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Foreword

The Wiley Encyclopedia of Operations Research and Management 
Science (EORMS), published in 2011, is the first multi‐volume encyclo-
pedia devoted to advancing state‐of‐the‐art applications and principles 
of operations research and management science. EORMS is available 
online and in print and serves students, academics, and professionals as 
a comprehensive resource on the field.

The articles published in EORMS provide robust summaries of the 
many topics and concepts that comprise operations research and 
management science. However, many readers need additional access 
to greater details and more thorough discussions on a variety of topics. 
In turn, we have created the Wiley Essentials in Operations Research 
and Management Science book series. Books published in this series 
allow invited expert authors and editors to expand and extend the 
treatment of topics beyond EORMS and offer new contributions and 
syntheses.

I am delighted to introduce Breakthroughs in Decision Science and 
Risk Analysis as the inaugural book in this series. It exemplifies how 
individual books will meet the goals of the series, setting a high stan-
dard for later volumes. Dr. Louis Anthony (Tony) Cox, Jr., the editor of 
Breakthroughs in Decision Science and Risk Analysis, has assembled a 
collection of renowned authors who contribute exciting syntheses and 
advances to an area that is critically important in both applications and 
research. This book is unique and important because it focuses on recent 
advances and innovations in decision analysis with an emphasis on 
topics that are not traditionally found in the decision analysis literature. 
I am confident that this book will be extremely useful to the operations 
research and management science community as well as to readers 
from economics, engineering, business, psychology, finance, environ-
mental sciences, public policy, forestry, political science, health and 
medicine, education, and other social and applied sciences. We hope 
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that you will enjoy it, and we welcome comments and suggestions for 
our new Wiley Essentials in Operations Research and Management 
Science series.

James J. Cochran
Professor of Applied Statistics and the  

Rogers‐Spivey Faculty Fellow
Founding Series Editor of Wiley Essentials in  

Operations Research and Management Science
University of Alabama
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Preface

Decision and risk analysis can be exciting, clarifying, and fairly easy 
to apply to improve high-stakes policy and management decisions. The 
field has been undergoing a renaissance in the past decade, with remark-
able breakthroughs in the psychology and brain science of risky 
decisions; mathematical foundations and techniques; integration with 
learning and pattern recognition methods from computational intelli-
gence; and applications in new areas of financial, health, safety, 
environmental, business, engineering, and security risk management. 
These breakthroughs provide dramatic improvements in the potential 
value and realism of decision science. However, the field has also 
become increasingly technical and specialized, so that even the most 
useful advances are not widely known or applied by the general audi-
ence of risk managers and decision-makers who could benefit most 
from them. This book explains key recent breakthroughs in the theory, 
methods, and applications of decision and risk analysis. Its goal is to 
explain them in enough detail, but also with a simple and clear enough 
exposition, so that risk managers and decision-makers can understand 
and apply them.

There are several target audiences for this book. One is the opera-
tions research and management science (OR/MS) community. This 
overlaps with the audience for the Wiley Encyclopedia of Operations 
Research and Management Science (EORMS), including OR/MS pro-
fessionals–academic and industry researchers, government organizations 
and contractors, and decision analysis (DA) consultants and practi-
tioners. This book is also designed to appeal to managers, analysts, and 
decision and policy makers in the applications areas of financial, health 
and safety, environmental, business, engineering, and security risk 
management. By focusing on breakthroughs in decision and risk sci-
ence that can significantly change and improve how we make (and learn 
from) important practical decisions, this book aims to inform a wide 
audience in these applied areas, as well as provide a fun and stimulating 
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resource for students, researchers, and academics in DA and closely 
linked academic fields of psychology, economics, statistical decision 
theory, machine learning and computational intelligence, and OR/MS.

In contrast to other recent books on DA, this one spends relatively 
little space on “classical” topics such as the history of DA; the structure 
of decision problems in terms of acts, states, and consequences; and 
extensions of the traditional DA paradigm, such as fuzzy DA or multi-
criteria decision-making. Instead, the book is devoted to explaining and 
illustrating genuine breakthroughs in decision science—that is, devel-
opments that depart from, or break with, the standard DA paradigm in 
fundamental ways and yet have proved promising for leading to even 
more valuable insights and decision recommendations in practical 
applications. These breakthroughs include methods for deciding what 
to do when decision problems are incompletely known or described, 
useful probabilities cannot be specified, preferences and value trade-
offs are uncertain, future preferences may conflict with present ones, 
and “model uncertainty” about the cause-and-effect relation between 
choices and their probable consequences runs too deep to permit any 
single decision support model, or small set of models, to be highly cred-
ible. In addition to explaining the most important new ideas for coping 
with such realistic challenges, the chapters in this book will show how 
these techniques are being used to dramatically improve risk 
management decisions in a variety of important applications, from 
finance to medicine to terrorism. This emphasis on new ideas that 
demonstrably work better than older ones, rather than primarily on 
expositions of and advances in traditional decision and risk analysis, is 
the essential unique contribution of this work. In addition, a pedagog-
ical emphasis on simple, clear exposition (accessible to readers at 
different technical levels, with a minimum of mathematical notation 
and technical jargon), and important practical applications should help 
to broaden the practical value of the chapters that follow in making 
important advances in decision and risk analysis useful to readers who 
want to learn about them and apply them to important real-world 
decisions.

Louis Anthony Cox, Jr.
January 2015
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Breakthroughs in Decision Science and Risk Analysis, First Edition.  
Edited by Louis Anthony Cox, Jr. 
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

CHAPTER	 1

Introduction: Five 
Breakthroughs in Decision 
and Risk Analysis

Louis Anthony (Tony) Cox, Jr.
Cox Associates, NextHealth Technologies,  
University of Colorado-Denver, Denver, CO, USA

This book is about breakthroughs in decision and risk analysis—new 
ideas, methods, and computational techniques that enable people and 
groups to choose more successfully when the consequences of 
different choices matter, yet are uncertain. The twentieth century 
produced several such breakthroughs. Development of subjective 
expected utility (SEU) theory combined with Bayesian statistical 
inference as a model of ideal, rational decision-making was among 
the most prominent of these. Chapter 2 introduces SEU theory as a 
point of departure for the rest of  the book. It also discusses more 
recent developments—including prospect theory and behavioral 
decision theory—that seek to bridge the gap between the demanding 
requirements of SEU theory and the capabilities of real people to 
improve their decision-making. Chapters 5 and 8 address practical 
techniques for improving risky decisions when there are multiple 
objectives and when SEU cannot easily be applied, either because of 



2 CHAPTER 1  Introduction

uncertainty about relevant values, causal models, probabilities, and 
consequences; or because of the large number and complexity of 
available choices.

Historical Development of Decision 
Analysis and Risk Analysis

Perhaps the most audacious breakthrough in twentieth-century decision 
analysis was the very idea that a single normative theory of decision-
making could be applied to all of the varied risky decisions encountered 
in life. It may not be obvious what the following problems, discussed in 
ensuing chapters, have in common:

•  Investment decisions: How should investors allocate funds across 
investment opportunities in a financial portfolio? (Chapter 3)

•  Operations management decisions: How should a hospital emergency 
room be configured to make the flow of patients as easy and efficient 
as possible? How should an insurance company staff its claims-
handling operations? (Chapter 3)

•  Inventory management and retail decisions: How much of an expen-
sive, perishable product should a business buy if demand for the 
product is uncertain? (Chapter 4)

•  Trial evaluation and selection decisions: How much trial, testing, and 
comparative evaluation should be done before selecting one of a small 
number of costly alternatives with uncertain consequences, for exam-
ple, in choosing among alternative new public policies, consumer or 
financial products, health care insurance plans, research and develop-
ment (R&D) projects, job applicants, supply contracts, locations in 
which to drill for oil, or alternative drugs or treatments in a clinical 
trial? (Chapter 4)

•  Adversarial risk management decisions: How should we model the 
preferences and likely actions of others, in order to make effective 
decisions ourselves in situations where both their choices and ours 
affect the outcomes? (Chapters 2, 5, 9, and 10)

•  Regulatory decisions: When experimentation is unethical or imprac-
tical, how can historical data be used to estimate and compare the 
probable consequences that would be caused by alternative choices, 
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such as revising versus maintaining currently permitted levels of air 
pollutants? (Chapter 6)

•  Learning how to decide in uncertain environments: Suppose that not 
enough is known about a system or process to simulate its behavior. 
How can one use well-designed trial-and-error learning to quickly 
develop high-performance decision rules for deciding what to do in 
response to observations? (Chapters 4 and 7)

•  Medical decision-making: How should one trade off the ordinary 
pleasures of life, such as consumption of sugar-sweetened drinks, 
against the health risks that they might create (e.g., risk of adult-
onset diabetes)? More generally, how can and should individuals 
make decisions that affect their probable future health states in ways 
that may be difficult to clearly imagine, evaluate, or compare? 
(Chapter 8)

That the same basic ideas and techniques might be useful for deci-
sion-making in such very different domains is a profound insight that 
might once have excited incredulity among experts in these fields. It 
is now part of the canon of management science, widely taught in 
business schools and in many economics, statistics, and engineering 
programs.

Decision analysis views the “success” of a decision process in terms 
of the successes of the particular decisions that it leads to, given the 
information (usually incomplete and possibly incorrect or inconsistent) 
that is available when decisions must be made. The “success” of a single 
choice, in turn, can be assessed by several criteria. Does it minimize 
expected post-decision regret? Is it logically consistent with (or implied 
by) one’s preferences for and beliefs about probable consequences? 
In hindsight, would one want to make the same choice again in the same 
situation, if given the same information? The giants of twentieth-century 
decision theory, including Frank Ramsey in the 1920s, John von Neumann 
in the 1940s, and Jimmy Savage in the 1950s, proved that, for perfectly 
rational people (homo economicus) satisfying certain mathematical 
axioms of coherence and consistency (i.e., complete and transitive 
preference orderings for outcomes and for probability distributions over 
outcomes), all of these criteria prescribe the same choices. All imply 
that a decision-maker should choose among risky prospects (including 
alternative acts, policies, or decision rules with uncertain consequences) 
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as if she were maximizing subjective expected utility (SEU). Chapters 2 
and 7 introduce SEU theory and some more recent alternatives. Decision-
making processes and environments that encourage high-quality decisions 
as judged by one of these criteria will also promote the rest.

However, real people are not perfectly rational. As discussed in 
Chapter 2, homo economicus is a fiction. The prescriptions of decision 
theory are not necessarily easy to follow. Knowing that SEU theory, 
the long-reigning gold standard for rational decision-making, logically 
implies that one should act as if one had coherent (e.g., transitive) 
preferences, and clear subjective probabilities are cold comfort to 
people who find that they have neither. These principles and limitations 
of decision theory were well understood by 1957, when Duncan Luce 
and Howard Raiffa’s masterful survey Games and Decisions explained 
and appraised much of what had been learned by decision theorists, and 
by game theorists for situations with multiple interacting decision-
makers. Chapter  2 introduces both decision theory and game theory 
and discusses how they have been modified recently in light of insights 
from decision psychology and behavioral economics.

During the half-century after publication of Games and Decisions, a 
host of technical innovations followed in both decision analysis and 
game theory. Decision tree analysis (discussed in Chapters 8 and 10) 
was extended to include Monte Carlo simulation of uncertainties (see 
Chapter  3). Influence diagrams were introduced that could represent 
large decision problems far more compactly than decision trees, and 
sophisticated computer science algorithms were created to store and 
solve them efficiently. Methods of causal analysis and modeling were 
developed to help use data to create risk models that accurately predict 
the probable consequences of alternative actions (see Chapter 6). Markov 
decision processes for dynamic and adaptive decision-making were 
formulated, and algorithms were developed to adaptively and robustly 
optimize decision rules under uncertainty (see Chapter 7). SEU theory 
was generalized, e.g., to allow for robust optimization with ambiguity 
aversion when probabilities are not well known. Practical constructive 
approaches were created for structuring and eliciting probabilities and 
utilities, as discussed and illustrated in Chapters 5, 8, and 10.

