,2,3,4},
λ-labeled edges 2→ 1,2→ 3,4→ 3 and μ-labeled edge 4→ 1. It is the value
of the term

relabh(
−→
add2,1,λ(

−→
add2,3,λ(

−→
add4,3,λ(

−→
add4,1,μ(1⊕ 2⊕ 3⊕ 4))))),

where h(i) = 1 for every i ∈ [4]. Its clique-width is thus at most 4 and is actually
4, as one checks by trying all possibilities of constructing this graph by a term in

40 Recall from Definition 2.11 that simple [K ,�]-labeled graphs may have multiple edges with different
labels.

41 A [K ,�]-labeled p-graph is undirected if for every edge from x to y there is an edge from y to x with
the same label.
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T (FVR
[3],[∅,{λ,μ}]); in fact, only finitely many possibilities need to be tried, see the last

paragraph of Section 2.5.3 below. If we make labels λ and μ identical then the clique-

width of the resulting graph is only 2. It is the value of relab2→1(
−→
add1,2,λ(2⊕ 1⊕

2⊕ 1)).

2.5.2 Construction of the p-graph defined by a term

Our aim is to construct from a term t ∈ T (FVR) a concrete p-graph isomorphic to
val(t), and to define a notion of witness of G $ val(t), where G is a concrete graph,
as we did in Definition 2.43 for terms in T (FHR). Fortunately, the definitions and
constructions will be much simpler because, when G $ val(t), we have a bijection
from VG to the set Occ0(t) of occurrences in t of constant symbols different from ∅. A
witness of G$ val(t) will be such a bijection w, satisfying some conditions ensuring
that w is an isomorphism between G and val(t). No quotient graph will be needed.

Definition 2.92 (Terms denoting concrete p-graphs) For every a∈A (the countable
set of port labels) and every x ∈ U (the universal set of vertices, see Definition 2.9)
we let a(x) and a
(x) denote the concrete p-graphs with vertex x that is an a-port, and
also has an incident loop in the second case.

We let FcVR
0 := {a(x),a
(x),∅ | a ∈A, x ∈ U} and FcVR be the signature obtained

by replacing in FVR the set of constant symbols FVR
0 by FcVR

0 . A constant symbol
a(x) or a
(x) describes the vertex x. We obtain a new signature FcVR (and its variants
FcVR

C , FcVRu
C , etc.), where the superscript “c” stands for “concrete.”

Not every term T (FcVR) defines a concrete p-graph because for concrete p-graphs
G and H , G ⊕ H is well defined only if VG ∩ VH = ∅. (However, f (G) is well
defined for every unary operation f in FVR.) We now formalize this observation. Let
t ∈ T (FcVR). Two occurrences of constant symbols are conflicting if they describe
the same vertex. The value of a term t ∈ T (FcVR) is the concrete p-graph denoted by
cval(t) defined as follows:

cval(t) is a(x), a
(x) or ∅ if t is a(x),a
(x) or ∅ respectively,42

cval(t) := f (cval(t1)) if t = f (t1),
cval(t) := cval(t1)⊕ cval(t2) if t = t1⊕ t2 and Vcval(t1) ∩Vcval(t2) = ∅,
otherwise cval(t) is undefined.

Hence, Vcval(t) is the set of vertices x that are described by the constant symbols
occurring in t. Note in particular that if cval(t) is defined and u and v are two posi-
tions in t that are incomparable with respect to ≤t , then the p-graphs cval(t/u) and
cval(t/v) are disjoint.43 The next lemma can be proved by induction on the structure
of t.

42 We denote in the same way a constant symbol in FcVR and the corresponding graph.
43 Even if t′/u= t′/v where t′ ∈ T (FVR) is obtained from t by replacing each a(x) or a
(x) respectively

by a or a
.
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Lemma 2.93 For every term t over FcVR, the concrete p-graph cval(t) is defined
if and only if no two occurrences of constant symbols in t are conflicting. If
cval(t) is defined, its vertex set is the set of vertices described by the constant
symbols. �

We define concrete p-graphs that are values of terms over FVR. Let t be such a
term and w be a bijection : V→Occ0(t) where V is a finite subset of U , the universal
set of vertices, and as before, Occ0(t) is the set of occurrences in t of constant
symbols different from ∅. We define the term tw in T (FcVR) by replacing in t at each
occurrence u of a constant symbol a or a
 this symbol by a(w−1(u)) or a
(w−1(u))
respectively. Clearly, this term has no conflicting occurrences, hence cval(tw) is a
concrete p-graph G such that VG = V and G $ val(t). (Here, val(t) is the abstract
p-graph that is the value of t.) In particular, we can take V :=Occ0(t) and w equal to
the identity function on Occ0(t), denoted by Id. Thus, the set of vertices of cval(tId)
is Occ0(t). We will also denote cval(tId) by cval(t); moreover, for every u ∈ Nt , we
will also denote cval(tId/u) by cval(t)/u.44

If a concrete p-graph G is isomorphic to val(t) for a term t in T (FVR
C ), then

G= cval(t′) for some term t′ ∈ T (FcVR
C ): if w is an isomorphism from G to cval(tId),

then G = cval(tw) as one checks easily. Hence, a concrete p-graph G is the value of
a term in T (FcVR

C ) if and only if [G]iso is the value of a term in T (FVR
C ).

Our next aim is to describe the concrete p-graph cval(t)= cval(tId), for t in T (FVR).
We need auxiliary definitions.

Definition 2.94 (Ports of p-graphs defined by subterms) Let t belong to T (FVR)

and Syn(t) be its syntactic tree. The set of nodes of Syn(t), denoted by Nt , is Pos(t).
We recall that labt(u) = f if and only if u ∈ Occ(t, f ). If u ∈ Nt , then Syn(t)/u, the
subtree of Syn(t) issued from u, is isomorphic to the syntactic tree of the subterm
t/u of t. The vertex set of the (concrete) p-graph cval(t)/u is Occ0(t)∩Nt/u= {x ∈
Occ0(t) | x ≤t u}. For u ∈ Nt and x ∈Occ0(t) such that x ≤t u (which means that x is
below u in Syn(t)), we define

portt(u,x) := portcval(t)/u(x).

Hence, if G = cval(t), then VG = Occ0(t) and portG(x) = portt(roott ,x) for every
x ∈Occ0(t). The following is clear from the definitions.

44 Note that if u is not the root, then tId/u �= (t/u)Id and cval(t)/u �= cval(t/u) (however, they are
isomorphic). If u and v are incomparable in t, then cval(t)/u and cval(t)/v are disjoint concrete
p-graphs.
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Lemma 2.95 The partial function portt : Nt ×Occ0(t)→A satisfies the following
properties:
1. if x= u, then portt(u,x)= a, where labt(x) is a or a
;
2. if x <t u and u′ is the son of u such that x ≤t u′ <t u, then we have:

portt(u,x)=
{

portt(u
′,x) if labt(u) ∈ {⊕,adda,b,

−→
adda,b},

h(portt(u
′,x)) if labt(u)= relabh.

�

The second case of this lemma can be written as follows:

portt(u,x)= (h1 ◦ h2 ◦ · · · ◦ hn)(portt(x,x)),

where h1,h2, . . . ,hn is the sequence of mappings that define relabelings on the path
in Syn(t) from u to x.

Lemma 2.96 Let t ∈ T (FVR) and let G be the concrete p-graph cval(t) with vertex
set Occ0(t). The edges of G are the pairs (x,y) in Occ0(t)×Occ0(t) such that either
x = y and labt(x) = a
 (for some a ∈ A) or x �= y and there exists u in Nt with

labt(u) ∈ {adda,b,addb,a,
−→
adda,b}, x ≤t u, y ≤t u, portt(u,x) = a and portt(u,y) = b

(for some a,b ∈A).

Proof: Let t and G be as in the statement. One can prove by bottom-up induction
on u that, for every u in Nt , the relation edgcval(t)/u is the set of pairs (x,y) such
that either x = y, x ≤t u and labt(x) = a
, or x �= y and there exists u′ in Nt with

u′ ≤t u and labt(u′) ∈ {adda,b,addb,a,
−→
adda,b}, x ≤t u′, y ≤t u′, portt(u

′,x) = a and
portt(u

′,y)= b. Taking u= roott the result is obtained.

In Section 7.2 we will use these two lemmas to prove that the mapping val from
terms over FVR to p-graphs is a monadic second-order transduction. (Proposition 2.41
will be used in a similar way in Section 7.4 for terms over FHR.)

Definition 2.97 (Witnesses) Let G be a concrete p-graph and t ∈ T (FVR). A witness
of G$ val(t) is a bijection w : VG→Occ0(t) satisfying the following conditions:

(1) edgG is the set of pairs (x,y) in VG×VG such that:

either x= y and labt(w(x))= a
 (for some a ∈A),

or x �= y and there exists u in Nt with labt(u)∈ {adda,b,addb,a,
−→
adda,b}, w(x)≤t u,

w(y)≤t u, portt(u,w(x))= a and portt(u,w(y))= b (for some a,b ∈A), and
(2) portG(x)= portt(roott ,w(x)) for all x ∈ VG.

Proposition 2.98 Let G be a concrete p-graph and t a term over FVR. Then G$ val(t)
if and only if there exists a witness of G $ val(t).
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Proof: By Lemma 2.96, a witness of G $ val(t) is an isomorphism from G to
cval(t).45 Since cval(t)$ val(t), the result follows.

The above definitions and results on the construction of concrete p-graphs from
terms extend to labeled p-graphs and to the terms that define them in a straightforward
way.

Definition 2.99 (Parsing) The parsing problem relative to the VR algebra is defined
as follows:

Input: Finite pairwise disjoint sets C of port labels, K of vertex labels, � of edge
labels and a concrete (K ,�)-labeled p-graph G of type included in C.

Output: A term t in T (FVR
C,[K ,�]) and a witness of G $ val(t) if they exist, or the

answer that they do not exist.

Efficient algorithms for this problem are more difficult to build than for parsing
relative to the HR algebra. We will discuss them in Section 6.2.

The proof of the following proposition is similar to that of Proposition 2.47 (but
easier: it suffices to replace constant symbols).

Proposition 2.100
(1) Let be given a concrete p-graph G, a term t in T (FVR

C ) and a witness w of
G $ val(t). Let γ be a labeling function turning G into a (K ,∅)-labeled p-graph
Ĝ. In linear time (for fixed C and K), we can compute t̂ ∈ T (FVR

C,[K ,∅]) that

evaluates to Ĝ, such that w is a witness of this fact.
(2) A similar result holds for deleting or adding loops, or modifying their labels, and

for modifying vertex labels. �

Proposition 2.47 is similar for s-graphs and the HR algebra, but here we cannot
add edge labels or reverse edge directions. Examples showing that will be given in
Section 2.5.4.

2.5.3 Algebraic properties and derived operations defined by contexts

The results of this section are analogous to those of Section 2.3.3 relative to the
HR algebra.

We define some notation. If ( fi)i∈I is a finite family of unary total functions on
some set that commute pairwise, i.e., are such that fi ◦ fj = fj ◦ fi for every i, j in I , then
we denote by©i∈I fi their composition in any order (if I = ∅, it denotes the identity
on the set). The resulting operation is the same for every order of composition.

The following proposition is stated for labeled p-graphs; its proof is an easy
verification from the definitions.

45 This implies, by the way, that a bijection w : VG → Occ0(t) is a witness of G $ val(t) if and only if
G = cval(tw).
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Proposition 2.101 For all (K ,�)-labeled p-graphs G,H ,J , all mappings h,h′ in
[A→ A]f , all a,b,c,d in A with a �= b, c �= d, all λ,μ in �, and all subsets M of
K ∪�, we have:

(1) G⊕H =H ⊕G;
(2) G⊕ (H ⊕ J )= (G⊕H )⊕ J ;
(3) G⊕∅=G;
(4) relabh(relabh′(G))= relabh◦h′(G);
(5) relabh(G⊕H )= relabh(G)⊕ relabh(H );
(6) relabh(∅)=∅;
(7) relabId(G)=G, where Id is the identity on A;
(8) relabh(aM )= cM if c= h(a);
(9)
−→
adda,b,λ(

−→
addc,d,μ(G))=−→addc,d,μ(

−→
adda,b,λ(G));

(10)
−→
adda,b,λ(G⊕H )=−→adda,b,λ(

−→
adda,b,λ(G)⊕H );

(11)
−→
adda,b,λ(∅)=∅;

(12)
−→
adda,b,λ(relabh(G))= relabh((©a′∈h−1(a),b′∈h−1(b)

−→
adda′,b′,λ)(G));

(13)
−→
adda,b,λ(cM )= cM .

Equalities (9)−(13) hold with add instead of
−→
add. �

Some further equalities can be derived from those of this proposition. In particular,
we have, for unlabeled p-graphs:

(10′) −→adda,b(
−→
adda,b(G))=−→adda,b(G),

by letting H =∅ in (10) and by using (3), and

(9′) adda,b(G)= addb,a(G),

by (9) since adda,b(G) is defined as
−→
addb,a(

−→
adda,b(G)). If h is injective, then (12)

can be rewritten into:

(12′) relabh(
−→
adda,b(G))=−→addh(a),h(b)(relabh(G)).

Equality (7) states that relabId denotes the identity, and could have been omitted.
(We made a similar remark after Proposition 2.48.)

Conditional equalities can be formalized as equalities in the many-sorted setting
of Section 2.6.3. We can cite in particular:

(14) relabh(G)= relabh′(G) if h and h′ agree on π(G);

(15)
−→
adda,b(G)=G if a /∈ π(G) or b /∈ π(G);

(16)
−→
adda,b(G⊕H )=−→adda,b(G)⊕H if a /∈ π(H ) and b /∈ π(H ).

If t, t′ belong to T (FVR
C,[K ,�],Xn) and t′ is obtained from t by using the rules of

Proposition 2.101, then t and t′ are equivalent, i.e., they define the same derived
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operation of GP or the same labeled p-graph if n= 0. For transforming, conversely,
two equivalent terms in T (FVR

C,[K ,�],Xn) one into the other, conditional rewriting rules
(or rules with terms in the many-sorted signature of Section 2.6.3) seem necessary.
The questions raised after Proposition 2.48 for the signature FHR can also be raised
for FVR.

Corollary 2.102 Every term in T (FVR
C,[K ,�]) that denotes a nonempty labeled p-graph

is equivalent to a term in T (FVR
C,[K ,�] − {∅}).

Proof: Let t be a term containing occurrences of ∅. By using rules (1), (3), (6) and
(11) of Proposition 2.101, we can transform t into an equivalent term t ′ that is ∅ or
has no occurrence of ∅. The first case is excluded since val(t) is not the empty graph.
These transformations do not introduce new port labels, hence t′ ∈ T (FVR

C,[K ,�]) if

t ∈ T (FVR
C,[K ,�]).

As we did in Section 2.3.3 for the HR algebra, we will express in a concise way
the unary derived operations defined by contexts. If C is a finite set of port labels

and R⊆C×C, we denote by ADDR the derived operation©(a,b)∈R,a�=b
−→
adda,b. In the

(K ,�)-labeled case we define ADDR :=©(a,b,λ)∈R,a�=b
−→
adda,b,λ for R⊆ C×C×�.

It is well defined because the result does not depend on the order of composition
by Equality (9) of Proposition 2.101. Note that Equality (12) of that proposition

can now be formulated as follows:
−→
adda,b,λ(relabh(G)) = relabh(ADDR(G)) with

R= h−1(a)× h−1(b)×{λ}. The next result is stated for the unlabeled case.

Proposition 2.103 Let B be a finite set of port labels and let c ∈ Ctxt(FVR
B ). There

exist a set C of port labels with C ∩B = ∅ and |C| ≤ |B| · 22|B|, a term t over FVR
B∪C

with π(tGP) ⊆ C, a relation R ⊆ (B× B) ∪ (C × B) ∪ (B× C) and a mapping h :
B∪C→ B such that, for every p-graph G with π(G)∩C = ∅, we have cGP(G) =
relabh(ADDR(G⊕ tGP)). If c is written without ⊕, then C = ∅ and t =∅.

Proof: We will use x1 as special variable in contexts. For convenience, we will write
c(G) instead of cGP(G).

We first consider the ⊕-free case, i.e., the case where c is written without ⊕. By
using Equalities (4), (9) and (12) of Proposition 2.101 and the derived equality (10′),
we can transform c into an equivalent context of the form relabh(ADDR(x1)). For
doing this we need not introduce new port labels, hence C =∅ and so R⊆ B×B and
h : B→ B. The transformation can be done in linear time for fixed B.

We now consider the case where c contains at least one ⊕. In this case we let
C := B×P(B)×P(B).46 We define RC ⊆ (C×B)∪ (B×C) by

RC := {((b,A,A′),a) ∈ C×B | a ∈ A}∪ {(a,(b,A,A′)) ∈ B×C | a ∈ A′},
46 We assume here that the elements of B×P(B)×P(B) are appropriately encoded as natural numbers

that are not in B, which is possible because B is finite.
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and we define hC : C→ B such that hC(b,A,A′) := b for every (b,A,A′) ∈ C. Thus,
if G and H are p-graphs with π(G)∩C = ∅ and π(H )⊆ C, then ADDRC (G⊕H ) is
obtained from G⊕H as follows: for every x ∈ VH , with portH (x)= (b,A,A′), edges
are added from x to every y ∈ VG with portG(y) ∈ A, and edges are added from every
y ∈ VG with portG(y) ∈ A′ to x; note that b is irrelevant.

By the ⊕-free case, it suffices to prove that there exist a context c′ ∈ Ctxt(FVR
B )

that is written without ⊕ and a term t ∈ T (FVR
B∪C) with π(tGP)⊆ C such that

c(G)= relabhC (c
′(ADDRC (G⊕ tGP)))

for every p-graph G with π(G)∩C = ∅. In fact, if c′ = relabh′(ADDR′(x1)), with
R′ ⊆ B×B and h′ : B→ B, then R := R′ ∪RC and h := h′ ∪ hC satisfy the require-
ments. (The operation relabh is equivalent to relabh′ ◦ relabhC by Equality (4) of
Proposition 2.101.)

We prove the existence of c′ and t by induction on the structure of c. We will also
write s instead of sGP for a term s over FVR.

(1) If c = x1, then we take c′ := x1 and t := ∅. This is correct because
relabhC (ADDRC (G)) = G if π(G) ∩ C = ∅, cf. Equalities (14) and (15) after
Proposition 2.101.

(2) If c= c1⊕s where c1 ∈Ctxt(FVR
B ) and s∈T (FVR

B ), then there are c′1 and t1 such
that c1(G)= relabhC (c

′
1(ADDRC (G⊕ t1))) for every p-graph G with π(G)∩C = ∅,

by the induction hypothesis. For c we take c′ := c′1 and t := t1 ⊕ relabj(s) where
j : B→ C maps each a ∈ B to (a,∅,∅) in C. Then c′1(ADDRC (G⊕ t1⊕ relabj(s)))=
c′1(ADDRC (G⊕ t1))⊕ relabj(s), by the fact that for all p-graphs J ,K and every unary
operation f ∈ FVR

D , we have f (J ⊕K)= f (J )⊕K if π(K)∩D=∅, cf. Equalities (5),
(14) and (16) of Proposition 2.101. Applying relabhC to both sides of the equality, we
obtain the required equality for c(G) by Equality (5) of Proposition 2.101 and by the
fact that relabhC (relabj(s))= s.

(3) If c = relabg(c1) and c′1, t1 are obtained from the induction hypothesis, then
we can take c′ := relabg(c′1) and t := relabg(t1), where g : C → C applies g to
the first component of the port labels in C, i.e., g(a,A,A′) := (g(a),A,A′). Indeed,
c(G) = relabg(relabhC (c

′
1(ADDRC (G⊕ t1)))) by the induction hypothesis and that

clearly equals relabhC (relabg(c′1(ADDRC (G⊕ relabg(t1))))).

(4) If c = −→adda,b(c1) and c′1, t1 are obtained from the induction hypothesis, then

we can take c′ := −→adda,b(c′1) and define t as follows. First, we define ADDS such

that it simulates
−→
adda,b on the first components of the port labels in C: the set

S ⊆ C ×C consists of all pairs ((a,A,A′),(b,D,D′)) with A,A′,D,D′ ⊆ B. Second,
assuming that c′1 = relabg1(ADDR1(x1)), we define k : C → C by k(a,A,A′) :=
(a,A ∪ g−1

1 (b),A′), k(b,A,A′) := (b,A,A′ ∪ g−1
1 (a)), and k(d,A,A′) := (d,A,A′)

for d �= a,b. And finally, we define t := relabk (ADDS(t1)). We have c(G) =
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−→
adda,b(relabhC (c

′
1(ADDRC (G ⊕ t1)))) by the induction hypothesis and that clearly

equals

relabhC (
−→
adda,b(ADDT (c

′
1(ADDRC (G⊕ADDS(t1)))))),

where T is the set of all pairs ((a,A,A′),b) and (a,(b,D,D′)) with A,A′,D,D′ ⊆ B.
By Equalities (9) and (12) of Proposition 2.101, this equals

relabhC (
−→
adda,b(c

′
1(ADDRC (ADDT ′(G⊕ADDS(t1)))))),

where T ′ consists of all pairs ((a,A,A′),d)with d ∈ g−1
1 (b) and all pairs (d,(b,D,D′))

with d ∈ g−1
1 (a). From this it should be clear that

ADDRC (ADDT ′(G⊕ADDS(t1)))= ADDRC (G⊕ relabk (ADDS(t1)))

and so we obtain that

c(G)= relabhC (
−→
adda,b(c

′
1(ADDRC (G⊕ relabk(ADDS(t1)))))),

which proves the result.
We finally note that it follows from the above proof that c′ and a concrete

p-graph H isomorphic to tGP can also be defined directly from c as follows. Let
u be the occurrence of x1 in c. First, c′ = fp(· · · f2( f1(x1)) · · ·) where f1, f2, . . . , fp are
the unary operations that occur in this order on the path in Syn(c) from u to the root.
Second, H ◦ = cval(c[∅])◦, cf. Section 2.5.2. Third, for each vertex x of H , we have
portH (x) = (portcval(c[∅])(x),A(x),A′(x)), where A(x) (resp. A′(x)) is the set of all
b∈B such that there is an edge x→ u (resp. u→ x) in the concrete p-graph cval(c[b]),
cf. Section 2.5.2.

The result extends to (K ,�)-labeled graphs and the corresponding terms with
|C| ≤ |B| · 22|�|·|B| because we need sets similar to A and A′ for each edge label.

We can now show that there is an algorithm to determine whether or not a p-graph G
has clique-width at most k , for given G and k . The algorithm has to find out whether
there exists a term over FVR

C with value G, where C is chosen such that |C| = k
and π(G) ⊆ C (see Definition 2.89). By Corollary 2.102 it needs only consider
terms with |VG| occurrences of constant symbols. Moreover, by the ⊕-free case of
Proposition 2.103, it may additionally restrict attention to terms t that satisfy the
following property: if c[s] is a subterm of t where c ∈ Ctxt(FVR

C ) is written without
⊕ and s ∈ T (FVR

C ), then |c| ≤ k2− k + 2 (because such a subterm can be replaced
by relabh(ADDR(s)) for some h and R). Since there are only finitely many terms
satisfying both conditions, the algorithm can just check them all. The number of
terms is exponential in the number of vertices of G (see Corollary 2.122 below). This
problem is discussed in more detail in Section 6.2.
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2.5.4 Properties of clique-width

We review some properties of clique-width and give some examples.

Proposition 2.104 For every labeled p-graph G, we have:

(1) |π(G)| ≤ cwd(G)≤ |VG|,
(2) if G is undirected, unlabeled and without ports (i.e., π(G) is singleton), then

cwd(G)≤ |VG|− k where k is the largest integer such that 2k < |VG|− k .

Proof: (1) This fact is similar to Remark 2.55(c). As observed before, |π(G)| ≤
cwd(G) because π(val(t))⊆ C for every t ∈ FVR

C . For showing that cwd(G)≤ |VG|
we let G be unlabeled to simplify the proof. Let C be a set of port labels that contains
π(G) such that there exists a bijection k : VG→C. For each x in VG we let c(x) be the
constant a(x) (resp. a
(x)) if a= k(x) and x has no loop (resp. if a= k(x) and x has a
loop), cf. Definition 2.92. We let R := {(a,b) | a,b∈C and (k−1(a),k−1(b))∈ edgG}.
We let h : C→ π(G) be such that h(a)= portG(k

−1(a)). Then we have

G = relabh(ADDR(c(x1)⊕·· ·⊕ c(xn))),

where VG = {x1, . . . ,xn} (and ADDR is defined before Proposition 2.103).
The construction for (K ,�)-labeled p-graphs is essentially the same. The constants

aM (x) specify the labels of a vertex x with port label a, the loops incident to it and
their labels. Each edge addition operation adds a unique edge with its label. Hence,
the same number of port labels is used as for an unlabeled graph.

(2) This result is proved in [Joha].

The following results are useful for giving upper- and lower-bounds to the clique-
width of particular p-graphs. We recall from Definition 2.12 that H ⊆i G means
that H = G[VH ], i.e., that H is an induced subgraph of G (with the same labels
for its vertices and edges as in G). If G is a labeled p-graph, we let core(G) be
the unlabeled, loop-free and undirected p-graph 〈core(G◦),portG〉; for the core of a
graph, see Definition 2.9.

We generalize as follows the edge-complement G of a simple, loop-free, undirected
graph G defined in Example 1.30. If G is a concrete (K ,�)-labeled p-graph, then
we let G̃ be the p-graph with the same vertices, port labels and vertex labels as G;
it has an edge x→ y labeled by λ (possibly a loop, if x = y) if and only if G has no
such edge. If G is undirected, loop-free and unlabeled, then, apart from loops and
port labels, we have G̃ = G (we recall that an undirected edge is a pair of opposite
directed edges).

The next proposition should be compared with Remark 2.55(d) and Corol-
lary 2.60(1).

Proposition 2.105
(1) If H ⊆i G, then cwd(H )≤ cwd(G).
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(2) The addition and deletion of loops, the modification of vertex labels and of labels
of loops do not modify the clique-width of a p-graph.

(3) For every p-graph G, we have cwd(core(G))≤ cwd(G).
(4) For every (K ,�)-labeled p-graph G, we have cwd(G̃)≤ 2 · cwd(G).

Proof: (1) Let H ,G be concrete (K ,�)-labeled p-graphs such that H ⊆i G. We let
G = cval(tId) with t ∈ T (FVR

C,[K ,�]), cf. Definition 2.92. We have that VG = Occ0(t)
and Id is the identity on VG. The p-graph H is obtained from G by removing some
vertices and their incident edges. For every x ∈ VG − VH , we replace in tId the
constant symbol aM (x) which specifies vertex labels (in K), loops and their labels
(in �) by the constant symbol ∅ (which denotes the empty graph). We obtain a
term t′

Id ′ , where t′ ∈ T (FVR
C,[K ,�]) and Id ′ is the identity on VH = Occ0(t′), the value

of which is nothing but H (by Lemmas 2.95 and 2.96). It follows that cwd(H ) ≤
cwd(G).

(2) This follows from Proposition 2.100(2), because the transformations of terms
considered there do not modify the port labels. If G is transformed into H , then
cwd(H ) ≤ cwd(G). Since the inverse transformations are of the same nature, we
have an equality.

(3) Let G be a p-graph defined by a term t in T (FVR
C ). Let t′ be the term in T (FVR

C )

obtained from t by replacing every a
 by a and every
−→
adda,b by adda,b (for a,b ∈C),

which corresponds to deleting loops and forgetting edge directions, respectively. It is
clear that val(t′)= core(G), hence cwd(core(G)) ≤ cwd(G). The proof is the same
for labeled graphs.

(4) The proof will be given at the end of Section 2.5.6. The case of loop-free
undirected graphs is proved in Theorem 4.1 of [CouOla].

We review the clique-widths of some classical graphs, as we did in Example 2.56(3)
for tree-width. The graph Pn is an undirected path with n vertices. We denote by Gu

n×m
the undirected rectangular grid und(Gn×m).

Proposition 2.106

(1) The following equalities hold:

cwd(Kn)= 2 if n≥ 2, cwd(Kn,m)= 2 if n,m≥ 1,

cwd(Pn)= 3 if n≥ 4,

cwd(C5)= cwd(C6)= 3, cwd(Cn)= 4 for n≥ 7,

cwd(Gu
n×n)= n+ 1 if n≥ 2,

and m+ 1≤ cwd(Gu
n×m)≤m+ 2 if n > m≥ 3.

(2) A simple loop-free undirected graph is a cograph if and only if its clique-width
is at most 2.
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Proof: (1) The cases of Kn and Kn,m follow from Examples 2.88(2) and 2.88(3)
and Remark 2.107(1) below. For proving that cwd(Pn) ≤ 3 consider the terms tn
such that t2 := add1,2(1⊕ 2) and tn+1 := relab3→2(relab2→1(add2,3(tn ⊕ 3))). It
is clear that val(tn)◦ = Pn. Since P2 = K1,1 and P3 = K1,2, these two graphs have
clique-width 2. It is easy to check that no term with two port labels can define P4.
Hence, cwd(P4) > 2 and thus, we have cwd(Pn)= 3 if n≥ 4 by Proposition 2.105(1):
P4 ⊆i Pn. Since C3 = K3 and C4 = K2,2, these two graphs have clique-width 2. See
[CouOla], Example 2.2, for Cn, n≥ 5. The results for grids are proved in [GolRot].
(The equality cwd(Gu

n×m)=m+ 2 if n > m≥ 3 is Conjecture 6.3 in this article.)
(2) We have seen in Example 2.88(3) that every cograph has clique-width at most

2. The other direction follows from Proposition 2.105(1) and the well-known fact (see
[*BranLS]) that if G is not a cograph, then it has an induced subgraph isomorphic to
P4, so that cwd(G)≥ 3.

Remark 2.107 (1) A p-graph G has clique-width 0 if and only if it is empty. It has
clique-width 1 if and only if all its edges are loops and |π(G)| = 1.

(2) We have observed in Remark 2.55(d) that tree-width does not depend on edge
directions. We have also proved in Proposition 2.47(3) that changing an edge direc-
tion or a label in a graph defined by a term in T (FHR) or in T (FHR[K ,�]) corresponds to
changing a constant symbol in this term. For clique-width, the situation is similar for
vertex labels (cf. Proposition 2.100(2)), but not for edge labels and edge directions

because the operations
−→
adda,b and

−→
adda,b,λ define edge directions and/or edge labels

simultaneously for a set of edges forming a directed complete bipartite graph. Hence
the modification of a single edge direction or of a single edge label may necessitate
a reorganization of the term defining the graph. We have already seen that in Exam-
ple 2.91 for edge labels. The following example shows that clique-width depends on
edge directions.

Example 2.108 Let G0,G1,G2 be the following graphs:

G0 = •−•−•, G1 = •→ •←•, G2 = •→ •→•.

Clearly, G0 = P3 = K1,2 and cwd(G0) = 2. We have G1 = val((1⊕ 1)
−→⊗ 1) where

the complete directed join of G and H is defined by G
−→⊗H = relab2→1(

−→
add1,2(G⊕

relab1→2(H ))), thus cwd(G1)= 2. Then cwd(G2)≤|VG2 |= 3, and one can check that
there is no term written with two port labels that defines G2. Hence cwd(G2)= 3. Since
cwd(G2) > cwd(G0)= cwd(G1), this example shows that clique-width is preserved
neither under reversal of edge directions47 nor under forgetting edge directions. �

We have seen in Proposition 2.62 that the tree-width of a nonempty graph is the
maximal tree-width of its connected components, of its 2-connected components and

47 It is preserved under simultaneous reversal of all edge directions.
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also of its 3-blocks. There exists a similar result for clique-width and the notion of
a prime induced subgraph, relative to modular decomposition. Before we state it we
need some definitions. They concern unlabeled graphs.

Definition 2.109 (Substitution to a vertex) Let G and H be disjoint concrete
graphs48 and u be a loop-free vertex of G. We let G[u←H ] be the concrete graph K
defined as follows:

VK := VG−u ∪VH ,

edgK := edgG−u ∪ edgH

∪{(v,w) | v ∈ VG−u, w ∈ VH and (v,u) ∈ edgG}
∪{(w,v) | v ∈ VG−u, w ∈ VH and (u,v) ∈ edgG}.

If G is a p-graph, we define the port mapping of K by

portK (v) :=
{

portG(v) if v ∈ VG−u,

portG(u) if v ∈ VH .

This definition is applicable if H is a p-graph but the port mapping of H does not
play any role: we have G[u←H ] =G[u←H◦]. We say that G[u←H ] is obtained
from G by the substitution of H to the vertex u. Informally, the vertex u is replaced
by H and each vertex w of H is linked to each neighbor v of u in G in the same way
as u is linked to v, and w is an a-port in G[u← H ] if u is an a-port in G. We will
define a term evaluating to G[u←H ] from terms evaluating to G and to H .

We denote by relabD→a the mapping relabh such that h(d)= a for all d ∈ D and
h(b)= b for all b ∈A−D.

Proposition 2.110
(1) Let G be the value of a term in T (FcVR

C ), let u be a loop-free vertex of G described
by a(u) in t and let H be the value of a term t′ in T (FcVR

D ) such that H and G are
disjoint. Then G[u← H ] is the value of the term t[relabπ(H )→a(t′)/a(u)] that
belongs to T (FcVR

C∪D).
49

(2) If H �=∅, then cwd(G[u←H ])=max{cwd(G),cwd(H ◦)}.
Proof: (1) The equality G[u← H ] = val(t′′) where t′′ := t[relabπ(H )→a(t′)/a(u)]
can be proved by induction on the structure of t.

(2) By changing if necessary the port labels used in t′, one can assume
that D ⊆ C if |D| ≤ |C| and that C ⊂ D if |C| < |D|. It follows then that
|C ∪ D| = max{|C|, |D|} and that cwd(G[u ← H ]) ≤ max{cwd(G),cwd(H ◦)}
(because cwd(H ◦)= cwd(val(relabπ(H )→a(t′)))).

48 It actually suffices to assume that H and G−u are disjoint, where G−u denotes the induced subgraph
G[VG −{u}].

49 Here t[t′′/a(u)] denotes the term obtained from t by replacing the occurrence of a(u) in t by the term t′′.



162 Graph algebras and widths of graphs

For the opposite equality, we note that H ◦ ⊆i G[u←H ]◦ and that G is isomorphic
to the subgraph of G[u←H ] induced by VG∪{w}where w is any vertex of H . Hence
by Proposition 2.105(1) we have

cwd(H ◦)≤ cwd(G[u←H ]◦)≤ cwd(G[u←H ]),

and cwd(G)≤ cwd(G[u←H ]), which gives the desired result.

If H = ∅, then G[u← H ] = G − u and we have cwd(G − u) ≤ cwd(G) by
Proposition 2.105(1). We may have that cwd(G[u← H ]) is less than cwd(G) =
max{cwd(G),cwd(H ◦)}.
Definition 2.111 (Modules and prime induced subgraphs) To simplify the presen-
tation, we only consider graphs without loops. Amodule of a graph G is a set M ⊆VG

such that, for every x,y ∈M and every z ∈ VG −M , we have

(x,z) ∈ edgG⇐⇒ (y,z) ∈ edgG, and

(z,x) ∈ edgG⇐⇒ (z,y) ∈ edgG.

Thus, VH is a module of G[u←H ]. A graph is prime if it has no other modules than
its vertex set, each of its singletons and ∅. A prime induced subgraph is an induced
subgraph that is prime. The graph P3 is not prime but the graphs Pn are prime for all
n≥ 4.

Proposition 2.112 For every graph G we have

cwd(G)=max{cwd(H ) |H is a prime induced subgraph of G}.

Proof: The direction ≥ follows from Proposition 2.105(1). For the other direction,
we use the fact that every directed graph G can be expressed by means of (nested)
substitutions of graphs isomorphic to its prime induced subgraphs and of the particular
graphs I2 (two isolated vertices),

−→
K2=•→• and K2.50 (If G is undirected, the graph−→

K2 is not used in this expression.) The other inequality follows from this result and
Proposition 2.110(2).

Example 2.113 Two graphs G and H are shown in Figure 2.12. We have G =
H [u← I2][v ← −→K2][w ← M ] where M = • → • → •. The graph H is defined
by the term

tH := relab{2,3}→1(
−→
add1,3(relab3→1[−→add2,1(

−→
add3,2(1(u)⊕ 2(v)⊕ 3(w)))]⊕ 3(x))).

50 This is called the modular decomposition of G. The theory of modular decomposition is presented in
[*EhrHR] and in [*MöhRad].
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Figure 2.12 Graphs H (left) and G (right) of Example 2.113.

The p-graphs I2,
−→
K2 and M of respective types {1}, {2} and {3} are the

values of the terms t1 := 1 ⊕ 1, t2 := relab1→2(
−→
add1,2(1 ⊕ 2)) and t3 :=

relab{1,2}→3(
−→
add1,2(

−→
add2,3(1 ⊕ 2 ⊕ 3))). Then G is the value of the term

tH [t1/1(u), t2/2(v), t3/3(w)] and, hence, of the term

tG := relab{2,3}→1(
−→
add1,3(relab3→1[−→add2,1(

−→
add3,2(t1⊕ t2⊕ t3))]⊕ 3)),

which belongs to T (FVR[3] ). It follows that cwd(G)≤ 3. Actually cwd(G)= 3 because
H and M have clique-width 3. Note that H and M are induced subgraphs of G. �

It follows from this proposition that an optimal clique-width term for a graph can
be obtained from its modular decomposition and optimal clique-width terms for its
prime induced subgraphs.

2.5.5 Comparisons between tree-width and clique-width

Tree-width, path-width and clique-width are functions on graphs that one can consider
as graph complexity measures.51 Certain graphs considered as basic have low values
for these measures: paths (graphs of the form Pn) have path-width at most 1, trees
have tree-width at most 1, cliques (the graphs Kn) have clique-width at most 2. These
three complexity measures yield infinite hierarchies of graph families. In this section,
we will compare tree-width and clique-width. Since clique-width is only defined for
simple graphs, the comparisons will be stated for simple graphs (without ports or
sources).

A tournament is an orientation of a clique, i.e., a directed graph obtained from a
clique by choosing a direction for each of its edges.

51 The term “complexity” refers to the number of basic operations from a given signature necessary to
construct the considered graph. It follows that cliques are “difficult” to build with the operations of
FHR but “easy” to build with the operations of FVR.
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Proposition 2.114
(1) For every simple (K ,�)-labeled graph G we have:

(1.1) cwd(G)≤ 22|�|·(twd(G)+1)+ twd(G)+ 1;
(1.2) cwd(G)≤ 3 · 2twd(G)−1 if G is unlabeled and undirected;
(1.3) lcwd(G)≤ pwd(G)+ 2.

(2) For each k , there is a graph G of tree-width k and clique-width at least 2�k/2�−1.
(3) Cliques have clique-width at most 2 and unbounded tree-width. Tournaments

have unbounded clique-width and tree-width.

Proof: (1) Inequality (1.1) will be proved in Section 4.3.4; the slightly stronger state-
ment cwd(G)≤ 22twd(G)+2+1 for G unlabeled and directed is proved in [CouOla].52

Inequality (1.2) is proved in [CorRot]. We now prove inequality (1.3) for directed
unlabeled graphs. Its extension to the other cases will be discussed afterwards.

Let G be a simple directed graph of pathwidth k−1. By Proposition 2.85, it is the
value of a slim term in T (FHR

[k] ). Let us say that a term t in T (FHR) is simple if val(t) is
simple; note that if t is simple, then every subterm of t is simple. By induction on the
structure of t, we transform every simple slim term t over FHR

[k] into a slim term t′ over

FcVR
[0,k] such that the p-graph cval(t′) is obtained from the s-graph val(t) by turning each

a-source into an a-port, and each internal vertex into a 0-port. Thus, if in particular t
evaluates to G, then t′ evaluates to the graph G of type {0}, that is, whose vertices are
turned into 0-ports (G is without sources). Hence, lcwd(G)≤ k+ 1= pwd(G)+ 2.

The inductive definition is as follows. It is straightforward to prove its correctness.

• If t is ∅, then t′ :=∅. If t is a or a
, then t′ is defined as a(x) or a
(x) for some x.
If t is

−→
ab, then t′ :=−→adda,b(a(x)⊕b(y)) for some x and y �= x.

• If t is renh(t1) where h is a permutation of [k], then t′ := relabh(t′1).
• If t is fga(t1), then t′ := relaba→0(t′1). Similarly for fgB.
• If t is a � t1 and a /∈ τ(t1), then t′ := a(x)⊕ t′1 for some x that is not a vertex of

cval(t′1); otherwise a ∈ τ(t′) and t′ := t′1.
• If t is a
 � t1 and a /∈ τ(t1), then t′ := a
(x)⊕ t′1 for some x that is not a vertex of

cval(t′1); otherwise a ∈ τ(t′) and, by induction (and because t is simple), cval(t′1)
has a unique a-port y, which is described by a unique occurrence in t′1 of a constant
symbol b(y) for some b ∈ [k] (because of renamings, we may have b �= a); then
we obtain t′ by replacing in t′1 this symbol by b
(y).

• If t is
−→
ab � t1, then we define t′ as

−→
adda,b(s′) where s := a � b � t1. (Note that by

the fourth case, t′ = −→adda,b(t′1) if a,b ∈ τ(t1).)

The case of undirected graphs is similar. Edge labels do not require the use of new port
labels (which the reader could expect from Example 2.91), because edges are added

52 Theorem 5.5 of this article states that cwd(G) ≤ 22twd(G)+1 + 1; however, the proof establishes the
upper-bound 22twd(G)+2+ 1. See also Section 2.7 about this proof.
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one by one. Hence, if in the last case t is
−→
abλ � t1, then t′ is defined as

−→
adda,b,λ(t′1).

(Clearly, the power of the operation
−→
adda,b to create simultaneously several edges is

not used in this construction.) Vertex labels and labeled loops are handled by obvious
modifications of the one-before-last case. In fact, if t is aκ � t1 and a /∈ τ(t1), then
t′ := a{κ}(x)⊕ t′1; otherwise a ∈ τ(t1) and t′ is obtained from t′1 by replacing bM (y)
by bM∪{κ}(y), where y is the a-port of cval(t′1). And similarly with a
λ instead of aκ .
Hence, the same inequality holds for labeled graphs.

(2) is proved in [CorRot]. Hence, the exponential function in the comparison of
tree-width and clique-width cannot be replaced by a linear or even a polynomial
function.

(3) The case of cliques follows from Example 2.56(3) and Proposition 2.106. For
tournaments, we use a counting argument: for each n there exist 2n(n−1)/2 (concrete)
tournaments with vertex set [n], but for each finite set C there are only 2O(n·log(n))

graphs with this vertex set that are the values of terms in T (FcVR
C ). This fact follows

from Corollary 2.122 below (in Section 2.5.6). Hence, for each finite set C, some
tournaments cannot be defined by terms in T (FcVR

C ). Another proof using monadic
second-order transductions will be given in Section 7.2, Proposition 7.39(1).

The proof of Inequality (1.2) given in [CorRot] extends easily to undirected edge-
labeled graphs. If 
 is the number of edge labels and k = twd(G), we get

cwd(G)≤ (2
− 1) · 2
(k−1)+ 2
k + 1− (2
− 1)k ,

which gives, more simply:

cwd(G)≤ 2
k+1− (2
− 1)k .

Directed graphs can be handled as undirected graphs with two edge labels. We obtain
thus, with 
= 2 in the first formula, and for k ≥ 2:

cwd(G)≤ 7 · 22k−2+ 1− 3k .

These upper-bounds are different from (and better than) those arising from the proof
of Section 4.3.4 because they are based on the characterization of graphs of tree-width
at most k using the operations of Hk defined in Remark 2.84(4).

There is a striking difference between clique-width and tree-width regarding their
linear versions: just compare (1.2) and (1.3). These results also show that every set of
simple graphs of bounded tree-width has bounded clique-width, and not conversely.
However, for particular types of graphs like planar graphs or graphs of degree at
most d for any fixed d, clique-width and tree-width are equivalent in the sense that
the same sets of simple planar graphs and of simple graphs of bounded degree have
bounded tree-width and bounded clique-width. This is made precise in the following
proposition.
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If p ≥ 2, we say that a graph G is without Kp,p if core(G) has no subgraph
isomorphic to Kp,p. If G is labeled and λ is an edge label, we let Gλ be the subgraph
of G consisting of its edges labeled by λ (and all its vertices). The following result is
essentially from [GurWan].

Proposition 2.115 Let p≥ 2.
(1) For every simple graph G without Kp,p, we have

twd(G)≤ 3(p− 1) · cwd(G)− 1.

If G has degree at most p, then twd(G) ≤ 3p · cwd(G)− 1. If G is planar, then
twd(G)≤ 6 · cwd(G)− 1.

(2) If G is (K ,�)-labeled, simple and Gλ is without Kp,p for every λ ∈�, then

twd(G)≤ 3(p− 1) · |�| · cwd(G)− 1.

(3) The same results hold for path-width and linear clique-width, with 3 replaced
by 6. �

Before proving Proposition 2.115, we need some preliminary definitions and results
(that will also be useful in Section 7.4). We first consider unlabeled graphs. We let G
without Kp,p be equal to cval(t) with t ∈ T (FVR

C ), so that VG =Occ0(t). (We will use
the notation and results of Section 2.5.2.) For u ∈Nt , we let G(u) denote the p-graph
cval(t)/u with vertex set {x ∈VG | x≤t u}. Up to port labels, G(u) is a subgraph of G,
i.e., G(u)◦ ⊆G. A vertex x of G(u) belongs to the set of a-ports of G(u), denoted by
Pt(u,a), if and only if portt(u,x)= a (cf. Definition 2.94). We say that a is small at u
if |Pt(u,a)| ≤ p− 1. Otherwise it is large at u. We let Ext(u,a) be the set of vertices
in VG−VG(u) that are adjacent (in G) to an a-port of G(u). We let T be the syntactic
tree of t and we will define a mapping f : Nt =NT →P(VG) and prove that (T , f ) is
a tree-decomposition of G. We let:

f (u) := {u} if u ∈Occ0(t); otherwise:

f (u) := ⋃{Pt(u′,a) | a ∈ C, u′ is a son of u and |Pt(u′,a)| ≤ p− 1}
∪⋃{Ext(u,a) | a ∈ C, |Ext(u,a)| ≤ p− 1}.

It is clear that VG ⊆⋃{ f (u) | u ∈ NT }. With these definitions and notation we have:

Lemma 2.116
(1) Every vertex of Pt(u,a) is adjacent to every vertex of Ext(u,a). Hence, one cannot

have |Pt(u,a)| ≥ p and |Ext(u,a)| ≥ p.
(2) Let x ∈ VG, let Y be the set of vertices of G that are adjacent to x, and let u be the

father of the leaf x of T . If |Y | ≤ p− 1, then {x}∪Y ⊆ f (u).

Proof: (1) All vertices of Pt(u,a) are subject to the same relabelings and edge addi-
tions defined by operations at occurrences strictly above u in t. Hence every vertex
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of Pt(u,a) is adjacent to every vertex of Ext(u,a). (This follows easily from Lem-
mas 2.95 and 2.96.) We would get a subgraph of core(G) isomorphic to Kp,p if Pt(u,a)
and Ext(u,a) would have both at least p elements.

(2) Since Pt(x,a)={x}where a is the port label of x in G(x), so that |Pt(x,a)| = 1≤
p−1, we have Pt(x,a)⊆ f (u) hence x ∈ f (u). Let l be the port label of x in G(u). Then
Ext(u, l)= Y ∩(VG−VG(u)). Since |Ext(u, l)| ≤ |Y | ≤ p−1, we have Ext(u, l)⊆ f (u),
and so Y ∩ (VG −VG(u))⊆ f (u). It remains to show that Y ∩VG(u) ⊆ f (u). Consider
y ∈ Y ∩VG(u). Let u′ be the son of u such that y≤T u′, and let h be the port label of y in
G(u′). Then y ∈ Pt(u′,h) and x ∈Ext(u′,h). Since every vertex of Pt(u′,h) is adjacent
to every vertex of Ext(u′,h) by (1), we have Pt(u′,h)⊆ Y . Hence |Pt(u′,h)| ≤ p− 1,
and so Pt(u′,h)⊆ f (u), and y ∈ f (u).

Proof of Proposition 2.115:
(1) The assertions about graphs of bounded degree and planar graphs follow from the
main statement because if G has degree at most p then it is without Kp+1,p+1, and
planar graphs are without K3,3.

We now prove that (T , f ) defined before the previous lemma is a tree-
decomposition of G. This will give the first assertion since | f (u)| ≤ 3|C| · (p−1) for
every u. Some claims will be necessary.

Claim 2.115.1 Let x ∈ Occ0(t) and let (un,un−1, . . . ,u1) be the path in T from
the root un to u1 = x. Let l1, . . . , ln be the successive port labels of x in
G(u1),G(u2), . . . ,G(un)=G. We have

{x} = Pt(u1, l1)⊆ Pt(u2, l2)⊆ ·· · ⊆ Pt(un, ln), (2.5)

and

Ext(u1, l1)⊇ Ext(u2, l2)⊇ ·· · ⊇ Ext(un, ln)= ∅. (2.6)

If m is the largest index such that lm is small at um, we have |Ext(uj , lj)| ≤ p− 1 for
every j, m < j ≤ n.

Proof: The inclusions of (2.5) are clear from Lemma 2.95. We may have Pt(ui, li)⊂
Pt(ui+1, li+1) but only if ui+1 is an occurrence of a disjoint union or of a relabeling.
The inclusions Ext(ui+1, li+1)⊆ Ext(ui, li) of (2.6) follow from the fact that, by (2.5)
and Lemma 2.116(1), a vertex y of G belongs to Ext(ui, li) if and only if y �T ui and
y is adjacent to x in G, and similarly for i+ 1. Note that we have an equality if ui+1

is an occurrence of an edge addition operation. If ui+1 is an occurrence of a relabel-
ing that transforms some label l into li+1 and if Pt(ui, l) �= ∅, then Ext(ui+1, li+1)=
Ext(ui, li) = Ext(ui, l). By the definition of m, |Pt(uj , lj)| ≥ p for every j such that
m < j ≤ n. By Lemma 2.116(1), this implies |Ext(uj, lj)| ≤ p − 1 for all these
indices. �

Let x,y be adjacent vertices of G (they are leaves of T ). Let w be their least
common ancestor in T , let (uq,uq−1, . . . ,u1) be the path in T from w to x where uq =
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w,u1= x and let l1, . . . , lq be the corresponding port labels of x as in Claim 2.115.1; let
(vq′ ,vq′−1, . . . ,v1)with vq′ =w and v1= y, and h1, . . . ,hq′ be the analogous sequences
relative to y. Note that w is an occurrence of ⊕ and that the edge between x and y is
created by an edge addition at some occurrence w′ between w and the root.

Claim 2.115.2 Pt(uq−1, lq−1)⊆ Ext(vj,hj) for every j, 1≤ j ≤ q′ − 1.

Proof: We have x ∈ Pt(uq−1, lq−1) and y ∈ Ext(uq−1, lq−1). By Lemma 2.116(1), the
operation that creates the edge between x and y also creates edges between all vertices
of Pt(uq−1, lq−1) and y. Hence Pt(uq−1, lq−1)⊆ Ext(vj ,hj). �
Claim 2.115.3 If x and y are adjacent in G, then {x,y} ⊆ f (u) for some u ∈ NT .

Proof: If x has degree at most p− 1, the claim follows from Lemma 2.116(2). For
proving the general case, we use the notation of Claim 2.115.2. By this claim (for
j = q′ − 1) and by Lemma 2.116(1), it is not possible that |Pt(uq−1, lq−1)| ≥ p and
|Pt(vq′−1,hq′−1)| ≥ p. If |Pt(uq−1, lq−1)| ≤ p−1, then Pt(uq−1, lq−1)⊆ f (uq)= f (w)

and so x ∈ f (w). If we have also |Pt(vq′−1,hq′−1)| ≤ p− 1, then similarly, y ∈ f (w).
Next we consider the case where |Pt(vq′−1,hq′−1)| ≥ p. Let m′ be the largest integer
such that |Pt(vm′ ,hm′)| ≤ p− 1. We have m′ < q′ − 1 and x ∈ Ext(vm′+1,hm′+1). By
Claim 2.115.1, |Ext(vm′+1,hm′+1)| ≤ p− 1 and so Ext(vm′+1,hm′+1)⊆ f (vm′+1), so
that x ∈ f (vm′+1). Since |Pt(vm′ ,hm′)| ≤ p−1, we have also Pt(vm′ ,hm′)⊆ f (vm′+1),
hence y ∈ f (vm′+1). The last possible case is when lq−1 is large at uq−1 and hq′−1 is
small at vq′−1. The proof is the same by exchanging the roles of x and y. �
Claim 2.115.4 The pair (T , f ) satisfies the connectivity condition, hence is a tree-
decomposition of G.

Proof: Let x ∈VG and let u1, . . . ,un, l1, . . . , ln and m be as in Claim 2.115.1. It follows
from the definitions that x ∈ f (ui) for every i such that 1≤ i≤min{n,m+1} (we may
have m= n), and x /∈ f (ui) if i >m+1. Assume now that x ∈ f (v) for v /∈ {u1, . . . ,un}.
This means that x is adjacent to y in Pt(v,h), x belongs to Ext(v,h) and |Ext(v,h)| ≤
p−1. We let q,v1, . . . ,vq′ ,h1, . . . ,hq′ ,m′ be as in Claims 2.115.2 and 2.115.3. We have
v = vj and h = hj for some j, 1 ≤ j ≤ q′ − 1. By Claim 2.115.2, Pt(uq−1, lq−1) ⊆
Ext(vj ,hj) = Ext(v,h). Hence lq−1 is small at uq−1. We have |Ext(vj ,hj)| ≤ p− 1
and by Claim 2.115.1, Ext(vj′ ,hj′)⊆ Ext(vj ,hj) if j′ > j, so that Ext(vj′ ,hj′)⊆ f (vj′)
for every j′ = j, . . . ,q′ − 1. We also have x ∈ Ext(vj′ ,hj′) by Claim 2.115.2, and so
x ∈ f (vj′) for all these indices j′. Since x ∈ f (uq) (because lq−1 is small at uq−1 and uq

is the father of uq−1), we have x ∈ f (u) for every u ∈ {u1, . . . ,uq−1,uq,vq′−1, . . . ,vj}
and this set induces the path between x and v in T . We have proved that every node u
in f −1(x) belongs to a path linking x and u, all nodes of which are in f −1(x). Hence
the connectivity condition holds. �

We have defined a tree-decomposition (T , f ) with wd(T , f ) ≤ 3|C| · (p− 1)− 1
from a term t over FVR

C such that G = val(t) is without Kp,p. Hence twd(G) ≤
3(p− 1) · cwd(G)− 1. This completes the proof of Proposition 2.115 for unlabeled
graphs.
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(2) If G has edge labels (vertex labels do not matter), it is the union of its subgraphs
Gλ for all edge labels λ. The above proof yields for the graphs Gλ tree-decompositions
(T , fλ) that have the same underlying tree T . This tree is the syntactic tree of the given
term t in T (FVR

C,[K ,�]) that evaluates to G. We get a tree-decomposition (T , f ) of G
by taking f (u) equal to the union of the sets fλ(u) for each node u of T .

(3) Let us now assume that t is a slim term in T (FVR
C ), cf. Definition 2.89. Then the

tree-decomposition (T , f ) can be turned into a path-decomposition by contracting
all edges (u,v) of T such that u is an occurrence of ⊕ in t, v is a leaf of t and
the other son of u (i.e., the son �= v) is not a leaf of t. If the two sons of u are
leaves, one contracts only one of the two corresponding edges. This doubles (at
most) the number of vertices in each box, by Lemma 2.64. This completes the proof of
Proposition 2.115.

We have seen in Example 2.108 that clique-width is sensitive to the reversal of edge
directions while tree-width is not. This observation can be made more precise by the
following result of [Cou95a]. Its proof which uses monadic second-order transduc-
tions will be sketched in Section 7.2, Proposition 7.40. We recall that und−1(G) is
the set of orientations of G, i.e., the set of directed graphs G′ such that G= und(G′),
the graph obtained from G′ by forgetting edge directions. Since G is assumed to be
simple, the condition und(G′)=G implies that G′ has no pairs of opposite edges.

Proposition 2.117 There exists a function f : N → N such that, for every simple
undirected graph G, we have:

twd(G)≤ f (max{cwd(G′) |G′ ∈ und−1(G)}).
�

By this proposition, if a set of directed graphs has bounded clique-width and is
closed under the reversal of directions of any set of edges, then it has bounded
tree-width.

2.5.6 Variations on FVR

The operations forming the signature FVR have been chosen so as to be as simple and
as few as possible. The signature FVR has many variants that are equivalent in the
sense that the same sets of graphs have bounded clique-width and bounded width with
respect to these alternative signatures. We present here three of these variants. They
are formulated for unlabeled graphs but their statements and proofs extend easily to
labeled graphs. We will not detail these extensions.

Elementary relabelings

Clique-width is defined in Definition 2.89 with respect to a finite set C ⊆ A and

the operations ⊕,adda,b,
−→
adda,b,relabh, where a,b belong to C and h : C→ C. The
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following proposition shows that this definition is equivalent to the original one of
[CouOla] that is used in many subsequent works (see Section 2.7 for references). We
define

F
′VRu
C := {⊕,adda,b,relaba→b,a,a
,∅ | a,b ∈ C, a �= b},

and

F
′VR
C := F

′VRu
C ∪{−→adda,b | a,b ∈ C, a �= b}.

Proposition 2.118 The clique-width of a p-graph G is the minimal cardinality of a set
C such that G= val(t) for some term t in T (F

′VR
C ) or in T (F

′VRu
C ) if G is undirected.

Proof: We wish to replace an operation relabh for h in [C→ C]f by a composition
of elementary relabelings relaba→b for some a,b in C. This is not possible if h is a
bijection that is not the identity. Consider C = {a,b}with h(a)= b, h(b)= a. We need
another port label c to express relabh as relabc→b ◦ relabb→a ◦ relaba→c. However,
this is possible if h is not a bijection. For example, if h(a)= b, h(b)= c, h(c)= a and
h(d)= a, then relabh = relabd→b ◦ relabb→c ◦ relabc→a ◦ relaba→d ◦ relabd→c. We
omit the proof of this fact.

For completing the proof we observe that the operations relabh such that h : C→C
is a bijection can be eliminated. We can use Equalities (4)–(8) and (12′) of Proposi-
tion 2.101 to eliminate them, as we have used some equalities of Proposition 2.48 to
eliminate the operations renh in Proposition 2.49.

We have just proved that clique-width is not modified by a certain restriction of
the signature FVR. We now examine the effect of extending it.

New edge addition operations

For a directed or undirected p-graph G and a ∈A, we let adda,a(G) be the p-graph
G′ defined by:

VG′ := VG,
edgG′ := edgG ∪{(x,y) | x,y ∈ VG, x �= y, portG(x)= portG(y)= a},
portG′ := portG.

This new operation adds undirected edges, or equivalently pairs of opposite directed
edges, but no loops. We let F iVR

C be the signature FVR
C augmented with the operations

adda,a for all a ∈ C, and we let cwd i(G) be the corresponding width defined by

cwd i(G) :=min{|C| |G = val(t), t ∈ T (F iVR
C )}.

Cliques are the values of the terms adda,a(a⊕·· ·⊕a) written with a single port label.
Hence cwd i(Kn) = 1 whereas cwd(Kn) = 2 for n ≥ 2. The graphs Kn ⊕ Im are the
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only simple loop-free undirected graphs G such that cwd i(G) = 1. (We recall that
Im has m vertices and no edge). We have cwd i(P4) = 2 < cwd(P4) = 3 because
P4 = relab2→1(add1,1(add1,2(1 ⊕ 2) ⊕ add1,2(1 ⊕ 2))). We have cwd i(Kn,m) =
cwd(Kn,m)= 2 for n,m≥ 2.

Proposition 2.119 For every p-graph G, we have

cwd i(G)≤ cwd(G)≤ 2 · cwd i(G).

Proof: Since cwd i is defined in terms of more operations than cwd, the inequality
cwd i(G) ≤ cwd(G) is trivial. We now prove the other direction. Let G be such that
cwd i(G)= k . Without loss of generality we assume that the port labels used to define
G are 1, . . . ,k . We let F be the set of operations consisting of ⊕, addi, j for i ∈ [k],
j ∈ [k]∪ {k+ i}, relabh where h: [2k]→ [2k] and i and i
 for all i ∈ [k]. For P ⊆ [k],
we let ADDP be the derived operation defined as©i∈P addi,i, i.e., as the composition
in any order of the operations addi,i for all i in P. (Hence ADD∅ is the identity.) We
have the following equalities, for all i, j in [k], h : [k] → [k], and all p-graphs G,H
of type included in [k]:
(a) ADDP(G⊕H )= relabg−1[(©i∈P addi,k+i)(ADDP(G)⊕ relabg(ADDP(H )))],

where g : [k]→ [k+ 1,2k] is defined by g(j) := k+ j for j ∈ [k];
(b) ADDP(addi,i(G))= ADDP∪{i}(G);

(c) ADDP(
−→
addi, j(G))=−→addi, j(ADDP(G)) if i �= j (and the same for addi, j);

(d) ADDP(relabh(G))= relabh( f (ADDP′(G))),
where P′ = {i | h(i) ∈ P} and f is the composition of all operations addi, j such
that i, j ∈ [k], i �= j and h(i)= h(j) ∈ P.

These equalities entail the following claim. Its proof is easy by induction on the
structure of t, by using equalities (a)–(d).

Claim 2.119.1 For every term t ∈ T (F iVR
[k] ) and every P ⊆ [k], there exists a term t′

in T (F), hence in T (FVR
[2k]), such that val(ADDP(t))= val(t′). �

By taking P = ∅, we obtain that cwd(G)≤ 2 · cwd i(G).

Binary derived operations replacing unary operations

Let C be a finite set of port labels. Let us consider the derived operations defined
as compositions of unary operations of FVR

C . There are infinitely many such com-
positions but they only define finitely many different operations. In fact, we have
shown in Proposition 2.103 that every context in Ctxt(FVR

C ) that is written with-
out ⊕, and hence with unary operations only, is equivalent to a context of the form
relabh(ADDR(x1)) with h : C→C and R⊆C×C (and ADDR is the composition, in

any order, of the operations
−→
adda,b with (a,b) ∈ R, a �= b). Obviously, we may also
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assume that R∩ IdC = ∅, where IdC := {(a,a) | a ∈ C}. There are kk ·2k2−k contexts
of that form, where k = |C|. We now show that they are all inequivalent.

Lemma 2.120 Let c= relabh(ADDR(x1)) and c′ = relabh′(ADDR′(x1)) be contexts
with h,h′ : C→ C and R,R′ ⊆ (C×C)− IdC . Then cGP = c′

GP
if and only if h= h′

and R= R′.

Proof: One direction is trivial. For the other direction, let us assume that cGP(G)=
relabh(ADDR(G)) = relabh′(ADDR′(G)) = c′

GP
(G) for every p-graph G. If h(a) =

b and h′(a) = b′ �= b, then cGP(a) = b and c′
GP

(a) = b′ and this contradicts the
hypothesis (because b �= b′). Hence h = h′. If (a,b) ∈ R− R′, then cGP(a⊕ b) has
one edge whereas c′

GP
(a⊕ b) has none. This is impossible, hence R ⊆ R′, and by

symmetry we have an equality.

For every R⊆C×C and every h : C→C, we let⊗R,h be the binary derived oper-
ation defined by G⊗R,h H := relabh(ADDR(G⊕H )). We let FκVR

C be the “compact”
signature consisting of the same constants as FVR

C (including ∅) and of the binary
operations ⊗R,h for all R⊆ C×C and h : C→ C.

Proposition 2.121 Let C ∈ Pf (A). The same p-graphs are defined by T (FVR
C ), by

T (FκVR
C ) and by T (FκVR

C −{∅})∪{∅}. The corresponding transformations of terms
can be done in linear time.

Proof: Obviously, every term over FκVR
C can be turned into an equivalent term over

FVR
C by replacing every subterm t1 ⊗R,h t2 by relabh(ADDR(t1 ⊕ t2)). In the other

direction, subterms relabh(t1) can be replaced by t1⊗∅,h ∅, subterms
−→
adda,b(t1) by

t1⊗{(a,b)},Id ∅, where Id is the identity on C, and subterms t1⊕ t2 by t1⊗∅,Id t2.
One can also transform a term t over FVR

C − {∅} (see Corollary 2.102) into an
equivalent term t′ over FκVR

C − {∅}. This can be shown by induction on the size
of t. Let t = c[t1], where c ∈ Ctxt(FVR

C ) is written without ⊕ and t1 is either a
constant symbol or of the form t2⊕ t3. By Proposition 2.103, t is equivalent to a term
relabh(ADDR(t1)) with h : C→ C and R⊆ C×C. If t1 is a or a
 and h(a)= b, then
we define t′ as b or b
. If t1 = t2⊕ t3, then, using the induction hypothesis, we define
t′ := t′2⊗R,h t′3.

All these transformations can be done in linear time for fixed C.

A term t over FκVR
C − {∅} has length 2|Vval(t)| − 1 because FκVR

C consists only
of binary operations and constant symbols, and Vval(t) is in bijection with the leaves
of t. Such a term is in general smaller than those in T (FVR

C ) that denote the same
p-graph. However a data structure representing the operations of FκVR

C must, essen-
tially, represent a p-graph with |C| vertices for each occurrence of a binary function
symbol ⊗R,h, viz. the p-graph H with H◦ := 〈C,R〉 and portH := h. It is not clear
that this would be really more efficient than storing a term from T (FVR

C ) from which

redundancies like
−→
adda,b(

−→
adda,b(· · ·)) are eliminated. This aspect is important for

algorithmic applications to be considered in Chapter 6. The signature FκVR
C will be
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useful anyway for certain proofs in Chapter 7 (in particular for proving the Equation-
ality Theorem, see the proof of Theorem 7.34). The following corollary is analogous
to Corollary 2.74(2).

Corollary 2.122 For all k ,n > 0, the number of concrete graphs of clique-width at
most k with vertex set [n] is less than 2n·log(n)+2k2·n.

Proof: For k = 1 the statement follows easily from Remark 2.107(1). Now let k ≥ 2.
We let � and ∗ be symbols of respective arities 0 and 2. The number Cn of terms in
T ({∗,�}) having n+1 occurrences of � is the n-th Catalan number. Its value is less than
22n (see, e.g., [*FlaSed]). The number Nk(n) of terms in T (FcκVR

[k] − {∅}) that define
concrete directed p-graphs (possibly with loops) with vertex set [n] can be evaluated
as n! ·Cn−1 · cn · f n−1, where f is the number of inequivalent binary operations in
FκVR
[k] and c is the number of constants in this set different from ∅. We have thus

c = 2k , f = kk · 2k2−k and Cn−1 < 22n−2. Since n!< 2n·log(n), we get log(Nk (n)) <
n · log(n)+2n−2+n · log(2k)+ (n−1) · (k · log(k)+ k2− k) < n · log(n)+2k2 ·n,
which gives the result.53

This corollary entails that the set of all graphs, and even that of undirected graphs
has unbounded clique-width. Because otherwise, the number of concrete directed
(or undirected) graphs with vertex set [n] would be 2O(n·log(n)) whereas it is 2�(n2).
However, Proposition 2.106 is more precise for proving the unboundedness of clique-
width over all graphs because it gives the exact clique-width of rectangular undirected
grids.

We now use Proposition 2.121 to prove Statement (4) of Proposition 2.105.

Proof of Proposition 2.105(4): We will prove that the edge-complement G̃ of a
(directed) p-graph G has clique-width at most 2 · cwd(G). The proof will extend
easily to labeled p-graphs. Furthermore, we will give a linear-time algorithm that
constructs a term t̃ evaluating to G̃ from a term t in T (FκVR

C ) that evaluates to G. For
the purpose of readability we will denote G̃ also by ec(G).

Let be given t ∈ T (FκVR
C ). For every position u in t, we define Edg(t ↑ u)⊆C×C

by the following top-down induction:

• if u is the root, then Edg(t ↑ u) := ∅;
• if u is a son of an occurrence w of ⊗R,h,

then Edg(t ↑ u) := R∪ h−1(Edg(t ↑w)),
where h−1(S) := {(a,b) | (h(a),h(b)) ∈ S} for every S ⊆ C×C.

The operations above u in t add to the p-graph cval(t)/u the edges from x to y such
that x is an a-port and y is a b-port of cval(t)/u, and (a,b) ∈ Edg(t ↑ u) with a �= b.54

53 The last inequality uses the fact that 2+ log(2k)+ k · log(k)+ k2− k ≤ 2k2 for every k ≥ 2.
54 Similar sets, satisfying the same property, can be defined for t ∈ T (FVR

C ) by the following clauses:

if u is the root, then Edg(t ↑ u) := ∅,
if u is a son of an occurrence w of ⊕, then Edg(t ↑ u) := Edg(t ↑w),
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(For the notation cval(t)/u see Section 2.5.2.) The sets Edg(t ↑ u) can be computed
in linear time along a depth-first traversal of t starting from the root.

The construction of t̃ will be based on the following obvious fact:

Claim 2.105.1 Let C ′ be disjoint with C, let G1 and G2 be p-graphs with π(G1)⊆C
and π(G2)⊆ C ′, and let R⊆ (C×C ′)∪ (C ′ ×C). Then we have ec(G1⊗R,h G2)=
ec(G1)⊗Rc,h ec(G2), where Rc = ((C×C′)∪ (C ′ ×C))−R. �

In order to use it, we will change some port labels in the given term in such a
way that, in every subterm t1⊗R,h t2 of the modified term, we have π(t1) ⊆ C and
π(t2)⊆ C ′ where C ′ := {a′ | a ∈ C} is a disjoint copy of C. We define also:

p and p− : C ∪C ′ → C ∪C′ such that, for all a ∈ C :

p(a) := p(a′) := a′ and p−(a′) := p−(a) := a.

For R⊆ C×C, we define:

Rp := {(a,b′),(a′,b) | (a,b) ∈ R, a �= b},
Rpc := ((C×C ′)∪ (C ′ ×C))−Rp

= {(a,b′),(a′,b) | a,b ∈ C, (a,b) /∈ R, a �= b}
∪ {(a,a′),(a′,a) | a ∈ C}.

We are ready to define t̃ ∈ T (FκVR
C∪C ′) from t ∈ T (FκVR

C ). For each u ∈ Pos(t), we
replace the symbol f that occurs at u by a symbol f ′ of the same arity according to
the following clauses:

if f =∅, then f ′ :=∅,

if f = a, then f ′ := if u is a right son then a′
 else a
,

if f = a
, then f ′ := if u is a right son then a′ else a,

if f =⊗R,h, then f ′ := if u is a right son then ⊗S,p◦h◦p− else ⊗S,h◦p− ,

where S := (R∪ h−1(Edg(t ↑ u)))pc.

Note that Pos(̃ t )= Pos(t).
The first statement of the next claim yields the result if we take u= roott because

then Edg(t ↑ u)= ∅.

if u is the son of an occurrence w of
−→
adda,b, then Edg(t ↑ u) := Edg(t ↑w)∪{(a,b)},

if u is the son of an occurrence w of adda,b, then Edg(t ↑ u) := Edg(t ↑w)∪{(a,b),(b,a)},
if u is the son of an occurrence w of relabh, then Edg(t ↑ u) := h−1(Edg(t ↑w)).
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Claim 2.105.2

(1) For every u ∈ Pos(t) that is the root or a left son:

π(̃ t/u)⊆ C and cval(̃ t )/u= ec(ADDEdg(t↑u)(cval(t)/u)), and
(2) for every u ∈ Pos(t) that is a right son:

π(̃ t/u)⊆ C ′ and cval(̃ t )/u= relabp(ec(ADDEdg(t↑u)(cval(t)/u))).

Proof: For fixed t, by bottom-up induction on u. The cases where u is a leaf are clear
from the definitions. Let u be an occurrence of ⊗R,h that is the root or a left son, and
let u1 and u2 be the left and right son of u. Then, by the definition of t̃:

cval(̃ t )/u= relabh◦p−(ADDS(cval(̃ t )/u1⊕ cval(̃ t )/u2)),

where S := (R∪ h−1(Edg(t ↑ u)))pc. On the other hand,

ADDEdg(t↑u)(cval(t)/u)

= ADDEdg(t↑u)(relabh(ADDR(cval(t)/u1⊕ cval(t)/u2)))

= relabh(ADDh−1(Edg(t↑u))(ADDR(cval(t)/u1⊕ cval(t)/u2)))

= relabh(relabp−(ADD(h−1(Edg(t↑u))∪R)p(G1⊕G2)))

= relabh◦p−(ADD(h−1(Edg(t↑u))∪R)p(G1⊕G2)),

where

G1 := ADDh−1(Edg(t↑u)∪R(cval(t)/u1)

= ADDEdg(t↑u1)(cval(t)/u1), and

G2 := relabp(ADDh−1(Edg(t↑u)∪R(cval(t)/u2))

= relabp(ADDEdg(t↑u2)(cval(t)/u2)),

because R∪h−1(Edg(t ↑ u))= Edg(t ↑ u1)= Edg(t ↑ u2). By the induction hypoth-
esis, and the remark that ec(relabg(H ))= relabg(ec(H )) for all g and H , we have:
ec(G1) = cval(̃ t )/u1 and ec(G2) = cval(̃ t )/u2. By Claim 2.105.1, and the same
remark, we have:

ec(ADDEdg(t↑u)(cval(t)/u))

= relabh◦p−(ADDS(ec(G1)⊕ ec(G2)))

= relabh◦p−(ADDS(cval(̃ t )/u1⊕ cval(̃ t )/u2)),

which is equal to cval(̃ t )/u, as was to be proved.
The proof is fully similar if u is an occurrence of ⊗R,h that is a right son. �
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Hence, for t ∈ T (FκVR
C ) we have constructed a term t̃ in T (FκVR

C∪C ′) that evaluates
to the edge-complement of cval(t). It follows that for every p-graph G, cwd(G̃) ≤
2 ·cwd(G). We have given a construction of t̃ that can be done in linear time for each
fixed set C.

For labeled graphs, we use one set Edg(t ↑ u)λ for each edge label λ, and we use
operations ⊗R,h, where R is replaced by a family of binary relations on C, with one
relation for eachλ. Weneednoother auxiliaryport labels than those inC ′. Vertex labels
are not modified by the construction. Hence, we still have cwd(G̃)≤ 2 · cwd(G).

2.6 Many-sorted graph algebras

In order to minimize the underlying formal framework, we have defined FHR and
FVR as signatures with a single sort. We now define many-sorted variants of these
signatures, and we will turn JS and GP into many-sorted algebras.

The basic idea is to formalize at an abstract level the notion of type of an s- or
p-graph that has emerged naturally from the initial definitions: in the case of JS,
the type of an s-graph G is τ(G), the set of names of its sources and, in the case
of GP, the type of a p-graph G is π(G), the set of labels of its ports. In each case,
the class of all graphs with sources or ports is partitioned according to types, and
the operations of the signatures are specialized accordingly. In the terminology of
Section 1.2, the properties “G has type C” for C ∈Pf (A) form inductive sets relative
to each of the signatures FHR and FVR. The type of an s- or p-graph will be its sort
in the many-sorted formal framework. This technicality will be useful for dealing
with derived operations, for defining equation systems and for defining the notion of
recognizability.

2.6.1 Many-sorted algebras

Algebras with a single sort have been defined in Section 2.1 and are subsumed by the
following definitions.

Definition 2.123 (Many-sorted algebras) Let S be a set of sorts. A functional
S-signature is a set F of function symbols where each f ∈ F has an associated input
type α( f ) in Seq(S) (the set of finite, possibly empty sequences of elements of S)
and an output type σ( f ) in S. The length of α( f ) is the arity of f and is denoted
by ρ( f ). A constant symbol is a symbol of arity 0. We let Fi := { f ∈ F | ρ( f )= i},
F+ := F −F0 and ρ(F) :=max{ρ( f ) | f ∈ F}. We say that F is finite if S and F are
finite.

An F-algebra is an object M= 〈(Ms)s∈S ,( fM)f ∈F 〉, where (Ms)s∈S is the family
of domains of M and ( fM)f ∈F is its family of operations. The (possibly empty) sets
Ms are pairwise disjoint and for each f , fM is a total function Mα( f )→Mσ( f ), where
M(s1,...,sn) denotes Ms1 × ·· · ×Msn . We also say that f has type s1× ·· · × sn→ s if
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α( f ) = (s1, . . . ,sn) and σ( f ) = s. If α( f ) = () (the empty sequence), then f is a
constant symbol and fM is an element of Mσ( f ) called a constant of M.

If M= 〈(Ms)s∈S ,( fM)f ∈F 〉 is an F-algebra, we let M denote
⋃{Ms | s ∈ S}. The

sort σ(m) of an element m of M is the unique sort s such that m ∈ Ms. A subset
of M is homogenous if its elements all have the same sort. Each operation fM is a
partial function : Mρ( f )→M . Dealing with partial functions is always a source of
difficulties that is avoided by using sorts, whenever possible. But not every partial
function g : An→ A can be expressed as fA for some many-sorted algebra A. As a
counter-example, consider A= {0,1} and g : A2→A such that g(0,0)= 0, g(1,1)= 1
and g is undefined for the other pairs of arguments.

Let F be an S-signature (we will frequently omit “functional”). A subsignature H
of F is an S ′-signature such that S ′ ⊆ S and every symbol of H is a symbol of F
with the same input and output types as with respect to F . We write this H ⊆ F . If M
is an F-algebra and N is an H -algebra, we say that N is a subalgebra of M, which
we denote by N⊆M, if H is a subsignature of F , Ns ⊆Ms for every sort s of H and
fN = fM � Nα( f ) for every f ∈H .

For an F-algebra M and a subsignature F ′ of F with set of sorts S ′, we define the
subalgebra M � F ′ := 〈(Ms)s∈S ′ ,( fM)f ∈F ′ 〉 of M. For a set of sorts S ′′ ⊆S, we define
the subsignature F � S ′′ := { f ∈ F | α( f ) ∈ Seq(S ′′),σ( f ) ∈ S ′′} and the subalgebra
M � S ′′ :=M � (F � S ′′).

A homomorphism h : M→ N, where M and N are F-algebras, is a mapping
h : M → N such that h maps Ms to Ns for each s and h( fM(m1, . . . ,mρ( f ))) =
fN(h(m1), . . . ,h(mρ( f ))) for every (m1, . . . ,mρ( f )) in Mα( f ).55 If h is a bijection, it is
an isomorphism and M,N are isomorphic algebras.

The Cartesian product M × N of F-algebras M and N is defined as the
F-algebra 〈(Ms × Ns)s∈S ,( fM×N)f ∈F 〉 with fM×N((m1,n1), . . . ,(mρ( f ),nρ( f ))) :=
( fM(m1, . . . ,mρ( f )), fN(n1, . . . ,nρ( f ))) for every (m1, . . . ,mρ( f )) in Mα( f ) and
(n1, . . . ,nρ( f )) in Nα( f ).

Definition 2.124 (Terms over many-sorted signatures) Let F be an S-signature.
For each s in S , let Ls denote a subset of F∗. The following system of |S| equations:

⎧⎪⎪⎨⎪⎪⎩
...
Ls =⋃ f Lα( f )[1]Lα( f )[2] · · ·Lα( f )[ρ( f )],
...

where, in each equation, the union extends to all f in F such that σ( f ) = s, has a
unique solution because the unicity result of Proposition 3.15 is valid, even if the
system has infinitely many equations. The component Ls of the solution is the set of

55 The first requirement on h means that h is sort-preserving, i.e., that σ(h(m))= σ(m) for every m ∈M .
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terms over F of sort s, denoted by T (F)s. If F is finite, then each language T (F)s is
context-free. We let T (F) :=⋃{T (F)s | s ∈ S}.

Even if F is infinite, these languages enjoy the same unambiguity of parsing as in
the one-sorted case. The definition of the value of a term over F in an F-algebra M is
the same as in the one-sorted case: the mapping valM maps T (F)s to Ms for each s in
S , hence valM is a sort-preserving mapping from T (F) to M . We also denote valM(t)
by tM. Let F ′ ⊆ F . A subset of M is generated by F ′ if it is a subset of valM(T (F ′)).
The subalgebra of M generated by F ′ is the subalgebra M′ with signature F ′ such that
M ′s = valM(T (F ′)s) for every sort s of F ′. (It is the smallest subalgebra of M with
signature F ′; it is empty if F ′ has no constant symbols.) In particular, we say that M
is generated by F ′ if Ms = valM(T (F ′)s) for every s ∈ S. We say that it is finitely
generated if it is generated by a finite subsignature of F ; this implies that S is finite.

We let T(F) denote the F-algebra 〈(T (F)s)s∈S ,( fT(F))f ∈F 〉 of terms, where
fT(F)(t1, . . . , tρ( f )) := ft1 · · · tρ( f ) for every f in F and (t1, . . . , tρ( f )) in T (F)α( f ). The
evaluation mapping valM is the unique homomorphism from T(F) to M, and for this
reason the algebra T(F) is called the initial F-algebra.

Definition 2.125 (Derived operations) A set X is S-sorted if it is equipped with a
mapping σ : X → S; for x ∈ X , we say that σ(x) is the sort of x. If X is an S-sorted
set of variables and F is an S-signature, we denote by T (F ,X )s the set of terms
T (F ∪X )s, and T (F ,X ) := T (F ∪X ). Note that if t belongs to T (F ,X )−X , then the
sorts of the variables having occurrences in t are determined in a unique way. Hence,
the mapping σ : X → S need not be specified if |X | ≥ 2 and all variables of X have
occurrences in t.

Let the standard set of variables Xn = {x1, . . . ,xn} be S-sorted (but the following
definitions extend in an obvious way to a set X of n variables, linearly ordered in
some specified or implicit way). In every F-algebra M, a term t in T (F ,Xn)s defines
a total function : Mσ(x1) × ·· · ×Mσ(xn)→ Ms denoted by tM and called a derived
operation of M. Its definition is the same as for one-sorted algebras, and it will also
be denoted by λm1, . . . ,mn · tM(m1, . . . ,mn), or by λx1, . . . ,xn · t if M is clear from the
context. It is linear if t is linear (see Definition 2.5) and it is strict if every xi ∈ Xn

has an occurrence in t. An extended derived operation is an n-ary function g defined
from an n+ k-ary derived operation tM and k fixed elements a1, . . . ,ak of M of
appropriate sorts, by g(m1, . . . ,mn) := tM(m1, . . . ,mn,a1, . . . ,ak). If a1, . . . ,ak are the
values of terms t1, . . . , tk ∈ T (F), then g is a derived operation defined by the term
t[ti/xn+i; i ∈ [k]] (cf. Definition 2.6 for the substitution of terms).

It will be useful to extend the signature of an algebraM by adding derived operations
designated by new symbols. Here is a more precise definition. Let F be anS-signature.
A derived operation declaration is a 4-tuple 〈g,w,s, tg〉 consisting of:

• a symbol g possibly in F , which is the name of the declared operation;
• a sequence w in Seq(S), its input type, denoted by α(g);
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• an element s of S , its output type, denoted by σ(g);
• and a term tg in T (F ,Xn)s, called its defining term, written with the symbols of

F and the standard set of variables Xn = {x1, . . . ,xn} which is S-sorted such that
(σ (x1), . . . ,σ(xn))= α(g).

If g ∈ F , we impose that α(g) and σ(g) are as in F and that tg = g(x1, . . . ,xn). An
operation 〈g,α(g),σ(g), tg〉 is linear if the term tg is linear, i.e., if each variable xi has
at most one occurrence in tg . This operation is strict if xi has at least one occurrence
in tg for each i= 1, . . . ,n, where n= |α(g)|.

A derived signature of F is a set H of derived operation declarations such that no
two of them have the same name. (A variable xi may have different sorts in different
declarations.) It is an S-signature. We say that H is linear and / or strict if all its
operations are.

Let M be an F-algebra. For given H , and in order to simplify notation, we identify
a derived operation declaration 〈g,α(g),σ(g), tg〉 with its name g, and we denote by
gM the derived operation (tg)M : Mα(g)→Mσ(g). From a derived signature H of F
and an F-algebra M, we obtain the H -algebra MH = 〈(Ms)s∈S ,(gM)g∈H 〉. Such an
algebra is called a derived algebra of M.

The next proposition shows that the derived operations of MH are derived oper-
ations of M. For every term t in T (H ,Ym)s (where Ym is the S-sorted standard set
of variables {y1, . . . ,ym}), we let θH (t) in T (F ,Ym)s be the term obtained from t by
substituting for each function symbol g in t its defining term tg . Formally:

θH (yi)= yi,

θH (g(t1, . . . , tn))= tg[θH (t1)/x1, . . . ,θH (tn)/xn],
where i ∈ [m], tg ∈ T (F ,Xn)σ(g) and tj ∈ T (F ,Ym)σ(xj) for j ∈ [n]. We recall that
· · · [· · ·/x1, . . . , · · ·/xn] denotes the substitution of terms for (first-order) variables; its
semantic meaning is explained in Definition 2.6. The mapping θH is a second-order
substitution.56 If H is linear, then the mapping θH can be computed in linear time.
(By a bottom-up computation on t, one can construct the syntactic tree of θH (t) and
then, by depth-first traversal of this tree, one can obtain θH (t) itself. Both steps can
be done in linear time. For further processing, the syntactic tree of θH (t) is actually
more useful than (the word) θH (t).)

Proposition 2.126 Let H be a derived signature of a signature F and let M be an
F-algebra. For every term t in T (H ,Ym), we have tMH = (θH (t))M.

Proof: Straightforward induction on the structure of t.

56 In Formal Language Theory, terms are usually called “trees,” and the mapping θH is called a tree
homomorphism, cf. [*Com+] Section 1.4. It reduces to a word homomorphism if F = F1 and H =H1
(cf. Definition 2.7). If tg = f (x1, . . . ,xρ(g)) for every g, then the mapping θH replaces function symbols
by function symbols of the same arity. Such a mapping is called an alphabetic relabeling.
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Definition 2.127 (Effectively given many-sorted algebras) We extend Defini-
tion 2.8 to many-sorted algebras. To be encoded and (semi-)effectively given, sets of
sorts, signatures and algebras must be finite or countable.

An S-sorted signature F is effectively given if the sets S and F are effectively given,
and the input and output type mappings α and σ are computable (and algorithms
computing these mappings must be specified, cf. Definition 2.8). It implies that the
arity mapping is computable.

An F-algebra M is semi-effectively given if the signature F is effectively given,
the set M is semi-effectively given, the sort mapping σ : M → S is computable
and the operations of M are computable in a uniform way by the mapping ζM as in
Definition 2.8 (and algorithms computing these mappings must be specified). It is
effectively given if, additionally, M is effectively given (i.e., |M | is specified) and the
mapping s �→ |Ms| from S to N ∪ {ω}, which defines the cardinality of Ms for each
s in S , is computable (and an algorithm computing it must be specified).

As in the one-sorted case, if F is effectively given, then the algebra T(F) is semi-
effectively given and the mapping valM is computable. If F generates M, then a
computable mapping can determine for each element of M a term in T (F) that
evaluates to it.

If M is (semi-)effectively given, then the domains Ms are decidable subsets of M
because the sort mapping σ of M is computable, and hence they are (semi-)effectively
given by their standard encodings (see Definition 2.8). From a specification of M, an
algorithm can be constructed that, on input s ∈ S, computes a specification of Ms.

It is easy to check that the Cartesian product of two (semi-)effectively given algebras
M and N is (semi-)effectively given, using the standard encoding of M × N . A
specification of the product algebra can be constructed from those of M and N.

A derived signature H of an S-signature F can be viewed as a pair H = 〈H ◦,δH 〉,
where H ◦ is an ordinary S-signature and δH is a mapping : H ◦ → T (F ,X ×S) such
that X ×S is the S-sorted set of variables with X := {x1,x2, . . . } and σ(〈xi,s〉)= s for
every 〈xi,s〉 ∈ X × S, and such that for every g ∈ H ◦ of type s1 × ·· · × sn → s
we have δH (g) ∈ T (F ,{〈x1,s1〉, . . . , 〈xn,sn〉})s. If 〈g,w,s, tg〉 is a derived opera-
tion declaration in H , then g ∈ H ◦ with α(g) = w and σ(g) = s, and δH (g) =
tg[〈x1,w[1]〉/x1, . . . , 〈xn,w[n]〉/xn] with n := |w|; note that (δH (g))M = (tg)M for
every F-algebra M. We say that the derived signature H is effectively given if F and
H ◦ are effectively given and δH is computable (and an algorithm computing it must
be specified).

2.6.2 The many-sorted HR algebra

Although the operations of the algebra JS are total, we turn this algebra into a
many-sorted one. We write definitions and statements for unlabeled graphs only.
The extension to labeled graphs is straightforward since the only modifications for
this extension concern the constant symbols and the associated basic graphs.
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Definition 2.128 (Turning FHR into a many-sorted signature) As in Section 2.3,
we let A be the countable set of source names. We let S := Pf (A) be the countable
set of sorts. For each C ∈ S, we let J SC be the set57 {G ∈ J S | τ(G) = C}. This
set will be the domain of sort C of the many-sorted HR algebra. We now define the
operations of that algebra:

(a) For C,D ∈ S , we let �C,D be the binary operation of type C×D→C ∪D that
is the restriction of � to J SC ×J SD.

(b) For C ∈ S and B⊆C, we let fgB,C of type C→C−B be the restriction of fgB

to J SC . (Note that for arbitrary B we have fgB � J SC = fgB∩C,C .)
(c) If C,D ∈ S and h is a bijection : C→D, then we let renh,C of type C→D be

the restriction to J SC of renh′ , where h′ is the permutation of C ∪D that extends h
and is defined in Lemma 2.37.

(d) If a constant symbol in FHR defines an s-graph of type C, then we let its sort
be C.

Hence, we have defined an S-signature that we will denote by F tHR. The associated
F tHR-algebra JSt has domains J SC for each C ∈ S and its operations have been
defined above as restrictions of operations of JS. Clearly, both F tHR and JSt are
effectively given. If E is a finite set of source labels, we let JSt[E] be the subalgebra
of JSt with the finite set of sorts P(E), with domains J SC for C ⊆ E, and the
operations of F tHR restricted to C,D ⊆ E (cf. (a)–(d) above). To be precise, these
operations are �C,D, fgB,C for B⊆C, renh,C for h such that h(C)⊆E and the constant
symbols defining s-graphs of type included in E. This finite signature is denoted by
F tHR

E . It generates the subalgebra JSt,gen[E] of JSt[E] (cf. Remark 2.39(1)).

We will compare the derived operations of JS and of JSt, and, in particular, the
terms of T (FHR) and T (F tHR) that all evaluate to s-graphs in J S.

Definition 2.129 (Untyping) We recall that Xn is the standard set of variables
{x1, . . . ,xn}, now assumed to be Pf (A)-sorted. Untyping is the mapping Unt :
T (F tHR,Xn)→ T (FHR,Xn) that omits subscripts relative to sorts. Formally:

Unt(t) := t if t is a constant symbol or a variable (in Xn),

Unt(t1 �C,D t2) := Unt(t1)� Unt(t2),

Unt(fgB,C(t)) := fgB(Unt(t)),

Unt(renh,C(t)) := renh′(Unt(t)),

where in the last case, h is a bijection : C→ h(C) and h′ is the permutation of C∪h(C)

that extends h and is defined in Lemma 2.37.

57 Do not confuse J SC with J S[C] = {G ∈ J S | τ(G) ⊆ C}, cf. Remark 2.39(1). Note that J S∅ =
J S[∅] is the set of all graphs.
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Proposition 2.130 For every term t in T (F tHR,Xn) the mapping Unt(t)JS : J Sn→
J S extends the mapping tJSt : J Sσ(x1) × ·· · ×J Sσ(xn)→ J Sσ(t). If n = 0, then
Unt(t)JS and tJSt are the same s-graph in J Sσ(t).

Proof: By induction on the structure of t; straightforward from the definitions.

We now consider an inverse typing mapping.

Definition 2.131 (Typing) Let the variables x1, . . . ,xn of Xn have respective sorts
β(x1), . . . ,β(xn) in Pf (A). We define two mappings on T (FHR,Xn), denoted by σ

and Typ, whose respective values are a sort and a term in T (F tHR,Xn). They are
defined as follows:

σ(xi) := β(xi),

σ(c) := τ(cJS) if c is a constant symbol,

σ(t1 � t2) := σ(t1)∪σ(t2),
σ( fgB(t)) := σ(t)−B,

σ(renh(t)) := h(σ (t)),

Typ(t) := t if t is a constant symbol or a variable,

Typ(t1 � t2) := Typ(t1)�σ(t1),σ(t2) Typ(t2),

Typ( fgB(t)) := fgB∩σ(t),σ(t)(Typ(t)),

Typ(renh(t)) := renh′,σ(t)(Typ(t)),

where in the last case, h′ := h � σ(t) (hence h′ is a bijection : σ(t)→ h(σ (t)) ).
The term Typ(t) may contain operations of the form fg∅,C or renh,C such that h

is the identity on C. Such operations define identity mappings on J SC and hence
can be deleted from the term Typ(t). Note that σ and Typ depend on the mapping β

that assigns sorts to variables; we write them σβ and Typβ if we need to make this
dependency explicit. Note also that σ(t)= τ(t) for t ∈ T (FHR) (see Definition 2.35).

Proposition 2.132 Let β assign sorts to the variables of Xn. For every term t
in T (FHR,Xn) and all s-graphs G1, . . . ,Gn of respective types β(x1), . . . ,β(xn) we
have:
(1) τ (tJS(G1, . . . ,Gn))= σβ(t);
(2) Typβ(t) ∈ T (F tHR,Xn)σβ(t);
(3) Typβ(t)JSt(G1, . . . ,Gn)= tJS(G1, . . . ,Gn).

If n= 0, then the mappings σβ and Typβ do not depend on β, and we have:
(4) τ (tJS)= σ(t);
(5) Typ(t) ∈ T (F tHR)σ(t);
(6) Typ(t)JSt = tJS.
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Proof: As for the previous proof, by a straightforward induction on the structure
of t.

Note that Unt(Typ(t))= t for every term t in T (FHR), where t is the reduced term
of Proposition 2.38. Note also that the mappings Unt and Typ can be computed in
linear time by straightforward implementations of their inductive definitions.

We now consider the restriction of these definitions and results to s-graphs of type
included in some finite subset E of A. It is clear (by a quick inspection) that, for every
finite set E of source names, all definitions of this section can be adapted (let us say
restricted) to s-graphs of type included in E, to the finite signatures FHR

E and F tHR
E ,

and to the subalgebras JS[E] and JSt[E] of JS and JSt respectively. The associated
typing and untyping mappings are easy to define and Propositions 2.130 and 2.132
extend to them. It follows that val(T (F tHR

C )) = val(T (FHR
C )), hence, that the width

of an s-graph is the same whether it is defined with respect to F tHR or to FHR (cf.
Section 2.4.5).

Example 2.133 (Series-composition) We recall from Section 1.1.3 that, for directed
s-graphs, series-composition maps J S[2] × J S[2] to J S [2].58 As observed in
Section 1.4.2, it can be defined by the term t = fg3(ren2↔3(x1)� ren1↔3(x2)) over
FHR. The corresponding binary derived operation tJS applies to any two s-graphs
G,H given as arguments. However, it corresponds to the graph-theoretical series-
composition only if G and H both have type {1,2}. The term t′ = fg4(ren2↔4(x1)�

ren1↔4(x2)) defines the same binary operation on J S[2]. But tJS �= t′
JS

, as one checks
by considering s-graphs of type {1,2,3}. With the above definitions, we can see that
series-composition is Typβ(t)JSt as well as Typβ(t′)JSt , where β assigns sort {1,2}
to x1 and to x2. It is clear that σβ(t) = σβ(t′) = {1,2}. The term Typβ(t) looks as
follows:

fg3,{1,2,3}(ren2↔3,{1,2}(x1)�{1,3},{2,3} ren1↔3,{1,2}(x2)).

Let us abbreviate {1,2} by s. If H is the set of derived operation declarations consisting
of 〈•,(s,s),s,Typβ(t)〉, 〈�,(s,s),s,x1 �s,s x2〉 and 〈e,(),s,

−→
12〉, then H is a derived

signature of (the directed version of) F tHR, and the (one-sorted) subalgebra JSt
H � {s}

of the derived H -algebra JSt
H is equal to the algebra Jd

2 of Section 1.1.3. The domain
of the subalgebra of Jd

2 generated by its signature H � {s} is the set of series-parallel
graphs. �

The following example anticipates Chapters 3 and 4, where we will study in detail
the equation systems first introduced in Section 1.1.4.

Example 2.134 We consider the equation written with the series-composition opera-
tion • that is defined by the term t of Example 2.133 (not the one defined by Typβ(t)):

X = (X � X )∪ (X •X )∪ fg1(X )∪ fg2(X )∪{e}, (2.7)

58 The set J S[2] = {G ∈J S | τ(G)= {1,2}} is equal to the set J d
2 of Section 1.1.3.
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where e is the constant symbol
−→
12 with value 1• → •2. The variable X ranges

over sets of s-graphs. It is not hard to see that all graphs in the set L defined as
the least solution in P(J S) of Equation (2.7), have types ∅, {1}, {2} or {1,2}.
Since they have no other type like {1,2,3}, series-composition can be defined in
this equation by t′ as well as by t (these terms are defined in Example 2.133). If we
impose a “type discipline,” we cannot use this equation. Equation systems relative
to many-sorted signatures are defined so that all terms in an equation have the same
sort, and this is not the case for Equation (2.7). However, by using the method of
Section 1.2.5 and the observation that types have an “inductive behavior,” we can
transform Equation (2.7) into a system of equations over F tHR. In what follows we
write 12 for {1,2}, 1 for {1}, 2 for {2}, and 0 for ∅. For s1,s2 ∈ {0,1,2,12} we define
•s1,s2 := Typβ(t) with β(xi) := si for i= 1,2; it is the restriction of • to J Ss1×J Ss2 .
For s∈ {0,1,2,12}we let Ls := {G ∈ L | τ(G)= s}. These sets Ls satisfy the following
equations:

L12 = L12 �12,12 L12 ∪ L1 �1,12 L12 ∪ L2 �2,12 L12

∪L0 �0,12 L12 ∪ L1 �1,2 L2

∪L12 •12,12 L12 ∪ L12 •12,2 L2 ∪ L1 •1,12 L12 ∪ L1 •1,2 L2 ∪ {e},

L1 = L1 �1,1 L1 ∪ L1 �1,0 L0

∪L12 •12,1 L1 ∪ L12 •12,0 L0 ∪ L1 •1,1 L1 ∪ L1 •1,0 L0 ∪ fg2(L12).

In writing these equations we use the fact that � is commutative and we let set
union have lower priority than the other binary operations. Similar equations can be
written for L2 and L0. We obtain thus a “typed” system of four equations written
over F tHR, the least solution of which in P(J S) is the 4-tuple (L12,L1,L2,L0). Then
L= L12∪L1∪L2∪L0. Equation (2.7) is clearly much shorter and more readable than
this system. In general, for every untyped equation system, the types of the s-graphs
it defines are not immediate from the syntax but can be computed by an algorithm.
We will discuss this aspect in Chapter 4, Proposition 4.10. �

2.6.3 The many-sorted VR algebra

The definitions and results of the previous section can be adapted to the signature
FVR, to the algebra GP and to their restrictions FVR

E and GP[E] for a finite set E of
port labels in a straightforward way.

The relevant notion of type of a p-graph G isπ(G)= portG(VG) and will be the sort
of G. Hence the set of sorts is S :=Pf (A), as in the case of JSt . For each C ∈ S, we
let GPC be the set {G ∈GP |π(G)=C}. It is the domain of sort C of the many-sorted
VR algebra. The operations of that algebra are obtained by restricting the operations
of GP to the sets GPC , as in the case of JS, cf. Definition 2.128.
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Disjoint union ⊕ yields binary operations ⊕C,D : C × D→ C ∪ D. The unary

operations adda,b and
−→
adda,b yield adda,b,C and

−→
adda,b,C respectively, for all sets

(sorts) C containing a and b. These operations have type C→C. Since
−→
adda,b(G)=G

if {a,b} is not included in π(G), we need not consider
−→
adda,b,C or adda,b,C for that

case. The unary operation relabg for g ∈ [A→A]f yields unary operations relabh,C

with h = g � C, of type C → h(C); thus, there is an operation relabh,C for every
mapping h : C→ A. Finally the constants a, a
 (used to define abstract p-graphs)
and a(x), a
(x) (for defining concrete p-graphs) are of sort {a}, and the constant ∅
has sort ∅.

We obtain in this way S-signatures F tVR and F tcVR and a many-sorted F tVR-
algebra denoted by GPt . We also obtain subalgebras GPt[E] and GPt,gen[E] of
GPt by restriction to p-graphs with port labels in a set E, and in the latter case
to p-graphs that are defined by terms over F tVR

E . Definitions 2.129 and 2.131 and
Propositions 2.130 and 2.132 have analogs that are easy to spell out. As in the case of
the HR algebra, we have that val(T (F tVR

C )) = val(T (FVR
C )), hence, that the clique-

width of a p-graph is the same whether it is defined with respect to F tVR or to FVR.
The extensions to labeled p-graphs are also straightforward.

2.7 References

The literature on tree-width, clique-width and related complexity measures expands
every year with the addition of scores of articles and communications to confer-
ences. Concerning tree-width, the articles by Bodlaender et al. [*Bod93, *Bod98,
Bod96] and [BodGHK] cover the main results. The situation concerning clique-
width is much less “stable”. The article [*KamLM] surveys recent results about
clique-width.

Whereas a graph class has bounded tree-width if and only if it excludes a fixed pla-
nar graph as a minor (Proposition 2.61), there is no such clear-cut result characterizing
bounded clique-width. Undirected graphs excluding P4 as an induced subgraph have
clique-width at most 2. Many efforts have been devoted to finding generalizations of
this result. The undirected graphs, every induced subgraph of which with q vertices
has at most q−3 induced paths isomorphic to P4, have clique-width at most q if q≥ 7
and unbounded clique-width if q ∈ {4,5,6} ([MakRot]).

A complete classification of graph classes defined by excluding one or more
4-vertex graphs as induced subgraphs is established in [BraELL]: in each case,
either an upper-bound to the clique-width is given or a proof that the clique-width
is unbounded. A similar classification is presented in [BraDLM] for graph classes
defined by excluding one or more 1-vertex extensions of P4. For having a class
of bounded clique-width, one must exclude at least two such graphs, for instance
1⊕ P4 and 1⊗ P4, yielding clique-width at most 16. Excluding P5 and 1⊗ P4
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yields clique-width at most 5 but excluding 1⊕ P4 and P5 yields no bound on the
clique-width.

Unit interval graphs have unbounded clique-width [GolRot] but every hereditary
proper class of unit interval graphs (i.e., closed under taking induced subgraphs and
not containing all unit interval graphs) has bounded clique-width ([Loz]).

It is not yet completely clear what properties imply that a class of graphs has
bounded clique-width. Lower-bounds to clique-width are difficult to establish: some
tools are given in [CorRot, GolRot, MakRot]. By indirect arguments using monadic
second-order transductions (Chapter 7), one can sometimes prove quickly that a class
of graphs has unbounded clique-width without obtaining a specific lower-bound for
the clique-width of particular graphs of this class.

The first article introducing the notion of a term evaluating to a graph and the alge-
braic view of context-free graph grammars is [BauCou], where such terms are called
graph expressions. The grammars in [BauCou] are based on rewriting by hyperedge
replacement; this notion will be presented in Section 4.1.5 (see also Section 4.6). The
signature FHR, first defined in [Cou93], simplifies the one defined in [BauCou] and
yields the exact characterization of tree-width (Theorem 2.83). The one of [BauCou]
yields no such characterization.

The notion of clique-width is implicit in [CouER] where graph operations are
defined for giving an algebraic formulation of certain context-free graph grammars
that are based on rewriting by hyperhandle replacement, where a hyperhandle is
a hyperedge together with its incident vertices. It is shown in [CouER] that these
grammars have the same power as context-free vertex replacement graph grammars
(technically called C-edNCE graph grammars,59 see [*EngRoz] for a detailed expo-
sition). Clique-width is defined and studied in [CouOla]. The closely related notion of
NLC-width (denoted by nlcwd) has been introduced in [Wan]. The graph operations
defined in this article model the rewriting mechanism of NLC graph grammars.60

NLC-width and clique-width are related by cwd(G) ≤ nlcwd(G) ≤ 2 · cwd(G), and
these inequalities are proved by effective linear time transformations. It follows that
the same sets of graphs have bounded clique-width and NLC-width.

A variant of clique-width can be defined by allowing vertices to have several
port labels from a finite set C. This variant is used in [CouOla] as an auxiliary
notion and, in a more important way, in [CouTwi] where a result corresponding to
Proposition 2.103 is proved. The proof of Proposition 5.4 of [CouOla] is incorrect.
It shows that, roughly speaking, if the “width” of a graph is k with respect to the
operations of FVR generalized so as to handle multiple labels, then its clique-width
is at most 2k . The idea is to encode a set of at most k labels attached to a vertex
by a single label. An operation adda,b is then replaced by the composition of the

59 The C stands for “context-free” (or “confluent”) and the NCE stands for “neighborhood controlled
embedding”.

60 The NLC graph grammars, where NLC stands for “node label controlled,” are particular NCE graph
grammars, see [*EngRoz].
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operations addA,B such that a ∈ A and b ∈ B, where A and B are (or encode) subsets
of C. This is incorrect because one should have A �= B in addA,B. Proposition 2.119
“fixes the bug” and yields the bound of 2k+1 instead of 2k . This proposition is used
for proving Theorem 5.5 of [CouOla] (cf. Proposition 2.114, Footnote 52) but, in the
particular terms used in this proof, the operations addA,A do not occur, hence this
proof is correct.

The notion of modular decomposition (also called substitution decomposition) is
surveyed in [*MöhRad] and presented with another terminology in [*EhrHR]. A
corresponding algebra of graphs is studied in [Cou96a], [CouWei] and [LodWei].

Many-sorted algebras are presented in detail in the book [*Wec]. Second-order
substitutions are studied in the survey article [*Cou83].



3

Equational and recognizable sets
in many-sorted algebras

This chapter deals with many-sorted algebras in general. We define and study their
equational and recognizable sets. These algebras may have infinitely (but countably)
many sorts and operations. The use of infinite signatures, even in the case of a single
sort, is motivated by the intended applications to the graph algebras JS and GP. In the
framework of these two algebras, equational and recognizable sets of graphs will be
studied in Chapter 4. We will pay special attention to effectivity questions: in view of
the algorithmic applications, the equational and recognizable sets must be specified
in finitary ways.

In Section 3.1 we define the equational sets of a many-sorted algebra; the def-
inition is based on the well-known Least Fixed-Point Theorem; the context-free
languages and the regular sets of terms form the motivating examples. An easy but
fundamental result is that the image of an equational set under a homomorphism
of algebras is equational. In Section 3.2 we present some tools to transform and
simplify equation systems, and define derivation trees. We conclude with observa-
tions on the usefulness of equation systems and compare them with closely related
specification devices. Section 3.3 is a review of definitions and basic results about
automata on terms (usually called tree automata, and assumed to be known from, e.g.,
[*Com+] or [*GecSte]). Section 3.4 introduces the recognizable sets of a many-sorted
algebra; several equivalent definitions are given in terms of homomorphisms, con-
gruences and inductive sets of predicates. (The latter definition has a clear intuitive
meaning for the verification of properties of the elements of equational sets.) The reg-
ular languages and the regular sets of terms form two motivating examples. Several
types of effective specifications of recognizable sets are defined and compared. The
main closure result states that the intersection of an equational and a recognizable
set is equational, with an effective construction. It generalizes the classical result
that the intersection of a context-free and a regular language is context-free, and is
essential for applications to graphs. We conclude the section with a discussion of
recognizability.
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3.1 The equational sets of an algebra

Algebras and many-sorted algebras are defined in Sections 2.1 and 2.6.1.

3.1.1 Powerset algebras

In order to specify by equations certain subsets of algebras, we extend their operations
to their powersets.

Definition 3.1 (Powerset algebras) Let F be an S-signature. We enlarge it into F∪
by adding, for every sort s in S, a new symbol∪s of type s×s→ s and a new constant
�s of sort s. With an F-algebra M, we associate its powerset algebra:

P(M) := 〈(P(Ms))s∈S , ( fP(M))f ∈F∪〉,

where

�sP(M) := ∅,
A1 ∪sP(M) A2 := A1 ∪A2 for A1,A2 ⊆Ms,

fP(M)(A1, . . . ,Ak) := { fM(a1, . . . ,ak) | a1 ∈ A1, . . . ,ak ∈ Ak}
for Ai ⊆Msi where α( f )= (s1, . . . ,sk).

Hence P(M) is an F∪-algebra (let us not worry that ∅ has several sorts1). An F∪-
algebra of the form P(M) as above will be called a powerset F-algebra. Its operations
are monotone, which means that if f ∈F∪ has type s1×·· ·×sk→ s and Ai⊆Bi ⊆Msi

for each i, then fP(M)(A1, . . . ,Ak )⊆ fP(M)(B1, . . . ,Bk). They are even additive: if Ai=⋃
j∈J Bj , then fP(M)(A1, . . . ,Ai, . . . ,Ak)=⋃j∈J fP(M)(A1, . . . ,Ai−1,Bj,Ai+1, . . . ,Ak).
We recall from Definition 2.5 that Xn,Yk denote standard sets of variables, respec-

tively {x1, . . . ,xn} and {y1, . . . ,yk }. For every term t ∈ T (F ,Xn)s, where Xn is S-sorted
and s ∈ S , we obtain a derived operation of M, denoted by tM, and also a derived
operation of P(M), denoted by tP(M), that maps P(Mσ(x1))× ·· · ×P(Mσ(xn)) into
P(Ms). The operations tP(M) are monotone. This follows from the monotonicity of
the operations of P(M) and an induction on the structure of t.

In the following lemma which relates these derived operations, we write t =
t̃ [xi1/y1, . . . ,xik /yk ] for some term t̃ in T (F ,Yk ) such that ListVar(̃t ) = y1 · · ·yk , cf.
Definition 2.6. There is actually a unique term t̃ satisfying these conditions. The sort
of yj is necessarily σ(xij ).

Lemma 3.2 For all A1, . . . ,An with Ai ⊆Mσ(xi) for i= 1, . . . ,n, we have:

(1) tP(M)(A1, . . . ,An)⊇ {tM(a1, . . . ,an) | a1 ∈ A1, . . . ,an ∈ An};
1 Strictly speaking, we have an empty set of each sort. Thus, the powersets P(Ms) are pairwise disjoint.
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(2) equality holds in (1) if, for every i = 1, . . . ,n, |Ai| ≤ 1 whenever the variable xi

has more than one occurrence in t, and Ai �= ∅ whenever xi has no occurrence
in t;

(3) tP(M)(A1, . . . ,An) = ∅ if for some i, we have Ai = ∅ and xi has at least one
occurrence in t;

(4) tP(M)(A1, . . . ,An)= {̃ tM(a1, . . . ,ak ) | a1 ∈ Ai1 , . . . ,ak ∈ Aik }.

Proof: By induction on the structure of t. For proving (4) we observe that
tP(M)(A1, . . . ,An)= t̃P(M)(Ai1 , . . . ,Aik ) and we use (2).

The inclusion in (1) may be strict: if L⊆ A∗ is a language consisting of at least two
words and t = x1 · x1, then t̃ = y1 · y2 (with i1 = i2 = 1) and

L ·L= tP(W(A))(L)= t̃P(W(A))(L,L)= {̃tW(A)(w1,w2) |w1,w2 ∈ L}
= {w1 ·w2 |w1,w2 ∈ L} ⊃ {w2 |w ∈ L} = {tW(A)(w) |w ∈ L},

where the word algebra W(A) is defined in Definition 2.7. This also shows that, in
general, tP(M) is not additive.

Two terms t and t′ in T (F∪,Xn) are equivalent in P(M), which is denoted by
t≡P(M) t′, if tP(M)= t′P(M)

. They are P-equivalent, denoted by t≡P t′, if t≡P(M) t′
for every F-algebra M.

Definition 3.3 (Polynomials) Let F be an S-signature, let X be an S-sorted set of
variables and let s ∈ S. A monomial is a term in T (F ,X ). A polynomial of sort s is
a term in T (F∪,X )s of the form either �s, or t1, or t1 ∪s · · · ∪s tp for some pairwise
distinct monomials t1, . . . , tp ∈ T (F ,X )s with p≥ 2. We denote by Pol(F ,X )s the set
of polynomials of sort s, built with F ,∪s,�s and X , and by Pol(F ,X ) the union of
the sets Pol(F ,X )s for all sorts s. We use infix notation for the binary symbol ∪s and
omit parentheses (as explained in Definition 2.4). We can do so since set union is
associative. We will frequently omit the subscript s in ∪s and �s.

If D is a finite subset of T (F ,X )s, D = {t1, . . . , tq}, we will denote by
⋃

D the
polynomial t1∪ t2∪·· ·∪ tq. Since set union is commutative, we make the convention
that

⋃
D is the same polynomial for every enumeration of D. If q= 0, then

⋃
D=�,

and if q= 1, then
⋃

D= t1. We will say in all cases that this polynomial is the union
of the set of terms D, even if |D| ≤ 1. For every t ∈ T (F∪,X ), we define the set of
monomials of t, a subset of T (F ,X ) called its expansion and denoted by Mon(t):

Mon(x) := {x} for x ∈ X ,
Mon(�) := ∅,

Mon(t1 ∪ t2) := Mon(t1)∪Mon(t2),
Mon( f (t1, . . . , tk)) := { f (m1, . . . ,mk) |mi ∈Mon(ti), 1≤ i ≤ k}.
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Using the additivity of the operations of P(M), it is easy to show by induction
on the structure of t that for all A1, . . . ,An with Ai ⊆ Mσ(xi) for i = 1, . . . ,n, we
have

tP(M)(A1, . . . ,An)=
⋃
{mP(M)(A1, . . . ,An) |m ∈Mon(t)}.

Lemma 3.4 Every term t is P-equivalent to the polynomial
⋃

Mon(t). �

Definition 3.5 (Homomorphisms of powerset algebras) Let F be an S-signature,
M and N be two F-algebras and h : M→N be a homomorphism. We let Ph : P(M)→
P(N) be defined by

Ph(A) := h(A)= {h(a) | a ∈ A} ⊆ Ns

for every s ∈ S and A ⊆ Ms. It is a homomorphism of F∪-algebras. (We use the
notation Ph to stress that this mapping is a homomorphism of F∪-algebras.)

3.1.2 Equation systems and equational sets

We now define equation systems and their solutions in powerset algebras.

Definition 3.6 (Equation systems) Let S be a set of sorts and F be an S-signature.
Let X be a finite S-sorted set of variables. An equation is an ordered pair (x, t) such
that x ∈ X and t ∈ T (F∪,X )σ(x). It will be written x = t and will be said to define x.
An equation system over F with set of unknowns X is a set of equations consisting
of one equation that defines each unknown. The set of unknowns of an equation
system S is denoted by Unk(S). It will be useful to assume that the set Unk(S) is
linearly ordered. In most cases, it will be the standard set Xn= {x1, . . . ,xn} ordered by
increasing indices. The sorts of these unknowns are not fixed, they are specified by
a mapping σ : Xn→ S, depending on the considered system. The generic equation
system S over F is thus denoted by

S = 〈x1 = t1, . . . ,xn = tn〉 (3.1)

In examples, it will also be written as follows, in a more readable way:⎧⎪⎨⎪⎩
x1 = t1,

...
xn = tn.
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Here is, for example, an equation system T (with ρ( f )= 2 and ρ(a)= ρ(b)= 0):⎧⎪⎨⎪⎩
x1 = fx1(x2 ∪ x3)∪ a,

x2 = x1 ∪ fx1a,

x3 = f (x1 ∪ x2)x3 ∪ b.

We denote by F(S) the finite subsignature of F consisting of the symbols having
occurrences in S. Its set of sorts is the finite set Sort(S) consisting of all sorts of S that
occur as σ( f ) or in the sequence α( f ) for some f in F(S), together with the sorts of
the unknowns of S. (We may have in S an equation x= x∪y, where the common sort
of x and y does not occur in the type of any symbol in F(S). In this case, x defines the
empty set because the corresponding component of the least solution of S is empty.)
Hence, S is an equation system over F(S); in fact, F(S) is the smallest subsignature
F ′ of F such that S is an equation system over F ′. As an example, F(T )= { f ,a,b}
for the above system T .

A polynomial system is an equation system whose equations have right-hand sides
that are polynomials. A polynomial system is uniform if each monomial of the right-
hand side of an equation has exactly one occurrence of a function symbol (hence is
of the form f (xi1 , . . . ,xik ) for f ∈ Fk ). It is quasi-uniform if each such monomial has
at most one occurrence of a function symbol (hence can also be an unknown).

Let M be an F-algebra. A solution of S in P(M) is an n-tuple (L1, . . . ,Ln) such that
Li⊆Mσ(xi) and Li = tiP(M)(L1, . . . ,Ln) for each i= 1, . . . ,n. We say that (L1, . . . ,Ln) is
an oversolution of S if Li ⊇ tiP(M)(L1, . . . ,Ln) for each i. We will mainly be interested
in the least solution (that turns out to be also the least oversolution), where n-tuples
of sets are ordered component-wise: (L1, . . . ,Ln)⊆ (L′1, . . . ,L′n) if and only if Lj ⊆ L′j
for each j. A solution (L1, . . . ,Ln) is the least solution if and only if (L1, . . . ,Ln) ⊆
(L′1, . . . ,L′n) for every solution (L′1, . . . ,L′n), and it is unique with this minimality
property; similarly for the least oversolution.

If S ′ = 〈x1 = t′1, . . . ,xn = t′n〉 is another system over F such that ti ≡P t′i for each
i = 1, . . . ,n, then S and S ′ have the same solutions and the same oversolutions in
P(M), hence also the same least solution. In particular, Lemma 3.4 says that each
term t in T (F∪,X ) isP-equivalent to a polynomial. Hence, if we replace in an equation
system S each right-hand side of an equation by an equivalent polynomial, we obtain
a polynomial system that has the same solutions and oversolutions as S. For example,
here is the (quasi-uniform) polynomial system T ′ associated with the above system T :⎧⎪⎨⎪⎩

x1 = fx1x2 ∪ fx1x3 ∪ a,

x2 = x1 ∪ fx1a,

x3 = fx1x3 ∪ fx2x3 ∪ b.

Hence there is no loss of generality in considering only polynomial systems, which
we will do in the sequel.
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It is convenient to order linearly the set of variables of an equation system, but
this order is essentially irrelevant: if a system S ′ is obtained from a system S by
permuting its equations, hence by changing the ordering of Unk(S), then its solutions
and its oversolutions are obtained from those of S by permuting their components. In
particular, if we are interested in the set associated with a particular unknown, there
is no loss of generality in assuming that this unknown is x1.

We will be interested in the least solutions of equation systems, because we consider
them as systems of mutually recursive definitions. An equation in languages, for
instance x = axx ∪ b where a,b are letters and the unknown x denotes a language
over {a,b}, can be seen as a recursive definition of a language. More generally, an
equation system is a set of mutually recursive definitions. Such systems may have
several solutions. For instance, the equation y= yy∪a has for solutions the languages
a∗(={a}∗), a+(= aa∗), {a,b}∗ and {a,bb}∗ among others. However, a+ is the (unique)
least solution. As in Semantics for defining the meaning of a recursive definition, we
will take the least solution as the (canonical) solution.

With every system S as in (3.1), we associate a function SP(M) that maps
P(Mσ(x1))×·· ·×P(Mσ(xn)) into itself and is defined by

SP(M)(L) := (t1P(M)(L), . . . , tnP(M)(L)),

where L stands for (L1, . . . ,Ln). A solution (resp. an oversolution) of S in P(M) can
also be defined as a solution of the equation x= SP(M)(x) (resp. of the inequation x⊇
SP(M)(x)) where x stands for (x1, . . . ,xn). They are called respectively a fixed-point
of the function SP(M) and a pre-fixed-point of this function.

A sequence of n-tuples (L(i)
1 , . . . ,L(i)

n )i∈N is increasing2 if (L(i)
1 , . . . ,L(i)

n ) ⊆
(L(i+1)

1 , . . . ,L(i+1)
n ) for every i ∈N . It has a least upper-bound (for component-wise

inclusion) denoted like a union and defined by⋃
i∈N (L(i)

1 , . . . ,L(i)
n ) := (

⋃
i∈N L(i)

1 , . . . ,
⋃

i∈N L(i)
n ).

The following result is well known (see the book [*ArnNiw] that studies in detail
least and greatest fixed-points) but we will sketch its proof for completeness. It is an
instance of the Least Fixed-Point Theorem.3

Theorem 3.7 Let S be an equation system over an S-signature F . Let M be an
F-algebra. The sequence (Si

P(M)
(∅, . . . ,∅))i∈N is increasing. Its least upper-bound is

the (unique) least solution, and also the (unique) least oversolution of S in P(M).

2 Two consecutive elements may be equal; a sequence is strictly increasing if no two elements are equal.
3 This theorem, usually attributed to Tarski and/or to Kleene, says that every monotone and ω-continuous

function : E→ E where E is an ω-complete partial order with a least element has a least fixed-point.
See [LasNS] for a review of its uses in Semantics.
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Proof: The partially ordered set E :=P(Mσ(x1))×·· ·×P(Mσ(xn)) has least element
∅ := (∅, . . . ,∅) and is ω-complete, which means that every increasing sequence has
a least upper-bound. We have noted above that the derived operations tP(M) are
monotone. It follows that the mapping SP(M) : E→ E is monotone, which means
that SP(M)(L) ⊆ SP(M)(L′) if L,L′ ∈ E and L ⊆ L′. The mapping SP(M) is also

ω-continuous, which means that SP(M)(
⋃

i∈N L
(i)
) =⋃i∈N SP(M)(L

(i)
) whenever

(L
(i)
)i∈N is an increasing sequence. This fact can be proved for the operations fP(M)

(which are even additive), the derived operations tP(M) and then the mapping SP(M).
The detailed proof is routine.

We have ∅ ⊆ SP(M)(∅), hence Si
P(M)

(∅)⊆ Si+1
P(M)

(∅) for every i (by using i times

the monotonicity of SP(M)). We let A :=⋃i∈N Si
P(M)

(∅). By the ω-continuity of

SP(M), we have A= SP(M)(A), hence A is a solution, and also an oversolution. If B
is any oversolution of S in P(M), then we have Si

P(M)
(∅)⊆ B for each i (easy proof

by induction on i), so that A⊆B. Hence, A is the least oversolution of S in P(M) and
also the least solution.

We denote byμx ·SP(M)(x) the least solution (oversolution) of an equation system S
in P(M), where x stands for some ordering of Unk(S) (and not necessarily Unk(S)=
Xn). Two systems S and S ′ with the same set of unknowns are equivalent in P(M)

if μx · SP(M)(x) = μx · S ′P(M)
(x). This is the case in particular if SP(M) = S ′P(M)

,
because then S and S ′ have the same solutions, and thus the same least solution in
P(M).

Two systems S and S ′ as above are equivalent if they are equivalent in every
powerset algebra P(M). We have already noted that every system is equivalent to a
polynomial system. Transformations of systems into equivalent ones will be studied
in Section 3.2.

Definition 3.8 (Equational sets of an algebra) We will denote by μx ·SP(M)(x) � y
the component of the tuple μx · SP(M)(x) corresponding to the unknown y. (It is the
i-th component if y= xi and x= (x1, . . . ,xn).) Such a set is said to be defined by (S,y)
in P(M), or in M in order to simplify the notation. More generally, we say that a
set L ⊆ M is defined by (S,Y ) in M if it is the union of the sets defined by (S,y)
in M for all y ∈ Y ⊆ Unk(S). We will also say that L is defined by S in M (without
specifying Y ). Note that if all unknowns in Y have the same sort, then L is defined
by (S ′,z) in M where S ′ is obtained by adding to S the equation z =⋃Y .

An equational set of an F-algebra M is a set defined in M by an equation system
over F . By the definitions, every equational set L can be defined by (S,Y ) in M for
some equational system S and some set Y consisting of unknowns of S with pairwise
distinct sorts (and such that Y = Xk , k ≤ n and Unk(S) = Xn). If L is homogenous
(i.e., all its elements have the same sort), then it can be defined by (S,z) in M for
some equational system S and some unknown z of S (in particular z= x1). We denote
by Equat(M) the set of equational sets of M and by Equat(M)s for s ∈ S, the set
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of those included in Ms. We will also say that a set in Equat(M) is M-equational
or equational in M. Examples of equational sets have been given in Sections 1.1.1,
1.1.2 and 1.1.3.

If D is a finite subset of T (F)s for some sort s, then the equation x=⋃D defines in
P(M) the finite set of values in M of the terms of D. Every finite subset of M whose
elements are defined by terms is thus equational in M. (This fact will be restated in
Proposition 3.45(2).)

An equation system S over F only uses the finite subsignature F(S) of F (its set
of sorts is Sort(S)⊆ S). Hence, we need only study the equational sets of algebras
over finite signatures, as shown in the next proposition. (By contrast, the infiniteness
of the signature will be important for recognizable sets.)

Proposition 3.9 Let M be an F-algebra.

(1) Let S be an equation system over a subsignatureF ′ of F and letM′ be an F ′-algebra
such that M′ ⊆M. Then

μx · SP(M′)(x)= μx · SP(M)(x).

Moreover, every solution of S in P(M′) is a solution of S in P(M).
(2) If M′ ⊆M, then Equat(M′)⊆ Equat(M).
(3) Every equational set of M is equational in a finitely generated subalgebra of M.

Proof: (1) Let Unk(S)= {x1, . . . ,xn} and E′ :=P(M ′σ(x1)
)×·· ·×P(M ′σ(xn)

), cf. the

proof of Theorem 3.7. If L ∈ E′, then SP(M′)(L)= SP(M)(L) and this n-tuple belongs
to E′. This implies the second statement. It also implies that, for every i, we have
Si
P(M′)(∅)= Si

P(M)
(∅) (by induction on i). Hence these two sequences have the same

least upper-bound and μx · SP(M′)(x)= μx · SP(M)(x).
(2) Immediate from (1).
(3) Let L be defined by S in M. We let M′ be the subalgebra of M generated by

the signature F(S). It is a finitely generated subalgebra of M. Since S is an equation
system over F(S), it follows from (1) that L is equational in M′.

Equational sets in semi-effectively given algebras

Let F be an effectively given S-signature. The set of sorts S is thus also effectively
given, cf. Definitions 2.8 and 2.127, and S ∪ F is at most countable. An equation
system S over F is specified in the obvious way as a set of equations x = t with
x ∈ X and t ∈ T (F∪,X )σ(x), where we may assume that X = Xn for some n. The
set Xn is effectively given by its standard encoding (that encodes xi as i) and an
algorithm must be specified that computes the mapping σ : Xn → S (usually by
means of a table, of course). Assuming that each function symbol ∪s is encoded by
the same integer as s, the terms t can be specified through the standard encoding of



196 Equational and recognizable sets

the semi-effectively given set T (F∪,Xn), since F∪ is the disjoint union of F and {∪s |
s ∈ S}.

Let us consider the least solution of S in P(M), where M is a semi-effectively
given F-algebra. By Lemma 3.2(4), each iterate Si

P(M)
(∅) is a tuple of finite subsets

of M . Since the derived operations of M are computable via an encoding ξM of the
elements of M by integers, we can compute the tuple Si

P(M)
(∅) (or rather the tuple of

finite sets of integers that encode it via ξM ; we will omit this precision in the sequel)
by an algorithm that takes as input the system S, the integer i and the computable
function ζM of Definitions 2.8 and 2.127 that encodes the operations of M.

We say that an n-tuple (L1, . . . ,Ln) in P(M )n is finite if the set L1∪·· ·∪Ln is finite.

Proposition 3.10 Let M be a semi-effectively given F-algebra and S be an equation
system over F . If the least solution of S in P(M) is finite, then it can be computed.

Proof: The least solution of S in P(M) is the least upper-bound of the increasing
sequence Si

P(M)
(∅) for i ≥ 0. Each tuple of this sequence is finite and, furthermore,

computable. By the finiteness assumption, and since the sequence is increasing, there
exists an integer i such that Si+1

P(M)
(∅)= Si

P(M)
(∅). The first one, let us denote it by i0,

can be computed. Then Sj
P(M)

(∅)= Si0
P(M)

(∅) for each j≥ i0. Hence μx ·SP(M)(x)=
Si0
P(M)

(∅) and this tuple can be computed.

The finiteness of μx · SP(M)(x) is guaranteed if each domain Ms such that s is the
sort of an unknown of S is finite.

One might expect that the membership of an element of an effectively given algebra
in an equational set given by an equation system is decidable. This is not the case.
As a counter-example, take a computable total function f : N → N such that the
membership of an integer in the set f (N ) is undecidable. Then consider the effectively
given algebra M := 〈N , f ,Suc,0〉, where Suc is the successor function. The set f (N )

is equational in M because ( f (N ),N ) is the least solution in P(M) of the system
〈x= f (y), y= 0∪ Suc(y)〉 .

3.1.3 Context-free languages

We examine context-free grammars for several reasons. First because the notion of an
equational set arises from the Least Fixed-Point Characterization of context-free lan-
guages and yields a generalization of context-free languages to arbitrary algebras, cf.
Section 1.1.1. Second because the equational sets of terms are (particular) context-free
languages and also “generate,” as shown in Proposition 3.23(1) below, all equational
sets. Finally, technical notions about derivation sequences will be useful for studying
transformations of equation systems.

Definition 3.11 (Context-free grammars and languages) A context-free grammar
over a terminal alphabet A is a triple G = 〈A,X ,R〉 such that X is a finite set of
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variables (disjoint with A) called the nonterminal alphabet of G and R is a finite
subset of X × (A∪X )∗ called the set of derivation rules. A rule (x,w) is also written
x→ w for readability. The one-step derivation relation, denoted by⇒G, is defined
as follows for u,u′ in (A∪X )∗:

u⇒G u′ if and only if u= vxv′ and u′ = vwv′ for some v,v′ ∈ (A∪X )∗ and some
rule (x,w) in R.

The language generated by G from a word u in (A ∪ X )∗ is L(G,u) := {w ∈ A∗ |
u⇒∗G w}. In many cases an initial nonterminal x ∈ X is specified and the language
of interest L(G,x) is called the language generated by the grammar.

A language L ⊆ A∗ is context-free if it is L(G,x) for some context-free grammar
G and some nonterminal x of G. Note that we allow the terminal alphabet A to be
countably infinite. However, since the set of rules of a grammar is finite, we have
L⊆ B∗ for some finite subset B of A.

For a context-free grammar G and a set Y of nonterminals of G, we denote the
language

⋃
y∈Y L(G,y) by L(G,Y ) and we say that it is generated by G from Y . Since

the family of context-free languages is closed under union, every language L(G,Y )

is context-free.

Definition 3.12 (Equational sets in the free monoid) We recall from Definition 2.7
that, for every alphabet A, we let FA := {·,ε} ∪ A be the (one-sorted) functional
signature such that · is binary and the other symbols are nullary. We let W(A) be
the FA-algebra 〈A∗, ·,ε,(a)a∈A〉 (it is actually the free monoid generated by A, aug-
mented with constants). We use infix notation for · and we may omit parentheses
(cf. Definition 2.4). The mapping valW(A) : T (FA)→ A∗ that evaluates a term over
FA into a word over A (by interpreting ε as the empty word ε, a as the word a
and · as concatenation) will be simply denoted by val. We extend it into a mapping
val : T (FA,X )→ (A∪X )∗, where X is a set of variables, by evaluating x in X into
the word x. For t ∈ T (FA,X ), val(t) is obtained from t by erasing all occurrences of
the symbols · and ε.

With every equation system S over FA, we associate the context-free grammar
G[S] := 〈A,X ,R〉 such that X = Unk(S) and R is the set of rules x→ w such that
w = val(m) for some monomial m ∈Mon(t) (⊆ T (FA,X )) and some equation x = t
of S. Conversely, for every context-free grammar G over A, there exists an equation
system S over FA such that G[S] =G. There are actually several such systems for a
given grammar.

For an example of an equation system S over FA see Example 1.2 (where ε should
be changed into ε); the context-free grammar G[S] is given in Example 1.1 (with
nonterminals S and T instead of x1 and x2).
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Theorem 3.13 (Least Fixed-Point Characterization) For every equation system
S = 〈x1 = t1, . . . ,xn = tn〉 over FA, we have

μx · SP(W(A))(x)= (L(G[S],x1), . . . ,L(G[S],xn)).

Proof sketch: We let G := G[S] = 〈A,X ,R〉. We first prove that the sequence of
languages (L(G,x1), . . . ,L(G,xn)) is an oversolution of S in P(W(A)). It suffices to
observe that, if xi→w belongs to R and w= u0xi1u1 · · ·uk−1xik uk for i1, . . . , ik in [n]
and u0,u1, . . . ,uk in A∗, then

u0L(G,xi1)u1 · · ·uk−1L(G,xik )uk ⊆ L(G,w)⊆ L(G,xi).

This fact is a consequence of the if-direction of the following Fundamental Property
of Derivation Sequences of context-free grammars.4 For every p∈N and every word
v ∈ A∗, we have

w⇒p
G v if and only if there exist p1, . . . ,pk in N and v1, . . . ,vk in A∗ such that

v = u0v1u1 · · ·uk−1vkuk , p= p1+·· ·+ pk and xij ⇒pj
G vj for each j = 1, . . . ,k .

Hence, tiP(W(A))(L(G,x1), . . . ,L(G,xn))⊆ L(G,xi) for each i.
For proving the opposite inclusion, we let (L1, . . . ,Ln) be any oversolution of S in

P(W(A)). For every j ∈N , we have

∀i ∈ [n],∀v ∈ A∗,∀p ∈ [0, j](if xi⇒p+1
G v then v ∈ Li).

This can be proved by induction on j, using the only-if direction of the Fundamental
Property of Derivation Sequences. It follows that L(G,xi) ⊆ Li for every i, hence
that (L(G,x1), . . . ,L(G,xn)) is the least oversolution of S in P(W(A)). This gives the
result by Theorem 3.7.

Corollary 3.14 A language over A is context-free if and only if it is equational in
W(A).

Proof: Theorem 3.13 shows that every W(A)-equational language is context-free.
Let conversely L=L(G,x) be a context-free language over A. There exists an equation
system S such that G[S] = G. The component of its least solution that corresponds
to x is L(G,x) by Theorem 3.13, hence L is equational in W(A).

Equation systems have in most cases several solutions, and we will only be inter-
ested in their least ones. However, some context-free grammars yield systems having
unique solutions, and this observation shortens some proofs (in particular, that two
grammars are equivalent when one is obtained from the other by a transformation

4 The only-if direction of this important property is stated and proved in [*Har] as “technical lemma
3.3.1.”
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of the corresponding systems). It is also more satisfactory to know that an equation
system defines completely a tuple of languages without having to take into account
any minimization principle.

A context-free grammar is strict if the right-hand side of each derivation rule is the
empty word or contains at least one terminal symbol.

Proposition 3.15 Let G be a strict context-free grammar over an alphabet A and
nonterminal alphabet Xn, and S be an equation system such that G[S] = G. The
n-tuple (L(G,x1), . . . ,L(G,xn)) is the unique solution of S in P(W(A)).

Proof sketch: The n-tuple (L(G,x1), . . . ,L(G,xn)) is the least solution of S in
P(W(A)) by Theorem 3.13. If (M1, . . . ,Mn) is any solution of S in P(W(A)), then
L(G,xj)⊆Mj for each j. We prove by induction on |v| that for all i ∈ [n] and v ∈ A∗,
if v ∈Mi then v ∈ L(G,xi). Let v ∈Mi. Since (M1, . . . ,Mn) is a solution of S, we have
v ∈ u0Mi1u1 · · ·uk−1Mik uk for some rule of G of the form xi→ u0xi1u1 · · ·uk−1xik uk

with u0, . . . ,uk in A∗. Hence v= u0v1u1 · · ·uk−1vkuk for some v1 in Mi1 , . . . ,vk in Mik .
Since G is strict, |vj| < |v| for each j = 1, . . . ,k , and vj ∈ L(G,xij ) by the induction
hypothesis. Hence v ∈ L(G,xi). So, (L(G,x1), . . . ,L(G,xn)) is the unique solution
of S.

We have defined two other algebras with domain A∗ in Definition 2.7, viz. Wleft(A)
and Wright(A). The equational sets of these algebras are actually the regular languages
over A, as we will prove in the next section.

3.1.4 Equational sets of terms

The next natural family of equational sets to consider is that of sets of terms. An
immediate consequence of Proposition 3.9 is that a set of terms over a signature F is
equational in T(F) if and only if it is equational in T(F ′) for some finite subsignature
F ′ of F . This proposition is applicable because if F ′ ⊆F , then T(F ′) is the subalgebra
of T(F) generated by F ′.

Proposition 3.16 Let F be a finite signature. For every sort s, the set of terms T (F)s

is equational in T(F).

Proof: For every sort s we define an unknown xs of sort s. We let its defining equation
be xs =⋃D, where D is the set of monomials of the form f (xα( f )[1], . . . ,xα( f )[ρ( f )])
for all f ∈ F such that σ( f )= s. We obtain an equation system S. It is clear that

μx · SP(T(F))(x) � xs ⊆ T (F)s

for every sort s. For the opposite inclusion, we have, for every term t ∈ T (F)s (we
recall that ht(t) is its height; a constant symbol has height 0):

t ∈ Sht(t)+1
P(T(F))

(∅) � xs,



200 Equational and recognizable sets

which is easily proved by induction on the structure of t. It follows that

T (F)s ⊆ μx · SP(T(F))(x) � xs

for every sort s, which gives the result.

We now consider particular context-free grammars, that will characterize equa-
tional sets of terms.

Definition 3.17 (Regular grammars over a signature) Let F be an S-signature. A
regular grammar over F is a context-free grammar over F (used here as an alphabet)
of the form G = 〈F ,X ,R〉 such that:

(1) the nonterminal alphabet X is S-sorted with sort mapping σ ;
(2) each rule in R is a pair (x, t), where t ∈ T (F ,X )σ(x), also written x→ t.

We say that G is quasi-uniform (resp. uniform) if each right-hand side of a rule has
at most one (resp. exactly one) occurrence of a symbol in F .

We have L(G,x) ⊆ T (F)σ(x) for every nonterminal x ∈ X , because if w ∈
T (F ,X )σ(x) and w⇒G w′, then w′ ∈ T (F ,X )σ(x).

A set of terms is regular over F if it is L(G,Y ) for some regular grammar G over
F and some set Y of nonterminals of G. Since the set of rules of a grammar is finite,
a set of terms is regular over F if and only if it is regular over F ′ for some finite
subsignature F ′ of F .

The regular grammar G(S) associated with an equation system S over F is defined
as 〈F ,Unk(S),R〉, where R is the set of rules x→ t such that x ∈ Unk(S) and t ∈
Mon(p), where x = p is the equation of S that defines x. It is uniform or quasi-
uniform if S is so. It is clear that, conversely, every regular grammar is G(S) for some
equation system S over the same signature. Hence, regular grammars are in bijective
correspondence with polynomial equation systems.

The following theorem is similar to Theorem 3.13:

Theorem 3.18 For every equation system S over a signature F , we have

μx · SP(T(F))(x)= (L(G(S),x1), . . . ,L(G(S),xn)).

�

Easy modifications of the proof of Theorem 3.13 can yield a proof of this theorem.
However, we will prove it as a corollary of Theorem 3.13 with the help of some
notions to be introduced after a corollary and some remarks.

Corollary 3.19 Let F be a signature. A set of terms is regular over F if and only if
it is equational in T(F). �
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Although the equational sets of terms are the same as the regular ones, we will call
them frequently “regular sets” to emphasize their language theoretical specifications
by grammars and also by automata that we will define in Section 3.3.

Remark 3.20 (1) Every equational set of T(F) is a regular set of terms over F hence
a context-free language over F . But a subset of T (F) that is a context-free language
over F need not be T(F)-equational. For example, consider F := { f ,g,a,b} with
ρ( f ) := 2, ρ(g) := 1 and ρ(a) := ρ(b) := 0. The subset { fgnagnb | n≥ 0} of T (F)

is a context-free language but it is not T(F)-equational because it is not a regular
set of terms. This last fact will be proved in Example 3.54 by means of a “pumping
argument.”

A regular subset of T (F) may be a context-free language over the alphabet F that is
not a regular one: this is the case for the set L⊆ T (F) defined by the regular grammar
over F (as above) with rules x→ fafxa and x→ a because L= {( faf )nan+1 | n≥ 0}.

A set of terms can be regular over a signature F and, at the same time, be not
regular over a signature F ′ obtained by changing the arities of the symbols of F . For
example, the set of terms f Lb is regular (where L is as above), but it is not regular if
f ,a have arity 1 and b has arity 0 (although it is also a set of terms for the new arity
mapping); this follows from (4) below.

(2) The context-free grammars G(S) and G[S] associated with an equation system
S over FA are not the same. For example, if S is the system of Example 1.2, then G(S)
is the regular grammar over FA with the following rules (written for more readability
in infix notation with parentheses):

x1→ a · (x1 · x2), x1→ x1 · x1, x1→ a,

x2→ b · ((x2 · x1) · x2), x2→ a, x2→ c and x2→ ε,

and G[S] is the context-free grammar G over A of Example 1.1 with nonterminals x1

and x2 instead of S and T . Its rules are as follows:

x1→ ax1x2, x1→ x1x1, x1→ a,

x2→ bx2x1x2, x2→ a, x2→ c, and x2→ ε.

(3) Let G= 〈A,X ,R〉 be a context-free grammar and S be an equation system over
FA such that G[S] = G. Let x⇒∗G(S) t with t ∈ T (FA,X ) be a derivation sequence
relative to the regular grammar G(S). Its image under the evaluation mapping val, i.e.,
the corresponding sequence of images by val (where val evaluates a term in T (FA,X )

into a word over A∪X ) is a derivation sequence x⇒∗G val(t) of the word val(t) relative
to the context-free grammar G. Conversely every derivation sequence of G is the
image under val of a derivation sequence of G(S). Thus, L(G[S],x)= val(L(G(S),x))
for every nonterminal x.
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To illustrate this observation, we use again the system S and the grammar G=G[S]
as in (2). The image under val of the derivation sequence of G(S): x1⇒ a · (x1 ·x2)⇒
a · ((x1 ·x1) ·x2)⇒ a · ((x1 ·x1) ·ε)⇒ a · ((a ·x1) ·ε)⇒ a · ((a ·a) ·ε) is x1⇒ ax1x2⇒
ax1x1x2⇒ ax1x1⇒ aax1⇒ aaa.

(4) The set of words over a finite alphabet A is in bijection (in two ways) with the
set of terms over UA, where UA is the associated unary signature of Definition 2.7.
Via these bijections, the regular languages over A correspond to the regular sets of
terms over UA, and the equational sets of the UA-algebras Wleft(A) and Wright(A)
correspond to the equational sets of T(UA). Hence, the equational sets of the algebras
Wleft(A) and Wright(A) are the regular languages over the alphabet A. �

In order to obtain Theorem 3.18 from Theorem 3.13 and Proposition 3.9(1), we
make some technical observations about sorts. If F is an S-signature, we let F− be
the one-sorted signature obtained by making all sorts identical. It follows that T (F)

defined as
⋃

s∈S T (F)s is a subset of T (F−). Every equation system over F is also
one over F−.

Lemma 3.21 For every equation system S over a signature F , we have that
μx · SP(T(F))(x) = μx · SP(T(F−))(x). Moreover, every solution of S in P(T(F))

is a solution of S in P(T(F−)).

Proof: Let S be a system with Unk(S) = Xn and E := P(T (F)σ(x1)) × ·· · ×
P(T (F)σ(xn)). It is clear from the definitions that if L = (L1, . . . ,Ln) belongs to E,
then SP(T(F−))(L) also belongs to E and is equal to SP(T(F))(L). This implies the
second statement. It also implies, by induction on i, that Si

P(T(F))
(∅)= Si

P(T(F−))(∅)
for each i ∈N . This yields the result.

This lemma proves that Equat(T(F))⊆Equat(T(F−)). Conversely, if L is equa-
tional in T(F−) and is contained in T (F), then it is equational in T(F). This fact will
be proved below in Remark 3.38(4).

Let S = 〈x1 = p1, . . . ,xn = pn〉 be an equation system over an S-signature F . We
will use the regular grammar G(S) over F . Since this grammar is context-free, there
exists an equation system S over the signature FF = {·,ε} ∪F (cf. Definition 3.12)
such that the associated context-free grammar G[S] is equal to G(S). For example, if
S =〈x= fxgxx∪a〉 (with f ,g binary), then G(S)=〈{ f ,g,a},{x},{x→ fxgxx, x→ a}〉
and S can be (it is not uniquely defined) the equation x= ( f · x) · ((g · x) · x)∪ a (we
use infix notation for ·). With these definitions we have:

Lemma 3.22 For every system S over a signature F :

μx · SP(T(F))(x)= μx · SP(W(F))(x).

Moreover, every solution of S in P(T(F)) is a solution of S in P(W(F)).
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Proof: We have the following equalities:

μx · SP(T(F))(x)= μx · SP(T(F−))(x)

= μx · SP(S(F−))(x)

= μx · SP(W(F))(x),

which follow respectively from Lemma 3.21, from Proposition 3.9(1) (because
T(F−)⊆ S(F−)) (cf. Definition 2.2) and from the fact that SP(S(F−)) and SP(W(F))

are the same function from (P(F∗))n to itself (n := |x|) by the definition of S.

Proof of Theorem 3.18: We have:

μx · SP(T(F))(x)= μx · SP(W(F))(x)

= (L(G[S],x1), . . . ,L(G[S],xn))

= (L(G(S),x1), . . . ,L(G(S)),xn)),

respectively by Lemma 3.22, by Theorem 3.13 and by the definition of S.

From Lemma 3.22 and Proposition 3.15 we obtain: if S is an equation system over
F such that G(S) is strict, then S has a unique solution in P(T(F)).

As another consequence of Lemma 3.22, consider the equation system S in the
proof of Proposition 3.16. In Definition 2.124, T (F)s is defined as the xs component
of the unique solution of the equation system S in W(F) (and note that it has a unique
solution by Proposition 3.15). Hence, by Lemma 3.22, T (F)s =μx ·SP(T(F))(x) � xs.
This proves, again, Proposition 3.16.

3.1.5 Homomorphic images of equational sets

We now establish some algebraic properties of equational sets. We recall from Defi-
nition 2.124 that valM denotes the mapping that associates with a term t in T (F) its
value valM(t) in the F-algebra M; it is the unique homomorphism from T(F) to M.

Proposition 3.23 Let M, M′ be F-algebras and h : M→M′ be a homomorphism.5

We have:

(1) If S is an equation system over F , then

μx · SP(M′)(x)= Ph(μx · SP(M)(x)).

In particular:

μx · SP(M)(x)= valM(μx · SP(T(F))(x)).

5 We recall from Definition 3.5 that Ph denotes the extension of h to subsets of M and that it is a homo-
morphism of F∪-algebras : P(M)→P(M′). We let also P h((L1, . . . ,Ln)) := (P h(L1), . . . ,

Ph(Ln)).
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(2) A set is equational in M′ if and only if it is the image under h of an equational set
in M.

(3) A set L is equational in M if and only if L = valM(K) for some regular set of
terms K ⊆ T (F). In particular, every equational set of M is generated by a finite
subsignature of F .

(4) The set Ms is equational in M if and only if it is generated by a finite subsignature
of F .

Proof: (1) Since Ph is a homomorphism : P(M)→P(M′), we have

Ph( fP(M)(L))= fP(M′)(
Ph(L)),

for every f ∈ F and every tuple L of appropriate type. This equality extends to the
derived operations tP(M) and tP(M′) (routine induction on the structure of t) and to
the mappings SP(M) and SP(M′), that is, we have Ph(SP(M)(L)) = SP(M′)(Ph(L)).
By using an induction on i, we get that Ph(Si

P(M)
(∅)) = Si

P(M′)(∅) for each i. The

result follows then since Ph is additive.
(2) is immediate from (1).
(3) The first assertion follows from (2) and Corollary 3.19. The second assertion

is a consequence of Proposition 3.9(3).
(4) Follows from (3) and Proposition 3.16. Note that if Ms ⊆ valM(T (F ′)) then

Ms = valM(T (F ′)s).

As an example of the second statement of (1), consider an equation system S over
FA, for an alphabet A, and an unknown x of S. We know that μx · SP(W(A))(x) � x =
L(G[S],x) from Theorem 3.13, and we know that μx · SP(T(FA))(x) � x = L(G(S),x)
from Theorem 3.18. In Remark 3.20(3) we have already seen that L(G[S],x) =
valW(A)(L(G(S),x)).

As another example, consider the UA-algebras Wleft(A) and Wright(A). It is straight-
forward to show that a set of terms L ⊆ T (UA) is regular over UA if and only if it
is of the form Kε for some regular language K over the alphabet A. In that case
valWleft(A)(L) = K , and valWright(A)(L) is the mirror image of K . Since the class of
regular languages is closed under mirror image, it follows from Proposition 3.23(3)
that the equational sets of the algebras Wleft(A) and Wright(A) are the regular lan-
guages over the alphabet A, as we have already seen in Remark 3.20(4) (where the
mentioned bijections are the mappings valWleft (A) and valWright(A)).

Corollary 3.24 For every equation system S over a signature F and every unknown
y of S, the following are equivalent:

(1) L(G(S),y)= ∅;
(2) μx · SP(M)(x) � y= ∅ for some F-algebra M;
(3) μx · SP(M)(x) � y= ∅ for every F-algebra M.
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These conditions are decidable if F is effectively given.

Proof: Theorem 3.18 and Proposition 3.23(1) entail that, for every F-algebra M,
we have μx · SP(M)(x) � y = valM(L(G(S),y)). This implies the equivalence of (1),
(2) and (3). Since G(S) is a context-free grammar, the emptiness of L(G(S),y) is
decidable, which proves the last assertion.

3.1.6 Equational sets of commutative words

For each k ≥ 1, we let Nk be the set of k-tuples of natural numbers equipped with
componentwise addition. We denote by ,u the generic element of N k and by ,0 the
null k-tuple (0, . . . ,0) which is the unit of the monoid6 Nk . For each i ∈ [k], we
let ai be a constant symbol denoting (0, . . . ,0,1,0, . . . ,0) with a single 1 at the i-th
position and A := {a1, . . . ,ak }. Hence, Nk is an FA-algebra (with addition as operation
·Nk and ,0 as constant εNk ). It is isomorphic to the quotient algebra7 of W(A) by the
congruence generated by the equalities ai · aj = aj · ai for all i, j ∈ [k], hence is the
free commutative monoid generated by A. With this identification, we can say that the
unique homomorphism h : W(A)→ Nk “makes the letters of A commute,” in other
words, only counts the numbers of occurrences of letters regardless of their positions:
h(w)= (n1, . . . ,nk) where ni = |w|ai for each i.

For λ ∈N and ,u ∈N k , we let λ · ,u (or just λ,u) denote ,u+,u+·· ·+ ,u with λ times
,u. A subset L of N k is linear (affine would be a better word, but “linear” is usual) if it
is of the form {,u+λ1,v1+·· ·+λp,vp | λ1, . . . ,λp ∈N } for some ,u, ,v1, . . . , ,vp in N k . A
set is semi-linear if it is a finite union of linear sets. Its description is the finite set of
tuples (,u, ,v1, . . . , ,vp) from which it is defined. From the description of a semi-linear
set, one can check if it is finite, because a linear set described by ,u, ,v1, . . . , ,vp is finite
if and only if all tuples ,vi are null.

The following proposition reformulates a classical result of formal language
theory.8

Proposition 3.25 For every k ≥ 1, Equat(Nk ) is the set of semi-linear subsets of
N k . There exists an algorithm that transforms a description of a semi-linear set into
an equation system over FA defining this set in Nk , and another one that converts an
equation system over FA into descriptions of the semi-linear sets that form its least
solution in P(Nk ).

Proof: Let L = L1 ∪ ·· · ∪ Ln be a semi-linear set, where each Li is linear. Each
element ,u of N k can be expressed as a sum of constant symbols. A linear set Li of
the form {,u+ λ1,v1+ ·· · + λp,vp | λ1, . . . ,λp ∈ N } ⊆ N k is the least solution of the

6 A monoid is a set equipped with an associative binary operation and a unit element.
7 The formal definition of this standard notion is in Definition 3.63.
8 Usually called Parikh’s Theorem. The homomorphism h : W(A)→Nk is called the Parikh mapping.



206 Equational and recognizable sets

equation xi = ,u∪ (,v1+ xi)∪ ·· · ∪ (,vp+ xi). If S is the equation system consisting of
these n equations, then L is defined by (S,Xn) in Nk . This gives the first algorithm.

The opposite construction is done in a clean way in [AceEI] (on the basis of a
previous proof in [Pil]) in terms of equation systems. It can also be done as follows
in terms of context-free grammars. By Proposition 3.23(2) and Corollary 3.14, a set
is equational in Nk if and only if it is the commutative image h(L) of a context-free
language L ⊆ A∗ where h is the above defined homomorphism h : W(A)→ Nk . A
description of h(L) can be constructed from a grammar defining L: an elementary
proof is in Section 6.9 of [*Har]. Both constructions are effective.

Let gF be a mapping : F→N k and let g : T (F)→N k be the mapping defined by

g(t)=
∑
f ∈F

|Occ(t, f )| · gF ( f ).

Then g is a homomorphism of F-algebras : T(F)→ P where P is the F-algebra that
is the derived algebra of Nk with operations defined by

fP(,u1, . . . , ,uρ( f ))= gF( f )+,u1+·· ·+ ,uρ( f ).

We call such a mapping g an affine mapping : T (F)→N k .

Corollary 3.26 The image of a regular set of terms under an affine mapping is a
semi-linear set, and a description of this set can be computed from the affine mapping
and a regular grammar.

Proof: Let g be an affine mapping : T (F)→N k based on gF : F→N k , and consider
L := L(G,x), where G = 〈F ,X ,R〉 is a regular grammar and x ∈ X . For every f ∈ F ,
let wf be a word in A∗ such that h(wf ) = gF ( f ), and let π : (F ∪X )∗ → (A∪X )∗
be the mapping such that, for t ∈ (F ∪ X )∗, π(t) is obtained from t by replacing
every occurrence of every f by wf (i.e., π is the unique monoid homomorphism
such that π( f )=wf for f ∈ F). Obviously, g(t)= h(π(t)) for every t ∈ T (F). Now
define the context-free grammar G′ = 〈A,X ,R′〉 such that R′ consists of all rules
x→ π(t) with x→ t in R. Then L(G′,x)= {π(t) | t ∈ L(G,x)} = π(L). Hence g(L)=
h(π(L))= h(L(G′,x)), i.e., g(L) is the image under h of a context-free language over
A. Thus, g(L) is equational in Nk and hence semi-linear by the previous proposition.
All constructions are effective.

An algebraic presentation of this proof will be given in Example 3.42(3).

3.2 Transformations of equation systems

We present some transformations of equation systems that normalize or simplify them
while preserving the “main components” of their least solutions. We also establish
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some closure properties of the family of equational sets. All proofs are construc-
tive (provided the considered signatures are effectively given), unless mentioned
otherwise.

3.2.1 Unfolding

Unfolding is a very natural transformation of context-free grammars that we gener-
alize to equation systems. Further transformations are based on it. In particular, we
will obtain a generalization of the transformation that puts a context-free grammar in
Chomsky normal form.

We say that a system S ′ is a subsystem of S, denoted by S ′ ⊆ S, if Unk(S ′)⊆Unk(S)
and each equation of S ′ is an equation of S.

Lemma 3.27 If S ′ ⊆ S, then μy · S ′P(M)
(y) � z = μx · SP(M)(x) � z for every z ∈

Unk(S ′).

Proof: Let S be an equation system of the form (3.1) with set of unknowns
Unk(S) = Xn = {x1, . . . ,xn} and let Y := Unk(S ′) be ordered as in Unk(S), that is,
Y = {xi1 , . . . ,xip} with i1 < i2 < · · · < ip. For any n-tuple of sets L = (L1, . . . ,Ln),
we let L � Y denote the p-tuple (Li1 , . . . ,Lip). Then, for each i ≥ 0, we have

Si
P(M)

(∅) � Y = S ′iP(M)
(∅). This is easily proved by induction on i, and yields the

result.

Definition 3.28 (Equivalent systems) Let S and S ′ be two equation systems over
F , and let Z ⊆ Unk(S)∩Unk(S ′). The systems S and S ′ are Z-equivalent in P(M)

if μx · SP(M)(x) � z = μy · S ′P(M)
(y) � z for every z ∈ Z . They are Z-equivalent if

they are Z-equivalent in P(M) for every F-algebra M. We delete the prefix Z when
Z =Unk(S)=Unk(S ′).

That two systems are equivalent in P(M) may depend on particular properties of
M. However, there exist syntactic criteria ensuring that two systems are equivalent.
We first consider unfolding: this transformation consists in replacing (several times)
in the right-hand sides of some equations of a system unknowns by their defining
terms. It is a standard transformation of recursive definitions; it preserves the defined
sets, i.e., the least solutions of the corresponding equation systems.

Definition 3.29 (Unfolding) Let S = 〈x1 = p1, . . . ,xn = pn〉 be an equation system
where p1, . . . ,pn are polynomials. We let⇒S be the rewriting relation on T (F∪,Xn)

defined by:9

t⇒S t′ :⇐⇒ t = c[xi] and t′ = c[pi],
9 It is the one-step derivation relation of the regular grammar G=〈F∪,Xn,R〉with R={x1→ p1, . . . ,xn→

pn}. Note that this is not the regular grammar G(S). The languages generated by G are of no interest.
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for some i ∈ [n] and some context c in Ctxt(F∪,Xn) (cf. Definition 2.6). We say that
S ′ = 〈x1 = q1, . . . ,xn = qn〉 is obtained from S by unfolding if pi ⇒∗S qi for each
i= 1, . . . ,n. We denote this by S↗ S ′. The terms qi are not necessarily polynomials.
However, they can be expanded into polynomials by Lemma 3.4. If S ′′ is obtained
from S ′ by this lemma, we also say that S ′′ is obtained from S by unfolding and we
use the same notation S↗ S ′′. Note that S ′ and S ′′ are equivalent.

Example 3.30 We let S be the system{
x1 = f (x1,x2)∪ a,

x2 = g(x1,x1,x2)∪ b.

The system S ′: {
x1 = f ( f (x1,x2)∪ a,g(x1,x1,x2)∪ b)∪ a,

x2 = g( f (x1,x2)∪ a,x1,x2)∪ b,

is obtained from S by unfolding. The right-hand sides of its equations can then be
expanded into polynomials, which gives the following system S ′′ equivalent to S ′:⎧⎪⎨⎪⎩

x1 = hf ( f (x1,x2),g(x1,x1,x2))∪ f (a,g(x1,x1,x2)

∪ f ( f (x1,x2),b)∪ f (a,b)∪ a,

x2 = g( f (x1,x2),x1,x2)∪ g(a,x1,x2)∪ b.

Proposition 3.31 If a system S ′ is obtained from a system S by unfolding, then S
and S ′ are equivalent. �

We need for the proof two technical observations. Let S = 〈x1 = p1, . . . ,xn = pn〉
and let t, t′ ∈ T (F∪,Xn) be such that t⇒∗S t′.

If L is a solution of S in P(M), then t′P(M)
(L) = tP(M)(L): this is clear because,

at any rewriting step, one replaces xi having value Li (where L= (L1, . . . ,Ln)) by pi

which has the same value in P(M) since L is a solution of S.
Our second observation is that if t̃ is the unique term in T (F∪,{y1, . . . ,yk }) such

that ListVar(̃t )= y1y2 · · ·yk and t = t̃ [xir/yr;1≤ r ≤ k] for some i1, . . . , ik in [n], then
t′ = t̃ [sr/yr ;1≤ r ≤ k], where for each r we have xir ⇒∗S sr .

This is a reformulation of the only-if direction of the Fundamental Property of
Derivation Sequences (mentioned in the proof of Theorem 3.13) for the context-free
grammar with rules x1→ p1, . . . ,xn→ pn. We illustrate this fact with an example,
where S is the system of Example 3.30.

Example 3.32 Let t = f (x1,h(x1,x2)) and

t′ = f (x1,h( f (x1,x2)∪ a,g(x1, f (x1,x2)∪ a,x2)∪ b)).
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Then we have t⇒∗S t′ with t̃,y1,y2,y3,s1,s2,s3, i1, i2, i3 as follows:

t̃ = f (y1,h(y2,y3)),

t = t̃ [x1/y1,x1/y2,x2/y3],
t′ = t̃ [s1/y1,s2/y2,s3/y3],

with s1= x1, s2= f (x1,x2)∪a, s3= g(x1, f (x1,x2)∪a,x2)∪b, i1= i2= 1 and i3= 2.
It is clear that x1⇒∗S s1, x1⇒∗S s2 and x2⇒∗S s3.

Proof of Proposition 3.31: Let S=〈x1= p1, . . . ,xn= pn〉 and S ′ = 〈x1= q1, . . . ,xn=
qn〉 be such that pi⇒∗S qi for each i, so that S ↗ S ′. Let M be an F-algebra. Every
solution L of S in P(M) is a solution of S ′ because if pi ⇒∗S qi, then piP(M)(L) =
qiP(M)(L). Hence

μx · S ′P(M)(x)⊆ μx · SP(M)(x).

We now prove the other direction. We let:

L
(j) = (L(j)

1 , . . . ,L(j)
n ) := Sj

P(M)
(∅),

so that

L= (L1, . . . ,Ln)= μx · SP(M(x)

if Li :=⋃j∈N L(j)
i for each i. We let also:

L′ = (L′1, . . . ,L′n) := μx · S ′P(M)(x).

We will prove that Li ⊆ L′i for all i by proving that, for all i and j, we have L(j)
i ⊆ L′i.

We prove by induction on j the following stronger statement, from which the previous
one is obtained by taking t = xi.

Claim 3.31.1 For every j ∈N , every i = 1, . . . ,n and every t ∈ T (F∪,Xn) such that
xi⇒∗S t, we have L(j)

i ⊆ tP(M)(L′).

Proof: This is clear for j = 0 because L(0)
i = ∅. We consider the inductive step. We

have L(j+1)
i = piP(M)(L

(j)
). The hypothesis xi⇒∗S t yields two cases.

Case 1: xi⇒S pi⇒∗S t. If p̃i ∈ T (F∪,{y1, . . . ,yk }) with ListVar(̃t )= y1y2 · · ·yk and
pi = p̃i[xir/yr ;1≤ r ≤ k], then we have t = p̃i[sr/yr ;1≤ r ≤ k] where xir ⇒∗S sr for
each r. We must prove that

L(j+1)
i = piP(M)(L

(j)
)⊆ tP(M)(L′).

Since

piP(M)(L
(j)
)= p̃iP(M)(L

(j)
i1

, . . . ,L(j)
ik
)
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and
tP(M)(L′)= p̃iP(M)(s1P(M)(L′), . . . ,skP(M)(L′)),

and since the derived operations of P(M) are monotone (we have used this fact in
Theorem 3.7), it suffices to prove that

L(j)
ir
⊆ srP(M)(L′) for every r = 1, . . . ,k .

But this follows from the induction hypothesis.
Case 2: t = xi. We must prove that L(j+1)

i ⊆ tP(M)(L′)= L′i. But L′i = qiP(M)(L′)
(because L′ is a solution of S ′) and pi ⇒∗S qi. So this follows from Case 1 with qi

instead of t. �

This completes the proof of the claim and, thus, of the proposition.

Uniform and quasi-uniform systems are defined in Definition 3.6. We denote by
F(Xn) the set of terms in T (F ,Xn) having a single occurrence of a symbol in F (which
is thus the leading symbol).

Proposition 3.33 For every equation system S, one can construct a uniform system
that is Unk(S)-equivalent to S.

Proof: We first transform S into a quasi-uniform system S ′ by repeating the following
transformation step as many times as necessary (i.e., as possible).

Transformation Q: Let S = 〈x1 = p1, . . . ,xn = pn〉 be an equation system over F ,
where each pi belongs to Pol(F ,Xn). Assume that for some i, some monomial m in
Mon(pi) is not in F(Xn)∪Xn.

Then m= f (m1, . . . ,mk ) and at least one of the mj’s is not an unknown. For each
such term mj we introduce a new unknown yj of the same sort as mj , we introduce
the new equation yj =mj and we replace in m the term mj by yj . We let Y be the set
of these new unknowns. We have transformed m into m′ ∈ F(Xn∪Y ), and the system
S into a system Q(S) with Unk(Q(S))=Unk(S)∪Y .

It is clear that Q(S)↗ S ′, where S ′ is S augmented with the new equations yj =mj ,
so that S ⊆ S ′. It follows then from Proposition 3.31 and Lemma 3.27 that S and Q(S)
are Unk(S)-equivalent.

Let S be the system that we want to transform into an equivalent quasi-uniform
system. We define a sequence S = S0,S1, . . . ,Sr of equation systems such that Si+1 =
Q(Si) for each i < r. This sequence terminates when it reaches a quasi-uniform
system Sr . For each i we have Unk(S) ⊆ Unk(Si) and the systems Si+1 and Si are
Unk(Si)-equivalent. Hence they are Unk(S)-equivalent. It remains to verify that a
quasi-uniform system Sr is actually obtained.

For m ∈ T (F ,Xn), we define δ(m) := if m ∈ Xn then 0 else |m|F − 1, where
|m|F is the number of occurrences in m of symbols from F . For a polynomial p =
m1∪m2∪·· ·∪ms we let δ(p) := δ(m1)+·· ·+ δ(ms) and δ(�) := 0. For an equation
system S = 〈x1 = p1, . . . ,xn= pn〉we let δ(S) := δ(p1)+·· ·+δ(pn). It is clear that S
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is quasi-uniform if and only if δ(S)= 0 and that δ(Q(S)) < δ(S). These facts ensure
that a quasi-uniform system Sr is obtained in r steps with r ≤ δ(S). We will call
Q∗ the transformation consisting in iterating Q as much as possible. It produces a
quasi-uniform system.

Next we show how to transform a quasi-uniform system S into an equivalent uni-
form system without introducing new variables. For a quasi-uniform equation system
S = 〈x1 = p1, . . . ,xn = pn〉 we denote by C(S) the set of indices of unknowns that are
monomials of S, formally C(S) := {i ∈ [n] | xi ∈Mon(pj) for some j ∈ [n]}. Note that
S is uniform if and only if C(S)= ∅. The following transformation U constructs an
equivalent quasi-uniform system U (S) such that |C(U (S))|< |C(S)|. Consequently,
as in the first part of the proof, the transformation U∗ that consists in repeating U as
much as possible leads to an equivalent uniform system, in at most n steps.

Transformation U : Let S = 〈x1 = p1, . . . ,xn = pn〉 be a quasi-uniform equation
system, and assume that i belongs to C(S). We first change pi into p′i by removing
xi from pi in the case where xi is a monomial of pi; otherwise p′i = pi. It is clear
that the resulting system Ŝ has the same oversolutions as S in any powerset algebra
P(M); thus S and Ŝ are equivalent by Theorem 3.7. Now we construct U (S)= 〈x1 =
p′1, . . . ,xn = p′n〉 where, for every j = 1, . . . ,n with j �= i, polynomial p′j is obtained by
replacing in pj the monomial xi by p′i in the case where xi is a monomial of pj; otherwise
p′j = pj). Clearly, Ŝ ↗ U (S) and hence they are equivalent by Proposition 3.31. In
the construction of U (S), we can of course replace m∪m by m in a polynomial p′j.
It is clear that C(U (S))= C(S)−{i} and that U (S) is quasi-uniform and equivalent
to S.

Example 3.34 We let S be the following system:{
x1 = x2 ∪ f (x1,g(x1,x2))∪ a,

x2 = x1 ∪ g(x2,h(x1,x1)).

The first step of the construction produces the quasi-uniform system S ′:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x1 = x2 ∪ f (x1,x3)∪ a,

x2 = x1 ∪ g(x2,x4),

x3 = g(x1,x2),

x4 = h(x1,x1).

The associated uniform system is S ′′:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x1 = f (x1,x3)∪ g(x2,x4)∪ a,

x2 = f (x1,x3)∪ g(x2,x4)∪ a,

x3 = g(x1,x2),

x4 = h(x1,x1).
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Note that since x1⇒∗G(S) x2 and x2⇒∗G(S) x1, the unknowns x1 and x2 are defined by
the same equation in S ′′.

Remark 3.35 (1) The transformation U ∗ corresponds for context-free grammars to
eliminating the rules of the form x→ y, where y is a nonterminal.

(2) A context-free grammar G = 〈A,X ,R〉 is in Chomsky normal form (see, e.g.,
[*Har]) if R⊆ X × (A∪XX ). For such a grammar, there is a uniform system S over
FA−{ε} such that G[S] = S. Conversely, if S is a uniform system over FA−{ε}, then
G[S] is in Chomsky normal form. The construction of the proof of Proposition 3.33
generalizes the one that puts a context-free grammar without rules x→ ε into an
equivalent one in Chomsky normal form. The rules x→ ε can be eliminated by a
specific step that is not covered by Proposition 3.33.

(3) In the algorithm of Proposition 3.33, the transformation U ∗ can be done before
the transformation Q∗.

3.2.2 Simplifications of equation systems

We consider transformations of equation systems that delete unknowns hence that
reduce the number of equations while preserving the main components of the least
solution.

Definition 3.36 (Trim systems) An unknown xi of a system S=〈x1= p1, . . . ,xn= pn〉
is productive if L(G(S),xi) �= ∅ or, by Corollary 3.24, the i-th component of the least
solution of S in any powerset algebra P(M) is nonempty. We say that S is trim if
all its unknowns are productive. For arbitrary S, we let Y ⊆Unk(S) be the set of its
productive unknowns. We let Trim(S) be the system obtained from S by deleting the
equations xi = pi for xi ∈ Unk(S)− Y and, in the remaining equations (we assume
that p1, . . . ,pn are polynomials), all monomials containing unknowns not in Y . Its
construction is effective by Corollary 3.24.

Let Z ⊆ Unk(S). An unknown u of S is useful for Z if there exists a derivation
sequence z ⇒∗G(S) t such that z ∈ Z and u occurs in t. This implies that u is an
unknown of every subsystem S ′ of S such that Z ⊆Unk(S ′). We let Cut(S,Z) be the
subsystem of S whose unknowns are those that are useful in S for Z . Thus, Cut(S,Z)
is the smallest subsystem S ′ of S such that Z ⊆Unk(S ′). Hence it can be constructed
effectively. We let Trim(S,Z) := Cut(Trim(S),Z ∩Unk(Trim(S))).

Proposition 3.37 The system Trim(S) is trim and Unk(Trim(S))-equivalent to S. For
every subset Z of Unk(Trim(S)), the system Trim(S,Z) is trim, it is Z-equivalent to
S, and all its unknowns are useful for Z . There exists an algorithm that constructs
Trim(S) and Trim(S,Z). If S is (quasi-)uniform, then so are Trim(S) and Trim(S,Z).

Proof: Let Y :=Unk(Trim(S)). It follows from the definitions that the regular gram-
mar G(Trim(S)) is the one obtained from G(S) by deleting the nonterminals in
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Unk(S)− Y (i.e., those that are not productive) and the rules where they occur.
It follows that L(G(Trim(S)),y) = L(G(S),y) for every y ∈ Y , whence we get that
Trim(S) is trim and, by Theorem 3.18 and Proposition 3.23(1), that S and Trim(S)
are Y -equivalent. The second assertion follows from Lemma 3.27 since Trim(S,Z) is
a subsystem of Trim(S).

Remark 3.38 (1) The transformation of S into Trim(S,Z) corresponds for a context-
free grammar G = 〈A,X ,R〉 to reducing it, i.e., to removing the nonterminals that do
not occur in any derivation sequence z⇒∗G w with z ∈ Z and w ∈ A∗.

(2) Proposition3.37 is useful for other purposes than reducing the size of an equation
system. Here is an example. If u is an unknown of Trim(S,Z), then z⇒∗G(S) t for
some z ∈ Z and some term t in T (F ,{u}) that has a unique occurrence of u (hence
t ∈ Ctxt(F) if we use u as special variable for defining contexts) and for every w in
L(G(S),u), the term t[w/u] belongs to L(G(S),z). Let M be an F-algebra and d be
any element of μx · SP(M)(x) � u. Then, by Theorem 3.18 and Proposition 3.23(1),
tM(d) ∈ μx · SP(M)(x) � z.

(3) As an application of this fact, we prove a variant of Proposition 3.10. An
operation f of an F-algebra M is infinity-preserving if for every L1, . . . ,Lρ( f )

such that ∅ �= Li ⊆ Mα( f )[i] and at least one of the sets L1, . . . ,Lρ( f ) is infinite,
the set fP(M)(L1, . . . ,Lρ( f )) is infinite. On integers, addition is infinity-preserving,
but multiplication is not because {0} · L = {0} for every set L. We say that M is
infinity-preserving if all its operations are.

If M is semi-effectively given and infinity-preserving, then every finite
M-equational set can be computed.

Here is the proof. Suppose that L :=μx ·SP(M)(x) � x1 is finite. By Proposition 3.37
we may assume that S is trim and that all its unknowns are useful for {x1}. We claim
that each component Lu := μx · SP(M)(x) � u of the least solution of S is finite. By
the above remark (2), there is a term t ∈ T (F ,{u}) with one occurrence of u, such
that if d is in Lu then tM(d) ∈ L. Thus, if Lu would be infinite, then, since M is
infinity-preserving, tP(M)(Lu) = {tM(d) | d ∈ Lu} ⊆ L would be infinite. Hence the
least solution of S in P(M) is finite, and it can be computed by Proposition 3.10.

(4) As another application, we prove the following converse of Lemma 3.21:

If L⊆ T (F) is equational in T(F−), then it is equational in T(F).

By Theorem 3.18 and Propositions 3.33 and 3.37, we have that L= L(G(S),Y ) for a
polynomial system S = 〈x1 = p1, . . . ,xn = pn〉 over F− that is uniform and trim with
all unknowns useful for Y ⊆ Xn. We will show that S is also an equation system over
F , hence that L is equational in T(F). We first claim that there exist sorts s1, . . . ,sn

such that L(G(S),xi)⊆ T (F)si for i= 1, . . . ,n. The sort si will be defined as the sort of
xi. Obviously, s1 := s. Now let 2≤ i≤ n, and let w ∈ L(G(S),xi). Since xi is useful for
{x1}, there exists a derivation sequence x1⇒∗G(S) t such that the term t ∈ T (F−,{xi})
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has a unique occurrence of xi. Hence t[w/xi] ∈ L(G(S),x1) and so t[w/xi] ∈ T (F)s.
Then w is in T (F)r for a sort r that is determined from t: it is r = α( f )[ j] where
xi occurs in t as j-th argument of some f in F . (Since S is uniform, we cannot have
t = xi.) Since r does not depend on w, the sort si := r satisfies the claim, and is
taken as sort of xi. Now, each unknown of S has a sort. It remains to check that
Mon(pi) ⊆ T (F ,Xn)si for i = 1, . . . ,n, i.e., that all monomials of S satisfy the sort
constraints. Let m ∈ Mon(pi) and let m̃ be the unique term in T (F−,Yk) such that
ListVar(m̃)= y1 · · ·yk and m= m̃[xir/yr ;1≤ r ≤ k] for i1, . . . , ik ∈ [n]. Since S is trim,
there exists a term wr ∈ L(G(S),xir ) for every r ∈ [k], and so m⇒∗G(S) m̃[wr/yr ;1≤
r ≤ k] ∈ L(G(S),xi). Then wr ∈ T (F)sir

and m̃[wr/yr ;1 ≤ r ≤ k] ∈ T (F)si . This
implies that m̃[xir/yr ;1≤ r ≤ k] ∈ T (F ,Xn)si , i.e., that m ∈ T (F ,Xn)si . �

One can eliminate an unknown x of an equation system that defines a finite set L:
it suffices to replace it in the right-hand sides of all equations by finitely many terms
that define L. The corresponding transformation (it uses unfolding) is opposite to the
one done in Proposition 3.33: it eliminates certain equations but increases the sizes
of the remaining ones.

Proposition 3.39 Every infinite homogenous equational set of an F-algebra M is
defined by an equation system, each unknown of which defines an infinite subset
of M .

Proof: It follows from Proposition 3.23(1) that if an equational set of M is finite,
then it is the set of values of a finite set of terms.

Let S be an equation system of the form (3.1) with least solution L= (L1, . . . ,Ln)

in P(M) and such that the given infinite equational set equals Li for some i ∈ [n]. Let
m∈ [n] be such that Lm is finite. By the preliminary remark, Lm = {tM | t ∈D}, where
D is a finite subset of T (F). Let S ′ be the system obtained from S by replacing the
equation xm = tm by xm =⋃D. We claim that L is the least solution of S ′ in P(M).
It is clear that it is a solution of S ′, hence that μx · S ′P(M)

(x) ⊆ L. For proving the

converse, we observe that Si
P(M)

(∅)⊆ S ′iP(M)
(∅) for every i (easy proof by induction

on i). Hence L = μx · SP(M)(x) ⊆ μx · S ′P(M)
(x), which gives the desired equality

and proves the claim. It follows then from Proposition 3.31 that we can also replace
each occurrence of xm in the right-hand sides of the equations of S ′ by

⋃
D, and that

we obtain a system S ′′ equivalent to S ′ and to S. But then we can delete the equation
xm =⋃D from S ′′ and get a subsystem that is (Unk(S)− {xm})-equivalent to S in
P(M) by Lemma 3.27.

This step can be repeated for each unknown that defines a finite set. Since we
assumed that some unknown defines an infinite set, we end up with a system having
at least one equation. Its least solution is (Li1 , . . . ,Lik ), where Li1 , . . . ,Lik are the
infinite components of L and i1 < · · ·< ik .

Remark 3.40 (1) If S is a system as in the previous proof such that the m-th com-
ponent Tm of its least solution in P(T(F)) is finite, then the set Lm is finite by
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Proposition 3.23(1), and we can take D := Tm in order to eliminate xm. However,
the converse need not be true, as shown by the example of the equation system
〈x1 = x1 · x2 ∪a, x2 = x2 · x2 ∪ ε〉 associated with a context-free grammar with termi-
nal alphabet A= {a}, to be solved in P(W(A)). In this case, T2 = T ({·,ε}) is infinite
but L2 ⊆ A∗ consists only of the empty word.

(2) The construction described in the proof Proposition 3.39 is effective provided
we know, for each m ∈ [n], whether Lm is finite and, when it is, we also know a finite
set of terms D that evaluate to its elements. The second condition is ensured when M
is semi-effectively given and infinity-preserving, see Remark 3.38(3). Then we can
compute the elements of Lm, and for each element d of Lm we can compute a term
that evaluates to d by enumerating all terms of T (F) and computing their value, cf.
Definitions 2.8 and 2.127. The HR algebra JS and the VR algebra GP are effectively
given and infinity-preserving, and it will be shown in Sections 4.1.4 and 4.3.3 that
the finiteness problem is decidable for their equational sets. Thus, Proposition 3.39
is effective for these algebras. �

3.2.3 Using derived operations

We now examine the possibility of using in equation systems derived opera-
tions like series-composition in the equation that defines series-parallel graphs (cf.
Sections 1.1.3 and 1.4.2). This is interesting for several reasons: equation systems
are in this way shorter and more clear, inductive proofs like those considered in
Section 1.2.3 use less auxiliary inductive hypotheses and we will obtain a general
notion of derivation tree that generalizes the classical one for context-free grammars
(cf. Section 1.1.5).

We recall from Definition 2.125 that if H is a set of derived operation declarations
of an S-signature F , then for every F-algebra M, we obtain an H -algebra MH .
Its domains are those of M and its operations are the associated derived operations
defined in M by H . Aderived operation g is linear if its defining term tg is linear (i.e.,
no variable occurs twice or more in it). It is strict if each variable yi for i ∈ [ρ(g)] has
an occurrence in tg . This condition implies that the corresponding function depends
on all its ρ(g) arguments. A derived signature H is linear and/or strict if all its
operations are linear and/or strict.

Proposition 3.41 Let H be a linear derived signature of an S-signature F . For every
F-algebra M, we have Equat(MH ) ⊆ Equat(M). If, furthermore, F ⊆ H , then
Equat(MH )= Equat(M).

Proof: Let L in Equat(MH ) be nonempty. Let S be an equation system over H such
that L is defined by (S,Y ) in MH for some Y ⊆Unk(S). By Proposition 3.33, we can
assume that S is uniform. Let us write S = 〈x1 = p1, . . . ,xn = pn〉 where, for each i,
pi = ·· · ∪ g(xi1 , . . . ,xik )∪ ·· · . We let p̂i := ·· · ∪ tg[xi1/y1, . . . ,xik /yk ] ∪ · · · where we
assume that the linear term tg defining g is in T (F ,Yk )σ(xi) with Yk = {y1, . . . ,yk} and
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that σ(yj)= σ(xij ) for each j. We let Ŝ be the equation system 〈x1 = p̂1, . . . ,xn = p̂n〉
over F .

We first assume that H is strict. The proof is easier, and this particular case will be
useful. By Lemma 3.2(1) we have

gP(MH )(Li1 , . . . ,Lik )⊆ tgP(M)(Li1 , . . . ,Lik ), (3.2)

for all sets L1, . . . ,Ln of appropriate sorts. However, since H is linear and strict each
variable yj has a unique occurrence in tg so that by Lemma 3.2(2) we have an equality
in (3.2) (even if some of the sets L1, . . . ,Ln are empty). It follows that ŜP(M)= SP(MH )

and that ŜP(M) and SP(MH ) have the same least fixed-point. Hence, the set L is defined
by (̂S,Y ) in M and belongs to Equat(M).

We now consider the case where H is linear but not necessarily strict. By Proposi-
tion 3.37, we can assume that the system S is trim and still uniform. From inequality
(3.2) we get that

SP(MH )(L)⊆ ŜP(M)(L), (3.3)

for every n-tuple L= (L1, . . . ,Ln) of sets of appropriate sorts. It follows that

μx · SP(MH )(x)⊆ μx · ŜP(M)(x).

However, it follows from Lemma 3.2(2) that SP(MH )(L)= ŜP(M)(L) if L is nonempty,
i.e., if its components are all nonempty. Since S is trim, the tuple K :=μx ·SP(MH )(x)
is nonempty. Hence we have K = SP(MH )(K)= ŜP(M)(K) and so K is a solution of
Ŝ in P(M). Hence, by Theorem 3.7, we have μx · ŜP(M)(x)⊆ K = μx · SP(MH )(x),
hence the equality which, as above, gives the desired conclusion.

The second assertion follows from Proposition 3.9(2) because M is a subalgebra
of MH .

The hypothesis that the derived operations are linear is essential as shown by the
following example.

Example 3.42 (1) By Corollary 3.14, the context-free languages over A := {a,b}
are exactly the equational sets of W(A). Let us now enrich W(A) into W(A)sq by
adding the derived unary operation sq defined by sq(u) := u ·u for all u ∈ {a,b}∗. The
equation x1= sq(x1)∪a defines the set {a2n | n≥ 0} that is equational in W(A)sq. It is
not a context-free language because {2n | n≥ 0} is not semi-linear (cf. Section 3.1.6),
hence it is not equational in W(A).

(2) Next, we consider the system S = 〈x= g(y,z),y= a,z = f (z)〉 that is not trim,
and we let g be defined by tg = f (y1). The unknowns x and z of S define the empty
set. If we replace g by its definition, we get the system 〈x= f (y),y= a,z= f (z)〉 for
which x no longer defines the empty set. This shows that it is important to use a trim
system if H is not strict.
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(3) The proof of Corollary 3.26 can be presented in the following way. Let g be
an affine mapping : T (F)→N k , and let P be the associated F-algebra, as defined
before Corollary 3.26. The operations of P are linear derived operations of Nk and
g= valP. If K ⊆ T (F) is regular, then g(K) is equational in P by Proposition 3.23(3),
hence equational in Nk by Proposition 3.41 and semi-linear by Proposition 3.25. �

We now use derived signatures to generalize the algebraic definition of derivation
trees that has been given informally in Example 1.3 (Section 1.1.5) for the context-free
grammar G of Example 1.1.

Definition 3.43 (Derivation trees and parsing) Let S = 〈x1 = p1, . . . ,xn = pn〉 be
an equation system over an S-signature F , where, for each i, pi =mi,1∪·· ·∪mi,ri for
some monomials mi, j . For 1≤ i≤ n, 1≤ j≤ ri, we let m̃i, j ∈ T (F ,{y1, . . . ,yk }) be the
(unique) term such that ListVar(m̃i, j) = y1 · · ·yk and mi, j = m̃i, j[xi1/y1, . . . ,xik /yk ]
for some i1, . . . , ik . (For example, if mi, j = f (g(x2,x1),h(x4,x1)), then m̃i, j =
f (g(y1,y2),h(y3,y4)) and (i1, i2, i3, i4)= (2,1,4,1).) This implies that σ(yl)= σ(xil )

for each l.10 We let qi, j be a function symbol of type σ(y1)×·· ·×σ(yk)→ σ(xi).
We obtain thus an S-signature Q := {qi, j | 1≤ i≤ n,1≤ j≤ ri}, associated with the

system S. We turn each qi, j ∈Q into a linear and strict derived operation of F , defined
as λy1, . . . ,yk · m̃i, j. And we let S ′ be the uniform system 〈x1= p′1, . . . ,xn= p′n〉, where
p′i is obtained from pi by replacing mi, j by qi, j(xi1 , . . . ,xik ).

For every F-algebra M, we get a Q-algebra MQ with the same sorts and the same
domains (cf. Definition 2.125). It is a derived algebra of M. By the definitions and
Lemma 3.2(4), we have SP(M) = S ′P(MQ)

. For checking this fact we observe that

mi, j P(M)(A1, . . . ,An)= {m̃i, j(a1, . . . ,ak) | a1 ∈ Ai1 , . . . ,ak ∈ Aik }
= qi, j P(MQ)(Ai1 , . . . ,Aik ),

where the sets A1, . . . ,An may be empty, since Q is a strict and linear derived signature
(cf. the proof of Proposition 3.41). Hence we have

μx · S ′P(MQ)(x)= μx · SP(M)(x).

We now compare the solutions of S and S ′ in their respective term algebras. The
least solution of S ′ in P(T(Q)) is an n-tuple of sets of terms (D1, . . . ,Dn) such that
Di ⊆ T (Q)σ(xi) for each i. By Proposition 3.23(1) we have

μx · S ′P(MQ)(x)= (valMQ(D1), . . . ,valMQ (Dn)).

If d ∈ Di and valMQ (d) = m (which implies that m belongs to μx · SP(M)(x) � xi),
then we say that d is a derivation of tree of m relative to (S,xi). Each element of a set

10 The sort of a variable yl is not necessarily the same in different terms m̃i, j . We could waive this
“difficulty” by using variables yi, j, l instead of yl in m̃i, j , but we prefer lighter notation.
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μx · SP(M)(x) � xi has at least one derivation tree relative to (S,xi). If it has a unique
one, we will say that S is unambigous in M. However, for dealing with graphs, we
will almost never be able to use unambiguous systems.

The elements of Di are called the derivation trees of S relative to xi. A derivation
tree d ∈ Di can be evaluated in the derived algebra MQ, but also in M as follows:
by Proposition 2.126, we have valMQ (d) = valM(θQ(d)) where θQ is the second-
order substitution : T (Q)→ T (F) associated with the derived signature Q. It follows
that

μx · SP(M)(x)= (valM(θQ(D1)), . . . ,valM(θQ(Dn))).

In particular, the least solution of S in P(T(F)) is (θQ(D1), . . . ,θQ(Dn)), and θQ =
valT(F)Q by Proposition 2.126.

Let M be a semi-effectively given F-algebra and S be an equation system as above
with least solution (L1, . . . ,Ln) in P(M). Aparsing algorithm for (S,M) takes as input
an unknown xi of S and an element m of M and outputs either the answer that m is not
in Li or a derivation tree d of m relative to (S,xi). In the latter case, one can compute
in linear time in |d| the term θQ(d) ∈ T (F) that evaluates to m (cf. the discussion
before Proposition 2.126).

Example 3.44 We consider the equation

T = (T � (T � T ))∪ (T • (T � T ))∪ e (3.4)

over the algebra Jd
2 in which we have defined series-parallel graphs in Section 1.1.3.