These technical developments supported a firmly founded disci-
pline of applied decision analysis, decision aids, and decision support 
consulting. The relatively new discipline of applied decision analysis, 
developed largely from the 1960s on, emphasized structuring of decision 
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problems (especially, identifying and solving the right problem(s)); 
clearly separating beliefs about facts from values and preferences for 
outcomes; eliciting or constructing well-calibrated probabilities and 
coherent utilities; presenting decision recommendations, together with 
sensitivity and uncertainty analyses, in understandable ways that deci-
sion-makers find useful; assessing value of information and optimal 
timing of actions; and deliberate, careful learning from results, for both 
individuals and organizations. The 1976 publication of the landmark 
Decisions with Multiple Objectives: Preferences and Value Tradeoffs by 
Ralph Keeney and Howard Raiffa summarized much of the state of the 
art at the time, with emphasis on recently developed multiattribute value 
and utility theory and methods. These were designed to allow clearer 
thinking about decisions with multiple important consequence dimen-
sions, such as costs, safety, profitability, and sustainability. Chapters 5, 8, 
and 10 review and illustrate developments in elicitation methods and 
multiattribute methods up to the present.

While decision analysis was being developed as a prescriptive disci-
pline based on normative theory (primarily SEU theory), an increasingly 
realistic appreciation of systematic “heuristics and biases” and of pre-
dictable anomalies in both laboratory and real-world decision-making 
was being developed by psychologists such as Amos Tversky, Daniel 
Kahneman, Paul Slovic, and Baruch Fischhoff, and by many other 
talented and ingenious researchers in what became the new field of 
behavioral economics. Chapter 2 introduces these developments. Striking 
differences between decision-making by idealized, rational thinkers 
(homo economicus) and by real people were solidly documented and 
successfully replicated by different teams of investigators. For example, 
whether cancer patients and their physicians preferred one risky treatment 
procedure to another might be changed by presenting risk information as 
the probability of survival for at least 5 years instead of as the probability 
of death within 5 years—two logically equivalent descriptions (gain 
faming vs. loss framing) with quite different emotional impacts and 
effects on decisions. Many of these developments were reflected in the 
1982 collection Judgment under Uncertainty: Heuristics and Biases, 
edited by Kahneman, Slovic, and Tversky. Chapter 10 summarizes key 
insights from the heuristic-and-biases literature in the context of eliciting 
expert judgments about probabilities of adversarial actions.

Twenty-five years later, the 2007 collection Advances in Decision 
Analysis: From Foundations to Applications, edited by Ward Edwards, 
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Ralph Miles, and Detlof von Winterfeldt, took stock of the thriving and 
increasingly well-developed field of decision analysis, which now 
integrated both normative (prescriptive) theory and more descriptively 
realistic considerations, e.g., using Kahneman and Tversky’s prospect 
theory. This collection looked back on decades of successful develop-
ments in decision analysis, including the field’s history (as recalled by 
founding luminaries, including Ron Howard of Stanford and Howard 
Raiffa of the Harvard Business School), surveys of modern progress 
(including influence diagrams, Bayesian network models, and causal 
networks), and important practical applications, such as to engineering 
and health and safety risk analysis, military acquisitions, and nuclear 
supply chain and plutonium disposal decisions.

Overcoming Challenges for Applying 
Decision and Risk Analysis to Important, 
Difficult, Real-World Problems

Despite over five decades of exciting intellectual and practical progress, 
and widespread acceptance and incorporation into business school cur-
ricula (and into some engineering, statistics, mathematics, and economics 
programs), decision analysis has limited impact on most important 
real-world decisions today. Possible reasons include the following:

•  Many real-world problems still resist easy and convincing decision-
analytic formulations. For example, a dynamic system with random 
events (i.e., patient arrivals, departures, and changes in condition in 
a  hospital ward) with ongoing opportunities to intervene (e.g., by 
relocating or augmenting staff to meet the most pressing needs) cannot 
necessarily be represented by a manageably small decision tree, influ-
ence diagram, Markov decision process, or other tractable model—
especially if the required transition rates or other model parameters are 
not known and data from which to estimate them are not already avail-
able. Chapters 3, 4, 6, and 7 present breakthroughs for extending deci-
sion and risk analysis principles to such realistically complex settings. 
These include increasingly well-developed simulation–optimization 
methods for relatively well-characterized systems (Chapter  3) and 
adaptive learning, statistical methods for estimating causal relations 
from data (Chapter  6), model ensemble, and robust optimization 
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methods for settings where not enough is known to create a trustwor-
thy simulation model (Chapters 4 and 7).

•  It has often not been clear that individuals and organizations using for-
mal decision analytic models and methods outperform and outcompete 
those who do not. Chapters 4, 6, and 7 emphasize methods for causal 
analysis, adaptive learning, and empirical evaluation and comparison of 
alternative choices. These methods can help decision-makers make 
choices that demonstrably outperform (with high statistical confidence) 
other available choices in a wide variety of practical applications.

•  While decision analysts excel at distinguishing clearly between mat-
ters of fact and matters of preference, real-world decision-makers 
often prefer to fall back on judgments that conflate the two, perhaps 
feeling that no matter what academic theory may say, such holistic 
judgments give more satisfactory and trustworthy recommendations 
than calculations using hypothetical (and not necessarily clearly 
perceived or firmly believed) subjective utilities and probabilities. 
(This tendency may perhaps explain some of the popularity of 
simplistic decision aids that use ill-defined concepts, such as “relative 
importance” of goals or attributes, without clear definition of what 
“relative importance” means and of how it should reflect interde-
pendencies.) Too often, there is simply no satisfactory way to develop 
or elicit credible, defensible, widely shared probabilities and utilities 
for situations or outcomes that are novel, hard to imagine, or contro-
versial. Chapters 5 and 8–10 discuss innovations for alleviating this 
problem with new methods for eliciting and structuring utilities, value 
trade-offs, and probabilistic expert beliefs.

•  Most real-world decisions involve multiple stakeholders, influencers, 
and decision-makers, but SEU is preeminently a theory for single-
person decisions. (Extensions of SEU to “social utility” for groups, 
usually represented as a sum of individual utilities, can certainly be 
made, but an impressive list of impossibility theorems from collective 
choice theory establish that homo economicus will not necessarily 
provide the private information needed for collective choice mecha-
nisms to produce desirable, e.g., Pareto-efficient, outcomes.) Less 
theoretically, the notorious Prisoner’s Dilemma, discussed in Chapter 2, 
illustrates the tension between individual and group rationality 
principles. In the Prisoner’s Dilemma, and in many other situations 
with externalities, individuals who make undominated or otherwise 
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individually “rational” choices will thereby collectively achieve 
Pareto-dominated outcomes (a hallmark of collectively suboptimal 
choice), meaning that everyone would have been better off if all had 
made different (not “rational”) choices. Chapter  2 discusses both 
classical game theory and its behavioral modifications to better apply 
to real people, who often cooperate far better than theories for merely 
“rational” individuals would predict. Chapters 9 and 10 consider 
applications of game theory and alternatives for defending electrical 
grids (Chapter 9) and other targets (Chapter 10) against terrorists or 
other adversaries, including natural disasters in Chapter 9.

In addition to these major conceptual challenges, there are also purely 
technical challenges for making decision-analytic principles more widely 
applicable. For example, decision trees (Chapter 5) are well suited to 
model (and if necessary simulate) alternative possible sequences of 
events and decisions when there are only a few of each. However, they 
are far from ideal when the number of choices is large or continuous.

Example: Searching for a Hidden Prize

Suppose that a prize is hidden in one of 100 boxes, and that the cost of 
opening each box to see whether the prize is in it, as well as the prior 
probability that it is, are known (say, c(j) to open box j, which has prior 
probability p(j) of containing the prize). Then in what order should the 
boxes be opened to minimize the expected cost of finding the prize? 
(This is a very simple model for sequential search and R&D problems.) 
It would clearly be impracticable to create a decision tree describing the 
100! possible orders in which the boxes might be opened. Yet, it is easy 
to determine the optimal decision. Simple optimization reasoning estab-
lishes that the boxes should be opened in order of descending 
probability-to-cost ratio (since interchanging the order of any two boxes 
that violate this rule can readily be seen to reduce expected cost).

The remainder of this book explains and illustrates breakthrough 
methods to help real people make real decisions better. It presents ideas 
and methods that the authors and editors believe are mature enough 
to be highly valuable in practice and that deserve to be more widely 
known and applied. The starting point, developed in Chapter  2, is a 
candid acknowledgment that:
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•  SEU and classical Bayesian decision analysis together provide a 
logically compelling model for how individual decisions ideally 
should be made; but

•  Real people have not evolved to be always capable of producing 
(or  agreeing on) the crisply specified, neatly decoupled subjective 
probabilities and utilities that are required (and implied) by SEU.

Instead, decision-makers in real-world organizations and institutions 
typically have access to some imperfect data and knowledge bearing 
on the causal relations between alternative choices and their probable 
consequences. From this partial information, and through processes of 
deliberation and analysis, they may construct preferences for alternative 
actions, with supporting rationales that are more or less convincing to 
themselves and to others.

The following five breakthroughs, explained and illustrated in the 
chapters that follow, can help to understand and improve these decision 
processes.

Breakthrough 1: Behavioral Decision Theory 
and Game Theory

It is now known that different neural pathways and parts of the brain are 
activated by different aspects of risky prospects, such as probabilities 
versus amounts of potential perceived gains or losses; immediate versus 
delayed consequences; positive versus negative emotional affects of 
cues used in describing them; trust versus suspicion of others involved 
in joint decisions; and moral reactions to risks and to imposing risks 
on others. To a useful first approximation, heart and head (or, more 
formally, “System 1” and “System 2,” referring to the quick, intuitive 
and slower, more cognitive aspects of decision-making, respectively) 
may disagree about what is best to do, using different parts of the brain 
to evaluate alternatives and to arrive at these conclusions. Chapter  2 
further describes these aspects of the divided decision-making self, sit-
uating the problem of wise decision-making (as well as moral and social 
judgment-making) in the context of competing decision pathways and 
emphasizing the need to use both emotional and intuitive judgments 
and rational calculations in making effective decisions. Preferences, 
judgments, and beliefs are often transient and contingent on context and 
cues (some of which may be logically irrelevant) when they are elicited. 
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Assessing a single coherent utility function for a person whose prefer-
ences arise from multiple cues and competing pathways may not yield a 
reliable basis for prescribing what to do if the goal is to minimize post-
decision regret.

Recognizing these realities of human nature and behavior motivates 
behavioral decision theory and behavioral game theory. These address 
how to use well-placed “nudges,” design of occupational and consumer 
environments, and other practical methods to help real people make 
better decisions while taking into account their heuristics, biases, incon-
sistencies, limited attention span and will-power, irrational altruism, 
moral aspirations, perceptions of fairness, desire for social approval, and 
other realities of motivation and behavior. “Better” decisions can no 
longer necessarily be defined as those that are consistent with SEU 
axioms for preferences and beliefs, as assessed at a given moment and in 
a given context. What constitutes desirable decision-making must be 
defined afresh when preferences and beliefs are seen as being constructed 
on the fly and subject to motivated and self-serving reasoning, wishful 
thinking, salience of cues and their emotional affects, priming by context, 
and other biases. For example, “good” choices might be defined as those 
that are consistent with the guidance or principles (more formally, with 
the if-then “decision rules” mapping available information to available 
actions) that one would ideally want one’s self to follow, if one were 
given time, resources, and ability to develop such principles outside 
the context of short-run distractions, passions, and temptations. Such 
reflective and reflexive considerations, which have a long tradition in 
deontological, utilitarian, and virtue ethics, are gaining new currency and 
an applied focus through behavioral decision theory and game theory. 
The core breakthrough in Chapter 2 is the insight that advice on how to 
make decisions, to be most useful, should be rooted to an understanding 
of real human behavior and realistic possibilities for changing it.