It defines a particular set of series-parallel graphs. This equation can be written as

T = q1(T ,T ,T )∪ q2(T ,T ,T )∪ q3, (3.5)

where q1 := λy1,y2,y3 · y1 � (y2 � y3), q2 := λy1,y2,y3 · y1 • (y2 � y3) and q3 := e.
Equation (3.4) defines a set of terms in T ({�,•,e}) containing, to take an exam-
ple, the term t = (e • (e � e)) � (e � (e � (e � e))). The corresponding derivation
tree is the term d = q1(q2(q3,q3,q3),q3,q1(q3,q3,q3)), and we have t = θQ(d),
where θQ is the second-order substitution associated with the above definitions of
q1,q2,q3. �

3.2.4 Closure properties of the class of equational sets

We prove some closure properties of the class of equational sets of general algebras.
Further properties particular to graph algebras will be proved in Chapter 4.

Proposition 3.45 Let M be an F-algebra.

(1) If L1,L2 ∈ Equat(M), then L1 ∪L2 ∈ Equat(M).
(2) Every finite subset of valM(T (F)) is equational in M.
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(3) If f ∈F has type s1× s2×·· ·× sk→ s and Li ∈Equat(M)si for each i= 1, . . . ,k ,
then fP(M)(L1, . . . ,Lk) ∈ Equat(M)s.

Proof: (1) Let L1 be defined by (S1,Y1) in M, and L2 by (S2,Y2). By renaming the
unknowns of one of the systems if needed, we may assume that Unk(S1) and Unk(S2)

are disjoint. Let S be the union of S1 and S2. By Lemma 3.27, L1 is defined by (S,Y1)

and L2 is defined by (S,Y2) in M. Hence L1 ∪L2 is defined by (S,Y1 ∪Y2).
(2) By (1), it suffices to prove this for a homogenous subset. If t1, . . . , tp ∈ T (F)s,

then the set {t1M, . . . , tpM} = valM({t1, . . . , tp}) is defined by the equation x1 = t1 ∪s

· · · ∪s tp.
(3) For k = 2 the proof is similar to the one for (1), but we add to S the new equation

z=⋃{ f (y1,y2) | y1 ∈ Y1,y2 ∈ Y2}. Then fP(M)(L1,L2) is defined by (S,z) in M. The
generalization to functions f of any positive arity is clear. The case k = 0 follows
from (2) (we have in this case fP(M) = { fM}).

3.2.5 Concluding remarks on equational sets

What are equation systems good for?

What are the benefits of defining a set L of words, graphs or other combinatorial
objects by an equation system?

First, such a set L has a finite description that can be used by algorithms, e.g., for
deciding its emptiness, for computing it in certain cases or for extracting numerical
information; Proposition 3.10, Corollary 3.24 and Corollary 3.26 have given such
algorithms. Second, every element of L has a denotation by at least one term over
the signature of the relevant algebra (by Proposition 3.23(1)) and has a hierarchi-
cal structure expressed by its derivation trees and by the corresponding terms (cf.
Definition 3.43). Third, certain universal properties of L can be proved inductively
as we have seen in Proposition 1.6. This proposition will be generalized below in
Proposition 3.91 (Section 3.4.7). Finally, the Filtering Theorem (Theorem 1.8 and
Theorem 3.88 below) yields effective constructions of equation systems that define
certain subsets of given equational sets.

Applications to graphical objects are developed by Drewes in [*Dre06]. He defines
grammars that generate pictures, i.e., drawn graphs or images in an abstract set-
ting. His “tree-based approach” is algebraic and the context-free sets he defines are
equational.

Some difficulties

There are several problems raised by equation systems and equational sets. First, the
parsing problem (cf. Definition 3.43): we have observed at the end of Section 3.1.2
that the membership problem may be undecidable for equational sets of effectively
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given algebras; the existence of efficient parsing algorithms depends on the considered
algebras. For the equational sets of the HR and the VR algebras, the membership prob-
lem is always decidable but sometimes NP-complete (see Sections 4.1, 4.3 and 6.2).
Every element of an equational set has at least one derivation tree. The nonambigu-
ity of the corresponding system, that is, the case where each generated element has
a unique derivation tree, is interesting, in particular for counting the elements of a
given size (cf. the book [*FlaSed]). However, even for context-free languages the
nonambiguity is a difficult notion: it is undecidable and certain context-free languages
have no unambiguous grammar. Nothing can be said in general, and equational sets
of graphs are very seldom defined by unambiguous equation systems. A last ques-
tion concerns the closure of the class of equational sets under transformations that
would generalize the rational transductions of words. Apart from the closure under
homomorphisms, an easy but fundamental result proved in Proposition 3.23(1), not
much can be said for general algebras. But a theory of graph transductions, based on
monadic second-order logic, informally presented in Section 1.7, will be developed
in Chapter 7. These transductions preserve the equationality of sets of graphs.

We now review some notions related to equation systems.

μ-calculus

The language of μ-calculus, studied in the book by Arnold and Niwinski [*ArnNiw],
offers some notation for equational sets. For example, the least solution of the sys-
tem S = 〈x = f (x,y) ∪ a, y = g(x,y) ∪ b〉 in every powerset { f ,g,a,b}-algebra is
denoted by the μ-term11 μ(x,y) · ( f (x,y)∪a, g(x,y)∪b) of the vectorial μ-calculus
(Section 2.7 of [*ArnNiw]). This term evaluates to μ(x,y) · SP(M)(x,y) in each
powerset { f ,g,a,b}-algebra P(M).

Furthermore, each component of the least solution of an equation system is the
value of a μ-term that only uses least fixed-points over variables, not over tuples of
variables. For example, μ(x,y) · SP(M)(x,y) � x is the value in P(M) of the μ-term
μx · ( f (x,μy · (g(x,y)∪ b))∪ a) (Lemma 1.4.2 of [*ArnNiw]).

However, the general μ-terms can be written with set intersection and a greatest
fixed-point operator (that is dual in some sense to the least fixed-point one). Hence,
they can also define sets that are not equational: for example, the intersection of two
context-free languages (even without using greatest fixed-points). The emptiness of
the corresponding sets is thus undecidable, whereas that of equational sets is decidable.

Rational expressions

The rational sets of a monoid M are the members of the least class of subsets of M that
contains the finite sets and is closed under union, the multiplication of M extended to
sets and denoted by ·P(M), and the star operation, that is defined as follows (where ·
11 The terms of the μ-calculus are called μ-terms.
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denotes ·P(M) and 1 denotes 1M):

if L⊆M , then L∗ is the least subset X of M such that:

X = L ·X ∪{1}
(or equivalently X = X ·L∪{1} or X = X ·X ∪L∪{1}).

Rational sets can thus be defined byμ-terms, but a regular expression like a(ab∗)∗ac∗
that defines a regular (also called rational) language is more readable than its
translation into a μ-term.

The rational sets of a monoid M are equational in M and form in most cases a proper
subclass of Equat(M), denoted by Rat(M). However, in a commutative monoid
every equational set is rational (this is proved in [AceEI] and entails Proposition 3.25).

If M is the monoid of words over a finite alphabet, then Rat(M) is the class of
regular languages by a well-known result due to Kleene (cf. [*Eil, *Sak]). For this
reason, rational sets are frequently presented in connection with finite automata.12

However, Rat(M) is more relevant to Equat(M) than to the class Rec(M) of recog-
nizable sets that generalizes the class of regular languages. (We will define and study
this class in Section 3.4.) More will be said about rational sets in Section 3.4.10.

3.3 Intermezzo on automata

Finite automata on terms correspond to regular grammars, and hence define the
equational sets of terms. Deterministic automata have the same expressive power
as the general ones, but, furthermore, correspond to finite congruences. Hence they
define the recognizable sets of terms, which turn out to be the same as the equational
sets. Recognizability has been introduced in Section 1.2 and will be the subject of
Section 3.4. In this section, we review the definitions and properties of those automata
on terms that are closely linked (in different ways) to the equational and recognizable
sets in general algebras. Automata on terms are studied in detail in [*Com+] and
[*GecSte].

The equational sets of the term algebra T(F) are important (by Proposition 3.23(1))
because, for every F-algebra M, a subset L of M is equational if and only if it is
valM(K) for some equational set K of T(F). Hence, every term in K can be used as
a linear notation for an element of L. Furthermore, if t ∈ K and valM(t)= m, then t
defines a kind of hierarchical decomposition of m because if t = f (t1, t2), then m is
the composition of valM(t1) and valM(t2) by fM and the same holds for t1, t2 and all
their subterms. Algorithms for checking properties of elements of equational sets can
be based on such decompositions, as we will see for graphs in Chapter 6. Thus, we
obtain linear and structured notations for the elements of equational sets.

12 The book by Sakarovich [*Sak] interleaves finite automata, rationality and recognizability without
emphasizing the fundamental differences between these three notions.



222 Equational and recognizable sets

The relationships between recognizability and deterministic automata will be devel-
oped in Section 3.4.2. We review, and even slightly extend, the classical notion of an
automaton to be run on terms.

3.3.1 Automata on terms

In this section and the next, sets of sorts and signatures are finite.

Definition 3.46 (Automata) Let F be a finite S-signature.13 An F-automaton (or
just automaton if F need not be specified)14 is a 4-tuple A = 〈F ,QA ,δA ,AccA 〉
such that QA is a finite or infinite S-sorted set called the set of states (σ(q) ∈ S is
the sort of q ∈ QA ), AccA is a subset of QA called the set of accepting states and
δA is a set of tuples called the set of transition rules, satisfying the following two
conditions (we recall that Fk denotes the set of symbols of F of arity k):

(1) Each element of δA is of one of the two possible forms:

(1.1) (q1, . . . ,qk , f ,q) for k ≥ 0, q1, . . . ,qk ,q ∈QA , f ∈ Fk ;
(1.2) (q,q′) for q,q′ ∈QA ; these pairs are called the ε-transitions.

(2) The sort mapping σ : QA → S satisfies the following conditions:

(2.1) f has type σ(q1)×·· ·×σ(qk)→ σ(q) in any tuple of the form (1.1);
(2.2) σ(q)= σ(q′) for every ε-transition (q,q′).

For better readability, we will denote by f [q1, . . . ,qk ] →A q (and by f →A q if
f ∈ F0) a transition rule of type (1.1) and by q′ →A q an ε-transition. Each of these
transition rules is said to yield q (the last component of the tuples).

A triple A = 〈F ,QA ,δA 〉 where F , QA and δA are as above is called an F-semi-
automaton. Hence, it is just an F-automaton without accepting states. The definitions
given below for semi-automata extend to automata in the obvious way.

A semi-automaton A is ε-free if it has no ε-transitions. It is finite if its set of states
QA is finite (which implies that δA is finite).

We denote by �A := |QA | the cardinality of QA . We define the size of A , denoted
by ‖A ‖, as the sum of weights of its transition rules where the weight of a rule relative
to a function symbol f is ρ( f )+ 1 and that of an ε-transition is 2. Hence we have

‖A ‖ ≤ 2 · (�A )2+�f ∈F (ρ( f )+ 1) · (�A )ρ( f )+1.

If the function symbols are at most binary, which will be frequently the case for the
automata of Chapter 6, then ‖A ‖ =O(|F | · (�A )3).

The size of A is thus proportional to the space needed to store its transition rules
as a list of tuples, where we assume that states use constant space. If the number

13 We recall from Definition 2.123 that this implies that S is finite.
14 These automata are frequently called bottom-up (or frontier-to-root) tree automata in the literature on

tree language theory.



3.3 Intermezzo on automata 223

of states is very large (which will be the case in Chapter 6), then a state may need
�log(�A )� bits to be stored.15

A run of an ε-free semi-automaton A on a term t ∈ T (F) is a mapping r : Pos(t)→
QA such that:

(i) if u is an occurrence of a constant symbol f , then f →A r(u)
(ii) if u is an occurrence of a function symbol f ∈ Fk , for k > 0, with sequence of

sons16 u1, . . . ,uk , then f [r(u1), . . . ,r(uk)]→A r(u).

If A is not ε-free, then →∗ε is the reflexive and transitive closure of the set of
ε-transitions. We let δεA be the set of transition rules f [q1, . . . ,qk ] → q such that
f [q1, . . . ,qk ] →A q′ for some q′ such that q′ →∗ε q. We have δA ⊆ δεA . A run of A

is defined as a run of the ε-free semi-automaton 〈F ,QA ,δεA 〉.
For q ∈QA , we let L(A ,q) be the set of terms t in T (F) on which there is a run r

of A such that r(roott)= q. It is clear that L(A ,q)⊆ T (F)σ(q) for every q in QA .
If A is an automaton, then a run r on t is accepting if r(roott) is an accepting state.

We let L(A ) :=⋃q∈AccA
L(A ,q)⊆ T (F). It is the set of terms on which A has an

accepting run. We say that L(A ) is the language accepted (or recognized) by A .
Two automata are equivalent if they accept the same language.

Regular grammars

We now relate automata with regular grammars and equation systems. With every
finite F-semi-automaton A = 〈F ,Q,δ〉, we associate a regular grammar G(A ) over
F (without initial nonterminal) as follows: its set of nonterminals is Q and its rules
are q′ → q if q→A q′ and q→ f (q1, . . . ,qk ) if f [q1, . . . ,qk ] →A q. It is clear that
L(G(A ),q)= L(A ,q) for every state q. If A is an automaton, then L(A ) is the union
of the languages generated by G(A ) from its nonterminals that are the accepting states
of A , i.e., L(A )= L(G(A ),AccA ).

By Definition 3.17, there is an equation system S(A ) such that G(S(A ))=G(A ).
The grammar G(A ) and the equation system S(A ) are quasi-uniform. If A is
ε-free, then they are uniform. Conversely, every quasi-uniform (resp. uniform) regular
grammar is G(A ) for some finite semi-automaton (resp. some finite ε-free semi-
automaton) A , and similarly for S(A ). From Proposition 3.33 we get the following
proposition17 that subsumes Corollary 3.19 for a finite S-signature F :

Proposition 3.47 Let F be finite and L⊆ T (F).

(1) The language L is accepted by a finite F-automaton if and only if it is regular
over F , if and only if it is equational in T(F).

15 Space efficient representations of automata are used in the software MONA: see [BasKla], [Hen+],
[Kla].

16 The term “son” refers to the syntactic tree of t, cf. Definition 2.14 in Section 2.2.
17 We recall from Definition 3.8 that a set is defined by an equation system if it is a union of components

of its least solution in the considered powerset algebra that are all of the same sort.
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(2) It is accepted by an automaton with n states if and only if it is defined by a
uniform equation system with n unknowns, if and only if it is generated by a
uniform regular grammar with n nonterminals. �

The term “regular” for a language will refer to its definition by finite automata as
well as by regular grammars (in the case where F is finite).

Special types of automata

Definition 3.48 (Trim and reduced automata) A state q of a semi-automaton A is
accessible if L(A ,q) �= ∅, i.e., if it occurs in a run of A on some term, equivalently
if it is a productive nonterminal of the grammar G(A ). We say that A is trim if
its states are all accessible. An automaton A is reduced if each state belongs to the
image of an accepting run, i.e., is useful for accepting some term.

Obviously, one can trim a semi-automaton A by trimming the corresponding
equation system S(A ), i.e., by constructing Trim(S(A )) and turning that system
back into a semi-automaton. Similarly, one can reduce an automaton A by con-
structing Trim(S(A ),AccA ) and turning that back into an automaton. Thus, by
Proposition 3.37, one can effectively transform each semi-automaton A into a trim
semi-automaton B such that QB = {q ∈QA | L(A ,q) �= ∅} and L(B,q)= L(A ,q)
for every q ∈QB . Similarly, every automaton can be effectively transformed into an
equivalent reduced automaton.

Definition 3.49 (Deterministic and complete automata) An F-semi-automaton
A is deterministic if it is ε-free and, for every q1, . . . ,qk and every f ∈ Fk , there
is at most one state q such that f [q1, . . . ,qk ] →A q. It is complete if, for every
q1, . . . ,qk and every f in Fk such that α( f ) = (σ (q1), . . . ,σ(qk )), there is a state q
such that f [q1, . . . ,qk ] →A q. If A is deterministic and complete, then its size ‖A‖
(cf. Definition 3.46) is exactly �f ∈F(ρ( f )+ 1) · (�A )ρ( f ).

By the addition of at most one state of each sort (such states are usually called
sinks), one can transform a deterministic semi-automaton A into a complete and
deterministic one B such that L(B,q)= L(A ,q) for every state q of A .

Let A be deterministic and complete: on each t ∈ T (F) it has a unique run, which
will be denoted by runA ,t . If the transition relation is a computable function,18 which
means that for given function symbol f and states q1, . . . ,qρ( f ) of appropriate sorts the
unique state q such that f [q1, . . . ,qρ( f )]→A q can be computed by an algorithm, then
this run can be computed during a bottom-up traversal of t. This computation takes
time a · |t| where a is an upper-bound to the time taken to perform a transition, that
is, to find or compute from f ,q1, . . . ,qk the state q such that f [q1, . . . ,qk ]→A q. This
value a is significant if the transition has to be computed, but also if the automaton

18 This condition is not trivial since the set of states may be infinite (but should be effectively given).
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is finite but is so large that some time (that is no longer considered as constant) is
required to find the appropriate transition in a table.19

We recall the classical determinization of automata (cf. Section 5 of [*GecSte] or
Theorem 1.1.9 of [*Com+]).

Proposition 3.50 For every finite automaton A , one can construct a trim, complete
and deterministic finite automaton B that is equivalent to A . �

We only recall that the states of B of sort s are sets of states of A of sort s and that
|QB,s| ≤ 2|QA ,s|, where QA ,s is the set of states of sort s of A and similarly for B.

Assuming fixed some determinization algorithm, we will denote B by det(A ).
In particular, we will assume that det(A ) =A if A is already trim, complete and
deterministic.

Remark 3.51 (1) For every many-sorted signature F , we let F− be the one-sorted
signature obtained from F by forgetting sorts (cf. Lemma 3.21). Every F-automaton
A is an F−-automaton and, thus, every regular language L ⊆ T (F) is regular over
F−. Conversely, a regular language L over F− such that L⊆ T (F), is regular over F
by Corollary 3.19 and the observations made in Remark 3.38(4).

(2) Automata on words are just particular automata on terms, because words over
an alphabet A correspond bijectively to terms over the unary functional signature UA,
as explained in Definition 2.7. More precisely, a word w := a1 · · ·an with a1, . . . ,an

in A is the value of the term t := an(· · ·(a1(ε)) · · ·) in the UA-algebra Wright(A).
The runs of a UA-automaton A on the term t correspond bijectively to those of an
automaton B (with the same set of states) on the word w. We do not detail the obvious
correspondence between the automaton A on terms and the automaton B on words.
Thus, as already explained in Remark 3.20(4) and after Proposition 3.23, a language
over the alphabet A is regular if and only if the corresponding set of terms is regular
over UA.20 �

Allowing infinite sets of states in automata makes it possible to enrich them so that,
in addition to checking if a term t belongs to a regular language, an automaton can
compute some value attached to t. This feature will be used in Chapter 6, but we give
immediately an example.

Example 3.52 We let F = { f ,a,b}, ρ( f )= 2, ρ(a)= ρ(b)= 0 and L be the set of
terms in T (F) that have an even number of occurrences of a. The following automaton

19 In most classical uses of automata, e.g., in compilation, the size of the input is much larger than the
number of states and the value a may be considered as a constant. But in Chapter 6, we will construct
automata that are much larger than their intended input terms.

20 In the UA-algebra Wleft(A), the word w corresponds to the term t′ := a1(· · ·(an(ε)) · · ·). In this case,
the runs of an automaton on w correspond to those of a “top-down (or root-to-frontier) automaton” on
t′ (cf. Section 8.1.2).
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A accepts L and computes ht(t), the height of t. It is defined as follows:

QA := {q0,q1}×N ,
AccA := {q0}×N ,
δA is the set of rules:

a→ (q1,0), b→ (q0,0), f [(qi,n),(qj,p)]→ (ql ,r)
such that r =max{n,p}+ 1, i, j, l ∈ {0,1}, l =mod2(i+ j).

It is clear that A is complete and deterministic, that L(A )= L and that, for t ∈ L, we
have ht(t)= n if and only if t ∈ L(A ,(q0,n)). Hence, the unique run of A on a term t
not only evaluates the relevant parity information (by means of the first components
of the states) but it also evaluates the heights of the subterms of t. Whether t is
accepted or not by A depends only on the parity information and not on the heights
of subterms. Hence, the language L(A ) is regular. �

3.3.2 Pumping arguments

The following proposition collects results proved by so-called pumping arguments.
The size of a term is the number of its positions, or its length if it is considered as
a word (without commas and parentheses, cf. Definition 2.3). We let F be a finite
signature of maximal arity ρ(F) = k ≥ 1, consisting of c constant symbols and d
symbols of positive arity. The size of a term in T (F) of height m≥ 0 (a constant has
height 0) is bounded by �k(m), where

�k(m) := 1+ k+ k2+·· ·+ km.

The number of terms of height at most m is bounded by �k ,c,d(m) defined by

�k ,c,d(m) := (c+ d+ 1)�k (m),

which gives

�k ,c,d(m)≤ (c+ d+ 1)k
m+1

for k ≥ 2,

and

�1,c,d(m)≤ (c+ d+ 1)m+1 for k = 1.

However, to have better bounds, we can use the following instead:

�k ,c,d(0) := c and �k ,c,d(m) := ckm · (d+ 1)�k (m−1) for m≥ 1.

Proposition 3.53 Let F be a finite signature of maximal arity k ≥ 1 having c constant
symbols and d symbols of positive arity. Let L⊆ T (F) be nonempty and accepted by
a finite F-automaton A with m+ 1 states or defined by a uniform equation system
with m+ 1 unknowns (m≥ 0).
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(1) The height of a term of minimal size in L is at most m and its size is at most �k (m).
(2) The finiteness of L is decidable. If L is finite, then the height of a term in L is

at most m and its size is at most �k(m). Furthermore, L can be computed and its
cardinality is at most �k ,c,d(m).

Proof: By Proposition 3.47, we need only consider the case where L= L(A ). We
use a classical argument (cf. Chapter 1 of [*Com+] or Proposition 5.2 of [*GecSte]).
If A has an accepting run r on a term t such that r(u)= r(v) for some positions u,v
with u <t v, then L= L(A ) contains a term smaller than t and infinitely many terms
larger than t.

To prove this, we write t = c[c′[t′]] where c,c′ ∈ Ctxt(F), c′ is not empty, t′ = t/u
and c′[t′] = t/v. Then c[t′] belongs to L(A ) and is smaller than t, whereas all terms
c[c′[c′[· · · [c′[t′]] · · · ]]] with at least two copies of c′ belong to L(A ), are pairwise
different and larger than t.

The bounds on heights, sizes and numbers of terms in the statement follow imme-
diately. It is straightforward to show that L is infinite if and only if it contains a term
of height at least m+ 1 and at most 2m+ 2 (by choosing c′ such that the length of
the path from the root to the context variable is at most m+ 1). This implies the
decidability of finiteness.21

By such arguments, one can prove that certain languages are not regular. Here is
an example to be used later.

Example 3.54 We prove the claim made in Remark 3.20(1) that the language L =
{ fgnagnb | n ≥ 0} (with ρ( f ) = 2, ρ(g) = 1, ρ(a) = ρ(b) = 0) is not regular. If
we assume it is, then it is accepted by a complete deterministic finite automaton (by
Proposition 3.50). There exist two integers n and m < n such that the unique runs of
this automaton on the terms gma and gna yield the same state. It follows that the term
fgmagnb is accepted by this automaton but does not belong to L. This contradicts the
initial assumption. Hence L is not regular.

3.4 The recognizable sets of an algebra

In the previous three sections, we have defined and studied the equational sets of an
algebra. These sets generalize the context-free languages, and also the regular lan-
guages (of words and terms). We now define the recognizable sets, and so generalize
the characterization of regular languages formulated in terms of finite congruences.

3.4.1 Definitions and examples

An F-algebra A is locally finite if each domain As is finite. It is finite if, furthermore,
its set of sorts S is finite (although F may be infinite).

21 For another method to decide the finiteness of L, see Sections 4.1 and 4.3 of the next chapter.
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Definition 3.55 (Recognizable sets of an algebra) Let M be an F-algebra. A rec-
ognizable set of M is a set L ⊆ M of the form L = h−1(C) where h : M→ A is
a homomorphism of F-algebras, A is locally finite and C ⊆ A. We will say that h
witnesses the recognizability of L. We may in addition require that h is surjective. If
this is not the case, we replace A by its subalgebra that is the image of M under h,
and the set C by its intersection with h(M ). The requirement that h is surjective does
not change the notion of recognizability.

We denote by Rec(M) the set of recognizable sets of M and by Rec(M)s the
set of those included in Ms for s in S. We will also say that a set in Rec(M) is
M-recognizable or recognizable in M. Just as equational sets, recognizable sets need
not be homogenous, i.e., they may have elements of different sorts; unlike equational
sets, they may have elements of countably many different sorts.

Proposition 3.56

(1) Let M be an F-algebra and M′ be an F ′-algebra such that M′ ⊆M. If L∈Rec(M),
then L∩M ′ ∈Rec(M′). In particular, Rec(M)∩P(M ′)⊆Rec(M′).

(2) Let k : M′ →M be a homomorphism of F-algebras. If L∈Rec(M), then k−1(L)∈
Rec(M′).

(3) If H is a derived signature of F and M is an F-algebra, then Rec(M)⊆Rec(MH ).
If, furthermore, F ⊆H , then Rec(M)=Rec(MH ).

Proof: (1) Let the homomorphism h : M→ A of F-algebras witness the recogniz-
ability of L in M. Thus, L= h−1(C)with C⊆A. Let A′ :=A � F ′, cf. Definition 2.123.
Then the restriction h′ of h to M ′ is a homomorphism : M′ → A′ that witnesses the
recognizability of L∩M ′ in M′, because L∩M ′ = (h′)−1(C ∩A′).

(2) If h is as in (1), then the homomorphism h ◦ k : M → A witnesses the
recognizability of k−1(L), with the same C.

(3) Let h : M→A witness the recognizability in M of a set L. Since h is a homo-
morphism, we have h(tM(m1, . . . ,mn))= tA(h(m1), . . . ,h(mn)) for every t ∈ T (F ,Xn)

and m1, . . . ,mn ∈M of appropriate sorts. Hence, h is a homomorphism : MH→AH . It
witnesses the recognizability of L in MH , with the same C. The last assertion follows
from (1) because then M⊆MH .

Note that, by the first assertion of this proposition, if we enrich an algebra by adding
new operations, then the class of recognizable sets decreases or remains the same. It
remains the same if we add or delete constants. In fact, if h : M→A is a homomor-
phism and cM is a new constant added to M, then h remains a homomorphism if we
define cA := h(cM).

We had a statement similar to the first assertion for equational sets in Proposi-
tion 3.9(2), but with an opposite inequality. The second assertion is similar to the one
in Proposition 3.23(2), but in the opposite direction. Finally, a statement similar to the
third assertion is in Proposition 3.41 but only for linear derived operations, and with
an opposite inequality. Other results of this kind will be stated in Proposition 3.85.
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Example 3.57 (1) Let A be the alphabet {a,b}. The language L= a∗b∗ is recognizable
in the unary algebra Wright(A) (cf. Definition 2.7). To see this we consider the UA-
algebra B with domain {1,2,Error}, with constant εB := 1 and operations such that

aB(1) := 1, aB(2) := aB(Error) := Error,

bB(1) := bB(2) := 2, bB(Error) := Error.

Then L= h−1({1,2}), where h is the unique homomorphism of Wright(A) (isomorphic
to T(UA)) into B. We have h−1(1)= a∗, h−1(2)= a∗b+ and h−1(Error)= A∗baA∗.

(2) We let A and L be as in (1). The language L is also recognizable in W(A)
because L= l−1({0,1,2,3}), where l is the unique homomorphism of W(A) into the
FA-algebra D such that D := {0,1,2,3,Error}, εD := 0, aD := 1, bD := 2 and the
operation ·D is defined by

0 ·D x := x ·D 0 := x for every x in D,
1 ·D 1 := 1, 1 ·D 2 := 3, 1 ·D 3 := 3,
2 ·D 2 := 2, 3 ·D 2 := 3, and
x ·D y := Error in all other cases.

We have then l−1(0) = {ε}, l−1(1) = a+, l−1(2) = b+, l−1(3) = a+b+ and
l−1(Error)= A∗baA∗.

These two examples are particular cases of theorems that relate recognizability and
finite automata. In particular, for every finite alphabet A, we have

Rec(W(A))=Rec(Wleft(A))=Rec(Wright(A)),

and this is the class of regular languages over A (see [*Eil], or [*Sak], Chapter II,
Theorem 2.3).

(3) We let K := {4+ 3 · λ | λ ∈ N } ⊆ N . This set is recognizable in the monoid
〈N ,+,0〉 (which we also denote by N) because K = k−1({4}) where k is the unique
homomorphism of N into the monoid E such that E := {0,1,2,3,4}, k(1) := 1, the
unit of E is 0 (so that k(0)= 0) and the addition in E is defined by

x+E y :=

⎧⎪⎨⎪⎩
x+ y if x+ y ≤ 4,

x+ y− 3 if 4 < x+ y ≤ 7,

x+ y− 6 if x+ y > 7.

We have then k−1(0) = {0}, k−1(1) = {1}, k−1(2) = {2+ 3 · λ | λ ∈ N }, k−1(3) =
{3+ 3 ·λ | λ ∈N } and k−1(4)= K . This is a particular case of a characterization of
the N-recognizable sets (cf. Proposition 3.93 below in Section 3.4.8).

(4) Let S be a finite set of sorts and F be a (possibly infinite) S-signature. For
each sort s in S the set T (F)s is recognizable in T(F−) and so is T (F). We recall, cf.
Remark 3.51(1), that F− is the one-sorted signature obtained from F by “forgetting
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sorts”. For proving this, we define an F−-algebra S⊥ with domain S⊥ := S ∪ {⊥}
and operations fS⊥ defined by

fS⊥(s1, . . . ,sρ( f )) :=
{

σ( f ) if α( f )= (s1, . . . ,sρ( f )),

⊥ otherwise.

It is clear that the mapping h : T (F−)→ S⊥ such that:

h(t) :=
{

s if t ∈ T (F)s for s ∈ S,

⊥ otherwise,

is a homomorphism. Hence the sets T (F)s = h−1({s}) and the set T (F)= h−1(S) are
recognizable in T(F−).

(5) Let M be an F-algebra for an S-signature with S possibly infinite. Each domain
Ms is recognizable in M and so is M . A similar statement for equationality is in
Proposition 3.23(4). To prove this, we use the F-algebra S defined as S⊥ in the
previous example but without ⊥, and where {s} is the domain of sort s for each s in
S . We omit the easy verification.

(6) If L is recognizable in M, then L∩Ms is also recognizable in M for each sort
s, because, if L is as in Definition 3.55, then we have L∩Ms = h−1(C ∩ As). The
converse is false. Let S :=N , F := {a, f ,g1, . . . ,gn, . . . } with ρ(a) := 0, σ(a) := 0,
f of type 0→ 0 and gi of type 0→ i for each i ≥ 1. Let L := {gi f ia | i ≥ 1}. For
each i ≥ 0 the set L∩ T (F)i is the singleton set {gi f ia} or the empty set, hence is
recognizable in T(F) (say by Theorem 3.62 below) but L is not. We will prove this
last fact by means of congruences in Example 3.71 in Section 3.4.3. �

3.4.2 Recognizable sets of terms

Before exposing the general properties of recognizable sets, we show that a set of
terms over a finite signature is recognizable if and only if it is accepted by a finite,
complete and deterministic automaton (cf. Section 1.2.4).

Definition 3.58 (Deterministic automata and algebras) Let F be a finite
S-signature, let B = 〈(Bs)s∈S ,( fB)f ∈F 〉 be an F-algebra and let C ⊆ B. We let
A :=A (B,C) be the complete and deterministic F-automaton such that QA := B,
AccA := C and

δA := { f [b1, . . . ,bρ( f )]→ fB(b1, . . . ,bρ( f )) | f ∈ F , bi ∈ Bα( f )[i] for i ∈ [ρ( f )]}.

The set of states of A is S-sorted with sort mapping σ such that σ(b)= s if and only
if b ∈ Bs.22 We let A (B) be the corresponding semi-automaton.

22 We recall that the sets Bs are pairwise disjoint.
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Conversely, every complete and deterministic F-automatonA isA (B,C) for some
F-algebra B with Bs := {q ∈ QA | σ(q)= s} and C := AccA . The following lemma
is clear from the definitions.

Lemma 3.59 Let F be a finite signature and B be an F-algebra.
(1) For every term t ∈ T (F), the unique run runA (B),t : Pos(t)→ B of the semi-

automaton A (B) on t verifies runA (B),t(u) = valB(t/u) for all u ∈ Pos(t). We
have L(A (B,C))= val−1

B
(C) for every subset C of B.

(2) The semi-automaton A (B) is trim if and only if the algebra B is generated
by F . �

Note that B need not be finite for this lemma to be valid. If B is finite (equivalently,
is locally finite since S is assumed finite) then A (B,C) is a finite automaton, and
vice versa. We obtain that a subset of T (F) is recognizable in T(F) if and only
if it is accepted by a finite F-automaton. Before stating this as a theorem that will
extend Corollary 3.19 and Proposition 3.47(1), we consider sets of terms over infinite
signatures. Arecognizable set of T(F) such that F is infinite is not necessarily a subset
of T (F ′) for some finite subsignature F ′ of F because T (F) itself is recognizable (by
Example 3.57(5)). For the sake of comparison, we recall from Proposition 3.9 that
an equational set of terms over an infinite signature F uses only a finite subsignature
F ′ of F and is equational in T(F ′).

We first prove that the recognizability of a set of terms over a signature F ′ is the
same when considered with respect to T(F ′) and to T(F), where F is any signature
containing F ′ as a subsignature. Hence, the recognizability of a set of terms is an
intrinsic property,23 although this is not completely evident from the definition.

Proposition 3.60 Let F ′ be a subsignature of a signature F . A subset L of T (F ′) is
T(F)-recognizable if and only if it is T(F ′)-recognizable.

Proof: Let S ′ be the set of sorts of F ′. The term algebra T(F ′) has no domain of sort
s if s ∈ S−S ′, and T (F ′)s ⊆ T (F)s if s ∈ S ′.

Since T(F ′) ⊆ T(F), Proposition 3.56(1) implies that every T(F)-recognizable
subset of T (F ′) is T(F ′)-recognizable. Let us conversely assume that L= val−1

A′ (C)

for a locally finite F ′-algebra A′ and C ⊆A′. For every s∈S, let⊥s be a new element
of sort s. Let A be the locally finite F-algebra with domains As =A′s∪{⊥s} for s∈ S ′,
and As = {⊥s} for s ∈ S −S ′, and with operations fA, for f ∈ F , defined as follows
(where f has type s1 × ·· · × sk → s): for all a1, . . . ,ak ∈ A such that ai ∈ Asi for
every i ∈ [k], we let fA(a1, . . . ,ak) := fA′(a1, . . . ,ak) if a1, . . . ,ak ∈ A′ and f ∈ F ′, and
fA(a1, . . . ,ak) := ⊥s otherwise. Obviously, valA(t) = valA′(t) for every t ∈ T (F ′).
Hence L= val−1

A
(C) is recognizable in T(F).

23 Here we assume that the arities of the function symbols that occur in the terms of the set are fixed,
cf. Remark 3.20(1).
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Example 3.61 (Recognizable sets of words over infinite alphabets) If A is a finite
or infinite alphabet, then W(A) is the FA-algebra 〈A∗, ·,ε,(a)a∈A〉 where each letter
a is a constant symbol denoting itself. (It is the free monoid generated by the set of
constants A.) A recognizable subset of W(A) is a language L⊆A∗ of the form h−1(C),
where h is a homomorphism : W(A)→B= 〈B, ·B,εB,(h(a))a∈A〉 such that 〈B, ·B,εB〉
is a finite monoid and C ⊆ B. If A is finite, then L⊆ A∗ is recognizable in W(A) if
and only if it is regular, see Example 3.57(2).

We now assume that A is (countably) infinite. For each b∈ B, let Ab := A∩h−1(b).
We obtain a partition {Ab}b∈B of A. Consider each element b of B as a letter of a
new finite alphabet B. Let K be the set of words w ∈ B

∗
such that k(w) ∈ C where

k is the unique homomorphism : W(B)→ B extending the identity : B→ B (so that
k(b)= b). It is clear that K is a recognizable language over a finite alphabet and that
L= σ(K) where σ is the substitution that replaces a letter b in a word in K by any
letter in Ab (where different letters of Ab can be substituted at distinct occurrences
of b).

This shows that recognizable sets of words over infinite alphabets can be described,
via the substitution σ , in terms of regular languages hence of finite automata.Asimilar
description could be done for recognizable subsets of T(F) where F is an infinite
signature.

To complete the picture, we observe that if A is infinite and L ∈ Rec(W(A)),
then L ∩ B∗ is recognizable for every finite subset B of A (by Proposition 3.56(1)
because W(B)⊆W(A)). However, the converse is false. Let A be the infinite alphabet
{a,b0,b1, . . . ,bn, . . . }. The set L := {anbn | n ∈N } is not recognizable in W(A) (the
proof will be given in Example 3.71) but L∩B∗ is finite, hence recognizable for every
finite set B⊆ A. �

The following theorem extends Corollary 3.19 and Proposition 3.47(1):

Theorem 3.62 Let F be a signature and let L⊆ T (F). The following properties are
equivalent:
(1) L is equational in T(F);
(2) L is regular over F ;
(3) L is recognizable in T(F ′) for some finite subsignature F ′ of F ;
(4) L is recognizable in T(F) and L⊆ T (F ′) for some finite subsignature F ′ of F .

If additionally F is finite, then the following two properties are equivalent to
properties (1)−(4):

(5) L is recognizable in T(F);
(6) L is accepted by a finite F-automaton.

Proof: The equivalence of (1) and (2) follows from Corollary 3.19.
We now prove the implication (2)=⇒ (3). If L⊆ T (F) is regular, then L⊆ T (F ′)

for some finite subsignature F ′ of F and (by Propositions 3.47 and 3.50) is defined by a
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complete and deterministic finite F ′-automaton equal to A (B,C) for some (B,C) (cf.
Definition 3.58). It follows from Lemma 3.59 that L= L(A (B,C)) is recognizable
in T(F ′). The opposite implication follows from Definition 3.58 and Lemma 3.59: if
L= val−1

B
(C), then L= L(A (B,C)).

The equivalence of (3) and (4) is an immediate consequence of Proposition 3.60.
If F is finite then (4) and (5) are obviously equivalent, and the equivalence of (2) and
(6) follows from Proposition 3.47(1).

Thus, for a finite signature, the families of equational, regular and recognizable
sets of terms are all equal to the family of languages accepted by finite automata.

3.4.3 Recognizability and congruences

Definition 3.63 (Locally finite congruences) Let M be an F-algebra with set of
sorts S . An equivalence relation ∼ on M is sort-preserving if any two equivalent
elements have the same sort. We write m ∼s m′ if m ∼ m′ and σ(m) = σ(m′) = s.
The index of a sort-preserving equivalence relation ∼ is the mapping γ∼ : S →
N ∪ {ω} such that γ∼(s) is the number of equivalence classes of ∼s. The equiv-
alence ∼ is locally finite if γ∼(s) ∈ N for each s. If the set of sorts is finite, a
sort-preserving equivalence relation is locally finite if and only if it is finite i.e.,
has finitely many classes. Finally, an equivalence relation saturates a subset of
M if this set is a union of equivalence classes, not necessarily all of the same
sort.

A congruence on M (or an F-congruence if we need to specify the relevant sig-
nature) is a sort-preserving equivalence relation on M such that, for every f in F of
positive arity, the following holds (where s1×·· ·× sk→ s is the type of f ): for every
m1, . . . ,mk , m′1, . . . ,m′k in M , if m1 ∼s1 m′1, . . . ,mk ∼sk m′k then24

fM(m1, . . . ,mk )∼s fM(m′1, . . . ,m′k ).

If ∼ is a congruence on M, the quotient F-algebra M/∼ is defined as
〈(Ms/∼s)s∈S ,( fM/∼)f ∈F 〉 where fM/∼([m1], . . . , [mk ]) := [ fM(m1, . . . ,mk)].25 The
canonical surjective mapping h∼ such that h∼(m)= [m] is an F-algebra homomor-
phism : M→M/∼. The quotient algebra M/∼ is locally finite if and only if the
congruence ∼ is locally finite.

Proposition 3.64 Let M be an F-algebra. A subset L of M is recognizable in M if
and only if it is saturated by a locally finite congruence on M.

24 If this preservation property holds for all operations, it also holds for all derived operations.
25 For an equivalence relation∼ on a set A, we denote by [a]∼ (or just [a]) the equivalence class of a∈ A,

and C/∼ := {[a]∼ | a ∈ C} for every C ⊆ A. We also denote C/∼ by [C]∼ (or just [C]).
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Proof: Let L= h−1(C), where h : M→A is a homomorphism and A is locally finite.
The equivalence relation on M defined by m ∼h m′ if and only if h(m) = h(m′) is
a locally finite congruence and L is the union of the equivalence classes h−1(a) for
a ∈ C.

Conversely, if L⊆M is a union of classes of a locally finite congruence∼, then we
let A :=M/∼ be the quotient algebra with domains As =Ms/∼s. It is locally finite
and L= h−1∼ ([L]∼)where [L]∼ ⊆A and h∼ is the canonical surjective homomorphism
: M→A.

We will say that a locally finite congruence ∼ that saturates L, witnesses the
recognizability of L.

We now associate with every set a canonical congruence that saturates it.

Definition 3.65 (Syntactic congruence) Let M be an F-algebra and L ⊆ M .
We define on M an equivalence relation as follows: m ≈L m′ if and only if
m and m′ have the same sort, say s, and for every linear26 term c ∈ T (F ,Yp),
where p ≥ 1, Yp = {y1, . . . ,yp} and σ(y1) = s, we have, for all mi ∈ Mσ(yi),
i= 2, . . . ,p:

cM(m,m2, . . . ,mp) ∈ L ⇐⇒ cM(m′,m2, . . . ,mp) ∈ L.

It is clear that ≈L is a sort-preserving equivalence relation. It saturates L: by taking
c= y1, we get that m∈L and m≈L m′ imply m′ ∈L. If F generates M one can take p= 1
to define≈L (cf. the remarks on extended derived operations in Definition 2.125); in
other words, it suffices to consider contexts c ∈ Ctxt(F).

The equivalence ≈L (denoted by ≈ if L is clear from the context) is called the
syntactic congruence of L. The index of ≈L, denoted by γL, is called the recogniz-
ability index of L. The following proposition generalizes a well-known result for
regular (word) languages.

Proposition 3.66 Let M be an F-algebra and L⊆M .

(1) The equivalence relation ≈L is a congruence on M. The set L is recognizable in
M if and only if this congruence is locally finite.

(2) The syntactic congruence ≈L of a recognizable set L is the unique congruence
≈ that saturates L and is such that γ≈(s) ≤ γ∼(s) for every sort s and every
congruence ∼ that witnesses the recognizability of L.

26 We recall that a term in T (F ,Yp) is linear if each variable of Yp has most one occurrence. Actually, by

the proof of the next proposition, the equivalence relation ≈L is the same if we omit the restriction to
linear terms.
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Proof: (1) We write ≈ instead of ≈L. If f ∈ Fk , m1 ≈m′1, . . . ,mk ≈m′k and α( f )=
(σ (m1), . . . ,σ(mk )) then

fM(m1,m2, . . . ,mk) ≈ fM(m′1,m2, . . . ,mk ),
fM(m′1,m2,m3, . . . ,mk) ≈ fM(m′1,m′2,m3, . . . ,mk),

...
fM(m′1,m′2, . . . ,m′k−1,mk) ≈ fM(m′1, . . . ,m′k−1,m′k),

which gives fM(m1, . . . ,mk)≈ fM(m′1, . . . ,m′k). Hence,≈ is a congruence. It saturates
L and (by Proposition 3.64) L is recognizable if ≈ is locally finite.

Conversely, let L be a union of classes of a locally finite congruence ∼ on M. We
claim that, for all all m,m′ ∈M , we have

m∼m′ =⇒ m≈m′.

Let m and m′ be such that m∼m′. For all c ∈ T (F ,Yp) and all m2, . . . ,mp, we have:

cM(m,m2, . . . ,mp) ∈ L =⇒ cM(m′,m2, . . . ,mp) ∈ L. (3.6)

This is so because ∼ is a congruence, so that for c,m2, . . . ,mp as above we have
cM(m,m2, . . . ,mp)∼ cM(m′,m2, . . . ,mp), and hence (3.6) holds, since ∼ saturates L.
It follows from the claim that each equivalence class of ≈ is a union of equivalence
classes of∼ and so γ≈(s)≤ γ∼(s) for every sort s. Since∼ is locally finite, the same
holds for ≈.

(2) The minimality property of ≈L was shown in the proof of (1). For proving
the unicity, we consider any congruence ∼ with the same minimality property. Each
equivalence class of ≈s is a union of equivalence classes of ∼s. If ∼ �= ≈, then
γ≈(s) < γ∼(s) for some s, hence ∼ is not minimal. Hence ∼ = ≈, as was to be
proved.

Example 3.67 (Recognizable languages of words) Let L⊆ A∗, where A is a finite
alphabet. We will examine the syntactic congruences≈L relative to the three algebras
of words that we have defined in Definition 2.7. We first consider the FA-algebra
W(A). Since W(A) is generated by FA, it suffices to consider contexts. For every
context c in Ctxt(FA) there exist words x and y in A∗ such that cW(A)(w)= xwy for
every w in A∗. For every x and y in A∗, the function λw ∈ A∗ · xwy is cW(A) for some
c in Ctxt(FA). It follows that the equivalence relation≈L is such that, for w,w′ ∈ A∗:

w≈L w′ if and only if xwy ∈ L⇐⇒ xw′y ∈ L for all x,y ∈ A∗,

which is the standard definition of the syntactic congruence of a language. This
congruence is finite if and only if L is defined by a finite automaton (seeTheorem 2.3 in
Chapter II of [*Sak] or see [*Eil] for the constructions that establish this equivalence).
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We now consider the algebra Wright(A) that is generated by its signature UA. The
contexts in Ctxt(UA) are the terms of the form c= xu with x ∈A∗ (and u is the context
variable). Such a context defines the function λw ∈ A∗ ·wy, where y is the mirror
image of x, and every such function is defined by a context. It follows that for every
language L⊆ A∗ the syntactic congruence ≈L

right relative to this algebra satisfies for
all w,w′ ∈ A∗:

w≈L
right w′ if and only if wy ∈ L⇐⇒w′y ∈ L for all y ∈ A∗.

Its finiteness, i.e., the recognizability of L in Wright(A) is equivalent to its definability
by a finite automaton.

The function defined by c = xu in Wleft(A) is λw ∈ A∗ · xw. The syntactic
congruence ≈L

left relative to this algebra satisfies for all w,w′ ∈ A∗:

w≈L
left w′ if and only if xw ∈ L⇐⇒ xw′ ∈ L for all x ∈ A∗,

and its finiteness is equivalent to regularity. The last two characterizations of regular
languages are due to Myhill and Nerode. (See [*Sak], Theorem 2.3, Chapter II for
their proofs in a language theoretic framework.) �

We now consider the recognizable sets of an algebra that is generated by its
signature.

Lemma 3.68 Let h : M→ N be a homomorphism of F-algebras, where M and N
are generated by F . Let L ⊆ N and K = h−1(L) ⊆ M . Then, for all m and m′ in
M , m≈K m′ if and only if h(m)≈L h(m′). The homomorphism g : M/≈K→ N/≈L

induced by h, is an isomorphism, and g([K]≈K )= [L]≈L . The sets K and L have the
same recognizability index, i.e., γK = γL.

Proof: Since N is generated by F , h is surjective. Let m and m′ be such that m≈K m′.
For proving that h(m) ≈L h(m′), we consider an arbitrary context c in Ctxt(F). We
have cN(h(m))= h(cM(m)). Hence, if cN(h(m)) ∈ L, we have cM(m) ∈ K and thus
cM(m′) ∈ K and cN(h(m′)) ∈ L. Since F generates N, the syntactic congruence of L
can be defined in terms of contexts, hence we have h(m) ≈L h(m′). That h(m) ≈L

h(m′) implies m ≈K m′ can be proved similarly. We get from h a homomorphism:
M→N/≈L that factorizes through M/≈K and induces an isomorphism g by the first
assertion. Since g is defined by g([m]) := [h(m)], we have g([K]≈K )= [L]≈L . Since
g is sort-preserving, there is a bijection from Ms/≈K

s to Ns/≈L
s for each sort s. Thus,

the recognizability indices of K and L are the same.

Proposition 3.69 Let M be an F-algebra generated by F and let L⊆M . The set L and
the language val−1

M
(L) have the same recognizability index. Thus, L is recognizable

in M if and only if val−1
M

(L) is recognizable in T(F).
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Proof: Since F generates both M and T(F), we can apply Lemma 3.68 to the homo-
morphism valM : T(F)→M. Hence K := val−1

M
(L) and L have the same recogniz-

ability index. The second assertion is an immediate consequence of the first assertion
and Proposition 3.66(1).

Remark 3.70 (1) Lemma 3.68 still holds if, instead of assuming that M and N are
generated by F , we only assume that the homomorphism h is surjective. The proof
is essentially the same. It uses linear terms in T (F ,Y ) instead of contexts in Ctxt(F)

(cf. Definition 3.65).
(2) Proposition 3.69 is somehow “dual” to Proposition 3.23(3), which characterizes

the M-equational sets as the images under valM of the recognizable sets of terms over
the relevant finite subsignature (see Theorem 3.62(2–4)). The present characterization
of the recognizable sets of M is also based on the recognizable sets of terms (over a
possibly infinite signature), but uses their inverse images under the mapping valM.
Similarly, Lemma 3.68 is “dual” to Proposition 3.23(2).

(3) In the statement of Proposition 3.69, it is not enough to assume that L (instead of
M) is generated by F in order to have L ∈Rec(M) if val−1

M
(L) ∈Rec(T(F)). Here is

a counter-example. We take Z consisting of the integers with F2 = {−} and F0 = {0}
(we have x+ y = x− (0− y)). Then Z is not generated by F , but {0} is. The set
val−1

Z
(0) is equal to T (F), hence is recognizable in T(F) but {0} is not recognizable

in Z, which we prove as follows. Assume it is, with witnessing congruence ∼. At
least one of the equivalence classes of∼ is infinite. Since {0} is saturated, [0]∼ = {0}.
Hence, there exist n,p in Z such that n < p with p∼ n �∼ 0. Since ∼ is a congruence,
this implies that p− n ∼ n− n = 0. Hence, [0]∼ would contain p− n �= 0, which
contradicts the fact that [0]∼ = {0}. �

Example 3.71 We have claimed in Example 3.57(6) that the language L= {gi f ia |
i≥ 1} is not recognizable. This follows from Proposition 3.66(1) and the observation
that the congruence ≈L has infinitely many equivalence classes of sort 0. This is so
because, for all i, j with 0< i < j, we have gi f ia∈ L and gi f ja /∈ L so that f ia �≈L f ja.

The proof is similar for the language L = {anbn | n ≥ 0} of Example 3.61,
cf. Example 3.67. For every i > 0 and j > i we have ai �≈L aj because ai · bi ∈ L
and aj · bi /∈ L. �

Our aim is now to review the classical relation between syntactic congruences and
minimal automata.

Definition 3.72 (Minimal automata) Let M be a finitely generated F-algebra. For
every (locally) finite congruence ∼ on M, the F-semi-automaton A (M/∼) is finite,
trim, complete and deterministic. Conversely, every F-semi-automaton A with these
properties is of this form, and more precisely is (up to renaming of states)A (T(F)/∼),
where∼ is defined by t∼ t′ if and only if t and t′ belong to L(A ,q) for some q∈QA .
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If L⊆M is recognizable, then the F-automatonA (M/≈L, [L]) is called the minimal
automaton of L and is denoted by M (L). By Lemma 3.68 (applied to valM), it is27 the
automaton A (T(F)/≈K , [K]) where K := val−1

M
(L). Thus, M (L) is also the minimal

automaton of val−1
M

(L), and it accepts the language val−1
M

(L).

Proposition 3.73 Let F be a finite signature and K be a recognizable set of T(F).
(1) If A is any (possibly infinite) trim, complete and deterministic automaton rec-

ognizing K , then it is of the form A (B,C) for some F-algebra B and some set
C ⊆ B, and furthermore A (B/≈C , [C]) is the minimal automaton of K .

(2) The minimal automaton of K is the unique complete and deterministic
F-automaton with a minimal number of states that recognizes K . Its number
of states is

∑
s∈S γK (s), where S is the set of sorts of F .

Proof: (1) By Lemma 3.59(2), the algebra B is generated by F . Hence, Lemma 3.68
is applicable to h := valB and L := C, and yields the result (because K = val−1

B
(C)).

(2) Let A be a complete and deterministic F-automaton with a minimal number of
states that recognizes K . It is trim because otherwise, it can be replaced by a smaller
complete and deterministic one that recognizes K . Hence, A =A (B,C) with B and
C as in (1). We have a canonical surjective homomorphism h from B to B/≈C . The
automaton A (B/≈C , [C]) is, by (1), the same as M (K). If h is not an isomorphism,
then the automaton A (B,C) does not have a minimal number of states. Hence, A is
the same as M (K), and M (K) is the unique (up to renaming of states) complete and
deterministic F-automaton with a minimal number of states that recognizes K . The
last assertion follows from its definition.

Assertion (1) of this proposition shows how the minimal automaton can be obtained
from any finite, trim, complete and deterministic automaton recognizing K , hence
from any finite automaton by Proposition 3.50. Aminimization algorithm taking time
O(‖A ‖2) (for A deterministic) is described in [CarDF].

3.4.4 Effective recognizability

Effectively given one-sorted and many-sorted algebras have been defined in Def-
initions 2.8 and 2.127, and an application to equational sets has been given in
Section 3.1.2. We now extend these definitions to recognizability.

Throughout this section we assume that every signature F is effectively given, with
a fixed encoding ξF (and a fixed encoding ξS of its set of sorts S).28

Definition 3.74 (Effectively recognizable sets) Let M be an F-algebra. A set L
in Rec(M) is effectively recognizable (resp. semi-effectively recognizable) if L =
27 Here and in Proposition 3.73 we do not distinguish two automata that are the same up to a renaming of

states. Formally, we would have to define isomorphism of automata.
28 Recall from Definition 2.8 that, for an encoded set A, ξA is the bijection : A→ encA ⊆N that encodes

the elements of A as natural numbers.
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h−1(C), where h : M→ A is a homomorphism to a locally finite and effectively
given (resp. semi-effectively given) F-algebra A and C ⊆ A, and furthermore:
(1) C is a decidable subset of A (cf. Definition 2.8), and
(2) M is semi-effectively given and the homomorphism h is computable

(cf. Definition 2.8).

These conditions imply that L is a decidable subset of M : for m∈M , one computes
h(m) and checks whether it is in C (or more precisely, if m is given by its code number
m′ = ξM (m), one computes the integer h̃(m′)= ξA(h(ξ

−1
M (m′)))= ξA(h(m)) and one

checks whether it encodes an element of C).
If Condition (2) is dropped in the above definition of an effectively recognizable

set L, then we will say that L is effectively term-recognizable. In this case it is decidable
for any term t in T (F) whether valM(t) is in L: since h◦ valM = valA, one computes
valA(t), cf. Definition 2.8, and checks whether it is in C. Moreover, as shown below
in Proposition 3.76(4), if F is finite then a finite F-automaton can be constructed that
implements this algorithm.

Effectively recognizable sets (and their variants) will be used as input and output
of algorithms. Such a set L is specified by the specification of A, an algorithm that
decides membership in C and, if Condition (2) holds, a specification of M and an
algorithm that computes h.

In the definition of an effectively recognizable set (and its two variants), we may
assume that every domain As of A is nonempty. In fact, if A is semi-effectively given,
then we define the F-algebra A′ such that A′s := As ∪ {⊥s} and, for every f ∈ Fk and
a1, . . . ,ak ∈ A′ of appropriate sorts, fA′(a1, . . . ,ak) := fA(a1, . . . ,ak ) if a1, . . . ,ak ∈ A
and fA′(a1, . . . ,ak) :=⊥σ( f ) otherwise. If A is encoded by ξA and the set S of sorts
of F is encoded by ξS , then we encode A′ as follows: ξA′(a) := 2 · ξA(a) for a ∈ A
and ξA′(⊥s) := 2 · ξS(s)+ 1 for s ∈ S. It is easy to verify that A′ is semi-effectively
given with this encoding ξA′ . If A is effectively given, then so is A′, because |A′| =ω

if |S| = ω and |A′| =∑s∈S(|As|+ 1) if S is finite. If Conditions (1) and (2) hold for
A, then they also hold for A′ (with the same h and C).

The following lemma shows that every finitely generated subalgebra of a semi-
effectively given algebra satisfies Condition (2) above.

Lemma 3.75
(1) Let M be an F-algebra generated by F and let h : M→A be a homomorphism.

If M and A are semi-effectively given, then h is computable.
(2) Let M be a semi-effectively given F-algebra and let M′ be the subalgebra of M

generated by a finite subsignature F ′ of F .29 Then M′ is semi-effectively given
and the mapping inM ′,M is computable.30

29 Here we assume that F ′ is effectively given by its standard encoding as a decidable subset of F (and
similarly for its set of sorts), see Definition 2.8.

30 For sets B and A with B ⊆ A, the inclusion mapping inB,A : B→ A is defined by inB,A(b)= b for all
b ∈ B.
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Proof: (1) The image h(m) of any element m of M is equal to valA(t) for any t
in val−1

M
(m). Since M is semi-effectively given and generated by F , some term t

in val−1
M

(m) can be computed as observed in Definition 2.8. Then ξA(valA(t)) =
ξA(h(m)) can also be computed since A is semi-effectively given, which completes
the proof.

(2) Since F is effectively given, the set T (F) is semi-effectively given and T (F ′)
is a decidable subset of T (F). Let t0, t1, . . . be an enumeration of the elements of
T (F ′) such that the mapping i �→ ti is computable. We define the encoding ξM ′(m)

of an element m of M ′ to be the smallest integer i such that valM(ti)= m. Since M
is semi-effectively given, the mapping valM and hence the mapping inM ′,M and its
inverse are computable. From this it is easy to see that M′ is semi-effectively given
with encoding ξM ′ .

This lemma is meant to be constructive. For instance, for the first assertion this
means that from the specifications of M and A an algorithm can be constructed that
computes h. In what follows, all such results are meant to be constructive.

If F is finite and A is locally finite, then it is finite (because S is finite, cf. Def-
inition 2.123). Hence, if A is given as a finite set A with its operations in tabular
form, then it is effectively given (and vice versa). This shows that every recog-
nizable set L that is specified by a given finite algebra A and a subset C of A, is
effectively term-recognizable (and vice versa). By Lemma 3.75(1), if M is semi-
effectively given and generated by F , then L is even effectively recognizable and
hence a decidable subset of M . It will be shown in Section 4.2.3 that there exist
homogenous recognizable sets of the HR algebra JSt that are not decidable sub-
sets of J S and hence cannot be specified as (semi-)effectively (term-)recognizable
sets.

We now formulate an effective version of Proposition 3.56. For the notion of an
effectively given derived signature see Definition 2.127.

Proposition 3.76

(1) Let M be an F-algebra and M′ be an F ′-algebra such that M′ ⊆ M. Let S ′
be a decidable subset of S, and let the mappings inS ′ ,S and inF ′,F be com-
putable.31 If L is effectively term-recognizable in M, then L∩M ′ is effectively
term-recognizable in M′.

Moreover, let M and M′ be semi-effectively given and the mapping inM ′,M be
computable. If L is (semi-) effectively recognizable in M, then L∩M ′ is (semi-)
effectively recognizable in M′.

(2) Let k : M′ →M be a homomorphism of F-algebras. If L is effectively term-
recognizable in M, then k−1(L) is effectively term-recognizable in M′.

31 Here S ′ and S are the sets of sorts of F ′ and F , respectively. Note that we do not assume that S ′ is
encoded by its standard encoding as a subset of S (see Definition 2.8), and similarly for F ′ and M ′.
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Moreover, let M and M′ be semi-effectively given and k be computable. If
L is (semi-)effectively recognizable in M, then k−1(L) is (semi-) effectively
recognizable in M′.

(3) Let H be an effectively given derived signature of F and M be an F-algebra. If
L is effectively term-recognizable in M, then L is effectively term-recognizable
in MH . If L is (semi-) effectively recognizable in M, then L is (semi-) effectively
recognizable in MH . Furthermore, if F ⊆ H and inF ,H is computable, then the
converse implications also hold.

Additionally we state the following special case of (2):

(4) Let M be an F-algebra with finite F . If L is effectively term-recognizable in M,
then a finite F-automaton recognizing the language val−1

M
(L) can be computed

from a specification of L.

Proof: The proof is based on that of Proposition 3.56.
(1) Let L = h−1(C) with h : M→ A and C ⊆ A, as in Definition 3.74. We may

assume that the domains As of A are nonempty. Let A′ :=A � F ′. Since membership
in S ′ is decidable, so is membership in A′ (because A′ = {a ∈ A | σ(a) ∈ S ′}). Hence,
to make A′ semi-effectively given, we can use its standard encoding as a decidable
subset of A. Since in−1

S ′,S and inF ′,F are computable,32 it is easy to verify that A′ is
semi-effectively given. If A is effectively given, then so is A′. In fact, the mapping
s′ �→ |A′s′ | is computable because it is the composition of inS ′,S and of the mapping
s �→ |As|. By the above assumption, |A′| is infinite if S ′ is infinite. If S ′ is finite, then
|A′| =∑s′∈S ′ |A′s′ |. Hence |A′| can be computed.

The restriction h′ of h to M ′ is a homomorphism : M′ →A′ and L∩M ′ = (h′)−1(C∩
A′). Since C is a decidable subset of A, the set C ∩A′ is obviously one of A′. Since
h′ = h ◦ inM ′,M , it is computable if inM ′,M and h are.

(2) This is obvious from the proof of Proposition 3.56(2).
(3) In general, if H is effectively given and M is (semi-) effectively given,

then MH is (semi-) effectively given (with respect to the same encoding of M ):
to compute gMH (m1, . . . ,mk ), first compute δH (g) and then use ζM to compute
δH (g)M(m1, . . . ,mk ). The result is now immediate from the proof of Proposi-
tion 3.56(3).

(4) Let L = h−1(C) for an effectively given finite algebra A, a homomorphism
h : M→ A and a decidable subset C of A. Since A is finite and effectively given, it
can be computed (or more precisely, an algebra A′ isomorphic to A, with A′ = encA,
can be computed). Since membership in C is decidable, C can also be computed.
Hence the finite automaton A (A,C) can be computed that recognizes val−1

M
(L) by

Lemma 3.59 (because valA = h ◦ valM).

32 In general, if A,B are encoded sets with B⊆ A and inB,A is computable (i.e., ξA ◦ ξ−1
B is computable),

then so is in−1
B,A (i.e., ξB ◦ξ−1

A is): for b∈B, ξB(b) is the smallest integer i such that ξA(ξ
−1
B (i))= ξA(b).



242 Equational and recognizable sets

Definition 3.77 (Decidable and effectively given congruences) Let M be a semi-
effectively given F-algebra. An equivalence relation ∼ on M is decidable if it is
a decidable subset of M ×M .33 A congruence ∼ on M is effectively given if it is
decidable, |M/∼| is given, and the index γ∼ is computable.34

We now state an effective version of Proposition 3.64. Also, we examine conditions
that ensure that semi-effective recognizability implies effective recognizability (the
converse implication being trivial).

Proposition 3.78 Let M be a semi-effectively given F-algebra and let L⊆M .
(1) L is semi-effectively recognizable if and only if membership in L is decidable35

and L is saturated by a locally finite and decidable congruence.
(2) If membership in L is decidable and L is saturated by a locally finite and effectively

given congruence, then L is effectively recognizable.
(3) Let M be finitely generated by F . Then:

(3.1) if ∼ is a decidable and finite congruence, then ∼ is effectively given and
the finite quotient algebra M/∼ is effectively given;

(3.2) if L is semi-effectively recognizable, then it is effectively recognizable.

Proof: (1) The “only if” direction is clear from the definitions and the proof of
Proposition 3.64: since h is computable, the congruence∼h is decidable. For proving
the “if” direction, we let∼ be a locally finite and decidable congruence that saturates
L. From the proof of Proposition 3.64 we know that L = h−1∼ (C) where h∼ is the
canonical surjective homomorphism : M→A :=M/∼ and C := {[m]∼ |m ∈ L}.

In order to make the locally finite algebra A semi-effectively given, we need an
encoding ξA of the elements of A=M/∼ by integers. For each i in encM , we let h(i)
be the smallest integer j ∈ encM such that ξ−1

M (j)∼ ξ−1
M (i). Since∼ is decidable (and

encM is a decidable subset of N ), the mapping h : encM → encM is computable. We
now define the encoding ξA by ξA([m]∼) := h(ξM (m)) for every m ∈M . Since h is
computable, encA = {i ∈ encM | h(i) = i} is a decidable subset of N . Let us show
that, with this encoding, the algebra A is semi-effectively given (cf. Definition 2.8).
An integer i ∈N encodes an element of As (through ξA) if and only if i encodes an
element of M of sort s (through ξM ), and this can be determined by an algorithm
because M is semi-effectively given. (Sorts are handled through the encoding ξS ). If
i0 encodes an element f of F (through ξF ) and i1, . . . , ip encode elements of A, with
p := ρ( f ), then ζ̃A(i0, i1, . . . , ip)= h(̃ζM(i0, i1, . . . , ip)). Hence ζA is computable and
A is semi-effectively given.

33 In other words, the mapping f : M ×M→{True,False} such that m∼m′ if and only if f (m,m′)= True
is computable.

34 Recall from Definition 3.63 that γ∼ is the mapping s �→ |Ms/∼s |. The phrase “|M/∼| is given” means
that |M/∼| is part of the specification of an effectively given congruence ∼ (which also consists of
algorithms to decide ∼ and to compute γ∼). A decidable equivalence relation ∼ is specified by an
algorithm that decides ∼.

35 Since this equivalence is meant to be constructive, a membership algorithm for L must be specified.
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It remains to show Conditions (1) and (2) of Definition 3.74. Membership in C is
decidable, because membership in L is: if i encodes an element [m] of A, then [m] ∈C
if and only if i encodes an element of L. The homomorphism h∼ is computable: if i
encodes an element m of M , then h(i) encodes h∼(m)= [m].

(2) The proof is the same as in (1). If ∼ is effectively given, then A is effectively
given, because |A| = |M/∼| and |As| = |Ms/∼s | = γ∼(s) for every sort s.

(3.1) We now assume that M is generated by its finite signature F , hence has
finitely many sorts, and that ∼ is a decidable and finite congruence. As before, let
A :=M/∼. Obviously, the finite algebra A is also generated by F and, as shown in
the proof of (1), it is semi-effectively given. It suffices to compute |As| for every sort
s, because then |A| is the sum of those cardinalities and hence∼ and A are effectively
given. Let S be the equation system constructed in the proof of Proposition 3.16 such
that μx · SP(T(F))(x) � xs = T (F)s for every sort s. Since A is generated by F , we
have that As = valA(T (F)s) which equals μx · SP(A)(x) � xs by Proposition 3.23(1).
Since A is semi-effectively given, the least solution of S in P(A) can be computed
by Proposition 3.10, and so As and |As| can be computed for every s.

(3.2) This is immediate from (1), (2) and (3.1).

Remark 3.79 (1) Without its first two hypotheses (F is finite and generates M),
Assertion (3.1) of Proposition 3.78 is false. Consider for example the set N equipped
with one constant symbol with value i for each i ∈N . Let h : N→N be a computable
mapping such that h(N ) is finite. The algebra M :=〈N ,(i)i∈N 〉 is generated (trivially)
by its signature F that consists only of constant symbols. The equivalence relation
defined by n ∼ m if and only if h(n) = h(m) is decidable and has finitely many
classes, but one cannot determine the number of classes, because the knowledge of
an algorithm computing h is not enough to determine the cardinality of the set h(N ).
The same holds if F is replaced by a finite subsignature of it, hence that does not
generate the corresponding algebra.

(2) We now consider a similar case. We assume that h is a computable map-
ping : N → {0,1}. Hence h is a computable homomorphism : M → A where
A := 〈{0,1},(h(i))i∈N 〉. Then A is effectively given but we cannot decide if h is
surjective. Even if we know that a decidable congruence has at most two classes,
we cannot compute its number of classes. This shows that we cannot restrict A in an
effective manner so as to make h surjective, as in the general case (cf. Definition 3.55).
It is the reason that the converse direction of implication (2) of Proposition 3.78 does
not hold; one easily shows that it does hold when the witnessing homomorphism is
surjective.

(3) We use Proposition 3.78(1) to show that for semi-effectively recognizable sets
Proposition 3.76(1) holds without its requirements on S ′, S, F ′ and F . Let L be a
decidable subset of M and let ∼ be a decidable congruence on M witnessing the
recognizability of L. Then∼′ :=∼∩ (M ′ ×M ′) is a congruence on M′ that witnesses
the recognizability of L∩M ′ (it is locally finite because |M ′s/∼′s | ≤ |Ms/∼s | for every
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sort s of F ′). Since inM ′, M is computable, ∼′ is decidable and L∩M ′ is a decidable
subset of M ′. �

Proposition 3.80 Let M be a finitely generated and semi-effectively given F-algebra
and let L ⊆ M be recognizable. From an integer p ≥ �M (L) and a membership
algorithm for L, one can compute a finite F-automaton that recognizes the language
val−1

M
(L).

Proof: Let M and L be as in the statement. By Proposition 3.73(2), there exists a
complete and deterministic F-automaton A with at most p states such that L(A )=
val−1

M
(L). We will use the set Ctxt(F) of contexts over F , defined as terms in T (F ,{x}).

Claim 3.80.1 For every m ∈M , there exists a complete and deterministic (F ∪ {x})-
automaton B with �A states such that, for every c ∈ Ctxt(F), we have c ∈ L(B) if
and only if cM(m) ∈ L.

Proof: Let t be a term in T (F) that evaluates to m. Let q be the unique state of A such
that t ∈ L(A ,q). Let B be the (F ∪{x})-automaton obtained from A by the addition
of the transition rule x→ q. It is clear that L(B)∩Ctxt(F) is the set of contexts c
such that c[t] ∈ L(A ), i.e., such that cM(m) ∈ L. �

Claim 3.80.2 For every m,m′ ∈M , we have m≈L m′ if and only if

cM(m) ∈ L⇐⇒ cM(m′) ∈ L for every c ∈ Ctxt(F) of height at most 3 · p2.

Proof: Let B and B′ be associated with m and m′ by the previous claim. Then
K :=Ctxt(F)∩ (L(B)−L(B′)) is the set of contexts in Ctxt(F) such that cM(m)∈ L
but cM(m′) /∈L. Since Ctxt(F) is recognized by a complete and deterministic (F∪{x})-
automaton with 3 states of each sort, K can be recognized by such an automaton with
at most 3 · p2 states (the detailed construction is easy to work out with the product
construction of automata recalled below in the proof of Proposition 3.85). If K is
nonempty, it contains a context of height at most 3 · p2 by Proposition 3.53. By
considering in a similar way the set Ctxt(F)∩ (L(B′)−L(B)), we get the result. �

We complete the proof of the proposition as follows. There are finitely many con-
texts in Ctxt(F) of height at most 3 · p2. Since M is semi-effectively given, cM(m)

can be computed for each context c, and since we have a membership algorithm
for L, we can decide if cM(m) ∈ L. It follows from Claim 3.80.2 that the syn-
tactic congruence ≈L of L is decidable. Hence, by Propositions 3.66(1), 3.78(1)
and 3.78(3.2), L is effectively recognizable and so the required automaton can be
computed by Proposition 3.76(4). In fact, following the line of this proof, the finite
F-automaton A (M/≈L, [L]) is computed, which is the minimal automaton M (L) of
L by definition.

Here is a concrete application of this proposition (given as Theorem 6.28 in
[*DowFel]). Let L ⊆ A∗ be a regular language that is recognized by an unknown,
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possibly nondeterministic automaton with at most p states. Hence, some deterministic
and complete automaton with at most 2p states recognizes L. From p and any member-
ship algorithm for L, one can compute by the previous proposition a finite automaton
recognizing L. Hence, provided we know an upper-bound p, we get from an arbitrary
membership algorithm a linear-time one. (This follows from Proposition 3.80 applied
to the algebra M=Wright(A), cf. Remark 3.51(2).)

In Section 3.4.10 we will review the concrete and effective ways to specify
recognizable sets in semi-effectively given algebras.

3.4.5 Inductive predicates

Recognizability can be formulated in a more intuitive way in terms of inductive sets of
properties. This notion has been presented in Section 1.2, but in place of the informal
term “property,” we will use the term “predicate,” from logic. We will characterize
the homogenous recognizable sets in terms of inductive sets of predicates.

Definition 3.81 (Inductive sets of predicates) A predicate on a set E is a mapping
: E→{True,False}. Let M be an F-algebra with set of sorts S. A family of predicates
on M is an indexed set ( p̂ )p∈P , given with a mapping α : P→ S such that each p̂ is a
predicate on Mα(p). We call α(p) the (input) type of p, and for every s ∈ S we denote
by Ps the set {p∈P | α(p)= s}. Such a family will also be denoted by P. The notation
P for a family of predicates refers to the set of symbols P, to the type mapping α and
to the predicates p̂ for p in P. The family P is locally finite if for each s ∈ S the set Ps

is finite. We say that P is f -inductive where f ∈Fn, if for every p∈P of type s= σ( f )
there exist k1, . . . ,kn in N , a Boolean function B with (k1+·· ·+ kn) arguments and a
sequence (p1,1, . . . ,p1,k1 ,p2,1, . . . ,p2,k2 , . . . ,pn,kn) of k1+·· ·+kn predicates in P, such
that, if the type of f is s1× s2×·· ·× sn→ s, then:

(1) α( pi, j)= si for all i= 1, . . . ,n and j = 1, . . . ,ki; and
(2) for all m1 ∈Ms1 , . . . ,mn ∈Msn we have:

p̂( fM(m1, . . . ,mn))= B( p̂1,1(m1), . . . , p̂1,k1(m1), p̂2,1(m2), . . . , p̂n,kn(mn)).

Formally, we let k denote the sequence (k1, . . . ,kn) and we let Yk be the set
of Boolean variables yi, j for 1 ≤ i ≤ n and 1 ≤ j ≤ ki. Then B is a term in
T ({∨,∧,¬,True,False},Yk) and, in the above expression of p̂( fM(m1, . . . ,mn)), the
variable yi, j takes value p̂i, j(mi). The tuple (B,p1,1, . . . ,p1,k1 ,p2,1, . . . ,pn,kn) is called
a splitting of p relative to f .36

Intuitively, this means that the validity of p for any element of M of the form
fM(m1, . . . ,mn) where m1, . . . ,mn ∈ M , can be computed from the truth values of
finitely many predicates of P for m1, . . . ,mn. This computation can be done by a
Boolean expression that depends only on p and f . For F ′ ⊆ F , we say that P is

36 The integers k1, . . . ,kn are known from the indices of the variables yi, j occurring in B.
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F ′-inductive if it is f -inductive for every f in F ′. For p ∈ P, we let sat(M,p) :=
{m ∈Mα(p) | p̂ (m)= True}.
Example 3.82 Let us consider the 2-colorability of series-parallel graphs, already
detailed in Chapter 1, Example 1.11. The equalities (1.10) yield the following splitting
of σ relative to •:

σ(G •H )= (σ (G)∧σ(H ))∨ (δ(G)∧ δ(H )),

formally expressed by the 5-tuple ((y1,1 ∧ y2,1)∨ (y1,2 ∧ y2,2),σ ,δ,σ ,δ). Thus, k1 =
k2 = 2. Equalities (1.10) show that {σ ,δ} is an {�,•}-inductive family of predicates
on the algebra Jd

2. �

Proposition 3.83 Let M be an F-algebra and s ∈ S. A subset L of Ms is recognizable
in M if and only if L = sat(M,p0) for some predicate p0 of type s belonging to a
locally finite F-inductive family of predicates on M.

Proof: “Only if.” Let L= h−1(C)⊆Ms, for some homomorphism h : M→A where
A is a locally finite F-algebra and C ⊆ As. We let P= A∪{p0}. Each element a of Au

has type u (considered as a member of P) and p0 has type s. For m ∈Mu and a ∈ Au,
we let â(m) := True if and only if h(m)= a, and, for m ∈Ms, we let p̂0(m) := True
if and only if h(m) ∈ C.

We check that the family P is F-inductive. For all n-ary f ∈ F , all elements
m1, . . . ,mn of M of appropriate sorts and all a ∈ Aσ( f ), we have

â( fM(m1, . . . ,mn))= True

⇐⇒ h( fM(m1, . . . ,mn))= a

⇐⇒ fA(h(m1), . . . ,h(mn))= a.

Hence

â( fM(m1, . . . ,mn))=
∨

â1(m1)∧ ·· · ∧ ân(mn),

where the disjunction ranges over all n-tuples (a1, . . . ,an) in An such that
fA(a1, . . . ,an)= a. (For c ∈F0, we have â(cM)= True if and only if cA= a). We have
p̂0(m) =∨a∈C â(m) for all m ∈M . The splitting of â relative to f is thus the tuple

(B,p1,1, . . . ,pn,k) where (a(j)1 , . . . ,a(j)n )1≤ j≤k is an enumeration of the set {(a1, . . . ,an) |
fA(a1, . . . ,an) = a}, B is the Boolean expression

∨
1≤ j≤k(y1, j ∧ ·· · ∧ yn, j) and

pi, j = a(j)i . Hence P is F-inductive. It is clear that it is locally finite. We have
L= sat(M,p0). Hence L satisfies the required property.

“If.” Let P be a locally finite F-inductive family of predicates. Let L= sat(M,p0)

for some p0 ∈ P. For u ∈ S, we let ∼u be the equivalence relation on Mu defined by
m∼u m′ if and only if p̂ (m)= p̂ (m′) for every p ∈ Pu. It follows from Condition 2 of
Definition 3.81 that∼ is a congruence. It has at most 2|Pu| equivalence classes of each
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sort u. The set L= sat(M,p0) is a union of equivalence classes, hence is recognizable
by Proposition 3.64.

Let P be a locally finite F-inductive family of predicates on a semi-effectively given
F-algebra M. It is computable if the set P is effectively given and the mapping α,
the mapping (p,m) �→ p̂ (m) (for p ∈ P and m ∈Mα(p)) and the mapping s �→ |Ps| are
computable. It is effectively F-inductive if, in addition, there is a computable mapping
that associates with every p ∈ P and f ∈ F such that α(p) = σ( f ), a splitting of p
relative to f .

Corollary 3.84 Let M be a semi-effectively given F-algebra and let p0 belong to a
locally finite F-inductive family of predicates P on M. If P is computable, then
sat(M,p0) is semi-effectively recognizable. If P is effectively F-inductive, then
sat(M,p0) is effectively recognizable.

Proof: To prove the first assertion we use Proposition 3.78(1). Since membership in
sat(M,p0) is obviously decidable, it suffices to show that the locally finite congruence
∼ from the “if ” part of the proof of Proposition 3.83 is decidable. This follows from
the fact that for every sort u the finite set Pu can be computed: enumerate the elements
p of P, test whether α(p)= u, and halt when |Pu| elements of Pu have been found.

For proving the second assertion, we let P be effectively F-inductive. We construct
a locally finite F-algebra A and a homomorphism h from M to A. For each s, we
define As as the set of all mappings : Ps → {True,False}. For a constant symbol
c ∈ F , we define cA as the mapping p �→ p̂ (cM) for p in Pσ(c). For f ∈ F of arity
n > 0 and g1, . . . ,gn respectively in As1 , . . . ,Asn , where α( f )= (s1, . . . ,sn), we define
fA(g1, . . . ,gn) as the mapping that maps each p in Pσ( f ) to

B(g1(p1,1), . . . ,g1(p1,k1),g2(p2,1), . . . ,gn(pn,kn)),

where (B,p1,1, . . . ,p1,k1 ,p2,1, . . . ,pn,kn) is the computed splitting of p relative to f . It
is clear that A is effectively given37 and locally finite. We let h : Ms→ As be defined
as follows: h(m) is the function that maps p to p̂ (m). It is clear that h is computable
and that, for each p, sat(M,p)= h−1(Cp) where Cp is the set of mappings g such that
g(p)= True. Obviously, membership in Cp is decidable. It remains to prove that h is
a homomorphism. We have for all objects f , p, m1, . . . , mn of relevant types:

h( fM(m1, . . . ,mn))(p)

= p̂ ( fM(m1, . . . ,mn))

= B( p̂1,1(m1), . . . , p̂1,k1(m1), p̂2,1(m2), . . . , p̂n,kn(mn))

= B(h(m1)(p1,1), . . . ,h(m1)(p1,k1),h(m2)(p2,1), . . . ,h(mn)(pn,kn))

= fA(h(m1), . . . ,h(mn))(p),

37 The set A can be viewed as the decidable subset of Seq(P) consisting of all sequences (p1, . . . ,pr) such
that α(pi)= α(pj) and ξP(pi) < ξP(pj) for all i < j.
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which gives the result.

In fact, it can easily be shown by inspection of the “only if ” part of the proof
of Proposition 3.83, that a subset L of Ms is effectively recognizable in M if and
only if L = sat(M,p0) for some predicate p0 of type s belonging to a locally finite
effectively F-inductive family of predicates on M. The corresponding statement for
semi-effectively recognizable sets and computable F-inductive families only holds in
one direction, due to the requirement that the mapping s �→ |Ps|must be computable.

If the signature F of M is finite and if P is, as in Corollary 3.84, locally finite and
effectively F-inductive, then a finite F-automaton as in Proposition 3.76(4) can be
constructed for val−1

M
(L) where L := sat(M,p0). If M is moreover generated by F ,

then it suffices that P is computable (by Proposition 3.78(3.2)).

3.4.6 Closure properties

We now consider some closure properties of the family of recognizable sets. We
already know from Propositions 3.56(2) and 3.76(2) that it is closed under inverse
homomorphisms. Extended derived operations are defined in Definition 2.125.

Proposition 3.85

(1) Let F be an S-signature and M be an F-algebra. The family of sets Rec(M) is
closed under union, intersection and difference; it contains the set

⋃
s∈S ′Ms for

every set of sortsS ′ ⊆S (in particular, the empty set and the set M ). If g : Mu→Ms

is a unary extended derived operation and L ∈Rec(M), then g−1(L) ∈Rec(M)u.
(2) Let M,M′ be F-algebras. If L ∈ Rec(M) and L′ ∈ Rec(M′), then L × L′ ∈

Rec(M×M′).

Proof: (1) Let L,L′ ∈ Rec(M) be defined as h−1(C) and h′−1(C ′) respectively for
homomorphisms h : M→A and h′ : M→A′ to locally finite F-algebras A and A′, and
for subsets C and C ′ of A and A′ respectively. Then L∪L′ = h′′−1((C×A′)∪(A×C′))
where h′′ is the homomorphism : M→A×A′ such that h′′(m)= (h(m),h′(m)). We
have also L ∩ L′ = h′′−1(C × C ′) and L− L′ = h′′−1((C × A′)− (A× C ′)). These
three sets are M-recognizable because A×A′ is locally finite.38 Let S be the unique
F-algebra with domain {s} for s∈ S and let h be the unique homomorphism : M→ S.
Then

⋃
s∈S ′Ms = h−1(S ′) and hence is M-recognizable, cf. Example 3.57(5).

Consider now an extended derived operation defined, for m ∈ M , by g(m) :=
tM(m,m2, . . . ,mp) for some term t in T (F ,Xp)s with σ(x1)= u and m2, . . . ,mp in M of
appropriate sorts. Let L,h,A,C be as above. Let g′ : Au→ As be defined by g′(a) :=
tA(a,h(m2), . . . ,h(mp)). We have g′ ◦ h = h ◦ g (both are mappings : Mu → As).

38 We have observed in Section 3.4.2 that a complete deterministic F-semi-automaton is nothing but an
F-algebra. The use of A×A′ corresponds to the classical product of automata (cf. Section 6.3.1 below,
Proposition 7.1 of [*GecSte] or Section 1.3 of [*Com+]).
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Since L= h−1(C), we obtain that g−1(L)= g−1(h−1(C))= h−1(g′−1(C))= h−1(C ′),
where C ′ = g′−1(C)⊆ Au. Hence g−1(L) is recognizable in M.

(2) Let L and L′ be defined as in (1), except that h′ : M′ → A′. Then L× L′ =
h′′−1(C ×C ′), where h′′ is now the homomorphism : M×M′ → A×A′ such that
h′′(m,m′)= (h(m),h′(m′)).

With the hypotheses and notations of the previous proposition, we have the
following corollary:

Corollary 3.86 If L and L′ are effectively recognizable, then L∪ L′, L∩ L′, L− L′,
g−1(L) and L× L′ are effectively recognizable. The analogous statements hold for
effectively term-recognizable sets and for semi-effectively recognizable sets.

Proof: The algebra A×A′ is (semi-)effectively given if A and A′ are so (see Defi-
nition 2.8), and membership in C×A′, A×C ′ and g′−1(C) is decidable if that holds
for C and C ′. Moreover, h′′ is computable if h and h′ are so. We omit the details.

These propositions generalize some well-known closure properties of the family
of regular (recognizable) word languages. However, the closure under concate-
nation of regular languages does not extend to the closure of recognizable sets
under the operations of the considered algebra: it is not always true that if f ∈ Fk

and L1 ∈ Rec(M)s1 , . . . ,Lk ∈ Rec(M)sk where α( f ) = (s1, . . . ,sk ), then the set
fP(M)(L1, . . . ,Lk) is in Rec(M). Singleton sets are not always recognizable. (These
facts can be contrasted with Assertions (2) and (3) of Proposition 3.45 about
equational sets.) We give here some counterexamples.

Example 3.87 An example of a singleton that is not recognizable is given in
Remark 3.70(3). For an example of nonclosure under an operation, we consider again
the algebra W(A)sq which is the free monoid W(A) augmented with the squaring
function: sq(u)= u · u, cf. Example 3.42(1). It follows from Proposition 3.56(3) that
Rec(W(A)sq)=Rec(W(A)). However the language sq(L)= {abnabn | n≥ 0}, that is
the image of the recognizable (i.e., regular) language ab∗ under sq is not recogniz-
able. Hence the operation sq does not preserve recognizability in W(A)sq. Algebraic
conditions on an algebra M ensuring that Rec(M) is closed under its operations are
considered in [Cou94a].

3.4.7 The Filtering Theorem

The following theorem (stated as Theorem 1.8 in Section 1.2.3) extends the classical
result that the intersection of a context-free language and a regular one is context-
free. Associated with the Recognizability Theorem, even in its weak form stated as
Theorem 1.21 in Section 1.4.3, its yields the decidability of the monadic second-order
satisfiability problems for the VR- and HR-equational sets of graphs.
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Theorem 3.88 (Filtering Theorem, algebraic version) Let M be an F-algebra, let
L ∈ Equat(M) and K ∈ Rec(M). Then L∩K ∈ Equat(M). If K is semi-effectively
recognizable or effectively term-recognizable, then an equation system defining L∩K
can be constructed from one defining L.

Proof: First, we prove that we can assume that F is finite and that K is effectively
term-recognizable. By (the proof of) Proposition 3.9(3), there is a finite subsignature
F ′ of F such that L is equational in the subalgebra M′ of M that is generated by F ′
(which is an F ′-algebra): this signature F ′ is F(S) where S is any equation system
that defines L. The set K ′ := K ∩M ′ is recognizable in M′ by Proposition 3.56(1). If
K is effectively term-recognizable in M, then so is K ′ in M′ by Proposition 3.76(1).
If K is semi-effectively recognizable in M, then so is K ′ in M′ by Lemma 3.75(2)
and Proposition 3.76(1) (see also Remark 3.79(3)) and even effectively recognizable
in M′ by Proposition 3.78(3.2). Since L⊆M ′, we have that L∩K = L∩K ′. Thus, it
suffices to prove that L∩K ′ is M′-equational, because then it is M-equational, with
the same equation system, by Proposition 3.9(1).

In the remainder of the proof we assume that F is finite, and we only consider
the assumption that K is effectively term-recognizable. Let M be an F-algebra,
let L be M-equational and defined by an equation system S over F , and let K be
M-recognizable. Then L = valM(R) for the equational set of terms R defined by
S in P(T(F)), by Proposition 3.23(1). The set R′ := val−1

M
(K) is recognizable in

T(F) by Proposition 3.56(2). Then L∩K = valM(R)∩K = valM(R∩ val−1
M

(K))=
valM(R∩ R′). The set R∩ R′ is regular by Theorem 3.62 and Proposition 3.85(1).
Hence L∩K is M-equational by Proposition 3.23(3).

We now assume that K is effectively term-recognizable in M. Then a finite
F-automaton B = A (B,AccB) recognizing R′ can be constructed by (the proof
of) Proposition 3.76(4). It remains to prove that from S and B an equation system
S ′ can be constructed that defines R∩R′ in T(F), and hence defines L∩K in M by
Proposition 3.23(1). We will give two, closely related, proofs. The first one is very
short but its drawback is that it gives no direct construction of the equation system
S ′. Our second proof details such a construction.

First construction: Since Theorem 3.62 is constructive, a finite F-automaton
A (A,C) recognizing R can be computed from S. Hence, the set R ∩ R′ is recog-
nized by the F-automaton A (A×B,C×AccB), cf. the proof of Proposition 3.85(1).
An equation system S ′ defining R∩R′ can be computed from this automaton, again
because Theorem 3.62 is constructive.

Second construction: We let S be of the general form 〈x1= p1, . . . ,xn= pn〉where
the pi’s are polynomials and L is defined by (S,Y ) in M for some Y ⊆ Xn. We
recall from Theorem 3.18 that the least solution of S in P(T(F)) is the n-tuple
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(L(G(S),x1), . . . ,L(G(S),xn)), where G(S) is the regular grammar associated with
S (see Definition 3.17, Section 3.1.4). Thus, R= L(G(S),Y ).

For every i ∈ [n] and every state q ∈QB such that σ(q)= σ(xi) (where QB = B),
we let Ti,q := L(G(S),xi) ∩ L(B,q). Our objective is to construct the system S ′
with set of unknowns Unk(S ′) := {xi,q | i ∈ [n], q ∈ QB , σ(q) = σ(xi)} such that
L(G(S ′),xi,q) = Ti,q for each xi,q in Unk(S ′). We let σ(xi,q) := σ(xi). The con-
struction of S ′ is essentially the product of two finite automata, as in the first
construction.

For each xi,q in Unk(S ′), we will define a polynomial pi,q in Pol(F ,Unk(S ′))
intended to be the right-hand side of the equation of S ′ that defines xi,q. First, for
every monomial m ∈ T (F ,Xn) of a right-hand side of S and every q ∈QB such that
σ(q)= σ(m), we define as follows a polynomial p(m,q): if m= t[xi1/y1, . . . ,xik /yk ],
where t ∈ T (F ,Yk ) and ListVar(t) = y1 · · ·yk , then we let p(m,q) := ⋃D, where
D is the set of all terms t[xi1,q1/y1, . . . ,xik ,qk /yk ] such that q1, . . . ,qk ∈ QB and tB
(q1, . . . ,qk)= q.39

Then, if pi = m1 ∪ ·· · ∪mr (for i ∈ [n]) we define pi,q as p(m1,q)∪ ·· · ∪ p(mr ,q)
whenever q ∈ QB and σ(q) = σ(pi) = σ(xi). It is clear that S ′ can be constructed
from S and B.

Claim 3.88.1 For every xi,q in Unk(S ′) we have Ti,q = L(G(S ′),xi,q).

Proof sketch: One can verify that the sets Ti,q form an oversolution of S ′ in
P(T(F)).40 It follows from the Least Fixed-Point Theorem (Theorem 3.7) that
L(G(S ′),xi,q)⊆ Ti,q for each xi,q in Unk(S ′).

We complete the proof by proving (by induction on j) that T ( j)
i ∩ L(B,q) ⊆

L(G(S ′),xi,q) for all xi,q ∈ Unk(S ′) and j ∈ N , where (T ( j)
1 , . . . ,T ( j)

n ) :=
(SP(T(F)))

j(∅). All proofs are routine from the definitions. �
Hence the system S ′ defines in T(F) the sets of terms Ti,q. It follows that

R∩R′ = L(G(S),Y )∩R′

= ⋃{L(G(S),x
)∩L(B,q) | x
 ∈ Y , q ∈ AccB}
= ⋃{T
,q | x
 ∈ Y , q ∈ AccB , σ(q)= σ(x
)}.

Thus, R∩R′ is defined by (S ′,X ) in T(F) where

X := {x
,q | x
 ∈ Y , q ∈ AccB , σ(q)= σ(x
)}.
Then L∩K is defined by (S ′,X ) in M.

39 Equivalently, runB′ , t(roott)= q, where the automaton B′ is obtained from B by adding the transition
rules y1→ q1, . . . ,yk → qk .

40 And even a solution. If the system S has no monomial equal to an unknown, then the regular gram-
mar G(S ′) is strict and the system S ′ has a unique solution in P(T(F)) by Proposition 3.15 (cf. the
observation after Lemma 3.22). Hence the sets Ti,q form this unique solution and we have the desired
equalities. But the proof of this fact is essentially the same as the one for the general case.
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Corollary 3.89 Let M be an F-algebra where F is finite and let (L1, . . . ,Ln) be
the least solution in P(M) of an equation system S over F with Unk(S) = Xn. Let
h : M→ B be a homomorphism into a finite F-algebra B. There exists an equation
system that defines the sets Li∩h−1(q) for i ∈ [n] and q ∈ B with σ(q)= σ(xi). It can
be constructed from S and B, if B is effectively given.

Proof: One can perform the second construction in the proof of the Filtering Theo-
rem, i.e., construct the system S ′ from S and the automaton B :=A (B,AccB), for
any AccB (because the construction does not depend on AccB). Taking L= Li and
so Y = {i}, and taking K = h−1(q) and so R′ = val−1

M
(h−1(q)) = val−1

B
(q) = L(B)

with AccB = {q}, the proof shows that L∩K is defined by (S ′,xi,q) in M.

Remark 3.90 (1) The system S ′ constructed in the second proof of the Filtering
Theorem has at most n · �B equations but it is not necessarily trim, even if S is
assumed to be. Trimming is interesting in several respects. First, this operation results
in a system defining L∩K of smaller (or at least not larger) size than S ′. Second, in
the case of a system constructed by Corollary 3.89, it produces the set of unknowns
xi,q such that Li ∩ h−1(q) �= ∅ (by Corollary 3.24). This will help to construct proofs
of facts of the form Li ⊆ K for sets K that are recognizable in M, as we did in
Proposition 1.6 (see Proposition 3.91 below). We have proved in a similar way in
Section 1.2.5 that no series-parallel graph can satisfy the two 2-coloring properties σ
and δ of Example 1.11.

(2) From the above observation on the number of equations, and the second con-
struction in the proof of the Filtering Theorem, we get (with the notation of that proof)
that L∩K is nonempty if and only if it contains an element defined by a term of height
at most n · �B where n is the number of equations of a uniform system that defines
L. This fact follows from Proposition 3.53(1).

(3) We may have a computable homomorphism h : M→ B without knowing if
h−1(q)=∅ for given q in B (cf. Remark 3.79(2)). The second construction in the proof
of the Filtering Theorem works nevertheless but we have Li∩h−1(q)=∅ if q /∈ h(M ).
As discussed in (1), we can determine the pairs (i,q) such that Li∩h−1(q)=∅, hence
for each i, the finite set h(Li).

(4) The proof of the Filtering Theorem defines L as well as K (to simplify the
discussion we assume that F is finite) by finite, possibly nondeterministic, automata
on terms, but it does not extend to the case where K is equational. Let L and S be
as in the second construction in the proof, with L= valM(L(G(S),x1)). Assume that
K = valM(L(G(S),x1)) for another equation system S with set of unknowns Xm.
One can build a system S ′ that defines in T(F) the sets L(G(S),xi) ∩ L(G(S),xj)

for i ∈ [n] and j ∈ [m]. Then valM(L(G(S),xi)∩L(G(S),xj))⊆ valM(L(G(S),xi))∩
valM(L(G(S),xj)) but the inclusion may be strict, hence the system S ′ does not define
in general the set L∩K . This is not a surprise because we know that the intersection
of two context-free languages is not always a context-free language. �
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The Filtering Theorem is stated in Chapter 1 (Theorem 1.8) in terms of finite
inductive sets of properties instead of recognizable sets. By Proposition 3.83, this is
equivalent to the formulation of Theorem 3.88 (cf. Theorem 1.12). In Chapter 5, we
will state a logical formulation of the Filtering Theorem where the recognizable sets
K are defined by monadic second-order sentences.

We now generalize Proposition 1.6 and Corollary 1.9 and we show how inclusions
of the form L ⊆ K where L is equational and K is recognizable can be proved (by
fixed-point induction, see Section 1.2).

Proposition 3.91

(1) Let L be equational in an algebra M and be defined by (S,Xμ) for some equation
system S with Unk(S)= Xn and some μ∈ [n]. Let K be recognizable in M. Then
L⊆ K if and only if there exists an n-tuple (K1, . . . ,Kn) of M-recognizable sets
that is an oversolution of S and is such that K
 ⊆ K for every 
 ∈ [μ].

(2) If, furthermore, K is effectively recognizable and S is given, one can decide
whether L ⊆ K , and, if this is the case, one can construct the effectively
recognizable sets K1, . . . ,Kn. The analogous statements hold for effective
term-recognizability and for semi-effective recognizability.

Proof: (1) Let (L1, . . . ,Ln) be the least solution of S in P(M), with L=⋃
∈[μ]L
.
Let K be defined as h−1(C), where h is a homomorphism of M into a locally finite
algebra B and C ⊆ B.

Let us assume that L⊆K . For each i= 1, . . . ,n, we define the recognizable set Ki :=
h−1(h(Li)). In other words, Ki is the union of the sets h−1(q) such that Li∩h−1(q) �= ∅,
for q ∈ B. Since K is a union of pairwise disjoint sets h−1(q), we have L
 ⊆ K
 ⊆ K
for every 
 ∈ [μ] (and K −⋃
∈[μ]K
 is the union of the sets h−1(q) such that q ∈ C
and L∩ h−1(q)= ∅). It remains to prove that for each i, we have

piP(M)(K1, . . . ,Kn)⊆ Ki,

where pi is the polynomial that is the right-hand side of the equation of S that defines
xi. It suffices actually to prove

tP(M)(K1, . . . ,Kn)⊆ Ki,

for each monomial t of pi. Let us write t = t̃ [xi1/y1, . . . ,xik /yk ] where t̃ ∈ T (F ,Yk )

and ListVar(̃t ) = y1 · · ·yk . By Lemma 3.2(4), an element m of tP(M)(K1, . . . ,Kn)

is of the form t̃M(m1, . . . ,mk) with mj ∈ Kij for j = 1, . . . ,k . For each such j,
there is in Lij an element m′j such that h(m′j) = h(mj). Then, the element of M
defined as m′ := t̃M(m′1, . . . ,m′k) belongs to tP(M)(L1, . . . ,Ln) and hence to Li since
t is a monomial of the equation that defines xi. Since h is a homomorphism, we
have h(m′) = h(m). Hence m belongs to Ki. This shows that (K1, . . . ,Kn) is an
oversolution of S.
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The opposite implication follows from Theorem 3.7: if (K1, . . . ,Kn) is an over-
solution of S, then Li ⊆ Ki for each i, and since K
 ⊆ K for every 
 ∈ [μ], we get
L=⋃
∈[μ]L
 ⊆ K as desired.

(2) Assume now that K is effectively recognizable and is defined as above. By
Corollary 3.86, M −K is effectively recognizable (M is effectively recognizable by
the proof of Proposition 3.85(1)). Hence, an equation system for the set L∩ (M −
K) can be constructed by Theorem 3.88 and one can decide if that set is empty,
i.e., if L ⊆ K (by Corollary 3.24). For each i ∈ [n] and each element q of B, the
set Li is defined by S and the set h−1(q) is effectively recognizable. Hence, by
the same procedure, it can be decided whether Li ∩ h−1(q) �= ∅, i.e., whether q ∈
h(Li). Thus, Ki is effectively recognizable. The same proof holds in the other two
cases.

Hence, as soon as some correct n-tuple (K1, . . . ,Kn) has been guessed, it remains
to prove properties of the forms tP(M)(K1, . . . ,Kn)⊆K ′ and K ′ ⊆K for recognizable
sets K ,K ′,K1, . . . ,Kn to complete the proof.

We conclude this section by comparing the equational and the recognizable sets of
an algebra.

Corollary 3.92 Adomain Ms of an F-algebra M is generated by a finite subsignature
of F if and only if Rec(M)s ⊆ Equat(M)s.

Proof: Let Ms be generated by a finite subsignature of F . Then Ms ∈ Equat(M)s

by Proposition 3.23(4). For every set K ∈Rec(M)s we have K =Ms∩K ∈Equat(M)s

by Theorem 3.88. Assume conversely that Rec(M)s ⊆ Equat(M)s. Since Ms is rec-
ognizable by Proposition 3.85(1), it is equational, hence it is generated by a finite
subsignature of F , again by Proposition 3.23(4).

The inclusion Rec(M)s ⊆ Equat(M)s may be false without the hypothesis that
Ms is finitely generated. To prove this it suffices to consider an algebra M with a
countably infinite domain M and a signature F consisting of one constant symbol to
denote each element. Hence, M is generated by F but not by any finite subset of F .
The set M is recognizable but it is not equational.

Since some context-free languages are not regular, we do not always have
Equat(M)s ⊆Rec(M)s. The families Rec(M)s and Equat(M)s are thus incompara-
ble in general.

3.4.8 Recognizable sets of commutative words

We have described in Section 3.1.6 the equational sets of the additive monoid Nk =
〈N k ,+, ,0 〉, where ,0 = (0, . . . ,0). We now describe its recognizable sets. A subset
of N is ultimately periodic if it is of the form P ∪ {u+ λ · v | u ∈ Q, λ ∈N } where
P,Q ∈Pf (N ) and v ∈N .
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Proposition 3.93

(1) A subset of N is recognizable in N if and only if it is ultimately periodic if and
only if it is equational in N.

(2) If k ≥ 2, a set is recognizable in Nk if and only if it is a finite union of Cartesian
products R1×·· ·×Rk such that R1, . . . ,Rk ∈Rec(N).

Proof sketch: (1) The length is an isomorphism from W({a}) to the additive monoid
N=〈N ,+,0〉. Using this fact, the first equivalence is proved in [*Eil], Proposition 1.1
of Chapter V, by means of deterministic finite automata over the alphabet {a}. The
second equivalence is a special case of Proposition 3.25.

(2) The second assertion follows from the fact that for every two monoids M1 and
M2, Rec(M1×M2) is the set of finite unions of sets R1×R2 where R1 ∈ Rec(M1)

and R2 ∈ Rec(M2) (Proposition 12.2 of Chapter III of [*Eil]). One direction of this
equality is immediate from Proposition 3.85(2). The proof of the other direction
can be sketched as follows: let L ∈ Rec(M1×M2) with finite congruence ∼ ; then
L = {(m,m′) | (m,εM2) ∼ (p,εM2) and (εM1 ,m′) ∼ (εM1 ,p′) for some (p,p′) ∈ L},
hence L is a union of sets Lp× Lp′ where Lp = {m ∈M1 | (m,εM2) ∼ (p,εM2)} and
Lp′ = {m ∈M2 | (εM1 ,m) ∼ (εM1 ,p′)}; there are finitely many such sets Lp,Lp′ and
they are recognizable.

It follows that the linear set {(n,n) | n ∈ N } is equational in N× N but is not
recognizable in this algebra.

Remark 3.94 That Rec(M1×M2) is the set of finite unions of products of recog-
nizable sets of M1 and M2 is true for monoids but not for arbitrary algebras. Let
N′ := 〈N ,Suc,0〉 where Suc(n)= n+ 1 for all n ∈N . Then, the set {(n,n) | n ∈N }
is recognizable in N′ ×N′ with congruence defined by (n,n′)∼ (p,p′) if and only if
n= n′ and p= p′ or n �= n′ and p �= p′. Hence Rec(N′ ×N′)⊃Rec(N×N). However,
Rec(N′)= Rec(N) because N and N′ are respectively isomorphic to W({a}) and to
Wright({a}), which have the same recognizable set as recalled in Example 3.57(2).

3.4.9 Decidability questions

It is well known that the emptiness problem for finite automata is decidable, that is,
there exists an algorithm that decides whether the set of terms accepted by a given
finite automaton is empty or not: see Chapter 1 of [*Com+] or Proposition 5.3 of
[*GecSte]. This is actually a consequence of the equivalence of regular grammars
and automata, established in Proposition 3.47. However, this result does not extend
to general recognizable sets, not even to those that are effectively recognizable. This
should be contrasted with Proposition 3.24 relative to equational sets.

Proposition 3.95 The emptiness of an effectively recognizable set is not decidable
in general, not even if the algebra has a single sort. It is decidable if the signature is
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finite and generates the considered algebra (even for semi-effectively recognizable
and effectively term-recognizable sets).

Proof: In order to prove the first assertion, we give two counterexamples. We let
F be the infinite one-sort signature consisting of a constant symbol a and of unary
function symbols fn, for all n ∈N . Let g be a computable mapping : N →{0,1}. Let
A be the finite F-algebra associated with g by

A= {0,1}, aA = 0, fnA(1)= 1, fnA(0)= g(n).

The set L := val−1
A

({1}) ⊆ T(F) is effectively recognizable in T(F). It is clear that
L �= ∅ if and only if g(n)= 1 for some n ∈N , and this not decidable.

Here is the second example. We let F ′ be reduced to the constant symbol a and
M := 〈N ,aM〉 with aM := 0. This algebra is not generated by F ′. Let A and g be as
above. The mapping h such that h(0)= 0 and h(i)= g(i) if i≥ 1, is a homomorphism
: M→A. Hence h−1({1}) is effectively recognizable in M. It is nonempty if and only
if g(i)= 1 for some i ≥ 1. And this is not decidable.

The decidability assertion is an immediate consequence of Theorem 3.88 and
Propositions 3.23(4) and 3.24 (because if K ∈ Rec(M), then K = ∅ if and only if
Ms ∩K = ∅ for every sort s). The two counter-examples show that none of the two
hypotheses can be omitted.

3.4.10 Concluding remarks on recognizability

The two results that motivate the introduction and the study of recognizability are the
linear-time membership algorithm (where linearity is meant with respect to the size
of a term denoting the considered object) and the Filtering Theorem. Both of them
are based on the local finiteness properties that characterize recognizability.

We now review the concrete and effective ways to specify recognizable sets and
the uses of such specifications. Then we discuss when the notion of recognizability
becomes void, and finally we come back to rational sets and regular expressions
already discussed in Section 3.2.5.

Specification of recognizable sets

Let M be an algebra that is generated by its signature F , and let F be effectively
given. We distinguish two cases.

The first case is when F is finite, hence M is finitely generated. Then a subset L of
M is recognizable if and only if the language val−1

M
(L) is regular (by Proposition 3.69

and Theorem 3.62). The most convenient way to specify L is by a finite complete
and deterministic F-automaton A recognizing val−1

M
(L). It is decidable for a term

t ∈ T (F) if valM(t) is in L: one just runs A on t. If M is semi-effectively given, then
membership in L is decidable by an algorithm using two steps: first one looks for a
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term t ∈ T (F) that evaluates41 to the given element m of M . We know that a (possibly
inefficient) algorithm exists for finding such t (see Definitions 2.8 and 2.127). Then,
by running A on t, one obtains the answer that m belongs to L or not. The emptiness
problem for L is decidable since it reduces to the emptiness problem for the language
L(A ). The effectivity statement of the Filtering Theorem and its Corollary 3.89 are
applicable.

Such an automaton can be constructed from the following data:

• a specification of L as a semi-effectively recognizable or effectively term-
recognizable set42 by a finite algebra A and a subset C of A (by Propositions 3.76(4)
and 3.78(3.2)); or
• a membership algorithm for L and a decidable finite congruence witnessing the

recognizability of L (by Proposition 3.78); or
• a membership algorithm for L and an upper-bound to γL(s) for each sort s (by

Proposition 3.80);43 or
• a computable finite F-inductive family of predicates (by Corollary 3.84).

The second case is when F is infinite. Let L be semi-effectively recognizable or
effectively term-recognizable in M. Then, for every finite subsignature F ′ of F , the
set L ∩M ′ is effectively recognizable in the subalgebra M′ of M generated by F ′
(by the first paragraph of the proof of Theorem 3.88). Hence, by the first case, one
can construct a finite F ′-automaton AF ′ that recognizes the language val−1

M′(L∩M ′),
which equals val−1

M
(L)∩T (F ′). It is decidable for a term t ∈ T (F) if valM(t) is in L:

letting F ′ be the (finite) minimal subsignature of F such that t ∈ T (F ′), one gets the
desired answer by running AF ′ on t. If M is semi-effectively given, then membership
in L is decidable: given m in M , an algorithm can find a term t in T (F) that evaluates
to m (cf. Definitions 2.8 and 2.127); then one decides whether valM(t) is in L. The
emptiness problem is undecidable (Proposition 3.95); however, the two constructions
in the proof of the Filtering Theorem can be done by algorithms.

The automaton AF ′ can be constructed from the same data as in the finite case,
with “finite” replaced by “locally finite”. For the third kind of data, an algorithm
must be specified that computes an upper-bound to γL(s) for each sort s of F . Then
we can use Proposition 3.80 (applied to M′ and L∩M ′) because, by Remark 3.79(3),
γL∩M ′(s) ≤ γL(s) for every s ∈ S ′ (where S ′ is the set of sorts of F ′) and hence
�M(L∩M ′)≤�s∈S ′ γL(s).

Let us finally observe that if M is semi-effectively given (hence countable) but not
generated by its signature, then one can enrich the signature by adding one constant

41 Any such term will give the correct answer. The corresponding parsing problem is less constrained than
for equational sets.

42 In the first case, M and A must be semi-effectively given; the homomorphism : M→ A need not
be specified, by Lemma 3.75(1). In the second case, A must be effectively given; M need not be
semi-effectively given. In both cases a membership algorithm for C must be specified.

43 Recall that γL is the recognizability index of L, cf. Definition 3.65.
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symbol for denoting each element: the recognizable sets are the same (cf. the remark
after Proposition 3.56), and we can obtain effective constructions under the conditions
of the second case.

Recognizability is void in certain algebras

The notion of recognizability depends on the relevant algebra. It may become void
in two opposite cases. If the algebraic structure is “poor,” for example in the absence
of functions of positive arity, then every set L is recognizable (the corresponding
congruence has two classes, L and its complement). The notion of recognizability
becomes trivial.

The opposite case is when the algebraic structure is so rich that there are very
few recognizable sets. If one enriches an algebra by adding new operations, one gets
fewer (or the same) recognizable sets. For example, consider the set N of nonneg-
ative integers equipped with the successor and the predecessor functions (where the
predecessor is defined by pred(0)= 0, pred(n+ 1)= n). The only recognizable sets
are N and the empty set. Indeed, if ∼ is a congruence and if n ∼ n+ p for some
n≥ 0, p > 0, then by using n+ p− 1 times the function pred, we find that 0∼ 1. It
follows (using the successor function repeatedly) that any two integers n and n+ 1
are equivalent, hence any two integers are equivalent.

As another example, consider the monoid W({a,b}) of words over two letters. Let
us add a unary operation, the circular shift, defined by: sh(ε)= ε and sh(aw)=wa,
sh(bw) = wb, for every word w. The language ba∗ is no longer recognizable in
this algebra, denoted by W({a,b})sh. Here is the proof. Assume it is with finite
congruence∼. We have amb∼ am+nb for some m and n> 0. Then bam= shm(amb)∼
shm(am+nb) = anbam but this word is not in ba∗. Hence, ba∗ is not saturated by
any finite congruence on W({a,b})sh. However, recognizability does not degenerate
completely since every commutative language L that is recognizable in W({a,b})
remains recognizable in W({a,b})sh. To see this, let ≈L be the syntactic congruence
of L. We recall from Example 3.67 that for w,w′ ∈ {a,b}∗:

w≈L w′ if and only if xwy ∈ L⇐⇒ xw′y ∈ L for all x,y ∈ {a,b}∗.

It is finite since L is recognizable. Since L is commutative,44 it is also a congruence
for sh(w): if w ≈L w′ and x sh(w)y ∈ L then xw y ∈ L, hence xw′ y and x sh(w′)y
belong to L; this proves that sh(w)≈L sh(w′).

Rational sets

We have defined the rational sets of monoids in Section 3.2.5. More generally, star
operations, and thus regular expressions and sets that can be called rational, can be

44 This means that if v ∈L and h(v)= h(w) then w∈L, where h is the homomorphism : W({a,b})→N×N

defined in Section 3.1.6.



3.5 References 259

defined whenever we have binary associative operations like⊕,⊗,�,• (cf. Chapter 1).
Such operations have been defined and investigated for planar directed acyclic graphs
in [BosDW] and for pictures in [*GiaRes] (a picture in this work is a directed vertex-
labeled rectangular grid, cf. Example 2.56(3) and Section 5.2.3; they are different from
those considered in [*Dre06]). In most cases, the corresponding class of rational sets
contains properly the one of recognizable sets.

3.5 References

The equational and the recognizable sets of a one-sorted algebra have been defined by
Mezei and Wright in [MezWri]. Many results presented in this chapter, in particular
Proposition 3.23 and Theorem 3.62 (restricted to finite signatures), are due to them.
This chapter is otherwise based on [*Cou86], [*Cou96b], [*Cou97], but the notions
of effectivity are new. Recognizability is extended so as to allow elements of different
sorts in the same recognizable set.

Theorem 3.7 is Proposition 1.4.5 of the book [*ArnNiw]. The preservation of sets
of solutions and of least solutions under unfoldings and related transformations is
studied in detail in [*Cou86]. More general equation systems, called regular systems
of equations, are studied in [*Cou83], [*Cou86] and [*Cou90a] with motivations from
the semantics of recursive programs. Regular grammars and automata (cf. Section 3.3)
are studied in [*GecSte] and [*Com+].

The recognizable and the equational sets of R, the algebra of rooted trees are char-
acterized in terms of appropriate finite automata and of equivalent logical sentences
in [*Lib06], [BonTal], [Cou89a] and [*Cou96b]. Chapter 8 of [*Com+] also con-
siders rooted ordered unranked trees in which each node has a sequence of sons of
unbounded length.
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Equational and recognizable sets of graphs

The general algebraic notions of both equational and recognizable sets have been
defined in Chapter 3. In this chapter, we apply them to the graph algebras of Chapter 2
and give examples that are interesting from the graph theoretic point of view. We also
review the consequences of the results of Chapter 3 and establish some properties
that are particular to graph algebras.

In Section 4.1, we study the equational sets of the algebra JS; these are called the
HR-equational sets. We establish decidability results for membership, emptiness and
finiteness, and show some relationships between tree-width and HR-equationality. We
compute the types of the elements of an HR-equational set and prove that the equa-
tional sets of the one-sorted algebraJS are the same as those of the many-sorted algebra
JSt . The HR-equational sets are also defined by the hyperedge replacement graph
grammars: this grammatical characterization was actually their original definition.

In Section 4.2 we study the recognizable sets of the many-sorted algebra JSt ,
called the HR-recognizable sets. We generalize to them the characterization of regular
languages due to Myhill and Nerode, and also prove that there are uncountably many
HR-recognizable sets of graphs.

In Section 4.3, we study similarly the equational sets of the one-sorted algebra
GP, which are called the VR-equational sets. We establish for them decidability
results similar to those for HR-equational sets. The VR-equational sets are related to
clique-width in the same way that the HR-equational sets are to tree-width. Every
HR-equational set of simple graphs is VR-equational: this is not surprising since
the clique-width of a simple graph is bounded in terms of its tree-width but this
observation does not replace a proof. The converse implication holds for sparse
graphs.

In Section 4.4, we study the recognizable sets of the many-sorted algebra GPt ,
which are called the VR-recognizable sets. We generalize to them the characterization
of regular languages by Myhill and Nerode. Every VR-recognizable set of graphs is
HR-recognizable and the converse implication holds for the sets of simple graphs
that are sparse. These implications are similar but opposite to those that relate the
different types of equational sets.
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In Chapter 5, we will prove that the sets of graphs defined by monadic second-order
sentences are recognizable: this will give an easy way to specify recognizable sets
and to use this notion.

Before starting the formal exposition, let us state as a rule of thumb that most of
the definitions and results apply to labeled graphs (possibly with sources or ports)
with essentially the same proofs as for unlabeled graphs (or s-graphs or p-graphs).
By “labeled” graphs, s-graphs or p-graphs, we mean (K ,�)-labeled graphs, s-graphs
or p-graphs, for some finite sets K and �. In order to facilitate reading, we will not
always specify these technical details. The phrase “(labeled) graphs” in statements is
intended to remind the reader of this convention.

4.1 HR-equational sets of simple graphs

We recall from Section 2.3 that the acronym HR refers to the (one-sorted) algebra
of (labeled) graphs with (and without) sources (called s-graphs), denoted by JS. Its
signature FHR is countable and consists of the following operations:

• the parallel-composition denoted by �;
• the operation fgB that “forgets” the sources with names in a finite set B, (i.e., turns

these sources into internal vertices);
• the operation renh that renames sources according to a finite permutation h of the

set of source names;
• constant symbols denoting edges, loops and isolated vertices; the eventual vertex

and edge labels are specified by the constant symbols.

We denote by FHR[K ,�] the variant of FHR with which (K ,�)-labeled graphs can be
defined as values of terms, and the corresponding algebra by JS[K ,�]. The many-
sorted variants of these algebras are denoted by JSt and JSt[K ,�], see Section 2.6.2.
We will recall more details about them when appropriate.

4.1.1 HR equation systems

The operations of FHR can be used to write equation systems according to the def-
initions of Section 3.1, from which we get the notion of an HR-equational set of
s-graphs. By “a set of s-graphs,” we mean a set of abstract s-graphs. If a set of con-
crete s-graphs L is specified in one way or another, we say that L is HR-equational if
the set {[G]iso |G ∈ L} is HR-equational.

Definition 4.1 (HR-equational sets of s-graphs) A set of s-graphs is HR-equational
if it is equational in the algebra JS. We now review the relevant specializations of
some definitions of Chapter 3. An HR equation system is an equation system over
the signature FHR. Its general form is (without loss of generality by Lemma 3.4, see
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Definition 3.6) S = 〈x1 = p1, . . . ,xn = pn〉, where each pi is a polynomial over the
signature FHR, i.e., pi ∈ Pol(FHR,Xn). According to Section 3.1.2, we will denote
its least solution in the powerset algebra P(JS) by μx · SP(JS)(x) (with x denoting
(x1, . . . ,xn)). In order to get closer to the usual notation for context-free grammars, we
will denote by L(S,xi) the componentμx ·SP(JS)(x) � xi ofμx ·SP(JS)(x). We will call
it the set defined by (S,xi), or generated by S from xi. We will denote by LTerm(S,xi)

the corresponding set when S is solved in the powerset term algebra P(T(FHR)).
By Theorem 3.18, LTerm(S,xi) = L(G(S),xi), where G(S) is the regular grammar
associated with S. For Y ⊆ Unk(S), we denote the set

⋃
y∈Y L(S,y) by L(S,Y ), and

similarly for LTerm(S,Y ). Since JS is a one-sorted algebra, every HR-equational set
is of the form L(S,x) for some HR equation system S and some unknown x of S.

For defining HR-equational sets of (K ,�)-labeled s-graphs, we use the signature
FHR[K ,�], the algebra JS[K ,�] and the term algebra T(FHR[K ,�]) instead of FHR, JS and

T(FHR) respectively.
Every HR equation system S is an equation system over the finite signature F(S)

and hence over FHR
C (or FHR

C,[K ,�]) for some finite set of source names C ⊆A.1 We
denote the smallest such C by A(S) (so that Sort(S) ⊆ P(A(S))). It is the set of
source names that occur in S and it can be computed as the union of the sets μ(t)
such that t is a monomial in an equation of S, where Definition 2.35 is generalized to
terms with variables in the obvious way (adding μ(x)= ∅ to the rules that compute
μ(t), for every variable x). Thus, F(S)⊆ FHR

A(S) (or F(S)⊆ FHR
A(S),[K ,�]).

The system S has the same least solution in the powerset algebras of T(F(S)) and
T(FHR) (or T(FHR

[K ,�])), by Proposition 3.9(1). We obtain the following result from
Proposition 3.23(1), where we denote by val the mapping valJS (or valJS[K ,�] ) that
evaluates a term into the corresponding s-graph.

Proposition 4.2 For every HR equation system S and every unknown x of S, we
have L(S,x)= val(LTerm(S,x)) and LTerm(S,x)⊆ T (F(S)). �

It follows that every s-graph G belonging to an HR-equational set L(S,x) is the value
of some term in T (F(S)). Such a term yields a linear notation for G. Furthermore, it
can be used as input to an algorithm checking certain properties of G or computing
certain values attached to it, in polynomial time, as we will see in Chapter 6.

It follows also from Proposition 3.9(1) that an HR-equational set of s-graphs L is
equational in the subalgebras JS[A(S)] and JSgen[A(S)] (cf. Remark 2.39(1)), where
S is an equation system that defines L, and similarly in the labeled case. We will use
this fact in the proofs of Propositions 4.10 and 4.13(3) below.

All closure results for equational sets established in Sections 3.1.5 and 3.2.4 hold
for the HR-equational sets. For example, the mapping und that forgets edge directions

1 This uses the obvious fact that every finite subsignature of FHR is a subsignature of FHR
C for some finite

set C (and similarly for the labeled case). The definition of the signature F(S) is in Definition 3.6.
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(cf. Definition 2.9) is a homomorphism: JSd → JSu. It follows from Proposi-
tion 3.23(2) that und(L) is HR-equational if L is an HR-equational set of directed
s-graphs.

We now present or recall a few examples.

Example 4.3 (1) Series-parallel graphs: The set of (directed) series-parallel graphs
is defined by the equation

x = (x � x)∪ fg3(ren2↔3(x)� ren1↔3(x))∪−→12.

The second term in the right-hand side of this equation is the expanded expression
of the monomial x • x, written with • (series-composition), a derived operation of JS
(cf. Example 2.133, Section 2.6.2). The undirected series-parallel graphs are obtained
similarly with 12 instead of

−→
12.

(2) Rooted trees: The root of a tree is defined as its 1-source. (We recall from
Definition 2.13 that edge directions follow from the choice of a root.) The defining
equation is

y = (y � y)∪ fg2(
−→
12 � ren1↔2(y))∪ 1.

(3) Trees: Trees, as defined in Definition 2.13, form the set L(S,u), where S is the
following system: {

u = fg1(z),

z = (z � z)∪ fg2(12 � ren1↔2(z))∪ 1.

(4) Syntactic trees of terms: We consider the syntactic trees of the terms in T (F)

where F := { f ,g,a,b}, ρ( f ) := 2, ρ(g) := 1, ρ(a) := ρ(b) := 0. Each node of such
a tree T has a label in F ; each edge has also a label, 
 := 1 or r := 2, used to indicate
whether it leads to the first (left) or to the second (right) son. The defining equation is

t = (1f � fg2(
−→
12
 � ren1↔2(t)� fg2(

−→
12r � ren1↔2(t))))

∪(1g � fg2(
−→
12
 � ren1↔2(t)))∪ 1a ∪ 1b.

The constant symbols 1κ and
−→
12λ denote respectively an isolated vertex that is a

1-source labeled by κ and an edge from a 1-source to a 2-source labeled by λ. (We
have defined labeled s-graphs in Chapter 2, Definitions 2.11 and 2.32.)

(5) Ladders: By a ladder, we mean an s-graph of the form shown in Figure 4.1.
The equation that defines ladders is y= 12∪ f (y), where f is the operation that adds
one step to a ladder. It can be defined by the following term:2

f (u)= ren2↔4(ren1↔3(fg12(u � 13 � 24 � 34))),

2 In examples, we write fg12 or fgabc for fg{1,2} or fg{a,b,c} respectively.
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Figure 4.1 A ladder.

where u denotes any s-graph. However, we will only use f (u) for graphs u of type
{1,2}. One can do better, with fewer source names:

f (u)= ren2↔3(fg2[ren1↔3(fg1(u � 13))� 23])� 12.

As we will see in Section 4.1.2, the second expression of the function f yields a better
estimate of the maximal tree-width of a ladder.

(6) Cycles: The set of cycles Cn, n ≥ 2, is defined as L(T ,w), where T is the
following system: {

w = fg12(v � 12),

v = 12 ∪ (v • 12),

and • is series-composition, see (1). The last equation can also be written as follows
by expanding the definition of • and replacing ren1↔3(12) by 23:

v = 12 ∪ fg3(ren2↔3(v)� 23).

Note that if we replace in T the monomial v • 12 by v • v, then the same sets are
generated.

(7) Outerplanar graphs: A biconnected outerplanar graph consists of one cycle
Cn for some n≥ 2, called the external cycle, and of edges that can be drawn without
crossings inside a circle representing the external cycle. It is thus planar. The set of
biconnected outerplanar graphs is L(S,u), where S is the equation system:{

u = fg12(v � 12a),

v = 12a ∪ (12 � v)∪ (v • v).

The edges labeled by a (which are defined by the constant symbol 12a) are those
of the external cycle. Note that L(S,v) is a set of undirected series-parallel graphs
(disregarding the edge label a).

(8) Graphs of bounded tree-width: Theorem 2.83 has characterized the s-graphs
of tree-width at most k − 1 and of type included in [k] as those defined by terms in
T (FHR

[k] ), where FHR
[k] is the finite subsignature of FHR consisting of the operations



4.1 HR-equational sets of simple graphs 265

using source names in [k]. It follows then from Propositions 3.16, 3.9(1) and 3.23(2)
that the set TWD(≤ k− 1, [k]) is HR-equational.3

For directed s-graphs, the set TWD(≤ k − 1, [k]) is defined, for k ≥ 2, by the
equation

x= (x � x)∪
( ⋃

B⊆[k]
fgB(x)

)
∪
( ⋃

h∈Permf ([k])
renh(x)

)
∪−→12 ∪ 1∪ 1
 ∪∅.

Since this equation contains the terms renh(x), we need not use the constant symbols−→
ab for (a,b) �= (1,2) because they can be defined by terms of the form renh(

−→
12).

For example,
−→
32 = renh(

−→
12), where h(1) = 3, h(2) = 2, h(3) = 1. For generating

undirected s-graphs, we replace
−→
12 by 12.

We have proved in Proposition 2.49 that the operations renh are dispensable. This
fact shows that the above equation is equivalent to the system of two equations (we
could write it as a single equation but it is clearer in this way):

⎧⎨⎩ x = y∪ (x � x)∪ (⋃B⊆[k] fgB(x)),

y =
(⋃

a,b∈[k],a�=b
−→
ab
)
∪
(⋃

a∈[k] a)∪ (
⋃

a∈[k] a

)
∪∅.

If we wish to define the set TWD(≤ k − 1) of graphs of tree-width at most k − 1,
we use the additional equation z= fg[k](x). A bit more generally, for each finite set of
source names C, the set TWD(≤ k−1,C) of s-graphs of tree-width at most k−1 and
of type included in C is HR-equational. For |C| = k this follows from Theorem 2.83
as for C = [k]. For |C| �= k we use Proposition 3.45. If |C|> k , then TWD(≤ k−1,C)

is the union of all TWD(≤ k − 1,D) with D ⊆ C and |D| = k , and if |C| < k , then
TWD(≤ k−1,C)= fgD−C(TWD(≤ k−1,D)) for any set D with C ⊆D and |D| = k .

(9) Graphs of bounded path-width: The characterization of graphs of path-width
at most k−1 given in Proposition 2.85 can be translated into an HR equation system.
From this proposition we get immediately the equation

x= y∪ (x � y)∪
(⋃

B⊆[k] fgB(x)
)
∪
(⋃

h∈Permf ([k]) renh(x)
)
,

to which we add the equations of (8) that define z and y. As in (8), we can omit in the
equation defining x the terms renh(x).

(10) Graphs of bounded bandwidth: A simple, loop-free undirected graph G has
bandwidth at most k where k ≥ 1 if its vertex set can be enumerated as {v1, . . . ,vn} in
such a way that for every edge vi−vj with i < j we have j− i≤ k . The bandwidth of
G is defined as the smallest such k . The set of graphs of bandwidth ≤ k that have at

3 See Definition 2.53 for TWD(≤ k ,C) and TWD(≤ k).
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least k+ 1 vertices is L(S,x) where S is the HR equation system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x = fg[k](y),
y = b∪ f (z),

z = y � e,

b = g1 ∪ ·· · ∪ gm,

e = e1 ∪ ·· · ∪ ep.

In this system, {g1, . . . ,gm} is a set of terms denoting the simple loop-free undirected
s-graphs with k + 1 vertices and of type [k] (cf. Proposition 2.33), f is the derived
operation defined by the term renh(fg1(x1)), where h(1) := k + 1, h(i) := i− 1 for
i= 2, . . . ,k+1, and e1, . . . ,ep are the terms k′ (we let k ′ := k+1) and �i∈I ik′, for all
nonempty subsets I of [k]. Hence p= 2k . The unknown y defines s-graphs of type [k].
The unknown e defines s-graphs of several types: each subset of [k+1] that contains
k+ 1 is the type of some s-graph in L(S,e).

Since the system S defines slim terms, the graphs of bandwidth at most k have
path-width at most k (by Propositions 2.85 and 4.2).

(11) Graphs of bounded cyclic bandwidth: An undirected loop-free graph G has
cyclic bandwidth at most k , where k ≥ 1, if its set of vertices can be enumerated as
{v0, . . . ,vn} in such a way that, for every edge vi − vj with 0 ≤ i < j ≤ n, we have
j− i ≤ k or i+ n+ 1− j ≤ k . See Figure 4.2 for an example with n= 7 and k = 3.

It is not hard to construct for each k an HR equation system that defines the set
CB(≤ k) of simple graphs of cyclic bandwidth at most k . The problem of recognizing
if a graph belongs to CB(≤ k) is NP-complete for each k ≥ 2 [LeuVW]. This shows
that certain HR-equational sets have an NP-complete membership problem.

Figure 4.2 A graph of cyclic bandwidth ≤ 3.
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(12) Context-free languages: Every word over a finite alphabet A can be con-
sidered as a directed vertex-labeled graph: this graph is a directed path, each vertex
of which has a label from A. The empty word is an isolated vertex with no label
(we can also label this vertex by ε). Hence a language can be considered as a set of
labeled graphs. With this convention, every context-free language is HR-equational,
but some HR-equational languages like {anbncn | n ≥ 0} or {ww | w ∈ A∗} are not
context-free. The HR-equational languages will be studied in Chapter 8. �

Definition 4.4 (Derivation trees and parsing) The notion of derivation tree, defined
in Definition 3.43 (Section 3.2.3) for general equation systems, is applicable to
HR equation systems.

The parsing problem for (S,x), where S is an HR equation system and x is one of
its unknowns, consists, for a given (labeled) s-graph G, of finding a derivation tree
of it or reporting that no such tree exists, i.e., that G does not belong to L(S,x).

Example 4.3(11) has shown that this problem can be NP-complete for certain
HR equation systems. This fact should be contrasted with the case of context-free
languages, since every context-free language has a cubic membership algorithm. We
will come back to the parsing problem in Chapter 6.

Let S be an HR equation system. If G has a derivation tree d relative to S, then
this tree can be transformed by a second-order substitution into a term t in T (FHR) or
in T (FHR[K ,�]) (or more precisely in T (F(S))) that evaluates to G. This transformation
can be done in time proportional to the size of d (cf. Definition 3.43). The size
of G, defined as the number of vertices and edges, is O(|t|). More precisely (cf.
Section 2.3.2), |VG| ≤ 2 · |Occ0(t)| and |EG| ≤ |Occ0(t)|, where Occ0(t) is the set of
occurrences of constant symbols in t different from ∅. Furthermore, |t| =�(|d|) if
S is uniform. These facts follow from the various definitions.

Proposition 4.5

(1) The membership problem for an HR-equational set is decidable.
(2) The emptiness of an HR-equational set (given by an equation system) is decidable.
(3) If a nonempty HR-equational set is defined by a uniform system with n unknowns,

then it contains an s-graph of size at most 3 · 2n−1.

Proof: (1) The proof is similar to the one of Proposition 3.10. Let S be a uniform
HR equation system with set of unknowns Xn and let L = L(S,x1). For a given
s-graph H , we define M as the finite set of s-graphs G of type included in A(S)
such that G◦ ⊆H ◦. If L= (L1, . . . ,Ln) is an n-tuple of sets of s-graphs, we let L∩M
denote the n-tuple (L1 ∩M , . . . ,Ln ∩M ). Obviously, H belongs to L if and only if it
belongs to the first component of μx · SP(JS)(x)∩M . Since the sequence Si

P(JS)
(∅)

is increasing (cf. the Least Fixed-Point Theorem, Theorem 3.7), so is the sequence
Si
P(JS)

(∅)∩M .
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Claim 4.5.1 For every i ∈N , if

Si+1
P(JS)

(∅)∩M = Si
P(JS)(∅)∩M ,

then

Si+2
P(JS)

(∅)∩M = Si+1
P(JS)

(∅)∩M .

Proof: It is clear from the definitions that, for all s-graphs G and K of type included
in A(S), if G � K ∈M then G,K ∈M , and if f (G) ∈M , where f is a unary opera-
tion of FHR, then G ∈M . Hence, for every tuple L with Li ⊆ J S[A(S)], we have
SP(JS)(L) ∩ M ⊆ SP(JS)(L∩M ).

It suffices to prove that Si+2
P(JS)

(∅)∩M ⊆ Si+1
P(JS)

(∅). Let L := Si
P(JS)

(∅) and assume

that SP(JS)(L) ∩M = L ∩M . Then we have, by the initial observation and the
assumption, that

SP(JS)(SP(JS)(L))∩M ⊆ SP(JS)(SP(JS)(L)∩M )= SP(JS)(L∩M ),

which is included in SP(JS)(L) by the monotonicity of SP(JS), as was to be
proved. �

In order to decide if H belongs to L, we compute the sequence of n-tuples of finite
sets Si

P(JS)
(∅) for i := 1,2, . . . until one of the following two cases holds:

(a) either H belongs to the first component of Si
P(JS)

(∅); or

(b) Si+1
P(JS)

(∅)∩M = Si
P(JS)

(∅)∩M and Case (a) does not hold.

In Case (a) we return a positive answer and in Case (b) a negative one. This algorithm
terminates because M is finite and the sequence Si

P(JS)
(∅) is increasing. It is correct

because if it terminates in Case (b), then, by the Claim, Sj
P(JS)

(∅)∩M = Si
P(JS)

(∅)∩
M for every j > i, hence μx · SP(JS)(x)∩M = Si

P(JS)
(∅)∩M , so that H does not

belong to L.
We do not claim that this is an efficient algorithm. The existence of polynomial

algorithms for the membership problem will be discussed in Section 6.2.
(2) This is a special case of Corollary 3.24.
(3) We use Proposition 4.2. Let L= L(S,x1) be nonempty and defined by a uniform

system S. Let t be a term in LTerm(S,x1) of minimal size. Its height is at most n−1 by
Proposition 3.53 (applied to F(S)), and it has at most 2n−1 occurrences of constant
symbols (or leaves). Since, as observed above, each such occurrence describes at
most one edge and at most two vertices, the size of the s-graph val(t) is at most
3 · 2n−1.

We conclude this section with a small technical observation.
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Remark 4.6 Let L be an HR-equational set defined as L(S,x1) for some equation
system S and let C be the union of the types of the s-graphs in L. We have C ⊆A(S).

The source names in A(S)−C are auxiliary and can be changed by others. More
precisely, if h is a finite permutationofA (the set of all source names) that is the identity
on C, then the equation system S ′ obtained from S by replacing, in each operation
symbol that occurs in S, each source name a by h(a) is such that A(S ′)= h(A(S)).
It is clear that, for each unknown x of S, we have L(S ′,x) = renh(L(S,x)). Hence,
L(S ′,x1) = L(S,x1) = L since h is the identity on C. In particular, if L is a set of
graphs, one can define it by a system S such that A(S)= [k] for some k . This remark
extends Remark 2.39(2). �

4.1.2 HR-equational sets and tree-width

We have proved in Proposition 2.76 that if G = val(t), where t ∈ T (FHR
C ) or t ∈

T (FHR
C,[K ,�]), which means that the source names used in the operations occurring in t

belong to C, then the tree-width of G is at most |C|−1. This result has consequences
for HR-equational sets. We recall that if S is an HR equation system, then F(S) ⊆
FHR

A(S) (or F(S) ⊆ FHR
A(S),[K ,�]). Hence, by Proposition 4.2, we obtain the following

result:

Proposition 4.7 Every HR-equational set of (labeled) s-graphs has bounded tree-
width. More precisely, for every HR equation system S and x ∈ Unk(S), we have
twd(L(S,x))≤ |A(S)|− 1. �

This proposition gives an upper-bound on the tree-width of any s-graph in L(S,x).
The upper-bound depends on the system S and is not necessarily the exact one,
defined as twd(L(S,x)) := max{twd(G) | G ∈ L(S,x)}. In the example of ladders
(Example 4.3(5)), the equation based on the first expression of f yields the upper-
bound 3 (= 4 − 1), whereas the second expression of f yields the upper-bound
2 (= 3− 1), which is the exact one. Two natural questions can be raised:

(1) Can one compute twd(L(S,x)) from an HR equation system S and x in Unk(S)?
(2) Can every HR-equational set of s-graphs L be defined as L(S,x) for some HR

equation system S such that |A(S)|− 1= twd(L)?

The answers to these questions are respectively yes and no. The first answer is based
on the fact that L(S,x) is equational in the many-sorted algebra JSt (as will be
shown in Proposition 4.13) and the fact that each set4 TWD(≤ k ,A(S)) is effec-
tively recognizable in JSt , i.e., is effectively HR-recognizable (as will be shown in
Proposition 4.31(7) using the Recognizability Theorem to be proved in Section 5.3).

4 We recall from Definition 2.53 that TWD(≤ k ,C) is the set of s-graphs of tree-width at most k and of
type included in C.
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From a system S, we have an upper-bound 
 on the tree-width of the s-graphs in
L(S,x). By Proposition 3.91(2) one can test, for each k < 
, if all s-graphs in L(S,x)
have tree-width at most k , which gives the exact value twd(L(S,x)). Actually, this
algorithm is intractable for reasons discussed after Proposition 4.31.

We now give a counter-example showing the negative answer to the second
question.

Counter-example 4.8 We consider the set L of odd paths with a 1-source as the
middle vertex. Examples of such paths are •1, •−•1−•, •−•−•1−•−•. These
s-graphs have tree-width 1 and can be expressed as P�P, where P is any path one end
of which is the 1-source. However, a system of equations based on this description,
say S := 〈x= y � y, y= ren1↔2( fg1(y �12))∪1〉, defines too many elements (L is a
proper subset of L(S,x)), and no finite set of equations similar to this one can impose
that two paths to be connected by their ends have equal length. However, L= L(T ,x),
where T is the system:{

x = ren1↔3( fg12(23 � 13 � y))∪ 1,

y = (1 � 2)∪ f ′(y),

and L(T ,y) is the set of ladders without “steps” (cf. Example 4.3(5)). In this system,
f ′ is defined by f ′(y) := ren2↔3( fg2[ren1↔3( fg1(y � 13))� 23]). But no system of
equations using only two source names can exactly define L. (We do not give the
technical proof of this fact.) �

Remark 4.9 (1) We know from Example 4.3(8) that the set of graphs of tree-width
at most k is HR-equational, but what about the set TWD(k) of those of tree-width
exactly k? This set is also HR-equational. In fact, it can be expressed as follows:

TWD(k)= {G ∈ TWD(≤ k) |G /∈ TWD(≤ k− 1)},

hence as the intersection of a JSt-equational and a JSt-recognizable set (see the discus-
sion on Question (1) above; the complement of TWD(≤ k − 1) is JSt-recognizable
by Proposition 3.85). Thus, it is JSt-equational by the Filtering Theorem (Theo-
rem 3.88) and hence HR-equational by Proposition 4.13 below. Although an HR
equation system defining TWD(k) can be constructed, the corresponding algorithm
is intractable (see the discussion after Proposition 4.31). Similar observations hold
for the set PWD(k) of graphs of path-width exactly k .

(2) Proposition 4.7 and Example 4.3(8) show that a set L of (labeled) graphs may
not be HR-equational for two reasons: either it has unbounded tree-width or it has
bounded tree-width, but has a too complex internal structure for being described
by a finite set of equations. In the first case, illustrated by the set of planar graphs
(Example 2.56(4)), L is not a subset of any HR-equational set. In the second case,
illustrated by the set of paths of length 2n for some n (see Proposition 4.16 below),
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L is a subset of an HR-equational set, the set of graphs of tree-width at most k (and
labeled with the same labels as the graphs in L). In the case of context-free languages,
which are the equational sets of free monoids, only the second case can occur because
the set A∗ is context-free for each finite alphabet A.

4.1.3 Type analysis of HR equation systems

In Examples 2.134, 4.3(8) and 4.3(10), we have given examples of HR equation
systems that define s-graphs, not all of the same type.5 We now show how to com-
pute the (finite) set τ(L) of types of the s-graphs of an HR-equational set L by
using the preservation of least solutions of equation systems under homomorphisms
(Proposition 3.23(1)).

Proposition 4.10 For every HR-equational set L given by an HR equation system S,
the finite set τ(L)⊆P(A(S)) can be computed.

As a preparation for the proof, we turn the type mapping τ : J S→ Pf (A) into a
homomorphism : JS→T where T is an FHR-algebra called the type algebra, that we
now define. Its domain is Pf (A). Its operations are defined as follows, for X ,Y ⊆A:

X �T Y := X ∪Y ,

fgBT(X ) := X −B, where B ∈Pf (A),

renhT(X ) := h(X ), where h is a finite permutation of A, and

cT := τ(cJS), where c ∈ FHR
0 .

If C is a subset of A, we denote by T[C] the subalgebra of T with signature FHR
C

obtained by replacing A by C in the above definitions.

Lemma 4.11 The mapping τ is a homomorphism from the FHR-algebra JS to T. Its
restriction to JS[C] is a homomorphism to T[C].
Proof: From Section 2.3.1, we know that τ(G � H ) = τ(G)∪ τ(H ), τ(fgB(G)) =
τ(G)−B and τ(renh(G))= h(τ (G)). This gives the result.

Proof of Proposition 4.10: We let L be defined by S, and A(S) be the set of source
names occurring in S (cf. Definition 4.1). By the definitions we have

(τ (L(S,x1)), . . . ,τ(L(S,xn)))= τ(μx · SP(JS)(x)).

By Proposition 3.9(1), S has the same least solution in P(JS) and in P(JS[A(S)]).
Hence:

τ(μx · SP(JS)(x))= τ(μx · SP(JS[A(S)])(x)).

5 The type τ(G) of an s-graph G is the set of names of its sources; we let τ(L) := {τ(G) |G ∈ L}.
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Since τ is a homomorphism from JS[A(S)] to T[A(S)] by Lemma 4.11, Propo-
sition 3.23(1) implies that the above tuple is equal to μx · SP(T[A(S)])(x), which is
computable by Proposition 3.10 since its components are all finite (as they are subsets
of the finite set P(A(S)) ).6

Note that L(S,xi) = ∅ if and only if τ(L(S,xi)) is empty.7 This algorithm yields
also an emptiness test as a by-product. Another consequence of Lemma 4.11 is that
the set J SC of s-graphs of type equal to some finite subset C of A(S) is recognizable
in the algebra JS[A(S)]. Hence, by the Filtering Theorem (Theorem 3.88) applied
to M := JS[A(S)], if L is HR-equational then L∩J SC is HR-equational for every
C ∈ τ(L).
Definition 4.12 (Typed HR equation systems) Aset of (labeled) s-graphs is homoge-
nous if all its elements have the same type. An HR-equational set is thus a finite union
of homogenous HR-equational sets. A typed HR equation system is an equation sys-
tem S over the many-sorted signature F tHR (or F tHR[K ,�]). Such systems define the
JSt-equational sets, which are also finite unions of homogenous sets because the sort
of an s-graph G in the many-sorted algebra JSt is its type τ(G). We define L(S,xi),
LTerm(S,xi), L(S,Y ) and LTerm(S,Y ) as in Definition 4.1, for JSt and T(F tHR) instead
of JS and T(FHR).

Although they are not solved in the same algebra, an HR equation system and a
typed HR equation system will be said to be equivalent if they have the same least
solution, respectively in P(JS) and in P(JSt).

We will prove that a set of s-graphs is HR-equational (i.e., JS-equational) if and
only if it is JSt-equational. That means that the HR equation systems and the typed
HR equation systems define the same sets of s-graphs.

An HR equation system S is homogenous if each set L(S,x) for x ∈ Unk(S) is
homogenous. We will prove that a trim and homogenous equation system can be
transformed into an equivalent typed HR equation system. We extend to HR equation
systems the typing and untyping transformations of terms described in Section 2.6.2.
If S is a typed HR equation system of the general form 〈x1 = p1, . . . ,xn = pn〉, we
let Unt(S) be the system obtained from S by replacing, in each polynomial pi, a
monomial t by Unt(t) (cf. Definition 2.129). We will prove that S and Unt(S) are
equivalent. Conversely, let S be a homogenous and trim HR equation system (cf.
Definition 3.36). We define the type τ(x) of an unknown x of S as the common
type of all s-graphs in L(S,x). Then, we transform S into a typed system Typ(S) by
replacing in each right-hand side of an equation of S a monomial t by Typτ (t), where
the typing of Definition 2.131 is done with τ as type assignment (the mapping β in
that definition).

6 Proposition 3.10 is applicable because the finite algebra T[A(S)] is effectively given. In fact, FHR
A(S)

and T[A(S)] can be computed from S (and FHR).
7 Not to be confused with τ(L(S,xi)) = {∅}, which implies that L(S,xi) is not empty and contains only

graphs (without sources).
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An HR equation system S is typable if S = Unt(T ) for some typed HR equation
system T . If S is trim, then T = Typ(S). If an HR equation system S is trim and
homogenous, then it can be typed (i.e., Typ(S) is defined), but it need not be typable
because Unt(Typ(S)) need not be equal to S. For a typable HR equation system S, the
sets LTerm(S,xi) consist of reduced terms (cf. Proposition 2.38), i.e., the operations fgB

and renh are only applied to terms t such that B⊆ τ(t) and h is a permutation of τ(t)∪
h(τ (t)) respectively. It follows from the next proposition that every HR-equational
set can be defined by a typable HR equation system.

Proposition 4.13
(1) A typed HR equation system S is equivalent to its associated typable system

Unt(S). For every unknown x, LTerm(Unt(S),x) consists of reduced terms.
(2) If S is a trim and homogenous HR equation system, then Typ(S) is a typed system,

and it is equivalent to S.
(3) Every HR-equational set is defined by a typed HR equation system that can be

effectively constructed from any HR equation system defining the considered set.
(4) A set of s-graphs is HR-equational if and only if it is JSt-equational.

Proof: (1) Since Unt is the restriction to T (F tHR) of a word homomorphism
: W(F tHR)→W(FHR), cf. Definition 2.129, it is immediate from a comparison of the
context-free grammars G(S) and G(Unt(S)) that LTerm(Unt(S),x)=Unt(LTerm(S,x))
for every unknown x. This implies the first statement by Proposition 3.23(1)
(cf. Proposition 4.2) and Proposition 2.130. It also implies the second statement,
because Unt(t) is reduced for every term t ∈ F tHR, as one easily shows by induction
on the structure of t.

(2) We first prove that Typ(S) is typed: we need only verify that if t is a mono-
mial of the right-hand side of an equation xi = pi of S, then the sort of Typτ (t) is
τ(xi). Let Gj be an (arbitrary) element of L(S,xj) for each j = 1, . . . ,n; its type is
τ(xj). By Proposition 2.132(1,2) the sort of Typτ (t) equals the type of the s-graph
tJS(G1, . . . ,Gn). Since tJS(G1, . . . ,Gn) belongs to L(S,xi), it has type τ(xi).

For proving that S and Typ(S) have the same least solution, we observe that, for
every i ∈N , we have

Si
P(JS)(∅)= Typ(S)iP(JSt)

(∅).
This is easily proved by induction on i by using Proposition 2.132(3) (and
Lemma 3.2(4)). By taking the least upper-bounds over all i of both sides of the
equation, we get by Theorem 3.7 the equality of the least solutions of S and
Typ(S).

(3) Let L be HR-equational and nonempty, defined as L(S,x) for an HR equation
system S. Since S has the same least solution in P(JS) and in P(JS[A(S)]), and since
the type mapping τ is a homomorphism from JS[A(S)] to T[A(S)] (as in the proof of
Proposition 4.10), we can apply Corollary 3.89 and trim the resulting system by using
Proposition 3.37. We obtain a trim equation system S ′ with an unknown yC for every
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y ∈Unk(S) and C ⊆A(S) such that C ∈ τ(L(S,y)); moreover, L(S ′,yC) is the set of
s-graphs in L(S,y) of type C. It is homogenous, hence we get by (2) an equivalent
typed system Typ(S ′). Then L, initially defined as L(S,x), is L(Typ(S ′),Y ), where Y
consists of all unknowns xC ∈Unk(S ′).

(4) The proof follows directly from (1) and (3).

The construction in the proof of (3) has already been sketched in Example 2.134.
The typed system resulting from it can be much larger than the original one.

Example 4.14 (A large typed system) Let En for n≥ 2 be the equation x= fg1(x)∪
·· · ∪ fgn(x)∪ sn, where sn is the term

−→
12 �

−→
23 � · · ·�−→mn with m = n− 1. The size

of En is O(n) but the size of the corresponding typed system Sn is O(2n). In fact, we
have L(En,x)= {val( fgB(sn)) | B⊆ [n]}, hence it consists of 2n s-graphs of pairwise
different types. The system Sn has thus one equation for each element of L(En,x). �

All these definitions and results extend to labeled graphs.

4.1.4 Sizes of graphs and the finiteness problem

Definition 4.15 (Size functions) We recall from Definition 2.9 that the size of a graph
G is the integer ‖G‖ := |VG| + |EG|. We define the size of an s-graph G as ‖G◦‖.
We will prove that if L is an HR-equational set, then the set ‖L‖ := {‖G‖ | G ∈ L}
is semi-linear and hence its finiteness can be tested. As shown in Section 3.1.6, the
semi-linear sets are the equational sets of N, the free commutative monoid 〈N ,+,0,1〉
generated by the constant 1. We will use the auxiliary size function defined by ‖G‖i :=
‖G‖−|τ(G)|. Hence, ‖G‖i is the number of internal vertices of G plus its number of
edges. This function satisfies the following properties:

‖G � H‖i = ‖G‖i+‖H‖i, (4.1)

‖ fgB(G)‖i = ‖G‖i+|B∩ τ(G)|, (4.2)

‖renh(G)‖i = ‖G‖i. (4.3)

Proposition 4.16 For every HR-equational set L, the set ‖L‖ is semi-linear.
A description of ‖L‖ can be computed from a system that defines L.

Proof: If L is defined by a system S, then fgA(S)(L) is an HR-equational set of
graphs by Proposition 3.45(3), and ‖L‖=‖ fgA(S)(L)‖=‖ fgA(S)(L)‖i. Thus, in what
follows, it suffices to show that ‖L‖i is semi-linear. Moreover, by Proposition 4.13
(and the fact that the class of semi-linear sets is closed under union), we may assume
that L is defined by (S,x) where S is a typable HR equation system and x ∈Unk(S).

By Proposition 4.2 and Corollary 3.19, L= val(K), where K is the regular set of
terms LTerm(S,x), which, by Proposition 4.13(1), consists of reduced terms. We will
use Corollary 3.26 of Section 3.1.6. Taking F :=FHR, let g : T (F)→N be the affine
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mapping defined by gF (�) := 0, gF (fgB) := |B|, gF (renh) := 0 and gF(c) := ‖c‖i for
every constant symbol c. Then g(t)= ‖val(t)‖i for every reduced term t ∈ T (FHR)

by Equalities (4.1), (4.2) and (4.3) above. Hence g(K)=‖L‖i and ‖L‖i is semi-linear
by Corollary 3.26.

Example 4.17 We let S be the typable system of Example 4.3(3) that defines trees.
In order to have a more clear construction, we turn it into the following typable and
uniform system S ′: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u = fg1(z),

z = (z � z)∪ fg2(z
′)∪ 1,

z′ = 12 � z′′,
z′′ = ren1↔2(z),

where u has type ∅, z has type {1}, z′ has type {1,2} and z′′ has type {2}. We fol-
low the proof of Corollary 3.26 as presented in Example 3.42(3). By the proof of
Proposition 3.41 we obtain from S ′ the following system Ŝ ′, to be solved in P(N):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u = z+ 1,

z = (z+ z)∪ (z′ + 1)∪ 0,

z′ = 1+ z′′,
z′′ = z.

Every unknown that defines a set of s-graphs L in S ′, defines the set of integers ‖L‖i in
Ŝ ′. By unfolding and by removing unknowns that are not useful for {u} (Sections 3.2.1
and 3.2.2, and in particular Propositions 3.31 and 3.37), one can simplify Ŝ ′ into the
following system: {

u = z+ 1,

z = (z+ z)∪ (1+ z+ 1)∪ 0.

This equation system defines in N the semi-linear set ‖L(S,u)‖ = {2n + 1 |
n ∈N }. �

Remarks 4.18 (1) It is important that systems are typable so that terms are reduced
and hence Equality (4.2) can be used to define an affine mapping.

(2) We will generalize this result8 by replacing the sizes of s-graphs of an HR-
equational set by tuples of integers (|X1|, . . . , |Xk |), where X1, . . . ,Xk are sets of vertices
and/or edges defined by a monadic second-order formula. In particular, the set of
cardinalities of the vertex sets of the graphs of an HR-equational set is semi-linear.

8 See Theorem 7.42 and the end of Section 7.4.
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This fact can be proved by modifying the size functions of Definition 4.15: it suffices
not to count edges. The proof of Proposition 4.16 is then the same. �

Proposition 4.19 There is an algorithm that decides the finiteness of an
HR-equational set L given by an equation system S; if L is finite, it can be com-
puted from S. Furthermore, if L is finite and S is uniform and typable, then the size
of an s-graph in L is at most 3 ·2n−1 and the cardinality of L is at most (|F(S)|+1)2

n
,

where n is the number of unknowns of S.

Proof: We consider unlabeled s-graphs; the proof for (K ,�)-labeled s-graphs is
entirely similar. Let L be an HR-equational set. Since τ(L) is finite, L is finite if and
only if ‖L‖ is finite, and this can be decided by Proposition 4.16 (because one can
check from the description of ‖L‖ as a semi-linear set if that set is finite).

Let us now assume that L is finite. To prove that L can be computed, it suffices to
show, by Remark 3.38(3) and Proposition 4.13(4), that the effectively given algebra
JSt is infinity-preserving. Ahomogenous set of s-graphs L′ is finite if and only if ‖L′‖i
is finite. Thus, it follows from Equalities (4.1), (4.2) and (4.3) that all the operations
of JSt are infinity-preserving.9

To prove the last assertion, we use a pumping argument similar to the one in
the proof of Proposition 3.53. Let X ⊆ Unk(S) be such that L = L(S,X ) and let
K := LTerm(S,X ). Then L= val(K) and K ⊆ T (F(S)) by Proposition 4.2. Note that
K need not be finite. Let A be a finite F(S)-automaton with n states that accepts K ,
see Proposition 3.47(1). Since S is typable, we may assume that all terms in L(A ,q)
have the same type, for each q ∈QA .

Claim 4.19.1 For every s-graph G in L there exists a term t ∈ K of height at most
n− 1 such that val(t)=G.

Proof: Let t ∈K be such that val(t)=G. If ht(t)≥ n, then A has an accepting run r on
a term t such that r(u)= r(v) for some positions u,v with u <t v. Hence t = c[c′[t′]],
where c,c′ ∈ Ctxt(F(S)), c′ is not empty, t′ = t/u, c′[t′] = t/v and t/u and t/v have
the same type. By Proposition 2.51, there exist an s-graph H and operations renh and
fgB such that c′

JS
(G′)= renh( fgB(G

′�H )) for every s-graph G′ with τ(G′)⊆A(S).
Then τ(H )⊆ τ(G′) and H has no edges and no internal vertices, because otherwise
all terms c[c′[c′[· · · [c′[t′]] · · · ]]] belong to K and the sizes of their values in J S are
unbounded. Hence c[t′] belongs to K , is smaller than t and has value G (because c′[t′]
has the same value as t′). Repeating this procedure one obtains the required term. �

By this claim, the size of G is at most 3 ·2n−1 by the same argument as in the proof
of Proposition 4.5. Moreover, the cardinality of L is at most equal to the number of
terms in T (F(S)) of height ≤ n−1, which is at most �k ,c,d(n−1)≤ (c+d+1)k

n
by

9 We note that the algebra JS is also infinity-preserving, by a slightly more complicated argument (if τ(L)
is infinite, where L is one of the arguments of an operation, then τ(M ) is infinite where M is the result).
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the remarks preceding Proposition 3.53. In the present case, k = 2 and c+d = |F(S)|
from which the required upper-bound is obtained.

4.1.5 Hyperedge replacement

The purpose of this section is to describe the link between graph grammars defined in
terms of rewritings and HR equation systems. We do not intend to develop the theory
of context-free graph grammars based on graph rewritings. This theory is presented
in detail in the handbook [*Roz].

We will show that the monomials forming the polynomials pi of a typed HR equation
system S = 〈x1 = p1, . . . ,xn = pn〉 can be seen as certain hypergraphs with sources,
and that the s-graphs defined by S can be obtained by finite sequences of rewritings
based on replacements of hyperedges by such hypergraphs, like the words generated
by a context-free grammar are defined by sequences of replacements of letters by
words.

We first explain this construction from the algebraic point of view of Chapter 3, cf.
Remark 3.20(3). Let L be an equational set of an F-algebra M defined by an equation
system S. Every element m of L is defined by a derivation sequence relative to the
regular grammar G(S): x⇒ t1⇒···⇒ tn such that x is a nonterminal symbol of G(S)
(hence an unknown of S), t1, . . . , tn are terms in T (F ,Unk(S)), tn ∈ T (F) and m =
valM(tn). In the case of words, i.e., of the FA-algebra M=W(A), the mapping valM
extends in a natural way into a homomorphism : T(FA∪Unk(S))→W(A∪Unk(S)),
so that the image of the derivation sequence x⇒ t1⇒ ··· ⇒ tn under this mapping
is a derivation sequence of the context-free grammar G[S]. Therefore, the words of
an equational set of W(A) are produced by sequences of rewritings of words, and not
only of terms.

In a general F-algebra M, the main task in order to get a similar notion of generation
by rewriting is to define, for every equation system S, a superalgebra M′ of M and
a value mapping T (F ∪Unk(S))→ M ′ that is a homomorphism. The appropriate
superalgebra of JSt is an F tHR-algebra of hypergraphs with sources.

Definition 4.20 (Hypergraphs with sources) We do not define general hypergraphs
but only the very particular ones needed for defining hyperedge replacement. We
let S := Pf (A) be our usual set of sorts and we let U be a finite S-sorted set of
variables,10 i.e., each x ∈ U has a sort τ(x) ∈ S. A U -hypergraph is a 5-tuple H =
〈VH ,EH ,vertH , labH ,slabH 〉 where:

VH is the set of vertices;
EH is the set of edges and hyperedges;
labH is a partial function : EH →U , the domain of which is the set of hyperedges;

10 The symbols in U are nullary. We call them variables because they will be the unknowns of equation
systems associated with regular grammars having U as set of nonterminals.
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vertH is a mapping with domain EH satisfying the following conditions:

• if e is an edge (in this case labH (e) is undefined11) then vertH (e) is, as in
Definition 2.9, a set of 1 or 2 vertices (if H is defined as undirected) or an
ordered pair of (possibly equal) vertices (if H is defined as directed);
• if labH (e)= x ∈ U then vertH (e) is an injective mapping from τ(x) to VH ,

and we call τ(e) := τ(x) the type of e;

slabH : VH →A is as in Definition 2.24.

The elements of EH that have a label can be seen as hyperedges: their sets of
vertices have cardinalities not restricted to 1 or 2. Their vertices are referred to by
elements of A. A hyperedge of type ∅ has no vertex. The notations Src(H ), τ(H ),
srcH are defined from slabH as in Definition 2.24. Hence H has sources unless its
type τ(H ) is empty.

Definition 4.21 (Hyperedge replacement) We describe an operation that generalizes
the replacement of a nonterminal symbol by a word in a derivation sequence of a
context-free grammar.

Let G and H be U -hypergraphs (both directed or both undirected). If e ∈ EG is
a hyperedge of type τ(H ), then we define as follows the U -hypergraph G[e← H ]
resulting from the substitution of H for e in G. We assume G and H disjoint (if they
are not we take disjoint copies in the usual way). We let

G[e←H ] := [(G− e)⊕ fgτ(H )(H )]/≈,

where G−e is G minus the hyperedge e, and≈ is the equivalence relation on VG∪VH

generated by the set of pairs {(vertG(e)(a),srcH (a)) | a ∈ τ(H )}. We denote by⊕ the
disjoint union; it is well defined since the two arguments are disjoint and of disjoint
types. If τ(H )= τ(e)=∅, we have G[e←H ] = (G−e)⊕H . The type of G[e←H ]
is τ(G).

The transformation of G into G[e← H ] is also called a hyperedge replacement.
Figure 4.3 shows an example where τ(e)= τ(H )= [3] and vertG(e) maps 1, 2 and
3 respectively to u, v and w. The hyperedge e is shown as directed for readability.

Definition 4.22 (Hyperedge replacement graph grammars) A hyperedge replace-
ment graph grammar, an HR grammar for short, is a pair � = 〈U ,R〉 consisting of
a finite S-sorted set U of variables called nonterminal symbols and a finite set R of
rules where a rule is a pair (x,H ) such that x ∈ U and H is a U -hypergraph of type
τ(x). The one step derivation relation on U -hypergraphs is defined by

G⇒G′ if and only if G′ =G[e←H ],
11 Or belongs to � if we consider (K ,�)-labeled graphs; the reader will make easily the necessary

modifications for the case of labeled graphs.
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Figure 4.3 Hyperedge replacement.

where e is a hyperedge of G labeled by some x and (x,H )∈ R. For each x ∈U , we let
x denote the concrete hypergraph of type τ(x) with a unique hyperedge e labeled by
x such that Vx = τ(x) and vertx(e)(a)= srcx(a)= a for every a in τ(x). We view x
also as a constant symbol and denote by U the set of these symbols for all x in U . The
set generated from x ∈ U by � is the set L(�,x) of s-graphs (i.e., of U -hypergraphs
without hyperedges) G such that x⇒∗ G. For Y ⊆U , we denote the set

⋃
y∈Y L(�,y)

by L(�,Y ). We call such a set an HR set of s-graphs.

Our objective is to prove that the HR-equational and the HR sets of s-graphs are
the same. We need a few more definitions and results.

Definition 4.23 (Terms denoting hypergraphs) The operations of F tHR (defined in
Definitions 2.25, 2.27, 2.30, 2.31 and 2.128) extend in an obvious way to hypergraphs.
Hence every term t in T (F tHR ∪U) evaluates to a U -hypergraph val(t). The detailed
analysis of the mapping val done in Section 2.3.2 extends to these terms. In particular,
when a concrete hypergraph G is isomorphic to val(t) for some term t in T (F tHR∪U),
we have a bijection w from EG to the set of occurrences in t of constant symbols of
the form ab,

−→
ab, a
 or x (for a,b ∈A and x ∈U ), cf. condition (1) of Definition 2.43.

The next proposition establishes that the mapping val commutes with substitutions
in terms and in hypergraphs.

Proposition 4.24 Let t,s ∈ T (F tHR ∪ U), let x ∈ U and let c be a context in
Ctxt(F tHR ∪U) such that t = c[x] and τ(x) = τ(s).12 Let e be the corresponding
hyperedge labeled by x, in a concrete hypergraph G isomorphic to val(t). We have
val(c[s])=G[e← val(s)].
12 The notion of context is defined in Definition 2.6. Writing t = c[x] corresponds to distinguishing an

occurrence of x in t.
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Proof: Straightforward induction on the structure of t based on the following facts
(where, for readability, the types of the operations are not shown):

(1) x[e←H ] =H ,
(2) fgB(G)[e←H ] = fgB(G[e←H ]),
(3) renh(G)[e←H ] = renh(G[e←H ]),
(4) (G � G′)[e←H ] =G[e←H ]� G′ if e ∈ EG,

which hold for all G,G′,H ,e, fgB,renh of appropriate types.

Definition 4.25 (From HR equation systems to HR grammars and vice versa)
Let S = 〈x1 = p1, . . . ,xn = pn〉 be a typed HR equation system. Let G(S) be the
corresponding regular grammar (cf. Section 3.1.4, Definition 3.17). Its rules are the
pairs (xi,m) such that m is one of the monomials of pi; they form the set R(S). We let
�[S] := 〈U ,R〉 be the HR grammar such that U := {x1, . . . ,xn} and

R := {(x,val(m[x1/x1, . . . ,xn/xn])) | (x,m) ∈ R(S)}.

Conversely, for every HR grammar � = 〈U ,R〉, there exists a typed HR equation
system S such that �[S] = �. To define it, it is sufficient to construct a term mH ∈
T (F tHR ∪U) denoting H for each right-hand side of a rule (xi,H ) in R, cf. Proposi-
tions 2.33 and 2.132. Such a system S is not defined in a unique way. The grammar
�[S] is analogous to the context-free grammar G[S] of Definition 3.12.

Lemma 4.26 Let S be a typed HR equation system and �[S] be the associated HR
grammar.

(1) If xi ⇒ t1 ⇒ ··· ⇒ tp is a derivation sequence of the regular grammar G(S),
then xi⇒ val(t1)⇒ ··· ⇒ val(tp) is a derivation sequence of the HR grammar
�[S].

(2) Conversely, for every derivation sequence xi⇒ H1⇒ ··· ⇒ Hp of �[S], there
exists a derivation sequence xi⇒ t1⇒ ··· ⇒ tp of G(S) such that Hj = val(tj)
for each j = 1, . . . ,p.

Proof: Straightforward from the definitions and Proposition 4.24.

Proposition 4.27

(1) Let S and �[S] be as in Definition 4.25. The least solution of S in P(JSt) is
(L(�[S],x1), . . . ,L(�[S],xn)).

(2) A set of s-graphs is HR if and only if it is HR-equational.

Proof: (1) Let (L1, . . . ,Ln) be the least solution of S in P(JSt). We know from
Propositions 3.18 and 3.23(1) that each component Li is {val(t) | t ∈ L(G(S),xi)}. It
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Figure 4.4 Ladders.

follows from Lemma 4.26(1) that Li ⊆ L(�[S],xi). The opposite inclusion follows
similarly from Lemma 4.26(2).

(2) Immediate consequence of (1) and the two constructions of Definition 4.25, by
Proposition 4.13(4).

Example 4.28 We use the example of ladders defined in Example 4.3(5), and the
typed equation system E := 〈y = 12 ∪ f (y)〉 with τ(y) = {1,2}. The correspond-
ing HR grammar �[E] consists of the two rules (y,12) and (y,H ) where H is the
{y}-hypergraph defined by f (y) and shown as H1 in Figure 4.4. An example of a
derivation sequence of G(E) is y⇒ f (y)⇒ f ( f (y))⇒ f ( f (12)). The correspond-
ing derivation sequence of �[E] is y⇒H1⇒H2⇒H3, where the {y}-hypergraphs
y,H1,H2,H3 are shown in Figure 4.4. �

We leave to the interested reader the easy task of extending the definitions and
results of this section to labeled graphs.

4.2 HR-recognizable sets of graphs

The notion of HR-recognizability is a particular case of the general algebraic notion
defined and studied in Chapter 3, applied to the many-sorted algebra JSt (where the
sort of an s-graph G is its type τ(G)) and not to the algebra JS.

4.2.1 Definitions and first examples

In this section, we detail the definitions and we give examples of sets of s-graphs that
are HR-recognizable and of sets that are not.

Definition 4.29 (HR-recognizable sets of s-graphs) An equivalence relation ∼ on
the one-sorted FHR-algebra JS is type-preserving if every two equivalent (labeled)
s-graphs G,G′ have the same sort, i.e., τ(G)= τ(G′). We call τ(G) the type of the
equivalence class [G]∼. A type-preserving equivalence relation is locally finite if it
has finitely many classes of each type. Hence, a type-preserving congruence∼ on JS
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is a union of equivalence relations∼C on the domains J SC and (by Definition 3.63)
a congruence on the many-sorted F tHR-algebra JSt defined in Section 2.6.2.

Aset of s-graphs is HR-recognizable if it is recognizable in the many-sorted algebra
JSt . We denote by Rec(JSt) the family of HR-recognizable sets.13 Since JSt is
effectively given, the notions of an effectively HR-recognizable, a semi-effectively
HR-recognizable and an effectively HR-term-recognizable set make sense and are
instances of the general definitions. By Proposition 2.33 and Lemma 3.75(1), a set
is effectively HR-recognizable if and only if it is effectively HR-term-recognizable.
The notion of HR-recognizability can also be characterized in terms of the one-sorted
algebra JS: it follows from Proposition 3.64 that a set of s-graphs is HR-recognizable
if and only if it is saturated by a type-preserving and locally finite congruence on
JS. The HR-recognizable sets of (K ,�)-labeled s-graphs are defined similarly with
respect to the algebra JSt[K ,�].

If L is a subset of J S[E] for some finite set E of source names, that is, if all s-graphs
in L have a type included in E, then its recognizability can be considered with respect
to JSt or to JSt[E]. If L is HR-recognizable, then it is also recognizable in JSt[E]
by Proposition 3.56(1). If, furthermore, L ⊆ J Sgen[E], then it is also recognizable
in JSt,gen[E] by the same proposition. We will come back to such comparisons in
Proposition 4.39 below.

The many-sorted algebra JSt[E] has finitely many sorts. Hence, if L is recognizable
in JSt[E], it is also recognizable in JS[E] because every locally finite congruence on
JSt[E] is a finite congruence on JS[E]. Let us conversely assume that L⊆J S[E] is
recognizable in JS[E] with finite congruence ∼. This congruence may not be type-
preserving. We define from it the equivalence relation ≈ by: G ≈ H if and only if
τ(G)= τ(H ) and G ∼ H . Since the s-graphs in J S[E] have finitely many possible
types (the subsets of E), the type-preserving equivalence relation ≈ is finite. It is a
congruence by Lemma 4.11. It saturates L and hence witnesses its recognizability
in the algebra JSt[E]. Thus, JSt[E] and JS[E] have the same recognizable sets. By
Proposition 3.78(1), they also have the same semi-effectively recognizable sets. The
same proof gives that JSt,gen[E] and JSgen[E] have the same recognizable sets and
the same semi-effectively recognizable sets, and, hence, by Proposition 3.78(3), also
the same effectively recognizable sets.14

All closure results for recognizable sets established in Proposition 3.56 and
Section 3.4.6 hold for the HR-recognizable sets. As noticed when considering the
HR-equational sets, the mapping und that forgets edge directions is a homomorphism
: JSt,d→ JSt,u. It follows from Proposition 3.56(2) that und−1(L) is HR-recognizable
if L is an HR-recognizable set of directed s-graphs.

13 As for HR-equational sets, HR-recognizability concerns sets of abstract (labeled) s-graphs. A set L of
concrete (labeled) s-graphs is HR-recognizable if and only if the set {[G]iso |G ∈L} is HR-recognizable.
If we specify a congruence on concrete (labeled) s-graphs, we impose that two isomorphic (labeled)
s-graphs are equivalent.

14 This can also be shown for JSt[E] and JS[E], by a proof based on Definition 3.74.
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Congruences witnessing recognizability are usually not easy to construct, even for
“simple” sets like the set of paths. The reason is that one has to describe congruence
classes of countably many types and, usually, many classes of each type. Our main
tool for proving that a set of (labeled) graphs is recognizable is to characterize it as
the set of (finite) models of a sentence of monadic second-order logic. For some sets
given below we can define a congruence and for the others we rest on their monadic
second-order definability and on the Recognizability Theorem (Section 5.3) to claim
that they are recognizable.

Example 4.30 (1) Graphs with an even number of edges or of vertices: For the
set Le of s-graphs with an even number of edges, the congruence is easy to define.
We let

G ∼e G′ if and only if τ(G)= τ(G′) and |EG|− |EG′ | is even.

That∼e is indeed a congruence follows from the fact that |EG�G′ | = |EG|+|EG′ | and
Ef (G) = EG for every unary operation f . There are two equivalence classes of each
type. Since∼ is effectively given (as one easily checks), Le is effectively recognizable
by Proposition 3.78(2).

For the set Lv of s-graphs with an even number of vertices, the definition is similar:

G ∼v G′ if and only if τ(G)= τ(G′) and |VG|− |VG′ | is even.

This equivalence relation is a congruence because |VG�G′ | = |VG|+ |VG′ |− |τ(G)∩
τ(G′)| and Vf (G) = VG for every unary operation f . Again we have two equivalence
classes of each type, and Lv is effectively recognizable.

If, in the definition of ∼e, we omit the condition τ(G) = τ(G′), then we get a
congruence for the algebra JS that has two classes (but is not type-preserving). The
set of s-graphs with an even number of edges is thus recognizable in the one-sorted
algebra JS. This is not the same for∼v as one checks easily. The set of s-graphs with
an even number of vertices is not recognizable in JS. This explains why we define
recognizability with respect to the many-sorted algebra JSt . If we would define it
with respect to JS, then many “simple” sets of s-graphs would not be recognizable.

(2) Connected graphs: In Section 4.1.3 we have characterized the type function
τ as a homomorphism of JS into an FHR-algebra with domain Pf (A). We now
refine this function. We let the connectedness type of an s-graph G be defined by
θ(G) := τ(CC(G)), i.e., θ(G) is the multiset of types of the s-graphs in CC(G), the
set of connected components of G. In θ(G), we limit to 2 the number of occurrences
of ∅. Hence ∅ ∈ θ(G) if and only if G has at least one connected component without
sources, and ∅ has 2 occurrences in θ(G) if and only if G has at least two such
connected components. The elements of θ(G) form a partition of τ(G). The multiset
character of θ(G) is limited to at most two occurrences of ∅. The following statement
is easy to prove:
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There exist mappings �θ , fgθ
B, renθh such that for all s-graphs G,H we have

θ(G � H )= θ(G)�θ θ(H ),

θ( fgB(G))= fgθ
B(θ(G)),

θ(renh(G))= renθh(θ(G)),

where B and h range over Pf (A) and Permf (A) respectively.
The desired congruence is defined by G ∼ G′ if and only if θ(G)= θ(G′). Since

τ(G) can be defined from θ(G), this congruence is type-preserving. It is locally finite
since the number of occurrences of ∅ is bounded. More precisely, it has 3 · B(|C|)
classes of type C where B(k) is the k-th Bell number15 that counts the number
of partitions (with nonempty sets) of [k] if k > 0 and B(0) = 1. The set of con-
nected s-graphs of type C ∈ Pf (A) is θ−1({C}). The set of disconnected graphs is
{G ∈ J S | τ(G)= ∅ and θ(G)= {∅,∅}}. These sets are effectively recognizable by
Proposition 3.78(2).

We can replace in the definition of the mapping θ any value θ(G) containing ∅ and
another set, either empty or not, by the unique value “NC” meaning “not connected.”
The values of this alternative function, call it θ ′(G), can be the empty set (for the
empty graph), {∅}, NC or a partition of τ(G) with nonempty sets. A congruence ∼′
can be defined by G∼′ G′ if and only if τ(G)= τ(G′) and θ ′(G)= θ ′(G′). We obtain
a congruence with less classes of each type that witnesses also the recognizability of
the set of connected s-graphs. It has 3 classes of type ∅ and B(|C|)+1 classes of type
C if C is not empty.

(3) One graph: Let H be an s-graph. To show that the singleton {H } is effectively
HR-recognizable, we define χ(G) for an s-graph G by

χ(G)=
{

G if G◦ ⊆H ◦,
⊥ otherwise.

We define ∼ by G ∼ G′ if and only if τ(G) = τ(G′) and χ(G) = χ(G′). It is a
congruence because G◦ is a subgraph of (G � G′)◦, fgB(G)◦ and renh(G)◦. Clearly,
{H } = {G ∈ J S | τ(G) = τ(H ), χ(G) = H }, hence is saturated by ∼. It is effec-
tively recognizable by Proposition 3.78(2). Thus, by Corollary 3.86, all finite sets are
effectively HR-recognizable. �

The last example implies Proposition 4.5(1), stating that the membership problem
is decidable for every HR-equational set L: since {H } is effectively recognizable, so is
the set J S−{H } (by Corollary 3.86) and one can decide whether L⊆J S−{H } by
Propositions 3.91(2) and 4.13(4), i.e., whether H does not belong to L. This algorithm

15 We have kk/2 ≤ B(k)≤ k! for every k ≥ 8.
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uses the Filtering Theorem (Theorem 3.88). Its application uses essentially the same
computations as the algorithm in the proof of Proposition 4.5(1).

Proposition 4.31 The following sets are effectively HR-recognizable (for all k):
(1) the set of graphs of degree at most k;
(2) the sets of trees and of paths;
(3) the set of k-colorable graphs;
(4) the set of biconnected graphs;
(5) the set of graphs having at most k connected components;
(6) the set of planar graphs;
(7) the sets TWD(≤ k ,C) for all finite sets C;16

(8) any minor-closed set of simple, loop-free, undirected graphs such that the
excluded minors are known;

(9) the set of directed graphs having a Hamiltonian circuit (a directed cycle going
through all vertices).

Proof: Each of these sets is characterized by a monadic second-order sentence. The
RecognizabilityTheorem (Section 5.3) entails that they are all HR-recognizable. They
are effectively so, since the sentences can be constructed.

Graphs of degree at most k are actually characterized by first-order sentences,
one for each k . For the monadic second-order characterization of Case (6), see
Corollary 1.15. For Case (7), see Section 5.2.2 (Proposition 5.11). A set as in
Case (8) is characterized among the simple, loop-free and undirected graphs by
finitely many excluded minors (see the observations after Proposition 2.21), so that it
is characterized by a monadic second-order sentence using edge quantifications (by
Corollary 1.14; the edge set quantifications are needed to express that the considered
graph is simple, and only for this condition). If the excluded minors are known, the
sentence can be constructed. The set of Hamiltonian graphs is characterized by a
monadic second-order sentence using edge set quantifications.

As the reader may guess, the corresponding classes of labeled graphs are also
effectively HR-recognizable.

For proving Proposition 4.31, the direct construction of congruences is feasible for
Cases (1)–(5) and (9) along the lines of the previous examples. It would be extremely
complicated (and uninteresting to work out) for Cases (6) and (7).

The proof of Case (7) is based on the characterizations of the sets TWD(≤ k)
by finite sets of excluded minors (cf. Corollary 2.60(2) in Section 2.4.2), hence by
a monadic second-order sentence (cf. Corollary 1.14). From this sentence one can
easily build a monadic second-order sentence characterizing the set TWD(≤ k ,C), as
shown in the proof of (P7) of Proposition 5.11. Finally, the Recognizability Theorem
is used to construct a specification of TWD(≤ k ,C) as an effectively HR-recognizable

16 We recall from Definition 2.53 that TWD(≤ k ,C) denotes the set of s-graphs of tree-width at most k
and of type included in C.
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set. Although such a specification can be constructed, the corresponding algorithm
is intractable for two reasons: first, because the excluded minors characterizing the
set TWD(≤ k) are numerous and presumably very large for k > 3 (see [Lag] and
[Din]) and, second, because the constructions of the Recognizability Theorem are
intractable, even for relatively “small” monadic second-order formulas.

We now present examples of sets that are not HR-recognizable, together with some
tools that allow us to establish these facts.

Proposition 4.32 The following sets are not HR-recognizable:

L1: the set of odd paths with the middle vertex as 1-source;17

L2: the set of graphs of the form G⊕H with |VG| = |VH |;
L3: the set of graphs of the form G⊕G.

Proof: We first recall that the set of terms

N = { fgnagnb | n≥ 0} ⊆ T ({ f ,g,a,b}) (4.4)

(where ρ( f )= 2,ρ(g)= 1,ρ(a)= ρ(b)= 0) is not regular, hence is not recognizable
in the algebra of terms, as proved in Example 3.54. We will also use the fact that if
H := { f ,g,a,b} is a derived signature of a signature F , M is an F-algebra and L⊆M
is recognizable in M, then {t ∈ T (H ) | valMH (t)∈ L} is a recognizable, hence regular,
set of terms by Theorem 3.62 and Assertions (2) and (3) of Proposition 3.56. We will
use this fact for M := JSt .

For proving the three statements, we need only replace in the set N defined by (4.4)
the operations f ,g,a,b by appropriate derived operations.

Case of L1: We let a and b denote 1, we let g denote the derived operation such
that g(u) := ren1↔2( fg1(u�12)) and we let f denote �. We let val : T ({ f ,g,a,b})→
J S be the associated value mapping. Let K be the regular set of terms { fgnagmb |
n,m ≥ 0}. If L1 was HR-recognizable, then val−1(L1) ⊆ T ({ f ,g,a,b}) would be
recognizable, hence regular, and so would K ∩val−1(L1) by Proposition 3.85(1). But
this set is N , which is not regular. Hence L1 is not HR-recognizable.

Cases of L2, L3: The proofs are similar. Instead of �, we take for f the binary
derived operation f (u,v) := fg1(u)� fg1(v).

These examples prove that the families of HR-recognizable and HR-equational
sets are incomparable: the set L1 is HR-equational (cf. Counter-example 4.8) but not
HR-recognizable, whereas the set of planar graphs is HR-recognizable (cf. Proposi-
tion 4.31(6)) but not HR-equational (cf. Remark 4.9(2)). This fact should be contrasted
with the case of words: every recognizable, hence regular, language is context-free,
hence is equational in W(A). However, we find again the familiar situation with

17 This set is also used in Counter-example 4.8.
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the following fact: every HR-recognizable set of graphs of bounded tree-width is
HR-equational, as will be shown in Corollary 4.38.

The recognizability index can also be used to prove that certain sets are or are not
HR-recognizable.

Definition 4.33 (The recognizability index of a set of s-graphs) The index of a type-
preserving equivalence relation∼ has been defined in Definition 3.63, Section 3.4.3,
for general many-sorted algebras. It is the function γ∼ that defines for each sort s
the number (possibly ω) of equivalence classes of ∼ of sort s. If ∼ is a congruence
of the many-sorted HR algebra JSt , then for each C ∈ Pf (A), the number γ∼(C)

depends only on |C|.18 This is so because if C ′ ∈ Pf (A) has cardinality |C| and h
is a finite permutation of A such that h(C) = C ′, then for all G,G′ of type C we
have renh(G)∼ renh(G′) if G ∼G′ (because ∼ is a congruence). Since renh has for
inverse renh−1 , we also have the opposite implication. Hence, renh is a bijection from
the equivalence classes of type C to those of type C ′ and thus, γ∼(C)= γ∼(C ′). We
define γ∼(k) := γ∼(C), where C is any set of cardinality k . We also call γ∼ the index
of the congruence ∼.

The HR-recognizability index of a set L of (labeled) s-graphs is the mapping γ≈L ,
denoted simply by γL, where ≈L is the syntactic congruence of L with respect to JSt

(cf. Definition 3.65). Hence, L is HR-recognizable if and only if γL(k) ∈N for every
k (by Proposition 3.66(1)). If this is the case, then γL(k)≤ γ∼(k) for every k , if ∼ is
any congruence witnessing the recognizability of L (by Proposition 3.66(2)).

The HR-recognizability index of a set L is thus a measure of its complexity as an
HR-recognizable set. (Another recognizability index will be defined in a similar way
with respect to the VR algebra, cf. Section 4.4.) It is relevant to the recognition of HR-
recognizable sets of s-graphs by finite automata on terms since it defines the number
of states of their associated minimal automata (cf. Section 3.4.3, Propositions 3.69
and 3.73(2)). Going back to Example 4.30, we can see that γL(k) ≤ 2 for the sets
of Example 4.30(1). For the set L of connected graphs (Example 4.30(2)) we get
γL(0)= 3 and γL(k)≤ B(k)+ 1 for k > 0. For the set L1 of Proposition 4.32 we get
γL1(1)= ω, and thus another proof that this set is not HR-recognizable.

4.2.2 A simpler HR-recognizability criterium

We give a characterization of HR-recognizability that is similar to the characterization
by Myhill and Nerode of the regular languages (cf. [*Sak], Theorem 2.3 of Chapter II).
It makes some proofs of recognizability or of nonrecognizability easier because it
involves “simple” graph operations, related to the well-understood notion of vertex
separator.

18 We have noted a similar fact in Remark 4.6 for the HR-equational sets.
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We consider (labeled) s-graphs of type [k] for k ≥ 0. We denote by �k the following
derived operation of JSt :

G�k H := fg[k](G � H ),

for G,H both of type [k]. Thus, G�k H has type ∅. We let J N :=⋃k≥0 J N k , where
J N k is the set of (labeled) s-graphs of type [k]. We let JNt be the corresponding
many-sorted algebra. Its set of sorts is N and its signature {�k | k ∈N } is denoted
by F�.

For every subset L ofJ N 0, we let≡L be the equivalence relation onJ N defined by

G ≡L G′ if and only if there exists k ∈N such that

τ(G)= τ(G′)= [k] and G�k H ∈ L ⇐⇒ G′�k H ∈ L for all H ∈ J N k .

We will compare three equivalences associated with L that will turn out to be essen-
tially the same: its syntactic congruence relative to JSt , denoted by ≈L; its syntactic
congruence relative to JNt , denoted by ∼L; and the equivalence ≡L.

Theorem 4.34 For every set L of (labeled) graphs:

(1) the equivalence ≡L is the syntactic congruence ∼L of L with respect to JNt;
(2) L is HR-recognizable if and only if it is recognizable in JNt if and only if the

equivalence≡L is locally finite; the HR-recognizability index of L is equal to the
index of ≡L.

Proof: (1) It is clear that G ∼L G′ implies G ≡L G′ because the latter congruence
is defined like the syntactic congruence of L with respect to JNt , but with terms c of
the particular form y1 �k y2. (We use the notation of Definition 3.65 where syntactic
congruences are defined.)

For the opposite implication, we observe that for every linear term c in T (F�,Yp)

that has an occurrence of y1, if G ∈ J N k , H2, . . . ,Hp ∈ J N and the type of
K := cJNt (G,H2, . . . ,Hp) is ∅, then K = G�k H for some s-graph H that depends
only on H2, . . . ,Hp. We show this by induction on the structure of c. If c= y1, we can
take H :=∅. If c= y1 �m e (and hence m= k), we can take H := eJNt (G,H2, . . . ,Hp),
which depends only on H2, . . . ,Hp because e has no occurrence of y1. If c = d �m e
and d �= y1 has an occurrence of y1, then K = dJNt (G,H2, . . . ,Hp)�m He, where He :=
eJNt (G,H2, . . . ,Hp) depends only on H2, . . . ,Hp. Since the type of dJNt (G,H2, . . . ,Hp)

is ∅ (and hence m= 0), we obtain by induction that K = (G�k Hd)�0 He, where Hd

depends only on H2, . . . ,Hp. But (G�k Hd)�0 He = G�k(Hd � He) (by the def-
inition of the operations of F� and Equality (18) after Proposition 2.48). Hence
we can take H := Hd � He. Since �m is commutative, it suffices to consider these
cases.
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Since the elements of L have type ∅, this observation implies that if G ≡L G′
and cJNt (G,H2, . . . ,Hp) ∈ L, then cJNt (G′,H2, . . . ,Hp) ∈ L. Hence, G ≡L G′ implies
G ∼L G′.

(2) By (1) and Proposition 3.66(1), it suffices to show the equality of the two
indices. Since the set A of source names is linearly ordered, for every set C ⊂A of
cardinality k there exists an order preserving bijection hC : C→[k].

Let ∼ren be the type-preserving equivalence relation on J S defined by G∼ren G′
if and only if τ(G)= τ(G′) and renhτ(G)

(G)∼L renhτ(G)
(G′). The equivalence classes

of∼ren of type C are in bijection by renhC with those of∼L of type [k]where k := |C|.
Hence, ∼ren has the same index as ∼L, and so the same index as ≡L by (1).

We now prove that ∼ren is the syntactic congruence ≈L of L with respect to JSt .
Let G,G′ be such that G ∼ren G′, let C be their common type, let k := |C| and let
c be a context in Ctxt(F tHR) such that c(G) ∈ L. By Propositions 2.130 and 2.51
(for c of sort ∅ and A = C: one can take A′ = A and renh can be omitted) we
have cJSt (G) = fgC(G � H ) for some s-graph H of type τ(G) = C. Then we have
cJSt (G) = renhC (G)�k renhC (H ), and also cJSt (G′) = renhC (G

′)�k renhC (H ). By
these equalities, since G ∼ren G′, cJSt (G) ∈ L implies cJSt (G′) ∈ L. This proves that

G ≈L G′. Now assume that G ≈L G′ with C and k as before. By (1), it suffices to
show that renhC (G)≡L renhC (G

′). This is obvious because for every H ∈ J N k we
have renhC (G)�k H = cJSt (G,H ) for the term c(y1,y2)= fg[k](renhC (y1)� y2), and

similarly for G′. Hence, ∼ren is equal to ≈L.