Breakthrough 2: Simulation–Optimization  
of Risk Models

For decades, one vision of applied decision analysis has been that 
knowledge and information about the system or situation that a 
decision-maker seeks to influence via her decisions should be rep-
resented in an explicit risk model relating decisions (controllable 
inputs) and uncertainties (e.g., modeled as random inputs from the 



Overcoming Challenges for Applying Decision and Risk Analysis 11

environment, not controlled by the decision-maker) to resulting prob-
abilities of different outputs (consequences). If expected utility, or any 
other “objective function” whose expected value is to be maximized, 
is used to evaluate the probabilities of consequences induced by 
alternative choices of controllable inputs, then the decision problem 
of selecting those inputs can be decomposed into the following two 
technical tasks:

1.  Simulate output (consequence) probability distributions, for any 
choice of inputs; and

2.  Optimize inputs, that is, identify a combination of input values to 
produce the most desirable probability distribution of outputs, as 
evaluated by the objective function (e.g., expected utility).

If the risk model and simulation–optimization process can be trusted 
to model adequately the real system or situation of interest and to auto-
matically find the best combination of controllable inputs to choose 
for that system, then the decision-maker is freed to focus on speci-
fying the controllable inputs and the objective function to be used in 
evaluating results. Appropriate subject matter experts and modelers 
can focus on developing and validating the risk model describing the 
probabilities of consequences caused by different choices of control-
lable inputs (together with the uncontrollable ones chosen by “nature” 
or by others). The simulation–optimization engine can handle the details 
of solving for the best choice of inputs, much as software products such 
as the Excel Solver or Wolfram Alpha can solve simper problems, free-
ing users to focus on model development and input specification.

Example: Optimal Level of R&D

Suppose that a pharmaceutical company can invest in investigating any 
of a large number of new leads (molecules and molecular signaling 
pathways) in parallel for developing a drug to treat a disease in patients 
with a certain genotype. Each lead costs $5M to investigate, and each 
has a probability 0.1 of proving successful within 5 years. The value 
of a success within 5 years is $100M. The company must decide how 
many leads to investigate in parallel. What number of leads should be 
investigated to maximize the expected profit? This objective function, 
in units of millions of dollars, is given by the formula:
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where N is the number of leads investigated—the decision variable in 
this problem—and p is the probability of success for each investigated 
lead. (The probability that all N investigated leads are unsuccessful is 
(1 − p)N, and hence the probability of success for the whole effort, that 
is, the probability that not all fail, is (1 − (1 − p)N).) The expected profit-
maximizing value of N can readily be found in this simple example by 
searching over a range of values of N. For example, for those familiar 
with R, the following code generates Fig. 1.1: N = c(1:20); EMV = 100 
× (1 − 0.9^N) − 5 × N; plot (N, EMV). The number of leads that maxi-
mizes the objective function is N = 7.

Now, suppose that the problem were more complicated, with unequal 
success probabilities and different costs for the different leads, and with 
annual budgets and other resource constraints limiting the number of 
projects (investigations) that could be undertaken simultaneously. Then 
instead of searching for the best solution over a range of values for N, it 
would be necessary to search a more complicated space of possible 
solutions, consisting of all subsets of projects (lead investigations) that 
can be investigated simultaneously (i.e., that satisfy the budget and 
resource constraints). If, in addition, the objective function could not 
easily be described via a formula, but instead had to be estimated by 
simulating many realizations of the uncertain quantities in the model for 
each choice of inputs, then efficient search and evaluation of different 
input combinations might become important, or even essential, for find-
ing a good solution to the decision problem. Simulation-optimization 
provides technical methods for efficiently searching complex sets of 
feasible decisions, performing multiple simulation-based evaluations 
of alternative combinations of controllable inputs to identify those that 
(approximately) optimize the user-specified objective function.

The vision of decision-making as optimization of an appropriate 
objective function subject to constraints, corresponding to a model of 
how choices affect consequence probabilities, is fundamental in eco-
nomics, operations research, and optimal control engineering (including 
stochastic, robust, and adaptive control variations). However, to make it 
practical, both the simulation and the optimization components must be 



Overcoming Challenges for Applying Decision and Risk Analysis 13

well enough developed to apply to realistically complex systems. This 
is an area in which huge strides have been made in the past two decades, 
amounting to a breakthrough in decision problem-solving technology. 
Sophisticated stochastic simulation techniques (e.g., Gibbs sampling, 
more general Markov chain Monte Carlo (MCMC) techniques, Latin 
Hypercube sampling, importance sampling, and discrete-event simula-
tion methods) and sophisticated optimization methods that work with 
them (e.g., evolutionary optimization, simulated annealing, particle fil-
tering, tabu search, scatter search, and other optimization meta-heuristics) 
are now mature. They have been encapsulated in user-friendly software 
that presents simple interfaces and insightful reports to users, who do 
not need to understand the details of the underlying algorithms. For 
example, the commercially available OptQuest simulation-optimization 
engine discussed in Chapter 3 is now embedded in software products 
such as Oracle, Excel, and Crystal Ball. Its state-of-the-art optimization 
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Figure 1.1  Plot of expected monetary value (EMV) for profit vs. N in the R&D example. 
Choosing N = 7 parallel projects (leads to investigate) maximizes expected net return.
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meta-heuristics make it practical to easily formulate and solve decision 
problems that once would have been formidable or impossible.

The basic breakthrough discussed in Chapter 3 is to extend to real-
istically complex decisions the key decision and risk analysis principles 
of (i) predicting probable consequences of alternative actions (using 
stochastic simulation-based risk models of the relation between actions 
and their probable consequences, which may include complex, nonlinear 
interactions and random transitions) and (ii) finding the “best” feasible 
actions, defined as those that create preferred probability distributions 
for consequences. This is accomplished via simulation-optimization 
models, in which computer simulation models are used to represent the 
probable behavior of the system or situation of interest in response to 
different choices of controllable inputs. Powerful heuristic optimization 
methods, extensively developed over the past two decades, then search for 
the combination of controllable inputs that produces the most desirable 
(simulated) distribution of outcomes over time. Modern simulation-
optimization technology substantially extends the practical reach of 
decision analysis concepts by making them applicable to realistically 
complex problems, provided that there is enough knowledge to develop 
a useful simulation model.

Breakthrough 3: Decision-Making with Unknown 
Risk Models

Simulation-optimization technology provides a breakthrough for decid
ing what to do if the causal relation between alternative feasible actions 
and their probable consequences—however complex, nonlinear, dynamic, 
and probabilistic it may be—is understood well enough to be described 
by a risk model that can be simulated on a computer. But suppose that 
the relation between controllable inputs and valued outputs is unknown, 
or is so uncertain that it cannot usefully be simulated. Then different 
methods are needed. One possibility, discussed in Chapters 4 and 7, is to 
learn from experience, by intelligent trial and error. In many applica-
tions, one might dispense with models altogether, and experiment and 
adaptively optimize interactions with the real system of interest, in effect 
replacing a simulation model with reality. (This is most practical when 
the costs of trial and error are relatively small.) For example, a marketing 
campaign manager might try different combinations of messages and 
media, study the results, and attempt to learn what combinations are most 
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effective for which customers. Or, in the domain of healthcare, a hospital 
might try different drugs, treatment options, or procedures (none of which 
is known to be worse than the others) with patients, collect data on the 
results, and learn what works best for whom—the basic idea behind clinical 
trials. Chapter  4 considers optimal learning and anticipatory decision-
making, in which part of the value of a possible current decision is driven 
by the information that it may reveal, and the capacity of such information 
to improve future decisions (the “value-of-information” (VOI) concept 
from traditional decision analysis). Recognizing that any current “best” 
estimated model may be wrong, and that future information may lead to 
changes in current beliefs about the best models, and hence to changes 
in future decision rules, can help to improve current decisions. Chapter 7 
also discusses “low-regret” decision-making, in which probabilities of 
selecting different actions, models to act on, or decision rules are adap-
tively adjusted based on their empirical performance. Such adaptive 
learning leads in many settings to quick convergence to approximately 
optimal decision rules.

A second approach to decision-making with initially unknown 
risk models is possible if plentiful historical data on inputs and outputs 
are available. This is to estimate a relevant causal risk model from the 
available historical data. The estimated model can then be used to 
optimize decisions (e.g., selection of controllable inputs, or design of 
policies or  decision rules for selecting future inputs dynamically, 
based on future observations as they become available). Chapter  6 
briefly surveys methods of causal analysis and modeling useful for 
constructing risk models from historical (observational) data; for test-
ing causal hypotheses about the extent to which controllable inputs 
(e.g., exposures) actually cause valued outputs (e.g., changes in health 
risks); and for estimating the causal impacts of historical interventions 
on outcomes. Chapter  7 discusses what to do when more than one 
possible model fits available data approximately equally well, making 
it impossible to confidently identify a unique risk model from the data. 
In this case, model ensemble methods, which combine results from 
multiple plausible models, can give better average performance than 
any single model.

Finally, a third possible approach to decision-making with unknown 
or highly uncertain models, also discussed in Chapter  7, is to seek 
“robust” decisions—that is, decisions that will produce desirable conse-
quences no matter how model uncertainties are eventually resolved. 
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Of course, such a robust decision may not always exist. But a rich theory 
of robust optimization (and of its relations to related innovative 
concepts, including coherent risk measures and to older techniques 
such as stochastic programming) has been developed relatively 
recently, and this theory shows that many risk management decision 
problems of practical interest can be formulated and solved using 
robust optimization techniques. Chapter 7 and its references discuss 
these recent developments further.

Taken together, these relatively recent techniques for dealing with 
model uncertainty in decision-making constitute a distinct improve-
ment over earlier methods that required decision-makers to, in effect, 
specify a single best-estimate model (typically based on subjective 
probabilities). Allowing for model uncertainty leads to new and use-
ful principles for adaptive learning from data and for low-regret and 
robust optimization. These hold great promise for a wide variety of 
practical risk management decision problems, as illustrated by exam-
ples in Chapters 4 and 7.

Breakthrough 4: Practical Elicitation and Structuring 
of Probabilities and Multiattribute Utilities

The first three breakthroughs—behavioral decision and game theory, 
simulation-optimization, and methods for learning risk models from 
data and, in the interim, for making decisions with unknown or highly 
uncertain risk models—represent substantial enhancements to or 
departures from traditional SEU-based decision analysis. Breakthrough 
4 consists of methods for making SEU theory more applicable to com-
plex and difficult real-world problems by eliciting preferences and 
beliefs via techniques that impose less cognitive load on users and/or 
that achieve greater consistency and reliability of results than older 
methods. Chapter 5 considers state-of-the-art methods for developing 
multiattribute utility functions. This is a potentially painstaking task 
that once involved estimating multiple trade-off parameters and veri-
fying quite abstract independence conditions for effects of changes in 
attribute levels on preferences. Chapter 5 presents much simpler and 
more robust methods, developed largely in marketing science, to enable 
relatively quick and easy development of multiattribute utility functions 
from simple preference orderings.
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Breakthrough 5: Important Real-World Applications

The final category of breakthroughs consists of applications of decision 
and risk analysis principles to important and difficult fields that have 
historically relied on other methods. Chapters 5, 9, and 10 discuss appli-
cations of expert elicitation, game theory, decision tree analysis, Bayesian 
networks (for text mining of natural language), and machine learning 
techniques to the challenges of modeling and defending against adver-
sarial actions. Chapter 8 illustrates the application of multiattribute utility 
theory to medical decision-making problems, at both the individual and 
the societal levels, by assessing utility functions for making trade-offs 
between consumption of sugar-sweetened beverages and risks of mor-
bidity (type 2 diabetes) and early mortality. Chapter 9 discusses vulnerability, 
resilience, and defense of complex systems—specifically, electric power 
networks—and compares the insights gleaned from game-theoretic models 
and considerations to those from less sophisticated methods, concluding 
that the more sophisticated methods are often very worthwhile. Chapter 6 
suggests that many public health decisions that are based on attempts to 
interpret associations causally would be much better served by applying 
more objective (and now readily available) methods of causal analysis and 
risk modeling.