As an example, we get that the singleton {H } is HR-recognizable if H is a graph,
with a similar proof as in Example 4.30(3): if G and G′ are s-graphs of type [k] such
that G ∼G′, then G ≡{H } G′.

We get also that every finite set of graphs is HR-recognizable.Another less immedi-
ate consequence is that the set of graphs of bandwidth at most k is not HR-recognizable
for k ≥ 2: see Theorem 6.79 of [*DowFel].

4.2.3 Uncountably many HR-recognizable sets

Since we allow an HR-recognizable set to have elements of countably many different
sorts, it is not so surprising that there are uncountably many HR-recognizable sets.
For example: let I consist of the s-graphs of type [n]with n vertices and no edges, for
n > 0. Every subset of I is HR-recognizable as one checks easily by considering the
equivalence∼ such that G∼G′ if and only if τ(G)= τ(G′) and, either G=G′ ∈ I or G
and G′ do not belong to I . However, there are also uncountably many (homogenous)
HR-recognizable sets of graphs. This prevents any attempt of characterizing these
sets by finite graph automata or logical formulas (as this is possible for words, terms
and trees).19

19 The reason is of course that there are only countably many finite graph automata and logical formulas.
For the same reason, “most” HR-recognizable sets are not effectively HR-recognizable (nor semi-
effectively HR-recognizable).
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For proving this fact we give a condition ensuring that a set of (labeled) graphs is
HR-recognizable. It is formulated with the operations �k of Theorem 4.34 (which is
used to prove the next lemma).

Condition REC: Let L ⊆ J N 0 be a set of (labeled) graphs. For each k ≥ 0
there exists a finite set Bk ⊆ J N k such that:

if G ∈ L and G =H �k K , then at least one of H and K is in Bk .

Lemma 4.35 Every set L of connected (labeled) graphs that satisfies Condition REC
is HR-recognizable.

Proof: Since all graphs in L are connected and �0 is the disjoint union of graphs,
we may assume that B0 = {∅}. (The case k = 0 of REC is satisfied whenever L is a
set of connected graphs.)

We let ∼ be the binary relation on graphs in J N defined as follows:
H ∼H ′ if and only if there exists k ∈N such that τ(H )= τ(H ′)= [k] and

either H ,H ′ ∈ Bk and H =H ′
or H ,H ′ /∈ Bk and for every K ∈ Bk , H �k K ∈ L⇐⇒H ′�k K ∈ L.

The relation ∼ is a type-preserving equivalence relation. It has at most |Bk | + 2|Bk |
classes of type [k], hence is locally finite. The three classes of type ∅ are B0 = {∅},
L−B0 and J N 0− (L∪B0). Hence, the set L is saturated by ∼. It remains to check
that ∼ is a congruence on the algebra JNt .

Let us prove that H �k K ∼ H ′�k K ′, where H ,H ′,K ,K ′ are of type [k], H ∼ H ′
and K ∼ K ′. If one of them, say H �k K , equals ∅, then both H and K are the empty
graph and hence (by the definition of ∼) so are H ′, K ′ and H ′�k K ′. If H �k K and
H ′�k K ′ are not empty, then we need only prove that H �k K ∈L implies H ′�k K ′ ∈L.
Assume H �k K ∈ L and H ,K ∈ Bk : then H ′ = H and K ′ = K by the definition of
∼ and H ′�k K ′ = H �k K ∈ L. Otherwise, by Condition REC, exactly one of H
and K , say K , is in Bk . Hence K ′ = K . Since H ∼ H ′ we have H ,H ′ /∈ Bk . Hence,
H �k K ∈ L implies H ′�k K ∈ L by the definition of ∼. Then H ′�k K ′ belongs to L
because K ′ = K .

If Condition REC holds for a set L, then it holds for all its subsets. Hence, if it
holds for an infinite set, there are, by Lemma 4.35, uncountably many recognizable
sets of graphs.

Proposition 4.36 Every set of cliques and every set of square grids is
HR-recognizable. So is every set of complete bipartite graphs Kn,n.

Proof: We first consider cliques. If Kn = G�k H , where τ(G)= τ(H )= [k], then
at least one of G and H has no internal vertices. We let Uk be the finite set of simple
loop-free undirected s-graphs in J N k that have no internal vertices. We obtain the
result by Lemma 4.35, by taking Bk :=Uk .
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Next we consider the complete bipartite graphs Kn,n. If Kn,n = G�k H , where
τ(G) = τ(H ) = [k] and A,B are such that Kn,n = A⊗ B (cf. Section 2.4.2 for this
notation), then, either at least one of G and H has no internal vertices, or at least one
of A and B is a set of sources of G (and of H ). The latter implies n ≤ k , and there
are only finitely many possible s-graphs G and H in such a decomposition, forming
a set Dk . We obtain the result by Lemma 4.35 by taking Bk :=Uk ∪Dk where Uk is
as above.

Finally we consider the case of square grids. Lemma 2.17 of [Cou90b] establishes
that if Gn×n=G�k H , where τ(G)= τ(H )=[k] and n≥ 2k+3, then at least one of G
and H has at most k+k2 vertices. We let Bk be the set of simple loop-free s-graphs in
J N k of degree at most 4 with at most (2k+2)2 vertices. Hence, if Gn×n=G�k H and
τ(G)= τ(H )= [k], then either n≤ 2k+2 and |VG|, |VH | ≤ (2k+2)2, or n≥ 2k+3
and at least one of G and H has at most k + k2 < (2k + 2)2 vertices. It is clear that
Bk is finite, which gives the result, again with Lemma 4.35.

If A is a set of positive integers, the set LA := {K1,n | n ∈ A} is HR-recognizable if
and only if A is recognizable in N. (If A is recognizable, then LA is CMS-definable
by Proposition 5.25, hence HR-recognizable by the Recognizability Theorem (Theo-
rem 5.68). Conversely, let LA be HR-recognizable with syntactic congruence ∼. For
every positive integer n, let g(n) be the s-graph K1,n with an r-source of degree n; the
equivalence relation on N defined by n≡m if and only if g(n)∼ g(m) witnesses the
recognizability of A.) Hence, in the previous proposition, one cannot replace the set
of graphs Kn,n by the set of all complete bipartite undirected graphs.

4.2.4 HR-recognizability and bounded tree-width

For further reference, we make explicit the following consequence of the algebraic
version of the Filtering Theorem (Theorem 3.88, Section 3.4.7):

Theorem 4.37 The intersection L ∩ K of an HR-equational set L and an HR-
recognizable set K is HR-equational. If K is semi-effectively HR-recognizable and
L is given by an HR equation system, then an equation system defining L∩K can be
constructed.

Proof: Immediate from Proposition 4.13 and the Filtering Theorem, which
says that the intersection of a JSt-equational set with a JSt-recognizable set is
JSt-equational.

Corollary 4.38 Let L be a set of (labeled) s-graphs of type included in a finite set C.
If L is HR-recognizable and has tree-width at most k , then it is HR-equational.

Proof: Let L be as in the statement. The set TWD(≤ k ,C) is HR-equational
(Example 4.3(8)). Since L = TWD(≤ k ,C) ∩ L, L is also HR-equational by
Theorem 4.37.
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We now compare HR-recognizability to recognizability in a finitely generated
algebra.

Proposition 4.39 Let k ∈N and let C be a set of source labels of cardinality k + 1.
Let L be a set of (labeled) s-graphs of type included in C and of tree-width at most
k . Then L is HR-recognizable if and only if it is recognizable in the F tHR

C -algebra
JSt,gen[C], if and only if γL(n) is finite for every n≤ k+ 1.

Proof: First observe that L ⊆ J S t,gen[C]. This follows from the algebraic char-
acterization of tree-width given in Theorem 2.83 and from the discussion after
Proposition 2.132. (The domains of JSt,gen[C] consist of the graphs of tree-width
at most k and of type included in C.)

Let L be HR-recognizable. It is, by definition, recognizable in JSt , hence by
Proposition 3.56(1), it is recognizable in the subalgebra JSt,gen[C] of JSt generated
by the subsignature F tHR

C of F tHR (see Section 2.3.1, Remark 2.39(1)). Furthermore,
the value of its HR-recognizability index γL(n) is finite for every n, hence in particular
for every n≤ k+ 1.

We now discuss the converse implications. If γL(n) is finite for each n ≤ k + 1,
then the restriction of the syntactic congruence ≈L to J S t,gen[C] is finite and hence
witnesses the recognizability of L in the algebra JSt,gen[C]. It remains to prove that
the recognizability of L in JSt,gen[C] implies its HR-recognizability. The proof, done
in [CouLag], is quite complicated.

We will say a few words on HR-recognizable sets of unbounded tree-width. If L is
an HR-recognizable set of graphs, then each set L∩ TWD(≤ k) is HR-recognizable
by Proposition 3.85(1), because TWD(≤ k) is HR-recognizable by Proposition 4.31.
The converse implication is actually not true, as shown below.

Proposition 4.40 There exists a set of graphs L that is not HR-recognizable but is
such that L∩TWD(≤ k) is HR-recognizable for each k .

Proof: We take L={Gn×n⊕Gn×n | n≥ 1}. Since twd(Gn×n)= twd(Gn×n⊕Gn×n)=
n (by Example 2.56(3) and Proposition 2.62), each set L∩TWD(≤ k) is finite, hence
HR-recognizable (by Example 4.30(3)). However, the syntactic congruence ≈L of L
has infinitely many classes of type ∅ because for every n, Gn×n ≈L H if and only if
H =Gn×n as one checks easily. Hence, L is not HR-recognizable.

4.3 VR-equational sets of simple graphs

We now consider the equational sets of the algebra GP, defined in Chapter 2,
Section 2.5.1. Its elements are simple graphs or, more generally, simple (K ,�)-
labeled graphs, where K is a finite set of vertex labels and � is a finite set of edge
labels. Their vertices have other labels, called port labels, belonging to a (countably
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infinite) set A. Port labels are used by unary operations reviewed below to add edges
to a graph. Graphs with ports are called p-graphs to recall this particular type of label-
ing. As for HR-equational sets, most of the results can be stated for ((K ,�)-)labeled
graphs and their proofs are not more difficult than for unlabeled graphs. We will not
detail the extensions of the proofs to labeled graphs.

4.3.1 VR equation systems

A set of (labeled) p-graphs is VR-equational if it is equational in the algebra GP. We
recall that the operations of GP are:

• the disjoint union, denoted by ⊕;

• the operations
−→
adda,b and adda,b that add, respectively, directed and undirected,

unlabeled edges20 between vertices with port labels a and b; for adding edges

labeled by λ, we use
−→
adda,b,λ and adda,b,λ;

• the operations relabh that modify port labels by using a mapping h : A→A which
is the identity outside of a finite subset of A;
• constant symbols denoting isolated vertices, possibly with incident loops; the

possible labels of vertices and loops are specified by these symbols.

The notion of a VR equation system S and the notations L(S,x), LTerm(S,x), F(S),
A(S) are similar to those relative to HR equation systems. They cover the case
of labeled graphs as well. We will let val denote the evaluation mapping valGP

(or valGP[K ,�] ) from terms in T (FVR) (or in T (FVR[K ,�])) to p-graphs (or to labeled
p-graphs). The following proposition is similar to Proposition 4.2:

Proposition 4.41 For every VR equation system S and every unknown x of S, we
have L(S,x)= val(LTerm(S,x)) and LTerm(S,x)⊆ T (F(S)). �

The remarks about parsing and its algorithmic difficulty, derivation trees and the
corresponding terms made in Definition 4.4 extend in an obvious way, and we do not
repeat them. We only observe that if G is the value of a term t in T (FVR[K ,�]), then

|VG| = |Occ0(t)|, |EG| ≤ |Occ0(t)|2 if G is unlabeled and |EG| = O(|Occ0(t)|2) if
G is labeled. (Occ0(t) is the set of occurrences of constant symbols in t different
from ∅.) The following proposition is similar to Proposition 4.5 and is proved in the
same way.

Proposition 4.42
(1) The membership problem for a VR-equational set is decidable.
(2) The emptiness of a VR-equational set (given by an equation system) is decidable.
(3) If a nonempty VR-equational set is defined by a uniform system with n unknowns,

then it contains a p-graph with at most 2n−1 vertices. �

20 In this setting, an undirected edge is a pair of opposite directed edges.
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The technical observation made in Remark 4.6 about changing source labels extend
to port labels in an obvious way.

We now give new examples and review some already given ones.

Example 4.43 (1) Cographs: The set of cographs is defined by the equation (already
considered in Sections 1.1.2 and 1.4.1)

x= (x⊕ x)∪ (x⊗ x)∪ 1,

where the complete join ⊗ is the derived operation of GPu, the subalgebra of
GP consisting of undirected p-graphs, defined by x ⊗ y := relab2→1(add1,2(x ⊕
relab1→2(y))). The constant symbol 1 denotes a graph with one vertex that is the
1-port (all vertices of a graph have port label 1). Without the monomial x⊕ x, this
equation defines the set of cliques Kn, n ≥ 1. These sets are not HR-equational, by
Proposition 4.7 (recall from Example 2.56(3) that Kn has tree-width n− 1).

(2) Directed cographs: The set of directed cographs is defined similarly by the
equation

y= (y⊕ y)∪ (y−→⊗ y)∪ (y⊗ y)∪ 1,

where
−→⊗ is the derived operation of GP defined by x

−→⊗ y := relab2→1(
−→
add1,2(x⊕

relab1→2(y))).

(3) Rooted trees: The sets of rooted trees (already considered in Example 4.3(2))
and of nonempty rooted forests are defined by the equation system S:{

r = 1∪ relab3→2(
−→
add1,3(1⊕ relab1→3( f ))),

f = r ∪ ( f ⊕ f ).

An alternative system using the empty graph ∅ is S ′ as follows:{
r = relab3→2(

−→
add1,3(1⊕ relab1→3( f ′))),

f ′ = ∅∪ (r⊕ f ′).

We have L(S,r)= L(S ′,r) and L(S ′, f ′)= L(S, f )∪{∅}.
(4) Trees: The set of trees (cf. Example 4.3(3)) is L(S ′′, t), where S ′′ is the equation

system: ⎧⎪⎪⎨⎪⎪⎩
t = relab2→1(r),

r = 1∪ relab3→2(
−→
add1,3(1⊕ relab1→3( f ))),

f = r ∪ ( f ⊕ f ).
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The other sets considered in Example 4.3 are also VR-equational sets because
every HR-equational set of simple graphs is VR-equational as we will prove later
(Theorem 4.49).

(5) Graphs of bounded clique-width: For each k , the set CWD(≤ k) of graphs
of clique-width at most k is VR-equational: the proof is the same as for the sets
TWD(≤ k − 1) in Example 4.3(8). To be precise, Definition 2.89 yields, for k ≥ 1,
the following equation that defines the set of undirected p-graphs G of clique-width
at most k such that π(G)⊆ [k]:

x= (x⊕ x)∪
(⋃

adda,b(x)
)
∪
(⋃

relabh(x)
)
∪ 1∪ 1
 ∪∅,

where the unions extend to all a,b∈ [k]with a< b and all mappings h in [[k]→ [k]]f .
A 1-port with an incident loop is denoted by the constant symbol 1
. By Proposi-
tion 2.118, one can replace the operations relabh by relaba→b for all a,b ∈ [k], a �= b.

For generating directed p-graphs, one replaces adda,b by
−→
adda,b. Finally, for gener-

ating graphs, we add the equation y = relabh(x), where h is such that h(i) := 1 for
all i ∈ [k]. However, we cannot claim, as in Remark 4.9(1), that the sets of graphs of
clique-width exactly k are VR-equational because these classes are not known to be
monadic second-order logic definable, except for k ≤ 2.

Slightly more generally, the set CWD(≤ k ,C) of p-graphs of clique-width at most
k and of type included in C is VR-equational for every k ∈N and every finite set C
of port labels. So are the corresponding sets of labeled graphs. For each k ≥ 2, the set
CWD(≤ k) is VR-equational but not HR-equational since it contains all cliques.

Linear clique-width can be handled in the same way as path-width in
Example 4.3(9). �

In Section 2.5.6, we have defined variants of the signature FVR, obtained either
by removing certain operations, by adding new operations or by replacing certain
operations by (linear) derived ones. These new operations act on the same objects, the
(labeled) p-graphs. Equation systems can be written over these alternative signatures,
and they might define equational sets that are not exactly theVR-equational. However,
they still define the VR-equational sets in all cases.

We first consider the case of FκVR :=⋃C∈Pf (A) FκVR
C . This signature is linear

derived from FVR, but FVR is also linear derived from it: the operation ⊕ is in both
signatures and for every unary operation f of FVR, we have f (G)= g(G,∅), where
g is the binary operation of FκVR defined by the term f (x1 ⊕ x2), cf. the proof of
Proposition 2.121. It follows from Proposition 3.41 that the equational sets are the
same for the two algebras.

A similar argument holds for the signature F
′VR, because every relabeling can be

expressed as a composition of elementary relabelings (by using at most one auxiliary
new port label, cf. Section 2.5.6, Proposition 2.118). For the signature F iVR it will be
proved as a corollary of the Equationality Theorem for the VR algebra (Theorem 7.36)
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which gives a logical characterization of the class of VR-equational sets, although it
would not be difficult to give a direct proof by a transformation of equation systems.

4.3.2 VR-equational sets and clique-width

For every VR equation system S, we define A(S) as the smallest subset C of A such
that the signature F(S) is included in FVR

C (or in FVR
C,[K ,�] if labeled graphs are to be

defined). (If S is written with derived operations like ⊗ and
−→⊗ , we replace these

operations by their definitions in order to determine the set A(S).) For the very same
reasons as in Proposition 4.7 we have:

Proposition 4.44 Every VR-equational set of (labeled) p-graphs has bounded clique-
width. More precisely, for every VR equation system S and x ∈ Unk(S), we have
cwd(L(S,x))≤ |A(S)|.

A set of (labeled) graphs is not VR-equational if, either it has unbounded clique-
width or has bounded clique-width but has an internal structure too complicated to be
described exactly by an equation system. We made a similar observation about HR-
equational sets in Remark 4.9(2), and the same examples illustrate the two cases: the
set of planar graphs for the first case (because square grids have unbounded clique-
width by Proposition 2.106(1)) and, for the second one, any set of paths whose lengths
do not form a semi-linear set of integers (by Proposition 4.47(1) below).

4.3.3 Type analysis of VR equation systems

We recall that the type of a (labeled) p-graph G is the setπ(G) of its port labels. If L is a
set of (labeled) p-graphs, then π(L) := {π(G) |G ∈ L}. The proof of Proposition 4.10
can be adapted to the present case in a straightforward manner and we get:

Proposition 4.45 For every VR-equational set L given by a VR equation system S,
the finite set π(L)⊆P(A(S)) can be computed. �

To compare the VR-equational sets with the equational sets of the many-sorted
VR algebra GPt of Section 2.6.3, typed VR equation systems can be defined as in
Definition 4.12, together with all the related terminology in that definition.

Proposition 4.46 Every VR equation system can be effectively transformed into
an equivalent typed VR equation system, and vice versa. A set of p-graphs is
VR-equational if and only if it is GPt-equational. �

The proofs are easily adapted from those of Proposition 4.13 (Section 4.1.3). A
typed VR equation system can be exponentially larger than an untyped one defining
the same set. Example 4.14 can be adapted to prove this fact.
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For determining if a VR-equational set is finite, we can use the same method as
in Section 4.1.4 for HR systems with the following adaptation: we need only count
vertices, and we let |G| := |VG|. (A different size measure on graphs is used in
Definitions 2.9 (Section 2.2) and 4.15 (Section 4.1.4).) We have for all G,H ,a,b,λ
and h of the relevant types |G ⊕ H | = |G| + |H |, |adda,b(G)| = |adda,b,λ(G)| =
|−→adda,b(G)| = |−→adda,b,λ(G)| = |relabh(G)| = |G|, |c| = 1 for every constant c that is
not ∅ and |∅| = 0.

A set of simple (abstract) p-graphs L with vertex and edge labels in finite sets
is finite if and only if the set {|G| | G ∈ L} is finite. Hence the methods used for
Propositions 4.16 and 4.19 give the following results:

Proposition 4.47

(1) For every VR-equational set L, the set {|G| |G ∈ L} is semi-linear. A description
of it can be computed from a system that defines L.

(2) There is an algorithm that decides the finiteness of a VR-equational set L given
by an equation system S; if L is finite, it can be computed from S.

(3) If L is finite and defined by a uniform and typable equation system S, then
|G|≤ 2n−1 for every G in L, and the cardinality of L is at most (|F(S)|·2a2·
+1)2

n
,

where a :=|A(S)|, 
 is the number of edge labels and n is the number of unknowns
of S.

Proof: (1) The proof is analogous to the one of Proposition 4.16.
(2) The proof is analogous to the one of the first statement of Proposition 4.19.
(3) The proof is similar to the one of the last statement of Proposition 4.19, but in

the Claim it uses Proposition 2.103 instead of Proposition 2.51. Moreover, the Claim
is now the following:

Claim 4.47.1 For every p-graph G in L there exists a term t ∈ K of height at most
n− 1 such that |val(t)| = |G|.
Proof: Using the same terminology as in the proof of Claim 4.19.1, we obtain
that c′

GP
(G′) = relabh(ADDR(G′ ⊕ H )) and that H must be empty, and hence

c′
GP

(val(t′)) = ADDR(val(t′)) because c′[t′] and t′ have the same type. Hence
|val(c[t′])| = |G| by the equations for | · | (|G⊕H | = |G|+ |H | etc.) stated above. �

By this claim, the size of G is at most 2n−1 by the same argument as in the proof of
Proposition 4.42. The upper-bound for |L| is obtained in the same way as in the proof
of Proposition 4.19, taking into account that, according to the proof of the claim, G
can be obtained from t by adding an operation of the form ADDR at each node of t
and then applying val. Note that R ⊆A(S)×A(S)×� where � is the set of edge
labels.

For a VR-equational set L, the set ‖L‖ (cf. Definition 4.15) need not be semi-linear:
just consider for L the set of cliques.
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4.3.4 Comparison with the HR-equational sets

VR-equational sets only contain simple (labeled) graphs (and p-graphs), whereas
HR-equational sets may contain (labeled) graphs (and s-graphs) with multiple edges.
We will compare the families of VR-equational sets and of HR-equational sets of
simple (labeled) graphs. The following proposition shows that one can distinguish in
an effective way the HR equation systems that define simple graphs.

Proposition 4.48 There exists an algorithm that, for every HR equation system S
and every unknown x of S, decides if L(S,x) consists only of simple s-graphs, and, if
this is not the case, that transforms S into an HR equation system S ′ such that L(S ′,x)
is the set of simple s-graphs in L(S,x).

Proof: It is not difficult to prove that the sets of simple, directed (or undirected),
unlabeled (or (K ,�)-labeled) s-graphs are effectively HR-recognizable, by construct-
ing congruences as in Examples 4.30 (for the details, see the proof of Theorem 4.58).
The existence of the desired algorithms follows then from Proposition 3.91(2) and
the Filtering Theorem (Theorem 4.37).

Here is the main theorem of this section.

Theorem 4.49 Every HR-equational set L of simple (labeled) graphs is
VR-equational. A VR equation system defining L can be constructed from an HR
equation system defining it. �

For doing the proof, we introduce some technical notions that will also be useful
for comparing HR- and VR-recognizable sets of simple (labeled) graphs.

Definition 4.50 (The border and the interior of an s-graph) We first give def-
initions for directed unlabeled s-graphs. The set of simple directed s-graphs is
denoted by J Ss. For an s-graph G and X ⊆ VG, we denote by G[X ] the s-graph
〈G◦[X ],slabG � X 〉. In words, G[X ] is the induced subgraph of G with vertex set X .

The border of an s-graph G ∈ J Ss is the s-graph β(G) := G[Src(G)] (it is also
in J Ss). Clearly we have τ(β(G)) = τ(G). Note that β(G) is also a p-graph, with
portG = slabG.

We define also the interior of G as the p-graph Int(G) ∈ GP that consists of
G◦[IntG] (we recall that IntG is VG−Src(G), the set of internal vertices of G) equipped
with the following mapping portInt(G):

portInt(G)(u) := 〈A,A′〉, where

A := {a ∈ τ(G) | there is in G an edge u→ srcG(a)},
A′ := {a ∈ τ(G) | there is in G an edge srcG(a)→ u}.
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Henceπ(Int(G)) is a subset of P(τ (G))×P(τ (G)).21 If |τ(G)| ≤N , then |τ(β(G))∪
π(Int(G))| ≤ N + 22N . Note that β(G) = G and Int(G) = ∅ if VG = Src(G).
Moreover, if G is a graph, i.e., τ(G)= ∅, then β(G)=∅ and Int(G)=G.22

Note that an s-graph G can be reconstructed from β(G) and Int(G), because we
have

G = RELAB(ADD(β(G)⊕ Int(G))),

where ADD and RELAB are derived operations (respectively compositions of edge
additions and of relabelings) that are easy to define.

The validity of the following facts, intended to show that β and Int are “almost”
homomorphisms, is clear from the definitions.

Let G,H ∈ J Ss. If G � H is simple, then

β(G � H )= β(G)�β(H ) and Int(G � H )= Int(G)⊕ Int(H ). (4.5)

If h is a finite permutation of A, then

β(renh(G))= renh(β(G)) and Int(renh(G))= RELABh(Int(G)), (4.6)

where RELABh := relabg such that g(〈A,A′〉)= 〈h(A),h(A′)〉 for all A,A′ ⊆ τ(β(G)).
Next we consider the source forgetting operations:

β( fgB(G))= β(G)[Src(G)− srcG(B)] and

Int( fgB(G))= RELABB(ADDR(B)(Int(G)⊕β(G)[srcG(B)])), (4.7)

where srcG(B) := {srcG(b) | b ∈ B∩ τ(G)}, ADDR(B) is as defined before Proposi-
tion 2.103 with

R(B) :=
⋃

A,A′⊆τ(β(G)),b∈B

{(〈A,A′〉,b) | b ∈ A}∪ {(b, 〈A,A′〉) | b ∈ A′},

and RELABB := relabk such that, for A,A′ ⊆ τ(β(G)) and b ∈ B,

k(〈A,A′〉) := 〈A−B,A′ −B〉 and k(b) := 〈Ab,A′b〉 with

Ab := {a ∈ τ(G)−B | srcG(b)→ srcG(a) is an edge in β(G)},
A′b := {a ∈ τ(G)−B | srcG(a)→ srcG(b) is an edge in β(G)}.

21 As in the proof of Proposition 2.103, we assume that the elements of this set are appropriately encoded
as port labels in A that are not in τ(G). Formally this can be achieved by an injective computable
mapping α : A∪ (Pf (A)×Pf (A))→A. Then portInt(G)(u) is formally defined as α(〈A,A′〉) with
A,A′ as above. When β(G) is viewed as a p-graph, we can assume formally that its source names are
encoded by α (and hence can be distinguished from the encoded port labels of Int(G)). Finally, we
assume that α(〈∅,∅〉)= 1, the default port label.

22 We recall that ∅ is a constant symbol denoting the empty graph.
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It should be noted that RELABh, ADDR(B) and RELABB appear to depend on G, but
actually, they only depend on β(G).

Finally, if G is defined by a constant symbol then

β(G)=G and Int(G)=∅. (4.8)

For dealing with undirected graphs, just one set A is needed instead of two sets A and
A′ (since every undirected edge is a pair of opposite directed edges, the corresponding
sets A and A′ are equal). The derived operation ADDR(B) can use operations addA,b

instead of
−→
add〈A,A′〉,b and

−→
addb,〈A,A′〉. If |τ(G)| ≤ N , then |τ(β(G))∪ π(Int(G))| ≤

N + 2N . We will explain later the modifications required to handle labeled
graphs.

We illustrate these definitions and facts with an example concerning undirected
graphs. Figure 4.5 shows undirected s-graphs G,H . One can check on this example
that β(G � H )= β(G)�β(H ) and Int(G � H )= Int(G)⊕ Int(H ) and that

Int( fg3(G))= relab3→{2}(relab{2,3}→{2}(add{2,3},3(Int(G)⊕ 3))).

Proof of Theorem 4.49: Let L be an HR-equational set of simple directed graphs,
given as L(S,X ) where S is a uniform HR equation system (cf. Proposition 3.33) and
X ⊆Unk(S). By Proposition 3.37 we may also assume that S is trim with all unknowns
useful for X . This implies that all s-graphs defined by S are simple: consider G in
L(S,y) and a derivation sequence of G(S) from some x in X to a term t in T (FHR,{y}),
where y has a unique occurrence; then tJS(G) ∈ L(S,x)⊆ L. Since the operations of
FHR preserve multiple edges and L consists only of simple graphs, G must be simple.

The mapping β behaves “homomorphically” (by (4.5), (4.6) and (4.7) of Defini-
tion 4.50) and there are only finitely many possible graphs β(G) (up to isomorphism)
such that τ(G) = τ(β(G)) ⊆ A(S). Hence, we can assume that β(G) = β(G′) for
every G,G′ ∈ L(S,y) and every y ∈ Unk(S) because, by using Corollary 3.89 of the
Filtering Theorem, we can transform S into an equivalent system satisfying this prop-
erty if this is not already the case.23 We denote by β(y) the common value β(G) of
the s-graphs G in L(S,y).

The next step is a transformation of S into a VR equation system SInt such that
Unk(SInt) := Unk(S) and L(SInt ,y) = {Int(G) | G ∈ L(S,y)} for every y ∈ Unk(S).
Since L is a set of graphs, Int(G)=G for every G ∈ L and so L equals L(SInt ,X ) and
hence is VR-equational.

It remains to explain how SInt is obtained from S. The general equation of S is
of the form x = ·· · ∪m∪ ·· · , where each m is a monomial with only one function

23 The mapping h defined by h(G)= β(G) if G is simple and h(G)=⊥ otherwise, is a homomorphism
from JS[A(S)] to a finite algebra with domain {G ∈J Ss | τ(G)⊆A(S), IntG =∅}∪{⊥}, cf. the proof
of Proposition 4.13(3).
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Figure 4.5 Borders and interiors of s-graphs.

symbol because S is uniform. We define the corresponding equation of SInt as xInt =
·· · ∪mInt ∪ ·· · , where mInt is as follows:

if m= y � z, then mInt := y⊕ z,

if m= renh(y), then mInt := RELABh(y),

if m= fgB(y), then mInt := RELABB(ADDR(B)(y⊕ tB)),

if m is defined by a constant symbol, then mInt :=∅.

In this definition, the operations RELABh, RELABB and ADDR(B) are as in Defi-
nition 4.50 (with β(y) instead of β(G)), and tB is a term in TVR

τ(β(y))∪B denoting the
p-graph β(y)[srcβ(y)(B)]. This construction concludes the proof. Its correctness is
based on Equalities (4.5)–(4.8).
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If N = |A(S)|, then this construction defines a system SInt with |A(SInt)| ≤ N +
22N . The same construction works for undirected graphs but uses at most N + 2N

port labels as noted above. We now consider the case of (K ,�)-labeled graphs. The
labels of vertices and loops are specified by the constant symbols that define graphs
with a unique vertex. These richer constants are handled as in the unlabeled case,
see (4.8). For each edge label, we need one pair of sets 〈A,A′〉, where A and A′ are
as in the case of directed unlabeled graphs. Hence, for a set � of edge labels, we
need at most N + 22|�|·N port labels for directed graphs and at most N + 2|�|·N for
undirected ones. The above construction is easy to adapt.

As a consequence, we obtain a bound for the clique-width of a simple graph in
terms of its tree-width (cf. Proposition 2.114). By taking N = k+ 1, we get for G of
tree-width at most k:

cwd(G)≤ k+ 1+ 4k+1 if G is directed and unlabeled, and

cwd(G)≤ k+ 1+ 4|�|·(k+1) if G is directed and (K ,�)-labeled.

For undirected graphs, we get respectively the smaller upper-bounds k + 1+ 2k+1

and k+ 1+ 2|�|·(k+1).

Sparse graphs

Although VR equation systems are strictly more powerful than HR equation systems
(this is proved by Examples 4.43(1), 4.43(2) and 4.43(5)), they are equally powerful
for generating languages, sets of trees (through appropriate representations as labeled
graphs) and sets of planar graphs. We now present a necessary and sufficient condition
that subsumes these cases. Let p ∈ N . A graph G is p-sparse if |EG| ≤ p · |VG|. A
set of graphs is p-sparse if all its graphs are p-sparse. It is uniformly p-sparse if all
subgraphs of its graphs are p-sparse.

Recall from Proposition 2.115 that an unlabeled graph G is without Kn,n if core(G)

has no subgraph isomorphic to Kn,n; if G is labeled, we say that it is without Kn,n if
Gλ (the subgraph of G consisting of its edges labeled by λ) is without Kn,n for every
edge label λ.

Theorem 4.51 Let L be a VR-equational set of (labeled) graphs. The following
conditions are equivalent:

(1) L is HR-equational;
(2) L has bounded tree-width;
(3) L is uniformly p-sparse for some p ∈N ;
(4) L is p-sparse for some p ∈N ;
(5) there exists n ∈N such that every graph in L is without Kn,n.
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Proof: We have the following implications:
(1) =⇒ (2) by Proposition 4.7.
(2) =⇒ (3): The set of subgraphs of graphs in L has bounded tree-width by

Corollary 2.60(1). Every simple loop-free undirected graph G of tree-width at
most k is k-sparse by Corollary 2.74(1) (for |VG| ≥ k + 1; if |VG| ≤ k , then
|EG| ≤ |VG| ·(|VG|−1)/2< k · |VG|). Hence, a simple directed graph with edge labels
from a set of at most 
 labels (and possibly labeled loops), is (2k+ 1) · 
-sparse.

(3) =⇒ (1) follows from the Equationality Theorems for the VR and the HR
algebra proved in Sections 7.2 and 7.4, and the Sparseness Theorem for graphs in
Section 9.4.1. See Section 9.4.3 for the proof.

(3) =⇒ (4) is immediate.
(5) =⇒ (2) follows from Proposition 4.44, because for G with edge labels from a

set of at most 
 labels and without Kn,n, we have twd(G)≤ 3(n− 1) · 
 · cwd(G)− 1
by Proposition 2.115.

(4) =⇒ (5): The proof is based on the following claim.

Claim 4.51.1 For every VR-equational set L of (labeled) graphs there exists d ∈N
such that the following holds:

if H is an induced subgraph of some graph G in L, then there exists a graph
G̃ ∈ L such that |VG̃| ≤ d · |VH | and H is isomorphic to an induced subgraph
of G̃.

Proof: Let L be a VR-equational set of graphs. We write the proof for unlabeled
directed graphs, but it is essentially the same for labeled and/or undirected graphs. By
Proposition 4.41, L= val(K) for some regular language K ⊆T (F(S)), where S is aVR
equation system and F(S)⊆FVR

A(S). We let A =A (B,C) be a complete deterministic
finite F(S)-automaton recognizing K (cf. Definition 3.58 and Theorem 3.62).

For a context c ∈ Ctxt(F(S)) we define c∅ to be the context obtained from c
by changing all constant symbols in c into ∅. By Equalities (3), (6) and (11) of
Proposition 2.101 and by (the last sentence of) Proposition 2.103, every derived
operation (c∅)GP is of the form G �→ relabh(ADDR(G)), and hence there are kk ·2k2−k

such operations, where k = |A(S)| (cf. Lemma 2.120). We define two contexts c,c′ ∈
Ctxt(F(S)) to be equivalent if cB = c′

B
and (c∅)GP = (c′∅)GP. This equivalence

relation has at most �A �A · kk · 2k2−k classes. For every context c, we let c be a
context equivalent to c with a minimal number of leaves. Moreover, we let b be the
maximal number of leaves of all contexts c. Finally, we define the required constant
d as 2b+ 1. Note that d depends on A(S) and A only.

Let G ∈ L. Without loss of generality, we assume that G = cval(t) for some t ∈ K .
Its vertex set is thus Occ0(t) (see Section 2.5.2 for the definitions of cval(t) and
Occ0(t)). Let H =G[X ], where X ⊆Occ0(t), and let n := |VH | = |X |. Our aim is to
transform t into a term t̃ ∈ K such that H is isomorphic to an induced subgraph of
val(̃t ) and t̃ has at most d · n leaves.
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Consider nodes u and v of t such that u is strictly below v, and such that for every
x ∈ X , either x is below u (we may have x= u) or the least common ancestor of u and
x is strictly above v. We will say that (u,v) is an X -free pair of nodes. Let c be the
context such that t = (t ↑ v)[c[t/u]]. Informally, c is the part of the term t “between”
u and v, and none of its leaves is in X . We denote c by c[u,v] if we need to indicate u
and v.

Suppose that c′ is a context equivalent to c, and that t′ is obtained from t by
changing c into c′, i.e., t′ := (t ↑ v)[c′[t/u]]. Since c′

B
= cB, the term t′ is accepted

by A .24 Hence t′ ∈ K and val(t′) ∈ L. By the proof of Proposition 2.105(1), H =
cval(t)[X ] = cval(tX ) where the term tX is obtained from t by changing the label
of every leaf of t that is not in X into ∅. Since, by assumption, the leaves of c are
not in X and (c∅)GP = (c′∅)GP, this implies that H is isomorphic to an induced
subgraph of val(t′). (To be precise, we have that tX = (tX ↑ v)[c∅[tX /u]] because the
leaves of c are not in X . Let s := (tX ↑ v)[c′∅[tX /u]]. Then val(tX )= val(s) because
(c∅)GP= (c′∅)GP. Let X ′ :=Occ0(s). Then s= t′X ′ (which is defined in the same way
as tX ). Again by the proof of Proposition 2.105(1), cval(t′)[X ′] = cval(t′X ′) and so
cval(s) is an induced subgraph of cval(t′). Hence, H = val(tX )= val(s) is isomorphic
to an induced subgraph of val(t′).)

In particular, if the number of leaves of c is larger than b, then we can change c
into c, which has at most b leaves. Since the resulting term has fewer leaves than t,
repetition of this transformation (as long as possible) leads to a term t̃ ∈ K such that
H is isomorphic to a subgraph of val(̃t ) ∈ L and the number of leaves of c[u,v] is at
most b for every X -free pair (u,v) of nodes of t̃, where X is any subset of Occ0(̃t )
such that H is isomorphic to cval(̃t )[X ].

We let Y be the set of nodes of t̃ consisting of X and the least common ancestors
of any two leaves in X . Then, we consider the pairs (u,v) such that u ∈ Y and
v is a maximal proper ancestor of u not in Y (thus, no node of Y is on the path
from v to the father of u). There are at most |Y | = 2n− 1 such pairs. Each of them
is X -free and so the number of leaves of c[u,v] is at most b. Hence t̃ has at most
n+ (2n− 1)b < (2b+ 1)n= dn leaves.

Thus, if G̃ := cval(̃t ), then G̃ ∈ L, H is isomorphic to an induced subgraph of G̃,
and |VG̃| = |Occ0(̃t )| ≤ d · |VH |. (We do not claim that G̃ is isomorphic to an induced
subgraph of G.) �

This claim implies that if a graph G of L has a subgraph isomorphic to Kn,n, then
there exists G̃ ∈ L such that |VG̃| ≤ 2dn and |EG̃| ≥ n2. Hence, if there is such a graph
for every n, then L is not p-sparse for any p, and (4) implies (5).

The Semi-Linearity Theorem of Chapter 7 (Theorem 7.42) implies that Con-
dition (5) is decidable. So one can decide if a VR-equational set of graphs is
HR-equational.

24 By Lemma 3.59, because valB(t)= (t ↑ v)B(cB(valB(t/u))) and similarly for t′ and c′.
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The class of graphs of degree at most 2p is p-sparse. The class of simple graphs
embeddable in the plane or in a fixed surface is p-sparse for some p (with p= 3 for
loop-free planar graphs, see [*Die], Corollary 4.2.10). The same holds more generally
for the class of graphs that do not contain a fixed graph as a minor. We will prove in
Section 9.4.3 that if a set of graphs of bounded clique-width is uniformly p-sparse for
some p, then it has bounded tree-width. In Theorem 4.51 we need only assume that L
is p-sparse for some p in order to obtain, not only that it has bounded tree-width but,
furthermore, that it is HR-equational.

4.4 VR-recognizable sets of simple graphs

The VR-recognizable sets of graphs are defined as the recognizable sets of the
many-sorted algebra GPt . The following definition is similar to Definition 4.29 for
HR-recognizable sets.

4.4.1 Definitions and examples

Definition 4.52 (VR-recognizable sets of p-graphs) A set of p-graphs is
VR-recognizable if it is recognizable in the many-sorted algebra GPt , i.e., if it is
a union of classes, possibly of different sorts, of a type-preserving and locally finite
congruence on the one-sorted FVR-algebra GP. The sort of a p-graph G relative to
GPt is its type π(G), defined as the set of its port labels.

For (K ,�)-labeled p-graphs, the definitions are the same with FVR
[K ,�] instead of

FVR and GPt[K ,�] instead of GPt .
If L⊆ GP[E] for some finite set E of port labels, that is, such that all p-graphs in

L have a type included in E, then its recognizability can be considered with respect
to GPt or to GPt[E]. If L is VR-recognizable, then it is also recognizable in GPt[E]
by Proposition 3.56(1). If, furthermore, L⊆ GPgen[E], then it is also recognizable in
GPt,gen[E] by the same proposition.

It is straightforward to show, as in Definition 4.29, that the algebras GPt,gen[E]
and GPgen[E] have the same (effectively) recognizable sets.

The VR-recognizability index of a set of p-graphs L is the mapping γL such that
γL(k), for k ∈ N , is the number of equivalence classes of type C of the syntactic
congruence≈L of L with respect to GPt , where C is any set of port labels of cardinality
k . By using bijective relabelings (like in Definition 4.33), we can prove that this
number is well defined.

Many results are similar to the corresponding ones for HR-recognizable sets. In
particular, the instantiation to the VR algebra of the algebraic version of the Filtering
Theorem:
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Theorem 4.53 The intersection L∩K of aVR-equational set L and aVR-recognizable
set K is VR-equational. If K is semi-effectively VR-recognizable and L is given by a
VR equation system, then an equation system defining L∩K can be constructed. �

Its proof is fully similar to that of Theorem 4.37 relative to the HR algebra (using
Proposition 4.46 instead of Proposition 4.13).

We now give some examples of VR-recognizable sets and define congruences that
witness their recognizability.

Example 4.54 (1) Graphs with an even number of vertices: The set Lv of simple
graphs having an even number of vertices is VR-recognizable. For proving this we
define the type-preserving equivalence relation ∼ by: G ∼H if and only if G and H
have the same type and |VG| and |VH | have the same parity, i.e., |VG|− |VH | is even.
The verification that ∼ is a congruence on GP witnessing the VR-recognizability of
Lv is as for Example 4.30(1).

(2) Graphs with an even number of edges: We now prove that the set Le of simple
graphs having an even number of directed edges is VR-recognizable. The construction
of a type-preserving congruence that saturates Le is slightly more complicated than
in the previous example. For distinct port labels a and b and a p-graph G, we let
edgG(a,b) be the set of edges from an a-port to a b-port. (We recall that portG is
the port mapping of G, from vertices to port labels). We define a type-preserving
equivalence relation ≡ by:

G ≡H if and only if G and H have the same type and:

(1) |edgG| and |edgH | have the same parity;
(2) |edgG(a,b)| and |edgH (a,b)| have the same parity for every two distinct port

labels a and b;
(3) |port−1

G (a)| and |port−1
H (a)| have the same parity for every port label a.

This equivalence is locally finite and it saturates Le. The verification that it is a
congruence uses observations similar to those used in Example 4.30(1). Here are
some others, involving |edgG(a,b)| and |port−1

H (a)|.
If H =−→adda,b(G) then |edgH | = |edgG|+ |port−1

G (a)| · |port−1
G (b)|− |edgG(a,b)|.

It follows that the parity of |edgH | is a function of the parities of the cardinalities
of the right-hand side of this equality. (This equality has motivated the introduction
of the sets edgG(a,b).) We also have: |edgH (a,b)| = |port−1

G (a)| · |port−1
G (b)| and

|edgH (c,d)| = |edgG(c,d)| for (c,d) �= (a,b).
If H = relabh(G), then |edgH (a,b)| is the sum of all |edgH (c,d)| such that h(c)= a

and h(d)= b.
The set Le is thus VR-recognizable. This fact follows also from the Recognizability

Theorem (Section 5.3.9, Theorem 5.68) because a graph has an even number of
directed edges if and only if the number of its vertices having an odd indegree is even.
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This property is thus C2MS-expressible. (For a generalization of this observation, see
[Cou10].)

(3) Planar graphs and other MS-definable sets: The sets of simple planar graphs,
of cographs, of trees, of rooted trees are VR-recognizable: this follows from the
Recognizability Theorem to be proved in the next chapter. In fact, for simple graphs,
the sets (1)–(8) of Proposition 4.31 are all (effectively) VR-recognizable.

(4) Connected graphs: It is not difficult to define a congruence that witnesses the
VR-recognizability of the set of connected simple graphs and that has a bit less than
22k

classes of type C, where C is a set of k port labels. We will prove that no such
congruence can have less than 22k

classes of type C if C has 2k + 1 elements. This
gives a lower-bound to the VR-recognizability index of the set of connected graphs.
Our proof only uses undirected graphs, but the lower-bound applies a fortiori to all
(simple) graphs.

We let C := [0,2k] for k > 0. For every nonempty subset A of C we define

tA := (©a,b∈A,a�=badda,b)(
⊕
a∈A

a).

The p-graph val(tA) is a clique of type A and each a in A is the port label of a unique
vertex.

Let Z be a nonempty subset of Pk([2k]), defined as the set of subsets of [2k] of
cardinality k . We let

⋃
Z be the union of the sets in Z and we define

sZ := tC−⋃Z ⊕
⊕
A∈Z

tA.

The p-graph HZ := val(sZ) has type C and is not connected (0 belongs to no set in Z
and Z is not empty).

We now define some contexts intended to show that distinct p-graphs HZ and HZ ′
are not equivalent for any congruence∼ that witnesses the VR-recognizability of the
set of connected p-graphs. For every nonempty subset B of [2k], we define

cB := (©b∈Badd0,b)(w),

where w is the special variable used to define contexts. It is clear that val(cB[sZ ]) is
connected if and only if B∩A �= ∅ for every A ∈ Z .

We let Z be the set of all nonempty subsets of Pk([2k]). It is thus the set of all sets Z
as defined above. We have |Pk ([2k])|> 2k hence |Z|> 22k

, by routine computations.
Let us now consider two distinct elements Z and Z ′ of Z . We first assume that some

set A belongs to Z −Z ′ and we let B := [2k]−A. Then val(cB[sZ ]) is not connected
because B∩A= ∅. On the other hand, val(cB[sZ ′ ]) is connected because B∩A′ �= ∅
for every A′ ∈ Z ′. In fact, since all sets in Z and Z ′ have cardinality k , each set A′ in
Z ′ must contain an element not in A (otherwise A′ ⊆ A so that A′ = A, but we have
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assumed that A /∈ Z ′). For a set A ∈ Z ′ − Z we get a similar fact by exchanging the
roles of Z and Z ′.

It follows that the p-graphs HZ for Z ∈ Z are all of type C and are pairwise
inequivalent with respect to any congruence that witnesses the VR-recognizability of
the set of connected p-graphs.

What about the set of connected graphs without ports, equivalently of type {0}?
By replacing cB by (©b∈[2k]relabb→0)(cB), we get the same result for the
VR-recognizability of connected graphs. Hence, in both cases we have γL(2k+1) >
22k

for every k > 0.
Hence, we have a double-exponential lower-bound for the VR-recognizability

index of the set of connected graphs. In Example 4.30(2), we have given the much
lower upper-bound k!+1 for the HR-recognizability index of the same set (allowing
multiple edges, but they do not matter).

(5) Sets that are not VR-recognizable: The set of graphs Kn,n for all n > 0 is
not VR-recognizable. The proof uses the same tools as those of Proposition 4.32: we
let the constant symbols a and b denote 1, the unary operation g denote λx · (x⊕ 1)
and f denote the complete join ⊗. Note that this set is HR-recognizable (Propo-
sition 4.36). Note also that this set is VR-equational, with the following equation
system:

{
x = relab2→1(add1,2(y)),

y = (1⊕ 2)∪ (y⊕ y),

but that it is not HR-equational (Proposition 4.7). �

By a proof similar to that of Example 4.30(3), one can prove that each singleton
set consisting of a p-graph (and hence each finite set of p-graphs) is effectively
VR-recognizable.

Remark 4.55 (On variants of the VR operations) We observed at the end of
Section 4.3.1 that the variants of the signature FVR defined in Section 2.5.6 yield
the same classes of equational sets. They also yield the same classes of recogniz-
able sets. For the signatures FκVR and F

′VR it is proved in the same way as at the
end of Section 4.3.1, using Theorem 3.56(3). For the signature F iVR, this follows
from a result of [CouWei] (Theorem 4.5) saying that if we add to the signature F tVR

unary operations on p-graphs defined by quantifier-free formulas (we will define
these operations in Section 5.3.2), then the class of recognizable sets of the obtained
algebra is still the class of VR-recognizable sets. This result applies to F iVR, and to
its many-sorted version. �
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4.4.2 A simpler VR-recognizability criterium

We will give a characterization of VR-recognizability analogous to that of
HR-recognizability of Theorem 4.34 that extends the characterization of the regu-
lar languages due to Myhill and Nerode. We define an operation on p-graphs similar
to the operation �k on s-graphs, but not commutative. This operation is derived from
Proposition 2.103 that characterizes the operations on p-graphs defined by contexts.

Definition 4.56 (Some binary derived operations) Let (A1,A′1),(A2,A′2), . . . be an
enumeration of the set Pf (N )× Pf (N ) such that for every k ∈ N the sequence
(A1,A′1), . . . ,(A22k ,A′

22k ) is an enumeration of P([k]) × P([k]). If G and H are

p-graphs of types respectively included in [k] and in [k+ 1,k+ 22k ], we define

G �k H := relab1(ADDRk (G⊕H )),

where relab1 is the relabeling that transforms every port label in [k + 22k ] into the
default port label 1,

Rk := {(k+ j, i) | j ∈ [22k ], i ∈ Aj}∪ {(i,k+ j} | j ∈ [22k ], i ∈ A′j},

and ADDR is defined before Proposition 2.103. The asymmetric symbol �k represents
the fact that the right argument can have more port labels than the left one. Here is
the reason. If a context takes a p-graph G such that π(G) ⊆ [k] as argument, then
it may add new vertices to G, and edges between such a new vertex x and those
of G. For each such x, these edges depend only on the port labels of the vertices
of G. Hence, the edge additions defined by the considered context can be specified
by a pair (A,A′) of subsets of [k] attached to each such vertex x (as shown in the
proof of Proposition 2.103). Instead of using pairs of subsets of [k] as port labels, we
use integers in [k + 1,k + 22k ]. Informally, in an expression G �k H , the argument
H represents a context taking G as argument. This explains the asymmetry of the
operation �k . (The symmetry of �k is thus a particular property of the HR algebra).

Our aim is to get a criterium for VR-recognizability similar to the one of Theo-
rem 4.34 for HR-recognizability. We define, for a set L of simple graphs and k ∈N ,
an equivalence relation on p-graphs of type [k] as follows:

G ∼L,k G′ if and only if for every p-graph H of type included in
[k+ 1,k+ 22k ], we have

G �k H ∈ L ⇐⇒ G′�k H ∈ L.

Theorem 4.57 A set L of simple graphs is VR-recognizable if and only if the
equivalences ∼L,k are finite for all k .

Proof: For convenience we write ∼k instead of ∼L,k . The equivalences ∼k are
defined as the syntactic congruence ≈L, but in terms of particular contexts. Hence,
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for every two p-graphs G and G′ of type [k], G≈L G′ implies G∼k G′. Hence, if L is
VR-recognizable, the equivalences ∼k are all finite.

For proving the converse, we first define∼′k as the equivalence relation on graphs
of type [k] such that

G ∼′k G′ if and only if ADDR1(G)∼k ADDR1(G
′) for every R1 ⊆ [k]× [k].

Then ∼′k is finite if ∼k is finite. It has at most p · 2k2
classes if ∼k has p classes.

Let L be a set of simple graphs such that the equivalences ∼k , whence also the
equivalences ∼′k are finite. Let B be a finite set of k port labels and c be a context
in Ctxt(FVR) such that c(G) has type {1} for every p-graph G of type B. If follows
from Proposition 2.103 that there exists a finite set C of port labels disjoint with B, a
binary relation S ⊆ (B×B)∪ (C×B)∪ (B×C) and a p-graph H of type included in
C such that

c(G) := cGP(G)= relab1(ADDS(G⊕H )),

for every p-graph G of type B. (See Definition 4.56 for relab1.)
We let hB be a bijection of B to [k] and we define hC : C→ [k + 1,k + 22k ] as

follows. For a ∈ C, hC(a) := k + j such that Aj = {hB(b) | b ∈ B and (a,b) ∈ S} and
A′j = {hB(b) | b ∈ B and (b,a) ∈ S}. We let R be the image of S under the mapping
h := hB∪hC (i.e., R := {(h(a1),h(a2)) | (a1,a2)∈ S}), and R1 :=R∩ ([k]×[k]). Then
we have for every p-graph G of type B:

c(G)= (ADDR1(relabhB(G)))�k relabhC (H ).

Let G and G′ be p-graphs of type B, with B of cardinality k , such that relabhB(G)∼′k
relabhB(G

′), and c be a context expressed as above in terms of R, R1, hB and hC .
Then ADDR1(relabhB(G))∼k ADDR1(relabhB(G

′)). It follows that c(G) ∈ L implies
c(G′) ∈ L. This is true for all contexts, so we get G ≈L G′.

Hence G ≈L G′ if π(G)= π(G′) and relabhπ(G)
(G)∼′k relabhπ(G)

(G′), where k =
|π(G)|. This implies that the number of equivalence classes of ≈L of sort B is not
larger than the number of equivalence classes of ∼′k , hence is finite. Hence, L is
VR-recognizable.

The extension to labeled graphs is easy. It uses the expression of context of
Proposition 2.103 with one relation R for each edge label.

4.4.3 Comparison with the HR-recognizable sets

We now compare the HR-recognizable sets of simple graphs and the VR-recognizable
sets, as we did in Section 4.3.4 for the corresponding notions of equational sets. The
proof of this theorem uses notions and notation introduced in Definition 4.50.
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Theorem 4.58 Every VR-recognizable set L of (labeled) graphs is HR-recognizable.
Moreover, if L is effectively VR-recognizable then it is effectively HR-recognizable,
and similarly for semi-effective recognizability.

Proof: We first prove the first statement, using congruences. We let L be a
VR-recognizable set of (unlabeled) graphs and ∼ be a type-preserving and locally
finite congruence on the algebra GP that saturates L. We define as follows a binary
relation ≈ on s-graphs:

G ≈ H if and only if τ(G) = τ(H ) and, either G and H have both multiple
edges or they are both simple, β(G)= β(H ) and Int(G)∼ Int(H ).

In this definition, β and Int are the border and interior functions of Definition 4.50
respectively. It is clear that ≈ is a type-preserving and locally finite equivalence
relation on JS. We first prove that it saturates L. Let G and H be such that G≈H and
G ∈ L. Since G is a graph, we get G = Int(G)∼ Int(H )=H . Hence H ∈ L, because
∼ saturates L.

It remains to prove that ≈ is a congruence for the operations of FHR. Let
G,G′,H ,H ′ ∈ J S with G ≈G′ and H ≈H ′.

(1) If G is not simple, the same holds for G′ and for G � H and G′ � H ′. Hence
G � H ≈G′ � H ′ because τ(G � H )= τ(G′ � H ′). The proof is similar if any of G′,
H or H ′ is not simple.

(2) If G,G′,H ,H ′ are all simple and G � H is not simple, then β(G)� β(H ) is
not simple. But the same holds for β(G′)� β(H ′), hence G′ � H ′ is not simple and
G � H ≈G′ � H ′.

(3) We now assume that G,G′,H ,H ′,G � H ,G′ � H ′ are all simple. We have, by
using (4.5) of Definition 4.50,

β(G � H )= β(G)�β(H )= β(G′)�β(H ′)= β(G′ � H ′),

since β(G)= β(G′) and β(H )= β(H ′). We also have

Int(G � H )= Int(G)⊕ Int(H )∼ Int(G′)⊕ Int(H ′)= Int(G′ � H ′),

since Int(G) ∼ Int(G′), Int(H ) ∼ Int(H ′) and ∼ is a congruence. Hence G � H ≈
G′ � H ′.

The proofs that G ≈ G′ implies renh(G) ≈ renh(G′) and fgB(G) ≈ fgB(G
′) are

fully similar, by using (4.6) and (4.7) of Definition 4.50 respectively. Hence L is
HR-recognizable.

To prove the second statement (including another proof of the first statement), let
L= h−1

VR(C) where hVR is a homomorphism from GPt to a locally finite F tVR-algebra
A and C⊆A. We have to define a locally finite F tHR-algebra B, a homomorphism hHR

from JSt to B, and C ′ ⊆B, such that L= h−1
HR(C

′). We define B :=B1∪B2, where B1 :=
{⊥D |D ∈Pf (A)} and B2 is the set of all pairs (β,a) such that β is a simple s-graph
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with Intβ =∅ and a∈A has a sort included in P(τ (β))×P(τ (β)). The sort of⊥D is D
and the sort of (β,a) is τ(β). Furthermore, we define hHR(G)= (β(G),hVR(Int(G)))

if G is simple, and hHR(G)=⊥τ(G) otherwise. Finally, C ′ := {(∅,a) | a ∈ C}. Since
L consists of simple graphs, L= h−1

HR(C
′). It is straightforward to show, using (4.5),

(4.6) and (4.7) of Definition 4.50 (together with the fact that hVR is a homomorphism),
that B can be turned into a F tHR-algebra B such that hHR is a homomorphism from
JSt to B. We leave the details to the reader.25 By definition of B, the algebra B is
locally finite. Assume now that A is (semi-)effectively given. Since B2 is a decidable
subset of J S × A, the set B can be encoded by a standard encoding such that B is
(semi-)effectively given; again, we omit the details. If C is a decidable subset of A,
then C ′ is a decidable subset of B, and if hVR is computable, then so is hHR.

The extension of this proof to labeled graphs is straightforward (cf. the end of the
proof of Theorem 4.49).

The following result, proved in [CouWei] (Theorem 6.2 and Proposition 6.4), is
strikingly similar to Theorem 4.51.

Theorem 4.59 Let L be an HR-recognizable set of simple graphs. Each of the
following conditions implies that L is VR-recognizable:
(1) L has bounded tree-width;
(2) L is uniformly p-sparse for some p ∈N ;
(3) there exists n ∈N such that every graph in L is without Kn,n.

4.5 HR- and VR-equational and recognizable sets

For sets of simple graphs, we have the implications of Table 4.1. Their converses do
not hold, with the set {Kn,n | n > 0} as a counter-example (see Example 4.54(5)). For
sets of simple graphs without Kn,n for some n, the two implications in Table 4.1 are
equivalences. In both these cases, the family of HR-equational sets of graphs is incom-
parable with that of HR-recognizable sets, and the same holds for VR-equational and
VR-recognizable sets. To be precise, the set L1 of Proposition 4.32 is HR-equational
but not HR-recognizable, and the set of planar graphs is VR-recognizable but not
VR-equational. However, for sets of simple graphs of bounded tree-width (these sets
are without some Kn,n), we have the equivalences and the implication (without con-
verse) shown in Table 4.2.26 It is similar to the proper inclusion of the family of
regular languages (of words) in that of context-free languages.

Monadic second-order definable sets of graphs and monadic second-order trans-
ductions, to be studied in Chapters 5 and 7, will enrich the landscape.

25 As one example, for a bijection h : D→ E, we define (renh,D)B(⊥D) :=⊥E and (renh,D)B(β,a) :=
(renh(β),RELABh(a)), where RELABh := (relabg )A such that g(〈A,A′〉) = 〈h(A),h(A′)〉 for all
A,A′ ⊆D, cf. (4.6) of Definition 4.50.

26 See Corollary 4.38.
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Table 4.1 Sets of simple graphs.

HR-equational =⇒ VR-equational

HR-recognizable ⇐= VR-recognizable

Table 4.2 Sets of simple graphs of
bounded tree-width.

HR-recognizable ⇐⇒ VR-recognizable

⇓
HR-equational ⇐⇒ VR-equational

4.6 References

The family of HR-equational sets of graphs was first defined in terms of graph rewrit-
ings based on hyperedge replacement in [BauCou] and in [*Hab]. The analogous
definition of VR-equational sets is more complicated because the context-freeness
of a given vertex replacement rewriting system is not immediately visible from the
syntax and has to be checked by an algorithm. We refer the reader to [*EngRoz]. The
article [Cou87] defines an abstract (axiomatic) notion of context-free graph grammar
applied to certain grammars defined by vertex replacement.

The finiteness problem for HR-equational sets can be solved (see [*DreKH] or
[*Hab]) by means of a pumping lemma that generalizes the pumping lemma for
context-free languages (cf. Proposition 3.53). We use instead the Semi-Linearity
Theorem (known as Parikh’s Theorem) for context-free languages (Proposition 3.25).
We will further generalize it in Chapter 7 (Theorem 7.42).

Theorem 4.49 is proved in essentially the same way in [*Eng94] (the proof is
formulated in terms of transductions).

The implication (4) =⇒ (1) of Theorem 4.51 was first proved in [Cou95b] for
directed edge-labeled graphs (in a more complicated way).

The notion of an HR-recognizable set of graphs is based on a particular algebra, the
algebra JS and its many-sorted version. Similar or related algebraic structures on finite
graphs can be defined. In many cases, they yield the same notion of a recognizable set
of graphs (cf. Theorem 4.34 and Remark 4.55). Other results of this kind are proved
in [Cou94a], [CouLag], [CouMak] and [CouWei]. The article [BluCou06] defines as
equivalent two signatures of graph operations that act on the same graphs and yield
the same classes of equational and recognizable sets. It studies variants of FHR and
FVR that are equivalent to them.
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Certain HR equation systems have a unique solution in the algebra JS. Such systems
are used in [CouSén] in order to establish that if an HR-equational set of graphs is
minor-closed, then one can compute its finite set of excluded minors from an HR
equation system defining this set. The opposite construction will be presented in
Chapter 5 (Application 5.72). Both use monadic second-order logic.

Directed cographs are investigated in [CrePau]. This article characterizes them by
eight excluded induced subgraphs.
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Monadic second-order logic

This chapter defines monadic second-order logic, and shows how it can be used to
formalize the expression of graph properties. Monadic second-order formulas can
also be used to express the properties of sets of vertices and/or edges in graphs. The
Recognizability Theorem (Section 5.3.8) implies that a class of graphs characterized
as the class of (finite) models of a monadic second-order sentence is VR-recognizable,
and that it is HR-recognizable (but not necessarily VR-recognizable) if the sentence
is written with edge set quantifications.

It follows that the monadic second-order satisfiability problem for the class of
graphs of tree-width or of clique-width at most k is decidable for each k . Applications
to the construction of fixed-parameter tractable algorithms and other algorithmic
consequences will be developed in Chapter 6.

Although our first applications concern graphs, we will give the definitions and
prove the main results for the general case of relational structures because proofs are
not more difficult, and the corresponding results apply in a uniform manner to labeled
graphs represented, in several ways, by binary relational structures. However, rela-
tional structures with n-ary relations for n≥ 2 are actually interesting by themselves.
As we have shown in Section 1.9, they are useful to formalize betweenness and cyclic
ordering (and for relational databases).

In Sections 5.1 and 5.2, we review basic notions of logic, define monadic second-
order logic, and give some results that delineate its expressive power. In Section 5.3,
we establish the Recognizability Theorem and in Section 5.4 develop its conse-
quences regarding the decidability of monadic second-order satisfiability problems.
In Section 5.5, we present logical characterizations of (certain) recognizable sets of
trees. In Section 5.6, we give upper-bounds to the number of inequivalent formulas
of bounded quantifier-height.

5.1 Relational structures and logical languages

We will not discuss in detail syntactic questions such as the renaming of bound vari-
ables. Rather, we will give examples and rest on the intended meanings of formulas.
Our review of definitions will fix notation.
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5.1.1 Relational structures

Definition 5.1 (Relational signatures and structures) We will use logical structures
with relations of positive arity and constants, specified by relation symbols and nullary
function symbols respectively. Constants will be useful for representing the sources
of s-graphs. We will not use functions of positive arity.

A relational signature is a finite set R of symbols such that each symbol R∈R has
an associated natural number called its arity, denoted by ρ(R). We let R0 be the set
of those of arity 0 and call them constant symbols. We let Ri be the set of symbols of
arity i ≥ 1 and call them relation symbols. We let R+ :=⋃{Ri | i ≥ 1} and ρ(R) be
the maximal arity of a symbol in R. A relational signature R is binary if ρ(R)≤ 2.

A concrete R-structure is a tuple S = 〈DS ,(RS)R∈R+ ,(cS)c∈R0〉 such that DS is a
finite, possibly empty, set called the domain1 of S, each RS is a ρ(R)-ary relation on
DS , i.e., a subset of Dρ(R)

S called the interpretation of R, and each cS is an element of
DS called the interpretation of c. A (relational) structure is a concrete R-structure for
some relational signature R. An element cS is also called a constant of S. Several con-
stant symbols may have the same interpretation. We say that S is constant-separated
if cS �= dS for all c,d ∈R0, c �= d. An empty structure, i.e., a structure S with DS =∅,
is denoted ∅. The domain DS may be empty only if R0 = ∅.

A substructure of a concrete R-structure S = 〈DS ,(RS)R∈R+ ,(cS)c∈R0〉 is a con-
crete R-structure of the form S[X ] for some X ⊆ DS containing all constants of S
and defined as follows:

DS[X ] = X ,

cS[X ] = cS for all c ∈R0,

RS[X ] = RS ∩X ρ(R) for all R ∈R+.

We say that S[X ] is the substructure of S induced by X .
Let S,S ′ be concrete R-structures. An isomorphism from S to S ′ is a bijection

h : DS→DS ′ such that h(cS)= cS ′ for every c ∈R0 and, for every R in R+ and every
d1, . . . ,dρ(R) in DS , we have (h(d1), . . . ,h(dρ(R)))∈ RS ′ if and only if (d1, . . . ,dρ(R))∈
RS . We denote by S $ S ′ the existence of an isomorphism from S to S ′ and say
that S and S ′ are isomorphic. As for graphs (cf. Chapter 2) we define an abstract
R-structure as the isomorphism class [S]iso of a concrete R-structure S. We denote by
STRc(R) the set of concrete R-structures and by STR(R) the set of abstract ones. By
a class of structures, we mean a set of concrete structures closed under isomorphism.
It defines a set of abstract structures.

1 The domain of an R-structure is also frequently called its universe [*Lib04]. Since we only consider
finite structures the term “domain” is more appropriate. It is also customary to forbid empty domains.
Allowing or forbidding empty domains makes a difference for proof systems: ∃x.(x = x) is true in
nonempty domains only. Since we will not use any proof system (we only use logical formulas to
describe classes of graphs and more generally of relational structures), allowing empty structures is
harmless. Relational signatures and structures will always be finite as opposed to functional signatures
and algebras.
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We will use relational structures to represent finite combinatorial objects such as
words, terms and graphs of various types. By a representation, we mean a mapping
from a set of objects to a set of concrete or abstract structures. Isomorphic objects
(in particular graphs) must be mapped to isomorphic structures. A representation is
faithful if the converse also holds: two objects are isomorphic (hence, equal in the
cases of terms and words) if and only if their representing structures are isomorphic.

We now define several representations to be used in all further chapters.

Example 5.2 (Words, graphs and terms as relational structures) (1) We first
consider words over a finite alphabet A. We let WA := {suc} ∪ {laba | a ∈ A} be the
relational signature such that ρ(suc)= 2 and ρ(laba)= 1 for every a in A. For every
word w over A, we let �w� be the concrete WA-structure2 such that

D�w� := [n] if w has length n,
suc�w� := {(1,2),(2,3), . . . ,(n− 1,n)},
i ∈ laba�w� if and only if w[i] = a.

Hence, the elements of D�w� are the positions of the word w and suc�w�(x,y) holds
if and only if y is the successor of x in w. If u is the factor (also called subword)
of a word w starting at position i and ending at position j, then �u� is isomor-
phic to the substructure of �w� induced by the interval [i, j], which is a subset
of D�w�.

The empty word ε is thus represented by the empty structure. This may be incon-
venient in certain situations. We can also let �ε� be the structure with a singleton
domain and empty relations suc and laba. We will specify in each case if a variant of
the initially given definition is used. The same properties of words can be expressed
by first-order or by monadic second-order sentences via both representations.

More generally, we say that two representations are equivalent if the same proper-
ties of the represented objects can be expressed by sentences of the logical language
of interest,3 monadic second-order logic in most cases.

Yet another representation of words is possible. Let W

A be obtained from WA by

replacing suc by ≤, intended to denote the linear order of positions in a word w.
We let �w�
 be the concrete W


A-structure with domain [n], where n= |w|, and such
that laba�w�
 := laba�w� for each a ∈ A and ≤�w�
 is the natural order on [n]. The
two representations of words �w�
 and �w� are equivalent for monadic second-order
logic, but not for first-order logic (a classical fact, see [*Tho97a]). Fewer properties
of words can be expressed by first-order sentences through �w� than through �w�
.
2 Instead of [n], we could take as domain of �w� the interval [0,n−1] and we get an isomorphic structure.

Since isomorphic structures satisfy the same logical formulas, by Lemma 5.4 below, this alternative
representation yields the same logical expression of properties of words.

3 The notion of monadic second-order transduction, to be studied in Chapter 7, can formalize the transfor-
mation of a representation into another equivalent one and the corresponding translations of formulas.
But it is not necessary to use it at this stage, because the translations of formulas are easy to write directly.
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All representations we have defined above are faithful: different words are
represented by nonisomorphic structures.

For L⊆ A∗, we denote by �L� the class of concrete structures that are isomorphic
to �w� for some w ∈ L (and similarly for �L�
).

(2) We now explain how graphs can be represented by relational structures, in
such a way that simple graphs are faithfully represented. We let Rs := {edg} with
edg binary. With a concrete directed graph G, we associate the concrete Rs-structure
�G� := 〈VG,edgG〉, where the domain4 of �G� is its vertex set VG, and (x,y) ∈ edgG

if and only if there is an edge from x to y. We do the same if G is undirected and let
(x,y)∈ edgG if and only if there is an edge linking x and y: it follows that edgG is in this
case symmetric. Every concrete Rs-structure represents a graph and every concrete
Rs-structure S with symmetric relation edgS represents an undirected graph. The
structures representing isomorphic graphs are isomorphic. If a graph G is defined as
an abstract graph, then we let �G� also denote the corresponding abstract structure. In
the sequel, we will distinguish between concrete and abstract structures representing
graphs only when necessary.

The structure �G� does not contain information concerning the multiplicity of
edges. It is faithful for simple graphs,5 but is not for all graphs. We will define in
Section 5.2.5 a faithful representation of all graphs. However, for expressing logically
graph properties such as connectivity that do not depend on the multiplicity of edges,
the structure �G� is sufficient (cf. Section 1.3.1).

For directed graphs, we will sometimes use suc instead of edg. We will call y a
successor of x, and x a predecessor of y if (x,y) ∈ sucG. For rooted forests we will
use son instead of edg, cf. Definition 2.13.

For representing a p-graph G of type6 π(G)⊆ C, where C is a finite subset of A,
we will use the signature Rs,C := {edg} ∪ {laba | a ∈ C}, with laba unary for every
a, and the concrete Rs,C-structure �G�C := 〈VG,edgG,(labaG)a∈C〉, where labaG(x)
holds if and only if x is an a-port. Every p-graph is by definition simple, hence this
representation is faithful for the p-graphs in GP[C]. If C ⊆ D ⊆A (with D finite),
then �G�C and �G�D are equivalent representations for the p-graphs in GP[C], for
first-order and monadic second-order logic (�G�D is obtained from �G�C by adding
the empty sets labaG for a∈D−C). If G has type C, we denote �G�C also simply by
�G�. The mapping G �→ �G� is a faithful representation of all p-graphs. A structure S
in STR(Rs,C) is of the form �G�C for some p-graph G of type included in C (of type
C) if and only if the sets labaS form a partition7 of DS (a partition no part of which
is empty, respectively).

4 We denote D�G� by VG and edg�G� by edgG .
5 To be precise, for simple graphs G and H , a mapping : VG→ VH is an isomorphism from G to H if and

only if it is one from �G� to �H�.
6 The type of a p-graph G is the set π(G) of its port labels. The type of an s-graph G is the set τ(G) of its

source labels.
7 We allow the sets forming a partition of a set to be empty.
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For representing an s-graph G of type τ(G)⊆ C (in a faithful way if it is simple),
we use the above signature and let labaG(x) hold if and only if x is an a-source of G.
A structure S in STR(Rs,C) is of the form �G�C for some s-graph G of type included
in C (of type C) if and only if the sets labaS are empty or singletons (or are all
singletons, respectively). As for p-graphs, �G�C is also denoted by �G� if G has type
C. For s-graphs of type C we will also need a variant of �G� in which the sources
are viewed as constants. Thus, we use the relational signature Rss,C := {edg} ∪C,
where each element of C is a constant symbol. If G = 〈VG,edgG,srcG〉, we let �G�
be 〈VG,edgG,(aG)a∈C〉 with aG := srcG(a) for each a in C. (These representations
are equivalent for both first-order logic and monadic second-order logic.) For this
variant, a structure S in STR(Rss,C) is of the form �G� for some s-graph G of type
C if and only if it is constant-separated. A substructure of the Rss,C-structure �G�
representing an s-graph G is thus �G[X ]� for a set of vertices X containing all sources;
hence it represents an induced subgraph of G (cf. Definition 2.12) having the same
sources as G. Note that Rss,C cannot be used for s-graphs of type properly included
in C, because every constant symbol in C must have an interpretation.

These representations can be adapted so as to represent (K ,�)-labeled graphs,
p-graphs and s-graphs (faithfully if they are simple). We recall from Definition 2.11
that K is the set of vertex labels, � is the set of edge labels and that (K ∪�)∩A=∅.
We use unary relations labκG for κ ∈ K in the obvious way to represent the vertex
labels of a graph G. For each λ ∈�, we use a binary relation edgλG consisting of all
pairs (x,y) such that there is in G an edge labeled by λ from x to y (or between x and
y if G is undirected). Hence, a labeled p-graph G of type C is faithfully represented
by �G� := 〈VG,(edgλG)λ∈�,(labaG)a∈K∪C〉. The corresponding relational signatures
are denoted by Rs,[K ,�], Rs,C,[K ,�] and Rss,C,[K ,�]. (This notation emphasizes the
role of C in contrast to that of K .)

We recall from Definition 2.11 that binary R-structures without constants corre-
spond bijectively to simple directed (R1,R2)-labeled graphs.8 We will frequently
identify such a graph G with the relational structure �G� that represents it faithfully.

The representation �w� of a word w ∈ A∗, initially defined in (1), can alternatively
be described as �G(w)�, where G(w) is the directed (A,∅)-labeled path with VG(w)=
[|w|], edgG(w) = {(i, i+ 1) | i ∈ [|w|− 1]} and vertex i has label w[i].

If L is a set of (labeled) concrete or abstract graphs, we denote by �L� the set of
concrete or abstract structures �G� for G ∈ L. If L is a set of (labeled) p-graphs or
s-graphs of type included in C, for some finite C ⊆A, we denote by �L�C the set of
structures �G�C for G ∈ L. Moreover, if C is the smallest such set, i.e., if C is the
union of all (finitely many) types of the elements of L, then we also denote �L�C by
�L�. Note that �L� is not equal to {�G� |G ∈ L}, except when L is homogenous. Note
also that �L� is defined only when L has bounded type, i.e., L⊆GP[C] or L⊆J S[C]

8 To be precise this only holds if R2 �= ∅, due to the convention in Definition 2.11 that (K ,∅)-labeled
graphs are graphs with unlabeled edges.
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for some finite C ⊆A; this suffices for our purposes, because all VR-equational and
HR-equational sets have bounded type (with C =A(S) for some VR or HR equation
system S).

(3) We now define faithful representations of terms by relational structures. For
every finite functional signature F , we let RF be the relational signature Rs,[F ,[ρ(F)]]
(with edg changed into son), i.e.,

RF = {soni | 1≤ i ≤ k}∪ {labf | f ∈ F},

where k = ρ(F), soni is binary and labf is unary. Recall from Definition 2.14 that
the syntactic tree Syn(t) of a term t over F is an (F , [ρ(F)])-labeled rooted tree. With
t ∈ T (F) we associate the concrete RF -structure �t� := �Syn(t)�. So,

�t� = 〈Nt ,(soni t)1≤i≤k ,(labf t)f ∈F 〉,

where the domain of �t� is the set Nt of nodes of Syn(t) (which is the set Pos(t) of
positions of t, cf. Definitions 2.3 and 2.14), (u,v) ∈ soni t if and only if v is the i-th
son of u (we use the terminology of trees), and labf t =Occ(t, f ). This is obviously a
faithful representation: as discussed after Definition 2.14 the mapping t �→ [Syn(t)]iso
is injective.

For some proofs it is important (or convenient) to add the constant symbol rt to
RF , which, in every structure �t�, is interpreted as the root of Syn(t), i.e., �t� =
〈Nt ,(soni t)1≤i≤k ,(labf t)f ∈F ,rtt〉 with rtt := roott (the first position of t). In this way
we obtain an equivalent representation, because the root of t is the unique element v

of Nt that does not satisfy soni t(u,v) for any i ∈ [k] and u ∈ Nt . This representation
corresponds to viewing the syntactic tree of t as a labeled s-graph with one source (its
root). As for s-graphs, rt can also be taken as a unary symbol such that rtt(u) holds
if and only if u is the root of t.

A variant, equivalent to the above defined representation (with or without rt),
is as follows: instead of k binary “son” relations, we use one binary relation son
and k unary “brother” relations bri defined, for each i = 1, . . . ,k , by bri t(v) :⇐⇒
∃u.soni t(u,v).9 This obviously corresponds to a variant of Syn(t) with unlabeled
edges and (F ∪[ρ(F)])-labeled nodes, such that each node has one label from F and
one label from [ρ(F)].

As for words (where �ε� can be chosen in different ways) we will use a single nota-
tion, here RF and �t�, for these slightly different relational signatures and structures.
We will specify which is used if necessary.

In Definition 2.7, we have defined two bijectionsμ from A∗ (for a finite alphabet A)
to T (UA), where UA is a functional signature containing one constant symbol (corre-
sponding to the empty word) and a unary function symbol for each a in A. We deduce

9 For representing terms defining cographs, the relations bri are not necessary as we have seen in
Example 1.38 of Section 1.7.1 because the operations ⊕ and ⊗ are commutative.
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from it two other faithful representations of words: w ∈ A∗ is represented by �μ(w)�.
The empty word is represented by a nonempty structure. These representations are
equivalent to the representation �w� defined in (1) for both first-order and monadic
second-order logic.

As for words, if L is a set of terms over F , we denote by �L� the class of concrete
structures that are isomorphic to �t� for some t ∈ L.

We now relate the representations of the subterms and the contexts of t with �t�,
cf. Definition 2.6. If u is a position of a term t ∈ T (F), we define �t�/u to be the
RF -structure �Syn(t)/u�. As discussed after Definition 2.14, Syn(t/u) $ Syn(t)/u
and hence the structure �t/u� is isomorphic to �t�/u (which is a substructure of
�t� if we use the signature RF with binary relations soni). For defining con-
texts as terms, we use w as special variable. We represent a context t ↑ u by the
RF∪{w}-structure �t� ↑ u :=�Syn(t)↑ u�. Since Syn(t ↑ u)$ Syn(t)↑ u, the structure
�t ↑ u� is isomorphic to �t� ↑ u (which is not a substructure of �t� because u has a
different label). In the case where RF and RF∪{w} contain the constant symbol rt,
we define rt�t�/u := u (which implies that �t�/u is not any more a substructure of �t�)
and rt�t�↑u := rtt .

(4) We now explain how to represent a graph G and one of its tree-decompositions
by a single relational structure. This can be done in several ways.

If (T , f ) is a tree-decomposition of a graph G such that, without loss of generality,
NT ∩VG =∅, we let S0(G,T , f ) be the relational structure 〈VG∪NT ,edgG,sonT ,boxf 〉
that expands �G� by adding new domain elements (the nodes of T ) and the binary
relations sonT and boxf ; the latter one is the set of pairs (u,x) such that u ∈ NT and
x∈ f (u). By using this relational structure, one can express by logical formulas proper-
ties of tree-decompositions, for example that every box is a clique (cf. Definition 2.71
about chordal graphs and their tree-decompositions).

It may be interesting to expand �G� in a more economical way, by adding only new
relations. It easily follows from Proposition 2.67(2) that every nonempty graph has an
optimal 1-downwards increasing tree-decomposition (T , f ) such that | f (rootT )| =
1. In this case, the mapping x �→ max( f −1(x)) is a bijection from VG to NT , cf.
Remark 2.55(a). Hence, we can identify VG and NT and simplify S0(G,T , f ) into
S1(G,T , f ) := 〈VG,edgG,sonT ,boxf 〉.

Every normal tree-decomposition (cf. Example 2.56(6)) satisfies the above prop-
erties (it can still be optimal by Corollary 2.73(3)). If (T , f ) is normal, then one can
even omit boxf and use S2(G,T , f ) := 〈VG,edgG,sonT 〉 because the mapping f can
be determined from edgG and sonT as follows:

f (u) :=
{u}∪ {w | (w,u) ∈ son∗T for some (v,w) ∈ edgG ∪ edg−1

G such that (u,v) ∈ son∗T },
for every u ∈ NT = VG, hence boxf can be expressed by a monadic second-order
formula.
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If G is k-chordal, one can even define sonT for some normal tree T by a monadic
second-order formula depending on k (there is one such formula for each k). This
means that an optimal tree-decomposition (T , f ) of G represented by S1(G,T , f ) can
be defined “inside” the structure �G�. We will prove this fact in Proposition 9.56(2).
We will explain in Section 7.6 the consequences of results of this type. �

Definition 5.3 (Sizes of structures) We will only consider finite relational structures
over finite signatures. Hence, just as (finite) graphs, structures can be inputs of
algorithms. The time and space complexities of such algorithms will be analyzed
in terms of the sizes of the input structures. We define first the size of a relational
signature R as

‖R‖ := 1+�R∈R(1+ρ(R)).

Since the empty signature must be somehow described, its size is not 0. We now
define the size of an R-structure S as

‖S‖ := ‖R‖+ |DS |+�R∈R+ρ(R) · |RS |.

The size of the empty structure over the empty signature is also positive. These
definitions are essentially the ones of [*FluGro] and [*Lib04], where they are justified
by explicit encodings of structures by words of length O(‖S‖). Let us see what
these definitions yield when applied to the representations of words, graphs and
terms. For a word w over A represented by the WA-structure �w� we have ‖�w�‖ =
�(1+ |w| + |A|), but for the representation by a W


A-structure, we have ‖�w�
‖ =
�(1+ |w|2+ |A|) which justifies to prefer the first representation. For a p-graph G
of type π(G)= C represented by the Rs,C -structure �G�, we have ‖�G�‖ =�(1+
|VG|+|edgG|+|C|)=O(|G|2). For a simple s-graph G of type τ(G)=C represented
by the Rss,C -structure �G�, we have ‖�G�‖=�(1+|VG|+|edgG|+|C|)=�(‖G‖).
For a term t in T (F) (where F is finite and ρ(F) is the maximal arity of its symbols)
represented by the RF -structure �t�, we have ‖�t�‖ =�(|t|+ |F |+ρ(F)).

5.1.2 First-order logic

We let V0 be a countable alphabet of lowercase letters called first-order variables.
Let R be a relational signature.10 A term is either a variable (from V0) or a constant
symbol (from R0). The atomic formulas are s = t, R(t1, . . . , tρ(R)) for R ∈R+ and
terms s, t, t1, . . . , tρ(R), and the Boolean constants True and False. The first-order
formulas over R are formed from atomic formulas with the propositional connectives
∧,∨,¬,⇒,⇔, and quantifications ∃x and ∀x for x ∈ V0.

10 For discussing syntax, a relational signature is frequently called a vocabulary. We prefer the term
“relational signature,” which refers to the types of objects described by formulas. Furthermore, it is
similar to the term “functional signature” used for algebras.
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Let X ⊆ V0. We will denote by FO(R,X ) the set of first-order formulas over
R with free variables in X . In order to specify the free variables that may occur
in a formula ϕ, we will write it ϕ(x1, . . . ,xn) if ϕ ∈ FO(R,{x1, . . . ,xn}). (Some
variables in {x1, . . . ,xn} may have no free occurrence in ϕ.) If ϕ(x1, . . . ,xn) is a
first-order formula over R, if S ∈ STRc(R), and if d1, . . . ,dn ∈ DS , then we write
S |= ϕ(d1, . . . ,dn) or (S,d1, . . . ,dn) |= ϕ to mean that ϕ is true in S if xi is given
the value di for i = 1, . . . ,n. If ϕ has no free variables, it is said to be closed,
equivalently to be a sentence. It describes a property of S and not of tuples
of elements of S. We will denote by sat(S,ϕ,(x1, . . . ,xn)) the set {(d1, . . . ,dn) ∈
Dn

S | S |= ϕ(d1, . . . ,dn)}. It is important to specify x1, . . . ,xn as arguments of sat
for two reasons: first to specify the order of the variables, and second because
the list of variables is not fixed in a unique way by ϕ. If ϕ is edg(x,y), we
may need to consider sat(�G�,edg(x,y),(u,x,y)) or sat(�G�,edg(x,y),(x,y,z,u)) or
sat(�G�,edg(x,y),(y,x)). If n= 0, then sat(S,ϕ,())=∅ if S |=¬ϕ, and sat(S,ϕ,())=
{()} if S |=ϕ, where ()denotes the empty tuple. If S |=ϕ, then S satisfiesϕ or is a model
of ϕ.11 We denote by MOD(ϕ) the class of models of ϕ. (It is a class by Lemma 5.4
below.) But in many cases, we will also denote by MOD(ϕ) the corresponding set of
abstract structures.

Sentences express properties of a structure S whereas formulas express properties
of elements of S specified as values of the free variables. For example, the formula
ϕ(x) over Rs defined as:

∀y1,y2,y3[edg(x,y1)∧ edg(x,y2)∧ edg(x,y3)⇒ (y1 = y2∨ y1 = y3∨ y2 = y3)]

expresses12 that the vertex x of the considered directed graph G has outdegree at most
2. The sentence ∀x.ϕ(x) expresses that G has outdegree at most 2. We now give an
example concerning words. We let A = {a,b,c}. A formula θ can be constructed in
such a way that, for every word w ∈ A∗,

�w� |= θ if and only if w ∈ ab∗c.

Here is θ :

∃x[laba(x)∧∀y(¬suc(y,x))]
∧∀x[(laba(x)∨ labb(x))⇒∃y(suc(x,y)∧ (labb(y)∨ labc(y)))]
∧∀x[labc(x)⇒∀y(¬suc(x,y))].

Note that θ has models that are not representations of words.13 So, θ characterizes
�ab∗c� as a subset of �A∗�; it does not characterize the abstract structures representing
the words of ab∗c among those of STR(WA).

11 We define S |= ϕ only if ϕ is a sentence.
12 As usual, ∀y1,y2,y3 abbreviates ∀y1 ∀y2∀y3.
13 For example, S with DS = {1,2,3}, sucS = {(1,2),(2,3),(3,2)}, labaS = {1}, labbS = {2,3}, labcS =∅.
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5.1.3 Second-order logic

Although we will only use its fragment called monadic second-order logic, we
describe second-order logic for completeness. We will use a countable set of variables
Vω consisting of first-order variables as in Section 5.1.2 and of relation variables,
denoted by uppercase letters X ,Y ,X1, . . . ,Xm. Each relation variable has an arity
which is a positive integer (ρ(X ) is the arity of X ), and there are countably many
variables of each arity.

Let R be a relational signature. We now define the second-order formulas over
R. The atomic formulas are: True, False, s= t, R(t1, . . . , tn) and X (t1, . . . , tn) where
s, t, t1, . . . , tn are terms, R ∈R, X ∈ Vω and n= ρ(R)= ρ(X )≥ 1. The formulas are
constructed from the atomic formulas with the propositional connectives and the quan-
tifications ∃x,∀x,∃X ,∀X for first-order and relation variables. (Instead of a formal
syntax we give examples below.) For X ⊆Vω, we will denote by SO(R,X ) the set of
second-order formulas over R with free variables in X , and by FO(R,X ) the subset of
those that have only first-order quantifications. The notation ϕ(X1, . . . ,Xm,x1, . . . ,xn)

indicates that the free variables of ϕ belong to {X1, . . . ,Xm,x1, . . . ,xn}.
The size |ϕ| and the quantifier-height qh(ϕ) of a formula ϕ are defined inductively

as follows:

|ϕ| := 1, qh(ϕ) := 0 if ϕ is atomic,

|¬ϕ| := |ϕ|+ 1, qh(¬ϕ) := qh(ϕ),

|ϕ∧ψ | := |ϕ∨ψ | := |ϕ⇒ψ | := |ϕ⇔ψ | := |ϕ|+ |ψ |+ 1,

qh(ϕ∧ψ) := qh(ϕ∨ψ) := qh(ϕ⇒ψ) := qh(ϕ⇔ψ) :=max{qh(ϕ),qh(ψ)},
|∃X .ϕ| := |∀X .ϕ| := |∃x.ϕ| := |∀x.ϕ| := |ϕ|+ 1,

qh(∃X .ϕ) := qh(∀X .ϕ) := qh(∃x.ϕ) := qh(∀x.ϕ) := qh(ϕ)+ 1.

It is clear that qh(ϕ)= 0 ifϕ is quantifier-free and that |ϕ| is the number of subformulas
of ϕ. (A subformula is counted once for each of its occurrences.)

We now consider the semantics of a formula ϕ(X1, . . . ,Xm,x1, . . . ,xn). If S ∈
STRc(R), if E1, . . . ,Em are relations on DS of respective aritiesρ(X1), . . . ,ρ(Xm) and if
d1, . . . ,dn ∈DS , then the notation S |= ϕ(E1, . . . ,Em,d1, . . . ,dn) means that ϕ is true in
S for the values E1, . . . ,Em of X1, . . . ,Xm and d1, . . . ,dn of x1, . . . ,xn respectively. We let
sat(S,ϕ,(X1, . . . ,Xm),(x1, . . . ,xn)) be the set of (m+n)-tuples (E1, . . . ,Em,d1, . . . ,dn)

of relations on DS and of elements of this set such that S |= ϕ(E1, . . . ,Em,d1, . . . ,dn).
Let X := {X1, . . . ,Xm, x1, . . . ,xn}. An X -assignment in S is a mapping γ with domain
X such that γ (Xi) is a ρ(Xi)-ary relation on DS for each i= 1, . . . ,m and γ (xj) ∈DS

for j= 1, . . . ,n. It is just another way of formalizing a tuple (E1, . . . ,Em,d1, . . . ,dn). We
will also use the notation (S,γ ) |= ϕ instead of S |= ϕ(E1, . . . ,Em,d1, . . . ,dn) where
γ (Xi) = Ei and γ (xj) = dj. Thus, sat(S,ϕ,(X1, . . . ,Xm),(x1, . . . ,xn)) can be viewed
as the set of all X -assignments γ such that (S,γ ) |= ϕ. The notions of sentence, of
satisfaction and of model defined in Section 5.1.2 extend in the obvious way.
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Here are some examples. We let β(X ) be the formula in SO(∅,{X }):

∀x,y,z([X (x,y)∧X (x,z)⇒ y= z] ∧ [X (x,z)∧X (y,z)⇒ x= y]),

where X is binary. It expresses that X is a functional relation, and that the corre-
sponding function is injective. The following formula α(X ) expresses that X is an
automorphism14 of a simple graph G represented by the structure �G� in STR(Rs).
Here is α(X ):

β(X )∧∀x∃y.X (x,y)∧∀x∃y.X (y,x)∧∀x,y,x′,y′ [edg(x,y)

∧((X (x,x′)∧X (y,y′))∨ (X (x′,x)∧X (y′,y)))⇒ edg(x′,y′)].

Hence, G has a nontrivial automorphism if and only if �G� satisfies the sentence15

∃X [α(X )∧∃x,y(x �= y∧X (x,y))].

Consider now the formula γ (Y1,Y2) in SO(∅,{Y1,Y2}):

∃X [β(X )∧∀x{(Y1(x)⇔∃y.X (x,y))∧ (Y2(x)⇔∃y.X (y,x))}].

It expresses that there exists a bijection (the binary relation defined by X ) between the
sets Y1,Y2, handled as unary relations. Hence, the following second-order sentence
characterizes the nonregular language {anbn | n≥ 1} as a subset of {a,b}∗:

∃x[laba(x)∧∀y(¬suc(y,x))]
∧∀x[laba(x)⇒∃y(suc(x,y)∧ (laba(y)∨ labb(y)))]
∧∀x,y[labb(x)∧ suc(x,y)⇒ labb(y)]
∧∃Y1,Y2[γ (Y1,Y2)∧∀x[laba(x)⇔ Y1(x)] ∧∀x[labb(x)⇔ Y2(x)]].

This is an example of a language that cannot be characterized by a monadic second-
order sentence (a particular type of second-order formula to be defined in the next
section). Note that the sentences of the first three lines characterize the regular
language a+b+.

5.1.4 Monadic second-order logic

The main logical language used in this book is monadic second-order logic, which
lies between first-order and second-order logic.

All formulas will be written with variables from a set V1 consisting of the countable
set V0 of first-order variables and the countably many relation variables of arity one

14 An automorphism of G is an isomorphism of G to itself.
15 We write x �= y instead of ¬x= y in order to get shorter and more readable formulas.
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from Vω. Since a relation with one argument is nothing but a set, these relation
variables will be called set variables.

Let R be a relational signature. A monadic second-order formula (MS formula
in short) over R is a second-order formula written with R and the variables of V1:
the quantified and free variables are first-order or set variables. In order to get more
readable formulas, we will write x ∈X and x /∈X instead of X (x) and¬X (x), where X
is a set variable. For X ⊆V1, we will denote by MS(R,X ) the set of monadic second-
order formulas over R, with free variables in X . Occasionally, monadic second-order
formulas may have free relation variables of any arity, but their quantifications apply
to first-order and set variables only.

In Section 1.3.1 we have constructed monadic second-order sentences expressing
that a graph is connected and that it is 3-vertex colorable. We now give other examples.
The sentence δ ∈MS({suc},∅) given below expresses that a word in A∗ has odd length.
Since this property does not depend on letters, δ does not use the unary relations laba

for a ∈ A. Here is δ:

∃X [δ′(X )∧∃x(x ∈ X ∧∀y(¬suc(x,y)))],

where δ′(X ) is

∃x[x ∈ X ∧∀y(¬suc(y,x))] ∧∀x,y[suc(x,y)⇒ (x ∈ X ⇔ y /∈ X )].

For every nonempty word w ∈ A∗, there is a unique set X ⊆ D�w� satisfying δ′: the
elements of X are the odd positions in w. The sentence δ expresses that the last
position is odd, i.e., that the considered word has odd length.

The next lemma is a basic fact of model theory. If h is a mapping : D→ D′ and
E ⊆Dk , we define h(E) := {(h(d1), . . . ,h(dk)) | (d1, . . . ,dk) ∈ E}.

Lemma 5.4 Let h : S → T be an isomorphism of concrete R-structures. If ϕ ∈
SO(R,{X1, . . . ,Xm,x1, . . . ,xn}), then

sat(T ,ϕ,(X1, . . . ,Xm),(x1, . . . ,xn))= h(sat(S,ϕ,(X1, . . . ,Xm),(x1, . . . ,xn))),

i.e., is the set of tuples (h(E1), . . . ,h(Em),h(d1), . . . ,h(dn)) such that the tuple
(E1, . . . ,Em,d1, . . . ,dn) belongs to sat(S,ϕ,(X1, . . . ,Xm),(x1, . . . ,xn)).

If ϕ is a sentence, then S |= ϕ if and only if T |= ϕ.

Proof: By induction on the structure of ϕ.

From the last assertion, we get that if ϕ is a sentence (n= m= 0; () is the empty
sequence of variables), then sat(S,ϕ,(),()) is well defined if S is an abstract structure;
it is then equal to {()} or to ∅.
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5.1.5 Logical definitions of properties of relational structures

Let L be a logical language, typically first-order logic second-order logic or monadic
second-order logic, designated respectively by FO, SO or MS, or one of the exten-
sions of monadic second-order logic defined below. Let R be a relational signature.
We denote by L(R,∅) the corresponding set of sentences over R. If ϕ ∈ L(R,∅),
then the set of concrete R-structures S such that S |= ϕ, denoted by MOD(ϕ), is
closed under isomorphism by Lemma 5.4, hence is a class of structures. We say
that such a class is L-definable. If C ⊆ STRc(R) is a class of R-structures, then
the class {S ∈ C | S |= ϕ} = MOD(ϕ) ∩ C is said to be L-definable with respect
to C.16

We say that a property P of structures S in STRc(R) is L-expressible if, for some
sentence ϕ of L(R,∅), it is equivalent to S |= ϕ for all S in STRc(R). Thus, a class
of structures D ⊆ STRc(R) is L-definable if and only if the membership in D of a
concrete R-structure is L-expressible.

A property P of tuples (E1, . . . ,Em,d1, . . . ,dn) in structures S of STRc(R) is
L-expressible if there exists a formula ϕ in L(R,{X1, . . . ,Xm,x1, . . . ,xn}) such
that, for all S ∈ STRc(R) and all (E1, . . . ,Em,d1, . . . ,dn) of appropriate types,
P(S,E1, . . . ,Em,d1, . . . ,dn) holds if and only if S |= ϕ(E1, . . . ,Em,d1, . . . ,dn).

Similar definitions hold for L-expressibility with respect to a class C ⊆ STRc(R):
in the above, just replace STRc(R) by C.

We adapt these definitions to finite combinatorial objects such as words, terms,
partial orders, graphs, cyclic orders (cf. Section 1.9) represented by relational struc-
tures. Let C be a class of such objects and rep be a mapping : C→ STRc(R) with the
natural requirement that isomorphic objects are mapped to isomorphic structures. We
say that rep is faithful if, conversely, for all H ,K ∈ C, H is equal or isomorphic to K
if rep(H ) is isomorphic to rep(K).

We say that a property P of the elements of C is L-expressible via rep if there exists
a sentence ϕ in L(R,∅) such that H has property P if and only if rep(H ) |= ϕ, for
every H ∈ C (and similarly for properties of tuples, when relevant). In the case where
rep is faithful, and only in this case, we say that a set L⊆ C is L-definable via rep if
membership in L is L-expressible via rep.

To take an example, although the representation of a graph G by �G� is not faithful
(it does not distinguish multiple edges), connectedness, a property that does not
depend on the multiplicity of edges, is MS-expressible via this representation. (This
example has been considered in Section 1.3.1.) But we will not say that the set
of connected graphs is MS-definable. However, we can say that the set of simple
connected graphs is MS-definable: the representation �·� is faithful on the class C of
simple graphs.

16 If C is L-definable, then a class of structures D⊆ C is L-definable with respect to C if and only if it is
L-definable, and the same holds for L-expressibility defined next. See Corollary 5.12 for a use of this
observation.
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The expressibility of P and the definability of L are always with respect to some
reference class C that we will sometimes leave implicit. We will usually omit the
mention of the representation rep for words, terms and graphs, whenever it equals �·�
as defined in Example 5.2. For a set L of p-graphs (or simple s-graphs) of bounded
type, the default representation is �·�C where C is the union of all types of the elements
of L.17 In each case, several variants of these default representations are considered in
Example 5.2, which are all L-equivalent for every L∈ {FO,MS,SO} in the following
precise sense. For another mapping rep′ : C→ STRc(R′), we say that rep and rep′ are
L-equivalent if the same properties of the elements of C are L-expressible via rep and
via rep′, effectively (i.e., the corresponding transformations of sentences in L(R,∅)
and L(R′,∅) are computable).

For a set L⊆ C, let rep(L) be the class of structures in STRc(R) that are isomorphic
to some structure rep(H ) with H ∈ L. It can easily be shown that L is L-definable via
rep (with respect to C) if and only if rep(L) is L-definable with respect to rep(C).18

If the class rep(C) of all structures that represent objects in C (modulo isomorphism)
is L-definable, then L is L-definable via rep if and only if rep(L) is L-definable (see
Footnote 16). For example, if C is the class GP[C] of p-graphs of type included in C,
then the class of structures �C�C is MS-definable (cf. Example 5.2(2)). Hence, a set
L of p-graphs is MS-definable if and only if �L� is MS-definable (see Example 5.2(2)
for the definition of �L�).

The hierarchy of logical languages FO ⊂ MS ⊂ SO yields a corresponding
hierarchy of graph properties: every FO-expressible property is MS-expressible
(implicitely, via �·�) but not conversely. In Sections 5.2.5 and 5.2.6, we will introduce
intermediate languages between MS and SO and compare their expressive power with
that of MS.

Why considering relational structures with constants?

The root of the syntactic tree of a term and the sources of an s-graph have been
defined in Examples 5.2(2) and 5.2(3) as constants of their representing structures,
but we have observed that these constants can be replaced by unary relations denoting
singleton sets. This observation can be extended to all relational structures with
constants. For every relational signature R with R0 �= ∅, we let R∗ :=R+ ∪ LabR
where LabR := {laba | a ∈R0} is a new19 set of unary relation symbols. For every
S ∈ STRc(R), we let S∗ be the structure in STRc(R∗) such that labaS∗ := {aS} for
every a ∈ R0 and RS∗ = RS for every R ∈ R+. We denote by STRc∗(R∗) the class
of structures in STRc(R∗) such that the sets denoted by the relation symbols laba

in LabR are singletons. The mapping S �→ S∗ is a bijection between (concrete or
abstract) R-structures and R∗-structures satisfying this condition. Every first-order,

17 Note that L-definability is only defined for sets of p-graphs of bounded type, and similarly for simple
s-graphs.

18 In both directions, the same sentence can be used. Faithfulness of rep is needed in the if direction.
19 i.e., disjoint from R.
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second-order or monadic second-order formula over R can be rewritten into one over
R∗ expressing in S∗ the same property as the given formula20 in S. However, this
transformation may increase the quantifier-height: the atomic formula R(a,x) where
a is a constant symbol and x is a variable is transformed into ∃y(laba(y)∧R(y,x)).
In the proof of the Recognizability Theorem, it will be important to express the
operations on p-graphs and s-graphs in terms of the disjoint union of structures and
of transformations specified by quantifier-free formulas. In order to express in this
way the parallel-composition, a basic operation of the HR algebra, we cannot handle
sources of graphs with unary relations, hence, we must use constants.

5.1.6 Decidability questions

Let R be a relational signature, let C ⊆ STRc(R) and let L be a logical language as
in the previous section. The L-theory of C is the following set of sentences:

ThL(C) := {ϕ ∈L(R,∅) | S |= ϕ for every S ∈ C}.

We say that the L-theory of C is decidable if some algorithm can test the membership
in this set of any given sentence belonging to L(R,∅). The L-satisfiability problem
for C is the problem of deciding whether a given sentence of L(R,∅) belongs to the
following set:

SatL(C) := {ϕ ∈L(R,∅) | S |= ϕ for some S ∈ C}.

We will always consider logical languages L such that L(R,∅) is closed under nega-
tion. Hence, the L-theory of C is decidable if and only if its L-satisfiability problem
is decidable, because SatL(C)= {ϕ ∈L(R,∅) | ¬ϕ /∈ ThL(C)}.

Similar definitions hold for a class C of objects via a representation rep : C →
STRc(R). We use the same default representations as in Section 5.1.5. As an exam-
ple, for a finite functional signature F and a set of terms L ⊆ T (F): ThL(L) :=
{ϕ ∈L(RF ,∅) | �t� |= ϕ for every t ∈ L} = ThL(�L�).
Theorem 5.5 The first-order theory of the class of graphs, of the class of graphs of
degree at most 3, and of the class of planar graphs of degree at most 3 are undecidable.
Thus, so are their monadic second-order and their second-order theories.21 �

The first assertion of this theorem is due to Trakhtenbrot. See Section 5.7 for
references. We will exhibit in Section 5.4 some conditions on a set of graphs C
ensuring that its MS-theory and its MS-satisfiability problem are decidable. It is thus

20 Conversely, every first-order, second-order or monadic second-order formula expressing a property
of structures in STRc∗(R∗) can be rewritten into an equivalent formula over R that is respectively
first-order, second-order or monadic second-order. See Lemma 7.5 for the details.

21 These results concern only finite graphs. However, the first-order theory of the class of all finite and
infinite graphs is also undecidable. See any textbook on first-order logic.
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desirable to separate the decidable cases from the undecidable ones. The following
result about grids is a basic tool for obtaining undecidability results for monadic
second-order theories.

We define a rectangular grid as a directed graph isomorphic, for some positive
integers n and m, to the graph Gn×m defined as follows (cf. Example 2.56(3)). We let
its vertex set VGn×m be [0,n− 1]× [0,m− 1] and its edges be the pairs ((i, j),(i′, j′))
such that 0≤ i≤ i′ ≤ n−1, 0≤ j≤ j′ ≤m−1 and, either i′ = i+1 and j′ = j, or i′ = i
and j′ = j+ 1. A square grid is a graph isomorphic to Gn×n. We denote und(Gn×m)

by Gu
n×m, cf. Proposition 2.106.

Theorem 5.6 The monadic second-order satisfiability problem for any set of graphs
containing graphs isomorphic to Gn×n or to Gu

n×n for infinitely many integers n is
undecidable.

Proof: We first consider the case of directed graphs. One can construct a monadic
second-order sentence γ that defines the square grids with respect to the class of
simple directed graphs (see Proposition 5.14(1) in Section 5.2.3). Consider a Turing
machine M with total alphabet AM = {a1, . . . ,am} (input letters, states, end markers,
blank symbol) and an initial configuration wM ∈ A∗M . If (U1, . . . ,Um) is a partition of
the set of vertices of a square grid Gn×n, then one can view it as defining a sequence
of n words of length n in A∗M . Each line of the grid encodes a word, where a line of
Gn×n is an induced subgraph with set of vertices [0,n− 1] × { j} for some j and the
(i+ 1)-th letter of this word is ak if and only if (i, j) ∈ Uk . The property of being a
line can be expressed by an MS formula by Proposition 5.14(2).

A partition (U1, . . . ,Um) of VGn×n encodes a computation sequence of M if the first
line encodes the initial configuration wM (with blank symbols to the right), and every
two consecutive lines encode configurations that form a correct transition of M . If
some line encodes a configuration with an accepting state, then we get from Gn×n

and the sequence of configurations encoded by (U1, . . . ,Um) a halting computation
of M .

There is an algorithm that constructs, for every Turing machine M , an MS for-
mula ψM (X1, . . . ,Xm) such that for every n, �Gn×n� |= ψM (U1, . . . ,Um) if and only
if (U1, . . . ,Um) encodes on Gn×n a halting computation of M . It follows that if the
considered set of graphs C contains infinitely many square grids, then M halts if and
only if some graph in C satisfies the sentence ϕM :

γ ∧∃X1, . . . ,Xm.ψM ,

if and only if ϕM belongs to SatMS(C). Hence, for each set C of directed graphs
containing infinitely many square grids, the halting problem of Turing machines
reduces to the MS-satisfiability problem for C. The latter problem is thus undecidable.

The proof is the same for a set of undirected graphs with the help of Proposi-
tion 5.14(3).
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Remark 5.7 Let us assume that in this construction, the machine M is deterministic
and that ψM is defined in such a way that, when M halts, the square grid on which its
unique halting computation is encoded is of minimal size. It follows that there exists
at most one relational structure (up to isomorphism, it is then �Gn×n� for some n)
satisfying ϕM . Hence, since the halting problem for deterministic Turing machines
is undecidable, even if we know that a monadic second-order sentence ϕ has only
finitely many models up to isomorphism, we cannot construct this set by an algorithm
that takes all sentences ϕ as input. �

We have just discussed the problem of verifying if a given sentence is true in some
structure of a (fixed) set. We now introduce briefly the problem of verifying if a
given sentence is true in a single given structure. This problem, called the model-
checking problem, is trivially decidable since structures are by definition finite and
the validity of a sentence is an effective notion. Its algorithmic complexity depends on
the considered structures and on the logical language of the given sentence. This issue
is the subject of Descriptive Complexity (see Section 5.7 for references). We only
quote two results relevant to the algorithmic applications to be studied in Chapter 6:

(1) For each first-order sentence ϕ, one can check if S |= ϕ in time O(|ϕ| · ‖S‖w),
where w is the width of ϕ defined as the maximum number of free variables of a
subformula of ϕ (Proposition 6.6 in [*Lib04] or Proposition 4.24 in [*FluGro]).

(2) Each level of the polynomial hierarchy contains a model-checking problem for
some monadic second-order sentence that is complete for polynomial reductions
(Proposition 11 in [MakPnu]).

These results distinguish sharply first-order from monadic second-order logic with
respect to the complexity of model-checking. Furthermore, the second result shows
that monadic second-order logic is, by itself, of no help for obtaining efficient
model-checking algorithms over all graphs. However, by restricting the tree-width or
the clique-width of input graphs or relational structures, we will obtain polynomial
algorithms, as we will see in Chapters 6 and 9.

5.2 Graph properties expressible in monadic
second-order logic

In the previous section and in Chapter 1, we have given several examples of graph
properties expressed by logical formulas (via �·�). We now review some tools that
help to construct formulas. Since they work for second-order logic, we present them
for this language. We will also review some negative results that show that certain
properties are not expressible in a particular language.

In order to shorten notation, we will use x to denote tuples of pairwise distinct first-
order variables (typically x= (x1, . . . ,xn)) and X to denote tuples of pairwise distinct
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relation variables (typically X = (X1, . . . ,Xm)). In such cases, we will denote by d an
n-tuple (d1, . . . ,dn) of values in the domain DS of a concrete structure S, where
di is taken as value of xi for each i. These values need not be pairwise distinct.
We will denote similarly by E an m-tuple of relations on DS of respective arities
ρ(X1), . . . ,ρ(Xm), which need not be pairwise distinct. We will also regard x and
X as the corresponding sets of variables by using notation like y ∈ x or z ∈ X ∪ x.
With this convention, SO(R,X ∪ x) denotes SO(R,{X1, . . . ,Xm,x1, . . . ,xn}). If ϕ ∈
SO(R,X ∪ x), then the use of the notation S |= ϕ(E,d) implies that E is an m-tuple
of relations on DS of appropriate arities and that d ∈Dn

S .
Two formulas ϕ and ϕ′ in SO(R,X ∪ x) are equivalent, denoted ϕ ≡ ϕ′, if for

all concrete R-structures S, for all relations E1, . . . ,Em on DS of respective arities
ρ(X1), . . . ,ρ(Xm) and all tuples d ∈Dn

S , we have

S |= ϕ(E,d) if and only if S |= ϕ′(E,d).

Two equivalent formulas express the same property of the relevant tuples (E,d) in
every structure S ∈ STRc(R). Equivalence can be relativized to a subset C of STRc(R):
equivalent formulas express the same property of the relevant tuples in the structures
of C.

5.2.1 Substitutions and relativization

If ϕ is a formula in SO(R,X ), x1, . . . ,xn are pairwise distinct first-order variables in
X and t1, . . . , tn are terms,22 then we denote by ϕ[t1/x1, . . . , tn/xn] the result of the
substitution of t1, . . . , tn for x1, . . . ,xn. If some of the terms t1, . . . , tn are variables then,
before substitution is done, some bound variables of ϕ may have to be renamed. For
example, if ϕ(x1,x2,x3) is

∀y[edg(x1,y)∨ edg(y,x2)] ∧∀u[edg(x1,u)⇒ edg(u,x3)],

then ϕ[y/x1,u/x2,y/x3] is (or can be, because bound variables can be renamed in
several ways):

∀y′[edg(y,y′)∨ edg(y′,u)] ∧∀u[edg(y,u)⇒ edg(u,y)].

In many cases, we will simplify the notation ϕ[t1/x1, . . . , tn/xn] into ϕ(t1, . . . , tn).
Clearly, if ϕ is monadic second-order or first-order, then so is ϕ[t1/x1, . . . , tn/xn]. This
transformation satisfies the following property, which shows its semantic meaning:

Lemma 5.8 Let ϕ belong to SO(R,{X1, . . . ,Xm,x1, . . . ,xn,u1, . . . ,uq}), let t1, . . . , tn
be terms and let y1, . . . ,yp be the variables occurring in these terms. Let

22 We recall that a term is either a first-order variable or a constant symbol (we do not use function symbols
of positive arity for writing logical formulas).
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ψ(X1, . . . ,Xm,y1, . . . ,yp,u1, . . . ,uq) be the formula ϕ[t1/x1, . . . , tn/xn]. For every
concrete R-structure S, for all relations E1, . . . ,Em on DS of respective arities
ρ(X1), . . . ,ρ(Xm) and for all d ∈Dp

S and f ∈Dq
S , we have

S |=ψ(E,d, f ) if and only if S |= ϕ(E,d ′1, . . . ,d ′n, f ),

where for all i = 1, . . . ,n, we let d ′i := aS if ti = a and a belongs to R0, and d ′i := dj

if ti = yj . �

We now define substitutions to relation symbols of formulas intended to define the
corresponding relations. Let ϕ ∈ SO(R,X ∪U ∪ x), where X = (X1, . . . ,Xp), U =
(U1, . . . ,Uq) and x= (x1, . . . ,xn). For each i= 1, . . . ,p, we letψi ∈ SO(R,U ∪x∪wi),
where wi is a sequence of ρ(Xi) pairwise distinct first-order variables with x∩wi =∅.
We let ϕ[λw1 ·ψ1/X1, . . . ,λwp ·ψp/Xp] be the formula in SO(R,U ∪ x) constructed
as follows:

• by renaming some bound variables if necessary, one defines a formulaϕ′ equivalent
to ϕ where no variable of X ∪U ∪ x is bound;
• then, one replaces every atomic formula Xi(u1, . . . ,uρ(Xi)) of ϕ′ (where

the terms u1, . . . ,uρ(Xi) need not be pairwise distinct) by the formula
ψi[u1/y1, . . . ,uρ(Xi)/yρ(Xi)] (which belongs to SO(R,U ∪ x)), where wi =
(y1, . . . ,yρ(Xi)).

It is clear that ϕ[λw1 ·ψ1/X1, . . . ,λwp ·ψp/Xp] is first-order (resp. monadic second-
order) if ϕ and the formulas ψi are first-order (resp. monadic second-order). With this
notation, we have the following lemma:

Lemma 5.9 Let S ∈ STRc(R), let E be a q-tuple of relations on DS of appropriate
arities and let d ∈ Dn

S . For each i = 1, . . . ,p, let Ti be the ρ(Xi)-ary relation on DS

defined by

(a1, . . . ,aρ(Xi)) ∈ Ti if and only if S |=ψi(E,d,a1, . . . ,aρ(Xi)).

Then
S |= ϕ[λw1 ·ψ1/X1, . . . ,λwp ·ψp/Xp](E,d) if and only if

S |= ϕ(T1, . . . ,Tp,E,d).

Proof: Straightforward verification from the definition, by using an induction on the
structure of ϕ.

We use the λ-notation λwi · ψi because ψi defines (for fixed values of U ∪ x)
a mapping : Dρ(Xi)

S → {True,False}. We will also simplify the notation ϕ[λw1 ·
ψ1/X1, . . . ,λwp · ψp/Xp] into ϕ[Z1/X1, . . . ,Zp/Xp] (or just ϕ(Z1, . . . ,Zp)) in the
case where, for each i, Zi is a relation variable such that ρ(Zi) = ρ(Xi), ψi is
Zi(y1, . . . ,yρ(Xi)) and wi = (y1, . . . ,yρ(Xi)).
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We now present the relativization of a formula to a substructure.

Lemma 5.10 Let ϕ ∈ SO(R,{Y1, . . . ,Ym,x1, . . . ,xn}) and let X be a set variable not
in {Y1, . . . ,Ym}. A formula ϕ′ in SO(R,{Y1, . . . ,Ym,X ,x1, . . . ,xn}) can be constructed
such that for every S ∈ STRc(R), every m-tuple of relations E = (E1, . . . ,Em) on DS

with Ei ⊆ Dρ(Yi)
S , every subset A of DS that contains aS for each a ∈R0, and every

d ∈ An:

S |= ϕ′(E,A,d) if and only if S[A] |= ϕ(E′,d),

where E′i := Ei ∩Aρ(Yi) for each i. If ϕ is first-order or monadic second-order, then
ϕ′ is first-order or monadic second-order respectively.

Proof: We can assume that X does not occur in ϕ. (If X is bound in ϕ, then we
rename its bound occurrences.) We let ϕ′ be associated with ϕ by the following
inductive definition, where ϕ may have free variables of all types (relation variables
as well as first-order variables):

ψ ′ =ψ for every atomic formula ψ ,
(ψ1 op ψ2)

′ =ψ ′1 op ψ ′2 where op ∈ {∧,∨,⇒,⇔},
(¬ψ)′ = ¬ψ ′,
(∀x.ψ)′ = ∀x[x ∈ X ⇒ψ ′] and (∃x.ψ)′ = ∃x[x ∈ X ∧ψ ′],
(∀Y .ψ)′ = ∀Y .ψ ′ and (∃Y .ψ)′ = ∃Y .ψ ′.23

In each case, and by induction, we get that qh(ψ ′)= qh(ψ).

The formula ϕ′, called the relativization of ϕ to X , will be denoted by ϕ � X .
Semantically, it expresses the relativization to the substructure induced by X of the
property expressed by ϕ. Its quantifier-height is the same as that of ϕ.

5.2.2 Transitive closure and path properties

We now consider the logical expression of the reflexive and transitive closure T ∗ of a
binary relation T . In Section 1.3.1, we have already defined the monadic second-order
formula TC[R;x,y]:

∀X [x ∈ X ∧∀u,v(u ∈ X ∧R(u,v)⇒ v ∈ X )⇒ y ∈ X ].

In every structure S, this formula defines the binary relation R∗S . One can also use
it for defining the relation T ∗ if T is not a relation of the considered structure but
is defined by some formula, for example by α(u,v) equal to edg(u,v)∨ edg(v,u).
The relation T may be expressed by a formula with free variables besides u and v.

23 Since set variables, such as Y , are always used in formulas of the form x ∈ Y , we need not specify that
Y ⊆ X (and similarly for arbitrary relation variables). This construction must be modified if we use set
predicates as we will do in Section 5.2.6, cf. Remark 5.26.
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Such a formula can be β(u,v,Y ) defined as edg(u,v) ∧ u ∈ Y ∧ v ∈ Y to take
another example about graphs. Then, the formula (TC[R;x,y])[λu,v · α/R], more
simply denoted by TC[(λu,v · α);x,y] and defined as the result of the substitution
of the formula α for the relation symbol R in TC[R;x,y], expresses that the ver-
tices x and y are the ends of a possibly empty undirected path (cf. Lemma 5.9).
The formula x ∈ Y ∧ y ∈ Y ∧ TC[(λu,v · β);x,y] expresses that there is a directed
Y -path from x to y, i.e., a directed path from x to y in the subgraph induced
by Y .

Note that TC[(λu,v ·γ );x,y] is a monadic second-order formula if γ is a monadic
second-order formula. With these tools, we can express by monadic second-order
formulas many properties of paths in graphs. In the next lemma, we write formulas
over the signature Rs, intended to express some basic graph properties.24

Proposition 5.11 There exist monadic second-order formulas expressing in �G� the
following properties of vertices x,y and of a set of vertices X of a directed graph G:

P1: G is strongly connected;
P2: x,y ∈ X and there is a directed X -path from x to y;
P3: X is a connected component of G;
P4: G, assumed to be simple, is a rooted tree;25

P5: for G assumed without circuit, X is the set of vertices of a directed path from x
to y;

P6: G is planar.

For every finite set C of source labels and every positive integer k , the following
property of an s-graph G of type included in C is monadic second-order expressible
in �G�C :

P7: G has tree-width at most k .26

Note that, except P4, these properties do not depend on the multiplicity of edges.
They can be expressed logically for all graphs via the representation �·�.
Proof: We will denote by ϕi, i = 1, . . . ,6, the formula expressing property Pi, in a
concrete Rs-structure S = �G�.

(1) ϕ1 is the formula ∀x,y.TC[edg;x,y]. It is trivially true in the empty structure
that represents the empty graph. An empty directed graph is strongly connected. (For
the same reason, we defined an empty graph as connected, cf. Definition 2.9.)

(2) ϕ2 is x ∈ X ∧TC[(λu,v ·β);x,y], where β is edg(u,v)∧ u ∈ X ∧ v ∈ X .

24 See Chapter 2 for graph theoretical terminology.
25 More precisely, this means that the property of being a rooted tree is MS-expressible with respect to

the class C of simple directed graphs (see Section 5.1.5). Similarly, in the next property P5, C is the
class of directed graphs without circuit.

26 In other words, the set of s-graphs TWD(≤ k ,C) is MS-definable. For the definition of �G�C see
Example 5.2(2).
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(3) ϕ3 is ∃y[y ∈ X ∧ ∀x(x ∈ X ⇔ TC[(λu,v · α);x,y])] where α is edg(u,v) ∨
edg(v,u).

(4) Let G be simple. That it has no circuits (and hence, no loops) can be expressed
by the sentence γ :

∀x,y(TC[edg;x,y]⇒¬edg(y,x)).

Then ϕ4 is the sentence

γ ∧∃x∀y.TC[edg;x,y] ∧∀x,y,z(edg(x,z)∧ edg(y,z)⇒ x= y),

expressing that G has no circuits, that every vertex is reachable from some vertex
(the root) by a directed path and that every vertex is of indegree at most 1. (We recall
that rooted trees have edges directed from the root towards the leaves.) Note that if
we add to ϕ4 the condition that every vertex has outdegree at most one, we obtain a
sentence ϕ′4 expressing that G is a directed path.

(5) The formula ϕ2(x,y,X ) expresses that x and y belong to X and there is a directed
X -path from x to y. Hence the formula ϕ′2(x,y,X ) defined as27

ϕ2(x,y,X )∧∀Y [Y ⊆ X ∧ϕ2(x,y,Y )⇒ X = Y ],
expresses that x and y belong to X and that X is the set of vertices {z0,z1, . . . ,zk} of a
directed path x= z0→ z1→ z2→···→ zk−1→ zk = y that is minimal in the sense
that there is no edge zi→ zj for i+ 1 < j. Hence, this path cannot be shortened by a
“shortcut”; there may exist several minimal paths of different lengths from x to y. If
x= y, then X = {x}. This construction is valid even if G has circuits.

We now want to construct a formula ϕ5(x,y,X ) describing all directed paths from
x to y, not only the minimal ones. We assume that G has no circuits (otherwise the
construction is not possible, see Proposition 5.13 below). In order to express that X
is linearly ordered by the relation edg∗G[X ], we let ϕ′5(X ) be

∀x,y[x ∈ X ∧ y ∈ X ⇒ ϕ2(x,y,X )∨ϕ2(y,x,X )].
Let ϕ5(x,y,X ) be the formula defined as

x ∈ X ∧ y ∈ X ∧ϕ′5(X )∧∀z ∈ X [ϕ2(x,z,X )∧ϕ2(z,y,X )].
It says that X is linearly ordered by edg∗G[X ] with first element x and last element y.
If x = y, then X = {x}. This is equivalent to the fact that X is the set of vertices of a
directed path from x to y because the graph G is finite and without circuit.

(6) This has been proved in Corollary 1.15 by means of the characterization of
planar graphs in terms of excluded minors and the formalization of minor inclusion
by MS-formulas.

27 For readability, Y ⊆ X replaces ∀y[y ∈ Y ⇒ y ∈ X ], X = Y replaces ∀x[x ∈ X ⇔ x ∈ Y ] and ϕ2(x,y,Y )

stands for ϕ2[Y/X ], cf. Section 5.2.1 for substitutions of variables.
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(7) For Property P7, we first consider graphs (without sources, i.e., C = ∅ and
�G�C = �G�). For each integer k , we know by Corollary 2.60(2) (Section 2.4.2)
that there is a finite set of excluded minors characterizing the graphs of tree-width at
most k . Corollary 1.14 gives the desired sentence ϕ7,k .

We now consider an s-graph G of type C ′ included in C, represented by the
Rs,C -structure �G�C . We have noted in Section 2.4.2 that it has tree-width at most k if
and only if the graph fgC ′(und(G)�KC′) has tree-width at most k , hence, if and only
if � fgC ′(und(G)�KC′)� |= ϕ7,k . The latter condition is equivalent to �G�C |= ϕ′7,k ,C
where ϕ′7,k ,C is the sentence ϕ7,k [λu,v · θ/edg] and θ is

edg(u,v)∨
∨

a,b∈C,a�=b

(laba(u)∧ labb(v)).

Thus, ϕ′7,k ,C expresses property P7.

Note that sentence ϕ7,k does not specify any tree-decomposition of width k . How-
ever, it follows from Example 5.2(4) that, for each k , one can construct a second-order
sentence (not a monadic one) ψk of the form ∃X .θ(X ) where X is a binary relation
variable and θ(X ) is a monadic second-order formula, such that ψk is true in �G�
if and only if G has a normal tree-decomposition (T , f ) of width at most k . The
binary relation that is the intended value of X is sonT to be used in the structure
S2(G,T , f )= 〈VG,edgG,sonT 〉 (cf. Example 5.2(4)). The formula θ(X ) is of the form
θ1(X )∧ θ2(X ), where θ1(X ) expresses that sonT determines a rooted tree T that is
normal for G, and θ2(X ) expresses that |f (u)| ≤ k+1 for every u ∈NT . The formula
θ2(X ) uses a monadic second-order formula μ(X ,u,w) that defines in �G�, for every
binary relation sonT satisfying θ1(X ), the binary relation boxf = {(u,w) |w ∈ f (u)},
cf. Example 5.2(4). We will discuss in Section 7.6 the possibility of replacing ψk by
a monadic second-order sentence that can specify at least one tree-decomposition of
width k of any graph of tree-width at most k .28

At the end of Section 5.1.2, we have shown that the regular language ab∗c is
MS-definable, i.e., that the class �ab∗c� of WA-structures that represent the words of
ab∗c is MS-definable with respect to the class of structures representing words. We
now consider the MS-definability of the latter class.

Corollary 5.12 For every alphabet A, the class of WA-structures �A∗� is
MS-definable. Similarly, for every finite functional (possibly many-sorted) signature
F , the class of RF -structures �T (F)� is MS-definable.

28 It is not known yet whether the class CWD(≤ k) of graphs of clique-width at most k is monadic second-
order definable. Since it is not closed under taking minors, the proof for tree-width cannot extend.
However, this class is closed under taking induced subgraphs, hence is characterized by a set of minimal
excluded induced subgraphs. This set is {P4} for k = 2 and is infinite (and not yet characterized) for
k ≥ 3. If this set would be monadic second-order definable, then so would be CWD(≤ k). The monadic
second-order definability of the class of comparability graphs is provable in this way (see [Cou06a],
Lemma 5.1).
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Proof: Easy constructions using the sentences ϕ′4 and ϕ4 of the proof of Proposi-
tion 5.11, respectively for words and terms. Such constructions can be done for the
variants of �w� and �t� defined in Example 5.2. We omit the details.

It follows that for every language L ⊆ A∗, the class of WA-structures �L� is
MS-definable if and only if it is MS-definable with respect to the class �A∗�. Hence,
L is MS-definable if and only if �L� is MS-definable. A similar statement holds for
terms.

We now review some graph properties that are not MS-expressible.29

A directed (resp. undirected) graph is Hamiltonian if it has at least two vertices
and a circuit (resp. a cycle) going through all vertices. A perfect matching is a set of
undirected edges that link each vertex of X to a single vertex of Y and vice versa,
where {X ,Y } is a bipartition of the vertex set of the graph.

Proposition 5.13 The following properties are not MS-expressible:

(1) Two sets X and Y have equal cardinality.
(2) A simple graph is Hamiltonian, or has a perfect matching.
(3) In a simple directed graph, a set of vertices X is that of a directed path from x

to y.
(4) A simple graph has a nontrivial automorphism.

Proof: We will use the result for words corresponding to Theorem 1.16 (see
Section 1.10): if L ⊆ {a,b}∗ is the set of words w such that �w� |= ϕ where ϕ is
an MS sentence, then L is a regular language.30

(1) Assume that we have a formula ψ ∈MS(∅,{X ,Y }) such that for every set S
and every V ,W ⊆ S:

S |=ψ(V ,W ) if and only if Card(V )= Card(W ).

Then the MS sentence ψ[λx · laba(x)/X ,λx · labb(x)/Y ] belonging to MS(W{a,b},∅)
characterizes (as a subset of {a,b}∗) the language E of words having as many occur-
rences of a and b. This language is not regular, so we get a contradiction with the
above result.

(2) With every word w ∈ {a,b}+ represented by the structure �w� =
〈[n],suc�w�, laba�w�, labb�w�〉, we associate the graph Kw with set of vertices [n]
and an edge from i to j if and only if i ∈ laba�w� and j ∈ labb�w� or vice versa. Hence
Kw is a complete bipartite directed graph. It is Hamiltonian if and only if w belongs
to the language E already used in (1).

Let us now assume the existence of a sentence η in MS(Rs,∅) that defines the
Hamiltonian graphs among the simple directed ones. The FO formula μ(x1,x2) equal
to (laba(x1)∧ labb(x2))∨ (labb(x1)∧ laba(x2)) defines in �w� the edges of Kw (note

29 Recall from Section 5.1.5 that the default representation of a graph G is �G�.
30 We will actually reprove this result in a more general setting in Section 5.3.9, cf. Corollary 5.66.
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that D�w� = VKw). It follows that for every word w ∈ {a,b}∗ of length at least 2, we
have

w ∈ E if and only if Kw is Hamiltonian if and only if �w� |= η[λx1,x2 ·μ/edg].
This would imply that the words in E of length at least 2 form a regular language,
which is not the case. This contradiction completes the proof.

The proof is the same for undirected graphs and for perfect matchings because a
complete bipartite graph Kn,m has a Hamiltonian cycle or a perfect matching if and
only if n=m.

(3) Assume that we have a formula ϕ ∈ MS(Rs,{x,y,X }) expressing that, in a
simple directed graph, X is the set of vertices of a directed path from x to y. Then the
MS sentence

∃X [∀u(u ∈ X )∧∃x,y(ϕ(x,y,X )∧ x �= y∧ edg(y,x))]
expresses that the considered graph assumed to have at least three vertices is
Hamiltonian. This is not possible by (2), hence no such formula ϕ exists.

(4) The proof is similar to that of (2). With every word of the form anbcdm with n≥
2, m≥ 2, we associate the graph Hn,m with vertex set [−n,m+1] and undirected edges
between i and i+1 for every i ∈ [−n,m−1] and between 0 and m+1. (The vertices in
[−n,−1] correspond to the occurrences of a, those in [1,m] to the occurrences of d, 0
is the occurrence of b and m+1 is that of c.) This graph has a nontrivial automorphism
if and only if n=m, if and only if the given word belongs to the nonregular language
{anbcdn | n≥ 2}. Hence, no monadic second-order sentence can express that a graph
has a nontrivial automorphism. We omit a detailed writing of the formula analogous
to μ(x1,x2) in (2).

In Remark 5.21 we will prove in a similar way that the property for a graph to have
a spanning tree of degree at most 3 is not MS-expressible.

5.2.3 A worked example: the definition of square grids

The rectangular grid Gn×m is defined in Section 5.1.6 as the graph with set of vertices
V :=[0,n−1]×[0,m−1] and set of directed edges consisting of the pairs ((i, j),(i′, j′))
such that (i, j),(i′, j′) ∈ V and either i′ = i and j′ = j+ 1 or i′ = i+ 1 and j′ = j. If
x→ y in Gn×m, we say that y is a successor of x and that x is a predecessor of y.

The north-, west-, south- and east-borders of Gn×m are the following sets of
vertices:

Xn = [0,n− 1]× {m− 1}, Xw = {0}× [0,m− 1],
Xs = [0,n− 1]× {0}, and Xe = {n− 1}× [0,m− 1].

A set of the form [0,n− 1]× { j} is called a line of Gn×m.
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Figure 5.1 The well-coloring of the grid G4×4.

The well-coloring of Gn×m is the 4-tuple of sets of vertices Y0,Y1,Y2,Y3 such that

(i, j) ∈ Y0 if and only if i≡ 0 and j ≡ 0 (mod 2),

(i, j) ∈ Y1 if and only if i≡ 0 and j ≡ 1 (mod 2),

(i, j) ∈ Y2 if and only if i≡ 1 and j ≡ 0 (mod 2),

(i, j) ∈ Y3 if and only if i≡ 1 and j ≡ 1 (mod 2).

Figure 5.1 shows the well-coloring of G4×4, where a vertex is colored by k if it
belongs to Yk .

All these notions will be used in the following proposition in order to prove that
the class of square grids, i.e., of graphs isomorphic to Gn×n for some n ≥ 2, is
MS-definable, and to identify their lines. These constructions are used in the proof
of Theorem 5.6.

We let W be the set of set variables {Xn,Xw,Xs,Xe,Y0,Y1,Y2,Y3}, and W ′ be
W ∪{Ua,Ub,Uc}.

Proposition 5.14

(1) There exists a formula θ in MS(Rs,W) such that, for every simple directed graph
G and every mapping ν : W→P(VG), we have (�G�,ν) |= θ if and only if G is
isomorphic to the square grid Gn×n for some n≥ 2 by a bijection h : VG→ VGn×n

such that h(ν(Xn)), h(ν(Xw)), h(ν(Xs)) and h(ν(Xe)) are the four borders of Gn×n

and h(ν(Y0)), h(ν(Y1)), h(ν(Y2)) and h(ν(Y3)) form the well-coloring of Gn×n.
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There is a sentence γ in MS(Rs,∅) that defines the square grids with respect
to the class of simple directed graphs.

(2) There exists a formula χ in MS(Rs,W ∪ {Z}) such that for every (W ∪ {Z})-
assignment ν in �G� that satisfies θ , we have

(�G�,ν) |= χ if and only if h(ν(Z)) is a line of Gn×n (where h is as in (1)).
(3) These results extend to simple undirected graphs and the undirected square grids

Gu
n×n := und(Gn×n). One constructs formulas θ ′ in MS(Rs, W ′), γ ′ in MS(Rs,∅)

and χ ′ in MS(Rs,W ′ ∪ {Z}). A W ′-assignment ν ′ in �G� that satisfies θ ′ defines
an isomorphism from G to Gu

n×n, the sentence γ ′ defines the undirected square
grids with respect to the class of simple undirected graphs and the formula χ ′
satisfies the same property as in (2), for θ ′ and Gu

n×n.

Proof: (1) We let θ0 express the following conditions concerning a simple directed
graph G given with sets of vertices Xn,Xw,Xs,Xe,Y0,Y1,Y2,Y3. These conditions are
intended to characterize the grids G2n×2n for n≥ 1:

(1.1) G is connected and has no circuits;
(1.2) Y0,Y1,Y2,Y3 form a partition of VG and G is bipartite with bipartition

{Y0 ∪ Y3,Y1 ∪ Y2}; assuming this we will call a vertex, a successor of y or
a predecessor of y that belongs to Yi, an i-vertex, an i-successor of y or an
i-predecessor of y respectively;

(1.3) every vertex has at most one i-successor and at most one i-predecessor for
each i;

(1.4) G[Xn] is a directed path of even length consisting alternatively of 1- and
3-vertices; its first vertex is a 1-vertex that is the unique element of Xn ∩Xw;
its last vertex is a 3-vertex that is the unique element of Xn∩Xe; the condition
that G[Xn] is a directed path is MS-expressible by Proposition 5.11 (see P4)
and Lemma 5.10; the other conditions are easy to formalize;

(1.4′) G[Xe] is a directed path of even length consisting alternatively of 2- and
3-vertices; its first vertex is a 2-vertex which is the unique element of Xs∩Xe;
its last vertex is a 3-vertex which is the unique element of Xn ∩Xe;

(1.4′′) and (1.4′′′) state similar conditions on the sets Xs and Xw, see Figure 5.1;
(1.5) a 1-vertex in Xn has a 3-successor and no 0-successor; a 3-vertex in Xn−Xe has

a 1-successor and no 2-successor; the 3-vertex in Xn ∩Xe has no successors;
(1.5′), (1.5′′) and (1.5′′′) state similar properties of Xe,Xs,Xw, see Figure 5.1; in par-

ticular a 1-vertex in Xw has a 0-predecessor and no 3-predecessor; a 0-vertex
in Xw−Xs has a 1-predecessor and no 2-predecessor; the 0-vertex in Xw ∩Xs

has no predecessors;
(1.6) for each vertex x in VG − (Xn ∪Xe) there exist y,z,u such that y �= z, x→ y,

x→ z, y→ u and z→ u;
(1.7) the unique directed path from the vertex in Xs∩Xw with vertices having colors

0,2,3,1,0,2,3,1, . . . in this order reaches the unique vertex in Xn ∩ Xe; this



342 Monadic second-order logic

condition can be expressed with the help of the transitive closure construction
of Section 5.2.2.

Conditions (1.1)–(1.6) characterize the well-colored rectangular grids of the form
G2n×2m for n ≥ 1,m ≥ 1. In particular, Conditions (1.4) and (1.5) express how the
borders must be. Conditions (1.3) and (1.6) express how the neighbourhood of a vertex
not on any border must be. The alternation of colors in Condition (1.7) specifies an
“ascending staircase” from left to right. This condition holds if and only if m= n. If
n=m= 1 the path defined by this condition has only three vertices, with respective
colors 0,1,3.

It is not hard to modify this construction in order to characterize the grids of the
form G(2n+1)×(2n+1) for n≥ 1 by a formula θ1. Hence, we take θ0∨ θ1 as formula θ .
As sentence γ , we take ∃W .θ .

(2) A line of G given with Xn,Xw, . . . ,Y3 as above is a set L⊆ VG such that:

(2.1) G[L] is a directed path from a vertex in Xw to a vertex in Xe;
(2.2) either L⊆ Y0 ∪Y2 or L⊆ Y1 ∪Y3.

This gives the construction of χ .

(3) We now extend this construction to simple undirected graphs. Let G be so and let
(Ua,Ub,Uc)∈P(VG)

3 define a proper vertex 3-coloring of G.31 We let G(Ua,Ub,Uc)

be the simple directed graph G′ such that:

VG′ := VG,

EG′ := {(u,v) | u− v is an edge of G and

(u ∈Ua∧ v ∈Ub)∨ (u ∈Ub∧ v ∈Uc)∨ (u ∈Uc ∧ v ∈Ua)}.
It is clear that G = und(G′), and Gn×m = und(Gn×m)(Ua,Ub,Uc) for some proper
vertex 3-coloring (Ua,Ub,Uc). Such a coloring of und(G4×4) is shown in Figure 5.2.
Thus, G is isomorphic to Gu

n×n for some n≥ 2 if and only if there exists a proper vertex
3-coloring (Ua,Ub,Uc) such that G(Ua,Ub,Uc) is isomorphic to Gn×n for some n≥ 2.

Hence in order to extend the constructions of (1) and (2) to simple undirected
graphs, we let θ ′ be the formula

κ(Ua,Ub,Uc)∧ θ [(λu,v ·α)/edg],

where κ expresses that (Ua,Ub,Uc) defines a proper vertex 3-coloring of the given
graph G (cf. Chapter 1, Section 1.3.1) and α is the following formula, which directs
the edges of G according to the coloring defined by (Ua,Ub,Uc):

edg(u,v)∧ [(u ∈Ua ∧ v ∈Ub)∨ (u ∈Ub∧ v ∈Uc)∧ (u ∈Uc ∧ v ∈Ua)].
31 Proper means that two adjacent vertices have different colors.
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Figure 5.2 A proper 3-coloring of Gu
4×4.

Hence, θ [(λu,v · α)/edg] expresses that G(Ua,Ub,Uc) is isomorphic to Gn×n for
some n. The desired sentence γ ′ is then ∃W ′.θ , and thus the formula χ ′ is
χ [(λu,v ·α)/edg].

Directed, vertex-labeled rectangular grids, called pictures, can be considered
as 2-dimensional words and studied with tools of logic and automata theory. See
[*GiaRes] for a survey of such a study.

5.2.4 Monadic second-order definability of regular languages

We prove that every regular language (cf. Theorem 3.62) is monadic second-order
definable. The converse of this statement will be proved in the Recognizabil-
ity Theorem (Theorem 5.64 and Corollary 5.67). Together, these results establish
Theorem 1.16.

Theorem 5.15 Let F be a finite functional signature. For every finite F-automaton
A , one can construct a monadic second-order sentence ϕ in MS(RF ,∅) such that
L(A )= {t ∈ T (F) | �t� |= ϕ}.
Proof: Let A = 〈F ,QA ,δA ,AccA 〉 be a finite F-automaton as in Definition 3.46.
Without loss of generality, we can assume that A is ε-free and that QA = [n]. A term
t in T (F) is represented by the RF -structure

�t� := 〈Nt ,(soni t)i∈[k],(labf t)f ∈F ,rtt〉,

where Nt = Pos(t) and k = ρ(F) (cf. Example 5.2(3); the variants of this
representation can be used as well).
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We must express the existence on t of an accepting run r : Pos(t)→QA of A . Such
a run will be represented by the n-tuple (U1, . . . ,Un) of subsets of Nt = Pos(t) such
that Ui = r−1(i). An arbitrary n-tuple (U1, . . . ,Un) ∈P(Nt)

n represents an accepting
run if and only if the following conditions hold:

(C1) {U1, . . . ,Un} is a partition32 of Nt ;
(C2) rtt belongs to Ui for some i ∈ AccA ;
(C3) for each occurrence u of a constant symbol f , if u belongs to Ui, then f →A i;
(C4) for each occurrence u of f ∈ Fp with p ≥ 1, if u belongs to Ui and its sons

u1, . . . ,up belong respectively to Uj1 , . . . ,Ujp , then f [ j1, . . . , jp]→A i.

The conjunction of conditions (C1)−(C4) is expressible by a formula ψ in
FO(RF ,{X1, . . . ,Xn}) (where a set Ui as above will be the value of the variable Xi).
The desired sentence ϕ is thus ∃X1, . . . ,Xn.ψ .

Remark 5.16 (1) The size of ϕ is bounded by O((�A )2+‖A ‖), where ‖A ‖ is the
size of A , defined as its weighted number of transition rules (cf. Definition 3.46).

(2) Theorem 5.15 states that L(A ) is MS-definable with respect to T (F) (implic-
itly via the faithful representation �·�). If αF is the monadic second-order sentence
that defines �T (F)� (cf. Corollary 5.12), then MOD(ϕ ∧ αF )= �L(A )� where ϕ is
constructed from A by Theorem 5.15. Hence, the class of structures �L(A )� is also
MS-definable.

(3) Words are in bijection with terms over a unary functional signature, and
automata on words can be seen as particular automata on terms as observed in
Section 3.3.1, Remark 3.51(2). Moreover, as observed in Example 5.2(3), the rep-
resentations �w� and �μ(w)� are equivalent (where w is a word and μ(w) the
corresponding term). Hence, the construction of Theorem 5.15 can be adapted to
finite automata on words in a straightforward manner.33

5.2.5 Edge set quantifications

As already noted, the representation of a graph by a relational structure as we
have done up to now, is faithful only for simple graphs. It does not allow the
expression of graph properties that depend on the multiplicity of edges nor of
certain properties of simple graphs of the form “there exists a set of edges such
that . . .” such as the property of being Hamiltonian or of having a perfect match-
ing, see Proposition 5.13. We now define another representation, where the edges
are elements of the domain, that is faithful for all graphs and is appropriate for
expressing logically certain properties of graphs that depend on the multiplicity of

32 Some sets Ui may be empty.
33 Thomas has proved in [Tho82] that a sentence ϕ as in this theorem can be constructed with a single

existential set quantification, however large n may be.
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edges. Furthermore, it allows the expression of more properties of simple graphs by
using monadic second-order sentences. For a graph G, the corresponding structure is
denoted �G�.

Definition 5.17 (Representation by incidence graphs) Incidence graphs have been
considered in Chapter 2, Example 2.56(5). We will distinguish between the cases of
directed and undirected graphs.34

If G is a concrete undirected graph, then its incidence graph Inc(G) is the simple
directed bipartite graph with vertex set VG ∪EG and edges e→ v, for every e ∈ EG

and v ∈ VG such that v is an end vertex of e. We let �G� := �Inc(G)�. It will be
convenient to denote the adjacency relation of Inc(G) by the binary relation symbol
in instead of edg, in order to distinguish it from the adjacency relation of G. Hence
�G� := 〈VG∪EG, inG〉with inG := {(e,v) | v is an end vertex of e}, and this structure
belongs to STRc(Ru

m), where Ru
m := {in}.

If G is directed, its incidence graph Inc(G) is also simple, directed and bipartite,
but with labeled edges. Its vertex set is VG ∪EG and its edges are e→ v labeled by
1 if e ∈ EG has tail v and e→ v labeled by 2 if e ∈ EG has head v. If e is a loop,
we have two edges e→ v, with labels 1 and 2. We let then �G� := �Inc(G)� :=
〈VG ∪EG , in1G , in2G〉, where in1G and in2G define the edges labeled respectively by
1 and 2.35 This is an Rd

m-structure, where Rd
m := {in1, in2}.36

Two graphs G and G′ are isomorphic if and only if the structures �G� and �G′�
are isomorphic, hence this representation is faithful for all graphs. In a structure S
representing a graph G, the edges are the elements x of DS that satisfy the formula
∃y. in1(x,y) or the formula ∃y. in(x,y) depending on whether S belongs to STRc(Rd

m)

or to STRc(Ru
m). In the former case, S = �G� for some directed graph G if and only

if in1S and in2S are two functional relations with the same domain, call it E, and
in1S ∪ in2S ⊆ E× (DS −E). In the latter case, S = �G� for some undirected graph G
if and only if |{y ∈ DS | (x,y) ∈ inS }| ≤ 2 for every x ∈ DS and inS ⊆ E× (DS −E)

where E = {x ∈ DS | (x,y) ∈ inS for some y}. In both cases, the conditions are first-
order expressible. If they hold, then EG = E and VG = DS − E; in the directed
case, vertG(x)=(y1,y2) if and only if (x,y1) ∈ in1S and (x,y2) ∈ in2S , and in the
undirected case, vertG(x)= {y ∈ DS | (x,y) ∈ inS }. Thus, the class of Rd

m-structures
{�G� | G is a directed graph} is FO-definable, and similarly for the undirected case
(cf. Corollary 5.12).

34 We do not consider here an undirected edge as a pair of opposite directed edges. This convention is
natural and convenient if graphs are handled as binary relations on sets of vertices, but it is not if graphs
are handled as sets of edges that share vertices, and this is what we are doing.

35 Inc(G) can be formalized as a ({κ},{1,2})-labeled graph, where κ is a default vertex label. Its represen-
tation �Inc(G)� is as in Example 5.2(2), without the useless unary relation labκG (and with ini instead
of edgi).

36 The subscript “m” recalls that the considered representation is faithful for graphs with multiple edges.
The superscripts “d” and “u” stand for “directed” and “undirected” respectively.
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A variant of �G� will be useful. We let Rm := {in, labEdge}. For a directed graph
G, we define �G� ∈ STRc(Rm) such that37

D�G� := VG ∪EG,

labEdge�G� := EG,

in�G� := {(v,e) | e ∈ EG, v is the tail of e}
∪{(e,v) | e ∈ EG , v is the head of e}.

If G is undirected, we let D�G� and labEdge�G� be as above and in�G� be {(e,v) |
e ∈ EG and v is an end vertex of e}. In this case the relation labEdge is redundant but
keeping it allows us to use the same signature for directed and undirected graphs.

With this variant, the relational structure representing a directed or undirected graph
G is, up to the change of edg into in, of the form �H� for some vertex-labeled (rather
than edge-labeled) directed graph H . For algorithmic applications (cf. Chapter 6) it
is better to have few relation symbols of arity more than 1. In fact, H is an obvious
variant of Inc(G).

We now extend these definitions to s-graphs. In order to represent s-graphs of
type τ(G) ⊆ C (the type τ(G) of G is the set of names of its sources), where C
is a finite subset of A, we expand the three above defined signatures by the set
{laba | a ∈ C} of unary symbols. Additionally, to represent s-graphs of type C we
expand them by the set C of constant symbols, cf. Example 5.2(2). We let Rd

m,C :=
Rd

m ∪ {laba | a ∈ C} and Rd
ms,C :=Rd

m ∪C, and similarly38 for Ru
m and Rm. Let G

be an s-graph with τ(G) ⊆ C. In the Rd
m,C-structure �G�C , we let laba(x) hold if

and only if x is an a-source of G. This representation is faithful for the s-graphs in
J Sd[C]. Similar to the case of p-graphs, if C ⊆ D ⊆ A, then �G�C and �G�D are
equivalent representations for the s-graphs in J Sd[C], for first-order and monadic
second-order logic. Now let τ(G) = C. Then we denote �G�C also by �G�. The
mapping G �→ �G� is a faithful representation of all s-graphs. Additionally, in the
Rd

ms,C -structure �G�, the interpretation of a is the a-source of G, for every a ∈ C;
since no two source names designate the same vertex, this variant of �G� is constant-
separated (cf. Section 5.1.1). The two representations �G� are equivalent for both
first-order and monadic second-order logic. Similar definitions hold for Ru

m and Rm.
For an s-graph G, we define Inc(G) as the simple s-graph such that Inc(G)◦ :=

Inc(G◦) and slabInc(G) := slabG. Thus, Inc(G) has the same sources as G, which are
all in VG . From the above definitions and those in Example 5.2(2) for simple s-graphs,
it is clear that �G�C =�Inc(G)�C and �G�= �Inc(G)� (provided we take “matching”
variants).

37 We use the notation �G� as for the first representation, because the two representations are very similar
and are equivalent for both first-order and monadic second-order logic.

38 In the subscripts of these signatures “m”,“C” and “s” recall that multiple edges are represented, that C
is a set of source labels and that the sources are constants rather than unary relations, respectively.
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Vertex and edge labels are represented in a natural way by additional unary relations.
That is, if λ is an edge label, then e ∈ labλ�G� if and only if e is an edge with label λ.
The corresponding signatures are denoted by adding the subscript [K ,�]. Technical
details will be given when necessary.

If L is a set of (labeled) graphs, then �L� denotes the corresponding set of structures
�G� for G ∈ L. If L is a set of (labeled) s-graphs of type included in C, for some finite
C ⊆A, then �L�C denotes the set of structures �G�C for G ∈ L. In particular, if C is
the union of all (finitely many) types of the elements of L, then we also denote �L�C
by �L�. Note that �L� is defined only when L has bounded type, i.e., L ⊆ J S[C]
for some finite C ⊆ A. Note also that �L� = �Inc(L)�, where Inc(L) := {Inc(G) |
G ∈ L}.

The properties of a graph G can be expressed logically, either via its representation
by �G� with domain VG ∪ EG, or via the initially defined representation �G� with
domain VG. The representation �G� allows only quantification over vertices, sets of
vertices, and relations on vertices (according to the logical language we consider),
whereas the representation �G� also allows quantification over edges, sets of edges
and relations on edges.

We define the MS2-expressible graph properties as those that are MS-expressible
via the representation of G by �G�. They are expressed by formulas over the signatures
Rd

m, Ru
m or Rm, depending on the chosen variant of the representation �G�. The

subscript 2 recalls that these formulas use quantifications over two types of objects.
(This point is formalized below, cf. the discussion before Proposition 5.20.) An
MS1-expressible graph property is just an MS-expressible one, i.e., based on the
standard representation �·� that we have considered up to now. The subscript 1 will be
used to insist that formulas use only quantifications over vertices and sets of vertices.
The notion of MS2-definability of a set of graphs is defined accordingly (which is
possible because the representation �·� is faithful on the class of all graphs). For the
MS2-definability of a set L of s-graphs of bounded type, the representation �·�C is
used, where C is the union of all types of the elements of L. Since the class of structures
�J S[C]�C is MS-definable, L is MS2-definable if and only if �L� is MS-definable
(analogously to the MS-definability of a set of p-graphs of bounded type).

Similarly, we have FO2-, FO1-, SO2- or SO1-expressible graph properties. We
will also speak of FO2- or SO2-definable sets of graphs, and of FO1-, MS1- or
SO1-definable sets of simple graphs. These definitions extend to s-graphs and
p-graphs in obvious ways.

For every graph G, the relation edgG is definable in �G� by a first-order formula.
It follows that for each L ∈ {FO,MS,SO}, a graph property is L2-expressible if it
is L1-expressible. Trivially, this does not hold in the other direction, see Proposi-
tion 5.19(1) below. Proposition 5.20 compares these different types of expressibility
for properties of simple graphs.

The notations MS1 and MS2 refer both to monadic second-order formulas, but
written over different relational signatures. The corresponding relational structures
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represent graphs in different (and nonequivalent) ways. For an arbitrary R-structure
S, the MS formulas over R generalize the MS1 formulas for graphs (a simple graph is
considered as a binary relation on its vertex set), and they form the “natural” monadic
second-order language for expressing properties of S (cf. Section 5.1). In Section 9.2,
we will define the incidence graph Inc(S) of an R-structure S. The MS formulas over
the relational signature of �Inc(S)�, which is a faithful representation of S, will be
called the MS2 formulas. They generalize to relational structures the MS2 formulas
initially defined for graphs.

Example 5.18 (Chordal graphs) It follows from Proposition 2.72 that the chordal
graphs are the graphs in the class C of nonempty, connected, simple, loop-free and
undirected graphs that have no induced cycle with at least four vertices. They are
also the graphs in C having a perfect spanning tree. By the first characterization, the
class of chordal graphs is MS1-definable (with respect to the class of simple graphs).
However, this characterization uses forbidden configurations and it says nothing of
the perfect spanning trees of the graphs recognized as chordal. All efficient algorithms
on chordal graphs (see Section 2.4.4) are based on perfect elimination orders, which
can be obtained easily from perfect spanning trees.

A perfect spanning tree of a simple loop-free undirected graph G can be defined as
a pair (E,r) such that:

(1) E is a set of edges of G forming a spanning tree U ;
(2) the pair T := (U ,r) is a normal spanning tree of G (cf. Definition 2.13);
(3) T is a perfect spanning tree (cf. Definition 2.71).

These conditions can easily be expressed by an MS2 formula ϕ(X ,z), using some
of the formulas of Proposition 5.11. To express Conditions (1) and (2), we need an
MS2-expression of the edge relation sonT of T (where sonT (x,y) holds if and only if
y is a son of x). It can be obtained in terms of the root r of T and the set of edges E of
the tree U (which is und(T )). In fact, y is a son of x in T if and only if there exists an
edge e ∈ E such that (i) x and y are the ends of e and (ii) x and r belong to the same
connected component of U−e. It follows that the relation ≤T can be expressed by
an MS2 formula in terms of E and r, and so can Conditions (1) and (2).

Hence a simple, loop-free and undirected graph G is chordal if and only if
�G� |= ∃X ,z.ϕ(X ,z). From every pair (E,r) that satisfies ϕ(X ,z) in �G�, we
can specify by auxiliary monadic second-order formulas the perfect spanning tree
T and the associated (optimal) normal tree-decomposition, cf. Corollary 2.73(3)
and Example 5.2(4). Hence, there exists a monadic second-order transduction (cf.
Sections 1.7 and 1.8) that associates with �G�, for any chordal graph G, an opti-
mal tree-decomposition of this graph (Proposition 9.56(1)). As already discussed
in Example 5.2(4), a similar result holds for �G� when G is k-chordal, for each k
(Proposition 9.56(2)). �
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Proposition 5.19 The following graph properties are MS2-expressible but are not
MS1-expressible:

(1) a graph is simple,
(2) in a directed graph, X is a set of edges (resp. W is a set of vertices) forming a

directed path from x to y, where x �= y,
(3) a graph is Hamiltonian.

Proof: (1) is clear from the definitions.
(2) We consider a directed graph G. For every U ⊆ EG , we let V (U ) denote the

set of vertices incident with at least one edge in U . We let θ(x,y,Y ) be the first-order
formula expressing the following conditions:

(2.1) x,y are vertices and x �= y;
(2.2) Y is a set of edges;
(2.3) x is incident with exactly one edge in Y and is its tail; similarly, y is incident

with exactly one edge in Y and is its head;
(2.4) each vertex in V (Y )− {x,y} is incident with exactly two edges in Y , it is the

tail of one and the head of the other.

Since G is finite, this formula says that Y is the union of the set X of edges of a
path from x to y and of the sets of edges of some circuits disconnected from this
path. Hence, X is characterized as the least subset Z of Y such that θ(x,y,Z) holds.
It follows that the desired MS2 formula39 is the following ψ :

θ(x,y,X )∨∀Z[Z ⊂ X ⇒¬θ(x,y,Z)].

There is, of course, no MS1 formula equivalent to ψ because such a formula has no
free variables denoting sets of edges.

To express that W is the set of vertices of a path from x to y, we use the formula
ϕ(x,y,W ) defined as ∃X (ψ(x,y,X )∧ “W = V (X )”). The quantification over sets of
edges is thus crucial in ϕ since we have proved in Proposition 5.13(3) that no formula
in MS(Rs,{x,y,W }) equivalent to ϕ does exist.

(3) For directed graphs, this follows from (2) and the proof of Proposition 5.13(3),
and from Proposition 5.13(2). The proof for undirected graphs is similar.

For writing and using MS2 formulas it is often convenient to assume that the
variables are typed in the following way: a first-order variable written x:e (instead of
x) will always take values in the set of edges and a first-order variable x:v will always
take values in the set of vertices. Similarly, a set variable of the form X :e will denote
sets of edges and a set variable X :v will denote sets of vertices. The set of variables
is thus V1×{e,v}). The atomic formulas must be “correctly typed,” e.g., in(x:e,y:v)

39 Z ⊂ X replaces ∀z[z ∈ Z⇒ z ∈ X ] ∧ ∃x[x ∈ X ∧ x /∈ Z].
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and x:e ∈ X :e. Obviously, every typed MS2 sentence is equivalent (with respect to
all structures of the form �G�) to an ordinary (untyped) MS2 sentence, that one can
construct by an easy induction. For example, a subformula ∃x:e.ψ is replaced by
∃x(∃y. in(x,y)∧ψ[x/x:e]), assuming without loss of generality that the variable x:v
does not occur in ψ .

Conversely, every MS2 sentence ϕ can be transformed into an equivalent typed
one. The transformation is as follows (assuming without loss of generality that no
variable occurs more than once in a quantifier of ϕ). First, every subformula ∃x.ψ ofϕ
is replaced by ∃x:e.ψ[x:e/x]∨∃x:v.ψ[x:v/x], and similarly for ∀x and∧. Thus, both
types are considered for each first-order variable. Second, incorrectly typed atomic
subformulas such as in(x:e,y:e) are replaced by False. Finally, every subformula
∃X .ψ is replaced by ∃X :e,X :v.ψ ′ (and similarly for ∀X ), where ψ ′ is obtained from
ψ by replacing all atomic subformulas of the form x:e ∈ X and x:v ∈ X respectively
by x:e∈ X :e and x:v ∈ X :v. Thus, the variable X :e is interpreted as the set of edges in
X and X :v as the set of vertices in X . The correctness of this transformation is clear.
Similar transformations can be made for FO2 and SO2 sentences. In particular, the
type of an n-ary relation variable is an element of {e,v}n; thus, in the transformation
of an untyped SO2 sentence into a typed one, each n-ary relation variable is replaced
by 2n typed relation variables of arity n.

Proposition 5.20 Let P be a property of simple (labeled) graphs.40

(1) P is FO2-expressible if and only if it is FO1-expressible.
(2) P is SO2-expressible if and only if it is SO1-expressible.
(3) P is MS2-expressible if it is MS1-expressible; the converse does not hold.

Proof: As observed above, every L1-expressible graph property is L2-expressible,
for each L ∈ {FO,SO,MS}. Then, obviously, this also holds for properties of sim-
ple graphs. That the converse does not hold for monadic second-order logic follows
from Propositions 5.13(2) and 5.19(3). The converse holds for FO because a quan-
tification of the form “there exists an edge e such that . . .” can be replaced by
a quantification of the form “there exist vertices x and y that form an edge such
that . . . .” The proof is similar for SO: quantification over n-ary relations on edges is
replaced by quantification over 2n-ary relations on vertices. We omit the technical
details.

Remark 5.21 Let P be the property that a simple undirected graph G has a
spanning tree of degree at most 3. This property is MS2-expressible but not
MS1-expressible. We prove this last fact by the following construction similar to
those of Proposition 5.13. We let A and B be two disjoint sets and G(A,B) be the

40 Thus, in statements (1)−(3), expressibility is with respect to the class C of simple (labeled) graphs.
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Figure 5.3 The graph G(A,B) for |A| = 3, |B| = 4.

graph G such that

G[A] is a path,

VG = A∪ (B×{0,1,2}) and

edgG = edgG[A] ∪E ∪E−1, where

E = (A× (B×{0}))∪{((x,0),(x, i)) | x ∈ B, i ∈ {1,2}}.

Figure 5.3 shows G(A,B) for |A| = 3 and |B| = 4. In general, the graph G(A,B) has
a spanning tree of degree at most 3 if and only if |A| + 2 ≥ |B|. If the considered
property would be MS1-expressible, the language L = {anbm | n,m ≥ 1, n+ 2 ≥ m}
would be regular – which is not the case. The detailed proof can be done with
MS-transductions, which are presented in Section 1.7 and will be studied in Chap-
ter 7: one defines a monadic second-order transduction that transforms �anbm� into
�G(A,B)� for all n,m ≥ 1 and all sets A,B such that |A| = n and |B| = m, and
then the Backwards Translation Theorem (already presented in Section 1.7) yields a
contradiction with the assertion that property P is MS1-expressible. �

The next theorem describes classes of simple graphs on which MS1 and MS2 formu-
las are equally expressive. For these graphs, the representations �G� and �G� are thus
equivalent with respect to the expression of their properties in MS logic. A graph G
is uniformly p-sparse if |EG[X ]| ≤ p · |X | for every X ⊆ VG (cf. Theorem 4.51). Every
simple loop-free undirected planar graph is uniformly 3-sparse (Corollary 4.2.10 in
[*Die]). Every undirected graph of degree at most k and every simple loop-free undi-
rected graph of tree-width at most k is uniformly k-sparse (clear for the former case;
by Corollary 2.74(1) for the latter case, cf. the proof of Theorem 4.51).

Theorem 5.22 (Sparseness Theorem) Let C be a class of simple and uniformly
p-sparse (labeled) graphs, for some p > 0. A property is MS2-expressible with
respect to C if and only if it is MS1-expressible with respect to C. There are effective
translations between the defining sentences of both types. �
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The translation of an MS1 formula into an MS2 formula that defines the same
simple graphs or the same property of vertex sets of simple graphs is easy and does
not depend on p. The proof of the opposite translation is quite long and will be given
in Section 9.4.

To apply the above result to words and terms, we identify a word w over a finite
alphabet A with the vertex-labeled graph G(w) defined in Example 5.2(2), and a term t
over a finite signature F with the labeled graph Syn(t). Thus, we define �w� :=�G(w)�
and �t� := �Syn(t)� and, just as for graphs, define MS1 and MS2 formulas for words
w to be MS formulas interpreted in �w� and in �w� respectively, and similarly for
terms. Since G(w) and Syn(t) are graphs of bounded degree, the following result is
immediate fromTheorem 5.22. However, as an example of the proof of Theorem 5.22,
we also give a direct proof.

Corollary 5.23 The same properties of words, of terms and of labeled (rooted) trees
can be expressed by MS1 and by MS2 formulas.

Proof: Let us consider words w over a finite alphabet A and typed MS2 sentences ϕ
over Rd

m,[K ,�] with K = A and �= ∅. The idea is to replace each edge of G(w) by
its head; thus, every edge is encoded by a vertex and every set of edges by a set of
vertices. To transform ϕ into an equivalent MS1 sentence, we change every atomic
subformula in1(x:e,y:v) into suc(y,x), and every atomic subformula in2(x:e,y:v) into
y= x, then we drop the types of variables (all variables will denote vertices).

For terms t over a finite signature F we use the same encoding of edges by their
heads. Let ϕ be a typed MS2 sentence over Rd

m,[K ,�] with K = F and � = [ρ(F)].
To describe the transformation of ϕ it is convenient to use the representation
�t� = 〈Nt ,sont ,(labf t)f ∈F ,(bri t)1≤i≤ρ(F)〉, see Example 5.2(3). The atomic subfor-
mulas inj(x:e,y:v) are changed as above, with son instead of suc, and every atomic
subformula labi(x:e) is changed into bri(x).

For rooted trees a similar transformation can be used as for terms, and for trees
the transformed formula should start by choosing a root (thus turning the tree into a
rooted one). We omit the details.

A table comparing the expressive power of MS1 and MS2 formulas, and their
extensions with cardinality predicates will be given in Section 5.2.7.

5.2.6 Cardinality predicates

We now introduce an extension of monadic second-order logic called counting
monadic second-order logic.

Definition 5.24 (Counting monadic second-order logic) For integers p,q with
q > p ≥ 0 and q ≥ 2, and for a set variable X , we let Cardp,q(X ) be a new atomic
formula expressing that |X | ≡ p (mod q). We denote by CMS(R,X ) the extension
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of MS(R,X ) that uses the atomic formulas Cardp,q(X ) in addition to those previ-
ously defined. The notation CrMS will be used (instead of CMS) to specify the sets
of formulas written with the set predicates Cardp,q such that q ≤ r. Hence, C0MS,
C1MS and MS designate the same formulas.

“Monadic second-order logic” (written in full) will refer in the sequel to counting
monadic second-order logic as well as to the language defined in Section 5.1.4.
The notations MS, CrMS and CMS will specify the absence or the possible use of
set predicates Cardp,q. For expressing graph properties, the notations CrMS1 and
CrMS2 will be used in the obvious way. For every r, the same properties of words,
terms and labeled trees can be expressed by CrMS1 and by CrMS2-formulas, which
generalizes41 Corollary 5.23.

It is easy to write, for each nonnegative integer p, a formula in FO(∅,{X }) express-
ing that a set X has cardinality p. It follows that each atomic formula Cardp,q(X ), for
p �= 0, is equivalent to

∃Y [Y ⊆ X ∧ “X −Y has cardinality p”∧Card0,q(Y )].

Hence, without loss of expressive power, we could define CMS formulas by using
only the atomic formulas Card0,q(X ) expressing that |X | is a multiple of q. However,
having all formulas Cardp,q(X ) will be useful in some proofs such as the one of
Lemma 5.38.

We now show an example of the use of CMS formulas.42 Let L be a subset of
N k and let CardL(U1, . . . ,Uk) be the property of subsets U1, . . . ,Uk of a set D
that (|U1|, . . . , |Uk |) ∈ L. The following proposition will help to obtain a logical
characterization of recognizable sets of rooted trees (Section 5.5):

Proposition 5.25 If a set L is recognizable in Nk , then the property CardL of k-tuples
of sets is CMS-expressible.

Proof: We have seen in Section 3.4.8 that Rec(Nk) is the set of finite unions of
Cartesian products L1×·· ·×Lk , where Li={ai+λ ·bi |λ∈N } for some ai,bi ∈N .43

That |Ui| belongs to Li means that |Ui| = ai if bi = 0 and that |Ui| ≥ ai if bi = 1.
These properties are first-order expressible. If bi ≥ 2, then |Ui| belongs to Li if and
only if Ui contains a set Y such that |Y | is a multiple of bi and |Ui − Y | = ai. This
property is expressible by a Cbi MS-formula. The result follows.

Remark 5.26 In the proof of Lemma 5.10, which constructs the relativization of a
second-order formula ϕ to a set X , if the formula ϕ contains set predicates Cardp,q,

41 Theorem 5.22 actually holds, for every r, for CrMS2- and CrMS1-expressibility.
42 The expression of vertex-minor inclusion (a variant of minor inclusion relevant to clique-width) is

another, much more complicated one. See [CouOum].
43 This is clear for k = 1, and hence also for k ≥ 2 because A× (B∪C)= (A×B)∪ (A×C) for arbitrary

sets A,B,C.
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we must replace the transformation rules for set quantification with the following:

(∀Y .ψ)′ = ∀Y (∀u(u ∈ Y ⇒ u ∈ X )⇒ψ ′),

(∃Y .ψ)′ = ∃Y (∀u(u ∈ Y ⇒ u ∈ X )∧ψ ′).

Hence, we have qh(ϕ′)≤ qh(ϕ)+ 1 (and not qh(ϕ′)= qh(ϕ) as in Lemma 5.10). �

CMS formulas versus MS formulas

Every formula ϕ ∈MS(∅,{X1, . . . ,Xm}) is equivalent to a finite disjunction of con-
junctions of conditions of the form |Y1∩Y2∩·· ·∩Ym| = n or |Y1∩Y2∩·· ·∩Ym|> n
with n ∈ N and, for each i = 1, . . . ,m, the set Yi is either Xi or D− Xi where D
is the domain of the considered structure (this is proved in [Cou90b] by quantifier
elimination). In particular, the property that a set has an even cardinality is not MS-
expressible. (Another proof is given in Proposition 7.12 of [*Lib04].) Hence, the
CMS formulas have strictly more expressive power than the MS formulas. However,
they are equally expressive on linearly ordered (and linearly orderable) structures, as
we will see next.

Lemma 5.27 For every q ≥ 2, one can construct a formula γq(X ) belonging to
MS({≤},{X }) to express, in every44 linearly ordered set (D,≤D), that the cardinality
of a subset of D denoted by X is a multiple of q.

Proof: One writes a formula γq expressing that, if X is not empty, then there exist
sets Y0,Y1, . . . ,Yq−1 forming a partition of X and such that the first element of X is in
Y1, the last element of X is in Y0 and for every two elements x,y of X , if x ∈ Yp and
y is the successor of x for the restriction to X of the order ≤D, then y ∈ Yp′ , where
p′ ≡ p+ 1 (mod q). Clearly, if X = {x1, . . . ,xn} with xk <D xk+1 for all k ∈ [n− 1],
then Yp = {xi | i ∈ [n], i≡ p (mod q)} for every p ∈ [0,q− 1].

Lemma 5.27 extends to any class C of structures on which a linear order is definable
by MS formulas. We now define precisely this notion.

Definition 5.28 (MS-orderable classes of structures) Let R be a relational sig-
nature, let θ0 ∈MS(R,{X1, . . . ,Xm}) and θ1 ∈MS(R,{X1, . . . ,Xm,x1,x2}). The pair
(θ0,θ1)orders (implicitly linearly) a structure S ∈ STRc(R) if the following conditions
hold:

S |= (∃X1, . . . ,Xm.θ0)∧∀X1, . . . ,Xm(θ0⇒ θ̂1),

44 The formula γq uses a linear order to express a property of X that does not depend on any linear order.
We say that such a formula is order-invariant.
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where θ̂1 is the formula in MS(R,{X1, . . . ,Xm}) defined as

∀x.θ1(x,x) ∧ ∀x,y(θ1(x,y)∧ θ1(y,x)⇒ x= y)∧
∀x,y,z(θ1(x,y)∧ θ1(y,z)⇒ θ1(x,z)) ∧ ∀x,y(θ1(x,y)∨ θ1(y,x)).

This means that, for every m-tuple (E1, . . . ,Em) satisfying θ0, the binary relation
defined by θ1, where X1, . . . ,Xm take respectively the values E1, . . . ,Em, is a linear
order on DS , and that there is at least one such m-tuple in S.

A set C ⊆ STRc(R) is MS-orderable if there exists a pair (θ0,θ1) that orders all its
structures. A set of graphs C is MS1-orderable (resp. MS2-orderable) if the set �C�
(resp. the set �C�) is MS-orderable.

It is clear that if (θ0,θ1) orders S, then the pair (θ̂1,θ1) orders the class
MOD(∃X1, . . . ,Xm. θ̂1) that contains S. Hence, θ1 is enough for ordering a set of
structures C because θ̂1 can replace θ0. However, it is in general more clear to use the
conditions on X1, . . . ,Xm defined by a formula θ0 than by θ̂1.

Proposition 5.29 Let C be an MS-orderable class of concrete R-structures. The
CMS-expressible properties of the structures in C are MS-expressible.

Proof: Let (θ0(X1, . . . ,Xm),θ1(X1, . . . ,Xm,x1,x2)) be a pair of formulas that orders
the structures of C. Let ϕ ∈ CMS(R,∅) express some property of the structures of
C. We can assume that the variables X1, . . . ,Xm have no occurrence in ϕ and that,
for every atomic formula Cardp,q(Y ), we have p = 0. For each q, we let γ ′q be
γq[λx1,x2 · θ1/≤], where γq is constructed in Lemma 5.27. This formula belongs to
MS(R,{X ,X1, . . . ,Xm}). For every S ∈ C, for every E1, . . . ,Em ⊆DS satisfying θ0 and
for every E ⊆DS , we have S |= γ ′q(E,E1, . . . ,Em) if and only if |E| is a multiple of q.

We obtain ϕ ′ from ϕ by replacing every atomic formula Card0,q(Y ) by
γ ′q(Y ,X1, . . . ,Xm) (i.e., by γ ′q[Y/X ], which is the result of the substitution of Y to
X in γ ′q). We let then ϕ′′ be the formula of MS(R,∅):

∃X1, . . . ,Xm[θ0(X1, . . . ,Xm)∧ϕ′(X1, . . . ,Xm)].
If S |=ϕ′′, then S |= θ0(E1, . . . ,Em) and S |=ϕ′(E1, . . . ,Em) for some E1, . . . ,Em, hence
S |= ϕ by the construction of ϕ′. Conversely, if S |= ϕ, then there exist E1, . . . ,Em

satisfying θ0, hence S |= ϕ′(E1, . . . ,Em). Thus we have S |= ϕ′′. Hence, ϕ is equivalent
to ϕ′′ in every structure S in C.

This result extends to formulas with free variables. Understanding “exactly” which
sets of structures are MS-orderable is an open problem. Here are some partial answers.

Proposition 5.30 Let d ∈ N+. The class of rooted trees of outdegree at most d is
MS1-orderable. More generally, the class of rooted forests consisting of at most d
rooted trees of outdegree at most d is MS1-orderable.

Proof: Let T be a rooted tree given by the structure 〈NT ,sonT 〉, where sonT (x,y)
holds if and only if y is a son of x. We denote by≥T the reflexive and transitive closure
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of sonT , cf. Definition 2.13. A partition (N1,N2, . . . ,Nd) of NT is good if no two sons
of any node belong to the same set Ni; intuitively it defines a linear order on the sons of
each node of T (through the natural order on [d]). If T has outdegree at most d (i.e., if
each node has at most d sons) then NT has a good partition in d (possibly empty) sets.
From a good partition (N1, . . . ,Nd) of NT , we can define the following linear order:

x ≤ y if and only if either x ≥T y or there exist z,x′,y′ such that sonT (z,x′),
x′ ≥T x, sonT (z,y′), y′ ≥T y, x′ ∈ Ni, y′ ∈ Nj and i < j.

It is not hard to see that≤ is a linear order on NT ; in fact, it corresponds to the usual pre-
order tree traversal (for rooted trees for which a linear order is given on the sons of each
node). An FO1 formula θ0(X1, . . . ,Xd) can express that a given d-tuple (N1, . . . ,Nd) of
subsets of NT is a good partition and an MS1 formula θ1(X1, . . . ,Xd ,x1,x2) can express
that x1 ≤ x2 holds where Xi takes the value Ni (for i= 1, . . . ,d) and≤ is defined from
(N1, . . . ,Nd). (One can write θ1 with the help of the formula ϕ2 of Proposition 5.11.)

Hence, (θ0,θ1) defines a linear order of NT (and even a topological order) for every
rooted tree T of outdegree at most d. The proof for forests is similar except that in
the definition of a good partition, we require that the roots of two trees of the forest
do not belong to the same set Ni. Then, we let x1 < x2 if x1 and x2 belong to trees T
and T ′ with roots respectively in Ni and Nj such that i < j. We omit the details.

Corollary 5.31 For each d ∈N , the class of simple graphs that have a spanning tree
of degree at most d is MS2-orderable.

Proof: Let G be a simple graph that has a spanning tree of degree at most d. We will
define a linear order on VG by means of sets E,R,N1, . . . ,Nd such that:

(1) E is a set of edges forming a spanning tree U of G;
(2) R consists of a unique vertex r;
(3) (N1, . . . ,Nd) is a good partition of VG , where “good” is relative to the rooted tree

T := (U ,r).

These conditions can be expressed in �G� by an MS formula, and from (N1, . . . , Nd)

one obtains a linear order of VG by using Proposition 5.30. For applying it, we need
an MS formula for the relation sonT in terms of E and r, which can be obtained as
described in Example 5.18. From a linear order≤ on VG , one defines a lexicographic
order on VG×VG, whence on EG, since G is assumed to be simple. If G is undirected,
we consider an edge {x,y} as a pair (x,y) with x ≤ y and use the lexicographic order
on VG×VG.

Example 5.32 (1) The class of simple 3-connected planar graphs is MS1-orderable:
these graphs have spanning trees of degree at most 3 ([Bar]), hence they are MS2-
orderable. But for planar graphs, MS2 formulas without free variables denoting edges
and sets of edges (cf. the notion of a typed formula defined before Proposition 5.20)
can be replaced by MS1 formulas (cf. Remark 5.21 and Theorem 5.22).
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(2) The set of cliques {Kn | n≥ 1} is MS2-orderable. It is not MS1-orderable because
otherwise the class of finite sets (edgeless graphs) would be MS1-orderable and the
set predicates Card0,q(X ) would be MS-expressible. We know that this is not the
case. �

5.2.7 Expressive power of monadic second-order languages

The expressive power of the monadic second-order languages MS1, MS2, CMS1

and CMS2 is compared in Figure 5.4: the inclusions represented from bottom-up,
are proper. The expressive powers of CMS1 and MS2 are incomparable. These facts
are proved by some examples listed below. They also hold for the expressibility of
properties of simple graphs.

For expressing properties of words over a fixed finite alphabet, of terms over a fixed
finite signature and of trees of bounded degree, all these four languages are equivalent
by Corollaries 5.23 and 5.31. There are some intermediate cases, in particular that of
simple uniformly k-sparse graphs (for each fixed k), shown in Figure 5.5. The equiv-
alences follow from Theorem 5.22. Figures 5.6 and 5.7 show other situations. Here
are the examples establishing proper inclusions and incomparabilities in these tables.

Example 5.33 The set of odd stars, i.e., of graphs K1,2n+1 for n ≥ 0, realizes the
proper inclusions of Figure 5.5. It is uniformly 1-sparse and CMS1-definable, but it
is not MS1-definable, otherwise the even cardinality set predicate would be monadic
second-order expressible.

Figure 5.4 The four monadic second-order languages.

Figure 5.5 The case of simple uniformly k-sparse graphs.

Figure 5.6 The case of joined paths.
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Figure 5.7 The case of labeled cliques.

The set of joined paths, i.e., of graphs Pn ⊗ Pm for n,m ≥ 1 is MS1-orderable,
hence, CMS1≡MS1 and CMS2≡MS2 for it (i.e., for expressing the properties of its
graphs). Its subset {Pn⊗Pn | n≥ 1} is MS2-definable but not MS1-definable (similar
proof as for Proposition 5.13(2)).

We let LC be the set of ({a},∅)-labeled cliques (a vertex has label a or no label,
an edge has no label). It is MS2-orderable, hence CMS2 ≡MS2 for it. But its subset
K consisting of the labeled cliques that have the same number of unlabeled vertices
and of vertices labeled by a is MS2-definable but not CMS1-definable (by usual
arguments).

These examples show that all inclusions of Figure 5.4 are proper. The set of odd
stars and the set K show that MS2 and CMS1 are incomparable (even for expressing
properties of simple graphs only). �

5.3 Monadic second-order logic and recognizability

This section is devoted to the proof of the Recognizability Theorem, a corner-stone
of the theory developed in this book. Informally, every CMS-definable set of graphs
or of relational structures is recognizable with respect to an appropriate algebra.

The most technical part of the proof (in the next section) is that of the Splitting
Theorem for ⊕, the union of disjoint graphs or structures. This theorem says that,
for every MS formula ϕ, the set of assignments that satisfy ϕ in the union of two
disjoint structures S and T can be determined from the sets of those that satisfy
auxiliary formulas of no larger quantifier-height in S and in T . Up to equivalence,
there are finitely many formulas of bounded quantifier-height with a fixed set of free
variables. If ϕ is a sentence, we obtain a finite set of auxiliary sentences, hence a
finite set of properties that is inductive with respect to ⊕ (cf. Section 1.2.3). This
theorem generalizes a result by Feferman and Vaught for first-order logic and is a
(very) special case of the CompositionTheorem by Shelah. (See [*Mak] and [Tho97b]
for detailed discussions and consequences of these results.) An easy similar result for
unary operations defined by quantifier-free formulas without constant symbols, called
the Backwards Translation Theorem, yields the Recognizability Theorem for the VR
algebra. The proof of that theorem for the HR algebra needs structures with constants
(for representing the sources of s-graphs) and presents small technical difficulties.
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We will actually prove the Recognizability Theorem for a many-sorted algebra of
relational structures with constants denoted by STR.

This long section is organized as follows. We first prove the Splitting Theorem
for unions of disjoint relational structures, possibly with constants. Next, we define
(unary) quantifier-free operations on structures. Initially we mainly consider restricted
quantifier-free operations that can only delete constants from their input structures
(they cannot delete “ordinary” elements). For them, we then prove the Backwards
Translation Theorem. As a motivation for these definitions, we show that the opera-
tions of the VR and of the HR algebra are, or can be expressed in terms of, disjoint
union and restricted quantifier-free operations. Then, we extend the Splitting The-
orem to derived operations (on structures) built with disjoint union and restricted
quantifier-free operations. We apply it to the computation of “bounded theories” (see
Section 5.3.6 for definitions). Next we define the algebra STR of relational struc-
tures, with the operation of disjoint union and the quantifier-free operations, and we
prove the Recognizability Theorem for the subalgebra with restricted quantifier-free
operations. This restricted form of the theorem yields the cases of the algebras of
words and terms, and of the VR and HR algebras of graphs. Finally, we extend the
Recognizability Theorem to STR.

5.3.1 The Splitting Theorem for unions of disjoint concrete structures

Throughout this subsection, we assume that R, R′, R′′ are relational signatures such
that R0 =R′0 ∪R′′0, R′0 ∩R′′0 = ∅ and R+ =R′+ =R′′+.

Definition 5.34 (Disjoint union of structures, a special case) Let S and T be con-
crete R′- and R′′-structures respectively, that are disjoint, i.e., such that DS ∩DT =∅.
Their union45 is the R-structure denoted by S ⊕ T (or by S ⊕R′,R′′ T if we need to
specify R′ and R′′) such that

DS⊕T := DS ∪DT ,

RS⊕T := RS ∪RT for each R ∈R+,

aS⊕T :=
{

aS if a ∈R′0,

aT if a ∈R′′0.

As for graphs (cf. Definition 2.23), we extend this definition to abstract structures:
the disjoint union S⊕T of S ∈ STR(R′) and T ∈ STR(R′′) is the isomorphism class
of S ′ ⊕ T ′, where S ′ and T ′ are any two disjoint concrete structures respectively
isomorphic to S and T .

45 A more general union, for which we will waive the restriction that R′+ = R′′+, will be defined in
Example 5.44. The Splitting Theorem will extend to it.
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We will consider CrMS formulas of bounded quantifier-height. If r,h ∈N , S is
a relational signature and X is a finite set of first-order and set variables, then we
denote by CrMSh(S,X ) the set of formulas of counting monadic second-order logic
over S , with free variables in X , of quantifier-height at most h and written with
the set predicates Cardp,q(X ) for 2 ≤ q ≤ r, 0 ≤ p < q. If r ≤ 1, there are no such
predicates and we write MSh instead of C0MSh or C1MSh. Similarly, we write FOh

for first-order logic. If h= 0, we obtain quantifier-free formulas: they may have free
set variables.

The sets CrMSh(S,X ) are infinite, but they are finite up to logical equiva-
lence (this equivalence is defined at the beginning of Section 5.2), hence we
can view them as finite sets. This important point will be discussed in detail in
Section 5.6. Furthermore, we will write formulas without universal quantifications.
A formula of the form ∀Y1, . . . ,Yp.ϕ will be replaced by ¬∃Y1, . . . ,Yp.¬ϕ. This
transformation modifies neither the variables, nor their number of occurrences nor
the quantifier-height. Similarly, we will not use ⇒, ⇔, False but only ∧,∨, ¬,
and True.

Let ϕ be a formula in CrMSh(R,X ) with X = {X1, . . . ,Xm,z1, . . . ,zn}. For any two
disjoint concrete structures S and T as above, we will express the set

sat(S⊕T ,ϕ,(X1, . . . ,Xm),(z1, . . . ,zn))

of X -assignments that satisfy ϕ in S⊕T (defined in Section 5.1.3; recall that this set
is undefined for abstract structures unless m= n= 0) in terms of sets of the forms

sat(S,ψ ,(X1, . . . ,Xm),(x1, . . . ,xk )) and sat(T ,θ ,(X1, . . . ,Xm),(y1, . . . ,y
)),

for finitely many CrMS formulasψ and θ of quantifier-height at most that of ϕ, where
{x1, . . . ,xk} and {y1, . . . ,y
} are subsets of {z1, . . . ,zn}. We will call such an expression
a splitting of the set sat(S ⊕ T ,ϕ,(X1, . . . ,Xm),(z1, . . . ,zn)). We will also refer to it
as a splitting of ϕ because it is actually a transformation of formulas that does not
depend on S and T . To make the proof easier to read, we first consider the case of
first-order formulas, which is actually of independent interest.

We need more notation. Sequences of pairwise distinct set and first-order vari-
ables are denoted respectively by X and z (see the beginning of Section 5.2). These
sequences may be empty and are then denoted by ε instead of (). The use of the nota-
tion z = x y will assume that x and y have no variable in common (shortly denoted
by x ∩ y = ∅, since we also view z as denoting the set of variables occurring in the
sequence z).

Let X denote (X1, . . . ,Xm) and z denote (z1, . . . ,zn). If m= 0 (i.e., ϕ has no free set
variables), then we will write sat(S,ϕ, z) instead of sat(S,ϕ,ε,z). If n = 0, we will
write sat(S,ϕ,X ) instead of sat(S,ϕ,X ,ε). If m= n= 0 (i.e., ϕ is a sentence), then
we will write sat(S,ϕ) instead of sat(S,ϕ,ε,ε).
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If z= (z1,z2, . . . ,zn) and π is a permutation of [n], we let π(z) denote the sequence
(zπ(1),zπ(2), . . . ,zπ(n)), and similarly for a ∈Dn (where D is any set). If A⊆Dn, then
we define

permπ (A) := {(aπ(1), . . . ,aπ(n)) | (a1, . . . ,an) ∈ A} = {π(a) | a ∈ A}.

It follows that if z = (z1, . . . ,zn), then

sat(S,ϕ,π(z))= permπ (sat(S,ϕ,z)).

If S ⊕ T is a (well-defined) concrete structure and ϕ has its free variables in x y
(i.e., in x∪ y with x∩ y= ∅), we define

sat(S⊕T ,ϕ,x;y)⊆D|x|S ×D|y|T

as the subset of sat(S⊕T ,ϕ,x y) consisting of its tuples with the first |x| components
in DS and the last |y| components in DT .46

If π is a permutation of [k + 
] that applies to a sequence of first-order variables
x y= (x1, . . . ,xk )(y1, . . . ,y
)= (x1, . . . ,xk ,y1, . . . ,y
), then we say that it preserves the
relative orders of variables in x and in y if π(i) < π(j) whenever, either 1≤ i < j≤ k
or k+ 1≤ i < j ≤ k+ 
. In other words, π interleaves the sequences x and y.

Lemma 5.35 We have sat(S ⊕ T ,ϕ,z) = ⊎permπ (sat(S ⊕ T ,ϕ,x;y)), where the
union47 extends to all triples (π ,x,y) such that z=π(x y) and π preserves the relative
orders of variables in x and in y.48

Proof: We first observe that if z = π(x y), then

permπ (sat(S⊕T ,ϕ,x;y)) ⊆ permπ (sat(S⊕T ,ϕ,x y))

= sat(S⊕T ,ϕ,π(xy))

= sat(S⊕T ,ϕ, z).