In each of these application areas, and countless others, decision 
support methods have long been used that do not incorporate the precepts 
of SEU theory, modern decision analysis, simulation, optimization, optimal 
learning, or analysis and deliberation using causal risk models of causal 
relations. In each of these areas, adopting improved methods can potentially 
achieve dramatic objective improvements in average outcomes (and in 
entire probability distributions of outcomes). This point is made and 
illustrated by dozens of examples and case studies in the chapters that 
follow. Adopting the methods discussed in this book, implementing them 
carefully, and monitoring and learning from the results can yield break-
through improvements in areas including marketing, regulation, public 
health, healthcare and disease risk management, infrastructure resilience 
improvement, network engineering, and homeland security. The conceptual 
and methodological breakthroughs presented in the following chapters 
were selected because they are ready for practical use and because they 
have been found to create great benefits in practice. Opportunities to apply 
them more widely are many, and the likely rewards for doing so are great.
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CHAPTER	 2

The Ways We Decide: 
Reconciling Hearts and 
Minds

Edward C. Rosenthal
Department of Marketing and Supply Chain Management, Fox 
School of Business, Temple University, Philadelphia, PA, USA

The story of Odysseus and his encounter with the Sirens is one of the 
oldest and most psychologically captivating tales in the Western literary 
tradition. The sea god Poseidon, you may remember, cursed Odysseus 
to wander the sea for 10 years, and he and his crew faced countless and 
remarkable ordeals—among them, getting past the Sirens. The Sirens 
were known for their beautiful singing; in fact, all sailors who came 
within earshot of them would compulsively steer their boat closer, only 
to perish on the rocky shore.

Knowing of the Sirens’ reputation, Odysseus was determined to 
avoid disaster, but he desperately wanted to hear the songs for himself. 
His solution was to have his men plug up their ears with wax and tie him 
to the mast, under strict orders not to release him until they were well 
out of danger. Spellbound by the beautiful voices, Odysseus vehemently 
insisted that the crew untie him, but his men obeyed the plan and freed 
him only after they had sailed away.
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What does this mean for us? Homer’s tale is the first known account 
of someone who, in a cold and unemotional state, was able to anticipate 
his urges when in an aroused state and take action to prevent those urges 
from being acted upon, thus avoiding a disastrous outcome. Even thou-
sands of years ago, we realize, people recognized the very real conflict 
between the emotional and unemotional, or the hot and the cold, facets 
of our decision making. However, even today, the coexistence and inter-
play between these very different drivers of our behavior are not as well 
understood as they could be.

Decision theorists, as well as psychologists, are eager to answer the 
question, How do we make decisions? This chapter explores the two 
different sources to which we typically attribute our decisions when 
challenged to explain them—hearts and minds—in terms of their roles, 
their interactions, and the conflicts between them. First, we will explore 
some biological and psychological underpinnings: Do we actually 
“make” decisions, or are our choices and actions determined for us by 
unconscious deterministic processes? What are the Systems 1 and 2 that 
psychologists often mention? How might evolution have shaped our 
decision processes?

Next, we will look at scientific attempts to provide a sound 
foundation for decision making. We’ll peek at the underpinnings of 
subjective expected utility theory (SEU)—a powerful model meant to 
formalize our preferences among different actions when their outcomes 
are uncertain. After that, in order to understand strategic behavior, we 
will quickly review some important results from theoretical and 
empirical game theory. Game theory and SEU together provide a 
prescriptive methodology for how to act in well-defined situations with 
the following features: different outcomes (or consequences) of choices 
are possible; the different outcomes are not all equally desirable (since 
otherwise it would not matter what one did); the outcomes are uncertain 
(and their probabilities depend on what actions are taken); there may 
be multiple decision makers whose choices are jointly responsible for 
bringing these different outcomes about, or at least affecting their 
probabilities; and the preferences of different decision makers might 
conflict. For the remainder of this chapter, I use the word “rational,” to 
refer to decisions and behaviors that would be suggested by an SEU or 
game-theoretic model of a particular situation.

Game theory, together with SEU, forms an intimidating edifice. 
This normative approach represents the cold and unemotional side of 
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life. And since SEU and game theory are scientifically formulated to 
provide the best responses and, loosely speaking, best overall outcome 
probabilities when faced with a decision, it seems reasonable to think 
that no other actions can be superior to the rational ones prescribed by 
the theory. But, after having seen the highlights of these approaches, we 
will explore their limitations—the chinks in the armor, so to speak. 
How do our emotions enter into our decision making? How should 
they? Can emotionally charged decisions work out better than the 
rational ones? To explore these questions, we will review prospect 
theory. This descriptive theory shows that the normative framework of 
SEU does not seem to accurately describe or explain actual human 
behavior, and identifies and describes systematic differences between 
actual and SEU-consistent decisions. We then go beyond prospect 
theory to observe other important examples of how homo sapiens seem 
to interpret their world and act on certain systematic biases. These 
examples include recent findings in the fields of neuroeconomics, 
behavioral economics, experimental game theory, moral decision-making, 
intertemporal choice, and consumer behavior.

While prospect theory and behavioral decision theory describe our 
preferences in certain situations, they do not address how we do or 
should choose in situations of conflict or cooperation. Behavioral game 
theory, on the other hand, contrasts the normative solutions of game 
theory with the choices that people really make when their outcomes 
depend on others’ actions too.

Finally, the chapter wraps up with a discussion of where we stand, 
where to go from here, and how to capitalize on our newfound 
perspective.

Do we decide?

How do we decide to do something? What compels us to act? Clearly, 
these questions lurk within any discussion of decision making, but to 
address them is to get caught up in the ancient philosophical topic of 
free will versus determinism. Spinoza (1677) likened our thought 
processes to the flights of projectiles. Our trajectories are determined, 
and to believe that we choose them is no different than proposing that 
the projectiles’ thoughts (if they had any) could alter their arcs. For 
William James (1884), we react to a stimulus physiologically; our 
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subsequent mental perception of our bodily state is registered as an 
emotion. Our heart doesn’t pound because we are afraid; we are afraid 
because our heart pounds. Even Sartre (1943), who put so much 
emphasis on our choosing responsibly, described how our conscious 
thoughts come only after the bets have already been made, so to speak. 
To put it differently, when we’re picking which track to take, the train 
has already left the station.

This line of reasoning has been updated by Daniel Wegner (2002), 
who cites research such as Libet (1981) and Libet, Wright, and Gleason 
(1983) to assert the same thing: the possession of a conscious will that 
brings about our actions is an illusion. Libet’s research involved timing 
when a person is first aware of willing an action (such as moving a 
finger), and when the action takes place (when the finger actually 
moves). Of course, as you would suspect, willing the finger to move 
precedes its movement. However—and this is the crucial finding—more 
than 300 milliseconds prior to the conscious willing of the action, there 
is a so-called “readiness potential,” that is electrical activity in the brain, 
that seems to initiate the process, although no one knows how. The 
neurological correlates of choice precede conscious awareness.

While this is not the forum for an extensive discussion of free 
will—what is it, how might it exist (if at all), and how free can it really 
be?—it is important to realize that sometimes we make a decision to do 
something, and we don’t understand why. (Conversely, as demonstrated 
in split-brain experiments, the reasons that we give ourselves for our 
choices may have much to do with narrative plausibility and little or 
nothing to do with the real drivers of choice: we often rationalize our 
actions after the fact.) With certain decisions, such as which move to 
make in a chess game, the resulting action certainly seems to be the 
result of purposeful (and, we would like to think, rational) cogitation. 
But as we discover that so many of our decisions seem to occur without 
conscious deliberative thought, we need to remember that those 
decisions might be—whether or not we want to admit it—already deter-
mined outside our conscious deliberation. Even when formal decision 
analysis (such as SEU theory) is applied to make a decision, so that the 
choice process is explicit, formation of beliefs and of preferences for 
outcomes may be shaped by subconscious processes. This has been 
demonstrated by psychologists (Paul Slovic and colleagues), who have 
shown that beliefs about outcome probabilities and preferences for 
outcomes are correlated: both tend to be shaded to make choices that 
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are perceived as “good” (positive affect) appear to be more likely to 
produce preferred outcomes than choices perceived as “bad” (negative 
affect). The affect heuristic shows that attitudes toward choices affect 
perceptions of their probable consequences, rather than the other way 
around.

Biology and Adaptation

Let’s extend this discussion further, while steering clear of the black 
hole of armchair philosophy. What do psychologists tell us about our 
decision making? Is it true that some decisions are arrived at slowly and 
thoughtfully, while others are made quickly and automatically? The 
answer is yes, and Kahneman (2011) has organized decades of research 
on this important dichotomy, which crystallized around the turn of 
this  century. The two different decision engines are often referred to 
as System 1 (quick and automatic) and System 2 (deliberate and slow), 
as coined by Stanovich and West (2000). Be clear, however, that this 
“system” terminology is just a convenient shorthand. There are no 
actual such systems (let alone such an apparatus!) in our brains, and 
there is no one area of the brain that is “owned” by either one. To borrow 
from Kahneman, some examples of tasks we solve using System 1 are 
detecting that one object is more distant than another, expressing one’s 
disgust, and understanding a simple sentence. System 2 takes care of 
things like searching your memory to identify a sound, or checking the 
validity of a complex logical argument. While you can see from the 
examples that System 1 and System 2 do not exactly hew to the distinc-
tion between emotional and rational that we are interested in, there is 
certainly a close correspondence.

Given that the free will versus determinism issue invokes biology, 
and that the origins of the System 1 versus System 2 duality are ulti-
mately rooted in multiple lobes of our brain, it is natural to speculate as 
to how our brain function and our resulting preferences and behaviors 
might have evolved over time. It is common place for authors to state 
arguments appealing to our having developed in the Pleistocene epoch: 
for example, that men prefer women of certain shapes and ages because 
these observable traits are correlated with fertility, or that people prefer 
foods with high sugar and fat content because these foods supply both 
short- and long-term energy. Interesting discussions of these preferences 
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emerge because some of our hardwired inclinations, albeit useful in the 
Pleistocene, are ill-adapted nowadays; for example, eating foods rich in 
sugar and fat may increase our risk of diabetes, cancer, and heart disease.

Evolutionary biologists speak of fitness, which is the relative ability 
of an individual to survive and pass on its genes. The standard approach 
to evolution and behavior is this: when mutations occur that change our 
behavior, the altered behavior patterns are put to the test in the wild. If 
the new behaviors prove to be adaptive—that is, they endow their owner 
with at least as much fitness as the previous set of behaviors—then they 
obtain a foothold in the population. If not, they will fade away from one 
generation to the next, if not immediately. Thus, we tend to think of 
evolution as a lengthy process that unforgivably weeds out subpar 
performers.

Given that I have advertised SEU and game theory as prescribing 
the “best” actions to take in well-defined decision problems, and given 
that thousands of generations of evolutionary honing would also seem 
to result in highly effective (although perhaps not “best”) behaviors, 
let’s study a situation with two possible actions—an emotional and a 
rational choice—and compare their consequences. Frank (1988) pio-
neered the idea that people’s emotional makeup might have evolved to 
play an important strategic role in our social interactions. To follow his 
argument, let’s say that you have been wronged by someone. They’ve 
spread false rumors about you on social media and you are pretty angry 
about it—so angry, in fact, that you might exact some major and dispro-
portionate revenge. On the other hand, your friends advise you to let the 
whole thing blow over and by tomorrow people will have half-forgot-
ten, having already moved on to the next drama. They point out that if 
you retaliate, it will backfire and make you look even worse.

So what are you going to do? Your friends have already crunched 
the numbers, so to speak. Their cost-benefit analysis has you looking 
worse by reacting than if you let it all slide. The passive response is the 
rational response. But on the other hand, you’re hell-bent on getting 
revenge!

And what if your lust for revenge is unstoppable: you will heavily 
retaliate, despite the fact that it is not in your best interest, and now both 
of you will have suffered. But here comes the point: if you are consis-
tently committed to acting on your emotions, and your nemesis had 
been aware of your hotheadedness, he would not have wronged you in 
the first place!