This gives the inclusion from right to left. We now prove the other one.
We let z = (z1, . . . ,zn). For49 a= (a1, . . . ,an) ∈ sat(S ⊕ T ,ϕ,z), we let the profile

of a be {i ∈ [n] | ai ∈DS}. For each subset I of [n] of cardinality k ≤ n there exists a
unique permutationπI of [n] such thatπI (z)= (zi1 , . . . ,zik ,zj1 , . . . ,zj
 ), where i1, . . . , ik
is an increasing enumeration of I , and j1, . . . , j
 is an increasing enumeration of [n]− I

46 This notation is ambiguous because a structure can be expressed as S ⊕ T in several ways. It stands
for the precise notation sat(S,T ,ϕ,x;y), which is less readable because it does not refer to ⊕.

47 The notation X = Y1 1 ·· · 1Yk means that X = Y1 ∪ ·· · ∪Yk and that Y1, . . . ,Yk are pairwise disjoint.
48 In this lemma and the next, x and/or y may be ε. See also Footnote 46 above.
49 The notation a= (a1, . . . ,an) for ai ∈DS⊕T does not assume that a1, . . . ,an are pairwise distinct.
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(with 
= n−k). Hence, π−1
I (x y)= z and the permutation π−1

I preserves the relative
orders of variables in x and in y, where x := (zi1 , . . . ,zik ) and y := (zj1 , . . . ,zj
 ).

50

Let a= (a1, . . . ,an) belong to sat(S⊕T ,ϕ,z), and let I be its profile. Then πI (a)=
bc where b= (ai1 , . . . ,aik ) ∈ Dk

S and c= (aj1 , . . . ,aj
 ) ∈ D

T (because DS ∩DT = ∅).

It follows that bc ∈ sat(S⊕T ,ϕ,x;y) where πI (z)= (zi1 , . . . ,zik ,zj1 , . . . ,zj
 ) and x :=
(zi1 , . . . ,zik ) and y := (zj1 , . . . ,zj
 ). Hence a ∈ perm

π−1
I
(sat(S⊕T ,ϕ,x;y)). This gives

the inclusion from left to right. It remains to check that the union in the right-hand
side is disjoint.

Since DS ∩DT = ∅, the profile of a tuple a in permπ (sat(S⊕T ,ϕ,x;y)) is {i ∈ [n] |
zi ∈ x}. Observe that the triple (π ,x,y) is completely determined by the set x, hence
different such triples have different sets x and thus correspond to different profiles of
tuples in Dn

S⊕T . The sets permπ (sat(S⊕T ,ϕ,x;y)) are therefore pairwise disjoint.

This lemma entails that we need only split the sets sat(S⊕T ,ϕ,x;y).

Lemma 5.36 For every ϕ ∈ FOh(R,xy), there exist p ∈N and p pairs of formulas
(θi,ψi) with θi ∈ FOh(R′,x) and ψi ∈ FOh(R′′,y) such that, for all disjoint concrete
R′- and R′′-structures, respectively S and T , we have51

sat(S⊕T ,ϕ,x;y)=
⋃

1≤i≤p

sat(S,θi,x)× sat(T ,ψi,y).

Proof: By induction on the structure of ϕ. We let k := |x| and 
 := |y|, and we let
sat denote sat(S⊕T ,ϕ,x;y). We have the following cases:

Case 1: ϕ is True. We take p= 1 and θ1,ψ1 both equal to True.
Case 2: ϕ is s= t (s, t are terms, i.e., variables or constant symbols). We have three

subcases:

sat =

⎧⎪⎨⎪⎩
sat(S,ϕ,x)×D


T if s, t ∈ x∪R′0, 52

Dk
S × sat(T ,ϕ,y) if s, t ∈ y∪R′′0,

∅ otherwise,

which give respectively p= 1 and (θ1,ψ1)= (ϕ,True) in the first case, p= 1
and (θ1,ψ1)= (True,ϕ) in the second case and p= 0 in the last case.

Case 3: ϕ is R(t1, . . . , tn). We have again three subcases:

sat =

⎧⎪⎨⎪⎩
sat(S,ϕ,x)×D


T if t1, . . . , tn ∈ x∪R′0,

Dk
S × sat(T ,ϕ,y) if t1, . . . , tn ∈ y∪R′′0,

∅ otherwise,

50 We may have I = ∅ or I = [n]. In these cases, πI is the identity, x= ε in the first case and y= ε in the
second case.

51 If x= ε, then sat(S,θi)= sat(S,θi ,ε) is either ∅ if S |= ¬θi or {ε} if S |= θi . If S is the empty structure,
then sat(S,θi ,x)= ∅ if |x| ≥ 1.

52 If T =∅, then D

T = ∅ if 
≥ 1 and D0

T = {ε}.
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which give the same pairs (θi,ψi) as in the previous case.
Case 4: ϕ is ϕ1 ∨ϕ2. We have

sat = sat(S⊕T ,ϕ1,x;y)∪ sat(S⊕T ,ϕ2,x;y).

The induction hypothesis yields the result.
Case 5: ϕ is ϕ1 ∧ϕ2. In this case:53

sat = sat(S⊕T ,ϕ1,x;y)∩ sat(S⊕T ,ϕ2,x;y).

We note that if Ai,A′j ⊆Dk
S and Bi,B′j ⊆D


T , then

( ⋃
1≤i≤p

Ai×Bi
)∩ ( ⋃

1≤j≤p′
A′j×B′j

)= ⋃
1≤i≤p
1≤j≤p′

(
Ai ∩A′j

)× (Bi ∩B′j
)
.

Hence, if (θi,ψi)i∈[p] is associated by the induction hypothesis with ϕ1 and
(θ ′j ,ψ ′j )j∈[p′] with ϕ2, we get for ϕ the family

(θi ∧ θ ′j ,ψi ∧ψ ′j )(i, j)∈[p]×[p′].

Case 6: ϕ is ¬ϕ1. We have

sat = (Dk
S ×D


T )− sat(S⊕T ,ϕ1,x;y)

and, by using induction,

sat(S⊕T ,ϕ1,x;y)=
⋃

1≤i≤p

sat(S,θi,x)× sat(T ,ψi,y).

For subsets Ai of Dk
S and Bi of D


T , where 1≤ i ≤ p, we have

(Dk
S ×D


T )−
⋃

1≤i≤p

Ai×Bi =
⋃

I⊆[p]

(⋂
i∈I

(Dk
S −Ai)

)
×
( ⋂

j∈[p]−I

(D

T −Bj)

)
.

It follows that

sat =
⋃

I⊆[p]
sat(S,

∧
i∈I

¬θi,x)× sat(T ,
∧

j∈[p]−I

¬ψj ,y),

where
∧
i∈J

αi is replaced by True if J = ∅.

53 Since conjunction can be expressed in terms of disjunction (Case 4) and negation (Case 6), we could
omit this case. However, the direct construction given in this case is more clear than the one that uses
a combination of the constructions of Cases 4 and 6.
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In the particular case where ϕ is ¬True (which is equivalent to False) this
computation yields p= 2, but we can also take p= 0.

Case 7: ϕ is ∃u.ϕ1. We have

sat = pr1(sat(S⊕T ,ϕ1,xu;y))∪ pr2(sat(S⊕T ,ϕ1,x;yu)),

where pr1 : (Dk+1
S ×D


T )→ (Dk
S ×D


T ) is the projection that “eliminates”
the (k + 1)-th component and pr2 : (Dk

S ×D
+1
T )→ (Dk

S ×D

T ) similarly

“eliminates” the last one.
We have by induction

sat(S⊕T ,ϕ1,xu;y)=
⋃

1≤i≤p

sat(S,θi,xu)× sat(T ,ψi,y).

Note that

pr1(sat(S,θi,xu)× sat(T ,ψi,y))= sat(S,∃u.θi,x)× sat(T ,ψi,y).

We have also by induction

sat(S⊕T ,ϕ1,x;yu)=
⋃

1≤j≤p′
sat(S,θ ′j ,x)× sat(T ,ψ ′j ,yu),

and we have

pr2(sat(S,θ ′j ,x)× sat(T ,ψ ′j ,yu))= sat(S,θ ′j ,x)× sat(T ,∃u.ψ ′j ,y).

It follows that

sat(S⊕T ,∃u.ϕ1,x;y)

=
⋃

1≤i≤p

sat(S,∃u.θi,x)× sat(T ,ψi,y)∪
⋃

1≤j≤p′
sat(S,θ ′j ,x)× sat(T ,∃u.ψ ′j ,y).

Using induction, we see that qh(θi),qh(ψi) ≤ qh(ϕ1) and qh(θ ′j ),qh(ψ ′j ) ≤
qh(ϕ1). Hence, we have qh(ψ) ≤ 1+ qh(ϕ1) = qh(ϕ), where ψ is any of
∃u.θi, ψi, θ ′j , or ∃u.ψ ′j .

This completes the proof.

We can now state the Splitting Theorem for first-order formulas (with R, R′ and
R′′ as at the beginning of this subsection).

Proposition 5.37 For every ϕ ∈ FOh(R,z), there exists a finite family of 5-tuples
(πi,θi,ψi,xi,yi)1≤i≤p such that, for all disjoint concrete R′- and R′′-structures,
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respectively S and T , we have

sat(S⊕T ,ϕ,z)=
⊎

1≤i≤p

permπi
(sat(S,θi,xi)× sat(T ,ψi,yi)),

where, for each i, θi ∈ FOh(R′,xi), ψi ∈ FOh(R′′,yi), z = πi(xi yi) and πi is a
permutation that preserves the relative orders of variables in xi and in yi.

Proof: We use Lemma 5.35, the observation that permπ (A ∪ B) = permπ (A) ∪
permπ (B), and a stronger version of Lemma 5.36 where the union is disjoint, that we
establish as follows.

Assume we have an expression of sat(S⊕T ,ϕ,x;y) as in Lemma 5.36 in terms of
θi and ψi for p≥ 2. For every nonempty subset I of [p] we let θI be

∧
i∈I

θi ∧ ∧
i∈[p]−I

¬θi

and similarly ψI (with the ψi’s). It is then clear that

sat(S⊕T ,ϕ,x;y)=
⊎

I∩J �=∅,
I∪J⊆[p]

sat(S,θI ,x)× sat(T ,ψJ ,y).

Lemma 5.35 yields sat(S⊕T ,ϕ, z)=⊎permπ (sat(S⊕T ,ϕ,x;y)), where the dis-
joint union extends to all triples (π ,x,y) such that z = π(x y) and π preserves the
relative orders of variables in x and in y. From the above equality we get

permπ (sat(S⊕T ,ϕ,x;y))=
⊎

I∩J �=∅,
I∪J⊆[p]

permπ (sat(S,θI ,x)× sat(T ,ψI ,y)),

and the union is actually disjoint because each permπ is injective on the set D|x|S ×D|y|T .
This gives the desired result.

Our next objective is to extend this proposition to monadic second-order logic.
Let ϕ belong to CrMSh(R,X ∪ xy) where X = (X1, . . . ,Xm), x = (x1, . . . ,xk) and
y = (y1, . . . ,y
). If S,T are disjoint concrete R′- and R′′-structures respectively, we
let sat(S⊕T ,ϕ,X ,x;y) be the set of tuples (A,a,b) such that Ai ⊆DS ∪DT for i ∈ [m],
ai ∈DS for i ∈ [k], bi ∈DT for i ∈ [
] and S⊕T |= ϕ(A,a,b), where A= (A1, . . . ,Am),
a = (a1, . . . ,ak) and b = (b1, . . . ,b
). In other words, sat(S ⊕ T ,ϕ,X ,x;y) is the
intersection of sat(S⊕T ,ϕ,X ,xy) with P(DS⊕T )

m×Dk
S ×D


T .
For combining sets sat(S,θ ,X ,x) and sat(T ,ψ ,X ,y), we need a more com-

plex operation than the Cartesian product used for first-order formulas. If Ã =
(A1, . . . ,Am,a1, . . . ,ak) ∈ P(D)m ×Dk and B̃ = (B1, . . . ,Bm,b1, . . . ,b
) ∈ P(D′)m ×
D′
, we define the (m+ k+ 
)-tuple

Ã � B̃ := (A1 ∪B1, . . . ,Am ∪Bm,a1, . . . ,ak ,b1, . . . ,b
).
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If Â⊆P(D)m×Dk and B̂⊆P(D′)m×D′
, we let

Â � B̂ := {̃A � B̃ | Ã ∈ Â, B̃ ∈ B̂} ⊆P(D∪D′)m×Dk ×D′
.

We will also need to permute first-order components of assignments. If Â ⊆
P(D)m×Dn and π is a permutation of [n], then we let

permπ (̂A) := {(A1, . . . ,Am,aπ(1), . . . ,aπ(n)) | (A1, . . . ,Am,a1, . . . ,an) ∈ Â}.

Hence, if X = (X1, . . . ,Xm) and z = (z1, . . . ,zn), we have

sat(S,ϕ,X ,π(z))= permπ (sat(S,ϕ,X ,z)).

The following lemma extends Lemma 5.36.

Lemma 5.38 For every formula ϕ in CrMSh(R,X ∪ x y), there exists a fam-
ily (θi,ψi)1≤i≤p of pairs of formulas such that θi ∈ CrMSh(R′,X ∪ x), ψi ∈
CrMSh(R′′,X ∪ y) and for all disjoint concrete R′- and R′′-structures, respectively
S and T , we have

sat(S⊕T ,ϕ,X ,x;y)=
⊎

1≤i≤p

sat(S,θi,X ,x)� sat(T ,ψi,X ,y).

Proof: We let as above m := |X |, k := |x| and 
 := |y|. We first prove a weak version
where

⊎
is replaced by ∪, by induction on the structure of ϕ. Many steps will be as

in the proof of Lemma 5.36. We let sat denote sat(S⊕T ,ϕ,X ,x;y).

Case 1: ϕ is True or s= t or R(t1, . . . , tn). If ϕ is True, we have p= 1 and θ1,ψ1 both
equal to True as in the first case of Lemma 5.36. If ϕ is s= t, we have

sat =

⎧⎪⎨⎪⎩
sat(S,ϕ,X ,x)� (P(DT )

m×D

T ) if s, t ∈ x∪R′0,

(P(DS)
m×Dk

S)� sat(T ,ϕ,X ,y) if s, t ∈ y∪R′′0,

∅ otherwise,

and similarly if ϕ is R(t1, . . . , tn), with t1, . . . , tn replacing s, t. This gives the
same splittings of sat as in Cases 2 and 3 of Lemma 5.36.

Case 2: ϕ is t ∈ Y (and Y belongs to X ). Then

sat =
{

sat(S,ϕ,X ,x)� (P(DT )
m×Dk

T ) if t ∈ x∪R′0,

(P(DS)
m×D


S)� sat(T ,ϕ,X ,y) if t ∈ y∪R′′0,

which gives the same first two forms of splitting of the case where ϕ is s= t
(see Case 1).
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Case 3: ϕ is Cardn,q(Y ) (with Y in X ). We recall that Cardn,q(C) means |C| ≡ n
(mod q). For every set C = A1B we have Cardn,q(C)⇐⇒∨Cardi,q(A)∧
Cardj,q(B), where the disjunction extends to all pairs (i, j) such that 0≤ i, j< l
and i+ j ≡ n (mod q). It follows that

sat =
⋃

sat(S,Cardi,q(Y ),X ,x)� sat(T ,Cardj,q(Y ),X ,y),

where the union extends to all pairs (i, j) as above.
Case 4: ϕ is ϕ1 ∨ϕ2. As in Case 4 of Lemma 5.36.
Case 5: ϕ is ϕ1∧ϕ2. We note that for Âi, Â′j ⊆P(DS)

m×Dk
S and B̂i, B̂′j ⊆P(DT )

m×
D


T we have

(
⋃

1≤i≤p̂

Ai � B̂i)∩ (
⋃

1≤ j≤p′
Â′j � B̂′j)=

⋃
1≤i≤p
1≤ j≤p′

(̂Ai ∩ Â′j)� (̂Bi ∩ B̂′j),

because for all i, j as above:

(̂Ai � B̂i)∩ (̂A′j � B̂′j)= (̂Ai ∩ Â′j)� (̂Bi ∩ B̂′j).

Let us prove this (dropping the subscripts). If (E,d) ∈ (̂A � B̂)∩ (̂A′� B̂′),
then (E,d) = Ã � B̃ = Ã′� B̃′ for some Ã ∈ Â, Ã′ ∈ Â′, B̃ ∈ B̂ and B̃′ ∈ B̂′.
Since DS ∩DT = ∅, this implies that, if E = (E1, . . . ,Em) and d = ab with
a ∈ Dk

S and b ∈ D

T , then Ã= Ã′ = (E1 ∩DS , · · · ,Em ∩DS ,a) and similarly

B̃= B̃′. Hence (E,d)∈ (̂A∩ Â′)� (̂B∩ B̂′), and we have (̂A� B̂)∩ (̂A′� B̂′)⊆
(̂A∩ Â′)� (̂B∩ B̂′). The other inclusion is obvious.
Hence, we have the same splitting as in Case 5 of Lemma 5.36.

Case 6: ϕ is ¬ϕ1. As in Case 6 of Lemma 5.36 with the following fact:

(P(DS)
m×Dk

S)� (P(DT )
m×D


T ) −
⋃

1≤i≤p̂

Ai � B̂i

=
⋃

I⊆[p]

(⋂
i∈I

((P(DS)
m×Dk

S)− Âi)
)
�
( ⋂
j∈[p]−I

((P(DT )
m×D


T )− B̂j)
)
.

Case 7: ϕ is ∃u.ϕ1. As in Case 7 of Lemma 5.36.
Case 8: ϕ is ∃U .ϕ1. Let (θi,ψi)1≤i≤p be associated with ϕ1, by induction. We have

sat = pr(sat(S⊕T ,ϕ1,X U ,x;y)),

where the projection pr : P(D)m+1 × Dn → P(D)m × Dn “eliminates”
the (m + 1)-th component. It is clear that for Â ⊆ P(D)m+1 × Dk and
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B̂⊆P(D′)m+1×D′
, we have pr(̂A � B̂)= pr(̂A)� pr(̂B). Then:

sat = pr(
⋃
i

sat(S,θi,X U ,x)� sat(T ,ψi,X U ,y))

= ⋃
i

pr(sat(S,θi,X U ,x))� pr(sat(T ,ψi,X U ,y))

= ⋃
i

sat(S,∃U .θi,X ,x)� sat(T ,∃U .ψi,X ,y).

This gives the desired result with the family (∃U .θi,∃U .ψi)1≤i≤p.

We have constructed splittings in terms of unions. The stronger statement with disjoint
union is obtained as in the proof of Proposition 5.37.

The final word is given by the following theorem, which extends Proposition 5.37
to monadic second-order formulas:

Theorem 5.39 (Splitting Theorem, the basic case) Let R, R′ and R′′ be relational
signatures such that R =R′ ∪R′′, R′0 ∩R′′0 = ∅ and R+ =R′+ =R′′+. For every
r and h in N and every formula ϕ in CrMSh(R,X ∪ z), there exists a finite family
of 5-tuples (πi,θi,ψi,xi,yi)1≤i≤p such that, for all disjoint concrete R′- and R′′-
structures, respectively S and T , we have

sat(S⊕T ,ϕ,X ,z)=
⊎

1≤i≤p

permπi
(sat(S,θi,X ,xi)� sat(T ,ψi,X ,yi)),

where, for each i, θi ∈CrMSh(R′,X ∪xi), ψi ∈CrMSh(R′′,X ∪yi), z= πi(xi yi) and
πi is a permutation that preserves the relative orders of variables in xi and in yi.

Proof: As in Lemma 5.35, and with the same proof, we have

sat(S⊕T ,ϕ,X ,z)=
⊎

permπ (sat(S⊕T ,ϕ,X ,x;y)),

where the union extends to all triples (π ,x,y) such that z = π(x y) and π preserves
the ordering of variables in x and in y.

Lemma 5.38 expresses each set sat(S ⊕ T ,ϕ,X ,x;y) as a disjoint union of sets
sat(S,θi,X ,x) � sat(T ,ψi,X ,y). Since permπ (̂A 1 B̂) = permπ (̂A) 1 permπ (̂B) for
Â, B̂⊆P(D)m×Dn, we get the stated result.

The family (πi,θi,ψi,xi,yi)1≤i≤p will be called a splitting of ϕ relative to the
operation of disjoint union.

Remark 5.40 (1) The proof of Theorem 5.39 is effective. It gives an algorithm that
constructs from ϕ, X and z a splitting of ϕ relative to ⊕. This construction depends
on R, R′0 and R′′0. The integers r and h can be taken as the minimal ones such that
ϕ ∈ CrMSh(R,X ∪ z).
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(2) If z is empty, then we have a simpler formulation of Theorem 5.39 that avoids
permutations of first-order variables:

sat(S⊕T ,ϕ,X )=
⊎

1≤i≤p

sat(S,θi,X )� sat(T ,ψi,X ).

If ϕ is a sentence, we have an even simpler formulation which is also meaningful for
abstract structures S and T :54 S⊕T |= ϕ if and only if there exists i such that S |= θi

and T |=ψi, and, furthermore, if it exists, this index is unique (which corresponds to
the disjoint union used in the theorem). �

We now develop an example relative to cographs. These graphs are constructed
from isolated vertices by disjoint union and complete join ⊗ (see Section 1.1.2).

Example 5.41 We examine how Lemmas 5.35 and 5.36 extend to the operation⊗ by
generalizing what has been done for ⊕. Lemma 5.35 obviously holds for ⊗. Case 3
of Lemma 5.36 reduces to the following one where G and H are graphs (we identify
G and H with �G� and �H� respectively):

Case 3 (for ⊕): ϕ is edg(s, t); if sat = sat(G⊕H ,ϕ,x;y) then

sat =

⎧⎪⎪⎨⎪⎪⎩
sat(G,ϕ,x)×V |y|H if s, t ∈ x,

V |x|G × sat(H ,ϕ,y) if s, t ∈ y,

∅ otherwise (i.e., if s ∈ x and t ∈ y or if s ∈ y and t ∈ x).

For the operation ⊗, we need only modify Case 3 as follows:

Case 3 (for ⊗): ϕ is edg(s, t); if sat′ = sat(G⊗H ,ϕ,x;y) then

sat′ =

⎧⎪⎪⎨⎪⎪⎩
sat(G,ϕ,x)×V |y|H if s, t ∈ x,

V |x|G × sat(H ,ϕ,y) if s, t ∈ y,

V |x|G ×V |y|H if s ∈ x and t ∈ y, or if t ∈ x and s ∈ y.

This gives the following splitting (taking into account permutations of variables):

sat(G⊗H ,edg(x,y),xy)= sat(G,edg(x,y),xy)1 sat(H ,edg(x,y),xy)
1 sat(G,True,x)× sat(H ,True,y)
1 sat(H ,True,x)× sat(G,True,y).55 (5.1)

All other cases are as in Lemma 5.36.

54 The set sat(S,ϕ,X , z) is undefined if S is an abstract structure, unless the sequences X and z are both
empty, which implies that ϕ is a sentence (cf. Lemma 5.4).

55 Note that sat(G,True,x) is empty if G =∅.
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We now give a complete construction for the first-order formula ϕ(x,y) defined as
edg(x,y)∨ϕ1(x,y), where ϕ1(x,y) is ∃z(edg(x,z)∧ edg(y,z)). We have

sat(G⊕H ,ϕ,xy)= sat(G⊕H ,edg(x,y),xy)∪ sat(G⊕H ,ϕ1,xy).

In order to compute sat(G⊕H ,ϕ1,xy), we let ϕ2(x,y,z) denote edg(x,z)∧ edg(y,z).
For all disjoint sequences of variables u and v such that uv enumerates the free
variables of ϕ2, we have

sat(G⊕H ,ϕ2,u;v)= sat(G⊕H ,edg(x,z),u;v)∩ sat(G⊕H ,edg(y,z),u;v).

There are 8 (= 23) types of splitting for ϕ2 since this formula has three free variables.
We get in particular:

sat(G⊕H ,ϕ2,xyz;ε)

= sat(G⊕H ,edg(x,z),xyz;ε)∩ sat(G⊕H ,edg(y,z),xyz;ε)

= sat(G,edg(x,z),xyz)∩ sat(G,edg(y,z),xyz).

This set can be written as a disjoint union of sets like sat(G,edg(x,z)∧¬edg(y,z),
xyz) but it is simpler to write it as

sat(G⊕H ,ϕ2,xyz;ε)= sat(G,ϕ2,xyz).

By a similar computation, we get

sat(G⊕H ,ϕ2,ε;xyz)= sat(H ,ϕ2,xyz).

The six other cases are as follows:

sat(G⊕H ,ϕ2,xy;z), sat(G⊕H ,ϕ2,xz;y), sat(G⊕H ,ϕ2,x;yz),

sat(G⊕H ,ϕ2,yz;x), sat(G⊕H ,ϕ2,y;xz), sat(G⊕H ,ϕ2,z;xy),

and each of them yields the empty set. It follows that

sat(G⊕H ,ϕ1,xy)= sat(G,ϕ1,xy)1 sat(H ,ϕ1,xy).

Since we have

sat(G⊕H ,edg(x,y),xy)= sat(G,edg(x,y),xy)1 sat(H ,edg(x,y),xy),
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we get

sat(G⊕H ,ϕ,xy) = sat(G,edg(x,y),xy)∪ sat(G,ϕ1,xy)

∪ sat(H ,edg(x,y),xy)∪ sat(H ,ϕ1,xy)

= sat(G,ϕ,xy)1 sat(H ,ϕ,xy).

The unions in the first equality are not disjoint (are not 1) because edg(x,y) and
ϕ1(x,y) may hold simultaneously.

For the sake of comparison, we now consider the splitting of the same formula
relative to ⊗. We have

sat(G⊗H ,ϕ,xy)= sat(G⊗H ,edg(x,y),xy) ∪ sat(G⊗H ,ϕ1,xy). (5.2)

The splitting of sat(G⊗H ,edg(x,y),xy) has been given above in Equality (5.1). The
one for ϕ2 yields again eight cases. Similar to ⊕ we have

sat(G⊗H ,ϕ2,u;v)= sat(G⊗H ,edg(x,z),u;v)∩ sat(G⊗H ,edg(y,z),u;v).

We obtain (by omitting some computations) the following equalities:

sat(G⊗H ,ϕ2,xyz;ε)= sat(G,ϕ2,xyz),

sat(G⊗H ,ϕ2,ε;xyz)= sat(H ,ϕ2,xyz),

sat(G⊗H ,ϕ2,xy;z)= VG×VG×VH ,

sat(G⊗H ,ϕ2,xz;y)= sat(G,edg(x,z),xz)×VH ,

sat(G⊗H ,ϕ2,x;yz)= VG× sat(H ,edg(y,z),yz),

sat(G⊗H ,ϕ2,yz;x)= sat(G,edg(y,z),yz)×VH ,

sat(G⊗H ,ϕ2,y;xz)= VG× sat(H ,edg(x,z),xz),

sat(G⊗H ,ϕ2,z;xy)= VG×VH ×VH .

We get the splitting for ϕ1 from the general scheme

sat(G⊗H ,∃z.ϕ2,u;v)= pr(sat(G⊗H ,ϕ2,uz;v)∪ pr′(sat(G⊗H ,ϕ2,u;vz)),

where pr and pr′ are the appropriate projections.56 We obtain

56 Since we allow G,H to be empty, we cannot replace sat(H ,∃z.True,ε) by sat(H ,True,ε), because
sat(H ,∃z.True,ε)=∅ if H =∅ and is {ε} otherwise. The projection mapping pr : A×B→ A does not
satisfy the rule pr(X ×B)= X for all X ⊆ A because this equality is false if B= ∅ and X �= ∅.
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sat(G⊗H ,ϕ1,xy)= sat(G,ϕ1,xy)∪ sat(H ,ϕ1,xy)

∪ sat(G,True,xy)× sat(H ,∃z.True,ε)

∪ sat(G,∃z.edg(x,z),x)× sat(H ,True,y)

∪ sat(G,True,x)× sat(H ,∃z.edg(y,z),y)

∪ sat(H ,True,x)× sat(G,∃z.edg(y,z),y)

∪ sat(H ,∃z.edg(x,z),x)× sat(G,True,y)

∪ sat(H ,True,xy)× sat(G,∃z.True,ε). (5.3)

Let us continue our computations. According to Equality (5.2), if we now take the
union of the right-hand sides of (5.1) and (5.3), we get a splitting of sat(G⊗H ,ϕ,xy).
However, this expression can be simplified because, e.g.,

sat(G,∃z.edg(x,z),x)× sat(H ,True,y)⊆ sat(G,True,x)× sat(H ,True,y).

We obtain finally the following expression:

sat(G⊗H ,ϕ,xy)= sat(G,ϕ,xy)∪ sat(H ,ϕ,xy)

∪ sat(G,True,x)× sat(H ,True,y)

∪ sat(H ,True,x)× sat(G,True,y)

∪ sat(G,True,xy)× sat(H ,∃z.True,ε)

∪ sat(H ,True,xy)× sat(G,∃z.True,ε).

We will see in Section 5.3.5 (Example 5.54) another proof of the Splitting Theorem
for ⊗. �

5.3.2 Quantifier-free transformations of structures

The transformation of a graph into its edge-complement defined in Chapter 1,
Section 1.7.1, is an example of a quantifier-free transformation of relational structures.
We now give the formal definition, for which we need some notation.

Let R and R′ be relational signatures and X be a set of first-order variables. Then
QF(R,X ) denotes the set of quantifier-free formulas written with R and free variables
in X . (It is equal to C0MS0(R,X )= FO0(R,X ).)

Our objective is to specify functions : STR(R) → STR(R′) by formulas in
QF(R,X ). A transduction is a subset of STR(R)× STR(R′) for some relational sig-
natures R and R′, that we consider also as a mapping from STR(R) to P(STR(R′)).
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Monadic second-order transductions (defined in Section 1.7) will be studied in
Chapter 7. In this chapter, we will consider particular monadic second-order trans-
ductions that are total functions : STR(R)→ STR(R′) and that are specified by
quantifier-free formulas. We will call them operations because they will mainly be
used as unary operations of algebras of graphs and relational structures.

Definition 5.42 (Quantifier-free operations) We first consider the particular but
already useful case where R′0=∅. A quantifier-free operation definition scheme57 (a
QFO definition scheme in short) of type R→R′ is a tuple of quantifier-free formulas
D= 〈δ,(θR)R∈R′ 〉 such that δ ∈QF(R,{x}) and θR ∈QF(R,{x1, . . . ,xρ(R)}) for every
R ∈R′. We call δ the domain formula of D and the formulas θR its relation formulas.

The associated mapping f : STRc(R)→ STRc(R′), denoted by D̂, is defined as
follows. If S is a concrete R-structure, then f (S) is the concrete R′-structure such
that

Df (S) := sat(S,δ,x),

Rf (S) := sat(S,ϕR,(x1, . . . ,xρ(R))),

where ϕR is the formula θR(x1, . . . ,xρ(R))∧ δ(x1)∧ ·· · ∧ δ(xρ(R)).
If S ′ is isomorphic to S, then D̂(S ′) and D̂(S) are isomorphic. Hence the mapping

D̂ is well defined : STR(R)→ STR(R′), i.e., on abstract structures. We call it a
quantifier-free operation, but this is only a special case, the general definition will be
given shortly after some remarks and examples.

We have D̂(∅)=∅ (where ∅ denotes the empty structure of any signature without
constants) and we may have D̂(S)=∅ for S nonempty.

The mapping �G� �→ �G�, where G is the edge-complement of a simple undirected
loop-free graph G (see Example 1.30), is clearly a quantifier-free operation. The same
holds for the slightly different edge-complement considered in Proposition 2.105 and
for the mapping �w� �→ �w̃�, where w̃ is the mirror image of a word w: δ(x) is True,
θsuc(x1,x2) is suc(x2,x1), and θlaba(x1) is laba(x1).

We now extend the notion of QFO definition scheme to the case where R′
has constants. A QFO definition scheme of type R→ R′ is a tuple of formulas
D= 〈δ,(θR)R∈R′+ ,(κc,d)c∈R0,d∈R′0〉, where the formulas δ,θR are as in the above spe-
cial case and the formulas κc,d are quantifier-free sentences over R called constant
defining sentences, intended to express that df (S) = cS whenever S |= κc,d . Hence,
R′0 must be empty if R0 is empty.

In order to ensure that f (S)= D̂(S) is a well-defined structure in STRc(R′) for every
S ∈ STRc(R), we require that the sentences

∨
e∈R0

κe,d , κc,d⇒ δ(c) andκc,d⇒¬κc′,d
are true in every structure S in STR(R), for all d ∈R′0 and all c,c′ in R0 with c �= c′.
The first of these sentences (or rather its validity in S) ensures that every constant df (S)

57 More powerful quantifier-free definition schemes, QF-definition schemes in short, will be defined in
Chapter 7, Definition 7.2.
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for d in R′ is defined as the value in S of some constant symbol e belonging to R0;
the sentences κc,d⇒ δ(c) ensure that the interpretation cS of c∈R0 intended to be the
interpretation of d in f (S) is actually in the domain of f (S); the last sentences ensure
that df (S) is defined as cS for at most one c. These sentences ensure collectively that
each d in R′0 has a unique well-defined interpretation in D̂(S) for every S ∈ STR(R).

By a quantifier-free operation (a QF operation in short), we mean a function
D̂ : STRc(R)→ STRc(R′) (hence also : STR(R)→ STR(R′)) defined by a QFO def-
inition scheme D. The set of these operations is denoted by FQF

1 . It is the set of unary
operations of a functional signature FQF to be defined below in Definition 5.62.

We say that a QFO definition scheme D and the corresponding operation D̂ are
domain preserving if the domain formula δ(x) is equivalent to True. This implies that
D̂(S) has the same domain as S for every structure S. The following notion is slightly
more general (this technicality will be useful to deal with operations like the parallel-
composition of s-graphs represented by relational structures with constants). We say
that D and D̂ are quasi-domain preserving if the domain formula is equivalent to a
formula of the form

∧
c∈R0

(αc⇒ x �= c), where αc is a quantifier-free sentence. This
implies that DS−DD̂(S)={cS | S |=αc}. Thus, only constants can be deleted from DS .
Ifαc is False for all c, thenD is domain preserving. IfS is constant-separated, then cS ∈
DS−DD̂(S) if and only if S |= αc. If it is not, we may have cS in DS−DD̂(S) with S |=
¬αc but cS is nevertheless not in DD̂(S) because c′S = cS and S |= αc′ for some c′ �= c.

For qualifying operations, we will shorten “domain preserving quantifier-free”
into DP-QF and “quasi-domain preserving quantifier-free” into QDP-QF. The corre-
sponding definition schemes will be called the DP-QFO and the QDP-QFO definition
schemes.

Remark 5.43 (1) The conditions to be verified by the constant defining sentences of
a QFO definition scheme are decidable because they are expressed by quantifier-free
sentences. Such a sentence is false in some R-structure if and only if it is false in
some finite R-structure, if and only if it is false in an R-structure whose domain has
cardinality at most |R0| (as the reader can check easily, and much quicker than by
looking into [*BörGG] or Chapter 9 of [*BradMan]; this is true even if R0 = ∅).
It follows that the notion of a QFO definition scheme is effective, that is, one can
decide if it satisfies the required semantical conditions. For a similar reason, one can
decide if two quantifier-free formulas are equivalent. Hence, one can decide if two
QFO definition schemes define the same function on all concrete structures (which
necessarily implies that they define the same function on all abstract structures).

Furthermore, for each pair (R,R′) there are finitely many QF operations of type
R→R′. That is because every quantifier-free formula is a Boolean combination of
atomic formulas. Since there are finitely many atomic formulas (with variables in
a fixed finite set X ), and since every quantifier-free formula is equivalent to one in
disjunctive normal form, there are finitely many pairwise inequivalent quantifier-free
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formulas (with variables in X ). This will be discussed in detail below in Section 5.6,
Corollary 5.95.

A quantifier-free formula with one free variable x is false in some R-structure
if and only if it is false in an R-structure whose domain has cardinality at most
|R0|+1 (immediate from the above similar remark for sentences). Hence, the notion
of a DP-QFO definition scheme is also effective. Since there are only finitely many
pairwise inequivalent sentences αc, there are only finitely many pairwise inequivalent
formulas of the form

∧
c∈R0

(αc⇒ x �= c), and for each of these formulas it can be
decided whether it is equivalent to the domain formula δ(x). This shows the effectivity
of the notion of a QDP-QFO definition scheme.

(2) In Definition 5.42, we do not require that the input structure S is constant-
separated, i.e., that cS �= c′S for every two different constant symbols c and c′. But even
if S is constant-separated, a definition scheme may construct f (S) with df (S) = d ′f (S)
where d �= d ′. In order to ensure that D̂ transforms constant-separated structures into
constant-separated ones (which will be useful for dealing with s-graphs), we need only
require additionally that the sentences κc,d ⇒¬κc,d′ are true in every S ∈ STR(R),
for all c ∈R0 and all d,d ′ ∈R′0 with d ′ �= d. This can be decided by the observations
made in (1).

(3) Let us comment about the role of constant symbols. Consider a constant symbol
a and a binary relation R. Let f be the QF operation that transforms an {R,a}-structure
S by adding to RS all pairs (d,d ′) such that (d,aS) and (aS ,d ′) are in RS . It is not a
QF operation over {R,a}∗-structures, i.e., over {R,a}-structures where a is replaced
by a unary relation laba (cf. Section 5.1.5) to be interpreted by a singleton set. We
use constants in relational structures in order to handle such cases.

Example 5.44 The natural inclusion ιR,R′ : STRc(R)→ STRc(R′), where58 R⊆R′
and R0 =R′0, is defined by D := 〈True,(θR)R∈R′+ ,(κc,d)c,d∈R0〉 such that

θR is

{
R(x1, . . . ,xρ(R)) if R ∈R+,

False if R ∈R′+ −R+,

and, for all c,d ∈R0:

κc,d is

{
True if d = c,

False if d �= c.

Thus, RD̂(S) = RS for R ∈R+ and RD̂(S) = ∅ for R ∈R′+ −R+, and D̂(S) has the
same constants as S.

We recall that the union S ⊕ T of disjoint structures S in STRc(R′) and T in
STRc(R′′) has been defined under the condition that R′ and R′′ have the same relation

58 When we discuss several signatures R and R′, we assume, unless otherwise specified, that a symbol
in R∩R′ has the same arity with respect to both of them.
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symbols (of positive arity) and no constant symbol in common. We now waive the
former condition (we still assume that R′0 ∩R′′0 = ∅) and define

S⊕R′,R′′ T := ιR′,R′1(S)⊕ ιR′′,R′′1 (T ),

where R′1 :=R′0∪R′+ ∪R′′+ and R′′1 is defined similarly as R′′0 ∪R′+ ∪R′′+. We thus
obtain a concrete (R′ ∪R′′)-structure S ⊕ T . We will see that this extended union
still satisfies the Splitting Theorem.

This extension also applies to the disjoint union of abstract structures, that is then
a derived operation expressed in terms of the disjoint union of Definition 5.34 and
the QF operations of Definition 5.42.

We will frequently write ⊕ for ⊕R′,R′′ .
The natural inclusion is actually an inverse of the following reduction operation.59

If R′ ⊆R, the operation fgR−R′ : STRc(R)→ STRc(R′) deletes the relations and
constants in R−R′. Its definition scheme is easy to write.As for the natural inclusion,
it is domain preserving. We will write fgR for fg{R}. �

Here is an important example of a QDP-QF operation.

Example 5.45 (Fusion of constants) Let a and b be distinct constant symbols of a
relational signature R. We define fusea,b : STR(R)→ STR(R) as the transformation
of abstract structures that fuses aS and bS and reorganizes the tuples accordingly. If
aS = bS , then fusea,b(S)= S. Concretely, bS is deleted if aS �= bS . This operation is
our main example of a QDP-QF operation.

Formally, for S ∈ STRc(R), we define fusea,b(S) as the concrete structure S ′ such
that

DS ′ := if aS = bS then DS else DS −{bS }.

For every d ∈R0

dS ′ := if dS = bS then aS else dS ,

or equivalently

dS ′ := if aS = bS ∨ dS �= bS then dS else aS .

For every R ∈R+:

RS ′ := {(̂e1, . . . , êρ(R)) | (e1, . . . ,eρ(R)) ∈ RS },
where ê := if e= bS then aS else e.

59 In Model Theory, fgR−R′ (S) is called a reduct of S. This operation generalizes the source forgetting
operation on s-graphs (Definition 2.30, Section 2.3.1).
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This mapping can be defined by the QFO definition scheme 〈δ,(θR)R∈R+ ,
(κc,d)c,d∈R0〉 such that δ(x) is a= b∨ (a �= b∧ x �= b) and:

κa,d is True if d ∈ {a,b},
κc,d is False if d ∈ {a,b} and c ∈R0−{a},
κa,d is d = b if d ∈R0−{a,b},
κd,d is d �= b if d ∈R0−{a,b},
κc,d is False if d ∈R0−{a,b} and c ∈R0−{a,d}.

Note that κb,b is False. It remains to define the formulas θR(x1, . . . ,xρ(R)) for R∈R+.
We first define them with existential quantifications for the purpose of clarity. Then
we will eliminate these quantifications. We let n = ρ(R). The relation Rfusea,b(S) is
defined in S by δ(x1)∧ ·· · ∧ δ(xn)∧ψR(x1, . . . ,xn), where ψR(x1, . . . ,xn) is

∃y1, . . . ,yn[R(y1, . . . ,yn)∧
∧

1≤i≤n

(yi = b∧ xi = a)∨ (yi �= b∧ xi = yi)].

This formula is equivalent to

∨
I⊆[n]
∃y1, . . . ,yn[R(y1, . . . ,yn)∧ (

∧
i∈I

yi = b∧ xi = a)∧ (
∧
i/∈I

yi �= b∧ xi = yi)],

hence to ∨
I⊆[n]
[R(xI

1, . . . ,xI
n)∧ (

∧
i∈I

xi = a)∧ (
∧
i/∈I

xi �= b)],

where xI
i stands for b if i ∈ I and for xi if i /∈ I . Hence, we obtain a quantifier-free

formula θR(x1, . . . ,xn) equivalent to ψR(x1, . . . ,xn).
The operation fusea,b is QDP-QF because an element is deleted only if it is the value

of b and the domain formula of its definition scheme is equivalent to
∧

c∈R0
(αc⇒

x �= c), where αc is a �= b if c= b and is False otherwise.
We will also use its variant ffusea,b defined as fgb ◦ fusea,b that fuses a and b and

then forgets b. It maps STR(R) to STR(R− {b}). It is also QDP-QF and preserves
constant-separation, which is not the case for fusea,b. Its definition scheme is obtained
from that of fusea,b by omitting the formulas κc,b for all c.

Note that the operations fusea,b and fuseb,a are the same on abstract structures but
not on concrete ones, because if aS �= bS in the concrete input structure S, then bS is
deleted by the former whereas aS is deleted by the latter. �
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5.3.3 Backwards translation with respect to QF operations

The main result of this section is the Backwards Translation Theorem (Theorem 5.47).
We first prove a weak form of it that entails the Recognizability Theorem for the VR
algebra.

Proposition 5.46 Let D be a DP-QFO definition scheme of type R→ R′ where
R′0 = ∅. For every formula ϕ in CrMSh(R′,X ∪ y), there exists a formula μ in
CrMSh(R,X ∪ y) such that, for every concrete R-structure S:60

sat(D̂(S),ϕ,X ,y)= sat(S,μ,X ,y).

Proof: We have DS = DD̂(S). Hence, when constructing μ intended to define in

S the assignments that satisfy ϕ in D̂(S), we need not put in μ the condition that
the considered values assigned to variables are in the domain of D̂(S). This will
be necessary in other cases to be considered later. The proof is by induction on the
structure of ϕ.

Case 1: ϕ is True or u= v or u ∈ Y or Cardp,q(Y ), with u,v in y and Y in X . We take
μ equal to ϕ.

Case 2: ϕ is R(u1, . . . ,un) with R ∈R′+ and u1, . . . ,un ∈ y. The variables u1, . . . ,un

need not be pairwise distinct. We have RD̂(S) = sat(S,θR,ε,(x1, . . . ,xn))

hence, by Lemma 5.8:

sat(D̂(S),ϕ,X ,y)= sat(S,θR[u1/x1, . . . ,un/xn],X ,y),

and we take μ equal to θR[u1/x1, . . . ,un/xn]. This formula is quantifier-free.
Case 3: ϕ is ϕ1 ∨ϕ2 or ϕ1 ∧ϕ2 or ¬ϕ1. Assuming μ1,μ2 associated with ϕ1,ϕ2 by

induction, we take μ to be μ1∨μ2 or μ1∧μ2 or ¬μ1 respectively.
Case 4: ϕ is ∃u.ϕ1 or ∃U .ϕ1. Assuming μ1 associated with ϕ1 we take μ to be

respectively ∃u.μ1 or ∃U .μ1. The correctness of this step follows from the
fact that D is domain preserving.

We now consider a QDP-QFO definition scheme D. For every set variable X , we
denote by δ(X ) the quantifier-free formula

∧
c∈R0

(αc⇒ c /∈ X ). It is clear that for
every subset A of DS , we have, S |= δ(A) if and only if A⊆DD̂(S).

Theorem 5.47 (Backwards Translation Theorem)

(1) Let D be a QDP-QFO definition scheme of type R→R′. For every r,h∈N and
every formula ϕ in CrMSh(R′,X ∪ y), there exists ψ in CrMSh(R,X ∪ y) such

60 Note that S and D̂(S) are concrete structures. A set sat(S,ϕ,U ,u) is well defined only if S is a concrete
structure, or if S is abstract and U = u= ε, i.e., if ϕ is a sentence.



5.3 Monadic second-order logic and recognizability 379

that, for every concrete R-structure S, we have:

sat(D̂(S),ϕ,X ,y)= sat(S,ψ ,X ,y).

(2) If D is a QFO definition scheme, then this statement holds for ϕ in FOh(R′,y)
with ψ in FOh(R,y).

Proof: (1) The definition of ψ will use an auxiliary formula μ associated with ϕ

by the same induction as in Proposition 5.46. It satisfies the following property:
sat(D̂(S),ϕ,X ,y) is the set of all elements of sat(S,μ,X ,y) that are (X ∪ y)-
assignments in D̂(S), or in other words sat(D̂(S),ϕ,X ,y) = sat(S,μ,X ,y) ∩
sat(D̂(S),True,X ,y).

Case 1: ϕ is True or Cardp,q(Y ) or s ∈ Y or s= t, with s, t ∈ y∪R′0 and Y ∈ X .
If ϕ is True or Cardp,q(Y ), then μ is ϕ.
If ϕ is s ∈ X and s belongs y, then μ is ϕ; if ϕ is s ∈ X and s= d ∈R′0, then
μ is

∨
c∈R0

(κc,d ∧ c ∈ X ).
If ϕ is s= t, we have several cases. If s and t belong to y, then μ is ϕ; if s
belongs to y and t = d ∈R′0, then μ is

∨
c∈R0

(κc,d ∧ s= c); the case where
t belongs to y and s= d ∈R′0 is similar; if s= d ∈R′0 and t = d ′ ∈R′0, then
we let μ be

∨
c,c′∈R0

(κc,d ∧ κc′ ,d ′ ∧ c= c′).
In all cases, μ is quantifier-free.

Case 2: ϕ is R(t1, . . . , tn)with R∈R′+ and t1, . . . , tn ∈ y∪R′0. For readability, we only
consider the case where n= 2, and let ϕ be R(s, t) with s and t in y∪R′0.
If s, t ∈ y, then μ is θR[s/x1, t/x2]. If s ∈ y and t = d ∈ R′0, then μ is∨

c∈R0

(
κc,d ∧ θR[s/x1,c/x2]

)
. The case where t ∈ y and s = d ∈ R′0 is

similar. If s= d ∈R′0 and t = d ′ ∈R′0, then we define μ as
∨

c,c′∈R0
(κc,d ∧

κc′,d ′ ∧ θR[c/x1,c′/x2]).
The construction of μ in the general case is similar, but lengthy to write

down. In all cases the formula μ is quantifier-free, because, in particular,
the formulas θR are quantifier-free.

Case 3: ϕ is ϕ1∧ϕ2 or ϕ1∨ϕ2 or ¬ϕ1. As in Proposition 5.46.
Case 4: ϕ is ∃u.ϕ1 or ∃U .ϕ1. Assuming that μ1 has been constructed from ϕ1 by

induction, we take μ to be respectively ∃u(δ(u)∧μ1) or ∃U (δ(U )∧μ1).
This definition is correct (using induction) and μ has quantifier-height 1+
qh(μ1) which is at most 1+qh(ϕ1)= qh(ϕ), because the formulas δ(u) and
δ(U ) are quantifier-free.

The desired formula ψ is the conjunction of μ, of the formulas δ(yi) for every yi in
y, and of the formulas δ(Xi) for every Xi in X . This completes the proof of the first
assertion.

(2) If ϕ ∈ FOh(R′,y), then the formulas δ(X ) are not needed in this construction.
Hence it applies even if D is not quasi-domain preserving.
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We will denote by ϕD the formula ψ constructed by backwards translation applied
to ϕ and D.

Remark 5.48 (1) As for Theorem 5.39, the proof of Theorem 5.47 is effective. It
gives an algorithm that constructs ψ from ϕ and D.

(2) If ϕ is a sentence, then ϕD is also a sentence and we have

D̂(S) |= ϕ if and only if S |= ϕD ,

and this is meaningful for an abstract structure S.
(3) It is important for proving the Recognizability Theorem that Backwards

Translation does not increase the quantifier-height. This concern motivates the tech-
nicality about QDP-QF operations and the particular treatment of constants (cf.
Remark 5.43(3)).

(4) We consider the QDP-QF operation fusea,b applied to a concrete structure S
such that aS �= bS . The structure T := fusea,b(S) is constructed from S by deleting bS ,
whereas it can also be seen as a quotient of S. That is, we have a surjective mapping
h : DS →DT that identifies aS and bS and is the identity otherwise. The relation RT

consists of all tuples (h(a1), . . . ,h(an)) such that the tuple (a1, . . . ,an) is in RS , and
for every constant symbol c, we have h(cS)= cT . To simplify the discussion, let us
consider in Theorem 5.47 a formula ϕ with a single free variable y. Letting D define
fusea,b, we do not have

sat(S,ϕD ,ε,y)= h−1(sat(fusea,b(S),ϕ,ε,y))

as one might think, but we have

sat(S,ϕD ,ε,y)= {d ∈DS −{bS} | fusea,b(S) |= ϕ(d)}.

�

The following proposition deals with compositions of QF operations.

Proposition 5.49 If f : STRc(R)→ STRc(R′) and g : STRc(R′)→ STRc(R′′) are QF
operations, then so is g ◦ f : STRc(R)→ STRc(R′′). If f and g are domain preserving
or are quasi-domain preserving, then g ◦ f has the same property.

Proof: Let f be defined by D= 〈δ,(θR)R∈R′+ ,(κc,d)c∈R0,d∈R′0〉 and g be defined by
D′ = 〈δ′,(θ ′R)R∈R′′+ ,(κ ′d,e)d∈R′0,e∈R′′0 〉. We define

D′′ := 〈δ′′,(θ ′′R)R∈R′′+ ,(κ ′′c,e)c∈R0,e∈R′′0 〉.

We need a formula δ′′ such that sat(D̂(S),δ′,x) = sat(S,δ′′,x). It is given by the
second assertion of Theorem 5.47 with h= 0, so we can take δ′′ equal to δ′D. This
theorem gives us also, for each R ∈ R′′n, n ≥ 1, a formula θ ′′R defined as θ ′DR such
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that sat(D̂(S),θ ′R,x) = sat(S,θ ′′R ,x) where x = (x1, . . . ,xn). Finally, we let κ ′′c,e be∨
d∈R′0 κc,d ∧ κ ′Dd,e, where, by Remark 5.48(2), S |= κ ′Dd,e if and only if D̂(S) |= κ ′d,e. It

follows from Theorem 5.47(2) that D′′ defines g ◦ f .
We now examine the case where f and g are quasi-domain preserving. It is clear

that for every structure S in STRc(R), the elements in Dg◦f (S)−DS are constants of
S, because if such an element is deleted by g, then it is a constant of f (S), hence a
constant of S, and if it is deleted by f it is also a constant of S. However, the notion of
a QDP-QF operation is defined by a particular syntactic form of the domain formula.
We now check that δ′′ has the required form. Let δ(x) be

∧
c∈R0

(αc⇒ x �= c) and
δ′(x) be

∧
d∈R′0(βd ⇒ x �= d). We can take δ′′(x) to be

∧
c∈R0

(γc⇒ x �= c), where

γc is αc ∨∨d∈R′0(κc,d ∧βD
d ).

The case of DP-QF operations is clear.

5.3.4 The VR and HR graph operations

We apply the above defined notions to describe the operations of the VR and the HR
graph algebras. In particular, the unary operations are all QF operations.

Application 5.50 (The operations of the VR algebra GPt) The many-sorted algebra
GPt has been defined in Section 2.6.3. Our aim is to express its operations in terms
of operations on relational structures. A p-graph G of type C (with C ∈ Pf (A))
is faithfully represented by the Rs,C -structure �G� = 〈VG,edgG ,(labcG)c∈C〉 (see
Example 5.2(2)) and we have

�G⊕C,D H� = �G�⊕Rs,C ,Rs,D �H�,

where C=π(G) and D=π(H ). Here we use the extended disjoint union of structures
defined in Example 5.44; note thatRs,C∪Rs,D=Rs,C∪D. We now formalize the unary
VR operations as quantifier-free operations.

If C is a finite set of port labels, π(G)= C and a,b ∈ C, then

�−→adda,b,C(G)� = D̂a,b,C(�G�),

where Da,b,C is the DP-QFO definition scheme 〈True,θedg ,(θlabc)c∈C〉 of type Rs,C→
Rs,C such that

θedg(x1,x2) is edg(x1,x2)∨ (laba(x1)∧ labb(x2)),

θlabc(x1) is labc(x1), for each c ∈ C.

If h : C→A and D= h(C) we have

�relabh,C(G)� = D̂h,C(�G�)
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for every p-graph G of type π(G)=C, where Dh,C is the DP-QFO definition scheme
〈True,θedg ,(θlabd )d∈D〉 of type Rs,C→Rs,D such that θedg(x1,x2) is edg(x1,x2) and
θlabd (x1) is

∨
c∈h−1(d) labc(x1) for each d ∈D.

The structures corresponding to the constant graphs of GPt have domains with at
most one element. The extension to operations on labeled graphs (cf. Definition 2.90)
is straightforward.

Application 5.51 (The unary operations of the HR algebra JSt) We now consider
in a similar way the operations of the many-sorted algebra JSt defined in Section 2.6.2.
An s-graph G of type C is faithfully represented here by the constant-separated
Rms,C -structure �G� = 〈VG ∪EG, inG, labEdgeG ,(aG)a∈C〉 (see Section 5.2.5), where
aG is the a-source of G.

If B⊆C, the operation fgB,C takes as argument an s-graph of type C and produces
an s-graph of type C−B. We have

� fgB,C(G)� = D̂B,C(�G�),

where DB,C := 〈True,θin,θlabEdge ,(κa,b)a∈C,b∈C−B〉 of type Rms,C→Rms,C−B and

θin(x1,x2) is in(x1,x2),

θlabEdge (x1) is labEdge(x1),

κa,b is

{
True if a= b,

False if a �= b.

Let h be a bijection : C→ D where C,D ∈ Pf (A). The operation renh,C of type
C → D is defined by the scheme Dh,C := 〈True,θin,θlabEdge ,(κa,b)a∈C,b∈D〉 of type
Rms,C→Rms,D where θin and θlabEdge are as above and

κa,b is

{
True if h(a)= b,

False if h(a) �= b.

The QFO definition schemes DB,C and Dh,C are domain preserving and
they preserve constant-separation. Parallel-composition will be defined below in
Example 5.55, in terms of disjoint union (⊕) and the QDP-QF operations ffusea,b

of Example 5.45.

The reader may recall that we have defined in Definition 4.50 a kind of simulation
of the operations of the HR algebra by derived operations of the VR algebra. Why
not resting on it instead of defining particular operations for the HR algebra? There
are several reasons. First, this simulation is quite complicated and it describes graphs
of tree-width at most k by VR operations using a number of port labels that is expo-
nential in k (and we know by Proposition 2.114(2) that this blow-up is unavoidable).
Second, it is defined for simple graphs and would have to be adapted to graphs with
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multiple edges. Third, graph classes of bounded tree-width are frequently considered
for algorithmic purposes and it is thus useful to consider them more directly than
via cumbersome encodings. And, finally, the encoding of Definition 4.50 works for
graphs but not for relational structures of bounded tree-width, a case that we will
consider in Chapter 9.

5.3.5 The Splitting Theorem for derived operations

We will show that the Splitting Theorem (Theorem 5.39) extends to all linear and
strict derived operations, built with disjoint union and QDP-QF operations (as defined
in Example 5.44 and Definition 5.42 respectively). For sentences, it extends to all
derived operations.

Definition 5.52 (n-ary QDP-QF operations) We first define binary operations. Let
R(1), . . . ,R(4),R be relational signatures such that R(3)

0 ∩R(4)
0 =∅ (and according to

the convention of Footnote 58 in Example 5.44, a symbol belonging to two of them
has the same arity with respect to both). Let f : STR(R(1))× STR(R(2))→ STR(R)

be defined by

f (S,T ) := h(g(S)⊕R(3),R(4) g′(T )),

where g, g′ and h are QDP-QF operations such that g : STR(R(1))→ STR(R(3)),
g′ : STR(R(2))→ STR(R(4)) and h : STR(R(3) ∪R(4))→ STR(R).

We call such a mapping f a binary QDP-QF operation61 and a binary DP-QF
operation if g, g′ and h are DP-QF operations. Its definition uses only the finitely
many symbols of R(1) ∪ ·· · ∪R(4) ∪R. Note that every binary linear and strict
derived operation f that is built with disjoint union and QDP-QF operations, can be
written as above because the family of QDP-QF operations is closed under compo-
sition (Proposition 5.49) and contains the identity on every STR(R) (it is ιR,R, see
Example 5.44).

In general, for n≥ 1, an n-ary mapping f : STR(R(1))×·· ·×STR(R(n))→ STR(R)

is called an n-ary QDP-QF operation if it is a linear and strict derived operation that
is built with disjoint unions ⊕R′ ,R′′ and QDP-QF operations. Clearly, by Proposi-
tion 5.49, the unary QDP-QF operations are the same as the QDP-QF operations.
Every n-ary QDP-QF operation f with n > 2 can be expressed as a composition
of binary QDP-QF operations. To be precise, it can be defined (recursively) as
f (S1, . . . ,Sn) := h(g1(S1, . . . ,Sm),g2(Sm+1, . . . ,Sn)), where h is a binary QDP-QF
operation, g1 is an m-ary QDP-QF operation, with 1 ≤ m ≤ n− 1, and g2 is an
(n−m)-ary QDP-QF operation. Similar definitions hold for n-ary DP-QF operations.

These operations act as well on concrete structures, provided the argument struc-
tures are pairwise disjoint (the Splitting Theorem to be stated concerns concrete
structures).

61 We will not use the full term binary quasi-domain preserving quantifier-free operation!
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Before proving that the Splitting Theorem extends to these operations, we give
some examples.

Example 5.53 (Series-composition) Series-composition has been defined as a
binary mapping • on directed s-graphs of type {1,2}. Via the faithful representa-
tion of an s-graph G by �G� in STR(Rms,{1,2})= STR({in, labEdge,1,2}), (1 and 2 are
constant symbols), we have

�G •H� = �G� •s �H�, where

•s : STR(Rms,{1,2})× STR(Rms,{1,2})→ STR(Rms,{1,2})

is the binary operation such that

S •s T := fg{3,4}(fuse3,4(ren2↔3(S)⊕ ren1↔4(T ))).

It is a binary QDP-QF operation since by Example 5.45, Application 5.51 and Propo-
sition 5.49 the unary operations ren2↔3, ren1↔4 and fg{3,4} ◦ fuse3,4 (= fg3 ◦ ffuse3,4)
are QDP-QF operations that preserve constant-separation. (This is necessary for them
to represent operations on s-graphs). We now review the types of the operations used
in this definition:

⊕ : Rms,{1,3} ×Rms,{2,4} →Rms,{1,2,3,4},

ren2↔3 : Rms,{1,2} →Rms,{1,3},

ren1↔4 : Rms,{1,2} →Rms,{2,4},

fuse3,4 : Rms,{1,2,3,4} →Rms,{1,2,3,4},

fg{3,4} : Rms,{1,2,3,4} →Rms,{1,2}.

The definition would be the same with {in1, in2} instead of {in, labEdge}, that is, if �G�
is defined alternatively as an {in1, in2,1,2}-structure. �

Example 5.54 (The complete join) The complete join of simple undirected graphs
can be expressed by

�G⊗H� = create(nat(�G�)⊕mark(�H�)).

In this writing, �G�,�H� ∈ STR({edg}), the operation nat is ι{edg},{edg,m} that expands
the structure �G� with the new empty unary relation m (cf. Example 5.44), the oper-
ation mark expands �H� with the new unary relation m equal to the domain of the
argument structure, and the operation create adds undirected edges between any two
vertices x and y such that ¬m(x)∧m(y) holds, and then deletes m. The types of these
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DP-QF operations are:

mark ,nat : STR({edg})→ STR({edg,m}),
create : STR({edg,m})→ STR({edg}).

Hence the complete join is a binary DP-QF operation. �

Example 5.55 (Parallel-composition of structures) Let R,R′ be two relational
signatures. We denote by�R,R′ , or simply by�, the operation : STR(R)×STR(R′)→
STR(R∪R′) described informally as follows: S � T is obtained from the union of
disjoint concrete structures S and T by fusing the constants aS and aT for every a in
R0 ∩R′0. We call S � T the parallel-composition of S and T .

Let A :=R0 ∩R′0 and let A′ := {a′ | a ∈ A} be a set of auxiliary constant symbols
disjoint from R0 ∪R′0 (we assume of course that a′ �= b′ if a �= b). For structures
S ∈ STR(R) and T ∈ STR(R′) the parallel-composition operation can be expressed by

S �R,R′ T = ffuse(S⊕R,R′′ ren(T )),

where the DP-QF operation ren changes each a ∈ A into a′ (its definition scheme
is similar to the one of renh in Application 5.51), R′′ is the relational signature
(R′ −A)∪A′ and ffuse is the operation fgA′ ◦ fuse, where fuse is the composition in
any order of the QDP-QF operations fusea,a′ for all a ∈ A.62 Hence, this operation
is a binary QDP-QF operation. This operation is also defined on disjoint concrete
structures. It is not commutative on concrete structures whereas it is on abstract ones.

For s-graphs G and H of respective types C and D, faithfully represented by the
constant-separated structures �G� ∈ STR(Rms,C) and �H� ∈ STR(Rms,D), we have
�G �C,D H� = �G��Rms,C ,Rms,D �H�.63 Hence the parallel-composition operations
of the many-sorted algebra JSt are binary QDP-QF operations. �

Example 5.56 (Concatenation of linearly ordered structures) Let us consider a
relational signature R containing the binary symbol≤. For S,T ∈ STR(R) we denote
by S
−→⊕ T the structure S⊕T where, furthermore, we let x≤ y hold for every x ∈DS

and y ∈DT . By an easy modification of the construction of Example 5.54, we obtain
that
−→⊕ : STR(R)× STR(R)→ STR(R) is a binary DP-QF operation.

We recall from Example 5.2(1) that �w�
 is the representation of a word w ∈ A∗
that uses the order of occurrences of letters. We have �v ·w�
 = �v�
−→⊕ �w�
. We
will use this observation in the proof of Corollary 5.66.

If we construct R-structures by using the ordered disjoint union
−→⊕ , basic structures

with a single element ∗ satisfying ∗ ≤ ∗, and quantifier-free operations that do not

62 Note that ffuse is also the composition in any order of the operations ffusea,a′ for all a ∈ A.
63 For handling directed graphs, replacing {in, labEdge} by {in1, in2} would not change this equality, and

its consequences remain valid.
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modify the relation defined by ≤, then all structures constructed by these operations
are linearly ordered by ≤. �

We now state the extension of Theorem 5.39 to binary QDP-QF operations. Its
statement is exactly the same as the one of Theorem 5.39, with ⊕ replaced by an
arbitrary binary QDP-QF operation f (and with R,R′ replaced by R(1),R(2), which
is of course irrelevant).

Theorem 5.57 (Splitting Theorem, for binary QDP-QF operations) Let f be a
binary QDP-QF operation : STR(R(1))×STR(R(2))→ STR(R). For every r and h in
N and every formula ϕ in CrMSh(R,X ∪ z), there exists a finite family of 5-tuples
(πi,θi,ψi,xi,yi)1≤i≤p such that, for all disjoint concrete R(1)- and R(2)-structures,
respectively S and T , we have

sat( f (S,T ),ϕ,X ,z)=
⊎

1≤i≤p

permπi
(sat(S,θi,X ,xi)� sat(T ,ψi,X ,yi)),

where, for each i, θi ∈ CrMSh(R(1),X ∪ xi), ψi ∈ CrMSh(R(2),X ∪ yi), z = πi(xi yi)

and πi is a permutation that preserves the relative orders of variables in xi and in yi.

Proof: We let f be defined by f (S,T ) := h(g(S)⊕R(3),R(4) g′(T )). By Example 5.44

and Proposition 5.49 we may assume that R(3)
+ =R(4)

+ . By Theorems 5.39 and 5.47,
we have

sat( f (S,T ),ϕ,X ,z)= sat(g(S)⊕ g′(T ),ϕ′,X ,z)

=
⊎

1≤i≤p

permπi
(sat(g(S),θ ′i ,X ,xi)� sat(g′(T ),ψ ′i ,X ,yi))

=
⊎

1≤i≤p

permπi
(sat(S,θi,X ,xi)� sat(T ,ψi,X ,yi)),

whereϕ′ is constructed fromϕ by backwards translation relative to the unary operation
h (Theorem 5.47). The sequences of variables, the formulas and the permutations in
the second equality are constructed by the Splitting Theorem (Theorem 5.39) applied
to ϕ′. The formulas θi and ψ ′i in the last equality are constructed by backwards
translation applied to the formulas θ ′i and the unary operation g, and to the formulas
ψ ′i and the unary operation g′, respectively.

This theorem extends to n-ary QDP-QF operations of all arities in a straightforward
way. We will however not need that extension. Instead, we will use Corollary 5.60
below.

Remark 5.58 (1) By Remarks 5.40(1) and 5.48(1), the proof of Theorem 5.57 is
effective. It gives an algorithm that constructs from ϕ, X , z and f a splitting of ϕ
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relative to f . If f is defined by f (S,T ) := h(g(S)⊕R(3),R(4) g′(T )), then the definition
schemes of g, g′ and h are given as input to the algorithm.

(2) If z = ε, then the statement of Theorem 5.57 is simpler. No permutations are
needed and we have

sat( f (S,T ),ϕ,X )=
⊎

1≤i≤p

sat(S,θi,X )� sat(T ,ψi,X ).

(3) If ϕ is a sentence, then we obtain the following statement:

f (S,T ) |= ϕ if and only if S |= θi and T |=ψi for some i ∈ [p],

and, furthermore, the index i is unique when it exists. This statement holds for abstract
structures S and T .

If, furthermore, R(1) = R(2), we can define g(S) := f (S,S) for an abstract
R(1)-structure S. Then we have

g(S) |= ϕ if and only if S |=
∨
i∈[p]

θi ∧ψi.

More generally, the Splitting Theorem extends to sentences and to derived oper-
ations on abstract structures built with disjoint union and QDP-QF operations that
are not linear. However, we will not need this extension for proving recognizability
results because, by Proposition 3.56(3), if a set is recognizable in an F-algebra, then
it is recognizable in any derived algebra of it, defined with derived operations that
need not be linear.

(4) If ϕ is a sentence and T is a fixed structure, then the unary mapping defined by
k(S) := f (S,T ) satisfies the following:

k(S) |= ϕ if and only if S |= θ ,

where θ is the disjunction of the sentences θi such that T |=ψi. �

5.3.6 Computing bounded theories

According to the definition given in Section 5.1.6, theL-theory ThL({S})of a structure
S (where L denotes a logical language) is the set of sentences of this language that
are valid in S. This is usually an infinite set. Our objective is to compute theories
of structures in certain cases where they are finite because of syntactic restrictions,
typically on the quantifier-height.

Definition 5.59 (Bounded theories) In Section 5.6, we will give an algorithm that
transforms an arbitrary formula ϕ in CrMSh(R,X ) into an equivalent formula ϕ̂ that
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is a kind of normal form of ϕ. (We have ψ̂ =ψ if ψ = ϕ̂.) This formula also belongs
to CrMSh(R,X ). If X is finite, then the set

ĈrMSh(R,X ) := {ϕ̂ | ϕ ∈ CrMSh(R,X )}

is finite and can be computed from r, h, R and X (Proposition 5.94). We define
the (h,r)-bounded (CMS) theory of a concrete or abstract R-structure S as the set

Th(S,R,h,r) of sentences in ĈrMSh(R,∅) that are valid in S, i.e.,

Th(S,R,h,r) := {ϕ ∈ ĈrMSh(R,∅) | S |= ϕ}
= {ϕ̂ | ϕ ∈ CrMSh(R,∅), S |= ϕ}.

The set Th(S,R,h,r) is finite and computable from S, R, h and r, although not
in a tractable way. This is a specialization of the notion of theory introduced in
Section 5.1.6.

More generally, if Xk = {x1, . . . ,xk} is the standard set of first-order variables, with
the standard order (x1, . . . ,xk ), and a = (a1, . . . ,ak) is a k-tuple of elements of the
domain of a concrete structure S, we let

Th(S,R,h,r,a) := {ϕ ∈ ĈrMSh(R,Xk) | S |= ϕ(a)}
= {ϕ̂ | ϕ ∈ CrMSh(R,Xk ), a ∈ sat(S,ϕ,(x1, . . . ,xk ))}.

An easy consequence of Theorems 5.47 and 5.57 is the following:

Corollary 5.60 Let f : STR(R(1))× ·· · × STR(R(n))→ STR(R) be an n-ary QDP-
QF operation. For every h,r,k1, . . . ,kn,k ∈N with k = k1+ ·· · + kn, there exists a
computable mapping Zf :

P(ĈrMSh(R(1),Xk1))×·· ·×P(ĈrMSh(R(n),Xkn))→P(ĈrMSh(R,Xk)),

such that, for all pairwise disjoint concrete R(1)-, . . . ,R(n)-structures, respectively
S1, . . . ,Sn, and every k-tuple a1 · · ·an of elements of Df (S1,...,Sn) such that a1 ∈
(DS1)

k1 , . . . ,an ∈ (DSn)
kn , we have

Th( f (S1, . . . ,Sn),R,h,r,a1 · · ·an)=Zf (Th(S1,R(1),h,r,a1), . . . ,Th(Sn,R(n),h,r,an)).

When necessary, we will use the more precise notation Zf ,h,r,(k1,...,kn) for Zf .
A similar statement holds for abstract structures S1, . . . ,Sn and empty tuples

a1, . . . ,an.

Proof: We first consider the case n = 1. Let D be the definition scheme of the
QDP-QF operation f . Let S be a concrete R(1)-structure and let a be a k-tuple of
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elements of Df (S). It has to be shown that Th( f (S),R,h,r,a) can be computed from
Th(S,R(1),h,r,a). We have

Th( f (S),R,h,r,a)= {ϕ ∈ ĈrMSh(R,Xk ) | ϕ̂D ∈ Th(S,R(1),h,r,a)},
where ϕD is the backwards translation of ϕ relative to D (cf. Theorem 5.47).
In order to prove the inclusion ⊇, we consider ϕ in the set to the right. If
a ∈ sat(S, ϕ̂D,(x1, . . . ,xk))= sat(S,ϕD ,(x1, . . . ,xk)), then Theorem 5.47 implies that
a ∈ sat( f (S),ϕ,(x1, . . . ,xk )) and ϕ ∈ Th( f (S),R,h,r,a). The proof is similar for the
other inclusion. Hence, we can define

Zf (�) := {ϕ ∈ ĈrMSh(R,Xk) | ϕ̂D ∈�},

for every � ⊆ ĈrMSh(R(1),Xk), and Zf is the desired function. Note that Zf (�) is

defined for every subset � of ĈrMSh(R(1),Xk), even if � is not a theory: � may be
empty or contain contradictory formulas.

The proof for n = 2 is similar to the one for n = 1. Let f be a binary
QDP-QF operation, let S1,S2 be concrete structures, and let a1 ∈ (DS1)

k1 and

a2 ∈ (DS2)
k2 . We consider a formula ϕ ∈ ĈrMSh(R,Xk1+k2). By Theorem 5.57

(considering only identity permutations), a finite family (θi,ψi)≤i≤p can be com-
puted, with θi ∈ CrMSh(R(1),Xk1) and ψi ∈ CrMSh(R(2),{xk1+1, . . . ,xk1+k2}), such
that a1a2 ∈ sat( f (S1,S2),ϕ,(x1, . . . ,xk1+k2)) if and only if there exists i ∈ [p] with
a1 ∈ sat(S1,θi,(x1, . . . ,xk1)) and a2 ∈ sat(S2,ψi,(xk1+1, . . . ,xk1+k2)). Hence, for �⊆
ĈrMSh(R(1),Xk1) and ! ⊆ ĈrMSh(R(2),Xk2), we can define Zf (�,!) such that ϕ

is in Zf (�,!) if and only if θ̂i ∈� and ψ̂ ′i ∈! for some i ∈ [p], where ψ ′i is defined
as ψi[x1/xk1+1, . . . ,xk2/xk1+k2 ].

Finally, we consider an n-ary QDP-QF operation with n > 2. Let f be
defined by f (S1, . . . ,Sn) := h(g1(S1, . . . ,Sm),g2(Sm+1, . . . ,Sn)). Then we can define
Zf (�1, . . . ,�n) := Zh(Zg1(�1, . . . ,�m),Zg2(�m+1, . . . ,�n)). We omit the details.

The computability of Zf follows from Remarks 5.48(1) and 5.58(1). The result for
abstract structures and empty sequences is an immediate consequence of the result
for concrete structures.

It should be noted that, in fact, the mappings Zf are uniformly computable: there
is an algorithm that on input ( f ,�1, . . . ,�n) computes Zf (�1, . . . ,�n) as output (cf.
the definition of an effectively given algebra in Definition 2.8). The n-ary QDP-QF
operation f is specified by a definition scheme (in the unary case), by three definition
schemes (in the binary case), or by the way it is built from binary QDP-QF operations
(together with their specifications).

The following application will be useful in Section 7.2 for proving the Equationality
Theorem, and in Section 8.5 to prove that monadic second-order transductions of
terms can be simulated by tree-walking transducers.
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Application 5.61 (Operations on terms) Let F be a fixed finite functional signature.
The concrete RF -structure �t� = 〈Nt ,(soni t)1≤i≤k ,(labf t)f ∈F ,rtt〉 that represents
faithfully a term t ∈T (F) is defined in Example 5.2(3). Without rtt , it equals �Syn(t)�.
Thus, its domain is the set of positions of t, hence the set of nodes of the syntactic
tree Syn(t) of t (see Definition 2.14), denoted by Nt . The constant rtt is the root of t
(denoted by roott); it will be needed in what follows, but can as well be represented
by a unary relation symbol rt such that rtt(u) holds if and only if u= roott .

Our objective is to express the theory Th(� f (t, t′)�,RF ,h,r,ab) in terms of
Th(�t�,RF ,h,r,a) and Th(�t′�,RF ,h,r,b) where a and b are sequences of positions
in t and t′ respectively. For this purpose we will express � f (t, t′)� as f ∗(�t�,�t′�)
for some appropriate binary operation f ∗. A technical problem comes from the fact
that the concrete structures �t� and �t′� are not disjoint, whereas Corollary 5.60 is
stated for disjoint structures. To overcome it, we can use for t ∈ T (F) and u ∈Nt , the
structure �t�/u defined in Example 5.2(3). Without rt, it equals �Syn(t)/u�. It is the
concrete RF -structure isomorphic to �t/u�whose domain is Nt/u= {v ∈Nt | v≤t u};
the relations of �t�/u are the restrictions to its domain of those of �t�, and rt�t�/u = u.

For t ∈T (F) and u∈Nt , if a is a k-tuple of elements of D�t�/u, we will use the shorter
(hopefully more clear) notation Th(t,↓u,h,r,a) instead of Th(�t�/u,RF ,h,r,a). In
particular, we will use Th(t,↓roott ,h,r,a) to denote Th(�t�,RF ,h,r,a).

Let f ∈ F2. We consider the mapping that associates the term t = f (t1, t2) with
t1, t2 ∈ T (F). It can be expressed by

�t� = f ∗(�t�/u1,�t�/u2),

where u1 and u2 are the left and right sons of the root of t and f ∗ is the binary operation
on disjoint concrete relational structures S,T defined by

f ∗(S,T ) := f1(rt,p(S,T )),

where f1 and p are the following binary DP-QF operations:

f1(U ,W ) := f ′1(U ⊕W )

p(S,T ) := renrt→s(S)⊕ renrt→s′(T ). (5.4)

These operations are defined with the help of the auxiliary constant symbols s and
s′, and the concrete {rt}-structure rt having the unique domain element 1: in the use
of f ∗ to define �t�, this element is taken as the root of t. The unary DP-QF operation
renrt→s renames rt into s, with κrt,s taken equal to True in its definition scheme. The
unary DP-QF operation f ′1 (depending on f ) is defined by the following formulas:

θson1(x1,x2) is son1(x1,x2)∨ (x1 = rt∧ x2 = s),

θson2(x1,x2) is son2(x1,x2)∨ (x1 = rt∧ x2 = s′),
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θsoni (x1,x2) is soni(x1,x2) if i ≥ 3,

θlabf (x1) is labf (x1)∨ x1 = rt,

θlabg (x1) is labg(x1) if g ∈ F −{ f },
κrt,rt is True,

κs,rt , κs′,rt are False.

Since the structure f ∗(S,T ) is intended to belong to STRc(RF ) but s,s′ /∈RF , there
are no formulas κc,s and κc,s′ in the definition scheme of f ′1 . Note also that if rt is a
unary relation symbol, then x1 = rt should be replaced by rt(x1), and the constant
defining sentences should be replaced by the definition of θrt(x1) as rt(x1).

For h,r,
,k ,k ′ ∈ N , we will construct a mapping Zf ∗ such that, for every term
t in T (F) with leading symbol f , every d ∈ (Drt)


, every a ∈ (D�t�/u1)
k and every

b ∈ (D�t�/u2)
k ′ , we have64

Th(t,↓roott ,h,r,d ab)= Zf ∗(Th(t,↓u1,h,r,a),Th(t,↓u2,h,r,b)).

If t = f (t1, t2) and 
= 0 (so that d = ε), this equality implies that

Th(�t�,RF ,h,r,ab)= Zf ∗(Th(�t1�,RF ,h,r,a′),Th(�t2�,RF ,h,r,b′)),

where a corresponds65 to a sequence of positions a′ of t1, and b to a sequence of
positions b′ of t2.

For defining Zf ∗ we use the fact that, by the Equalities (5.4), the mapping f2 defined
by f2(U ,S,T ) := f1(U ,p(S,T )) is a ternary DP-QF operation, such that f ∗(S,T ) =
f2(rt,S,T ). Thus, by Corollary 5.60, we have

Th(t,↓roott ,h,r,d ab)

= Zf2,h,r,(
,k ,k ′)(Th(rt,{rt},h,r,d),Th(t,↓u1,h,r,a),Th(t,↓u2,h,r,b)).

Hence, we obtain Zf ∗ from Zf2,h,r,(
,k ,k ′) by using the fixed set Th(rt,{rt},h,r,d). To
be precise, we define

Zf ∗(�,�′) := Zf2,h,r,(
,k ,k ′)(Th(rt,{rt},h,r,d),�,�′),

for all�⊆ ĈrMSh(RF ,Xk ) and�′ ⊆ ĈrMSh(RF ,Xk ′). If we need to be more precise,
we denote this function by Zf ∗,h,r,(
,k ,k ′).

This result extends to function symbols f of arbitrary arities. Here we have used
a ternary DP-QF operation f2 with one fixed argument. For a symbol f of arity n,
we need an (n+ 1)-ary operation f2 with one fixed argument. That operation can be

64 There is a unique tuple d in D

rt , hence d need not occur in the right-hand side.

65 Via the unique isomorphism of �Syn(t)�/u1 and �Syn(t/u1)� described after Definition 2.14, which is
also the unique isomorphism of �t�/u1 and �t/u1� = �t1�, and similarly for b.
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expressed as a composition of binary DP-QF operations, and hence is an (n+1)-ary
DP-QF operation, to which Corollary 5.60 can be applied.

We now consider in a similar way the insertion of a term f (t1, t2) in a context.
We recall that a context c ∈ Ctxt(F) is defined as a term in T (F ∪ {w}), where w

is a (special) variable that has a unique occurrence in c. A context is represented
by an RF∪{w}-structure. For t ∈ T (F) and u ∈ Nt , the structure �t� ↑ u is defined
as �Syn(t)� ↑ u with, additionally, rt�t�↑u = rtt . It is the concrete RF∪{w}-structure
isomorphic to �t ↑ u� whose domain is Nt ↑ u= Nt −{v ∈ Nt | v <t u}; the relations
of �t� ↑ u are the restrictions to its domain of those of �t�, except that the label of u is
changed into w. See Definition 2.6, Definition 2.14 and Example 5.2(3) for the details.
If d is an 
-tuple of elements of D�t�↑u, we will abbreviate Th(�t� ↑ u,RF∪{w},h,r,d)
by Th(t,↑u,h,r,d).

Let f ∈ F2, c ∈ Ctxt(F) and t, t1, t2 ∈ T (F) be such that t = c[ f (t1, t2)]. Let u be
the occurrence of f in t such that c = t ↑ u, and let u1 and u2 be its left and right
sons. Hence, t/u1 = t1 and t/u2 = t2. We have D�t�↑u = Nt ↑ u, D�t�/u1 = Nt/u1 and
D�t�/u2 = Nt/u2. It follows that D�t� = Nt is the disjoint union of the sets D�t�↑u,
D�t�/u1 and D�t�/u2 . Furthermore, we have

�t� = f †(�t� ↑ u,�t�/u1,�t�/u2),

where f † is the ternary DP-QF operation defined by

f †(U ,S,T ) := f †
1 (U ⊕ renrt→s(S)⊕ renrt→s′(T )),

s,s′ are new constant symbols and f †
1 is the unary DP-QF operation of type RF∪{w} ∪

{s,s′}→RF that has exactly the same definition scheme as the unary DP-QF operation
f ′1 discussed before, except that the atomic formula x1= rt is replaced by labw(x1).66

We use here a ternary DP-QF operation, as in the case of t = f (t1, t2), but not with a
fixed argument.

Application of Corollary 5.60 to f † shows that, for h,r,
,k ,k ′ ∈N , we can con-
struct a ternary function Zf † on sets of formulas such that, for all d ∈ (D�t�↑u)


,

a ∈ (D�t�/u1)
k and b ∈ (D�t�/u2)

k ′ , we have

Th(t,↓roott ,h,r,d ab)

= Zf †(Th(t,↑u,h,r,d),Th(t,↓u1,h,r,a),Th(t,↓u2,h,r,b)). (5.5)

66 In the case where rt is a unary relation symbol, the atomic formula rt(x1) is replaced by labw(x1),
except that the definition of θrt(x1) as rt(x1) remains unchanged.
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It implies that

Th(�t�,RF ,h,r,d ab)

= Zf †(Th(�c�,RF∪{w},h,r,d ′),Th(�t1�,RF ,h,r,a′),Th(�t2�,RF ,h,r,b′)),

where d corresponds to a sequence d ′ of positions of the context c and a to a sequence
a′ of positions of t1, and similarly for b, cf. Footnote 65. If necessary, we use the
more precise notation Zf †,h,r,(
,k ,k ′) for Zf † .

In the same situation, we also have

�t�/u= f ∗(�t�/u1,�t�/u2),

with f ∗ defined as before, except that Drt = {u}. Since Drt is a singleton, the fixed
theory Th(rt,{rt},h,r,d) does not depend on Drt, and so the same mapping Zf ∗ is
obtained. So, we have

Th(t,↓u,h,r,d ab)= Zf ∗(Th(t,↓u1,h,r,a),Th(t,↓u2,h,r,b)), (5.6)

where Zf ∗ is Zf ∗,h,r,(
,k ,k ′). There are also mappings Zf (1) and Zf (2) such that

Th(t,↑u1,h,r,d ab)= Zf (1) (Th(t,↑u,h,r,d),Th(t,↓u2,h,r,b)),

Th(t,↑u2,h,r,d ab)= Zf (2) (Th(t,↑u,h,r,d),Th(t,↓u1,h,r,a)). (5.7)

To obtain Zf (1) we define the binary operation f (1) such that

�t� ↑ u1 = f (1)(�t� ↑ u,�t� ↓ u2)= f (1)1 (�t� ↑ u⊕ s⊕ renrt→s′(�t� ↓ u2)),

where s is the concrete {s}-structure with domain {u1} and f (1)1 is the unary DP-QF
operation of type RF∪{w} ∪ {s,s′} →RF∪{w} that has the same definition scheme as

f †
1 with additionally θlabw(x1) taken equal to x1 = s. The mapping Zf (2) is obtained in
a similar way.

As before, these results easily extend to function symbols of arbitrary arity.

5.3.7 The many-sorted algebra of relational structures

The Recognizability Theorem to be stated in the next section (Theorem 5.75) says that
every CMS-definable class of relational structures is recognizable. We first define the
relevant algebra.

Definition 5.62 (The algebra STR of relational structures) We let S be the set of
relational signatures. It is countable because we assume that each relational signature
is a finite subset of a countable (effectively given) set of symbols containing countably
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many symbols of each arity. We define STR as the S-sorted algebra with domain
STR(R) for each R ∈ S. The (functional) signature FQF of this algebra consists of
the following symbols; we also define the operations they denote:

(a) for every R,R′ ∈S such that R0∩R′0=∅, the binary symbol⊕R,R′ of type R×
R′ →R∪R′; it denotes the disjoint union of an R-structure and an R′-structure
(extending the operation of Definition 5.34 as explained in Example 5.44);

(b) for every R,R′ ∈ S and every QFO definition scheme D of type R→R′ (this
implies that R′0 = ∅ if R0 = ∅), the unary symbol qf D,R,R′ of the same type; it
denotes the unary QF operation D̂ : STR(R)→ STR(R′) associated with D;

(c) the constant symbols ∅R (only if R0 =∅), to denote the empty R-structure, and
♦B,R where R0 ⊆ B ⊆ R, to denote the R-structure S with a single element
∗ such that aS := ∗ if a ∈R0, RS := {(∗, . . . ,∗)} if R ∈ B−R0 and RS := ∅ if
R ∈R−B.

We will frequently omit the subscripts R and R′ in the symbols ⊕R,R′ , ∅R and
♦B,R. Instead of the symbol qf D,R,R′ we will use the operation D̂, in accordance
with our custom not to distinguish an operation from the symbol denoting it.

The notation FQF emphasizes the important role of quantifier-free operations. The
signature FQF contains unary operations that are not quasi-domain preserving.

We now define several subalgebras of STR. If we restrict the unary operations
to those that are quasi-domain preserving, we obtain a subsignature FQF

pres of FQF

and a subalgebra STRpres of STR. Both algebras have the same sorts and the same
domains. Every n-ary QDP-QF operation is a (linear and strict) derived operation of
the FQF-algebra STRpres.

We let STRsep be the subalgebra of STR obtained by taking as domain of sort
R the set STRsep(R) of constant-separated structures in STR(R) and by restricting
the unary operations to those that preserve constant-separation. The corresponding
signature is denoted by FQF

sep . One can combine these two restrictions to obtain the

FQF
sep,pres-algebra STRsep,pres.
We let Snc be the subset of S consisting of relational signatures without constant

symbols. The associated structures are constant-separated in a trivial way. We obtain
thus a subalgebra STRnc of STRsep with set of sorts Snc and functional signature

FQF
nc that is a subsignature of FQF

sep . Its domain of sort R is STR(R). If we now restrict

FQF
nc to FQF

nc,pres by keeping only the unary DP-QF operations, we obtain the Snc-sorted
algebra STRnc,pres.

All these algebras are effectively given (see Definitions 2.8 and 2.127). The discus-
sion in Definition 2.32 of the fact that the HR algebra JS is effectively given extends
to STR and its subalgebras: it is clear that its set of sorts is effectively given; so are the
definition schemes of its operations and of those of its subalgebras by Remarks 5.43(1)
and 5.43(2). That two definition schemes can define the same operation is no problem,
cf. Remark 5.58(1) and the paragraph after Corollary 5.60.
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Lemma 5.63 The algebra STR is generated by FQF
pres, the algebra STRsep is generated

by FQF
pres,sep and the algebra STRnc is generated by FQF

nc,pres. �

Hence, by Lemma 3.75(1), a set is effectively recognizable in these algebras if and
only if it is effectively term-recognizable (just as for the HR and VR algebras).

The proof of Lemma 5.63 is similar to those of Proposition 2.33 showing that the
HR algebra is generated by its signature, and of Proposition 2.104(1) doing the same
for the VR algebra. Every term t in T (FQF) evaluates into a concrete structure denoted
by cval(t) whose domain is a subset of Occ0(t) defined as the set of occurrences in
t of constant symbols other than ∅R (they are leaves of the syntactic tree of t). The
corresponding abstract structure is denoted by val(t). The formal definition of cval(t)
is a straightforward generalization of the corresponding one given in Section 2.5.2
for terms in T (FVR).

In Section 9.3, we will define complexity measures on relational structures that can
be considered as generalizations of clique-width. They are related with the generation
of relational structures by particular subsignatures of FQF

pres.
If we identify a p-graph G of type π(G) = C with the Rs,C -structure �G� =
〈VG ,edgG ,(labaG)a∈C〉 (and C with Rs,C ), then, since we have observed in Applica-
tion 5.50 that the unary operations of F tVR are DP-QF operations, we obtain that the
many-sorted algebra GPt is a subalgebra of STRnc,pres.67 Recall from Example 5.2(2)
that a structure S in STR(Rs,C) is �G� for some graph G such that π(G)= C if and
only if the sets labaS for a ∈ C form a partition of DS that consists of nonempty sets.
This condition is first-order expressible.

5.3.8 The Recognizability Theorem for STRpres

We first prove the Recognizability Theorem for the algebra STRpres, and then extend
it to STR.

Theorem 5.64 Let R be a relational signature. For every sentence ϕ in CMS(R,∅),
the set MOD(ϕ)⊆ STR(R) of models of ϕ is effectively recognizable in the algebra
STRpres.

Proof: We let r and h be such that ϕ ∈ CrMSh(R,∅). For each relational signature
R′ ∈ S , we let ∼R′ be the equivalence relation on STR(R′) defined by S ∼R′ T if
and only if Th(S,R′,h,r)= Th(T ,R′,h,r). This condition means that S |= ψ if and
only if T |=ψ , for every sentence ψ in CrMSh(R′,∅).

Since all the operations of STRpres are binary or unary QDP-QF operations, it fol-
lows from Corollary 5.60 that the equivalence relations∼R′ (which are well defined
on abstract structures) form a congruence ∼ on STRpres. This congruence is locally

67 Note that the constants of GPt are also constants of STRnc,pres: ∅ is ∅Rs,∅ , a is ♦B,Rs,{a} with

B= {laba}, and a
 is ♦B′,Rs,{a} with B′ = {edg, laba}.
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finite because the set P(ĈrMSh(R′,∅)) is finite for every R′ ∈S (by Proposition 5.94
in Section 5.6 below), it is decidable because the mapping S �→ Th(S,R′,h,r) is
computable, and it saturates MOD(ϕ). The membership in MOD(ϕ) of any given
R-structure S is decidable. This proves the semi-effective recognizability of MOD(ϕ)

by Proposition 3.78(1) in Section 3.4.4.
We now establish the effective recognizability by a different proof, because we

cannot use Proposition 3.78 to get the effectivity from the semi-effectivity. Following
Definition 3.74, we construct a locally finite FQF

pres-algebra A and a homomorphism κ

from STRpres to A. The set of sorts is S. For each R′ ∈ S, we let AR′ be the powerset

of ĈrMSh(R′,∅) and κ be the mapping that associates with each S ∈ STR(R′) its
theory κ(S) := Th(S,R′,h,r).68 We use Corollary 5.60 to define the operations of
A in such a way that κ is a homomorphism. If f is a QDP-QF operation of type
R′ → R′′, then we let fA be the mapping Zf ,h,r,0. It follows from Corollary 5.60
that, for every R′-structure S, we have Th( f (S),R′′,h,r)= fA(Th(S,R′,h,r)), hence
κ( f (S))= fA(κ(S)). The proof is similar for disjoint union, which is a binary DP-QF
operation: if f =⊕R′,R′′ , then we let fA be the mapping Zf ,h,r,(0,0).

Hence, we have a locally finite algebra A, and κ is a homomorphism into it. If we
define C ⊆A by C :={�∈AR | ϕ̂ ∈�}, then it is easy to see that MOD(ϕ)= κ−1(C).
Since κ is computable and C is a decidable subset of A, it remains to show that
A is effectively given. Using the encoding of the effectively given countable set of
relation symbols (see Definition 5.62) it is straighforward to encode the set of all CMS
sentences, and hence the set of its finite subsets, of which A is a decidable subset: as

observed in Definition 5.59, the set ĈrMSh(R′,∅) can be computed from r, h and R′.
From this we obtain an encoding of A, with a computable sort mapping. The previous
observation also shows that the mapping R′ �→ |AR′ | is computable (and obviously,
|A| = ω). The operations of A are uniformly computable (cf. Definition 2.8) because
the mappings Zf are uniformly computable (as observed after Corollary 5.60). This
shows that A is effectively given.

In Theorem 5.96 of Section 5.6 we will compute an upper-bound to the recogniz-
ability index of MOD(ϕ).

Example 5.65 We give an example showing that the Recognizability Theorem fails
to hold if we add to the signature of STRpres a single unary operation that is defined
by a definition scheme involving a single formula with a single first-order quantifier.

We let R be the relational signature Rs,[2] = {edg, lab1, lab2}. Every p-graph G of
type [2] is represented by the R-structure �G�. Since the many-sorted VR algebra
GPt is a subalgebra of STRpres (as discussed at the end of Section 5.3.7), we will use
the operations of GPt , without showing their types.

68 To ensure that the domains of A are pairwise disjoint, we assume that the sets CMS(R′,∅) are pairwise
disjoint, i.e., that a sentence is always given together with a relational signature.
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We define f : STR(R)→ STR(R) as the operation that transforms a structure S
into f (S) by modifying only the relation edgS ; the relation edgf (S) is defined in S by
the formula

edg(x1,x2)∨ (x1 = x2 ∧∃x3[edg(x1,x3)∧ edg(x3,x3)]).

It transforms a p-graph G by adding loops to some vertices: in f (G), a vertex has a
loop if and only if it has a loop in G or it is the tail of a directed edge whose head has
a loop.

We let STR f
pres be the algebra STRpres with the additional unary operation f , and we

letϕ be the first-order sentence∀x.edg(x,x). We claim that the set MOD(ϕ)⊆ STR(R)

is not recognizable in STR f
pres. To prove this claim, we define, for i= 1,2, the unary

derived VR operation gi of type [i]→ [2] such that for every p-graph G of type [i]:

gi(G) := relab3→1(relab1→2(
−→
add3,1(3⊕G))).

We let STR f ,g
pres be the algebra STR f

pres to which the operations g1 and g2 are added;

it is a derived algebra of STR f
pres. Then, we define tn,m as the term f ngm

2 g11
. It is
clear that the term gm

2 g11
 defines the p-graph 1→ 2→ 2→···2→ 2 � of type [2]
with m+2 vertices and a loop on the last vertex. Then, �val(tn,m)� |= ϕ if and only if

n≥ m+ 1. If MOD(ϕ)⊆ STR(R) would be recognizable in STR f
pres, then it would

be recognizable in STR f ,g
pres by Proposition 3.56(3), and, by Propositions 3.56(2)

and 3.60, the set of terms tn,m such that �val(tn,m)� |= ϕ would be recognizable in
T({ f ,g1,g2,1
}), hence regular by Theorem 3.62. But this is not the case. �

Before generalizing Theorem 5.64 to the algebra STR, we present some of its
consequences.

5.3.9 Recognizable languages and recognizable sets of graphs

We first consider sets of words.Awordw∈A∗ is faithfully represented by the structure
�w�
 defined in Example 5.2(1), which uses the order of occurrences of letters.69

Corollary 5.66 Let A be a finite alphabet. If a language L ⊆ A∗ is MS-definable,
then it is effectively recognizable in W(A), hence regular.

Proof: Let αA be the MS sentence over W

A := {≤} ∪ {laba | a ∈ A} (where each

relation laba is unary) that defines the class �A∗�
. (Corollary 5.12 holds for �·�
).
Let L⊆ A∗ be MS-definable. It is the set of words w such that �w� satisfies an MS

69 The structure �w�, also defined in Example 5.2(1), uses a successor relation suc. The order relation
of �w�
 is the reflexive and transitive closure of suc. It follows that the same properties of words are
MS-expressible via these two faithful representations, i.e., they are MS-equivalent.
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sentence ϕ over WA, hence also the set of those such that �w�
 satisfies an MS
sentence ϕ′ over W


A. It follows that �L�
 =MOD(ϕ′ ∧αA).

For words v,w ∈ A∗, we have �v ·w�
 = �v�
−→⊕�w�
, where
−→⊕ is the derived

operation of STRpres defined in Example 5.56. Hence, if we identify every word
w in A∗ with the W


A-structure �w�
 (or more precisely, with the correspond-
ing abstract structure), then the monoid of words W(A) is a subalgebra H of a
derived algebra of STRpres. Since �L�
 is effectively recognizable in STRpres by
Theorem 5.64, we get by Assertions (1) and (3) of Proposition 3.76 that it is effec-
tively recognizable in H. Hence L is effectively recognizable in W(A) and thus regular
(cf. Example 3.57(2)).

We now consider terms and give a proof in our setting of the well-known result
stated as Theorem 1.16 (cf. Theorem 5.15).

Corollary 5.67 Let F be a finite functional signature. If a language L ⊆ T (F) is
MS-definable, then it is effectively recognizable in T(F), hence regular.

Proof: We first assume that F is one-sorted. We have shown in Section 5.3.6 (Equal-
ities (5.4) inApplication 5.61) that the operations on terms, (t1, . . . , tk) �→ f (t1, . . . , tk ),
for f ∈ Fk , are derived operations of STRpres, via the representation of a term t by
the RF -structure �t�. Hence, identifying t and �t�, we have that T(F) is a subal-
gebra of a derived algebra of STRpres. If L ⊆ T (F) is MS-definable, then �L� is
MS-definable by Corollary 5.12, hence effectively recognizable in STRpres by The-
orem 5.64. By a proof similar to that of the previous corollary, we obtain that L is
effectively recognizable in T(F) and thus regular by Theorem 3.62.

Now let F be many-sorted, and let F− be the one-sorted signature obtained from
F by making all sorts identical. From the above, we get that L is effectively recog-
nizable in T(F−). Then it is effectively recognizable in T(F) by Theorem 3.62 and
Remark 3.38(4) (which are both effective), hence regular over F .

The classical proof of this result, based on the construction of a finite automaton
recognizing L⊆ T (F) from a monadic second-order formula that defines it, will be
given in Section 6.3.3.

The case of graph algebras

We now apply the Recognizability Theorem to the typed algebras GPt and JSt which
are also subalgebras of derived algebras of STRpres.

We recall that a p-graph of type π(G) ⊆ C is faithfully represented by the
Rs,C -structure �G�C , and that an s-graph G of type τ(G) ⊆ C (it can have mul-
tiple edges) is faithfully represented by the Rm,C-structure �G�C (we also recall
that Rm,C = {in, labEdge} ∪ {laba | a ∈ C}, where in is binary and the other sym-
bols are unary, cf. Section 5.2.5). In order to represent vertex and edge labels, we
use additional unary relation symbols in �G�C and additional unary and binary rela-
tion symbols in �G�C . For each finite set C, the class of structures of the form
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�G�C (resp. �G�C ) for some p-graph (resp. s-graph) G of type included in C is FO-
definable. It follows (cf. the proof of Corollary 5.66 for a similar fact) that a set
L of (labeled) p-graphs of bounded type is CMS-definable if and only if the set of
structures �L� = �L�C = {�G�C | G ∈ L} is CMS-definable, where C is the union of
all types of the elements of L. A similar statement holds for the CMS2-definability of
a set of (labeled) s-graphs of bounded type.

Theorem 5.68 (Recognizability Theorem for graph algebras)

(1) Every CMS-definable set of (labeled) p-graphs is effectively VR-recognizable.
(2) Every CMS2-definable set of (labeled) s-graphs is effectively HR-recognizable.

Proof: The proofs are essentially the same for labeled and unlabeled graphs.
(1) Let L be a CMS-definable set of p-graphs of bounded type. By the above

remarks, we have �L� = �L�C =MOD(ϕ) for some sentence ϕ in CMS(Rs,C ,∅).
We first show that for every D⊆C, the set {G ∈ L | π(G)=D} is CMS-definable.

Let ϕD in CMS(Rs,D,∅) be obtained from ϕ by changing every atomic subformula
laba(x), a ∈ C−D, into False. Then

MOD(ϕD)= {�G�D |G ∈ L, π(G)⊆D},

and so

MOD(ϕD ∧
∧
a∈D

∃x.laba(x))= {�G�D |G ∈ L, π(G)=D}.

Hence {G ∈ L | π(G) = D} is CMS-definable. Since L is a finite union of such
sets, this implies, by Corollary 3.86, that we may assume from now on that L is
homogenous, and so �L� = {�G� |G ∈ L} =MOD(ϕ).

As observed in Section 5.3.7, if G is identified with �G�, then the many-sorted VR
algebra GPt is a subalgebra of STRnc,pres, hence of STRpres. So, �L� is effectively
recognizable in STRpres by Theorem 5.64, hence, by Proposition 3.76(1), it is effec-
tively recognizable in that subalgebra, and thus L is effectively recognizable in GPt .
Proposition 3.76(1) is applied to M′ =GPt and M= STRpres, inS ′,S is the mapping
C �→Rs,C , inF ′,F is the mapping that maps each VR operation to the corresponding
operation of STRpres as defined in Application 5.50, and inM′,M is the mapping
G �→ �G�. These mappings are computable, and {Rs,C | C ∈ Pf (A)} is a decidable
subset of the set of sorts of STRpres. Note that, although G is identified with �G�,
they are encoded by different elements of N in GPt and STRpres.

(2) By the same proof as above (replacing �·� by �·�), we may assume that L
is a homogenous set of s-graphs, and so �L� = {�G� | G ∈ L}. And then, we may
also assume that �G� is an Rms,C -structure rather than an Rm,C-structure, i.e., the
sources of G are represented by constants rather than by unary relations (we recall
that Rms,C = {in, labEdge} ∪ C, where each element of C is a constant symbol,
cf. Section 5.2.5).
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Identifying G with �G�, the many-sorted HR algebra JSt is a subalgebra of a
derived algebra of STRpres. This follows from Application 5.51 and Example 5.55,
where it is shown that, with this identification, the operations of JSt are binary
QDP-QF and unary DP-QF operations, respectively, and hence (linear) derived
operations of STRpres. Moreover, the definition schemes of the binary and unary
QDP-QF operations can be computed from the HR operations, and hence the involved
derived signature is effectively given. Theorem 5.64 and Assertions (1) and (3) of
Proposition 3.76 can thus be used.

We now consider CMS-definable sets of p-graphs of bounded clique-width, and
similarly, CMS2-definable sets of s-graphs of bounded tree-width. Aset L of p-graphs
is of bounded clique-width and of bounded type if and only if L⊆ val(T VR

C ) for some
C ∈ Pf (A), and a similar statement holds for s-graphs (see Definition 2.89 and
Theorem 2.83(1), respectively).

Corollary 5.69 (Weak Recognizability Theorem for graph algebras)

(1) Every CMS-definable set L of (labeled) p-graphs of bounded clique-width is
effectively recognizable in the algebra GPgen[C], where C is any finite subset of
A such that L⊆GPgen[C]= val(T VR

C ) (i.e., such that cwd(L)≤|C| andπ(G)⊆C
for every G ∈ L).

(2) Every CMS2-definable set L of (labeled) s-graphs of bounded tree-width is effec-
tively recognizable in the algebra JSgen[C], where C is any finite subset of A such
that L⊆ J Sgen[C] = val(THR

C ) (i.e., such that twd(L) ≤ |C| − 1 and τ(G)⊆ C
for every G ∈ L).

Proof: We first prove (2). As observed after Proposition 2.132, val(T HR
C ) =

val(T tHR
C ), and hence L ⊆ J S t,gen[C]. Since L is effectively recognizable in JSt

by Theorem 5.68, it is also effectively recognizable in the subalgebra JSt,gen[C]
by Proposition 3.76(1). Since JSt,gen[C] has finitely many sorts, the set L is also
effectively recognizable in JSgen[C] as noted in Chapter 4, Definition 4.29.

The proof of (1) is the same. The remark about effective recognizability in the
one-sorted algebra GPgen[C] is in Definition 4.52.

Filtering theorems: logical versions

An “algebraic” Filtering Theorem has been proved in Section 3.4.7. Here, we state
“logical” Filtering Theorems for graph algebras, together with the related proof
technique of fixed-point induction (as formulated at the end of Section 1.2.2).

Corollary 5.70 (Filtering Theorem for the VR algebra) For every VR-equational
set L and every CMS-definable set K of (labeled) p-graphs, we have:

(1) The set L∩K is VR-equational, and an equation system for it can be constructed
from an equation system defining L and a sentence defining K .
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(2) The emptiness and the finiteness of L∩K can be decided. If L∩K is finite, it can
be computed.70

(3) Let L be defined by (S,Xμ) for some typed VR equation system S with Unk(S)=
Xn and someμ∈ [n]. Then L⊆K if and only if there exists an n-tuple (K1, . . . ,Kn)

of CMS-definable sets of (labeled) p-graphs that is an oversolution of S and is
such that K
⊆K for every 
∈ [μ]. If L⊆K (which can be decided by (1) and (2)),
then one can construct CMS sentences that define K1, . . . ,Kn.

Proof: (1) is immediate from Theorems 5.68 and 4.53, and (2) from Proposi-
tions 4.42(2) and 4.47(2).

The “if ” direction of (3) follows immediately from Theorem 5.68 and Proposi-
tion 3.91(1), for M :=GPt . Let �K� =MOD(ϕ) for a sentence ϕ in CrMSh(Rs,D,∅)
with D ∈ Pf (A). For deciding L ⊆ K , we first use Proposition 4.45 to decide if
L⊆ GP[D], and then we use (1) and (2) to decide if L∩ (GP[D]−K) is empty (note
that GP[D]−K is defined by ¬ϕ).

To prove the “only if ” direction of (3), let (L1, . . . ,Ln) be the least solution of S in
P(GPt) and suppose that L= L1 ∪ ·· · ∪Lμ ⊆ K . Let Dj be the type of the elements
of Lj, for every j ∈ [n]. We first prove that we may assume that L = Li and that all
elements of K have type Di, for some i ∈ [n]. Obviously, L
 ⊆ {G ∈ K | π(G)=D
}
for every 
 ∈ [μ]. As shown in the proof of Theorem 5.68, {G ∈ K | π(G)= D
} is
CMS-definable. For every 
 ∈ [μ], let (K


1 , . . . ,K

n ) be an n-tuple of CMS-definable

sets that is an oversolution of S such that K


 ⊆ {G ∈ K | π(G) = D
}. Then it is

straightforward to verify that the n-tuple (K1, . . . ,Kn) := (
⋂


∈[μ]K

1 , . . . ,

⋂

∈[μ]K


n )

satisfies the requirements.
So, let L = L1 and let all elements of K be of type D1 = D. It follows from

Proposition 3.9 that every �Li� is equational in STRpres. By Theorem 5.64, �K� is
effectively recognizable in STRpres. In what follows we identify �Li�with Li and �K�
with K ; note that since K is homogenous, �K� = {�G� | G ∈ K}, and similarly for
Li. It is shown in the proof of Theorem 5.64 that K = κ−1(C) for a homomorphism
κ : STRpres → A and C ⊆ A. Moreover, C = {� ∈ ARs,D | ϕ̂ ∈ �} and, for every

R′-structure S, AR′ is the powerset of ĈrMSh(R′,∅) and κ(S) = Th(S,R′,h,r).
We now apply Proposition 3.91(1) for M := STRpres. According to its proof, the
n-tuple (K1, . . . ,Kn) can be taken such that Ki is the union of all sets κ−1(q) such that
Li∩κ−1(q) �= ∅ for q∈A. Obviously, it suffices to take q∈ARs,Di

and hence the union

is finite. For every q⊆ ĈrMSh(R′,∅), the set κ−1(q) consists of all R′-structures S
such that Th(S,R′,h,r)= q, and hence it is CMS-definable by the conjunction of all
sentences in q. So, Ki is CMS-definable by a finite disjunction ϕi of such sentences,
and ϕi can be constructed because the nonemptiness of Li ∩ κ−1(q) can be decided
by (2): Li is VR-equational and κ−1(q) is CMS-definable. Note that Ki consists

70 The set L∩K is a set of abstract p-graphs. Computing this set means producing one concrete graph
from each isomorphism class of an abstract graph in L∩K .
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of p-graphs: if G ∈ Li ∩ κ−1(q) then q = Th(�G�,Rs,Di ,h,r) contains a sentence
expressing that �G� is the representation of a p-graph.

The results and their proofs are fully similar for the HR algebra and
CMS2-definability. We state them for easy reference.

Corollary 5.71 (Filtering Theorem for the HR algebra) For every HR-equational
set L and every CMS2-definable set K of (labeled) s-graphs, we have:
(1) The set L∩K is HR-equational, and an equation system for it can be constructed

from an equation system defining L and a sentence defining K .
(2) The emptiness and the finiteness of L∩K can be decided. If L∩K is finite, then

it can be computed.
(3) Let L be defined by (S,Xμ) for some typed HR equation system S with Unk(S)=

Xn and someμ∈ [n]. Then L⊆K if and only if there exists an n-tuple (K1, . . . ,Kn)

of CMS2-definable sets of (labeled) s-graphs that is an oversolution of S and is
such that K
⊆K for every 
∈ [μ]. If L⊆K (which can be decided by (1) and (2)),
then one can construct CMS2 sentences that define K1, . . . ,Kn.

Proof: (1) follows from Theorems 5.68 and 4.37, and (2) from Propositions 4.5(2)
and 4.19. In the proof of the “if ” direction of (3), Proposition 4.10 is used
instead of Proposition 4.45. For the “only if ” direction, we observe that �Li�
is equational in STRpres by Proposition 3.9 and Proposition 3.41: the operations
of JSt are linear derived operations of STRpres, as mentioned in the proof of
Theorem 5.68(2).

We now present an application to the construction of an HR equation system that
defines a set of graphs characterized by excluded minors.

Application 5.72 (From excluded minors to HR equation systems) Let be given
a finite set � of simple, loop-free undirected graphs, and let L := Forb(�) be the
set of graphs that do not contain any of them as a minor. We know from the proof
of Proposition 2.61 that L has bounded tree-width if and only if some planar graph
belongs to�. Since we want to find an HR equation system for defining L, we assume
that � contains some planar graph P (otherwise the construction is impossible by
Proposition 4.7).

We also know from the proof of Proposition 2.61 that twd(Forb({P})) ≤ f (P),
where f is a computable function. It follows that

L= TWD(≤ f (P))∩Forb(�).

The set Forb(�) is MS-definable by Corollary 1.14: it is defined by the conjunction
of the sentences ¬MINORH for all H ∈ � (cf. Proposition 4.31(8)). Hence, by
Corollary 5.71(1) and Example 4.3(8) (that constructs an HR equation system for
TWD(≤ k), where k is a given integer), the set L is HR-equational and a system
defining it can be constructed. �
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Noncomputability results for congruences

By Theorems 5.64 and 5.68, several locally finite congruences on the VR and the HR
algebras are associated with monadic second-order sentences:

(1) the congruence ∼h that defines two p-graphs or two s-graphs as equivalent if
they have the same type and satisfy the same MS sentences of quantifier-height
at most h (we take r = 0 in the proof of Theorem 5.64);

(2) the syntactic congruence ≈MOD(ϕ) of the set of p-graphs or s-graphs of the same
type that satisfy an MS sentence ϕ.

Clearly, ∼h refines ≈MOD(ϕ) if the quantifier-height of ϕ is at most h. In the
following proposition, we only consider congruences relative to the VR algebra (and
for unlabeled graphs), but the same negative results hold for the HR algebra, and the
proofs are essentially the same.

Proposition 5.73
(1) For each integer h the equivalence relation∼h on p-graphs is decidable, but there

is no algorithm that computes, for any given h ∈N and any given finite set C of
port labels, the number of equivalence classes of ∼h on p-graphs of type C.

(2) It is not decidable whether G ≈MOD(ϕ) H for any given p-graphs G and H and
any given sentence ϕ.

Proof: (1) The equivalence relation∼h is decidable (and even uniformly decidable,
for varying h) by the observations in Definition 5.59.

We now prove that if, for each h, we can compute the number of equivalence classes
of∼h of type {1} (the type of nonempty graphs without ports, we let 1 be a default port
label), then we can decide the monadic second-order satisfiability problem. Let ϕ be
an MS sentence, h be its quantifier-height and let Nh be the number of equivalence
classes of ∼h of type {1}. Let G1,G2, . . . ,Gi, . . . be an effective enumeration of all
simple nonempty graphs. Since ∼h is decidable, one can compute the increasing
sequence n1 < n2 < · · · < ni < · · · such that n1 = 1 and, for each i > 1, ni is the
smallest integer j > ni−1 such that Gj is not∼h-equivalent to any graph Gk for k < j.
This sequence has exactly Nh elements. Since we know this value, we can determine
when its computation is terminated. It follows that ϕ is satisfied in some simple graph
if and only if it is in some of the graphs Gn1 ,Gn2 , . . . ,Gm, where m := nNh , or in the
empty graph. This can be decided and we get a contradiction with Theorem 5.5.

(2) We will use the proof of Theorem 5.6 and Remark 5.7. Let L :=MOD(ϕM ),
where M is a deterministic Turing machine and L is empty if M does not halt or
consists of one directed square grid (up to isomorphism) if M halts. Let H be any
nonempty simple directed graph. If L = ∅, then for every simple directed graph G,
we have G⊕H ∈ L if and only if G⊕∅ ∈ L. If L= {K}, then this equivalence does
not hold (take G=K). More generally, we get that H ≈L ∅ if and only if M does not
halt, which is not decidable. This reduction establishes the result.
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Remark 5.74 The situation is different if we consider congruences relative to finitely
generated graph algebras, like those of graphs of tree-width or clique-width at most
some fixed k . In these cases, the decidable congruence ∼h is effectively given by
Proposition 3.78(3.1) of Section 3.4.4, which means (cf. Definition 3.77) that an algo-
rithm can compute the cardinality of each congruence class. The index of ∼h is thus
computable. It is an upper-bound to that of≈MOD(ϕ) (where h is the quantifier-height
of ϕ). By Claim 3.80.2, this congruence is decidable and its index is computable, as
for ∼h, by Proposition 3.78(3.1).

5.3.10 Handling general quantifier-free operations

We will prove the Recognizability Theorem for the algebra STR. Its unary operations
are all QF operations, even those that are not quasi-domain preserving.

Theorem 5.75 (Recognizability Theorem for STR) For every relational signature
R and every sentence ϕ in CMS(R,∅), the set MOD(ϕ) ⊆ STR(R) is effectively
recognizable in STR. �

This theorem is a consequence of Theorem 5.64 and the following one:

Theorem 5.76 Every set of relational structures that is recognizable, semi-effectively
recognizable or effectively recognizable in STRpres has the same property in STR.

To prove this, we need some definitions and lemmas. We recall that, if all constants
of a structure S are in a subset E of its domain, then S[E] denotes the substructure of
S with domain E. (Its signature is the same as that of S.)

Definition 5.77 (Domain restricting operations) A QF operation f : STRc(R)→
STRc(R) is domain restricting if, for some formula δ in QF(R,{x}), we have f (S)=
S[sat(S,δ,x)] for every S ∈ STRc(R). This implies that S |= δ(c) for every c∈R0 and
every S ∈ STRc(R). These operations are those defined by definition schemes whose
domain formula δ is equivalent to a formula of the form δ′(x) ∨∨c∈R0

x= c for
some δ′ ∈QF(R,{x}). The definition scheme D= 〈δ,(θR)R∈R+ ,(κc,d)c,d∈R0〉 is thus
completely specified by δ. Its other formulas are θR(x1, . . . ,xn) equal to R(x1, . . . ,xn),
κc,c equal to True for each c ∈R0 and κc,d equal to False for distinct c,d ∈R0. By
Remark 5.43(1) there are, for each R, finitely many domain restricting QF operations
: STRc(R)→ STRc(R). Their definition schemes are obtained by considering only
formulas δ′ ∈QF(R,{x}) that are in disjunctive normal form.

Lemma 5.78 Let R and R′ be relational signatures. Every QF operation f :
STRc(R)→ STRc(R′) can be expressed as g ◦ h, where h is a domain restricting
QF operation : STRc(R)→ STRc(R) and g is a QDP-QF operation : STRc(R)→
STRc(R′).
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Proof: Let f have definition scheme 〈δ,(θR)R∈R′+ ,(κc,d)c∈R0,d∈R′0〉. Let S ∈
STRc(R) and S ′ := f (S) ∈ STRc(R′). Let E be such that

{cS | c ∈R0}∪ sat(S,δ,x)⊆ E ⊆DS .

We have Df (S) ⊆ E because, by definition, Df (S) = sat(S,δ,x). Since cS ∈ E for each
c ∈R0, the structure S[E] belongs to STRc(R). We have

f (S[E])= f (S). (5.8)

We next check this equality. For every d ∈ E we have S |= δ(d) if and only if S[E] |=
δ(d) by the definition of S[E] and because δ is quantifier-free. Hence the domains
of f (S) and f (S[E]) are the same. For the same reasons, we have, for all k ≥ 1, all
R ∈R′k , all d1, . . . ,dk in E and all c ∈R0 and d ∈R′0:

S |= θR(d1, . . . ,dk) if and only if S[E] |= θR(d1, . . . ,dk), and
S |= κc,d if and only if S[E] |= κc,d .

This proves Equality (5.8). It follows that f = g(h(S)) for every S ∈ STRc(R),
where h is the domain restricting QF operation with domain formula δ(x) ∨∨

c∈R0
x= c and g is the QDP-QF operation defined by the definition scheme

〈δ′,(θR)R∈R′+ ,(κc,d)c∈R0,d∈R′0〉, where δ′ is
∧

c∈R0
(¬δ(c) ⇒ x �= c). The struc-

ture h(S) is S[E], where E := Df (S) ∪ {cS | c ∈ R0} so that by Equality (5.8),
f (h(S))= f (S). But f and g have the same effect on h(S) because the same elements
of E satisfy δ and δ′.

Lemma 5.79 Let R′ and R′′ be relational signatures such that R′0 ∩R′′0 = ∅. Let
f : STRc(R′ ∪R′′)→ STRc(R′ ∪R′′) be a domain restricting QF operation. There
exist two families of pairs (χ ′′i ,g′i)1≤i≤p′ and (χ ′j ,g′′j )1≤ j≤p′′ such that, for every i and
j, χ ′j ∈ QF(R′,∅), χ ′′i ∈ QF(R′′,∅), g′i and g′′j are domain restricting operations of
respective types R′ →R′ and R′′ →R′′, and for every two disjoint concrete R- and
R′′-structures, respectively S and T :

(1) there exist a unique i ∈ [p′] such that T |= χ ′′i and a unique j ∈ [p′′] such that
S |= χ ′j ;

(2) we have f (S⊕T )= g′i(S)⊕ g′′j (T ) where i, j are as in (1).

Proof: One might think that, for every f , S and T as in the statement we have
f (S ⊕ T ) = f (S)⊕ f (T ). This is actually true if R′0 =R′′0 = ∅, but not in general.
Consider for example the operation f with domain formula δ(x) equal to(

R(x)∧R′(a)∧R′(b)
)∨ (R(x)∧¬R′(a)∧¬R′(b)

)∨ (¬R(x)∧R′(a)∧¬R′(b)
)
.
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There is no pair of domain restricting QF operations (g,h) such that, for every concrete
disjoint {R,R′,a}-structure S and {R,R′,b}-structure T , we have f (S ⊕ T )= g(S)⊕
h(T ), because the set Df (S⊕T ) ∩DS depends on whether R′(b) holds or not in T , and
is not a function of S alone.

The formulas χ ′j ,χ ′′i and the domain formulas of the operations g′i and g′′j will
be constructed by Proposition 5.37 (the Splitting Theorem for first-order formulas)
applied to the quantifier-free formula δ(x) of the definition scheme of f . (Since we
want g′i and g′′j to be domain restricting, the other formulas of their definition schemes
are fixed, cf. Definition 5.77.) Proposition 5.37 also holds for the general disjoint
union defined in Example 5.44, by a proof fully similar to the one of Theorem 5.57.
By Proposition 5.37, one can find n,m ∈ N and construct quantifier-free formulas
θ1(x), . . . ,θn(x),θn+1, . . . ,θn+m andψ1, . . . ,ψn,ψn+1(x), . . . ,ψn+m(x) of the following
forms:

θi ∈QF(R′,{x}) and ψi ∈QF(R′′,∅) for each i ∈ [n],
θn+j ∈QF(R′,∅) and ψn+j ∈QF(R′′,{x}) for each j ∈ [m],

such that for every two disjoint concrete structures S and T of the appropriate types:

{d ∈DS | S⊕T |= δ(d)} = ⋃i∈[n]{d ∈DS | S |= θi(d) and T |=ψi}, and

{d ∈DT | S⊕T |= δ(d)} = ⋃j∈[m]{d ∈DT | S |= θn+j and T |=ψn+j(d)}.

For every I ⊆ [n], we define the sentence χ ′′I to be
∧

i∈I ψi ∧∧i∈[n]−I ¬ψi and
the domain restricting QF operation g′I of type R′ → R′ to have domain formula∨

i∈I θi(x). Similarly, for every J ⊆ [m], we let χ ′J be the sentence
∧

j∈J θn+j ∧∧
j∈[m]−J ¬θn+j, and the domain restricting operation g′′J of type R′′ →R′′ to have

domain formula
∨

j∈J ψn+j(x). Clearly, for all S and T as in the statement:

(1) there exist a unique I ⊆ [n] such that T |= χ ′′I and a unique J ⊆ [m] such that
S |= χ ′J ;

(2) we have f (S⊕T )= g′I (S)⊕ g′′J (T ), where I and J are as in (1).

We have the desired families (χ ′′i ,g′i)1≤i≤p′ and (χ ′j ,g′′j )1≤ j≤p′′ with p′ = 2n and
p′′ = 2m.

Proof of Theorem 5.76: Let L be STRpres-recognizable, with congruence ≡
witnessing its recognizability.

First, we define from it another equivalence relation. For S,T ∈ STR(R) we
let S ∼R T if and only if S ≡R T and S ∼0 T , where S ∼0 T means that
Th(S,R,0,0) = Th(T ,R,0,0) (i.e., S and T satisfy the same quantifier-free sen-
tences). Since, as shown in the proof of Theorem 5.64, ∼0 is a (decidable) locally
finite congruence, the equivalence ∼ is also a locally finite congruence witnessing
the STRpres-recognizability of L.
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We now define from ∼ another equivalence relation ≈ by letting S ≈R T if and
only if f (S)∼R f (T ) for every domain restricting QF operation f of type R→R.
It is clear that S ≈R T implies S ∼R T (because the identity on STR(R) is domain
restricting) and hence L is a union of classes of≈. Each equivalence relation≈R has at
most p·q classes, where p is the number of classes of∼R and q is the number of domain
restricting QF operations of type R→R, cf. Definition 5.77. Hence the equivalence
relation ≈ is locally finite. It remains to prove that it is a congruence on STR.

We first consider disjoint union. We let S,S1 ∈ STR(R′) and T ,T1 ∈ STR(R′′)
with S ≈R′ S1 and T ≈R′′ T1. We claim that S ⊕ T ≈R′∪R′′ S1⊕ T1. The goal is to
prove that f (S⊕T )∼ f (S1⊕T1) for every domain restricting QF operation f of type
R′ ∪R′′ →R′ ∪R′′. Consider one of them, f , to which we apply Lemma 5.79. Since
S ≈R′ S1, we have S ∼R′ S1 and hence S and S1 satisfy the same quantifier-free sen-
tences. The same holds for T and T1. Hence we have indices i and j (cf. Lemma 5.79)
for which T |= χ ′′i and S |= χ ′j , so that we also have T1 |= χ ′′i and S1 |= χ ′j . Hence
we have f (S ⊕ T ) = g′i(S)⊕ g′′j (T ) and also f (S1 ⊕ T1) = g′i(S1) ⊕ g′′j (T1). We
have g′i(S) ∼ g′i(S1) and g′′j (T ) ∼ g′′j (T1) since S ≈R′ S1 and T ≈R′′ T1. Hence
g′i(S)⊕g′′j (T )∼ g′i(S1)⊕g′′j (T1), i.e., f (S⊕T )∼R′∪R′′ f (S1⊕T1). Hence S⊕T ≈
S1⊕T1 as was to be proved.

We now consider S,S1 ∈ STR(R) such that S ≈ S1, and a QF operation k of type
R→ R′. We must prove that k(S) ≈ k(S1). Let f be domain restricting of type
R′ →R′. The mapping f ◦ k is a QF operation of type R→R′ by Proposition 5.49.
Let us apply Lemma 5.78. We have f (k(S)) = g(h(S)) and f (k(S1)) = g(h(S1)).
Since S ≈ S1, we have h(S) ∼ h(S1), hence g(h(S)) ∼ g(h(S1)), since g is quasi-
domain preserving and ∼ is a congruence on STRpres. Hence the equivalence ≈ is a
congruence on STR. This completes the proof of recognizability.

If ≡ is a decidable congruence, then so are ∼ and ≈ (cf. Corollary 5.95). Hence
the result for semi-effective recognizability follows from Proposition 3.78(1).

The proof for effective recognizability is essentially the same as the above proof,
using locally finite algebras rather than congruences. It also proves the previous
results, but since it is less transparent, we have kept the above proof with congruences.

Assume that L is effectively STRpres-recognizable, and let L= β−1(C), where β

is a homomorphism from STRpres to a locally finite, effectively given FQF
pres-algebra

B and C ⊆ BR. Let κ and A be as in the proof of Theorem 5.64 (with h= r = 0).
We define the locally finite FQF-algebra D such that DR is the set of mappings

from DRQFR to BR×AR, where DRQFR is the finite set of domain restricting QF
operations of type R→R (more precisely, it is the set of their definition schemes).
For d ∈ D and h ∈ DRQFR, we define d1(h) ∈ B and d2(h) ∈ A such that d(h) =
〈d1(h),d2(h)〉. The operations of D are defined as follows. Let k be a QF operation
of type R→R′ and let f ∈ DRQFR′ . We apply Proposition 5.49 and Lemma 5.78
to obtain h ∈ DRQFR and a QDP-QF operation g such that f ◦ k = g ◦ h. Then we
define the operation kD such that kD(d)( f ) := gB×A(d(h)) for every d ∈ DR. Now
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consider disjoint union ⊕ of type R′ ×R′′ → R′ ∪R′′ and let f ∈ DRQFR′∪R′′ .
Then, using Lemma 5.79, we define the operation ⊕D such that (d ′ ⊕D d ′′)( f ) :=
d ′(g′i)⊕B×A d ′′(g′′j ) for all d ′ ∈ DR′ and d ′′ ∈ DR′′ , provided χ ′′i ∈ d ′′2 (idR′′) and
χ ′j ∈ d ′2(idR′), where idR is the identity on STR(R). If i and j are not unique, then
(d ′ ⊕D d ′′)( f ) can be defined arbitrarily. Since both B and A are effectively given
and DRQFR can be computed, the algebra D is effectively given.

We define the mapping δ from STR to D such that

δ(S)(h) := 〈β(h(S)),κ(h(S))〉,
for every R-structure S and every h ∈DRQFR. Then L= δ−1(E) for E := {d ∈DR |
d1(idR) ∈ C}. It is immediate from the definitions that δ is a homomorphism.

5.4 Decidable monadic second-order theories

We have presented undecidability results in Section 5.1.6. Here we present decid-
ability results for sets of graphs of bounded tree-width or clique-width. They extend
some “classical” results: the monadic second-order theory of a regular language
(of words or of terms) is decidable, by reduction to emptiness problems for lan-
guages defined by finite automata. The links between monadic second-order logic
and finite automata were discovered in the 1960s with the motivation of find-
ing classes of finite and infinite structures having decidable monadic second-order
theories.

Theorem 5.80
(1) Every VR-equational set of (labeled) p-graphs has a decidable CMS-theory,

equivalently a decidable CMS-satisfiability problem.
(2) Every HR-equational set of (labeled) s-graphs has a decidable CMS2-theory,

equivalently a decidable CMS2-satisfiability problem.

Proof: (1) Let L be a VR-equational set given by an equation system, with
�L� = �L�C , and let ϕ be a CMS sentence in CMS(Rs,C). The set of p-graphs
K := {G ∈ GP[C] | �G�C |= ϕ} is CMS-definable. By Corollary 5.70(2), one can
test whether L∩K is empty, which solves the CMS-satisfiability problem. By Corol-
lary 5.70(3), one can test whether L ⊆ K , i.e., whether every p-graph in L satisfies
ϕ, hence whether ϕ belongs to the CMS-theory of L. Hence the CMS-theory of L is
decidable.

(2) The proofs are similar for HR-equational sets and CMS2 sentences by using
Corollary 5.71.

Corollary 5.81
(1) For each k , the CMS-theory of the set of simple (labeled) graphs of clique-width

at most k and its CMS-satisfiability problem are decidable.
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(2) For each k , the CMS2-theory of the set of (labeled) graphs of tree-width at most
k and its CMS2-satisfiability problem are decidable.

Proof: Immediate consequence of the previous theorem and the results of Chapter 4
(Examples 4.3(8) and 4.43(5)) showing that the sets CWD(≤ k) and TWD(≤ k) and
the corresponding sets of (K ,�)-labeled graphs (for fixed pairs (K ,�) of sets of
labels) are respectively VR- and HR-equational.

In Section 7.5 we will state converse results establishing that only sets of graphs of
bounded tree-width and clique-width can have decidable MS2- and C2MS-theories
respectively.

5.5 Logical characterization of recognizability

We have proved in Theorem 5.15 and in Corollaries 5.66 and 5.67 the result stated
in Theorem 1.16 that a language (of terms, and of words as a special case) is regular
if and only if it is MS-definable. It can be restated and generalized in terms of CMS-
definability and recognizability in STR.

We will identify a term t ∈ T (F) and the structure �t� that represents it (faith-
fully). Similarly, we will identify L and �L� in the following statement and its
proof.

Theorem 5.82 Let F be a finite functional signature. The following properties of a
language L⊆ T (F) are equivalent:

(1) L is recognizable in STR;
(2) L is recognizable in T(F);
(3) L is regular over F ;
(4) L is MS-definable;
(5) L is CMS-definable.

The same equivalences hold if L⊆ A∗ for some finite alphabet A, with T(F) replaced
by W(A), Wleft(A) or Wright(A).

The translations between sentences and automata are effective.

Proof: Since the representation �·� is faithful and by Corollary 5.12, a set L⊆ T (F)

is MS-definable (or CMS-definable) if and only if the class �L� is.
(1) =⇒ (2) follows (for one-sorted F) from Proposition 3.56 because T(F) is a
subalgebra of a derived algebra of STR (by Application 5.61), cf. the proof of
Corollary 5.67.
(2) =⇒ (3): the regularity of L ⊆ T (F) is equivalent to its recognizability in T(F)

(cf. Theorem 3.62).
(3)=⇒ (4) is proved by a translation of a finite automaton A into an MS sentence
that defines L(A ) (cf. Theorem 5.15).
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(4)=⇒ (5) is trivial; (5)=⇒ (4) is proved in Proposition 5.29, using the fact that the
structures representing terms are MS-orderable.
(5)=⇒ (1) by the Recognizability Theorem (Theorem 5.75). Since A∗ is isomorphic

to T (UA), where UA is the unary signature of Definition 2.7, these results specialize to
subsets of A∗. The algebras W(A), Wleft(A) and Wright(A) have the same recognizable
sets.

A natural question is whether there exists a similar characterization for sets of
graphs. One could hope that a set of graphs is HR-recognizable if and only if it
CMS2-definable, but we have proved in Proposition 4.36 that there are uncountably
many HR-recognizable sets of graphs. This result forbids any such characterization,
as well as any characterization in terms of “finite graph automata” (because dif-
ferent HR-recognizable sets would necessarily correspond to different formulas or
automata, and logical languages as well as families of finite automata are countable).
Logical characterizations can only exist if recognizability is relativized to particular
graph classes. (However, this cardinality argument does not exclude a logical charac-
terization of the effectively HR-recognizable sets of graphs.) The following theorem
concerns trees and is one motivation (among others) for introducing counting monadic
second-order logic. The more general case of sets of graphs of bounded tree-width
will be discussed in Section 7.6.

We consider rooted trees. We view a rooted tree t as an s-graph with one source: the
root of t. It can be identified with the {son,rt}-structure �t�. Thus, t = 〈Nt ,sont ,rtt〉,
where ρ(son) = 2, ρ(rt) = 0 and rtt is the root of t. The set of sons of a node is
not ordered. We turn the set of rooted trees into an {�,ext,∗}-algebra R where �

(the parallel-composition) glues two trees at their roots, and ext is the unary oper-
ation that extends a tree by attaching an edge at the root and making the resulting
new vertex into the new root. The constant ∗ denotes the tree reduced to a root.
We let Frt be the functional signature {�, ext,∗} (the subscript “rt” means “rooted
trees”).

Clearly, R is a subalgebra of a derived algebra of JSt , cf. Example 4.3(3): the
derived operation ext is defined by the term fg2(12� ren1↔2(x1)), where 1 stands for
rt. It is also a subalgebra of a derived algebra of STR, because for simple s-graphs
G, Application 5.51 and Example 5.55 also work for Rss,C-structures �G� instead of
Rms,C -structures �G�.

If t is a rooted tree, we denote by Unr(t) the unrooted and undirected tree
obtained from t by forgetting the root and the directions of edges. Thus, Unr(t) =
und( fgrt(t)).

Theorem 5.83 For every set L of rooted trees, the following properties are
equivalent:

(1) L is recognizable in STR;
(2) L is recognizable in JSt;
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(3) L is recognizable in R;
(4) L is CMS-definable.

If L is a set of (undirected) trees, then we have the equivalences of (1), (2), (4) and
the following property:

(3′) The set Unr−1(L) is recognizable in R.

Proof: The implications (1)=⇒ (3) and (2)=⇒ (3) follow from Proposition 3.56
and previous remarks. Implications (4) =⇒ (1) and (4) =⇒ (2) follow from the
Recognizability Theorem (Theorems 5.75 and 5.68(2), respectively).

We prove implication (3) =⇒ (4). Let L be recognizable in R. There exists a
surjective homomorphism h : R→Q, where Q is a finite Frt-algebra such that L=
h−1(Q0) for some subset Q0 of Q (the domain of the algebra Q). The surjectivity of
h implies that �Q is associative and commutative with unit element ∗Q because the
same properties hold in R.

Let Q be enumerated as {q1, . . . ,qk}. Let t ∈R and u1, . . . ,un be the sons of the root
of t. Let m(t) ∈N k be the k-tuple (m1, . . . ,mk) such that, for each j ∈ [k], mj is the
cardinality of {i ∈ [n] | h(t/ui)= qj}.

Then h can be factorized as 
 ◦m for some function 
 : N k →Q because

h(t)= h(ext(t/u1)� · · ·� ext(t/un))

= extQ(h(t/u1))�Q · · ·�Q extQ(h(t/un))

= (m1 �extQ(q1))�Q · · ·�Q (mk �extQ(qk)),

where, for r ∈N and q ∈Q, we let r �q := q�Q · · ·�Q q with r times q if r ≥ 1 and
0�q = ∗Q. Hence h(t) can be expressed as a fixed function of m(t). Furthermore,

(,0)= ∗Q and 
(m+m′)= 
(m)�Q 
(m′) for all m,m′ ∈N k as one checks easily.
Hence 
 is a homomorphism : 〈N k ,+, ,0〉 → Q and 
−1(q) is recognizable in Nk

for each q ∈Q. From these remarks and Proposition 5.25, we get the existence of a
CMS sentence ϕ that defines L. This sentence can be written as follows:

∃X1, . . . ,Xk [“(X1, . . . ,Xk ) is a partition of the set of nodes”

∧ (
∨

qi∈Q0
rt ∈ Xi)

∧ “for every i ∈ [k] and every u ∈ Xi, if S is the set of sons of u, then

the k-tuple (|S ∩X1|, . . . , |S ∩Xk |)belongs to 
−1(qi)”].
We now consider the case where L is a set of trees. Then, we have (4)=⇒ (1) and

(1)=⇒ (2). For proving (2)=⇒ (3′), assume that L is recognizable in JSt . Let R be the
set of all rooted trees; it is recognizable in JSt . Since Unr−1(L)=R∩fg−1

rt (und−1(L)),
it is recognizable in JSt by Proposition 3.85(1) (for the intersection, and for fg−1

rt

because fgrt is an operation of the algebra JSt) and by Proposition 3.56(2) (for und−1

because und is a homomorphism from the directed version of JSt to its undirected
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version). Hence, Unr−1(L) is recognizable in R by the implication (2) =⇒ (3) for
rooted trees. For proving (3′)=⇒ (4), we assume that Unr−1(L) is recognizable in
R. It is thus CMS-definable, from which we get easily that L is CMS-definable.

Remark 5.84 (1) Finite automata, called R-automata, that run bottom-up on rooted
trees are studied in [BonTal], [Cou89a], [*Cou96b] and [*Lib06]. Rooted trees are
called in these works unranked, unordered trees, because terms are (inadequately)
called trees. These automata have infinitely many transition rules, because rooted
trees have unbounded degree, but their rules are described in finitary ways. In the
proof of the previous theorem, the sets 
−1(q) describe the transition rules of a finite
R-automaton with set of states Q. Since the sets 
−1(q) are recognizable in Nk ,
they can be described by CMS formulas by Proposition 5.25. The corresponding
automaton with states q1, . . . ,qk works as follows: if the sons u1, . . . ,un of a node u
are in states p1, . . . ,pn respectively, if mj for j= 1, . . . ,k is the number of indices i such
that pi = qj and if (m1, . . . ,mk)∈ 
−1(q), then q is a possible state for u. The accepting
states are those of Q0, cf. the proof that (3) implies (4). This proof shows that if a
set of rooted trees is recognizable in R, then it is accepted by an R-automaton. The
R-automata constructed in this proof are actually deterministic and complete because

 is a mapping from N k to Q. More details on these automata can be found in the
above quoted references.

(2) The set of odd stars {K1,2n+1 | n ≥ 0} (i.e., of rooted trees where the root is
the node of degree 2n+ 1) is recognizable in R (the construction of a congruence is
easy), and C2MS-definable. It is not MS-definable (cf. Examples 5.33). �

We now generalize this result. For convenience we only consider one-sorted
functional signatures.

Definition 5.85 (Terms over associative and commutative operations) An
AC-signature is a pair (F ,H ), where F is a finite one-sorted functional signature
and H ⊆ F is a set of symbols of arity 2. An F-algebra M is an (F ,H )-AC-algebra
if the operations fM are associative and commutative for all f ∈H . For example, the
algebra R of rooted trees defined above is an (Frt,{�})-AC-algebra.

We let TAC(F ,H ) denote the quotient F-algebra T(F)/≡AC(H ), where ≡AC(H ) is
the congruence on T(F) generated by the associativity and commutativity laws for
the operations of H . For every (F ,H )-AC-algebra M, there exists a unique homomor-
phism h : TAC(F ,H )→M (see [*BaaNip], [*DersJou] or [*Wec] for these classical
facts). It follows that if M is an (F ,H )-AC-algebra generated by its signature F , then a
set L⊆M is recognizable in M if and only if h−1(L)⊆ T (F)/≡AC(H ) is recognizable
in TAC(F ,H ). This follows from Lemma 3.68, in the same way as Proposition 3.69.

Our objective is to obtain a logical characterization of the recognizable sets of
the algebra TAC(F ,H ) similar to those of Theorems 5.82 and 5.83. We first define
a faithful representation of the elements of T (F)/≡AC(H ). For each term t ∈ T (F),
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we let t̂ be the term obtained by flattening t as follows. For every symbol f ∈H we
introduce new symbols fm of arity m, for every m≥ 2. For flattening t, we first replace
every occurrence of f ∈ H in t by f2, and then we iterate as many times as possible
the replacement of a subterm of the form fn(s1, . . . ,si−1, fk(t1, . . . , tk),si+1, . . . ,sn) by
fn−1+k(s1, . . . ,si−1, t1, . . . , tk ,si+1, . . . ,sn).

For example if F = {g,⊕,⊗,a,b,c}, H = {⊕,⊗} and

t0 =⊕(a,⊗(⊕(g(a,b),⊕(b,c)),⊗(g(b,a),⊗(a,c)))),

then

t̂0 =⊕2(a,⊗4(⊕3(g(a,b),b,c),g(b,a),a,c)).

The term t̂ is uniquely defined and any two terms t and t′ such that t̂ = t̂′ are
≡AC(H )-equivalent, but the converse does not hold because this construction does not
take into account the commutativity of the operations of H . We have t ≡AC(H ) t′ if
and only if t̂ and t̂′ are equivalent by the congruence that permutes the arguments
of the operations of H . In the above example, t0 is ≡AC(H )-equivalent to any term t1
such that

t̂1 =⊕2(⊗4(a,c,g(b,a),⊕3(b,c,g(a,b))),a).

For t ∈T (F), we will represent the equivalence class [t]≡AC(H )
by a relational structure

S(t) obtained as follows from �̂t �, where t̂ is the flattened term corresponding to t. We
let k := ρ(F), we let F ′ be the set of all symbols that have an occurrence in t̂, and k ′ :=
ρ(F ′). (Both F ′ and k ′ depend on t.) The term t̂ can be represented, according to Exam-
ple 5.2(3), by the relational structure �̂t � = 〈Nt̂ ,sont̂ ,(labf t̂)f ∈F ′ ,(bri t̂)1≤i≤k ′ ,rt t̂〉,
that we transform into

S(t) := 〈N t̂ ,son t̂ ,(lab∗f t̂)f ∈F ,(br∗i t̂)1≤i≤k ,rt t̂〉,

by letting

lab∗f t̂ :=
{

labf t̂ if f ∈ F −H ,⋃
fm∈F ′ labfm t̂ if f ∈H ,

br∗î t := {u ∈ bri t̂ | the label of the father of u in t̂ is in F −H }.
It is clear that S(t) ∈ STR(RF ) because the unary relations bri for i > k have been
eliminated and the subscripts of the symbols in H have been dropped.

Example 5.86 We let F = {g,⊕,⊗,a,b,c} and H = {⊕,⊗}, as before. The two
flattened terms

t̂ = g(⊕3(a,g(b,c),a),⊗3(⊕2(c,a),a,b))

and

t̂′ = g(⊕3(a,a,g(b,c)),⊗3(a,b,⊕2(a,c)))



414 Monadic second-order logic

Figure 5.8 A structure S(t).

represent the same element s of T (F)/≡AC(H ). The structure �s� = S(t) = S(t′) is
shown in Figure 5.8. �

Lemma 5.87 For any two terms t, t′ ∈ T (F), we have t ≡AC(H ) t′ if and only if S(t)
and S(t′) are isomorphic.

Proof sketch: The effect of the transformation of �̂t � into S(t) is to forget the order
of arguments of the function symbols that belong to H . The result follows by routine
arguments.

For s= [t]≡AC(H )
belonging to T (F)/≡AC(H ), we define �s� as S(t). This structure

is well defined by the previous lemma. It makes now sense to say that a subset
of T (F)/≡AC(H ) is CMS-definable, or recognizable with respect to an algebra of
relational structures, because we can identify an element s of T (F)/≡AC(H ) and its
representing structure �s�.
Theorem 5.88 Let (F ,H ) be an AC-signature. The following properties of a subset
of T (F)/≡AC(H ) are equivalent:

(1) it is recognizable in STR;
(2) it is recognizable in TAC(F ,H );
(3) it is CMS-definable.

Proof: (1) =⇒ (2). Each operation of T := TAC(F ,H ) is, via the identification
of s ∈ T (= T (F)/≡AC(H )) and �s� ∈ STR(RF ), a derived operation of STR. For
f ∈ F −H , we have that fT is f ∗, as defined in Application 5.61 (with some obvious
changes, because we use a variant representation of terms by structures). For f ∈ H
and s,s′ ∈ T , we have that � fT(s,s

′)� = extf (�s�)� extf (�s′�), where � is parallel-
composition of structures (cf. Example 5.55) and extf is the QF operation such that
extf (S)= S if S |= labf (rt) and extf (S)= renf1→f ( f ∗1 (S)) otherwise. This gives the
result, as in the proof of Corollaries 5.66 and 5.67 concerning words and terms.
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The implication (3)=⇒ (1) follows from the Recognizability Theorem.
It remains to prove (2)=⇒ (3). We extend the proof of (3)=⇒ (4) ofTheorem 5.83.

Let L⊆ T be T-recognizable and h : T→Q be a surjective homomorphism to a finite
F-algebra Q such that L = h−1(Q0) for some Q0 ⊆ Q. Since fT is associative and
commutative for every f ∈ H , the surjectivity of h ensures that fQ is so. Hence Q
is an (F ,H )-AC-algebra. We enumerate Q as {q1, . . . ,qk} and, for every f ∈ H and
qi1 ,qi2 , . . . ,qin ∈Q, n≥ 3, we extend fQ by defining recursively

fQ(qi1 ,qi2 , . . . ,qin) := fQ(qi1 , fQ(qi2 , . . . ,qin)).

We denote byN k≥2 the set of k-tuples (m1, . . . ,mk) inN k such that m1+·· ·+mk ≥ 2,

and for each f ∈H , we define the mapping 
f : N k≥2→Q by


f (m1, . . . ,mk ) := fQ(q1, . . . ,q1,q2, . . . ,q2, . . . ,qk , . . . ,qk),

where, for each i ∈ [k], the sequence of arguments of fQ has mi occurrences of qi.
For t ∈ T (F), we let [t] denote [t]≡AC(H )

. If s= [t] ∈ T and t̂ = fn(̂ t1, . . . ,̂ tn) with
f ∈ H (which implies that f is the leading symbol of t but not of any of t1, . . . , tn),
we define m(s) := (m1, . . . ,mk), where mj := |{i ∈ [n] | h([ti]) = qj}| for each j =
1, . . . ,k . Then we have h(s) = 
f (m(s)), by the definitions and by the associativity
and commutativity of fQ.

Our objective is to prove that each set 
−1
f (qi) is recognizable in Nk . We let ∼

be the equivalence relation on N k defined as follows: m ∼ m′ if and only if either
m,m′ ∈N k≥2 and 
f (m)= 
f (m′), or m and m′ are both not in N k≥2 and they are equal.

This equivalence relation has at most 2k+1 classes and saturates each set 
−1
f (qi). We

now prove that it is a congruence on Nk . If m,m′,r,r′ ∈N k and m∼m′ and r∼ r′, we
must prove that m+ r ∼m′ + r′. Assume first that m,m′,r,r′ belong to N k≥2. Then so
do m+ r and m′ + r′. Since fQ is associative and commutative, we have 
f (m+ r)=
fQ(
f (m),
f (r)) and similarly for m′ and r′. But 
f (m)= 
f (m′) and 
f (r)= 
f (r′),
hence we get fQ(
f (m),
f (r))= fQ(
f (m′),
f (r′)) and m+ r ∼m′ + r′. For the other
cases, the verifications are similar. Each set Li := 
−1

f (qi) is thus recognizable in Nk ,
hence each property CardLi is CMS-expressible by Proposition 5.25.

As in the proof of Theorem 5.83, we construct a CMS sentence ϕ that defines
L= {s ∈ T | h(s)∈Q0}. The construction combines those of Theorems 5.15 and 5.83.
Let s = [t] be represented by the RF -structure S(t) whose domain is the set N t̂ of
nodes of the flattened term t̂. The sentence ϕ is constructed as ∃X1, . . . ,Xk .θ , where
θ expresses that (X1, . . . ,Xk ) is a partition of N t̂ , that the root belongs to some Xi

such that qi ∈Q0 and that for every u ∈N t̂ , u ∈ Xi if and only if h([t/u′])= qi, where
u′ ∈ Nt is such that t̂/u′ = t̂/u.

The latter condition is expressed by the following equivalent one:
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for every u, if u is an occurrence of f with sons u1, . . . ,un and if uj ∈ Xij for
each j, then u ∈ Xi where i is such that qi = fQ(qi1 , . . . ,qin).

For the expression of the last equality, there are two cases:

(a) either f ∈F−H , n= ρ( f ), and the condition is written in a straightforward way,
as in Theorem 5.15;

(b) or f ∈ H , and in this case, letting (m1, . . . ,mk) count the numbers of states of
the set {qi1 , . . . ,qin} equal to q1, . . . ,qk respectively, we need only check that
(m1, . . . ,mk) ∈ 
−1

f (qi), and we do this with the help of Proposition 5.25 as in the
proof that (3) implies (4) in Theorem 5.83.

Note that in Case (a), u has an ordered sequence of sons, and a son is the i-th
element of this sequence if it belongs to br∗î t . In Case (b), it has a set (not a sequence)
of at least two sons, of unbounded size.

Remark 5.89 (1) The proof of (2)=⇒ (3) can be seen as the construction of a finite
deterministic automaton that runs bottom-up on the syntactic trees of flattened terms.
Some nodes of these trees (the occurrences of the symbols in F−H ) have a sequence
of sons of bounded length and the others have a set of sons of unbounded (finite)
cardinality (cf. Remark 5.84(1)).

(2) As in Theorem 5.83, we have the additional equivalent condition of recogniz-
ability in JSt : It is implied by (3). However, it is not straightforward to prove that
for a subset of T (F)/≡AC(H ) (viewed as a set of labeled s-graphs such as the one in
Figure 5.8), its recognizability in JSt implies its recognizability in T, because T is not
a subalgebra of a derived algebra of JSt : if f ∈H , the operation (s,s) �→ fT(s,s

′) has
four cases, depending on whether the roots of s and s′ are labeled f , so that it is not a
derived operation. However, more complex derived operations involving conditional
statements are defined in [BluCou06] (they are called finite state derived operations)
that can handle these types of situations. They “preserve recognizability” as do our
derived operations (cf. Proposition 3.56(3)) and one can prove by using them that if
L⊆ T (F)/≡AC(H ), then L ∈Rec(JSt) implies L ∈Rec(T).

5.6 Equivalences of logical formulas

In this section, we present some equivalences and transformations of logical formulas
from which we can make precise in which sense the sets of first-order and of monadic
second-order formulas over a finite signature, of quantifier-height at most some given
integer and having free variables in a finite set, can be considered as finite. From these
notions, we will bound the indices of the congruences constructed for proving the
Recognizability Theorem. However, we will obtain better upper-bounds in the next
chapter.
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5.6.1 Boolean formulas

We let p1, . . . ,pn be (standard) Boolean variables and Bn be the set of terms
T ({∧,∨,¬,⇒,⇔,True,False},{p1, . . . ,pn}), called Boolean terms. We write b ≡ b′
if b and b′ in Bn are equivalent, i.e., if they define the same Boolean function.

It is well known that b and b′ are equivalent if and only if b can be transformed
into b′ by the laws of Boolean calculus like ¬¬p ≡ p, p∨ p ≡ p, p⇒ q ≡ ¬p∨ q,
p∧ (q∨ r)≡ (p∧q)∨ (p∧ r) and p∨¬p≡ True, to take a few examples. We assume
that a strict linear order < on

⋃
n≥0 Bn is fixed. (It can be defined as a lexicographic

ordering on formulas considered as words; we need not specify it precisely.)
For each n and each b ∈ Bn, there is a unique formula b̃ in Bn that is equivalent to

b and is in disjunctive normal form in such a way that:

• disjuncts are ordered by increasing order with respect to <;
• in each disjunct, each variable from {p1, . . . ,pn} occurs exactly once and variables

occur in increasing order of indices.

Let us take some examples. If b = ¬¬p1 and n = 1, then b̃ = p1, but if n = 2,
we have b̃ = (p1 ∧ p2)∨ (p1 ∧¬p2). If n = 3 and b = p1 ∧ (p2 ∨¬p3), then b̃ =
(p1∧ p2∧ p3)∨ (p1∧ p2∧¬p3)∨ (p1∧¬p2 ∧¬p3).

Let us now assume that L ⊆ CMS(R,X ) is a set of formulas whose outermost
symbol is not in {∧,∨,¬,⇒,⇔,True,False}. We denote by Bn[L] the set of formulas
of the form b(ϕ1, . . . ,ϕn) (which abbreviates b[ϕ1/p1, . . . ,ϕn/pn]), where b ∈ Bn,
ϕ1, . . . ,ϕn ∈ L and for each i, ϕi is substituted for pi in b. It is clear that Bn[L] ⊆
CrMSh(R,X ) if L ⊆ CrMSh(R,X ). We also assume that CMS(R,X ) is linearly
ordered by some strict ordering <.

Definition 5.90 (Boolean normalization) If ϕ = b(ϕ1, . . . ,ϕn) ∈ Bn[L], then we
denote by ϕ̃ the formula in Bk [L] constructed as follows, for some appropriate k ≤ n:
• we enumerate {ϕ1, . . . ,ϕn} as {ϕi1 , . . . ,ϕik } with ϕi1 < · · ·<ϕik and k ≤ n (we have

k < n if ϕi = ϕj for some i and j �= i);
• we write accordingly ϕ as b′(ϕi1 , . . . ,ϕik ) for some b′ ∈ Bk ;
• we let ϕ̃ be b̃′(ϕi1 , . . . ,ϕik ).

Note that ϕ̃ = ϕ if ϕ = ψ̃ for some ψ . We call ϕ̃ a normalized Boolean combination
of formulas.

We let B[L] :=⋃n≥0 Bn[L] and B̃[L] := {ϕ̃ | ϕ ∈ B[L]}. We let β(m) be the number

�0≤p≤m22p · (mp). It will be enough to note that 22m
< β(m) < 22m+1

.

With these hypotheses and notation we have:

Proposition 5.91
(1) If ϕ ∈B[L], then ϕ̃≡ ϕ and ϕ̃ is obtained from ϕ by applying the laws of Boolean

calculus.
(2) If |L| =m ∈N , then |̃B[L]| ≤ β(m) and B̃[L] can be computed from L.
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Proof: (1) Clear from the definition and the classical results of Boolean calculus.
Note that the same formulas of L appear as subformulas of ϕ and of ϕ̃.

(2) For each finite set {ϕ1, . . . ,ϕp} of pairwise distinct formulas, one can build 22p

formulas in B̃[{ϕ1, . . . ,ϕp}] containing each formula ϕi as a subformula; they are the
formulas b̃(ϕ1, . . . ,ϕp) for all b in Bp. Hence:

|̃B[L]| =�K⊆L22|K | = β(|L|),

by the definition of β. It is clear that one can (in principle, not practically) compute
the finite set B̃[L] if the finite set L is given.

5.6.2 Monadic second-order formulas

In this section, X will always denote a finite subset of the countable set V1 of first-
order and set variables (cf. Section 5.1.4). Furthermore, r and h denote elements of
N , and R is a fixed relational signature.

The semantic equivalence≡ on formulas of CMS(R,X ) (defined at the beginning
of Section 5.2) is undecidable.71 Our objective is to define a syntactic equivalence≈
that refines ≡ (i.e., such that ϕ ≈ ψ implies ϕ ≡ ψ), is decidable and is finite over
each set CrMSh(R,X ).

We let ∼ be the equivalence relation on CMS(R,X ) generated by the following
elementary transformation rules and their inverses (where u denotes a first-order or
a set variable):

(1) application of a law of Boolean calculus like the replacement of ϕ∨ϕ by ϕ or of
ϕ∧ (ψ ∨ψ ′) by (ϕ∧ψ)∨ (ϕ∧ψ ′);

(2) replacement of ∀u.ϕ by ¬∃u.¬ϕ;
(3) renaming of bound variables, e.g., replacement of ∃u.ϕ by ∃w.ϕ[w/u] if w has

no free occurrence in ϕ.

If ψ is obtained from ϕ by rule (3) only, we write ϕ ≡α ψ and say that ϕ and ψ

are α-equivalent. It is clear that ϕ ∼ ψ implies ϕ ≡ ψ . Moreover, if ϕ ∼ ψ and
ϕ ∈ CrMSh(R,X ) then ψ ∈ CrMSh(R,X ). For example, let ϕ be the sentence

∀X¬∃y(y ∈ X ∧ (∃z.R(y,z)∨∃z′.R(y,z′))),

and ψ be the sentence

¬∃X ,y(y ∈ X ∧∃z.R(y,z)).

71 A consequence of Theorem 5.5 and the other classical undecidability results. The equivalences of
formulas with respect to finite and infinite, and to finite and countable structures instead of with respect
to finite ones (which is our definition of equivalence), are also undecidable.
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We have ϕ ∼ ψ . On the other hand, ∃y(y �= y ∨ R(x,y)) is not ∼-equivalent to
∃y.R(x,y) because, although y �= y∨R(x,y) is≡-equivalent to R(x,y), these formulas
are not equivalent with respect to ∼.

We now define a transformation of formulas, such that if ϕ is transformed into ϕ̂,
then ϕ̂ ∼ ϕ and thus ϕ̂ ≡ ϕ. We assume that a linear order is fixed on the set V1 of
first-order and set variables.

Definition 5.92 (Normalization of formulas) With each ϕ ∈ CMS(R,X ), we
associate a formula ϕ̂ ∈ CMS(R,X ) by the following algorithm:

Step 1: We transform ϕ into ϕ′ written without universal quantifiers by using
rule (2) of the definition of∼. Hence, we obtainϕ′ in CMS(R,X ) that is∼-equivalent
to ϕ. In what follows we still denote ϕ′ by ϕ for more readability.

Step 2: For every finite subset Y of V1 that is disjoint with X and contains at least
qh(ϕ) first-order variables and at least qh(ϕ) set variables, we transform ϕ into ϕ̂Y ,
by induction on |ϕ| (the size of ϕ, see Section 5.1.3):

Case 1: If ϕ is atomic, we let ϕ̂Y be ϕ.
Case 2: If ϕ is b(ϕ1, . . . ,ϕn), where b ∈ Bn, b /∈ {p1, . . . ,pn} and each formula ϕi

is either atomic or existential (i.e., of the form ∃u.ψ), then, abbreviating
b(ϕ̂1Y , . . . , ϕ̂nY ) by β, we let ϕ̂Y be β̃ by using the Boolean normalization
of Definition 5.90.

Case 3: If ϕ is ∃u.ψ , where u is a first-order variable and ψ ∈CrMSh−1(R,X ∪{u}),
we define ϕ̂Y as ∃y1. ψ̂[y1/u]Y−{y1}, where y1 is the first first-order variable
in Y (with respect to the order on V1).

Case 4: If ϕ is ∃U .ψ , where U is a set variable and ψ ∈CrMSh−1(R,X ∪{U }), we
define similarly ϕ̂Y as ∃Y1. ̂ψ[Y1/U ]Y−{Y1}, where Y1 is the first set variable
in Y .

It can easily be shown, simultaneously with the above definition, that if ϕ ≡α ϕ′,
then ϕ̂Y = ϕ̂′Y .72 That implies that ϕ̂Y is well defined in Cases 3 and 4 (note that the
substitutions ψ[y1/u] and ψ[Y1/U ] are only defined modulo α-equivalence).

Step 3: We define ϕ̂ as ϕ̂Y , where Y consists of the first qh(ϕ) first-order variables
that are not in X and the first qh(ϕ) set variables that are not in X .

Let us take an example. Let ϕ be the sentence of quantifier-height 3 expressing
that an undirected graph is not connected:

∃X (∃x.x ∈ X ∧ ∃y.y /∈ X ∧ ∀u,v(u ∈ X ∧ edg(u,v)⇒ v ∈ X )
)
.

After eliminating ∀ and⇒ and using Boolean laws, we obtain the equivalent sentence

∃X (∃x.x ∈ X ∧ ∃y.y /∈ X ∧ ¬∃u,v(u ∈ X ∧ edg(u,v)∧ v /∈ X )
)
,

72 For instance, in Case 3, if ϕ≡α ϕ′ then ϕ′ is ∃u′.ψ ′ with ψ ≡α ψ ′[u/u′]. Hence ψ[y1/u] ≡α ψ ′[y1/u′]
and hence ϕ̂Y = ϕ̂′Y by induction.
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and after renaming its bound variables, we get the sentence ϕ̂ as follows:

∃Y1
(∃y1.y1 ∈ Y1 ∧ ∃y1.y1 /∈ Y1 ∧ ¬∃y1,y2(y1 ∈ Y1 ∧ edg(y1,y2)∧ y2 /∈ Y1)

)
,

where y1,y2 are the first two first-order variables of V1 and Y1 is its first set variable.

Proposition 5.93 For every ϕ ∈ CrMSh(R,X ), we have:

(1) ϕ̂ ∈ CrMSh(R,X ) and the set of bound variables of ϕ̂ is {yi | 1≤ i ≤ h1} ∪ {Yi |
1 ≤ i ≤ h2} for some integers h1,h2 ∈ [0,qh(ϕ)], where yi is the i-th first-order
variable of V1−X and Yi its i-th set variable;

(2) ϕ̂ ∼ ϕ and thus, ϕ̂ ≡ ϕ;
(3) the mapping ϕ �→ ϕ̂ is idempotent, i.e., if ϕ = ψ̂ for some ψ , then ϕ̂ = ϕ.

Proof: We prove the same assertions for each ϕ̂Y (where, in Assertion (1), V1−X
is replaced by Y), by induction on |ϕ|. We can assume that ϕ is written without
universal quantifiers by the first step of the algorithm of Definition 5.92. In Case 1, ϕ
is quantifier-free and the result is obvious. In Case 2, the result follows by induction
and Proposition 5.91(1). In Case 3, ψ̂[y1/u]Y−{y1} ∼ ψ[y1/u] by induction. The
variable y1 does not occur free in ϕ, because Y ∩X = ∅. Hence ϕ̂Y is ∼-equivalent
to ∃y1.ψ[y1/u] (by the definition of ∼) and to ϕ by renaming bound variables. If
ϕ = β̂Y for some formula β, then u = y1 and ψ = θ̂Y−{y1} for some θ , and so ϕ̂Y
is ∃y1. ψ̂Y−{y1} by definition, which equals ϕ by induction. The proof is similar for
Case 4.

For each r,h,R,X , we define

ĈrMSh(R,X ) := {ϕ̂ | ϕ ∈ CrMSh(R,X )}.

We let f (r,R,n) be a computable upper-bound to the number of atomic formulas
in CrMS(R,X ) for any X with at most n variables. Without loss of generality, we
can assume that f is monotone in n, i.e., that f (r,R,n) ≤ f (r,R,n+ 1). We define
g(h,r,R,n) ∈N by the following induction:

g(0,r,R,n)= β( f (r,R,n)),

g(h+ 1,r,R,n)= β(3 · g(h,r,R,n+ 1)),

where β is the function of Definition 5.90; the function g is thus monotone in n. We
recall that 22m

< β(m) < 22m+1
. An easy calculation (by using an induction on h)

yields:73

exp(2h+ 2, f (r,R,n+ h)) < g(h,r,R,n) < exp(2h+ 2, f (r,R,n+ h)+ h+ 1).

73 The function exp : N 2→N is defined by exp(0,n)= n and exp(d+ 1,n)= 2exp(d,n).
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Proposition 5.94 For each r,h,R,X , we have

|ĈrMSh(R,X )| ≤ g(h,r,R, |X |),

and the finite set ĈrMSh(R,X ) can be computed from r,h,R,X .

Proof: We prove this by induction on h for every set ĈrMShY (R,X ) := {ϕ̂Y | ϕ ∈
CrMSh(R,X )}.

If h= 0, then the formulas of CrMS0(R,X ) are Boolean combinations of atomic

formulas. Hence ĈrMS0Y (R,X ) = B̃[L], where L is the set of atomic formulas in
CrMS(R,X ). By Proposition 5.91(2), this set can be computed and has cardinality
at most β( f (r,R, |X |))= g(0,r,R, |X |) by the definitions of f and g.

If h ≥ 0, then a formula ϕ of CrMSh+1(R,X ) is a Boolean combination of
(atomic or existential) formulas in CrMSh(R,X ) and of formulas of the form ∃u.ψ ,
where ψ ∈ CrMSh(R,X ∪ {u}) and u is a first-order or a set variable. Hence,
ϕ̂Y is a normalized Boolean combination θ of (atomic or existential) formulas in

ĈrMShY (R,X ) and of formulas of the form ∃y1.ψ ′ or ∃Y1.ψ ′′, where ψ ′ (resp.

ψ ′′) is in ĈrMShY−{y1}(R,X ∪{y1}) (resp. ĈrMShY−{Y1}(R,X ∪{Y1})). Vice versa,
every such formula θ equals ϕ̂Y for some ϕ in CrMSh+1(R,X ) (if θ is ∃y1.ψ ′ as
above, then θ̂Y = ∃y1. ψ̂ ′Y−{y1} = ∃y1.ψ ′ by idempotency, see Proposition 5.93(3),
and so θ = θ̂Y ). By Proposition 5.91(2), this set of formulas θ can be computed and
has cardinality at most g(h,r,R, |X |)+ 2 · g(h,r,R, |X |+ 1)≤ 3 · g(h,r,R, |X |+ 1)

(because g is monotone in its last argument), which gives | ̂CrMSh+1Y (R,X )| ≤
g(h+ 1,r,R, |X |).

Corollary 5.95 For every R and R′, there are finitely many QF operations of type
R→R′. A finite set DSR,R′ of QFO definition schemes can be computed such that
{D̂ |D ∈DSR,R′ } is the set of all QF operations of type R→R′.

Proof: A definition scheme for such an operation consists of p := 1+|R′+|+|R0|×
|R′0| formulas with at mostρ(R′) free variables, all quantifier-free ones, i.e., formulas
in C0MS0(R,Xρ(R′)). There are thus at most g(0,0,R,ρ(R′))p=β( f (0,R,ρ(R′)))p
inequivalent definition schemes. The definition schemes that consist of formulas in

Ĉ0MS0(R,Xρ(R′)) form the required set DSR,R′ .

We now evaluate f (r,R,n) in some concrete cases. The atomic formulas written
with a finite set X of first-order and set variables, a relational signature R and
cardinality predicates Cardp,q(X ) for p < q≤ r are of the following forms:

True, False, s= t, t ∈ X , Cardp,q(X ) and R(t1, . . . , tρ(R))

for s, t, t1, . . . , tρ(R) ∈X ∪R0, R ∈R+ and X ∈X .
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Hence we can take as bounding function:

f (r,R,n)= 2+ (n+ c)2+ n(n+ c)+ nr2+
∑

R∈R+
(n+ c)ρ(R),

where n= |X | and c= |R0|. (A more precise estimate could be obtained by counting
separately first-order and set variables, by considering s= t as identical to t = s, etc.,
but would not be very useful because of the predominant influence of the quantifier-
height in Proposition 5.94.)

For handling directed s-graphs G of type C and represented by �G�, we can use the
relational signature R=Rd

ms,C consisting of the two binary relation symbols in1 and

in2 and k := |C| constant symbols. We get f (r,R,n)= 3(n+k)2+n(n+k)+nr2+2.
If we use the alternative signature {in, labEdge}, where we replace one binary relation
by a unary one, we obtain the slightly smaller function f (r,R,n)= 2(n+k)2+n(n+
k)+ nr2+ n+ k+ 2.

For handling p-graphs with k port labels we use a signature R consisting of one
binary relation symbol and k unary ones. Thus, f (r,R,n) = 3n2 + nr2 + nk + 2.
From this observation and the computation in the proof of Corollary 5.95, we get that
there are at most β(2k + 14)m+1 QF operations transforming p-graphs of type C of
cardinality k into p-graphs of type D of cardinality m.

5.6.3 Numbers of formulas and recognizability indices

Theorem 5.64 has established that for every sentence ϕ in CMS(R,∅) the class of
structures MOD(ϕ) ⊆ STR(R) is recognizable in STRpres. The following theorem
bounds its recognizability index (Section 3.4.3). We will use the function f that
bounds the number of atomic formulas (cf. Proposition 5.94).

Theorem 5.96 Let R be a relational signature and ϕ ∈CrMS(R,∅) for some r ∈N .
The recognizability index of MOD(ϕ) with respect to the algebra STRpres is bounded
by the function that maps each sort R′ to

exp(2h+ 3, f (r,R′,h)+ h+ 1),

where h := qh(ϕ).

Proof: By Proposition 5.93 and the proof ofTheorem 5.64, the sort-preserving equiv-
alence relation ≈ on the algebra STRpres defined by S ≈R′ T if and only if for every

sentence ψ in ĈrMSh(R′,∅), we have

S |=ψ if and only if T |=ψ ,
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is a congruence on STRpres that saturates MOD(ϕ). It has thus at most 2N

classes of sort R′, where N := |ĈrMSh(R′,∅)|. The result follows then from
Proposition 5.94.

Let us make this more concrete by bounding the recognizability indices rel-
ative to the HR and the VR algebras that have been defined in Chapter 4 (cf.
Definitions 4.33 and 4.52). Since the many-sorted VR and HR algebras are sub-
algebras of derived algebras of STR, the recognizability index of a homogenous
set of p-graphs or s-graphs is at most that of the corresponding set of structures,
for all sorts of those subalgebras (cf. the proofs of Propositions 3.56 and 3.64).
The upper-bound on the recognizability index of a class MOD(ϕ) we have given
depends on the quantifier-height of ϕ by an iterated exponentiation. Similar lower-
bounds are known, see [StoMey] and [Wey]. However, the recognizability index
γ of a homogenous CMS- or CMS2-definable set of p-graphs or s-graphs, is
a finitely iterated exponential function,74 because the nesting of exponentiations
depends only on the quantifier-height of the defining sentence, and the number
of atomic formulas is bounded by a polynomial in the number of port or source
labels.

In the following corollary, the size of a p-graph is its number of vertices, and the
size of an s-graph is its number of vertices and edges.

Corollary 5.97 For every CMS-definable set of p-graphs L there exists a finitely
iterated exponential function fL : N →N such that, for every k ∈N , if Lk is the set
of p-graphs in L of clique-width at most k then:

(1) if Lk �= ∅, then it contains a p-graph of size at most fL(k);
(2) if Lk is finite, then every p-graph in Lk has size at most fL(k).

Similar results holds for CMS2-definable sets of s-graphs and tree-width.

Proof: We first prove this for HR. Since every CMS2-definable set of s-graphs is a
finite union of homogenous CMS2-definable sets of s-graphs, as shown in the proof
of Theorem 5.68, we may assume that L is homogenous. Let E be the type of its
elements, and let TWD(≤ k − 1,= E) be the set of all s-graphs of type E and tree-
width at most k − 1. By Example 4.3(8) and the proof of Proposition 4.13, there is
a uniform typed HR equation system S that generates the set TWD(≤ k − 1,= E),
and it has one unknown of type D for each D⊆ C, where C is such that E ⊆ C and
|C| = k . Thus, TWD(≤ k − 1,= E) is equational in the finitely generated algebra
JSt,gen[C]. By Proposition 3.56(1), Lk = L∩TWD(≤ k−1,C) is recognizable in that
algebra. By the Filtering Theorem (Theorem 3.88), Lk = TWD(≤ k − 1,= E) ∩ L

74 That is, γ (k)≤ exp(d,k) for every k , for some fixed d. Such functions are said to be elementary, which
is a rather counter-intuitive terminology!
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is also equational in that algebra. By the proof of Theorem 3.88, Lk is generated
by a uniform typed HR equation system with �Bk unknowns, where Bk is a com-
plete and deterministic F tHR

C -automaton recognizing {t ∈ T (F tHR
C ) | val(t) ∈ Lk }. Let

λx ·exp(d,x) be an upper-bound to the recognizability index of L in JSt , which is also
an upper-bound to the recognizability index of Lk in JSt,gen[C]. By Propositions 3.69
and 3.73(2), �Bk is at most

∑
D⊆[k] exp(d, |D|) ≤ 2k · exp(d,k) ≤ exp(d + 1,k).

Hence, by Proposition 4.13(1), Lk is generated by a uniform typable HR equation
system with at most exp(d+1,k) unknowns. Assertions (1) and (2) now follow from
Propositions 4.5(3) and 4.19 respectively.

The proof for CMS-definable sets of p-graphs is similar, using VR-equational sets,
Example 4.43(5) and Proposition 4.46, and Propositions 4.42(3) and 4.47(3).

The numbers of formulas are more than “cosmological” ([StoMey]), and prac-
tical implementations are not directly possible. Better upper-bounds will be given
in Chapter 6. They are based on an alternative proof of the Weak Recognizability
Theorem.

The sentence expressing connectivity has quantifier-height 3. This gives, for graphs
of tree-width ≤ k an HR-recognizability index of the form exp(9,p(k)) for some
polynomial p, whereas, by a direct analysis, we found in Example 4.30(2) an upper-
bound of O(k!).

Remark 5.98 The reader may ask why we do not use prenex formulas, that is,
formulas of the form ∀w1 ∃w2 ∀w3 · · ·θ , where w1,w2, . . . are possibly empty
sequences of first-order and set variables and θ is quantifier-free. There would
be no loss of generality in doing so because every formula ϕ can be transformed
into an equivalent prenex formula ϕ̂. For doing this, one uses iteratively rules like
the one transforming ∃x.θ ∧ ∃y.θ ′ into ∃x,y(θ ∧ θ ′), where x and y are distinct
variables respectively not free in θ ′ and in θ , together with renamings of bound
variables.75

The size of ϕ̂ is at most one more than that of ϕ but its quantifier-height may
increase in a nonlinear way. There exist formulas ϕn in FO({edg},{x,y}) of size
O(n2) and quantifier-height n such that ϕ̂n has quantifier-height O(n2). One takes

75 Since we allow empty structures, some usual transformations of formulas fail to preserve equivalence.
For example the sentence ∃x(x= x)∨∀y(y= y) is not equivalent to the sentence ∃x(x= x∨∀y(y= y))
because it is true in the empty structure whereas the latter sentence is not. Nevertheless, every monadic
second-order formula ϕ has an equivalent monadic second-order formula ϕ̂ in prenex form that we
construct as follows. We let ϕ̃ be the “usual” prenex form of ϕ, equivalent to ϕ in all nonempty
structures. The formulas ϕ and ϕ̃ have the same free variables. If ϕ has free first-order variables,
we let ϕ̂ be ϕ̃. Otherwise, if ∅ |= ϕ(∅, . . . ,∅), we let ϕ̂ be ∀x. ϕ̃, where x is a first-order variable; if
∅ |=¬ϕ(∅, . . . ,∅), we let ϕ̂ be ∃x. ϕ̃. In the first case, ϕ and ϕ̃ cannot be satisfied in the empty structure
because their free first-order variables cannot have any value. Hence ϕ is equivalent to ϕ̃ also in the
empty structure. In the second case, it is not hard to check that ϕ and ϕ̂ are equivalent in all structures
including the empty one.
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ϕn(x,y) expressing that for every m, 1 ≤ m ≤ n, there is a directed walk of length
m+ 1 in the considered graph from vertex x to vertex y. �

5.7 References

Descriptive complexity is covered in the books by Libkin [*Lib04], Ebbinghaus and
Flum [*EbbFlu] and Immermann [*Imm].

Theorem 5.5 stating the undecidability of the first-order satisfiability problem for
finite graphs is due to Trakhtenbrot. See [*Lib04] or [*EbbFlu] for the proof. Stronger
versions result from restrictions to particular classes of graphs. The case of graphs of
degree at most 3 is proved in [Wil], that of planar graphs of degree at most 4 is proved
in [Her] and that of planar graphs of degree at most 3 is stated with a handwaving
proof in [GarSha]. Theorem 5.6 is due to Seese ([See91]).

That MS2-formulas are no more expressive than MS1-formulas for expressing the
properties of graphs in certain classes of graphs is proved in [Cou94b] and [Cou03].
Guarded second-order formulas defined in [GräHO] are equivalent to our MS2-
formulas. (The equivalence is valid for all structures; see Section 7 of [GräHO].)

The definability by monadic second-order formulas of linear orderings of the vertex
sets of graphs from particular classes is studied in [Cou96a]. (Such a definition for
all graphs by a unique monadic second-order transduction is impossible.) Some of
these results yield logical characterizations of recognizability for subsets of certain
graph classes and for traces. Traces are partially ordered sets with labeled elements
that represent equivalence classes of words with respect to congruences generated by
commutativity rules of the form ab≡ ba, where a,b are letters; the theory of traces is
developed in the book [*DiekRoz]. Lemma 5.27 entails that every CMS formula can
be translated into an order-invariant MS formula written with an additional binary
relation ≤ intended to be interpreted by linear orderings. But some order-invariant
MS sentences are not equivalent to CMS sentences ([GanRub]).

The Splitting Theorem for disjoint unions of structures follows the paradigm of a
result by Feferman and Vaught. This theorem, its history and its numerous variants
and consequences are presented by Makowsky in [*Mak]. The proof of the Splitting
Theorem given in this chapter is both more general and (hopefully) more clear than the
original versions published in [Cou87], [Cou90b], [CouMos]. The name “Splitting
Theorem” refers to a polynomial-time algorithm that computes the Tutte polynomial
of the graphs of tree-width bounded by a given integer. The relevance to the present
situation is explained in [*Mak].

Other proofs of the Weak Recognizability Theorem and its algorithmic applications
will be presented in Chapter 6.

Apart from finite automata on terms, finite automata on labeled rooted trees (called
unordered, unranked trees) and on labeled rooted unranked, ordered trees have been
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defined and compared with monadic second-order logic and related languages. We
refer the reader to [*Cou96b], [*Lib06], [BonTal], [Cou89a] and to Chapter 8 of
[*Com+].

The monadic second-order orderability of graphs (cf. Proposition 5.30 and
Corollary 5.31) is studied in [BluCou11].

The results of Section 5.6 improve some results from [CouWei].
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Algorithmic applications

This chapter is devoted to the algorithmic applications of the RecognizabilityTheorem
(Theorem 5.75, Section 5.3.10), one of the main results of this book. We will prove
the existence of fixed-parameter tractable algorithms with tree-width and clique-
width as parameters that solve the model-checking problem for monadic second-order
sentences, or that count or list the answers to queries expressed by monadic second-
order formulas with first-order free variables. These algorithms are based on graph
decompositions of different types, that are formalized as terms over the signatures
FHR and FVR. They use two main constructions. The first one is the parsing of the
input graph, that is, the computation of a term in T (FHR

[k] ) or in T (FVR
[k] ), for given

values of k , that evaluates to this graph. The second one is a kind of “compilation” of
the given monadic second-order formula into a finite automaton over the signature
FHR

[k] or FVR
[k] .1

Both constructions raise difficult algorithmic problems. Concerning the second
one, the existence of a finite automaton follows from the Weak Recognizability
Theorem (Corollary 5.69), but the proof gives no usable algorithm for construct-
ing automata. We give an alternative construction in Section 6.3 that is essentially
the one done by Büchi in the early 1960s and implemented by Klarlund and his
team ([BasKla], [Hen+], [Kla]) in the software MONA. We will present some
improvements tending to lower the sizes of the automata constructed from monadic
second-order formulas. Even if automata cannot be constructed in practice from log-
ical descriptions and by general algorithms, it is useful to know that they exist. This
existence motivates the research of alternative constructions based on combinatorial
properties rather than on logical formulas.

Section 6.1 reviews terminology and states the results that follow from the Rec-
ognizability Theorem. Section 6.2 reviews the main parsing algorithms. Sections 6.3
and 6.4 are devoted to the constructions of automata and their uses for model-checking

1 This construction is similar to the transformation of a regular expression into a finite automaton, see
[*AhoLSU] or [*Cre].
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and other algorithmic problems. We will also compare several proofs of the
Recognizability Theorem.

6.1 Fixed-parameter tractable algorithms for model-checking

We first recall from Chapter 1 the definition of a fixed-parameter tractable algorithm.
We generalize it slightly by allowing the parameters to have other values than integers.

Definition 6.1 (Fixed-parameter tractable algorithms) A decision problem is
defined as a pair (C,P) consisting of an effectively given set C and a computable
mapping P : C→ {True,False}, i.e., P is a decidable property of the elements of C.
We assume that each element d of C has a computable size |d| in N . We also assume
that C is parametrized, i.e., that it is equipped with a computable function p : C→N
such that p(d)≤ |d| for every d ∈ C.

An algorithm that decides whether P(d)= True for every element d of C is fixed-
parameter tractable (FPT) with respect to p if its computation time is bounded, for
every input d, by an expression of the form f (p(d)) · |d|c for some fixed computable
function f : N →N and some fixed positive integer c.2 A decision problem is fixed-
parameter tractable with respect to some parameter p if it has an algorithm that is
fixed-parameter tractable with respect to p. If c= 1, 2 or 3, we say that the algorithm
(hence also the decision problem it solves) is fixed-parameter linear, fixed-parameter
quadratic or fixed-parameter cubic, respectively, with respect to p.

If C is a set of graphs, the size of an input graph G is usually its number of vertices
and edges, denoted by ‖G‖, or, in many cases, its number of vertices, denoted by
|G|. The parameter can be the degree of G, its tree-width or its clique-width.3 Other
examples can be found in the books [*DowFel] and [*FluGro], which present in detail
the theory of fixed-parameter tractability.

In model-checking problems (see the next definition), the input is, typically, a
pair consisting of a sentence ϕ and a relational structure. In most applications, such
a structure represents a graph G, but we have seen other cases in Section 1.9. The
parameter is frequently, for a model-checking problem on (labeled) graphs, the integer
twd(G)+|ϕ|.

However, we will extend the initial definition so as to allow the parameter function
p to take its values in any effectively given set D, and not only in N . We still require
that p : C→ D and f : D→ N are computable functions (which is meaningful on
effectively given sets). In the above case we will use the parameter (twd(G),ϕ)
that is more natural than twd(G)+ |ϕ|. Since, for (labeled) graphs, there are only
finitely many sentences of size bounded by a given integer (up to renamings of

2 We use the convention that the computation time 0, for example if |d| = 0 or if f (k) := 100 · k3 and
p(d)= 0, indicates a computation taking constant time.

3 In the case of tree-width, one should take the parameter twd(G)+ 1 to meet the requirement that
p(d) ∈N .
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bound variables, and of vertex and edge labels), it is equivalent to say that the time
taken by an algorithm is g(twd(G),ϕ) · ‖G‖c for some computable function g or
f (twd(G)+ |ϕ|) · ‖G‖c for some computable function f , because if we know g, we
can obtain f as follows:4

f (p) :=max{g(k ,ϕ) | k ≤ p, |ϕ| ≤ p− k},

and the parameters (twd(G),ϕ) and twd(G)+|ϕ| are both computable from the input
(ϕ,G). So, we get equivalent definitions for fixed-parameter tractability because there
is no condition on the time necessary to compute the function f . A similar argument
holds for all parameters considered in this chapter.

It is important to specify the parameter when saying that a problem is FPT. For
example, the problem of deciding whether a graph G satisfies an MS sentenceϕ is FPT
with respect to (ϕ, twd(G)), but neither with respect to ϕ nor to (ϕ,Deg(G)), where
Deg(G) is the degree of G (unless P = NP, since 3-colorability is MS-expressible and
NP-complete on graphs of degree at most 4: see [*GarJoh], problem GT4).

Our definitions differ from those of [*DowFel] and [*FluGro] on some minor
points: Downey and Fellows put the value of the parameter as an explicit part of the
input. In other words, the input of an algorithm parametrized by p is the pair (d,p(d))
instead of d. Our definition corresponds in this case to their strongly uniform fixed-
parameter tractability (cf. Definition 2.4 in [*DowFel]). Flum and Grohe require that
the parameter function p be computable in polynomial time. This is not the case of
tree-width (as a mapping from graphs to integers) and they waive the polynomial-time
constraint in Section 11.4 of [*FluGro]. Our objective is not to develop, or even to
discuss, the theory of fixed-parameter tractability, but to have simple definitions that
cover the cases we will present (see Theorems 6.3 and 6.4). We refer the reader to the
books cited above for detailed discussions of the definitions.

Definition 6.2 (Model-checking) Let L be a logical language, typically first-order
logic or monadic second-order logic, and let C be a set of relational structures. The
model-checking problem for (C,L), denoted by MC(C,L), is defined as follows:

Input: An R-structure S in C and a sentence ϕ in L(R,∅).
Question: Is it true that S |= ϕ?

We will analyze model-checking algorithms in terms of the sizes of the input
structures: the size of S, denoted by ‖S‖, is defined in Definition 5.3 and compared
there to the size of the word, the term or the graph it may represent. The parameters will
consist of the sentence and of the tree-width or the clique-width of S. The tree-width
and the clique-width of a binary structure can be taken as those of the corresponding

4 Under the natural assumption that g(k ,ϕ)= g(k ,ϕ′) if ϕ′ is obtained from ϕ by a renaming of bound
variables, and/or of vertex and edge labels.
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labeled graph. General definitions will be given in Chapter 9. In the present chapter,
we will only consider binary relational structures that represent words, terms and
graphs (via the representation �·� for the model-checking of CMS sentences, and via
�·� for CMS2 ones).

Theorem 6.3
(1) For every finite functional signature F , the problem MC(T (F),CMS) is fixed-

parameter linear with respect to (F ,ϕ), where ϕ is the input sentence.
(2) For every triple of finite, pairwise disjoint sets of labels (C,K ,�), the problem of

checking whether �val(t)�C |=ϕ for t ∈T (FHR
C,[K ,�]) andϕ ∈CMS2(Rm,C,[K ,�],∅)

is fixed-parameter linear with respect to (C,K ,�,ϕ).
(3) For every triple of finite, pairwise disjoint sets of labels (C,K ,�), the problem of

checking whether �val(t)�C |= ϕ for t ∈ T (FVR
C,[K ,�]) and ϕ ∈CMS(Rs,C, [K ,�], ∅)

is fixed-parameter linear with respect to (C,K ,�,ϕ).

In these statements, we use parameters that are tuples of finite objects rather than
integers. We do not consider F ,C,K ,� and ϕ as fixed, but as parts of the input and
of the parameter.5

Proof: (1) Let F be a finite functional signature and ϕ belong to CMS(RF ,∅). By
Corollary 5.67, one can construct a finite deterministic automaton A that recognizes
the set of terms t in T (F) such that �t� |= ϕ. This being done, say in time f1(F ,ϕ),
then for any given t ∈ T (F), one need only run A on t to get the answer. This answer
is obtained in time a · |t|, where a is an upper-bound to the time necessary to perform
a transition. This time depends on A , hence on F and ϕ. The global time for getting
the result is thus of the form f1(F ,ϕ)+ f2(F ,ϕ) · |t|.

(2) For every C,K ,� and ϕ as in the statement, one can construct by the Weak Rec-
ognizability Theorem for the HR algebra (Corollary 5.69), and by Proposition 3.76(2)
and Theorem 3.62, a finite deterministic automaton A that recognizes the set of
terms val−1(L) ⊆ T (FHR

C,[K ,�]), where L is the set of s-graphs {G ∈ J Sgen
[K ,�][C] |

�G�C |= ϕ}. Then, for any given term t ∈ T (FHR
C,[K ,�]), one need only run A on t

to find out whether �val(t)�C |= ϕ. As above, the computation time is of the form
f1(C,K ,�,ϕ)+ f2(C,K ,�,ϕ) · |t|.

(3) Similar to Case (2) with the VR algebra.

The algorithms that proveAssertions (2) and (3) of this theorem take terms as inputs
and not graphs. If we want to check if �G� |= ϕ for a given graph G, we need to parse
it first, that is, to find a term t ∈ T (FHR

C,[K ,�]) such that G = val(t) (and similarly for
Case (3)). Parsing algorithms will be reviewed in Section 6.2. More concrete con-
structions of automata than those based on the proof of the Recognizability Theorem
(Theorem 5.64) will be given in Section 6.3.

5 So, more precisely, Statement (1) says that the problem MC(
⋃

F T (F),CMS) is fixed-parameter linear
with respect to (F ,ϕ), where the union extends over all finite functional signatures F .
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From Theorem 6.3 and by using the algorithms reviewed in Section 6.2 below, we
get the following result on the model-checking of graphs.