Seu and Game Theory 25

Frank’s idea is that sometimes, seemingly irrational behavior (like 
acting on your anger), stems from emotional predispositions that, 
although contrary to what seems to be our self-interest, can work out for 
the better. This commitment principle, though, leads us to an apparent 
paradox: how can irrational behavior become superrational, that is, out-
perform rational behavior?

The key here, and in the analysis of other so-called commitment 
devices in the literature, is that the conflict between the rational model—
in which you are acting in apparent self-interest—and the commitment 
model stems from an apples-and-oranges misunderstanding of the time 
horizon involved. When your friends advised you not to retaliate, their 
reasoning was that an aggressive response would make you worse off. 
Your friends were right—but they were thinking short term. The com-
mitment strategy, on the other hand, and the emotional predisposition 
that one needs to help implement it is adaptive in the long run.

Love—by which I mean a deep and lasting emotional attachment—
is another example where a commitment strategy may lead to inferior 
short-term outcomes but can triumph in the long run. Couples that do 
not love one another would break up when the going gets rough; but 
love provides a way to bind people together for the long term. The 
romantic view (which is, of course, arguable) is that the long-term part-
nership will provide greater happiness for each—as opposed to, for 
example, a string of briefer relationships.

One last point that needs to be made on evolution and emotional 
makeup is that not all longstanding behaviors (emotionally based or 
otherwise) are necessarily optimal ones. Just because certain behaviors 
have survived the years does not mean that they were ever optimal, or 
even forged through ruthless adaptation in the wilds of the Pleistocene. 
Plenty of human characteristics have stuck around for generations—like 
being moody, having a memory like a sieve, or a predilection for pyro-
mania. I just want to make sure that you do not feel the urge to craft a 
fitting story to explain every quirky character trait in the human arsenal.

Seu and Game Theory

Before we get any deeper into the ways in which emotional and rational 
decision-making can clash, we need to better understand exactly the 
foundations of rational decision making (by which I mean SEU and 
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game theory). Expected utility theory has its origins in a work of Daniel 
Bernoulli (1738), in which he introduced the notion of “utility.” 
Bernoulli’s motivation was to find a solution to the so-called St 
Petersburg problem. In this game, a fair coin is flipped until the first 
heads appears. This event happens, say, on the nth flip and the person 
playing the game is paid 2n dollars. The player, however, must pay a fee 
to play. How much is the game worth?

Since the probability of the game ending on the nth flip is 1/2n, the 
expected value of the game is

1

2
2

1

4
4

1

8
8 1 1 1  .

The paradox is that although the game has an infinite expected value 
(meaning in effect that people ought to be willing to pay a huge amount 
to play the game), no one would pay a significant sum here. The key, 
Bernoulli realized, is that the actual worth of the money to us is not pro-
portional to the monetary amount. Ten million dollars, for example, is 
worth a lot more to you than one million dollars—but not 10 times as 
much.

Bernoulli used a logarithmic function to represent the value, or 
utility, of a specific amount of money. If we represent the utility of a 
sum x of money as U(x) = k log(x), for example, then the infinite 
sequence for the value of the St Petersburg game will converge to a 
finite and reasonable number.

About 200 years later, von Neumann and Morgenstern (1944) revis-
ited this problem, with the goal of developing a more comprehensive 
approach to utility and its role in decision making when presented with 
uncertain (i.e., risky) outcomes. Let X represent the set of all possible 
outcomes in a particular situation. Von Neumann and Morgenstern’s 
first requirement was that there is a complete preference relation on X, 
that is, for any two outcomes A and B in X, either A is preferred to B or 
B is preferred to A (preference here is weak preference, where ties are 
allowed).

Next, the set of preferences on X must be transitive, that is, for any 
three alternatives A, B, and C, if A is preferred to B and B is preferred 
to C, then A must be preferred to C. At this point, let us define a lottery 
over X as a probability distribution on X (an assignment of probabil-
ities to the outcomes in X such that the probabilities are nonnegative 
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and add to one). Let L be the set of all possible lotteries on X. Let ≳ 
represent the preference relation on L as follows: if A is preferred to B, 
we write A ≳ B. Let ≈ denote indifference, that is, if A ≳ B and B ≳ A, 
then A ≈ B, meaning they are equivalent. Given that ≳ must be complete 
and transitive, the following are the additional von Neumann–Morgenstern 
conditions for ≳:

Relation ≳ satisfies the “sure-thing principle”: for lotteries G, F, g, 
and f such that G ≳ F and g ≳ f, and any probability p, then p × G + (1 − 
p) × g ≳ p × F  +  (1 − p) × f. The sure-thing principle says that for any 
weighted average between G and g, and the same weighted average 
between F and f, you would prefer the G/g scenario to the F/f scenario.

Relation ≳ satisfies continuity (or comparability), which is stated as 
follows: Given three lotteries F, G, and H such that F ≳ G ≳ H, then 
there exists probability p such that p × F + (1 − p) × H ≈ G. In other words, 
this condition states that there must be some way to average F and H so 
as to be indifferent to G.

Now, von Neumann and Morgenstern simply quantified the 
preference relation as follows: we assign a utility function U(x) on the 
real numbers such that U(A) ≥ U(B) if and only if A ≳ B. In what is 
called the SEU model, as stated by Savage (1954), we specify that 
the  decision criterion is expected utility maximization, although the 
probabilities used by any one decision maker are subjective. A rational 
decision-maker is one who will make decisions according to the above 
conditions on their preferences among a set of risky alternatives. In 
other words, a rational decision-maker will choose the lottery, among 
those available, that maximizes her expected utility.

One difficulty with the expected utility approach has been in the 
subjective elicitation of utilities from decision makers, as discussed 
further in Chapters 5 and 8. Different methods have been proposed over 
the years to overcome this concern, but these methods can lead to 
different results. Some methods require decision makers to have a 
precise knowledge of a probability distribution, and misperceptions in 
such estimation can lead to a violation of the expected utility conditions. 
To escape these difficulties, Wakker and Deneffe (1996) proposed a 
“gamble-tradeoff” approach, in which utilities can be surmised while 
bypassing the need to pin down exact probabilities.

The expected utility model treats preferences among uncertain out-
comes, but it does not inform us how to make a decision when the 
outcomes depend on the decisions of others. Such situations require 
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strategies, and this is where game theory needs to be called up to the 
front lines.

A game is a situation with multiple decision-makers, each one of 
whom is called a player. Each player has a certain set of actions, or 
strategies, to choose among. The joint result, when each of the players 
selects a strategy, is called the outcome. These outcomes are usually 
measured numerically and are often referred to as payoffs. Like SEU, 
game theory is a normative approach to problem solving; it prescribes 
how decision-makers ought to act.

The simplest game to describe is a 2 × 2 game. Here, there are two 
players, each of whom has two strategies from which to select. One 
way, we will depict such games is in so-called strategic form, where a 
payoff table is used to enumerate the strategies and the payoffs. Another 
way to describe games is called extensive form, where a tree diagram is 
used to indicate the temporal sequence of moves by the players.

In some games, called zero-sum games, one player loses what the 
other one gains. Such games are strictly competitive. In nonzero-sum 
games, though, the payoffs to the players are not necessarily opposed 
and need not be related.

Before describing solutions for games, I want to give some brief 
examples of games that will be useful to us. In the 2 × 2 games in 
Figure 2.1, Player 1 picks among the rows in the payoff table and Player 
2, making a simultaneous decision, picks among the columns. The out-
comes are listed as utilities, or perhaps monetary amounts, issued to the 
two players, respectively.

In Figure 2.1a, Player 1 controls the rows. He observes that choos-
ing the second row always leads to a better payoff for him than choosing 
the first row. For example, if Player 2 were to pick the first column, 
Player 1’s payoff of 10 in row 2 is superior to the payoff of 4 in row 1. 
Likewise, if Player 2 were to choose the second column, Player 1 is 

Player 2 Player 2

Player 1

(a) (b)

(4, –4) (–6, 6) Player 1 (1, –1) (–1, 1)

(10, –10) (1, –1) (–1, 1) (1, –1)

Figure 2.1  Zero-sum games.
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better off in row 2 with a payoff of 1 as opposed to row 1 with a payoff 
of −6. We say that row 2 dominates row 1 for Player 1.

Similarly, for Player 2, column 2 dominates column 1. Thus, the 
best strategy for Player 1 is to choose row 2 and the best strategy for 
Player 2 is to pick column 2. This pair of strategies leaves the players 
with the outcome (1, −1). While this is not a good outcome for Player 2, 
it is the best outcome that she could achieve.

This thought process introduces the notion of an equilibrium, the 
most important solution concept in game theory. Given that that Player 
1 is going to play row 2, Player 2 cannot improve her payoff by switch-
ing to column 1. And, given that Player 2 is going to play column 2, 
Player 1 cannot improve his payoff by switching to row 1. Since neither 
player can improve their outcomes by switching from their dominant 
strategies, we say that the strategy pair row 2, column 2, with outcome 
(1, −1) is an equilibrium.

Now consider the game in Figure 2.1b. Neither row 1 nor row 2 is a 
dominant strategy for Player 1, and neither column dominates for Player 
2 either. It turns out that in this game, the players will have to resort to 
mixed strategies, as opposed to the single, or pure strategies, to reach an 
equilibrium. (In mixed strategies, the players employ a probability dis-
tribution over their strategy set.) The equilibrium strategy pair in this 
case is (1/2, 1/2) for both players, and the way that the each player 
would need to implement the mixed strategy is to randomize: to use a 
random number generator or other such device that will select between 
their two strategies with probability 1/2 each.

Zero-sum games, while useful, are not appropriate to model the 
complexity of most strategic interaction. Generalizing the model to 
include outcome pairs that are not diametrically opposed opens up a lot 
of possibilities for exploration and analysis. Probably the most 
well-known 2 × 2 nonzero-sum game is the Prisoner’s Dilemma, or PD. 
In this game, each player has the choice either to cooperate with the 
other player, or to defect. Mutual cooperation is a good outcome for 
both players. However, as we will see in Figure 2.2, the way the game 
is structured, defection is a dominant strategy.

In the PD in Figure  2.2, defection is the dominant strategy for 
both players. Unfortunately, this strategy pair leads to a unique 
equilibrium payoff of (1, 1), which leaves both players a lot worse off 
than the outcome of (3, 3) had they both cooperated. For this reason 
the PD is a maddening game; what’s more, it seems to be an 
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appropriate model for numerous situations in social and commercial 
interaction (Rapoport and Chammah, 1965; Parkhe, Rosenthal, and 
Chandran, 1993; Mudambi, 1996).

One might ask at this point, do all games have equilibrium solu-
tions? Fortunately (because otherwise we would be stumped as to 
how to play games!), the answer is yes. Von Neumann (1928) proved 
that there always exists an equilibrium in any zero-sum game, found 
from using minimax strategies, and Nash (1950) proved a similar 
result  for nonzero-sum games. Intriguingly, however, many nonzero-
sum games have more than one Nash equilibrium. This is somewhat 
unfortunate, because the different equilibria may have very different 
outcomes; some of them would be difficult to implement in a 
real-life scenario; and players may have difficulty figuring out which 
one to go for.

Game theory has grown far beyond the fundamental results that I 
have sketched here. Myerson (1991), Dutta (1999), and Binmore 
(2007) are three texts that provide in-depth expositions of the subject. 
One topic of great importance is how to create and solve games in sit-
uations of asymmetric information, that is, when one player is much 
better informed than the other. Another sphere of interest is found in 
cooperative games, in which researchers are interested in developing 
fair ways of apportioning costs or benefits when players join together 
to improve their payoffs. And mechanism design forms another 
significant frontier of study, where research involves a reverse-engi-
neering of sorts: first identifying a desirable outcome and then 
developing rules of play to incentivize the players to steer in that 
direction. While these different directions in game theory are impor-
tant for political and business applications, they aren’t necessary for 
our purposes. In fact, with what we now know about the rational 
approach to decision-making—SEU and basic game theory—we can 

Player 2

Player 1 Cooperate Defect

Cooperate (3, 3) (0, 5)

Defect (5, 0) (1, 1)

Figure 2.2  The Prisoner’s Dilemma.
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more fully grasp what lies ahead: further discovery of how, and the 
nascent understanding of why, human decision-making diverges from 
rational prescriptions.

Prospect Theory

Prospect theory, which was introduced by Kahneman and Tversky (1979), 
points to a variety of ways in which the preferences of most people do not 
follow the prescriptions of SEU. But well before prospect theory, Allais 
(1953) had constructed a numerical example illustrating that most sub-
jects’ preferences are inconsistent with von Neumann–Morgenstern utility 
theory. To see this, consider the following four lotteries in Figure 2.3:

Allais found that most people prefer lottery J to lottery K, because 
J promises one million dollars for sure; but that most people also prefer 
lottery M to lottery L. However, for a person to exhibit such a set of 
preferences is to contradict SEU. While troublesome, the Allais par-
adox was probably less worrying to proponents of SEU than it would 
appear, perhaps because SEU advocates could claim, for example, that 
people answered the questions inconsistently on account of their not 
understanding their (own) preferences. The arrival of prospect theory, 
however, was a game-changer.

Unlike SEU, prospect theory is supported by a wealth of experi-
mental evidence. It is based on three main pillars:

1.  “Prospects” (typically, monetary values) are evaluated relative to a 
starting reference point.

2.  A cognitive principle of diminishing returns (or “sensitivity”) exists.

3.  Losses loom larger than gains.

J: $0 1M 5M K: $0 1M 5M

0 1 0 0.01 0.89 0.1

L: $0 1M 5M M: $0 1M 5M

0.89 0.11 0 0.9 0 0.1

Figure 2.3  The Allais paradox. Each outcome has an associated probability.
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Two other features are also very important. These are as follows:

1.  People are risk-taking for losses but risk averse for gains.

2.  People misweight probabilities.

Let’s briefly study each of these points.
Working with our restriction to measuring monetary outcomes, 

expected utility theory, it turns out, goes along with Bernoulli’s view 
that utility is measured by one’s wealth. But a key finding of Kahneman 
and Tversky is that we need to measure changes in wealth, not absolute 
wealth. Since SEU does not take into account a baseline, or starting 
point, for making a decision, the prescriptions given by SEU will not 
correspond to how people make decisions. Kahneman (2011) gives the 
following example as evidence: Suppose Anthony currently has one 
million dollars while Betty has four million dollars. Each of them is 
offered the following choice: to own two million for sure or else to 
gamble on a lottery in which there is an equal chance to end up with 
either one million or four million.

The expected value of the gamble is 2.5 million. Anthony, if he is 
like most people, would prefer to keep two million for sure. Betty, how-
ever, would be very unhappy to take the sure thing and thus reduce her 
wealth from four to two million; if Betty is like most people, she would 
prefer the lottery. Expected utility theory offers no insight regarding 
their present states; it posits that Anthony and Betty would both make 
the same decision.

The phenomenon of diminishing returns is common to both SEU 
and prospect theory, so we won’t dwell on it except to ask, which would 
give you more pleasure: increasing your wealth from zero to one million 
dollars, or increasing your wealth from 56 to 57 million dollars? (Most 
of us would be ecstatic in the first instance but only mildly charged in 
the second one.)

When we say that “losses loom larger than gains” (Kahneman, 
2011), we realize that SEU was not formulated to consider possible 
losses in wealth. Introducing the prospect of losses is not only impor-
tant in its own right, but it also exposes a human quirk that is inconsistent 
with SEU. Would you accept a lottery with 0.5 chance of gaining $125 
and a 0.5 chance of losing $100? Probably not, despite the positive 
expected value. Empirical work shows, incidentally, that for most peo-
ple, gambles like the one I just offered you would come out indifferent 
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if the gain were about double the loss (in this case, in the neighborhood 
of $200). In other words, for most people, the pain of loss is roughly 
double the pleasure of winning (at least, for a wide range of monetary 
quantities).

Another finding of prospect theory is that most people’s prefer-
ences when presented with lotteries over losses differ from those for 
gains. For example, consider an even chance of winning either $100 or 
$0. If you are like most people, you would prefer a sure $45 to the 
gamble (whose expected value is $50). Such risk-averseness (repre-
sented by a concave utility function) is consistent with SEU and the 
diminishing returns property we already discussed. But now consider 
the realm of losses: suppose you faced a lottery with an even chance of 
losing $100 or $0 as opposed to a sure loss of $45? Faced with these 
sorts of situations, most people become risk-seeking, that is, will prefer 
the gamble. This surprising result does not jibe with SEU, since the 
utility function here is convex in the loss domain.

Finally, what does it mean to “misweight” probabilities? Kahneman 
and Tversky discovered that their experimental subjects would seem to 
make certain mental adjustments or translations of probabilities pre-
sented to them. In general, most people underestimate most probabilities; 
in other words, when presented with a probability, say, of 0.40 for a 
certain event, the weight that most people will mentally assign works 
out to less than 0.40. However, most of us also overestimate very small 
probabilities. Most of us, when told of a one-in-a-thousand chance, will 
mentally assign a figure greater than 0.001. Here are a couple of exam-
ples: when offered a choice between a 40% chance to gain $5000 and 
an 80% chance to gain $2500, most people prefer the 80% chance of 
$2500; when one mentally adjusts both probabilities, the 80% offer 
retains more of its value.

But how do people react to very small probabilities? To understand 
this, consider a 0.001 chance to gain $5000 and a 0.002 chance to gain 
$2500. Given this choice, most people prefer the 0.001 chance at $5000. 
It would appear that they overweight the 0.001 more than the 0.002; the 
result is that the two probabilities look almost the same, and then the 
$5000 is more attractive.

The realization that people misweight probabilities spurred 
researchers to develop a theory that could reliably model this behavior. 
The idea here is to transform probabilities into the somewhat idiosyn-
cratic weights (the over- and underestimates) that people seem to apply 
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in their decision making. Such a transformation would have to be non-
additive, and various studies presented ways to calculate expected 
utilities with respect to the transformed scale (Quiggin, 1982; Yaari, 
1987; Schmeidler, 1989). These efforts were incorporated into a more 
general form of prospect theory called cumulative prospect theory 
(Tversky and Kahneman, 1992; Wakker and Tversky, 1993). In 
cumulative prospect theory, rather than treating individual outcomes 
with their singleton attendant probabilities, the outcomes are rank 
ordered and cumulative probabilities are associated with nested subsets 
of outcomes. While it was shown that cumulative prospect theory 
accounts for the basic elements of prospect theory, it nevertheless 
remains a formalization of the theory, with few additional behavioral 
insights to be gleaned from it.

Behavioral Decision Theory

Beyond prospect theory, there are a number of other well-documented 
biases that people exhibit. Let us use the term behavioral decision 
theory to encompass, quite simply, the study and categorization of how 
people actually make decisions. As such, behavioral decision theory 
would include prospect theory in addition to the rather ad hoc biases 
that I will describe below (as well as others that we don’t have the space 
to include).

There are two important and surprising ways in which people can 
be strongly influenced prior to their making a decision. Psychologists 
have studied priming in a number of contexts. In a notable study (Shih, 
Pittinsky, and Ambady, 1999), Asian-American women were adminis-
tered a mathematics test. Prior to taking the test, the women were 
separated into three groups: one group received a questionnaire with 
items related to their ancestry (designed to focus the women on their 
Asian heritage); the second group’s questionnaire emphasized women’s 
issues (to focus those participants on their gender); and the third group 
answered neutral questions. The idea of the study was to see if “priming” 
the women with cues to their Asian background would improve their 
test scores (consistent with the cultural stereotype that Asians have 
superior math skills), or if cues invoking their feminine side would 
lower their test scores (consistent with the stereotype that women are 
inferior at math). Remarkably, the performances on the exam followed 
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the stereotyped cultural pattern: the highest scoring group was the eth-
nically primed subset; the lowest scoring group was the gender-primed 
group, while the neutral group was intermediate to the other two.

While priming largely predisposes people to a certain state of mind, 
anchoring is a technique where the prior information establishes a base-
line bias with respect to particular responses. Split a group of people 
into two: ask people in the first group if the population of Buffalo is 
more or less than 500,000; ask those in the second group if the population 
of Buffalo is more or less than 100,000, and then ask people in both 
groups to estimate Buffalo’s population. The most likely result is that 
the responses from the first group will be much higher than those from 
the second group.

Anchoring can take effect in much more subtle ways. Ariely, 
Loewenstein, and Prelec (2003) performed an auction of items such as 
wine, chocolates, and cordless keyboards. But just prior to the auction, 
they asked the participants to write down the last two digits of their 
Social Security numbers, as if these two-digit numbers would represent 
a hypothetical auction bid. When the auction was over, the participants 
dismissed the notion that their writing down an irrelevant number could 
possibly influence their bids for wine and chocolate. But the results 
showed otherwise: there was a clear correlation between those “random” 
two-digit numbers and the subjects’ actual auction bids. Those writing 
down numbers from 80 to 99 bid, on average, from 2 to 4 times as much 
as those writing down numbers from 00 to 19.

Another important bias in behavioral decision theory is described 
as the availability heuristic. Here, when people are attempting to 
estimate the likelihood of something, if they can think of a readily avail-
able instance (say, a stereotype), the identification they make and its 
familiarity will cause them to overestimate the original category. The 
most commonly cited example involves terrorism. When terrorism is in 
the news, people may avoid flying overseas; instead, they may opt for 
an auto trip on Interstate 95, which is statistically more dangerous than 
a transoceanic flight.

The representativeness heuristic is a bias not too distinct from the 
availability trap. With this behavior, people are trying to categorize: 
does a particular item or subject belong to a certain group? The mistake 
people often make is to substitute a certain stereotype in appraising 
the  categorization, and this throws off their judgment. Tversky and 
Kahneman (1983) gave the famous example of Linda, who
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is thirty-one years old, single, outspoken, and very bright. She majored 
in philosophy. As a student, she was deeply concerned with issues of 
discrimination and social justice, and also participated in antinuclear 
demonstrations.

Is Linda more likely to be a bank teller, or a bank teller who is 
active in the feminist movement? Most people believe Linda is more 
likely to be a bank teller active in the feminist movement. However, this 
choice defies simple logic: since the category of bank tellers includes 
those who are feminists, and is therefore a larger category, the proba-
bility of Linda being a bank teller must be larger than the probability 
she is a bank teller active in the feminist movement. The trap, more 
generally, with the representativeness heuristic, is that very often, peo-
ple observe behavior—generally with small sample sizes—and from 
the patterns they detect, they make false generalizations.

Another bias that hinges on the associative properties of our mem-
ories is known as the confirmation bias. This is the tendency so many of 
us have to accept information that is consistent with our beliefs, and to 
reject statements that are at odds with our beliefs. Two people can watch 
the same debate and have wildly opposing views on what was said.

There are a number of other well-documented biases in behavioral 
decision theory, but let’s limit ourselves to one more that is particularly 
relevant to our topic. This last bias is known as the affect heuristic 
(Zajonc, 1980; Finucane et al., 2000). When facing choices, we very 
often develop quick and automatic likes and dislikes and fears and com-
forts, and these “gut reactions” end up making the decisions for us. 
Finucane et al. (2000) examined our evaluations of risk and benefits for 
items like nuclear power or food preservatives. The results were that the 
experimenters were able to manipulate the subjects’ assessments of risk 
and benefit by introducing positive and negative affects. In other words, 
our perceptions of the benefits or risks of such things as nuclear power 
and food preservatives can be altered by the manipulation of our asso-
ciated emotions. It is important to note, however, that in this study, the 
presence of the affect heuristic was much more pronounced when the 
subjects were under time pressure. In other words, when the subjects 
had more time to answer the questions, their answers were less affected 
by the affect manipulation.