Theorem 6.4

(1) For all finite sets K and � of vertex and edge labels, the model-checking problem
MC(J S[K ,�][∅],CMS2) is fixed-parameter linear with respect to (twd(G),ϕ),
where G is the input graph and ϕ is the input sentence.

(2) For all finite sets K and � of vertex and edge labels, the model-checking problem
MC(GP[K ,�][∅],CMS) is fixed-parameter cubic with respect to (cwd(G),ϕ),
where G is the input graph and ϕ is the input sentence.

In these statements, we consider K and � as parts of the input,6 but not as parts of
the parameter.

Proof: (1) Let G be a (K ,�)-labeled graph with n vertices and edges (i.e., n= |VG|+
|EG|). We first show that it suffices to prove the result for parameter (twd(G),K ,�,ϕ)
instead of (twd(G),ϕ). The validity of ϕ in �G� depends only on the labels from
K ∪� that actually occur in ϕ. More precisely, if Kϕ and �ϕ denote the sets of
those labels, then �G� |= ϕ if and only if �G′� |= ϕ, where G′ is obtained from G by
removing all labels that are not in Kϕ ∪�ϕ . Note that G′ has the same tree-width as
G, cf. Remark 2.55(d). If it takes time at most f ′(twd(G′),Kϕ ,�ϕ ,ϕ) ·n to determine
whether �G′� |= ϕ, then it takes time at most f (twd(G),ϕ) · n to determine whether
�G� |= ϕ, where f (k ,ϕ) := f ′(k ,Kϕ ,�ϕ ,ϕ). The function f is computable because
the sets Kϕ and �ϕ of useful labels are computable from ϕ.

We now prove the result for parameter (twd(G),K ,�,ϕ). We know from the proof
of Theorem 1.25 that an algorithm can compute an optimal tree-decomposition of the
unlabeled undirected graph core(G) in time at most f (twd(G)) · n for some com-
putable function f .7 The linear time algorithm of Theorem 2.83 transforms this
tree-decomposition into a term s in T (FHR

[twd(G)+1]) that evaluates to core(G); this
algorithm computes also a corresponding witness. The algorithms of Proposition 2.47
(Assertions (1) and (2)) transform s into a term t in T (FHR

[twd(G)+1],[K ,�]) that evaluates
to G; they take time O(|K ∪�| · |s|), which is O(|K ∪�| · f (twd(G)) · n). The result
follows then from Theorem 6.3(2).

(2) The proof for parameter (cwd(G),K ,�,ϕ) is similar to the one in (1), but the
corresponding parsing problem is more difficult. In Section 6.2.3 we will prove the
existence of an algorithm that, for a simple (K ,�)-labeled graph G with n vertices,
computes in time g(cwd(G),K ,�) · n3 a term in FVR

[h�(G)], [K ,�] that evaluates to G,
where h�(G) is a positive integer that can be computed from G (this integer is bounded

6 So, more precisely, Statement (1) says that the problem MC(
⋃

K ,� J S[K ,�][∅],CMS2) is fixed-
parameter linear with respect to (twd(G),ϕ), where the union extends over all finite sets K and �

of vertex and edge labels. Note that
⋃

K ,�J S[K ,�][∅] is the class of all labeled graphs.
7 Recall from Remark 2.55(d) that twd(core(G))= twd(G).
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in terms of cwd(G) and �, but is independent of K ; see the proof of Proposition 6.8).
This will complete the proof with the help of Theorem 6.3(3).

The proof for parameter (cwd(G),ϕ) is also similar to the one in (1). In this case,
G′ is obtained from G by removing all vertex labels in K−Kϕ and all edges that have
labels in �−�ϕ . Since cwd(G′)≤ cwd(G), the function f can now be defined from
f ′ by f (k ,ϕ) :=max{ f ′(m,Kϕ ,�ϕ ,ϕ) | 0≤m≤ k}.

It is straightforward to generalize Theorem 6.4 to s-graphs in J S[K ,�][C] and
p-graphs in GP [K ,�][C], via the representations �·�C and �·�C respectively (where C
belongs to the input but not to the parameter). In fact, the source and port labels of
C can just be viewed as additional vertex labels, and Theorem 6.4 can be applied to
the resulting graphs in J S[C∪K ,�][∅] and GP [C∪K ,�][∅].
Definition 6.5 (Property-checking; counting and optimizing) Theorems 6.3 and
6.4 provide algorithms for model-checking, that is, for verifying that a given relational
structure (in particular, one representing a graph) satisfies a property expressed by a
given sentence in some fixed logical language.

Property-checking is the problem of verifying that a given assignment in a given
relational structure satisfies a given formula, hence that the elements specified by the
assignment satisfy a certain property. We will see in Section 6.4 that the algorithms
of Theorems 6.3 and 6.4 extend to the property-checking problem.

We now define monadic second-order counting functions. For convenience we
only consider formulas of which all free variables are set variables. Let be given
a relational signature R and a monadic second-order formula ϕ with set of free
variables X := {X1, . . . ,Xn,Y1, . . . ,Yp}. Let S be a concrete R-structure and γ be
an {Y1, . . . ,Yp}-assignment in it. We let �sat(S,ϕ,(X1, . . . ,Xn),γ ) be the number of
n-tuples (U1, . . . ,Un) in P(DS)

n such that (S,γ ′) |= ϕ, where γ ′ is the X -assignment
in S that extends γ and is such that γ ′(Xj) := Uj for each j ∈ [n]. If p = 0, we
drop γ from the notation; in this case �sat(S,ϕ,(X1, . . . ,Xn)) is the cardinality of
sat(S,ϕ,(X1, . . . ,Xn)). We call the function that maps γ to �sat(S,ϕ,(X1, . . . ,Xn),γ )
for fixed ϕ and S a monadic second-order counting function; its computation is a
monadic second-order counting problem.

Finally, we define optimizing functions in a similar way. We let R, ϕ, X , S and
γ be as above, with n= 1, so X := {X ,Y1, . . . ,Yp}. We define Maxsat(S,ϕ,X ,γ ) as
the maximum cardinality of a subset U of DS such that (S,γ ′) |= ϕ, where γ ′ is the
X -assignment in S that extends γ and is such that γ ′(X ) := U . As before, we drop
γ from the notation if p= 0; in that case Maxsat(S,ϕ,X ) is the maximal cardinality
of the sets in sat(S,ϕ,X ). We call the function that maps γ to Maxsat(S,ϕ,X ,γ )
for fixed ϕ and S, or the one defined similarly with minimum instead of maximum,
a monadic second-order optimizing function; its computation is a monadic second-
order optimizing problem.

In Section 6.4.3 we will extendTheorems 6.3 and 6.4 to the computation of monadic
second-order counting and optimizing functions by FPT algorithms.



6.2 Decomposition and parsing algorithms 433

6.2 Decomposition and parsing algorithms

The algorithms of Theorem 6.4 need to parse the input graphs, i.e., to compute
appropriate terms evaluating to them. We will review three types of algorithms:
those that construct tree-decompositions, easily convertible into terms over FHR or
FHR

[K ,�], those that construct such terms from derivation trees for graphs defined by

HR equation systems and those that construct terms over FVR or FVR
[K ,�].

6.2.1 Constructing tree-decompositions

Since the tree-width of a graph depends neither on the directions and multiplicities of
its edges, nor on the existence of loops nor on its possible vertex and edge labels, we
will only consider simple, loop-free, undirected graphs. As discussed in the proof of
Theorem 6.4(1), if G is a (K ,�)-labeled graph, every tree-decomposition of core(G)

(cf. Remark 2.55(d)) is a tree-decomposition of G and can be converted in linear time
into a term in T (FHR[K ,�]) evaluating to G (by Theorem 2.83 and Proposition 2.47).

The problem of deciding if twd(G)≤ k for a given pair (G,k) is NP-complete and
can be solved in time O(nk+2), where n = |VG| ([ArnCP]), and the corresponding
algorithm constructs a tree-decomposition of width at most k if twd(G) ≤ k . In the
sequel we will only quote decomposition algorithms for this problem, which construct
tree-decompositions of width at most k , as opposed to recognition algorithms, which
only decide whether twd(G) ≤ k , say, by checking the absence of finitely many
minors (Corollary 2.60) or by other means like performing sequences of reductions
as in [ArnCPS].

Bodlaender has given in [Bod96] a decomposition algorithm that takes time232k3 ·n.
It is actually not implementable but it entails Theorems 1.25(2) and 6.4(1). Efficient
linear algorithms exist for k ≤ 3. The article [BodFKKT] contains two decomposition
algorithms that are more likely to be usable, even if they are not linear. The first one
takes time f (n,k) ·2n and space g(n,k) ·2n for some polynomials f and g. It has been
tested with success for nonrandom graphs with at most 50 vertices and tree-width at
most 35 arising from concrete problems. Another algorithm is given that takes time
f ′(n,k) · 3n and polynomial space for some polynomial f ′ (but no implementation is
reported). Some other algorithms that have been implemented and tested are presented
in [BacBod06], [BacBod07], and [VEBK]. A survey can be found in [*Bod06].

Approximation algorithms have also been developed. Flum and Grohe give in
[*FluGro] (Proposition 11.14) an algorithm that constructs for every graph G a tree-
decomposition of width at most 4 · twd(G)+ 1 in time O(33·twd(G) · twd(G) · n2).
This algorithm is based on work by Reed who has given in [Ree] a similar algorithm
taking time O(n · log(n)) for producing a tree-decomposition of width at most 3·
twd(G)+ 2. Even if the constructed tree-decomposition is not optimal (i.e., has a
width that is not minimal), the algorithm is usable for solving the model-checking
problem of Theorem 6.4(1) for graphs of tree-width bounded by a fixed value. The
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article [BouKMT] gives a polynomial-time algorithm that constructs for every graph
G a tree-decomposition of width at most twd(G)(560+80 · log(twd(G))). However,
due to the large constants, this algorithm is not practically usable.Another polynomial-
time approximation algorithm that is not usable is given in [FeiHL]: it produces a
tree-decomposition of width O(twd(G) ·√log(twd(G))).

For each k , there is an algorithm that decides in time O(n) if a simple graph
G with n vertices has path-width at most k , and if this is the case, it outputs a path-
decomposition of width at most k . The article [BodKlo] (Theorem 6.1) constructs, for
any two integers k and m, an algorithm doing that from a tree-decomposition of G of
width at most m. Hence, if G only is given, one first computes by using the algorithm of
[Bod96] a tree-decomposition of this graph of width at most k , to which the algorithm
of [BodKlo] is applied in order to obtain if possible a path-decomposition of width
at most k . If no such tree-decomposition exists, the path-width of G is more than k .
The problem of deciding if a graph has path-width at most k is NP-complete if k is
part of the input ([ArnCP], [BodGHK]).

6.2.2 Parsing with respect to HR equation systems

The second method for defining a term in T (FHR) that evaluates to a given graph G
consists in using an HR equation system S that defines a set L to which G belongs.
If we know how G is generated by S, that is, if we know a derivation tree of G
relative to S, then (cf. Definition 4.4) we can transform this tree in linear time into
a term in T (FHR

A(S)) that evaluates to G, where A(S) is a set of source labels that
depends only on S (with |A(S)| possibly larger than twd(G)+1, see Proposition 4.7).
Using Theorem 6.3, this gives what we want for model-checking.8 Otherwise, we
have to rest on a parsing algorithm for the system S. The situation is here not very
encouraging. First, by the NP-completeness result of [ArnCP], we know that there
is no general parsing algorithm running in time f (S) · nc for fixed c (unless P =
NP). But even worse, certain HR-equational sets of graphs have an NP-complete
membership problem. An example is the set of graphs of cyclic bandwidth at most 2
(by [LeuVW], see Example 4.3(11)). This is also the case of string grammars with
disconnection ([LanWel]), and these grammars can be seen as defining HR-equational
sets of disconnected graphs of degree at most 2. However, imposing connectedness is
not enough to modify the situation ([*DreKH], Theorems 2.7.1 and 2.7.2). Lautemann
has proved in [Lau] (also [*DreKH], Theorem 2.7.7) that an HR-equational9 set
of graphs L has a polynomial-time parsing algorithm if it satisfies the following
condition:

8 Flow-graphs of structured C programs have tree-width at most 6 [Thop]. The corresponding tree-
decompositions can be obtained easily from the derivation trees of the programs, relative to the grammar
of the C language.

9 These results are formulated in terms of HR grammars (hyperedge replacement graph grammars), which
correspond closely to HR equation systems, as we have seen in Section 4.1.5.
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L is defined by an HR equation system S such that, if k = |A(S)| (hence k is
the number of source labels used to write S), then there exists a constant a such
that for every G ∈ L:

Sep(G,k)≤ a · log(|VG|),
where, for k ∈N , Sep(G,k) is the maximum number of connected components
of G[VG−X ] for any X ⊆ VG such that |X | ≤ k .

The exponent of the polynomial in the time bound of this algorithm depends on S.
Let us give an illustration. If G is a connected graph of degree at most d, we have
Sep(G,k)≤ k ·d for every k . Since the set of connected graphs of degree at most d and
of tree-width at most k − 1 is defined by an HR equation system S with |A(S)| = k ,
by Example 4.3(8) and (the proof of) Corollary 5.71(1), this result and Proposition
2.62 give a polynomial-time parsing algorithm for graphs of tree-width at most k−1
and degree at most d.

Other polynomial-time parsing algorithms for HR grammars are presented in
[*DreKH]. For each k , the set of graphs of path-width at most k is HR-equational,
and the algorithm of [BodKlo] applies to these sets.

6.2.3 Graphs of bounded clique-width

The parsing problem relative to the signature FVR is even more difficult than that
relative to the signature FHR. First, the problem of deciding whether cwd(G) ≤ k
for given (G,k) (with G simple and undirected) is NP-complete ([FelRRS]). For
k = 2, this verification can be done in time O(|VG| + |EG|) because a simple, loop-
free undirected graph has clique-width at most 2 if and only if it is a cograph (cf.
Proposition 2.106(2)) so that one can use the algorithm of [CorPS]. It can be done
in cubic time for k = 3 ([CorHLRR]). For other fixed values of k , it is not known
if the problem is polynomial or NP-complete. Furthermore, there is presumably no
polynomial-time approximation algorithm since the article [FelRRS] establishes the
following:

If for some real number ε such that 0 ≤ ε < 1 there exists a polynomial-time
algorithm that computes, for every simple undirected graph G of minimum
degree 3, an integer f (G) such that | f (G)− cwd(G)| ≤ |VG|ε, then P=NP.

In order to overcome this difficulty, Oum and Seymour introduced the notion of
rank-width in [OumSey].

Definition 6.6 (Rank-width) A cubic tree is a tree T whose nodes are all of
degree 3 or 1. The latter ones are called the leaves; the set of leaves is denoted
by Leaves(T ). Let G be a simple loop-free undirected graph, described by a symmet-
ric VG ×VG adjacency matrix AG with coefficients in {0,1} such that AG[v,w] = 1
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if and only if v and w are the ends of an edge of G. A layout10 of G is a pair
(T , f ), where T is a cubic tree and f is a bijection : VG → Leaves(T ). For each
edge e of T , the two connected components of T − e (the forest obtained from
T by removing e) induce a bipartition (Xe,Ye) of Leaves(T ), hence a bipartition
(X ′e ,Y ′e)= ( f −1(Xe), f −1(Ye)) of VG. We let rk(e,T , f ) be the rank over GF(2) (the
field with the two elements 0 and 1) of AG[X ′e,Y ′e], the rectangular X ′e×Y ′e submatrix
of AG (it describes the edges of G that link the vertices of X ′e and Y ′e). Then we define
the rank of (T , f ) as rk(T , f ) :=max{rk(e,T , f ) | e ∈ ET } and the rank-width of G as
rwd(G) :=min{rk(T , f ) | (T , f ) is a layout of G}.

For every simple loop-free undirected graph G, we have, by [OumSey]:

rwd(G)≤ cwd(G)≤ 2rwd(G)+1− 1.

More precisely, this article establishes that from every term t in FVR
[k] defining a

graph G, one can construct in linear time a layout (T , f ) of G such that rk(T , f )≤ k .
One defines T from the syntactic tree of t by contracting some edges so as to make
it cubic. Conversely, from every such layout one can construct in quadratic time
a term in T (FVR

[2k+1−1]) that evaluates to G, together with a corresponding witness.
Hence clique-width and rank-width are equivalent complexity measures on simple
loop-free undirected graphs: the same sets of such graphs have bounded clique-
width and bounded rank-width. The problem of deciding whether rwd(G) ≤ k for
given (G,k) is NP-hard, as for clique-width (see the survey [*GotHOS]). However,
Hliněný and Oum constructed in [HliOum] a parsing algorithm11 running in time
g0(k) · n3 (for some fixed function g0) that decides if a graph G with n vertices
has rank-width at most k . The algorithm produces a layout of rank at most k if
there exists one. Hence, one can obtain from it a term in T (FVR

[2k+1−1]) that evalu-
ates to G (with a witness); since every layout of G has size O(n), this takes time
O(n2). Thus, by the proof of Theorem 1.25 and using Theorem 6.3(3), this algo-
rithm gives the proof of Theorem 6.4(2) for simple loop-free undirected unlabeled
graphs.

We now extend this result to larger classes of graphs. First, we recall that clique-
width does not depend on vertex labels and loops: by Proposition 2.100, if one adds
or modifies vertex labels, or if one adds or deletes loops in a graph G that is the value
of a term t, then one can transform t in linear time into a term t′ that evaluates to the
modified graph G′, just by modifying some constant symbols of t. It is important to
note that one need not parse G′. The situation is different for edge labels and edge
directions.

10 Such a pair is usually called a “rank-decomposition.” However, its definition is not based on the rank
of any matrix. The notion of rank is used to associate a value with a layout, and this value measures its
complexity. Other values can be associated with layouts, see for example [Cou04].

11 As the linear algorithm of Bodlaender [Bod96] for deciding tree-width, this algorithm is not
implementable.
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Figure 6.1 An edge-labeled graph G and its encoding B[2](G).

Definition 6.7 (Encodings of directed and labeled graphs) We will encode simple
directed graphs, and more generally, simple edge-labeled directed and undirected
graphs by simple vertex-labeled undirected graphs.

We first consider the case of simple directed graphs. For such a graph G, we define
B(G) as the simple vertex-labeled undirected graph12 such that

VB(G) := VG×[3],
EB(G) := {(v, i)− (v, i+ 1) | v ∈ VG, i ∈ [2]}

∪{(v,3)− (w,1) | v→w in G},
γB(G)((v, i)) := i for every (v, i) ∈ VB(G).

Here is the decoding transformation. If H is a vertex-labeled undirected graph of the
form B(G) for some G, with labeling function γH : VH → {1,2,3}, then G can be
recovered from H as follows:

(a) one directs every edge linking a vertex v with label 3 and a vertex w with label
1 from v to w;

(b) one contracts the other edges (they link a vertex with label 2 and one with label
1 or 3).

The mappings B and B−1 are FO-transductions. It follows from Corollary 7.38(2)
(also stated after Corollary 1.43) that there exist two computable integer functions p

12 If we use VG × [0,3] instead of VG × [3], and if we replace in EB(G) the edge (v,1)− (v,2) by the
two edges (v,1)− (v,0) and (v,0)− (v,2), then we get a bipartite graph B(G). This variant is useful
for proving the result of [CouOum] discussed in Section 7.5, Theorem 7.55(2). The same observation
holds for the encoding B� defined below.
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and p such that, for every simple directed graph G:

cwd(B(G))≤ p(cwd(G)) and cwd(G)≤ p(cwd(B(G))).

We now generalize this construction into an encoding of simple, directed edge-
labeled graphs. We let the set � of edge labels be {λ1, . . . ,λm} and not contain 1
and 2. We define a mapping B� (it is an FO-transduction) that associates with every
directed (∅,�)-labeled graph G an ([m+ 2],∅)-labeled undirected graph B�(G) as
follows:

VB�(G) := VG×[m+ 2],
EB�(G) := {(v,1)− (v,2) | v ∈ VG}

∪{(v,2)− (v, i)) | v ∈ VG, i ∈ {3, . . . ,m+ 2}}
∪{(v,2+ i)− (w,1) | v→w is an edge of G with label λi},

γB�(G)((v, i)) := i for every vertex (v, i) of B�(G).

Figure 6.1 shows a directed (∅, [2])-labeled graph G and its encoding B[2](G) by a
([4],∅)-labeled graph. A vertex (v, i) of B[2](G) is represented by vi.

As in the case of the mapping B (which is B� for m= 1), we have

cwd(B�(G))≤ p�(cwd(G)) and cwd(G)≤ p�(cwd(B�(G))),

for some computable functions p� and p�. Furthermore, focusing on B−1
� and

the second inequality, it follows from Corollary 7.38(3) that there is an algorithm
that transforms a term t in T (FVR

[k],[[m+2],∅]) that evaluates to B�(G) into one in

T (FVR
[p�(k)], [∅,�]

) that evaluates to G, in time g1(k ,�) · |t| for some computable

function g1. Thus, the algorithm is fixed-parameter linear with respect to (k ,�).

The following proposition will yield the parsing step of the proof of
Theorem 6.4(2):

Proposition 6.8 There exists an algorithm that, for every simple (K ,�)-labeled
graph G with n vertices, computes in time at most g(cwd(G),K ,�) · n3 a term over
FVR
[h�(G)],[K ,�] evaluating to G, where g is a computable function and h�(G) is a

positive integer that can be computed from G.

Proof: We first consider directed unlabeled graphs. Let be given a simple directed
graph G with n vertices, and an integer k . We construct the vertex-labeled undirected
graph B(G). We run A, the algorithm of [HliOum], on input (B(G),k). It takes time
at most g0(k) · n3. There are two possible outputs:

(i) The answer that rwd(B(G)) > k .
(ii) A layout of B(G) of rank at most k .

In Case (ii), another algorithm can construct in time O(n2) a term t in
T (FVR

[2k+1−1],[[3],∅]) that evaluates to B(G), and in time g1(∅,k) · |t| a term in
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T (FVR
[p(2k+1−1)]) that evaluates to G. Altogether this takes time at most g2(k) · n3

for some computable function g2. Case (i) cannot occur if p(cwd(G)) ≤ k because
rwd(B(G))≤ cwd(B(G))≤ p(cwd(G)).

Hence, if we run A with input (B(G),k) for k = 1,2,3, . . . , we must find a value
k for which the output is a layout of B(G) of rank at most k . Let m(G) be the first
such k . Then m(G)≤ p(cwd(G)) by the above observation. Hence, we obtain a term in
T (FVR

[h(G)]) that evaluates to G, where h(G) := p(2m(G)+1− 1). This term is obtained

in time at most (
∑p(cwd(G))

k=1 g2(k)) · n3. Note that the integer h(G) is bounded by
f (cwd(G)) for a computable function f .

For (∅,�)-labeled graphs, the proof is the same with the encoding B� in place of B.
In time bounded by (

∑p�(cwd(G))

k=1 g2(�,k)) ·n3, we obtain a term in T (FVR
[h�(G)],[∅,�])

that evaluates to G, where h�(G) := p�(2
m(G)+1 − 1). Finally, this proof extends

easily to simple (K ,�)-labeled graphs because we know that clique-width does
not depend on vertex labels, and (by Proposition 2.100), that a term in T (FVR

[∅,�])
that defines an edge-labeled directed graph can be easily transformed into one in
T (FVR[K ,�]) that also specifies the vertex labels. Note that an upper-bound to h�(G)

can be computed from cwd(G) and �.

The reader may ask about the parsing problem for VR equation systems. By
Theorem 4.49, which establishes that every HR-equational set is VR-equational,
all difficulties met with HR equation systems also occur with VR ones. However,
polynomial-time recognition algorithms exist for certain restricted classes of graphs
of bounded clique-width. All these algorithms construct terms in T (FVR

[k] ) for the rec-
ognized graphs (see [BraDLM], [BraELL], [EspGW] and [MakRot]) but they only
work for undirected graphs without edge labels.

6.3 Monadic second-order formulas compiled into finite automata

Theorems 6.3 and 6.4 entail the existence of FPTalgorithms for monadic second-order
model-checking problems on terms and on graphs of bounded tree-width or clique-
width. They are consequences of theWeak RecognizabilityTheorem (Corollary 5.69).
However, although its proof is effective, the states of the finite automata resulting
from it are (or encode) huge sets of formulas. Hence, they do not give tractable
implementations.

The purpose of this section is to give another translation of monadic second-order
sentences into finite automata that is hopefully usable for not too complex sentences
and for “small” bounds on tree-width or clique-width, or for “small” signatures in
the case of terms.13 However, the difficulty is unavoidable as soon as one wishes a
model-checking algorithm that works for every CMS sentence, as proved by Frick
and Grohe in [FriGro04]. They established the following theorem.14

13 For terms, this translation (presented in Section 6.3.3) is the classical one used to prove Theorem 1.16.
14 We recall that exp : N ×N →N is defined by exp(0,n)= n, exp(d+ 1,n)= 2exp(d,n).
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Theorem 6.9 If there exist c,d ∈ N such that, for every MS sentence ϕ and
every word w ∈ {0,1}∗, one can decide if �w� |= ϕ in time exp(d, |ϕ|) · |w|c, then
P=NP. �

We will nevertheless try to get applicable cases of Theorem 6.3. We first review
(from Section 3.3) some definitions concerning finite automata and we also present
some new constructions.

In this section, we will only consider finite, one-sorted functional signatures and
finite, ε-free automata over such signatures. We will call them simply functional
signatures and automata.

6.3.1 Automata

We recall (from Section 3.3) that an F-automaton is defined as a four-tuple A =
〈F ,QA ,δA ,AccA 〉 (signature, states, transition rules, accepting states). It accepts
(or recognizes) the language L(A ) ⊆ T (F). Without AccA , we have an F-semi-
automaton. The language L(A ,q) is the set of terms recognized by A with q as
unique accepting state. The number of states of A is denoted by �A . A transition
rule in δA is of the form f [q1, . . . ,qρ( f )]→ q with f ∈ F and q,q1, . . . ,qρ( f ) ∈QA .

We will denote by det(A ) the trim, complete and deterministic automaton con-
structed from an automaton A (cf. Proposition 3.50). Its set of states is (or is in
bijection with) a subset of P(QA ).

For every complete and deterministic automaton A , the automaton A defined
from A by taking QA − AccA as set of accepting states recognizes the language
T (F)−L(A ).

Products of automata and Boolean operations

If A and B are two F-semi-automata, their product is the F-semi-automaton
A ×B := 〈F ,QA × QB ,δA ×B〉, where δA ×B is defined as the set of rules
f [(p1,q1), . . . ,(pk ,qk)]→ (p,q) with f [p1, . . . ,pk ]→A p and f [q1, . . . ,qk ]→B q.

If A and B are automata, then we define the F-automaton A ∩B as A ×B

equipped with set of accepting states AccA ×AccB . Clearly, L(A ∩B)= L(A )∩
L(B). We define similarly A ∪B as A ×B with set of accepting states (AccA ×
QB)∪ (QA ×AccB). If A and B are complete, then L(A ∪B)= L(A )∪L(B).

We now generalize this construction so as to build an automaton that accepts a
Boolean combination of the languages accepted by given automata A1, . . . ,Am.

Let L1, . . . ,Lm ⊆ T (F) be accepted by complete and deterministic F-automata,
respectively A1, . . . ,Am. Let L := b(L1, . . . ,Lm)⊆T (F) be defined from L1, . . . ,Lm by
a term b∈ T ({∩,∪, },{x1, . . . ,xm}) (where M denotes T (F)−M ). We define C as the
F-semi-automaton A1×(· · ·×(Am−1×Am) · · ·). For convenience, we identify its set
of states with QA1×·· ·×QAm−1×QAm and we denote C by A1×·· ·×Am−1×Am.
It is complete and deterministic. We now define from b a set of accepting states for C .
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We let Acc be the set of m-tuples (q1, . . . ,qm) ∈ QC such that b(v1, . . . ,vm) = True,
where vj is True if qj ∈AccAj and False otherwise. Here, b is evaluated on truth values
with ∪, ∩ and interpreted respectively as∨, ∧ and¬. We let B be the F-automaton
consisting of the semi-automaton C and Acc as set of accepting states. It is clear that
L(B)= L. Note that B =A1 if m= 1 and b(L1)= L1.

If b is positive, i.e., written without the complementation operation , then this
construction is valid provided the automata Ai are complete; they need not be
deterministic. The automaton B is then complete.

In all cases, �B= �A1×·· ·×�Am, but B may be replaced by a smaller automaton
by reduction or by minimization in the case where it is deterministic. Hence, we have
proved the following proposition:

Proposition 6.10 Let F be a functional signature. If L1, . . . ,Lm are regular sub-
sets of T (F), recognized by complete and deterministic automata with, respectively,
n1, . . . ,nm states, then every Boolean combination of L1, . . . ,Lm is recognized by a
complete and deterministic automaton with at most n1 × ·· · × nm states. The same
holds for a positive Boolean combination of languages L1, . . . ,Lm and automata that
are complete but not necessarily deterministic. �

Direct and inverse images of automata

We will need certain images and inverse images of languages recognized by automata.
Let H be a functional signature (possibly H =F), and h : H→F be an arity preserving
mapping, i.e., such that ρ(h( f )) = ρ( f ) for every f ∈ H . For every t ∈ T (H ), we
let h(t) ∈ T (F) be the term obtained from t by replacing f by h( f ) at each of its
occurrences. The mapping h on terms is an alphabetic relabeling (cf. the paragraph
before Proposition 2.126).

If L ⊆ T (H ), then h(L) := {h(t) | t ∈ L}. If A is an H -semi-automaton, we let
h(A ) be the F-semi-automaton obtained from A by replacing each transition rule
f [q1, . . . ,qρ( f )] → q by h( f )[q1, . . . ,qρ( f )] → q. Clearly, h(L(A ,q)) = L(h(A ),q)
for every state q. In general, h(A ) is not deterministic, even if A is. If A is an
automaton, then L(h(A ))= h(L(A )), where h(A ) has the same accepting states as
A . We call this transformation the direct image construction.

We now consider inverse images. If K ⊆ T (F), then h−1(K) := {t ∈ T (H ) |
h(t) ∈ K}. If A is an F-semi-automaton or an F-automaton, then we let the
H -semi-automaton or H -automaton h−1(A ) be obtained by putting in h−1(A ) a
transition rule f [q1, . . . ,qρ( f )]→ q if and only if h( f )[q1, . . . ,qρ( f )]→A q. We have
L(h−1(A ),q)= h−1(L(A ,q)) for every state q, and L(h−1(A ))= h−1(L(A )) if A

is an automaton. Note that h−1(A ) is deterministic (resp. complete) if A is so. We
call this transformation the inverse image construction.

Proposition 6.11 Let h : H→ F be an arity preserving mapping between functional
signatures.
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(1) If L ⊆ T (H ) is recognized by an H -automaton with n states, then h(L) is
recognized by an F-automaton with n states.

(2) If K ⊆T (F) is recognized by an F-automaton A with n states, then h−1(K) is rec-
ognized by an H -automaton B with n states. If A is complete and deterministic,
then so is B. �

Counting and optimization based on automata

The following constructions will be used in Section 6.4 for computing monadic
second-order counting and optimizing functions (see Definition 6.5).

Let H ,F be functional signatures and h : H → F be arity preserving. Let A be a
complete and deterministic H -semi-automaton. For t ∈ T (F) and q ∈QA we define

�A ,h−1(t,q) := |h−1(t)∩L(A ,q)|

and �A ,h−1(t) as the function λq ∈ QA · �A ,h−1(t,q). If, furthermore, A is an
automaton, then, for every t ∈ T (F), we have

|h−1(t)∩L(A )| =
∑

q∈AccA

�A ,h−1(t,q).

For J ⊆ H and s ∈ T (H ), we denote by |s|J the number of occurrences in s of
symbols belonging to J . For t ∈ T (F) and q ∈QA , we define

MaxA ,h−1, J (t,q) :=max{|s|J | s ∈ h−1(t)∩L(A ,q)}.

and MaxA ,h−1, J (t) as the function λq ∈ QA ·MaxA ,h−1,J (t,q). (The maximum of
an empty set of integers is −∞.) It follows that for every t, we have

max{|s|J | s ∈ h−1(t)∩L(A )} =max{MaxA ,h−1,J (t,q) | q ∈ AccA }.

With these hypotheses and notations, we have the following result:

Proposition 6.12 Let h : H→ F be an arity preserving mapping between functional
signatures, let J ⊆ H and A be a complete and deterministic H -automaton. The
functions �A ,h−1 and MaxA ,h−1, J are computable in linear time by an induction on
the structure of the input term.

Proof: We describe the inductive computation, assuming that all function symbols
f have arity 0 or 2. The extension to other arities is straightforward. We fix h and A ,
and we replace �A ,h−1(t,q) by �(t,q) to simplify the notation.

For f ∈ F0, �( f ,q) is the number of symbols f ′ in h−1( f ) such that f ′ →A q. We
can rewrite this into

�( f )=Df ,
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where Df is a function (with finite domain QA ) that can be determined from h and
A in time O(�A ), hence in time that does not depend on the input term.

For f ∈ F2 and t1, t2 ∈ T (F) we have

�( f (t1, t2),q)=
∑

(q1,q2, f ′)∈R

�(t1,q1) · �(t2,q2),

where R is the set of triples (q1,q2, f ′) in QA ×QA ×H2 such that f ′[q1,q2]→A q
and f ′ ∈ h−1( f ). This equality is true because

h−1( f (t1, t2))∩L(A ,q)=
⊎

(q1,q2, f ′)∈R

f ′
(
h−1(t1)∩L(A ,q1),h

−1(t2)∩L(A ,q2)
)
,

and the union is disjoint because A is deterministic.15 Hence we have

�( f (t1, t2))=Df (�(t1),�(t2)),

for all f ∈ F2 and t1, t2 ∈ T (F), where Df is a fixed function of type:

[QA →N ]× [QA →N ]→ [QA →N ].
This function can be computed from h and A in time O((�A )2) if each arithmetic
operation is considered as evaluable in constant time. This gives the computation
time O(|t|) for fixed automaton A and fixed h : H→ F .

A similar construction can be done for computing MaxA ,h−1, J . We fix A , h and
J , and we write Max(t,q) instead of MaxA ,h−1, J (t,q).

If f ∈ F0, and H0( f ,q) is the set of symbols f ′ in h−1( f ) such that f ′ →A q, then

Max( f ,q)=

⎧⎪⎨⎪⎩
1 if H0( f ,q)∩ J �= ∅,
0 if H0( f ,q)∩ J = ∅ and H0( f ,q) �= ∅,
−∞ if H0( f ,q)= ∅.

If f ∈ F2 and t1, t2 ∈ T (F), then

Max( f (t1, t2),q)=max{εJ , f ′ +Max(t1,q1)+Max(t2,q2) | (q1, q2, f ′) ∈ R},
where εJ , f ′ := if f ′ ∈ J then 1 else 0, and R is as above for the computation
of �(t,q). The union need not be disjoint here because we take a maximum and not a
sum, hence the definition is the same if A is not deterministic.

Remark 6.13 (1) In the previous proposition, we have assumed that the arithmetic
operations are done in constant time. For handling large integers, it is more accurate
to assume that they take time proportional to the logarithms of their arguments. In

15 For sets of terms T1,T2, we let f (T1,T2) denote { f (t1, t2) | t1 ∈ T1, t2 ∈ T2}.
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the computation of �A ,h−1(t), we have �A ,h−1(s,q) ≤ dn if s is any subterm of t, n
is the size of t and d is the maximal cardinality of h−1( f ) for f ∈ F . Hence, the
computation time is multiplied by n · log(d) and becomes quadratic instead of linear,
if the logarithmic cost of arithmetical operations is used. For optimizing functions,
the results and the intermediate values are bounded by n. Hence, the computation
time is multiplied by log(n).

(2) The proof of Proposition 6.12 can be seen as a construction of complete and
deterministic automata with infinite sets of states (the sets of functions from QA to N
or to N ∪ {−∞}). Each state is a function having a finite domain, hence is a finitely
encodable object. This automaton is thus effectively given, i.e., all its components
are effectively given. The transition functions are computable in constant time if
arithmetic operations have unit cost. They are computable in linear time (for �A ,h−1 )
or in logarithmic time (for MaxA ,h−1, J ) if arithmetic operations have logarithmic
cost. �

Runs of nondeterministic automata

Let A be an F-semi-automaton. For t ∈ T (F), we denote by run∗A (t) the set of states
of the form r(roott) for some run r of A on t. This set is nonempty if A is complete
and it has a single element if A is complete and deterministic (cf. Definition 3.49).
If d is a positive integer we say that A is d-nondeterministic if, for all f ∈ F and
q1, . . . ,qρ( f ) ∈ QA , there are at most d states q such that f [q1, . . . ,qρ( f )] →A q.
The integer d measures the degree of nondeterminism of A . A 1-nondeterministic
semi-automaton is deterministic.

In the next proposition, A is d-nondeterministic and a is an upper-bound to the
time necessary to determine the i-th state q such that f [q1, . . . ,qρ( f )]→A q for i ∈ [d]
or to find that the number of such states q is less than i, so that there is no i-th state
(we can assume that QA is linearly ordered). We will say that A has transition time
bounded by a.

Proposition 6.14 Let A be a d-nondeterministic F-semi-automaton and let a bound
its transition time. For every term t ∈ T (F), one can determine the set run∗A (t) in
time bounded by a · d · (�A )ρ(F) · |t|.

Proof: We use a bottom-up computation to compute the set run∗A (t/u) (of cardinality
at most �A ) for each node u of the syntactic tree of t. At a node u that is an occurrence
of a symbol of arity k ≥ 0, there are at most d · (�A )k transitions, and for each of
them, it takes time a to find the resulting state q. This gives the result.

Remark 6.15 In the particular case where ρ(F) = 2 and the nondeterminism of
transitions is limited to constant symbols, we get in the previous proposition the
better bound a · (d+ (�A )2) · |t| on the computation time.
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6.3.2 Normalizing monadic second-order formulas

We will need some normalization lemmas for monadic second-order formulas. As in
Section 5.3 the formal constructions will use formulas without universal quantifica-
tions. The expression ∀X .ϕ will be used as a shorthand for ¬∃X .¬ϕ. Similarly for
⇒,⇔ and False. In order to facilitate formal constructions, variables will be of the
forms Xi and xj for i, j ∈N+. Relational signatures will be without constant symbols.

Definition 6.16 (Formulas without first-order variables) Let R be a relational
signature without constant symbols. For each n ∈N , we let Xn := {X1, . . . ,Xn} and
Xω := {Xi | i ∈N+}. In order to write formulas without first-order variables, we will
use the following atomic formulas, whose meanings are specified unless they are
clear:

True,

Cardp,q(Xi) for 0≤ p < q and q≥ 2,

Xi ⊆ Xj,

Xi = ∅,
Sgl(Xi), to mean that Xi denotes a singleton set,

R(Xi1 , . . . ,Xiρ(R) ) for R ∈R, to mean that Xi1 = {d1}, . . . ,Xiρ(R) = {dρ(R)}
for some (d1, . . . ,dρ(R)) ∈ RS (where S is the considered R-structure).

We could express Xi = ∅ and Sgl(Xi), respectively, by ∀Y (Y ⊆ Xi ⇒ Xi ⊆ Y ) and
∀Z(Z ⊆ Xi ⇒ [Xi ⊆ Z ∨ ∀Y (Y ⊆ Z ⇒ Z ⊆ Y )]), at the cost of introducing more
quantifiers. Since these formulas are used frequently, it is convenient to take them as
atomic formulas. The equality Xi = Xj is expressed by Xi ⊆ Xj ∧Xj ⊆ Xi but it could
also be added as another atomic formula.

We will denote by CrMS′(R,X ) (for r ∈ N and X ⊆ Xω) the set of monadic
second-order formulas that have their free variables in X and are written with these
atomic formulas for i, j, i1, . . . , iρ(R) ∈ N+ and q ≤ r, the Boolean connectives and
existential quantifications on set variables. We will write CMS′(R,X ) if we do not
wish to bound q in the atomic formulas Cardp,q(Xi).

We will denote by mfv(ϕ) the maximal index i ∈N+ of a free variable in a formula
ϕ in CMS′(R,Xω).

The following lemma says that the languages CrMS and CrMS′ have the same
expressive power.

Lemma 6.17

(1) Every formula ϕ in CrMS(R,{X1, . . . ,Xp,xp+1, . . . ,xn}) can be translated into a
formula ψ in CrMS′(R,{X1, . . . ,Xp,Xp+1, . . . ,Xn}) of the same quantifier-height
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and of size O(|ϕ|), such that for every concrete R-structure S and every n-tuple
(A1, . . . ,An) of subsets of DS :

S |=ψ(A1, . . . ,An) if and only if

there exist dp+1, . . . ,dn ∈DS such that

Ap+1 = {dp+1}, . . . ,An = {dn} and S |= ϕ(A1, . . . ,Ap,dp+1, . . . ,dn).

(2) Conversely, every formula ψ in CrMS′(R,Xn) is equivalent to a formula in
CrMS(R,Xn) of quantifier-height at most qh(ψ)+max{2,ρ(R)}.

Proof: (1) Without loss of generality, we can assume that there is no index i > 1
such that the variables Xi and xi both occur in ϕ. (Otherwise, we rename some bound
variables to ensure this condition.) Then we take ψ equal to

Sgl(Xp+1)∧ ·· · ∧ Sgl(Xn)∧ϕ,

where ϕ is obtained as follows from ϕ by induction on its structure:

(i) we replace the atomic formulas xi ∈ Xj and xi = xj by Xi ⊆ Xj, and those of the
form R(xi1 , . . . ,xik ) by R(Xi1 , . . . ,Xik );

(ii) we replace ∃xi.θ by ∃Xi(Sgl(Xi)∧ θ).

The quantifier-height ofψ is that ofϕ. We have |ψ |≤ 3·|ϕ|+2(n−p). The correctness
of the construction is clear. By the initial condition, no conflict of variable can occur
from the replacement of xi by Xi.

(2) The converse construction is straightforward. The quantifier-height may
increase because the atomic formula Xi ⊆ Xj is replaced by ¬∃x(x ∈ Xi ∧ x /∈ Xj),
the atomic formula Sgl(Xi) is replaced by σ(Xi) defined as ∃x(x ∈ Xi ∧∀y(y ∈ Xi⇒
x = y)), and R(Xi1 , . . . ,Xik ) is replaced by σ(Xi1)∧ ·· · ∧ σ(Xik )∧ ∃x1, . . . ,xk(x1 ∈
Xi1 ∧ ·· · ∧ xk ∈ Xik ∧R(x1, . . . ,xk )).

An example will be given below (Example 6.23).

Remark 6.18 In the last clause of Definition 6.16, we can extend relations to have
sets as arguments in other ways. Instead of R(Xi1 , . . . ,Xik ), we can use:

R∀(Xi1 , . . . ,Xik ) to mean:

(d1, . . . ,dk ) ∈ RS for every d1 ∈ Xi1 , . . . ,dk ∈ Xik , and

R∃(Xi1 , . . . ,Xik ) to mean:

(d1, . . . ,dk ) ∈ RS for some d1 ∈ Xi1 , . . . ,dk ∈ Xik .

We can also combine both types of extensions and, for R binary, define R∀∃(X ,Y )

to mean: for every d in X there exists d ′ in Y such that (d,d ′) ∈ RS . Lemma 6.17
remains valid with these variants. For example, the formula R∀(Xi) is replaced by



6.3 CMS formulas compiled into automata 447

¬∃x(x ∈ Xi ∧¬R(x)). These variants may simplify the constructions of automata to
be developed below. �

The following notions will help to bound the sizes of automata constructed from
formulas.

Definition 6.19 (Block quantifier-height and Boolean arity) A Boolean term b
has arity m ≥ 1 if it is in T ({∧,∨,¬},{p1, . . . ,pm}) and each variable pi has at
least one occurrence in b. It is positive if b is written without ¬. We denote
by Boolm the set of Boolean terms (positive or not) of arity m. We will use
the notation b(ϕ1, . . . ,ϕm) for b[ϕ1/p1, . . . ,ϕm/pm], where ϕ1, . . . ,ϕm are logical
formulas.

Let R be fixed (it will not appear in the notation). We let L denote the set of all
CMS′ (or CMS) formulas over R, and we define subsets of L as follows:

A is the set of atomic formulas;
B0 is the set of formulas b(α1, . . . ,αm) such that m∈N+, b∈Boolm and α1, . . . ,αm

are formulas in A;
Bi, for i≥ 1, is the set of formulas b(ϕ1, . . . ,ϕm) such that m ∈N+, b ∈ Boolm and

ϕ1, . . . ,ϕm are formulas in Ei ∪ ·· · ∪ E1 ∪A such that at least one of them is in
Ei;

Ei, for i ≥ 1, is the set of formulas ∃X .ϕ, where X is a nonempty sequence of set
variables, ϕ belongs to Bi−1 and ϕ does not begin with a quantification.16

It is clear that each formula of L belongs to one and only one of the sets Bi. Since
the term p1 is in Bool1, we have A⊆ B0 and Ei ⊆ Bi for i ≥ 1.

The block quantifier-height of a formula ϕ is the integer i such that ϕ ∈ Bi. We
denote it by bqh(ϕ). Its Boolean arity is the maximal arity m of a Boolean term b such
that b(ϕ1, . . . ,ϕm) is a subformula of ϕ for some pairwise distinct formulas ϕ1, . . . ,ϕm.
We denote it by ba(ϕ). For example, bqh(ϕ)= 3 and ba(ϕ)= 2 for ϕ defined as

∀X1∃X3,X4(edg(X1,X2)∧∃X5(edg(X3,X5)∧¬edg(X4,X1))).

We will need another normalization lemma. It is a simple variant of the normaliza-
tion in Proposition 5.93 (Section 5.6), involving renaming of bound variables only.

Definition 6.20 (n-normal formulas) For each n ∈N , we define certain formulas
of CMS′(R,Xω) as n-normal by structural induction:
(1) an atomic formula ϕ is n-normal if its variables are all in Xn;
(2) a Boolean combination of formulas θ1, . . . ,θk is n-normal if each formula θi is

n-normal;
(3) a formula of the form ∃Xi.θ is n-normal if i= n+ 1 and θ is (n+ 1)-normal.

16 We recall that ∀X1 · · · is a shorthand for ¬∃X1¬·· · , and that, e.g., ∃X1,X2.ϕ abbreviates ∃X1∃X2.ϕ.
Similarly, ∀X1,X2.ϕ abbreviates ∀X1∀X2.ϕ, which, in turn, we will view as an abbreviation of
¬∃X1∃X2.¬ϕ (not of ¬∃X1¬¬∃X2.¬ϕ).
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If a formula has at least one quantifier, it is n-normal for at most one integer n
determined by the leftmost quantified variable that must be Xn+1.

Lemma 6.21 If a formula ϕ is n-normal, then its set of quantified variables is
{Xn+1, . . . ,Xn+qh(ϕ)} and its free variables are all in Xn.

Proof: Straightforward by induction on the structure of ϕ.

Lemma 6.22 Every formula ϕ in CrMS′(R,Xn) can be transformed into an
equivalent n-normal formula ϕ̂ in CrMS′(R,Xn) by a renaming of bound variables.

Proof: It is clear that ϕ̂ can be obtained from ϕ by an appropriate renaming of its
bound variables into the variables Xn+1, . . . ,Xn+qh(ϕ). Formally, the construction of
ϕ̂ is by induction on the size of ϕ.

(1) If ϕ is atomic, we let ϕ̂ be ϕ.
(2) If ϕ is ¬ϕ1 or ϕ1∨ϕ2 or ϕ1∧ϕ2, then we let ϕ̂ be respectively ¬ϕ̂1 or ϕ̂1∨ ϕ̂2

or ϕ̂1∧ ϕ̂2.
(3) If ϕ is ∃Xn+1.θ , then we let ϕ̂ be ∃Xn+1. θ̂ , where θ̂ is the (n+1)-normal formula

obtained from θ by the induction hypothesis.
(4) If ϕ is ∃Xk .θ with k �= n+ 1, then we let θ ′ be θ [Xn+1/Xk ]. Note that Xn+1

is not free in θ . The substitution of Xn+1 to Xk may necessitate some renaming of
bound variables in θ , but θ ′ has the same size as θ and its free variables are in Xn+1.
We let then ϕ̂ be ∃Xn+1. θ̂ ′, where θ̂ ′ is (n+1)-normal and obtained by the induction
hypothesis.

Hence, ϕ̂ has the same quantifier-height, block quantifier-height and Boolean arity
as ϕ, and the same free variables.

Example 6.23 For expressing that X is the vertex set of a connected component of an
undirected graph, we let ϕ(X ) be the following CMS formula written with first-order
variables, universal quantifications and implications (and with some atomic CMS′
formulas):

X �= ∅ ∧∀u,v(edg(u,v)∧ u ∈ X ⇒ v ∈ X )

∧¬∃Y [Y ⊆ X ∧¬(X ⊆ Y )∧Y �= ∅∧∀u,v(edg(u,v)∧ u ∈ Y ⇒ v ∈ Y )].

Here is an equivalent formula θ in CMS′(Rs,{X }):

X �= ∅ ∧¬∃U ,V (Sgl(U )∧ Sgl(V )∧ edg(U ,V )∧U ⊆ X ∧¬(V ⊆ X ))

∧¬∃Y [Y ⊆ X ∧¬(X ⊆ Y )∧Y �= ∅
∧¬∃U ,V (Sgl(U )∧ Sgl(V )∧ edg(U ,V )∧U ⊆ Y ∧¬(V ⊆ Y ))].
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By replacing X by X1 and by renaming the bound variables, we obtain the following
1-normal formula θ̂ :

X1 �= ∅
∧¬∃X2,X3(Sgl(X2)∧ Sgl(X3)∧ edg(X2,X3)∧X2 ⊆ X1∧¬(X3 ⊆ X1))

∧¬∃X2[X2 ⊆ X1∧¬(X1 ⊆ X2)∧X2 �= ∅
∧¬∃X3,X4(Sgl(X3)∧ Sgl(X4)∧ edg(X3,X4)∧X3 ⊆ X1∧¬(X4 ⊆ X1))].

These formulas have quantifier-height 3 and block quantifier-height 2 (they belong to
B2). The first one has Boolean arity 4 and the last two have Boolean arity 5. The last
one can be simplified by deleting Sgl(X2)∧ Sgl(X3) and Sgl(X3)∧ Sgl(X4), which
are implied respectively by edg(X2,X3) and edg(X3,X4). The resulting formula has
Boolean arity only 4.

6.3.3 Monadic second-order formulas on terms

For every (finite) functional signature F , we will use the relational signature
RF := {soni | 1 ≤ i ≤ k} ∪ {labf | f ∈ F} where k is ρ(F), defined as max{ρ( f ) |
f ∈ F}. A term t in T (F) is faithfully represented by the RF -structure �t� :=
〈Nt ,(soni t)1≤i≤k ,(labf t)f ∈F 〉. Its domain Nt is the set of nodes of the syntactic tree
of t. The set labf t is the set of occurrences of f in t and soni t is the set of pairs (u,v)
such that v is the i-th son of u. Slightly different but equivalent relational structures
have been introduced in Example 5.2(3) for representing terms.17

If ϕ is a sentence in CMS(RF ,∅) or in CMS′(RF ,∅), then we define

Lϕ := {t ∈ T (F) | �t� |= ϕ}.
We will prove that Lϕ is regular (this is one implication of Theorem 1.16 also proved
in Corollary 5.67, Section 5.3) by constructing an F-automaton Aϕ that recognizes
Lϕ . This construction will use an induction on the structure of ϕ, and thus we will
need to define sets Lϕ associated with formulas ϕ and not only with sentences.

We recall from Definition 6.16 that Xn denotes {X1, . . . ,Xn} and that Xω denotes
the union of the sets Xn.

Definition 6.24 (a) Let D be a set and γ be a mapping : Xn→P(D). The character-
istic vector relative to γ of an element u of D is the n-tuple wγ (u)= (w1, . . . ,wn) ∈
{0,1}n such that, for each i, we have wi = 1 if and only if u ∈ γ (Xi).

(b) Ifσ is a mapping Xn→Xm, called a substitution, and γ is an assignment : Xm→
P(D), then wγ ◦σ (u)= hσ (wγ (u)), where hσ is the mapping : {0,1}m→{0,1}n such

17 In Example 5.2(3), we have defined a relational signature with a constant symbol rt for denoting the
root. We will not use this symbol in this chapter. We have also defined a relational signature consisting
of a single binary son relation and of unary relations bri for 1≤ i≤ k meaning that the considered node
is the i-th son of its father. The corresponding representations of terms are equivalent for expressing
properties of terms by first-order or monadic second-order formulas.
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that hσ (w1, . . . ,wm) = (wσ ′(1), . . . ,wσ ′(n)) and σ(Xi) = Xσ ′(i) for each i = 1, . . . ,n.
The verification is straightforward from the definitions. For example, if n= 4, m= 6
and σ maps X1 to X2, X2 to X6 and, finally, X3 and X4 to X3, then hσ (w1, . . . ,w6)=
(w2,w6,w3,w3). Hence, if γ is an assignment : X6 → P(D), if Ui = γ (Xi) for
i= 1, . . . ,6 and Wi = γ (σ (Xi)) for i= 1, . . . ,4, then we have u ∈W1∩W2∩W3∩W4

if and only if wγ ◦σ (u) = (1,0,1,1) if and only if wγ (u) = (∗,1,1,∗,∗,0), where ∗
means 0 or 1, if and only if u ∈U2 ∩U3 ∩U6.

(c) For every n ∈ N , we let F (n) be the signature F × {0,1}n, where, for every
w ∈ {0,1}n, the symbol ( f ,w) has arity ρ( f ). Let t ∈ T (F). For every assignment
γ : Xn→P(Nt), we let t ∗γ be the term in T (F (n)) such that Nt∗γ =Nt , its relations
soni for i = 1, . . . ,ρ(F) are the same as those of t, and u ∈ Occ(t ∗ γ ,( f ,w)) if and
only if u∈Occ(t, f ) and w=wγ (u). The function symbol that occurs at an occurrence
u of a symbol f in t is thus ( f ,wγ (u)) in t ∗ γ . Obviously, every term in T (F (n)) is
of the form t ∗ γ for some t and γ .

(d) If P(X1, . . . ,Xn) is a property of sets of positions of terms in T (F), we define
LP(X1,...,Xn) as the language

{t ∗ γ | t ∈ T (F), γ : Xn→P(Nt) and P(γ (X1), . . . ,γ (Xn)) is true for t}.

(e) If ϕ ∈ CMS′(RF ,Xn), we define

Lϕ,n := {t ∗ γ | t ∈ T (F), γ : Xn→P(Nt) and (�t�,γ ) |= ϕ}.

Hence, Lϕ,n is defined if and only if n≥mfv(ϕ), where mfv(ϕ) denotes the maximal
index of a free variable in ϕ. We let Lϕ denote Lϕ,mfv(ϕ). If ϕ and ϕ′ are formulas with
free variables in Xn, then they are equivalent with respect to �T (F)� if and only if
Lϕ,n = Lϕ′,n. �

We will prove that the language LP(X1,...,Xn) is regular if and only if P is monadic
second-order expressible. The “only if” direction follows fromTheorem 5.15.18 In the
other direction, we will construct for every formula ϕ in CMS′(RF ,Xω) an automa-
ton Aϕ that recognizes the language Lϕ . We will use an induction on the structure
of ϕ, and for some subformulas ψ of ϕ we will have to construct automata Aψ ,m

that recognize Lψ ,m for m > mfv(ψ): consider for example ϕ = ψ ∧ θ with ψ and
θ such that mfv(ψ) = 3 and mfv(θ) = 5. Then Lψ ∩ Lθ is always empty because
F(3) ∩ F (5) = ∅, hence it is not equal to Lϕ in general. Clearly, Lϕ = Lψ ,5 ∩ Lθ .
The same happens when ϕ expresses P and mfv(ϕ) < n (which means that P does

18 If LP(X1,...,Xn) is defined by an MS sentence ϕ over RF(n) (in which the variables X1, . . . ,Xn are not
quantified), then P is monadic second-order expressible by the MS formula ψ(X1, . . . ,Xn) over RF
that is obtained from ϕ by changing every atomic subformula lab( f ,w)(x) into the formula labf (x)∧
(
∧

wi=1 x ∈ Xi)∧ (
∧

wi=0 x /∈ Xi).
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not depend on Xmfv(ϕ)+1, . . . ,Xn): then an automaton Aϕ,n must be constructed that
recognizes Lϕ,n.

This fact motivates the next lemma for which we define some notation. For every
substitution σ : Xn→ Xm and every formula ϕ in CMS′(RF ,Xn), we let ϕσ be the
formula ϕ[σ(X1)/X1, . . . ,σ(Xn)/Xn] in CMS′(RF ,Xm). We extend hσ into an arity
preserving mapping : F (m)→ F(n) by letting hσ ( f ,w)= ( f ,hσ (w)).

Lemma 6.25 For every formula ϕ in CMS′(RF ,Xn) and every substitution σ : Xn→
Xm, we have Lϕσ ,m = h−1

σ (Lϕ,n).

Proof: Let t be a term in T (F) and γ be an assignment : Xm→ P(Nt). Since ϕσ

is ϕ[σ(X1)/X1, . . . ,σ(Xn)/Xn], we obtain from Lemma 5.9 that (�t�,γ ) |= ϕσ if and
only if (�t�,γ ◦σ) |= ϕ. Thus, t ∗γ ∈ Lϕσ ,m if and only if t ∗ (γ ◦σ) ∈ Lϕ,n. From the
observation made in Definition 6.24(b) that hσ (wγ (u))=wγ ◦σ (u) for every u in the
relevant set, here Nt , we get that hσ (t ∗ γ )= t ∗ (γ ◦ σ). Hence, t ∗ γ ∈ Lϕσ ,m if and
only if t ∗γ ∈ h−1

σ (Lϕ,n). Since every term in T (F (m)) is of the form t ∗γ , this shows
that Lϕσ ,m = h−1

σ (Lϕ,n).

We continue with the example in Definition 6.24(b) of the substitution σ such
that hσ (w1, . . . ,w6)= (w2,w6,w3,w3): from the language Lϕ where ϕ is X1 ⊆ X2 ∧
edg(X3,X4), we get Lψ = h−1

σ (Lϕ), where ψ is X2 ⊆ X6∧ edg(X3,X3).
As another example, if ϕ ∈ CMS′(RF ,Xn) and m > n, then Lϕ,m = h−1

σ (Lϕ,n),
where hσ is the mapping that removes the last m−n Booleans of each symbol of F (m)

(i.e., σ(Xi)= Xi for i= 1, . . . ,n and hσ (w1, . . . ,wm)= (w1, . . . ,wn)). Hence, from an
automaton recognizing Lϕ,n one can construct an automaton recognizing Lϕ,m by the
inverse image construction (Proposition 6.11(2)).

The inductive construction of automata

Theorem 6.26 For every functional signature F and every formula ϕ in the set
CMS′(RF ,Xω), one can construct a complete and deterministic automaton Aϕ that
recognizes the language Lϕ ⊆ T (F(mfv(ϕ))). �

We will later bound the size of Aϕ in terms of ϕ and F . We now give the proof of
the theorem.

Let ϕ be as in the statement of the theorem. We have Lϕ = Lϕ̂,mfv(ϕ), where ϕ̂ is
the mfv(ϕ)-normal formula constructed from ϕ by Lemma 6.22. Hence, it suffices to
restrict attention to normal formulas and to construct, for every n ∈N and every n-
normal formulaψ in CMS′(RF ,Xn), an automaton Aψ ,n that recognizes the language
Lψ ,n. Then Aϕ is the automaton det(Aϕ̂,mfv(ϕ)). To construct Aψ ,n we will use an
induction on the structure of ψ .
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Table 6.1 Transition rules of ASgl(X1).

Transition rules Conditions

(c,0)→ 0 ρ(c)= 0
(c,1)→ 1

( f ,α)[q1, . . . ,qρ( f )]→ 0 α = q1 = ·· · = qρ( f ) = 0

( f ,α)[q1, . . . ,qρ( f )]→ 1 exactly one of α,q1, . . . ,qρ( f ) is 1,
the others being 0

( f ,α)[q1, . . . ,qρ( f )]→ Error all other cases

Construction 6.27 (Automata for atomic formulas) The atomic formulas are of
the following forms:

(0) True,

(1) Cardp,q(Xi), Xi = ∅, Sgl(Xi), labf (Xi),

(2) Xi ⊆ Xj, sons(Xi,Xj),

with f ∈ F and 1≤ s≤ ρ(F).
For the constant True of type (0) (without free variables), we have LTrue,n=T (F(n)),

hence the automaton is trivial to build (and actually not needed because True can easily
be eliminated from formulas).

We need only construct automata recognizing the sets Lψ ,1, where ψ is of type (1)
with i = 1, and the sets Lψ ,2 where ψ is of type (2) with i = 1, j = 2. For the other
cases, we can use an appropriate substitution σ by Lemma 6.25 and the inverse image
construction for automata (Proposition 6.11(2)).

All automata will be complete and deterministic. We will only detail two cases, the
other ones being very similar.

Case 1: The automaton ASgl(X1).

We let Q := {0,1,Error} be the set of states. The automaton must check, for every
term over F(1), that one and only one occurrence of a symbol in that term belongs to
F ×{1}. This is of course straightforward, but we take advantage of this very simple
case to explain how we will specify automata. The transition rules are in Table 6.1.
The automaton is complete and deterministic, and 1 is its unique accepting state. By
the last line of Table 6.1, we have ( f ,α)[. . . ,Error, . . . ]→ Error.

Convention:Astate named Error is never accepting (but some other states may not be
accepting). For every transition ( f ,α)[. . . ,Error, . . . ]→ q we have q= Error, hence
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Table 6.2 Meanings of the states of ASgl(X1).

State q Property Pq

0 X1 = ∅
1 Sgl(X1)

Error Card(X1)≥ 2

a recognized “error” propagates bottom-up. All transitions not listed yield Error. By
using such states, we can make automata complete. Reducing these automata would
eliminate the states Error and make them incomplete, but we have seen in Proposi-
tion 6.10 that complete automata are necessary for defining Boolean combinations of
languages. Of course, when we apply the complementation operation to a complete
deterministic automaton having a state Error, since this state becomes accepting in
the new automaton, we rename it in order to satisfy this convention. �

In order to make the construction ofASgl(X1) clear and its correctness proof easy (but
we will not do that proof), we specify in Table 6.2 the meanings of the different states
of the constructed automaton A :=ASgl(X1). That is, for every term t ∗ γ ∈ T (F(1)):

t ∗ γ ∈ L(A ,q) if and only if (�t�,γ (X1)) satisfies Pq. (6.1)

In Table 6.2, we write X1 instead of γ (X1) for the purpose of clarity. We will do
the same below in all similar tables. Here is an equivalent formulation of Equiva-
lence (6.1). If r is the unique run of A on a term t ∗ γ and u ∈ Nt , then r(u)= q if
and only if (�t�/u,γ (X1)∩ (Nt/u)) satisfies Pq. (We recall from Example 5.2(3) that
�t�/u is the RF -structure �Syn(t)/u�, with domain Nt/u: the set of descendants of u
in t, including u.) Property Pq is thus the meaning of the state q. It describes its role
with respect to the property of t to be checked. The three properties listed in this table
are mutually exclusive and cover all cases: this means that they specify the behavior
of a complete and deterministic automaton. All automata specified below by similar
tables will be complete and deterministic.

It is now quite easy, by using an induction on the structure of t, to prove Equiv-
alence (6.1). In fact, technically it is more convenient to prove the equivalent
formulation of Equivalence (6.1) by bottom-up induction on the node u.

Case 2: The automaton Ason2(X1,X2).

It has four states: 0,2,Ok ,Error, whose meanings are shown in Table 6.3. In this
table, r denotes the root of the syntactic tree of the considered term t (or of Syn(t)/u
in the equivalent formulation of Equivalence (6.1)). The accepting state is Ok . The
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Table 6.3 Meanings of the states of Ason2(X1,X2).

State q Property Pq

0 X1 = X2 = ∅
2 X1 = ∅, X2 = {r}
Ok son2(X1,X2)

Error all other cases

Table 6.4 Transition rules of Ason2(X1,X2).

Rules Conditions

( f ,00)[q1, . . . ,qρ( f )]→ 0
ρ( f )≥ 0, q1 = q2 = ·· · = qρ( f ) = 0

( f ,01)[q1, . . . ,qρ( f )]→ 2

( f ,10)[q1, . . . ,qρ( f )]→Ok ρ( f )≥ 2, q2 = 2, q1 = q3 = ·· · = qρ( f ) = 0

( f ,00)[q1, . . . ,qρ( f )]→Ok
ρ( f )≥ 1 and for some i,
qi =Ok and qj = 0 for all j �= i

transition rules are shown in Table 6.4. In this table (and in the similar ones below), we
shorten (0,0) into 00, (0,1) into 01, etc. The automaton is complete and deterministic.

Construction 6.28 (Automata for Boolean compositions) We will consider formu-
las in the sets Bi. Recall that we restrict attention to normal formulas. We let ψ be an
n-normal formula of the form b(θ1, . . . ,θm) for some Boolean term b. The formulas θi

are thus also n-normal. We assume that, for each i, we have constructed the automa-
ton Aθi ,n recognizing Lθi ,n. We have Lψ ,n = b(Lθ1,n, . . . ,Lθm,n), where the Boolean
operations ∨, ∧ and ¬ are interpreted as union, intersection and complementation
with respect to T (F(n)). The language Lψ ,n is thus recognized by an automaton Aψ ,n

obtained from det(Aθ1,n), . . . ,det(Aθm,n) by Proposition 6.10. If b is positive, i.e.,
without negation, we need not determinize the automata Aθ1,n, . . . ,Aθm,n. We need
only assume they are complete.

Construction 6.29 (Automata for quantified formulas) We now consider formulas
in the sets Ei. We let ψ be n-normal and of the form ∃Xn+1,Xn+2, . . . ,Xm.θ where
θ is m-normal and does not begin with a quantification. (Hence, θ is atomic or is a
Boolean combination of formulas). We assume that an automaton Aθ ,m has already
been constructed.

We let h : F(m) → F(n) be the arity preserving mapping that associates
( f ,(w1, . . . ,wn)) in F(n) with ( f ,(w1, . . . ,wm)) in F (m) by erasing the last m− n
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Booleans. It is clear from the definitions that Lψ ,n = h(Lθ ,m). Hence, Lψ ,n =
L(h(Aθ ,m)) by the direct image construction for automata (Proposition 6.11(1)). We
can take Aψ ,n equal to h(Aθ ,m) or to det(h(Aθ ,m)) in order to have a complete and
deterministic automaton.

Proof of Theorem 6.26: The theorem follows immediately from Constructions 6.27
to 6.29.

Bounding the sizes of the constructed automata

Our aim is to derive from these constructions an upper-bound to �Aϕ , the number of
states of the complete and deterministic automaton Aϕ . This will give a bound on its
size ‖Aϕ‖ (cf. Definition 3.46 in Section 3.3) since it is at most

2mfv(ϕ) · |F | · (ρ(F)+ 1) · (�Aϕ)
ρ(F)+1,

where ρ(F) is the maximal arity of F (and of F (mfv(ϕ))).
In the following evaluation, we will assume that complete and deterministic

automata are constructed at each step. Minimizing them reduces their sets of states,
but we cannot evaluate how much. Constructions 6.27 to 6.29 distinguish three types
of formulas: the atomic formulas in A, those in the sets Bi and those in the sets Ei.
We will bound �Aϕ in terms of (i) the maximum of �Aψ for the atomic subformulas
ψ of ϕ, (ii) the Boolean arity of ϕ and (iii) its block quantifier-height, by considering
in turn each of these constructions.

Atomic formulas, cf. Construction 6.27: By Lemma 6.25 and Proposition 6.11(2)
(about substitutions and the inverse image construction), we need only construct
complete and deterministic automata for atomic formulas with variables either X1 or
X1 and X2, because by these results we can transform these automata into complete
and deterministic ones with the same sets of states, over the larger signatures F(n).
The automata for True have one state, those for Xi = ∅ and Xi ⊆ Xj have two states,
those for Sgl(Xi) and labf (Xi) (for f ∈ F) have three states, those for sons(Xi,Xj) (for
1 ≤ s ≤ ρ(F)) have four states, and finally, the automata ACardp,q(X1) have q states.
Thus, for a formula ϕ in CrMS′(RF ,Xω), we have �Aψ ≤max{r,4} for every atomic
subformula ψ of ϕ.

Boolean combinations, cf. Construction 6.28: We use the product of complete and
deterministic automata Aθ1,n, . . . ,Aθm,n for constructing an automaton Aψ ,n for ψ of
the form b(θ1, . . . ,θm). Since we may assume that θ1, . . . ,θm are pairwise distinct, we
obtain by Proposition 6.10 a complete and deterministic automaton such that

�Aψ ,n ≤ �Aθ1,n×·· ·× �Aθm,n ≤ Nba(ψ),

if �Aθi ,n ≤ N for each i.
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Existential quantifications, cf. Construction 6.29: If ϕ is ∃X .θ , then Aψ ,n is obtained
from Aθ ,m by the direct image construction (with m := n + |X |). By Proposi-
tion 6.11(1), this construction produces a nondeterministic automaton with the same
number of states. It has degree of nondeterminism 2m−n (cf. Section 6.3.1). Since we
determinize automata at each step, we get

�Aψ ,n ≤ 2�Aθ ,m .

Corollary 6.30 Let ϕ be a formula of block quantifier-height h and Boolean arity
m. Let a be the maximal number of states of a complete and deterministic automaton
constructed for an atomic subformula of ϕ. The number of states of the automaton
Aϕ , and of the automata constructed during the construction of Aϕ , is bounded by
exp(h,m(am+ h)).

Proof: By Lemma 6.22 and the proof of Theorem 6.26, it suffices to prove this for
every n-normal formula ψ and the automaton Aψ ,n.

We let E : N ×N+×N+→N+ be the total function such that E(0,x,m)= x and
E(h+ 1,x,m) = 2m·E(h,x,m) for all h ∈ N and x,m ∈ N+. It is easy to see that E is
monotonic in each of its arguments. By elementary calculations,19 we can see that
E(h,x,m)≤ exp(h,m(x+ h)) for all h,x,m. Hence it suffices to prove the following
claim.

Claim 6.30.1 If ψ belongs to Bh, if m = ba(ψ) and a is as in the statement of the
corollary (for ψ), then we have �Aψ ,n ≤ E(h,am,m).

Proof: If h= 0, then ψ ∈ B0 and �Aψ ,n ≤ am = E(0,am,m).
If ψ belongs to Eh+1 and is ∃X .θ with θ ∈ Bh, then �Aψ ,n ≤ 2E(h,am,m), since

�Aθ ,n+|X | ≤ E(h,am,m).
If ψ ∈Bh+1, then ψ = b(θ1, . . . ,θm′), m′ ≤m, with θ1, . . . ,θm′ ∈ Eh+1∪·· ·∪E1∪A,

hence

�Aψ ,n ≤ (max{�Aθ1,n, . . . ,�Aθm′ ,n})m

≤ (2E(h,am,m))m = E(h+ 1,am,m).

We have �Aθi ,n ≤ 2E(h,am,m) because E is monotonic in each of its arguments.
This completes the proof of the claim and, thus, of the corollary.

Remark 6.31 (1) The bound exp(h,m(am+h)) is also an upper-bound to the number
of states of the minimal automaton of the language Lϕ , hence of its recognizability
index (cf. Proposition 3.73(2)). This upper-bound is better than the one obtained from

19 We first observe that m ·exp(h,x)≤ exp(h,x+m) if h> 0, and then we prove the inequality by induction
on h.
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Theorem 5.96 in Section 5.6 (for sentences ϕ), because it has less levels of exponen-
tiation. However, the implementation of the algorithm of Theorem 6.26 remains
problematic due to the lack of memory that occurs during the computation.

(2) For n≥mfv(ϕ), the language Lϕ,n is equal to LP(X1,...,Xn), where P(X1, . . . ,Xn)

is the property expressed by ϕ (cf. Definition 6.24). By Proposition 3.73(1), mini-
mization of the automaton Aϕ,n leads to the (unique) minimal automaton M (P) :=
M (LP(X1,...,Xn)) that recognizes the language LP(X1,...,Xn). However, Aϕ,n may be
of much larger size than M (P). Hence, even if M (P) is of reasonable size, its
computation may fail due to the too large size of Aϕ,n. �

Corollary 6.30 gives upper-bounds to the sizes of the automata constructed by
the algorithm used to prove Theorem 6.26. We will present two notions intended to
facilitate effective constructions of automata: the direct computation of automata for
frequently used properties and the use of Boolean set terms in the writing of formulas.

Precomputed automata

Remark 6.31(2) motivates the following idea. For expressing properties of terms (han-
dled as syntactic trees) certain MS-expressible notions are frequently used and can
be “precompiled” into “small” automata. This will reduce the nesting level of deter-
minizations in the construction of the automaton for a formula using these properties.
We only give one example.

Least common ancestor: For t ∈ T (F), we let Lca(X1,X2) be the property of sets
X1,X2 ⊆ Nt defined by:

X1 �= ∅ and X2 = {u}, where u is the least common ancestor of the nodes in X1,

which we denote by u = lca(X1). It can be expressed by a monadic second-order
formulaϕ(X1,X2) (we will give it below) but this formula is not needed for the follow-
ing construction. We define directly (without using ϕ) a complete and deterministic
automaton A that recognizes the language LLca(X1,X2).

Its states are 0,1,Ok and Error with meanings defined by Table 6.5. The accepting
state is Ok . The corresponding transition rules are given in Table 6.6, with k = ρ( f ).

The property Lca(X1,X2) is expressed by ϕ(X1,X2) defined as

X1 �= ∅∧Ub(X2,X1)∧∀X3(Ub(X3,X1)⇒Ub(X3,X2)),

where Ub(X ,Y )means that X ={u} and u is an ancestor of each element of Y (possibly
u ∈ Y ). The latter property can be expressed by the formula

Sgl(X )∧∀Z(X ⊆ Z ∧∀V ,W [V ⊆ Z ∧ son(V ,W )⇒W ⊆ Z]⇒ Y ⊆ Z),
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Table 6.5 Meanings of the states of the
automaton A .

State q Property Pq

0 X1 = X2 = ∅
1 X1 �= ∅∧X2 = ∅
Ok X1 �= ∅∧X2 = {lca(X1)}
Error all other cases

Table 6.6 Transition rules of the automaton A .

Transition rules Conditions

( f ,00)[q1, . . . ,qk ]→ 0 k ≥ 0, q1 = q2 = ·· · = qk = 0

( f ,00)[q1, . . . ,qk ]→Ok
k ≥ 1 and for some i,
qi =Ok and qj = 0 for j �= i

( f ,00)[q1, . . . ,qk ]→ 1
k ≥ 1 and for some i,
qi = 1 and qj ∈ {0,1} for j �= i

( f ,01)[q1, . . . ,qk ]→Ok
k ≥ 2, at least two of q1, . . . ,qk are 1,
the others being 0

( f ,11)[q1, . . . ,qk ]→Ok
k ≥ 0, qi ∈ {0,1} for all i

( f ,10)[q1, . . . ,qk ]→ 1

where son(V ,W ) stands for the disjunction of the atomic formulas soni(V ,W ) for
i= 1, . . . ,ρ(F).

The constructed automaton is actually minimal (because for any two states q
and q′, there exist terms t ∈ L(A ,q), t′ ∈ L(A ,q′) and a context c ∈ Ctxt(F(2))

such that c[t] ∈ LLca(X1,X2) and c[t′] /∈ LLca(X1,X2) or vice versa; cf. Section 3.4.3,
Proposition 3.73(1)). However, the application to ϕ of the general constructions
of Theorem 6.26 involves lengthy and space-consuming computations. Hence, for
applying them, as done for example in the software MONA ([Hen+, Kla]), it
seems preferable to use monadic second-order formulas constructed with more
atomic formulas than those listed in Construction 6.27. In this way, we extend
the syntax of monadic second-order formulas without extending their expressive
power.
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Boolean set terms

Another method for lowering the block quantifier-heights of formulas consists in
writing them with Boolean set terms. We first give examples. Assume that we need
to express the set property20 X1−X2 ⊆ X3. It is equivalent to X1 ⊆ X2 ∪X3, hence
can be expressed by the formula ϕ(X1,X2,X3) defined as

∀U (X2 ⊆U ∧X3 ⊆U ⇒ X1 ⊆U ),

but it cannot be expressed by a quantifier-free formula in CMS′(∅,{X1,X2,X3}). How-
ever, Lϕ = h−1(LX1⊆X2), where h is the mapping : {0,1}3→{0,1}2 such that, for every
i, j,k ∈ {0,1}, we have h((i, j,k)) := (i,max{ j,k}).

Similarly, if ϕ′ is intended to express that the set X1∩X2 has even cardinality, then
we have Lϕ′ = h−1(LCard0,2(X1)), where h : {0,1}2 → {0,1} is such that h((i, j)) :=
min{i, j}.

The following definition applies to other relational signatures than RF .

Definition 6.32 (Boolean set terms) Let R be a relational signature without constant
symbols.

A Boolean set term is a term in T (B,Xn), where B := {∪,∩, } and is the unary
operation of complementation. We extend the language CMS′(R,Xn) by allowing
atomic formulas of the forms Cardp,q(t1), t1 ⊆ t2, t1 =∅, Sgl(t1) and R(t1, . . . , tρ(R)),
where t1, t2, . . . , tρ(R) are Boolean set terms. Examples of Boolean set terms are X2,
X3 ∩ X1 and (X3 ∩ X1) ∪ (X3 ∩ X4). Their interpretations and those of the atomic
formulas built with them is clear from the syntax. We denote by CMSBool(R,Xn) the
corresponding set of formulas. It contains CMS′(R,Xn).

A Boolean substitution is a mapping σ : Xn → T (B,Xm). For every formula
ϕ ∈ CMSBool(R,Xn), we let ϕσ be the formula ϕ[σ(X1)/X1, . . . ,σ(Xn)/Xn] in
CMSBool(R,Xm).

We now apply this definition to the formulas that express properties of terms. Let
t ∈ T (F) and γ : Xm → P(Nt). It is clear (from similar results in Section 5.2.1)
that (�t�,γ ) |= ϕσ if and only if (�t�,δ) |= ϕ, where δ is the assignment : Xn →
P(Nt) defined by δ(Xi) := σ(Xi)P(Nt)(γ (X1), . . . ,γ (Xm)) and P(Nt) is the Boolean
algebra of subsets of Nt . It is easy to check that wδ(u)= hσ (wγ (u)) for every u ∈Nt ,
where hσ is the mapping : {0,1}m → {0,1}n such that, for every w ∈ {0,1}m, we
have hσ (w) := (σ (X1)B(w), . . . ,σ(Xn)B(w)) and B is the Boolean algebra {0,1}. As
before, we extend hσ into an arity preserving mapping : F (m) → F (n) by letting

20 For a more complicated example, consider X ⊆ Y ∪ (Z − V ). It is expressed by
∀U [Y ⊆U ∧Z −V ⊆U ⇒ X ⊆U ]. Since Z − V ⊆ U is expressed by ∀W (U ⊆ W ∧ V ⊆ W ⇒
Z ⊆W ), the property X ⊆ Y ∪ (Z −V ) is expressed by the formula ∀U [Y ⊆ U ∧∀W (U ⊆W ∧V ⊆
W ⇒ Z ⊆W )⇒ X ⊆U ] of (block) quantifier-height 2.
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hσ ( f ,w)= ( f ,hσ (w)). The following lemma generalizes Lemma 6.25 and its proof
is the same.

Lemma 6.33 For every formula ϕ in CMSBool(RF ,Xn) and every Boolean substi-
tution σ : Xn→ T (B,Xm), we have Lϕσ ,m = h−1

σ (Lϕ,n).

By applying this lemma to the atomic formulas ϕ of Construction 6.27, we can
extend Theorem 6.26 to formulas in CMSBool(RF ,Xn). Formulas in this set are of
lower block quantifier-height than the equivalent formulas in CMS′(RF ,Xn). Since
the inverse image construction (cf. Proposition 6.11(2)) does not increase the number
of states, using them will necessitate less determinizations of intermediate automata
than if we start from the equivalent formulas that do not use Boolean set terms. The
expression of Corollary 6.30 that bounds the number of states of the constructed
automata is the same but it will be applied to formulas of smaller block quantifier-
height (the value h in Corollary 6.30).

6.3.4 Monadic second-order properties of graphs
of bounded clique-width

We will construct automata for checking the monadic second-order properties of
simple (unlabeled) p-graphs of bounded clique-width. Extending the constructions to
simple (K ,�)-labeled p-graphs of bounded clique-width will be straightforward.

In the next subsection, we will do the same for graphs of bounded tree-width defined
by terms over the signature FHR

C . We first present the construction for p-graphs of
bounded clique-width defined by terms over FVR

C because it is simpler. (However, the
parsing problem for the VR algebra is more difficult, as we have seen in Section 6.2.)

Let C :={a,b, . . . }be a finite set of port labels.Asimple p-graph G of typeπ(G)⊆C
is represented faithfully by the Rs,C -structure �G�C =〈VG,edgG,(labaG)a∈C〉, where
some of the sets labaG may be empty.

We will denote these p-graphs by terms over the finite functional signature FVR
C .

We recall that it consists of the function symbols ⊕,
−→
adda,b, adda,b and relabh such

that a,b ∈ C, a �= b and h ∈ [C→ C], and of the constant symbols ∅, a and a
 for
a ∈ C. We let C := {a,a
 | a ∈ C}. Although the constant symbol ∅ that denotes the
empty graph can be eliminated from the terms that denote nonempty graphs, it will
be useful in certain constructions.

Every term t in T (FVR
C ) evaluates to a concrete p-graph G= cval(t)= cval(tId) of

clique-width at most |C|, with vertex set VG equal to Occ0(t), the set of occurrences
in t of the constant symbols different from ∅ (cf. Section 2.5.2). Hence, in order
to encode an assignment γ : Xn → P(VG) in a term t evaluating to G, we need
only attach Booleans to the constant symbols in C. We will denote by FVR(n)

C the
signature FVR

C , where C is replaced by the set of constant symbols C(n) defined as
{(c,w) | c ∈ C, w ∈ {0,1}n}. Hence, we use a slight modification of the notation of
Definition 6.24(c). For t ∈ T (FVR

C ) and γ : Xn→P(Occ0(t)) we define t ∗γ to be the
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Table 6.7 Transition rules of BSgl(X1).

Transition rules Conditions

∅→ 0
(c,0)→ 0 c ∈C
(c,1)→ 1

f [0]→ 0, f [1]→ 1 f is
−→
adda,b or adda,b or relabh

⊕[0,0]→ 0
⊕[0,1]→ 1
⊕[1,0]→ 1

term in T (FVR(n)
C ) obtained from t by replacing c by (c,wγ (u)) at each occurrence u

of c ∈C. Every term in T (FVR(n)
C ) is of the form t ∗ γ .

For ϕ ∈ CMS′(Rs,C ,Xn), we define LVR
C,ϕ,n as the set of terms t ∗ γ in T (FVR(n)

C )

such that (�cval(t)�C ,γ ) |= ϕ and we denote the set LVR
C,ϕ,mfv(ϕ) by LVR

C,ϕ . We will also

use the notation LVR
C,P(X1,...,Xn)

for LVR
C,ϕ,n if the n-ary property P is expressed by ϕ and

mfv(ϕ)≤ n. In most cases, the set C will be fixed by the context and we will omit the
subscript C in the notation LVR

C,ϕ,n and the related ones. The exponent VR is intended
to distinguish these languages from the languages Lϕ,n of the previous section.

There is an obvious variant of Lemma 6.25: LVR
C,ϕσ ,m = h−1

σ (LVR
C,ϕ,n) for every for-

mula ϕ in CMS′(Rs,C ,Xn) and every substitution σ : Xn→Xm, where hσ is extended
into an arity preserving mapping : FVR(m)

C → FVR(n)
C by letting hσ (c,w)= (c,hσ (w))

for c ∈C and hσ ( f )= f for f /∈C(m). The proof is similar to the one of Lemma 6.25.
By an inductive construction similar to that of Section 6.3.3, we can construct,

for each formula ϕ (assumed without loss of generality to be mfv(ϕ)-normal), an
automaton BC,ϕ (denoted by Bϕ if C is specified by the context) that recognizes
the language LVR

C,ϕ . For formulas that are not atomic, obvious variants of Construc-

tions 6.28 and 6.29 can be used.21 We will only construct complete and deterministic
automata for atomic formulas. Furthermore, we will only do that for formulas with
variables X1 and X2 because substitutions and inverse images give the general case
by (the variant of) Lemma 6.25 and Proposition 6.11(2).

Construction 6.34 (Automata for atomic formulas over Rs,C ) For constructing
BSgl(X1), we only modify Table 6.1 appropriately, which gives Table 6.7. The accept-
ing state is 1. By our convention on missing transitions, we also have the transition
⊕[1,1]→ Error, which is not listed in the table.

21 In Construction 6.29, the arity preserving mapping h : FVR(m)
C →FVR(n)

C erases the last m−n Booleans

associated to every c ∈C and is the identity on FVR(m)
C −C(m).
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Table 6.8 Meanings of the states of Bedg(X1,X2).

State q Property Pq

0 X1 = X2 = ∅

Ok
X1 = {v1}, X2 = {v2}, edgcval(t)(v1,v2)

for some v1,v2 in Vcval(t)

a(1) X2 = ∅, X1 = {v1}, portcval(t)(v1)= a

a(2) X1 = ∅, X2 = {v2}, portcval(t)(v2)= a

ab
X1 = {v1}, X2 = {v2}, portcval(t)(v1)= a,
portcval(t)(v2)= b, v1 �= v2, ¬edgcval(t)(v1,v2)

Error all other cases

Similarly, the automata for Cardp,q(X1) (with q states), X1 ⊆ X2 and X1 = ∅ (both
with two states) are straightforward to build. We can also take as basic the automaton
for X1 = X2 (also with two states).

We now construct the automaton B :=Bedg(X1,X2). Its set of states is

Q := {0,Ok ,Error}∪ {a(1),a(2),ab | a,b ∈ C, a �= b},

with accepting state Ok . The meanings of these states are described in Table 6.8,
where, similarly to Equivalence (6.1), we have, for every term t ∗ γ ∈ T (FVR(2)

C ):

t ∗ γ ∈ L(B,q) if and only if (�cval(t)�C ,γ (X1),γ (X2)) satisfies Pq, (6.2)

and we recall that γ (X1) and γ (X2) are written X1 and X2 in the table for better
readability.

The number of states is k2 + k + 3, where k = |C|. The transition rules are in
Table 6.9. Among the missing transitions, we mention⊕[Ok ,Ok]→Error, (a,11)→
Error if a ∈ C and relabh[ab] → Error if h(a) = h(b). The table specifies O(k4)

transitions, with (or without) counting the transitions to Error.
Equivalence (6.2) can be proved by induction on the structure of t, using

Lemmas 2.95 and 2.96. Technically it is more convenient to prove its equivalent for-
mulation by bottom-up induction on u: if r is the unique run ofB on a term t∗γ and u∈
Nt , then r(u)=q if andonly if (�cval(t)/u�C ,γ (X1)∩(Nt/u),γ (X2)∩(Nt/u)) satisfies
Pq.22 Then cval(t) must be replaced by cval(t)/u in Table 6.8 (and portcval(t)/u(vi)

can be replaced by portt(u,vi), see Definition 2.94).

22 Recall from Section 2.5.2 that cval(t)/u denotes the p-graph cval(tId/u), and note that γ (Xi)∩(Nt/u)=
γ (Xi)∩Vcval(t)/u.
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Table 6.9 The transition rules of Bedg(X1,X2).

Transition rules Conditions

∅→ 0
(c,00)→ 0
(c,10)→ a(1) c is a or a


(c,01)→ a(2)

(a
,11)→Ok

relabh[q]→ q q ∈ {0,Ok}
relabh[a(1)]→ b(1) b= h(a)
relabh[a(2)]→ b(2)

relabh[ab]→ cd c= h(a), d = h(b), c �= d

−→
adda,b[q]→ q q ∈Q−{ab}−→
adda,b[ab]→Ok

adda,b[q]→ q q ∈Q−{ab,ba}
adda,b[ab]→Ok
addb,a[ab]→Ok

⊕[a(1),b(2)]→ ab a �= b
⊕[b(2),a(1)]→ ab
⊕[a(2),b(1)]→ ba
⊕[b(1),a(2)]→ ba

⊕[q,0]→ q q ∈Q
⊕[0,q]→ q

Table 6.9 contains also transitions for the operations adda,b that add pairs of oppo-
site directed edges, which we also consider as undirected edges. If we restrict this
automaton to the signature FVRu

C that generates only undirected graphs (by deleting

the transitions relative to the operations
−→
adda,b), then any two states ab and ba can

be identified as the reader will check easily. Hence, the number of states is (slightly)
reduced to k(k− 1)/2+ 2k+ 3.

The automaton for laba(X1) can be constructed in a similar, but easier way, with
k+2 states. We can also take as basic the automaton for lab∀a(X1) (cf. Remark 6.18),
with 2k states. �

The constructions of automata are done for generic sets C. That is, if we replace C
by another set in bijection with it by h, then the corresponding automata are obtained
by replacing everywhere in the states, in the transitions and the accepting states of the
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original ones, each a ∈C by h(a). In particular, the numbers of states and transitions
depend only on the cardinality of the considered set C.

We obtain the following theorem:

Theorem 6.35 For every finite set C of port names and every formula ϕ in
CMS′(Rs,C ,Xω), one can construct a complete and deterministic automaton BC,ϕ

that recognizes the language LVR
C,ϕ ⊆ T (FVR(mfv(ϕ))

C ). This automaton has at most
exp(h,m(am+ h)) states, where h= bqh(ϕ), m= ba(ϕ), and a is the maximal num-
ber of states of a complete and deterministic automaton (over FVR(1)

C and FVR(2)
C )

constructed for an atomic subformula of ϕ. �

For sentences ϕ, this theorem provides an alternative proof of Theorem 6.3(3). By
Proposition 3.69, it entails the Weak Recognizability Theorem for the VR algebra
(Corollary 5.69(1)) that also follows from the (full) Recognizability Theorem for the
VR algebra (Theorem 5.68(1)). However, the (full) Recognizability Theorem for the
VR algebra does not follow from it (see Section 6.4.6 below).

Remark 6.36 We can also prove the first statement of Theorem 6.35 without con-
structing the automaton Bedg(X1,X2) and by using instead Theorem 6.26. It suffices

to show that the edge relation of G = cval(t) for t ∈ T (FVR(n)
C ) is definable in

the relational structure �t� by an MS formula η(x,y). It follows that every for-
mula ϕ in CMS′(Rs,C ,Xn), with n := mfv(ϕ), can be translated into a formula ψ

in CMS′(RFVR
C

,Xn) with mfv(ψ) = n such that, for every term t ∈ T (FVR(n)
C ) and

every mapping γ : Xn→P(Nt), we have

(�t�,γ ) |=ψ(X1, . . . ,Xn) if and only if

γ (X1), . . . ,γ (Xn) are subsets of Occ0(t)

and (�cval(t)�C ,γ ) |= ϕ(X1, . . . ,Xn).

Hence LVR
C,ϕ = Lψ and the automata BC,ϕ and Aψ are equivalent. This (short) proof is

not satisfactory because the formula η(x,y) is fairly complicated. It must express that
x,y are occurrences of constant symbols, for example a and b, and that they have a

common ancestor u that is an occurrence of an edge creating operation
−→
addc,d , and that

the port labels a and b are transformed into c and d by the port relabeling operations
that occur on the paths in t between x and u, and between y and u (cf. the function portt
used in Definition 2.94 and Lemma 2.95; these relabelings are actually handled by the
rules in Table 6.9 relative to the operations relabh.) The construction of η will be done
in the proof that the evaluation mapping �t� �→ �cval(t)�C from terms to p-graphs
is a monadic second-order transduction (Proposition 7.30, Section 7.2), so that the
transformation of ϕ into ψ is a special case of the Backwards Translation Theorem
(Theorem 7.10). It follows that ψ has a larger quantifier-height than ϕ. Using this
proof would yield a longer computation, although the minimal automata of BC,ϕ and
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Aψ are the same (up to renaming of states). The construction of BC,edg(X1,X2) can be
seen as that of a precomputed automaton (cf. Section 6.3.3) for η.

More tools for constructing automata

At the end of Section 6.3.3, we have presented two notions intended to facilitate
the construction of automata: the direct construction of automata for frequently used
properties and the use of Boolean set terms in the writing of formulas. These two
notions are applicable to the present case. Our next objective is to enrich the tool box
with a construction of automata for relativized formulas. We will also detail the direct
construction of an automaton for paths, analogous to what we did above for the least
common ancestor function.

Construction 6.37 (Automata for relativized formulas) We recall from
Section 5.2.1 that if ϕ is a sentence, then ϕ � X1 is a formula expressing that the
substructure induced by the set denoted by X1 satisfies the property expressed by
ϕ, and we fix a set C. We will prove that the inverse image construction applied to
Bϕ yields an automaton equivalent to Bϕ�X1 . Slightly more generally, we consider a
property of vertex sets P(X1, . . . ,Xn). We let Q(X1, . . . ,Xn+1) be the property such that,
for all sets of vertices X1, . . . ,Xn+1 of a graph G, the property Q(X1, . . . ,Xn+1) is true
if and only if P(X1 ∩Xn+1, . . . ,Xn ∩Xn+1) is true in the induced subgraph G[Xn+1].
Then we will construct an automaton recognizing LVR

Q(X1,...,Xn+1)
from one recognizing

LVR
P(X1,...,Xn)

. This construction will be used in the case where P is a monadic second-
order property. We present it in terms of properties rather than in terms of formulas
to stress that it does not depend on the structure of formulas.

We define h as the arity preserving mapping : FVR(n+1)
C → FVR(n)

C such that, for
every c ∈ C and w ∈ {0,1}n, we have h((c,w0)) := ∅ and h((c,w1)) := (c,w), and
h( f ) := f for f /∈ C(n). With these hypotheses and notation we obtain the following
lemma:

Lemma 6.38 We have LVR
Q(X1,...,Xn+1)

= h−1(LVR
P(X1,...,Xn)

). Thus, if an automaton

BP(X1,...,Xn) recognizes the language LVR
P(X1,...,Xn)

, then the automaton h−1(BP(X1,...,Xn))

recognizes the language LVR
Q(X1,...,Xn+1)

.

Proof: Let t ∗ γ belong to T (FVR(n+1)
C ) and G = cval(t). Then h(t ∗ γ ) = t′ ∗ γ ′,

where, by the definitions, t′ evaluates to G′ := G[γ (Xn+1)] (cf. the proof of
Proposition 2.105(1)) and γ ′ is the assignment : Xn→ P(VG′) such that γ ′(Xi) =
γ (Xi) ∩ γ (Xn+1) for each i. It follows that t ∗ γ ∈ LVR

Q(X1,...,Xn+1)
if and only if

t′ ∗ γ ′ ∈ LVR
P(X1,...,Xn)

.

This result shows the usefulness of the symbol ∅ to denote the empty graph, for
which we have defined transitions in Tables 6.7 and 6.9.
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Construction 6.39 (Precomputed automata for path properties) The following
construction concerns undirected graphs (it can easily be extended to directed paths
in directed graphs). For an undirected graph G, we let Path(X1,X2)mean that X1⊆X2,
|X1| = 2 and there is a path in G[X2] that links the two vertices of X1. It is monadic
second-order expressible.

We will construct an automaton BC,Path(X1,X2) that recognizes the language
LVR

C,Path(X1,X2)
, without using the logical expression of Path(X1,X2). We take C of

cardinality at least 2 because otherwise, the graphs generated by FVR
C have no edges

apart from loops (cf. Remark 2.107(1)) and Path(X1,X2) is always false. We need
some auxiliary notions.

Let G be an undirected p-graph of type π(G) = { portG(x) | x ∈ VG} ⊆ C. For
x ∈ VG , we let23

α(G,x) := { portG(y) | y ∈ VG and x−∗G y} ⊆ C,

and
β(G) := {( portG(x),portG(y)) | x,y ∈ VG and x−∗G y} ⊆ C×C.

Hence β(G) is a symmetric and reflexive relation on the set π(G). In particular, β(G)

determines π(G). The relation β(G) is not necessarily transitive.
We will prove that the functions α and β can be computed inductively on the

structure of a term over FVR
C that evaluates to G. If h : C → C and B ⊆ C × C,

then h(B) := {(h(a),h(b)) | (a,b)∈ B}. We extend the composition of binary relations
(denoted by · ) to A⊆ C and B⊆ C×C by letting

A5B := {b ∈ C | (a,b) ∈ B for some a ∈ A}.
This set is the image of A by the relation B, usually denoted B(A). If B′ ⊆C×C then
we write A5B ·B′ for A5 (B ·B′), which equals (A5B) ·B′. For a,b ∈C with a �= b,
we let

a � b := {(a,a),(a,b),(b,a),(b,b)}.

Claim 6.39.1

(1) α(G⊕H ,x)=
{

α(G,x) if x ∈ VG,
α(H ,x) if x ∈ VH .

(2) β(G⊕H )= β(G)∪β(H ).
(3) α(adda,b(G),x)
= if a,b ∈ π(G) then α(G,x)∪α(G,x)5 (a � b) ·β(G) else α(G,x).

(4) β(adda,b(G))

= if a,b ∈ π(G) then β(G)∪β(G) · (a � b) ·β(G) else β(G).
(5) α(relabh(G),x)= h(α(G,x)).

23 Since x−G y means that x and y are adjacent, x−∗G y means that x and y are equal or linked by a path.
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(6) β(relabh(G))= h(β(G)).
(7) α(a,x)= α(a
,x)= {a}.
(8) β(a)= β(a
)= {(a,a)}.
(9) β(∅)= ∅.

Proof: The verifications are easy from the definitions. We only sketch the proof of
the inclusion ⊆ in (3).

If c is in α(adda,b(G),x), then either it is in α(G,x) or there exists a path from x
to a c-port z that uses one or more edges added to G by adda,b. If this path contains
only one such edge and goes through an a-port u and immediately after through a
b-port w, we have a ∈ α(G,x) and (b,c) ∈ β(G) and thus c ∈ α(G,x)5 (a�b) ·β(G)

because (a,b) ∈ a � b. If this path contains several such edges, the first one being
u−w and the last one being u′ −w′, where u and u′ are a-ports and w and w′ are
b-ports, then there is also an edge between u and w′ and the previous case gives the
result. If u−w and u′ −w′ are as above except that w′ is an a-port and u′ is a b-port,
then there is also an edge between w and w′. Then a ∈ α(G,x) and (a,c) ∈ β(G) and
thus c ∈ α(G,x)5 (a � b) ·β(G) because (a,a) ∈ a � b. �

We now construct the automaton BC,Path(X1,X2) with its set of states Q defined as

{Ok ,Error}
∪ {(0,B) | B⊆ C×C}
∪ {(1,A,B) | ∅ �= A⊆ C, B⊆ C×C}
∪ {(2,{A,A′},B) | A,A′ ⊆ C, A �= ∅, A′ �= ∅, B⊆ C×C},

with accepting state Ok . The meanings of these states are described in Table 6.10.
In this table, we denote by G(t) the graph cval(t), and by G(t,X2) the graph
cval(t)[γ (X2)]where γ is the assignment encoded by the considered term (cf. Equiv-
alences (6.1) and (6.2)). Equivalently, we could write G(u) to denote cval(t)/u, and
G(u,X2) to denote cval(t)/u[γ (X2)∩ (Nt/u)].

The transition rules are shown in Table 6.11, where we use the following auxiliary
functions:

f (B,a,b) := if {(a,a),(b,b)} ⊆ B then B∪ (B · (a � b) ·B) else B,

g(A,B,a,b) := if {(a,a),(b,b)} ⊆ B then A∪ (A5 (a � b) ·B) else A.

These definitions reflect respectively Properties (4) and (3) of Claim 6.39.1. This
completes the construction of BC,Path(X1,X2).

As for the previously constructed automata, we omit the correctness proof. Hence,
we admit that all computations of the semi-automaton BC,Path(X1,X2) (as defined by
Table 6.11) satisfy the properties of Table 6.10. This table shows that some states
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Table 6.10 Meanings of the states of BC,Path(X1,X2).

State q Property Pq

(0,B) X1 = ∅, B= β(G(t,X2))

(1,A,B)
X1 = {v} ⊆ X2, A= α(G(t,X2),v),
B= β(G(t,X2))

(2,{A,A′},B)
X1 = {v,v′} ⊆ X2, v �= v′, A= α(G(t,X2),v),
A′ = α(G(t,X2),v

′), B= β(G(t,X2)),
there is no path between v and v′ in G(t,X2)

Ok Path(X1,X2) holds in G(t)

Error all other cases

Table 6.11 The transition rules of BC,Path(X1,X2).

Transition rules Conditions

∅→ (0,∅)
(c,00)→ (0,∅)
(c,01)→ (0,{(a,a)}) c ∈ {a,a
}
(c,11)→ (1,{a},{(a,a)})
relabh[Ok]→Ok
relabh[(0,B)]→ (0,h(B))
relabh[(1,A,B)]→ (1,h(A),h(B))
relabh[(2,{A,A′},B)]→ (2,{h(A),h(A′)},h(B))
adda,b[Ok]→Ok
adda,b[(0,B)]→ (0,B′) B′ = f (B,a,b)
adda,b[(1,A,B)]→ (1,D,B′) D= g(A,B,a,b)

adda,b[(2,{A,A′},B)]→ (2,{D,D′},B′) D′ = g(A′,B,a,b)
(A5 (a � b) ·B)∩A′ = ∅

adda,b[(2,{A,A′},B)]→Ok (A5 (a � b) ·B)∩A′ �= ∅
⊕[Ok ,(0,B)]→Ok
⊕[(0,B),Ok]→Ok
⊕[(0,B),(0,B′)]→ (0,B′′) B′′ = B∪B′
⊕[(0,B),(1,A,B′)]→ (1,A,B′′)
⊕[(1,A,B′),(0,B)]→ (1,A,B′′)
⊕[(1,A,B),(1,A′,B′)]→ (2,{A,A′},B′′)
⊕[(0,B),(2,{A,A′},B′)]→ (2,{A,A′},B′′)
⊕[(2,{A,A′},B′),(0,B)]→ (2,{A,A′},B′′)
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cannot occur in any computation. For example, by the definition of the function
β, the component B of each accessible state must be a symmetric and reflexive
relation. All states for which B is not so are inaccessible and, consequently, are
eliminated if we trim the automaton (cf. Section 3.3.1, Definition 3.48). The state
(1, {a},∅) is also inaccessible. The set Q has cardinality 2+ 2k2 + (2k − 1)2k2 +
(2k − 1)22k2 = 2+ (22k − 2k + 1)2k2

(where k = |C| ≥ 2). The cardinality of the
set of accessible states is somewhat less than that, but it lies between 2k(k−1)/2

and 2k2+2 as one can easily check. Determining its exact value is of no interest
because the corresponding minimal automaton matters more than this one, even after
trimming.

Let us now see what would give the expression of the property Path(X1,X2) by the
MS formula:

∀x[x ∈ X1⇒ x ∈ X2]
∧ ∃x,y

(
x ∈ X1∧ y ∈ X1∧ x �= y∧∀z(z ∈ X1⇒ x= z∨ y= z)

∧∀X3[x ∈ X3∧∀u,v(u ∈ X3∧ u ∈ X2∧ v ∈ X2∧ edg(u,v)⇒ v ∈ X3)⇒ y ∈ X3]
)

of quantifier-height 5 (its construction uses Property P2 of Proposition 5.11). Its trans-
lation into a formula without first-order variables has the same quantifier-height. The
given construction of BC,Path(X1,X2) avoids thus lengthy computations. As already
noted in Remark 6.31(2), the minimal automaton equivalent to BC,Path(X1,X2) depends
only on the property Path(X1,X2). It is thus the same as the one that could be
obtained from any monadic second-order expression of this property, provided the
computations do not abort due to lack of memory.

Remark 6.40 (Some computing experiments) The automaton of Table 6.11 has
been implemented and minimized successfully24 for |C| = 2,3,4. (All automata
discussed in this remark are complete and deterministic). For |C| = 3, the initial
trim automaton has 214 states. The corresponding minimal automaton has 125 states
and more than 16 500 transition rules that do not yield the state Error. For |C| = 4,
the minimal automaton has 2197 states.

For C :={a,b}, the initial trim automaton A :=BC,Path(X1,X2) has 25 states and 372
transition rules; its minimal automaton has 12 states and 137 rules. The minimization
algorithm has determined the following 12 equivalence classes of states of A . We
first list the nine singleton classes:

Ok , Error,

(0,∅), (0,{(a,a)}), (0,{(b,b)}),
(1,{a},{(a,a)}), (1,{b},{(b,b)}),
(2,{{a},{a}},{(a,a)}), (2,{{b},{b}},{(b,b)}).

24 All computations have been done by Durand with her softwareAUTOWRITE [Dur] that trims, reduces,
determinizes and minimizes automata on terms.
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There is one class with two elements:

(0,{(a,a),(b,b)}), (0,a � b),

one class with five elements:

(1,{a},{(a,a),(b,b)}), (1,{b},{(a,a),(b,b)}),
(1,{a},a � b), (1,{b},a � b),

(1,{a,b},a � b),

and one class with nine elements:

(2,{{a},{a}},{(a,a),(b,b)}), (2,{{b},{b}},{(a,a),(b,b)}),
(2,{{a},{a}},a � b), (2,{{b},{b}},a � b),

(2,{{a},{b}},{(a,a),(b,b)}),
(2,{{a},{b}},a � b),

(2,{{a},{a,b}},a � b), (2,{{b},{a,b}},a � b), and

(2,{{a,b},{a,b}},a � b).

By Proposition 2.106(2), the simple loop-free undirected graphs of clique-width at
most 2 are the cographs that we have already discussed in Sections 1.1.2 and 1.4.1,
and in Example 4.43(1). These graphs are the p-graphs of type {a} generated by a,
⊕ and the complete join ⊗, a derived operation of GPu. Only six of the states of
the minimal automaton of A are needed for the minimal {⊕,⊗,a}-automaton. These
states are Ok , Error, (0,∅), (0,{(a,a)}), (1,{a},{(a,a)}) and (2,{{a},{a}},{(a,a)}),
which are also states of A . The corresponding transition rules are those of A for a
and ⊕ together with, for ⊗, the following ones:

⊗[(1,{a},{(a,a)}), (1,{a},{(a,a)})]→Ok ,

⊗[(2,{{a},{a}},{(a,a)}), (0,{(a,a)})]→Ok , and

⊗[(0,{(a,a)}), (2,{{a},{a}},{(a,a)})]→Ok ,

and all other rules for ⊗ are as for ⊕, for example:

⊗[(0,{(a,a)}), (1,{a},{(a,a)})]→ (1,{a},{(a,a)}),

which is like:

⊕[(0,{(a,a)}), (1,{a},{(a,a)})]→ (1,{a},{(a,a)}).
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It would be interesting to simplify in a similar way the functional signature that
generates graphs of clique-width 3 and more. This might yield workable automata
for graphs of larger clique-width than 2. �

Hopefully tractable monadic second-order properties

Our aim is here to identify classes of monadic second-order graph properties for
which the associated automata have manageable sizes. These properties are express-
ible without quantifier alternation in terms of some “basic” monadic second-order
properties.

Definition 6.41 Let P be a set of pairwise inequivalent formulas in CMS′(Rs,Xω)

such that the set of free variables of any ϕ ∈P is Xmfv(ϕ). The integer mfv(ϕ) is called
the arity of the property P defined by ϕ and is denoted by ρ(P).

We let PBool be the set of formulas in CMSBool(Rs,Xω) obtained from those of P
by substitutions of Boolean set terms (cf. Definition 6.32). We let EB(PBool) be the
set of sentences of the form ∃X .θ such that θ is a Boolean combination of formulas
in PBool and X is a sequence of set variables.

We assume that, for each ϕ in P and k in N+, we have constructed (or some
algorithm can construct) a complete and deterministic FVR(mfv(ϕ))

[k] -automaton B[k],ϕ
recognizing LVR

[k],ϕ , with N (k ,ϕ) states. This number is also denoted by N (k ,P) if
P is the property corresponding to ϕ. If a formula α is obtained from ϕ ∈ P by a
substitution Xmfv(ϕ)→ T (B,Xn) of Boolean set terms, then an automaton recognizing
LVR
[k],α,n, with N (k ,α)=N (k ,ϕ) states, can be constructed for it by (the obvious variant

of) Lemma 6.33 and Proposition 6.11(2).
Since the formulas of P are over Rs, the properties that they express do not depend

on port labels (they are properties of graphs, not of p-graphs). Hence, the graphs
to be checked can be constructed with sets of port labels [k] instead of sets C of
cardinality k without loss of generality or efficiency. The FVR(mfv(ϕ))

C -automata asso-
ciated with such sets C are all “isomorphic” to B[k],ϕ . We use here the remark before
Theorem 6.35.

Proposition 6.42 Let P ⊆CMS′(Rs,X ) be as in Definition 6.41. Let ϕ in EB(PBool)

be a sentence of the form ∃X1, . . . ,Xn.θ , where θ is a Boolean combination of formulas
α1, . . . ,αm in PBool . For each k , there exists a nondeterministic FVR

[k] -automaton B[k],ϕ
with at most N := N (k ,α1) × ·· · × N (k ,αm) states that recognizes the language
LVR
[k],ϕ . Membership in L(B[k],ϕ) of any term t ∈ T (FVR

[k] ) can be checked in time

m ·a · (2n+N 2) · |t|, where a is an upper-bound to the transition time of the automata
for α1, . . . ,αm.

Proof: For each i, the formula αi is obtained from some ϕi ∈ P by a substitution
of Boolean set terms. From the complete deterministic automaton B[k],ϕi for ϕi with
N (k ,ϕi) states, we obtain, by the inverse image construction, a complete deterministic
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automaton for αi with the same number of states, recognizing LVR
[k],αi ,n

. From the
automata for α1, . . . ,αm a complete and deterministic automaton for θ can be obtained
by the product construction of Proposition 6.10. It recognizes LVR

[k],θ ,n and has N states
(but after trimming, it can have less states). A nondeterministic automaton B[k],ϕ
for ϕ with the same number of states is then obtained from it by a direct image
construction (as in Construction 6.29, by Proposition 6.11(1)). That automaton has
degree of nondeterminism 2n and is only nondeterministic on constant symbols. The
evaluation of the computation time uses Proposition 6.14 and Remark 6.15.

Example 6.43 (Automata for some basic graph properties) In the following, we
define a set of basic monadic second-order graph properties that we denote by P (like
the corresponding set of formulas).

In Definition 6.41, we have given no syntactic constraints on the formulas of P .
In order to get applicable instances of Proposition 6.42, we will only (or mainly)
consider formulas ϕ such that N (k ,ϕ) = 2O(k2). Imposing on the numbers N (k ,ϕ)
a polynomial bound, or even the bound 2O(k), would eliminate too many basic and
useful graph properties. Furthermore, the automata for the important property of
connectivity have 22�(k)

states. A similar situation holds for the property of being a
forest.

Example 6.43(1) (A set P of basic graph properties) We let P consist of the
properties defined by the atomic formulas, the property Path(X1,X2) that has been
defined in Construction 6.39, together with the following properties:

Disj(X1, . . . ,Xp) expresses that the vertex sets X1, . . . ,Xp are pairwise disjoint;
Part(X1, . . . ,Xp) expresses that X1, . . . ,Xp form a partition of the vertex set of the

considered graph (where some of the sets X1, . . . ,Xp may be empty);
Card≤p(X1) expresses that the set X1 has cardinality at most p;
St expresses that the considered graph is stable, i.e. that its only edges are loops;
Clique expresses that any two distinct vertices of the considered graph are linked

by an undirected edge (equivalently, by two opposite directed edges);
Link(X1,X2) expresses that there exists an edge linking a vertex of X1 to one of

X2 (hence, Link is edg∃∃, cf. Remark 6.18);
Dom(X1,X2) expresses that X2 dominates X1, i.e., that X1 and X2 are disjoint and

every vertex of X1 is the head of an edge with tail in X2;
InDegp(X1,X2) expresses that every vertex in X1 is the head of exactly p edges

with tail in X2 (X1 and X2 need not be disjoint and a loop incident with x ∈ X1

counts if x ∈ X2);
Conn expresses that the considered graph is connected; and
NoCycle expresses that the considered undirected graph is a forest (has no cycle,

in particular, no loop).



6.3 CMS formulas compiled into automata 473

We let ConnIfDegd express connectedness for a graph assumed to have degree at
most d, and similarly, NoCycleDegd express that a graph of degree at most d is a
forest.

From St, which is a property of the considered graph, one gets by relativiza-
tion (Construction 6.37) the corresponding property St(X1) of the subgraph induced
by a set of vertices X1. Similarly, we obtain the relativized properties Clique(X1),
Conn(X1), NoCycle(X1), ConnIfDegd(X1) and NoCycleDegd(X1). We also add these
properties to P . By Lemma 6.38 and Proposition 6.11(2), an FVR

[k] -automaton for prop-

erty P can easily be transformed into an FVR(1)
[k] -automaton for the property P(X1),

with the same number of states.
Table 6.12 shows upper-bounds to the numbers of states N (k ,P) for these

properties.25 The values come from constructions of complete and deterministic
automata that are not necessarily minimal. We will not give detailed descriptions
of these automata. We will only define their sets of states and describe their mean-
ings, as we did previously (cf. Table 6.10). The transitions will be easy to construct
from these descriptions. We will use the notation of Table 6.10: G(t) denotes cval(t)
and G(t,Xi) denotes cval(t)[γ (Xi)]. We order the automata by increasing number of
states.

The properties Disj(X1, . . . ,Xp) and Part(X1, . . . ,Xp): The FVR(p)
[k] -automata for these

properties are straightforward to construct; they have two states but their sizes depend
of course on p and k .

The property Card≤p(X1): The states are 0,1, . . . ,p and Error. The accepting states
are 0,1, . . . ,p. The meanings of the states are described by the following conditions:

Pi : G(t) has i vertices.

PError : G(t) has more than p vertices.

Stability: The states are Error and A for each A⊆ [k]. All states are accepting except
Error. Their meanings are described by the following conditions:

PA : A= π(G(t)) and G(t) is stable.

PError : G(t) is not stable.

Since we use the constant symbol ∅ (it is useful for the relativization construction),
we may have G(t)=∅ and A= ∅.

25 The use of � indicates that we also have a lower-bound for the minimal automaton.
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Table 6.12 Some graph properties.

Property P N (k ,P)

X1 = ∅ 2
X1 ⊆ X2 2
Disj(X1, . . . ,Xp) 2
Part(X1, . . . ,Xp) 2
Sgl(X1) 3
Cardp,q(X1) q
Card≤p(X1) p+ 2

edg(X1,X2) k2+ k+ 3

St 2k + 1
Link(X1,X2) 22k + 1
Dom(X1,X2) 22k + 1
InDegp(X1,X2) (p+ 2)2k

Path(X1,X2) 2k2+2

Clique 2�(k2)

ConnIfDegd 2d·k2

NoCycleIfDegd 2d2·k2

Conn 22�(k)

NoCycle 22O(k)

The property Link(X1,X2): The states are Ok and the pairs (A,B) for all A,B⊆ [k].
The accepting state is Ok . Their meanings are as follows:

P(A,B) : A= π(G(t,X1)), B= π(G(t,X2)) and

Link(X1,X2) does not hold in G(t).

POk : Link(X1,X2) holds in G(t).

Domination, i.e., the property Dom(X1,X2): The states are Error and the pairs (A,B)
for all A,B⊆ [k]. The accepting states are the pairs (∅,B) (note that Error is not the
only nonaccepting state). Their meanings are as follows:

P(A,B) : X1 ∩X2 = ∅, B= π(G(t,X2)) and

A is the set of port labels in G(t) of the vertices x in X1

that are not the head of an edge with tail in X2.

PError : X1 ∩X2 �= ∅.
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Bounded indegree: An automaton for InDegp(X1,X2), where p ≥ 0, with less than

(p+2)2k states is constructed and proved to be correct in [CouDur11]. It is intended
to run on irredundant terms.

A term t in T (FVR(n)
[k] ) is irredundant if, for every occurrence w of an operation

−→
adda,b (or adda,b) with son w1, the p-graph cval(t)/w1 has no edge from an a-port
to a b-port (or between an a-port and a b-port). The edge addition operations strictly
below w that create these edges can be removed: the term obtained in this way is
equivalent to t. Hence, every term t ∈T (FVR(n)

[k] ) can be transformed into an equivalent

irredundant term s in T (FVR(n)
[k] ) as follows: if

−→
adda,b or adda,b has an occurrence u in

t such that (a,b)∈ Edg(t ↑ u) (this set is defined in the proof of Proposition 2.105(4),
at the end of Section 2.5.6), then this edge addition operation can be removed at u (or
replaced by the identity operation relabId). Since the sets Edg(t ↑ u) can be computed
in linear time, the term s can also be constructed in linear time.

It follows that it suffices to construct automata that work as desired on irredun-
dant terms. For InDegp(X1,X2) and for the property NoCycle considered below, such
automata are simpler to construct (and smaller) than those intended to accept arbitrary
terms.

The property Clique: The states are the pairs (A,R) for all A⊆[k] and binary relations
R on A. The accepting states are the pairs (A,∅) (we consider ∅ as a clique). Their
meanings are as follows:

P(A,R) : A= π(G(t)) and R is the set of pairs (a,b) ∈ A×A
such that there exist in G(t) a vertex x with port label a
and a vertex y with port label b such that (x,y) /∈ edgG.

The number of states is less than 2k2+k . The minimal automaton has 2�(k2) states as
one can check easily.

Connectivity: An automaton for this property must have many states: we know
from Example 4.54(4) that there exists no automaton with 22m

states or less that
checks the connectivity of graphs of clique-width at most k = 2m+ 1. Our con-
struction will be similar to the proof of HR-recognizability in Example 4.30(2). We
will use the following notions and notation relative to a p-graph G of type included
in [k]:

CC(G) is the set of its connected components,
π(CC(G)) is the multiset of the types π(H ) for all H ∈ CC(G).

We denote by |M | the cardinality of a multiset M and by Set(M ) the corresponding
set (so that Set(M )⊆M and |Set(M )| ≤ |M |). For a multiset M , we define Set†(M )
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as the multiset consisting of two occurrences of d (and nothing else) if M consists of
at least two occurrences of d, and as Set(M ) otherwise.

We are ready to define the set of states Q of the automaton for connectivity. We
let E be the set of nonempty subsets of [k] and Q be the set of multisets of the form
Set†(M ), where M is a multiset of elements of E. The meanings of these multisets
are described by the following equality:

PM : M = Set†(π(CC(G(t)))).

The accepting states are the singletons. Examples of states are {{1,2},{1,2}} and
{{1},{1,2},{2,3,4,6}}. They may correspond to a p-graph G(t) having three con-
nected components, all of type {1,2} in the first case, and four connected components
of types {1}, {1}, {1,2} and {2,3,4,6} in the second one. The state {{1,2}} is accepting
and corresponds to a connected p-graph of type {1,2}.

The number of states is thus 2|D| + |D| = 22k−1 + 2k − 1. However, if we want
only to verify the connectivity of graphs of degree at most d, we can use a smaller
automaton: we replace Q by the set Qd of states M ∈Q such that each element of [k]
belongs to at most d sets of M , to which we add a state Error. Hence, each state M
in Qd is a set of at most dk elements from E. It follows that its cardinality is less than
2d·k2

. The corresponding automaton may reject a term that defines a connected graph
of degree larger than d.

Detailed constructions and correctness proofs can be found in [CouDur11].

Forests: The construction of an automaton with 22O(k)
states for the property NoCycle

saying that an undirected graph has no cycles, i.e., that it is a forest, is also quite com-
plicated. As for connectivity, if we want to verify the absence of cycles in graphs of
degree at most d, we can use a smaller automaton, with 2d2·k2

states. The reader will
find these constructions in [CouDur11]. They work for irredundant terms.

Letting P be the above set of basic properties, we now give a few examples of
graph properties in EB(PBool).

Example 6.43(2) (Monadic second-order vertex partitioning problems) We first
consider colorability problems for undirected graphs; vertex p-colorability can be
expressed as follows:

∃X1, . . . ,Xp (Part(X1, . . . ,Xp)∧ St(X1)∧ ·· · ∧ St(Xp)).

A vertex p-coloring defined by X1, . . . ,Xp is achromatic ([Bod89]) if there is an
edge between any two distinct sets Xi and Xj. The existence of such a coloring is thus
expressed, for an undirected graph, by

∃X1, . . . ,Xp (Part(X1, . . . ,Xp)∧ ·· ·St(Xi) · · · ∧ · · ·Link(Xi,Xj) · · ·),
where the conjunctions extend to all 1≤ i < j ≤ p.
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A vertex p-coloring of an undirected graph G, defined by X1, . . . ,Xp, is acyclic (cf.
[*JenTof]) if each induced graph G[Xi ∪Xj] is acyclic, i.e., is a forest. The existence
of an acyclic p-coloring is thus expressed by

∃X1, . . . ,Xp (Part(X1, . . . ,Xp)∧ ·· ·St(Xi) · · · ∧ · · ·NoCycle(Xi ∪Xj) · · ·),

where the conjunctions extend to all 1≤ i < j ≤ p.
These three properties are in EB(PBool), where P is as in Example 6.43(1). For

p-coloring, achromatic p-coloring and acyclic p-coloring, we obtain nondeterministic
automata with respectively 2O(p·k), 2O(p2·k) and 2p2·2O(k)

states, by Proposition 6.42.
We now consider domination problems constrained by particular monadic second-

order properties. The sentence

∃X (θ(X )∧Dom(X ,X )),

where X denotes the complement of X , expresses that there exists a set X that domi-
nates all other vertices (cf. Example 6.43(1)) while satisfying a property specified by
θ . This sentence is thus in EB((P ∪{θ})Bool).

A graph has domatic number at most p if its vertex set can be partitioned into p sets
such that each of these sets dominates all other vertices. That is,

∃X1, . . . ,Xp (Part(X1, . . . ,Xp)∧Dom(X 1,X1)∧ ·· · ∧Dom(X p,Xp)).

Minor inclusion can also be considered as a vertex partitioning problem. We recall
from Lemma 1.13 and Corollary 1.14 that an undirected graph G contains a fixed
simple loop-free undirected graph H as a minor if and only if it satisfies the following
sentence MINORH :

∃X1, . . . ,Xp (Disj(X1, . . . ,Xp)∧Conn(X1)∧ ·· · ∧Conn(Xp)

∧ X1 �= ∅∧ · · · ∧Xp �= ∅∧ · · ·Link(Xi,Xj)∧ ·· ·),

where {v1, . . . ,vp} = VH and there is in MINORH one formula Link(Xi,Xj) for each

edge {vi,vj} of H . We obtain a nondeterministic automaton with 2p·2O(k)+p2·O(k) states
for checking that H is a minor of the given graph; we can use a nondeterministic
automaton with 2O(d·p·k2+p2·k) states if the input graph has degree at most d.

Example 6.43(3) (Perfect graphs) A (simple, loop-free and undirected) graph G is
perfect if, for every induced subgraph H of G, the chromatic number is equal to the
clique number, i.e., the smallest number p such that H is vertex p-colorable equals
the maximum size of a clique of H .

We first consider chordal graphs: they are all perfect ([*Gol]). A nonempty
connected (simple, loop-free and undirected) graph is chordal (Section 2.4.4, Propo-
sition 2.72) if and only if it does not contain an induced cycle Cn for any n≥ 4. The
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existence of such a cycle is expressed as follows:

∃X ,Y (St(X ∩Y )∧Path(X ∩Y ,X )∧Path(X ∩Y ,Y )).

This example is not intended to provide an efficient algorithm for testing chordal-
ity, but to illustrate the use of set terms to get a compact formula. The validity of
Path(X ∩Y ,X ) implies that X ∩Y has cardinality 2. Hence the condition St(X ∩Y )

can be replaced by St2(X ∩ Y ), where St2(Z) means that Z is stable and has two
elements. This is interesting because a complete and deterministic automaton for this
property with only 3+ k(k + 1)/2 states (instead of 2k + 1 for St(Z)) can be easily
constructed; it is similar to the one for edge(X1,X2). Hence, by this observation, we
get (before minimization), a smaller automaton for the nonchordality of nonempty,
connected, simple, loop-free and undirected graphs.

The definition of perfect graphs is not monadic second-order expressible (because
the fact that two sets have the same cardinality is not) but their characterization estab-
lished in [ChuRST] in terms of excluded holes and antiholes is. A hole is an induced
cycle of odd length at least 5 and an antihole is the edge-complement of a hole. A
graph has a hole if and only if it satisfies the following sentence:

∃X ,Y ,Z ,U ,V (Disj(X ,Y ,Z ,U ,V )∧ St(X )∧ St(Y )∧X �= ∅∧Y �= ∅
∧ edge(Z ,U )∧ edge(U ,V )∧¬edge(Z ,V )

∧Deg2(X ,V ∪Y )∧Deg2(Y ,X ∪Z)∧Deg2(V ,U ∪X )∧Deg2(Z ,Y ∪U )

∧¬Link(X ,Z ∪U )∧¬Link(Y ,U ∪V )),

where Deg2(X1,X2) means that each vertex in X1 is adjacent to exactly two vertices
in X2. However, since we consider loop-free graphs, Deg2(X1,X2) is equivalent to
InDeg2(X1,X2) (an undirected edge is a pair of opposite directed edges). Thus, the
property of having a hole (for a loop-free undirected graph) is in EB(PBool).

Every term t ∈ T (FVR
[k] ) can be transformed in linear time (for fixed k) into

an equivalent irredundant one t′ in T (FVR
[k] ) and into an irredundant term t ∈

T (FVR
[2k]) that defines the edge-complement of the graph val(t), see the proof of

Proposition 2.105(4). We obtain that a graph val(t) is perfect if and only if the
FVR
[2k]-automaton for holes rejects both t′ and t.

The algorithm of [ChuCLSV] can test if G is perfect in time O(n9) (where n is the
number of vertices). From this logical expression of holes, we get a fixed-parameter
cubic algorithm for testing perfectness, with clique-width as parameter.

Tests conducted by Durand are reported in [CouDur11].



6.3 CMS formulas compiled into automata 479

6.3.5 Monadic second-order properties of graphs of bounded tree-width

In the previous section, we have constructed automata from monadic second-order
formulas for graphs of bounded clique-width. We have given in this way an alternative
proof of the Weak Recognizability Theorem for the VR algebra and a fixed-parameter
tractable algorithm for the model-checking problem of CMS sentences, the parameter
being the clique-width of the given graph (if the sentence to be checked is fixed). Our
objective is here to do the same for the HR algebra and the model-checking problem
for CMS2 sentences with respect to tree-width. Before embarking on constructions
of automata, let us look at what can be obtained from the results and constructions of
Section 6.3.4.

First, we sketch a proof that the model-checking problem MC(J S[K ,�][∅], CMS)
is fixed-parameter linear with respect to (twd(G),ϕ), where G is the input graph and ϕ

is the input sentence (this is a weakening of Theorem 6.4(1) where the richer language
CMS2 is used). We can derive this result from Theorem 6.35 (or Theorem 6.3(3)) rel-
ative to the VR algebra as follows. Let G be a labeled graph given as val(t) for a term t
over FHR[K ,�]. By the proof of Theorem 4.49, one can transform this term in linear time

into a term t′ over FVR[K ,�] that evaluates to the same graph. Theorem 6.35 gives the
result, with the help of the parsing step described in the proof of Theorem 6.4(1). This
proof has two drawbacks: first, it does not apply to sentences with edge set quantifi-
cations and second, it transforms a term in T (FHR

[k],[K ,�]) into a term in T (FVR
[m],[K ,�])

where m is exponential in k (cf. the discussion in Section 5.3.4).
Another possibility consists in observing that if G is a (K ,�)-labeled graph of tree-

width k , then its incidence graph Inc(G) is a (K ∪�,∅)-labeled simple directed graph
of tree-width at most max{2,k} (cf. Example 2.56(5)). Hence, the previous reduction
is applicable, which answers the first objection but not the second one. However,
the incidence graph of such a graph of path-width k has path-width at most k + 1
(easy) and clique-width at most k + 3 (by Proposition 2.114(1.3)). Hence, the two
drawbacks we are discussing disappear for graphs G of bounded path-width given
by slim terms over FHR

[k+1],[K ,�]. We have observed at the end of Section 6.2.1 that
path-decompositions of width at most any fixed k can be computed in linear time
(for graphs of path-width at most k). From such a decomposition, we can compute
one for Inc(G). Proposition 2.85 shows that it can be converted in linear time into a
slim term over FHR

[k+2],[K∪�,∅], and Proposition 2.114(1.3) shows that this term can be

turned into one over FVR
[k+3],[K∪�,∅] that defines Inc(G). The necessary terms can thus

be constructed in linear time. The constructions of automata of Section 6.3.4 can be
adapted (without the exponential increase of their sizes due to Proposition 2.114(2))
and applied to the model-checking of CMS2 sentences. This observation is developed
in [Cou10].

Since graphs of bounded tree-width are frequently considered, and since the above
reductions use very large sets of port labels, it is useful to have a direct induc-
tive construction of automata, along the lines of Section 6.3.4. As for graphs of
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bounded clique-width, the main task will be to specify the relevant signature (anal-
ogous to FVR(n)) and to construct automata for the atomic formulas. The other
steps will use products, direct and inverse images of automata (cf. Section 6.3.1
and Constructions 6.28 and 6.29).

We will only construct automata that check properties of directed unlabeled graphs
(without sources). The constructions will extend easily to undirected and/or labeled
graphs with sources. In particular, the source names of an s-graph can be specified as
vertex labels. (See the remark after Theorem 6.4, the remarks in Section 5.1.5 about
replacing constant symbols by unary relations, and Remark 6.51 below.)

Definition 6.44 (A variant of the signature FHR) Let C be a finite set of source
labels. We let F ′HRd

C be the derived signature of FHRd
C consisting of the following

constant and operation symbols:

• the constant symbols ∅, a
 and
−→
ab for a,b ∈ C such that a �= b;

• the parallel composition �;
• the source renaming operations renh such that h is a permutation of C;
• the unary (derived) operations miva, for a ∈ C, defined by:

miva(G) := fga(a � G).

The operation miva makes an internal vertex by using the source label a: if a ∈
τ(G), then miva(G)= fga(G); otherwise miva(G) is G⊕ fga(a), i.e., is G augmented
with a new isolated internal vertex. In both cases, the number of internal vertices is
increased by one. Note that τ(miva(G)) = τ(G)− {a}. The other symbols have the
same interpretation as in JSd.

For a term t in T (F ′HRd
C ), the s-graph val(t) is well defined since F ′HRd

C is a
derived signature of FHRd

C . Note that the isolated vertices of val(t) cannot be sources.
Apart from that, FHRd

C and F ′HRd
C generate the same s-graphs. The type τ(t) of t is

defined to be τ(val(t)) and τ(u) := τ(t/u) for u ∈ Nt . We denote by T (F ′HRd
C )∅

the set of terms t in T (F ′HRd
C ) such that τ(t) = ∅, i.e., such that val(t) has no

sources.
If G is a concrete s-graph such that G$ val(t) for a term t in T (F ′HRd

C ), then there
are bijections between EG and the set Occ0(t) of occurrences in t of constant symbols
different from ∅, and between IntG, the set of internal vertices of G, and the set
Occ1(t) of occurrences in t of the unary symbols miva. This fact is made more precise
in the following proposition that uses definitions from Section 2.3.2 and some new
definitions.

We define for every term t in T (F ′HRd
C ) a canonical (concrete) s-graph c′val(t),

to be distinguished from the canonical s-graph cval(t) associated with every t in
T (FHRd). Let t be a term in T (F ′HRd

C ). Without loss of generality, we assume that
C ∩Nt = ∅. For every u ∈ Nt , we denote Occi(t)∩Nt/u by Occi(t)/u and we define
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a concrete s-graph G(u) with edge set Occ0(t)/u, vertex set (Occ1(t)/u)∪ τ(u) and
a-source a for every a ∈ τ(u), by the following bottom-up induction:

If u is an occurrence of ∅, then G(u) :=∅.
If u is an occurrence of a
, then G(u) has vertex a (that belongs to τ(u)) with the

incident loop u.
If u is an occurrence of

−→
ab, then G(u) has vertices a and b and u is an edge from

a to b.
If u is an occurrence of � with sons u1 and u2, then G(u) is the concrete graph

G(u1)� G(u2) (it is easy to check that G(u) is well defined).
If u is an occurrence of renh with son u1, then G(u) is the concrete graph

renh(G(u1)) with every vertex a ∈ τ(u1) renamed into h(a).26

If u is an occurrence of miva with son u1, there are two cases. If a ∈ τ(u1), then
G(u) is the concrete graph fga(G(u1))with vertex a renamed into u. If a /∈ τ(u1),
then G(u) is G(u1) augmented with u as a new internal and isolated vertex.

We will denote G(roott) by c′val(t). It is a concrete s-graph isomorphic to val(t).
It has edge set Occ0(t) and vertex set Occ1(t)∪ τ(t). If t ∈ T (F ′HRd

C )∅ (which means
that val(t) is a graph), then Vc′val(t) = Occ1(t). If G is a concrete graph isomorphic
to c′val(t) by an isomorphism w : G→ c′val(t), then w can be viewed as a bijection
: VG ∪ EG → Occ1(t) ∪Occ0(t). We call such a bijection a simple witness of the
isomorphism of G and val(t). (“Simple” because it is simpler than the witnesses
defined in Section 2.3.2, and to distinguish it from them.)

Proposition 6.45

(1) The same graphs are defined by the terms in T (F ′HRd
C )∅ and in T (FHRd

C )∅.
(2) Let s be a term in T (FHRd

C )∅ that defines a concrete graph G, and w be a canonical
witness of G$ val(s). One can compute in linear time (for fixed C) an equivalent
term t in T (F ′HRd

C )∅ and a simple witness w′ of G $ val(t).
(3) Let L be a set of graphs and A be an automaton with N states such that, for every

term t in T (F ′HRd
C )∅, we have t ∈ L(A ) if and only if val(t) ∈ L. From A , an

automaton B with 2|C| ·N states can be constructed that recognizes the set of
terms t in T (FHRd

C )∅ such that val(t) ∈ L. If A is complete and deterministic,
then so is B.

Proof: (1) Since F ′HRd
C is a derived signature of FHRd

C , the s-graphs it defines are also
defined by terms over FHRd

C . The opposite implication, for graphs (without sources),
follows from (2) that we now prove.

(2) Let s ∈ T (FHRd
C )∅ and w be a canonical witness of G$ val(s). In two steps, we

will transform s into t, and w into w′.

26 If G is a concrete graph and g is a bijection between VG and some set V , then the graph obtained
by renaming every v ∈ VG into g(v) is the unique graph H with VH = V such that (g, Id) is an
isomorphism : G→H , where Id is the identity on EG .
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Step 1: At each occurrence u in s of an operation fgB, we replace this operation by
the composition of the operations fga for all a in B∩ τ(u1), where u1 is the son of u
(in particular, fgB is removed if B∩ τ(u1)= ∅). We obtain in this way an equivalent
term s1 and, easily, a corresponding canonical witness w1.

Step 2: We obtain the desired term t by replacing in s1 every constant symbol a by ∅
and every operation symbol fga by miva.27 Since t is obtained from s1 by replacements
of unary operations, Nt = Ns1 . It is straightforward to show, by bottom-up induction
on u ∈Ns1 , that val(t/u) is obtained from val(s1/u) by removing all isolated sources.
In particular, if s1/u = fga(s1/u1) and the a-source of val(s1/u1) is isolated, then
a /∈ τ(t/u1) and so the operation miva adds an isolated vertex to val(t/u1). Hence
val(t)= val(s1) and G $ val(t). It remains to define a simple witness w′ of this fact.
Recall that Nt = Ns1 . We define w′(e) :=w1(e) if e ∈ EG .

By the definitions of Section 2.3.2, if x∈VG, then w1(x)= (u,a), where a∈ τ(s1/u)
and (u,a) ∈ Xmax, i.e., u is the unique maximal node of s1 in the set {u′ ∈ Ns1 |
(u′,a′) ≈s1 (u,a) for some a′ ∈ C}. The node u cannot be the root of s1 because
τ(s1)= τ(s)=∅. The father v of u is necessarily an occurrence of fga in s1, hence of
miva in t. We take it as w′(x).

A formal proof of the correctness of w′ can be based on a proof that cval(s1)

is isomorphic to c′val(t). By bottom-up induction on u ∈ Nt it can be shown that
the concrete graph that is obtained from ((Exp(s1) � u)/≈s1,u)Xmax (see the proof of
Proposition 2.41) by removing its isolated sources, is isomorphic to G(u). For edges,
the isomorphism is the identity on Occ0(t)/u. For vertices, it maps (u,a) ∈ Xmax to a
if u is the root, and to the father of u otherwise.

To optimize the construction one can, by using Equalities (3), (5) and (9) of
Proposition 2.48, eliminate from s all occurrences of ∅ (cf. Proposition 2.49). Using
Equalities (3) and (9), the occurrences of ∅ in t can be removed except those that are
directly below some miva.

All these computations can be done in time O(|s|).
(3) Let A be an F ′HRd

C -automaton with the stated property. We construct an FHRd
C -

automaton B that, for each input term s of type ∅, simulates the automaton A on
input t, where t is defined from s as in the proof of (2). The states of B are of the
form (A,q) where A ⊆ C and q is a state of A . The final states are all (∅,q) with
q ∈ AccA . In the first component of its state, B computes the type of s. For an input
symbol ∅, a
,

−→
ab, � or renh, the automaton B just simulates A (and updates the

type). For an input symbol a, the automaton B simulates A for the input symbol ∅
(and computes the type {a}). If B arrives in state (A,q) at an input symbol fgB, then
it simulates A (in state q) on the consecutive input symbols miva1 , . . . ,mivam , where
{a1, . . . ,am} = B∩A (and it updates the type to A−B). In the particular case where
m= 0, the state q is unchanged. The detailed construction of B is omitted.

27 For the replacement of a by ∅ see the observation after Proposition 2.49.
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Example 6.46 We let C := {a,b,c,d} and

s := fga,b,d 1(
−→
ab3 �2 fgc4(c6 �5 (

−→
cb8 �7 fga,d 9(a11 �10 d12)))).

The indices 1 to 12 indicate the positions of the term s (in Polish prefix notation). The
concrete graph G $ val(s), with vertices u,v,x,y,z, is

•u −→•v←−•x •y •z .

Its canonical witness w maps vertices as follows:

w(u)= (5,c), w(v)= (2,b), w(x)= (2,a),
w(y)= (10,a), w(z)= (10,d),

and maps the edges (u,v) (defined by the symbol
−→
cb) and (x,v) (defined by the symbol−→

ab) to 8 and 3 respectively.
We apply to s the transformation of Step 1 in the proof of Proposition 6.45(2) and

obtain the term

s1 := fga1( fgb2(
−→
ab4 �3 fgc5(c7 �6 (

−→
cb9 �8 fga10( fgd 11(a13 �12 d14))))))

and the canonical witness w1 that maps vertices as follows:

w1(u)= (6,c), w1(v)= (3,b), w1(x)= (2,a),
w1(y)= (11,a), w1(z)= (12,d),

and maps the edges (u,v) and (x,v) to 9 and 4 respectively. This term is in the left
part of Figure 6.2. Note for example that w1(u) = (6,c): vertex u is defined by c
at position 7 and by

−→
cb at position 9; it is made internal by fgc at position 5 and is

thus represented by w1(u)= (6,c), where 6 is the son of 5 and, therefore, the highest
position where u is still a source.

We now transform s1 according to Step 2 in the proof of Proposition 6.45(2). Then,
we get

t :=miva1(mivb2(
−→
ab4 �3 mivc5(∅7 �6 (

−→
cb9 �8 miva10(mivd 11(∅13 �12 ∅14)))))),

with the simple witness w′ that maps vertices as follows:

w′(u)= 5, w′(v)= 2, w′(x)= 1,
w′(y)= 10, w′(z)= 11

and, as w1, maps the edges (u,v) and (x,v) to 9 and 4 respectively. This term is in the
right-hand side of Figure 6.2. Vertex u is now represented by w′(u)= 5. Note that u
is not a source at position 5. Since c is replaced at position 7 by ∅, vertex u is only
defined by

−→
cb at position 9. The two internal vertices y and z defined in s and in s1

by a and d are now defined by miva and mivd at positions 10 and 11 in t.



484 Algorithmic applications

Figure 6.2 The transformation of Proposition 6.45(2).

We can remove two occurrences of ∅ from t, and obtain the term

t′ :=miva1(mivb2(
−→
ab4 �3 mivc5(

−→
cb9 �8 miva10(mivd 11(∅12))))),

with the same witness w′ (but, to obtain the correct positions, one must subtract 2 from
the numbers 8 to 12). Note that the positions marked 1, 2, 5, 10, 11 in t′ correspond
(by the simple witness) to vertices, and the positions marked 4 and 9 to edges. The
positions marked 3, 8 and 12, which are occurrences of � and ∅, describe no vertex
or edge of G.

One more remark: if in term s we replace the constant symbol
−→
ab by ∅, then,

clearly, the corresponding edge disappears, but also its end vertex x, which may be
undesired. This is so because x and its incident edge are specified by the same symbol−→
ab. If we do this replacement in the term t (or in t ′), then vertex x remains because it
is specified by the first occurrence of miva.

More generally, the terms t in T (F ′HRd
C ) specify the vertices of the graphs they

define by unary operations and the edges by constant symbols. If, in such a term, we
replace by ∅ some constant symbols, we delete the corresponding edges, but delete
no vertices. This remark will be useful for Proposition 6.50. �

The CMS properties of directed graphs G are expressed by sentences of
CMS′({edg},∅) interpreted in the structures �G�. Their CMS2 properties are
expressed by sentences of CMS′({in1, in2},∅) interpreted in the structures �G� =
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�Inc(G)�, cf. Section 5.2.5. We recall that edg�G�(x1,x2) holds if and only if
in1�G�(x3,x1) and in2�G�(x3,x2) hold for some element x3 (that is necessarily an edge
of G).

Let t be a term in T (F ′HR
C ). For building automata associated with the CMS2 for-

mulas expressing properties of the concrete graph G := c′val(t) (cf. Definition 6.44),
we need to encode in t the assignments γ : Xn→ P(VG ∪ EG). We let F ′HRd(n)

C be

the signature obtained from FHRd
C by replacing the symbols miva,

−→
ab and a
 respec-

tively by (miva,w), (
−→
ab,w) and (a
,w), for all w ∈ {0,1}n, of the same arity. For t

in T (F ′HRd
C ) and γ : Xn→ P(Occ0(t)∪Occ1(t)) we define t ∗ γ to be the term in

T (F ′HRd(n)
C ) obtained from t by replacing f by ( f ,wγ (u)) at each occurrence u of

f =miva, f =−→ab or f = a
. Every term in T (F ′HRd(n)
C ) is of the form t ∗γ . Note that,

in general, γ is an assignment : Xn→P(IntG ∪EG), where G is the concrete s-graph
c′val(t).

If ϕ ∈ CMS′({in1, in2},Xn), we let LHR
C,ϕ,n be the set of terms t ∗ γ in T (F ′HRd(n)

C )∅
such that (�c′val(t)�,γ ) |= ϕ. Our objective is to construct an automaton CC,ϕ,n

recognizing this set in the following sense:

LHR
C,ϕ,n = L(CC,ϕ,n)∩T (F ′HRd(n)

C )∅.

Note that CC,ϕ,n is not determined in a unique way by this equality. This condition

is sufficient because we can assume that only terms in T (F ′HRd(n)
C )∅ will be given as

input to CC,ϕ,n. However, the language T (F ′HRd(n)
C )∅ is recognized by an automaton

with 2k states, where k = |C|. Hence, any automaton CC,ϕ,n as above with N states
can be replaced by an automaton with 2k ·N states that recognizes LHR

C,ϕ,n. Moreover,
in the special case where ϕ is a sentence, it follows from Proposition 6.45(3) that
CC,ϕ,0 can be transformed into an automaton with 2k ·N states that recognizes the set
of terms t in T (FHRd

C )∅ such that �val(t)� |= ϕ.
We now present the inductive construction of the automata CC,ϕ,n. It is not

hard to check that if LHR
C,ϕ,n = L(CC,ϕ,n) ∩ T (F ′HRd(n)

C )∅ and LHR
C,ψ ,n = L(CC,ψ ,n) ∩

T (F ′HRd(n)
C )∅, then

LHR
C,ϕ∨ψ ,n = (L(CC,ϕ,n)∪L(CC,ψ ,n))∩T (F ′HRd(n)

C )∅,

LHR
C,ϕ∧ψ ,n = L(CC,ϕ,n)∩L(CC,ψ ,n)∩T (F ′HRd(n)

C )∅, and

LHR
C,¬ϕ,n = (T (F ′HRd(n)

C )−L(CC,ϕ,n))∩T (F ′HRd(n)
C )∅.

If θ is ϕσ , where σ is a substitution of variables or of Boolean set terms (cf.
Lemmas 6.25 and 6.33), which transforms ϕ ∈ CMS′({in1, in2},Xn) into ϕσ ∈
CMS′({in1, in2},Xm), then

LHR
C,θ ,m = h−1

σ (L(CC,ϕ,n))∩T (F ′HRd(m)
C )∅,
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where hσ is defined in these lemmas, extended to an arity preserving mapping :
F ′HRd(m)

C → F ′HRd(n)
C in the obvious way (cf. Section 6.3.4). If θ is ∃Xn+1, . . . ,Xm.ϕ,

then

LHR
C,θ ,n = h(L(CC,ϕ,m))∩T (F ′HRd(n)

C )∅,

where h : F ′HRd(m)
C → F ′HRd(n)

C deletes the last m− n Booleans from each symbol
that encodes an assignment. The last two equalities hold because τ(hσ (t))= τ(t) for
every term t ∈ T (F ′HRd(m)

C ) and similarly for h.
Hence, we need only construct automata for the atomic formulas. The other con-

structions, which use products and direct or inverse images of automata, are similar
or identical to those of Sections 6.3.3 and 6.3.4.

Construction 6.47 (Incidence relations) Our aim is to construct, for each finite set
C of source labels, a complete and deterministic F ′HRd(2)

C -automaton CC,in1(X1,X2) that
recognizes (in the above particular sense) the language LHR

C,in1(X1,X2)
.28

As set of states, we take Q := C ∪ {0,Ok ,Error} of cardinality k + 3 and Ok as
accepting state. The meanings of the states are described in Table 6.13. Although the
automaton to be constructed will have to operate on terms t ∈ T (F ′HRd(2)

C ) of type
τ(t)=∅, the meanings of its states must be specified with respect to terms of all types.
We will use the same convention as before regarding X1 and X2. The vertices and
edges of the concrete graph c′val(t) (for τ(t)=∅) are nodes of t (cf. Definition 6.44).
An edge e of c′val(t) is a leaf and its ends x and y are both on the path between
the root and the leaf e. Hence, the ends of an edge of c′val(t) are above this edge
in t; for τ(t) �= ∅, x and y can be in τ(t): the set of sources of c′val(t). When the
properties Pq are formulated (equivalently) for a node u of t, c′val(t)must be replaced
in Table 6.13 by G(u), as defined in Definition 6.44, i.e., Pq should be satisfied in
(�G(u)�C ,γ (X1)∩ (Nt/u),γ (X2)∩ (Nt/u)).

Table 6.14 shows its transition rules. The construction of CC,in2(X1,X2) is of course
similar.

The automata for the other atomic formulas are similar to this one or to those of
Section 6.3.4. As for terms and graphs in Sections 6.3.3 and 6.3.4, it may be useful
to precompile automata for frequently used properties. We now give some examples.

Construction 6.48 (Precompiled automata) (1) Let Vertices(X ) and Edges(X )

mean respectively that X is a set of vertices and that X is a set of edges. These
first-order set predicates can be useful for shortening the writing of CMS2 for-
mulas. Complete and deterministic automata for them, that have two states, are
straightforward to construct.

28 We write LHR
C,ϕ instead of LHR

C,ϕ,mfv(ϕ) and similarily for CC,ϕ .
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Table 6.13 Meanings of the states of CC, in1(X1,X2).

State q Property Pq

0 X1 = X2 = ∅

Ok
X1 = {e}, X2 = {v} for some e ∈ Ec′val(t),
where v ∈ Intc′val(t) and v is the tail of e

a
X2 = ∅, X1 = {e} for some e ∈ Ec′val(t)
such that the tail of e is the a-source of c′val(t)

Error all other cases

Table 6.14 Transition rules of CC, in1(X1,X2).

Transition rules Conditions

∅→ 0

(
−→
ab,00)→ 0

(
−→
ab,10)→ a
(a
,00)→ 0
(a
,10)→ a

(miva,00)[q]→ q q ∈Q
(miva,01)[a]→Ok a ∈ C

renh[0]→ 0
renh[Ok]→Ok
renh[a]→ h(a) a ∈ C

�[0,q]→ q
�[q,0]→ q q ∈Q

(2) Next consider the construction of CC,edg(X1,X2). We have:

edg(X1,X2) :⇐⇒ ∃X3(in1(X3,X1)∧ in2(X3,X2)).

It follows that by using inverse images, product and direct image, we can get a
nondeterministic automaton with (k + 3)2 states, hence a deterministic one having
2(k+3)2 states (before trimming). We could construct a deterministic automaton with
less states. Rather than doing it, we show that every deterministic automaton must
have at least 2k(k−1) states. Hence, a specific construction would not be very useful.
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For each set R of pairs (a,b) of distinct elements of C, we denote by �R the

term �(a,b)∈R(
−→
ab,00) belonging to T (F ′HRd(2)

C ). It is the parallel-composition of the

constant symbols (
−→
ab,00) for all (a,b)∈R (with �∅ :=∅). For a,b∈C with a �= b, we

let ca,b be the context in Ctxt(F ′HRd(2)
C ) defined as the composition (in any order) of

the unary operations (miva,10), (mivb,01) and (mivd ,00) for every d ∈C−{a,b}. We
have ca,b[�R] ∈ LHR

C,edg(X1,X2)
if and only if (a,b)∈ R. This shows that every complete

and deterministic automaton recognizing LHR
C,edg(X1,X2)

must “know” R exactly after

having traversed from bottom-up a term �R. Hence, it must have at least 2k(k−1)

different states.
(3) Next we consider subgraphs and induced subgraphs. Let G be an s-graph and

X be a subset of VG ∪EG. The property Sub(X ) is defined by

every edge in X has its (possibly equal) ends in X ,

i.e., it means that G has a subgraph H such that VH = VG ∩X and EH = EG ∩X (cf.
Definitions 2.12 and 2.25; its sources are those of G that are in X ). Furthermore, we
denote by SrcG(X ) the set of sources of G that are end vertices of edges in X . We
define an F ′HRd(1)

C -automaton CC,Sub(X1) having the states Error and A for all subsets
A of C. Their meanings for a term t are as follows (with the same notation as in
Table 6.13):

PA : Sub(X1 ∪ Srcc′val(t)(X1)) is true and A= Srcc′val(t)(X1),

PError : Sub(X1 ∪ Srcc′val(t)(X1)) is false, i.e., some edge in X1

has an end that is an internal vertex of c′val(t) not in X1.

The condition on A is meaningful because each element a of τ(t) is the a-source of
the concrete s-graph c′val(t) (cf. Definition 6.44). The accepting state is ∅. Table 6.15
shows the transition rules.

We now construct the more complicated automaton for the property Ind(X ) defined
as follows, for an s-graph G and a subset X of VG ∪EG:

X is the set of edges and vertices of an induced subgraph of G (cf. Defini-
tion 2.12), i.e., Sub(X ) holds and every edge of G having its ends in X is
in X .

The latter requirement is equivalent to NoEdge((VG ∩X )∪ (EG−X )), where, for an
s-graph G and a subset X of VG ∪EG, the property NoEdge(X ) means:

no edge in X has its ends in X .

We first construct the automaton CC,NoEdge(X1). Its states are Error and the triples
(A,B,R) such that A,B⊆ C and R is a set consisting of subsets of C of cardinality 2.
This automaton has 22k+k(k−1)/2+ 1 states whose meanings are as follows:
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Table 6.15 Transition rules of CC,Sub(X1).

Transition rules Conditions

∅→∅
(
−→
ab,0)→∅
(
−→
ab,1)→{a,b}
(a
,0)→∅
(a
,1)→{a}
(miva,0)[A]→ A a /∈ A

(miva,1)[A]→ A−{a}
renh[A]→ h(A)

�[A,B]→ A∪B

PError : some edge in X1 has its two (possibly equal) ends in X1.
P(A,B,R) is the conjunction of four conditions:

(1) PError does not hold;
(2) A={a∈ τ(t) | a is the vertex incident with a loop of c′val(t) that belongs

to X1};
(3) B= {b ∈ τ(t) | b is an end of an edge of c′val(t) that belongs to X1 and

has its other end in X1};
(4) R is the set of sets {a,b} such that a,b ∈ τ(t), a �= b, and a and b are the

ends of an edge of c′val(t) that belongs to X1.

The accepting state is (∅,∅,∅). Table 6.16 shows the transitions.
For obtaining CC,Ind(X1), we let h be the mapping F ′HRd(1)

C →F ′HRd(1)
C such that, for

every a,b ∈ C and i ∈ {0,1}: h((
−→
ab, i)) := (

−→
ab,1− i) and h((a
, i)) := (a
,1− i), and

that does not modify the other symbols. It is clear (cf. Lemma 6.33 on substitutions
of Boolean set terms) that

LHR
C, Ind(X1)

= LHR
C,Sub(X1)

∩ h−1(LHR
C,NoEdge(X1)

),

so that we obtain easily CC, Ind(X1) as a product of CC,Sub(X1) and an inverse image of
CC,NoEdge(X1). It has 23k+k(k−1)/2+ 1 states.

Construction 6.49 (Relativizations) We now show that relativizations can be
obtained along the lines of Construction 6.37, with some more technical details. We
consider a property P(X1, . . . ,Xn) of sets of edges and vertices. We let Q(X1, . . . ,Xn+1)
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Table 6.16 Transition rules of CC,NoEdge(X1).

Transition rules Conditions

∅→ (∅,∅,∅)
(
−→
ab,0)→ (∅,∅,∅)
(
−→
ab,1)→ (∅,∅, {{a,b}})
(a
,0)→ (∅,∅,∅)
(a
,1)→ ({a},∅,∅)
(miva,0)[(A,B,R)]→ (A′,B′,R′) A′ = A−{a},

B′ = B−{a},
R′ is R without the pairs containing a

(miva,1)[(A,B,R)]→ (A,B′,R′) a /∈ A∪B,
B′ = B∪{b | {a,b} ∈ R},
R′ is R without the pairs containing a

renh[(A,B,R)]→ (h(A),h(B),h(R))

�[(A,B,R),(A′,B′,R′)]→ (A′′,B′′,R′′) A′′ = A∪A′,
B′′ = B∪B′,
R′′ = R∪R′

be the property such that, for all sets of edges and vertices X1, . . . ,Xn+1 of a graph
G (without sources), the set Xn+1 satisfies Sub(Xn+1), hence defines a subgraph H
of G, and P(X1 ∩ Xn+1, . . . ,Xn ∩ Xn+1) is true in H . We will construct an automa-
ton CC,Q(X1,...,Xn+1) from CC,P(X1,...,Xn) with the help of the automaton CC,Sub(X1) of
Construction 6.48(3).

We let h be the mapping : F ′HRd(n+1)
C → F ′HR(n)

C such that, for every a,b ∈ C with
a �= b and every w ∈ {0,1}n:

h((
−→
ab,w0)) :=∅,

h((
−→
ab,w1)) := (

−→
ab,w),

h((a
,w0)) :=∅,

h((a
,w1)) := (a
,w),

h((miva,w0)) := renId (where Id is the identity : C→ C), and

h((miva,w1)) := (miva,w).



6.3 CMS formulas compiled into automata 491

The other symbols are not modified by h. We use the “neutral” constant symbol ∅ in
order to replace the constant symbols that specify the deleted edges, and the “neutral”
unary symbol renId (denoting the identity operation) in order to replace the unary
symbols (miva,w0) that specify the deleted vertices. We let also h′ : F ′HRd(n+1)

C →
F ′HR(1)

C delete the first n Booleans of each sequence.
With these definitions and notation we have:

Proposition 6.50 LHR
C,Q(X1,...,Xn+1)

= LHR
C,Sub(Xn+1)

∩ h−1(LHR
C,P(X1,...,Xn)

) and thus

CC,Q(X1, ...,Xn+1) can be defined as h′−1(CC,Sub(X1))∩h−1(CC,P(X1,...,Xn)). Similar facts
hold for induced subgraphs, with Ind(Xn+1) instead of Sub(Xn+1).

Proof: The proof is similar to that of Lemma 6.38 except that we must take into
account that Xn+1 defines a subgraph.

Claim 6.50.1 Let t ∈ T (F ′HRd
C )∅, G := c′val(t) and H be a subgraph of G. Let

U := VH ∪EH , so that Sub(U ) holds in G. Then H = c′val(h(t ∗ γ )), where γ is the
X1-assignment such that γ (X1)=U .

Proof: Let t′ := h(t ∗ γ ) and H ′ := c′val(t′). Note that G, H and H ′ are concrete
graphs with vertices and edges belonging to Nt =Nt′ by the definitions. It is clear that
H and H ′ have the same edges (i.e., EH = EH ′ , but we will verify that the incidences
are the same) and the same internal vertices.

Let us check that the incidences in H and H ′ are the same. Let e be an edge of
H ′ brought in by an occurrence u (in U ) of a constant symbol

−→
ab or a
. Its tail x in

H ′ (introduced as the a-source in the corresponding basic graphs) is made internal
by some operation mivc, precisely at occurrence x. Some renamings on the path in t′
between u and x have transformed a into c. These renamings are not modified by h.
Let y be the tail of e in H . If y �= x, then y is an occurrence (below x) of some operation
mivd that has been changed into renId by h. But this implies that y is not in U whereas
it is the tail of the edge e ∈ U . This contradicts the fact that H is a subgraph of G.
Hence y= x. The same argument works for the heads of the edges of H ′.

Since the incidences in H and H ′ are the same, all edges of H ′ are incident with
internal vertices of H ′. Thus, H ′ has no sources (because sources of any c′val(t′)
cannot be isolated). Hence H ′ has the same vertices as H , and so H ′ = H . This
proves the claim. �

We now prove the proposition. Let t∗γ belong to T (F ′HRd(n+1)
C )∅ and G := c′val(t).

Moreover, let γ (Xn+1) be the set of vertices and edges of a subgraph H of G, i.e.,
let t ∗ γ belong to LHR

C,Sub(Xn+1)
. Then h(t ∗ γ )= t′ ∗ γ ′, where c′val(t′)= H (by the

claim) and γ ′ is the assignment : Xn → P(EH ∪ VH ) such that γ ′(Xi) = γ (Xi) ∩
γ (Xn+1) for each i. It follows that t ∗ γ ∈ LHR

C,Q(X1,...,Xn+1)
if and only if t′ ∗ γ ′ ∈

LVR
C,P(X1,...,Xn)

. Hence LHR
C,Q(X1,...,Xn+1)

=LHR
C,Sub(Xn+1)

∩h−1(LHR
C,P(X1,...,Xn)

). The assertion
about automata follows immediately.

The proof is the same for induced subgraphs.
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Remark 6.51 (Labeled graphs with sources) We adapt the above definitions to
(K ,�)-labeled graphs. We will use the constant symbols

−→
abλ and a
λ for defining

directed edges and loops labeled by λ ∈�, and, for a ∈ C and α = {κ1, . . . ,κp} ⊆ K ,
the derived operations miva,α defined by

miva,α(G) := fga(aκ1 � · · ·� aκp � G).

We get a signature F ′HRd
C,[K ,�]. Note that for a term t in T (F ′HRd

C,[K ,�]) the sources of val(t)
do not have labels in K .

Proposition 6.45 can be extended to labeled graphs. In the proof of Statement (2),
the desired term t is obtained by replacing in s1 every occurrence of a constant symbol
a by ∅, and every occurrence u of an operation symbol fga by miva,α , where α is
the set of labels of the a-source of val(s1/u1) and u1 is the son of u. In the proof of
Statement (3), the automaton B has states (A,α,q), whereα is a mapping : A→P(K).
For input term s, it computes the set of labels α(a) ⊆ K of each a-source of val(s).
Thus, B has (2|K | + 1)|C| ·N states.

Constructions 6.47, 6.48 and 6.49 extend in a straightforward manner to the con-
struction of automata for checking the CMS2 properties of (K ,�)-labeled graphs of
bounded tree-width. They yield fixed-parameter linear model-checking algorithms
with respect to tree-width because the parsing problem is not more difficult for labeled
graphs than for unlabeled ones, as we have observed in the proof of Theorem 6.4(1),
cf. Proposition 2.47(2).

For checking the properties of (K ,�)-labeled s-graphs, we convert source names
into vertex labels. If C is a finite set of source names, we let C := {a | a ∈C} be a set
of vertex labels disjoint from K ∪� and from the set A of source names. Every
(K ,�)-labeled s-graph G of type A = {a1, . . . ,as} ⊆ C, defined by a term t ∈
T (F ′HRd

C,[K ,�]), is converted into the (C ∪K ,�)-labeled graph G defined by the term

miva1,{a1}∪α1(· · ·(mivas,{as}∪αs(t) · · ·)),

where αi is the set of vertex labels of the ai-source of G. It is then routine work to
transform a CMS2 sentence expressing a property of G, to be interpreted in �G�C , into
one that expresses the same property of G, to be interpreted in �G �. Hence, all con-
structions done in this section and the associated algorithms extend to (K ,�)-labeled
s-graphs of bounded tree-width. �

We conclude this section by observing that the constructions of automata for check-
ing properties of graphs of bounded tree-width are more complicated than those for
graphs of bounded clique-width (developed in Section 6.3.4). For graphs of bounded
path-width (and also for larger classes as shown in [Cou10]), the constructions of
Section 6.3.4 can be adapted to the model-checking of CMS2 properties as explained
in the introduction of this section.
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6.4 Other monadic second-order problems solved with automata

In the previous section, we have constructed automata for solving model-checking
problems. We will show how these constructions can be used or adapted for solving
related algorithmic problems. Whereas model-checking problems concern properties
specified by monadic second-order sentences, the problems considered in this section
will be specified by monadic second-order formulas with free variables.

6.4.1 Property-checking problems

Let R be a relational signature without constant symbols and ϕ be a formula
in CMS(R,X ,z), where X = (X1, . . . ,Xn) and z = (z1, . . . ,zm). We define new
unary relations P1, . . . ,Pn and Q1, . . . ,Qm intended to represent γ (X1), . . . ,γ (Xn) and
{γ (z1)}, . . . ,{γ (zm)} respectively for some (X ∪ z)-assignment γ in an R-structure.
We let P := {P1, . . . ,Pn,Q1, . . . ,Qm} and we transform the formula ϕ into a sen-
tence ϕ̂ ∈ CMS(R ∪ P ,∅) as follows. Without loss of generality, we assume that
X1, . . . ,Xn,z1, . . . ,zm have no bound occurrence in ϕ.

Step 1, concerning X1, . . . ,Xn. We replace every atomic formula of the form x ∈ Xi

by Pi(x) (where x is some zj or some bound first-order variable) and every atomic
formula Cardp,q(Xi) by ∃X (Cardp,q(X )∧∀x(Pi(x)⇔ x ∈ X )).

Step 2, concerning z1, . . . ,zm. We replace every atomic formula θ having among
its free variables zi1 , . . . ,zis , listed in such a way that 1 ≤ i1 < i2 < · · · < is ≤ m, by
the formula ∃zi1 , . . . ,zis(Qi1(zi1)∧ ·· · ∧Qis(zis)∧ θ). The first-order variables not in
z are not modified by this transformation.

We obtain a sentence ϕ′ (the variables X1, . . . ,Xn,z1, . . . ,zm are no longer free). We
then let ϕ̂ be

ϕ′ ∧
∧

1≤i≤m
∃x(Qi(x)∧∀y(Qi(y)⇒ y= x)).

The quantifier-height of ϕ̂ is larger than that of ϕ by a constant at most max{2,ρ(R)}.
It has first-order variables that can be eliminated by Lemma 6.17 (Section 6.3.2).
With these definitions and notation, we have:

Lemma 6.52 For every concrete R-structure S and every (X ∪ z)-assignment γ in S
we have

(S,γ ) |= ϕ if and only if S+ γ |= ϕ̂,

where S+ γ is the (R∪P)-structure that expands S by γ (Xi) as interpretation of Pi

and {γ (zj)} as interpretation of Qj for i= 1, . . . ,n and j = 1, . . . ,m. �

The validity of this lemma is clear from the construction. We now apply the lemma
to terms and graphs.

If S = �t� for a term t, then γ specifies nodes and sets of nodes of its syntactic tree
and S+γ is equivalent to �t ∗γ � (this technical point will be discussed in Chapter 7,
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Definition 7.20). Sentences over S+γ are translatable into equivalent sentences over
�t ∗ γ � (and vice versa).

For the application to graphs, there are two cases. If S = �G�, then γ specifies
vertices and sets of vertices. Then, S + γ = �G′�, where G′ is obtained from G
by attaching new labels to its vertices. The corresponding transformation of terms
in T (FVR) is easy (cf. Proposition 2.100): we need only modify certain constant
symbols. If S = �G�, then γ specifies vertices, edges and sets thereof. Then, S +
γ = �G′�, where G′ is obtained from G by attaching new labels to its vertices and
to its edges.29 The corresponding transformation of terms in T (FHR) is also easy
(cf. Proposition 2.47(2)). In both cases, we need not perform another parsing of
the given graph G and the corresponding transformations of terms can be done in
linear time.

Hence, Theorems 6.3 and 6.4 extend to the corresponding property-checking prob-
lems. The sizes of the data include those of the input assignment γ , defined by
‖γ ‖ := m+ n+�j∈[n] |γ (Xj)|, and the verification that γ satisfies a given monadic
second-order formula can be done within the same time bounds. The size of γ is at
most m+n · |DS |, hence it is at most linear in the number of elements of the considered
structure S.

The above proof of the extension of Theorems 6.3 and 6.4 to property-checking
is based on Lemma 6.52 and Theorems 6.3 and 6.4. Alternatively, we can use the
automata constructed in the previous sections. Let ϕ be a formula in CMS′(RF ,Xn).
Then (�t�,γ ) |=ϕ if and only if t∗γ ∈Lϕ,n. Now letϕ be a formula in CMS′(Rs,C ,Xn),
let t be a term in T (FVR

C ) such that G $ val(t) and let w be a witness of that. Then
(�G�C ,γ ) |= ϕ if and only if t ∗ γ ′ ∈ LVR

C,ϕ,n, where γ ′(Xi) := w(γ (Xi)) for i ∈ [n].
Similarly, if ϕ is a formula in CMS′(Rm,Xn) and t is a term in T (F ′HRd

C )∅ such that
G $ val(t) with simple witness w, then (�G�,γ ) |= ϕ if and only if t ∗ γ ′ ∈ LHR

C,ϕ,n,
with the same definition of γ ′.

6.4.2 Listing and selection problems for monadic second-order queries

Definition 6.53 (Listing and selection problems) The listing problem consists in
computing the set sat(S,ϕ,(X1, . . . ,Xn))⊆ P(DS)

n for a given concrete R-structure
S and a given formula ϕ in CMS′(R,Xn). In this context, the formula ϕ is also called
a query.

The size of the output A= sat(S,ϕ,(X1, . . . ,Xn)) is defined as

‖A‖ :=
∑

(U1,...,Un)∈A

(n+|U1|+ · · ·+ |Un|),

29 There are two small technical problems here, that can easily be solved. Since several labels may be
needed for one edge, these must be coded as one label. Also, a label may be on both a vertex and an
edge, so these labels must be distinguished from each other (because K and � must be disjoint).
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and must be distinguished from its cardinality |A|. It can be exponential in |DS |.
However, we have ‖A‖ ≤ n · |A| · (1+|DS |). An algorithm for a listing problem will
be said to operate in linear time if its computation time is linear in the size of the
input plus the size of the output.

The selection problem consists in computing one n-tuple belonging to the set
sat(S,ϕ,(X1, . . . ,Xn)) for a given concrete R-structure S and a given formula ϕ in
CMS′(R,Xn), or in reporting that this set is empty. The size of the output is at most
n · (1+|DS |), hence, the evaluation of the time taken by an algorithm for this problem
will be done in terms of the size of the input, as usual.

We first present algorithms for these problems in the case of monadic second-order
queries on terms. These algorithms operate in linear time. We let F be a finite func-
tional signature, ϕ be a formula in CMS′(RF ,Xn) and A be the associated complete
and deterministic F (n)-automaton Aϕ,n that recognizes Lϕ,n. We let h : F (n)→ F be
the arity preserving mapping that deletes the Booleans of the symbols in F (n). Note
that Nh(s)=Ns for every s∈ T (F (n)). Let t ∈ T (F). By the definitions of Section 6.3.3,
an n-tuple (U1, . . . ,Un) of subsets of Nt belongs to sat(�t�,ϕ,(X1, . . . ,Xn)) if and only
if there is a term s in L(A ,q) ⊆ T (F(n)) such that h(s) = t, q is an accepting state
and, for each i ∈ [n], Ui is the set of occurrences in s of a symbol ( f ,w) such that
w[i] = 1.

The following definitions generalize this fact. Instead of F (n), we take an arbitrary
finite functional signature H and an arity preserving mapping h : H→F . We letA be a
complete and deterministic H -automaton. We let J be an n-tuple (J1, . . . ,Jn)of subsets
of H . For every s ∈ T (H ), we let NJ (s) denote the n-tuple (U1, . . . ,Un) of subsets of
Ns such that Ui := {v ∈Ns | labs(v) ∈ Ji} (in other words, Ui is the set of occurrences
v of symbols in Ji). More generally, if u ∈ Ns, we let NJ (s)/u denote the n-tuple
(U1, . . . ,Un) of subsets of Ns/u such that Ui := {v ∈ Ns | v ≤s u and labs(v) ∈ Ji} (it
is the set of occurrences v of symbols in Ji that are below u).

For t ∈ T (F), u ∈ Nt and q ∈QA , we let

satJ (u,q) := {NJ (s)/u | s ∈ h−1(t)∩L(A ,q)},

and for P ⊆QA , we let

satJ (u,P) := λq ∈ P · satJ (u,q).

Finally, we let

satJ (t) :=
⋃
{satJ (roott ,q) | q ∈ AccA },

and we have

satJ (t)= {NJ (s) | s ∈ h−1(t)∩L(A )}.
For q �= q′, the sets satJ (u,q) and satJ (u,q′) are disjoint, because the automaton A

is deterministic, hence the union in the definition of satJ (t) is a disjoint union. Since
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Nh(s) = Ns for every s ∈ T (H ), the set satJ (u,q) consists of tuples (U1, . . . ,Un) with
Ui ⊆ Nt/u, and so satJ (t)⊆P(Nt)

n.
With these definitions and notations, we have the following proposition from

[FluFG].

Proposition 6.54
(1) There is an algorithm that computes, for every term t in T (F), the set satJ (t) in

time O(|t|+ ‖satJ (t)‖).
(2) There is an algorithm that computes, for every term t in T (F), some element of

satJ (t), or reports that this set is empty, in time O(|t|).
Proof: For simplicity we assume that F and H only contain symbols of arity 0 and
2. The proofs extend easily to the general case.

(1) We first show that the mappings satJ (u,QA ) can be computed by bottom-
up induction on the node u. To do that, we recall the definition of the operation
� from Section 5.3.1 (after Proposition 5.37). Let D and D′ be disjoint sets. If
U = (U1, . . . ,Un) ∈P(D)n and V = (V1, . . . ,Vn) ∈P(D′)n, then U �V is the n-tuple
(U1∪V1, . . . ,Un∪Vn). (In this case, � is nothing but componentwise disjoint union.)
For A⊆P(D)n and B⊆P(D′)n, we have defined A � B as {U � V |U ∈ A, V ∈ B}.
Note that A � B= ∅ if and only if A= ∅ or B= ∅.

For a node u of t that is an occurrence of f ∈ F2, with sons u1 and u2, we have

satJ (u,q)=
⊎
{UJ , f ′ � satJ (u1,q1)� satJ (u2,q2) | h( f ′)= f , f ′[q1,q2]→A q},

(6.3)
where UJ , f ′ is the singleton {(U1, . . . ,Un)} such that Ui = {u} if f ′ ∈ Ji and Ui =∅ if
f ′ /∈ Ji.

For a node u that is an occurrence of f ∈ F0 (hence is a leaf ), we have

satJ (u,q)=
⊎
{UJ , f ′ | h( f ′)= f , f ′ →A q}. (6.4)

These equalities show that the mappings satJ (u,QA ) (for all u ∈ Nt) can be com-
puted bottom-up. It remains to prove that the set satJ (t) can be computed in linear
time. Since satJ (t) is the union of the sets satJ (roott ,q) for q ∈ AccA , it suffices to
prove that the mapping satJ (roott ,AccA ) can be computed in linear time. We will
use two ideas:

(a) to compute only those (nonempty) sets satJ (u,q) that are needed for the
computation of some (nonempty) set satJ (roott ,p) for some p ∈ AccA ;

(b) to compute A � B in an efficient way.

First we discuss (a). For t ∈ T (F) and u ∈ Nt , we define call(u) ⊆ QA by the
following top-down induction on the syntactic tree of t:

(i) for the root of t, we define call(roott) as the set of all accepting states q of A

such that satJ (roott ,q) �= ∅;
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(ii) for a node u of t that is an occurrence of some f ∈ F2, with sons u1 and u2, we
define call(u1) as the set of states p of A for which there exist states q1 and q2,
a symbol f ′ in h−1( f ) and a state q ∈ call(u) such that p= q1, f ′[q1,q2]→A q
and satJ (ui,qi) �= ∅ for i = 1 and i = 2; we define similarly call(u2) with the
condition p= q2 instead of p= q1.

Equalities (6.3) and (6.4) form a recursive definition of the sets satJ (u,q). We
can see that call(u) consists of all states q such that the nonempty set satJ (u,q) is
called during the recursive computation of some nonempty set satJ (roott ,p) with
p ∈ AccA . Thus, in order to compute the set satJ (t), it suffices to compute the
mappings satJ (u,call(u)) for all nodesu. Let us abbreviate satJ (u,call(u)) into sat(u).
Thus,

sat(u)= λq ∈ call(u) · satJ (u,q).

Note that, for an occurrence u of f ∈ F2 with sons u1 and u2, the mapping sat(u)
can be computed from the mappings sat(u1) and sat(u2) by using Equality (6.3);
moreover, each set satJ (ui,qi) with qi ∈ call(ui) is needed in the computation of
some set satJ (u,q) with q ∈ call(u).

Since satJ (u,q)=∅ if and only if �A ,h−1(t/u,q)= 0, we can use Proposition 6.12
to determine, for all u and q, which of the sets satJ (u,q) are nonempty. We use for
that a bottom-up computation30 on t that takes linear time. From this preliminary
computation and the definition of call(u), we can compute all sets call(u) in linear
time by a top-down computation on t. Finally, the mappings sat(u)= satJ (u,call(u))
can be computed by a bottom-up computation on t. It remains to prove that this
computation can be done in linear time too.

Second we discuss (b).31 We first note that the union of two disjoint sets can be
computed in constant time: just add the sets32. Now we consider the computation of
A � B, for nonempty sets A ⊆ P(D)n and B ⊆ P(D′)n such that D∩D′ = ∅. When
computing U � V , for U ∈ A and V ∈ B, we make a copy of both U and V (in time
‖U‖+ ‖V‖ = ‖U � V‖+ n) and compute their componentwise union (in constant
time). However, when U is used for the last time we do not copy U but we use U
itself, and similarly for V . In this way A � B is computed in time

O(1+ 2n · |A � B|+ ‖A � B‖0−‖A‖0−‖B‖0),
where ‖A‖0 :=�(U1,...,Un)∈A(|U1|+· · ·+|Un|), i.e., ‖A‖=‖A‖0+n · |A|. It is straight-
forward to show that this is O(1+‖A�B‖0−‖A‖0−‖B‖0), provided ‖A‖0 �= 0 and
‖B‖0 �= 0.33 If ‖A‖0 = 0, i.e., A is the singleton {(∅, . . . ,∅)}, then A � B = B (and

30 Note that in this computation we can actually work with Booleans and replace multiplication and
addition by ∨ and ∧ respectively (because x · y = 0 if and only if x = 0 or y = 0, and x+ y = 0 if and
only if x= 0 and y= 0).

31 This presentation corrects some imprecisions of [FluFG].
32 A set can be represented by a linked list with an additional pointer to the end of the list. To compute the

union of two disjoint sets, the end of the first set is linked to the beginning of the second set. Note that
this destroys the given sets.

33 To be precise, |A � B| = |A| · |B| ≤ 2+‖A � B‖0−‖A‖0−‖B‖0.
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similarly, if ‖B‖0 = 0 then A � B = A). Hence, A � B can be computed in time
O(1+‖A � B‖0−‖A‖0−‖B‖0), for arbitrary nonempty sets A and B. Note that A
and B are no longer available after the computation of A � B.

A similar argument holds for arbitrary expressions that are written with the oper-
ations 1 and �. As an example, we can compute E = (A � B) 1 (A � C) in time
O(1+‖E‖0−‖A‖0−‖B‖0−‖C‖0): first we make a copy A′ of A (in time ‖A‖), and
then we compute A′�B and A�C as indicated above. From this fact it is clear that,
for every node u with sons u1 and u2, we can compute sat(u) from sat(u1) and sat(u2)

in time O(1+‖sat(u)‖0−‖sat(u1)‖0−‖sat(u2)‖0), where ‖sat(u)‖0 is defined as∑
q∈call(u) ‖satJ (u,q)‖0. Since sat(u) can be computed in constant time for a leaf

u, this shows that the set sat(roott) can be computed in time O(|t| + ‖sat(roott)‖0),
and hence that the set satJ (t) can be computed in time O(|t|+ ‖satJ (t)‖0), which is
O(|t|+ ‖satJ (t)‖).

(2) We use an easy variant of the proof of (1). Instead of computing all tuples of
satJ (u,q), q ∈ call(u), we compute only one of them. For each u this computation
takes constant time, because for tuples U and V the tuple U �V can be computed in
constant time.

The method of [FluFG] used in the above proof is based on the direct transla-
tion of CMS formulas into automata described in Sections 6.3.3–6.3.5. An important
ingredient is the efficient use of the operation �. This operation arises in the state-
ment of the Splitting Theorem and also when, as above, we compute the sets
sat(�t�,ϕ,(X1, . . . ,Xn)) with automata.

In Definition 6.1, fixed-parameter tractable algorithms are for decision problems,
hence, they output only True or False. For the next theorem, we extend the definition
by requiring that the computation time is bounded, for every input d with correspond-
ing output e, by an expression of the form f ( p(d)) · (|d|c + |e|), where f is a fixed
computable function, c is a fixed positive integer and |e| is an appropriate notion
of size for e. Note that this size may be exponentially larger than |d| for the listing
problem. This is not the case for the selection problem, and the computation time
can be bounded by f ( p(d)) · |d|c as in Definition 6.1. If c is 1 (or 3), we say that the
algorithm is fixed-parameter linear (or cubic respectively).

Theorem 6.55

(1) There exist fixed-parameter linear algorithms for solving the monadic second-
order listing and selection problems on terms. The parameter is (F ,ϕ), where the
given term is in T (F) and the given formula is ϕ.

(2) There exist fixed-parameter cubic algorithms for solving the listing and selection
problems for simple (K ,�)-labeled graphs and CMS′ queries. The parameter is
(cwd(G),ϕ), where the given (K ,�)-labeled graph is G and the given formula
is ϕ. The size of the input graph is its number of vertices.

(3) There exist fixed-parameter linear algorithms for solving the listing and selec-
tion problems for (K ,�)-labeled graphs and CMS′2 queries. The parameter is
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(twd(G),ϕ) where the given (K ,�)-labeled graph is G and the given formula is
ϕ. The size of the input graph G is ‖G‖.

Proof: (1) Let ϕ be a formula in CMS′(RF ,Xn). We apply Proposition 6.54 by
letting H := F(n), h be the arity preserving mapping : F(n) → F that deletes the
Booleans, J := (J1, . . . ,Jn) with Ji := {( f ,(w1, . . . ,wn)) ∈H |wi = 1}, and A be the
complete and deterministic F(n)-automaton Aϕ,n that recognizes Lϕ,n (as constructed
in Section 6.3.3). Then sat(�t�,ϕ,(X1, . . . ,Xn)) = {NJ (s) | s ∈ h−1(t) ∩ L(A )} =
satJ (t).

(2) and (3): the proofs are similar, with the constructions in Sections 6.3.4 and 6.3.5
of automata recognizing LVR

C,ϕ,n and LHR
C,ϕ,n (cf. the last paragraph of Section 6.4.1).

As shown in the proof of Theorem 6.4, C = [h�(G)] and C = [twd(G) + 1]
respectively.

6.4.3 Monadic second-order counting and optimizing functions

Monadic second-order counting and optimizing functions have been defined
in Definition 6.5. By using the counting and optimizing automata defined in
Section 6.3.1, we can prove the following theorem. Detailed formulations are as
for Theorem 6.55.

Theorem 6.56 Monadic second-order counting and optimization functions defined
by CMS′ formulas can be computed by fixed-parameter linear algorithms on terms
and by fixed-parameter cubic algorithms on graphs for clique-width as the parameter.
Such functions defined by CMS′2 formulas can be computed by fixed-parameter linear
algorithms on graphs for tree-width as the parameter.

Proof: We first consider the evaluation of counting functions on syntactic trees of
terms in T (F). Let ϕ be a formula in CMS′(RF ,Xn ∪ {Y1, . . . ,Yp}). We first assume
that p = 0. We let H , h, J and A be as in the proof of Theorem 6.55(1). Then the
integer �sat(�t�,ϕ,(X1, . . . ,Xn)) to be computed is the cardinality of the set {NJ (s) |
s ∈ h−1(t)∩L(A )}. Since NJ (s) �=NJ (s

′) for distinct elements s and s′ of h−1(t), we
obtain that:

�sat(�t�,ϕ,(X1, . . . ,Xn))= |h−1(t)∩L(A )| =
∑

q∈AccA

�A ,h−1(t,q).

We can then apply Proposition 6.12. For the case of �sat(�t�,ϕ,(X1, . . . ,Xn),γ ), where
p> 0 and γ is an {Y1, . . . ,Yp}-assignment in S :=�t�, we apply this algorithm to S+γ ,
as we have done in Section 6.4.1.

For computing optimizing functions for terms, we also use Proposition 6.12. We
use the same notation as above, with n = 1, and we write X for X1 and J for J1 =
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{( f ,1) | f ∈ F}. For p= 0 we obtain that

Maxsat(�t�,ϕ,X ) = max{|s|J | s ∈ h−1(t)∩L(A )}
= max{MaxA ,h−1,J (t,q) | q ∈ AccA }.

These proofs extend to graphs, as in the proof of Theorem 6.55 (Assertions (2)
and (3)).

The results of Theorems 6.55 and 6.56 for terms and graphs of bounded tree-
width are proved in [CouMos] as consequences of the Splitting Theorem for n-ary
QDP-QF operations (Theorem 5.57). This version of the theorem is needed for the
graphs defined by the operations of the HR algebra because the parallel-composition
fuses constants of its argument structures. Since the corresponding splitting is
expressed in terms of disjoint unions, the cardinalities of the considered sets can
be obtained by additions. More general evaluations are described in [CouMos].
They can also be implemented on top of deterministic automata, as in the proofs
of Theorems 6.55 and 6.56.

6.4.4 Other algorithmic applications

(1) Enumeration problems

An enumeration algorithm of a set A of the form sat(S,ϕ,(X1, . . . ,Xn)) outputs one by
one and without repetition the elements of A. The listing algorithms of Theorem 6.55
are actually enumeration algorithms, but here we are interested in the delay, that is,
in the computation time between two outputs. An enumeration algorithm has linear
delay if this time is linear in the size of the next output. Linear delay enumeration
algorithms of sets sat(�G�,ϕ,(X1, . . . ,Xn)) for CMS formulas ϕ and graphs G of
bounded clique-width are constructed in [Bag] and [Cou09]. Both algorithms are
based on the automata constructed in Sections 6.3.3–6.3.5, but they need an additional
step: the terms t that define the considered graphs G must be a-balanced, i.e., have
height at most a · log(|VG|) for fixed a. We refer to [CouVan], [CouTwi] and [CouKan]
for the transformations of terms in T (FHR

C ) or in T (FVR
C ) into a-balanced equivalent

ones, for fixed values of a, but at the cost of using more source or port labels. These
results give an alternative proof of Theorem 6.55.

(2) Reduction

Every CMS-definable set of graphs of tree-width at most k (where k is known) can
be recognized by reduction. This means that there exists a finite set of Noetherian
graph rewriting rules and a finite set of accepting irreducible graphs. The input graph
G is rewritten until an irreducible graph H is obtained. The graph G is recognized
if and only if H is accepting. The graph G need not be of tree-width at most k , and
need not be parsed. If its tree-width is more than k , some irreducible graph that is not



6.4 Other MS problems solved with automata 501

accepting will be reached. A positive answer does not yield a tree-decomposition of
the input graph.

This result gives different fixed-parameter linear graph algorithms for the problem
considered in Theorem 6.4(1). The general theorem is proved in the article [ArnCPS]
and the algorithm is improved in [BodvAnt].

(3) Labeling schemes

A labeling scheme for checking a property P(X1, . . . ,Xn) of sets of vertices X1, . . . ,Xn

of the graphs of a fixed class consists of two algorithms A and B.Algorithm A attaches
labels to the vertices of a given graph G of the class in such a way that the validity of
P(X1, . . . ,Xn) can be checked by algorithm B that takes as input the labels of the ver-
tices of the elements of X1, . . . ,Xn (and nothing else from G). The objective is to use
labels of size O(log(|VG|)). The article [CouVan] gives a meta-theorem for construct-
ing labeling schemes for checking monadic second-order properties P(X1, . . . ,Xn) for
graphs of bounded clique-width. It is based on the translation of monadic second-order
formulas into automata described in Sections 6.3.3 and 6.3.4. The general construc-
tion involves huge constants. A direct and more efficient construction for a particular
problem is done in [CouTwi]. The result of [CouVan] is also useful as an intermediate
step of the construction of labeling schemes for graphs of unbounded clique-width:
in particular, for the MS property Sep(u,v,X ) that two vertices u and v of a planar
graph are separated by a set of vertices X [CouGKT] and for first-order properties of
certain graphs, that are locally of bounded clique-width [CouGK].

6.4.5 Optimality results

Let us look again at Theorem 6.4, which we restate in a simpler form as follows:34

Result 1: One can check in time f (ϕ,k) · n the validity of a CMS2 sentence ϕ

on a simple graph G with n vertices that belongs to any class C of tree-width at
most k ( for some fixed function f ).
Result 2: One can check in time g(ϕ,k) · n3 the validity of a CMS sentence ϕ

on a simple graph G with n vertices that belongs to any class C of clique-width
at most k (for some fixed function g).

A natural question is whether and how one can improve these results. We will review
three types of improvement.

(1) Alternative algorithms

Asignificant improvement of Result 2 could come from the discovery of a better pars-
ing algorithm for graphs of bounded clique-width (or rank-width), see Section 6.2.3.

34 For Result 1, recall from the proof of Theorem 4.51 that every simple graph of bounded tree-width is
p-sparse for some p, i.e., has at most p · |VG | edges.
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For fixed ϕ and k , Result 1 can be achieved in logarithmic space instead of linear
time ([ElbJT]; the proof does not extend to Result 2).

(2) More model-checking problems?

That is, can one treat more problems, by writing them in more powerful logical
languages? The answer is yes: Results 1 and 2 can be extended to sentences of the
form ∃X (α ∧ ϕ), where ϕ is a monadic second-order formula and α is a Boolean
combination of arithmetical conditions like |Y | < a · |Z| + b · |Z ′|, where a and b
are real numbers and Y , Z and Z ′ are variables from X . This extension follows
from Theorem 6.55 (or rather from a modification of its proof) and has already been
considered in [ArnLS], [CouMos] and [ElbJT] for graphs of bounded tree-width. The
methods of [CouMos] and [ElbJT] work for graphs of bounded clique-width (see
[Rao]).

Some MS2 problems that are not CMS-expressible can nevertheless be solved in
time O(nf (k)) for graphs of clique-width at most k ([Wan]); however, there is little
hope of solving all MS2 problems in polynomial time for graphs of clique-width 2:
if EXPTIME �= NEXPTIME, then there exists an MS2 problem that is not solvable
in polynomial time on cliques ([CouMakR]).