The amount of time it takes us to make a decision, in fact, is a key 
feature, which was underlined in the implicit association test (IAT), 
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introduced by Greenwald, McGhee, and Schwartz (1998). In this test, 
subjects are asked to make associations among different categories 
and attributes and respond with a correct matching. For example, 
flowers and insects might be two different categories: pleasant and 
unpleasant might be two attributes. Subjects were required to press 
certain attribute response keys when presented with names from the 
categories on a computer screen. It turns out that subjects’ response 
times were quicker when associating certain categories and attributes 
(such as flower and pleasant) than other categories and attributes (such 
as insect and pleasant).

This result is not surprising. But that’s just the warm-up. It turns out 
that Korean and Japanese subjects differed in their response rates for 
associations such as (Japanese + pleasant) or (Korean + pleasant). In the 
United States, white subjects’ response rates differed when associating 
(White + pleasant, which had quicker responses) as opposed to 
(Black + pleasant, which had slower responses)—and here’s the real 
point—even when the subjects explicitly disavowed any element of 
racial prejudice. As could be expected, the IAT has been the subject of 
intense scientific scrutiny (Nosek, Greenwald, and Banaji, 2007) and 
has also garnered significant attention in the popular press. But as with 
the affect heuristic, a small amount of extra response time suffices to 
elicit answers that are consistent with the views that the subjects (explic-
itly) self-report.

We have seen enough evidence thus far to understand that the dif-
ferences between System 1 (as we have called it) and System 2 are real 
and significant. Before Systems 1 and 2 became popular with psychol-
ogists, behavioral economist Richard Thaler coined the catchy terms 
“econs” and “humans” to capture the nature of the dichotomy. Econs, 
of course, make decisions according to the rational program of SEU and 
game theory, while humans are imperfect decision-makers whose biases 
are exactly those we have been describing. Another way to describe our 
dichotomous nature is to call our two cognitive systems “automatic” 
and “reflective” (Thaler and Sunstein, 2008). It is important to realize, 
though, that both of these systems can evolve in their reactions and 
responses in certain contexts. As Thaler and Sunstein point out, when 
we first learn to drive, our reflective system slowly puts us through a 
sequence of behaviors; once we become experienced, it is our automatic 
system that takes over the controls.
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Decisions with a Time Horizon

Now let’s turn our attention to other, somewhat different, drivers of our 
decision processes. The previous research involves asking experimental 
subjects about their preferences at a certain moment in time, or ana-
lyzed respondents’ ability to make immediate categorizations, where 
their response times belie their claims to be unbiased. But harkening 
back to Odysseus, how well do we align our present desires with our 
future utility? Research in intertemporal choice has begun to give us 
answers in this domain. Which would you prefer: $15 right now or $20 
a month from now? About half of all respondents to this question prefer 
the $15 right away. But, interestingly, most of those respondents would 
prefer to receive $20 thirteen months from now as compared to $15 in a 
year. Note the dynamic inconsistency of such a preference: if they were 
asked after a year had elapsed, to now choose between $15 right away 
or $20 in a month, most would go for the immediate $15—suddenly 
overruling their previous, more patient, choice.

Thaler (1981) conducted a more comprehensive survey. He asked 
respondents to imagine they had just won, for example, $15 in a lottery; 
how much would they have to receive, a month from now, to be equal to 
the immediate gain of $15? In his study, the immediate prize of $15 was 
worth the same to people (as measured by the median response) as $20 
in a month. As Thaler points out, making people wait for a prize forces 
them to exert some mental effort. If we measure this effort by using the 
notion of compound interest, the 33% premium to wait a month works 
out to an interest rate (compounded daily) of 354%. Thaler also asked, 
what if they had just won $250? What if they had to wait a year? And, 
what if they had to pay $15 now? What penalty would that equate to in 
a year’s time?

With the larger sum of $250, the median 1-month response was 
$300; here, the 20% premium works out to an interest rate of 219% 
(compounded daily). When thinking about waiting a year, the $15 
worked out to a (median response) equivalence of $50 (an interest rate 
of 121%), while the larger $250 was the same as waiting a year to 
receive $350 (an interest rate of 34%). Even more interesting, people’s 
perceptions changed when contemplating the penalty condition: the 
$15 penalty paid now was the same, in the median response, as a $20 
penalty a year from now. In other words, respondents typically did not 
see much benefit to postponing their penalties.
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The specific lessons from this research were threefold: first, as the 
time to wait grows, people’s discount rate decreases, meaning that we 
are very impatient when waiting short periods of time but become less 
impatient in the long run. Interestingly, this tendency, called hyperbolic 
discounting, was first documented for a significant minority of pigeons 
(Ainslie, 1974) and then in humans as well (Ainslie and Herrnstein, 
1981). Our discount rates decrease as monetary rewards increase; and, 
when considering losses, we’d just as soon pay now and be done with it. 
Research in intertemporal choice has penetrated into areas such as con-
sumption self-control (Wertenbroch, 2003) and drug addiction (Johnson 
et al., 2010). Researchers have already begun to discover what under-
lying neural substrates (or neural correlates) are related to our 
intertemporal choice behavior. Some early work on the neural substrates 
of time-dependent choice was carried out by Kable and Glimcher (2007) 
using functional magnetic resonance imaging (fMRI) technology, while 
Weber and Huettel (2008) show that the neural correlates of decision 
making under risk differ from those for intertemporal choice.

Morals, Emotions, and Consumer Behavior

One important element of our decision-making that is often ignored in 
the decision-theoretic literature is the moral dimension. All of us have 
experienced decisions in which our reflective thought points in one 
direction, but our moral compass keeps us from traveling down that 
road. It turns out that what we would call “moral judgment” has tradi-
tionally been supposed to have a rational and an emotional component, 
but research such as Greene et al. (2001) and Greene and Haidt (2002) 
shows that the emotional component is the stronger one. Consider a 
runaway train that is about to crush five people to death. The only way 
to save them is for you to flip a switch to divert the train onto a different 
track, where it will kill one person. Will you divert the train? Most peo-
ple would. Now consider the following variation: the same train is still 
headed toward those five unlucky souls, but the only way to stop it is to 
push a fellow bystander in front of the train. Would you go ahead and 
push that person in front of the train? Most people would not.

Ethical philosophers have struggled to come up with a way to 
justify why our divergent behavior in the two cases is morally justifi-
able. But Greene et al. (2001) scanned subjects with fMRI technology 
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to show that the thought of pushing that unfortunate individual engages 
our emotions in a way that merely diverting the train does not. In other 
words, respondents to this and other dilemmas were scanned while 
contemplating their decisions, and areas of the brain such as the medial 
frontal gyrus, posterior cingulate gyrus, and angular gyrus—already 
known to be associated with emotion—were more active for the very 
personal task of pushing that individual than for the rather impersonal 
task of flipping the switch. Haidt (2003) reminds us how moral emo-
tions, such as disgust, support our evolutionary fitness in the same 
sense of commitment as does anger that we already discussed (Frank, 
1988). Disgust plays a more direct role in our survival; its strength as 
an emotion will, for example, prevents us from eating harmful food 
(Rozin, Haidt, and McCauley, 2008). And further, our feelings of dis-
gust are very difficult to overturn through reflective thought. Haidt and 
Hersh (2001) asked subjects to rate the acceptability of a voluntary 
sexual encounter between a 25-year-old man and his 23-year-old 
adopted sister who grew up together, given that the sister uses birth 
control and the man would wear a condom. Neither socially liberal nor 
socially conservative respondents found this act to be acceptable, 
although they were generally unable to provide cogent and coherent 
justifications. In other words, most people were reduced to saying 
things like, “it just isn’t right.” Over the past decade, studies like Moll 
et al. (2002) and Fitzgerald et al. (2004) have started to uncover the 
complex neural mechanisms underlying disgust.

At this point, we need to make it clear that emotions are necessary 
to our very functioning, and are not simply evolutionary artifacts. Star 
Trek’s Mr Spock was an emotionless and entirely logical being, and as 
such, he was held to be a superior decision maker as compared to the 
emotional humans on his spaceship. But Damasio (1994) has shown 
that without emotions, it is very difficult for us to make decisions at all! 
One of Damasio’s case studies involved a high-functioning patient 
(let’s call him M) who had developed a brain tumor that pressed on his 
frontal lobes. The tumor was successfully removed but not without 
damaging some remaining tissue. After surgery, M appeared to have 
retained full brain function. But over time, M lost one job after another, 
got divorced, married and divorced again, and made consistently bad 
business, personal, and financial decisions. He had, in fact, lost his 
emotional makeup—and without it, he was unable to mediate and con-
trol his rational faculties. For example, M could spend an entire day at 
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work focused on a single detail in a report, unable to evaluate it and 
move on.

There are many emotions one could investigate. Evans (2001) lists 
joy, distress, anger, fear, surprise, and disgust as the “basic emotions,” 
with love, guilt, shame, embarrassment, pride, envy, and jealousy 
rounding out the “higher cognitive emotions.” We have looked at anger 
and disgust, but a case can be made for most of the others vis-à-vis their 
primacy in human decision making. Rather than continuing down the 
line with such an exploration; however, let’s consider a differently 
rooted decision driver before we turn to the research on decision mak-
ing in strategic contexts.

Marketers have mastered a number of ways to confound human 
decision making, as chronicled in the field of consumer behavior. But 
until recently, very little has been known about what goes on in our brains 
when we are manipulated by concepts such as brand appeal or price. 
McClure et al. (2004) tested a sample of Coke and Pepsi drinkers using 
fMRI and established that the subjects who had unknowingly preferred 
Pepsi (half of the participants) had more pronounced brain activity than 
those preferring Coke—leading to the conclusion that their preferences 
were stronger when based purely on taste. But for “brand-cued” subjects, 
who knew which cola they were actually drinking, the Coke drinkers 
showed very pronounced activity in the ventromedial prefrontal cortex 
(an area associated with high-level decision-making) which seems to 
indicate that Coke is, as marketers would say, a “stronger” brand.

Price, it has been shown, also has a significant effect on our neural 
activity. While previous research (Lee, Frederick, and Ariely, 2006) had 
established that various manipulations of inputs like brand and ingredi-
ents can affect one’s reported taste preferences, and even that price 
manipulation for energy drinks can affect subjects’ subsequent 
performance on puzzles (Shiv, Carmon, and Ariely, 2005), Plassmann 
et al. (2008) used fMRI scanning for subjects drinking wine. Although 
the subjects were drinking a single wine in the experiment, they were 
told otherwise. Believing that the different samples had different prices 
(e.g., $5 vs. $45), subjects, on the whole, preferred more expensive 
wines to less expensive ones. The higher prices increased activity in the 
medial orbitofrontal cortex, an area associated with “experienced pleas-
antness.” Further research might identify other correlates of this 
phenomenon, for example, whether the higher priced items are believed 
to confer higher status.
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Experimental Game Theory

As we have seen, there are numerous ways in which our emotions get 
involved in our decision making. Prospect theory and, more generally, 
behavioral decision theory have gone a long way toward identifying 
patterns in the way that our decisions deviate from those prescribed by 
rational theory. However, behavioral decision theory has been silent on 
how we behave in strategic situations. To fill this vacuum, however, we 
now highlight some results in behavioral game theory: how people 
actually strategize.

There are some key questions we would like to answer: Do people 
(in laboratory settings) anticipate the actions of others? Do they actu-
ally play dominant strategies? Do they recognize and play mixed 
strategies? Can they coordinate their moves with others? How much do 
they trust those other players? How do people handle the tricky 
Prisoner’s Dilemma? And, how do people play when the games are 
repeated over time? Let’s look at the literature.

Consider dominant strategies. Beard and Beil (1994) posed the fol-
lowing two-person, nonzero-sum game to their subjects (Figure 2.4).

Although I have presented this game in strategic form, the game the 
subjects played was actually a sequential one, with Player 1 moving 
first. Note that if Player 1 picks the first row, she is guaranteed a payoff 
of 9.75 units. However, notice also that for Player 2, column 2 weakly 
dominates column 1. So, Player 2 ought to pick column 2 no matter 
what, and Player 1, understanding this, will play row 2. Thus, we have 
found the equilibrium solution (technically, the subgame perfect 
equilibrium; see Selten, 1975), which results in the payoff of (10, 5). 
Note the risk, however, for Player 1: if Player 2 does not play column 2 
as he should, then Player 1 will get stuck with the vastly inferior payoff 
of 3 had she played row 2 (as she should).