(3) Covering larger graph classes

Several results limit the possibilities of expanding the classes covered by Result 1.
The following is proved in [MakMar], under the assumption that P �=NP:

if every problem expressible by an existential MS sentence (i.e., a sentence
written as a sequence of existential quantifications followed by a first-order
formula) is solvable in polynomial time on a class of graphs C closed under
taking minors, or even, under taking topological minors, then C has bounded
tree-width.

For each positive number a, we denote by T Wa the class of graphs G of tree-width
at most loga(|VG|). Then, the following is proved in [KreTaz] under the Exponential
Time Hypothesis:

if a ≥ 29, then some MS2 problems have no polynomial time algorithm on
T Wa.

The Exponential Time Hypothesis states that problem SAT cannot be solved in
subexponential time, i.e. in time 2o(n).

Since there are also (unnatural) classes of graphs of unbounded clique-width (hence
also of unbounded tree-width, that are even closed under taking subgraphs) for which
every MS problem is solvable in polynomial time ([MakMar]), results like these two
ones cannot be proved for arbitrary graph classes. This fact can be contrasted with
the result of [See91], which says that every class of graphs having a decidable MS2

theory has bounded tree-width (see Theorem 7.55 for its proof).
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6.4.6 Comparing some proofs of the Recognizability Theorem

Motivated by the practical construction of automata, we have given in Theorem 6.35
an alternative proof of the Weak Recognizability Theorem (Corollary 5.69) for the
VR algebra (and similarly for the HR algebra in Section 6.3.5). Let us raise a natural
question:

Does Theorem 6.35 give another proof of the Recognizability Theorem for the
VR algebra (Theorem 5.68)?

The answer is no. Theorem 6.35 establishes that, for every CMS sentence ϕ, for each
k the set of graphs {G | cwd(G)≤ k and �G� |= ϕ} is recognizable in the subalgebra
of GP consisting of the p-graphs that are the values of terms over FVR

[k] . This does not
imply that Lϕ := {G | �G� |= ϕ} is VR-recognizable, as observed in Proposition 4.40
for the HR case (of which the proof is also valid for the VR case).

However, in [Eng91] a description is given of MS- and MS2-definable sets of
labeled graphs (of unbounded clique-width and tree-width) by certain regular expres-
sions. These expressions use basic sets of graphs (corresponding to the atomic
formulas of the considered sentences) that somehow generalize the local regular
languages. They also use the Boolean operations on sets of graphs, corresponding to
the Boolean connectives in formulas, relabelings (corresponding to existential quan-
tifications, cf. Construction 6.29) and inverse relabelings (for handling substitutions
of variables, cf. Lemma 6.25). The basic sets of graphs are recognizable (appro-
priate congruences are easy to define for proving that) and the operations on sets
used in these regular expressions preserve recognizability. The case of relabelings
needs some more work but can be proved with the technique used in [BluCou06]
(Proposition 58). One obtains in this way an alternative proof of the Recognizability
Theorem. After working out the details, the reader can decide if it is simpler or not
than the one presented in Chapter 5, based on the Splitting Theorem and on several
technical lemmas. Furthermore, it is not clear how to obtain from this proof the exten-
sions to the counting and optimization functions considered in Section 6.4.3. It seems
also to require more work for handling the QDP-QF operations used in the algebra
STR.

6.5 References

There are numerous articles that give polynomial-time recognition algorithms for
classes of structured graphs, that are, in most cases, classes of bounded tree-width
or clique-width. Hedetniemi lists 238 titles in his bibliography [*Hed] published in
1994.

The theory of fixed-parameter tractability is exposed in the books by Downey
and Fellows [*DowFel] and by Flum and Grohe [*FluGro], but these books do not
present algorithms for classes of graphs of bounded clique-width. Fixed-parameter
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tractable algorithms for MS1 properties and clique-width as parameter are studied in
[CouMakR] and [*CouMR]. The surveys by Grohe [*Gro] and Kreutzer [*Kre] give
algorithmic meta-theorems for first-order logic on graph classes of unbounded tree-
width and clique-width that satisfy some structural constraints (relative to bounded
tree-width).

Makowsky surveys in [*Mak] the meta-algorithmic uses of the Splitting Theorem
for graph classes of bounded tree-width or clique-width, with applications to the
computation of graph polynomials.

Bodlaender has published several articles about implemented and tested algo-
rithms for computing tree-width: [BacBod06], [BacBod07], [*Bod06], [BodKos10],
[BodKos11] and [VEBK].

For computing or approximating rank-width the known algorithms are given in
[OumSey], [Oum08] and [HliOum] (an exact exponential algorithm is also given in
[Oum09]). No implementations have been reported. There exists an algorithm that
is fixed-parameter linear with respect to tree-width for computing the clique-width
of a graph. However, it is not useful for model-checking, because if we have a tree-
decomposition of width at most k , we can use it directly, without going through a
term over FVR to define the given graph.

Since we have presented rank-width in this chapter, we mention here that, for each
k , the graphs of rank-width at most k are characterized by finitely many excluded
vertex-minors, hence by a C2MS sentence ([CouOum] and [Oum05]). These results
are extended to directed graphs in [KanRao].

The recognition problems for HR and VR equation systems are discussed respec-
tively in the book chapters [*DreKH] and [*EngRoz] where numerous references can
be found.

Constructions of linear-time algorithms from logical descriptions and for graphs of
bounded tree-width can be found in [Bor] and [BorPT]. Monadic second-order logic
on finite and infinite words and terms is implemented in the software MONA, devel-
oped by Klarlund and others and described in many articles, in particular [BasKla],
[Hen+] and [Kla]. Using it for checking MS graph properties is not successful because
the automata of Section 6.3.4 are too large to be computable in practice as soon as the
parameter k that bounds clique-width is more than 3 (see [Sog]). Other practically
oriented approaches aiming at handling large fragments of monadic second-order
logic are proposed in [Cou10], [CouDur10] and [CouDur11] and, with a different
approach using games, in [KneLan]. Another research direction consists in devel-
oping algorithms for particular monadic second-order problems: see, e.g., [BuiTV],
[GotPWa], [GotPWb] and [GanHli].

The ideas and tools of this section seem to be useful in applied computer sci-
ence. They are quoted in works on computational linguistics [Kep], database
querying [BeeEKM], logistics [MooSpie], compilation [Thop], telecommunications
[McDRee], quantum computing [VNMDB], and perhaps yet in other fields.
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Monadic second-order transductions

Monadic second-order transductions are transformations of relational structures
specified by monadic second-order formulas. They can be used to represent transfor-
mations of graphs and related combinatorial structures via appropriate representations
of these objects by relational structures, as shown in the examples discussed in
Section 1.7.1.

These transductions are important for several reasons. First, because they are useful
tools for constructing monadic second-order formulas with the help of the Backwards
Translation Theorem (Theorem 7.10). Second, because by means of the Equation-
ality Theorems (Theorems 7.36 and 7.51) they yield logical characterizations of the
HR- and VR-equational sets of graphs that are independent of the signatures FHR

and FVR. From these characterizations, we get short proofs that certain sets of graphs
have bounded, or unbounded, tree-width or clique-width.

They also play the role of transducers in formal language theory: the image of a
VR-equational set of graphs under a monadic second-order transduction is
VR-equational, and a similar result holds for HR-equational sets and monadic second-
order transductions that transform incidence graphs. Finally, the decidability of the
monadic second-order satisfiability problem for a set of structures C implies the
decidability of the same problem for its image τ(C) under a monadic second-order
transduction τ . Hence, monadic second-order transductions make it possible to relate
decidability and undecidability results concerning monadic second-order satisfiability
problems for graphs and relational structures.

Section 7.1 presents the definitions and the fundamental properties. Section 7.2 is
devoted to the Equationality Theorem for the VR algebra, one of the main results
of this book. Section 7.3 presents the monadic second-order transductions of graphs
represented by their incidence graphs. Section 7.4 establishes the Equationality The-
orem for the HR algebra. Sections 7.5 and 7.6 present some applications, respectively
to the decidability of monadic second-order satisfiability problems and to the logical
characterization of recognizability.

In this chapter (and the next) all functional signatures are assumed to be one-sorted.
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7.1 Definitions and basic properties

7.1.1 Transductions of relational structures

Definition 7.1 (Transductions) Let R and R′ be relational signatures. A concrete
transduction τ of type R→ R′ is a binary relation on concrete structures. More
precisely, it is a set of pairs (S,S′), where S and S ′ are concrete R- and R′-structures
respectively, hence it is a subset of STRc(R)×STRc(R′). The associated transduction
of abstract structures is the set of pairs ([S]iso, [S ′]iso) for (S,S ′) in τ , hence a subset
of STR(R)×STR(R′), also denoted by τ . If we wish to be precise, we will denote it
by [τ ]iso. We say that two concrete transductions τ and τ ′ are isomorphic if [τ ]iso =
[τ ′]iso. In proofs, transductions will be defined between concrete structures, but the
equality of two transductions and their properties will be understood in terms of the
associated relations on abstract structures, except otherwise specified.

The image of a (concrete)R-structure S under τ is the set of (concrete)R′-structures
τ(S) := {T | (S,T )∈ τ }. In this way, τ can also be viewed as a mapping : STRc(R)→
P(STRc(R′)) or : STR(R)→ P(STR(R′)). The image τ(C) of a set C of (concrete)
R-structures is the union of the sets τ(S) for S in C. The domain Dom(τ ) of a
(concrete) transduction τ is the set of (concrete) R-structures S such that τ(S) is not
empty.1

If τ and τ ′ are transductions (or concrete transductions) of respective types R→R′
and R′ → R′′, then their composition is the following transduction (or concrete
transduction):

τ · τ ′ := {(S,T ) | (S,U ) ∈ τ and (U ,T ) ∈ τ ′ for some U }.

It is of type R→ R′′. Note that (τ · τ ′)(S) = τ ′(τ (S)) for every R-structure S.
The inverse of τ is the transduction (or the concrete transduction) of type R′ →R
defined by

τ−1 := {(T ,S) | (S,T ) ∈ τ }.
We will view a concrete transduction τ of type R→R′ that is functional also as

a partial function : STRc(R)→ STRc(R′), and similarly for transductions. For this
reason, if τ and τ ′ are functional (and only in this case), we will sometimes denote
by τ ′ ◦ τ the composition τ · τ ′. Note that the transduction associated with a concrete
transduction that is not functional may be functional (see Example 7.3(1) below). If a
transduction (or concrete transduction) τ is functional, we will often write τ(S)= T
instead of τ(S)= {T }.

For describing a concrete transduction τ of type R→ R′, we will frequently
declare its type as STRc(R)→ STRc(R′), or even as C → C′ in the case where
τ ⊆ C×C ′ ⊆ STRc(R)×STRc(R′). A similar notation will be used for transductions.

1 The domain of τ should not be confused with the domain of a particular structure S in the domain of τ .
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Definition 7.2 (Monadic second-order definition schemes and transductions)
Let R and R′ be two relational signatures such that R′0 =∅. (This restriction will be
lifted later.) Let also W be a finite set of set variables called parameters. A definition
scheme of type R→R′ with set of parameters W is a tuple of formulas of the form
D = 〈χ ,(δi)i∈[k],(θw)w∈R′�[k]〉 for some k > 0 such that:

χ ∈ CMS(R,W) – this formula is called the precondition;
δi ∈ CMS(R,W ∪ {x}) for each i ∈ [k] – these formulas are called the domain

formulas;
θw ∈ CMS(R,W ∪{x1, . . . ,xρ(R)}) for each w ∈R′� [k],

where R′� [k] is defined as {(R, i) | R ∈R′, i ∈ [k]ρ(R)} – these formulas are
called the relation formulas.2

We write these formulas χD,δiD ,θwD if we need to specify D. The quantifier-height
qh(D) of D is defined as the maximal quantifier-height of its formulas.

We now define the transduction of type R→ R′ associated with D. Let S be a
concrete R-structure and let γ be a W-assignment in S. We say that D defines the
concrete R′-structure T from (S,γ ) if:

(i) (S,γ ) |= χ ;
(ii) DT := {(a, i) ∈DS ×[k] | (S,γ ) |= δi(a)};
(iii) for each n > 0 and R ∈R′n:

RT := {((a1, i1), . . . ,(an, in)) ∈Dn
T | (S,γ ) |= θR,i1,...,in(a1, . . . ,an)}.

By (S,γ ) |= θw(a1, . . . ,an), we mean (S,γ ′) |= θw, where γ ′ is the assignment extend-
ing γ such that γ (xi)= ai for each i= 1, . . . ,n (and similarly for (S,γ ) |= δi(a)). The
structure T is uniquely determined by D, S and γ whenever it is defined, i.e., when-
ever (S,γ ) |= χ . Therefore, we can use a functional notation and we will denote T
by D̂(S,γ ). The associated relation between concrete structures, defined by

D̂ := {(S,D̂(S,γ )) | γ is a W-assignment in S such that (S,γ ) |= χ},
is the concrete transduction defined by D. It is called a concrete monadic second-
order transduction. Thus D̂(S) denotes {D̂(S,γ ) | (S,γ ) |=χ for some γ }.Amonadic
second-order transduction is the transduction [D̂]iso of abstract structures associated
with a concrete monadic second-order transduction D̂. It will also be denoted by D̂.
Note that if τ is a concrete transduction, then we can say that it is a monadic second-
order transduction (as opposed to being a concrete one), meaning that the associated
transduction [τ ]iso of abstract structures is a monadic second-order transduction. This
is in accordance with the fact that we also use τ to denote [τ ]iso.

If τ ⊆ STR(R)×STR(R′) and C⊆Dom(τ ), we will say that τ is a monadic second-
order transduction on C if there exists a monadic second-order transduction τ ′ of type

2 We will usually write w= (R, i1, . . . , iρ(R)) for w= (R,(i1, . . . , iρ(R))) and θR,i1,...,iρ(R) for θ(R,i1,...,iρ(R)).
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R→R′ such that τ ′(S) = τ(S) for every S in C. Note that we do not require that
the domain of τ ′ is C. By Theorem 7.16 established below, we can require this if C is
CMS-definable.

We recall that QF, FO, MS, CMS, CrMSh, MS2, etc., refer to fragments, extensions
or variants of first-order and (counting) monadic second-order logic. If L is one of
them, we call D an L-definition scheme if all its formulas are in the corresponding
fragment, and then we call D̂ an L-transduction.3 The term “monadic second-order
transduction” does not distinguish MS, CMS, MS2, etc. An FO- or a QF-definition
scheme may use set variables as parameters: a parameter Y can be used in the atomic
formulas x ∈ Y and Cardp,q(Y ), but no set variable is quantified in an FO- or a
QF-definition scheme.

If S is ∅R, the empty structure in STRc(R), then the only possible assignment
is γ∅ such that γ∅(Y ) = ∅ for every Y ∈W , and, either D̂(∅R,γ∅) is undefined or
it is ∅R′ .

By Lemma 5.4, if S,S ′ ∈ STRc(R) and h is an isomorphism : S → S ′, then the
structures in D̂(S) are isomorphic to those in D̂(S ′). More precisely, if γ is a
W-assignment in S and γ ′ is defined by γ ′(Y ) = h(γ (Y )) for every Y ∈ W ,
then D̂(S ′,γ ′) is defined if and only if D̂(S,γ ) is defined, and these structures
are isomorphic by the mapping h′ such that h′((a, i)) = (h(a), i) for every (a, i)
in the domain of D̂(S,γ ). It follows that D̂([S]iso) is {[T ]iso | T ∈ D̂(S ′)}, where
S ′ is any concrete structure isomorphic to S. (Definition 7.1 defines D̂([S]iso) as
{[T ]iso | T ∈ D̂(S ′) for some S ′ ∈ [S]iso}.)

If a definition scheme D has parameters (i.e., W �= ∅), but if for every S in STRc(R),
any two structures in D̂(S) are isomorphic, then we say that D and D̂ are parameter-
invariant. In this case D̂ defines a partial function on abstract structures. Parameter-
invariance is undecidable: it can be guaranteed by a particular construction of D but
cannot be checked on arbitrary definition schemes.

If W =∅, we say that D and D̂ are parameterless. Parameterless transductions are
functional, already on concrete structures.

We will refer to the integer k by saying that D and D̂ are k-copying. If k = 1, we
say that D and D̂ are noncopying. A noncopying definition scheme has the simpler
form 〈χ ,δ,(θR)R∈R′ 〉, where we let δ denote δ1 and θR denote θR,1,...,1. The domain of
T := D̂(S,γ ) is defined as a subset of DS and not of DS×[1]. If D is noncopying and
the domain formula δ is equivalent to True, then we say that D and D̂ are domain-
preserving. It implies that DT = DS . We say that D and D̂ are domain-extending if
k > 1 and some domain formula δi is equivalent to True. Then the domain of any
T := D̂(S,γ ) contains DS×{i}, hence, a copy of DS . In most cases, we will have this
for i= 1.

3 In Section 5.3.2 (Definition 5.42) we have defined the notion of a quantifier-free operation definition
scheme, a QFO definition scheme in short, that defines a QF operation. Every such operation is a
QF-transduction. See Example 7.3(2) and (the paragraph after) Definition 7.6 below.
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In some statements of Section 9.4, we will consider concrete functional transduc-
tions f : STRc(R)→ STRc(R′) such that, for every S in some set C ⊆ Dom( f ) ⊆
STRc(R), we have DS ⊆ Df (S); moreover, if h is an isomorphism from S1 to S2,
then there is an isomorphism from f (S1) to f (S2) that extends h. We will say that
such f is a domain-extending monadic second-order transduction on C if there
exists a concrete domain-extending monadic second-order transduction τ of type
R→ R′ such that C ⊆ Dom(τ ) and, for some i, the domain formula δi is equiv-
alent to True and, for every S ∈ C and T ∈ τ(S), there is an isomorphism from T
to f (S) that maps (a, i) to a for every a in DS . For an example see Example 7.8
below.

If D is k-copying, the domain of D̂(S,γ ) is defined above as a subset of DS ×[k].
In some constructions, it will be convenient to define it as a subset of DS×I for a fixed
index set I of cardinality k . Then [k] can be replaced by I in the above definitions.

Every monadic second-order transduction τ is of linear size increase. We mean
by this that there exists an integer k such that T ∈ τ(S) implies |DT | ≤ k · |DS |. This
observation has been stated in Chapter 1 as Fact 1.37. It entails that certain graph
transductions4 are not monadic second-order transductions. For example, the line
graph transduction5 is not a monadic second-order transduction because the number
of vertices of Line(Kn) is n(n− 1)/2, whereas that of Kn is n (cf. Example 1.45).

If τ is a monadic second-order transduction defined as D̂, its domain is char-
acterized by the formula ∃Y1, . . . ,Yq.χD, where Y1, . . . ,Yq are the parameters,
hence is CrMS-definable if τ is a CrMS-transduction. (A more general fact will
be proved in Corollary 7.12.) The image of τ defined as the set τ(STR(R)) of
abstract structures, is not always CMS-definable. For a counter-example, just
consider the transduction that transforms a simple graph G into G ⊕ G. It is a
2-copying monadic second-order transduction. We know that the set of graphs
G⊕G is not VR-recognizable (by Proposition 4.32, since VR-recognizability implies
HR-recognizability by Theorem 4.49), hence it is not monadic second-order definable
by the Recognizability Theorem for the VR algebra (Theorem 5.68). Other counterex-
amples will be given below (Remark 7.23). As a consequence of Theorem 7.10 (the
Backwards Translation Theorem, cf. Remark 7.13(3)) this fact proves that the inverse
of a CMS-transduction is not always a CMS-transduction. By contrast, the class of
rational transductions ([*Sak, Niv]) is closed under inverse.

For L ∈ {CMS,MS,FO, . . . }, an L-transduction τ is invertible if its inverse τ−1 is
an L-transduction. This condition does not imply that τ is injective. (We will also use
in Definition 7.9 injective and invertible CMS-transductions.) If a CMS-transduction

4 Unless otherwise stated, a graph transduction is a relation between simple graphs such that a graph G is
faithfully represented by the structure �G�.

5 The line graph of G, denoted by Line(G), is the undirected graph having EG as vertex set and an edge
between u and v if and only if these edges of G have at least one common end vertex.
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is invertible, there are two positive rational numbers k and k ′ such that k ′ · |DS | ≤
|DT | ≤ k · |DS | whenever T ∈ τ(S).

Example 7.3 (1) Quotient structures: Let us assume that a CMS formula ϕ(x,y)
defines on each structure S of a class C ⊆ STRc(R) an equivalence relation≈. Such a
relation may be the equivalence relation generated by a relation E⊆DS×DS defined
in each S ∈ C by a CMS formula ψ(x,y) (in particular, because the reflexive and
transitive closure of a CMS-definable relation is CMS-definable, cf. Section 5.2.2).

We define the quotient structure S/≈ as the R-structure 〈DS/≈,(RS/≈)R∈R〉where
RS/≈ := {([a1], . . . , [aρ(R)]) | (a1, . . . ,aρ(R)) ∈ RS} and [a] denotes the equivalence
class of a (cf. Example 1.35 and Definition 2.15).

We must actually define S/≈ as [T ]iso for a concrete structure T . As domain DT of
T , we take a cross-section of≈ as value of a parameter Y and we specify the relations
RT accordingly. This can be done by a noncopying definition scheme D with one
parameter Y ; its precondition expresses that Y denotes a cross-section of ≈ (for a
structure S in C). For each S in C, all structures in D̂(S) are isomorphic to one another.
Hence, the total function S �→ S/≈ from C to STR(R) is a CMS-transduction on C,
and the definition scheme D is parameter-invariant. The concrete transduction D̂ is
not functional.

(2) Quantifier-free operations: Quantifier-free operations : STRc(R) →
STRc(R′) where R′0 = ∅ are defined in Section 5.3.2 (Definition 5.42) by means
of QFO definition schemes which are parameterless noncopying QF-definition
schemes with True as precondition. Note that if R0 = ∅ and D is quantifier-free
and parameterless, then its precondition can only be True or False.

(3) Transductions that order linearly: In Definition 5.28 we have defined the
notion of a pair of MS formulas (α(X1, . . . ,Xm),β(X1, . . . ,Xm,x1,x2)) that orders lin-
early the structures of a set C of concrete R-structures. Such a pair can be made into a
noncopying definition scheme D of type R→R∪ {≤} with parameters X1, . . . ,Xm:
its precondition isα, its domain formula is True, θR is R(x1, . . . ,xρ(R)) for each R∈R+
and its relation formula θ≤ is β. The corresponding MS-transduction D̂ expands each
structure S in C by a linear order (in one or several ways). If S ∈ STRc(R)− C, then
D̂(S) may be empty or contain expansions of S by binary relations that are not linear
orders of DS .

(4) Second-order substitutions: Let F and H be finite functional signatures and,
for each g in H , let tg be a term in T (F ,{x1, . . . ,xρ(g)}). The associated second-order
substitution θH : T (H )→T (F) replaces each g in H by the term tg that is its definition
over F ; a formal definition is in Section 2.6.1, Definition 2.125. We say that θH is
linear if each term tg is linear, that is, if no variable has more than one occurrence in
tg . We say that θH is strict if each term tg is strict, that is, if each variable xi has at
least one occurrence in tg for i = 1, . . . ,ρ(g), and we say that it is nonerasing if no
term tg is a variable.
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If θH is linear, then it is an MS-transduction. More precisely, the set of pairs
(�t�,�θH (t)�) such that t ∈ T (H ) is an MS-transduction.6 Terms are represented here
by relational structures without constants. It is a straightforward exercise to construct
a definition scheme for θH that is parameterless and k-copying, where k is the maximal
number of occurrences of symbols from F in a term tg . The hypothesis that the terms
tg are linear cannot be removed. If g is unary with tg = f (x1,x1) and a is a constant
symbol with ta = a, then the size of θH (gn(a)) is 2n+1− 1, hence the corresponding
transduction is not of linear size increase, so that it cannot be a monadic second-order
transduction.

If θH is linear, strict and nonerasing, then it is an invertible FO-transduction. Again,
it is a straightforward exercise to construct a noncopying definition scheme for θ−1

H ,
with |H | parameters (see also Examples 8.3 and 8.5). �

Remark 7.4 (Effectivity of definitions) Certain conditions on a definition scheme
D of type R→ R′ are not decidable. Typical examples are whether it is domain-
preserving, parameter-invariant or produces only structures of the form S∗ for S ∈
STR(R′) in the case where R′0 �= ∅ (cf. Section 5.1.5 and below Section 7.1.2).
Another undecidable property is whether Dom(D̂) = ∅. These facts are due to the
undecidability of the satisfiability problem for FO and MS sentences (Theorem 5.5).
To the opposite, all particular properties of QF operations defined in Definition 5.42
are decidable from their definition schemes, because the absence of quantifiers makes
the satisfiability problem decidable. �

7.1.2 Monadic second-order transductions producing
structures with constants

In Definition 7.2, we have defined monadic second-order transductions of type R→
R′, where R′ has no constant symbols. We now waive this restriction. The definition
scheme of a transduction producing structures T with constants must have some way
to specify them as pairs (u, i), where i is an integer and u is in the domain of the
input structure. Rather than rewriting all definitions, we will rest on the particular
case of Definition 7.2 by replacing each constant symbol by a new unary relation.
This method has been discussed in Section 5.1.5.

Formally, for every relational signature R we let R∗ := R+ ∪ LabR, where
LabR := {laba | a ∈ R0} is a new set of unary relations. (Unless otherwise spec-
ified, when we discuss several signatures R,R′, . . . we will always assume that
(R∪R′ ∪ · · ·)∩ (LabR ∪LabR′ ∪ · · ·)= ∅.)

For every S ∈ STRc(R), we let S∗ be the structure in STRc(R∗) such that labaS∗ =
{aS} for every a ∈ R0 and RS∗ = RS for every R ∈ R+. We denote by STRc∗(R∗)
the class of concrete R∗-structures such that the relations laba are interpreted as

6 By Definitions 7.1 and 7.2, this means that the transduction of abstract structures [{(�t�,�θH (t)�) | t ∈
T (H )}]iso = {([�t�]iso, [�θH (t)�]iso) | t ∈ T (H )} is an MS-transduction.
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singletons, and by STR∗(R∗) the corresponding set of abstract structures. The first-
order sentence α defined as the conjunction of the sentences

∃x. laba(x)∧∀x,y(laba(x)∧ laba(y)⇒ x= y),

for all a in R0, characterizes STRc∗(R∗). The mapping S �→ S∗ is a bijection
: STRc(R) → STRc∗(R∗) and also a parameterless and domain-preserving
QF-transduction. (It is even a QF operation since it is total, but we will not use
it as an operation of a functional signature.) Its inverse associates with T ∈ STRc∗(R∗)
a structure in STRc(R) denoted by T†. If R0 = ∅, we have R∗ = R and S = S∗
for every S ∈ STRc(R) and thus, STRc∗(R∗)= STRc(R). Similar statements hold for
abstract structures.

The following lemma says that the same first-order and monadic second-order
properties of an R-structure S can be expressed in S∗ or, directly, in S. We let r be a
nonnegative integer and X be a finite set of first-order and set variables.

Lemma 7.5 For every formula ϕ in CrMS(R,X ) there exists a formula ψ in
CrMS(R∗,X ) such that, for every S ∈ STRc(R) and every X -assignment γ in S,
we have (S,γ ) |= ϕ if and only if (S∗,γ ) |= ψ . Conversely, for every formula
ψ in CrMS(R∗,X ) there exists a formula ϕ in CrMS(R,X ) satisfying the above
equivalence. The same properties hold for FO instead of CrMS.

Proof: For proving the first assertion, we construct ψ from ϕ by the following steps.
Step 1: We replace every atomic formula R(t1, . . . , tn), where each ti is a constant

symbol or a variable, by the formula

∃x1, . . . ,xn(R(x1, . . . ,xn)∧
∧
i∈[n]

xi = ti).

Step 2: For every a,b ∈R0, every first-order variable x and every set variable X ,
we replace certain atomic formulas as follows:

x= a and a= x by laba(x),

a= b by ∃x(laba(x)∧ labb(x)),

a ∈ X by ∃x(laba(x)∧ x ∈ X ).

The verification thatψ satisfies the requested property is straightforward by induction
on the structure of ϕ.

For the opposite direction, we construct ϕ from ψ by replacing laba(x) by x = a
for every first-order variable x and every a ∈R0.

The first transformation may increase the quantifier-height, the second preserves
it. Both transform first-order formulas into first-order formulas.

We will denote by ϕ∗ the formula ψ constructed from ϕ, and by ψ† the formula ϕ

constructed fromψ . The second transformation of this proof is actually an application
of the Backwards Translation Theorem for QF operations (Proposition 5.46).
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Definition 7.6 (Transductions relating structures with constants) Let R and R′
be two relational signatures, possibly with constant symbols. A definition scheme
D of type R→ R′ is a definition scheme D∗ of type R→ R′∗ such that D̂∗ ⊆
STRc(R)× STRc∗(R′∗). If S ∈ STRc(R) and γ is a W-assignment in S where W
is the set of parameters of D∗, then we define D̂(S,γ ) as D̂∗(S,γ )†. The concrete
transduction of type R→R′ defined by D is defined as D̂ := {(S,T†) | (S,T ) ∈ D̂∗},
and it is called a concrete monadic second-order transduction. The corresponding
transduction of abstract structures is [D̂]iso, and it is called a monadic second-order
transduction. Properties of a definition scheme D (and of the associated transduction),
such as to be parameterless, k-copying, parameter-invariant, etc., are defined as the
corresponding properties of D∗.

Note that the property that D̂∗ ⊆ STRc(R)× STRc∗(R′∗) is not decidable for an
arbitrary definition scheme D∗. However, it can be guaranteed syntactically as we
will see in Remark 7.13(2) after proving the fundamental Backwards Translation
Theorem.

We now extend the remark of Example 7.3(2). Every QF operation of type R→R′
is a parameterless noncopying QF-transduction with precondition True, although a
QFO definition scheme (cf. Definition 5.42) is not necessarily a QF-definition scheme
since it may contain constant defining sentences κc,d for c∈R0 and d ∈R′0. However,
a QFO definition scheme can be translated into a QF-definition scheme D∗ by taking
as formula θlabd (for d ∈R′0) the formula

∨
c∈R0

(κc,d ∧ x1 = c). The conditions on
the constant defining sentences in Definition 5.42 ensure that labd is interpreted as a
singleton.

If τ is a transduction of type R→R′, then we let τ∗ := {(S,T∗) | (S,T ) ∈ τ } and,
for having a symmetric notion, we define also τ∗∗ := {(S∗,T∗) | (S,T ) ∈ τ }. These
three transductions are equivalent in the following sense:

Lemma 7.7 The transduction τ is a CrMS-transduction if and only if τ∗ is a
CrMS-transduction if and only if τ∗∗ is a CrMS-transduction. The same statement
holds for FO-transductions.

Proof: The first equivalence holds by definition. We now prove the second equiva-
lence. Let us assume that τ∗ is a CrMS-transduction : STRc(R)→ STRc∗(R′∗) with
definition scheme D∗. Then so is τ∗∗ : STRc∗(R∗)→ STRc∗(R′∗) by the following con-
struction. We let D′ be the definition scheme of type R∗ →R′∗ obtained from D∗ by
replacing each of its formulas ϕ by the formula ϕ∗ constructed in Lemma 7.5. Then,
we change the precondition of D′ into χD′ ∧ α, where α is the first-order formula
expressing that a structure in STRc(R∗) belongs to STRc∗(R∗). This gives a definition
scheme D∗∗ of type R∗ →R′∗ such that D̂∗∗ = τ∗∗.

A definition scheme for τ∗ is obtained from one for τ∗∗ by replacing each of its
formulas ψ by the formula ψ† constructed in Lemma 7.5.

The first equivalence also holds for QF-transductions, by definition, but the second
equivalence does not. If τ∗ is a QF-transduction, then the corresponding transduction
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τ∗∗ is not necessarily one. If the domain formula of τ∗ is R(x)∨R(c), where c ∈R0,
then the domain formula of τ∗∗must be equivalent to R(x)∨∃y(labc(y)∧R(y)), hence
is not equivalent to a quantifier-free formula (cf. Section 5.1.5).

As can be verified from the proof of Lemma 7.7, all the usual properties of definition
schemes (except being a QF-definition scheme) carry over. Thus, an alternative to
Definition 7.6 is to define a definition scheme D of type R→R′ to be a definition
scheme D∗∗ of type R∗→R′∗ such that D̂∗∗ ⊆ STRc∗(R∗)×STRc∗(R′∗). Then D̂(S,γ )
should be defined as D̂∗∗(S∗,γ )†, and D̂ as {(S†,T†) | (S,T ) ∈ D̂∗∗}.

7.1.3 Transductions of words, terms and graphs

We have defined transductions that transform relational structures. Via relational
structures that represent faithfully words, terms and labeled p-graphs or s-graphs (cf.
Section 5.1.1, faithfully means that isomorphic structures represent identical or iso-
morphic objects), we can specify transformations of such objects by monadic second-
order transductions that transform their representing structures. These transformations
of objects will also be called monadic second-order transductions.

Specifically, we have defined in Section 5.1.1 structures �w�, �t�, �G� and �G�C
that represent faithfully, respectively, a word w in A∗, a term t in T (F), a simple
labeled graph G and a p-graph or a simple s-graph G of type included in C. To take a
representative example, a relation τ ⊆ T (F)×A∗ is said to be an MS-transduction if
the relation τ ′ := {(�t�,�w�) | (t,w) ∈ τ } is an MS-transduction of type RF →WA.7

Properties of τ ′, such as being k-copying, parameterless, parameter-invariant, etc.,
are transferred from τ ′ to τ in the obvious way. We omit a formal definition of an
L-transduction of objects, which would be similar to the definition of L-definability
of a set of objects in Section 5.1.5.

A graph transduction is a set of pairs (G,H ) such that G and H are, possibly
labeled, graphs. Similarly we define p-graph and s-graph transductions. If τ is, e.g.,
a monadic second-order p-graph transduction, then both the domain Dom(τ ) and the
image Dom(τ−1) of τ are sets of p-graphs of bounded type, because the p-graphs G
in Dom(τ ) must be represented as �G�C for a fixed C, and similarly for Dom(τ−1).
If necessary, we will make precise the relational signatures used for representing the
considered graphs, p-graphs, or s-graphs. Such a precision may be necessary since we
have defined variants of the basic representations. The quantifier-free operations on
graphs, p-graphs or s-graphs, in particular the edge-complement, the edge addition

operation
−→
adda,b,C and the source fusion fusea,b (cf. Sections 5.3.2 and 5.3.4), are

examples of monadic second-order graph (p-graph or s-graph) transductions. We
now consider an example concerning forests.

7 This means that [τ ′]iso is an MS-transduction, cf. Footnote 6 in Example 7.3(4).
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Example 7.8 (The incidence graph of a forest) The incidence graph of a simple
undirected graph G is the directed graph Inc(G) with vertex set VG ∪EG and edge
relation inG :={(e,v) | e∈EG and v is an end vertex of e}, cf. Definition 5.17. We will
show that the graph transduction Inc is an MS-transduction on the class C of forests,
more precisely, that the mapping �G� �→ �Inc(G)� is a 2-copying domain-extending
MS-transduction on the class �C� (cf. the proof of Corollary 5.23).

Its definition scheme uses a parameter Y ; its precondition χ expresses that G is a
forest and that Y denotes a set of vertices A that has one and only one element in each
connected component of G: this means that A can be chosen as a set of roots. We let
(G,A) denote the corresponding rooted, and thus directed, forest.

The domain formulas δ1 and δ2 are respectively True and x /∈ Y . A vertex u of G in
D�Inc(G)� will correspond to the pair (u,1), and an edge e will correspond to the pair
(u,2), where u is the head of e in (G,A). Every vertex not in A is thus the head of a
unique edge, which justifies the definition of δ2. We now complete the construction
by defining the relation formulas: θin,2,1 is x2= x1∨“x2→(G,A) x1” and θin,1,1, θin,1,2,
θin,2,2 are False. This transduction is parameter-invariant. �

Definition 7.9 (Strongly equivalent representations) In Section 5.1.1, we have
also defined variants of the above representations that are all faithful. The notion of
a monadic second-order transduction of objects like words, terms and graphs may
depend on their chosen representations. We say that two representations �w� and
�w�′ of a word w in A∗ are strongly MS-equivalent if the relation α := {(�w�,�w�′) |
w ∈ A∗} and its inverse β := α−1 are injective MS-transductions (hence, α and β

are invertible). More precisely, and in general, let C be a class of objects and let
rep : C→ STRc(R) and rep′ : C→ STRc(R′) be two representations, i.e., mappings
that map isomorphic objects to isomorphic structures. Then rep and rep′ are strongly
L-equivalent (for L ∈ {MS,FO, . . . }) if the relation α := {(rep(H ),rep′(H )) |H ∈ C}
is an injective L-transduction on rep(C) and β := α−1 is an (injective) L-transduction
on rep′(C).8

Let τ ⊆ T (F) × A∗ and τ ′ := {(�t�,�w�) | (t,w) ∈ τ } be as above, and let
τ ′′ := {(�t�,�w�′) | (t,w) ∈ τ }. Then we have τ ′′ = τ ′ · α and τ ′ = τ ′′ · β. Since the
composition of two monadic second-order transductions is a monadic second-order
transduction, as we will prove below (Theorem 7.14), we get that τ ′ is a monadic
second-order transduction if and only if τ ′′ is a monadic second-order transduction.
Hence, the replacement of �w� by �w�′ to represent a word w does not modify the
notion of monadic second-order transduction between words and terms, or between
words and words, words and graphs, etc. The same argument holds in the general
case.

8 This syntactic definition is more restricted than the semantical definition of L-equivalence given in
Example 5.2 and Section 5.1.5. If rep and rep′ are strongly MS-equivalent, then they are MS-equivalent,
by the Backwards Translation Theorem to be proved in Section 7.1.4. The converse does not hold, as
shown below.
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It can be verified that all variants of representations discussed in Example 5.2 are
strongly MS-equivalent, with one exception: representing the empty word by the
empty structure is MS-equivalent but not strongly MS-equivalent to representing it
by a nonempty structure (we considered these two possibilities in Example 5.2(1))
because the image of the empty structure ∅R under an MS-transduction of type R→
R′ is necessarily the empty structure ∅R′ . If this point is important, we will specify
in statements concerning transductions of words which type of representation is used.
This problem does not occur for terms and graphs, because no term is represented
by the empty structure and the empty graph is always represented by the empty
structure.

In addition to the standard representation of a graph G by the relational structure
�G� with domain VG (cf. Example 5.2(2)), we have also defined a faithful repre-
sentation by the structure �G� = �Inc(G)� with domain VG ∪EG (cf. Section 5.2.5).
The representations �G� and �G� are not strongly equivalent for all graphs (but they
are for forests by Example 7.8) hence, we get several types of graph transductions,
depending on the choice of �G� or �G�. This point has been discussed in detail in
Section 1.8, and we will go back to it in Section 7.3 and in Chapter 9. In this section
and the next one (i.e., Sections 7.1 and 7.2), we will only consider simple graphs, and
a graph G will always be represented by (and even identified with) �G�.

7.1.4 The fundamental property of monadic
second-order transductions

A definition scheme D defines a transduction between structures but it also yields a
translation of formulas. The following theorem says that if T = D̂(S,γ ), then each
monadic second-order property of T can be expressed by a monadic second-order
formula over S. (The particular case of QF operations, more precisely of QDP-QF
operations, has been proved in Theorem 5.47.) The usefulness of monadic second-
order transductions is largely based on this fact.

Let D be a k-copying definition scheme of type R→R′ with set of parameters
W . Given a set X of set variables disjoint from W , we introduce new set variables
X (i) for X ∈X and i ∈ [k], and we let X (k) := {X (i) | X ∈X , i ∈ [k]}.

Let S ∈ STRc(R). For every mapping η : X (k)→ P(DS), we define η[k] : X →
P(DS ×[k]) by

η[k](X ) := (η(X (1))×{1})∪ ·· · ∪ (η(X (k))×{k}).

Let Y = {y1, . . . ,yn} be a set of first-order variables, linearly ordered as indicated.
For a mapping μ : Y → DS and an n-tuple i = (i1, . . . , in) ∈ [k]n, we denote by
μi : Y → DS × [k] the mapping such that μi(yj) := (μ(yj), ij). If k = 1, then we
identify DS ×[1] with DS and μ(1,...,1) with μ.
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Note that, even if T = D̂(S,γ ) is well defined (for a W-assignment γ ), the mapping
η[k] is not necessarily an X -assignment in T because η[k](X ) may not be a subset of
the domain of T . A similar observation holds for μi.

Theorem 7.10 (Backwards Translation Theorem) Let D be a k-copying
CrMS-definition scheme of type R→ R′ with set of parameters W . Let X be
a finite set of set variables and Y = {y1, . . . ,yn} be a set of first-order variables.
For every β ∈ CrMS(R′,X ∪ Y) and i ∈ [k]n, one can construct a formula βD

i ∈
CrMS(R,W ∪X (k) ∪Y) such that for every S ∈ STRc(R), every W-assignment γ ,
every X (k)-assignment η, and every Y-assignment μ, all of them in S, we have:

(S,γ ∪η∪μ) |= βD
i if and only if

D̂(S,γ ) is defined,

η[k] ∪μi is an (X ∪Y)-assignment in D̂(S,γ ), and

(D̂(S,γ ),η[k] ∪μi) |= β.

The quantifier-height of βD
i is at most k · qh(β)+ qh(D)+ 1. �

Before giving the proof, we present the construction of βD
i and a lemma, for the

case where R′ has no constant symbols. The extension to the general case will be
straightforward.

We first define a formulaβ"D
i , by an inductive construction on the structure ofβ.As

in the constructions of Chapters 5 and 6 and without loss of generality, we will assume
that β contains neither universal quantifications, nor the Boolean connectives⇒ and
⇔, nor the atomic formula False. Let R′0=∅. We let D be 〈χ ,(δi)i∈[k],(θw)w∈R′�[k]〉
with set of parameters W . For every i ∈ [k] and every set variable X , we denote by
δi(X ) the formula ∀x(x ∈ X ⇒ δi).

For every m and n, everyβ in CrMS(R′,{X1, . . . ,Xm,y1, . . . ,yn}), and every i∈ [k]n,
we define as follows a formula β"D

i in CrMS(R,{X1, . . . ,Xm}(k) ∪{y1, . . . ,yn}):

• True"Di is True;

• (yj = yj′)"Di is yj = yj′ if i[ j] = i[ j′] and is False otherwise (where i[ j] is the j-th
component of the tuple i);

• (yj ∈ X
)
"D
i is yj ∈ X (i[ j])


 ;

• (R(yj1 , . . . ,yjρ(R) ))
"D
i is θw[yj1/x1, . . . ,yjρ(R)/xρ(R)], with w := (R, i[ j1], . . . , i[ jρ(R)]);

• (Cardp,q(X
))
"D
i is

∨∧
i∈[k]Cardpi ,q(X

(i)

 ), where the disjunction extends

to all k-tuples (p1, . . . ,pk) ∈ [0,q− 1]k such that p1+·· ·+ pk ≡ p (mod q);

• (¬β)"Di is ¬β"D
i , (β ∨ γ )"Di is β"D

i ∨ γ "D
i , (β ∧ γ )"Di is β"D

i ∧ γ "D
i ;

• (∃y.β)"Di is
∨

i∈[k] ∃y(δi[y/x]∧β"D
ii )where ii denotes (i1, . . . , in, i) if i= (i1, . . . , in)

(note that β"D
i has its free variables in the set {X1, . . . ,Xm}(k) ∪{y1, . . . ,yn,y});
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• (∃X .β)"Di is ∃X (1), . . . ,X (k)(
∧

i∈[k] δi(X (i)) ∧ β"D
i ) (note that β"D

i has its free

variables in the set {X1, . . . ,Xm,X }(k) ∪{y1, . . . ,yn}).
The quantifier-height of β"D

i is at most k · qh(β)+ qh(D)+ 1.
We let then βD

i be

β"D
i ∧ χ ∧∧i∈[k],
∈[m] δi(X

(i)

 ) ∧∧j∈[n] δi[ j][yj/x].

We will drop the subscript i, writing β"D and βD , whenever [k]n is a singleton, i.e.,
either k = 1 and n≥ 1, and so i= (1, . . . ,1), or n= 0, and so i= (). If β is a sentence,
then βD is β"D ∧χ .

We call the family βD := (βD
i )i∈[k]n the backwards translation of β relative to the

definition scheme D. We will also use the notation τ #(β) for βD , where τ = D̂.9

Lemma 7.11 For every concrete R-structure S, every W-assignment γ in S such
that D̂(S,γ ) is defined, every {X1, . . . ,Xm}(k)-assignment η in S such that η[k] is an
{X1, . . . ,Xm}-assignment in D̂(S,γ ), every {y1, . . . ,yn}-assignment μ in S and every
i ∈ [k]n such that μi is a {y1, . . . ,yn}-assignment in D̂(S,γ ), we have

(S,γ ∪η∪μ) |= β"D
i if and only if (D̂(S,γ ),η[k] ∪μi) |= β.

Proof: The proof is a straightforward verification by induction on the structure of
β. We only check a few cases. We let T := D̂(S,γ ).

If β is yj = yj′ , thenμi(yj)= (μ(yj), i[ j]) and similarly for j′; henceμi(yj)=μi(yj′)
in T if and only if μ(yj) = μ(yj′) and i[ j] = i[ j′], hence if and only if (yj = yj′)"Di
holds in (S,μ).

If β is R(yj1 , . . . ,yjp), then the p-tuple (μi(yj1), . . . ,μi(yjp)), which equals
((μ(yj1), i[ j1]), . . . ,(μ(yjp), i[ jp])), belongs to RT if and only if θw(μ(yj1), . . . , μ(yjp))

holds in (S,γ ), where w= (R, i[ j1], . . . , i[ jp]), hence if and only if (R(yj1 , . . . ,yjp))
"D
i

holds in (S,γ ∪μ).
If β is ∃X .β ′, then this formula holds in (T ,η[k] ∪μi) if and only if there exists

A ⊆ DT such that (T ,η[k] ∪μi) |= β ′(A) and A can be written (A(1) × {1}) ∪ ·· · ∪
(A(k)×{k}), for some A(i) ⊆DS . The conditions A(i)×{i} ⊆DT can be expressed by
the validity of δi(X (i)) with A(i) as value of X (i) for each i. By using the induction
hypothesis for β ′, we have

(T ,η[k] ∪μi) |= β ′(A) if and only if (S,γ ∪η∪μ) |= β′"Di (A(1), . . . ,A(k)),

so that
(T ,η[k] ∪μi) |= β if and only if (S,γ ∪η∪μ) |= β"D

i .

The other cases are easy to establish.

9 The notation τ#(β) is slightly imprecise because βD depends on D, not only on τ . A transduction may
have different definition schemes.
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Proof of Theorem 7.10: We first assume that R′ has no constant symbols and we
let D be as in the previous lemma. As stated above, the formula βD

i is the following:

χ ∧
∧

i∈[k],
∈[m]
δi(X

(i)

 ) ∧

∧
j∈[n]

δi[ j][yj/x] ∧ β"D
i .

Its conjuncts express respectively that T := D̂(S,γ ) is defined, that η[k] is an
{X1, . . . ,Xm}-assignment in T , that μi is a {y1, . . . ,yn}-assignment in T and, by
Lemma 7.11, that (T ,η[k] ∪μi) |= β. Hence, βD

i satisfies the required property.
We now consider the case where R′ may have constant symbols. We apply the

above construction to the definition scheme D∗ and the formula β∗ constructed from
β in Lemma 7.5. We obtain that:

(S,γ ∪η∪μ) |= (β∗)D∗i if and only if

D̂∗(S,γ ) is defined,

η[k] ∪μi is an (X ∪Y)-assignment in D̂∗(S,γ ) and

(D̂∗(S,γ ),η[k] ∪μi) |= β∗.

With Definition 7.6 and Lemma 7.5 we get the desired result by taking βD
i := (β∗)D∗i

since we have D̂∗(S,γ )= D̂(S,γ )∗. Note that if R′0 = ∅, we get the same formulas
as in the first case because D∗ =D and β∗ = β.

We recall that C0MS designates the same formulas as MS, hence the following
corollary also concerns MS-transductions.

Corollary 7.12 Let τ be a CrMS-transduction of type R → R′. For every
CrMS-definable subclass C of STRc(R′), the subclass τ−1(C) of STRc(R) is
CrMS-definable.

Proof: Let τ be specified by a CrMS-definition scheme D with set of parame-
ters W = {Y1, . . . ,Yp}. (We need not distinguish the case where R′ has constant
symbols.) Let C := MOD(β) = {T ∈ STRc(R′) | T |= β} for some sentence β in
CrMS(R′,∅). Then, S ∈ STRc(R) belongs to τ−1(C) if and only if it has an image
in MOD(β) under D̂, hence, by Theorem 7.10, if and only if it belongs to the class
MOD(∃Y1, . . . ,Yp.βD). This shows that τ−1(C) is CrMS-definable.

Remark 7.13 (1) If D is parameterless and β is a sentence, then we have

D̂(S) |= β if and only if S |= βD .

A similar property holds for certain transductions that are not monadic second-order
transductions, in particular, for the unfolding of a graph into a possibly infinite
tree (see Section 7.7). However, for monadic second-order transductions, we have
more than the above equivalence. To simplify the discussion, we assume that D is
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k-copying, parameterless and that n= 0 (the considered formula β has no first-order
variables). By Theorem 7.10, we have a bijection between the set sat(D̂(S),β,X )

and the set sat(S,βD ,X (k)), where X is a tuple that enumerates X and similarly
for X (k). Such a bijection is impossible for the unfolding, by a simple cardinality
argument.

(2) Let D be a definition scheme of type R→R′∗. Let α be the first-order sen-
tence that characterizes the class STRc∗(R′∗) and αD be its backwards translation.
Then, if we replace the precondition of D by αD, we obtain a definition scheme
D′ such that D̂′ = D̂ ∩ (STRc(R)× STRc∗(R′∗)), hence a definition scheme of type
R→ R′. It is equivalent to D for producing structures that encode R′-structures
correctly.

(3) By Corollary 7.12, the image of a CrMS-definable set of structures under an
invertible CrMS-transduction is CrMS-definable. This is not true in general, even for
an injective transduction (cf. Remark 7.23). �

7.1.5 Constructions of monadic second-order transductions

The following theorem is, with Corollary 7.12, the second main consequence of the
Backwards Translation Theorem.10

Theorem 7.14 (Composition of transductions)

(1) The composition τ ·τ ′ of two CrMS-transductions τ : R→R′ and τ ′ : R′ →R′′ is
a CrMS-transduction. If τ and τ ′ are both parameterless and/or both noncopying,
then so is τ · τ ′. If τ is k-copying and is defined with q parameters, and if τ ′ is
k ′-copying and is defined with q′ parameters, then τ · τ ′ is (kk ′)-copying and is
defined with q+ kq′ parameters.

(2) If τ and τ ′ as above are concrete transductions and at least one of them is
noncopying, then τ · τ ′ is also a concrete CrMS-transduction.

(3) If τ and τ ′ as above are both domain-preserving or both domain-extending, then
so is τ ·τ ′. If one of them is domain-preserving and the other is domain-extending,
then τ · τ ′ is domain-extending.

Proof: We first consider the special case where R′ and R′′ have no constant symbols.
Since the proof is a bit technical, we consider four cases.

Case 1: τ and τ ′ are both noncopying.
We let τ and τ ′ be the concrete transductions defined respectively by the definition

schemes D = 〈χ ,δ,(θR)R∈R′ 〉 with set of parameters W := {Y1, . . . ,Yq} and D′ =
〈χ ′,δ′,(θ ′R)R∈R′′ 〉 with set of parameters W ′ := {Z1, . . . ,Zq′ } disjoint with W . We
build as follows a definition scheme D′′ = 〈χ ′′,δ′′,(θ ′′R)R∈R′′ 〉:
10 We do not call it the Composition Theorem because this terminology is widely used for another result.

See the introduction of Section 5.3.
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(i) Its set of parameters is W ∪W ′.
(ii) The precondition χ ′′ is (χ ′)D , with free variables in W ∪W ′. By Theo-

rem 7.10, χ ′′ expresses, for a (W∪W ′)-assignment γ in S ∈ STRc(R), that T :=
D̂(S,γ � W) is defined, γ � W ′ is a W ′-assignment in T , and (T ,γ � W ′) |= χ ′,
which means that U := D̂′(T ,γ � W ′) is defined.

(iii) We have DU ⊆ DT ⊆ DS since τ and τ ′ are noncopying. We define the
domain formula δ′′ as (δ′)D . Its free variables are in {x} ∪W ∪W ′. Again
by Theorem 7.10, for every (W ∪W ′)-assignment γ satisfying χ ′′ and every
a ∈ DS , we have (S,γ ) |= δ′′(a) if and only if a ∈ DT and (T ,γ � W ′) |= δ′(a),
i.e., if and only if a ∈ DU . Hence δ′′ characterizes DU as a subset of DS (that
depends on γ assumed to satisfy χ ′′).

(iv) It remains to define the relation formulas θ ′′R for R ∈R′′. Each relation RU for
R ∈R′′ is defined by θ ′R in T , hence by (θ ′R)D in S (using an argument similar to
the one in (iii)). Hence we need only take θ ′′R to be (θ ′R)D for R∈R′. We have θ ′R
in CrMS(R′,W ′ ∪{x1, . . . ,xρ(R)}) and θ ′′R in CrMS(R,W∪W ′ ∪{x1, . . . ,xρ(R)}).

It is clear from the construction of D′′ that it defines the concrete transduction τ · τ ′.
This proves Assertions (1) and (2) for this case. To prove Assertion (3), we observe
that instead of defining δ′′ as (δ′)D , we can as well define it as the weaker formula
δ ∧ (δ′)"D and use Lemma 7.11 instead of Theorem 7.10. Thus, if both δ and δ′ are
True, then δ′′ is (equivalent to) True. We note that, similarly, θ ′′R can as well be defined
as (θ ′R)"D.

Case 2: τ is noncopying and τ ′ is k ′-copying (k ′ > 1). The construction is similar,
again for concrete transductions: for D′ = 〈χ ′,(δ′i)i∈[k ′],(θw)w∈R′′�[k ′]〉, we let

D′′ := 〈χ ′′,(δ′′i )i∈[k ′],(θ ′′w)w∈R′′�[k ′]〉,
where χ ′′ is (χ ′)D , δ′′i is (δ′i)D for each i (or it is δi ∧ (δ′i)"D), and θ ′′w is (θ ′w)D for
each w ∈R′′� [k ′]. As in Case 1, D′′ defines the concrete transduction τ · τ ′.
Case 3: τ is k-copying and τ ′ is k ′-copying with k ,k ′> 1. We only proveAssertion (1).
If T := D̂(S,γ ) and U := D̂′(T ,γ ′), we have DT ⊆DS ×[k] and DU ⊆DT ×[k ′] ⊆
(DS ×[k])×[k ′]. We will prove that τ · τ ′ is a monadic second-order transduction. It
is not a concrete one because DU is not a subset of any DS ×[m]. However, since we
only want to construct structures isomorphic to those of (τ · τ ′)(S), we will consider
(DS ×[k])×[k ′] as equal to DS × ([k]× [k ′]).

The set of parameters for D′′ will be W ′′ :=W ∪W ′(k) = {Y1, . . . ,Yq} ∪ {Z(i)
j |

1 ≤ j ≤ q′, 1 ≤ i ≤ k}. For each W-assignment γ in S, a W ′-assignment γ ′ in T :=
D̂(S,γ ) is described in terms of a W ′(k)-assignment η in S with γ ′ = η[k]. We let
the precondition χ ′′ be (χ ′)D . Its free variables are in W ′′. Then, by Theorem 7.10,
(S,γ ∪η) |= χ ′′ if and only if U := D̂′(T ,γ ′) is defined.

The definition scheme D′′ will construct from S a structure with domain included
in DS × ([k] × [k ′]), easily replaceable by DS × [kk ′]. Hence, we must define the
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domain formulas δ′′i, j for (i, j) ∈ [k] × [k ′] such that for γ and η satisfying χ ′′, we
have, for each a ∈DS ,

(a,(i, j)) ∈DU if and only if (S,γ ∪η) |= δ′′i, j(a).

We define δ′′i,j as (δ′j)D(i) (or as δi ∧ (δ′j)"D(i) for the domain-extending case). Assuming
that γ ∪η satisfies χ ′′, we have (again by Theorem 7.10, or Lemma 7.11), for a∈DS ,

(S,γ ∪η) |= (δ′j)D(i)(a) if and only if (a, i) ∈DT and (T ,γ ′) |= δ′j(a, i),

i.e., if and only if ((a, i), j)= (a,(i, j)) ∈DU .
Finally for each w= (R,(i1, j1), . . . ,(ip, jp)) where R∈R′′ and p= ρ(R), we define

the relation formula θ ′′w as (θ ′R, j1,...,jp
)D(i1,...,ip)

. For a1, . . . ,ap ∈DS :

(S,γ ∪η) |= (θ ′R, j1,..., jp)
D
(i1,...,ip)(a1, . . . ,ap) if and only if

(aq, iq) ∈DT for each q ∈ [p] and (T ,γ ′) |= θ ′R, j1,..., jp((a1, i1), . . . ,(ap, ip)),

i.e., if and only if ((a1,(i1, j1)), . . . ,(ap,(ip, jp)) ∈ RU .
It is clear from the construction of D′′ that it defines the abstract transduction

τ · τ ′. We observe, however, that it “almost” defines the concrete transduction τ · τ ′,
in the following sense. For fixed integers k ,k ′ > 1 let θ be the binary relation
{(((d, i), j),(d, k(i− 1)+ j)) | i ∈ [k], j ∈ [k ′]}, where d is any element of a set D.
This relation defines a bijection from (D× [k])× [k ′] to D× [kk ′]. For a concrete
structure U with DU ⊆ (D× [k])× [k ′] for some set D, we define θ(U ) to be the
unique concrete structure V with DV ⊆ D× [kk ′] such that θ � DU is an isomor-
phism from U to V . The definition scheme D′′ constructed in the proof of Case 3
can easily be modified into one that defines the concrete transduction τ · τ ′ · θ (where
τ and τ ′ are concrete k-copying and, respectively, k ′-copying monadic second-order
transductions).

Case 4: τ is k-copying with k > 1 and τ ′ is noncopying. If T := D̂(S,γ ) and U :=
D̂′(T ,γ ′), we have DU ⊆DT ⊆DS×[k]. The construction given for Case 3 is easily
adapted. As in Cases 1 and 2, D′′ defines the concrete transduction τ · τ ′.

We finally consider the general case where R′ and R′′ may have constant symbols.
It is actually an immediate consequence of the special case and Lemma 7.7 because
(τ · τ ′)∗ = τ∗ · τ ′∗∗. (We also have, with more symmetry, (τ · τ ′)∗∗ = τ∗∗ · τ ′∗∗ which
gives the same proof.)

Remark 7.15 (QF operations and QF-transductions) (1) We have observed
in Example 7.3(2) and after Definition 7.6 that the quantifier-free operations
(cf. Section 5.3.2) are total functions and, actually, QF-transductions of a partic-
ular form: they are parameterless, noncopying and have a precondition equal (or
equivalent) to True. Proposition 5.49 (Section 5.3.2) has shown that the composition
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of two quantifier-free operations is a quantifier-free operation. It can be considered
as a special case of Theorem 7.14.

(2) More generally than QF operations, we have defined QF- and FO-transductions
as MS-transductions with definition schemes that use only QF and FO formulas
respectively. Results like Theorems 7.10 and 7.14 and their corollaries have particu-
lar special cases for FO-transductions and FO-definable sets of structures. However,
we will not detail the corresponding statements because, for the questions studied in
this book, knowing that a class of structures is FO-definable rather than MS-definable
brings no additional results. The fact that a transduction is an FO-transduction rather
than a CMS-transduction indicates that it is “not too complicated,” and we will
make such observations only by passing. However, QF-transductions (or rather QF
operations) have particularly important properties that we have used to prove the
RecognizabilityTheorem in Chapter 5, and that MS-transductions do not share. Exam-
ple 5.65 has shown that this theorem can fail to hold if only one unary operation that
is an FO-transduction is added to the signature FVR. �

We continue by presenting other techniques to construct monadic second-order
transductions.

Theorem 7.16 (Restriction Theorem) Let τ be a (concrete) CrMS-transduction of
type R→ R′, let α ∈ CrMS(R,∅) and β ∈ CrMS(R′,∅). Then the relation τ ∩
(MOD(α)×MOD(β)) is a (concrete) CrMS-transduction. If τ is k-copying and is
defined with q parameters, then the same holds for τ ∩ (MOD(α)×MOD(β)).

Proof: We first consider the case where R′ has no constant symbols. We let D =
〈χ ,(δi)i∈[k],(θw)w∈R′�[k]〉 be a definition scheme defining a concrete transduction τ .
We construct D′ from D by replacing χ by α∧βD. (We recall that βD is χ ∧β"D .) It
is clear from Theorem 7.10 that D′ defines the concrete transduction τ ∩ (MOD(α)×
MOD(β)).

In the case where R′ has constant symbols, we observe that

(τ ∩ (MOD(α)×MOD(β)))∗ = τ∗ ∩ (MOD(α)×MOD(β∗)),

hence the result follows from the first case.

We denote by ♦ the structure in STRc(∅) consisting of the single element ∗.
Proposition 7.17 Let S be an R-structure having k elements. There exists a param-
eterless k-copying QF-transduction τ of type ∅ → R such that τ(♦) consists of a
single structure isomorphic to S.

Proof: The construction of a definition scheme for τ is easy. The domain of τ(♦)
will be {∗}× [k] and all formulas of the definition scheme will be True or False.

We now consider the union of two transductions of the same type.
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Proposition 7.18 If τ and τ ′ are (concrete) CrMS-transductions of type R→R′,
then τ ∪ τ ′ is a (concrete) CrMS-transduction.

Proof: Since (τ ∪ τ ′)∗ = τ∗ ∪ τ ′∗, it suffices to consider the case where R′ has no
constant symbols.

Let D and D′ be definition schemes for the concrete transductions τ and τ ′ that
are respectively k- and k ′-copying. We first assume that k < k ′. We define from
D= 〈χ ,δ1, . . . ,δk ,(θw)w∈R�[k]〉 the k ′-copying definition scheme

E := 〈χ ,δ1, . . . ,δk ,False, . . . ,False,(θEw)w∈R�[k ′]〉.

Its domain formula δj is False if k < j ≤ k ′. The relation formula θEw is θw if
w ∈ R � [k] and False if w ∈ R � [k ′] −R′ � [k] (but it can be any formula by
Definition 7.2, since the formulas δj are equal to False for j > k). It is clear that the
concrete transductions defined by E and D are equal.

Hence we assume that D and D′ are both k-copying, with sets of parameters W
and W ′ respectively. (The sets W and W ′ need not be disjoint.) We construct a
k-copying definition scheme D′′ by taking W ∪W ′ ∪ {Z}, where Z /∈W ∪W ′, as set
of parameters and by defining χD′′ as (Z = ∅∧ χD)∨ (Z �= ∅ ∧ χD′) and similarly
for the domain and relation formulas of D′′, so that for every W ′′-assignment γ in a
nonempty structure S ∈ STRc(R), we have:

D̂′′(S,γ )=
{

D̂(S,γ � W) if γ (Z)= ∅,
D̂′(S,γ � W ′) if γ (Z) �= ∅.

There is a difficulty if S = ∅R, however, because the condition γ (Z) �= ∅ cannot
be satisfied. It follows that the above definition is incorrect in the only case where
D̂(∅R) = ∅ and D̂′(∅R) = {∅R′ }. In this case, we just exchange the conditions
Z = ∅ and Z �= ∅ in the definition of the formulas of D̂′′. With this modification, D′′
defines the concrete transduction τ ∪ τ ′ as wanted.

The statement for transductions follows immediately.

These two propositions entail that every finite set of R-structures is the image of
♦ under a monadic second-order transduction.

7.1.6 Some particular monadic second-order transductions

We will consider “labeling” transductions and “copying” transductions.

Labeling transductions

We know from Example 5.2(2) that vertex labels of a graph (including source and port
labels) can be handled as unary relations in the structure that represents the graph. In
general, we can view unary relations of a structure as labels attached to the elements of
the structure. We will consider monadic second-order transductions that manipulate
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such labels. Since unary relations are sets, there is also a close relationship between
labels and set variables, in particular parameters.

Definition 7.19 (Expansions by unary relations) Let R be a relational signature
and U be a set of unary relation symbols in R. For every S ∈ STRc(R), we let fgU (S)
be the corresponding reduct (cf. Example 5.44) in STRc(R−U): it is the structure
obtained by deleting (or “forgetting”) from S the relations that interpret the symbols
in U . The mapping fgU is a parameterless, noncopying and domain-preserving QF-
transduction.

We let expU be its inverse, the transduction of type (R−U)→R that associates
with S the set of structures S ′ such that fgU (S ′)= S. These structures S ′ are called the
expansions of S by the set U of unary relations. The transduction expU is a noncopying
and domain-preserving QF-transduction with U as set of parameters: each U ∈ U is
made into a parameter and the interpretation UT of U in the output structure T is
defined as γ (U ), where γ is the U-assignment in the input structure from which T
is defined, i.e., the relation formula θU is x1 ∈ U . We will denote by Upar the set U
considered as a set of parameters to distinguish it from the initial set of unary relation
symbols included in R.

Definition 7.20 (Monadic second-order relabelings) Let R and R′ be relational
signatures such that Ri =R′i for i �= 1, i.e., that may differ only by their unary relation
symbols. A concrete monadic second-order transduction τ of type R→R′ is called a
monadic second-order relabeling if it is domain-preserving and, for every T in τ(S),
we have aT = aS if a ∈R0 =R′0 and RT = RS if R has arity at least 2 (which implies
R ∈R∩R′). Such a transduction can only modify, add and/or delete unary relations.

A transduction τ of type R→ R′ is a monadic second-order relabeling if and
only if τ∗∗ has a domain-preserving definition scheme whose relation formula θR is
R(x1, . . . ,xρ(R)) if R ∈R′∗ −R′1. In such a definition scheme, there is no constraint
on the precondition and on the relation formulas θR if R is unary and not of the form
laba for any a ∈R′0.

It is clear from the definitions that the composition of two monadic second-order
relabelings is a monadic second-order relabeling. It is also clear that the composition
of definition schemes used in the proof of Theorem 7.14 (Case 1) preserves the above
syntactic property (provided θ ′′R is defined as (θ ′R)"D rather than (θ ′R)D).

The transductions fgU and expU of Definition 7.19 are monadic second-order
relabelings.

We now consider two particular monadic second-order relabelings of terms. Let F
and F ′ be two finite functional signatures. In the following definition, the associated
relational signatures RF and RF ′ use the binary relations soni (as opposed to the
binary relation son and the unary relations bri). Their only unary relations are thus
the relations labf for f in F or in F ′. A relation τ ⊆ T (F)× T (F ′) is a monadic
second-order relabeling if the corresponding relation {(�t�,�t′�) | (t, t′) ∈ τ } is a
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monadic second-order relabeling of type RF →RF ′ . Hence, if (t, t′) ∈ τ , the term
t′ is obtained from t by the replacement of function symbols from F by function
symbols from F ′ of the same arity, in a way that is not uniform as in an alphabetic
relabeling (cf. the paragraph before Proposition 2.126, and cf. Section 6.3.1), but is
specified by monadic second-order formulas.

Here is our second particular monadic second-order relabeling of terms.Again, F is
a finite functional signature. Let U := {U1, . . . ,Un} be a set of unary relation symbols
disjoint from RF , ordered as indicated. If t ∈ T (F) and (A1, . . . ,An) is an n-tuple of
subsets of Nt , we denote by �t�+ (A1, . . . ,An) the expansion of �t� into the (RF ∪U)-
structure such that A1, . . . ,An are the interpretations of U1, . . . ,Un respectively (cf.
Lemma 6.52 in Section 6.4.1 for the notation S+γ ). We recall from Definition 6.24(c)
in Section 6.3.3 that the pair of a term t and an n-tuple (A1, . . . ,An) as above is encoded
by a term t ∗ (A1, . . . ,An) in T (F (n)), where u is an occurrence of ( f ,w) belonging to
F (n) (w isasequenceofnBooleans) ifandonly if it isanoccurrenceof f in t and, foreach
i = 1, . . . ,n, w[i] = 1 if and only if u ∈ Ai. The mapping : T (F(n))→ STRc(RF ∪U)

that maps �t ∗ (A1, . . . ,An)� to �t�+ (A1, . . . ,An) is a monadic second-order relabeling.
It defines a bijection between �T (F(n))� and expU (�T (F)�) that we denote by μF ,n.
Its inverse is also a monadic second-order relabeling, which holds for all monadic
second-order relabelings as will be shown in Proposition 7.22(1).

We will also use the monadic second-order relabeling πF ,n := μF ,n · fgU . It
represents, in terms of relational structures, the alphabetic relabeling of terms
: T (F(n))→ T (F) that deletes the Booleans from the symbols ( f ,w) of F(n).

Definition 7.21 (Labelingsbybounded theories) Abounded theory (Definition5.59
in Section 5.3.6) is a subset # of a fixed finite set L of formulas. We will make each
such set into a unique symbol, to be used as a label.

Let r,h ∈N and let R be a relational signature. We recall from Proposition 5.93
(Section 5.6) that every formula in CrMSh(R,{x}) is equivalent to a formula belonging

to the finite set L := ĈrMSh(R,{x}) of formulas that are in a certain “normal form.”
For S ∈ STRc(R) and a ∈DS , we define

#(a) := {ϕ ∈L | S |= ϕ(a)},

i.e., #(a) = Th(S,R,h,r,a) as defined in Definition 5.59. The set P(L) in which
#(a) takes its values is finite and depends only on r,h and R. For each subset # of
L, we let U# be a new unary relation symbol. These symbols form a finite set U . For
each S ∈ STRc(R), we let Ŝ be the unique expansion of S into an (R∪U)-structure
satisfying the following sentence !:∧

#⊆L
∀x
(
U#(x)⇔

∧
ϕ∈#

ϕ∧
∧

ϕ∈L−#
¬ϕ
)
.

It expresses that U#Ŝ consists of all elements a of DS such that#(a)=#. The mapping
S �→ Ŝ is a CrMSh-transduction : STR(R)→ STR(R∪U) where each unary relation
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U# of U is defined by a formula of quantifier-height at most h. It is a parameterless
(hence functional) monadic second-order relabeling.

We now prove that the class of monadic second-order relabelings is closed under
inverse, which is not true of all monadic second-order transductions. In the following
statement, F and F ′ denote as usual finite functional signatures.

Proposition 7.22

(1) Every monadic second-order relabeling is invertible; its inverse is a monadic
second-order relabeling.

(2) The image of a CMS-definable class of structures under a monadic second-order
relabeling is CMS-definable.

(3) The image of a regular language over F under a monadic second-order relabeling
from T (F) to T (F ′) is regular over F ′.

Proof: (1) We first give the idea. If a transduction deletes or modifies unary relations,
its inverse can be expressed as a monadic second-order transduction using parameters
that describe the (possible) initial values of these relations.

Let τ be a monadic second-order relabeling of type R → R′ and let τ∗∗ be
defined by D := 〈χ ,True,(θR)R∈R′∗ 〉, where θR is R(x1, . . . ,xρ(R)) for every R in
R′∗ −R′1. Let W be the set of parameters of D. For defining the inverse of τ∗∗
(this will suffice because (τ∗∗)−1 = (τ−1)∗∗), we take W ′ :=W ∪ (R1)par as set
of parameters, where (R1)par is the set R1 considered as a set of parameters (cf.
Definition 7.19).

The definition scheme for (τ∗∗)−1 is then D′ := 〈χ ′,True,(θ ′R)R∈R∗〉, where θ ′R is
R(x1, . . . ,xρ(R)) for each R in R∗ and the precondition χ ′ is defined as

χ ∧
∧

R∈R′1
∀x1(R(x1)⇔ θR).

Note that in the formulas of D′, every atomic formula U (x) with U ∈R1 can be
replaced by x ∈ U by our syntactical convention for set variables (which does not
hold for unary relation symbols). In particular, θ ′U then becomes x1 ∈ U for each
U ∈R1, which means that the unary relation symbol U is interpreted as the value of
the parameter U . The precondition χ ′ ensures that, in a given R′∗-structure T , if the
values of the parameters are taken as the relations US for U ∈R1 in an R∗-structure S
where the other relations are as in T , then (S,T )∈ D̂. The other formulas of D′ ensure
that S and T have the same domain and the same relations defined by the symbols
not in R1 or R′1.

(2) Follows from (1) and the Backwards Translation Theorem (Corollary 7.12).
(3) Follows from (2) and the equivalence between regularity and monadic

second-order definability for languages over a finite functional signature
(Theorem 5.82).
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Remark 7.23 We have already noted in Definition 7.2 and Remark 7.13(3) that the
image of a CMS-definable class under a monadic second-order transduction is not
always CMS-definable, hence that the inverse of a monadic second-order transduction
is not always a monadic second-order transduction. We give three examples of such
cases for monadic second-order transductions that only modify a single relation of
arity 2.

First, we consider the mapping on p-graphs of type {a,b} that deletes the edge rela-
tion. It transforms the structure �(ab)n� for n≥ 1 that represents the word (ab)n into
the structure representing the edgeless p-graph a⊕·· ·⊕a⊕b⊕·· ·⊕b with an equal
number of occurrences of a and b. These structures do not form an MS-definable set
by Proposition 5.13(1). The same proof shows that they do not form a CMS-definable
set. However, the language (ab)+ is regular, hence MS-definable by Theorem 5.15.

As another example, we consider the mapping und on graphs that forgets edge
directions. Hence it redefines edg(x1,x2) by edg(x1,x2)∨ edg(x2,x1). We let L :=
{Gn | n ≥ 1}, where Gn is the graph with vertices u1, . . . ,un,v1, . . . ,vn and edges
ui→ vi and vj→ ui for all i, j ∈ [n] with j �= i. The set of graphs L is FO-definable,
but und(L) is the set {Kn,n | n ≥ 1}, which is not MS-definable by the proof of
Proposition 5.13(2) and also not CMS-definable by an easy extension of that proof.

As last example, we take the monadic second-order transduction from words to
words that transforms a word a1a2a3 · · ·a2n (where a1,a2, . . . ,a2n are letters) into
the word a1a3 · · ·a2n−1a2a4 · · ·a2n. It is a parameterless domain-preserving trans-
duction that transforms the regular, hence MS-definable, language (ab)+ into the
nonregular language {anbn | n≥ 1}which is not CMS-definable. This example shows
that adding conditions of connectivity and bounded degree does not change the
situation. �

The next two propositions show that monadic second-order transductions can be
factorized as compositions of transductions of particular types. We first show that
every CMS-transduction can be decomposed into a (very simple) monadic second-
order relabeling and a parameterless CMS-transduction.

If W is a set of set variables, we will denote by Wrel the same set viewed as a set
of unary relation symbols. The monadic second-order relabeling πF ,n : T (F(n))→
T (F) associated with a finite functional signature F has been defined at the end of
Definition 7.20.

Proposition 7.24

(1) Every concrete CrMS-transduction τ of type R→ R′ with set of parameters
W can be expressed as expWrel

· τ ′, where τ ′ is a concrete parameterless CrMS-
transduction of type R∪Wrel→R′.

(2) Every concrete CrMS-transduction τ : T (F)→ STRc(R′) with n parameters
can be expressed as (πF ,n)

−1 · τ ′′, where τ ′′ is the concrete parameterless
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CrMS-transduction : T (F (n))→ STRc(R′) defined by

τ ′′(�t ∗ (A1, . . . ,An)�) := τ(�t�,(A1, . . . ,An)).

Proof: (1)We let τ ′ be defined by τ ′(S+γ ) := τ(S,γ ) for every concreteR-structure
S and every W-assignment γ in S, where S + γ is the expansion of S into the
concrete (R∪Wrel)-structure such that γ (Y ) is the interpretation of Y ∈Wrel (see
Lemma 6.52). The formulas of a parameterless definition scheme for τ ′ are obtained
from those of one for τ by replacing, for every Y ∈ W , each atomic formula
Cardp,q(Y ) by ∃Z(∀x(x ∈ Z ⇔ Yi(x)) ∧ Cardp,q(Z)) (and replacing each atomic
formula s ∈ Y by Y (s), where s is a first-order variable or a constant symbol).

(2) We let τ ′′ be defined by τ ′′(�t ∗ γ �) := τ(�t�,γ ) for every t ∈ T (F) and γ :
Xn→P(Nt), where Xn={X1, . . . ,Xn} is the set of parameters (cf. Definition 6.24(c)).
Let τ ′ be defined as in (1), with R := RF and W := Xn. Then τ ′′ = μF ,n · τ ′,
where μF ,n is defined at the end of Definition 7.20, and this equality holds for the
concrete transductions. By Theorem 7.14(2) (about the compositions of concrete
monadic second-order transductions), we get the desired result. Theorem 7.14(2)
is applicable because μF ,n is noncopying, so that we have an equality of concrete
transductions.

Copying transductions

We now show that every parameterless CMS-transduction can be decomposed into a
very simple copying transduction and a parameterless noncopying CMS-transduction.
To this aim we define, for each k > 1, a particular parameterless k-copying monadic
second-order transduction that transforms a structure S ∈ STRc(R) by adding to it
k− 1 copies of each element of its domain. The i-th copy of an element is related to
it by a new binary relation Bi. Finally, a new unary relation Pi collects all i-th copies
of the elements of DS .

Definition 7.25 (The copyk-transduction) For k > 1, we let Ck := {Pi | 1 ≤ i ≤
k} ∪ {Bi | 1 < i ≤ k} be a set of relation symbols such that each Pi is unary and
each Bi is binary. We assume that this set is disjoint with the other relational sig-
natures R,R′, . . . that we will consider. For each relational signature R, we define
as follows the mapping copyk : STRc(R)→ STRc(R∪ Ck). It transforms a structure
S = 〈DS ,(RS)R∈R〉 into the structure T := copyk(S) with domain DT :=DS×[k] and
relations and constants defined by:

RT := {((a1,1), . . . ,(aρ(R),1)) | (a1, . . . ,aρ(R)) ∈ RS } for R ∈R+,

cT := (cS ,1) for c ∈R0,

PiT := DS ×{i} for 1≤ i ≤ k ,

BiT := {((a,1),(a, i)) | a ∈DS} for 1 < i ≤ k .
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It is clear that copyk is a parameterless k-copying QF-transduction. The sets PiT

are FO-definable from the relations BiT . Hence, we could omit them, and the
next proposition would remain valid, but having them will make formulas more
clear.

Proposition 7.26 For every concrete parameterless k-copying CrMS-transduction τ

of typeR→R′, there exists a concrete parameterless noncopying CrMS-transduction
μ of type R∪ Ck → R′ such that τ = copyk ·μ and every structure in Dom(μ) is
isomorphic to one in copyk(STRc(R)).

Proof: A structure U in STR(R∪ Ck) of the form copyk(S) satisfies the following
conditions:

(1) the sets P1U , . . . ,PkU form a partition of the domain;
(2) every constant belongs to P1U and for every R∈R+ and every tuple a in RU , we

have a⊆ P1U , i.e., all components of a are in P1U ;
(3) each relation BiU defines a bijection between P1U and PiU .

We let β be the first-order formula expressing the conjunction of Conditions (1)–(3).
Each structure U ∈ STR(R∪ Ck) satisfying β is isomorphic to copyk (S), where S is
fgCk

(U [P1U ]).
We denote by ϕ � P1 the relativization of a formula ϕ to the set that is the interpre-

tation of P1, i.e., ϕ � P1 is the formula ϕ � X in which every atomic formula x ∈ X
is replaced by P1(x) (and X is a set variable that is not free in ϕ, cf. Lemma 5.10 in
Section 5.2.1).

Suppose that τ is defined by D = 〈χ ,(δi)i∈[k],(θw)w∈R′∗�[k]〉. We construct a
definition scheme E = 〈χ ′,δ′,(θ ′R)R∈R′∗ 〉 for the transduction μ. Its precondition χ ′
has to express in the considered (R∪ Ck )-structure U that there is some structure S
such that U is isomorphic to copyk(S) and S |= χ . We define χ ′ to be β ∧ (χ � P1).

The domain formula δ′ must define the set of all elements (a, i) in DU such that
S |= δi(a). This can be done by defining δ′(x) as(

P1(x)⇒ (δ1 � P1)(x)
)
∧
∧

2≤i≤k

(
Pi(x)⇒∃y(Bi(y,x)∧ (δi � P1)(y))

)
.

Finally, we must construct relation formulas θ ′R for R ∈R′∗. We use the relations
Bi to obtain a copy of a given tuple that lies in DS ×{1}. Letting n := ρ(R), we have

((a1, i1), . . . ,(an, in)) ∈ RD̂(S) if and only if S |= θR,i1,...,in(a1, . . . ,an).

For fixed i1, . . . , in, we can express this by the formula γi1,...,in(x1, . . . ,xn) defined as

∃y1, . . . ,yn

( ∧
1≤j≤n

Bij (yj ,xj)∧ (θR,i1,...,in � P1)(y1, . . . ,yn)

)
,
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where Bij (yj ,xj) is the formula yj = xj ∧ P1(xj) if ij = 1. Therefore, we can define
θ ′R(x1, . . . ,xn) as ∨

1≤i1,...,in≤k

⎛⎝ ∧
1≤j≤n

Pij (xj)∧ γi1,...,in(x1, . . . ,xn)

⎞⎠ .

Together with Proposition 7.24, we have a factorization of an arbitrary monadic
second-order k-copying transduction τ as τ = expU ·copyk ·μ, where μ is parameter-
less and noncopying. If k = 1, the factor copyk disappears. If τ is parameterless,
the factor expU disappears. This factorization is useful to prove that inverse
monadic second-order transductions preserve recognizability (cf. [BluCou06],
Theorem 51).

In Section 7.2 we will consider monadic second-order transductions from terms and
trees to p-graphs, and we will obtain a logical characterization of the VR-equational
sets of p-graphs. Chapter 8 will be devoted to the study of monadic second-order
transductions that transform terms and words. Automata-based transducers will be
defined, and proved to be equivalent to parameterless monadic second-order transduc-
tions. These equivalences generalize the equivalence of finite automata and monadic
second-order sentences for the definition of languages (sets of terms or words) stated
in Theorem 1.16 and proved in Chapter 5.

We continue with some technical (but useful) notions.

7.1.7 Comparing sets of structures via monadic
second-order transductions

Let C ⊆ STR(R) and C′ ⊆ STR(R′) be two sets of structures. We say that C′ is
generated by C if C′ = τ(C) for some MS-transduction of type R→R′ and we denote
this by C ′ 6 C. By Theorem 7.14 (about the composition of CMS-transductions), this
relation is transitive, hence it is a quasi-order. We say that C and C′ are equivalent if
C 6 C′ and C′ 6 C. They are equivalent if and only if they generate the same sets of
structures.

If C and C′ are equivalent, then C′ = τ(C) and C = τ ′(C ′) for MS-transductions τ

and τ ′. This is implied by the stronger condition that τ and τ ′ are MS-transductions
such that τ is an injection and τ ′ is its inverse. We have met such a condition when
defining strongly equivalent representations of combinatorial objects by relational
structures in Definition 7.9.

A finite functional signature F is weak if T (F) is finite. For it not to be weak, F
must contain at least one constant symbol and at least one symbol of arity at least 1.
It is fat if it contains at least one constant symbol and at least one symbol of arity at
least 2. A term t is slim if, for any of its subterms of the form f (t1, . . . , tk ), at most one
of t1, . . . , tk is not a constant symbol (or is not a variable if we consider terms with
variables). We denote by Slim(F) the set of slim terms in T (F), cf. Proposition 2.85.
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Proposition 7.27

(1) The following sets of structures11 are pairwise equivalent: paths, directed paths,
A∗ for every nonempty finite alphabet A and Slim(F) for every finite signature F
that is not weak.

(2) The same holds for the following sets: trees, rooted trees, binary rooted trees and
T (F) for every finite fat signature F .

Proof: (1) For transforming a path into a directed path, if suffices to select one
of its ends (the MS-definition scheme uses a parameter for doing that). A monadic
second-order formula can express the corresponding directions of edges. The inverse
transformation is straightforward.

For transforming a directed path into a nonempty word over A, one uses a monadic
second-order relabeling that chooses one letter for each position. The empty word
can easily be obtained from, e.g., P1 by an MS-transduction. Then Proposition 7.18
can be used. Again, the inverse transformation is straightforward.

For a finite signature F , let H be the unary finite signature such that H0=F0 and H1

consists of (or is in bijection with) the tuples of the form 〈 f , i,a1, . . . ,ak−1〉 for k ≥ 1,
f ∈ Fk , i ∈ [k] and a1, . . . ,ak−1 ∈ F0. Note that H is weak if and only if F is weak.
There is a surjective mapping α from T (H ) to Slim(F), defined as follows: α(c) := c
for c ∈ H0, and α(〈 f , i,a1, . . . ,ak−1〉(t)) := f (a1, . . . ,ai−1,α(t),ai, . . . ,ak−1). Since
α is a linear, strict and nonerasing second-order substitution, it is an invert-
ible FO-transduction by Example 7.3(4). Hence, Slim(F) and T (H ) = Slim(H )

are equivalent. Note that α is not injective, e.g., f (a1,a2) = α(〈 f ,1,a2〉(a1)) =
α(〈 f ,2,a1〉(a2)).

For a unary finite signature F , there is an obvious bijection between T (F) and
the words in the set (F+)∗F0 ⊆ F∗, where F is viewed as a finite alphabet. This
bijection and its inverse are MS-transductions. Thus, there is an MS-transduction
that transforms F∗ into T (F), and one that transforms T (F) into (F+)∗.

(2) For transforming a tree into a rooted tree, it suffices to choose a root and, from
this choice, to determine the corresponding direction of the edges. Every rooted tree
T can be obtained from a large enough binary rooted tree B by choosing a set U of
nodes containing the root (to be the nodes of T ) and by contracting all edges of B with
their head not in U (cf. Definition 2.15 in Section 2.2 about edge contractions). This
can be formalized by means of an MS-transduction with one parameter intended to
specify U (cf. Example 7.3(1)). Additional parameters can specify node labels that
determine the symbol from F attached to each node, and, except for the root, its rank
in the sequence of brothers. Using Theorem 7.16, it can be checked that the resulting
labeled tree is in T (F). Hence, one can obtain T (F) for each finite signature F by
contracting edges in some way and by choosing new node labels. Conversely, if F is

11 A path is a graph of the form Pn for some n≥ 1. We identify Pn with the structure �Pn� and similarly
for words and terms.
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fat, then the rooted trees can be obtained from T (F) in the same way as they were
obtained from the binary rooted trees.

The detailed constructions of definition schemes are omitted because they are
straightforward.

Note that the transductions that relate paths and directed paths define inverse bijec-
tions on the corresponding abstract structures, but not on the concrete ones because
a concrete path can be directed in two ways.

The set of paths is not equivalent to the set of trees because, by Corollary 7.49
below, the set of trees would have bounded path-width, which is not the case (see
Definition 2.57).

The following proposition12 implies that sets are not equivalent to paths. By sets
we mean ∅-structures, i.e., graphs without edges. The nodes of a (rooted) tree that
are not leaves are its nonleaf nodes (not to be confused with the internal nodes of a
rooted tree whose root is defined as a source).

Proposition 7.28 Let τ be a CMS-transduction of type ∅ → {son} that produces
rooted (and thus directed) trees. The output trees have a bounded number of nonleaf
nodes.

Proof: Let τ be k-copying with p parameters. Let m := k · 2p. Let us assume by
contradiction that there is a rooted tree in τ(D) for some set D ∈ STR(∅), which is
defined from values D1, . . . ,Dp of the parameters (with Di ⊆ D) and that has more
than m nonleaf nodes. There exist two such nodes equal to (a, i) and to (b, i) for
some i ∈ [k] and some elements a and b �= a of D that belong to the same sets in
{D1, . . . ,Dp}. The node (a, i) has a son, say (c, j). But the tuples (D1, . . . ,Dp,a,c) and
(D1, . . . ,Dp,b,c) satisfy the same monadic second-order formulas by the choice of
(a,b). This implies that (c, j) is also a son of (b, i), hence that a= b. This contradiction
completes the proof.

This proposition concerns for example the FO-transduction that makes a set of n
elements (with n > 2) into the rooted tree (K1,n−1,r), where the root r is the unique
vertex of degree n− 1. A parameter selects a vertex r to be the root and the relation
son is defined by son(x,y) :⇐⇒ x= r∧ y �= x.

Since directed paths are particular directed trees, Proposition 7.28 shows that a fixed
monadic second-order transduction can define from all sets only paths of bounded
length.

7.1.8 Evaluation of monadic second-order transductions

The following result is an application of the fixed-parameter algorithms for the prob-
lems considered in Sections 6.4.1 and 6.4.2. As usual, F is a finite functional signature
and R a relational signature.

12 It will be used in Section 7.6. It is generalized in [BluCou10].
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Theorem 7.29 Let τ be a CMS-transduction : T (F)→ STRc(R) defined with a set of
parameters W . Given a term t in T (F) and a W-assignment γ in �t�, one can decide
in time O(|t|) whether the structure S := τ(t,γ ) is defined; if it is, one can compute
it in time O(|t| + ‖S‖). If only t is given, one can decide in time O(|t|) whether t
belongs to Dom(τ ), and if this is the case, one can compute in time O(|t| + ‖S‖) a
structure S in τ(t).

Proof: Let be given a definition scheme D for τ , with set of parameters W . Given a
term t in T (F) and a W-assignment γ in �t�, one can decide in time O(|t|) whether
(�t�,γ ) |= χD by the results of Section 6.4.1 showing that Theorem 6.3(1) extends to
property-checking problems. The structure S := τ(t,γ ) is defined if and only if the
answer is positive.

If this is the case, in order to compute S, we must compute the sets defined by
the other formulas of D. Together with Lemma 6.17, Theorem 6.55(1) shows that,
for every formula ϕ with free variables in W ∪ {x1, . . . ,xn}, one can compute the
set A := sat(�t� + γ ,ϕ,(x1, . . . ,xn)) in time O(|t| + ‖A‖). It follows that S can be
computed in time O(|t| + ‖S‖). (See Definition 5.3 for ‖S‖ and Definition 6.53 for
‖A‖.)

If γ is not given, then one can decide in time O(|t|) if (�t�,γ ) |= χD for some
W-assignment γ , and, by Theorem 6.55(1), one can compute such γ in time O(|t|)
if t belongs to the domain of τ . Then we apply to this γ the algorithm of the first
case.

Note that the time to compute S is polynomial in |t|: if k := ρ(R), then ‖S‖ =
O(|t|k).

The evaluation of (parameterless) monadic second-order graph transductions is
discussed in Remarks 7.31(2) and 8.19(3).

7.2 The Equationality Theorem for the VR algebra

The main result of this section is a logical characterization of the VR-equational sets
of (simple) graphs as the images of trees under monadic second-order graph trans-
ductions.13 This theorem links structural aspects (algebraic descriptions of certain
sets of graphs) and logical ones. It shows how tightly monadic second-order logic is
linked with a certain type of graph structuring. There will be a companion theorem for
HR-equational sets. These Equationality Theorems link our two representations of
graphs by relational structures with our two graph algebras. They show the robustness
of all these notions.

Let us discuss this in some more detail. Instead of trees we consider terms, cf.
Proposition 7.27(2). Graphs can be denoted by terms in two ways, either by terms
over the signature FVR of the algebra GP or over the signature FHR of the algebra

13 A simple graph G is identified with its representing structure �G�.
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JS. Hence, we have two mappings from terms to graphs, and we will prove that
they are both monadic second-order transductions. It follows that every equational
set of graphs is the image of a regular set of terms under a monadic second-order
transduction. For an HR-equational set L, this is true in a strong sense: the set of
incidence graphs of the graphs in L is the image of a regular set of terms under a
monadic second-order transduction. Since the regular set is MS-definable, it can be
incorporated into the monadic second-order transduction.

Two converse results will be proved: if the image of a set of terms T (F) under a
monadic second-order transduction is a set of graphs, then that set is VR-equational,
and similarly, if it is the set of incidence graphs of a set of graphs L, then L is
HR-equational. This provides us with characterizations of the VR- and HR-equational
sets in terms of monadic second-order transductions, that are independent of the
signatures FVR and FHR. These characterizations show the robustness of the whole
theory. In particular, they yield easy proofs that for some variants of the signature
FVR the equational sets of the corresponding algebras are the same (and similarly
for FHR). They also yield, easily, that the classes of VR- and of HR-equational sets
of graphs are closed under monadic second-order graph transductions of the relevant
types: direct constructions from given equation systems and definition schemes would
be impossible to write down in a readable way; all difficulties are concentrated in the
Equationality Theorems.

Let us now start the proof of the Equationality Theorem for the VR alge-
bra (the theorem relative to the HR algebra will be proved in Section 7.4). We
first show that, for each finite set C of port labels, the mapping val (defined in
Section 2.5, Definition 2.87) that associates a p-graph with every term in T (FVR

C ),
is an MS-transduction.14 Since the domain of a monadic second-order transduction
must be a class of structures over a finite relational signature, and since FVR is infi-
nite, we cannot hope to have such a transduction with domain T (FVR). Hence, we
consider the finite subsignatures FVR

C of FVR for finite sets C.
For a p-graph G of type π(G)⊆C, we have defined in Example 5.2(2) the faithful

representation �G�C as the Rs,C -structure 〈VG ,edgG,(labaG)a∈C〉, where labaG is the
set of a-ports of G. Ifπ(G)=C, then �G�C is also denoted �G�. Moreover, if L is a set
of p-graphs of bounded type, then �L� denotes the set {�G�D |G ∈ L} ⊆ STRc(Rs,D),
where D is the smallest set of port labels such thatπ(G)⊆D for every G ∈L. Note that
if D⊆ C, then the representations �G�D and �G�C of a p-graph such that π(G)⊆D
are strongly FO-equivalent (Definition 7.9). In fact, �G�C = ιRs,D,Rs,C (�G�D) and
�G�D = fgU (�G�C), where U :=Rs,C −Rs,D = {laba | a ∈ C −D}, and both these
transductions are QF operations, see Example 5.44.

Proposition 7.30 For each finite set C of port labels, the mapping �t� �→ �val(t)�C
with domain �T (FVR

C )� is a parameterless noncopying MS-transduction of type

14 The special case of cographs has been presented in Section 1.7.1 (Example 1.38).
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RFVR
C
→ Rs,C . If D ⊆ C, then the mapping �t� �→ �val(t)�D for π(val(t)) ⊆ D

(or for π(val(t))= D) is also a parameterless noncopying MS-transduction, of type
RFVR

C
→Rs,D. These results extend to labeled graphs.

Proof: We will show that the mapping �t� �→ �cval(t)�C is a concrete parameter-
less noncopying MS-transduction. This result follows from Lemmas 2.95 and 2.96
(Section 2.5.2) and we will use the notation of these lemmas. Let be given t in
T (FVR

C ) and G := cval(t) be the associated concrete graph. The vertex set of G is
the set Occ0(t) of occurrences in t of constant symbols different from ∅. That can be
expressed by a quantifier-free domain formula. The edges and ports of G are defined
by relation formulas as follows:

(a) If x ∈ VG, there is a loop incident with x if and only if x is an occurrence of c


for some c ∈C. This condition is expressible by a quantifier-free formula interpreted
in �t�.

(b) If x,y ∈ VG with x �= y, then (x,y) ∈ edgG if and only if there exist a,b ∈ C

and an occurrence u above x and y of one of the symbols
−→
adda,b, adda,b or addb,a

such that portt(u,x)= a and portt(u,y)= b. This condition is expressible by an MS
formula with the help of the following auxiliary formulas: for every port label a there
exists an MS formula ϕa(x1,x2) such that, for all x,u in Nt , if x ∈Occ0(t) and x≤t u,
then

�t� |= ϕa(u,x) if and only if portt(u,x)= a.

We will describe later its construction.
(c) The port mapping of G satisfies portG(x) = portt(roott ,x) for every x ∈ VG.

Thus, portG(x)= a if and only if �t� |= ∃y(ϕa(y,x)∧ “y is the root”).
Hence, to complete the proof that the edges and port labels of G can be determined

by MS formulas interpreted in �t�, we need only describe the formulasϕa(x1,x2). That
is similar to the proof of Theorem 5.15. By Lemma 2.95, the condition portt(u,x)= a
(for x ∈Occ0(t) and x≤t u) is equivalent to the existence of a family of sets of nodes
(Xc)c∈C such that

(1) it is a partition of the set [x,u] := {w | x ≤t w ≤t u};
(2) if x is an occurrence of c or of c
, then it belongs to Xc;
(3) for every w ∈ [x,u] and every c ∈ C, if w ∈ Xc is an occurrence of relabh, then

its son belongs to Xd for some d such that h(d)= c;
(4) for every w ∈ [x,u] and every c ∈ C, if w ∈ Xc is an occurrence of ⊕ or of an

edge addition operation, then its son that belongs to [x,u] is in Xc;
(5) u ∈ Xa.

Since these conditions are expressible by a monadic second-order formula, the proof
of the first statement is complete.

Let τ be the mapping �t� �→ �val(t)�C with domain T (FVR
C ). Let β be a formula

over Rs,C expressing that a p-graph has type included in D (or has type D). Then
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the required mapping is (τ ∩ (MOD(True)×MOD(β))) · fgU , where U := {laba | a∈
C−D}. The second statement now follows from Theorems 7.16 and 7.14.

The extension to (K ,�)-labeled graphs is straightforward.

Remark 7.31 (1) From this proposition, we obtain a short proof of the Weak
Recognizability Theorem (Corollary 5.69(1)), which, by Proposition 3.69, states that
the set of terms in T (FVR

C ) that evaluate to a p-graph satisfying a CMS sentence ϕ

is regular: by Proposition 7.30 and Backwards Translation (Corollary 7.12), this set
of terms is CMS-definable. Hence it is regular by Theorem 6.26. For the algorithmic
applications described in Chapter 6 this proof is not satisfactory because it produces
a sentence of quantifier-height qh(ϕ)+O(|C|). For this reason, we have given in
Chapter 6 direct constructions of automata over FVR

C rather than constructions based
on Backwards Translation, cf. Remark 6.36.

(2) We also obtain a generalization of the model-checking result of Theorem 6.4(2)
to the evaluation of parameter-invariant monadic second-order graph transductions:

There exists a fixed-parameter cubic algorithm that computes τ(G), for a given
parameter-invariant monadic second-order graph transduction τ and a given
labeled graph G.15 The parameter of the algorithm is (cwd(G),D), where D is
the definition scheme for τ .

The proof is as follows.As shown in Proposition 6.8, a term t over FVR
[h�(G)],[K ,�] can be

computed in cubic time such that val(t)=G. By Theorem 7.14 and Proposition 7.30
(for D= ∅), val · τ is a parameter-invariant monadic second-order transduction from
terms to graphs. Thus, byTheorem 7.29, the graph τ(G)= (val·τ)(t) can be computed
in time O(|t|+ ‖τ(G)‖).

As discussed after Theorem 6.4, this result also holds for p-graphs. �

Corollary 7.32 For every VR-equational set of labeled p-graphs L, there exist a
fat finite functional signature F , consisting of binary and nullary symbols, and a
parameterless noncopying MS-transduction τ such that L= τ(T (F)).16

Proof: Let L be a VR-equational set of (K ,�)-labeled p-graphs and let D be the
smallest set that includes the types of all p-graphs in L. We know from Proposi-
tion 4.41 and Corollary 3.19 (see also Proposition 3.23(3)) that L= val(R), where R
is a regular subset of T (FVR

C,[K ,�]) for some finite set C that includes D. By Proposi-
tion 7.30, the mapping �t� �→ �val(t)�D for π(val(t))⊆D is an MS-transduction. So
is its restriction to �R�, by the Restriction Theorem (Theorem 7.16), because R is
MS-definable (by Theorem 5.15). Let τ be the resulting MS-transduction. Then
�L� = �L�D = τ(�T (FVR

C,[K ,�])�). The fat signature FVR
C,[K ,�] has unary symbols, but

15 For the notion of an FPT algorithm with output, see the paragraph before Theorem 6.55. The size of
the input graph G can be taken as |G| = |VG |; the size of the output graph is ‖τ(G)‖.

16 More precisely, this means that �L� = τ(�T (F)�).
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it can be replaced by a fat finite signature F consisting only of binary and nullary
symbols by Proposition 7.27(2).

Corollary 7.33 If a set of (K ,�)-labeled p-graphs of bounded type has bounded
clique-width or bounded linear clique-width, then it is included in the image of the
set of trees or, respectively, of the set of paths under a monadic second-order p-graph
transduction.

Proof: If a set L of (K ,�)-labeled p-graphs of bounded type has bounded clique-
width, then it is included in the set M := val(T (FVR

C,[K ,�])) for some finite set C. By

Proposition 7.30, �M� = �M�C is the image of the set of terms T := T (FVR
C,[K ,�])

under an MS-transduction. By Proposition 7.27(2) the set T is equivalent to the set
of trees. The result follows.

If L as above has bounded linear clique-width, then by the definition of linear
clique-width (Definition 2.89), it is included in the set val(Slim(FVR

C,[K ,�])) for some

finite set C. By Proposition 7.27(1), the set Slim(FVR
C,[K ,�]) is equivalent to the set of

paths. With Proposition 7.30, the result follows.

Our objective is now to establish the converses of these two corollaries. For proving
the next theorem we will need a technical lemma.

Theorem 7.34 Let F be a finite functional signature, let K and � be finite sets
of vertex and edge labels and let D be a finite set of port labels. Let τ : T (F)→
GP [K ,�][D] be a monadic second-order transduction, given by a definition scheme
of type RF →Rs,D,[K ,�].
(1) One can construct a finite set C of port labels that includes D and an invertible

MS-transduction μ : T (F) → T (FVR
C,[K ,�]) such that τ = μ · val. If τ is

parameterless, then so is μ.
(2) One can construct a regular language M ⊆ T (FVR

C,[K ,�] − {∅}) ∪ {∅} such that
τ(T (F))= val(M ). The set τ(T (F)) is VR-equational.

Furthermore, if Dom(τ )⊆ Slim(F), then μ(T (F))⊆ Slim(FVR
C,[K ,�]) and M is a set of

slim terms. �

The elements of τ(T (F)) are (K ,�)-labeled p-graphs G of type included in D,
represented by the structures �G�D in STR(Rs,D,[K ,�]). The (auxiliary) port labels in
C−D will be useful to build the output graphs, but they do not occur in the definition
scheme of τ .

We denote by Leaves(t) the set of leaves of the syntactic tree of a term t, i.e., the
set of occurrences of constant symbols in t.

Lemma 7.35 Let F be a finite functional signature and τ : T (F)→ STR(R) be a
monadic second-order transduction. One can construct a finite functional signature
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F ′, a monadic second-order transduction τ ′ : T (F ′)→ STR(R) and an invertible
MS-transduction π : T (F)→ T (F ′) such that τ = π · τ ′ and τ ′(T (F ′)) = τ(T (F)),
and the following conditions hold:

(1) F ′ contains only nullary and binary symbols;
(2) τ ′ is parameterless and noncopying; and
(3) for every t ∈ Dom(τ ′), the domain of the concrete R-structure τ ′(t) is a subset

of Leaves(t).

Moreover, if τ is parameterless, then so is π . Furthermore, if Dom(τ ) ⊆ Slim(F),
then F ′ and τ ′ can be constructed in such a way that Dom(τ ′)⊆ Slim(F ′).

Proof: We may assume that R0 =∅. In three steps we transform (F ,τ) into (F ′,τ ′),
which satisfies the required properties (except for the assertion about slim terms).

Step 1: Eliminating parameters If τ is parameterless, there is nothing to do.
Otherwise, we let τ be specified by a definition scheme with n parameters forming
the set Xn. By Proposition 7.24(2), we can write τ as (πF ,n)

−1 ·τ1 for the parameterless
monadic second-order transduction τ1 : T (F(n))→ STR(R) such that τ1(�t ∗ γ �) :=
τ(�t�,γ ) for every t ∈ T (F) and γ : Xn→ P(Nt). The definition of τ1 implies that
τ1(T (F (n)))= τ(T (F)). The MS-transduction πF ,n is invertible since it is a monadic
second-order relabeling.

Step 2: Making the transduction noncopying and satisfy Condition (3) Let
(F (n),τ1) be obtained by the first step. Since the composition of two invertible
MS-transductions is invertible (by Theorem 7.14), it suffices to continue the proof
with (F (n),τ1) instead of (F ,τ). If τ1 is noncopying and Condition (3) holds, there
is nothing to do. Otherwise, to simplify the notation, we denote (F (n),τ1) by (F ,τ).
Let τ be k-copying. (We may have k = 1 if Condition (3) is not satisfied.) We define
F as the functional signature F ∪ {∗} with arity mapping ρ such that ρ(∗) := 0 and
ρ( f ) := k+ρ( f ) for each f ∈ F . We let λ : T (F)→ T (F) be defined inductively as
follows:

λ( f (t1, . . . , tn))= f (∗, . . . ,∗,λ(t1), . . . ,λ(tn)),
with k occurrences of ∗. We let also λ be the mapping : N →N defined by λ(u) :=
u+ k(u−1). It maps each position u of t to its corresponding position in λ(t). (Posi-
tions are defined as positive integers.) In particular, if u is an occurrence in t of some
symbol, then λ(u) is an occurrence of the same symbol in λ(t). We give an example.
Let t = f (a,g(b),a) and k = 2. Then λ(t) = f (∗,∗,a(∗,∗),g(∗,∗,b(∗,∗)),a(∗,∗)).
The positions of t are 1, 2, 3, 4, 5 and their corresponding positions in λ(t) are
respectively 1, 4, 7, 10, 13.

The mapping λ is injective. Since it is a linear, strict and nonerasing second-order
substitution, it is an invertible parameterless (k + 1)-copying MS-transduction, cf.
Example 7.3(4). Its inverse λ−1 has a definition scheme with particular properties
described in the following claim; the construction is easy.
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Claim 7.35.1 The partial function λ−1 has a parameterless noncopying MS-definition
scheme E of type RF→RF such that for every t ∈ T (F), if S is the concrete structure
�λ(t)�, then the domain of the structure Ê(S) is the subset λ(Nt) of DS and λ is the
unique isomorphism between �t� and Ê(S). �

We let τ := λ−1 · τ . This implies that τ(T (F))= τ(T (F)) and, since λ is injective,
that τ = λ ·τ . We now construct a definition scheme for τ that satisfies Conditions (2)
and (3). Let τ be given by a definition scheme D := 〈χ ,(δi)i∈[k],(θw)w∈ R�[k]〉.
Claim 7.35.2The partial function τ has a parameterless noncopying definition scheme
of type RF →R that satisfies Condition (3).

Proof: By Theorem 7.14 the concrete monadic second-order transduction Ê · D̂
is parameterless. It transforms a concrete RF -structure S = �λ(t)� into a concrete
R-structure U as follows:

(i) First, by Claim 7.35.1, Ê transforms S into T isomorphic to �t� such that DT is
the subset λ(Nt) of DS .

(ii) Then τ transforms T into U such that DU ⊆DT ×[k] = λ(Nt)×[k].

We will construct a parameterless noncopying definition scheme H for τ such that
the concrete transduction Ĥ transforms S into U ′ isomorphic to U , in such a way
that an element (u, i) of DU is replaced in DU ′ by ui, the i-th son of u: this is possible
because every node u of λ(t) of the form λ(w) has at least k sons. Furthermore, the
first k ones are occurrences of the constant symbol ∗, hence, Condition (3) will be
satisfied.

We construct H = 〈χ ′,δ′,(θ ′R)R∈R〉. Its precondition χ ′ is defined as χE
(cf. Theorem 7.10), which guarantees that Ĥ and Ê · D̂ have the same domain.

For i ∈ [k] and u,v in Nλ(t), the condition �λ(t)� |= soni(u,v) means that v will
replace in DU ′ the pair (λ−1(u), i) of DU . The domain formula δ′ is thus defined as∨

i∈[k]
∃y(soni(y,x)∧ (δi)

E [y/x]).

(In every structure �λ(t)�, every x satisfying this formula is an occurrence of ∗, hence
corresponds to a leaf of λ(t).)

For each R ∈Rn, the relation formula θ ′R is

∨
i∈[k]n
∃y1, . . . ,yn

(( ∧
j∈[n]

soni[ j](yj,xj)

)
∧ (θR,i)

E [y1/x1, . . . ,yn/xn]
)

.

It is clear that Ĥ(�λ(t)�) $ τ(t) for every t ∈ T (F). The precondition of H
ensures that Ĥ(S) is defined only if S $ �λ(t)�, and we have noted that H satisfies
Condition (3). This completes the proof of the claim. �
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Hence, the pair (τ ,F) satisfies all requirements of the lemma, except possibly
Condition (1).

Step 3: Making function symbols nullary or binary If (τ ,F) constructed by the
previous step satisfies Condition (1), i.e., if F consists of nullary and binary symbols,
there is nothing to do. Otherwise, to simplify the notation, we denote (τ ,F) by (τ ,F).
We define F ′ as the signature F ∪{@,⊥} with arity mapping ρ′ such that ρ ′( f ) := 0
if ρ( f )= 0 or f =⊥, and ρ′( f ) := 2 if ρ( f ) �= 0 or f =@. We let β : T (F)→ T (F ′)
be defined inductively as follows:

β( f ) = f if ρ( f )= 0,

β( f (t1)) = f (β(t1),⊥) if ρ( f )= 1,

β( f (t1, . . . , tn)) = f (β(t1),@(β(t2), . . .@(β(tn−1),@(β(tn),⊥)) · · ·))
with n− 1 occurrences of @, if ρ( f )= n≥ 2.

The mapping β is injective. Just as λ in Step 2, it is a linear, strict and nonerasing
second-order substitution and hence, an invertible parameterless MS-transduction.
For its inverse β−1, we can construct a definition scheme with particular properties.

Claim 7.35.3 The partial function β−1 has a parameterless noncopying
MS-definition scheme B of type RF ′ → RF such that, for every t ∈ T (F), if S
is the concrete structure B̂(�β(t)�) and h is the (unique) isomorphism : S→�t�, then
h−1(Leaves(t))⊆ Leaves(β(t)).

Proof: We sketch the construction of the required definition scheme B. It has a
precondition expressing that the input structure is isomorphic to �β(t)� for some
t ∈ T (F). For an input structure �β(t)�, we let S be the intended output structure. Its
domain DS is defined as the set of occurrences of the symbols of F (which excludes
the occurrences of @ and⊥). The set labf S for f ∈ F is the set of occurrences of f in
β(t). Finally, if u,v ∈DS , we define (u,v) to belong to soniS if and only if:

v ≤β(t) u and
the directed path in Syn(β(t)) from u to v consists of i+ 1 nodes,
i− 1 of which are occurrences of @.

It is clear from this construction of B that, by the isomorphism h−1, the leaves of t
correspond to leaves of β(t) (to be precise, to the occurrences of the symbols of F0

in β(t)). �

To complete the construction of Step 3, we let τ ′ be the concrete transduction
β−1 · τ , where β−1 is defined by the scheme B of the previous claim. As in Step 2,
this implies that τ ′(T (F ′)) = τ(T (F)) and, since β is injective, that τ = β · τ ′. For
the transduction τ ′, the conditions achieved by the previous two steps are preserved.
Condition (2) follows from Theorem 7.14 because both β−1 and τ are parameterless
and noncopying. For Condition (3), we observe that B̂ transforms the structure �β(t)�
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for every t ∈ T (F) into a structure S isomorphic to �t�, by an isomorphism h : S→
�t�. By the observations made in Definition 7.2, τ(S) is isomorphic to τ(�t�) by
h′ := h � Dτ(S). We have

Dτ(S) = h′−1(Dτ(�t�))⊆ h−1(Leaves(t))⊆ Leaves(β(t)).

Hence, τ ′ transforms a term t′ of the form β(t) into a concrete structure with domain
(the set Dτ(S) in the above proof) included in Leaves(t′).

Since F ′ satisfies Condition (1), this completes the proof of Step 3 and of the first
assertion of the lemma. It remains to consider the assertion about slim terms.

If the signature F is unary, then the signature constructed in Step 1 is also unary.
The function symbols constructed in Step 2 have arity at most k + 1, and Step 3
constructs a binary signature. It is clear that if t ∈ T (F), then the term β(λ(t)) is slim.
Hence, the domain of the transduction τ ′ consists of slim terms.

In the more general case where Dom(τ ) ⊆ Slim(F) we precede Step 1 by a pre-
liminary Step 0 in which we replace (F ,τ) by (H ,τ0), where H is unary, as follows.
Let H and α be defined as in the third paragraph of the proof of Proposition 7.27.
Hence, the surjective mapping α : T (H )→ Slim(F) is an invertible MS-transduction
of type RH →RF . Now let τ0 := α · τ . Then τ0(T (H ))= τ(T (F)), and τ = α−1 · τ0

because α is a mapping (and so α−1 ·α is the identity on Slim(F)). Note that α is not
injective. If τ is parameterless, then we can make α injective by restricting it to the
MS-definable set of terms t ∈ T (H ) such that if 〈 f , i,a1, . . . ,ak−1〉(a) is a subterm of
t with a ∈H0, then i= 1. Then the resulting α−1 is a parameterless MS-transduction
with the same properties as above.

Proof of Theorem 7.34: We will first prove Assertion (1) and then use it to prove
Assertion (2). Assertion (1) actually entails that the set τ(T (F)) is VR-equational. Let
N :=μ(T (F))⊆T (FVR

C,[K ,�]). Then τ(T (F))= val(N ), because τ =μ·val. Sinceμ−1

is an MS-transduction, N =Dom(μ−1) is MS-definable (see Definition 7.2), hence it
is regular by Corollary 5.67. It follows that τ(T (F))= val(N ), where N is a regular
set of terms over FVR

C,[K ,�], hence τ(T (F)) is VR-equational by Proposition 3.23(3).
We now prove Assertion (1). We will assume that F and τ satisfy the three con-

ditions of Lemma 7.35 (without the primes). This is not a loss of generality because
this lemma shows how to replace, if necessary, a pair (F ,τ) by one that satisfies
these conditions. So, we assume that F has only symbols of arity 0 and 2, that τ is
parameterless and noncopying, and that for every t ∈ Dom(τ ), the vertex set of the
concrete p-graph τ(t) is a subset of Leaves(t).

We will first give the proof for unlabeled p-graphs, and later extend it to the
labeled case. Moreover, we will first prove Assertion (1) for FκVR

C instead of FVR
C .

Later on, we will replace it by FVR
C . The derived signature FκVR

C of FVR
C was defined

in Section 2.5.6. It has only constant symbols and binary operations defined as com-
positions of ⊕ and of unary operations of FVR

C . The operations of FκVR
C are ⊗R,h for
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R⊆ C×C and h : C→ C; they are defined by G⊗R,h H := relabh(ADDR(G⊕H )),

where ADDR is the composition (in any order) of the operations
−→
adda,b for all pairs

(a,b) in R such that a �= b. Its constant symbols are ∅, c and c
 for c ∈ C.
We will use the definitions of Section 2.5.2, which can be adapted to FκVR in a
straightforward way.

Let us first give an overview of the construction. We will define a set C of port
labels including D and a parameterless monadic second-order relabeling μ : T (F)→
T (FκVR

C ) such that Dom(μ)= Dom(τ )⊆ T (F) and, for every t ∈ Dom(τ ), the con-
crete p-graph τ(t) is equal to cval(μ(t)).17 The port labels in C−D will be bounded
theories (cf. Definitions 5.59 and 7.21). The pairs of port labels (a,b) ∈ R such that
⊗R,h occurs at u in μ(t) will trigger the creation of the edges between the vertices
of τ(t) below u1 and those below u2, where u1 and u2 are the two sons of u. The
precise definitions of R and h that form the operation⊗R,h occurring at a node u will
be based on Application 5.61 where bounded theories are computed. These R and h
will be denoted by Ru and hu. The constant symbol occurring at a leaf x in μ(t) will
be denoted by cx.

The transductions τ and μ take terms as inputs. We know from Section 5.2.6
(Propositions 5.29 and 5.30) that cardinality predicates bring no expressive power to
MS formulas on terms. Hence, without loss of generality, we will only consider MS
formulas, i.e., monadic second-order formulas without cardinality predicates.

We will denote the concrete p-graph τ(t), of type included in D, by G(t). Thus, we
will define μ such that G(t)= cval(μ(t)). Letting D be fixed, we will identify G(t)
with the concrete Rs,D-structure D̂(�t�)=�G(t)�D, whereD=〈χ ,δ,θedg ,(θlabd )d∈D〉
is the given definition scheme D of τ . The precondition χ of D will also be the
precondition of the definition scheme of μ. We will define the label cx of a leaf x of t
in μ(t) to be ∅ if and only if �t� |= δ(x), thus guaranteeing that VG(t) =Occ0(μ(t)).

In order to simplify the exposition of the main part of the proof, we will additionally
assume that every p-graph G(t) is without loops. This restriction will be lifted at the
end of the proof.

The (technical) proof will consist of five steps and some final steps. We need some
notation in addition to that of Definition 5.59 and Application 5.61 (Section 5.3.6)
which the reader is assumed to have in mind. As in Application 5.61, the relational
signature RF has a constant symbol for the root of the represented terms. We let q be
the maximum quantifier-height of the relation formulas of D. We define the following
finite sets of formulas:

L2 := M̂Sq(RF ,{x1,x2}),
L1 := M̂Sq(RF ,{x1}),
L0 := M̂Sq(RF ,∅),
L′0 := M̂Sq(RF∪{w},∅),

17 See Definition 7.20 for the notion of a monadic second-order relabeling of terms and note that μ is
invertible by Proposition 7.22(1). Note also that Nμ(t) = Nt .
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where w is the special variable used to define contexts. For a term t in T (F) and a
node u ∈ Nt , we let First(u) := 1 if u is the left son of its father or u is the root, and
First(u) := 2 otherwise.

We now describe the main construction for an input term t in T (F) such that G(t)
is defined (i.e., t ∈Dom(τ )).

Step 1: With every nonleaf node u in Nt with sons u1 and u2, we associate

�(u) := (�0(u),�1(u),�2(u)),

where �0(u) := Th(t,↑u,q,0,ε)⊆ L′0 and �i(u) := Th(t,↓ui,q,0,ε)⊆ L0 for i= 1,2.
(See Application 5.61 for notation.) This information is MS-expressible: for each �

in P(L′0)×P(L0)×P(L0), there is an MS formula!�(x) such that, for every nonleaf
node u of t, we have �t� |=!�(u) if and only if �(u)=�.

We only give the construction of the formula !#(x) such that, if u is a nonleaf
node, then t |=!#(u) if and only if �0(u)=#. For every subset # of L′0, we define
!#(x) as

∃X
(
∀y(y ∈ X ⇔¬(y < x))∧

∧
ϕ∈#

ϕ̃(X ,x) ∧
∧

ϕ∈L′0−#
¬ϕ̃(X ,x)

)
,

where y< x is a formula expressing that y is strictly below x, and where, for eachϕ, the
formula ϕ̃(X ,x) is obtained from ϕ � X , the relativization of ϕ to X (cf. Section 5.2.1),
by the replacement of each atomic formula labw(z) by z= x and each atomic formula
labf (z) (where f ∈ F) by z �= x∧ labf (z). It is clear that �t� |=!#(u) if and only if
�t� ↑ u |= ϕ for every ϕ in # and �t� ↑ u |= ¬ϕ for every ϕ in L′0−#.

A similar construction can be done for the MS-expression of �1(u) and �2(u).

Step 2: We define the set of port labels C as C′ ∪D, where C ′ :=P(L1)×{1,2} and
we assume that C ′ ∩D= ∅. We define a partial function p : Nt ×Nt→ C as follows.
For u ∈ Nt and x ∈ VG(t) such that x ≤t u:

p(roott ,x) := portG(t)(x) ∈D,

p(u,x) := (Th(t,↓u,q,0,x),First(u)) ∈ C′ if u �= roott .

Note that p(u,x) ∈D if and only if u is the root (and then p(u,x) is defined for every
x ∈ VG(t)). We have defined an element of C ′ as a pair (�, i), where � is any subset
of L1, but only those such that �= Th(t,↓u,q,0,x) for some t, u and x will occur in
the operation symbols of the terms in μ(T (F)). For instance, the subsets of L1 that
contain a formula and its negation cannot be of the form Th(t,↓u,q,0,x).

Step 3: The objective is now to define μ(t) in such a way that the partial func-
tion portμ(t) (defined in Definition 2.94) is the function p of Step 2, i.e., such that
portcval(μ(t))/u(x) = p(u,x) for every u ∈ Nt and x ∈ Vu := {x ∈ VG(t) | x ≤t u}. For
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this purpose, we will define a family of mappings hu : C→ C, associated with the
nonleaf nodes u of t such that, for each such node and each leaf x in Vu, we have

p(u,x)= (hu ◦ hv1 ◦ · · · ◦ hvn)(p(x,x)),

where (u,v1, . . . ,vn,x) is the path in Syn(t) from u to x. (We have n = 0 if u is the
father of x). The values hu(d) for d ∈D will not be needed, so we define (arbitrarily)
hu(d) := d. The values hu(c′) for c′ ∈C ′ are defined with the use of Application 5.61.
We let f be the binary function symbol at u in Nt , and u1 and u2 be the sons of u.

Case 1: u is not the root. By Equation (5.6) in Application 5.61, if x≤t u1, we have

Th(t,↓u,q,0,x)= Zf ∗,q,0,(0,1,0)(Th(t,↓u1,q,0,x),Th(t,↓u2,q,0,ε)),

and, if x ≤t u2,

Th(t,↓u,q,0,x)= Zf ∗,q,0,(0,0,1)(Th(t,↓u1,q,0,ε),Th(t,↓u2,q,0,x)).

We have Th(t,↓ui,q,0,ε) = �i(u) for i = 1,2 by Step 1. We define hu such that
hu(C ′)⊆ C ′ as follows:

hu((�,1)) := (Zf ∗,q,0,(0,1,0)(�,�2(u)),First(u)) and

hu((�,2)) := (Zf ∗,q,0,(0,0,1)(�1(u),�)),First(u)).

The function hu is defined for all pairs (�, i) in C ′, even for those such that � is
empty or contains contradictory formulas.

Case 2: u= roott . We let h′u : C→ C ′ be the function hu defined as in Case 1. If
(u,v1, . . . ,vn,x) is the directed path in Syn(t) from u to x, then

(Th(t,↓u,q,0,x),1)= (h′u ◦ hv1 ◦ · · · ◦ hvn)( p(x,x)).

We can obtain portG(t)(x) from Th(t,↓u,q,0,x) (that is Th(t,↓roott ,q,0,x)) because
portG(t)(x)= d if and only if �t� |= θlabd (x) if and only if θ̂labd ∈ Th(t,↓roott ,q,0,x).
Note that by the assumption that τ(t) is a p-graph, there is a unique d ∈D with these
properties for each vertex x of G(t). Hence we can define hu such that hu(C ′)⊆D as
follows:

hu((�, i)) := d ∈D such that θ̂labd ∈�′ where (�′,1)= h′u((�, i)).

If there are several such d, or none, we take for hu((�, i)) an arbitrary, but fixed,
element of D. For the pairs (�, i) arising from a term t, there is a unique such d. The
definition of hu handles the other cases to ensure that hu is a total function. It follows
that

portG(t)(x)= (hu ◦ hv1 ◦ · · · ◦ hvn)(p(x,x)).
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This ends Case 2 and the definition of hu.

Since the sets �i(u) (defined in Step 1) are MS-expressible, the same holds for
the functions hu attached to the nonleaf nodes u of t. We mean by this that for each
mapping h : C→C, there is an MS formula !h(x) such that �t� |=!h(u) if and only
if hu = h.

We now define the labels cx in μ(t) for every leaf x of t. If x ∈ VG(t) is not the root,
we let cx be the constant symbol c, where c= (Th(t,↓x,q,0,x),First(x))= p(x,x). If
x ∈ VG(t) is the unique node of t, we let cx be d, such that portG(t)(x)= d. If x is a
leaf of t that is not in VG(t), we let cx be ∅.

These constant symbols are MS-expressible: the set Th(t,↓x,q,0,x) only depends
on the label of x in t, x is in VG(t) if and only if �t� |= δ(x), and portG(t)(x)= d if and
only if �t� |= θlabd (x).

Hence, we have defined the constant symbol cx to be attached by μ at each leaf
x of t and the mapping hu of the new label to be attached at each nonleaf node u.
This achieves the goal of representing p as the partial function portμ(t). We have thus
portG(t)(x) = p(roott ,x) = portμ(t)(roott ,x) = portcval(μ(t))(x) for each vertex x of
G(t). It remains to complete the definition in such a way that μ(t) evaluates to G(t),
i.e., that G(t)◦ = cval(μ(t))◦.

Step 4: We will define for each nonleaf node u of t a relation Ru ⊆C ′ ×C ′ such that
the operation ⊗Ru,hu attached to this node in μ(t) has the effect of creating the edges
between the vertices of G(t) below u1 and those below u2 and only these edges. This
implies that (cval(μ(t))/u)◦ = (G(t)[Vu])◦, where Vu :={x ∈VG(t) | x≤t u} as above;
note that this equation also holds if u is a leaf x, by the definition of cx.

If x,y ∈ Vu1 ∪ Vu2 ⊆ VG(t), then (x,y) ∈ edgG(t) if and only if �t� |= θedg(x,y).
Let x ∈ Vu1 and y ∈ Vu2 . We know from Equation (5.5) in Application 5.61 that
Th(t,↓roott ,q,0,xy)⊆ L2 is equal to

Zf †,q,0,(0,1,1)(Th(t,↑u,q,0,ε),Th(t,↓u1,q,0,x),Th(t,↓u2,q,0,y)).

We have Th(t,↑u,q,0,ε) = �0(u) by the definition in Step 1. Hence we can
define Ru := R1u ∪ R2u, where R1u is the set of pairs ((�,1),(�′,2)) such that
θ̂edg ∈ Zf †,q,0,(0,1,1)(�0(u),�,�′) and R2u is the set of pairs ((�′,2),(�,1)) such
that θ̂ ∈ Zf †,q,0,(0,1,1)(�0(u),�,�′), where θ is θedg[x2/x1,x1/x2].

Again, as above for the hu’s and the cx’s, the relations Ru can be expressed by MS
formulas.

Step 5: Here is the final definition ofμ(t): at a nonleaf node u, we attach the operation
⊗Ru,hu (where Ru and hu are defined respectively in Steps 4 and 3); at a leaf x, we
attach the constant symbol cx (cf. Step 3).

From previous observations made in Steps 3 and 4, we get that μ(t) is a monadic
second-order relabeling. Its domain formula is the one of D.
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It is clear from the construction that the port labels and the edges of G(t) are defined
correctly by μ(t). Hence G(t)= cval(μ(t)) for every t ∈Dom(τ )=Dom(μ).

Final steps: A few things remain to be done to complete the proof of Assertion (1).
(a) First, we waive a restriction made initially to simplify the proof. Let us consider

the case where G(t)may have loops: a vertex x has a loop if and only if �t� |= θedg(x,x).
In this case, we let cx be c
 or d
 where c and d are defined as in Step 3.

(b) Then, we consider the case of (K ,�)-labeled graphs. We handle vertex labels
as we did for loops: we modify in the appropriate way the constant symbols cx. Since
vertex labels are MS-expressible in �t�, the new cx’s are still determined by MS
formulas. For defining �-labeled edges, we replace in the operations⊗R,h the binary
relation R on port labels by a ternary relation R⊆C×C×� (cf. the paragraph before
Proposition 2.103). The extension is then straightforward. Labeled loops at a vertex
x are defined as its labels, in the constant symbols cx.

(c) We can replace FκVR
C,[K ,�] by FVR

C,[K ,�]. By the definition of the operations ⊗R,h,

there is a linear, strict and nonerasing second-order substitution θ : T (FκVR
C,[K ,�])→

T (FVR
C,[K ,�]) such that t and θ(t) are equivalent terms for every t in T (FκVR

C ) (cf. Propo-
sition2.121). Then θ is a parameterless invertibleMS-transductionbyExample 7.3(4).
Clearly, θ preserves the slimness of terms. Hence, if μ′ : T (F)→ T (FκVR

C,[K ,�]) is
the monadic second-order relabeling constructed above, then the MS-transduction
μ := μ′ · θ : T (F)→ T (FVR

C,[K ,�]) is the required one, i.e., we have τ = μ · val.
This completes the proof of Assertion (1).

Let us now prove Assertion (2). In the first paragraph of this proof, we have shown
that τ(T (F))= val(N ) for the regular language N = μ(T (F))⊆ T (FVR

C,[K ,�]). Since
we have defined cx :=∅ if x ∈ Leaves(t)−VG(t) in Step 3 above, the terms μ(t) in N
may contain occurrences of ∅. If τ(t) is not the empty graph, one can replace μ(t) by
an equivalent term without ∅ (Corollary 2.102). By the next claim, one can construct
a regular language M included in T (FVR

C,[K ,�]−{∅})∪{∅} such that val(M )= val(N ).

The proof given below for T (FVR
C,[K ,�]) can be adapted so as to work for T (FκVR

C,[K ,�]).

Claim 7.34.1 Let N be a regular subset of T (FVR
C,[K ,�]). One can construct a regular

subset M of T (FVR
C,[K ,�] − {∅})∪ {∅} such that val(M ) = val(N ). If N consists of

slim terms, then so does M .

Proof: For convenience, we abbreviate FVR
C,[K ,�] by F . We will construct a finite

functional signature H , a parameterless monadic second-order relabeling α : T (F)→
T (H ) and a linear second-order substitution β : T (H )→ T (F−{∅})∪{∅} such that t
and β(α(t)) are equivalent terms for every t in T (F). Then we define M := β(α(N )).
Clearly, val(M )= val(N ). Moreover, M is regular by Proposition 7.22(3) (for α) and
by Corollary 3.19 and Proposition 3.41 (for β).

We define H such that H0 := F0, H1 := F1× {0,1} and H2 := {⊕}× {0,1}2. Let
t be a term in T (F). For every node u in Nt we define em(u) := 0 if val(t/u) = ∅
and em(u) := 1 otherwise. Since val(t/u) = ∅ if and only if all leaves of t below
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u are occurrences of ∅, the property em(u) = 0 is MS-expressible. Thus, α can be
constructed such that if u is an occurrence of f ∈ F , then α relabels u with 〈 f ,em(u)〉
if f ∈ F1 and with 〈 f ,em(u1),em(u2)〉 if f = ⊕, where u1 and u2 are the sons of u
(the labels of the leaves stay the same).

We defineβ : T (H )→T (F) by interpreting the symbols of H as derived operations
of F , defined by the following terms with variables: each constant is defined by itself;
for f ∈ F1, the symbol 〈 f ,1〉 is defined by f (x1) and the symbol 〈 f ,0〉 by ∅; finally,
〈⊕,1,1〉 is defined by ⊕(x1,x2), 〈⊕,1,0〉 by x1, 〈⊕,0,1〉 by x2, and 〈⊕,0,0〉 by ∅.
Note that β is linear, but neither strict nor nonerasing.

Using the relevant equations in Proposition 2.101, it can easily be shown by induc-
tion on the structure of t ∈ T (F) that t and β(α(t)) are equivalent terms, and that
β(α(t)) is in T (F −{∅})∪{∅}. �

Finally, we have τ(T (F)) = val(M ) where M is a regular language included in
T (FVR

C,[K ,�] − {∅})∪{∅}. This completes the proof of Theorem 7.34.

Let us stress the following consequence of Step 4: the operations of positive arity
of a term μ(t) in μ(T (F))⊆ T (FκVR

C,[K ,�]) are binary, and they create edges between
their two disjoint argument p-graphs, but not inside these p-graphs. This implies that
an edge linking two vertices is necessarily created by such an operation occurring at
the least common ancestor in t of the two leaves corresponding to these vertices.

We denote by trees the set of (undirected, unrooted) trees.

Theorem 7.36 (Equationality Theorem for the VR algebra) Let L be a set of
possibly labeled p-graphs of bounded type. The following conditions are equivalent:

(1) L is VR-equational;
(2) L is the image of trees under an MS-transduction;18

(3) L is the image of trees under a CMS-transduction.

Proof: (1)=⇒ (2) is immediate from Corollary 7.32 and Proposition 7.27(2).
(3)=⇒ (1). Let �L� = τ(�trees�), where τ is a CMS-transduction. Hence �L� =

τ ′(�T (F)�), where F is some finite fat signature (because then T (F) is equivalent to
trees by Proposition 7.27(2)) and τ ′ is a CMS-transduction. (For any such F , some
transduction τ ′ can be constructed.) By Theorem 7.34, the set L is VR-equational.

In statements (2) and (3) one can replace trees by T (F) for any finite fat signature
F or by any other equivalent set like that of binary rooted trees, by Proposition 7.27(2).
Theorem 7.36 yields a characterization of the VR-equational sets of p-graphs that is
based on logic, in contrast with their algebraic (or, grammatical) definition based on
least solutions of equation systems. This characterization makes no a priori use of the
signature FVR, but establishes that it (or a variant of it) is the right one.

18 More precisely, this means (in the case where the p-graphs in L are (K ,�)-labeled) that there is an
MS-transduction τ of type Rs→Rs,D,[K ,�] such that �L� = τ(�trees�), where D is the smallest set
of port labels such that π(G)⊆D for every G ∈ L.
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As a first corollary of Theorem 7.36 we obtain that the alternative signature F iVR,
introduced before Proposition 2.119, leads to the same equational sets as FVR. The
signature F iVR is obtained from FVR by allowing a= b for the edge addition oper-
ations adda,b. Thus, every VR-equational set is also iVR-equational (i.e., equational
for the F iVR-algebra). It is clear that Section 2.5.2 also holds for F iVR, and hence
so do Proposition 7.30 and Corollary 7.32. From the resulting Corollary 7.32 we
obtain that for every set iVR-equational set L, the set of structures �L� is the image
of T (F) under an MS-transduction, for some fat signature F . It now follows that L is
VR-equational from Proposition 7.27.

As a second corollary ofTheorem 7.36 we obtain that the class ofVR-equational sets
of p-graphs is (effectively) closed under monadic second-order p-graph transductions.
This generalizes the logical version of the Filtering Theorem for the VR algebra
(Corollary 5.70(1)): the identity IdK on a CMS-definable set of p-graphs K is clearly
a CMS-transduction (with a precondition defining K) and IdK (L)= L∩K for every
set of p-graphs L.

Corollary 7.37 The image of a VR-equational set of labeled p-graphs under a
monadic second-order p-graph transduction is VR-equational.

Proof: Let L be VR-equational and let �L�= �L�D. Then �L�D = τ(trees) for some
MS-transduction τ , by Theorem 7.36 (for convenience, we write trees instead of
�trees�). Let θ be a monadic second-order p-graph transduction, represented by
a CMS-transduction θ ′ of type Rs,D → Rs,E (as usual we first consider unlabeled
graphs). Then:

�θ(L)�E = θ ′(�L�D)= θ ′(τ (trees))= (τ · θ ′)(trees).

Since, for every E′ ⊆E, the representations �·�E′ and �·�E are strongly MS-equivalent
(Definition 7.9), there is an MS-transduction α such that �θ(L)� = (τ ·θ ′ ·α)(trees).
Hence θ(L) is VR-equational by Theorems 7.14 and 7.36. The proof is the same for
labeled graphs.

As a third corollary we obtain a logical characterization of the sets of p-graphs of
bounded clique-width.

Corollary 7.38

(1) A set of labeled p-graphs of bounded type has bounded clique-width if and only
if it is included in the image of trees under a monadic second-order p-graph
transduction (MS or CMS).

(2) For every monadic second-order p-graph transduction τ there exists a computable
function fτ : N → N such that, for every (possibly labeled) p-graph G and
every (possibly labeled) p-graph H in τ(G), we have cwd(H )≤ fτ (cwd(G)).
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(3) For every parameterless monadic second-order graph transduction θ there exists
a computable function fθ : N →N and an algorithm19 that transforms a term t
in T (FVR

[k],[K ,�]) (k is any positive integer) into a term t′ in T (FVR
[ fθ (k)],[K ′,�′]) that

evaluates to θ(val(t)), provided θ(val(t)) is defined. This algorithm operates in
time g(θ ,k) · |t| for some computable function g.

Proof: (1) The only-if direction was proved in Corollary 7.33 but is also an imme-
diate consequence of Theorem 7.36 because the set L of (K ,�)-labeled p-graphs
of clique-width at most k and of type included in a finite set D is VR-equational
(Example 4.43(5)). The if direction is immediate from Theorem 7.36 because every
VR-equational set has bounded clique-width (Proposition 4.44).

(2) We apply Corollary 7.37 to the VR-equational set L of (1). One can construct
(at least in principle) a VR equation system defining its image L′ under τ , and from it,
one can determine some integer k ′ that bounds the clique-width of the p-graphs in L′.
Hence we can take fτ (k) := k ′. This proves the existence of the desired computable
function fτ . Note that fτ (k) is computable by an algorithm that takes as input k and a
definition scheme of τ .

(3) Let be given a parameterless monadic second-order graph transduction θ that
maps (K ,�)-labeled graphs to (K ′,�′)-labeled ones. We will apply Theorem 7.34(1),
with D :=∅, to the parameterless MS-transduction τ := val · θ that transforms a term
t in T (FVR

[k],[K ,�]) into a (K ′,�′)-labeled graph. The set C defined by this theorem
can be taken equal to [k ′] and we let fθ (k) := k ′. The mapping μ resulting from this
theorem is a parameterless MS-transduction from terms to terms and so, t′ := μ(t)
can be computed in linear time in |t| (Theorems 7.29 and 8.14). The construction of μ
takes time g1(θ ,k) and the computation of μ(t) takes time g2(θ ,k) · |t| for fixed com-
putable functions g1 and g2. Since τ = μ · val, we have val(t′)= val(μ(t))= τ(t)=
θ(val(t)).

This corollary establishes the fact used in the proof of Proposition 6.8 (in
Section 6.2.3) that relates the clique-width of an edge-labeled directed graph G and
that of its encoding by a vertex-labeled undirected graph B�(G), where � is the set
of edge labels:

cwd(B�(G))≤ p�(cwd(G)) and cwd(G)≤ p�(cwd(B�(G))).

The functions p� and p� exist and are computable by Assertion (2) of Corollary 7.38
and the remark that B� is an invertible parameterless FO-transduction. Assertion (3)
yields the linear time algorithms for transforming a term witnessing that cwd(G)≤ k
into one witnessing that cwd(B�(G))≤ p�(k), and similarly for the other inequality.

Assertion (2) of Corollary 7.38 can also give quick proofs that certain sets of graphs
have bounded or unbounded clique-width. Here are some examples. Let C be the class

19 Since the proof is effective, there is a single algorithm that takes as input θ , k and t and produces the
integer fθ (k) and the term t′.
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of nonempty, connected, simple and loop-free undirected graphs. A graph G in C is a
split graph if VG = A∪B, A∩B=∅, A is stable (G[A] has no edges) and B is a clique
in G. (If A and B are both nonempty, there are edges between A and B.) Split graphs
are chordal (cf. Definition 2.71). For every graph G and k > 1, we let und(G)k be
the simple undirected graph with vertex set VG and edges between any two distinct
vertices at distance exactly k in und(G).

Proposition 7.39

(1) The classes of split graphs, of chordal graphs and of tournaments have unbounded
clique-width.

(2) There exists a computable function f : N ×N →N such that, for every graph
G and k > 1, we have cwd(und(G)k )≤ f (k ,cwd(G)).

Proof: (1) Let S be the class of split graphs. Let τ be the MS-transduction that takes
a simple undirected graph G, finds sets A and B witnessing that it is a split graph and
removes A and all edges u− v of G[B] such that u− x− v for some vertex x in A of
degree 2. If G is not a split graph, then there is no output. Then τ(S) is the class of
all simple loop-free undirected graphs, and this class has unbounded clique-width.
(This follows from Corollary 2.122 and also from Proposition 2.106(1).) So does S by
Corollary 7.38(2). The same also holds for chordal graphs. Hence, although they can
be constructed as trees of cliques (cf. Section 2.4.4), and cliques have clique-width
at most 2, chordal graphs have unbounded clique-width.

We now describe an FO-transduction τ that transforms the class of tournaments
into the class of simple loop-free undirected graphs. Let G be a tournament (i.e., an
orientation of a clique) and X be a set of vertices such that, for every x ∈ X , there
are exactly two edges with tail x and head in VG − X . Then, we define τ(G,X ) as
the graph H such that VH = VG −X and y−H z if and only if x→G y and x→G z
for some x ∈ X . Every simple loop-free undirected graph H is τ(G,X ) for some
tournament G such that VG ⊇ VH and |X | = |EH |. Hence, we obtain that tournaments
have unbounded clique-width. We have already proved this fact in a different way by
a counting argument (Proposition 2.114(3)).

(2) It suffices to note that, for each k > 1, the mapping G �→ und(G)k is an
FO-transduction and to apply Corollary 7.38(2).

The following proposition shows that the unbounded clique-width of tournaments
can be viewed as a consequence of the unbounded tree-width of cliques. It was already
stated in Proposition 2.117.

Proposition 7.40 There exists a computable function g : N→N such that, for every
simple undirected graph G, we have twd(G)≤ g(max{cwd(H ) |H ∈ und−1(G)}). If
a class of simple directed graphs is closed under arbitrary changes of edge directions
and has bounded clique-width, then it has also bounded tree-width.
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Proof: We will use the following claim whose proof is easy to extract from that of
Lemma 2.3 of [Cou95a].

Claim 7.40.1 One can construct a monadic second-order graph transduction τ such
that, for every undirected graph G and every odd integer n ≥ 3, if the undirected
rectangular grid Gu

(2n−1)×(n+1) is a minor of G, then G has an orientation H such that
Gu

n×(n+1) ∈ τ(H ). �

Let k be an integer and G be a simple undirected graph, every orientation of which
has clique-width at most k . Let m be the smallest odd integer larger than 3 and the
integers fτ (i) for all i ∈ [k], where τ is constructed by Claim 7.40.1 and fτ is the
computable function of Corollary 7.38(2).

Then G does not contain Gu
(2m−1)×(m+1) as a minor because otherwise, by the

claim, it would have an orientation H such that Gu
m×(m+1) ∈ τ(H ); then cwd(H )≤ k ,

so that, by Corollary 7.38(2), we have cwd(Gu
m×(m+1)) ≤ m, but we know from

Proposition 2.106(1) that cwd(Gu
m×(m+1)) ≥ m + 1. Hence, G does not contain

Gu
(2m−1)×(m+1) as a minor and thus, by Proposition 2.61, its tree-width is at most

g(k) := f (Gu
(2m−1)×(m+1)), where f is a fixed computable function. Hence g is the

required computable function.
The second assertion follows immediately.

Linear equation systems and linear clique-width

A context-free grammar is linear if the right-hand side of each rule contains at most
one occurrence of a nonterminal ([*Har, *Ber]). Similarly, we say that a (polynomial)
equation system S is linear if each monomial in the right-hand side of each equation
of S contains at most one occurrence of an unknown. A linear equational set of
an algebra is a set defined in that algebra by a linear equational system. A set of
p-graphs is linear VR-equational if it is linear equational in the algebra GP, and a
linear HR-equational set of s-graphs is defined similarly.

For k ≥ 1, we say that a term t is k-slim if, for each of its subterms of the form
f (t1, . . . , tk), at most one of t1, . . . , tk has size |ti|> k . We denote by Slimk(F) the set of
all k-slim terms over a signature F ; note that Slim1(F)= Slim(F). It is straightforward
to prove that for every linear equation system S over F and every y ∈ Unk(S), we
have μx · SP(T(F))(x) � y ⊆ Slimk(F), where k is the maximal size of a monomial
in the right-hand side of an equation of S; the proof is by fixed-point induction
(Proposition 3.91 with K = Ki = Slimk(F)).

The linear clique-width lcwd(G) of a graph G has been defined in Definition 2.89
with respect to slim terms, whereas clique-width is defined with respect to arbitrary
terms over FVR. It is to clique-width what path-width is to tree-width. We let paths
denote the set of paths.
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Theorem 7.41

(1) A set of labeled p-graphs of bounded type is linear VR-equational if
and only if it is the image of paths under an MS-transduction (or, a
CMS-transduction).

(2) A set of labeled p-graphs of bounded type has bounded linear clique-width if and
only if it is included in the image of paths under a monadic second-order p-graph
transduction (MS or CMS).

(3) For every monadic second-order p-graph transduction τ , there exists a com-
putable function f lin

τ : N → N such that for every (possibly labeled) p-graph
G and every (possibly labeled) p-graph H in τ(G), we have lcwd(H ) ≤
f lin
τ (lcwd(G)).

Proof: (1) Let L be a linear VR-equational set of (K ,�)-labeled p-graphs. As in
the proof of Corollary 7.32, we obtain that L = val(R), where R is a regular set of
terms over F := FVR

C,[K ,�] and, by the above observation, R ⊆ Slimk(F) for some
k ≥ 1. Then �L� = τ(�Slimk(F)�) for an MS-transduction τ . Generalizing the proof
of Proposition 7.27(1) (taking ai ∈ T (F) such that |ai| ≤ k), it is clear that Slimk (F)

is equivalent to paths.
Now let �L� = μ(�paths�) for a CMS-transduction μ. Then, by Proposi-

tion 7.27(1), L= τ(Slim(F)) for some finite functional signature F and some monadic
second-order transduction τ : T (F)→ GP[K ,�][D]. Since it is clear that Slim(F) is
MS-definable, we may assume that Dom(τ )⊆ Slim(F) by Theorem 7.16, and hence
L = τ(T (F)). By Theorem 7.34, L = val(M ) for a regular set M ⊆ Slim(F ′) with
F ′ := FVR

C,[K ,�]. Let S be an equation system over F ′ and let Y ⊆ Unk(S) such that
(S,Y ) defines M in T(F ′) and L in GP. By Propositions 3.39 and 3.37, we may assume
that each unknown of S defines an infinite set of terms and is useful for Y . Then we
can show that S is a linear equation system, and hence L is linear VR-equational. In
fact, assume that S is not linear. Then the regular grammar G(S), defined in Defini-
tion 3.17, has a rule x→ t such that t has at least two occurrences of an unknown. Since
x is useful for Y and S is trim, there exist y ∈ Y , c ∈ Ctxt(F ′) and s ∈ T (F ′,Unk(S))
such that y⇒∗G(S) c[s], s has exactly two occurrences of an unknown: u1 of x1 and
u2 of x2 (possibly x1 = x2), and roots is the least common ancestor of u1 and u2 in
s, cf. Remarks 3.38(1) and 3.38(2). Since xi defines an infinite set of terms, there
exist terms t1 and t2 (possibly equal) in T (F ′) such that xi⇒∗G(S) ti and |ti|> 1. Then
y⇒∗G(S) s′ := c[s[t1/x1, t2/x2]] and so s′ ∈ M . However, s′ is not slim because the
root of its subterm s[t1/x1, t2/x2] has two sons that are not constant symbols. This
contradicts the fact that M consists of slim terms.

(2) The only-if direction was proved in Corollary 7.33. In order to prove the con-
verse, we let L be a subset of μ(paths) for some monadic second-order p-graph
transduction μ. This implies, as shown in the second part of (1), that L ⊆ val(M )

for a regular set M ⊆ Slim(FVR
C,[K ,�]). It follows that L has linear clique-width at

most |C|.
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(3) Let τ be a monadic second-order p-graph transduction that transforms (K ,�)-
labeled graphs into (K ′,�′)-labeled ones. Let L be the set of (K ,�)-labeled graphs
of linear clique-width at most k and of type included in a finite set D. It is the image
of Slim(FVR

C ′ ) under the MS-transduction val (by Proposition 7.30) for some C ′ of
cardinality k that includes D. Hence, τ(L) is the image of Slim(FVR

C ′,[K ,�]) under the
MS-transduction val ·τ . Hence, as in (2), its linear clique-width is bounded by a value
computable from k and a definition scheme of τ .

Note that the first statement of this theorem implies that Corollary 7.37 also holds
for linear VR-equational sets.

The Semi-Linearity Theorem for VR-equational sets

We fix n≥ 1 and we let X denote the n-tuple of set variables (X1, . . . ,Xn). If γ is an
X -assignment in a structure S, we let

−→
# γ := (|γ (X1)|, . . . , |γ (Xn)|) ∈N n.

If S ∈ STRc(R) and ϕ ∈ CMS(R,X ), we let

−→
# sat(S,ϕ,X ) := {−→# γ | (γ (X1), . . . ,γ (Xn)) ∈ sat(S,ϕ,X )},

and if L⊆ STRc(R), we let

−→
# sat(L,ϕ,X ) :=

⋃
{−→# sat(S,ϕ,X ) | S ∈ L} ⊆N n.

For the notion of a semi-linear subset of N n see Section 3.1.6.

Theorem 7.42 If L is a regular set of terms, a VR-equational set of graphs
or, more generally, the image of trees under a CMS-transduction from trees to
R-structures, then the set

−→
# sat(L,ϕ,X ) associated with a CMS formula ϕ in

CMS(R,X ) is semi-linear. A description of this set can be constructed.

Proof: We first consider the case of a regular set of terms L ⊆ T (F). It suffices to
prove the result for L = T (F): since L is MS-definable, there is a sentence ψ such
that L= {t ∈ T (F) | �t� |=ψ}, and hence

−→
# sat(L,ϕ,X )=−→# sat(T (F),ψ ∧ϕ,X ).

We know from Section 6.3.3 that the set Lϕ,n defined as {t ∗ γ | t ∈
T (F), (γ (X1), . . . ,γ (Xn))∈ sat(�t�,ϕ,X )} is a regular subset of T (F (n)) (we recall that
F (n)=F×{0,1}n and that ρ(( f ,w))= ρ( f ) for f ∈F and w ∈ {0,1}n). The mapping
t ∗γ �→−→# γ is an affine mapping : T (F (n))→N n (see Section 3.1.6 for definitions).
To see this we note that, if t = f (t1, . . . , tk) and t ∗γ = ( f ,w)(t1 ∗γ1, . . . , tk ∗γk ), then
we have

−→
# γ =w+−→# γ1+·· ·+−→# γk . The result follows then from Corollary 3.26.

If L is a VR-equational set of graphs or, more generally by Theorem 7.36, the image
of trees under a CMS-transduction, then L= τ(T (F)) for a finite functional signature
F and an MS-transduction τ that is parameterless and noncopying (Proposition 7.27(2)
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and Lemma 7.35). By the Backwards Translation Theorem (Theorem 7.10), an MS
formula τ #(ϕ) can be constructed from τ and ϕ such that, for every t ∈ T (F), we have
sat(�t�,τ #(ϕ),X )= sat(τ (t),ϕ,X ) if τ(t) is defined, and sat(�t�,τ #(ϕ),X )=∅ if τ(t)
is undefined. Hence

−→
# sat(L,ϕ,X )=−→# sat(T (F),τ#(ϕ),X ). The result follows then

from the first case. Since all steps of the proof are effective, a description of this set
can be constructed from ϕ and a specification of L by a grammar, a VR equation
system or the definition scheme of a CMS-transduction.

As an example of the use of this theorem, let L be a VR-equational set of graphs
and ϕ(X ,Y ) be a formula expressing that X ∩ Y = ∅ and every vertex in X is adja-
cent to every vertex of Y . Then

−→
# sat(L,ϕ,(X ,Y )) is the set of all (m,n) ∈ N 2

such that core(G) has a subgraph isomorphic to Km,n for some G ∈ L. Since the
class of semi-linear sets is (effectively) closed under intersection (Theorem 6.1 of
[GinSpa]), it is therefore decidable whether

−→
# sat(L,ϕ,(X ,Y )) ∩ {(n,n) | n ∈ N }

is finite, i.e., whether there exists n ∈ N such that every graph of L is without
Kn,n, see Theorem 4.51. Hence, by Theorem 4.51, it is decidable whether L is
HR-equational. (The implication (3) =⇒ (1) of Theorem 4.51 will be proved in
Section 9.4.3.)

Let us finally raise a question:

Question 7.43 Is it true that if a set L of R-structures satisfies the semi-linearity
property, i.e., is such that

−→
# sat(L,ϕ,X ) is semi-linear for every CMS formula ϕ,

then its image under a CMS-transduction satisfies also this property?

7.3 Graph transductions using incidence graphs

Monadic second-order formulas can express graph properties by means of two
representations of a graph G by relational structures denoted respectively by �G�
and �G� (cf. Definition 5.17). Hence there are four types of monadic second-order
graph transductions since there are two possibilities for the inputs and the outputs.

The notations MSi, j and CrMSi, j for i, j ∈ [2] (already defined in Section 1.8.2)
refer to these different types where i = 1 (resp. j = 1) if and only if the represen-
tation �·� is used for the input (resp. the output). The same notations are used for
transductions that transform p-graphs, s-graphs, terms or words.

A CrMSi, j-transduction is a transformation of objects, defined by a
CrMS-transduction of the appropriate type, transforming structures that faithfully
represent the objects. For i = 1 and j = 1 we assume that the objects are labeled
p-graphs (including simple graphs, terms and words) and for i= 2 and j= 2 that they
are labeled s-graphs (including graphs, terms and words).20 For example, if we say

20 We identify a word w over a finite alphabet A with the vertex-labeled simple graph G(w) defined in
Example 5.2(2), and a term t over a finite signature F with the labeled simple graph Syn(t) defined in
Definition 2.14, cf. the paragraph before Corollary 5.23.
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that τ is a CrMS1,2-transduction, this will mean that it is a set of pairs (G,H ) such
that G is a p-graph represented by �G�C (for some finite C) and H is an s-graph repre-
sented by �H�D (for some finite D), defined by a CrMS-definition scheme. Note that
a CMS1,1-transduction is a monadic second-order p-graph transduction. If necessary,
we will make precise the relational signatures used for representing the considered
objects.

Let us give more details about the relational structure21 �G� := �Inc(G)�, for
a graph G. If G is directed, then Inc(G) := 〈VG ∪ EG, in1G, in2G〉, where in1G :=
{(e,x) | e ∈ EG, x is the tail of e} and in2G := {(e,x) | e ∈ EG, x is the head of e}.
Hence, Inc(G) is a simple bipartite directed graph where each edge is labeled by 1
or 2. If G is undirected, then in1G and in2G are replaced by the single binary relation
inG := {(e,x) | e ∈ EG, x is an end vertex of e}. If G is an s-graph, then Inc(G) is
the simple s-graph with Inc(G)◦ := Inc(G◦) and slabInc(G) := slabG. If L is a set of
s-graphs, we let Inc(L) := {Inc(G) |G ∈ L}.

For a simple (possibly labeled) s-graph G of type τ(G)⊆ C, we have defined in
Example 5.2(2) the faithful representation �G�C as the structure obtained from �G◦�
by adding the unary relations (labaG)a∈C , where labaG is the set of a-sources of G
(a singleton or the empty set). For an arbitrary s-graph G of type τ(G)⊆C, we have
defined in Definition 5.17 the faithful representation �G�C in such a way that it equals
�Inc(G)�C .22 If τ(G)= C, then �G�C is also denoted �G�. Moreover, if L is a set of
s-graphs of bounded type, then �L� denotes the set {�G�D |G ∈ L} = �Inc(L)�, where
D is the smallest set of port labels such that τ(G)⊆ D for every G ∈ L. Note that if
D ⊆ C, then the representations �G�D and �G�C of an s-graph such that τ(G) ⊆ D
are strongly FO-equivalent.

Inclusions between the four classes of monadic second-order graph transductions,
and examples showing proper inclusions and incomparability results have been dis-
cussed in Section 1.8.2. For the reader’s convenience, we reproduce Figure 1.6 of
Section 1.8.2.

Some of these inclusions follow from Theorem 7.14 and the obvious fact that the
transformation of �G� into �G� is an MS-transduction (and even an FO-transduction),
in other words that the identity on simple graphs is an MS2,1-transduction. On certain
classes C of simple graphs the identity : C→ C is also an MS1,2-transduction. This
means that the transformation of �G� into �G� for G ∈ C is an MS-transduction, and
it follows that certain of the proper inclusions of Figure 7.1 become equalities. Let C
be such a class, and i be 1 or 2. Then:

21 All variants defined in Section 5.2.5 are strongly FO-equivalent (Definition 7.9). Hence the results to
be stated below also hold for them. We refer the reader to Definition 5.17 for the extension of these
definitions to the representation of labeled graphs.

22 Note that in the undirected (unlabeled) case, the signature Ru
m,C of �G�C is the signature Rs,C in

which edg is changed into in. Similarly, in the directed (unlabeled) case, Rd
m,C is Rs,C,[∅,{1,2}] with

the same change.
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Figure 7.1 The different classes of monadic second-order graph transductions.

(1) every CrMS2,i-transduction with domain included in C is (effectively) a CrMS1,i-
transduction;

(2) every CrMSi,1-transduction with image included in C is (effectively) a CrMSi,2-
transduction.

We have seen in Example 7.8 that the class C of forests is such a class, and hence so
is the class trees. A similar proof shows that, for any finite functional signature F
and any finite alphabet A, the sets of terms T (F) and the sets of words A∗ are such
classes, cf. Corollary 5.23. Thus, the four types of transductions of terms (or words)
are all the same. There are only two types of transductions from trees (or terms, or
words) to graphs, because in this case and for each i = 1 or 2, the CrMS1,i- and the
CrMS2,i-transductions are the same, with effective translations between the definition
schemes of different types. In Section 9.4.1 (Theorem 9.44) we will prove that for
every class C of simple and uniformly sparse (labeled) graphs, the identity : C→ C
is an MS1,2-transduction, cf. Theorem 5.22. Implications (1) and (2) are false if C is
the class of simple graphs.

Example 7.44 (Edge subdivision) If G is a simple directed graph, we let Sub(G) be
the simple directed graph such that

VSub(G) := VG ∪EG,

ESub(G) := {(u,e),(e,v) | (e,u) ∈ in1G and (e,v) ∈ in2G}.

This transformation consists in replacing every directed edge by a directed path of
length 2. It is an MS2,2-transduction because the transformation of �G� into �Sub(G)�
is a (3-copying and domain-extending) MS-transduction: a vertex v of G is made into
a vertex (v,1) of Sub(G), and an edge e of G linking u to v is made into a vertex (e,1)
and also into edges (e,2) and (e,3) linking respectively (u,1) to (e,1) and (e,1) to
(v,1). Its definition scheme is D := 〈χ ,(δi)i∈[3],(θw)w∈R�[3]〉 of type R→R where
R= {in1, in2}, with formulas as follows:
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χ expresses that G is simple,
δ1(x1) is True,
δ2(x1) and δ3(x1) express that x1 is an edge,
θin1,2,1(x1,x2) expresses that x1 is an edge with tail x2,
θin1,3,1(x1,x2) expresses that x1 is an edge and x2 = x1,
θin2,2,1(x1,x2) expresses that x1 is an edge and x2 = x1,
θin2,3,1(x1,x2) expresses that x1 is an edge with head x2,
and all other formulas θini , j,k are False.

This transduction has been used in Example 1.47 as an example of an MS2,2-
transduction that transforms simple graphs into simple graphs and is not an
MS1,1-transduction. �

Example 7.45 (Graph minors) We will prove that the graph transduction �−1

that transforms a graph into its minors is an MS2,2-transduction. We recall from
Definition 2.15 that a minor of a concrete graph G is a graph of the form H =
((G − (Z ∪ Y ))/≈Y )X , where X ⊆ VG, Y ⊆ EG, Z ⊆ VG ∪ EG and the following
conditions hold:

M1 : Y ⊆EG′ where G′ :=G−Z is the subgraph of G obtained by deleting all vertices
and edges of Z , and all edges incident with vertices of Z ;

M2 : X is a cross-section of the equivalence relation≈Y on VG′ (= VG−Z) such that
x≈Y y if and only if x and y are linked by a path with all its edges in Y .

The set Z specifies the vertices and edges to be deleted, Y is the set of edges to be
contracted and X is a set of vertices of G chosen to be the vertex set of H . (Vertices
of G get fused to become vertices of H ; the set X selects, from a set of fused vertices,
the one that is kept as a vertex of H .) We denote H by G[X ,Y ,Z]. There exists a
noncopying definition scheme D with three parameters such that D̂(�G�,(X ,Y ,Z))=
�G[X ,Y ,Z]� for every triple of sets (X ,Y ,Z) satisfying conditions M1 and M2. It is
thus clear that D̂(�G�) is the set of concrete minors of G. The construction of D uses
Property P2 of Proposition 5.11 and Example 7.3(1).

Hence, we have proved that the transduction �−1 from (abstract) graphs to their
(abstract) minors is an MS2,2-transduction. It follows that for every graph H there
exists an MS2 sentence MINORH such that a graph G has a minor isomorphic to H if
and only if �G� |=MINORH . This sentence is ∃X ,Y ,Z .βD where β has for models
the structures isomorphic to �H� and βD is constructed by Backwards Translation
(Theorem 7.10). In Corollary 1.14 we have defined a similar sentence MINORH not
using edge set quantifications, for H simple and loop-free. �

Example 7.46 (Definition of orientations) Proposition 9.46 will show that the
mapping und−1 that associates with an undirected graph all its orientations is an
MS2,2-transduction. It is not a CMS1,1-transduction, because otherwise, by Corol-
lary 7.38(2) and since cliques have clique-width 2, tournaments would have bounded
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clique-width, and we know that this is not the case by Propositions 2.114(3)
and 7.39(1). �

7.4 The Equationality Theorem for the HR algebra

Our objective is now to establish a characterization of the HR-equational sets similar
to that of the VR-equational sets given by the Equationality Theorem in Section 7.2.
This characterization will use monadic second-order transductions that construct inci-
dence graphs. However, we first state some direct consequences of the Equationality
Theorem for the VR algebra and of some results of Chapter 2.

Theorem 7.47 Let τ be a graph transduction.

(1) If τ is a CMS2,2-transduction, then there exists a computable function gτ :N→N
such that, for every graph G and every graph H in τ(G), we have twd(H ) ≤
gτ (twd(G)).

(2) If τ is a CMS1,2-transduction, then there exists a computable function g′τ such
that twd(H )≤ g′τ (cwd(G)) for every simple graph G and every graph H in τ(G).

(3) If τ is a CMS2,1-transduction, then there exists a computable function g′′τ such
that cwd(H )≤ g′′τ (twd(G)) for every graph G and every simple graph H in τ(G).

(4) These three results extend to labeled graphs and to path-width and linear clique-
width instead of, respectively, tree-width and clique-width.

Proof: (1) Let τ be a CMS2,2-transduction that transforms graphs. Then the graph
transduction τ ′ := {(Inc(G), Inc(H )) | (G,H ) ∈ τ } is a CMS1,1-transduction (defined
by the same definition scheme as τ ). Let Inc(H )∈ τ ′(Inc(G)) and twd(G)= k (with-
out loss of generality we assume k ≥ 2). Then twd(Inc(G))= k by Example 2.56(5),
hence cwd(Inc(G)) ≤ 24k+4 + k + 1 by Proposition 2.114(1.1) (we have two edge
labels in Inc(G) if G is directed). Hence cwd(Inc(H )) ≤ fτ ′(24k+4+ k + 1), where
fτ ′ is the function of Corollary 7.38(2). Since Inc(G) is bipartite with bipartition
(VG ,EG) and each e ∈ EG has degree 2 in Inc(G), this graph is without K3,3. Hence
we have twd(H )≤ 12 · fτ ′(24k+4+ k + 1)− 1 by Proposition 2.115(2). This defines
the function gτ .

The extension to labeled graphs, and especially to edge labels (because vertex
labels do not modify tree-width and clique-width) is similar. We get twd(H )≤ f ′

τ ′(k)
for some computable function f ′

τ ′ depending on the (fixed) sets of vertex and edge
labels. (The definition scheme of the transduction τ takes into account all relations
of the input and output relational structures.)

(2) The proof is similar with a CMS1,1-transduction τ ′ that transforms G into
Inc(H ). We have twd(H )≤ 12 · fτ ′(cwd(G))− 1.

(3) Here τ ′ transforms Inc(G) into H and we have cwd(H )≤ fτ ′(24k+4+ k + 1),
where k = twd(G).
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(4) The proofs of (2) and (3) extend to labeled graphs as that of (1). All these
proofs extend to path-width and linear clique-width for labeled graphs. That is,
to take an example, if τ is as in (2), then, for some fixed function hτ , we have
pwd(H )≤ hτ (lcwd(G)) for every simple graph G and every H in τ(G). The proofs
use Theorems 2.114(1.3) and 7.41(2), and Proposition 2.115(3).

These facts are useful for showing quickly that certain sets of graphs have bounded
or unbounded clique-width or tree-width, but they do not give precise upper- or
lower-bounds. Furthermore, they do not yield a characterization of the HR-equational
sets of graphs similar to that of Theorem 7.36 for the VR-equational ones.

The next proposition is similar to Proposition 7.30. It shows that, for each finite
set C of source labels, the mapping val (defined in Section 2.3.1, Definition 2.32)
that associates an s-graph with every term in T (FHR

C ), is an MS1,2-transduction
(and hence also an MS2,2-transduction, cf. Section 7.3). It is actually not needed
for the proof of the Equationality Theorem for the HR algebra but it is interesting
anyway. It gives a short proof of the Weak Recognizability Theorem for the HR
algebra, cf. Remark 7.31(1). It also gives a fixed-parameter linear algorithm that
computes τ(G), for a given parameter-invariant CMS2,2-transduction τ and a given
labeled graph G, with parameter (twd(G),D), where D is the definition scheme for
τ , cf. Remark 7.31(2).

Proposition 7.48 For each finite set C of source labels, the mapping �t� �→ �val(t)�C
with domain �T (FHR

C )� is a parameterless MS-transduction of type RFHR
C
→Rm,C .

If D⊆C, then the mapping �t� �→ �val(t)�D for τ(val(t))⊆D (or for τ(val(t))=D)
is also a parameterless MS-transduction, of type RFHR

C
→Rm,D. These results extend

to labeled graphs.

Proof: Most of the work has been done in Section 2.3.2 in Definition 2.40 and
Proposition 2.41. This proposition constructs val(t) as the quotient of a concrete
s-graph Exp(t), called the expansion of t, by an equivalence relation on its vertices
denoted by ≈t that is defined as the equivalence generated by a binary relation Rt

on VExp(t). We will denote by �Exp(t)�C + Rt the relational structure obtained by
adding the binary relation Rt to �Exp(t)�C . We recall that the vertices of Exp(t) are
the pairs (u,a), where u is a node of t and a belongs to the type of u (i.e., the type
of val(t/u)), and hence to the finite set C. Its edges are the nodes of t labeled by the
constant symbols that specify edges. It is clear from Definition 2.40 that the map-
ping �t� �→ �Exp(t)�C + Rt , for t ∈ T (FHR

C ), is a parameterless (|C| + 1)-copying
MS-transduction, which we denote μ1. For writing the domain formulas of its defi-
nition scheme, we need, for each a in C, an MS formula that expresses that the type
of a node u of t (cf. Definition 2.35) contains a. Such a formula is easy to write; it is
similar to the one used in the proof of Proposition 7.30 for expressing logically the
mapping portt .
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We will denote byμ2 the parameter-invariant transduction (cf. Example 7.3(1)) that
transforms �Exp(t)�C +Rt into the structure �Exp(t)/≈t�C representing the quotient
of Exp(t) by the equivalence relation generated by Rt . By Proposition 2.41, val(t) is
isomorphic to Exp(t)/≈t . Hence, the mapping �t� �→ �val(t)�C is equal to μ1 ·μ2,
hence is a parameter-invariant MS-transduction.

In Section 2.3.2, we have also defined concrete quotient graphs Exp(t)/≈t denoted
by cval(t) and gval(t). It is easy to check that their representations can also be
defined from �t� by MS-transductions: the only difference with the above construction
concernsμ2 that must be modified so as to select particular cross-sections of≈t . Since
these cross-sections are MS-expressible without the use of parameters, μ2 andμ1 ·μ2

are parameterless MS-transductions. We omit the easy technical details.
The second statement is proved as in the proof of Proposition 7.30.

Corollary 7.49 A set of graphs has bounded tree-width (resp. bounded path-width)
if and only if it is included in the image of trees (resp. of paths) under a
CMS1,2-transduction.

Proof: For tree-width, the equivalence follows from Proposition 7.48, Theo-
rem 7.47(2), Proposition 7.27(2) and the characterization of graphs of tree-width at
most k as the values of terms over finite subsignatures of T (FHR) (Theorem 2.83). For
path-width it follows from Proposition 7.48, Theorem 7.47(4), Proposition 7.27(1)
and the characterization of graphs of path-width at most k as the values of slim terms
over finite subsignatures of T (FHR) (Proposition 2.85).

This result has several variants: one can replace CMS1,2-transductions by
MS1,2-transductions and the sets trees and paths by equivalent sets by using
Proposition 7.27.

The Equationality Theorem for the algebra JS

We start with a result that is similar to Theorem 7.34. In its proof we will actually use
Theorem 7.34, coding s-graphs as vertex-labeled incidence graphs (without sources
or ports).

If G is a (K ,�)-labeled s-graph of type included in C, we let GC be the (C∪K ,�)-
labeled graph (without sources) obtained by attaching a as additional label to the
a-source of G, for each a ∈ τ(G).23 It is clear that Inc(GC) = Inc(G)C . Moreover,
�GC� = �G�C and if G is simple, �GC� = �G�C . If L is a set of (K ,�)-labeled
s-graphs of bounded type, we let L∗ be the set of (D∪K ,�)-labeled graphs GD for
G ∈ L, where D is the smallest set of source labels such that τ(G) ⊆ D for every

23 Formally, we would have to use C ∪K where C is a copy of C disjoint with the set of all source labels
(cf. Remark 6.51), but we prefer to disregard this technicality here. Note also that if C ⊆ D, then GC
and GD are the same labeled graph, but with different sets of vertex labels.
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G ∈ L. Clearly, Inc(L∗) = Inc(L)∗, �L∗� = �L� and if all s-graphs in L are simple,
�L∗� = �L�.
Theorem 7.50 Let F be a finite functional signature, let K and � be finite
sets of vertex and edge labels and let D be a finite set of source labels. Let
σ : T (F)→ J S[K ,�][D] be a CMS1,2-transduction, given by a definition scheme
of type RF →Rm,D,[K ,�].
(1) One can construct a finite set C ′ of source labels that includes D and an invert-

ible MS-transduction μ : T (F)→ T (FHR
C ′,[K ,�]) such that σ = μ · val. If σ is

parameterless, then so is μ.
(2) One can construct a regular language M ⊆ T (FHR

C ′,[K ,�] − {∅})∪ {∅} such that
σ(T (F))= val(M ). The set σ(T (F)) is HR-equational.

Furthermore, if Dom(σ ) ⊆ Slim(F), then there exists k ≥ 1 such that μ(T (F)) ⊆
Slimk(FHR

C ′,[K ,�]) and M is a set of k-slim terms.24

Proof: The proof of Assertion (2), from Assertion (1), is entirely similar to the one
of Theorem 7.34. Hence, it remains to prove Assertion (1). We first consider the case
where D = ∅, i.e., σ(T (F)) is a set of labeled graphs (without sources). Moreover,
we assume that the graphs in σ(T (F)) are directed and that the definition scheme
has type RF → Rd

m,[K ,�]. The proof extends without any difficulty to undirected
graphs.

The relation τ := {(t, Inc(G)) | (t,G) ∈ σ } is a CMS1,1-transduction : T (F)→
GP [K∪�,[2]][∅]. Hence, by Theorem 7.34, we obtain a finite set C of source labels
and an invertible MS-transductionμ1 : T (F)→ T (FVR

C,[K∪�,[2]]) such that τ =μ1 ·val.
We will construct an invertible and parameterless MS-transductionμ2 that transforms
every term t ∈ T (FVR

C,[K∪�,[2]]) such that cval(t)= Inc(G) into a term t′ in T (FHR
C ′,[K ,�])

that evaluates to G, for some finite C ′. Then the required invertible MS-transduction is
μ :=μ1 ·μ2. To guarantee thatμ2 is invertible, we will construct it as the composition
of a monadic second-order relabeling and a linear, strict and nonerasing second-order
substitution (Proposition 7.22(1), Example 7.3(4)).

Let t and G be as above. Since Inc(G) is without K3,3 (cf. the proof of The-
orem 7.47), we can use the construction of Proposition 2.115, that defines a
tree-decomposition of Inc(G) of width at most 12 · |C| − 1 whose tree is the syn-
tactic tree Syn(t) of t. (We recall that VInc(G) =Occ0(t) is a set of leaves of t, hence
a subset of Nt = NSyn(t) which is the domain of the relational structure �t�.) This
construction defines a mapping f : Nt→P(VG ∪EG) such that:

(a) (Syn(t), f ) is a tree-decomposition of Inc(G), each box of which has at most
12 · |C| elements;

(b) each e ∈ EG is a leaf u of Syn(t), f (u) = {u} and the box f (v), where v is the
father of u contains e and its end vertices.

24 For the definition of k-slim terms see the paragraphs before Theorem 7.41.
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Property (b) is guaranteed by Lemma 2.116(2). It follows that, if we delete from the
boxes f (u) the edges of G, then we have a tree-decomposition of G. In order to have
a rich tree-decomposition of G, we must ensure that each e ∈ EG belongs to a unique
box. To obtain this, we restrict f into f ′ as follows:

f ′(u) := ( f (u)∩VG)∪{e ∈ EG | u is the father of e}.

It is clear that (Syn(t), f ′) is a rich tree-decomposition of G.
The construction of Proposition 2.115 (which we do not reproduce here) is based

on subsets Pt(u,a) and Ext(u,a) of VInc(G), with u ∈ Nt and a ∈ C. It follows from
the proof of Proposition 7.30 that, for x ∈ VInc(G), the properties x ∈ Pt(u,a) and
x ∈ Ext(u,a) are MS-expressible in �t�. Together with the definition of f ′, this shows
that there exists an MS formula ϕ(u,x) such that

�t� |= ϕ(u,x) if and only if u ∈ Nt , x ∈ VG ∪EG and x ∈ f ′(u).

Hence, roughly speaking, we have a rich tree-decomposition of G of bounded
width, with underlying tree Syn(t), and that is specified in �t� by MS formulas
(cf. Example 5.2(4)).

Definition 2.80 shows how to transform such a decomposition into a term t′ over
FHR

C ′,[K ,�] for some set C ′ of bounded size (in fact, C ′ is any set of cardinality 12 · |C|).
By combining this transformation with the previous one, we will actually define G by
a term t′′ over a finite derived signature H of FHR

C ′,[K ,�] such that the transformation
of t into t′′ is a monadic second-order relabeling. Then t′ := θH (t′′) evaluates to G,
where θH is the second-order substitution corresponding to H (by Proposition 2.126).
This will give the desired result.

The construction of Definition 2.80 uses a vertex coloring γ : VG → C′ of the
considered graph, here G, such that two vertices of the same box have different colors
(Lemma 2.78). Since the membership of two vertices in a same box is MS-expressible
in �t�, one can use |C ′| set variables to specify such a coloring. In order to do that in
a unique way, we take the first such coloring for an appropriate linear order defined
as follows. Since VG ⊆ Nt , the elements of VG are linearly ordered by the natural
order on Nt = [|t|] ⊆N (which is MS-expressible in �t� because it corresponds to
the usual preorder tree traversal of Syn(t), cf. the proof of Proposition 5.30). We also
fix a linear order on C ′ so that the vertex colorings are ordered lexicographically and
this is also MS-expressible.25

Then, Definition 2.80 builds from γ and (Syn(t), f ′) a term t′′ over a derived
signature H of FHR

C ′,[K ,�] having the same syntactic tree as t (by neglecting node

25 This is, in fact, a particular case of the more general result that for every MS-transduction ν : T (F)→
STR(R) (for some finite functional signature F and some relational signature R) there exists a parame-
terless MS-transduction ν′ : T (F)→ STR(R) such that Dom(ν′)=Dom(ν) and ν′ ⊆ ν (i.e., ν′ computes
one element of ν(t), for every t ∈ Dom(ν)). A linear order on parameter assignments can be defined,
and ν′ uses the first such assignment that satisfies the precondition.
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labels) and that evaluates to G. These derived operations form a finite set, depending
only on C, because they have arity at most 2 and because the graphs H (u) that occur
in Equation (2.3) of Definition 2.80, have at most two edges by Property (b) above
and the definition of f ′ (cf. Remark 2.84(2)).26 Since the decomposition f ′ of G is
MS-expressible in �t�, it follows that t can be transformed into t′′ by a parameterless
monadic second-order relabeling. It is clear from Equation (2.3) that the second-order
substitution θH is linear, strict and nonerasing.

If Dom(σ )⊆ Slim(F), then μ1(T (F)) is a set of slim terms by Theorem 7.34. It is
clear that μ2 transforms slim terms into 2m-slim terms, where m is the maximal size
of a term with variables that defines a derived operation in the set H .

We now consider the case where D is nonempty, but we treat each s-graph G of type
included in D as a graph GD without sources. Clearly, the relation τ := {(t, Inc(GD)) |
(t,G)∈σ } is a CMS1,1-transduction : T (F)→GP [D∪K∪�,[2]][∅]. The transductionμ2

should now transform every term t ∈ T (FVR
C,[D∪K∪�,[2]]) such that cval(t)= Inc(GD)

into a term t′ in T (FHR
C ′,[K ,�]) that evaluates to G, where C ′ includes D. The proof is

as in the case of graphs without sources: the rich tree-decomposition (Syn(t), f ′) of G
has to be defined so that the sources of G are all in the root box. This can be realized
by adding the sources of G to each box of f ′. Then each box of the resulting rich tree-
decomposition has at most 12 · |C|+ |D| elements. Since the sources are identified in
GD by vertex labels, the monadic second-order formula ϕ(u,x) intended to specify f ′
can ensure this additional condition. As in the first case, the transformation of t into
t′′ is a parameterless monadic second-order relabeling and the transformation from
t′′ to t′ is a linear, strict and nonerasing second-order substitution.

Theorem 7.51 (Equationality Theorem for the HR algebra) Let L be a set of
possibly labeled s-graphs of bounded type. The following conditions are equivalent:
(1) L is HR-equational;
(2) Inc(L)∗ is VR-equational;
(3) L is the image of trees under an MS1,2-transduction;27

(4) L is the image of trees under a CMS1,2-transduction.

Moreover, L is linear HR-equational if and only if it is the image of paths under
an MS1,2-transduction (or, a CMS1,2-transduction) if and only if Inc(L)∗ is linear
VR-equational.

Proof: (2) ⇐⇒ (3) ⇐⇒ (4) by the Equationality Theorem for the VR alge-
bra (Theorem 7.36), because �Inc(L)∗� = �Inc(L)� = �L�. The “linear case”
(i.e., the corresponding part of the last statement of the theorem) follows from
Theorem 7.41(1).

26 In the notation H (u), the letter H does not refer to the derived signature.
27 More precisely, this means (in the case where the s-graphs in L are (K ,�)-labeled) that there is an

MS-transduction τ of type Rm →Rm,D,[K ,�] such that �L� = τ(�trees�), where D is the smallest
set of source labels such that τ(G)⊆D for every G ∈ L.
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(1)=⇒ (3) is immediate from Proposition 7.48 and Proposition 7.27(2). The linear
case can be shown similar to the first part of the proof of Theorem 7.41(1). Instead,
(the nonlinear case of ) (1)=⇒ (2) can be shown without the use of Proposition 7.48,
as follows.

Let L be an HR-equational set of directed (K ,�)-labeled graphs (without sources).
Then Inc(L) is also HR-equational: if in an equation system that defines L, we
replace everywhere

−→
abλ by fgc(

−→ca1 �
−→
cb2 � cλ) and a


λ by fgc(
−→ca1 � −→ca2 � cλ),

then we obtain an equation system that defines Inc(L). The subscripts 1 and 2 in−→ca1 and
−→
cb2 represent the edge labels 1 and 2 that distinguish the two types of

edges (cf. in1 and in2) of Inc(G) when G is directed. Since Inc(L) is a set of simple
graphs, it is also VR-equational by Theorem 4.49. The proof is similar for undirected
graphs.

We now consider graphs with sources. Let D be the smallest set of source labels
such that τ(G) ⊆ D for every s-graph G ∈ L. If G is such an s-graph, then GD =
fgD(G � aa � · · ·), where � is applied to all constant symbols aa for a ∈ τ(G). Each
a-source of G is made into an internal vertex of the graph GD labeled by a. It follows
that if L is a homogenous HR-equational set of type D, then L∗ = fgD(L � aa � · · ·),
hence is an HR-equational set of graphs (without sources). The same holds for every
HR-equational set because such a set is a finite union of homogenous HR-equational
sets (cf. the paragraph before Definition 4.12). Thus, if L is HR-equational, then so are
L∗ and Inc(L)∗ since this last set is equal to Inc(L∗). Hence Inc(L)∗ is VR-equational,
which proves that (1) implies (2).

(4)=⇒ (1) is immediate from Proposition 7.27(2) and Theorem 7.50. In the linear
case, the proof is similar to the second part of the proof of Theorem 7.41(1) (in
particular, that proof also holds if M ⊆ Slimk(F ′), taking |ti|> k).

The following corollary is similar to Corollary 7.37.

Corollary 7.52 The image of an HR-equational set of s-graphs under a
CMS2,2-transduction is HR-equational. Furthermore, the image of an HR-equational
set of s-graphs under a CMS2,1-transduction is VR-equational and the image of a
VR-equational set of p-graphs under a CMS1,2-transduction is HR-equational. Similar
statements hold for labeled s- and p-graphs, and for the linear equational sets.

Proof: The proof is similar to the one of Corollary 7.37. The first statement is
a consequence of the equivalence of (1) and (4) of Theorem 7.51, and the fact
that, by Theorem 7.14 and the definitions, τ · θ is a CMS1,2-transduction if τ is
a CMS1,2-transduction and θ is a CMS2,2-transduction. For the remaining state-
ments one additionally uses the equivalence of (1) and (3) of Theorem 7.36 (and
Theorem 7.41(1) for the linear case), together with the more general fact that
if τ is a CMS1,i-transduction and θ is a CMSi, j-transduction, then τ · θ is a
CMS1, j-transduction.
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Since the identity is a CMS2,1-transduction on simple graphs, we obtain from this
corollary that every linear HR-equational set of simple graphs is linearVR-equational:
the linear version of Theorem 4.49.

As observed in Section 7.3, it is proved in the main theorem of Section 9.4.1
(Theorem 9.44) that the identity on a set of simple and uniformly sparse labeled
graphs is an MS1,2-transduction. Using this, we get from Corollary 7.52 that a set
of simple labeled graphs is HR-equational if and only if it is VR-equational and has
bounded tree-width (see the proof of Theorem 4.51 and Section 9.4.3). Furthermore,
it is decidable whether a VR-equational set is HR-equational (see the discussion after
Theorem 7.42).

Here is another example of the use of Corollary 7.52. We recall that the line graph
Line(G) of a graph G has vertex set EG and an (undirected) edge between e and e′ in
EG = VLine(G) if and only if e and e′ have an end vertex in common.

Corollary 7.53 The set of line graphs of an HR-equational set of graphs is
VR-equational.

Proof: The transduction that transforms �G� into �Line(G)� is an FO-transduction,
and so the graph transduction Line is an MS2,1-transduction (see Example 1.45).
Hence, if L is an HR-equational set of graphs, then Line(L) is VR-equational by
Corollary 7.52.

From Theorem 7.51 and Corollary 7.52 one can prove that Theorem 7.47 and
Corollary 7.49 actually hold for s-graphs and p-graphs, rather than just graphs. These
results correspond to Assertions (1) and (2) of Corollary 7.38 and (2) and (3) of
Theorem 7.41.

Theorem 7.42, the Semi-Linearity Theorem for images of the set trees under
CMS-transductions (and in particular forVR-equational sets), has an obvious counter-
part for HR-equational sets, where one can count edges and not only vertices.

7.5 Decidability of monadic second-order satisfiability problems

One of the consequences of the Recognizability Theorem is that the equational sets
of graphs have decidable monadic second-order satisfiability problems (Section 5.4,
Theorem 5.80). In this section we use monadic second-order transductions to reduce
monadic second-order satisfiability problems for sets of graphs or relational struc-
tures to similar problems for related sets. We obtain in particular (by using difficult
results of graph theory) that bounded tree-width and bounded clique-width are nec-
essary conditions for the decidability of certain monadic second-order satisfiability
problems.

We first recall a definition already given in Section 5.1.6. Let L be a logical
language, and C be a set of structures. The L-satisfiability problem for C con-
sists in deciding whether a given sentence in L is true for some structure in C.
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(For sets L closed under negation, there is an equivalent formulation in terms of
L-theories.) For having an easy comparison with what follows, we restate the results of
Section 5.4.

The CMS-satisfiability problems of the set of simple labeled graphs of clique-
width at most k , for each fixed k , and, more generally, of every VR-equational set
of labeled graphs are decidable. So are the CMS2-satisfiability problems of the set
of labeled graphs of tree-width at most k , for each fixed k , and, more generally, of
every HR-equational set of labeled graphs.

We will give alternative proofs of these results by using the following theorem.

Theorem 7.54 (Reduction Theorem) Let r ∈ N , let τ be a CrMS-transduction
: STR(R)→ STR(R′) and let C ⊆ STR(R). If C has a decidable CrMS-satisfiability
problem, then so has τ(C).

Proof: Let C be a subset of STR(R) and A be an algorithm that decides its
CrMS-satisfiability problem. Let τ be a CrMS-transduction with parameters
Y1, . . . ,Yq and ϕ be a sentence in CrMS(R′,∅). Then S ′ |= ϕ for some S ′ ∈ τ(S)
such that S ∈ C if and only if S |= ∃Y1, . . . ,Yq.τ #(ϕ) for some S in C. We use
here the Backwards Translation Theorem (Theorem 7.10). Its proof gives an algo-
rithm that constructs τ #(ϕ) from ϕ and a definition scheme of τ . Algorithm A can
decide if ∃Y1, . . . ,Yq.τ #(ϕ) is satisfiable in C. Hence, the set τ(C) has a decidable
CrMS-satisfiability problem.

In the particular case where r= 0, we obtain a statement relative to MS-satisfiability
problems and MS-transductions. By using this theorem, Proposition 7.30 and the clas-
sical result that the monadic second-order satisfiability problem for regular languages
is decidable (cf. Theorem 1.16), we get immediately that the CMS-satisfiability
problem of a VR-equational set of (K ,�)-labeled graphs, and in particular of the
set of (K ,�)-labeled graphs of clique-width bounded by any fixed k , is decidable.
The proof is similar for the CMS2-satisfiability problem of an HR-equational set of
(K ,�)-labeled graphs, and in particular, for the set of those of tree-width bounded
by any fixed k . The following theorem gives some kind of converse statements.

Theorem 7.55
(1) If a set of labeled graphs has a decidable MS2-satisfiability problem, then it has

bounded tree-width.
(2) If a set of simple labeled graphs has a decidable C2MS-satisfiability problem,

then it has bounded clique-width.

Proof: (1) We have shown in Example 7.45 that the transduction �−1 that associates
with a graph the set of its minors is an MS2,2-transduction. If C has a decidable
MS2-satisfiability problem, then so has the set �−1(C) of all minors of the graphs
in C by the Reduction Theorem (Theorem 7.54). Hence, by Theorem 5.6, the square
grids in �−1(C) have bounded size. So, there exists n ∈N such that the graphs of C
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do not contain Gn×n as a minor. Since Gn×n is planar, this implies that C has bounded
tree-width by the second assertion of Proposition 2.61.

(2) The proof is in [CouOum]. It follows the same scheme but is more complicated.
It is based on the notion of vertex-minor inclusion instead of that of minor inclusion.
The mapping that transforms a simple undirected graph into the set of its vertex-
minors is shown to be a C2MS-transduction, and the proof uses in a crucial way the
even cardinality set predicate. For this reason, the hypothesis that the considered set
has a decidable C2MS-satisfiability problem cannot be replaced by the decidability
of its MS-satisfiability problem.

The result of [CouOum] is first proved for bipartite and undirected graphs.
(This special case concentrates all the difficulties). It is extended first to simple
(K ,∅)-labeled, bipartite and undirected graphs, and then to simple (K ,�)-labeled
graphs by a slight modification of the encoding B� used in Section 6.2.3. This
extension is based on the Reduction Theorem and Corollary 7.38(2).

This theorem leaves open several questions.

Can one weaken the hypotheses of Theorem 7.55?

Question 7.56 Is it true that if a set of simple labeled graphs has a decidable
MS-satisfiability problem, then it has bounded clique-width? �

This condition is strictly weaker than the decidability of the C2MS-satisfiability
problem by the following proposition.

Proposition 7.57 Let A be a unary relation symbol. There exists a subset of STR({A})
that has a decidable MS-satisfiability problem and an undecidable C2MS-satisfiability
problem.

Proof: An element of STR({A}) is a pair S = 〈DS ,AS 〉, where AS ⊆DS . For i, j ∈N ,
we let Si, j be the structure S in STR({A}) such that |DS | = i+ j and |AS | = i. For each
i ≥ 1, we let ϕi be the C2MS sentence such that MOD(ϕi)= {Si,j | j is odd}.

Let M1,M2, . . . ,Mi, . . . be an effective enumeration of all deterministic Turing
machines, where each machine is given with an initial configuration. We let C be
the set of structures Si, j such that i ≥ 1 and either j = 2k ≥ 2i and after k steps the
computation of Mi is not terminated, or j = 2k + 1 ≥ 2i+ 1 and the computation
of Mi terminates in k ′ steps for some k ′ ≤ k . Membership in the set C is decid-
able. Since the computation of Mi terminates if and only if MOD(ϕi)∩ C �= ∅, the
C2MS-satisfiability problem of C is undecidable.

We now prove that the MS-satisfiability problem for C is decidable. The result of
[Cou90b] recalled in Section 5.2.6 (above Lemma 5.27) entails that every sentence
ϕ in MS({A},∅) is equivalent (in every {A}-structure S) to a fixed finite disjunction
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of conditions of the four possible forms, for p,q in N :

C1,p,q : |AS | = p ∧ |DS −AS | = q,

C2,p,q : |AS |> p ∧ |DS −AS | = q,

C3,p,q : |AS | = p ∧ |DS −AS |> q,

C4,p,q : |AS |> p ∧ |DS −AS |> q.

We prove that, for each (i,p,q), one can decide if Ci,p,q is satisfied by some S in C.
Case of C1,p,q: The structure Sp,q is the only one that satisfies this condition. Hence

C1,p,q is satisfied by some structure in C if and only if Sp,q belongs to C. We have
noted that membership in C is decidable, hence this fact is decidable.

Case of C2,p,q: A structure Si, j satisfies this condition if and only if i > p and
j= q≥ 2i. Hence C2, p,q is satisfied by some structure in C if and only if Si,q belongs
to C for some i such that p < i ≤ q/2. This is decidable since membership in C is
decidable.

Case of C3, p,q: If p= 0, this condition cannot hold for any structure in C. If p > 0,
q′ ≥ p and 2q′ > q, then one of the two structures Sp,2q′ and Sp,2q′+1 belongs to C and
satisfies C3,p,q. Hence C3,p,q is satisfied by some structure in C if and only if p �= 0.
(But for given p, we cannot decide if this is by a structure of the form Sp,2q′ or of the
form Sp,2q′+1.)

Case of C4,p,q: As in the previous case, such a condition is always satisfied by
Sp+1,r for some large enough r.

This proves that the satisfiability in C of any given MS sentence is decidable, which
concludes the proof.

A related open question concerns extensions of Theorem 7.55 to sets of graphs that
have decidable L-satisfiability problems for fragments L of CMS or of CMS2 that
are defined by limitations on quantifications. To make one precise question out of
this remark, we ask:

Question 7.58 Is it true that if a set of labeled graphs has a decidable L-satisfiability
problem, where L is the set of existential MS2-sentences, i.e., of MS2-sentences
written with a sequence of existential set quantifications followed by a first-order
formula, then it has bounded tree-width? �

Can one extend Theorem 7.55 to relational structures?

The answer is positive for its first assertion by Theorem 9.19. The corresponding
extension of the second one is open (cf. Question 9.20).

Question 7.59 Is it true that if a set C ⊆ STR(R) has a decidable
CMS-satisfiability problem, then C ⊆ τ(trees) for some MS-transduction τ from
trees to STR(R)? �
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Could we have a necessary and sufficient condition in Theorem 7.55?

Having bounded tree-width or clique-width is only a necessary condition for sets
of graphs to have a decidable monadic second-order satisfiability problem of a cer-
tain type. Strong structural conditions like to be a set of paths (equivalently a set
of words), do not imply that a set of graphs satisfying such conditions has a decid-
able MS-satisfiability problem. From the equivalence of monadic second-order logic
and finite automata on words, we get that a language L ⊆ {0,1}∗ has a decidable
MS-satisfiability problem if and only if the following problem is decidable:

Given a finite automaton A , decide if L∩L(A )= ∅.
The class of languages for which this problem is decidable contains in particular
all languages of the form τ(trees), where τ is a monadic second-order trans-
duction, because these languages are those that are HR-equational (equivalently
VR-equational) by Theorem 7.51. They will be studied in Section 8.9.

Can one still get decidable satisfiability problems for extensions of monadic
second-order logic?

We can ask for “small extensions” of monadic second-order logic such that the cor-
responding satisfiability problem remains decidable, say at least on trees. We will
present three negative results in this direction.

We let CMS+Eq be the extension of CMS logic with the binary set predicate
EqCard(X ,Y ) meaning that X and Y have the same cardinality. If P ⊆N is a decid-
able set of integers, we let CMS+P be the extension of CMS logic with the set
predicate CardP(X ), meaning that the cardinality of X belongs to the set of integers
P. In the following proposition, we will consider P = P23 := {n ∈N | n= 2k or n=
3k for some k ≥ 1}.

For n > 0, we let Dn be the structure 〈[n],≤〉 (it is nothing but �an�
 without
the relation laba, cf. Example 5.2(1)). Clearly the CMS-satisfiability problem for
D := {Dn | n≥ 1} is decidable.

Proposition 7.60 If L is MS+Eq or CMS+P23, then the L-satisfiability problem for
D is undecidable.

Proof: We let U1,U2,U3 be unary relation symbols and W be a ternary symbol. We
let C be the set of {≤,U1,U2,U3,W }-structures S that expand the structures Dn with
subsets A,B,C interpreting respectively U1,U2,U3 and a ternary relation R inter-
preting W , in such a way that R is a subset of A× B× C that defines a bijection
fR : A×B→ C. Such a bijection is called a pairing function.

We let α(S) denote the integer min{|A|, |B|}. There exists a parameterless non-
copying MS-transduction τ that transforms S in C into a directed rectangular grid
G|A|×|B| with vertex set C. Its adjacency relation is defined (for c,c′ ∈ C) by:
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c→ c′ if and only if there exist a,a′ ∈ A and b,b′ ∈ B such that c = fR(a,b) and
c′ = fR(a′,b′) and, either a = a′ and b′ is the successor of b in B, or b = b′ and a′
is the successor of a in A. For every sentence ϕ ∈MS({edg},∅), the sentence τ #(ϕ)

obtained from ϕ by the Backwards Translation Theorem (Theorem 7.10) belongs to
MS({≤,U1,U2,U3,W },∅).

Let L be an extension of monadic second-order logic such as MS+Eq or
CMS+P23. Assume that θA(x1), θB(x1), θC(x1) and θR(x1,x2,x3) are formulas in
L({≤},{x1,x2,x3}) satisfying the following, for every n > 1:

if we define An := {a ∈ [n] |Dn |= θA(a)} and, similarly, Bn, Cn and Rn,
then the {≤,U1,U2,U3,W }-structure Sn that we obtain by expanding Dn by
An,Bn,Cn,Rn (interpreting respectively U1,U2,U3,W ) belongs to C.

(This means that each Rn defines a pairing function : An×Bn→ Cn.)

Then, we define C′ ⊆ C as the set of structures Sn and we have:

τ(Sn) |= ϕ if and only if

Sn |= τ #(ϕ) if and only if

Dn |= τ #(ϕ)[λx1 · θA/U1, λx1 · θB/U2, λx1 · θC/U3, λx1,x2,x3 · θR/W ].

The last sentence belongs to L({≤},∅). It follows that the MS-satisfiability prob-
lem for τ(C′) reduces to the L-satisfiability problem for D. If the integers α(Sn) are
unbounded, then the monadic second-order satisfiability problem for τ(C′) is unde-
cidable (by Theorem 5.6 and the Reduction Theorem28), and so is the L-satisfiability
problem for D.

We will prove that this is actually the case if L= MS+Eq and if L= CMS+P23.
In each case, we will construct formulas θA(x1), θB(x1), θC(x1), θR(x1,x2,x3) ∈
L({≤},{x1,x2,x3}) that define pairing functions on unbounded sets.

The construction for MS+Eq: Let x ∈ [n]. The interval [x] (= [1,x]) can be defined
in Dn as {y | y≤ x}. If X is a subset of [x] with maximal element x, we define I(X ) as
the family of intervals of the ordered set Dn that consists of [y], where y :=min(X ),
and of the intervals ]y′,y], where y′ and y are consecutive elements of X . (We define
]y′,y] as {z | y′ < z ≤ y}.) Clearly I(X ) consists of |X | pairwise disjoint intervals and
[x] is their union.

For x,y,z ∈ [n] the condition z = x+ y is equivalent to

∃Y (“[z] = Y ∪ [x]”∧EqCard(Y , [y])),

28 To obtain a version of Theorem 5.6 for rectangular grids, we apply the Reduction Theorem to the
MS-transduction that transforms the rectangular grid Gn×k into the square grid Gm×m where m =
min{n,k}, cf. (1.7) in the proof of Proposition 5.14.
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and the condition z = x · y is equivalent to

∃X (“z =max(X )”∧EqCard(X , [x])∧∀Z(“Z ∈ I(X )”⇒ EqCard(Z , [y]))),
where “[z] = Y ∪[x]”, “z=max(X )” and “Z ∈ I(X )” are easily expressible in terms
of x,z,X ,Y and Z by monadic second-order formulas.

In each structure Dn such that n≥ 4, an MS+Eq formula can determine the maximal
element a> 1 such that a2≤ n, because, by the above observation, an MS+Eq formula
can express that there exists z in the domain of Dn such that z = a · a. Then one can
define An and Bn to be [a] and Cn to be [a2], and one can construct the formulas θA,
θB and θC that characterize them.

The relation Rn defined by Rn(x,y,z) if and only if z = x+ (y− 1) · a for x,y ∈ [a]
and z ∈ [a2] defines a pairing function : An×Bn→ Cn. It is definable by an MS+Eq
formula θR since the sum and the product are definable by such formulas. We omit the
details. We have α(Sn)= �√n� for each n, hence the integers α(Sn) are unbounded.
This completes the proof.

The construction for CMS+P23: We will now build pairing functions in Dn by making
use of the set predicate CardP23(X ). For each pair of integers (p,q) with p ≥ 2 and
q≥ 1, we define

A′(p) := {2k | 2≤ k ≤ p},
B′(q) := {3k | 1≤ k ≤ q},
C ′(p,q) := {2k3m | 2≤ k ≤ p, 1≤m≤ q}.

When we say that “x is a power of 2 or 3”, we exclude the case x = 1. We first
observe that, for x ∈Dn:

x is a power of 2 if and only if CardP23([x])∧Even([x]) and 29

x is a power of 3 if and only if x > 1∧CardP23([x])∧¬Even([x]).

Our objective is to define in Dn by a formula of CMS+P23 the pairing function
z = x · y for x ∈ A′(p) and y ∈ B′(q), where 2p3q ≤ n. We will use the following
observations. If k ,k ′,k ′′ ≥ 1, then:

(a) 2k + 2k ′ is a power of 2 if and only if k = k ′;
(b) 3k + 3k ′ + 3k ′′ is a power of 3 if and only if k = k ′ = k ′′.

Let us consider the following conditions on Y ⊆N and z ∈N :

(i) z =max(Y ) and |Y | is a power of 3;
(ii) for every Z ∈ I(Y ) the integer |Z| is a power of 2;

29 Even(X ) means that |X | is even (hence it is the same as Card0,2(X )).
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(iii) for every two distinct Z ,Z ′ ∈ I(Y ), the integer |Z ∪Z ′| is a power of 2.

From observation (a) these facts imply that all intervals of I(Y ) have the same cardi-
nality and, finally, that z=min(Y ) · |Y |, min(Y ) is a power of 2 and |Y | is a power of
3. If z = 2k3m with k ≥ 1 and m≥ 1, then there exists a (unique) set Y as above and
2k is its least element. We let ϕ(z,x) be the CMS+P23 formula expressing that there
exists a set Y with least element x that satisfies conditions (i), (ii) and (iii).

We now consider the following conditions similar to (i), (ii) and (iii):

(i′) z =max(Y ), |Y | is a power of 2 and |Y | ≥ 4;
(ii′) for every Z ∈ I(Y ), the integer |Z| is a power of 3;

(iii′) for every three pairwise distinct Z ,Z ′,Z ′′ ∈ I(Y ), the integer |Z ∪ Z ′ ∪ Z ′′| is a
power of 3.

Since I(Y ) contains more than three elements, one can apply observation (b) to get
that z= 2k3m with k ≥ 2, m≥ 1, |Y | = 2k and 3m =min(Y ). Conversely, if z= 2k3m,
with k ≥ 2 and m ≥ 1, there exists such a set Y satisfying (i′)–(iii′). One obtains a
CMS+P23 formula ϕ′(z,y) expressing these properties with y=min(Y ).

Hence, the CMS+P23 formula ϕ(z,x)∧ϕ′(z,y) expresses that z= x ·y with x= 2k

for some k ≥ 2 and y= 3m for some m≥ 1.
If n≥ 12, then there exist a,b ∈ [n] such that:

(C) a= 2p for some p≥ 2, b= 3q for some q≥ 1, ab≤ n and b < a.

Furthermore, there is a unique such pair (a,b) such that (b,a) is lexicographically
maximal and satisfies Condition (C).This pair is of the form (2pn ,3qn). From the above
constructions, we can see that the elements 2pn , 3qn and 2pn ·3qn can be defined in Dn

by CMS+P23 formulas. So can the sets An := A′(pn), Bn := B′(qn), Cn := C ′(pn,qn)

and the ternary relation Rn representing z = x · y for x ∈ An and y ∈ Bn. This defines
the structures Sn. Letting r := �log(n)/4�, we can see that the pair (a,b)= (22r ,3r)

satisfies condition (C). Hence, for a maximal pair (as defined above), we have qn≥ r.
It follows that α(Sn) ≥ �log(n)/4�, hence the numbers α(Sn) are unbounded. This
completes the proof.

This proof suggests one more question.

Question 7.61 Is the (CMS+Prime)-satisfiability problem for D decidable, where
Prime is the set of prime numbers? 30 �

As final similar case, we define MS+Auto as the extension of MS logic with the set
predicate Auto(X ) meaning that the structure induced by X has a nontrivial automor-
phism. We get that the set of structures Tn := 〈[n],suc〉 (where suc is the successor
relation) has an undecidable (MS+Auto)-satisfiability problem. The basic observation
is that if X is the union of two intervals [p,q] and [r,s] with r ≥ q+ 2, then Tn[X ]
30 It is proved in [Bes] that the (MS+ P)-satisfiability problem is undecidable on words if P is not

semi-linear.
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has a nontrivial automorphism if and only if q−p= s− r. By using it, one can build
an MS+Auto formula ϕ(x,y,z) to express that x and y are different prime numbers
and that z = x · y. It is then easy to build pairing functions as in the previous two
constructions.

7.6 Questions about logical characterizations of recognizability

Recognizability is equivalent to MS-definability for languages over a finite alphabet
or a finite functional signature. It is equivalent to CMS-definability for sets of rooted
trees and for sets of terms over an associative and commutative signature. We have
proved these results in Chapter 5 (see Section 5.5). On the other hand, we have proved
that there are uncountably many HR- and VR-recognizable sets (cf. Section 4.2.3), so
that there is no hope to have such characterizations for them. The following conjecture
has been made in [Cou91]:

Conjecture 7.62 Every HR-recognizable set of graphs of bounded tree-width is
CMS2-definable.

Together with the Recognizability Theorem for the HR algebra (Theorem 5.68), it
would imply that a set of graphs of bounded tree-width is HR-recognizable if and only
if it is CMS2-definable. For simple graphs of bounded tree-width, CMS2-definability
is equivalent to CMS-definability as we will prove in Section 9.4 (cf. Theorem 5.22);
we proved that for forests in Example 7.8. Hence, the conjecture implies that a
set of simple graphs of bounded tree-width is HR-recognizable if and only if it is
CMS-definable. Concerning the algorithmic applications, if the conjecture is true,
then no logical language strictly more expressive than counting monadic second-
order logic can have fixed-parameter model-checking algorithms based on automata,
like those obtained in Chapter 6, with respect to tree-width as parameter.

Since it is hard to prove or disprove this conjecture, relativized versions have
been considered. Let us say that the conjecture holds for a set of graphs C if all its
HR-recognizable subsets of bounded tree-width are CMS-definable. The following
relativizations have been established: to graphs of tree-width at most 2 ([Cou91]), of
tree-width at most 3 and, for each k , to k-connected graphs of tree-width at most k
([Kal]). The cases of graphs of path-width at most k and of all graphs (of tree-width
at most k) have been announced in [Kab] and [Lap] respectively, but the full proofs
have not been published. The conjecture is still open.

One can raise a similar question for VR-recognizability, about which we make no
conjecture.

Question 7.63 Is it true that every VR-recognizable set of simple graphs of bounded
clique-width is CMS-definable? �
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A positive answer would imply a positive answer to Conjecture 7.62 relativized to
the class of simple graphs. Let us prove this implication: if L is an HR-recognizable set
of simple graphs of bounded tree-width, then, by Theorem 4.59 (proved in [CouWei]),
it is VR-recognizable because it is without Kn,n for some n, hence it is CMS-definable
(assuming positive the answer to the question) and thus CMS2-definable.

All above-cited articles use (essentially) the same technique that we now describe.
The binary signature FHR

[k] has a unique binary operation � which is associa-

tive and commutative. Hence, the homomorphism val : T(FHR
[k] )→ JS factorizes

through TAC(FHR
[k] ); we will denote by valAC the corresponding homomorphism

: TAC(FHR
[k] )→ JS. The objective is to apply Theorem 5.88 of Section 5.5. Note

that we drop H := {�} from the notation of Definition 5.85, i.e., we write TAC(FHR
[k] )

for TAC(FHR
[k] ,H ). Moreover, we will denote the domain of this algebra by TAC(FHR

[k] )

instead of T (FHR
[k] )/≡AC(H ), and refer to its elements as terms (they are, in fact, equiv-

alence classes of terms with respect to the equivalence ≡AC(H )); see Section 5.5 for
the representation of these “terms” by relational structures.

Let C be a set of graphs, k be a nonnegative integer and Ck be the set of graphs
in C of tree-width at most k . Assume that there exists an integer f (k) ≥ k and a
CMS2,1-transduction τk such that for every graph G in Ck :

(1) the set τk(G) contains at least one term in TAC(FHR
[ f (k)]);

(2) valAC(t)=G for every term t in the set τk(G).

If L⊆ Ck is HR-recognizable, then it is also recognizable in the algebra JSgen[[k]] (cf.
the proof of Corollary 5.69). Hence the set val−1

AC(L) is recognizable in TAC(FHR
[ f (k)])

(cf. Definition 5.85), and so it is CMS-definable by Theorem 5.88. Then the set
of graphs L is τ−1

k (val−1
AC(L)) and is CMS-definable by the Backwards Translation

Theorem (Theorem 7.10).
The key point is thus the construction of τk . We make two observations. First, unless

C is finite or in some other way very particular (for example, the set paths), we cannot
replace TAC(FHR

[ f (k)]) by T (FHR
[ f (k)]) (and valAC by val) in the above proof method.

Consider the set C of graphs without edges. We have proved in Proposition 7.28
that the rooted trees generated from C by a fixed CMS-transduction have a bounded
number of nonleaf nodes. Hence, Conditions (1) and (2) cannot be satisfied with
T (FHR

[ f (k)]) instead of TAC(FHR
[ f (k)]), and even for k = 0.

Our second observation is that the transduction τk cannot be val−1
AC , i.e., it cannot

associate with a graph G all the terms in TAC(FHR
[ f (k)]) that evaluate to it. There

is a trivial reason: the set val−1
AC(G) is infinite, because of Equalities (3), (5)–(7),

(9) and (12)–(17) of Proposition 2.48 (Equality (3) alone implies that). For a less
trivial counter-example, we consider again the series-parallel graphs, generated by e
and the operations � and •: the set of different terms modulo the associativity and
commutativity of � that denote the simple series-parallel graphs with n vertices is
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finite but not of cardinality O(n). Hence, no monadic second-order transduction τk

can construct all such (equivalence classes of) terms from a given series-parallel graph
G. Thus, a transduction τk satisfying Conditions (1) and (2) must select particular
terms that evaluate to the input graph. Such transductions are constructed in [Cou91]
and in [Kal].

Instead of a transduction τk that constructs terms, one could think of a transduction
that constructs for every graph in Ck a structure, as described in Example 5.2(4),
that represents a tree-decomposition of G of width at most f (k). (We will do that
in Proposition 9.56 for k-chordal graphs.) Such a construction is equivalent to the
first one because the transformations between quotient-terms (in TAC(FHR

[ f (k)])) and
the corresponding tree-decompositions are monadic second-order transductions, see
Definitions 2.75 and 2.80 and the proof of Theorem 7.50.

Here is an auxiliary question, where the associative and commutative operation of
FVR[m] is ⊕:

Question 7.64 Is it true that for each k there is an integer m and a CMS2,1-transduction
that associates with every simple graph of clique-width at most k a term in TAC(FVR[m] )
that evaluates to it? �

A positive answer would not solve Question 7.63 but would perhaps lead to a
solution.

7.7 References

The Equationality Theorems for the VR and HR algebras have been proved first (in
a different way) in [EngOos97] and in [CouEng]. Proofs similar to the one given for
the case of the VR algebra and that extend to the algebra of relational structures are
in [Cou92] and [BluCou06].

The linear HR-equational and VR-equational sets are those that are generated by
linear context-free hyperedge replacement and vertex replacement graph grammars
respectively, where such a grammar is called linear if, as usual, the right-hand side of
each of its rewriting rules has at most one occurrence of a nonterminal symbol (see
[*Eng97] for a survey). For an example of a linear HR grammar, see Example 4.28.

Monadic second-order transductions from terms to terms are characterized in
[BloEng00] and [EngMan99], in terms of attribute grammars and of macro tree trans-
ducers, respectively. The HR-equational sets of words and terms are the same as the
VR-equational ones. For words, they can be characterized in terms of determinis-
tic tree-walking transducers ([EngHey91]). For terms, they can be characterized in
terms of attribute grammars ([BloEng00]) or of macro tree transducers ([EngMan00]).
These results will be presented in Chapter 8.

Theorem 7.55(1) is proved in a different way in [See91]. In this article, Seese asks
whether a set of graphs that has a decidable MS-theory is the image of a set of trees
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under an MS-transduction. This question is solved affirmatively (but partially) in
[CouOum], see Theorem 7.55(2).

The Reduction Theorem (Theorem 7.54) is a classical tool introduced by Rabin in
[Rab65] and [Rab77] under the name of “interpretation of theories” for proving that
certain first-order theories are decidable or undecidable by reduction to known cases.

Certain graph transformations that are not monadic second-order transductions
satisfy a weak Backwards Translation Theorem. One example is the unfolding of
rooted, directed and acyclic (i.e., without circuits) graphs that transforms a graph G
into the finite tree of its finite directed paths originating from a specified vertex r
designated by some label (a unary relation in �G� denoting a singleton set). This tree,
denoted by Unf (G,r), is called the unfolding of G from r. Since the unfolding is not
of linear size increase, it is not a monadic second-order transduction. However, there
exists a mapping ϕ→ ϕ̂ from CMS sentences to CMS sentences such that, for every
(G,r):

Unf (G,r) |= ϕ if and only if �G� |= ϕ̂.

This result is proved in [CouWal] for all finite and countable directed graphs: their
unfoldings are finite or countably infinite trees. However, it holds only for sentences,
and not for arbitrary formulas. To see this point, consider a finite graph G with circuits:
the bijection described in Remark 7.13(1) between the assignments that satisfy a
formula in a structure T obtained from S by a monadic second-order transduction and
those that satisfy an associated formula in S cannot exist by an obvious comparison of
cardinalities (just take ϕ(X ) equal to True). But even if G is acyclic, no such bijection
can exist.

The definitions by monadic second-order transductions of orientations of graphs
(Example 7.46) and of linear orders of their vertex sets (Example 7.3(3)) will be
studied in Chapter 9 (Propositions 9.42(1), 9.43 and 9.46); more results can be found
in [Cou95a] and [Cou96a].

Theorem 8.1 of [HliSee] states for infinite trees a result similar to Proposition 7.57.
The proof of this proposition is based on the proof sketch given in that article.

The comparison of sets of structures via monadic second-order transductions
(cf. Section 7.1.7) has been initiated in [BluCou10] where the relation 6 between
sets of incidence graphs is characterized.
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Transductions of terms and words

As explained in the introduction of Section 1.7, there are no appropriate finite-state
automata or finite-state transducers that work “directly” on graphs. Thus, for graphs,
the role of automata and transducers is taken over by monadic second-order logic:
instead of being accepted by an automaton, a set of graphs is defined by a monadic
second-order sentence; and instead of being computed by a transducer, a graph
transduction is defined by a definition scheme consisting of monadic second-order
formulas. With respect to automata, the original motivation for this approach was
Theorem 1.16 (cf. Theorem 5.82): for terms and words monadic second-order logic
and finite-state automata have the same expressive power.

The aim of this chapter is to show that, in a certain sense, the automata-theoretic
characterization of monadic-second order logic for sets of terms and words (Theo-
rem 1.16) can be generalized to transductions. This means of course, that the automata
should produce output, i.e., that they are transducers. We will concentrate on trans-
ductions that are partial functions, and in particular on deterministic devices, i.e.,
parameterless definition schemes and deterministic transducers. For these, we will
show that monadic second-order transductions of words correspond to two-way finite-
state transducers, and that monadic second-order transductions of terms correspond to
(compositions of) tree-walking transducers. These transducers are well known from
Formal Language Theory.

A two-way finite-state transducer is a finite-state automaton with a two-way read-
only input tape and a one-way output tape. The input word is placed on the input tape
between endmarkers, and the transducer has a reading head that is positioned over a
cell of the input tape, at each moment of time. In one computation step, it reads the
symbol in that cell, moves its head by one cell to the left or to the right (or keeps it at
the same cell), writes some symbols on the output tape, and goes into another state.
Such a transducer is said to be a one-way finite-state transducer if it never moves to
the left.

A tree-walking transducer is very similar to a two-way finite-state transducer, but
is more complicated as both its input and output are trees (or more precisely, syntactic
trees of terms). It is a finite-state device, of which the reading head is positioned over
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a node of the input tree, at each moment of time; this node will be called the “current
node.” In one computation step, it reads the label of that node and either does not
produce output, or produces one labeled node of the output tree. In the first case, it
moves its head up to the father or down to one of the sons of the current node (or
lets it stay at the same node), and goes into another state. In the second case, the
computation of the transducer branches into k parallel computations, where k is the
number of sons of the produced output node. Each of these computations then moves
its head to the father or one of the sons of the current node (or lets it stay where it
is), and goes into another state. Different computations can move to different input
nodes and go into different states; in other words, the parallel computations behave
independently (and will continue to behave independently in the following steps). The
task of the i-th computation is to output the tree rooted at the i-th son of the produced
output node. Thus, the output tree is generated in a top-down fashion, with several
configurations of the transducer at some of the leaves of the output generated sofar.
Each of these configurations represents a parallel branch of computation, which ends
when an output node is produced that has no sons (i.e., k = 0). It should be noted that
a tree-walking transducer can detect whether or not the current node has a father (i.e.,
whether it is the root), which son it is of its father, and how many sons it has itself.
We also note, for readers familiar with alternation, that the branching behavior of a
nondeterministic tree-walking transducer is similar to that of an alternating automaton.

We will identify words with terms over a signature consisting of unary function
symbols and the constant symbol ε. Aword a1a2 · · ·an is identified with (the syntactic
tree of) the term a1(a2(· · ·an(ε) · · ·)). A tree-walking transducer that translates such
unary terms (trees) into unary terms (trees) is, apart from notational matters, the same
as a two-way finite-state transducer. The symbol ε acts as a right endmarker; there
is no left endmarker, but the transducer can detect the left end of the word because
it is the root of the tree. Walking up and down on the input tree corresponds to the
two-way (left and right) motion on the input tape. Since the output tree is unary, the
transducer never branches, and so the output is produced as on a one-way output tape.

One might expect or hope that MS-transductions of words correspond to the more
usual ones, called rational transductions, that are defined by one-way finite-state
transducers (see, e.g., [*Ber]). However, these two classes of transductions have
different properties.As observed in the introduction of Section 1.7, the class of rational
transductions is closed under composition and inverse, and rational transductions
preserve regularity and context-freeness of languages. On the other hand, the class
of MS-transductions of words is closed under composition (by Theorem 7.14) but
not under inverse. Moreover, inverse MS-transductions of words preserve regularity
of languages (by Corollary 7.12) but MS-transductions do not (see Remark 7.23).
MS-transductions do not preserve context-freeness either, but (by Corollary 7.37)
they do preserve VR-equationality (of which context-freeness is a, proper, special
case). These statements will be made more precise in Examples 8.2 and 8.3 and in
Section 8.9.
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Through the Weak Recognizability Theorem (Section 5.3.9, Corollary 5.69), a
finite-state automaton on terms can be viewed as the implementation of a spec-
ification of a set of graphs by an MS sentence (i.e., of an MS-definable set of
graphs). For describing terms, the implementation formalism corresponds exactly
to the specification formalism, in the sense that they have the same expressive power.

This chapter shows how to implement MS-transductions of terms and words by
finite-state transducers. In the case of words, the two-way finite-state transducers
correspond exactly to the MS-transductions, in the above sense (Theorem 8.10). For
terms, MS-transductions can be implemented by the compositions of two tree-walking
transducers, the first of which never moves up (Theorem 8.16). These composed trans-
ducers correspond exactly to the MS-transductions when restricted to transductions
of linear size increase (Theorem 8.17). For terms we will discuss other implementa-
tion devices: the tree-walking pushdown tree transducer (Theorem 8.13), the multi
bottom-up tree-to-word transducer (Theorem 8.21) and the macro tree transducer
(Theorem 8.22). After the automata-theoretic characterization of MS-transductions
of terms, we obtain from Theorems 7.34 and 7.50 that each of the above tree trans-
ducers can be viewed as the implementation of a specification of a graph transduction
by a monadic second-order definition scheme (Theorem 8.18). Moreover, we obtain
from Theorem 7.36 (the Equationality Theorem) automata-theoretic characteriza-
tions of the VR-equational, equivalently HR-equational, sets of terms and words
(Theorems 8.27 and 8.28).

8.1 Terminology

We review some definitions and notation, and we introduce some new terminology,
to be used in this chapter.

For transductions τ and τ ′, their composition is τ · τ ′ = {(S,T ) | (S,U ) ∈
τ and (U ,T ) ∈ τ ′ for some U } (see Definition 7.1). For classes X and X ′ of
transductions, X ·X ′ = {τ · τ ′ | τ ∈ X , τ ′ ∈ X ′}.

8.1.1 Terms and words

In this chapter, all alphabets are finite. Moreover, all functional signatures are finite
and one-sorted, and all relational signatures are without constant symbols. A term
will also be called a tree; this should not lead to confusion, because in this chapter we
will not consider trees other than syntactic trees of terms. Finally, all unary functional
signatures have exactly one constant symbol, which is denoted ε. A term over a unary
functional signature will be called a unary term (or unary tree).

For a functional signature F , we use the relational signature RF := {soni | i ∈
[ρ(F)]} ∪ {labf | f ∈ F} ∪ {rt} where ρ(rt) = 1. A term t in T (F) is faithfully rep-
resented by the RF -structure �t� := 〈Nt ,(soni t)i∈[ρ(F)],(labf t)f ∈F ,rtt〉 where Nt is
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the set of nodes of the syntactic tree of t, labf t = Occ(t, f ), soni t is the set of pairs
(u,v) such that v is the i-th son of u and rtt = {roott}. Without rt, this definition
of RF and �t� is the same as in the beginning of Example 5.2(3) and the begin-
ning of Section 6.3.3. Note that we have taken the rt relation to be of arity 1, to
avoid relational signatures with constants. In fact (as observed in Example 5.2(3)),
the relation rt is superfluous, because it is FO-expressible in terms of the others:
rt(x)⇐⇒¬∨i∈[ρ(F)] ∃y.soni(y,x). Thus, whenever we define a monadic second-
order transduction to T (F), we need not (and usually will not) specify the relation
formulas θrt,i that define the rt relation in the output structure. The rt relation is
needed, however, because we will use Application 5.61 (see Sections 8.1.3 and 8.4).

In this chapter we view words as a special case of terms, viz. unary terms. In this
way we avoid the duplication of definitions and proofs. For an alphabet A, there is a
natural bijectionμA : A∗ → T (UA), where UA is the unary functional signature A∪{ε}
(ε /∈ A) with ρ(a)= 1 for every a ∈ A and ρ(ε)= 0: the word a1a2 · · ·an corresponds
to the term μA(a1a2 · · ·an) = a1(a2(· · ·an(ε) · · ·)). In fact, μA is the inverse of the
mapping valWleft (A), see Definition 2.7. A language L ⊆ A∗ is regular if and only if
the set of unary terms μA(L)⊆ T (UA) is regular (see Remark 3.20(4), the discussion
after Proposition 3.23, and Remark 3.51(2)).

A word w ∈ A∗ is faithfully represented by the RUA-structure �w� := �μA(w)�
(cf. Example 5.2(3)). In this chapter it is important that the empty word ε is represented
by a structure with a singleton as domain rather than by the empty structure. The
reason is that an MS-transduction transforms the empty structure into itself, whereas
it can transform a singleton structure into any other structure (Proposition 7.17). For
MS-transductions, the definition of �w� in Example 5.2(1) is strongly equivalent
to the above definition, provided �ε� is defined to have a singleton as domain (see
Definition 7.9).

By Propositions 5.29 and 5.30, CMS-transductions taking terms or words as input
are also MS-transductions. Hence, without loss of generality, we will only consider
MS-transductions of terms and words. We will mainly consider deterministic devices,
i.e., parameterless definition schemes and deterministic transducers; to stress this, we
will also use “deterministic” instead of “parameterless.” We recall that parameterless
MS-transductions are partial functions. We denote by DMSOW the class of parame-
terless MS-transductions of words (where the “D” stands for “deterministic” whence
“parameterless”), by DMSOT the class of parameterless MS-transductions of terms,
and by DMSOTW those from terms to words. Thus, DMSOT is the class of all trans-
ductions τ : T (F)→ T (H ) such that τ ′ := {(�s�,�t�) | (s, t) ∈ τ } (or more precisely,
[τ ′]iso) is a parameterless MS-transduction from STR(RF ) to STR(RH ), and simi-
larly for the other two classes (cf. Section 7.1.3).1 It follows from Theorem 7.14 that
DMSOW and DMSOT are closed under composition.

1 We note that every parameter-invariant MS-transduction of terms and/or words is a parameterless
MS-transduction, cf. Footnote 25 in the proof of Theorem 7.50.



582 Transductions of terms and words

A term t ∈ T (F) is a special kind of word over the alphabet F (cf. Definition 2.2).
If wt denotes the term t viewed as a word, then �t� and �wt� are different structures.
However, the mapping t �→wt is a noncopying parameterless MS-transduction. Thus,
by the closure of the class of MS-transductions under composition, we have that
DMSOT⊆DMSOTW.

As observed in Definition 7.2 (and in Fact 1.37), every MS-transduction τ (of
structures) is of linear size increase, i.e., there is an integer k such that |DT | ≤ k · |DS |
for every (S,T ) ∈ τ . For terms and words this implies |t| ≤ k · |s| for every (s, t) ∈ τ ,
i.e., the size of the output is linear in the size of the input. An arbitrary transduction
τ has finite images if τ(S)= {T | (S,T ) ∈ τ } is finite (up to isomorphism) for every
input structure S. Since, for given n and R, there are only finitely many R-structures
T such that |DT | ≤ n (up to isomorphism), every transduction of linear size increase
(of type R′ →R), in particular every MS-transduction, has finite images.

8.1.2 Automata

Recall from Definition 3.46 in Section 3.3.1 that, given a functional signature F , a
(bottom-up, ε-free) automaton over F (or F-automaton) is a tuple A = 〈F ,Q,δ,Acc〉
where Q is a set of states, Acc ⊆ Q is the set of accepting states, and δ is a set of
transition rules of the form f [q1, . . . ,qk ] → q with f ∈ Fk and q,q1, . . . ,qk ∈ Q (if
k = 0, the transition rule is also written f → q). An automaton without accepting
states is called a semi-automaton. Recall from Definition 3.49 that A is complete
and deterministic if for every f ∈ Fk and q1, . . . ,qk ∈Q there is exactly one transition
rule f [q1, . . . ,qk ] → q in δ (with q ∈Q). This definition is based on viewing A as a
bottom-up device.

In Section 8.5 we will also view A as running top-down. In that case, intuitively,
Acc is the set of initial states (because A starts at the root of the input tree), and
a transition rule f [q1, . . . ,qk ] → q in δ is used from right to left: if A is in state q
at node u with label f , then A branches and moves to the i-th son of u in state qi,
for each i ∈ [k]. With this view in mind, we say that A is top-down complete and
deterministic if Acc is a singleton and for every q ∈Q and f ∈ Fk with k �= 0 there is
exactly one transition rule f [q1, . . . ,qk ]→ q in δ (with q1, . . . ,qk ∈Q).

Let A = 〈F ,Q,δ〉 be a complete and deterministic semi-automaton. For f ∈Fk and
q1, . . . ,qk ∈Q we denote by δf (q1, . . . ,qk ) the unique state q such that f [q1, . . . ,qk ]→
q is a transition rule in δ. For s ∈ T (F) and u ∈ Ns, the state in which A reaches u is
the state runA ,s(u), where runA ,s is the unique run of A on s, cf. Definition 3.49.
This state can also be defined recursively, as follows: if u ∈Occ(s, f ) with ρ( f )= k ,
then runA ,s(u)= δf (runA ,s(u1), . . . ,runA ,s(uk)), where u1, . . . ,uk are the sons of u.

Now let A = 〈F ,Q,δ,Acc〉 be top-down complete and deterministic. For s ∈ T (F)

and u ∈ Ns we define td-runA ,s(u) ∈ Q, the state in which A reaches u top-down,
recursively as follows: td-runA ,s(roots) is the state q such that Acc = {q}, and if
u ∈ Occ(s, f ) with ρ( f ) = k �= 0 and with sons u1, . . . ,uk , then, for every i ∈ [k],
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td-runA ,s(ui) is the state qi such that f [q1, . . . ,qk ] → q is the unique rule in δ with
q = td-runA ,s(u). Note that A need not have a run on s, but if it has one, then
td-runA ,s is the unique run of A on s.

8.1.3 Logic

Let F be a functional signature. A tree-walking transducer implementing an MS-
transduction of terms will need to know at each node u of a tree s ∈ T (F) which
MS formulas ϕ(x1) are true at u, and in some cases even which formulas ϕ(x1,x2)

are true at u and some other node. To handle this formally, we define the following
theories, similar to, but different from those in the proof of the Equationality Theorem
for the VR algebra (more precisely, the proof of Theorem 7.34). For the notation used
see Application 5.61.

Let F and q ∈ N be fixed. The integer q will be specified later. For n ∈ N , let
Ln := M̂Sq(RF ,{x1, . . . ,xn}) and L′n := M̂Sq(RF∪{w},{x1, . . . ,xn}), where w is the
special variable used for contexts. Recall from Definition 5.59 and Section 5.6 that
Ln and L′n are finite. For s ∈ T (F) and u ∈ Ns, we define

Th↓s (u) := {ϕ ∈ L1 | �s�/u |= ϕ(u)} = Th(s,↓u,q,0,u),

Th↑s (u) := {ϕ ∈ L′1 | �s� ↑ u |= ϕ(u)} = Th(s,↑u,q,0,u), and

Ths(u) := {ϕ ∈ L1 | �s� |= ϕ(u)} = Th(s,↓roots,q,0,u),

and for s ∈ T (F) and x,u ∈ Ns, we define

Th↓s (x,u) := {ϕ ∈ L2 | �s�/u |= ϕ(x,u)} provided x ∈ Ns/u,

Th↑s (x,u) := {ϕ ∈ L′2 | �s� ↑ u |= ϕ(x,u)} provided x ∈ Ns ↑ u, and

Ths(x,u) := {ϕ ∈ L2 | �s� |= ϕ(x,u)},

and so Th↓s (x,u) = Th(s,↓ u,q,0,(x,u)), and similarly for the other two. Note
that if m ≤ n then the set of formulas MSq(RF ,{x1, . . . ,xm}) is included in
MSq(RF ,{x1, . . . ,xn}), and similarly for RF∪{w}. Hence, e.g., Th↓s (u) contains all
sentences ϕ̂ such that ϕ ∈MSq(RF ,∅) and �s�/u |= ϕ.

The theory Th↑s (roots) is independent of s because the RF∪{w}-structure S :=
�s�↑roots is the same for all s: it has the singleton domain DS = {1} with labwS =
rtS =DS , the other relations being empty. We will denote this theory by Th↑rt and call
it the root theory.

We now use the Splitting Theorem for derived operations (Theorem 5.57 and Corol-
lary 5.60), and in particular Application 5.61, to obtain relationships between the
above theories.

Let u be a node of s∈ T (F) with label f ∈Fk and sons u1, . . . ,uk . By Equation (5.6)
in Application 5.61, there is a mapping δf : P(L1)

k → P(L1) (independent from s
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and u), such that

Th↓s (u)= δf (Th↓s (u1), . . . ,Th↓s (uk)).2

Let us express this by saying that

Th↓s (u) can be determined from f and Th↓s (u1), . . . ,Th↓s (uk )

(implicitly by a fixed mapping, δf in this case). Similarly, now using Zf † of Equa-

tion (5.5) inApplication 5.61, there is a mapping Zf : P(L′1)×P(L1)
k→P(L1), such

that

Ths(u)= Zf (Th↑s (u),Th↓s (u1), . . . ,Th↓s (uk)).

In other words, Ths(u) can be determined from f , Th↑s (u), and all theories Th↓s (uj),
j ∈ [k]. Moreover, by a similar argument (cf. Equation (5.7) in Application 5.61), for
every i ∈ [k] there is a mapping Zf ,i : P(L′1)×P(L1)

k−1→P(L′1), such that

Th↑s (ui)= Zf ,i(Th↑s (u),Th↓s (u1), . . . ,Th↓s (ui−1),Th↓s (ui+1), . . . ,Th↓s (uk )),

i.e., Th↑s (ui) can be determined from f , Th↑s (u), and all theories Th↓s (uj) with j ∈ [k],
j �= i.

Similar statements are valid when two nodes x and u are considered. For
instance, if x ∈ Ns ↑ u, then Ths(x,u) can be determined from f , Th↑s (x,u), and
Th↓s (u1), . . . ,Th↓s (uk ). As another example, if x ∈ Ns/ui, then Th↓s (x,u) can be deter-
mined from f , Th↓s (x,ui), and all theories Th↓s (uj)with j �= i; moreover, for every j �= i,
Th↑s (x,uj) can be determined from f , Th↑s (u), Th↓s (x,ui), and all theories Th↓s (um)

with m �= i, j.
We note here that the mappings δf considered above can be viewed as the transition

rules of a complete and deterministic finite semi-automaton A = 〈F ,Q,δ〉 with Q=
P(L1). Obviously, runA ,s(u) = Th↓s (u) for every s ∈ T (F) and u ∈ Ns. Hence, if
ϕ ∈ L0 has quantifier-height ≤ q and Acc consists of all subsets of L1 that contain ϕ̂,
then

⋃
q∈Acc L(A ,q)= {s ∈ T (F) | s |= ϕ} (see Corollary 5.67).

We observe, as in Step 1 of the proof of Theorem 7.34, that for every #⊆ L1 there
exists an MS formula η

↓
#(x1) such that �s� |= η

↓
#(u) if and only if Th↓s (u)=#, and a

similar formula η
↑
#(x1) exists expressing that Th↑s (u)=#. The formula η

↓
#(x1) is

∃X
[
∀y(y ∈ X ⇔ y ≤ x1)∧

∧
ϕ∈#

ϕ′(X ,x1)∧
∧

ϕ∈L1−#
¬ϕ′(X ,x1)

]
,

where y ≤ x1 is a formula expressing that y is a descendant of x1 and ϕ′(X ,x1) is
obtained from ϕ(x1) � X , the relativization of ϕ(x1) to X (cf. Section 5.2.1), by the

2 To be precise, δf (#1, . . . ,#k )= Zf ∗,q,0,(1,0,...,0)(#
′
1, . . . ,#′k ), where #i ⊆ L1 and #′i =#i ∩L0.
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replacement of each atomic formula rt(z) by z= x1. Similarly, the formula η
↑
#(x1) is

∃X
[
∀y(y ∈ X ⇔¬(y < x1))∧

∧
ϕ∈#

ϕ′′(X ,x1)∧
∧

ϕ∈L′1−#
¬ϕ′′(X ,x1)

]
,

whereϕ′′(X ,x1) is obtained fromϕ(x1) � X by the replacement of each atomic formula
labw(z) by z= x1 and each atomic formula labf (z) (where f ∈F) by z �= x1∧ labf (z).

8.2 Tree-walking transducers

To facilitate the proof of the implementation of MS-transductions of terms by tree-
walking transducers, we will consider a hybrid device: a tree-walking transducer that
uses MS tests and MS jumps.3 More precisely, it uses monadic second-order logic
for two purposes: for a given input term s, (1) it can use a formula ϕ(x1) to test a
global property4 of the current node x1 of s, and (2) it can use a formula ψ(x1,x2)

to describe conditions implying a jump5 in s from the current node x1 to the next
current node x2. This hybrid transducer will allow us to present the implementation
in several steps. To stress the role of determinism, we also consider nondeterministic
tree-walking transducers, and prove some of the results on transducers also for the
nondeterministic case.

An MS tree-walking transducer (abbreviated ms-twt) is a 5-tuple M =
(F ,H ,Q,qin,R), where F and H are functional signatures of input and output sym-
bols, respectively, Q is a finite set of states, qin ∈Q is the initial state, and R is a finite
set of rules. A rule is of the form 〈q,ϕ〉→ ζ such that q ∈Q, ϕ ∈MS(RF ,{x1}), and
ζ equals

(1) 〈q′,ψ〉, or
(2) h(〈q1,ψ1〉, . . . , 〈qk ,ψk〉),
where

(i) q′ ∈Q and ψ ∈MS(RF ,{x1,x2})
such that �s� |= ∀x1[ϕ(x1)⇒∃!x2.ψ(x1,x2)] for every s ∈ T (F), or

(ii) k ≥ 0, h ∈Hk , q1, . . . ,qk ∈Q and ψ1, . . . ,ψk ∈MS(RF ,{x1,x2})
such that �s� |= ∀x1[ϕ(x1)⇒∃!x2.ψi(x1,x2)] for every s ∈ T (F), i ∈ [k].

3 This idea is taken from [EngHoo01], where the hybrid MS two-way finite-state transducer was
introduced.

4 A global property of a node u of s is a property of the pair (s,u), such as u is the rightmost leaf of s, or all
descendants of u that are not leaves have two sons. A local property of u is a property of the subgraph
of Syn(s) induced by u, its father and its sons (without the labels of the father and the sons), such as u
does not have label f , or u is the second son of its father.

5 The transducer jumps from node u to node v by moving its reading head from u directly to v, where v
need not be the father or a son of u (or u itself).
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As usual the quantifier ∃! stands for “there exists exacly one.” Rules of type (1) will
be called epsilon-output rules.

The above conditions on ϕ,ψ ,ψ1, . . . ,ψk are decidable by the Recognizability
Theorem for terms (Corollary 5.67) and the decidability of the emptiness of a regular
language (cf. Corollary 3.24). Thus, the definition of MS tree-walking transducer is
effective.

The ms-twt M is deterministic if for every two distinct rules 〈q1,ϕ1〉 → ζ1 and
〈q2,ϕ2〉 → ζ2 in R, if q1 = q2 then ϕ1 and ϕ2 are mutually exclusive on T (F), i.e.,
�s� |=¬∃x1[ϕ1(x1)∧ϕ2(x1)] for every s∈ T (F). Again, this is a decidable condition.

To define the computations of the MS tree-walking tree transducer M we will
use regular grammars (Definition 3.17). For every input term s ∈ T (F) we define a
regular grammar GM ,s := 〈H ,XM ,s,RM ,s〉 over the output signature H . The set XM ,s

of nonterminals consists of all pairs 〈q,u〉with q∈Q and u∈Ns (i.e., u is a node of s).
Such a pair is called a configuration of M on s. If 〈q,ϕ〉→ ζ is a rule in R, then RM ,s

contains a rule 〈q,u〉→ ζ ′ for every u ∈Ns such that �s� |= ϕ(u), where ζ ′ equals

(1) 〈q′,v〉
and v is the unique node such that �s� |=ψ(u,v), or

(2) h(〈q1,v1〉, . . . , 〈qk ,vk〉)
and vi is the unique node such that �s� |=ψi(u,vi), for every i ∈ [k],

respectively (according to the two possible forms of ζ mentioned above). The com-
putations of M on input s are the derivation sequences of the grammar GM ,s. There
may be infinitely many such sequences. The transduction computed by M , denoted
τM , is defined as

τM := {(s, t) ∈ T (F)×T (H ) | t ∈ L(GM ,s, 〈qin,roots〉)}.

In other words, (s, t) is in τM if t is in the language generated by GM ,s from the initial
configuration 〈qin,roots〉.

If M is deterministic then distinct rules of GM ,s have distinct left-hand sides. This
implies that M has exactly one (possibly infinite) maximal computation on s starting
with 〈qin,roots〉, to which we will refer as the computation of M on s. Consequently,
L(GM ,s, 〈qin,roots〉) is either empty or a singleton, and hence τM is a (partial) function.

The MS tree-walking transducer M is single-use if it satisfies the following
property: for every s ∈ T (F), ξ ∈ T (H ,XM ,s), t ∈ T (H ), and 〈q,u〉 ∈ XM ,s, if
〈q0,roots〉 ⇒∗GM ,s

ξ ⇒∗GM ,s
t then 〈q,u〉 has at most one occurrence in the term ξ .

Note that every ms-twt with a unary output signature is single-use. The class of
transductions computed by single-use deterministic MS tree-walking transducers is
denoted DTWTMS

su . We will prove in Theorem 8.6 that it equals DMSOT. It follows
from the proof that the single-use property is decidable.

The transducer M is an MS tree-walking tree-to-word transducer if H is unary
(with the constant symbol ε). If B = H − {ε}, then M computes the tree-to-word
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transduction {(s,w) ∈ T (F)×B∗ | (s,μB(w)) ∈ τM }. In this case, one may view M
as having a one-way output tape on which the output word is written. The class of
transductions computed by deterministic MS tree-walking tree-to-word transducers
is denoted DTWTWMS.

The transducer M is an MS two-way finite-state transducer if both F and H are
unary. If A= F −{ε} and B= H −{ε}, then M computes the transduction of words
{(v,w) ∈ A∗ ×B∗ | (μA(v),μB(w)) ∈ τM }.

Finally, M is an MS tree-walking automaton if H = {ε}, with ρ(ε)= 0. In that case
the language recognized by M is defined as L(M ) := {s ∈ T (F) | (s,ε) ∈ τM }.

An MS tree-walking transducer is jumping rather than walking; moreover, it can
do global rather than local tests (cf. the introduction of this section). We say that M is
nonjumping if the only formulasψ(x1,x2) that are used in the right-hand sides of rules
are x1 = x2 (stay where you are), son(x2,x1) (move to the father),6 and soni(x1,x2)

for i ∈ [ρ(F)] (move to the i-th son). These formulas will also be denoted stay, up,
and downi, respectively. We say that M is local if it is nonjumping and the only
formulas ϕ that are used in the left-hand sides of rules are boolean combinations of
labf (x1) for f ∈ F (is the label of the current node f ?), ∃y.soni(y,x1) for i ∈ [ρ(F)]
(is it the i-th son of its father?) and rt(x1) (is it the root ?) which can be viewed as an
abbreviation of ¬∨i∈[ρ(F)] ∃y.soni(y,x1). In our terminology and notation, locality
will be indicated by dropping “MS.” Thus, a local MS tree-walking transducer is
also called a tree-walking transducer (twt for short), and the class of transductions
computed by the deterministic ones is denoted DTWT (and DTWTsu for single-use
ones). The class of transductions computed by deterministic tree-walking tree-to-word
transducers is denoted DTWTW, and the class of transductions (of words) computed
by deterministic two-way finite-state transducers is denoted 2DGSM (where “2gsm”
stands for “two-way generalized sequential machine,” a well-known name for the
two-way finite-state transducer).

In the remainder of this section we consider examples of MS-transductions of
words and terms that can be computed by tree-walking transducers.

Example 8.1 The yield of a term t ∈ T (F) is the (nonempty) word yd(t)∈F∗0 defined
recursively as follows: yd( f )= f for f ∈ F0, and yd( f (t1, . . . , tk))= yd(t1) · · ·yd(tk )
for f ∈ Fk with k > 0 and t1, . . . , tk ∈ T (F). The mapping yd is a 2-copying parame-
terless MS-transduction in DMSOTW: the positions of the output word yd(t) are the
leaves of the input tree t, plus one extra position (e.g., the second copy of the last
leaf). Each (first copy of a) leaf is linked to (the first copy of ) the next leaf, in the
left-to-right order of the nodes of t, and the first copy of the last leaf is linked to its
second copy (which gets label ε).

The mapping yd can also be computed by a (local) deterministic tree-walking
tree-to-word transducer M = (F ,H ,Q,qin,R). The transducer walks depth-first

6 Note that son(x2,x1) abbreviates
∨

i∈[ρ(F)] soni(x2,x1).
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left-to-right through the input tree and outputs the labels of the leaves; it outputs
ε when it returns to the root. Thus, yd is in the class DTWTW. To consider a concrete
example, let A be a finite set. We take F := { f } ∪A with ρ( f ) := 2 and ρ(a) := 0
for a ∈ A, and H := A∪ {ε} with ρ(a) := 1 for a ∈ A and ρ(ε) := 0. The set of states
of M is Q := {↓,↑1,↑2} and qin :=↓. The rules in R are the following, for a ∈ A and
i ∈ {1,2} (and bri(x1) abbreviates ∃y.soni(y,x1)):

〈↓, labf (x1)〉 → 〈↓,down1〉,
〈↓, laba(x1)∧ bri(x1)〉 → a(〈↑i,up〉),
〈↑1,True〉 → 〈↓,down2〉,
〈↑2,bri(x1)〉 → 〈↑i,up〉,
〈↑2,rt(x1)〉 → ε,

〈↓, laba(x1)∧ rt(x1)〉 → a(〈↑2,stay〉).

Let us also consider a slightly more complicated example: let H ′ := A∪ {ε} with
ρ(a) := 2 for a ∈ A and ρ(ε) := 0, and define τ : T (F) → T (H ′) as follows.
For every tree t ∈ T (F), τ(t) is the unique tree in T (H ′) such that the sequence
of labels of the nodes of any path from the root to a leaf equals yd(t)ε (hence,
all leaves are at the same depth in τ(t)). For instance, if t := f ( f (a,b),c), then
τ(t) = a(b(c(ε,ε),c(ε,ε)),b(c(ε,ε),c(ε,ε))). The mapping τ is computed by the
deterministic tree-walking transducer M ′ that is obtained from M by changing
the right-hand side of the second rule into a(〈↑i,up〉, 〈↑i,up〉), and similarly the one
of the last rule into a(〈↑2,stay〉, 〈↑2,stay〉). It is clear that M ′ is not single-use. The
mapping τ is not in DMSOT, because it is not of linear size increase (cf. Section 8.1.1):
if |yd(t)| = n (and hence |t| = 2n− 1) then |τ(t)| = 2n+1− 1.

As an additional example, let H ′′ := F ∪ {σ ,c,d}, where σ is binary and c,d
are unary. Consider the mapping t �→ σ(cn(t),dn(t)) from T (F) to T (H ′′) where
n= |yd(t)|. It can be computed by a single-use deterministic tree-walking transducer
M ′′ that starts its computation with the rule 〈qin,True〉 → σ(〈↓c,stay〉, 〈↓d ,stay〉),
thus branching into two computations. In each branch, M ′′ walks depth-first left-to-
right through t and outputs the symbol c (or d) at each leaf. After returning to the root,
it outputs the input tree t (by the rules 〈qid, labf (x1)〉→ f (〈qid,down1〉, 〈qid,down2〉)
and 〈qid, laba(x1)〉→ a for a ∈ A).

Example 8.2 In Remark 7.23 an MS-transduction of words is discussed that does
not preserve regularity of languages. It transforms the word a1a2a3 · · ·a2n into the
word a1a3 · · ·a2n−1a2a4 · · ·a2n. It is clear that this transduction can be computed by
a deterministic two-way finite-state transducer: the transducer walks to the right and
outputs all letters at odd positions; then it returns to the beginning of the input (without
producing output) and walks again to the right, this time writing the letters at even
positions to the output tape.
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As a similar, slightly more complicated example, consider the mapping τ on words
that associates with w ∈ {a,b,c,d}∗ the word τ(w) := akblcmdn, where k = |w|a (the
number of occurrences of a in w), l = |w|b, m= |w|c, and n= |w|d . It is not difficult
to see that τ is a parameterless domain-preserving MS-transduction, i.e., that there is a
parameterless domain-preserving definition scheme D= 〈χ ,δ,(θR)R∈RUA

〉 such that

D̂(�μA(w)�) is (isomorphic to) �μA(τ (w))� for every w ∈ A∗, where A := {a,b,c,d}.
In fact, both χ and δ are True, and for every f ∈UA=A∪{ε}we have θlabf = labf (x1)

(which means that every node keeps its label). The details of the formula θson1(x1,x2)

are left to the reader: it should link each occurrence of a in w to the next occurrence
of a, unless it is the last occurrence of a, in which case it should be linked to the first
occurrence of b; and similarly for b and c, for c and d, and for d and ε.

It should also be clear that τ can be computed by a deterministic two-way finite-
state transducer. The transducer scans the input word four times (for instance from
left to right and from right to left, and then again). At the first scan it outputs all
occurrences of a, and at the next scans all occurrences of b, c, and d; finally it
outputs ε.

Thus, τ is in both DMSOW and 2DGSM. Let L be the regular language (abcd)∗.
Obviously, τ(L) = {anbncndn | n ≥ 0}. Hence, τ does not preserve regularity or
context-freeness of languages (see the discussion in the introduction of this chapter).
We know from Corollary 7.12 that τ−1 preserves regularity. Now consider the context-
free language L′ = {akbkcmdm | k ,m≥ 0}. Then τ−1(L′) is not context-free; in fact, if
it would be context-free then its intersection with the regular language R= (ac)∗b∗d∗
would also be context-free, but it is clear that τ−1(L′)∩R = {(ac)nbndn | n ≥ 0}, a
classical noncontext-free language. Thus, inverse MS-transductions of words do not
preserve context-freeness of languages.

Example 8.3 A transduction of words τ : A∗ → B∗ is a rational transduction if it can
be expressed as follows:7 τ(w)= h′(h−1(w)∩L) for every w ∈A∗, where L⊆C∗ is a
regular language over some alphabet C, and h : C∗ →A∗ and h′ : C∗ →B∗ are homo-
morphisms (for equivalent characterizations see the book by Sakarovitch [*Sak]). In
other words, τ = h−1 · IdL ·h′, where IdL is the identity on L. It is well known (and the
proof is straightforward) that all rational transductions can be computed by two-way,
even one-way, finite-state transducers. In fact, the rational transductions are exactly
those computed by one-way finite-state transducers (see Chapter 4 of [*Sak]).

It is clear that all homomorphisms are parameterless MS-transductions (the defi-
nition scheme for h′ is k-copying, where k is the maximal length of a word h′(c) with
c ∈ C, cf. Example 7.3(4)). Hence, since L is MS-definable by Theorem 5.15, the
partial function IdL · h′ is a parameterless MS-transduction by the Restriction Theo-
rem (Theorem 7.16). However, inverse homomorphisms are not MS-transductions,
because, in general, they do not have finite images (whereas MS-transductions do,

7 This definition is due to Nivat [Niv]; see also [*Ber].
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see Section 8.1.1). Thus, the class of MS-transductions of words is not closed under
inverse, cf. the discussion in the introduction of this chapter. If the homomorphism h
is nonerasing (i.e., h(c) �= ε for all c ∈C), then h−1 is a noncopying MS-transduction
(cf. Example 7.3(4)): its definition scheme uses a parameter X intended to denote
the set {u1, . . . ,un} ⊆ Pos(μA(w)), where ui is the first position of a subword h(ci)

of the input word w, such that w = h(c1) · · ·h(cn) for c1, . . . ,cn ∈ C; additionally,
it uses parameters Xc for c ∈ C, that form the partition of {u1, . . . ,un} such that Xc

denotes {ui | ci = c}; in other words, the parameters represent a guess of a word
v= c1 · · ·cn ∈C∗ such that h(v)=w; the output word v is constructed from the posi-
tions in the set denoted by X , and such a position is given the label c if it belongs to the
set denoted by Xc. Thus, in this case the rational transduction τ is an MS-transduction,
by Theorem 7.14. Every rational transduction τ that has finite images, can be
expressed as above with h nonerasing (see the book by Berstel [*Ber, Exercise 7.2,
page 87], or the one by Autebert and Boasson [*AutBoa, Chapter 1]). Consequently,
a rational transduction is an MS-transduction if and only if it has finite images.

Example 8.4 Let w̃ be the mirror image of the wordw. The mapping τ(w) :=ww̃ is in
2DGSM: the transducer first walks from left to right over the input word, and then back
from right to left; it outputs each letter that it meets on its way. If it does not produce
output during the walk from left to right, it computes the mapping τ ′(w) := w̃. Both τ

and τ ′ are deterministic MS-transductions (2-copying and noncopying, respectively).
Note that neither τ nor τ ′ is a rational transduction; τ ′ preserves regularity and context-
freeness, but τ does not. For every k ≥ 2, the mapping τk (w) := wk is in 2DGSM:
the transducer walks k times from left to right over the input word, writing it to the
output tape (each time walking back from right to left without producing output).
Moreover, τk is a k-copying parameterless MS-transduction (in DMSOW); it can
be expressed as copyk ·μ, where μ is a noncopying parameterless MS-transduction,
cf. Proposition 7.26.

As a more complicated example, consider the alphabet B := {a1,a2,b} and the
mapping σ : B∗ → B∗ defined by

σ(w0bw1bw2 · · ·bwn) :=w0w0bw1w1bw2w2 · · ·bwnwn,

where wi ∈ {a1,a2}∗. The mapping σ is a 2-copying parameterless MS-transduc-
tion in DMSOW. It is also in 2DGSM: the transducer scans each subword wi

three times and outputs that word when walking to the right. Now let F be
the functional signature { f } ∪ B, where f has arity 2 and the elements of B
have arity 0. Then the mapping σ ′ := yd · σ : T (F) → B∗ is in DMSOTW
(cf. Example 8.1). It is also in DTWTW: a tree-walking tree-to-word transducer
can walk from one b-labeled leaf to the next one, or to the previous one.

Example 8.5 The second-order substitutions, defined in Section 2.6.1 (just before
Proposition 2.126), and discussed in Example 7.3(4), are often called tree
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homomorphisms. Every second-order substitution can be computed by a (local) deter-
ministic tree-walking transducer of which the rules do not use up; for instance,
if the derived operation h of arity 3 is defined by the term f (x3,g(x1)), then
the transducer has rules 〈qin, labh(x1)〉 → f (〈qin,down3〉, 〈q,stay〉) and 〈q,True〉 →
g(〈qin,down1〉), where q is a “new” state. Moreover, if the second-order substi-
tution is linear (as in the above instance), then the transducer is single-use. Thus,
every linear second-order substitution is in DTWTsu. It is also a parameterless
MS-transduction in DMSOT, cf. Example 7.3(4). As discussed in Example 7.3(4),
not all second-order substitutions are MS-transductions. This shows again that
tree-walking transducers have more expressive power than MS-transductions of
terms.

8.3 The basic characterization

We start by characterizing the MS-transductions of terms by MS tree-walking trans-
ducers that are single-use. Intuitively, the single-use restriction means that the
tree-walking transducer can output at most k copies of each input node, where k
is its number of states: due to determinism, if the transducer visits an input node
twice in the same state, then it repeats its computation and hence does not halt and
produces no output. This integer k corresponds to the copying number of a definition
scheme.

Theorem 8.6 The classes DMSOT and DTWTMS
su are equal.

Proof: We first prove the inclusion DMSOT⊆DTWTMS
su . Let τ : T (F)→ T (H ) be a

deterministic MS-transduction of terms, i.e., {(�s�,�t�) | (s, t) ∈ τ } is a parameterless
MS-transduction from STR(RF ) to STR(RH ). Let D = 〈χ ,(δi)i∈[k],(θw)w∈RH �[k]〉
be a parameterless definition scheme of type RF → RH defining τ , hence
D̂(�s�) = �τ(s)� for every s ∈ T (F). We define an MS tree-walking transducer
M := (F ,H ,Q,qin,R) that computes τ , as follows. First, its set of states is Q :=
{qin,q1, . . . ,qk}. Intuitively, for i ∈ [k], the state qi represents the i-th copy of the
input structure. More precisely, if M is in configuration 〈qi,u〉 on the input structure
�s�, then it will output the node (u, i) of the output structure �τ(s)�, cf. Definition 7.2.
It remains to define the set R. We first define the rules for qin. Intuitively, M starts its
computation by jumping to the node of the input tree that will represent the root of
the output tree. For every i ∈ [k], M has the rule

〈qin,χ ∧∃x[δi(x)∧ θrt,i(x)]〉→ 〈qi,δi(x2)∧ θrt,i(x2)〉.

Now suppose that M is in configuration 〈qi,u〉. Then it outputs the node (u, i) of the
output tree and jumps to the nodes of the input tree that will represent the sons of
(u, i). To do this, it has to determine the label of the node (u, i), and the input nodes
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for its sons. For every h ∈ Hm and every j1, . . . , jm ∈ [k], M has the rule 〈qi,ϕ〉 →
h(〈qj1 ,ψ1〉, . . . , 〈qjm ,ψm〉), where ϕ is

χ ∧ δi(x1)∧ θlabh,i(x1)∧
∧

n∈[m]

∃y[δjn(y)∧ θsonn,i, jn(x1,y)],

and ψn is δjn(x2)∧ θsonn,i, jn(x1,x2).
It should be clear that M computes τ , and that M is deterministic. Moreover M is

single-use, because the configurations of its computation (except the first one) are in
bijection with the nodes of the output tree.

For the inclusion DTWTMS
su ⊆ DMSOT, let M = (F ,H ,Q,qin,R) be a single-use

deterministic MS tree-walking transducer. We first consider the special case where
M has no epsilon-output rules. Without loss of generality, we assume that Q = [k]
for some k ≥ 1.

Since M is deterministic and single-use, each node of the output tree (for a given
input tree s) is produced by a unique configuration 〈q,u〉 of M , with q∈ [k] and u∈Ns.
Hence a k-copying definition scheme for τM can be constructed that uses (u,q) for that
node. To simplify the construction we will actually show that τM is the composition
τ1 · τ2 of two parameterless MS-transductions, of which the first is k-copying and the
second is noncopying. This gives the desired result by Theorem 7.14.

The first MS-transduction τ1 transforms the input tree s into the “computation
space” of M on s, which is a structure S in STRc(RH ) that encodes the regu-
lar grammar GM ,s = 〈H ,XM ,s,RM ,s〉 and the initial configuration 〈qin,roots〉. The
structure S has the domain {(u,q) | 〈q,u〉 ∈ XM ,s}, and it has the unary relation
rtS ={(roots,qin)}. Let 〈q,u〉→ h(〈q1,v1〉, . . . , 〈qm,vm〉) be a rule in RM ,s. Then (u,q)
is in labhS , and ((u,q),(vi,qi)) is in soniS , for every i ∈ [m]. Note that S represents an
(H , [ρ(H )])-labeled directed graph with a designated node (the “root”).

This MS-transduction τ1 is defined by the k-copying parameterless definition
scheme D1 := 〈χ ,(δi)i∈[k],(θw)w∈RH �[k]〉 of type RF →RH . The precondition χ

expresses that the input structure represents a term in T (F), see Corollary 5.12.
For every q,q′ ∈ [k], δq is True, θrt,q is rt(x1) if q = qin and False otherwise,
θlabh,q is the disjunction of all formulas ϕ such that 〈q,ϕ〉→ h(〈q1,ψ1〉, . . . , 〈qm,ψm〉)
is a rule of M , and θsoni ,q,q′ is the disjunction of all formulas ϕ ∧ ψi such that
〈q,ϕ〉→ h(〈q1,ψ1〉, . . . , 〈qm,ψm〉) is a rule of M with i ∈ [m] and qi = q′.

The second MS-transduction τ2 will be obtained by the Restriction Theorem from
the mapping τ ′2 that transforms the computation space into the subgraph induced by
all vertices that are reachable from the “root” of the graph. Thus, τ2 is defined by
the noncopying parameterless definition scheme D2 := 〈True,δ,(θR)R∈RH 〉 of type
RH →RH such that δ is the formula ∃y(rt(y)∧TC[(λu,v · son(u,v));y,x1]), θlabh is
labh(x1), θsoni is soni(x1,x2), and θrt is rt(x1).8

8 For the formula son(u,v) see Footnote 6, and for the transitive closure construction TC see Section 5.2.2.
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It remains to check that the resulting graph is a tree (i.e., that s is in the domain of
τM ). Since M is single-use, it suffices to check that (1) there is no circuit (otherwise
the computation of M on s does not halt), and (2) every vertex has a label in H
(otherwise the computation of M on s aborts). This is expressed by the sentence
β := ∀x,y(TC[(λu,v · son(u,v));x,y] ⇒ ¬son(y,x))∧∀x∨h∈H labh(x). Thus, τ2 :=
τ ′2 ∩ (MOD(True)×MOD(β)) is a noncopying parameterless MS-transduction by
Theorem 7.16.

Finally, we consider a single-use deterministic MS tree-walking transducer M =
(F ,H ,Q,qin,R)with epsilon-output rules. Let the deterministic ms-twt M ′ := (F ,H ∪
{5},Q,qin,R′) be obtained from M by changing every epsilon-output rule 〈q,ϕ〉 →
〈q′,ψ〉 of M into the output producing rule 〈q,ϕ〉 → 5(〈q′,ψ〉) of M ′, where 5
is a new output symbol of arity 1. Obviously M ′ is still single-use, and thus we
know that τM ′ is in DMSOT. It is also obvious that τM = τM ′ · τ5, where τ5 :
T (H ∪ {5})→ T (H ) is the linear second-order substitution that replaces 5(x1) by
x1. By Example 7.3(4), τ5 is a parameterless MS-transduction, and hence so is τM

by Theorem 7.14.

The subscript “su” cannot be dropped from Theorem 8.6, because DTWT contains
transductions that are not of linear size increase, cf. Example 8.1. If the output
signature is unary, then it can be dropped, because every ms-twt with a unary output
signature is single-use. Thus: DMSOTW=DTWTWMS.

We observe that the construction of a parameterless definition scheme for an MS
tree-walking transducer M , as described in the above proof, can also be carried out
in the case where M is not single-use. Then, instead of a tree, the output structure
is a directed graph G without circuit (i.e., a tree with shared subtrees). Unfolding G
produces the output tree of M . This also shows that it is decidable whether or not M
is single-use: M is single-use if and only if the indegree of every vertex of G is at
most 1, for every output G. Since this is an MS-expressible property, the set of all
input terms such that G does not satisfy this property is regular by Corollaries 7.12
and 5.67, and can be checked for emptiness.

8.4 From jumping to walking

Our aim will now be to “get rid of” the MS tests and MS jumps of our hybrid tree-
walking transducer. It turns out that MS jumps can be simulated by tree-walking
transducers, provided these transducers are still allowed to use MS tests. However,
MS tests cannot be handled by tree-walking transducers; thus, for the simulation of
tests other means have to be found. We therefore start with the “removal” of jumps.

Theorem 8.7 For every MS tree-walking transducer an equivalent nonjumping
MS tree-walking transducer can be constructed. Determinism and the single-use
restriction are preserved.
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Proof: Let M be an ms-twt with input signature F . The problem is to simulate by a
walk a jump of M defined by a formulaψ ∈MS(RF ,{x1,x2}) in the right-hand side of
a rule of M . We may assume that �s� |= ∀x1 ∃!x2.ψ(x1,x2) for every s ∈ T (F). If this
is not the case, we replace ψ by (ϕ∧ψ)∨ (¬ϕ∧ x1 = x2), where ϕ ∈MS(RF ,{x1})
is the formula in the left-hand side of the rule.

We will prove that for every such formula ψ a nonjumping deterministic ms-twt
Mψ = (F ,∅,Q,qin,R) can be constructed that has only epsilon-output rules, and that
has a state qf such that for every s ∈ T (F) and y,z ∈ Ns, �s� |= ψ(y,z) if and only if
〈qin,y〉⇒∗G 〈qf ,z〉, where G is the regular grammar GMψ ,s (cf. Section 8.2). It is easy
to see that, using these transducers Mψ as “subroutines,” M can be turned into an
equivalent nonjumping ms-twt. Since every Mψ is deterministic, determinism and the
single-use restriction will be preserved. Note that since Mψ has epsilon-output rules
only, it is essentially a tree-walking automaton rather than a tree-walking transducer.

So, let ψ ∈ MS(RF ,{x1,x2}) such that �s� |= ∀x1 ∃!x2.ψ(x1,x2) for every s ∈
T (F). Let q :=max{qh(ψ),m} + 2, where m is the quantifier-height of the formula
expressing that x1 is a descendant of x2. For this q (and F), we will use the definitions
in Section 8.1.3.

The transducer Mψ := (F ,∅,Q,qin,R) to be constructed, should walk from node y
to node z if and only if �s� |= ψ(y,z). It will do this in a special way: it walks along
the shortest (undirected) path in s from y to z, and, roughly speaking, at each node u
on this path it keeps track, in its state at that node, of the (finite) theory Th↓s (y,u) or
Th↑s (y,u) depending on whether or not y is a descendant of u.

More precisely, Mψ first walks from y up to the least common ancestor lca(y,z) of
y and z, and at each node u on that path (except y) it is in state ↑i,# such that y is a
descendant of the i-th son ui of u and #= Th↓s (y,ui). Then, Mψ walks from lca(y,z)
down to z, and at each node u on that path (except lca(y,z)) it is in state ↓# such that
#= Th↑s (y,u).

Thus, the set Q of states of Mψ consists of qin, qf , ↑i,# and ↓#, for all i ∈ [ρ(F)]
and # ⊆ L2 ∪ L′2. The right-hand sides of the rules in R are of one of the three
forms 〈↑i,#,up〉, 〈↓#,downj〉, or 〈qf ,stay〉. Recall that up, downj and stay denote the
formulas son(x2,x1), sonj(x1,x2), and x1 = x2, respectively.

For every node u that Mψ visits, it uses a test of the form

η
↑
#(x1)∧∃y1[son1(x1,y1)∧η

↓
#1

(y1)] ∧ · · · ∧ ∃yk [sonk (x1,yk)∧η
↓
#k

(yk)]

to obtain the sets Th↑s (u) and Th↓s (u1), . . . ,Th↓s (uk ), where u1, . . . ,uk are the sons of
u (see the end of Section 8.1.3). It should now be clear from Section 8.1.3 that from
these sets, and the state ↑i,# or ↓# at u, and the label of u (which can of course
be obtained by a test labf (x1)), Mψ can determine the set Ths(y,u). If ψ is in that
set (or more precisely, if ψ̂ ∈ Ths(y,u)), then u = z and Mψ halts in state qf . Now
assume that it is not. Then Mψ should decide, deterministically, where to go next.
Suppose first that Mψ is in state ↑i,#. If for some j �= i the formula ψj(x1,x2), defined
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as ∃v,w[sonj(x2,v)∧w ≤ v ∧ψ(x1,w)], is in Ths(y,u), then u = lca(y,z) and Mψ

moves down to the j-th son of u; otherwise, Mψ moves up to the father of u. In
the former case the new state is ↓#′ , where #′ can be determined (according to
Section 8.1.3) from #, Th↑s (u), and all Th↓s (um) with m �= i, j. In the latter case the
new state is ↑i′,#′ , where i′ can be obtained by a test ∃v.soni′(v,x1), and #′ can be
determined from # and all Th↓s (uj) with j �= i. Suppose now that Mψ is in state ↓#.
This case is similar to, but easier than the previous one: if the formula ψj(x1,x2) is
in Ths(y,u) (and that must be so for exactly one j ∈ [k]), then Mψ moves down to
the j-th son of u in the state ↓#′ , where #′ can now be determined from # and all
Th↓s (ui) with i �= j.

It remains to explain how Mψ starts its walk, in state qin. It first tests whether y= z,
by checking if the rule 〈qin,ψ(x1,x1)〉→ 〈qf ,stay〉 is applicable. If that is not the case,
then Mψ uses the test formulas ψj(x1,x1), i.e., ∃v,w[sonj(x1,v)∧w≤ v∧ψ(x1,w)].
If such a formula is true, then Mψ moves down to the j-th son of y in state ↓#, where
# can be determined from Th↑s (y,y) and all Th↓s (yi) with i �= j (where yi is the i-th son
of y). Otherwise, Mψ moves up to the father of y in state ↑i,#, where y is the i-th son
of its father and # := Th↓s (y,y). Note that Th↑s (y,y)= {ϕ(x1,x2) | ϕ(x1,x1) ∈ Th↑s (y)}
and Th↓s (y,y) = {ϕ(x1,x2) | ϕ(x1,x1) ∈ Th↓s (y)}, and that Th↑s (y) and Th↓s (y) can be
obtained by a test.

This ends the description of the nonjumping ms-twt Mψ . Due to the condition onψ ,
which says that for every y there is a unique z such that �s� |=ψ(y,z), the transducer
Mψ is deterministic.

8.5 From global to local tests

We first show that MS tests can be simulated by tree-walking transducers in the
special case where the input signature is unary. For this we need the fact that a two-
way automaton can keep track of the state of a deterministic one-way automaton.
This is expressed in the next lemma, in an informal, but hopefully clear way. We use
the terminology and notation from Section 8.1.2.

Lemma 8.8 Let M be an MS tree-walking transducer with a unary input signature
F , and let A be a complete and deterministic finite F-semi-automaton. Then an MS
tree-walking transducer M ′ can be constructed that stepwise simulates9 M and keeps
track of the state of A ; in its nonlocal rules, M ′ uses the same MS formulas as M .
The same holds if A is a top-down complete and deterministic finite F-automaton.
Determinism and the single-use restriction are preserved in the construction of M ′
from M .

9 This means (still informally speaking) that every computation of M ′ can be mapped to a computation of
M , by a fixed mapping from the set of states of M ′ to the set of states of M , provided the intermediate
steps that are needed to determine the state of A are first deleted from the computation of M ′; moreover,
every computation of M is obtained in this way.
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Proof: Let A = 〈F ,Q,δ〉 be a complete and deterministic finite semi-automaton.
The ms-twt M ′ should stepwise simulate M and, for every input tree s ∈ T (F) and
current node u ∈ Ns, keep track (in its finite state at u) of p := runA ,s(u). In fact, M ′
will behave in exactly the same way as M , except that after each “simulation step” it
uses local epsilon-output rules to compute the new value of p, deterministically.

We will view p as a programming variable, to which assignments can be made.
To initialize the variable p, M ′ first walks down to the unique leaf of s (its ε-labeled
node), and then walks back to the root, simulating A ; note that it can recognize the
root by the local test rt(x1). Then M ′ sets p := runA ,s(roots), and starts the simulation
of M . Suppose that, simulating a step of M , M ′ moves up to the father of the current
node. To update p it simply tests the label of the father, say f , and sets p := δf (p).

Suppose now that M ′ moves down to the son of the current node u. This is the
difficult case. Let f be the label of u. If the label of the son u1 is ε, then M ′ simply
sets p := δε . If it is not, then the new p must be in the set C := {q ∈ Q | δf (q) = p}
(where C stands for “candidates”). If C is a singleton, the problem is solved. Now
suppose it is not a singleton. Then M ′ walks down from u1 and computes for each
descendant u′ of u1, and each q ∈ C, the set C(q,u′) of all states q′ ∈ Q such that,
when started at u′ in state q′, A reaches u1 in state q. Note that, for fixed u′, the
sets C(q,u′) are pairwise disjoint. It is easy to see that M ′ can compute these sets,
just by testing the labels of the nodes and using δ. In fact, C(q,u1) := {q} and if u′′
is the son of u′, then C(q,u′′) := {q′′ ∈ Q | δf (q′′) ∈ C(q,u′)}, where f is the label
of u′.

Now there are two cases: either M ′ arrives at a descendant u′ such that exactly one
of the sets C(q,u′), say C(q,u′), is nonempty, whereas all the others are empty, or M ′
arrives at the leaf u′ of s, in which case there is a unique q such that δε ∈ C(q,u′). In
both cases, q= runA ,s(u1) and M ′ sets p := q. But now M ′ should return to u1. To
this purpose, M ′ moves up to the father u′′ of u′ and picks two states q1,q2 ∈Q that
are in two distinct sets C(q,u′′) (obviously, when walking down, M ′ can also store
in its state the candidate sets of the father of the current node). Now M ′ starts the
simulation of two incarnations A1 and A2 of the automaton A , one in state q1 and
the other in state q2 at u′′. Then M ′ walks up, simulating both A1 and A2. At the very
moment where A1 and A2 are in the same state (which is the previous value of p),
M ′ is back on node u, and moves down to u1. This ends the description of M ′.10

Finally, let A be a top-down complete and deterministic finite automaton, with
Acc := {q0}. This time, M ′ should keep track of p := td-runA ,s(u). The proof is
basically the same as the one above, interchanging the up and down moves, and
interchanging the roles of the root and the leaf of s. Initially, M ′ just sets p := q0.
When M moves down from u, M ′ sets p := q, where f [q] → p is the unique rule in
δ with right-hand side p and f is the label of u. Now the difficult case is when M

10 To summarize, apart from the finite control, a state of M ′ contains (at most) a state of M , three states
of A , and two functions from Q to P(Q).
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moves up to u from its son u1. The computation of the new p is similar to the one
above, with M ′ first walking up and computing the candidate sets for the ancestors
of u, possibly reaching the root, then walking down to u1 and finally moving up
to u.

Theorem 8.9 For every MS tree-walking transducer with a unary input signature an
equivalent (local) tree-walking transducer can be constructed. Determinism and the
single-use restriction are preserved.

Proof: Let M be an ms-twt with unary input signature F . By Theorem 8.7 we may
assume that M is nonjumping. The remaining problem is how to simulate a global
test of M , defined by a formula ϕ ∈MS(RF ,{x1}) in the left-hand side of a rule of
M , by an ordinary walk that uses local tests only.

So, let ϕ ∈ MS(RF ,{x1}) and let q be the quantifier-height of ϕ. It suffices to
prove that M can be changed into a transducer M ′ that stepwise simulates M and,
moreover, for input tree s ∈ T (F) and current node u ∈ Ns, additionally keeps track
(in its finite state at u) of the theories p1 := Th↓s (u1) (if u has a son u1) and P :=
Th↑s (u). Recall from Section 8.1.3 that there is a mapping Zf such that Ths(u) =
Zf (Th↑s (u),Th↓s (u1), . . . ,Th↓s (uk)), where u has sons u1, . . . ,uk (with k = 1 or k = 0)
and label f . Hence, in M ′, the global test ϕ can be replaced by the local test consisting
of the disjunction of all formulas labf (x1) such that ρ( f )= 1 and ϕ̂ ∈ Zf (P,p1), and
the formula labε(x1) if ϕ̂ ∈ Zε(P).

The construction of M ′ is possible by Lemma 8.8. Recall from Section 8.1.3
that there is a complete and deterministic finite F-semi-automaton A such that for
every s ∈ T (F) and u ∈ Ns, runA ,s(u) = Th↓s (u). It is easy to construct from A

a complete and deterministic finite F-semi-automaton A1 such that runA1,s(u) =
〈labs(u),Th↓s (u1)〉 if u has a son u1 (where labs(u) is the label of u). Thus, by
Lemma 8.8, there is an ms-twt M1 that stepwise simulates M and keeps track of
Th↓s (u1). It should also be clear from Section 8.1.3, and from the fact that F is unary,
that there is a top-down complete and deterministic finite F-automaton A2 such that
td-runA2,s(u)= Th↑s (u) for every s∈ T (F) and u∈Ns. In fact, A2 has the set of states

P(L′1) and the unique initial state Th↑rt (the root theory, defined in Section 8.1.3); the
transition rules of A2 are obtained from the mappings Zf ,1 : P(L′1)→P(L′1) discussed
in Section 8.1.3. Again by Lemma 8.8, applied to M1 and A2, there is an mstwt M ′
that stepwise simulates M and keeps track of both Th↓s (u1) and Th↑s (u).

The next theorem (which is the main result of [EngHoo01]) is now immediate from
Theorems 8.6 and 8.9. It shows that the monadic second-order transductions of words
are exactly those computed by two-way finite-state transducers (see Examples 8.2
and 8.4). This generalizes the monadic case of Theorem 1.16 to transductions.

Theorem 8.10 The classes of transductions of words DMSOW and 2DGSM are
equal. �
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In general, it is not possible to “remove” the MS tests from an MS tree-walking
transducer, not even when it is an MS tree-walking automaton. This result is proved
by Bojańczyk and Colcombet in [BojCol].

Theorem 8.11 The class DTWTWMS contains a transduction that is not in the class
DTWTW.11

Proof: Every regular tree language L can be recognized by a deterministic MS tree-
walking automaton. In fact, the automaton need not walk at all: if the MS sentence
ϕ expresses L (by Theorem 5.15), then the rule 〈qin,ϕ〉 → ε suffices. However,
not every regular tree language can be recognized by a tree-walking automaton
[BojCol].

Thus, to “remove” MS tests in general, a more powerful type of transducer is
needed. One such transducer can be obtained by equipping the nonjumping MS tree-
walking transducer with a restricted pushdown. This extended transducer can only
push a symbol on the pushdown when it moves down to a son, and it has to pop the top
symbol off the pushdown when it moves to the father. In other words, the movements
of the pushdown are synchronized with the movements of the reading head. Initially
(at the root) the pushdown contains one symbol, and hence, at each moment, the
number of symbols on the pushdown equals the depth of the current node u, i.e., its
number of ancestors (including itself).12 Each cell of the pushdown corresponds to
an ancestor of u, and the content of the cell provides information about that ancestor;
in particular, the top of the pushdown corresponds to u itself, and the bottom to the
root.

Formally, an MS tree-walking pushdown transducer (abbreviated p-ms-twt) is a
tuple M = (F ,H ,Q,qin,�,γin,R), where F , H , Q, and qin are the same as for an ms-
twt, � is an alphabet of pushdown symbols, γin is the initial pushdown symbol, and R
is a finite set of rules.Arule is of the form 〈q,ϕ,γ 〉→ ζ with q∈Q, ϕ ∈MS(RF ,{x1}),
γ ∈ �, and either ζ ∈ I or ζ = h(ζ1, . . . ,ζk) with h ∈ Hk and ζ1, . . . ,ζk ∈ I , where I
is the set of all triples 〈q′,ψ ,β〉 with q′ ∈Q, ψ ∈MS(RF ,{x1,x2}), and β ∈ �∗, and
one of the following three cases holds:

(a) ψ = up, β = ε, and �s� |= ∀x1[ϕ(x1)⇒∃y.son(y,x1)] for every s ∈ T (F); or
(b) ψ = stay and β ∈ �; or
(c) there exists i ∈ [ρ(F)] such that ψ = downi, β ∈ �2, and
�s� |= ∀x1[ϕ(x1)⇒∃y.soni(x1,y)] for every s ∈ T (F).

The transducer M is deterministic if for every two distinct rules 〈q,ϕ1,γ 〉→ ζ1 and
〈q,ϕ2,γ 〉→ ζ2 in R, ϕ1 and ϕ2 are mutually exclusive on T (F).

11 More strongly, it contains one that is not even in TWTW, the class of transductions computed by
nondeterministic tree-walking tree-to-word transducers.

12 To be precise, the depth of the root is one, and the depth of a son of a node u is the depth of u plus one.
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Just as we did for an ms-twt, we define for every input term s ∈ T (F) a regular
grammar GM ,s := 〈H ,XM ,s,RM ,s〉. The set XM ,s of configurations of M on s now
consists of all triples 〈q,u,π〉 with q ∈Q, u ∈ Ns, and π ∈ �∗ such that the length of
π equals the depth of u. If 〈q,ϕ,γ 〉 → ζ is a rule in R, then RM ,s contains all rules
〈q,u,πγ 〉 → ζ ′ for every u ∈ Ns such that �s� |= ϕ(u) and every π ∈ �∗ such that
|πγ | equals the depth of u, where ζ ′ is defined as follows:

(1) if ζ = 〈q′,ψ ,β〉, then

ζ ′ := 〈q′,v,πβ〉
and v is the unique node such that �s� |=ψ(u,v);

(2) if ζ = h(〈q1,ψ1,β1〉, . . . , 〈qk ,ψk ,βk〉), then

ζ ′ := h(〈q1,v1,πβ1〉, . . . , 〈qk ,vk ,πβk〉)
and vi is the unique node such that �s� |=ψi(u,vi), for every i ∈ [k].

The transduction computed by M is

τM := {(s, t) ∈ T (F)×T (H ) | t ∈ L(GM ,s, 〈qin,roots,γin〉)}.

Note that, by Theorem 8.7, for every ms-twt there is an equivalent p-ms-twt (with
� = {γin}).

As for an ms-twt, an MS tree-walking pushdown transducer is a tree-to-word trans-
ducer if its output signature is unary. Locality of an MS tree-walking pushdown
transducer is defined in the same way as for an ms-twt. By P-DTWT we denote
the class of transductions computed by deterministic tree-walking pushdown trans-
ducers (i.e., by local deterministic MS tree-walking pushdown transducers), and by
P-DTWTW the corresponding class in the tree-to-word case.

Theorem 8.12 For every MS tree-walking pushdown transducer an equivalent (local)
tree-walking pushdown transducer can be constructed. Determinism is preserved.

Proof: Let M be a p-ms-twt with input signature F . As in Theorem 8.9, the problem
is how to simulate a global test, defined by a formula in the left-hand side of a rule of
M , by a walk that uses local tests only. Let ϕ ∈MS(RF ,{x1}) be a formula that defines
a global test and let q be the quantifier-height of ϕ. As in the proof of Theorem 8.9, it
suffices to prove that M can be changed into a p-ms-twt M ′ that stepwise simulates
M and, moreover, for input tree s ∈ T (F) and current node u ∈ Ns, additionally
keeps track of p1 := Th↓s (u1), . . . ,pk := Th↓s (uk) (if u has k sons u1, . . . ,uk ) and of
P := Th↑s (u).

We first show how M ′ can compute the theories p1, . . . ,pk (they will be recomputed
each time M ′ visits u). Recall again from Section 8.1.3 that there is a complete and
deterministic finite semi-automaton A = 〈F ,Q,δ〉 such that for every s ∈ T (F) and
u ∈ Ns, runA ,s(u) = Th↓s (u). Thus, pi = runA ,s(ui) for every i ∈ [k]. Recall from
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Section 8.1.2 that runA ,s(u) can be defined recursively. Thus, to compute pi, M ′
implements this recursion on its pushdown in the obvious way: it executes a depth-
first search of the subtree with root ui and computes runA ,s(u

′) for every descendant
u′ of ui, in a bottom-up fashion. To this end, it uses additional pushdown symbols of
the form (b,q1 · · ·qn) with b ∈ {0,1} and q1, . . . ,qn ∈Q. The boolean b just indicates
whether or not the corresponding node u′ is ui (this is because M ′ needs to know when
it has returned to ui). The states q1, . . . ,qn are the states ofA in which it reaches the first
n sons of u′. Thus, after having computed p1, . . . ,pi−1 (and having stored them in its
state), M ′ calls a subroutine that moves down to the i-th son of u in state ↓ and pushes
the symbol (1,ε), where ε is the empty sequence of states of A . The subroutine
then applies the following rules, for every f ∈ F with ρ( f ) = k , b ∈ {0,1}, and
q1, . . . ,qn ∈Q with n≤ k (using the states↓ and↑b,q for every b∈ {0,1} and q∈Q):

(1) if n < k , then
〈↓, labf (x1),(b,q1 · · ·qn)〉→ 〈↓,downn+1,(b,q1 · · ·qn)(0,ε)〉;

(2) if n= k and δf (q1, . . . ,qn)= q, then
〈↓, labf (x1),(b,q1 · · ·qn)〉→ 〈↑b,q,up,ε〉;

(3) if n < k , then
〈↑0,q, labf (x1),(b,q1 · · ·qn)〉→ 〈↓,stay,(b,q1 · · ·qnq)〉.

Thus, the subroutine returns to u in some state ↑1,q, and then M ′ stores pi := q in its
state.

It remains to show how M ′ keeps track of P=Th↑s (u). The value of P is stored on the
pushdown. Thus, if M has pushdown alphabet� and initial pushdown symbolγin, then
M ′ uses the pushdown symbols (γ ,S)with γ ∈� and S⊆L′1, and has initial pushdown

symbol (γin,Th↑rt), where Th↑rt is the root theory. Clearly, it suffices to show how P can
be computed when M ′ moves down from node u to the i-th son ui, simulating a step of
M . That is easy: at u, M ′ has computed p1 = Th↓s (u1), . . . ,pk = Th↓s (uk) (as indicated
above), and it has stored P = Th↑s (u) in the top of the pushdown. From this it can
determine Th↑s (ui) = Zf ,i(P,p1, . . . ,pi−1,pi+1, . . . ,pk ) as observed in Section 8.1.3,
and push Th↑s (ui) as second component of the new top symbol when moving down
to ui.

Theorems 8.6, 8.7 and 8.12 together show that the monadic second-order
transductions of terms can be computed by tree-walking pushdown tree transducers.

Theorem 8.13 The following inclusions hold:

DMSOT⊂ P-DTWT and DMSOTW⊂ P-DTWTW. �

The inclusions are proper because the word transduction an �→ a2n
is in P-DTWTW:

the pushdown can be used to count to 2n, in binary. This also shows that DTWTMS is
properly included in P-DTWT: a deterministic MS tree-walking transducer with set
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of states Q can visit each node of an(ε) at most |Q| times (otherwise it is in a loop)
and hence the height of the output tree is at most |Q| · (n+ 1).

It follows from Theorem 7.29 (based on Proposition 6.54) that every parameterless
MS-transduction of terms can be computed in linear time (but usually with a large
constant). We present here an alternative, but similar, proof using the construction
in the proof of Theorem 8.12. As in the case of Theorem 7.29, the corresponding
linear-time algorithm is not directly applicable, due to the large constant.

Theorem 8.14 Every MS-transduction τ in DMSOT can be computed in linear
time, that is, for a given input term s the value of τ(s) can be computed in
time O(|s|).

Proof: Let τ be an MS-transduction in DMSOT. By Theorems 8.6 and 8.7, the trans-
duction τ is computed by a single-use deterministic nonjumping MS tree-walking
transducer M = (F ,H ,Q,qin,R). We first observe that M computes in linear time,
assuming that each computation step takes one time unit. More precisely, for every
s∈T (F) and t ∈T (H ), if 〈q0,roots〉= ξ0⇒GM ,s ξ1⇒GM ,s ξ2⇒GM ,s · · ·⇒GM ,s ξn= t,
then n ≤ |Q| · |s|. To see this, we show that each configuration 〈q,u〉 of M is
rewritten at most once during this computation. Suppose it is rewritten both in
ξi and in ξj , with i < j. Let ξi be of the form ξi = w0〈q1,u1〉w1 · · · 〈qk ,uk 〉wk ,
where each 〈ql ,ul〉 is a configuration and w0,w1, . . . ,wk do not contain configu-
rations. Then ξj is of the form ξj = w0ζ1w1 · · ·ζkwk with 〈ql ,ul〉 ⇒∗GM ,s

ζl for every
l ∈ [k]. Let 〈q,u〉 = 〈qm,um〉. Since 〈q,u〉 is rewritten in ξi, 〈q,u〉 does not occur
in ζm, because otherwise the deterministic transducer M would loop and the com-
putation would be infinite. Thus, 〈q,u〉 occurs in one of ζ1, . . . ,ζm−1,ζm+1, . . . ,ζk .
Now consider the computation ξ0 ⇒∗GM ,s

ξi ⇒∗GM ,s
ξ ⇒∗GM ,s

ξj ⇒∗GM ,s
t with ξ =

w0ζ1w1 · · ·ζm−1wm−1〈qm,um〉wmζm+1wm+1 · · ·ζkwk . It contradicts the fact that M is
single-use, because 〈q,u〉 occurs at least twice in ξ .

Thus, assuming that each computation step takes constant time, τ(s) can be com-
puted in linear time: on input s, at most |Q| · |s| computation steps of M are executed.
However, in each computation step, global tests must be simulated. For each such
test (with quantifier-height q), as in the proof of Theorem 8.12, it now suffices to
show that M can be stepwise simulated in such a way that, for input tree s ∈ T (F)

and current node u ∈ Ns, the information p1 := runA ,s(u1), . . . ,pk := runA ,s(uk ) (if
u has k sons u1, . . . ,uk ) and P := Th↑s (u) is available, where A is the complete and
deterministic F-semi-automaton such that runA ,s(ui)= Th↓s (ui) (see Section 8.1.3).

Rather than computing the states p1, . . . ,pk each time M visits u (as in the proof
of Theorem 8.12), we can preprocess the input tree s by first computing the (unique)
run runA ,s : Pos(s)→ QA of A on s, where QA is the set of states of A . Now
p1, . . . ,pk are available to M in constant time whenever it visits u. The run of A on s
can be computed in time O(|s|) and so, since M has only finitely many global tests,
the total preprocessing time is linear.
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The set of formulas P can be computed using the pushdown of a p-ms-twt. As
described at the end of the proof of Theorem 8.12, this pushdown can be updated in
constant time in each computation step of M (using p1, . . . ,pk ). Thus, P is available
whenever M visits u.

Next we use Theorem 8.13 to prove that every MS tree-walking transducer can
be simulated by a composition of two tree-walking transducers, the first of which
only walks down in the input tree. A deterministic tree-walking transducer is called a
deterministic top-down tree transducer if it does not use the formula up in the right-
hand sides of its rules (cf. Example 8.5). The class of transductions computed by
deterministic top-down tree transducers is denoted by DTWT↓.

Theorem 8.15 For every tree-walking pushdown transducer M , two tree-walking
transducers M1 and M2 can be constructed such that τM = τM1 · τM2 . Moreover, M1

is a deterministic top-down tree transducer, and if M is deterministic then so is M2.

Proof: Let M = (F ,H ,Q,qin,�,γin,R) be a (local) p-twt and enumerate � as
{γ1, . . . ,γn}. Without loss of generality we assume that during the computations of
M , the bottom symbol of the pushdown is always equal to γin (M can store the actual
value of the bottom symbol in its state). We also assume without loss of generality that
in case (c) of the definition of a p-ms-twt, β = γ γ ′ for some γ ′ ∈ �, i.e., the symbol
γ ′ is pushed on top of the pushdown, without changing the previous top symbol γ
(if γ has to be changed, one first uses a stay-rule). Finally, we assume that β = γ in
case (b) of the definition of a p-ms-twt, i.e., the pushdown is unchanged (if it has to
be changed, one first moves up and then moves down again).

The transducer M1 preprocesses the input tree s in such a way that M2 can stepwise
simulate M on τM1(s), using the structure of τM1(s) to implement the pushdown of
M . More precisely, for each node u ∈Ns and each pushdown π ∈ �m, where m is the
depth of u, τM1(s) has a node [u,π ] with label [ f ,γ ], such that f is the label of u in s
and γ is the top symbol of π . Thus, π will correspond to the second components of
the labels of the ancestors of [u,π ].

We define M1 := (F ,F ×�,�,γin,R1). Note that M1 uses the pushdown symbols
of M as states. For every γ ∈ � and f ∈ F of arity k , the arity of [ f ,γ ] is nk , and R1

contains the rule 〈γ , labf (x1)〉→ ζγ , f where ζγ , f is:

[ f ,γ ](〈γ1,down1〉, . . . , 〈γn,down1〉, . . . , 〈γ1,downk 〉, . . . , 〈γn,downk〉).

This rule changes each son ui of the current node u into n sons that will receive the
additional labels γ1, . . . ,γn respectively. Note that after application of the rule, the
j-th copy of ui is the m-th son of the output node with m= n(i− 1)+ j.

Finally we define M2 := (F ×�,H ,Q,qin,R2) as follows. Let 〈q,ϕ,γ 〉 → ζ be a
rule of M . It is simulated by the rule

〈q,ϕ′ ∧∨f ∈F lab[ f ,γ ](x1)〉→ ζ ′
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in R2, where:

ϕ′ is obtained from ϕ by changing every subformula labf (x1) into the for-
mula

∨
γ∈� lab[ f ,γ ](x1), and every subformula ∃y.soni(y,x1) into the formula∨

j∈[n] ∃y.sonn(i−1)+j(y,x1); and
ζ ′ is obtained from ζ by changing every triple 〈q′,up,ε〉 into 〈q′,up〉,

every triple 〈q′,stay,γ 〉 into 〈q′,stay〉, and every triple 〈q′,downi,γ γj〉 into
〈q′,downn(i−1)+j〉.

It is clear that τM (s)= τM2(τM1(s)) for every s ∈ T (F).

Thus, P-DTWT⊆ DTWT↓ ·DTWT. It is straightforward to show that this is, in
fact, an equality (see also Theorem 8.22).

From Theorems 8.13 and 8.15 we obtain the next result.

Theorem 8.16 The class DMSOT is included in the class DTWT↓ ·DTWT. �

This theorem can be strengthened to a characterization of DMSOT in terms of
tree-walking transducers, which can be viewed as a generalization of Theorem 1.16
to transductions. We omit the complicated proof (see [EngMan03a], as explained in
Section 8.10). Recall from Section 8.1.1 that, trivially, every MS-transduction is of
linear size increase. The class DTWT↓ ·DTWT contains transductions that are not
of linear size increase, because even DTWT↓ does, cf. Examples 8.5 and 7.3(4).
The characterization is that DMSOT and DTWT↓ ·DTWT have the same expres-
sive power with respect to transductions of linear size increase. In other words, the
monadic second-order transductions of terms are exactly the transductions of lin-
ear size increase that are computed by the composition of two tree-walking tree
transducers, the first of which is a top-down tree transducer.

Theorem 8.17 A transduction τ of terms is in the class DMSOT if and only if
(1) τ is in the class DTWT↓ ·DTWT and (2) τ is of linear size increase. �

Of course, as a special case, this result also holds for term-to-word transductions,
i.e., DMSOTW equals the class of transductions of linear size increase in DTWT↓ ·
DTWTW.

It is also shown in [EngMan03a], by the same complicated proof, that it is decidable
for τ ∈ DTWT↓ ·DTWT (given as a composition of two tree-walking transducers)
whether or not τ is of linear size increase, i.e., whether or not it is in DMSOT; and if
so, a definition scheme for τ can be constructed.

We now show that every monadic second-order transduction of graphs of bounded
clique-width can be computed, on the level of terms over FVR, by a tree-walking
pushdown transducer (or by the composition of two tree-walking transducers, the
first of which is a top-down tree transducer). This can be viewed as a generalization
of the Weak Recognizability Theorem to transductions.
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Theorem 8.18 Let D1, D2 and C1 be finite sets of port labels with D1 ⊆ C1, and
let τ : GP[D1]→ GP[D2] be a parameterless monadic second-order transduction of
p-graphs, given by a definition scheme of type Rs,D1 →Rs,D2 . One can construct a
finite set of port labels C2 that includes D2 and a deterministic tree-walking pushdown
transducer M with input signature FVR

C1
and output signature FVR

C2
such that τ(val(t))=

val(τM (t)) for every t ∈T (FVR
C1

)withπ(val(t))⊆D1.Asimilar result holds for labeled
p-graphs.

Proof: By Proposition 7.30 and Theorem 7.14, the mapping val ·τ is a parameterless
monadic second-order transduction : T (FVR

C1
)→ GP[D2]. Hence, by Theorem 7.34

one can construct C2 and a parameterless (invertible) MS-transductionμ : T (FVR
C1

)→
T (FVR

C2
) such that val · τ = μ · val. By Theorem 8.13, μ can be computed by a

deterministic tree-walking pushdown transducer M .

Remark 8.19 (1) This result also holds for parameter-invariant monadic second-
order transductions of p-graphs (rather than parameterless ones). In that case the term
transduction μ is not parameterless (and in general not even parameter-invariant), but
can be replaced by a parameterless MS-transduction μ′ ⊆ μ such that Dom(μ′) =
Dom(μ), see Footnote 25 in the proof of Theorem 7.50.

(2) The result also holds for CMSi, j-transductions (Section 7.3), for each i and j,
additionally using Proposition 7.48 and Theorem 7.50. For instance, if τ : GP[D1]→
J S[D2] is a parameterless CMS1,2-transduction, then the transducer M has input
signature FVR

C1
and output signature FHR

C2
.

(3) Theorem 8.18 can also be used as an alternative way of evaluating a param-
eterless (and even parameter-invariant) monadic second-order graph transduction τ ,
using Theorem 8.14 instead of Theorem 7.29, see Remark 7.31(2). The input graph
is parsed, the resulting term t1 is translated into a term t2 for the output graph using
Theorem 8.14, and the value of t2 is computed (cf. Proposition 2.45). The advantage
of this method is that further transformations of the output graph need not parse that
graph, because t2 is still available. �

8.6 Multi bottom-up tree-to-word transducers

In this section we present an alternative tree transducer model for DMSOTW. It can
be viewed as an automaton on terms with infinitely many states and transition rules.
Thus, it operates in a bottom-up fashion. Instead of computing one word translation
of the input tree, it computes a finite number of translations simultaneously (which is
indicated by “multi”). At each node u of the input tree s, the finitely many translations
of the subtree s/u form, together with the finite state of the transducer, the state of the
infinite automaton. The translations at u are concatenations of letters of the output
alphabet and the translations at the sons u1, . . . ,uk of u. The words computed by the
transducer are not viewed as unary trees.
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Formally, a (complete and deterministic) multi bottom-up tree-to-word transducer
(abbreviated mbott) is a tuple M = (F ,B,Q,X ,xout,δ,Acc), where F is a functional
signature of input symbols, B is an alphabet of output symbols, Q is a finite set of
states, Acc ⊆ Q is the set of accepting states, X is a finite set of variables, xout ∈ X
is the output variable and δ is a finite set of transition rules. A transition rule is of the
form f [q1, . . . ,qk ]→ [q,α], where k ≥ 0, f ∈ Fk , q1, . . . ,qk ,q ∈Q and α is a mapping
: X → ((X × [k])∪B)∗. For every q1, . . . ,qk and every f ∈ Fk there is exactly one
pair [q,α] such that f [q1, . . . ,qk ] → [q,α] is in δ (which means that M is complete
and deterministic). We will denote [q,α] by δf (q1, . . . ,qk).

Amappingα : X→ ((X×[k])∪B)∗ can be viewed as a set of assignments x :=α(x)
for x ∈ X , where α(x) is of the form w0〈x1, i1〉w1 · · · 〈xn, in〉wn with n ≥ 0, wj ∈ B∗
for j ∈ [0,n], xj ∈X and ij ∈ [k] for j ∈ [n]. If the above rule is used at a node u with
sons u1, . . . ,uk , then the pair 〈x, i〉 stands for the variable x of the i-th son (and x for
the one of the father).

To define the runs of the mbott M we use the (complete and deterministic) infinite
F-automaton AM = 〈F ,Q∞,δ∞,Acc∞〉. The set Q∞ of states of AM consists of
all pairs 〈q,β〉 such that q ∈ Q and β is a valuation, i.e., a mapping : X → B∗.
Such a pair is called a configuration of M ; intuitively, β(x) is the current value
of the variable x. If f [q1, . . . ,qk ] → [q,α] is a transition rule in δ and β1, . . . ,βk

are valuations, then δ∞ contains the transition rule f [〈q1,β1〉, . . . , 〈qk ,βk 〉]→ 〈q,β〉,
where β is the valuation defined as follows: if x := w0〈x1, i1〉w1 · · · 〈xn, in〉wn is an
assignment of α, then β(x)= w0βi1(x1)w1 · · ·βin(xn)wn. The set Acc∞ of accepting
states consists of all configurations 〈q,β〉 with q ∈ Acc. The runs of M are the runs
of AM . The transduction computed by M , denoted τM , is defined as

τM :=
⋃

q∈Acc

{(s,β(xout)) ∈ T (F)×B∗ | s ∈ L(AM , 〈q,β〉)}.

Note that L(AM ) is the domain of τM ; obviously, it is a regular language (because
the values of the variables do not influence the runs of AM ).

The mbott M is a one-way multi word transducer if F is unary. Then M computes
the word transduction {(v,w) ∈ A∗ × B∗ | (μA(v),w) ∈ τM }, where A = F − {ε}. It
can be viewed as having a one-way input tape, on which it walks from right to left.

The mbott M is linear if every set α of assignments is linear, i.e., if each 〈x, i〉
occurs at most once in α(x1) · · ·α(xm), where X = {x1, . . . ,xm}. Intuitively, such a
transducer is “single-use” in the sense that, for a run of M , the value of each variable
in a configuration of that run is used at most once as a subword of the output word.
To formally define the single-use property, we need some more notation.

Let s∈T (F). For a node u∈Ns we denote by runM ,s(u) the state in which M reaches
u: the first component of runAM ,s(u). By αu we denote the set of assignments that is
used by M when reaching u: the second component of δf (runM ,s(u1), . . . ,runM ,s(uk)),
where u has label f and sons u1, . . . ,uk . We now define a binary relation γ (u) on the
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set of variables X . Intuitively, (x,y) is in γ (u) if the current values of x and y both
contain as a subword the value of a variable z at some proper descendant of u; we
say that x and y are linked and that γ (u) is a linking relation. Formally, γ (u) is the
set of all (x,y) such that αu(x) has an occurrence 〈x′, i〉 and αu(y) has an occurrence
〈y′, i〉 (with the same i ∈ [k]) and either x′ = y′ or (x′,y′) ∈ γ (ui). We now define an
mbott to be single-use by forbidding it to use a variable (of a son) twice or to use two
linked variables (of a son) in the right-hand side of an assignment.

The mbott M is single-use if for every s ∈ T (F), u ∈ Ns and x ∈X ,

(1) each 〈y, i〉 has at most one occurrence in αu(x), and
(2) if 〈y, i〉 and 〈z, i〉 (with the same i ∈ [k] and y �= z) both occur in αu(x),

then (y,z) /∈ γ (ui).

It is clear that the transduction computed by a single-use mbott M is of linear size
increase. ByDMBOTlsi wewill denote the class of transductions of linear size increase
that are computed by mbotts, by DMBOTsu the class of transductions computed by
single-use mbotts, and by DMBOTlin the class of transductions : T (F)→ B∗ of the
form {(s,w) | (#(s),w) ∈ τM }, where M is a linear mbott with input signature F ∪{#}
and # is a special unary function symbol not in F (which, intuitively, allows M
to recognize “the end of the input”). For the one-way multi word transducers the
corresponding classes are denoted 1DMWTlsi, 1DMWTsu and 1DMWTlin.

Example 8.20 We construct a single-use mbott M = (F ,B,Q,X ,xout,δ,Acc) that
computes the transduction σ ′ : T (F)→ B∗ from Example 8.4, where B= {a1,a2,b}
and F = { f } ∪ B with f ∈ F2 and a1,a2,b ∈ F0. For every s ∈ T (F), if yd(s) =
w0bw1bw2 · · ·bwn, with wi ∈ {a1,a2}∗, then σ ′(s) :=w0w0bw1w1bw2w2 · · ·bwnwn.

The mbott M has states b and a, both accepting; when M reaches node u of s, it
is in state b if u has a descendant with label b, and in state a otherwise. It has six
variables: l1, l2, m, r1, r2 and xout. If yd(s/u)=w0bw1bw2 · · ·bwn, then the value of
both l1 and l2 is w0, the value of m is bw1w1bw2w2 · · ·b, the value of both r1 and r2

is wn, and the value of xout is σ ′(s/u). The transition rules of M are as follows:

b→[b,αb], ai→[a,αai ] for i= 1,2,

f [a,a]→ [a,αa,a], f [a,b]→ [b,αa,b],
f [b,a]→ [b,αb,a] and f [b,b]→ [b,αb,b].

The set of assignments αb is l1 := ε, l2 := ε, m := b, r1 := ε, r2 := ε and xout := b,
and the set of assignments αa1 is l1 := a1, l2 := a1, m := ε, r1 := a1, r2 := a1 and
xout := a1a1. The set of assignments αb,b is as follows:

l1 := 〈l1,1〉, l2 := 〈l2,1〉,
m := 〈m,1〉〈r1,1〉〈l1,2〉〈r2,1〉〈l2,2〉〈m,2〉,
r1 := 〈r1,2〉, r2 := 〈r2,2〉,
xout := 〈l1,1〉〈l2,1〉αb,b(m)〈r1,2〉〈r2,2〉.

The other sets of assignments are similar.
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If the assignments to xout would not be there, M would be linear. Since xout is not
used in the right-hand sides of assignments, this implies that M is single-use. We note
that this way of handling xout can be used to show that DMBOTlin ⊆ DMBOTsu:
a linear mbott realizing the same transduction as M has assignments xout := ε,
except in the additional transition rules #[a] → [a,α#,a] and #[b] → [b,α#,b]: in the
first rule xout := 〈l1,1〉〈l2,1〉, and in the second rule xout := 〈l1,1〉〈l2,1〉〈m,1〉〈r1,1〉
〈r2,1〉. �

In the next theorem we present the characterization of MS tree-to-word transduc-
tions by single-use mbotts. By restricting to unary input signatures, the MS transduc-
tions of words are characterized by single-use one-way multi word transducers (as an
alternative to Theorem 8.10).

Theorem 8.21 The classes DMSOTW and DMBOTsu are equal, and so are the
classes DMSOW and 1DMWTsu.

Proof: We first show the inclusion DTWTWMS ⊆DMBOTsu, cf. Theorem 8.6. Let
M = (F ,H ,Q,qin,R) be a nonjumping deterministic MS tree-walking tree-to-word
transducer (cf. Theorem 8.7), and let B :=H −{ε}. Let q be the maximal quantifier-
height of the tests ϕ in the left-hand sides of the rules of M , and let A = 〈F ,QA ,δA 〉
be the complete and deterministic finite F-semi-automaton A such that for every
s ∈ T (F) and u ∈ Ns, runA ,s(u)= Th↓s (u) (cf. the proofs of Theorems 8.9 and 8.12).
Note that QA =P(L1).

We will construct a single-use mbott M ′ = (F ,B,Q′,X ,xout,δ,Acc) that com-
putes the same tree-to-word transduction as M . To ensure that M ′ is single-use,
it computes the linking relation γ (u) in its state. The set of states Q′ of M ′
is defined to consist of all triples 〈p,σ ,γ 〉 such that p ∈ QA , σ is a mapping
: Q×P(L′1)→ Q ∪ {@,⊥} (called a transition table of M ) and γ ⊆ X ×X . Intu-
itively, when M ′ reaches node u ∈ Ns, the transition table σ means the following: if
σ(q,Th↑s (u))= q′ ∈Q then the transducer M , when started in state q at node u, has a
computation on s/u that ends by moving up to the father of u in state q′; moreover,
if σ(q,Th↑s (u)) =@ then the computation of M does not leave s/u and is success-
ful, and if σ(q,Th↑s (u)) = ⊥ then the computation of M does not leave s/u and is
unsuccessful (i.e., aborts or is infinite). The set Acc of accepting states is defined
to consist of all triples 〈p,σ ,γ 〉 such that σ(qin,Th↑rt) =@, where Th↑rt is the root
theory.

The set of variables X of M ′ is defined to be Q×P(L′1). Intuitively, when M ′
reaches node u∈Ns, the value of the variable 〈q,Th↑s (u)〉 is the output word in B∗ that
is produced by M during the above-mentioned computation (if σ(q,Th↑s (u)) �= ⊥;
otherwise the value is ε). The output variable xout is defined to be 〈qin,Th↑rt〉.

It remains to define the transition rules of M ′. Consider a left-hand side
f [〈p1,σ1,γ1〉, . . . , 〈pk ,σk ,γk〉] of a rule of M ′. Intuitively, M ′ has reached (simul-
taneously) the sons u1, . . . ,uk of a node u ∈ Ns (for some input tree s), it knows
p1 := Th↓s (u1), . . . ,pk := Th↓s (uk) and it knows the transition tables σ1, . . . ,σk of
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u1, . . . ,uk . It additionally knows the linking relations γ1 = γ (u1), . . . ,γk = γ (uk )

and it knows the following: for P := Th↑s (ui), if the variables 〈q1,P〉 and 〈q2,P〉 are
linked at ui, i.e., (〈q1,P〉, 〈q2,P〉) ∈ γi, then the corresponding computations of M on
s/ui both contain the same subcomputation corresponding to a variable 〈q′,P′〉 at a
proper descendant of u. These facts can be formally proved by bottom-up induction
on u; we omit the details. Note that M ′ does not know Th↑s (u), but is prepared for
every possible Th↑s (u).

We will construct the right-hand side [〈p,σ ,γ 〉,α] of the rule. First, we define p to be
δA (p1, . . . ,pk ), i.e., M ′ computes Th↓s (u) in the first component of its state. Let us now
define σ(q,P) andα(〈q,P〉) for given q∈Q and P⊆L′1. We let Th :=Zf (P,p1, . . . ,pk )

and, for i ∈ [k], Thi := Zf ,i(P,p1, . . . ,pi−1,pi+1, . . . ,pk), cf. Section 8.1.3; thus, if
P = Th↑s (u), then Th= Ths(u) and Thi = Th↑s (ui). We now start a simulation of the
transducer M , starting in state q. During this simulation, we keep track of the current
state of M (initialized to q) and of the current prefix of α(〈q,P〉) constructed sofar
(initialized to the empty word ε). Moreover, we keep track of the current position
of M : the father or the i-th son (initialized to the father). If M is at the father and
the current state is q′, then the applicable rules of M are of one of the three forms
〈q′,ϕ〉→ 〈q′′,ψ〉, or 〈q′,ϕ〉→ b(〈q′′,ψ〉), or 〈q′,ϕ〉→ ε, such that ϕ̂ is in Th (where
ψ is stay, up, or downi). If there is no such rule, or there are two or more, then
we abort the simulation, i.e., we end the simulation and define σ(q,P) to be ⊥ and
α(〈q,P〉) to be ε. Now assume that there is exactly one such rule. If it is of the third
form, we end the simulation and define σ(q,P) to be @ and α(〈q,P〉) to be the current
prefix. If the rule is of the first or second form, then we change the current state to q′′,
and we add b to the current prefix in the second case. Moreover, if ψ is downi, we
change the current position to the i-th son; ifψ is up, we end the simulation and define
σ(q,P) to be the current state and α(〈q,P〉) to be the current prefix. Now let (our
simulation of) M be at the i-th son in state q′. If the current prefix has an occurrence of
a variable 〈〈q,Thi〉, i〉 of the i-th son such that (〈q,Thi〉, 〈q′,Thi〉) ∈ γi, then we abort
the simulation, as above, because the computation of M on s/u contains a certain
subcomputation on s/ui twice, and hence is infinite. Otherwise, let q′′ := σi(q′,Thi).
If q′′ = ⊥, then we abort the simulation, as above. If q′′ =@, then the simulation
ends and we define σ(q,P) to be @ and α(〈q,P〉) to be the current prefix to which
〈〈q′,Thi〉, i〉 is added: the variable 〈q′,Thi〉 at the i-th son. If q′′ ∈Q, then we change
the current state to q′′ and the current position to the father, and we add 〈〈q′,Thi〉, i〉 to
the current prefix. The only remaining problem is that the simulation can be infinite.
Since M is deterministic, this can only happen when there is a repetition of the pair
consisting of the current state and the current position. In that case we abort the
simulation, as above.

Finally, we define γ in the same way as we defined γ (u): γ is the set of all
(x,y) ∈ X ×X such that α(x) has an occurrence 〈x′, i〉 and α(y) has an occurrence
〈y′, i〉 (with the same i ∈ [k]) and either x′ = y′ or (x′,y′) ∈ γi. It ensures that M ′
computes γ (u) in the third component of its state.
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This ends the construction of M ′. It should be clear from this construction, and
the given intuitive comments, that M ′ “simulates” M and thus computes the same
transduction as M . To show that M ′ is single-use, we first check Condition (1) in the
definition of single-use (given in the second paragraph before Example 8.20). If, in
the above construction of α(〈q,P〉), the variable 〈〈q′,Thi〉, i〉 of the i-th son would be
added for the second time to the current prefix, then the pair consisting of the current
state (q′) and the current position (the i-th son) repeats, and thus α(〈q,P〉) = ε.
Condition (2) holds by the construction of M ′.

For the proof of the inclusion DMBOTsu ⊆ DTWTWMS, consider a single-use
mbott M = (F ,B,Q,X ,xout,δ,Acc). For s ∈ T (F) and u ∈ Ns, we define the set of
variables var(u) ⊆ X by top-down induction on u, as follows: var(roots) is {xout}
and if u has sons u1, . . . ,uk , then var(ui) consists of all y ∈ X such that 〈y, i〉 has an
occurrence in αu(x) for some x ∈ var(u). Intuitively, var(u) is the set of variables
of which the value at u is used to compute the output word. It follows from the
definitions (with a proof by top-down induction on u) that (x,y) /∈ γ (u) for distinct
variables x,y ∈ var(u). Hence, again by the definitions, for each y ∈ var(ui) there
is a unique x ∈ var(u) such that 〈y, i〉 occurs in αu(x). We construct a nonjumping
deterministic MS tree-walking tree-to-word transducer M ′ := (F ,H ,Q′,qin,R) that
uses its MS tests to compute αu and var(u) at each node u. It can do this because
for each q ∈ Q an MS formula expressing that runM ,s(u)= q can be constructed as
in the proof of Theorem 5.15 (since M has a unique run on s). Then, for each set of
assignments α, an MS formula can be constructed expressing that αu = α, and from
that one can construct, for each Y ⊆X , an MS formula expressing that var(u)= Y ,
in a way similar to the proof of Theorem 5.15 (but top-down instead of bottom-up).

The unary output signature H of M ′ is B∪ {ε}. In the construction of M ′ we will
assume, without loss of generality, that it has rules of the form 〈q,ϕ〉 → w(〈q′,ψ〉)
for arbitrary w ∈ B∗, meaning that w is written to the output; using auxiliary states
such a rule can easily be changed into a finite number of official rules, each of them
writing one letter to the output. The set of states Q′ of M ′ is X ×({↓}∪{↑i| i ∈ ρ(F)})
with qin := 〈xout,↓〉. Intuitively, if M ′ is at node u in state 〈x,↓〉, then it starts writing
the value of the variable x at u to the output; if it is in state 〈x,↑i〉 at node u, then it
has just finished writing the value of x at the i-th son of u to the output. It is always
the case that x ∈ var(u); in particular, if u is the root, then x= xout. We now describe
the rules of M ′, in an informal way.

Let M ′ be at node u in state 〈x,↓〉 and let αu(x) = w0〈x1, i1〉w1 · · · 〈xn, in〉wn. If
n > 0, then M ′ outputs w0 and moves down to the i1-th son in state 〈x1,↓〉. If n= 0
and u is not the root, then M ′ outputs w0 and moves up in state 〈x,↑i〉 to its father
(of which it is the i-th son). If n= 0 and u is the root, then M ′ outputs w0 and halts
(using a rule 〈〈x,↓〉,ϕ〉→ ε).

Let M ′ be at node u in state 〈y,↑i〉. Then M ′ determines the unique x ∈ var(u) such
that 〈y, i〉 occurs in αu(x). Let αu(x)=w0〈x1, i1〉w1 · · · 〈xn, in〉wn and let 〈y, i〉= 〈xj , ij〉.
If j < n, then M ′ outputs wj and moves down to the ij+1-th son in state 〈xj+1,↓〉. If
j = n and u is not the root, then M ′ outputs wn and moves up in state 〈x,↑b〉 to its



610 Transductions of terms and words

father (of which it is the b-th son). If j = n and u is the root, then M ′ outputs wn and
halts.

This ends the description of M ′. It should be clear that it computes the same
transduction as M .

The one-way multi word transducer walks from right to left on its input tape.
However, we may as well assume that it walks from left to right, as usual, because
if τ is a deterministic MS-transduction of words, then so is {(̃v,w) | (v,w) ∈ τ },
cf. Example 8.4.

As observed in Section 8.1.1, DMSOT is contained in DMSOTW. Hence we
obtain from Theorem 8.21 that DMSOT ⊂ DMBOTsu. Thus, all deterministic
MS-transductions of terms can be implemented on the single-use mbott, as an alter-
native to the tree-walking pushdown transducer (Theorem 8.13) or the composition
of two tree-walking transducers (Theorem 8.17). In particular, by (the proof of)
Theorem 8.18, every monadic second-order transduction of graphs of bounded clique-
width can be computed, on the level of terms, by a single-use mbott. It should be
noted that the values of the variables of an mbott that computes a tree transduction,
need not be subtrees of the output tree (but they are subwords of the output term). A
characterization of DMSOT as a subset of DMBOTsu is not known.

The multi bottom-up tree transducer was introduced in [FülKV04]. It is the mbott
with an output signature (rather than alphabet), such that for every assignment x :=
α(x) the right-hand side α(x) is a term, where each variable 〈x, i〉 of a son has arity 0.
The linear version of the multi bottom-up tree transducer is studied in [FülKV05] and
[EngLM].

This section was inspired by [AluČer] and [AluDan]. In [AluČer] the linear one-
way multi word transducer is introduced (called streaming string transducer), as
a model for the computation of deterministic MS-transductions of words, and it is
shown that DMSOW= 1DMWTlin. In [AluDan] a generalization of the linear mbott
(called streaming tree transducer) is presented, as a model for the computation of the
transductions in DMSOTW. It is not clear whether DMSOTW = DMBOTlin. Note
that Theorem 8.21 also holds with subscript “lsi” instead of “su,” as can be concluded
from the main result of [FülKV04], Theorems 7.1 and 7.4 of [EngMan03a], and
Theorem 7.7 of [EngMan99] (recall from the paragraph before Example 8.20 that
“lsi” stands for linear size increase).

8.7 Attribute grammars and macro tree transducers

The formalisms used in the litterature to prove the results on MS-transductions of
terms in Sections 8.3, 8.4 and 8.5 (as opposed to those on MS-transductions of words)
differ from the tree-walking transducer and the tree-walking pushdown transducer:
instead, they are the attribute grammar and the macro tree transducer. Here we
have proved those results using the tree-walking transducer as a formal model for
two reasons: (1) to have uniform proofs for words and terms, and (2) to avoid the
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rather complicated definitions of attribute grammar and macro tree transducer. In this
section we discuss these formalisms, without going into details.

The attribute grammar is a compiler construction tool (see, e.g., [*AhoLSU],
[*DeraJL] and [*WilMau]) introduced in [Knu]. It is essentially a deterministic tree-
walking transducer M of which the states are called attributes. The value of an attribute
q at a node u of the input tree is the term computed by M when started at node u in state
q, interpreted in some semantic domain (i.e., in an H -algebra, where H is the output
signature). The transduction computed by the attribute grammar consists of all pairs
(s,v) such that v is the value of the attribute qin at the root of the input tree s. The input
tree is restricted to be a parse tree of a given context-free grammar, and the attributes
are divided into synthesized and inherited attributes: states in which the transducer
M , roughly speaking, walks down and up the tree, respectively. This division of states
is not essential, but allows a specification of the rules of M that is local to the rules
of the context-free grammar. The attributed tree transducer (see [*FülVog], [Fül])
allows arbitrary trees over some input signature, and does not interpret the output
term, but retains synthesized and inherited attributes. The current version of the tree-
walking transducer, without the distinction between synthesized and inherited states,
is introduced in [MilSV] as a model of XML transformations. In that paper, it is
in addition equipped with a finite number of pebbles that it can drop on the nodes
of the input tree (which is why it is called the pebble tree transducer). We stress
here that the attribute grammar, the attributed tree transducer, and the tree-walking
transducer are essentially notational variations of the same formalism. The precise
formal relationship between the latter two transducers is explained in Section 3.2 of
[EngMan03b]. The deterministic tree-walking transducer is slightly more powerful
than the deterministic attributed tree transducer, because the latter is assumed to be
“noncircular,” which means that every attribute has a value at every node, i.e., that
the transducer always halts when started at any node in any state.

The tree-walking tree-to-word transducer was introduced in [AhoUll71], as a model
of syntax-directed translation. It can be viewed as an attribute grammar of which the
values of the attributes are words in the algebra Wleft(A) for some alphabet A. The
main result of [AhoUll71] is in essence the equality DTWTWMS = DMBOTlsi (cf.
the end of the previous section). The multi bottom-up tree-to-word transducer can be
viewed as a two-phase process: phase 1 computes the state components of the run of
the transducer on the input tree, and phase 2 is an attribute grammar with synthesized
attributes only, of which the values are words in the algebra W(A) (also called a
“generalized syntax-directed translation scheme”).

To appreciate the relationship of Theorems 8.13, 8.16 and 8.17 to the littera-
ture, it is necessary to discuss the macro tree transducer [*Eng80], [CouFra] and
[EngVog85], which was introduced as a formal model of denotational semantics. The
macro tree transducer is obtained from the top-down tree transducer by letting its
states (which can be viewed as recursive function procedures) have parameters of
type “output tree”; for a formal definition that is close to the tree-walking transducer,
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see [EngMan03b]. Here we can explain the deterministic macro tree transducer in a
different way, as a generalization of the multi bottom-up tree-to-word transducer: we
allow the variables of the mbott to have terms as values, instead of words. To give
more details, and to avoid confusion, we will from now on say that the mbott has
registers rather than variables. Then, a deterministic macro tree transducer is a tuple
M = (F ,H ,Q,X ,xout,δ,Acc), defined in the same way as the mbott, except that both
H (the set of output symbols) and X (the set of registers) are functional signatures,
and xout has arity 0. If the register x has rank n, then its values are terms with vari-
ables in T (H ,{y1, . . . ,yn}), where we use y1,y2, . . . (not in X ) as standard variables,
also called parameters. Moreover, a set of assignments α (used in a transition rule)
consists of assignments x := α(x) with α(x) ∈ T ((X ×[k])∪H ,{y1, . . . ,yn}) if x has
arity n, where each 〈x′, i〉 ∈X ×[k] has the same arity as x′. The value β(x) of register
x at a father node is obtained by applying to α(x) the second-order substitution that
interprets each 〈x′, i〉 as the derived function defined by the term with variables βi(x′)
(the value of register x′ at the i-th son).

For readers familiar with the macro tree transducer we note that in the usual formu-
lation of a macro tree transducer, X is called the set of states, xout the initial state, and
Q is the set of states of a “look-ahead automaton” employed by the transducer (so it is
actually a macro tree transducer with “regular look-ahead,” cf. [EngVog85]). A tran-
sition rule f [q1, . . . ,qk ] → [q,α] in δ combines the transition rule f [q1, . . . ,qk ] → q
of the look-ahead automaton with the rules x := α(x) of the macro tree transducer for
input symbol f . Note that if all registers have arity 0, we obtain the multi bottom-up
tree transducer of [FülKV04]. The main result of [FülKV04] is that it has the same
power as the deterministic top-down tree transducer with “regular look-ahead.”

Let DMT denote the class of tree transductions computed by deterministic macro
tree transducers (it is denoted DMTOI in [EngVog85]). The proof of Theorem 8.21
can be generalized to show that DTWTMS ⊆DMT. In fact, the macro tree transducer
has the same power as the tree-walking pushdown transducer, as shown for total
functions in Theorem 5.16 of [EngVog86].13 For partial functions we now fill a gap
in the litterature, for completeness sake.

Theorem 8.22 The classes DMT, P-DTWT and DTWT↓ ·DTWT are equal.

Proof: InTheorem 6.18 of [EngVog85] it is shown that every τ ∈DMT can be written
as τ = τ1 ·τ2, where τ1 is the identity on some regular set R of trees, and τ2 ∈DMT is
a total function and hence τ2 ∈ P-DTWT by Theorem 5.16 of [EngVog86]. It should
be clear that τ1 · τ2 is in P-DTWT: the p-twt just starts by checking that the input
tree is in R (see the proof of Theorem 8.12). This proves that DMT ⊆ P-DTWT.
The inclusion P-DTWT⊆ DTWT↓ ·DTWT is shown in Theorem 8.15. Finally, the
inclusion DTWT↓ ·DTWT⊆DMT follows fromTheorem 35 of [EngMan03b] (which

13 In that theorem, one should take the storage type S to be the tree storage type TR (as defined in
Definition 3.17 of [EngVog86]).
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shows, for n = 0, that DTWT ⊆ DMT) and Theorem 7.6(3) of [EngVog85] (which
shows that DTWT↓ ·DMT⊆DMT).

Thus, by Theorem 8.17, DMSOT is the class of deterministic macro tree trans-
ductions of linear size increase, and, by Theorem 8.18, every monadic second-order
transduction of graphs of bounded clique-width can be computed, on the level of
terms, by a deterministic macro tree transducer.

8.8 Nondeterminism

We will denote the classes of transductions computed by nondeterministic devices
(in particular, by definition schemes with parameters) by dropping the D from the
notation for the corresponding deterministic devices.

We first note that the nondeterminism of MS-definition schemes is different in
nature from that of tree-walking transducers. This is so because (the semantics of)
a definition scheme uses a global guess of the values assigned to the parameters,
whereas a transducer makes a local guess whenever it visits an input node. It can
make different guesses at different visits to the same node. Since, for a given input
term s, each parameter has 2|s| possible values, every transduction τ in MSOT has
finite images, i.e., τ(s) is finite for every input s. This follows also from the fact that
τ is of linear size increase, cf. Section 8.1.1.

Proposition 8.23 The classes MSOW and 2GSM are incomparable. Hence, the
classes MSOT and TWTMS

su are incomparable.

Proof: Obviously, two-way finite-state transducers can compute transductions that
do not have finite images, for instance, the one that translates the word a (consisting
of one symbol a) into the words an for all n ∈N . In fact, even one-way finite-state
transducers can do that, see also Example 8.3. Hence, 2GSM is not included in
MSOW.

To show that MSOW is not included in 2GSM, consider the transduction τ of words
from A∗ :={a}∗ to B∗ :={b,c,#}∗ such that for every n∈N , we have τ(an) :={w#w |
w ∈ {b,c}∗, |w| = n}. It is clear that τ ∈MSOT: the definition scheme is 2-copying
and has one parameter, which indicates for each input position whether it will be
relabeled with b or c. This transduction cannot be computed by a two-way finite-state
transducer. Intuitively, that is because the transducer would have to visit each input
position twice, but, in general, cannot make the same choice (b or c) during the two
visits. Formally, assume that τ is computed by such a transducer M with k states.
Choose n such that 2n > k(n+ 1). Consider the behavior of M on input μA(an), i.e.,
the unary term a(a(· · ·a(ε) · · ·)). Clearly, M has k(n+1) configurations on this input
tree. Now consider the configuration of M when it has just produced the output node
with label #. As there are 2n possible output words w#w for an, there exist two words
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w1 and w2 for which this configuration is the same. This means that, on input μA(an),
M can switch its computation of w1#w1 halfway to the computation of w2#w2, thus
producing output w1#w2, a contradiction.

Since the nondeterminism of an MS-transduction just consists of choosing the
values of the parameters, it can easily be expressed as a (nondeterministic) relabeling
of terms, cf. Proposition 7.24(2). Let REL be the class of all relabelings π−1

F ,n, where
F is a functional signature and n ∈N (cf. the end of Definition 7.20).

Proposition 8.24 The classes MSOT and REL ·DMSOT are equal.

Proof: The inclusion MSOT ⊆ REL · DMSOT is immediate from Proposi-
tion 7.24(2). The other inclusion follows from the fact that REL ⊆MSOT and the
closure of the class MSOT under composition.

In view of this proposition, the nondeterministic case is not as interesting as the
deterministic case. The results for DMSOT can be turned into results for MSOT by
composition with REL. In particular, MSOT = REL ·DTWTMS

su by Theorem 8.6,
MSOT⊂ REL ·P-DTWT by Theorem 8.13, and MSOT is the class of transductions
in REL ·DTWT↓ ·DTWT of linear size increase by Theorem 8.17 (because π−1

F ,n is
size preserving, and π−1

F ,n(t) �= ∅ for every t ∈ T (F)).
For MSOW a similar, but slightly more complicated version of Proposition 8.24

holds (see Theorem 19 of [EngHoo01]). Identifying ( f ,(0, . . . ,0)) ∈ F (n) with f ∈ F ,
we obtain that τ(ε) is a singleton for every word transduction τ in REL ·DMSOW,
because the constant symbol ε in the unary input tree can only be relabeled by
(ε,(0, . . . ,0)), and so REL ·DMSOW is a proper subset of MSOW. Thus, for words,
a class slightly larger than REL is needed.

8.9 VR-equational sets of terms and words

Having characterized the MS-transductions of terms, we can apply the Equational-
ity Theorem (Theorem 7.36) to obtain an automata-theoretic characterization of the
VR-equational sets of terms. Aset of terms L⊆ T (F) is defined to be VR-equational if
the set of (F , [ρ(F)])-labeled graphs {Syn(t) | t ∈ L} is VR-equational. A similar def-
inition holds for sets of words, viewed as unary trees. Since �t� = �Syn(t)� for every
term in T (F), we obtain from the Equationality Theorem that L is VR-equational if
and only if it is the image of trees under an MS-transduction from graphs to terms.
From Corollary 7.37 it then follows that the class of VR-equational sets of terms is
preserved under MS-transductions of terms. In particular, the class of VR-equational
sets of words is preserved under MS-transductions of words (see the discussion in
the introduction of this chapter).

The HR-equational sets of terms (and words) can be defined in the same way. From
the Equationality Theorem for the HR algebra (Theorem 7.51) one then obtains that
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L is HR-equational if and only if it is the image of trees under an MS1,2-transduction
from graphs to terms. Since for terms and words the MS1,2-transductions and MS-
transductions are the same (see Section 7.3), the HR-equational sets of terms or words
are the same as the VR-equational ones (as also shown in [EngHey94], for hyperedge
replacement and vertex replacement context-free graph grammars).

To characterize the VR-equational sets of terms and words, we first prove an
additional characterization of the MS-transductions of terms. Let MSOT-REL denote
the class of monadic second-order relabelings of terms, cf. Definition 7.20. As usual,
DMSOT-REL denotes the restriction to parameterless definition schemes.

Theorem 8.25 The classes DTWTMS
su and DMSOT-REL ·DTWTsu are equal.

Proof: The inclusion from right to left follows from Theorem 8.6 and the fact that
DMSOT is closed under composition. To prove the inclusion in the other direction, let
M = (F ,H ,Q,qin,R) be a deterministic single-use MS tree-walking transducer. By
Theorem 8.7 we may assume that M is nonjumping. Let ϕ1, . . . ,ϕn ∈MS(RF ,{x1})
be the formulas that are used in the left-hand sides of the rules of M . Recall the
notation from Definition 6.24(c). We will define a monadic second-order relabel-
ing τ from T (F) to T (F (n)) such that τ(s) = s ∗ γs, where γs is the assignment
{X1, . . . ,Xn}→P(Ns) with γs(Xi)= {u ∈Ns | �s� |= ϕi(u)} for every i ∈ [n]. Then M
can be changed into a (local) tree-walking transducer M ′ that receives τ(s) as input
and stepwise simulates M on input s: in the left-hand sides of its rules, it uses the
boolean information in the label ( f ,(w1, . . . ,wn)) of the current node (with wi ∈ {0,1})
instead of the tests ϕ1, . . . ,ϕn.

To ensure that M ′ is deterministic, we take τ from T (F) to T (F ′), where F ′
is the subset of F (n) consisting of the symbols ( f ,(w1, . . . ,wn)) such that for all
i, j ∈ [n], if ϕi and ϕj are mutually exclusive on T (F), then wi = 0 or wj = 0. The
parameterless definition scheme of τ has type RF → RF ′ and relation formulas
θlab( f ,(w1,...,wn))

equal to labf (x1)∧ (∧i∈[n],wi=1ϕi)∧ (∧i∈[n],wi=0¬ϕi). Note the sim-
ilarity with Definition 7.21. The tree-walking transducer M ′ is obtained from M by
changing, in the left-hand sides of its rules, each ϕi into the disjunction of all formu-
las lab( f ,(w1,...,wn))(x1) such that ( f ,(w1, . . . ,wn)) ∈ F ′ and wi = 1. Obviously, M ′ is
deterministic and single-use.

Theorem 8.26 The following equalities hold:

DMSOT=DMSOT-REL ·DTWTsu and MSOT=MSOT-REL ·DTWTsu.

Proof: The first equality is immediate from Theorems 8.6 and 8.25. The sec-
ond equality then follows from Proposition 8.24 and the fact that the equal-
ity REL · DMSOT-REL = MSOT-REL is an easy special case of that same
proposition.

Now we can characterize the VR-equational sets of terms and words. The class
of regular sets of terms is denoted REGT. For a class X of transductions, X (REGT)
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denotes {τ(L) | τ ∈ X , L∈REGT}, i.e., the images of the regular languages under the
transductions from X .

Theorem 8.27 Let L be a set of terms. The language L is VR-equational if and only
if it is in DTWTsu(REGT).

Proof: Let L⊆ T (H ) be VR-equational, where H is a functional signature. By the
Equationality Theorem (Theorem 7.36) and by Theorem 7.27(2), there is a functional
signature F and an MS-transduction τ , such that L= τ(T (F)). By Theorem 8.26 there
is a monadic second-order relabeling ρ and a transduction μ ∈ DTWTsu such that
L= μ(ρ(T (F))). Since T (F) is regular, ρ(T (F)) is regular by Proposition 7.22(3).
This shows that L ∈DTWTsu(REGT).

Now let L = μ(R) with μ ∈ DTWTsu and R ∈ REGT, such that L ⊆ T (H ) and
R ⊆ T (F). By Theorem 8.6, μ is in MSOT. Since R is MS-definable, we obtain
from μ by the Restriction Theorem (Theorem 7.16) an MS-transduction τ such that
L= τ(T (F)). Clearly, we may assume that F is a fat signature. By the Equationality
Theorem and Theorem 7.27(2), L is VR-equational.

In a similar way, using Theorems 7.41(1) and 7.27(1), it can be shown that a set of
terms is linear VR-equational if and only if it is the image of a regular set of words
under a deterministic single-use tree-walking transducer with a unary input signature
(i.e., a word-to-tree transducer).14

As an example, the set of terms {σ(cn(t),dn(t)) | t ∈ T (F), n = |yd(t)|} is
VR-equational, see Example 8.1. Similarly, an example of a linear VR-equational set
of terms is {σ(cn(μA(w))),dn(μA(w))) |w ∈ A∗, n= |w|}, where A is any alphabet.

Since deterministic tree-walking transducers with a unary output signature are
single-use, Theorem 8.27 immediately gives the next result. We denote by REGW
the class of regular word languages.

Theorem 8.28 Let L be a set of words. The language L is VR-equational if and
only if it is in DTWTW(REGT), and it is linear VR-equational if and only if it is in
2DGSM(REGW). �

By Theorems 8.21 and 8.6 these classes are the same as DMBOTsu(REGT)
and 1DMWTsu(REGW), respectively.15 The equality of DTWTW(REGT) and
DMBOTsu(REGT) is essentially stated in Corollary 4.11(i) of [EngRS] and due
to [AhoUll71] (cf. Section 8.7). Other characterizations of DTWTW(REGT) can
be found in Section 6 of [*Eng97]. A characterization of TWTW(REGT) as path
languages of VR-equational sets of graphs is proved in Theorem 28 of [EngOos96].

14 In the only-if direction one first obtains a transducer with a unary input signature that may have several
constant symbols, which can easily be replaced by one with a unary input signature that only has the
constant symbol ε.

15 It is straightforward to show that DMBOTsu(REGT)=DMBOTlin(REGT) and 1DMWTsu(REGW)=
1DMWTlin(REGW): a monadic second-order relabeling can add the set var(u) to the label of every
node u of the input tree (cf. the second part of the proof of Theorem 8.21); the mbott can then assign
the empty word to the variables not in var(u).
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Examples of linear VR-equational languages are {anbncndn | n≥ 0}, {ww̃ |w ∈A∗}
and {wk |w ∈ A∗} for each k ≥ 2, see Examples 8.2 and 8.4.

Remark 8.29 (1) In Theorems 8.27 and 8.28 one can replace REGT by the class of
tree languages T (F) where F is a functional signature (and similarly for REGW).
Thus, a set of terms is VR-equational if and only if it is the image (range) of a
transduction in DTWTsu, and similarly for words. This is proved as follows. Let M =
(F ,H ,Q,qin,R) be a single-use deterministic tree-walking transducer and let A =
〈F ,QA ,δA ,AccA 〉 be a finite automaton. We will construct a single-use deterministic
tree-walking transducer M ′ such that τM ′(T (F×QA ))= τM (L(A )), where F×QA

is the functional signature such that each 〈 f ,q〉 ∈F×QA has the same arity as f . First
we define the finite automaton A ′ := 〈F ×QA ,QA ,δ′,AccA 〉, where δ′ consists of
the rules 〈 f ,q〉[q1, . . . ,qk ] → q such that f [q1, . . . ,qk ] →A q. Clearly, the terms in
L(A ′) represent the accepting runs of A on the terms in L(A ). The transducer M ′
first checks that the input tree s belongs to L(A ′), using a depth-first walk verifying
that each node with label 〈 f ,q〉 has sons with labels 〈 f1,q1〉, . . . , 〈 fk ,qk〉 such that
f [q1, . . . ,qk ] →A q. Then it stepwise simulates M on the tree obtained from s by
changing every label 〈 f ,q〉 into f .

It can even be shown rather easily that REGT can be replaced by the singleton class
{T (F)}, where F is any fat signature (cf. Section 7.1.7). We omit the details.

(2) The class of context-free languages is properly contained in the class of VR-
equational languages (see Example 4.3(12) and see the discussion in the introduction
of this chapter). To show the containment, it is straightforward to transform a context-
free grammar into a hyperedge replacement grammar. Alternatively, Theorem 8.28
can be used as follows. Let G be a context-free grammar. It is well known, and easy to
see, that the set P(G) of parse trees of G is a regular language. Since L(G)= yd(P(G)),
where L(G) is the language generated by G from the initial nonterminal, and since
the yield mapping yd is in DTWTW (see Example 8.1), L(G) is in DTWTW(REGT)
and hence VR-equational. Note that for each k ≥ 2 the language {wk | w ∈ L(G)}
is also VR-equational: a tree-walking transducer can output the yield of the tree k
times. The language {anbncndn | n≥ 0} of Example 8.2 is a noncontext-free (linear)
VR-equational language.

(3) By Theorem 5.80, every VR-equational set L of terms (or words) has a decid-
able MS-satisfiability problem. As discussed in Section 7.5 (after Question 7.59),
this is equivalent to the fact that it is decidable for a finite automaton A whether
L∩L(A )= ∅. The latter problem is, in fact, decidable for every language L in
TWT(REGT) in exponential time (see [Eng09]). �

The use of the Equationality Theorem in the proof of Theorems 8.27 and 8.28 is not
essential. The term generating power of hyperedge replacement graph grammars was
first investigated in [EngHey92], where it is shown by a direct proof, not involving
MS logic, that DTWT(REGT) is the class of sets of terms that can be generated by
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HR grammars, if one allows the graph grammars to generate directed graphs without
circuits (i.e., trees with shared subtrees), cf. the discussion at the end of Section 8.3.
The construction transforms HR grammars and attribute grammars into each other
(see Section 8.7). From this construction Theorem 8.27 easily follows. The present
proof is given, also in terms of attribute grammars, in [BloEng00] (see Corollary 19).
The characterization in Theorem 8.28 of the VR-equational sets of words is shown
in [EngHey91] with a direct proof, not involving logic. The construction transforms
HR grammars and tree-walking tree-to-word transducers into each other. The word
generating power of HR grammars was first investigated in [HabKre] and Chapter V
of [*Hab], see also Section 2.5.2 of [*DreKH].

The advantage of tree-walking transducers over VR equation systems is that they
can be “programmed.” To show that a given language is VR-equational, it is usually
easier to describe the working of a tree-walking transducer than to construct a VR
equation system.

8.10 References

Words

The two-way finite-state transducer is a particular type of two-tape Turing machine.
It was first studied in [AhoUll70]. Lemma 8.8 is a general technique for two-way
machines, proved in Lemma 3 of [HopUll] (see also page 212 of [AhoHU]). Using
this lemma, it is shown in [ChyJák] that the class 2DGSM is closed under composition.

The incomparability of MSOW and 2GSM (Proposition 8.23) is Corollary 16 of
[EngHoo01]. It is shown in [EngHoo07] that a word transduction τ is in the class
MSOW if and only if (1) τ is in the class 2GSM · 2DGSM and (2) τ has finite
images.16 Moreover, it is decidable for τ ∈ 2GSM · 2DGSM (given as a compo-
sition of two two-way finite-state transducers) whether or not τ has finite images,
i.e., whether or not it is in MSOW; and if so, a definition scheme for τ can be
constructed. And finally, these results even hold for transductions τ that are compo-
sitions of arbitrarily many two-way finite-state transducers. It should also be noted
that, in the above statements, “has finite images” can be replaced by “is of linear size
increase.”

A Hennie machine is a two-way finite-state transducer that, like a Turing machine,
can write on its input tape. However, it may only visit each cell of its input tape
a bounded number of times. It is shown in [EngHoo01] that MSOW (DMSOW) is
the class of word transductions computed by nondeterministic (deterministic) Hennie
machines.

16 Since, obviously, every rational transduction is in 2GSM, this proves (and strengthens) the result
mentioned at the end of Example 8.3: a rational transduction is an MS-transduction if and only if it has
finite images.
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In [AluDes] it is shown that MSOW equals the class of nondeterministic streaming
string transductions, i.e., the word transductions computed by nondeterministic linear
one-way multi word transducers.

Terms

As discussed in Section 8.7, the tree-walking transducer is essentially the attribute
grammar of [Knu]. The single-use restriction was introduced (for attribute grammars)
in [Gan] and [Gie], where it is shown that single-use attributed tree transducers are
closed under composition.

The basic characterization DMSOT=DTWTMS
su of Theorem 8.6 is one of the main

results of [BloEng00]; more precisely, it is proved there, in terms of attribute gram-
mars, that DMSOT = DMSOT-REL ·DTWTsu, see Theorem 8.26. How to get rid
of jumps (Theorem 8.7) is shown in Theorems 8 and 9 of [BloEng97]. The class
DMSOT-REL is characterized in terms of finite-valued attribute grammars in Theo-
rem 3.7 of [NevBus] and in Theorem 10 of [BloEng00] (independently), and in terms
of compositions of bottom-up and top-down finite-state relabelings in Theorem 4.4
of [EngMan99] (cf. the discussion following Lemma 4.5). This implies Theorem 8.14
(as stated in Corollary 18 of [BloEng00]).

The tree-walking pushdown tree-to-word transducer (also called the checking tree-
pushdown transducer) was introduced in [EngRS] and the tree-walking pushdown
tree transducer (also called the indexed tree transducer or RT(P(TR))-transducer)
in [EngVog86]. The pushdown of such a transducer can be viewed as a pushdown
of (colored) pebbles: the pebbles are placed on the ancestors of the current node.
In [EngHS] the tree-walking pushdown tree transducer is generalized to a transducer
called i-ptt, which can place the pebbles anywhere on the input tree; it also generalizes
the pebble tree transducer of [MilSV]. The decomposition result of Theorem 8.15 is a
special case of Lemma 3 of [EngHS] (where the special case allows the first transducer
to be deterministic).

The inclusions of Theorems 8.13 and 8.16 are proved in [EngMan99] in the form
DMSOT⊆DMT, cf. Theorem 8.22. The characterization inTheorem 8.17 of DMSOT
as the class of transductions in DTWT↓ ·DTWT of linear size increase, is the main
result of [EngMan03a], where it is proved for DMT rather than for DTWT↓ ·DTWT.
The proof is for total functions only, but it should be clear from the proof of Theo-
rem 6.18 of [EngVog85] (cf. the proof of Theorem 8.22) that it then also holds for
partial functions: note that if a partial function τ is in DMSOT then it can be written
as τ = τ1 · τ2, where τ1 is the identity on some regular language, and τ2 ∈ DMSOT
is a total function (just view the precondition χ of the definition scheme for τ as
a separate transduction τ1, and take the definition scheme for τ2 to be the one of
τ with χ := True). It is announced in [Man] that the if-direction of Theorem 8.17
even holds for transductions τ that are compositions of arbitrarily many deterministic
tree-walking transducers (or macro tree transducers). In Theorem 7.1 of [EngMan99],
DMSOT is characterized by syntactically restricted classes of macro tree transducers.
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No results for MSOT and TWT are known that are similar to those for MSOW and
2GSM. Since it is easy to see that REL⊆ TWT↓ (the top-down tree transducer visits
each node exactly once and guesses its new label), it follows from Proposition 8.24
and Theorem 8.16 that MSOT is included in TWT↓ · DTWT↓ · DTWT. But it is
unknown whether MSOT equals the set of transductions of linear size increase in this
class.

Characterizations of the class of VR-equational sets of terms that are closely related
to Theorem 8.27, are given in Theorem 8.1 of [Dre99] (in terms of top-down tree
transducers and hypergraph substitution) and in Theorem 5 of [EngMan00] (in terms
of macro tree transducers; see also Corollary 7.3 of [EngMan99]). In [EngMan00]
several natural types of term generating HR grammars are investigated.

We finally note that the equivalence problem is decidable for transductions in
DMSOT, as proved in [EngMan06]. This result extends to MS-transductions from
graphs to terms on VR-equational sets of graphs, but there is no hope to extend it to all
graphs. It is shown in [AluDan] that the problem can be decided in exponential space
for streaming tree transducers. For words, i.e., for deterministic two-way finite-state
transducers, the decidability of the equivalence problem was first proved in [Gur]. It
is open whether it is decidable for deterministic tree-walking tree transducers (and
hence for deterministic macro tree transducers, cf. [*Eng80]).
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Relational structures

In theprevious chapters, wehaveused relational structures to represent labeledgraphs,
with or without sources or ports. Such structures are binary, i.e., their relations have
arity at most 2. However, the Recognizability Theorem has been stated and proved
for the algebra STR of all relational structures, whose operations are the disjoint
union and the (unary) quantifier-free definable operations. Monadic second-order
transductions have been defined, and the Backwards Translation Theorem has also
been proved for general relational structures.

In this chapter, we will show how the previous results concerning graphs, in
particular the logical characterizations of sets of graphs of bounded tree-width and
clique-width, and several algorithmic and decidability results, extend more or less
easily to relational structures. Certain extensions raise challenging open problems.

In Section 9.2, we will consider relational structures of bounded tree-width rep-
resented by their incidence graphs. This representation will offer the possibility of
writing monadic second-order formulas (to be called MS2 formulas) where quanti-
fied variables can denote sets of tuples of the relations. The results about graphs of
bounded tree-width and MS2 formulas will generalize easily.

In Section 9.3, we will define a complexity measure on relational structures that
extends clique-width and most of its properties. However, as noted above, several
important questions will remain open.

In Section 9.4, we will establish the Sparseness Theorem, which is a difficult
theorem about the elimination of quantifications over sets of tuples, hence about
cases where MS2 formulas are no more expressive than MS formulas. Its particular
case concerning graphs, which was announced in Theorem 5.22 and Section 7.3 (see
also Theorem 4.51), will be the basis of the induction establishing the general result.
Its proof already uses relational structures.

Before developing technical notions, we will detail in Section 9.1 two uses of
ternary relational structures in the theory of ordered sets (already presented in
Section 1.9.2).
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9.1 Two types of ternary relational structures related to
ordered sets

In this section, we discuss the notions of betweenness and of cyclic ordering that are
formalized as ternary relations.

9.1.1 Betweenness

With a finite linear order 〈D,≤〉 such that |D| ≥ 3, we associate the following ternary
relation, called its betweenness relation:1

B(x,y,z) :⇐⇒ (x < y < z)∨ (z < y < x),

where u < v means “u≤ v and u �= v”. We denote it by B(≤). This relation satisfies
the following properties, for all x,y,z, t ∈D:

(B1) B(x,y,z)⇒ x �= y∧ x �= z∧ y �= z;
(B2) B(x,y,z)⇒ B(z,y,x);
(B3) B(x,y,z)⇒¬B(y,z,x);
(B4) B(x,y,z)∧B(y,z, t)⇒ B(x,y, t)∧B(x,z, t);
(B5) B(x,y,z)∧B(y, t,z)⇒ B(x,y, t)∧B(x, t,z);
(B6) x �= y∧ x �= z∧ y �= z⇒ B(x,y,z)∨B(y,z,x)∨B(z,x,y).

By Property (B3), the three possibilities of Property (B6) are mutually exclusive. We
will prove that these properties characterize betweenness relations.

Proposition 9.1 Every ternary relation on D satisfying Conditions (B1)–(B6) is B(≤)
for some linear order ≤, hence is a betweenness relation.

Proof: Let B be a ternary relation satisfying properties (B1)–(B6). For every two
distinct elements u and v of D, we define [[u,v]] := {x ∈D | B(u,x,v)}. We choose a
pair {a,b} such that [[a,b]]has a maximal cardinality. We first make some observations
about a and b.

First, there is no element u satisfying B(u,a,b). Assume on the contrary that we
have B(u,a,b). Then (B5) implies that, for every x in [[a,b]], we have B(u,x,b).
Hence [[a,b]] ∪ {a} ⊆ [[u,b]] and [[a,b]] is not of maximal cardinality by (B1). We
can exchange a and b in this proof, hence we cannot have B(u,b,a). By (B2), we
cannot have B(a,b,u) for any u.

Second, we have D = {a,b} ∪ [[a,b]]. Because if some element u is not in {a,b},
we must have by (B6): B(a,u,b) ∨ B(u,b,a) ∨ B(b,a,u). By (B2) and the first
observations, we must have B(a,u,b), hence u ∈ [[a,b]].
1 This notion arises in a natural way in axiomatizations of planar geometry in terms of points, lines and

intersections of lines. See, e.g., [CouOli].
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Third, we cannot have B(u,a,v). Otherwise, since we have B(a,u,b), hence
B(b,u,a), we have B(b,a,v) by (B4), which contradicts our first observations.

By using a, we define a binary relation ≤ as follows:

x ≤ y if and only if x= y or x= a or B(a,x,y).

This relation is reflexive. Properties (B1), (B2), (B3) and (B5) imply that it is anti-
symmetric and transitive. Hence it is a partial order. We now prove that it is linear.
Consider x and y �= x. If x= a or y= a, we have x≤ y or y≤ x respectively. Otherwise,
by (B6) we have B(a,x,y)∨ B(x,y,a)∨ B(y,a,x). The last case is excluded by the
third observation and the others give respectively x ≤ y and, with (B2), y ≤ x.

It remains to prove that B=B(≤). Let x,y and z be such that x < y < z. If x= a, we
have B(x,y,z) (by the definition of y≤ z). Otherwise, we cannot have y or z equal to a.
Hence, we must have B(a,x,y) and B(a,y,z). Then (B5) gives B(x,y,z). Finally, let
us assume B(x,y,z). Since≤ is a linear order, we have one of the six cases: x < y < z,
z < y < x, y < x < z, etc. The first two give B(≤)(x,y,z) as desired. The last four give
B(y,x,z) and B(x,z,y) which are not possible by (B2) and (B3). This completes the
proof.

If in this proof, we use b instead of a, then we obtain the opposite linear
order, ≤−1.

A subset X of D3 is consistent for betweenness if X ⊆ B for some betweenness
relation B on D. The problem Betweenness that consists in deciding whether a given
set X ⊆D3 is consistent (for betweenness) is NP-complete ([*GarJoh], Problem MS1;
but no proof or reference to a published proof is given). If X is consistent, we define
X̂ as the intersection of all betweenness relations that contain X . We say that X is a
partial betweenness relation on D if X̂ = X . It is clear that if Y = X̂ , then Ŷ = X̂ .
Hence, X̂ is a partial betweenness relation, and even the smallest partial betweenness
relation that contains X . We will say that it is generated by X . The set X̂ satisfies
properties (B1)–(B5), but, as we will see in Remark 9.5(2), a set that satisfies these
five properties is not necessarily a partial betweenness relation.

If X ⊆ D3, we denote by X+ the least set Y ⊆ D3 that contains X and satisfies
Conditions (B2), (B4) and (B5). We have X+ ⊆ X̂ , and the inclusion may be strict (see
Remark 9.5(1) for an example). This fact shows a difference with the case of partial
orders that we now discuss. If Z ⊆D2 is contained in some linear order (we will also
say extended by instead of “contained in”), we define Z̃ as the intersection of all linear
orders containing Z . We claim that Z is a partial order if and only if Z = Z̃ . Note that
this equivalence is not a definition because partial orders are defined independently,
as reflexive, antisymmetric and transitive binary relations. It is clear that Z̃ has these
three properties because it is an intersection of relations satisfying them. Hence Z = Z̃
implies that Z is a partial order. For the other direction, we let Z be a partial order
and (x,y) belong to D2− Z . We must prove that (x,y) /∈ Z̃ , hence that there exists a
linear order≤ that extends Z in such a way that y < x. If (y,x) ∈ Z , then one can take
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for ≤ any linear order that extends Z . If (y,x) /∈ Z , then the binary relation E on D
consisting of (y,x) and the pairs (u,v)∈ Z such that u �= v is acyclic2 (easy to check).
Hence, its reflexive and transitive closure is a partial order, hence is extended by a
linear order. Any such linear order has the desired property. This completes the proof.

Hence our definition of partial betweenness is a natural generalization of that of a
partial order. However, it does not seem to be first-order definable, as is the notion
of a partial order. The following questions are open:

Question 9.2
(1) Is the class of ternary relations that are consistent for betweenness MS-definable?
(2) Is the class of partial betweenness relations MS-definable? �

However, these classes are definable by monadic second-order sentences that allow
quantifications over triples and sets of triples of the given ternary relation. Some
definitions are needed.

We let T be a ternary relation symbol. We define the incidence graph of a {T }-
structure 〈D,X 〉 as the binary relational structure Inc(〈D,X 〉) := 〈D∪X , in1, in2, in3〉,
where ini(t,d) holds if and only if d ∈D, t ∈ X and d is the i-th element of t.

A class C of {T }-structures is MS2-definable if the membership of S in C is
equivalent to Inc(S) |= ϕ for some sentence ϕ in MS({in1, in2, in3},∅).
Proposition 9.3 The class of ternary relations that are consistent for betweenness
and the class of partial betweenness relations are MS2-definable.

Proof: We first prove the MS2-expressibility of consistency (implicitly, in the sequel,
consistency for betweenness). Let X ⊆ D3. For Y ⊆ X , we define Z(Y ) ⊆ D2 as
follows:

Z(Y ) := {(x,y) | (x,y,z) or (z,x,y) belongs to Y for some z ∈D}
∪{(x,y) | (y,x,z) or (z,y,x) belongs to X −Y for some z ∈D}.

Claim 9.3.1 A set X ⊆D3 is consistent if and only if the relation Z(Y ) is acyclic for
some subset Y of X .

Proof: Let X ⊆ B(≤). We define Y := {(x,y,z) ∈ X | x < y < z}. Hence, if
(x,y,z) ∈ X − Y , then z < y < x. Clearly, Z(Y ) is included in < and, hence, is
acyclic. Conversely, if Y ⊆ X and Z(Y ) is acyclic, then Z(Y ) is extended by some
linear order ≤, and hence X ⊆ B(≤), because if (x,y,z) ∈ Y , then x < y < z, and if
(x,y,z) ∈ X −Y , then z < y < x. �

Since the transitive closure of an MS-definable relation is MS-definable
(Section 5.2.2), the condition of this claim is expressible by an MS sentence over
the structure Inc(〈D,X 〉). Hence consistency is an MS2-expressible property.

2 A binary relation E on D is acyclic if the directed graph 〈D,E〉 has no circuit.
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The following claim entails that partial betweenness is MS2-expressible. For
every triple t = (x,y,z) ∈ D3, we define sh(t) (read “shift”) as (y,z,x) and sh∗(t)
as {t,sh(t),sh(sh(t))}. Property (B3) says that if t ∈ B, then sh(t) /∈ B. Prop-
erty (B6) says that if t is a triple of pairwise distinct elements of D, then
B∩ sh∗(t) �= ∅.
Claim 9.3.2 Let X ⊆ D3 be consistent. We have X = X̂ if and only if X satisfies
(B1)–(B5) and the following:

(B7) For every triple t of pairwise distinct elements of D such that X ∩ sh∗(t)= ∅,
the set X ∪{t′} is consistent for at least two elements t ′ of sh∗(t).

Proof: As observed above, X̂ satisfies (B1)–(B5). Let B be a betweenness relation
such that X ⊆ B.

Assume that X = X̂ and let t be a triple of pairwise distinct elements such that
X ∩ sh∗(t)= ∅. Since B satisfies (B6) and (B3), we have B∩ sh∗(t)= {t′} for some
t′, hence X ∪ {t′} is consistent. There exists a betweenness relation B′ ⊇ X such that
B′ ∩ sh∗(t)= {t′′} and t′ �= t′′, because otherwise t′ ∈ X̂ , which would contradict the
hypotheses that X = X̂ and X ∩ sh∗(t) = ∅. Hence, X ∪ {t′′} is consistent and (B7)
holds.

Let us conversely assume that X satisfies (B1)–(B5) and (B7). Assume that some
triple t belongs to X̂ −X . We have X ∩ sh∗(t)= ∅ because if sh(t) ∈ X , then t and
sh(t) belong to X̂ , which contradicts (B3) that holds for X̂ ; and if sh2(t) belongs to
X , then sh2(t) and sh(sh2(t))= t belong to X̂ , which again contradicts (B3). By (B7),
the set X ∪ {t′} is consistent for some triple t′ ∈ {sh(t),sh2(t)}. Hence X ∪ {t′} ⊆ B′,
where B′ is a betweenness relation. The relation B′ cannot contain t (because it
contains also sh(t) or sh2(t)), which contradicts the assumption that t ∈ X̂ . Hence
X̂ = X . �

This ends the proof of the proposition.

Example 9.4 (1) We let D := {a,b,c,d,e, f }. The set X := {(a,b,c),(e,d,c),(d,e, f )}
is consistent because X ⊆ B(≤0), where a <0 b <0 c <0 d <0 e <0 f .

In order to illustrate the proof of Proposition 9.3, we consider several sets Y . If
Y := {(a,b,c),(d,e, f )}, then Z(Y ) = {(a,b),(b,c),(d,e),(e, f ),(c,d)}. Its reflexive
and transitive closure is the linear order ≤0. If Y := {(d,e, f ),(e,d,c)}, then Z(Y )

contains (d,e) and (e,d), and hence is not acyclic.
Let us now take Y := {(a,b,c),(e,d,c)}. Then Z(Y ) = {(a,b),(b,c),(e,d),

(d,c),( f ,e)}. Its reflexive and transitive closure is a partial order that is not lin-
ear and has several linear extensions, in particular: f <1 a <1 e <1 d <1 b <1 c and
f <2 e <2 d <2 a <2 b <2 c. We have X ⊆ B(≤) for each of them.

An easy computation yields X+ = X ∪X−1 ∪{(c,d, f ),( f ,d,c),(c,e, f ), ( f ,e,c)}
(where X−1 is the set of triples (x,y,z) such that (z,y,x) ∈ X ). We will show that
this set is equal to X̂ , the partial betweenness relation generated by X . We have
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X+ ⊆ X̂ . It is not hard to see that the linear orders ≤ for which X ⊆ B(≤) are those
such that a < b < c or c < b < a, and c < d < e < f or f < e < d < c. From this
observation, we can check that X̂ = X+, and thus, X̂+ = X+. This set satisfies
(B1)–(B5), but not (B6). Consider for example t = (a,b,d) not in X+. We have
sh∗(t)= {(a,b,d),(b,d,a),(d,a,b)} and X+ ∩ sh∗(t)=∅. For each triple shi(t), with
i= 0,1,2, the set X+ ∪ {shi(t)} is consistent as it is included in B(≤i).

(2) Here is another example. We let D := {a,b,c,d} and X := {(a,b,c),(a,b, d)}.
The only linear orders with betweenness relations containing X are a< b< c < d and
a < b < d < c and the opposite orders. Again we have X+ = X̂ , equal to X ∪X−1.
The triple t = (b,c,d) is not in X̂ and the triple (d,b,c)= sh2(t) is not consistent with
X̂ . Hence, sh∗(t) contains only two triples that are consistent with X̂ , namely t and
sh(t)= (c,d,b).

Remark 9.5 (1) Let X ⊆D3 satisfy Condition (B1). The set X+ satisfies (B2), (B4)
and (B5) (by definition) and can be computed in polynomial time in |D|. If X+ does
not satisfy (B3), then X is not consistent. If X+ satisfies (B3), we cannot conclude that
X is consistent. Otherwise, we would have a polynomial algorithm for the problem
Betweenness that is NP-complete.

(2) Here is an example such that X+ �= X̂ . We let D := {a,b,c,d,e} and X :=
{(a,c,b),(a,d,b),(c,e,d)}. Then X+ = X ∪ X−1. It is not hard to see that X̂ con-
tains (a,e,b), which is not in X+. Since X is consistent, X+ satisfies (B1)–(B5).
It does not satisfy (B7), since the sets X+ ∪ {(e,b,a)} and X+ ∪ {(b,a,e)} are not
consistent. �

We now define a notion of width (a variant of the tree-width of Defini-
tion 9.12 below) that will yield a fixed-parameter tractable algorithm for the problem
Betweenness. For X ⊆ D3, we define twdInc(X ) as the tree-width of the labeled
graph3 Inc(〈D,X 〉), and the size of 〈D,X 〉 as |D|+ |X |.
Corollary 9.6 The problem Betweenness is fixed-parameter linear with respect to
twdInc.

Proof: This follows from Theorem 6.4(1) and Proposition 9.3.

We will conclude the notion of betweenness with an open question:

Question 9.7 Can one compute in polynomial time, for each fixed k , the set X̂ for
any given set X ⊆D3, assumed to be consistent and such that twdInc(X )≤ k? Is this
even possible by a fixed-parameter tractable algorithm with twdInc as parameter?

3 Another possibility is to define the tree-width of 〈D,X 〉 as that of the graph with vertex set D and an
edge between any two vertices that are components of some triple in X . By Proposition 9.14(1), this
notion of tree-width is the same as the one of Definition 9.12. By Proposition 9.14(2), the two notions
of width are related by linear inequalities. Hence Corollary 9.6 also holds for this alternative definition.



9.1 Two types of ternary relational structures 627

9.1.2 Cyclic ordering

We now consider in a similar way the notion of cyclic ordering. With a finite linear
order 〈D,≤〉 such that |D| ≥ 3, we associate the ternary relation

C(x,y,z) :⇐⇒ (x < y < z)∨ (y < z < x)∨ (z < x < y).

If D= {d1, . . . ,dn} with d1 < d2 < · · ·< dn and d1, . . . ,dn are points on a circle such
that, according to some orientation of the circle, di+1 follows di and d1 follows dn, then
C(x,y,z) expresses that, if one “walks” along the circle according to this orientation
by starting at x, then one meets y before z. We denote by C(≤) the ternary relation
associated with ≤ in this way. A relation of this form is a cyclic ordering. A cyclic
ordering C satisfies the following properties, for all x,y,z in its domain D:

(C1) C(x,y,z)⇒ x �= y∧ x �= z∧ y �= z;
(C2) C(x,y,z)⇒ C(y,z,x);
(C3) C(x,y,z)⇒¬C(x,z,y);
(C4) C(x,y,z)∧C(y, t,z)⇒ C(x,y, t)∧C(x, t,z);
(C5) x �= y∧ x �= z∧ y �= z⇒ C(x,y,z)∨C(x,z,y).

Conversely:

Proposition 9.8 Every ternary relation on D satisfying Conditions (C1)–(C5) is C(≤)
for some linear order ≤, hence is a cyclic ordering.

Proof: Let C satisfy (C1)–(C5). We let a be any element of D and we define on D a
binary relation ≤ in a similar way as in the case of betweenness:

x ≤ y if and only if x= y or x= a or C(a,x,y).

We claim that this relation is a linear order on D such that C = C(≤). It is reflexive.
By (C1), (C2) and (C4), it is antisymmetric and transitive. Hence, it is a partial
order. Condition (C5) implies that this partial order is linear. It remains to prove that
C = C(≤).

We first prove that C(≤)⊆C. Let x,y,z be such that x< y< z. We have C(a,y,z) by
the definition of≤, and we want to prove C(x,y,z). If x= a, we are done. Otherwise,
we have C(a,x,y) and C(a,y,z), hence by Properties (C2) and (C4) we have C(x,y,z),
as was to be proved.

For the converse, we let x,y,z be such that C(x,y,z). Since ≤ is a linear order
and x, y and z are pairwise distinct, we have one of the six possibilities x < y < z,
x < z < y, y < z < x, etc. Three of them entail C(≤)(x,y,z). The three others would
yield C(x,z,y), which contradicts Condition (C3) that C was assumed to satisfy.
Hence we have C(≤)(x,y,z).
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Asubset X of D3 is consistent for cyclic ordering if X ⊆C for some cyclic ordering
C on D. It is proved in [GalMeg] that the problem Cyclic Ordering, which consists
of deciding if a set X ⊆D3 is consistent for cyclic ordering, is NP-complete.

As for betweenness, if X ⊆D3 is consistent for cyclic ordering, we define X̂ as the
intersection of all cyclic orderings C on D such that X ⊆C. A partial cyclic ordering
on a set D is a subset X of D3 such that X̂ = X . If X is consistent (implicitly, in the
sequel, for cyclic ordering), then X̂ is the smallest partial cyclic ordering containing
X , and we say that it is generated by X . We have the same open questions as for
betweenness (cf. Question 9.2), and the same positive results (cf. Proposition 9.3 and
Corollary 9.6), based on the following proposition:

Proposition 9.9 The class of ternary relations that are consistent for cyclic ordering
and the class of partial cyclic orderings are MS2-definable.

Proof: We first consider consistency. We observe that if X is a subset of C(≤), then
we can partition it as X0 ∪X1 ∪X2, where

X0 := {(x,y,z) ∈ X | x < y < z},
X1 := {(x,y,z) ∈ X | y < z < x},
X2 := {(x,y,z) ∈ X | z < x < y}.

Claim 9.9.1 The set X is consistent if and only if it can be partitioned into three sets
X0,X1,X2 such that the binary relation Z(X0,X1,X2) associated with them by:

(u,v) ∈ Z(X0,X1,X2) if and only if for some w:

(u,v,w) or (w,u,v) belongs to X0, or

(v,w,u) or (w,u,v) belongs to X1, or

(u,v,w) or (v,w,u) belongs to X2,

is acyclic.

Proof: Let X be consistent, with X ⊆ C(≤) for some linear order ≤. The binary
relation Z(X0,X1,X2) associated as above with X0, X1 and X2 is included in≤, hence,
is acyclic. Conversely, if for some partition X0,X1,X2 of X , the relation Z(X0,X1,X2)

is acyclic, then there is a linear order ≤ extending it, and we have X ⊆ C(≤). �

The condition of this claim is MS2-expressible. The second assertion is proved
as the corresponding one for betweenness by means of the following observation:
for X ⊆ D3 that is consistent, we have X̂ = X if and only if X satisfies Conditions
(C1)–(C4) and for every triple (x,y,z) of pairwise distinct elements, if (x,y,z) and
(x,z,y) are not in X , then X ∪{(x,y,z)} and X ∪{(x,z,y)} are consistent.

An embedding of a loop-free graph on a surface yields, for each vertex x, a cyclic
ordering Cx of the set Ex of edges incident with this vertex. Conversely, such an
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embedding can be specified, up to homeomorphism, by a family of cyclic orderings
Cx of Ex, for each vertex x. (See [*MohaTho] for the theory of graphs on surfaces.)
If, instead of Cx, one is given a subset of E3

x for each vertex x, then one gets a partial
specification (possibly unrealizable) of an embedding of the given graph on some
surface. The problem of consistency of cyclic orderings is thus a subproblem of that
of checking the realizability of a partial specification of an embedding. This topic is
studied in [Dus].

The following notion of cyclic separation is defined from cyclic ordering in the
same way that betweenness is defined from linear order. Let D be a set of at least four
elements. A cyclic separation is a 4-ary relation E on D such that, for some cyclic
ordering C on D, we have

E(u,v,w,x)⇐⇒ (C(u,v,w)∧C(w,x,u))∨ (C(w,v,u)∧C(u,x,w)).

This definition means that, for any layout of the elements of D on a circle, if C is the
associated cyclic ordering, then the chord linking u and w crosses the chord linking
v and x. We leave to the interested reader the task of axiomatizing cyclic separations
and of establishing results analogous to Propositions 9.3 and 9.9.

9.2 Relational structures of bounded tree-width

We show how the results about graphs of bounded tree-width and CMS2 logic extend
(easily) to relational structures. We will first define CMS2 formulas for expressing
properties of relational structures. By representing a graph by its incidence graph (the
corresponding relational structure is denoted by �G� for a graph G), we can express
monadic second-order graph properties by formulas using quantifications on sets of
edges. The notation CMS2 refers to such formulas, to be interpreted in �G�. For
expressing properties of relational structures, we can act similarly and replace any
relational structure by a richer one where the tuples of its relations are elements of
the domain. This structure, actually an edge-labeled graph, allows to use quantified
variables denoting sets of tuples of the relations of the original structure. As for
graphs, we get in this way a stronger expressive power than with “plain” monadic
second-order formulas.

We recall from Definition 5.1 that if R is a relational signature, we denote by R0

the set of its constant symbols, by Ri for i > 0 the set of its symbols of arity i, and
by R+ the set R−R0. The maximal arity of a symbol in R is ρ(R). A relational
signature is binary if ρ(R)≤ 2.

Definition 9.10 (The incidence graph of a relational structure) Let R be a rela-
tional signature. We define RInc as the binary relational signature R∪ InR where
InR := {ini | 1≤ i≤ ρ(R)}. The symbols of R are all unary in RInc and those of InR
are binary.
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The incidence graph of a concrete R-structure S = 〈DS ,(RS)R∈R〉 is the concrete
RInc-structure Inc(S) defined as

〈DS ∪TS ,(RInc(S))R∈R, in1 Inc(S), . . . , ink Inc(S)〉,

where k := ρ(R) and

TS := {(R,d1, . . . ,dρ(R)) | R ∈R+,(d1, . . . ,dρ(R)) ∈ RS};
if R ∈R+, then

RInc(S)(d) :⇐⇒ d = (R,d1, . . . ,dρ(R)) ∈ TS for some d1, . . . ,dρ(R) ∈DS ,
if R= c ∈R0, then

RInc(S)(d) :⇐⇒ d = cS , and
for all i= 1, . . . ,k:

ini Inc(S)(d,d ′) :⇐⇒ d ∈ TS , d ′ ∈DS and d = (R,d1, . . . ,dρ(R)) for some

R ∈R+ and d1, . . . ,dρ(R) such that d ′ = di.

Note that each relation ini Inc(S) is functional. Since RInc is a binary signature, the
RInc-structures can be identified with simple, directed, bipartite (R, InR)-labeled
graphs (cf. Example 5.2(2)). Thus, we do not distinguish the graph G := Inc(S) from
the structure �G� = Inc(S).

It is clear that if S and S ′ are isomorphic concrete structures, then so are Inc(S) and
Inc(S ′). Hence, the operation Inc is well defined for abstract structures too. If C is a
set of (concrete or abstract) structures, then Inc(C) denotes the set of their (concrete
or abstract) incidence graphs.

The purpose of introducing TS in the domain of the structure Inc(S) is to allow
variables to denote sets of tuples of the relations of S. However, this is not necessary
for unary relations. The pairs (R,d1) in TS can be deleted, and we obtain in this way a
smaller set, denoted by T ′S , and the same expressive power for monadic second-order
formulas. Hence, we define for S as above:

T ′S := {(R,d1, . . . ,dρ(R)) | R ∈R,ρ(R) > 1,(d1, . . . ,dρ(R)) ∈ RS},

and

Inc′(S) := 〈DS ∪T ′S ,(RS)R∈R1 ,(RInc(S))R∈R−R1 , in1 Inc′(S), . . . , ink Inc′(S)〉,

which is also an RInc-structure.
For a fixed relational signature R, the injective mapping Inc(S) �→ Inc′(S) is an

FO-transduction, and its inverse is a (|R1| + 1)-copying FO-transduction. Thus, the
two representations Inc(S) and Inc′(S) are strongly equivalent, cf. Definition 7.9. All
our results will hold for Inc′ as well as for Inc. The constructions with Inc will be
simpler because unary relations will not have to be considered separately.
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The next lemma will prove that relational structures are faithfully represented
by their incidence graphs. It is thus natural to use monadic second-order sentences
interpreted over incidence graphs to characterize classes of relational structures. A
CMS formula over RInc will be called a CMS2 formula over R. A property of
R-structures S is CMS2-expressible if it is equivalent to Inc(S) |=ϕ (or to Inc′(S) |=ϕ)
for some CMS sentence ϕ. A class of R-structures is CMS2-definable if the member-
ship of anR-structure in this class is a CMS2-expressible property.All the terminology
related with CMS2 formulas will thus be applied to relational structures via their
incidence graphs.

Lemma 9.11 Let R be a relational signature.

(1) A structure U in STRc(RInc) is isomorphic to Inc(S) for some concrete
R-structure S if and only if the following conditions hold, where TU := {t ∈
DU | (t,d) ∈ AU for some A ∈ InR and d ∈DU }:
(I1) for every A ∈ InR, the relation AU is functional : TU → (DU −TU );
(I2) the sets RU for R ∈R+ form a partition of TU ;
(I3) if t ∈ RU for R ∈R+, then there exists a pair (t,d) in iniU for some d if and

only if i ∈ [ρ(R)];
(I4) if t and t′ �= t belong to RU for R ∈ R+, then there exist i ∈ [ρ(R)] and

d, d ′ �= d such that (t,d) and (t′,d ′) belong to iniU ;
(I5) if c ∈R0, then the set cU is a singleton and cU ⊆DU −TU .

(2) The mapping Inc−1 : STR(RInc)→ STR(R) is a parameterless noncopying FO-
transduction.

(3) Two concrete R-structures S and S ′ are isomorphic if and only if Inc(S) and
Inc(S ′) are isomorphic.

(4) Similar results hold for Inc′.

Proof: (1) Conditions (I1) to (I5) are clearly necessary. Conversely, let us assume
that they hold for some RInc-structure U . We define as follows an R-structure S. Its
domain is DU − TU ; for every c in R0, we let cS be the unique element of cU (we
use here (I5)) and for every R ∈ R+, we let RS be the set of tuples (d1, . . . ,dρ(R))
such that, for some t ∈ RU , we have (t,di) ∈ iniU for each i ∈ [ρ(R)]. It is easy to
check that there is a unique isomorphism between Inc(S) and U that is the identity
on DU −TU . In particular, a tuple (R,d1, . . . ,dρ(R)) in TS corresponds by Conditions
(I1)–(I4) to a unique element t of TU .

(2) It is also easy to check that if h is an isomorphism from U to Inc(S ′) for an
R-structure S ′, then the restriction of h to DU − TU is an isomorphism from S to
S ′. An FO-transduction can construct S from U : Conditions (I1)–(I5) are expressible
by a first-order sentence α, that can be taken as the precondition of the definition
scheme to be defined. In proving (1), we have given a construction of S from U
in STRc(RInc) satisfying Conditions (I1)–(I5). We omit the details of the definition
scheme.
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(3) The if direction is clear from (2).
(4) Easy proofs.

Tree-decompositions and tree-width of relational structures

We will extend to relational structures the notion of a tree-decomposition defined for
graphs in Section 2.4.1. We will also extend to them the main decidability and model-
checking results obtained for graphs of bounded tree-width and CMS2 formulas.

Definition 9.12 (Tree-decompositions of relational structures) A tree-
decomposition of a concrete R-structure S is a pair (T , f ) such that T is a concrete
rooted tree and f is a mapping : NT →P(DS) such that:

(i) DS =⋃{ f (u) | u ∈ NT };
(ii) for every R ∈ R+ and (d1, . . . ,dn) ∈ RS , there exists a box f (u) containing

d1, . . . ,dn;
(iii) for every d ∈DS , the set f −1(d) := {u ∈ NT | d ∈ f (u)} is connected in T .

We call Condition (iii) the connectivity condition. The width of (T , f ) is
wd(T , f ) :=max{| f (u)| | u ∈NT }−1 and the tree-width of S, denoted by twd(S), is
the smallest width of a tree-decomposition of S. Its path-width, denoted by pwd(S),
is defined in a similar way with the additional condition that T is a directed path.
We denote by TWD(R,≤ k) and by PWD(R,≤ k) the classes of R-structures of
tree-width and, respectively, of path-width at most k .

Remark 9.13 Definition 9.12 states no condition about the constants of the con-
sidered structure. In order to have an exact generalization of the notion of tree-
decomposition of a graph with sources, we could add to Conditions (i)–(iii) the
following:

(iv) all constants of S belong to the root box.

This would be natural because the sources of a graph become constants of the cor-
responding relational structure. However, we will not need this condition because
we will not extend to relational structures the expression of tree-decompositions of
graphs by terms in T (FHR). Imposing Condition (iv) would restrict the notion of tree-
decomposition and yield a different notion of tree-width. If we denote it by twd ′(S),
then we have

twd(S)≤ twd ′(S)≤ twd(S)+|R0|
for every S in STR(R), because every tree-decomposition can be made into one
satisfying (iv) by adding the constants to all boxes. It follows that the same
subsets of STR(R) have bounded tree-width according to both notions of tree-
decomposition. �
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The tree-width and the path-width of a relational structure S are closely related to
the tree-widths and path-widths of its incidence graph and of its adjacency graph,4

that is, the simple, loop-free and undirected graph Adj(S) with vertex set equal to DS

and edges between d and d ′ �= d whenever d and d ′ occur in some tuple of S.
We let twdInc(S) denote the tree-width of the graph Inc(S). (We extend a notation

introduced for stating Corollary 9.6.) This value is also the tree-width of Inc′(S)
except in the uninteresting case where ρ(R)≤ 1.

Proposition 9.14 Let R be a relational signature such that ρ(R) ≥ 1. For every
relational structure S ∈ STRc(R), we have:

(1) S and Adj(S) have the same tree-decompositions, and hence we have twd(S)=
twd(Adj(S));

(2) twdInc(S)− 1≤ twd(S)≤ ρ(R) · (twdInc(S)+ 1)− 1.

The same properties hold for path-width instead of tree-width.

Proof: (1) By the definitions, every tree-decomposition of S is also one of Adj(S).
Conversely, if (Z , f ) is a tree-decomposition of Adj(S), then every tuple (d1, . . . ,dn)

of a relation RS induces a clique in Adj(S) and, hence, is contained in some box of
(Z , f ) by Proposition 2.58. Hence, (Z , f ) is also a tree-decomposition of S.

(2) Let (Z0, f0) be a tree-decomposition of S ∈ STRc(R). We extend it as follows to a
tree-decomposition (Z , f ) of Inc(S). For each tuple (R,d1, . . . ,dn) in TS , i.e., such that
R ∈R+ and (d1, . . . ,dn) ∈ RS , we select one node u of Z0 such that d1, . . . ,dn ∈ f0(u)
(there exists one by Condition (ii) of Definition 9.12), we add to Z0 a new node u′ that
we make into a son of u in Z and we define f (u′) := f0(u)∪{(R,d1, . . . ,dn)}. It is clear
that Z is a rooted tree, that Z0⊆ Z and that all nodes of Z that are not in Z0 are leaves.
Each element of TS belongs to a single box f (u) of (Z , f ), such that u is a leaf. The
pair (Z , f ) is a tree-decomposition of Inc(S). If (Z0, f0) has width k , then (Z , f ) has
width k or k + 1. This gives the first inequality. If (Z0, f0) is a path-decomposition,
we construct similarly a path-decomposition (Z , f ) of Inc(S): instead of adding u′ as
new leaf, we insert it between u and its son. Hence, Z is a path.

For proving the second inequality, we let (Z , f ) be a tree-decomposition of Inc(S)
of width k . We turn it into a tree-decomposition (Z , f ′) of S by defining, for each
u ∈ NZ , the box f ′(u) as

( f (u)∩DS)∪{d ∈DS | d belongs to some tuple in f (u)∩TS}.
This means that, in a box f (u), we replace each tuple (R,d1, . . . ,dn) by the elements
d1, . . . ,dn of DS . It follows that | f ′(u)| ≤ (k + 1) ·ρ(R) because if p := | f (u)∩DS |
and q := | f (u)∩TS |, then p+q≤ k+1 and | f ′(u)| ≤ p+q ·ρ(R)≤ (k+1) ·ρ(R). It
remains to check that (Z , f ′) is a tree-decomposition. We first check the connectivity

4 This graph, augmented with a loop on each vertex, is called the Gaifman graph of S in [*Lib04]. It is
useful for the study of the expressive power of first-order formulas.
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condition. Let d in DS belong to the tuples t1, . . . , tp. We have f ′−1(d) = f −1(d)∪
f −1(t1)∪ ·· · ∪ f −1(tp), where each component of this union is connected. Since for
each i there is a box f (u) that contains ti and d, we have f −1(d)∩ f −1(ti) �= ∅. This
implies that f ′−1(d) is connected. The other conditions are clearly satisfied.

By the first assertion of this proposition, the algorithms that construct tree-
decompositions of graphs (cf. Section 6.2.1) can be used to construct tree-
decompositions of relational structures. The next results exploit the particular
structure of incidence graphs.

Lemma 9.15 Let R be a relational signature. The identity on Inc(STR(R)) (and on
Inc′(STR(R)) ) is a (ρ(R)+ 1)-copying MS1,2-transduction.

Proof: Let k := ρ(R) and G := Inc(S) for S in STR(R). The edges of G are directed
and labeled by in1, in2, . . . or ink , and two edges with the same tail have different
labels. Hence, an MS1,2-transduction can specify an edge from x to y that is labeled
by inj as the pair (x, j+1), and a vertex x as the pair (x,1). Hence, �G� is defined from
�G� (i.e., from Inc(S) by a convention made in Definition 9.10) by a (k+1)-copying
MS-transduction. The detailed construction is similar to that for the incidence graphs
of forests done in Example 7.8. The proof is almost the same for Inc′.

This lemma and Proposition 9.14 yield the following corollary, which extends
Corollary 7.49:

Corollary 9.16 A subset C of STR(R) has bounded tree-width if and only if Inc(C)
is included in the image of trees under an MS-transduction.

Proof: By Proposition 9.14(2), a subset C of STR(R) has bounded tree-width if and
only if Inc(C) has bounded tree-width, hence, by Corollary 7.49, if and only if Inc(C)
is included in τ(trees) for some MS1,2-transduction τ . By Lemma 9.15, the last
equivalence is valid with τ assumed to be an MS-transduction (cf. Section 7.3).

Proposition 9.17 For every relational signature R and integer k , the classes
Inc(TWD(R,≤ k)) and Inc(PWD(R,≤ k)) are HR-equational.

Proof: The class of labeled graphs Inc(STR(R)) is characterized by an FO sen-
tence α as we have seen in the proof of Lemma 9.11. There exists a (noncopying)
FO-transduction τ such that Dom(τ ) = Inc(STR(R)) and τ(Inc(S)) = Adj(S) for
every R-structure S. Its precondition is α and the other formulas are easy to write. By
Proposition 9.14(1), the class τ−1(TWD(≤ k))= {Inc(S) | twd(Adj(S))≤ k} equals
Inc(TWD(R,≤ k)). By the Backwards Translation Theorem (Corollary 7.12) and
since the class of graphs TWD(≤ k) is MS-definable (because it is characterized by a
finite set of excluded minors, cf. Corollary 2.60(2) and Proposition 5.11), it follows
that Inc(TWD(R,≤ k)) is MS-definable. This class has also tree-width at most k+1
by Proposition 9.14(2), hence it is HR-equational by Example 4.3(8) and the Filtering
Theorem (Corollary 5.71).
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The proof is the same for path-width because the class of graphs PWD(≤ k) is also
characterized by a finite set of excluded minors.

CMS2-satisfiability and model-checking

Theorem 9.18 For every relational signature R and every integer k , the class
TWD(R,≤ k) has a decidable CMS2-satisfiability problem.

Proof: The CMS2-satisfiability problem for a set of R-structures C is, by definition,
the CMS-satisfiability problem for its set of incidence graphs Inc(C). By Proposi-
tion 9.17, the set Inc(TWD(R,≤ k)) is HR-equational. Hence, by Theorem 5.80(2),
its CMS-satisfiability problem is decidable.

This result extends Corollary 5.81(2). Next is a converse that extends
Theorem 7.55(1).

Theorem 9.19 LetR be a relational signature. If a subset C of STR(R) has a decidable
MS2-satisfiability problem, then it has bounded tree-width, equivalently, Inc(C) is
included in τ(trees) for some MS-transduction τ .

Proof: Let C ⊆ STR(R) have a decidable MS2-satisfiability problem. The
MS-satisfiability problem for Inc(C) is thus decidable by the definitions. By
Lemma 9.15 and the Reduction Theorem (Theorem 7.54), its MS2-satisfiability prob-
lem is decidable. Hence, by Theorem 7.55(1), it has bounded tree-width and so has
C by Proposition 9.14(2).

If we only assume that C has a decidable MS-satisfiability problem, we cannot
draw any similar conclusion. The following question is open (cf. Question 7.59):

Question 9.20 Is it true that, for every relational signature R, if a set of R-structures
has a decidable CMS-satisfiability problem, then it is included in τ(trees) for some
monadic second-order transduction τ?

If R is binary, then the answer is positive and this follows from Theorem 7.55(2)
since simple directed labeled graphs correspond to relational structures over binary
signatures (cf. Definition 2.11). It is also positive if the considered set C is uniformly
k-sparse for some k: this is a consequence of a result to be proved in Section 9.4.
(Uniform sparsity means that the structures in C have “few tuples.”) The question is
open even if R consists of a single relation of arity 3.

We now consider the model-checking problem, i.e., the problem of checking
whether a given sentence ϕ is true in a given relational structure S. The major con-
cern is to have efficient, or at least fixed-parameter tractable, algorithms for fixed
sentences. We recall from Definition 5.3 that the size of an R-structure S is defined as

‖S‖ := ‖R‖+ |DS |+∑R∈R+ ρ(R) · |RS |,
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hence, it is �(‖Inc(S)‖) for fixed R. The following theorem is a direct application
of Theorem 6.4(1) about graphs of bounded tree-width:

Theorem 9.21 The model-checking problem for relational structures and CMS2 sen-
tences is fixed-parameter linear with parameter (twd(S),ϕ), where S is the input
structure and ϕ is the input sentence.

Proof: Let be given a relational signature R, a concrete R-structure S and a
CMS2 sentence ϕ. By the definitions, ϕ is true in S if and only Inc(S) |= ϕ. The
structure Inc(S) can be constructed from S in time O(‖S‖). Its size and its tree-width
are proportional to those of S (by Proposition 9.14(2) for the tree-width). Hence, The-
orem 6.4(1) can be applied to the (R, InR)-labeled graph Inc(S) and the CMS sentence
ϕ, and it yields a fixed-parameter linear algorithm as desired.

The other algorithmic problems considered in Chapter 6 for graphs of bounded
tree-width extend in a similar way.

By the proof of Theorem 9.21 and by Proposition 9.14(2) for path-width, the
observations made in the introduction of Section 6.3.5 about the model-checking of
CMS2 sentences on graphs of bounded path-width extend to relational structures. In
particular, given a structure S, we construct the labeled graph Inc(S): its size and path-
width are proportional to those of S. We construct a slim HR-term evaluating to this
graph, and from it a VR-term, as explained in the introduction of Section 6.3.5. We
use an FVR

[R,InR]-automaton on this term. We obtain a fixed-parameter linear algorithm
for parameter (pwd(S),ϕ), similar to that of Theorem 9.21. The advantage is that the
corresponding automata are easier to construct.

9.3 Terms denoting relational structures

In Chapter 5 we have defined the many-sorted algebra STR of relational structures
with signature FQF, of which the graph algebra GPt defined in Chapter 2 is a sub-
algebra. From this definition, we can obtain denotations of relational structures by
terms. Our objective is to prove that the value mapping from terms (over finite sub-
signatures of FQF) to relational structures is a monadic second-order transduction.
This result will generalize Proposition 7.30 that concerns in a similar way terms over
the signature FVR and the graphs they define. We will also discuss the extension
to relational structures of several notions and results relative to graphs, in partic-
ular clique-width, fixed-parameter model-checking algorithms and decidability of
monadic second-order satisfiability problems.

We first review some definitions relative to the many-sorted FQF-algebra STR
defined in Section 5.3.7 (Definition 5.62). Its set of sorts S is the countable set of
relational signatures, and the set STR(R) of (abstract) R-structures is the domain of
sort R. The operations of FQF are the disjoint union and the (unary) quantifier-free
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operations; its constant symbols denote the structures with at most one element. The
many-sorted algebra GPt of graphs with ports defined in Section 2.6.3 is a subalgebra
of STR.

9.3.1 Monadic second-order model-checking problems

If t ∈ T (FQF), then we denote by Sig(t) the subsignature of FQF consisting of all
symbols that have occurrences in t, and by val(t) the relational structure that is
its value. The following result is an immediate application of the Recognizability
Theorem for the algebra STR. It can be seen as a generalization of Theorem 6.3(3).

Theorem 9.22 Let R be a relational signature. The problem of checking if a sentence
ϕ ∈CMS(R,∅) is true in the structure val(t), where t is a term in T (FQF), is solvable
by a fixed-parameter linear algorithm with parameter (Sig(t),ϕ).

Proof: Let be given a relational signature R and t ∈ T (FQF). First, we compute
Sig(t) and check whether val(t) is actually an R-structure. This can be done in time
O(|t|). Together with Assertions (1) and (2) of Proposition 3.76, and Theorem 3.62,
the Recognizability Theorem for STR (Theorem 5.75) yields that the set L of terms
s ∈ T (Sig(t)) such that S := val(s) is an R-structure that satisfies ϕ, is regular. It
is recognized by a finite automaton that can be constructed from Sig(t) and ϕ. The
membership of t in L can be checked in time O(|t|).

This algorithm operates in time bounded by f (Sig(t),ϕ) · |t| for some computable
function f . We can consider R as part of the input and we still have a fixed-parameter
linear algorithm with a function f depending also on R. In most cases, how-
ever, model-checking problems concern relational structures over fixed signatures.
Statements and proofs are then slightly simpler.

The algorithm takes as input a term t denoting a relational structure S and not S
itself. The parsing problem, that is, the construction of a term in T (F) for some given
finite subsignature F of FQF that evaluates to a given relational structure has presently
no polynomial algorithm that can play the role of the one of [Bod96] (for graphs of
bounded tree-width) or of that of [HliOum] (for graphs of bounded clique-width) that
we have used in Theorem 6.4. Let us make an optimistic conjecture:

Conjecture 9.23 For every relational signature R and every finite subsignature F of
FQF, one can construct a polynomial-time algorithm doing the following:

for every R-structure S, it either answers that S is not the value of any term in
T (F) or outputs a term in T (FQF) that evaluates to S. �

This conjecture would imply the following:
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For every set C of R-structures that is generated by a finite subsignature F of
FQF and every sentence ϕ ∈ CMS(R,∅), one can decide in polynomial time if
a given structure S belonging to C satisfies ϕ.

Note that such a polynomial algorithm is not required to check if S belongs to C, and
is not necessarily fixed-parameter tractable for the parameter (F ,ϕ).

Proposition 6.8 has established the validity of Conjecture 9.23 for binary signatures
(and for F ⊆ FVR) since the corresponding structures are the same as simple labeled
graphs. The resulting algorithm is even fixed-parameter cubic.

9.3.2 From terms to relational structures by MS-transductions

We will prove that, for every finite subsignature F of FQF the evaluation mapping val
from terms in T (F) to relational structures is a monadic second-order transduction.
Proposition 7.30 proves this result for the special case of graphs defined by terms
over FVR.

For R ∈ S , we will denote by FQF � R the finite set of operations of FQF whose
sorts are subsets of R.5 If F is a finite subsignature of FQF, then F ⊆ FQF � R, where
R is the union of all signatures R′ that occur in the types of the symbols of F . Clearly,
R is finite.6

We will denote by cval(t) the concrete structure defined as follows by a term
t ∈ T (FQF). Its domain is a subset of Occ0(t), the set of occurrences of the constant
symbols that denote nonempty structures. For defining cval(t) if t = f (t1), we use
the operation on concrete structures specified by the definition scheme of f . We
also use the union of disjoint concrete structures. The domain of cval(t) may be a
proper subset of Occ0(t) because a QF operation f may delete elements of its input
structures. If t = t1⊕ t2, then cval(t) is the union of the disjoint structures cval(t)/u1

and cval(t)/u2, where u1 and u2 are the two sons of the root of t. They are actually
disjoint because their domains are sets of leaves of t that are respectively below u1

and below u2. Clearly, val(t) is the abstract structure isomorphic to cval(t). These
definitions generalize in the obvious way those of Section 2.5.2.

If t ∈ T (FQF � R), then cval(t) is an R′-structure for some R′ ⊆R. We will denote
by T (FQF � R)R′ the set of terms that evaluate to an R′-structure. The following
proposition generalizes Proposition 7.30:

Proposition 9.24 For each R ∈ S and R′ ⊆R, the mapping

val : T (FQF � R)R′ → STR(R′)

is a parameterless noncopying MS-transduction.

5 To be precise, we select finitely many QFO definition schemes for the finitely many QF operations, cf.
Corollary 5.95.

6 Extending the convention of Example 5.44 and Definition 5.62, we assume that the arity mappings of
all relational signatures in S agree. Hence, the union of two sorts in S belongs to S.
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Proof: Let R ∈ S . We let F := FQF � R.
If t ∈ T (F) and u ∈ Nt , then the concrete structure cval(t)/u, which is isomorphic

to val(t/u), has a domain that is a possibly proper subset of the set of elements of
Occ0(t) that are below u.

For each m≥ 1, we let Xm be the (standard) set of first-order variables {x1, . . . ,xm},
and Atom(R,Xm) be the set of atomic formulas of QF(R,Xm), including the trivial
formulas xi = xi and a = a (for a ∈ R0) which will be useful. For a formula β ∈
QF(R,Xm), we denote by Var(β) ⊆ Xm the set of variables that occur in β, and by
Con(β)⊆R0 the set of constant symbols that occur in β.

Let t ∈ T (F) and γ be an Xm-assignment in �t� such that γ (xi) is a leaf of t for
each i. If u ∈ Nt and β ∈QF(R,Xm), then we write:

(cval(t)/u,γ ) |= β if and only if

(1) γ (xi) ∈Dcval(t)/u for each i such that xi ∈ Var(β),
(2) Con(β) is included in the sort of t/u, and
(3) (cval(t)/u,γ � Var(β)) |= β.

It follows that (cval(t)/u,γ ) |= xi = xi if and only if γ (xi) ∈Dcval(t)/u, which implies
in particular that γ (xi)≤t u. Also, (cval(t)/u,γ ) |= a= a if and only if a is in the sort
of t/u.

For t and γ as above and for every α ∈ Atom(R,Xm), we define

Eα(t,γ ) := {u ∈ Nt | (cval(t)/u,γ ) |= α}.

We will prove that these sets can be defined in �t� by a monadic second-order for-
mula. For this purpose, we introduce a set variable Yα for everyα ∈A :=Atom(R,Xm),
and we let Wm be the set of these set variables Yα . We will use the following auxiliary
construction. If C is a Boolean set term7 over Wm and if (Eα)α∈A is a family of sets,
then we denote by C((Eα)α∈A) the set defined by C with Eα as value of Yα .

Claim 9.24.1 For each β ∈ QF(R,Xm) there exists a Boolean set term Cβ over Wm

such that, for all t, γ and u as above, we have

(cval(t)/u,γ ) |= β if and only if u ∈ Cβ((Eα(t,γ ))α∈A).

Proof: We can assume that β is built without disjunction, because if it is not, it can
be transformed into an equivalent formula β ′ in QF(R,Xm) without disjunctions that
has the same free variables and constant symbols. The latter condition is necessary
to ensure that (cval(t)/u,γ ) |= β ′ if and only if (cval(t)/u,γ ) |= β, because of the
particular meaning of |= that we are using. This equivalence would not hold with,
e.g., β equal to R(x1,x2) and β ′ equal to R(x1,x2)∧ x3 = x3.

7 That is, a term in T ({∪,∩, },Wm), cf. Definition 6.32.
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We now define Cβ by the following induction:

Cα is Yα if α is atomic,

Cβ∧β ′ is Cβ ∩Cβ ′ ,

C¬β is Cβ ∩Dβ ,

where Dβ is the intersection of all set variables Yxi=xi such that xi ∈ Var(β) and all
set variables Ya=a such that a ∈ Con(β).

It is clear from the definitions that Cβ satisfies the required property. �

The central part of the proof is the following claim:

Claim 9.24.2 There exists a formula!m in MS(RF ,Wm∪Xm) such that a (Wm∪Xm)-
assignment γ in �t� satisfies !m if and only if, for every i, γ (xi) is a leaf of t and, for
every α ∈ A := Atom(R,Xm), we have

γ (Yα)= Eα(t,γ � Xm).

Proof: The construction of !m will be based on the following informally stated fact:

if u is a node of t, then the condition “u ∈ Eα(t,γ � Xm)” is equivalent to a
Boolean combination of conditions of the form “u′ ∈ Eα′(t,γ � Xm)” for the
sons u′ of u and atomic formulas α′ ∈ A.

This condition will be expressed by a monadic second-order formula ψf ,α in
MS(RF ,Wm∪Xm∪{u}), where f is the label of u. And then, the formula !m will be
defined as:

“x1 is a leaf” ∧·· ·∧ “xm is a leaf”

∧∧α∈A, f ∈F ∀u(labf (u)⇒ (u ∈ Yα⇔ψf ,α)).

We now describe the formulas ψf ,α. There are several cases that depend on f
occurring at u.

Case 1: u ∈Occ(t,∅R′). We define ψf ,α as False, except that ψf ,True is True.

Case 2: u ∈ Occ(t,♦B,R′). We recall that ♦B,R′ denotes the R′-structure with a
singleton domain equal to, say, {∗} and empty relations for all R of positive arity not
in B. The element ∗ is the value of all constant symbols.

We define ψf ,α as the conjunction of the equalities xi = u for each xi ∈ Var(α) if
Con(α)⊆R′ and ♦B,R′ |= α(∗, . . . ,∗), and as False otherwise.

Case 3: u ∈ Occ(t,⊕). The two sons of u will be denoted by u1 and u2. We define
ψf ,α as

∃u1,u2[son1(u,u1)∧ son2(u,u2)∧ (u1 ∈ Yα ∨ u2 ∈ Yα)].
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This is correct because an instantiated atomic formula (i.e., given with values to its
variables) is valid in the disjoint union of two structures if and only if it is valid in
one of them.

Case 4: u ∈ Occ(t, f ), where f is a unary QF operation of type R′ → R′′. The
definition of ψf ,α will use Claim 9.24.1. We will write the formulas ψf ,α by using
u ∈ Cβ as an abbreviation of the corresponding Boolean combination of formulas
u ∈ Yα , where Cβ is as in Claim 9.24.1. We let f be defined by the QFO definition
scheme 〈δ,(θR)R∈R′′+ ,(κc,d)c∈R′0,d∈R′′0 〉. The unique son of its occurrence u will be
denoted by u1. We consider several cases.

Case (4.1): α is xi = xj . Then u ∈ Eα(t,γ ) if and only if (cval(t)/u1,γ ) |=
δ[xi/x] ∧ xi = xj. Hence, we define ψf ,α as the formula

∃u1(son1(u,u1)∧ u1 ∈ Cδ[xi/x] ∧ u1 ∈ Yxi=xj ).

Case (4.2): α is xi = a or a = xi, where a ∈ R0. If a ∈ R0 −R′′0, then ψf ,α is
False. Now let a∈R′′0. We have u∈ Eα(t,γ ) if and only if, for some c ∈R′0, we have
(cval(t)/u1,γ ) |= κc,a∧ xi = c. Hence, we define ψf ,α as the formula

∃u1[son1(u,u1)∧
∨

c∈R′0
(u1 ∈ Cκc,a ∧ u1 ∈ Yxi=c)].

Case (4.3): α is a= b, where a,b ∈R0. On the basis of similar observations, we
define ψf ,α either as False or as the formula

∃u1[son1(u,u1)∧
∨

c,d∈R′0
(u1 ∈ Cκc,a ∧ u1 ∈ Cκd,b ∧ u1 ∈ Yc=d)].

Case (4.4): α is R(t1, . . . , tn), where R∈R′′n and the terms ti are variables or constant
symbols. We assume, without loss of generality, that the formula θR(x1, . . . ,xn)⇒
δ[xi/x] is universally valid. If all terms ti are variables, then, since we have u ∈
Eα(t,γ ) if and only if (cval(t)/u1,γ ) |= θR[t1/x1, . . . , tn/xn], we can define ψf ,α to
be the formula

∃u1[son1(u,u1)∧ u1 ∈ CθR[t1/x1,...,tn/xn]].
If some (or all) of the terms ti are constant symbols, then we combine this definition
and those used in Cases (4.2) and (4.3). Just to take an example, if t1 is a ∈R′′0 and
t2, . . . , tn are variables, then we define ψf ,α as the formula

∃u1[son1(u,u1)∧
∨

c∈R′0
(u1 ∈ Cκc,a ∧ u1 ∈ CθR[c/x1,t2/x2,...,tn/xn])].

The extension to the case where several of the terms ti are constant symbols is
straightforward but lengthy to write. This completes the construction of the formulas
ψf ,α and the proof of the claim. �
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We now complete the proof of the proposition. Let R′ ⊆R. The output structures
may have constants, and these constants will be specified by unary relations. Hence,
we will define an MS-definition scheme of type RF →R′∗, cf. Section 7.1.2. It will
be of the form D∗ := 〈χ ,$,(�R)R∈R′∗ 〉.

Its precondition χ must verify that the input structure actually represents a term
t in T (F)R′ , cf. Corollary 5.12. The other formulas are required to work correctly
under the assumption that the input structure is of the form (or is isomorphic to) �t�
for some term t in T (F)R′ . We denote by Wm a tuple enumerating the set Wm. We
assume that rt is in RF , with ρ(rt)= 0.

The formula $, with free variable x1, is defined as

∃W1(!1∧ rt ∈ Yx1=x1).

Note that the tuple W1 does not consist only of Yx1=x1 .
For each R in R′m such that m ≥ 1, we define the relation formula �R with free

variables x1, . . . ,xm as

∃Wm(!m∧ rt ∈ YR(x1,...,xm)).

If a ∈R′0, then we let �laba with free variable x1 be defined as

∃W1(!1∧ rt ∈ Yx1=a).

It follows from this construction that D̂∗ associates with every term t in T (F)R′
the relational structure cval(t)∗ in STRc∗(R′∗).

Corollary 9.25 Every set of relational structures that is equational in STR is the
image of trees under an MS-transduction. �

Its converse, proved in [BluCou06] (Proposition 63 and Theorem 68), gives an
Equationality Theorem for relational structures that is analogous to Theorem 7.36. It
will be stated in Theorem 9.31.

Proposition 9.24 yields another proof of Theorem 9.22, one that is not based on
the proof of the Recognizability Theorem given in Chapter 5, cf. Remark 7.31(1).
However, the proof of Proposition 9.24 uses complicated constructions and is thus not
usable in practice. Constructions of finite automata generalizing those of Section 6.3.4
are left for future research.

9.3.3 Width notions for relational structures

In Chapter 2 we have defined the graph algebra GP with signature FVR and the
closely related notion of clique-width. In Chapter 7, we have characterized the sets of
graphs of bounded clique-width as the subsets of the images of trees under monadic
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second-order transductions. In the present section, we aim to generalize the notion of
clique-width and the associated results. We want to obtain the following:

(i) a “good” notion of width of a relational structure, defined in terms of its gener-
ation by a “small” finite subsignature of FQF, that is equivalent to clique-width
for graphs;

(ii) such that bounded tree-width implies bounded width; and
(iii) such that the sets of relational structures of bounded width have a logical

characterization along the lines of Corollaries 7.38(1), 7.49 and 9.16.

We first present a natural extension to relational structures of the signature FVR

of the graph algebra GP. This extension is useful for handling relational structures
of bounded path-width (cf. Proposition 9.28 and the remarks on model-checking at
the end of Section 9.2), but it does not satisfy the above properties (ii) and (iii). This
indicates that it does not have enough operations. A richer signature and an associated
satisfactory width notion will be defined in Section 9.3.4.

A first extension of FVR to relational structures

The following definitions are relative to a fixed relational signatureRwithout constant
symbols.

Definition 9.26 (The operations of FrelVR on R-structures) Let A be a countable
set of labels. We will construct structures in STR(R) by using at intermediate stages
certain “A-labeled” R-structures. For each a ∈A, we let laba be a unary relation not
in R. It will hold the set of elements of a structure labeled by a. We let Lab(C) :=
{laba | a ∈ C} for each finite subset C of A.

The labels of the sets C will be attached to the elements of structures and will
be used to construct structures similarly as port labels are used to construct graphs.
However, an element may have several labels or no label at all, whereas in a p-graph,
each vertex has one and only one port label.

We define a many-sorted signature F relVR
R , more simply denoted by F relVR since

R is fixed. Each finite subset C of A is a sort and the corresponding domain is
STR(R∪Lab(C)). The constant symbols of F relVR of sort C are aC for each a in C
and ∅C . Its operations are the disjoint union⊕C,C ′ of type C×C ′ →C ∪C ′ and the
following unary operations:

the tuple-creating operation addc1,...,ck ,R,C of type C→C for every k > 0, R∈Rk

and c1, . . . ,ck ∈ C, and
the label-modifying operation mdf Z ,C,C′ of type C→ C ′ for every Z ⊆ C×C ′.

The symbol ∅C denotes the empty (R ∪ Lab(C))-structure and aC denotes the
(R ∪ Lab(C))-structure S having a unique element that belongs to labaS , with all
other relations being empty. Hence, aC is another notation for ♦{laba},R∪Lab(C)

(cf. Definition 5.62, Section 5.3.7).
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The unary operations are as follows, for S in STRc(R ∪ Lab(C)). We define
addc1,...,ck ,R,C(S) as the concrete (R∪Lab(C))-structure S ′ such that

DS ′ :=DS ,
RS ′ := RS ∪{(x1, . . . ,xk) | xi ∈ labciS for each i ∈ [k]},
US ′ :=US for every U ∈ (R−{R})∪Lab(C).

We define mdf Z ,C,C ′(S) as the concrete (R∪Lab(C ′))-structure S ′ such that DS ′ :=
DS , RS ′ := RS for every R ∈R and, for every a ∈ C ′ and x ∈DS :

x ∈ labaS ′ if and only if x ∈ labbS for some b ∈ C such that (b,a) ∈ Z .

(If there is no b such that (b,a) ∈ Z , then mdf Z ,C,C′ deletes the label a.)
These unary operations are quantifier-free and domain preserving (i.e., they are

DP-QF operations). The operation mdf Z ,C,C ′ is a quantifier-free relabeling (cf.
Definition 7.20, Section 7.1.6).

For each finite set C, we define F relVR
C as the set of operations of F relVR whose

sorts (the sorts occurring in their input and output types) are subsets of C.

Every term t in T (F relVR
C ) evaluates to a concrete (R∪Lab(C))-structure cval(t)

whose domain is the set Occ0(t) of all occurrences in t of constant symbols not
defining empty structures (since the unary operations do not delete elements, each
occurrence in Occ0(t) specifies an element of Dcval(t)). The definitions and the nota-
tion of Section 2.5.2 concerning the concrete graphs defined by terms in T (FVR)

extend in a straightforward manner.
Every structure S in STR(R∪Lab(C)) is isomorphic to cval(t) for some term t in

T (F relVR
C ′ ), where C ′ is a finite subset of A such that |C ′| ≤ |DS | + |C|: the proof of

Proposition 2.104(1) extends easily.
We define the relational width relwd(S) of S ∈ STR(R∪Lab(C)) as the minimal

cardinality of a set C ′ such that some term in T (F relVR
C′ ) evaluates to (a concrete

structure isomorphic to) S. The operations of F relVR and this notion of width have
been introduced in Section 5 of [CouER] (but the term “relational width” is not
used in this article). The subsets of STR(R) that are equational in the corresponding
many-sorted F relVR-algebra, that we will denote by STRrel

R , are the sets defined by
certain grammars, called the separated handle-rewriting hypergraph grammars (cf.
Theorem 6.1 of [CouER]). This algebra and the corresponding notion of width satisfy
Property (i) but not Properties (ii) and (iii) as we will prove. The following proposition
and its proof are from [AdlAdl].

Proposition 9.27 Let R :={R}with R ternary. There exists a subset L of STR(R) that
has tree-width 3, unbounded relational width and that is the image of trees under a
monadic second-order transduction.

Proof: We let D be the class of simple, directed and loop-free graphs. For G ∈ D,
we define f (G) in STRc(R) as follows:
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Df (G) := VG ∪EG,

Rf (G) := {(x,y,e) | e ∈ EG, e : x→G y}.
It is clear that twd( f (G))≤ twd(G)+ 1.

We denote by ♦ the graph with the single vertex ∗ and no edge. We recall that the
binary symbol

−→⊗ denotes the complete directed join on graphs (cf. Example 2.108,
Section 2.5.4).

Claim 9.27.1 If G ∈D and relwd( f (G
−→⊗♦))= k , then pwd(G)≤ 2k − 1.

Proof: Assume that S = f (G
−→⊗♦)= cval(t) for some t ∈ T (F relVR

[k] ). Let u ∈ Nt and
x ∈ DS with x ≤t u. For i ∈ [k], we say that x has label i at u in t if labiU (x) holds
for U := cval(t)/u (hence U is the substructure of S induced by the elements of its
domain that are below u). We say that x is distinguished at u if there exist w ∈Nt and
a,b,c ∈ [k] such that:

(i) u≤t w;
(ii) w is an occurrence of adda,b,c,R;

(iii) for each j ∈ {a,b,c} there exists y ∈Dcval(t)/w such that y has label j at w; and
(iv) there exists i ∈ {a,b,c} such that x has label i at w.

We observe that if x and x′ are two vertices of G such that x,x′ ≤t u and x is distin-
guished at u, then x and x′ do not have the same labels at u, i.e., x has some label i
at u that x′ has not at u or vice-versa. To see this, we let w and a,b,c satisfy Con-
ditions (i)–(iv) above, and assume that x and x′ do have the same labels at u. Then,
they also have the same labels at w. By Conditions (i)–(iv), Rcval(t)/w (and hence RS )
contains either two triples (x,y,z) and (x′,y,z), or two triples (y,x,z) and (y,x′,z).
This fact contradicts the fact that S = f (G′) for some graph G′.

We let P be the path in t from the root to the leaf ∗. For every node w on P, we let
g(w) be the set of vertices of G that are distinguished at w. We now check that (P,g)
is a path-decomposition of G.

For every x ∈ VG, we let I(x) be the set of nodes w of t at which x is distinguished.
It is an interval, i.e., a set of consecutive nodes, of the path in t from the root to the
leaf x. For every (x,y,z) ∈ RS , there is in t an occurrence w of an operation adda,b,c,R

that creates this triple, and so, x,y,z are distinguished at w. Hence the set I(x)∩ I(y)
is not empty and is an interval. Since for every x ∈VG, we have (x,∗,z)∈RS for some
z, we have I(x)∩ I(∗) �= ∅ and so, x belongs to g(w) for some w on P.

If x→G y, then (x,y,z) belongs to RS for some z, hence I(x)∩ I(y) �= ∅. Since
the three intervals I(x), I(y) and I(∗) have pairwise nonempty intersections, there
is some w in I(x)∩ I(y)∩ I(∗), hence x,y ∈ g(w) and w is on P. The connectivity
condition holds since g−1(x) = I(x)∩ I(∗) is an interval for every x in VG. Hence
(P,g) is a path-decomposition of G. Since each box g(w) consists of vertices having
different sets of labels from [k] at w, we have |g(w)| ≤ 2k . Hence pwd(G)≤ 2k −1.
This completes the proof of the claim. �
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For proving the proposition, we let K be the set of rooted trees, so that K ⊆ D,
and L be the set f (K

−→⊗♦) ⊆ STR(R). Since trees have unbounded path-width (cf.
Section 2.4.1), it follows from the claim that L has unbounded relational width. We
have twd(K) = 1, twd(K

−→⊗♦) = 2 and twd(L) = 3. It is not hard to see that the
mapping T �→ f (T

−→⊗♦) from K to STR(R) is a 2-copying FO-transduction. This
completes the proof.

Every set of R-structures that is equational in the algebra STRrel
R , has bounded

relational width (cf. Proposition 4.44). Hence the set L of Proposition 9.27 is not
equational in STRrel

R .
The following proposition, proved in [AdlAdl], establishes another relation

between relational width and path-width. We have proved a similar fact in Assertion
(1.3) of Proposition 2.114.

Proposition 9.28 The relational width of a structure is at most its path-width + 1.

Proof: We sketch the proof. Let S be an R-structure having a path-decomposi-
tion (P, f ) of width k − 1. Each box has at most k elements. By Propositions 2.67
and 9.14(1), we can assume that it is 1-downwards increasing and that its root box
has a single element. By Lemma 2.78, we can define a coloring γ of DS with k
colors, say the elements of [k], such that any two elements in a box have different
colors. Let the path P be d1 → ··· → dn. Hence, {d1, . . . ,dn} is in bijection with,
and will be considered as identical to, the domain DS , cf. Example 5.2(4). For each
i ∈ [n], we let Si be the substructure of S induced by the set {d1, . . . ,di}. Furthermore,
if d ∈ DSi ∩ f (di), we label it in Si by γ (d); this label will be deleted in Sj for some
j > i or at the very end.

Then Si+1 is easily built from Si by the operations of F relVR
[k] that use the k labels

of [k], called above colors. Informally, the tuples of S are added one by one as one
builds successively S1, . . . ,Sn. At the end, all colors are deleted.

This fact has consequences for the model-checking of CMS sentences on relational
structures of bounded path-width. We have observed after Theorem 9.21 that we can
construct path-decompositions in linear time, and from them, terms over FVR

[R,InR]
with “few” port labels (by Assertion (1.3) of Proposition 2.114) allowing to check
CMS2 sentences. By Proposition 9.28, we can construct simpler terms over F relVR that
suffice for checking CMS sentences. Furthermore, the corresponding finite automata,
extending those of Section 6.3.4, are “easy” to build. (This point remains to be verified
by an implementation extending that of [CouDur11].)

9.3.4 A powerful subsignature of FQF and another width for
relational structures

The converse of Corollary 9.25 is proved in [BluCou06] (Proposition 63). It is even
proved for a subsignature of FQF that is as powerful as FQF in the sense that it yields
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all the equational sets of STR: every equation system over FQF can be transformed
into an equivalent one over this restricted signature. We will only state this result and
the necessary definitions. We refer the reader to [BluCou06] for the rather technical
proofs.

In what follows, we only consider relational signatures without constants. In this
way, we simplify the presentation and focus on the main aspects. The case of constants
will be discussed briefly afterwards (in Remark 9.32(b)).

Definition 9.29 (The signature FredQF
R,B ) Let R and B be disjoint relational signatures

without constants. The set B will play the role of Lab(C) in the previous definition.
We will later require that ρ(B) < ρ(R).

We let F redQF
R,B be the “reduced” subsignature of FQF defined as follows. It has the

single sort R∪B, with domain STR(R∪B). Its unique binary operation is the disjoint
union ⊕. Its constant symbols are ∅ to denote the empty structure and the symbols
♦C,R∪B for C⊆R∪B to denote the structures with one element (cf. Definition 5.62).
It has the following unary operations:

(a) For every C⊆B, the operation delC empties the relations of C, without modifying
the domain of the input structure. We distinguish it from an operation fgC that
would generalize the forgetting operation of Definition 7.19 by deleting C from
the signature: here, delC keeps the relations of C in the signature of the output
structure.

(b) For every arity preserving mapping h : R∪B→ R∪B that is the identity on
R, the operation relabh replaces every relation RS of the input structure S by
the union of the relations R′S such that R = h(R′). In other words, each tuple
(R,d1, . . . ,dn) of TS is replaced by (h(R),d1, . . . ,dn). A relation R of arity n has a
defining formula θR equal to

∨
R′∈h−1(R) R′(x1, . . . ,xn).

(c) For every T ,U ∈ B, every R ∈R∪B and every surjective mapping h : [m] →
[k + l], where k = ρ(T ), l = ρ(U ) and m= ρ(R), we define the quantifier-free
operation addT ,U ,R,h : STRc(R)→ STRc(R) that redefines R by means of the
formula θR:

R(x1, . . . ,xm)

∨[T (xi1 , . . . ,xik )∧U (xik+1 , . . . ,xik+l )∧
∧

j, j′∈[m],h( j)=h( j′) xj = xj′ ],

where, for each s ∈ [k + l], is is the smallest element of h−1(s). This operation
modifies no relations other than R.

All these unary operations are domain preserving.

The intuition is as follows: the relations of B are “temporary”– they can be modified
or deleted. They generalize the port labels used to build graphs of bounded clique-
width. They can be used to add tuples to the relations in R. The tuples of a relation
in R cannot be removed. Similarly, the operations of FVR cannot delete edges.
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Example 9.30 We clarify these definitions with some examples.
(1) If G is a p-graph of type included in C, represented by the relational structure
�G�C := 〈VG ,edgG,(labaG)a∈C〉, then

−→
adda,b(G)=G′ if and only if addlaba,labb,edg,h(�G�C)= �G′�C ,

where h is the identity : [2] → [2]. Also, if h′ : C→ C, then relabh′(G)= G′ if and
only if relabg(�G�C)= �G′�C where g(edg) := edg and g(laba) := labh′(a). Hence,

FVR
C is a subsignature of F redQF

Rs,Lab(C)
.

(2) Let U ∈B and U ′ ∈R∪B−{U } be of the same arity. If h : R∪B→R∪B is
such that h(U )=U ′ and h(R)= R for R �=U , then the operation relabh applied to a
structure S empties US and replaces U ′S by U ′S ∪US .

(3) We let B contain the binary relation symbol W and R the 6-ary symbol R.
We let f be the unary operation addW ,W ,R,h, where h : [6] → [4] is such that h(1)=
h(2)= 1, h(3)= 2, h(4)= 3, h(5)= h(6)= 4. In a structure S where u,x,y,z ∈ DS

and (u,x),(y,z) belong to WS , the operation f adds to Rf (S) the tuple (u,u,x,y,z,z).
Note that u,x,y,z need not be pairwise distinct. �

Theorem 9.31 (Equationality Theorem for relational structures) Let R be a rela-
tional signature without constant symbols. The following properties of a subset L of
STR(R) are equivalent:
(1) L is equational in the algebra STR.
(2) L is the image of trees under an MS-transduction.
(3) L= val(M ) for some regular subset M of T (F redQF

R,B ) and some relational signature
B such that ρ(B) < ρ(R).

Proof: (1)=⇒ (2) by Proposition 9.24 and the characterization of equational sets as
images of regular languages (cf. Corollary 3.19 and Proposition 3.23(3)).

(2)=⇒ (3): Proposition 63 of [BluCou06] establishes this statement. It corresponds
to Theorem 7.34(1) with T (F redQF

R,B ) in place of T (FVR
C,[K ,�]), and for a relational

signature B such that ρ(B) < ρ(R). The result follows then with the usual tools like
Proposition 7.27.

(3)=⇒ (1): Property (3) implies, with the results of Chapter 3, that L is equational
in the subalgebra of STR generated by F redQF

R,B . Hence, it is equational in STR.

Remark 9.32 (a) Property (1) allows L to be defined by an equation system written
with operations of FQF involving relational structures with constant symbols. (In
particular, some unknowns of this system may generate structures with constants.) The
equivalence with Property (3) implies that this system can be replaced, for defining
L, by one not using such operations.

(b) If a set L⊆ STR(R), where R contains constant symbols, is equational in STR,
then L∗, the corresponding set of structures without constants, satisfies Property (2)
and thus Property (3). In order to get an Equationality Theorem for R-structures, it
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suffices to prove that, if L∗ is equational, then so is L in the algebra STR. We will
spare the reader this scholarly exercise.

(c) An alternative to Property (3) is established in [SheDor]: informally, auxiliary
relations of arity at most 3 suffice, but not exactly in the sense of Property (3). This
article proves that if L satisfies Property (2), then it is val(M ) for some regular subset
M of T (FQF

nc � (R∪B)), where the auxiliary set B consists of relation symbols of
arity at most 3.

(d) In Property (3) it can be required additionally that the set M is included in
T (F redQF

R,B −{∅})∪{∅}. We can eliminate ∅ from every term of M by a proof similar
to the one of Claim 7.34.1, since we have g(∅) = ∅ for every unary operation g
(together with Equalities (1) and (3) of Proposition 2.101). �

Yet another width?

Definition 9.33 (The width wR) We will use the following notion of size of a
relational signature R without constant symbols that differs slightly from the one
defined in Definition 5.3. We let

‖R‖ :=
∑
{ρ(R) | R ∈R}.

We assume that ρ(R) > 1, otherwise, R-structures are of no interest. For every
S ∈ STR(R), we let wR(S) be the minimum size of a signature B, disjoint with R,
such that ρ(B) < ρ(R) and S is the value of a term over F redQF

R,B .

It is clear that every R-structure S is the value of a term over F redQF
R,B for some large

enough set B. For example, if ρ(R)= 3 and n= |DS |, one can construct such a term
by using a set B consisting of n unary relations and n(n− 1)/2 binary relations. In
general, we have wR(S)≤ ρ(R) · n�ρ(R)/2�.

If L is a set of R-structures, we let wR(L) :=max{wR(S) | S ∈ L}.
For the following proposition, we recall that Rs,[K ,�] is the relational signature

used for representing simple (K ,�)-labeled graphs (cf. Examples 5.2(2)).

Proposition 9.34

(1) For every simple (K ,�)-labeled graph G, we have

wRs,[K ,�](�G�)≤ cwd(G)≤ f (wRs,[K ,�](�G�)),
for some fixed computable function f depending on (K ,�).

(2) For every relational signature R and every S,S ′ ∈ STR(R) such that S is a
substructure8 of S ′, we have wR(S ′)≤wR(S).

8 We recall from Definition 5.1 that S is a substructure of S ′ if DS ′ ⊆DS and RS ′ = RS ∩Dρ(R)
S ′ for every

R ∈R. It generalizes the notion of an induced subgraph.
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(3) For every relational signature R and positive integer k , the set of R-structures
S such that wR(S) ≤ k is the image of trees under a monadic second-order
transduction. Conversely, if L⊆ STR(R) and L is included in the image of trees
under a monadic second-order transduction, then wR(L) is finite.

(4) For every two relational signatures R and R′without constant symbols, and every
monadic second-order transduction τ of type R→R′, there exists a computable
function fτ such that wR′(U ) ≤ fτ (wR(S)) for every S ∈ STR(R) and every U
in τ(S).

Proof: (1) If G has clique-width k , then it is the value of a term t in T (FVR
C,[K ,�])where

|C| = k . Since FVR
C,[K ,�] is a subsignature of F redQF

Rs,[K ,�],Lab(C)
(cf. Example 9.30(1))

and ‖Lab(C)‖ = |C|, we get the first inequality. (We may have a strict inequality
because the graphs defined by the terms in T (F redQF

Rs,[K ,�] ,Lab(C)
) may have several labels

from C attached to the same vertex. Hence, these terms are not necessarily terms in
T (FVR

C,[K ,�]).)
The second inequality follows from Proposition 9.24 and Corollary 7.38(2). The

function f is computable because Proposition 9.24 is effective (and see the last
sentence of the proof of Corollary 7.38(2)).

(2) The proof is similar to the proof of the corresponding result for clique-width
(Proposition 2.105(1)). Let S and S ′ be as in the statement. Let S be the value of a
term t in F redQF

R,B such that ‖B‖ =wR(S).
The elements of DS are in bijection with the occurrences of the constant symbols in

t different from ∅ because the unary operations of F redQF
R,B are all domain preserving.

Let us replace by ∅ those occurrences that correspond to the elements of DS −DS ′ .
We obtain a term t′ in T (F redQF

R,B ) that evaluates to the structure S[DS ′ ] = S ′ (because

for every unary operation g in F redQF
R,B , every structure U and every set D⊆ DU , we

have g(T )[D] = g(T [D]).) Hence wR(S ′)≤ wR(S). If needed, we can eliminate ∅
from t′ (cf. Remark 9.32(d)).

(3) The first assertion follows from Proposition 9.24 and Proposition 7.27. The
second one follows from the implication (2)=⇒ (3) of Theorem 9.31.

(4) An immediate consequence of Proposition 9.24 and the usual arguments (cf.
the proof of Corollary 7.38(2)).

We get also that wR(L) is finite if L has bounded tree-width (because Inc(L) is
included in the image of trees under an MS-transduction by Corollary 9.16, hence L
is included in the image of trees under an MS-transduction, hence wR(L) is finite).
Hence, the numerical parameter wR(S) satisfies the Conditions (i) to (iii) stated at the
beginning of Section 9.3.3. However, we give it no name because some equivalent
one having better combinatorial and algorithmic properties may be found in the (next)
future and names are not that easy to find for mathematical notions, so we prefer to
spare them.
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9.4 Sparse relational structures

We will prove that for expressing properties of simple graphs that are sparse, i.e.,
that have “few” edges in a precise sense to be defined, CMS2 formulas are no more
powerful than CMS formulas. This result, which we call the Sparseness Theorem,
applies in particular to planar graphs, to graphs of bounded tree-width and, more gen-
erally, to the graphs that exclude some fixed graph as a minor. It applies also to graphs
of bounded degree. These facts have been stated in connection with Theorems 1.44,
1.49, 4.51, 4.59 and 5.22. We will actually prove this theorem for relational structures
and not only for graphs. The CMS2 formulas over relational structures, which can
use quantifications on sets of tuples, have been defined in Section 9.2.

All relational signatures will be without constant symbols. The incidence graph of
a concrete R-structure is a simple, directed and labeled concrete graph, and it will be
identified (as in Section 9.2, Definition 9.10) with the corresponding RInc-structure.

The proofs of the Sparseness Theorem and all necessary lemmas will consist of
constructions of definition schemes for specifying monadic second-order transduc-
tions. A definition scheme specifies in the first place a concrete transduction. We will
have to construct definition schemes that specify particular concrete transductions,
and not only transductions of abstract structures. Hence, in this section and unless
otherwise specified, we will adopt the following convention:

All graphs, relational structures and transductions will be concrete.

Our tools concerning transductions, in particularTheorem 7.10 (the BackwardsTrans-
lation Theorem) and Theorem 7.14 (about compositions of transductions), have been
formulated for concrete MS-transductions. The following definitions concern only
concrete structures and transductions.

Definition 9.35 (Unions of concrete structures and transductions) Let R, R′
and R′′ be relational signatures without constant symbols. If S ∈ STRc(R) and S ′ ∈
STRc(R′), then we denote by S+ S ′ the concrete R∪R′-structure T such that

DT := DS ∪DS ′ (DS and DS ′ need not be disjoint),

RT := RS ∪RS ′ if R ∈R∩R′,
RT := RS if R ∈R−R′,
RT := RS ′ if R ∈R′ −R.

If τ and τ ′ are concrete transductions of respective types R→R′ and R→R′′, then
we denote by τ + τ ′ the concrete transduction of type R→R′ ∪R′′ such that, for
every S ∈Dom(τ )∩Dom(τ ′) (its domain), (τ + τ ′)(S) is the set of structures T +T ′
such that T ∈ τ(S) and T ′ ∈ τ ′(S).

If τ and τ ′ are concrete CrMS-transductions, then τ + τ ′ is also a concrete
CrMS-transduction. We sketch the construction of a definition scheme for τ + τ ′



652 Relational structures

from definition schemes 〈χ ,(δi)i∈I ,(θw)w∈R′�I 〉 and 〈χ ′,(δ′i)i∈I ′ ,(θ ′w)w∈R′′�I ′ 〉 for
τ and τ ′ respectively. Note that DT ⊆ DS × I if T ∈ τ(S) and that DT ⊆ DS × I ′ if
T ∈ τ ′(S). We can assume that the sets of parameters used for τ and for τ ′ are disjoint.
The definition scheme for τ + τ ′ has all of them as parameters and has precondition
χ ∧χ ′. Its domain formulas are δ′′i for all i ∈ I ∪ I ′ where

δ′′i is δi ∨ δ′i if i ∈ I ∩ I ′,
δ′′i is δi if i ∈ I − I ′,
δ′′i is δ′i if i ∈ I ′ − I .

The relation formulas are easy to write.

We recall from Definitions 9.10 and 5.1 that if S belongs to STRc(R), then TS

denotes the set of tuples of S, and if X ⊆ DS , then S[X ] denotes the (induced)
substructure of S with domain X and relations RS[X ] := RS ∩X ρ(R) for every R ∈R.

Definition 9.36 (Uniformly k-sparse relational structures) Let k be a positive
integer. A relational structure S is k-sparse if |TS | ≤ k · |DS |. It is uniformly k-sparse
if S[X ] is k-sparse for every subset X of DS . We denote by USk (R) the class of
uniformly k-sparse (concrete) R-structures.

A similar notion is defined for graphs in Section 5.2.5 (cf. Theorem 5.22): a graph
G is uniformly k-sparse if |EH | ≤ k · |VH | for each of its induced subgraphs H . In
Remark 9.39(2) below, we will compare uniform sparsity for labeled graphs and for
the associated relational structures. We note immediately that whether a graph G is
uniformly k-sparse does not depend on its possible vertex and edge labels. However,
the relational structure �G� represents these labels and its size depends on them.

A set of graphs or relational structures is uniformly k-sparse if its elements are all
uniformly k-sparse.

The main result of this section is formulated in the following two theorems:

Theorem 9.37 A class of simple labeled graphs or of R-structures that is uniformly
k-sparse is CMS2-definable if and only if it is CMS-definable. �

The “if ” direction of this theorem is immediate from the Backwards Transla-
tion Theorem (Corollary 7.12) and the fact that the inverse of the mapping Inc is
an FO-transduction of abstract structures (Lemma 9.11(2)). Thus, again by Corol-
lary 7.12, Theorem 9.37 is a consequence of the following more technical statement
(cf. Theorem 1.49).

Theorem 9.38 (Sparseness Theorem) The mapping Inc is a domain-extending
MS-transduction on the following classes:

the class USk(R) of uniformly k-sparse R-structures, for every k > 0 and every
relational signature R without constant symbols; and
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the classes of simple, directed or undirected, uniformly k-sparse (K ,�)-labeled
graphs, for every k > 0 and every pair (K ,�) of finite sets of labels. �

By Definition 7.2, this means that a domain-extending MS-transduction τ constructs,
for every S in USk (R), one or more structures with domains included in DS × I for
some finite set I , that are all isomorphic to Inc(S) by an isomorphism that maps (a, i)
to a for some fixed element i of I .

The proof of Theorem 9.38 will construct a domain-extending p-copying trans-
duction that will extend the domain DS of an input structure S by new elements in
bijection with the tuples of S. Such a construction is possible only if S has at most
(p− 1) · |DS | tuples. Theorem 9.38 shows that, conversely, such a construction is
possible for any fixed k > 0 and for all structures in USk(R). We will first establish
it for simple, labeled, directed and undirected graphs.9 The full proof will be given
in Section 9.4.2, after Theorem 9.61.

9.4.1 Edge set quantifications in uniformly k-sparse graphs

We will denote by M u the class of loop-free undirected graphs, by M d the class of
loop-free directed graphs, and by Ad the subclass of M d consisting of the acyclic
graphs (those without circuits). We recall from Definition 2.9 that an orientation H
of a graph G ∈ M u is a directed graph such that und(H ) = G: each edge is given
a direction. Note that every graph in M u has an acyclic orientation in Ad: order the
vertices and let the direction of the edges respect the order.

We will denote by Su the class of simple, loop-free undirected graphs. An orienta-
tion of a graph G ∈ Su is thus a directed graph H such that VH =VG, edgH ∩edg−1

H =∅
and edgG = edgH ∪edg−1

H . We will denote by Sd∗ the class of orientations of the graphs
in Su and by Sd

k the subclass of those of indegree at most k . Hence, Sd∗ is the class of
simple, loop-free directed graphs that have no pair of opposite edges. We will denote
by USk the class of graphs in Su that are uniformly k-sparse.

Remark 9.39 (1) In all this section, we will not consider an undirected graph G as
a directed graph with pairs of opposite edges.

(2) If G is a simple directed graph, then |edgG| = |EG|. Hence, it is uniformly
k-sparse if and only if the structure �G� is uniformly k-sparse. If G is undirected,
then

|EG| ≤ |edgG| = |EG|+ |EG −Loops(G)| ≤ 2 · |EG|,
where Loops(G) is the set of loops of G. Hence, the structure �G� is uniformly
2k-sparse if G is uniformly k-sparse. Conversely, if �G� is uniformly k-sparse, then
G is uniformly k-sparse.

9 It was proved for words and terms (viewed as graphs) in Corollary 5.23, and for forests in Example 7.8.
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Let us now consider a (K ,�)-labeled graph G. The tuples of the structure �G�
are the pairs representing the labeled edges (each edge has a unique label) and unary
tuples representing the labels of the vertices. Hence, if G is directed, then

|EG| ≤ |T�G�| ≤ |EG|+ |K | · |VG|.

It follows that �G� is uniformly (k + |K |)-sparse if G is uniformly k-sparse. If G is
undirected, then we have similarly

|EG| ≤ |T�G�| ≤ 2 · |EG|+ |K | · |VG|.

These remarks entail that a set L of simple, directed or undirected, (K ,�)-labeled
graphs is uniformly k-sparse for some k if and only if the set of structures �L� is
uniformly m-sparse for some m.

(3) The reader will prove easily that for every (K ,�)-labeled graph G, the relational
structure �G� = �Inc(G)� is uniformly (2+|K |)-sparse.

(4) We now compare uniform sparsity for graphs to some related notions. The
average degree of a graph G (possibly with loops and multiple edges) is defined as
2 · |EG|/|VG|. Hence, a set of graphs is uniformly k-sparse if and only if its graphs
and their subgraphs have average degree at most 2k.

The property that a graph is uniformly k-sparse is also related with its arboricity.
A graph G (possibly with multiple edges) has arboricity at most k if the undirected
graph und(G) (or G if it is undirected) is the union of k edge-disjoint forests (i.e., is
equal to G1 ∪ ·· · ∪Gk , where each graph Gi is a forest and EGi ∩EGj = ∅ if i �= j).
The arboricity of G is the smallest such k . This value is thus undefined for graphs
with loops. Arboricity has the following characterization: a loop-free graph G has
arboricity at most k if and only if |EG[X ]| ≤ k · (|X | − 1) for every nonempty subset
X of VG ([*Fra], Theorem 6.13). Hence a graph of arboricity k is uniformly k-sparse.
Conversely, a loop-free graph that is uniformly k-sparse has arboricity at most 2k as
one checks easily. This bound is best possible since a graph with 2k parallel edges
between two vertices has arboricity 2k and is uniformly k-sparse. Hence a set of
loop-free graphs has bounded arboricity if and only if it is uniformly k-sparse for
some k .

(5) It is clear from the definitions that every graph of degree at most 2d, and every
directed graph of indegree at most d, is uniformly d-sparse. Every simple, loop-
free, undirected and planar graph is uniformly 3-sparse ([*Die], Corollary 4.2.10).
Corollary 2.74(1) shows that a simple, loop-free and undirected graph of tree-width at
most k is uniformly k-sparse (cf. the proof of Theorem 4.51). More generally, if G is a
simple graph that does not contain Kp as a minor, then it has at most a ·p√log(p) · |VG|
edges for some constant a (see [Thom]). The same holds for its subgraphs, hence G
is uniformly (a · p√log(p))-sparse. �
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The following proposition collects properties of uniformly k-sparse graphs that
will be useful for our constructions. A homomorphism h : G→ H , where G and H
belong to Sd∗ , is a mapping : VG→ VH such that x→G y implies h(x)→H h(y). For
each positive integer k , we define q(k) := 22k(k+1)+1− 1.

Proposition 9.40

(1) A graph in Su is uniformly k-sparse if and only if it has an orientation of indegree
at most k .

(2) Every simple directed graph of indegree at most k has a proper vertex
(2k+ 1)-coloring.10

(3) For every k > 0, there exists a graph Q(k) in Sd∗ with vertex set [q(k)] such that
for every G ∈ Sd

k there exists a homomorphism : G→Q(k).

Proof: (1)This fact is proved in [*Fra], Theorem 6.13. We will prove a generalization
of it to hypergraphs in Proposition 9.58.

(2) Let G belong to Sd
k . By induction on |VG|, we will construct a proper vertex

(2k + 1)-coloring defined as a mapping γ : VG → [2k + 1]. Since the sum of the
indegrees of all vertices is equal to that of their outdegrees (and to |EG|), some vertex
v has outdegree at most k , hence degree at most 2k. Since the graph G − v also
belongs to Sd

k it has by induction a proper vertex (2k + 1)-coloring defined as a
mapping γ ′. Since the degree of v is at most 2k, γ ′ can be extended into a proper
vertex (2k+ 1)-coloring of G.

(3) This fact is proved in [NešSV], Theorem 10. For completeness we reproduce its
proof. Let us fix k > 0 and define p := 2k(k+1)+1. We construct as follows a directed
graph Q(k) with q(k)= 2p−1 vertices. Its vertices are the tuples (i;a1, . . . ,ai−1) for
i ∈ [p] and as ∈ {0,1} for all s∈ [i−1]. If a= (i;a1, . . . ,ai−1) and b= ( j;b1, . . . ,bj−1)

with j < i, there is an edge from a to b if aj = 1 and one from b to a if aj = 0. (There
is no edge between (i;a1, . . . ,ai−1) and (i;b1, . . . ,bi−1).)

Let G belong to Sd
k . We first show that it has a proper vertex p-coloring γ such that,

if x→G y→G z, then γ (x) �= γ (z): consider the graph G′ consisting of G augmented
with the edges from x to z for all triples (x,y,z) as above. This graph has indegree at
most k(k+1), hence, by (2), it has a proper vertex p-coloring γ , which is the desired
one for G.

We now define a homomorphism h from G to Q(k). If x ∈ VG we define h(x) :=
(i;a1, . . . ,ai−1), where i := γ (x), and, for 1≤ j < i, aj := 0 if and only if there is an
edge y→G x for some vertex y such that γ (y)= j.

We now check that h is indeed a homomorphism. Let x and y be adjacent vertices
of G such that j = γ (y) < i = γ (x). Let h(x)= a= (i;a1, . . . ,ai−1) and h(y) = b=
( j;b1, . . . ,bj−1). If y→G x, then aj = 0, hence we have b→Q(k) a. If x→G y, then

10 Proper means that two adjacent vertices have different colors.
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there is no vertex z such that z→G x and γ (z)= j, because γ is a proper coloring of
G′. Hence, aj = 1 and we have a→Q(k) b.

The vertices of Q(k) can be encoded by the integers in [q(k)], which gives the
stated result.

In the next definition and until the end of this section, we denote by Xn any n-tuple
of distinct set variables (X1, . . . ,Xn).

Definition 9.41 (Orientations and orderings defined by MS formulas) Let
C be a set of simple, loop-free undirected graphs. A pair of MS formulas
(χ(Xn),θ(Xn,x1,x2)) defines orientations of every graph in C (or orients the graphs
of C) if, for every graph G in C,

�G� |= (∃X1, . . . ,Xn.χ)∧∀X1, . . . ,Xn(χ⇒ θ̂ ),

where θ̂ is the formula with free variables in Xn defined as

∀x,y[edg(x,y)⇔ (θ(x,y)∨ θ(y,x))] ∧ ∀x,y[θ(x,y)⇒¬θ(y,x)].
These conditions mean that, for every tuple (U1, . . . ,Un) of sets of vertices satis-

fying χ , if W := {(u,v) | u,v ∈ VG and �G� |= θ(U1, . . . ,Un,u,v)}, then the directed
graph H := 〈VG,W 〉 is an orientation of G. Furthermore, for each graph G in C there
is such an n-tuple.

Equivalently, they mean that the domain-preserving MS-transduction with defini-
tion scheme 〈χ ,True,θedg〉, where θedg (the formula that specifies the relation edgH

of an output graph H ) is θ , associates with every graph G ∈ C one or more orienta-
tions of G. The variables in Xn are its parameters. If (χ ,θ) defines orientations of the
graphs in C, then (θ̂ ,θ) does the same, and for the graphs of a possibly larger class.
However, it is frequently clearer to use χ instead of θ̂ .

Similarly, if C is a set of directed or undirected graphs, a pair of formulas (χ ,θ)
as above defines partial orders on VG for every graph G in C (or partially orders the
graphs of C) if the same conditions hold, where θ̂ is defined here as

∀x.θ(x,x) ∧ ∀x,y[(θ(x,y)∧ θ(y,x))⇒ x= y]
∧∀x,y,z[(θ(x,y)∧ θ(y,z))⇒ θ(x,z)].

In this case, the set W := {(u,v) | u,v ∈ VG and �G� |= θ(U1, . . . ,Un,u,v)} is a par-
tial order on VG. The domain-preserving MS-transduction with definition scheme
〈χ ,True,θedg ,θ≤〉 such that θedg is edg(x1,x2) and θ≤ is θ , associates with �G� for
G ∈ C one or more structures of the form 〈VG,edgG,≤〉, where ≤ is a partial order
on VG . In Section 5.2.6 (Definition 5.28), we had a similar definition for specifying
linear orders by MS formulas.

The integer q(k) in the following statement is defined before Proposition 9.40.
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Proposition 9.42
(1) For each k > 0, there exists a pair of FO formulas (χ(Xq(k)),θ(Xq(k),x1, x2)) that

defines orientations of indegree at most k of every graph in USk .
(2) For each k , the class of graphs USk is MS-definable.

Proof: (1) By Proposition 9.40(1), a graph G in Su is uniformly k-sparse if and only
if it has an orientation of indegree at most k . We will specify such an orientation
by means of a vertex coloring, based on the third assertion of Proposition 9.40 of
which we will use the corresponding notions. A k-good coloring of G is a mapping
γ : VG→[q(k)] such that:

(i) if u and v are adjacent in G, then γ (u) and γ (v) are adjacent in Q(k);
(ii) the orientation H of G defined by: u→H v if and only if γ (u)→Q(k) γ (v), has

indegree at most k .

By Proposition 9.40(3), a graph G has an orientation of indegree at most k
if and only if it has a k-good coloring: if G has an orientation H ∈ Sd

k , then
the homomorphism from H to Q(k) is a k-good coloring. A coloring γ : VG →
[q(k)] can be described by a q(k)-tuple of subsets of VG, (U1, . . . ,Uq(k)) :=
(γ−1(1), . . . ,γ−1(q(k))), which defines a partition of VG (some of its sets may be
empty). The formulas χ and θ to be constructed have free variables X1, . . . ,Xq(k) and
are easy to write. The formula χ expresses, for every graph G in Su, that

• U1, . . . ,Uq(k) define a partition of VG; and
• the mapping γ : VG→ [q(k)] such that γ (u) := i for every i ∈ [q(k)] and u ∈ Ui,

is a k-good coloring.

The formula θ(x1,x2) is edg(x1,x2)∧∨i→Q(k) j(x1 ∈ Xi ∧ x2 ∈ Xj), expressing that
{x1,x2} is an edge such that γ (x1)→Q(k) γ (x2).

(2) It follows from (1) that USk is defined with respect to the class Su by the MS
sentence ∃Xq(k).χ .11

For every vertex x of a directed graph G, we define Adj−G(x) as the set {y | y→G x}.
Proposition 9.43 For each k > 0, there exists a pair of MS formulas (χ(Xn),
θ(Xn,x1,x2)) that defines, for every graph G in Sd

k , partial orders on VG that are
linear on Adj−G(x) for each x ∈ VG.

Before giving the quite complicated proof, we show that the last two propositions
yield the assertions of the Sparseness Theorem (Theorem 9.38) relative to graphs and
to binary relational structures, which we restate as follows:

11 The definition of USk is not monadic second-order expressible, but the characterization of Proposi-
tion 9.40(1) yields the result. The class of graphs G that are 2-sparse, i.e., for which |EG | ≤ 2 · |VG |, is
not MS-definable. The proof technique of Proposition 5.13 can be adapted to prove this fact.
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Theorem 9.44 The mapping Inc is a domain-extending MS-transduction on the
classes USk(R), for every k > 0 and every binary relational signature R, and on the
classes of simple, directed or undirected, uniformly k-sparse (K ,�)-labeled graphs,
for every k > 0 and every pair (K ,�) of finite sets of labels.

Proof: The special case of undirected graphs: For making the proof more read-
able, we first prove that Inc is a domain-extending MS-transduction on the class
USk . Thus, we have to construct a domain-extending MS-transduction τ that trans-
forms each uniformly k-sparse graph G in Su into Inc(G) (more precisely, into
a graph isomorphic to Inc(G)). By Propositions 9.42(1) and 9.43 there exists a
domain-preserving MS-transduction τ1 that transforms G into one or more struc-
tures 〈VH ,edgH ,≤〉 such that H ∈ Sd

k is an orientation of G and ≤ is a partial
order on VH (= VG) that is linear on each set Adj−H (x). Its parameters are
the set variables of the involved formulas χ and θ , where those of Proposi-
tion 9.43 must be taken disjoint from those of Proposition 9.42(1). It remains to
construct a parameterless domain-extending MS-transduction τ2 that transforms
this structure into Inc(G) = 〈VG ∪ EG , inG〉. Then we can define the parameter-
invariant MS-transduction τ to be τ1 · τ2 by Theorem 7.14 (on the composition of
MS-transductions).

For each x ∈ VH , we enumerate Adj−H (x) as {p1(x),p2(x), . . . ,pl(x)} with l ≤ k and
p1(x) < p2(x) < · · ·< pl(x). An edge pi(x)→H x (which is the edge between x and
pi(x) in EG) is then defined in Inc(G) as the pair (x, i). Hence we can construct a (k+
1)-copying MS-transduction τ2 that associates with (H ,≤) given as 〈VG ,edgH ,≤〉
the structure T = 〈DT , inT 〉 such that

DT := (VG×{0})∪{(x, i) | x ∈ VG, 1≤ i ≤ |Adj−H (x)|} ⊆ VG×[0,k],
inT := {((x, i),(y,0)) | (x, i) ∈DT , i ≥ 1, y= pi(x)}

∪{((x, i),(x,0)) | (x, i) ∈DT , i ≥ 1}.

It is convenient here to define DT as a subset of VG × [0,k] rather than of the usual
set VG × [k + 1]. The set VG × {0} is the copy of VG in DT . It is clear that T is
isomorphic to Inc(G), by an isomorphism that maps (x,0) to x (and that maps (x, i) to
the edge between x and pi(x) for i≥ 1). It is straightforward to write a (k+1)-copying
domain-extending definition scheme D such that D̂(〈VG,edgH ,≤〉)= T . Hence, Inc
is a domain-extending MS-transduction on the class USk .

The case of binary relational structures: Let S = 〈DS ,(RS)R∈R〉 ∈ USk (R) and let
G := Adj(S) ∈ Su be its adjacency graph (with VG =DS , cf. Proposition 9.14). Since
|EG| ≤ |TS |, the graph G is in USk . Thus, by Propositions 9.42(1) and 9.43 there
exists a domain-preserving MS-transduction τ 1 that transforms S into one or more
structures 〈DS ,(RS)R∈R,edgH ,≤〉, where the structure 〈VH ,edgH ,≤〉 satisfies the
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same conditions as in the above special case, with VH =VG =DS .12 For each x ∈DS ,
we define the enumeration p1(x), . . . ,pl(x) of Adj−H (x) as above.

Our goal is now to define a parameterless domain-extending MS-transduction τ 2

that transforms each such structure 〈DS ,(RS)R∈R,edgH ,≤〉 into Inc(S). Clearly, it
suffices to construct a structure U isomorphic to Inc′(S) (the simplified version of
Inc(S), cf. Definition 9.10) by a domain-extending MS-transduction: by composing
that transduction with the domain-preserving FO-transduction that transforms Inc′(S)
into Inc(S) we get the result.

We define U with domain included in DS × ({0}∪ ([2k+ 1]×R2)).

(1) Every element x of DS corresponds to (x,0) in DU .
(2) If (x,x) ∈ RS , for R ∈R2, then the triple (R,x,x) in TS corresponds to (x,(1,R))

in DU .

We now consider (x,y) ∈ RS with x �= y, for R ∈R2.

(3) If x= pi(y), then the triple (R,x,y) in TS corresponds to (y,(1+ i,R)) in DU .
(4) If y= pi(x), then (R,x,y) corresponds to (x,(1+ k+ i,R)) in DU .

In cases (2) and (4), we define RU ((x,a)) to hold (with a equal to (1,R) or
to (1+k+ i,R)); in case (3), we define RU ((y,a)) to hold (with a equal to (1+ i,R)).
For a unary relation R in R1, we need only make sure that RU ((x,0)) holds if and
only if RS(x) holds.

It is easy to write the relation formulas that define in1 and in2. Note that

in1U := {((x,(1,R)),(x,0)) | (x,(1,R)) ∈DU }
∪{((y,(1+ i,R)),(x,0)) | (y,(1+ i,R)) ∈DU , x= pi(y)}
∪{((x,(1+ k+ i,R)),(x,0)) | (x,(1+ k+ i,R)) ∈DU },

and similarly for in2U .
The final transduction τ := τ 1 · τ 2 is parameter-invariant.

The case of labeled graphs: For directed (K ,�)-labeled graphs, we can use the
construction of the previous case with � in place of R2 and K in place of R1. For
undirected (K ,�)-labeled graphs, the construction is essentially the same except that
we need only use [k+ 1] instead of [2k+ 1]. We omit the easy details.

The proof of Proposition 9.43, which will be given after Proposition 9.54, will use
a number of definitions and results of independent interest.

In what follows we will not distinguish between a simple directed labeled graph G
and the corresponding structure �G�. In particular, for an arbitrary labeled graph G,
we will not distinguish between the graph Inc(G) and the structure �G�.
12 To be precise, τ1 := IdR +Adj · τ1, where IdR is the identity on STRc(R) and τ1 is defined above

(and for + see Definition 9.35). Note that, without loss of generality, we assume that edg /∈R.
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Definition 9.45 (Normal and spanning forests) Let F0 be a forest and R be a
subset of VF0 that consists of one vertex from each connected component of F0. By
Definition 2.13, F := (F0,R) is a rooted forest. The corresponding descendant relation
is a partial order denoted by ≤F ; its set of maximal elements is R, also denoted by
rootsF .

If, furthermore, F0 is a subgraph of an undirected graph G, we say that F is a
rooted forest in G. Such a forest is spanning if VF0 = VG . It is normal13 (without
being necessarily spanning) if every two vertices of F that are adjacent in G are
comparable with respect to≤F . If F is normal and spanning, then we let G(F) be the
orientation of G defined as follows: an edge linking x and y �= x is directed from x to
y if y <F x and from y to x if x <F y.

Proposition 9.46 The transduction und−1 : M u→M d is an MS2,2-transduction, and
so is the transduction und−1∩(M u×Ad) that defines the acyclic orientations of every
graph in M u.14

Proof: We first construct an MS2,2-transduction α : M u→M d such that α⊆ und−1

and M u ⊆Dom(α). It will define one or more orientations of each undirected graph G.
To be precise, it will define all orientations G(F) where F is a normal spanning forest
in G.

We let D be the domain-preserving definition scheme 〈χ ,True,θin1 ,θin2〉 with two
parameters such that:

(1) Inc(G) |= χ(X ,U ) if and only if X ⊆ EG, U ⊆ VG and F := (F0,U ) is a normal
spanning forest in G, where F0 is the subgraph of G with edge set X and vertex
set VG;

(2) for every X ,U satisfying (1) and every e ∈ EG with two end vertices x and y, if
y <F x, then:

(a) Inc(G) |= θin1(X ,U ,e,z) if and only if z = x; and
(b) Inc(G) |= θin2(X ,U ,e,z) if and only if z = y;

(3) for every X ,U satisfying (1), if Inc(G) |= θini (X ,U ,w,z) for i = 1 or 2, then w

is an edge of G (and z is an end vertex of w).

These conditions can easily be expressed in monadic second-order logic; for
Condition (1) see Example 5.18.

Since every graph has a normal spanning forest (such a forest can be constructed
by a depth-first traversal of each connected component), the transduction α := D̂
defines one or more orientations for all graphs in M u. In the orientations constructed

13 This notion extends that of a normal tree defined in [*Die]. See also Definition 2.13 and Example 2.56(6).
14 Here, we can define all orientations of any given graph by an MS2,2-transduction. The construc-

tion differs from that of Proposition 9.42(1) in which we defined one or more orientations by an
MS1,1-transduction. It is not possible to define all orientations of every simple undirected graph by a
single MS1,1-transduction, see Example 7.46.
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by α, any two parallel edges are oriented in the same direction, but even for simple
graphs, α does not produce all orientations. An additional transduction can reverse
the orientations of an arbitrary set of edges, hence yield all orientations.

There exists a domain-preserving MS2,2-transduction β : M d→M d that is equal
to und · und−1, i.e., that associates with every loop-free directed graph G the set of
all orientations of und(G). This transduction uses a parameter intended to take for
values any set of edges: the edges whose direction is to be reversed. Hence α · β is
the desired transduction. It uses three parameters.

The second assertion is an application of the Restriction Theorem (Theorem 7.16)
since the class Ad is MS2-definable with respect to M d.

Remark 9.47 This proposition yields the particular case of Proposition 9.43, where
k = 2:

There is a pair (χ ,θ) of MS formulas that defines, for every G ∈ Sd
2 (the set

of orientations of indegree at most 2 of the simple undirected graphs), one or
more partial orders on its vertex set that are linear on each set Adj−G(x).

We sketch the proof. Consider G ∈ Sd
2 and let H be the undirected graph having

the same vertices as G and having an edge ex between u and v �= u for each x such
that u→G x and v→G x. The graph Inc(H ) is easily constructed from G by an
MS-transduction: it uses a copy, say (x,2), of such a vertex x as the element of
Inc(H ) representing the edge ex of H linking u and v. By Proposition 9.46, an MS-
transduction can define from Inc(H ) all (incidence graphs of) acyclic orientations of
H . This can also be done by an MS-transduction taking G as input. The reflexive
and transitive closure of each acyclic orientation (of H ) yields an appropriate partial
order on VG . �

The following notion of (undirected) hypergraph will be used as a technical tool.15

In such a hypergraph, a hyperedge is a nonempty set of vertices. The main application
in this section will be to the hypergraph associated with a graph G in Sd∗ : each
nonempty set Adj−G(x), for x ∈ VG, is defined to be a hyperedge. In Definitions 9.53
and 9.57 below, we will define orientations of hypergraphs.

Definition 9.48 (Hypergraphs and forests in hypergraphs) (a) A hypergraph is
a triple H = 〈VH ,EH ,vertH 〉 such that VH ∩ EH = ∅ and vertH (e) is a nonempty
subset of VH for each e in EH . The elements of EH are the hyperedges of H . Those
of VH (respectively of vertH (e)) are the vertices of H (respectively of e). The rank
of a hyperedge e is the integer |vertH (e)|. The maximal rank of H (respectively its
minimal rank) is the maximal (respectively the minimal) rank of its hyperedges. We
denote by Hm the set of hypergraphs of maximal rank at most m. An m-hypergraph

15 We have used hypergraphs of a different type in Section 4.1.5.
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is a hypergraph with all hyperedges of rank m. We say that H is simple if vertH (e) �=
vertH (e′) for e �= e′.

The incidence graph of H is the simple directed bipartite graph Inc(H ) :=
〈VH ∪ EH , inH 〉 such that inH := {(e,v) ∈ EH × VH | v ∈ vertH (e)}. We will use
it as a relational structure for representing H faithfully. This representation allows
quantifications over sets of hyperedges (viewed as a structure it would be natural to
denote it by �H�).

The following alternative, weaker representation, does not. For each positive inte-
ger m, we let edgm be an m-ary relation symbol. If H has maximal rank m, we define
�H� := 〈VH ,edg1

H , . . . ,edgm
H 〉, where edgp

H := {(x1, . . . ,xp) | vertH (e) = {x1, . . . ,xp}
for some e ∈ EH of rank p} for each p. This definition yields a faithful representation
of the simple hypergraphs of maximal rank m.

(b) Let H be a hypergraph of minimal rank at least 2. A forest in H , or an H-forest,
is a rooted forest F defined as a triple 〈NF ,sonF ,rootsF 〉 (where NF is its set of nodes
and rootsF its set of roots) such that:

(i) NF ⊆ EH ;
(ii) if e′ is a son of e, then |vertH (e)∩ vertH (e′)| = 1;
(iii) if e,e′ ∈NF , e �= e′ and vertH (e)∩vertH (e′) �= ∅, then either e and e′ are adjacent

in F or they are two sons of some hyperedge e′′ such that vertH (e′′)∩vertH (e)=
vertH (e′′)∩ vertH (e′)= vertH (e)∩ vertH (e′).16

Note that the binary relation sonF can be determined (in a unique way) from the sets
NF and rootsF and the mapping vertH .17 We will do this by a monadic second-order
formula in the proof of Proposition 9.50.

(c) Let F be an H -forest. We define V (F) as the set of vertices of the hyperedges
of H that belong to NF . For e ∈ NF , we let

V (F ,e) :=
{

vertH (e) if e is a root of F ,

vertH (e)− vertH (e′) if e′ is the father of e.

Hence {V (F ,e) | e ∈NF } is a partition of V (F). We let8F be the quasi-order on V (F)

defined as follows:

x 8F y if and only if x ∈ V (F ,e) and y ∈ V (F ,e′) for some e,e′ such that e≤F e′.

We write x ≺F y if x 8F y and we do not have y 8F x; we let x ≡F y if x 8F y 8F x,
equivalently, if x and y belong to V (F ,e) for some e.

16 By (ii), this implies that |vertH (e)∩ vertH (e′)| = 1.
17 The relation sonF can be determined in a top-down way on the trees of F . If e is a root, then e′ is a son

of e if and only if e′ �= e and vertH (e′)∩ vertH (e) �= ∅. If e has sons e1, . . . ,en, then e′ is a son of ei if
and only if e′ /∈ {e,e1, . . . ,en} and vertH (e′)∩ vertH (ei) �= ∅.
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(d) An H -forest F is spanning if vertH (e) ∩ V (F) �= ∅ for every e ∈ EH . It is
normal if, for every e in EH that satisfies |vertH (e)∩V (F)| ≥ 2, there exist x,y in
vertH (e)∩V (F) such that x �= y and x 8F y.

Lemma 9.49 Every hypergraph H of minimal rank at least 2 has a normal and
spanning H -forest.

Proof: We adapt the classical depth-first traversal algorithm for graphs. Let F be a
rooted forest. A linear order ≤ on its set of nodes NF is depth-first if, for all e,e′, f
in NF :

(i) if e′ ≤F e, then e≤ e′;
(ii) if e and f are incomparable with respect to ≤F , e < f and e′ ≤F e, then e′ < f .

The maximal branch of F is the path from a root to the node that is maximal with
respect to ≤. By (i), that node is a leaf of F .

We will construct a finite increasing sequence of H -forests F1⊆F2⊆ ·· ·⊆Fi⊆ ·· ·
satisfying the following conditions:

(1) rootsF1 ⊆ rootsF2 ⊆ ·· · ⊆ rootsFi ⊆ ·· · ;
(2) NF1 = {e1} and NFi+1 = NFi ∪ {ei+1} for some sequence e1,e2, . . . ,ei, . . . of

pairwise distinct hyperedges;
(3) the linear order (e1, . . . ,ei) is depth-first in Fi.

This sequence of H -forests has length at most |EH | by (2) and we take its last element
as the result of the construction. Note that the maximal branch of Fi is the path in Fi

from a root to ei.
We now describe the construction of the sequence (Fi)i≥1. We define e1 as any

hyperedge and let F1 consist only of it. Assuming F1, . . . ,Fi already constructed, we
define Fi+1 as follows:

Case 1: There exists e ∈ EH −NFi such that |vertH (e)∩V (Fi)| = 1. We let j ≤ i be
the largest index such that |vertH (e)∩V (Fi)| = |vertH (e)∩V (Fi,ej)| = 1 for some
e ∈ EH − NFi . We let ei+1 be one of these hyperedges e and define a forest Fi+1

extending Fi by letting NFi+1 be NFi ∪{ei+1} and ei+1 a son of ej . In this case, we let
rootsFi+1 := rootsFi .

Case 2: There is no hyperedge e satisfying Case 1 and there exists e ∈ EH −NFi such
that vertH (e)∩V (Fi)=∅. We take any of these hyperedges e as hyperedge ei+1 and
define Fi+1 by letting NFi+1 := NFi ∪{ei+1} and rootsFi+1 := rootsFi ∪{ei+1}.
Case 3: Cases 1 and 2 are not applicable. This case terminates the construction. We
return Fi as the desired forest F .

As an example, Figure 9.1 shows a hypergraph with hyperedges all of rank 3
(they are drawn as triangles). The algorithm constructs a normal and spanning forest
F = F11 with NF = {1,2, . . . ,11} (where ei is denoted by i). It has roots 1 and 11, and
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Figure 9.1 A hypergraph H with all hyperedges of rank 3.

directed edges 1→ 2, 2→ 3, 2→ 4, etc. (see Figure 9.2). The hyperedges marked *
in Figure 9.1 are not in NF .

Going back to the general case, it is clear that each Fi is an H -forest, and that the
last one, say Fm, is spanning (otherwise, Fm could be extended by an application of
Case 1 or 2). We denote by Touch(Fi) the set of hyperedges e of H not in NFi such
that |vertH (e)∩V (Fi)| = 1. We now prove that each forest of the sequence is normal.

Claim 9.49.1 For every i ≥ 1:

(a) (e1, . . . ,ei) is depth-first in Fi;
(b) Fi is a normal H -forest;
(c) if e ∈ Touch(Fi), then the vertex in vertH (e)∩V (Fi) belongs to V (Fi, f ) for some

hyperedge f on the maximal branch of Fi.

Proof: We use induction on i. Properties (a), (b) and (c) are trivially true for F1.
We first assume that Fi+1 is constructed by Case 1. We let ei+1 and ej be as in the

description of Case 1.
Property (c) that holds for Fi implies that ej is on the maximal branch of Fi, and

this implies Property (a) for Fi+1.
We now prove that Fi+1 is normal, i.e., satisfies Property (b). Let e in EH be such

that |vertH (e)∩V (Fi+1)| ≥ 2. If two vertices of vertH (e) belong to V (Fi), then the
conclusion holds because, by the induction hypothesis, Fi is normal. If e has only
one vertex in V (Fi), say y, then it has another one, say x, in vertH (ei+1)− V (Fi);
by Property (c) for Fi, y ∈ V (Fi, f ) for some f on its maximal branch, and f is
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Figure 9.2 A normal and spanning forest in H .

above ej by the choice of j, and thus x 8Fi+1 y. Otherwise, e has two vertices x,y
in vertH (ei+1)− V (Fi) and x ≡Fi+1 y. This completes the proof that Fi+1 satisfies
Property (b).

It remains to prove that Fi+1 satisfies Property (c). Let e ∈ Touch(Fi+1). If the
vertex in vertH (e)∩V (Fi+1) belongs to V (Fi), then, as above, by Property (c) for Fi,
this vertex is in V (Fi, f ) for some f on its maximal branch, and f is above ej . Hence,
f is on the maximal branch of Fi+1. Otherwise, it belongs to vertH (ei+1)− V (Fi),
and we have the desired conclusion because ei+1 is on the maximal branch of Fi+1.

This completes the proof when Fi+1 is constructed by Case 1.
We now consider Fi+1 constructed by Case 2. Property (a) is clearly true from

the definitions. The proof of Property (b) is the same as for Case 1, except that
the hyperedge e cannot have only one vertex in V (Fi), because otherwise Case 2
would not have been applicable for defining Fi+1. Property (c) is also clear because
Touch(Fi) is empty: if e ∈ Touch(Fi+1), the vertex in vertH (e)∩V (Fi+1) belongs to
vertH (ei+1), and ei+1 is on the maximal branch of Fi+1.

This completes the proof of the claim. �

Thus Fm, the last forest of the sequence, is normal by Property (b) of the claim,
and the proof of the lemma is complete.

We now prove that the notion of a normal and spanning H -forest can be formalized
in monadic second-order logic.
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Proposition 9.50 There exists a pair of MS formulas (χ(Y1,Y2),θ(Y1,Y2,x1, x2))

over the signature {in} such that for every hypergraph H of minimal rank at least 2,
and all sets N ,R⊆ EH :
(i) Inc(H ) |= χ(N ,R) if and only if there exists a normal and spanning H -forest F

such that NF = N and rootsF = R;
(ii) for every (N ,R) satisfying χ(N ,R) and every e,e′ ∈ N , we have Inc(H ) |=

θ(N ,R,e,e′) if and only if e ≤F e′ where F is the H -forest such that NF = N
and rootsF = R.18

Proof: Our first objective is to construct a formula θ(Y1,Y2,x1,x2) such that, if F is
an H -forest in a hypergraph H of minimal rank at least 2, then, for every e,e′ ∈ NF ,

Inc(H ) |= θ(NF ,rootsF ,e,e′) if and only if e≤F e′.

If H is a hypergraph, we say that X ⊆ EH is connected if the graph G(X ) with
vertex set X and edge set {(e,e′) | vertH (e)∩ vertH (e′) �= ∅} is connected. With this
notion, we can characterize certain paths in an H -forest F . For e ∈ NF , the nodes
of the unique path in F from a root to e form the set P(e) ⊆ NF characterized as
follows:

P(e) is the minimal connected subset of EH that contains e and some root,

where minimality is understood with respect to set inclusion.19 By using these paths,
we can characterize the partial order ≤F by

e≤F e′ if and only if P(e′)⊆ P(e).

From these observations, the formula θ is easy to construct. We can use it to construct
similar formulas that express that e is a son of e′ in F , that x ∈ V (F ,e) and that
x 8F y for x,y ∈ VH . Note that e is a son of e′ in F if and only if e <F e′ and
vertH (e)∩ vertH (e′) �= ∅.

Using these formulas it is also easy to write the formulaχ . It expresses, for arbitrary
subsets N and R of EH , that the tuple 〈N ,son,R〉 is a normal and spanning H -forest,
where son is the set of all (e′,e)∈N ×N such that e′ �= e, Inc(H ) |= θ(N ,R,e,e′) and
vertH (e)∩ vertH (e′) �= ∅.

Definition 9.51 (Splittings of hypergraphs) A splitting of a hypergraph H is a pair
(H1,H2) of hypergraphs related to H as follows:
(a) VH1 = VH2 = VH ;

18 As observed in Definition 9.48(b), there is at most one H -forest F such that NF = N and rootsF = R.
19 Clearly, P(e) is connected by Definition 9.48(b)(ii). If X is a connected subset of EH that contains

e and some root r, then there is a path π in G(X ) from r to e. By Definition 9.48(b)(iii), the path
π can contain nodes of F that are not in P(e). If f is such a node, then π has a subpath of the form
h1 − h2 − ·· · − f − ·· · − hq such that h1 and hq are in P(e) and h2, . . . , f , . . . ,hq are sons of h1 that,
except hq, are not in P(e). All nodes of P(e) are on the path π , hence in X .
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(b) EH1 ∪EH2 = EH ;
(c) if e ∈ EH1 ∩ EH2 , then vertH (e) = vertH1(e) ∪ vertH2(e) and

vertH1(e)∩ vertH2(e)= ∅;
(d) if e ∈ EH1 −EH2 , then vertH (e)= vertH1(e);
(e) if e ∈ EH2 −EH1 , then vertH (e)= vertH2(e).

A splitting (H1,H2) of H will be represented by the relational structure S := 〈VH ∪
EH , in1

S , in2
S〉 such that ini

S :={(e,v) | e∈EHi , v∈ vertHi (e)}. We denote it by S(H1,H2)

if we need to refer to H1 and H2. Note that the domain of S is that of Inc(H ) and
that in1

S and in2
S form a partition of inH . We have Inc(Hi) = 〈VH ∪ Ei, ini

S 〉, where
Ei := {e ∈ EH | ini

S(e,u) for some u ∈ VH }. Hence, Inc(H1) and Inc(H2) can be
obtained from S(H1,H2) by FO-transductions.

Let C be a set of hypergraphs. A triple of MS formulas (χ(Xn),θ1(Xn,x1,x2),
θ2(Xn,x1,x2)), over the relational signature {in}, defines splittings of every hyper-
graph in C if, for every hypergraph H in C,

Inc(H ) |= (∃X1, . . . ,Xn.χ)∧∀X1, . . . ,Xn(χ⇒ θ),

where θ is the formula with free variables in Xn defined as

∀y,x[in(y,x)⇔ (θ1(y,x)∨ θ2(y,x))] ∧∀y,x.¬(θ1(y,x)∧ θ2(y,x)).

These conditions mean that for every tuple (U1, . . . ,Un) of subsets of VH ∪EH sat-
isfying χ in Inc(H ), if Wi := {(u,v) | u,v ∈ VH ∪EH , Inc(H ) |= θi(U1, . . . ,Un,u,v)},
then the structure 〈VH ∪ EH ,W1,W2〉 represents a splitting of H . Furthermore, for
each hypergraph H in C there is such an n-tuple.

Equivalently, they mean that the domain-preserving MS-transduction with defi-
nition scheme 〈χ ,True,θ1,θ2〉 associates with every incidence graph Inc(H ), where
H is a hypergraph in C, one or more structures S(H1,H2) representing some of its
splittings.

Recall that Hm denotes the set of hypergraphs of maximal rank at most m.

Lemma 9.52 For each m ≥ 2, there exists a triple of MS formulas (χ(Xm+2),
θ1(Xm+2,x1,x2),θ2(Xm+2,x1,x2)) that defines splittings of every hypergraph in Hm

into pairs of hypergraphs in Hm−1.

Proof: We have to show that there is a domain-preserving MS-transduction that
associates with Inc(H ), for every hypergraph H of maximal rank at most m, one or
more structures S(H1,H2) representing splittings of H into hypergraphs H1,H2 of
maximal rank at most m− 1.

Let H be of maximal rank at most m. We will put in H1 all hyperedges of rank 1.
We continue the construction for H ′ obtained from H by deleting the hyperedges of
rank 1.
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Let F be a normal and spanning H ′-forest (Lemma 9.49) and let U = (U1, . . . ,Um)

be a partition of V (F) such that for every e ∈ NF , distinct vertices of V (F ,e)
belong to distinct sets Ui. We refine the quasi-order 8F on the set V (F) defined
in Definition 9.48(c) into the partial order 8F ,U defined as follows:

x 8F ,U y if and only if

either x ≺F y, or x≡F y and x ∈Ui, y ∈Uj with i ≤ j.

For every e∈EH ′ , we let Min(e) be the set of minimal elements of vertH ′(e)∩V (F)

with respect to 8F ,U ; this set is not empty since vertH ′(e)∩V (F) �= ∅ (because F is
spanning).

Claim 9.52.1 For every e ∈ EH ′ , the set Min(e) is a proper subset of vertH ′(e).

Proof: Let e ∈ EH ′ , so |vertH ′(e)| ≥ 2. If vertH ′(e)∩V (F)= {x}, then Min(e)= {x}
and Min(e) is a proper subset of vertH ′(e). Otherwise, since F is normal, the set
vertH ′(e)∩ V (F) contains two elements x and y such that x 8F y. If x ≺F y, then
y /∈Min(e). If x≡F y, then either x≺F ,U y and y /∈Min(e), or y≺F ,U x and x /∈Min(e).
In all cases, Min(e) is a proper subset of vertH ′(e). �

To complete the proof of the lemma, we construct a domain-preserving MS-
transduction that has a definition scheme D := 〈χ ,True,θ1,θ2〉 with parameters
X1, . . . ,Xm+2. The formulas of D are constructed using the pair of formulas of Propo-
sition 9.50. The precondition χ expresses that these parameters are intended to take
values as follows, for input Inc(H ):

X1,X2 will determine a normal and spanning H ′-forest F such that NF is the
value of X1 and rootsF is the value of X2; the sets X3, . . . ,Xm+2 will define a
partition U associated with F as described above.

The partial order8F ,U can be expressed by an MS formula α(Xm+2,x,y) from which

we can build a formula α′(Xm+2,e,x) expressing, for F ,U defined by X1, . . . ,Xm+2,
that e ∈ EH ′ and x ∈Min(e). One obtains in this way a splitting (H ′1,H2) of H ′ such
that EH ′1 = EH2 = EH ′ and, for e ∈ EH ′ :

vertH ′1(e) := Min(e), and

vertH2(e) := vertH ′(e)−Min(e).

We turn it into a splitting (H1,H2) of H such that H1 is obtained by adding to H ′1 the
hyperedges of rank 1 of H . By the claim, if e has rank p∈ [2,m], then |Min(e)| ≤ p−1
and |vertH (e)−Min(e)| ≤ p− 1. It follows that H1 and H2 have maximal ranks at
most m− 1.
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We define the MS formulas θ1 and θ2 with free variables in Xm+2 ∪ {x1,x2} as
follows:

θ1 is α′(Xm+2,x1,x2)∨∀y(in(x1,y)⇔ y= x2), and

θ2 is in(x1,x2)∧¬θ1.

These formulas define respectively the relations in1
S and in2

S of S := S(H1,H2).
Hence, we have an MS-transduction transforming Inc(H ) into one or more structures
S(H1,H2) as desired.

An undirected graph is a hypergraph of maximal rank at most 2. Splitting it is
nothing but choosing an orientation for each of its edges that are not loops. The con-
struction of Lemma 9.52 is thus a generalization of the construction of the transduction
α in the proof of Proposition 9.46.

Definition 9.53 (Orientations of hypergraphs) Let H =〈VH ,EH ,vertH 〉be a hyper-
graph. An orientation of H is a pair (H ,≤), where≤ is a mapping that associates with
every e in EH a linear order ≤e on its set of vertices vertH (e). If H is an orientation
of H , we let 6H be the binary relation on VH defined as the reflexive and transitive
closure of the union of the relations ≤e for all e ∈ EH . We say that H is acyclic if
6H is antisymmetric, i.e., if it is a partial order. This is equivalent to requiring that
the linear orders ≤e have a common linear extension, and also, to the acyclicity of
the directed loop-free graph G such that VG = VH and edgG =

⋃{(x,y) | x <e y for
some e in EH }.

An orientation H of H can be identified with the tuple 〈VH ,EH ,vertH 〉 such that,
for every e ∈ EH , vertH (e) is the enumeration of vertH (e) in increasing order with
respect to <e. It can be faithfully represented by the following relational structure
that can be considered as a refinement of Inc(H ). We define

Inc(H ) := 〈VH ∪EH ,orderH 〉,

where

orderH := {(e,x,y) | x,y ∈ vertH (e), x ≤e y}.20

This ternary relation can replace inH because (e,x,x) ∈ orderH if and only if x ∈
vertH (e).

We will say that H as above is simple if vertH (e) �= vertH (e′) for e �= e′. If H has
maximal rank m, then we define �H� := 〈VH ,edg1

H
, . . . ,edgm

H
〉 where, for each p, we

let edgp
H

:= {(x1, . . . ,xp) | vertH (e) = (x1, . . . ,xp) for some e ∈ EH of rank p}. It is

20 For an undirected graph H , which is a hypergraph of maximal rank at most 2, the notion of an orientation
H and its incidence graph Inc(H ) were defined earlier, in a slightly different way. It should be clear,
however, that this difference can be disregarded: structures 〈V ∪E, in1, in2〉 and 〈V ∪E,order〉, such
that order = {(e,x,y) | (e,x) ∈ in1,(e,y) ∈ in2} and in1 = {(e,x) | (e,x,y) ∈ order for some y ∈ V } (and
similarly for in2), can be transformed into each other by domain-preserving FO-transductions.
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a faithful representation of simple orientations of hypergraphs of maximal rank m.
These definitions extend those of Definition 9.48(a).

As for splittings, we define how orientations can be determined by formulas. Apair
of MS formulas (μ(Xn),ϕ(Xn,x1,x2,x3)), over the relational signature {in}, defines
orientations of every hypergraph in a set C if, for every hypergraph H ∈ C,

Inc(H ) |= (∃X1, . . . ,Xn.μ)∧∀X1, . . . ,Xn(χ⇒ ϕ̂ ),

where ϕ̂ is the formula with free variables in Xn defined as

∀e,x.ϕ(e,x,x) ∧∀e,x,y(ϕ(e,x,y)∧ϕ(e,y,x)⇒ x= y)

∧∀e,x,y,z(ϕ(e,x,y)∧ϕ(e,y,z)⇒ ϕ(e,x,z))

∧∀e,x,y[(in(e,x)∧ in(e,y))⇔ (ϕ(e,x,y)∨ϕ(e,y,x))].

This means that, for every n-tuple (U1, . . . ,Un) of subsets of VH ∪ EH satisfying
μ in Inc(H ), if W := {(e,u,v) | e,u,v ∈ VH ∪ EH , Inc(H ) |= ϕ(U1, . . . ,Un,e,u,v)},
then the structure 〈VH ∪EH ,W 〉 represents an orientation of H , and that there is at
least one such n-tuple in Inc(H ). Equivalently, it means that the domain-preserving
MS-transduction with definition scheme 〈μ,True,ϕ〉 associates with every incidence
graph Inc(H ), where H is a hypergraph in C, one or more incidence structures Inc(H )

representing some orientations H of H .
We will also consider similar formulas that define all orientations of H in C, and

all its acyclic orientations.

The next result generalizes Proposition 9.46.

Proposition 9.54 For each integer m≥ 2:

(1) there exists a pair of MS formulas (μ(Xn),ϕ(Xn,x1,x2,x3)) that defines ori-
entations of every hypergraph in Hm, i.e., there exists a domain-preserving
MS-transduction that defines one or more orientations of every hypergraph of
maximal rank at most m, where hypergraphs and their orientations are represented
by their incidence structures;21

(2) there exist domain-preserving MS-transductions that define all orientations and
all acyclic orientations of every hypergraph of maximal rank at most m, where
again, hypergraphs and their orientations are represented by their incidence
structures.

Proof: (1) The construction is by induction on m. Since H2 is the set of undirected
graphs, the case m = 2 follows easily from Proposition 9.46. The corresponding
formulas use two set variables.

21 Generalizing the terminology of Section 5.2.5 in an obvious way, such a transduction could be called
an MS2,2-transduction.
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For m > 2, we will construct (μ(Xn),ϕ(Xn,x1,x2,x3)) by using the corresponding
pair of formulas for the case m− 1.

We first give the idea. Let H belong to Hm, and be given by its incidence graph
Inc(H ). By Lemma 9.52, a structure S(H1,H2) representing a splitting (H1,H2) of
H with H1 and H2 in Hm−1, is defined by monadic second-order formulas using an
(m+ 2)-tuple U of parameters. We can use on Inc(H1) and Inc(H2) (definable in
S := S(H1,H2) by first-order formulas) the formulas μ′,ϕ′ obtained by induction,
that define orientations of H1 and H2. By combining these orientations, which we
define below by the local linear orders≤1,e and ≤2,e, we can define an orientation of
H as follows. For e ∈ EH and x,y ∈ vertH (e), we let

x ≤e y if and only if x,y ∈ vertH1(e) and x ≤1,e y in H1, or

x,y ∈ vertH2(e) and x ≤2,e y in H2, or

x ∈ vertH1(e) and y ∈ vertH2(e).

We now explain how X , μ and ϕ can be constructed. We will use pairwise
disjoint tuples U , Y and Z of set variables (parameters). We let τ be the domain-
preserving MS-transduction with definition scheme 〈χ ,True,θ1,θ2〉, where the triple
(χ(U),θ1(U ,x1,x2),θ2(U ,x1,x2)) defines splittings S(H1,H2) of every hypergraph H
in Hm by Lemma 9.52. For i = 1,2 we denote by τi the composition of τ with the
parameterless noncopying FO-transduction that transforms S(H1,H2) into Hi.

We let (μ′(Y),ϕ′(Y ,x1,x2,x3)) be a pair of formulas that defines orientations of
every hypergraph in Hm−1; such formulas do exist by the induction hypothesis. We let
μ1 and ϕ1 be the backwards translations of μ′ and ϕ′ relative to τ1, cf. Section 7.1.4;
they define an orientation of H1. We let Z be a disjoint copy of Y , μ′′(Z) and
ϕ′′(Z ,x1,x2,x3) be obtained from μ′ and ϕ′ by the corresponding substitution of
variables and finally, we let μ2 and ϕ2 be the backwards translations of μ′′ and ϕ′′
relative to τ2; they define an orientation of H2.

We will use the tuple of parameters Xn := U ·Y ·Z and the precondition μ defined
as χ(U)∧μ1(Y)∧μ2(Z). The following formula ϕ expresses the above definition
of ≤e in terms of ≤1,e and ≤2,e. We define it as

ϕ1(Y ,x1,x2,x3)∨ϕ2(Z ,x1,x2,x3)∨ [ϕ1(Y ,x1,x2,x2)∧ϕ2(Z ,x1,x3,x3)],

so that we have the desired pair (μ,ϕ).
(2) For each m, there is an MS-transduction βm that transforms Inc(H ) into the

incidence graphs representing all the orientations of H . Its construction generalizes
the construction of the MS2,2-transduction β that defines und ·und−1 (in the proof of
Proposition 9.46). Its definition uses m!−1 parameters to specify, for each e ∈ EH , if
and how its linear order ≤e on vertH (e) must be permuted into another linear order.

The construction of all acyclic orientations follows then by the Restriction Theorem
(Theorem 7.16), because the property of an orientation to be acyclic is MS-expressible
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(due to the fact that the acyclicity of a directed graph is MS-expressible). We omit
the routine details.

Proof of Proposition 9.43: We will denote by ωm the transduction that constructs
all acyclic orientations of the hypergraphs of maximal rank at most m, see Proposi-
tion 9.54(2). Note that every hypergraph has at least one acyclic orientation: take any
linear order of all its vertices.

Let G be a directed graph in Sd
k , i.e., such that each set Adj−G(x) defined as {y |

y→G x} has at most k elements. We let H be the hypergraph of maximal rank at most
k such that

VH := VG×{1},
EH := {(x,2) | x ∈ VG, Adj−G(x) �= ∅},

vertH ((x,2)) := {(y,1) | y ∈ Adj−G(x)} for every (x,2) ∈ EH .

We will identify VH and VG in what follows. The mapping γ that transforms every
graph G ∈ Sd

k into Inc(H ) is clearly a parameterless 2-copying FO-transduction. (We
recall that for simple graphs G, we identify �G� and G.) The MS-transduction γ ·ωk

transforms such a graph G into Inc(H ), where H is an acyclic orientation of H . It
uses a (large!) tuple of parameters, say X ; let χ(X ) be its precondition.

We let ν(x1,x2) be the MS formula that defines, in every structure Inc(H ) repre-
senting an oriented hypergraph, the binary relation6H on VH ; this relation is a partial
order if and only if H is acyclic.

We let θ(X ,x1,x2) be the backwards translation of ν(x1,x2) relative to γ ·ωk , cf.
Section 7.1.4. The pair (χ ,θ) satisfies the required conditions: for everyX -assignment
in G ∈ Sd

k that satisfies χ , the formula θ defines in G a partial order on VG that induces
an orientation H of the corresponding hypergraph H , and we recall that VH = VG.
Hence, this partial order is linear on each set Adj−G(x) by the definition of H .

The proof of Proposition 9.43 is now complete, and thus Theorem 9.44 (the
Sparseness Theorem for graphs and binary structures) is also proved.

Example 9.55 Here is a set C of simple directed graphs that is not uniformly k-sparse
for any k , but on which the mapping Inc is an FO-transduction.22

For each n≥ 1, we let Gn be the graph with vertex set consisting of the elements
of [n] and of its subsets of cardinality 2. Its edges are i→ j, i→ {i, j} and j→ {i, j}
for 1≤ i < j ≤ n. These graphs are 3-sparse, but not uniformly k-sparse because the
subgraphs of Gn induced by [n] are not. It is easy to see that Inc is a domain-extending
4-copying FO-transduction on the class C := {Gn | n≥ 1}: a vertex x is represented by
(x,1), an edge i→ j by ({i, j},2), an edge i→{i, j} by ({i, j},3) and an edge j→{i, j}
by ({i, j},4), where in all these cases i < j. �

22 This example answers Problem 5.1 of [Blu10].
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In the next section, we will extend Theorem 9.44 to relational structures that are not
binary, in order to prove the Sparseness Theorem (Theorems 9.37 and 9.38). Before
doing so, we apply some techniques developed in this section to the definition of
optimal tree-decompositions of chordal graphs by MS-transductions.

We recall from Example 5.2(4) that every graph G has tree-decompositions (T , f ),
and even optimal ones, such that NT = VG . In such a case, the relational structure
S1(G,T , f ) := 〈VG,edgG,sonT ,boxf 〉 represents simultaneously G and (T , f ) (with
(u,x) ∈ boxf if and only if x ∈ f (u)). We have observed that, in some cases, we
can even omit the relation boxf and use S2(G,T , f ) := 〈VG,edgG,sonT 〉 because
boxf (i.e., the mapping f ) can be determined from edgG and sonT by a monadic
second-order formula. This is the case if (T , f ) is a normal tree-decomposition (cf.
Example 2.56(6)). We now show that optimal normal tree-decompositions of a chordal
graph G can be defined by an MS-transduction that takes �G� as input, as already
discussed in Example 5.18 (with a slightly different proof). For k-chordal graphs,
�G� can be taken as input.

Proposition 9.56

(1) There exists an MS-transduction that associates with Inc(G), for every chordal
graph G, one or more structures of the form S1(G,T , f ) such that (T , f ) is a
normal tree-decomposition of G that is optimal.

(2) For each k ≥ 2, there exists an MS-transduction that associates with every
k-chordal graph G one or more structures of the form S1(G,T , f ) such that (T , f )
is a normal tree-decomposition of G that is optimal.

Proof: (1) We recall from Proposition 2.72 that a nonempty, connected, simple, loop-
free and undirected graph G is chordal if and only if it has a simplicial orientation, i.e.,
an acyclic orientation H such that for every vertex u, the set Adj−H (u) is a clique in G.
According to the proof of (3)=⇒ (4) of Proposition 2.72, from such an orientation
H , the binary relation on VH = VG defined as

{(w,u) ∈ edgH | there is no directed path in H of length at least 2 from w to u},

is sonT for some rooted tree T that is a normal spanning tree of H and also of G.
Following the proof of (4) =⇒ (1) of Proposition 2.72, we define also, for every
u ∈ NT = VG,

f (u) := {u}∪ {w ∈ VG | (u,w) ∈ edgG and (w,u) ∈ son∗T },

and we obtain a normal tree-decomposition of G that is optimal because every box is
a clique.

We let S1(G,T , f ) be the corresponding relational structure (it depends on the
orientation H of G). By Proposition 9.46 there exists an MS-transduction τ that
associates with Inc(G), for every undirected graph G, all its orientations. That an
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orientation H is simplicial is MS-expressible. Hence, by the Restriction Theorem
(Theorem 7.16), there exists an MS-transduction τ ′ that constructs (from Inc(G)) the
simplicial orientations of G, whenever there exist some, which is the case if G is
chordal. From a simplicial orientation of G, the relations sonT and boxf are definable
by monadic second-order formulas: this is clear from their definitions above. We get
in this way the desired transduction.

(2) The transduction τ ′ defined above in (1) takes as input Inc(G), and not G itself,
in order to be able to specify all orientations of G. If G is k-chordal, its simplicial
orientations are of indegree at most k − 1 and, by Proposition 9.42(1), they can be
specified by an MS-transduction using q(k − 1) parameters. This gives the stated
result for k-chordal graphs.

Hence optimal tree-decompositions (T , f ) of k-chordal graphs G (for fixed k) can
be specified by structures S1(G,T , f ) that can be defined “inside” �G�. As already
said in Section 7.6, the extension of this result to graphs of tree-width at most k is an
open question.

9.4.2 Uniformly k-sparse relational structures

We recall from Definition 9.36 that a relational structure S is uniformly k-sparse if
|TS[X ]| ≤ k · |X | for every subset X of DS , where, by Definition 9.10, TS is the set of
tuples of a structure S. Similarly, a hypergraph H is k-sparse if |EH | ≤ k · |VH |, and it
is uniformly k-sparse if, for every X ⊆ VH , the induced hypergraph H [X ] is k-sparse
(the hyperedges of H [X ] are those of H with all their vertices in X ). For k ≥ 1 and
m ≥ 2, we let USk ,m denote the class of uniformly k-sparse simple m-hypergraphs.
Hence, we have USk ,2 =USk .

In this section we prove the Sparseness Theorem (Theorem 9.38). A large part
of the proof consists in showing that the mapping Inc is a domain-extending
MS-transduction on the class USk ,m (Theorem 9.61). Before giving an overview
of the proof, we need a definition and a proposition.

Definition 9.57 (Semi-orientations of hypergraphs) A semi-orientation of a hyper-
graph H is a pair

−→
H = (H ,hd), where hd is a mapping EH → VH such that

hd(e) ∈ vertH (e) for every e ∈ EH . We call hd(e) the head of e. The indegree of
a vertex v in

−→
H is the number indeg−→

H
(v) of hyperedges whose head is v. The

indegree of
−→
H is the maximal indegree of its vertices.

We let Dir(
−→
H ) be the simple loop-free directed graph D such that VD := VH and

edgD := {(x,y) | x ∈ vertH (e) and y = hd(e) �= x for some e ∈ EH }. Clearly, the

indegree of Dir(
−→
H ) is at most m− 1 times the indegree of

−→
H .

If H has maximal rank m, then we define the relational structure �−→H � similar to
�H� (cf. Definition 9.48(a)) by using, for each p ∈ [m], the p-ary relation edgp−→

H
such

that



9.4 Sparse relational structures 675

(x1, . . . ,xp) ∈ edgp−→
H

if and only if

vertH (e)= {x1, . . . ,xp} for some e ∈ EH of rank p such that xp = hd(e),

instead of edgp
H . It is a faithful representation of semi-orientations of simple

hypergraphs of maximal rank m.

We prove two combinatorial properties of semi-orientations; the first generalizes
Proposition 9.40(1).

Proposition 9.58 Let k ≥ 1 and m≥ 2.

(1) A hypergraph is uniformly k-sparse if and only if it has a semi-orientation of
indegree at most k .

(2) A hypergraph H of maximal rank at most m having a semi-orientation
−→
H of

indegree at most k has a semi-orientation
−→
K of indegree at most mk2 such that

Dir(
−→
K ) ∈ Sd∗ , whence Dir(

−→
K ) ∈ Sd

k ′ where k ′ := (m− 1)mk2.

Proof: (1) The “if ” part is clear since for every hypergraph H with a semi-orientation−→
H , we have

|EH | =
∑
v∈VH

indeg−→
H
(v).

“Only if.” We generalize the proof of this result for the particular case of undirected
graphs that is given in Theorem 6.13 of [*Fra]. We have already used this case in
the proof of Proposition 9.42. We first observe that, by the previous equality, if a
hypergraph H is k-sparse and has a semi-orientation

−→
H , then

∑
v∈VH

indeg−→
H
(v)≤

k · |VH |, so that we must have indeg−→
H
(w) < k for some w if, for some v, we have

indeg−→
H
(v) > k .

Consider H uniformly k-sparse. Let
−→
H = (H ,hd) be any semi-orientation of H .

We say that a vertex v is bad if indeg−→
H
(v) > k . We let the badness of

−→
H be the sum

of the indegrees indeg−→
H
(v) such that v is bad. We are looking for a semi-orientation

of badness 0.
Let the chosen semi-orientation

−→
H have positive badness: we will transform it into

a semi-orientation (H ,hd ′) of smaller badness. Let v be a bad vertex. Let X be the
set of vertices u such that there is a directed path in Dir(

−→
H ) from u to v. Then, the

induced hypergraph H [X ] is k-sparse. Note that if hd(e) ∈ X , then vertH (e) ⊆ X ,
hence the indegree of a vertex in H [X ] with respect to the semi-orientation of H [X ]
induced by hd is the same as its indegree in

−→
H . By the initial observation, H [X ] has

a vertex w such that indeg−→
H
(w) < k . Hence, there exists a sequence of hyperedges

e1, . . . ,en and a directed path in Dir(
−→
H ) of the form (v0,v1, . . . ,vn) with v0 =w and

vn = v such that hd(ei)= vi and vi−1 ∈ vertH (ei) for each i ∈ [n]. Clearly, e1, . . . ,en

are pairwise distinct, because if ei = ej, then vi = vj. We now define hd ′ on EH from
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hd as follows:

hd ′(ei) := vi−1 for i ∈ [n],
hd ′(e) := hd(e) for e ∈ EH −{e1, . . . ,en}.

It is clear that in
−→
K := (H ,hd ′) we have:

indeg−→
K
(v) = indeg−→

H
(v)− 1,

indeg−→
K
(x) = indeg−→

H
(x) for x ∈ VH −{v,w},

indeg−→
K
(w) = indeg−→

H
(w)+ 1≤ k .

Hence, the badness of
−→
K is equal to the badness of

−→
H minus 1, or minus (k+1) if v

is no longer bad. By repeating this step one obtains a semi-orientation of H that has
badness 0 as desired.

(2) Let H be a hypergraph of maximal rank at most m and
−→
H = (H ,hd) be a semi-

orientation of H . A vertex v is bad for
−→
H (in a different sense as in (1)) if v→w and

w→ v in Dir(
−→
H ) for some w. We assume that in

−→
H :

(i) every bad vertex has indegree at most k;
(ii) the other vertices have indegree at most mk2.

We will modify hd into hd ′ such that (i) and (ii) still hold for
−→
K := (H ,hd ′) and

such that
−→
K has fewer bad vertices than

−→
H . By repeating this step, starting from a

semi-orientation of indegree at most k , we will end up with a semi-orientation
−→
K of

H without bad vertices and with indegree at most mk2 as desired. It will follow that
Dir(
−→
K ) ∈ Sd

k ′ where k ′ := (m− 1)mk2.
We do that as follows. Let v be a bad vertex. Let e1, . . . ,el , where l ≤ k , be the

hyperedges e in
−→
H such that hd(e)= v, and let X := (vertH (e1)∪ ·· ·∪ vertH (el))−

{v}. Hence |X | ≤ k(m− 1). Let Y be the set of hyperedges e such that v ∈ vertH (e)
and hd(e) ∈ X . The cardinality of Y is at most k2(m− 1) since every such hd(e) is
bad, hence of indegree at most k . We transform hd into hd ′ by letting hd ′(e) := v for
each e ∈ Y , and hd ′(e) := hd(e) for e ∈ EH −Y . For

−→
K := (H ,hd ′) we have:

indeg−→
K
(v) ≤ k+ k2(m− 1)≤mk2,

indeg−→
K
(x) ≤ indeg−→

H
(x) for x ∈ VH −{v}.

In Dir(
−→
K ), there are no two opposite edges v→ x and x→ v for any x ∈ VH −{v},

i.e., v is not bad in
−→
K . Furthermore, if x,y ∈VH −{v} and x→ y in Dir(

−→
K ), then this

edge “comes from” a hyperedge not in Y , hence was present in Dir(
−→
H ). It follows

that bad vertices in
−→
K were already bad in

−→
H , hence the number of bad vertices has

decreased by at least one. Properties (i) and (ii) still hold in
−→
K .
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Overview of the proof of Theorem 9.38: First, we reduce the general case to that
of simple m-hypergraphs, i.e., such that all hyperedges have the same rank m and no
two hyperedges have the same sets of vertices. The proof for these hypergraphs will
be by induction on m. Since a simple 2-hypergraph is a simple loop-free undirected
graph, the case of m= 2 is stated in Theorem 9.44 (cf. the first part of its proof).

For the induction step of the proof, we consider a uniformly k-sparse simple
m-hypergraph H . In each hyperedge we select a vertex called its head. We obtain
thus a semi-orientation

−→
H of H and the corresponding graph Dir(

−→
H ) with directed

edges from each vertex of a hyperedge to its head. By Proposition 9.58, we can do
that in such a way that the graph Dir(

−→
H ) has bounded indegree and no pairs of oppo-

site edges. Since Dir(
−→
H ) is uniformly p-sparse for some p, its orientation, whence

also the semi-orientation
−→
H of H , can be defined from �H� by monadic second-order

formulas using a vertex coloring of H obtained by Proposition 9.40(3), as in the proof
of Proposition 9.42(1).

If
−→
H is a semi-orientation of H , we let ∂(

−→
H ) be its derived hypergraph: its vertices

are the edges of Dir(
−→
H ), and its hyperedges are those of H with the following sets

of vertices: if e is a hyperedge of H such that vertH (e)= {x1, . . . ,xm−1,y} with head
y, then its set of vertices in ∂(

−→
H ) is defined as {(x1,y), . . . ,(xm−1,y)}, so that ∂(

−→
H )

is an (m− 1)-hypergraph.
Since Dir(

−→
H ) has bounded indegree, its incidence graph Inc(Dir(

−→
H )) can be

constructed from �H� by an MS-transduction (we use here Theorem 9.44) and so
can be �∂(−→H )�. Since the (m− 1)-hypergraph ∂(

−→
H ) is uniformly 2k-sparse, the

induction hypothesis implies that Inc(∂(
−→
H )) can be constructed from �∂(−→H )� by an

MS-transduction. Hence, it can also be constructed from �H� by such a transduction.
An MS-transduction can construct Inc(H ) from Inc(∂(

−→
H )), which will conclude the

proof. �

Figure 9.3 shows a semi-orientation
−→
H of a 4-hypergraph H with hyperedges U ,

X , Y and Z represented by quadrangles. Their respective heads 0, 5, 0 and 5 are shown
by small triangles. Figure 9.4 shows the directed graph Dir(

−→
H ) and Figure 9.5 shows

the derived 3-hypergraph ∂(
−→
H ) with the hyperedges represented by triangles. More

comments will be given in the proof of Theorem 9.61.
For a simple m-hypergraph H , we will omit the relations edg1

H , . . . ,edgm−1
H of �H�,

because they are empty. Thus �H� = 〈VH ,edgm
H 〉. Similarly for a semi-orientation

−→
H

of H , we write �−→H � = 〈VH ,edgm−→
H
〉.

Proposition 9.59 Let k ≥ 1 and m ≥ 2. There exists an MS-transduction that asso-
ciates with �H�, for every H in USk ,m, one or more structures �−→H � where

−→
H is a

semi-orientation of H of indegree at most mk2.

Proof: For m= 2, we have the desired transduction by Proposition 9.42(1), and even
with k instead of mk2.
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Figure 9.3 A semi-oriented hypergraph
−→
H .

Figure 9.4 The graph Dir(
−→
H ).

We now consider the general case. As in the proof of Proposition 9.42(1), we will
specify the required semi-orientation by a vertex coloring of H . By Proposition 9.58,
every hypergraph H in USk ,m has a semi-orientation

−→
H of indegree at most mk2 such

that D :=Dir(
−→
H )∈ Sd

k ′ where k ′ := (m−1)mk2. By Proposition 9.40(3), there exists
a directed graph Q with no pairs of opposite edges and with vertex set [q], where
q := q(k ′), such that there is a homomorphism γ : D→ Q. Since VD = VH , γ is a
mapping from VH to [q]. If x ∈ vertH (e) and y = hd(e) �= x, then x→D y and so
γ (x)→Q γ (y). Hence, γ is a good coloring, in the following sense. A good coloring
of a hypergraph H is a mapping γ : VH →[q] such that
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Figure 9.5 The derived 3-hypergraph ∂(
−→
H ).

(i) each set vertH (e) contains a (unique) vertex x such that γ (y)→Q γ (x) for every
other vertex y of vertH (e);23

(ii) the semi-orientation
−→
H := (H ,hd), where hd(e) is the unique vertex determined

by (i), has indegree at most mk2.

As in the proof of Proposition 9.42(1), a coloring γ can be described by a partition
X1, . . . ,Xq of VH , such that Xi = γ−1(i) for each i. It is straightforward to express
Condition (i) by an MS formula with free variables X1, . . . ,Xq. The relation edgm−→

H
is

MS-definable from edgm
H and the sets X1, . . . ,Xq, because we have, for all x1, . . . ,xm

in VH ,

(x1, . . . ,xm) ∈ edgm−→
H

if and only if

(x1, . . . ,xm) ∈ edgm
H and γ (xi)→Q γ (xm) for every i ∈ [m− 1].

Moreover, it is easy to express by an MS formula that the semi-orientation
−→
H repre-

sented by 〈VH ,edgm−→
H
〉 has indegree at most mk2 (using a subformula that expresses

that two sets of vertices {x1, . . . ,xm−1} and {y1, . . . ,ym−1} are distinct). Altogether,
it can be expressed by an MS formula that X1, . . . ,Xq is a partition that defines a
good coloring, and this formula forms the precondition of the definition scheme of
the desired (domain-preserving) monadic second-order transduction, whereas the MS
formula for edgm−→

H
is its relation formula.

To prove the Sparseness Theorem for simple m-hypergraphs, we will have to com-
pose functional transductions that are domain-extending MS-transductions on classes
of structures (as defined in Definition 7.2). Thus, we strengthen Theorem 7.14(3) as
follows:

23 The vertex x is unique because Q has no pairs of opposite edges.
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Lemma 9.60 Let C1 ⊆ STRc(R1) and C2 ⊆ STRc(R2) be classes of structures, let
f1 : STRc(R1)→ STRc(R2) be a domain-extending MS-transduction on C1 such
that f1(C1) ⊆ C2, and let f2 : STRc(R2)→ STRc(R3) be a domain-extending MS-
transduction on C2. Then f1 · f2 : STRc(R1)→ STRc(R3) is a domain-extending
MS-transduction on C1.

Proof: Let τi be a concrete domain-extending ki-copying MS-transduction that real-
izes fi (as explained in Definition 7.2). We may assume that, in the definition scheme
of τ1, the domain DS of an input structure S ∈ C1 is represented by the copy DS ×{1}
in every output structure T (i.e., the first domain formula is True and there is an
isomorphism from T to f1(S) that maps (a,1) to a for every a in DS ). Similarly, we
may assume that in the definition scheme of τ2 the domain DT of an input struc-
ture T ∈ C2 is represented by the copy DT × {1} in every output structure U , and
hence DS is represented by (DS × {1})× {1} in U .24 The composition τ1 · τ2 is,
in general, not a concrete MS-transduction. However, as shown in Case 3 of the
proof of Theorem 7.14, it is a concrete k1k2-copying MS-transduction provided the
set (DS × [k1])× [k2] (which contains DU ) is “identified” with the set DS × [k1k2]
(where, in particular, ((a,1),1) is identified with (a,1)). Clearly, this identification
turns τ1 · τ2 into a domain-preserving MS-transduction in which DS is represented
by the copy DS × {1}. Thus, f1 · f2 is a domain-preserving MS-transduction on C1,
realized by τ1 · τ2.25

Theorem 9.61 Let k ≥ 1 and m ≥ 2. The mapping Inc that transforms �H� into
Inc(H ) is a domain-extending MS-transduction on USk ,m.

Proof: The proof is by induction on m, simultaneously for all k . The case m = 2
concerns graphs (in Su) and is stated in Theorem 9.44.

We now consider m≥ 3. Let s-USk ,m be the class of semi-orientations of indegree
at most mk2 of hypergraphs in USk ,m. By Proposition 9.59 (and Theorem 7.14), it

suffices to prove that the mapping μ that transforms �−→H � into Inc(H ), where
−→
H is

a semi-orientation of H , is a domain-extending MS-transduction on s-USk ,m. In fact,

if τ1 is the domain-preserving MS-transduction that transforms �H� into �−→H �, by
Proposition 9.59, then Inc is τ1 ·μ on USk ,m.

Let
−→
H = (H ,hd) be in s-USk ,m, i.e., H is in USk ,m and

−→
H has indegree at most

mk2. Let D :=Dir(
−→
H ). We let ∂(

−→
H ) be the simple (m− 1)-hypergraph such that

24 Let h1 be the isomorphism from T to f1(S) that maps (a,1) to a. Similarly, let h2 be the isomorphism
from U to f2(T ) that maps (b,1) to b and in particular ((a,1),1) to (a,1). The isomorphism h1 can be
extended to an isomorphism h′1 from f2(T ) to f2( f1(S)); thus, it also maps (a,1) to a. Hence, h2 ·h′1 is
an isomorphism from U to f2( f1(S)) that maps ((a,1),1) to a.

25 In the proof of Theorem 7.14, the “identification” is denoted θ . It is an isomorphism from U to
the corresponding structure θ(U ) and it maps ((a,1),1) to (a,1). Then τ1 · τ2 · θ is a concrete MS-
transduction that transforms S into θ(U ), and θ−1 · h2 · h′1 is an isomorphism from θ(U ) to f2( f1(S))

that maps (a,1) to a. So, τ1 · τ2 · θ realizes f1 · f2.
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V
∂(
−→
H )

:= ED = edgD ⊆ VH ×VH ,

E
∂(
−→
H )

:= EH ,

vert
∂(
−→
H )

(e) := {(x1,y), . . . ,(xm−1,y)} ⊆ edgD

if vertH (e)= {x1, . . . ,xm−1,y} and y= hd(e), i.e., if (x1, . . . ,xm−1,y) ∈ edgm−→
H

.
Let us observe that for every e ∈ E

∂(
−→
H )

, we have⋃
{vertD(d) | d ∈ vert

∂(
−→
H )

(e)} = vertH (e). (9.1)

This is immediate from the definition of ∂(
−→
H ), because vertD((xi,y))= {xi,y}.

Let us look again at Figures 9.3–9.5. Figure 9.3 shows a semi-orientation
−→
H of

a 4-hypergraph H with vertices 0,1, . . . ,8 and hyperedges U ,X ,Y ,Z with respective
heads 0, 5, 0, 5. Figure 9.4 shows the directed graph D=Dir(

−→
H ). Its edge c from 4

to 0 “comes from” each of the two hyperedges U and Y . This fact is also visible in
the 3-hypergraph ∂(

−→
H ) of Figure 9.5 because the edge c is a vertex common to the

hyperedges U and Y . The vertices of ∂(
−→
H ) are the edges of D. The hyperedge U has

rank 4 in H and rank 3 in ∂(
−→
H ); its vertices are the edges a= (1,0), b= (2,0) and

c= (4,0) of D.

Claim 9.61.1 The (m− 1)-hypergraph ∂(
−→
H ) is uniformly 2k-sparse.

Proof: Let X ⊆ V
∂(
−→
H )
= ED and Y :=⋃{vertD(d) | d ∈ X } ⊆ VH . We have E

∂(
−→
H )
=

EH but these hyperedges have different sets of vertices in ∂(
−→
H ) and in H . It follows

from the definition of ∂(
−→
H ) that E

∂(
−→
H )[X ] ⊆EH [Y ]: by Equality (9.1), if vert

∂(
−→
H )

(e)⊆
X , then vertH (e)⊆ Y . Since H is uniformly k-sparse, we have |EH [Y ]| ≤ k · |Y | and so

|E
∂(
−→
H )[X ]| ≤ k · |Y | ≤ 2k · |X |, since we have |Y | ≤ 2 · |X |. Hence ∂(

−→
H ) is uniformly

2k-sparse, which completes the proof of the claim. �

We now consider the definability of D = Dir(
−→
H ) and of ∂(

−→
H ) from �−→H � by

MS-transductions. We have �−→H � + Inc(D) = 〈VH ∪ ED,edgm−→
H

, in1,D, in2,D〉 since

VD=VH . (We use here the union of concrete structures, cf. Definition 9.35.) We have
also �−→H �+Inc(D)+�∂(−→H )�= 〈VH ∪ED,edgm−→

H
, in1,D, in2,D,edgm−1

∂(
−→
H )
〉 since we have

V
∂(
−→
H )
= ED. Note that if S is a structure isomorphic to 〈VH ∪ED,edgm−→

H
, in1,D, in2,D〉,

then the subset of its domain corresponding to ED is the set of elements e of DS such
that (e,x)∈ in1,S for some x. It follows that a concrete transduction intended to receive

input �−→H �+ Inc(D) can be described in terms of the sets VH and ED and the relations
edgm−→

H
, in1,D and in2,D. For an input structure S isomorphic to �−→H �+ Inc(D), it will

output structures isomorphic to those obtained for input �−→H � + Inc(D). The same
holds for �−→H �+ Inc(D)+�∂(−→H )� and the similar structures defined below.

The constructions of the next claim depend on the fixed integers k and m.
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Claim 9.61.2 The mapping τ that transforms the structure �−→H � into the structure
�−→H �+ Inc(D)+�∂(−→H )�, is a domain-extending MS-transduction on s-USk ,m.

Proof: We have the following MS-transductions:

τ2, domain-preserving, that transforms �−→H � into D: its existence is clear from
the definition of D and
τ3, domain-extending, that transforms D into Inc(D), by Theorem 9.44 because
D = Dir(

−→
H ) is of indegree at most k ′ := (m− 1)mk2 and hence is uniformly

k ′-sparse.

The definition schemes of these two MS-transductions can be combined, by Def-
inition 9.35, into one for τ4 := Id1 + τ2 · τ3 that transforms �−→H � into a structure
isomorphic to �−→H � + Inc(D), where Id1 is the identity transduction such that
Id1(�−→H �)= �−→H �.

The structure �∂(−→H )� = 〈ED,edgm−1

∂(
−→
H )
〉 is definable from �−→H � + Inc(D) by an

MS-transduction τ5 because we have

(e1, . . . ,em−1) ∈ edgm−1

∂(
−→
H )

if and only if

there are vertices x1, . . . ,xm−1,y ∈ VH such that ei : xi →D y
and (x1, . . . ,xm−1,y) ∈ edgm−→

H
.

Finally, �−→H � is transformed into �−→H � + Inc(D) + �∂(−→H )� by the domain-
extending MS-transduction τ := τ4+ τ4 · τ5 = τ4 · (Id2+ τ5) where Id2 is the identity
transduction such that Id2(�−→H �+Inc(D))=�−→H �+Inc(D). This completes the proof
of Claim 9.61.2. �

We now complete the proof of the theorem. Our objective is to construct an
MS-transduction μ that transforms �−→H � into Inc(H ) for every

−→
H in s-USk ,m.

By the first claim we have ∂(
−→
H ) ∈ US2k ,m−1. Hence, by induction, the

mapping μ1 that transforms �∂(−→H )� into Inc(∂(
−→
H )) = 〈ED ∪ EH , in

∂(
−→
H )
〉, is a

domain-extending MS-transduction. The domain-extending MS-transduction μ2 :=
ρ2+ρ3 ·μ1 transforms

�−→H �+Inc(D)+�∂(−→H )� into Inc(D)+ Inc(∂(
−→
H )), where

ρ2(�−→H �+ Inc(D)+�∂(−→H )�)= Inc(D), and

ρ3(�−→H �+ Inc(D)+�∂(−→H )�)= �∂(−→H )�.
The transductions ρ2 and ρ3 just eliminate components of their input structures.

By the second claim, a domain-extending MS-transduction τ transforms �−→H � into
�−→H � + Inc(D)+ �∂(−→H )�. Hence, by Lemma 9.60, τ · μ2 is a domain-extending
MS-transduction that transforms �−→H � into

Inc(D)+ Inc(∂(
−→
H ))= 〈VH ∪ED ∪EH , in1,D, in2,D, in

∂(
−→
H )
〉,

where ini,D ⊆ ED×VH and in
∂(
−→
H )
⊆ EH ×ED.
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There exists a noncopying MS-transduction μ3 that transforms the structure
Inc(D)+ Inc(∂(

−→
H )) into Inc(H )= 〈VH ∪EH , inH 〉. The domain formula of μ3 need

only eliminate from the domain of Inc(D)+ Inc(∂(
−→
H )) the vertices of ∂(

−→
H ), i.e., the

elements of ED. By Equality (9.1), its relation formula θin(e,x) that defines inH , can
be written so as to express that (e,d) ∈ in

∂(
−→
H )

and (d,x) ∈ in1,D ∪ in2,D for some d.

Hence, Inc(H ) is definable from �−→H � by the domain-extending MS-transduction
μ defined as τ ·μ2 ·μ3, so, going back to the elementary transductions used in this
proof and in that of Claim 9.61.2, we have

Inc= τ1 · (Id1+ τ2 · τ3) · (Id2+ τ5) · [ρ2+ (ρ3 ·μ1)] ·μ3

on the class USk ,m.
The validity of the global construction follows from the observations made during

the construction of the different transductions in the above expression.

Proof of Theorem 9.38: For R = ∅ the result is trivial. If R = {R1, . . . ,Rp} with
p≥ 1, then every structure S ∈USk (R) is the union S = S1+·· ·+Sp of the structures
Si ∈ USk({Ri}) such that Si := 〈DS ,RiS 〉 (cf. Definition 9.35 for unions of concrete
structures). If we have domain-extending MS-transductions τi that transform Si into
Inc(Si) for each i, then we can combine (cf. Definition 9.35) their definition schemes
into one for a domain-extending MS-transduction τ that transforms S into Inc(S). In
particular, if τi is (1+ ki)-copying, then τ is (1+ k1+·· ·+ kp)-copying.

We now consider a structure S in USk ({R}) such that R is n-ary. For convenience, we
will identify each tuple (R,x1, . . . ,xn) in TS with the corresponding tuple (x1, . . . ,xn)

in RS . The structure S can be written S = S1+·· ·+ Sn, where, for every m ∈ [n], Sm

is the structure with domain DS and relation RSm consisting of the tuples of RS having
exactly m pairwise distinct elements. As above, it suffices to define, for each m∈ [n],
a domain-extending MS-transduction τ ′m that transforms Sm into Inc(Sm), and then to
take their sum. The case m= 1 is easy, with a 2-copying MS-transduction τ ′1 (cf. our
comparison of Inc and Inc′ in Definition 9.10). It remains to consider the case where
1 < m≤ n and to construct τ ′m.

For an n-ary R, we let USk ,m({R}) be the class of structures S := 〈DS ,RS 〉 in
USk({R}) such that, for every (x1, . . . ,xn) ∈ RS , the set {xi | i ∈ [n]} has cardinality m.
For S ∈ USk ,m({R}), we let H be the simple m-hypergraph such that VH := DS and
EH is the set of sets {xi | i ∈ [n]} such that (x1, . . . ,xn) ∈ RS with vertH (e) := e for
every e ∈ EH . (Note that each e is defined as a subset of DS .)

A domain-preserving MS-transduction can transform S = 〈DS ,RS 〉 into the struc-
ture �H� := 〈DS ,edgm

H 〉, and a domain-extending MS-transduction can transform
�H� into the structure Inc(H ) = 〈DS ∪ EH , inH 〉, by Theorem 9.61, since S, and
hence H , is uniformly k-sparse. Thus, the mapping that transforms S into the struc-
ture 〈DS ∪EH , inH ,RS 〉, which is S+ Inc(H ), is a domain-extending MS-transduction
μ1 on the class USk ,m({R}).
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We now show that the structure S + Inc(H ) can be transformed into a structure
U isomorphic to Inc(S) = 〈DS ∪ TS , in1 Inc(S), . . . , innInc(S)〉 by an mn-copying MS-
transduction μ2 that “preserves” the elements of DS . We define U with domain
included in (DS ×{0})∪ (EH ×[m][n]) where [m][n] is the set of all mappings : [n]→
[m]. The set (DS × {0}) is the copy of DS in U , and TS is defined as a subset of
EH ×[m][n].

By applying Proposition 9.43 to the directed graph 〈DS∪EH , in−1
H 〉 (which is in Sd

m),
we obtain a pair of MS formulas (χ(Xν), θ(Xν ,x1,x2)) that defines a partial order ≤
on DS∪EH that is linear on each set vertH (e), for e∈EH . The MS-transductionμ2 has
the set of parameters Xν and the precondition χ . It uses the formula θ , i.e., the partial
order ≤, in its domain and relation formulas. For (e,π) ∈ EH ×[m][n] and i ∈ [n], we
let πi(e) denote the π(i)-th element of the set vertH (e) with respect to≤. The domain
formulas of μ2 define TS as the set of pairs (e,π) such that (π1(e), . . . ,πn(e)) ∈ RS ,
and its relation formulas define ini Inc(S), for i ∈ [n], as the set of all pairs ((e,π),(x,0))
such that x= πi(e).

By an argument similar to the proof of Lemma 9.60, τ ′m := μ1 ·μ2 is a domain-
preserving MS-transduction that transforms S into a structure isomorphic to Inc(S),
and hence the mapping Inc is a domain-preserving MS-transduction on the class
USk ,m({R}).

This completes the proof of the Sparseness Theorem, one of the main results of
this book.

9.4.3 Consequences

The Sparseness Theorem (Theorem 9.38) has several consequences. We first state
those concerning graphs; they follow from Theorem 9.44 proved in Section 9.4.1.

Theorem 9.62 Let k ,r ∈N and i, j ∈ [2]. Let C be a set of uniformly k-sparse, simple,
labeled graphs, and D⊆ C.
(1) A transduction : C→ C is a CrMS-transduction if and only if it is a CrMSi, j-

transduction.26

(2) D is CrMS-definable with respect to C if and only if it is CrMS2-definable with
respect to C.

(3) D has bounded clique-width if and only if it has bounded tree-width.
(4) D is VR-equational if and only if it is HR-equational.
(5) D has a decidable CrMS-satisfiability problem if and only if it has a decidable

CrMS2-satisfiability problem, and decidability implies that D has bounded tree-
width.

Proof: (1) Follows from Theorem 7.14 (about the composition of CMS-transduc-
tions); see the discussion in Section 7.3 (before Example 7.44).

26 Transductions here are abstract, not concrete (as postulated at the beginning of Section 9.4).
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(2) Follows from Corollary 7.12 (of the Backwards Translation Theorem). It was
already stated in Theorem 5.22 (for r = 0). The “only if ” direction was stated in
Theorem 1.44. The “if ” direction holds in general and is stated in Proposition 5.20(3).

(3) Follows from Assertions (2) and (3) of Theorem 7.47. The “if ” direction holds
in general and is stated in Proposition 2.114(1).

(4) Follows from (1) and from the Equationality Theorems (Theorems 7.36
and 7.51), cf. Corollary 7.52. Since the graphs in D do not have ports or sources, these
theorems say that D is VR-equational (HR-equational) if and only if �D� (respec-
tively, �D�) is the image of �trees� under an MS-transduction. The “if ” direction
holds in general and is stated in Theorem 4.49. A result stronger than the “only if ”
direction was stated in Theorem 4.51: it holds without “uniformly.”

(5) Follows from the Reduction Theorem (Theorem 7.54, in Section 7.5). The
second part follows from Theorem 7.55(1).

We have some similar statements with the same proofs27 for relational structures.

Theorem 9.63 Let k ,r ∈ N and i, j ∈ [2]. Let R be a relational signature, C be a
set of uniformly k-sparse R-structures and D ⊆ C. Assertions (1), (2) and (5) of
Theorem 9.62 hold for C and D.

Note that Assertion (2) is Theorem 9.37.

9.5 References

Theorem 3.7 of [FisMak] claims without proof and erroneously that a set of relational
structures of bounded tree-width has bounded relational width, cf. Proposition 9.27.
The proof of this proposition simplifies the proof of the same result given in Theo-
rem 7.5 of [CouER]. We use a method from [AdlAdl] where a similar statement is
proved. The proof of Proposition 9.28 is due to [AdlAdl].

Orientations defined by monadic second-order formulas have been studied in
[Cou95a]. The main result of Section 9.4 is based on [Cou03], where Theorem 9.37
is stated for graphs and relational structures that are countable. However, the proof of
Theorem 1.4 in [Cou03] is incorrect. The error has been noted by Blumensath, who
gives a correct proof (with a different construction) for infinite relational structures
of all cardinalities in [Blu10].

27 See Theorem 9.19 for the second part of Assertion (5).



Conclusion and open problems

We will leave it to the researchers of the next ten years and beyond to decide which of
the results presented in this book are the most important. Here we will only indicate
what are, in our opinion, the main open problems and research directions, among
those that are closely related with the topics of this book.

Algorithmic applications

This topic, studied in Chapter 6, is the most difficult to discuss because of the large
number of new articles published every year. Hence, the following comments have a
good chance of becoming rapidly obsolete.

The algorithmic consequences of the Recognizability Theorem depend crucially
on algorithms that construct graph decompositions of the relevant types or, equiv-
alently, that construct terms over the signatures FHR, FVR which evaluate to the
input graphs or relational structures. The efficiency of such algorithms, either for all
graphs, but perhaps more promisingly for particular classes of graphs, is a bottleneck
for applications.

Another difficulty is due to the sizes of the automata that result from the “compila-
tion” of monadic second-order formulas. Their “cosmological” sizes (cf. [FriGro04],
[StoMey], [Wey]) make their constructions intractable for general formulas. How-
ever, for certain formulas arising from concrete problems of hardware and software
verification they remain manageable, as reported by Klarlund et al., who developed
software for that purpose called MONA (cf. [Hen+], [BasKla]). Soguet [Sog] tried
using MONA for graphs of bounded tree-width and clique-width, but even for basic
graph properties such as connectivity or 3-colorability, the automata become too
large to be constructed as soon as one wishes to handle graphs of clique-width more
than 3. A more promising perspective presented in [CouDur11] consists of using
“fly-automata,” i.e., finite deterministic automata whose transitions are defined by
programs and not stored in fixed (huge) tables. Hence, an automaton with, say, 2100

transition rules specified as a “fly-automaton” will not be computed: for checking
a term of size 1000, only the necessary 1000 transitions will be computed. More
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experiments must be done to verify whether this idea is usable for significant graph
properties and for graphs of not too small tree-width or clique-width.

The Recognizability Theorem entails that every MS-expressible graph problem is
solvable in polynomial time on graphs of clique-width at most k for each fixed k;
more precisely, by a fixed-parameter cubic algorithm. However, some problems that
are not expressible by MS-formulas also have polynomial algorithms on the same
graphs (see [Wan]). The corresponding algorithms are not fixed-parameter tractable
with respect to clique-width. The question is:

Does there exist a common logical description for such problems?

Fixed-parameter tractable algorithms for first-order model-checking problems on
certain classes of graphs of unbounded tree-width have been constructed: see Grohe’s
survey [*Gro].1 The graphs of these classes can be covered by sets of induced sub-
graphs of bounded tree-width satisfying certain overlapping constraints. These results
use, among other tools, the Recognizability Theorem, which is applied to monadic
second-order formulas that are derived from the first-order formula of interest.

Can one give a kind of algebraic and/or logical description of these graph
classes? Can one extend the results surveyed in [*Gro] to fragments of monadic
second-order logic that are more expressive than first-order logic?

Algorithms for enumeration problems and constructions of labeling schemes that
answer monadic second-order queries have been briefly cited in Section 6.4.4. Several
of these algorithms are based on the Recognizability Theorem.

Can one extend them to these classes of graphs and to first-order formulas?

Such an extension is developed in [CouGK] for labeling schemes intended to solve
certain first-order queries.

Algebraic descriptions of graphs and relational structures

Two graph algebras were studied in Chapter 2. The axiomatization of their equa-
tional properties leaves, for both of them, open questions which are presented in
Sections 2.3.3 and 2.5.3. More important problems are left open for the algebra of
relational structures studied in Chapters 5 and 9. The main one is certainly the pars-
ing problem (see Section 9.3.1, Conjecture 9.23), because it is a bottleneck for the
construction of fixed-parameter tractable model-checking algorithms for monadic
second-order sentences on relational structures.

These algebras yield straightforward extensions to sets of graphs and relational
structures of basic notions of Formal Language Theory: context-free and recognizable
languages. These extensions are based on equation systems having least solutions and

1 The most powerful result that subsumes all previous ones is in [DvoKT].
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on finite congruences. A lot of work has also been done on graph and hypergraph
grammars, which do not always yield equational sets, at least with respect to the
algebras of Chapter 2 (see [*Roz], [*Eng97]; cf. the last sections of Chapters 1, 2
and 4). These works leave open many questions.

The operations of the algebras of graphs and relational structures GP, JS and
STR have been selected because of their good “compatibility” with monadic second-
order logic: the Recognizability Theorems (Theorems 5.68 and 5.75) witness this
“compatibility.” However, the operation of unfolding that transforms a directed graph
into a finite or infinite tree is also, in a certain sense, “compatible” with monadic
second-order logic (as discussed in Section 7.7.) It yields concise descriptions of
finite graphs (and also of countable graphs). Can one integrate it as an operation into
the present algebraic and logical framework? (It is already widely used for describing
countable graphs, see the survey [*BluCL].)

Another question, discussed in Section 9.3.4, is the definition of a “width” param-
eter for relational structures. The one of Definition 9.33 generalizes clique-width and
is robust with respect to monadic second-order transductions (the property of having
bounded width for a set of R-structures is preserved under monadic second-order
transductions) but one more property would be desirable:

that the set of R-structures of width at most k be CMS-definable for every R
and k.

We recall that tree-width and path-width satisfy such a property, by the excluded
minor characterizations of TWD(≤ k) and PWD(≤ k). We have no monadic second-
order characterization of the class CWD(≤ k) (as observed in Footnote 28 just before
Corollary 5.12). However, the equivalent notion of rank-width (defined in
Section 6.2.3, Definition 6.6) enjoys such a property: the class of simple loop-
free undirected graphs of rank-width at most k is characterized by finitely many
excluded vertex-minors [Oum05], which yields, by the results of [CouOum], the
C2MS-definability of this class.

Graph structure and logic

Many constructions of monadic second-order formulas use graph theoretical proper-
ties. The paradigmatic example is the characterization of planar graphs by excluded
minors (cf. Chapters 1 and 5) from which a monadic second-order sentence char-
acterizing them can be constructed. The same holds for graphs of tree-width or
path-width bounded by a given integer. Other types of excluded configurations are
also useful, for example the vertex-minors mentioned above, which are essential for
the proof of Theorem 7.55(2). This notion is not presented in this (already thick)
book: see [Oum05] for its relation with rank-width and [CouOum] for its logical
expression. It yields a monadic second-order characterization of circle graphs, cf.
[Cou08a].
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Many important graph classes are characterized by excluded induced subgraphs.
In most cases (cographs are an exception), the excluded induced subgraphs form
infinite families. We have seen that for chordal graphs (Proposition 2.72). If such a
family is monadic second-order definable, then the class of graphs that it characterizes
is also monadic second-order definable. This is the case for interval graphs and
comparability graphs, cf. [Cou06a]. The infinite sets of forbidden induced subgraphs
that characterize these two classes are VR-equational. Is there a general theorem
behind this observation?

Colorability results are also crucial in the proof of the Sparseness Theorem in
Section 9.4 about the elimination of edge set quantifications in the monadic second-
order expression of graph properties. Hence, deep results of graph theory are useful
for constructions of monadic second-order formulas. For example, the Strong Per-
fect Graph Theorem ([*ChuRST]) entails a monadic second-order expression of
perfectness, cf. Example 6.43(3).

In the other direction, certain graph theoretical notions like the decomposition of
a graph in 3-blocks, and its modular and split decompositions, can be expressed by
monadic second-order transductions (cf. [Cou96a, Cou06b]). We ran out of time to
cover this aspect, but we wish to do so in a future edition of the book.

These various interactions between logic (especially monadic second-order logic)
and graph theory deserve further investigations.2 Expressing graph properties using
monadic second-order logic is useful in view of algorithmic applications but also
raises interesting graph theoretical questions. Particular types of graph decomposi-
tions have been defined for proving results like the Strong Perfect Graph Theorem
[*ChuRST] and to describe the structure of graphs that exclude a fixed graph as a
minor (e.g., clique-sum decompositions, see the surveys [*KawMoh] and [*Gro]).
How do they fit with monadic second-order logic?

The well-studied notion of tree-decomposition yields a fascinating question, raised
in [Cou91] and and discussed in Section 7.6 (and in Proposition 9.56):

Does there exist, for each k, a function f and a monadic second-order transduc-
tion that defines, for every graph of tree-width at most k, a tree-decomposition
of this graph of width at most f (k)?

A positive answer would characterize the recognizable sets of graphs of bounded
tree-width as those that are CMS2-definable (and of bounded tree-width), see Con-
jecture 7.62. A negative answer to this conjecture would also be interesting: it would
show the existence of model-checking problems that are not monadic second-order
expressible but that can be solved by means of finite automata on terms, hence that
are fixed-parameter linear with respect to tree-width.

2 Monadic second-order logic is also useful for the definition, the computation and the evaluation (for
particular values of their variables) of numerous graph polynomials: see [*CouMR] and [Cou08b].
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Decidability questions

Among the questions discussed in Section 7.5, the following one (Question 7.56)
raised by Seese in [See91] (in a different but equivalent way) is still open, although
a partial solution has been given in [CouOum], see Theorem 7.55(2):

Is it true that a set of simple graphs must have bounded clique-width if it has a
decidable monadic second-order satisfiability problem?

In this respect, relational structures are much simpler to handle through their incidence
graphs rather than directly. This is clear from the constructions of Section 9.2, which
reduce the MS2-satisfiability problem for relational structures to a similar problem
for graphs, so that we get an easy extension of Theorem 7.55(1) in Theorem 9.19.
But we have no such tool to answer the following question (Question 9.20), which
we repeat:

Is it true that if a subset of STR(R) has a decidable CMS-satisfiability problem,
then it is included in τ(trees) for some monadic second-order transduction τ?

MS-transductions of terms and tree transducers

By their very definition, MS-transductions of terms are of linear size increase.
Tree-walking transducers and their compositions are far more powerful than MS-
transductions of terms (cf. Theorem 8.17), but still have nice properties such as the
decidability of type-checking (see [EngMan03b] and [EngHS]) and of the finiteness
of their output languages (see [DreEng]). It would be of interest to generalize the
definition of MS-transduction in such a way that it captures a larger class of tree
transducer transformations, thus allowing the logical specification of such transduc-
ers. One could first think of tree transductions of polynomial size increase (see, e.g.,
the notion of a first-order query in Definition 1.26 of [*Imm]).

The precise relationship between nondeterministic (compositions of) tree transduc-
ers and MS-transductions of terms (of which the definition schemes use parameters)
has not yet been investigated. For instance, the following problem is open:

Is it decidable whether or not a (nondeterministic) tree-walking transducer is an
MS-transduction?

For deterministic tree-walking transducers the problem is decidable [EngMan03a],
but its time-complexity is unknown.

The web page www.labri.fr/perso/courcell/TheBook.html will maintain reference
updates, new results answering the open questions and errata.

http://www.labri.fr/perso/courcell/TheBook.html
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graphs of bounded clique-width, Discrete Appl. Math. 157 (2009),
2747–2761. (185)

[*KawMoh] K.-I. Kawarabayashi and B. Mohar, Some recent progress and appli-
cations in graph minor theory, Graphs Combin. 23 (2007), 1–46.
(689)

[*Kre] S. Kreutzer, Algorithmic meta-theorems, in: Finite and Algorith-
mic Model Theory, J. Esparza, C. Michaux and C. Steinhorn eds.,
Cambridge University Press, 2011, pp. 177–270. (78, 504)

[*Lib04] L. Libkin, Elements of Finite Model Theory, Springer, 2004. (57, 316,
322, 331, 354, 425, 633)



References 695

[*Lib06] L. Libkin, Logic for unranked trees: an overview, Logical Meth.
Comput. Sci. 2 (2006), 1–31. (259, 412, 426)

[*Mak] J. Makowsky, Algorithmic uses of the Feferman–Vaught Theorem,
Ann. Pure Appl. Logic 126 (2004), 159–213. (358, 425, 504)

[*MohaTho] B. Mohar and C. Thomassen, Graphs on Surfaces, Johns Hopkins
University Press, 2001. (32, 43, 78, 98, 629)

[*Möhr] R. Möhring, Computationally tractable classes of ordered sets, in:
Algorithms and Order, I. Rival ed., Kluwer, 1989, pp. 105–194. (21)

[*MöhRad] R. Möhring and F. Radermacher, Substitution decomposition for dis-
crete structures and connections with combinatorial optimization,
in: Algebraic and Combinatorial Methods in Operations Research,
Annals of Discrete Mathematics 19, Elsevier, 1984, pp. 257–355.
(162, 187)

[*Roz] G. Rozenberg ed., Handbook of Graph Grammars and Computing by
Graph Transformations, Vol. 1: Foundations, World Scientific, 1997.
(78, 80, 277, 688)

[*Sak] J. Sakarovitch, Elements of Automata Theory, Cambridge University
Press, 2009. (30, 58, 79, 221, 229, 235, 236, 287, 509, 589)

[*Tho90] W. Thomas, Automata on infinite objects, in: Handbook of Theo-
retical Computer Science, Vol. B: Formal Models and Semantics,
J. Van Leeuwen ed., Elsevier, 1990, pp. 133–192. (79)

[*Tho97a] W. Thomas, Languages, automata, and logic, Chapter 7 of Hand-
book of Formal Languages, Vol. 3: Beyond Words, G. Rozenberg and
A. Salomaa eds., Springer, 1997, pp. 389–455. (2, 79, 317)

[*Tut] W. Tutte, Graph Theory, Addison-Wesley, 1984. (11)
[*Wec] W. Wechler, Universal Algebra for Computer Scientists, Springer,

1992. (187, 412)
[*WilMau] R. Wilhelm and D. Maurer, Compiler Design, Addison-Wesley, 1995.

(611)

Articles and dissertations

[AceEI] L. Aceto, Z. Esik and A. Ingolfsdottir, A fully equational proof of
Parikh’s Theorem, Theoret. Inform. and Appl. 36 (2002), 129–153.
(206, 221)

[AdlAdl] H. Adler and I. Adler, A note on clique-width and tree-width for
structures, preprint, 2008, arXiv:0806.0103v2. (644, 646, 685)

[AhoHU] A. Aho, J. Hopcroft and J. Ullman, A general theory of translation,
Math. Syst. Theory 3 (1969), 193–221. (618)

[AhoUll70] A. Aho and J. Ullman, A characterization of two-way determinis-
tic classes of languages, J. Comput. Syst. Sci. 4 (1970), 523–538.
(618)



696 References

[AhoUll71] A.Aho and J. Ullman, Translations on a context-free grammar, Inform.
Control 19 (1971), 439–475. (611, 616)
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Index of notation

Sets and sequences
We denote by P(A) the set of subsets of a set A (its powerset), and by Pf (A) its set of
finite subsets. The difference of two sets A and B is the set A−B := {a ∈ A | a /∈ B}.
The empty set is ∅.

We denote by Seq(A) the set of finite sequences of elements of a set A, and by
s[i] the i-th element of s ∈ Seq(A). The empty sequence is (). If A is an alphabet, we
denote Seq(A) also by A∗. Its elements are then called words, which are sequences of
letters (or symbols). The empty word is also denoted by ε.

We denote by |A| the cardinality of a set A, and also by |s| the length of a sequence
s (in particular, of a word). The cardinality of a set A is also denoted by Card(A)
in certain cases, for better readability of formulas. We denote by |s|a the number of
occurrences of a ∈ A in a sequence s ∈ Seq(A).

Integers
We denote by Z the set of integers, by N the set of nonnegative ones and by N+ the
set of positive ones. For n,m∈Z , we let [n,m] :={i ∈Z | n≤ i≤m} and [m] :=[1,m].
We have [m] = ∅ if m≤ 0 and [n,m] = ∅ if m < n.

If p,q ∈N , q ≥ 2, we let modq(p) be the unique integer r in [0,q− 1] such that
p≡ r (mod q). If n ∈N , then exp(n) denotes 2n. All logarithms are in base 2. The
function exp : N 2 → N is defined by exp(0,n) = n and exp(d + 1,n) = 2exp(d,n);
thus, exp(1,n)= exp(n).

Binary relations and functions
If R⊆A×A is a binary relation on a set A, then R∗ denotes its reflexive and transitive
closure, R+ its transitive closure and R−1 its inverse {(x,y) | (y,x) ∈ R}. The identity
relation {(x,x) | x ∈ A} is denoted by IdA, or just by Id when A is clear from the
context.
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If R ⊆ A× B and S ⊆ B× C are two binary relations, then R · S denotes their
composition, i.e., the relation {(x,z) ∈ A× C | (x,y) ∈ R and (y,z) ∈ S for some
y ∈ B}. If R and S are functional, i.e., if they define partial functions f : A→ B and
g : B→ C respectively, then R · S defines the partial function g ◦ f : A→ C; in that
case we denote R ·S also by S ◦R. We denote by©i∈I fi the composition in any order
of functions fi that commute pairwise (i.e., such that fi ◦ fj = fj ◦ fi for all i, j ∈ I ).

The domain of a binary relation R ⊆ A× B is denoted by Dom(R) ⊆ A, and its
image is R(A) ⊆ B. Thus, Dom(R) = {a ∈ A | (a,b) ∈ R for some b ∈ B} = R−1(B).
For a subset C of A, R(C)= {b ∈ B | (a,b) ∈ R for some a ∈ C}.

The restriction of a mapping f : A→ B to a subset C of A is denoted by f � C.
Two mappings f : A→ B and g : A′ → B′ agree if f (a)= g(a) for every a ∈ A∩A′,
i.e., if f � (A∩A′)= g � (A∩A′). We denote by f ∪ g their common extension into a
mapping : A∪A′ → B∪B′.

We denote by [A→ A]f the set of mappings : A→ A that are the identity outside
of a finite subset of A and by Permf (A) the subset of those that are permutations, i.e.,
bijections : A→ A.

Other symbols
Notation that is self-explanatory (e.g., Loops(G) for the set of loops of a graph G), or
that is used in a single section, is not listed. The order below is conceptual: concepts
that are close mathematically are put together as closely as possible. General concepts
are given before the more technical ones. Symbols are followed by short explanations
and the page numbers where they are defined.

Terms and rooted trees (Sections 2.1 and 2.6.1, Definitions 2.13 and 2.14)

F , Fi, F+ functional signature 81, 177
F− functional signature 202
ρ( f ), ρ(F) arity 81, 177
H ⊆ F subsignature 81, 177
T (F), T (F ,X ) sets of terms 82, 84, 178
T (F)/≡AC(H ) terms (AC signature) 412
Slim(F) slim terms 143
Pos(t), Occ(t, f ) positions, occurrences 83
ht(t) height of term t 83
ListVar(t), t̃ variables in t 85
t[t1/v1, . . . , tn/vn], c[t] substitutions 84
θH second-order substitution 179
Ctxt(F), Ctxt(F ,X ) contexts over F 84
t ↑ u context above u 84
t/u subterm below u 84
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NT , rootT nodes, root of tree T 91
sonT , ≤T son, ancestor in T 92
T/u subtree below u 91
Syn(t), Nt , ≤t syntactic tree of t 92, 94
Syn(t)/u $ syntactic tree of t/u 93
Syn(t) ↑ u $ syntactic tree of t ↑ u 93
Nt/u, Nt ↑ u nodes of Syn(t)/u, Syn(t) ↑ u 94
yd(t) yield of t 587

Algebras (Sections 2.1 and 2.6.1)

M F-algebra 81, 176
M its domain 81, 177
fM operation defined by f 81, 176
T(F), TAC(F ,H ) algebras of terms 82, 178, 412
W(A), Wleft(A), Wright(A) algebras of words 85
FA, UA their signatures 85
valM(t) value of term t 82, 178
tM derived operation 82, 84, 178, 179
S set of sorts 176
Ms domain of sort s 176
M(s1,...,sn) product of domains 176
T (F)s, T (F ,X )s terms of sort s 178
α( f ), σ( f ) input, output type of f 176
σ(m) sort of m 177
s1×·· ·× sn→ s type of an operation 176
M⊆N subalgebra 81, 177
M×N Cartesian product 82, 177
(|A|,encA,ξA), f̃ encodings 85, 86
ζM operations of M 86
M � F , M � S restriction 177
MH derived algebra 179
M/∼ quotient algebra 233
Nk free commutative monoid 205, 255

Graphs (Section 2.2)

VG, EG vertices, edges of graph G 87
vertG incidence mapping 87
edgG adjacency relation 88
u→G v , u−G v directed, undirected edge 87
IsolG isolated vertices 107
Adj−(x) adjacent vertices 133, 657
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∅ empty graph 89
‖G‖ size of G 89
Deg(G) (maximal) degree of G 53
(K ,�) vertex and edge labels 90
G $H isomorphism of graphs 89
[G]iso isomorphism class of G 89
Inc(G) incidence graph 69, 126
und(G), core(G) undirected graphs from G 88
und(G)k distance k graph 551
Line(G) line graph of G 71
G∪H , G∩H union, intersection 99
G⊕H disjoint union 99
G⊗H complete join 18
H ⊆G, H ⊆i G subgraph, induced subgraph 91
G[X ], G−X , G− u subgraphs 91
G[F], G−F , G− e subgraphs 91
G/≈ quotient graph 94, 95
G/F , �, �c edge contraction, minor 95
Forb(A), Obst(A) forbidden/excluded minors 98
ω(G) clique number 133
Kn, Kn,m, Cn standard graphs 41, 125
Gn×m, Gu

n×m, Pn grids, paths 125, 159
wd width 108, 122, 136
twd, pwd tree-width, path-width 122, 126
TWD(≤ k ,C), TWD(≤ k) tree-width ≤ k 122
PWD(≤ k ,C), PWD(≤ k) path-width ≤ k 126
G[u←H ], G[e←H ] graph substitution 161, 278
B(G), B�(G) encodings of graph G 437, 438
Gu simple undirected graphs 18
G simple directed graphs 46
J d

2 directed graphs with two sources 20

Graph algebras: graphs with sources (Section 2.3)

JS, JSu, JSd, JSt HR algebras of s-graphs 104, 105, 181
J S, J Su, J Sd, J SC their domains 100, 104, 105, 181
FHR, FHRu, FHRd, F tHR their operations 104, 105, 181
FHR

C subsignature for C ⊆A 105
JS[C], JSgen[C] subalgebras 105, 110, 181
PHR

C , F ′HRd
C derived signatures 143, 479

Jd
2, J d

2 a derived subalgebra 20, 46, 184
JNt , J N a derived subalgebra 288
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A source names/labels 100
τ(G) type of s-graph G 100
τ(t), τ̂ (t), μ(t), wd(t) related notions 108
G◦ s-graph without sources 100
srcG, slabG, Src(G) source designations 100
IntG internal vertices of G 100
β(G), Int(G) border, interior of G 298
G/≈ quotient s-graph 102
�, �k parallel-composition 101, 102, 288
�C,D typed parallel-composition 181
fgB, fgb source forgetting 102, 103
fgB,C typed source forgetting 181
miva making internal vertex 479
renh, rena→b, rena↔b source renaming 103
renh,C typed source renaming 181

a, a
, ab,
−→
ab, ∅ constant symbols 103, 104

a
λ, abλ,
−→
abλ, aκ symbols for labeled graphs 105

• series-composition 20, 183
val(t) abstract value of term t 104, 110
cval(t), gval(t) concrete value of t 112, 114
Exp(t) expansion of t 111
Typ, Unt typing, untyping 181, 182, 272

Graph algebras: graphs with ports (Section 2.5)

GP, GPu, GPt VR algebras of p-graphs 146, 185
GP , GPu, GPC their domains 145, 184
FVR, FVRu, F tVR their operations 146, 185
FVR

C subsignature for C ⊆A 146
GP[C], GPgen[C] subalgebras 146, 185
FcVR concrete version of FVR 150
F ′VR, F iVR, FκVR variants of FVR 170–172
Gu, Gu a derived subalgebra 18, 46
A port labels 144
π(G) type of p-graph G 144
G◦ p-graph without ports 144
portG port mapping 144
⊕ disjoint union 99, 145
⊕C,D typed disjoint union 185−→
adda,b, adda,b edge addition 145−→
adda,b,C , adda,b,C typed edge addition 185
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relabh, relaba→b, relabD→a port relabeling 145, 161
relabh,C typed port relabeling 185
a, a
, a(x), a
(x), ∅ constant symbols 146, 150−→
adda,b,λ, aM for labeled graphs 149
ADDR derived edge addition operation 155

⊗,
−→⊗ , ⊗R,h complete join 18, 147, 161, 172

val(t), cval(t) abstract, concrete value of t 146, 150, 151
cval(t)/u $ concrete value of t/u 151
Occ0(t), portt notions for cval(t) 150, 151
cwd, lcwd clique-width, linear cwd 148
CWD(≤ k ,C), CWD(≤ k) clique-width ≤ k 295

Equational and recognizable sets; automata (Chapters 3, 4 and 6)

P(M) powerset algebra 189
∪s union of sets of sort s 189
�s empty set of sort s 189
F∪ signature of P(M) 189
Pol(F ,X ) polynomial terms 190
Mon(t) monomials of t 190
Ph set extension of homomorphism h 191
Unk(S) unknowns of system S 191
Sort(S), F(S) sorts, operations in S 192
SP(M) function associated with S 193
μx · SP(M)(x) least solution of S in P(M) 194
μx · SP(M)(x) � y its component defined by y 194
Equat(M) equational sets of M 194
Rat(M) rational sets of M 221
⇒G ,⇒S one-step derivation relations 197, 207
L(G,x), L(G,Y ) context-free languages 197
G[S], G(S), G(A ) context-free grammars 197, 200, 223
S↗ S ′ unfolding 208
Trim(S), Trim(S,Z) trim systems obtained from S 212
〈F ,QA ,δA ,AccA 〉 F-automaton A 222
f [q1, . . . ,qk ]→A q transition 222
δf transition function 582
�A , ‖A ‖ size measures 222
L(A ,q), L(A ) languages recognized by A 223
S(A ) equation system of A 223
runA ,t run of deterministic complete A 224
td-runA ,t top-down run of A 582
QA ,s states of sort s 225
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det(A ) determinization of A 225
Rec(M) recognizable sets of M 228
A (B,C) automaton from algebra 230
∼, (∼s)s∈S congruence 233
γ∼ its index 233
M/∼ quotient algebra 233
≈L syntactic congruence of L 234, 287, 305
γL recognizability index of L 234, 287, 305
M (L) minimal automaton of L 237, 238
( p̂ )p∈P family of predicates 245
sat(M,p) satisfaction set 246
L(S,x) s-graphs or p-graphs defined by (S,x) 262, 293
LTerm(S,x) terms defined by (S,x) 262, 293
A(S) source or port labels in S 262, 293
A ×B product of automata 440
A ∪B, A ∩B union, intersection of automata 440
A complement automaton 440
h(A ), h−1(A ) images of automaton A 441

Relational structures (Chapters 5, 7 and 9)

R, Ri, etc. relational signatures 316
ρ(R), ρ(R) arity 316
〈DS ,(RS)R∈R+ ,(cS)c∈R0〉 R-structure S 316
∅, ∅R empty structures 316, 394
S[X ], S/≈ substructure, quotient structure 316, 510
S $ T isomorphism of structures 316
[S]iso isomorphism class of S 316
STRc(R), STR(R) concrete, abstract R-structures 316
WA, suc, laba representation of words w 317
RF , soni, labf , rt,

son, bri

representation of terms t 320

Rs, Rs,C , Rss,C ,
Rs,[K ,�], Ru

m, etc.
signatures for (p-, s-) graphs G 318, 319,

345, 346
edg, edgλ, laba, in,

in1, in2, labEdge

relations for (p-, s-) graphs 318, 319,
345, 346

�w�, �t�, �G�C , �G�,
�G�C , �G�

structures representing w, t,G 317–320,
345, 346

�t�/u, �t� ↑ u representation of subterm,
context

321

�L�, �L�, �L�C , �L�C structures for a set L 318–321,
347
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‖ · ‖ size functions 322, 494, 649
R∗, LabR, S∗, STRc∗(R∗) constants as unary relations 328, 511
⊕, ⊕R,R′ disjoint union of structures 359, 376
+ union of structures 651
�R,R′ parallel composition of structures 385
fusea,b, ffusea,b, qf , unary operations on structures 376, 377, 394,

add, mdf 643
STR, STRpres, STRsep,

STRnc

algebras of relational structures 394

FQF, FQF
pres, FQF

sep , FQF
nc their functional signatures 394

FQF � R subsignature 638

F relVR
C , F redQF

R,B related functional signatures 643, 647

Inc(S), RInc, InR, TS incidence graph of S 629, 630
twd(S), pwd(S) tree-width, path-width of S 632
TWD(R,≤ k),

PWD(R,≤ k)
R-structures of twd, pwd ≤ k 632

Adj(S) adjacency graph of S 633
twdInc(S) tree-width of Inc(S) 633
cval(t), Occ0(t) concrete structure defined by t 395, 638

Logic (Chapters 5 and 6)

Standard logical notation is not reviewed.

|ϕ|, qh(ϕ) size, quantifier-height of formula ϕ 324
mfv(ϕ) maximal free variable of ϕ 445
bqh(ϕ) block quantifier-height of ϕ 447
ba(ϕ) Boolean arity of ϕ 447
ϕ[· · · ] substitutions in ϕ 332, 333
ϕ � X relativization 334
TC[R;x,y],

TC[(λu,v ·ϕ);x,y]
transitive closure 334, 335

QF(R,X ) quantifier-free formulas over R,X 372
FO(R,X ) first-order formulas 322, 323
MS(R,X ) monadic second-order formulas 326
SO(R,X ) second-order formulas 324
FOi, MSi, SOi, i= 1,2 formulas expressing graph properties 347
x:v, x:e, X :v, X :e typed variables 349
Sgl singleton set predicate 445
Cardp,q cardinality set predicates 352, 353
CMS(R,X ), CMS1,

CMS2

counting MS logic 352, 353
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CMSBool CMS logic with Boolean set
terms

459

MOD(ϕ) models of ϕ 323
ThL(C) L-theory of C 329
SatL(C) formulas of L satisfiable in C 329
MC(C,L) model-checking problem 429
sat(S,ϕ,X ,x) satisfying assignments 324
�sat(S,ϕ, . . . ) counting function 432
Maxsat(S,ϕ, . . . ) optimizing function 432
sat(S⊕T ,ϕ,X ,x;y), notions for the Splitting 361, 365,

permπ , � Theorem 366
〈δ,(θR)R∈R′+ ,(κc,d)〉 QF operation definition scheme D 373

D̂ QF operation defined by D 373
ιR,R′ natural inclusion 375
ϕD backwards translation 380
Th(S,R, . ) bounded theory 388
Th(t,↓u, . ), Th(t,↑u, . ) bounded theories for term t 390, 392

Th↓t (. ), Th↑t (. ), Tht(. ) special cases 583

Th↑rt root theory 583

ĈrMSh(R,X ) normalized formulas 420
F (n), t ∗ γ representation of assignments 450
Lϕ , LVR

C,ϕ , LHR
C,ϕ sets of terms for models of ϕ 450, 460, 484

Aϕ , BC,ϕ , CC,ϕ automata recognizing these sets 450, 461, 484
MINORH sentence expressing minor

inclusion
44

Monadic second-order transductions (Chapters 7 and 9)

[τ ]iso transduction of abstract structures 506
τ · τ ′, τ ◦ τ ′ composition 506
τ−1, Dom(τ ) inverse, domain 506
〈χ ,(δi)i∈[k],(θw)w∈R′�[k]〉 definition scheme 507
〈χ ,δ,(θR)R∈R′ 〉 noncopying definition scheme 508
qh(D) quantifier-height of D 507
D̂ transduction defined by D 507
D∗, τ∗, τ∗∗ notions for constants 513
η[k], μi, βD

i , βD , τ #(β) backwards translation 516–518
fgU , expU , copyk particular transductions 525, 529
μF ,n, πF ,n relabelings 526
6 comparison of classes 531
trees the set of trees 548
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paths the set of paths 552−→
# sat,

−→
# γ cardinality mappings 554

MSi, j, CMSi, j transductions of incidence graphs 555

Tree transducers (Chapter 8)

μA coding of words by unary terms 581
DMSOW parameterless MS-transductions of words 581
DMSOT parameterless MS-transductions of terms 581
DMSOTW idem from terms to words 581
GM ,s regular grammar of transducer M on

input term s
586, 599

AM infinite automaton of transducer M 605
τM transduction computed by transducer M 586, 599, 605
DTWTMS

su single-use deterministic MS tree-walking
transductions

586

DTWTWMS deterministic MS tree-walking
tree-to-word transductions

587

DTWT deterministic tree-walking transductions 587
DTWT↓ deterministic top-down tree transductions 602
DTWTW deterministic tree-walking tree-to-word

transductions
587

2DGSM deterministic two-way finite-state
transductions

587

P-DTWT deterministic tree-walking pushdown
transductions

599

P-DTWTW idem tree-to-word 599
DMBOTsu single-use multi bottom-up tree-to-word

transductions
606

1DMWTsu single-use one-way multi word
transductions

606

DMT deterministic macro tree transductions 612
REGT regular term languages 615
REGW regular word languages 616
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affine mapping, c3.26
algebra, s2.1

AC, d5.85
derived, d2.125
locally finite, s3.4.1
many-sorted, s2.6.1
of graphs

HR, s2.3.1, s2.6.2
VR, s2.5.1, s2.6.3

of relational structures, s5.3.7
of words, d2.7
power-set, s3.1.1, d3.1
product, d2.1, d2.123
quotient, d3.63

assignment, s5.1.3, s8.6
automaton, s3.3.1

complement, s6.3.1
finite, d3.46
image, inverse image, s6.3.1
intersection, s6.3.1
minimal, d3.72
product, s6.3.1
semi-, d3.46
size of, d3.46
tree-walking, s8.2
trim, d3.48
union, s6.3.1

Backwards Translation Theorem
for CMS-transductions, t7.10
for QF operations, t5.47

bandwidth, e4.3(10)
cyclic, e4.3(11)

betweenness, s1.9.2, s9.1.1
Boolean

arity, d6.19
normalization, d5.90
set term, d6.32
substitution, d6.32, 
6.33

border, d4.50
bottom-up computation, d2.14
box, d2.53

cardinality (set) predicate, s5.2.6
clique-width, see width
CMS, d5.24
coloring, d2.11

proper vertex k-coloring, e1.11
complete join, s1.1.2, e2.88(3),

e5.54
directed, e2.108, e4.43(2)

composition
of CMS-transductions, d7.1, t7.14,

9.60

1 This index refers to sections, definitions, theorems etc. by using the following abbreviations:
a = application, c = corollary, d = definition, e = example, 
 = lemma, p = proposition, r = remark,
s = section and t = theorem.
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composition (cont.)
of QF operations, p5.49

congruence, s3.4.3
effectively given, d3.77
index of, d3.63
locally finite, d3.63, d4.29
sort-preserving, d3.63
syntactic, d3.65
type-preserving, d4.29
witnessing, p3.64

connectivity condition, d2.53
constant, d2.1, d2.123, d5.1, s5.1.5

defining sentence, d5.42
-separated, d5.1

context, d2.6, s2.3.3, s.2.5.3
context-free, s3.1.3

strict, p3.15
core, d2.9, p2.47
counting MS logic, see CMS
counting problem/function, d6.5,

s6.4.3
cross-section, d2.15

canonical, s2.3.2
cyclic ordering, s1.9.2, s9.1.2

decomposition
modular, s2.5.4
of CMS-transductions, p7.24, p7.26
of QF operations, 
5.78
path-decomposition, s2.4.1, s9.2
tree-decomposition, s2.4.1, s9.2

binary, d2.68
downwards increasing, d2.66
normal, e2.56(6)
representation of, e5.2(4)

definability (logical), s5.1.5
of regular languages, s5.2.4

definition scheme
of CMS-transduction, d7.2, d7.6
QFO, DP-QFO, QDP-QFO, d5.42

derived
algebra, d2.125

operation, d2.5, d2.125
extended, d2.125
linear, strict, s3.2.3, d2.125

signature, d2.125
disjoint union

of graphs, d2.23
of p-graphs, s2.5.1, s2.6.3
of structures, d5.34, e5.44, d5.62
ordered, e5.56

domain
-extending, d7.2
formula d5.42
of an algebra, d2.1, d2.123
of a relational structure, d5.1
of a transduction, d7.1
(-)preserving (DP), d5.42, d7.2
restricting, d5.77

edge
addition, s2.5.1, s2.6.3
-complement, e1.30, p2.105(4)
contraction, d2.15
opposite, d2.9
(set) quantification, s5.2.5, s7.3,

s9.4.1
subdivision, e7.44

effectively given, d2.8, d2.127, d3.77
semi-effectively given, d2.8,

d2.127
elimination order, s2.4.4
encoding, d2.8, d6.7
enumeration, s6.4.4(1)
equation system, d3.6

HR, s4.1.1
typed, s4.1.3, d4.12

linear, t7.41
polynomial, d3.6
subsystem, 
3.27
trim, s3.2.2
uniform, quasi-uniform d3.6, p3.33
VR, s4.3.1

typed, s4.3.3
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equational set, s3.1, d3.8
of terms, s3.1.4
of words, s3.1.3

of commutative words, s3.1.6
linear, t7.41
HR-, s4.1
VR-, s4.3

of terms, s8.9, t8.27
of words, s8.9, t8.28

Equationality Theorem
for structures, t9.31
for the HR algebra, s7.4, t7.51
for the VR algebra, s7.2, t7.36, t7.41

equivalence
of automata, d3.46
of equation systems, s3.1.2, d3.28
of formulas, s5.2, s5.6
of representations, s5.1.5, d7.9
of sets of structures, s7.1.7
of terms, d2.32, s2.3.3, s2.5.3

evaluation
of a CMS-transduction, t7.29,

r7.31(2), t8.14, t8.18, r8.19(3)
of a term, d2.2, s2.3.2, s2.5.2, p7.30,

p7.48, s9.3.2
expansion

of a structure, d7.19
of a term, s2.3.2, d3.3

expressibility (logical), s5.1.5
monadic second-order, s5.2

Filtering Theorem
algebraic version, s3.4.7, t3.88
concrete version, t1.8
logical version, c5.70, c5.71

finiteness problem, s4.1.4, s4.3.3
first-order logic, see FO
fixed-parameter tractable problem, s6.1
fixed-point, d3.6, t3.7, t3.13

induction, s1.2.1, s1.2.2, p3.91,
c5.70(3), c5.71(3)

FO, s5.1.2

forest, d2.13
in a hypergraph, d9.48
normal, d9.45, d9.48
spanning, d9.45, d9.48

formula (logical), see logic
block quantifier-height of, d6.19
Boolean arity of, d6.19
domain, d5.42, d7.2
normalization of, s5.6, d5.90, d5.92,

s6.3.2
n-normal, d6.20
quantifier-height of, s5.1.3
relation, d5.42, d7.2
size of, s5.1.3

generated
by a grammar, d3.11, d4.1, d4.22
by a signature, d2.2, d2.124
finitely, d2.124

graph, s2.2
abstract, s2.2, s2.3.1, s2.5.1
adjacency, p9.14
basic, s2.3.1, s2.5.1
chordal, s2.4.4, e5.18, e6.43,

p7.39
cograph, s1.1.2
k-colorable, e1.11
concrete, s2.2, s2.3.1, s2.5.1
incidence, d5.17, d9.10, d9.48
labeled, d2.11, d2.90
module, d2.111
outerplanar, e4.3(7)
p-, s2.5.1
perfect, e6.43(3)
prime, d2.111
quotient, d2.15, d2.28
representation of, e5.2(2), d5.17
s-, s2.3.1
series-parallel, s1.1.3, e4.3(1)
simple, d2.9, d2.11
split, p7.39
subgraph, d2.12
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grammar, cf. equation system
attribute, s8.7
context-free, d3.11

strict, p3.15
HR, s4.1.5, d4.22
graph, s1.10, s2.7, s4.1.5, s4.6
regular, d3.17

uniform, quasi-uniform, d3.17
grid, e2.56(3), p2.106, p4.36, t5.6,

s5.2.3, p7.40, p7.60

height
of a forest, d2.13
of a term, d2.3

homogenous, d2.123, d4.12
homomorphism

of algebras, d2.1, d2.123, d3.5
of graphs, p9.40
tree, see second-order substitution
witnessing, d3.55

hyperedge, d4.20, d9.48
replacement, s4.1.5

hypergraph, d4.20, d9.48
orientation of, d9.53
semi-orientation of, d9.57
simple, d9.48
splitting of, d9.51

image, d7.1
finite images, s8.1.1

inductive
predicates, s3.4.5
properties, s1.2.3

interior, d4.50
internal vertex, d2.24
intersection

of automata, s6.3.1
of graphs, d2.22

inverse, d7.1
invertible, d7.2
isolated vertex, d2.9
isomorphism

of algebras, d2.1, d2.123
of graphs, d2.10
of p-graphs, d2.86
of relational structures, d5.1
of s-graphs, d2.24
of transductions, d7.1

join, see complete join
jumping, s8.2

labeling scheme, s6.4.4(3)
language, d2.2
linear size increase, d7.2, t8.17
listing problem, s6.4.2
local tree-walking transducer, s8.2,

s8.5
locally finite

algebra, s3.4.1
congruence, d3.63
predicates, d3.81

logic
CMS, d5.24
FO, s5.1.2
MS, s5.1.4
MS2, s5.2.5
QF, s5.3.2
SO, s5.1.3

minor, c1.14, d2.15
excluded/forbidden, d2.20,

p2.21
model, s5.1.2
model-checking, s5.1.6, s6.1, s9.3.1
monadic second-order

logic, see MS
relabeling, d7.20
transduction, d7.2, d7.6, s7.1.3,

s7.3
of terms, t8.10
of words, t8.17

monomial, d3.3
MS, s5.1.4
μ-calculus, s3.2.5
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natural inclusion, e5.44
nonjumping tree-walking transducer,

s8.2
normalization of formulas, see formula

occurrence, d2.3
operation

derived, d2.5, d2.125
linear, strict, s3.2.3, d2.125

DP-QF, QDP-QF, d5.42, d5.52
of an algebra, s2.1, s2.6.1
on p-graphs, s2.5.1, s2.6.3

disjoint union
edge addition
port relabeling

on s-graphs, s2.3.1, s2.6.2
parallel-composition
source forgetting
source renaming

QF, s5.3.2, d5.42
optimizing problem/function, d6.5,

s6.4.3
orderability (logical), d5.28, e7.3(3),

d9.41
orientability (logical), d9.41, d9.53
orientation

of a graph, d2.9
of a hypergraph, d9.53, d9.57
simplicial, d2.71

parallel-composition, s2.3.1, s2.6.2,
e5.55

parsing
algebra elements, d3.43
graphs, s2.3.2, s2.5.2, d4.4, s6.2
terms, d2.14

path-width, see width
p-graph, s2.5.1
polynomial, d3.3

system, d3.6
port, s2.5.1

relabeling, s2.5.1, s2.6.3

position, d2.3
precondition, d7.2
property-checking, d6.5, s6.4.1
pumping, s3.3.2

QF, s5.3.2
quantification

edge (set), s5.2.5, s7.3, s9.4.1
quantifier-free

logic, see QF
operation, d5.42

quantifier-height
of a formula, s5.1.3

block, d6.19
of a definition scheme, d7.2

quasi-
domain preserving (QDP), d5.42
uniform, d3.6, d3.17

quotient
algebra, d3.63
graph, d2.15
s-graph, d2.28
structure, e7.3(1)

rank-width, see width
rational

set, s3.2.5
transduction, e8.3

recognition by reduction, s6.4.4(2)
recognizability

index, d3.65, d4.33, d4.52, s5.6.3
logical characterization of, s5.5, s7.6

Recognizability Theorem
for graphs, t5.68
for structures, s5.3.8, s5.3.10
for terms, c5.67
for words, c5.66
Weak, c5.69

recognizable set, s3.4, d3.55
HR-, s4.2
of terms, s3.4.2
of words, e3.57(2), e3.61
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recognizable set (cont.)
of commutative words, s3.4.8

(semi-)effectively (term-), s3.4.4
VR-, s4.4

Reduction Theorem, t7.54
regular, s3.1.4
relabeling

elementary, d2.87, s2.5.6
monadic second-order, d7.20
port, s2.5.1, s2.6.3

relational structure, s5.1.1, d5.1
parallel-composition of, e5.55
quotient, e7.3(1)
size of, d5.3
union of, d5.34, e5.44, d9.35

relativization, s5.2.1, 
5.10
representation, d5.1

equivalent, s5.1.5
faithful, d5.1
of graphs, e5.2(2), d5.17
of terms, e5.2(3)
of tree-decompositions, e5.2(4)
of words, e5.2(1)
strongly equivalent, d7.9

Restriction Theorem, t7.16
R-structure, see relational structure
run, d3.46, d3.49, p6.14

accepting, d3.46
top-down, s8.1.2

satisfiability
function, d6.5, s6.4.3
problem, s5.1.6, s7.5

decidable, s5.4
undecidable, s5.1.6

set, s5.1.2, s5.1.3, t7.42
L-, s5.1.6
of a predicate, s3.4.5

saturate, d3.63
second-order

logic, see SO
substitution, d2.125, p2.126

linear, strict, nonerasing, e7.3(4)
selection problem, s6.4.2
semi-linear set, s3.1.6, p4.16, p4.47(1)
Semi-Linearity Theorem, t7.42
sentence, s5.1.2
series-composition, s1.1.3, e2.133,

e5.53
generalized, r2.84(5)

set variable, s5.1.4
s-graph, s2.3.1
signature

AC, d5.85
functional, d2.1

derived, d2.125
fat, s7.1.7
many-sorted, d2.123
weak, s7.1.7

relational, d5.1
size of, d5.3, d9.33

single-use
multi bottom-up transducer, s8.6
one-way multi word transducer, s8.6
tree-walking transducer, s8.2

slim term, p2.85, p7.27
SO, s5.1.3
solution, d3.6

oversolution, d3.6
sort, s2.6.1
source, s2.3.1

forgetting, s2.3.1, s2.6.2
renaming, s2.3.1, s2.6.2

spanning
forest, d9.45, d9.48
tree, d2.13, d2.71

sparse (graph, structure, hypergraph)
k-sparse, t4.51, d9.36, s9.4.2

uniformly, t4.51, t4.59, s9.4, d9.36
Sparseness Theorem, t5.22, t9.38
splitting

of a formula, t5.39
of a hypergraph, d9.51
of a predicate, d3.81
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of a satisfiability set, s5.3.1
Splitting Theorem, s5.3.1, s5.3.5

FO, p5.37
MS, t5.39
QDP-QF, t5.57, c5.60

state, s3.3.1, s8.2, s8.5, s8.6
accessible, useful, d3.48

stepwise simulation, 
8.8
structure, see relational structure
substitution

Boolean, d6.32, 
6.33
of formulas in a formula, 
5.9
of graphs for a vertex, d2.109
of hypergraphs for a hyperedge,

d4.21
of set variables, d6.24(b), 
6.25
of terms in a formula, 
5.8
of terms in a term, d2.6
second-order, d2.125, p2.126

linear, strict, nonerasing,
e7.3(4)

syntactic
congruence, d3.65
tree, d2.14

system, see equation system

term, d2.2, s5.1.2
Boolean set, d6.32
flattening of, d5.85
height of, d2.3
linear, d2.5
many-sorted, d2.124
representation of, e5.2(3)
size of, d2.3
slim, p2.85, p7.27
subterm, d2.2, d2.6
type of, d2.35
value of, d2.2
with variables, d2.5
yield of, e8.1

theory, s5.1.6
bounded, s5.3.6, d5.59, d7.21

of terms, a5.61, s8.1.3
decidable, s5.4
undecidable, s5.1.6

tournament, p2.114, p7.39
transducer

attributed tree, s8.7
macro tree, s8.7
multi bottom-up tree-to-word, s8.6
one-way multi word, s8.6
pebble tree, s8.7
streaming, s8.6
top-down tree, s8.5, t8.15
tree-walking, s8.2, t8.17

tree-to-word, s8.2
tree-walking pushdown, s8.5, t8.13

tree-to-word, s8.5
two-way finite-state, s8.2, t8.10

transduction, s7.1.1
composition of, d7.1, t7.14, 
9.60
copy, d7.25
decomposition of, p7.24, p7.26
graph, p-graph, s-graph, s7.1.3
monadic second-order, d7.2, d7.6,

s7.1.3, s7.3
of terms, t8.10
of words, t8.17

rational, e8.3
union of, p7.18, d9.35

transitive closure, s5.2.2
tree, d2.13

derivation, s1.1.5, d3.43, d4.4
height of, d2.13
partial k-, r2.84(5)
spanning, d2.13, d2.71
syntactic, d2.14
-walking, s8.2

tree-width, see width
trim

automaton, d3.48
equation system, s3.2.2

type
algebra, s4.1.3



728 Index

type (cont.)
of a function, d2.123
of a p-graph, s2.5.1
of an s-graph, s2.3.1
of a term, d2.35

typed
HR system, d4.12
variable, s5.2.5

typing, d2.131

unfolding, s3.2.1
union

of automata, s6.3.1
of graphs, d2.22, d2.23, d2.87
of structures, d5.34, e5.44, d9.35
of transductions, p7.18, d9.35

unknown, d3.6
productive, d3.36
useful, d3.36

untyping, d2.129

value, see evaluation
variable

first-order, d2.5, s5.1.2

relation, s5.1.3
set, s5.1.4
typed, s5.2.5

well-order, d2.20
width

clique-width, d2.89, d2.90
linear, d2.89, d2.90

of a graph, s2.4.5
of a structure, s9.3.3, s9.3.4, d9.33
of a term, d2.35
of a tree-decomposition, d2.53
path-width, d2.57, d9.12
rank-width, d6.6
relational width, d9.26
tree-width, d2.53, d9.12

without Kn,n, p2.115, t4.51, t4.59
witness, d2.43, d2.97, d3.55, s3.4.3

canonical, s2.3.2
ground, s2.3.2
simple, p6.45

word, d2.7
commutative, s3.1.6, s3.4.8
representation of, e5.2(1)
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