The experimental results deviated from the subgame perfect 
prescription. Sixty-six percent of the Player 1’s chose to play it safe, 

Player 2

Player 1
(9.75, 3) (9.75, 3)

(3, 4.75) (10, 5)

Figure 2.4  A game of dominance.
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sticking with row 1 with a payoff of 9.75 regardless of what the Player 
2’s did. In other words, only a minority of the Player 1’s believed that 
the Player 2’s would play their dominant strategy. However, when the 
Player 1 participants did play row 2, five out of six of the Player 2’s 
selected their dominant strategy.

Beard and Beil ran some other variations on this game. You might 
expect that if the risk to Player 1 were reduced, more Player 1’s would 
opt for row 2. Indeed, when decreasing the risk to Player 1, 80% of the 
Player 1’s now picked row 2 (up from 33%). Other experimenters have 
tested whether people employ dominance (Goeree and Holt, 2001; 
Camerer, 2003), with similar results: people generally recognize and 
act on dominance, but are not so sure that others will do so.

Mixed strategies are clearly more difficult to recognize and imple-
ment than dominant strategies. Camerer (2003) summarizes a large 
number of studies and reports that the average of the participants’ results, 
loosely speaking, are weakly correlated with the Nash equilibria. But 
unlike most of the other game-theoretic properties, mixed strategies 
have been examined in some real-world settings and this research is very 
worthwhile to report on. One area of investigation has been penalty 
kicks in professional soccer leagues. With penalty kicks, the kicker typ-
ically shoots left or right. The goalkeeper, who has no way of knowing 
which way the ball is going to come, must simultaneously dive right or 
left to have a chance to block the kick. These actions, together with the 
simple result (goal or no goal) provide a good platform to test whether 
the players actually employ mixed strategies, and further, whether they 
are playing minimax (i.e., equilibrium) strategies. Chiappori, Levitt, and 
Groseclose (2002) and Palacios-Huerta (2003) find that professional 
soccer players do indeed play minimax. Bar-Eli et al. (2007) find that 
the optimal strategy for the goalies is to stay in the middle (some kicks, 
in fact go down the middle—a clever strategy given that goalies always 
dive to one side or the other); interestingly, the goalies are aware of this, 
but don’t want to appear to the fans as though they are doing nothing!

Given that we have been keeping evolutionary forces in the back 
of  our minds, it should not be surprising to find evidence of mixed 
strategies in endeavors other than sports. The fields of evolutionary 
biology and evolutionary psychology provide food for thought. Think 
Pleistocene: what “strategy” should a woman employ in finding a mate 
and having children? A mate that would stick around after a baby is 
born increases the probability that the child will survive. Bearing this in 
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mind, a woman would look for qualities in a partner, indicating that he 
is willing to invest his time domestically and provide for her and the 
children in the long run. A stereotypical “bad boy,” however, with his 
good looks but reluctance to commit, would not seem such a good 
choice in this regard. On the other hand, though, if a woman had a child 
with an attractive male, the offspring are likely to be attractive and 
therefore more likely, in turn, to reproduce, thus increasing the chance 
that the woman’s genes will carry on to further generations.

So the question is, should a woman mate with a male who might be 
less physically attractive but willing to provide for her and the children, 
or should she mate with a more attractive man, who is likely to run off 
with someone else in order to maximize his reproductive potential? 
Some fascinating research (see Gangestad, Thornhill, and Garver, 2002; 
Gangestad and Thornhill, 2008; Flowe, Swords, and Rockey, 2012 and 
their references) shows that women seem to have developed a mixed 
strategy that depends on their menstrual cycles. This “cycle shift” hypo-
thesis states that during ovulation (i.e., when they are most fertile), 
women prefer men whose appearance signals superior genes. These 
traits include symmetry, social dominance, a more masculine appear-
ance, and increased stature (Flowe, Swords, and Rocky, 2012). In 
general, the less attractive their current partners, the more pronounced 
are women’s preferences (Pillsworth and Haselton, 2006). Additionally, 
the converse of this behavior—when women are not fertile, these pref-
erences abate—also holds. Incidentally, some preferred characteristics 
are not visual—during ovulation, women have an increased attraction 
to males with low-pitched voices (Puts, 2005; Mlodinow, 2012). It turns 
out that while there is little correlation between a low-pitched voice and 
visually masculine characteristics such as height and musculature, there 
is a significant correlation with testosterone level (Bruckert et al., 2006).

To summarize, the evolutionary-based hypothesis is that women 
pursue a mixed strategy in their production of offspring: to maximize 
their chances of producing high-quality offspring that will also survive, 
they need a partner willing to provide for them in the long term, but they 
may also mate with other males who are likely to possess superior genes.

While the proportion of so-called “extra-pair paternity” in modern 
populations is low, (below 5% overall, as reported by Gangestad and 
Thornhill, 2008), the evidence strongly suggests that the preferences 
exhibited in the recent literature are evolutionary holdovers. The 
proportion of women who actually act on their observed preferences for 
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dominant men (with symmetrical faces, low-pitched voices, etc.) is 
unknown, but all indications are that the mixed strategy of sticking with 
a long-term partner while occasionally selecting a partner with superior 
genes is a hardwired urge.

Mixed strategies are important, especially for competitive situations, 
but we often need to cooperate with others. One aspect of cooperation is 
the ability to coordinate one’s actions with others. Consider the nonzero-
sum game (Figure 2.5).

In this game, there are two pure Nash equilibria, at (200, 600) and 
(600, 200). There’s also a mixed strategy Nash equilibrium, with the 
strategy pairs (1/4, 3/4) for both players. Notice that if both players ran-
domize according to the correct mix, they will fail to coordinate (i.e., 
end up at (0, 0)) 5/8, or 62.5%, of the time. In actual play (Cooper et al., 
1978; Camerer, 2003), the results were quite close—a failure rate of 
59%. One might hope that with some preplay communication, the 
players would improve on this result. With so-called one-way commu-
nication, where one player declares his move and the other player does 
not, coordination was reached 96% or the time. The followers in this 
treatment were able to swallow their pride and accept a payoff of 200 
(as opposed to the better outcome of 600, or else 0). But with two-way 
communication, which simply amounted to the players both declaring 
their preferences, the players failed to coordinate 42% of the time. It 
would be interesting to extend this research to explain when and why 
coordination was achieved.

Another issue that is crucial to our getting along in the world is 
trust, and it turns out that behavioral game theory has something to say 
about it. Some insight into our fundamental nature is offered by studies 
involving the Dictator game. In this game, there are two players and a 
sum of money, say $20, to be divided between them. Player 1 decides 
how much money to keep for himself, with the rest of the money going 
to Player 2. Player 2 performs no action in the game. Initial results, 
found by Kahneman, Knetsch, and Thaler (1986), were encouraging 

Player 2

Player 1
(0, 0) (200, 600)

(600, 200) (0, 0)

Figure 2.5  A coordination game.
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enough. In their setup, Player 1 had just two options: to split the money 
50–50 or to keep $18 out of the available $20. About 75% of the partic-
ipants opted for the 50–50 split. However, a later experiment by 
Hoffman, McCabe, and Smith (1996) involved people dividing up the 
sum of money in a private booth. Over 60% of their subjects took all of 
the money ($10 in this case), and most of the others just left a dollar or 
two for the other player. Clearly, society needs some mechanism to 
deter greed when people are left to their own devices.

The Ultimatum game (Güth, Schmittberger, and Schwarze, 1982) 
calibrates just how much people try to get away with when their choices 
are contested by others. This game is a Dictator game in which Player 2 
can either accept or reject the action of Player 1. If Player 2 rejects 
Player 1’s offer, then both players get nothing. With a total available of 
$10, for example, where the units are in increments of $0.01, the (sub-
game perfect) Nash equilibrium of the game is for Player 1 to offer 
$0.01 to Player 2, and for Player 2 to accept. But virtually no one plays 
the equilibrium strategy; furthermore, Player 2’s who are offered small 
amounts are insulted and prefer to decline, thereby punishing greedy 
Player 1’s. Players 1 seem to anticipate this behavior. Camerer (2003) 
summarizes the copious literature: the average and median amounts 
offered are in the neighborhood of 40% of the pot; these typical offers 
of 35–50% are accepted the great majority of the time, while offers in 
the 20% range are rejected about half the time. Clearly, Player 1’s in the 
Ultimatum game are wary (and they should be!) that the Player 2’s 
might reject a low offer.

Another type of trust experiment looks at sums of money being 
exchanged back and forth between players. In the so-called Centipede 
game, there are two players and an initial pot of money. Player 1 can 
initially “take” a certain percentage of the pot (leaving the rest for 
Player 2) or “pass.” If Player 1 passes, the pot doubles and Player 2 is 
left with the same set of options. If Player 2 plays pass, the pot once 
again doubles and it is again Player 1’s turn. Once a player plays take, 
the pot is divided accordingly and the game ends. Using backward 
induction, it is easy to show that the subgame perfect equilibrium in this 
game is for Player 1 to play take on the first move. McKelvey and 
Palfrey (1992) studied a four-round Centipede game with an initial pot 
of $0.50 (see Fig. 2.6).

In their study, fewer than 10% of the players played take on the first 
move, and, surprisingly, about 20% of the Player 2’s who reached the 
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fourth and last round played pass—forgoing a payoff of $3.20 to instead 
accept $1.60 (giving $6.40 to the other player). Clearly, despite the risk 
that the other player might play take on the next move, the great majority 
of the subjects in this study understood that it is better to grow the pot 
as opposed to playing the rational strategy. And the fact that so many 
players played pass does not just reflect their economic savvy, but is 
also a testament to their trust in the other player being willing to grow 
the pot on the next move.

The Prisoner’s Dilemma also involves a measure of trust. The first 
PD experiment occurred on the very day that the game was conceived, in 
1950. As we know, the unique pure strategy equilibrium occurs when 
both players defect. But since many of the social and commercial situa-
tions that the PD models are in fact repeated over time, it makes sense to 
iterate the game in an experimental setting. The rational strategy in a 
finitely repeated PD would be one of serial defection. But, according to 
Poundstone (1992), when the game was repeated 100 times between 2 
well-known scholars back on that fateful day in 1950, both of them 
cooperated most of the time (68 and 78 times out of the 100 plays). The 
humans playing the game recognized that they could string along a series 
of mutually cooperative plays, thereby yielding a significantly higher 
long-term average payoff than they would obtain by serially defecting.

Sally (1995) provides a meta-analysis of 30 PD experiments. The 
mean cooperation rate overall was 47.4%, with a high standard deviation 
across the experimental treatments. While this overall rate is not as high 
as in the initial experiment, it is clear that human subjects often reject 
the defection strategy. Kreps et al. (1982) developed a game-theoretic 
model to justify such behavior. In this model, each player believes that 
there is some probability p > 0 that the other player is irrational, that is, 
would cooperate in any one play of the game. Given this assumption, the 

1            2           1            2
(6.40, 1.60)

p p p p
t t t t

(0.40, 0.10) (0.20, 0.80) (1.60, 0.40)    (0.80, 3.20)
Figure 2.6  A four-round Centipede game. Payoffs in dollars. p, pass; t, take.
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theoretical result provides an equilibrium in which both players will 
serially cooperate (although not in the final round). This result is consis-
tent with the so-called Folk theorem (see Fudenberg and Tirole, 1991), 
which states that in a repeated game, if future payoffs are high enough, 
then any series of plays that yields an average payoff at least as good as 
the minimax outcome can be maintained by the players and is therefore 
a subgame perfect equilibrium. For the repeated PD, this means that 
mutual cooperation can end up as a Nash equilibrium if the players per-
ceive future interactions as either likely enough or valuable enough.

Andreoni and Miller (1993) had subjects play the PD against either 
partners or strangers. The idea was to see whether, indeed, players 
would play toward developing a reputation with opponents that they 
met repeatedly, as opposed to strangers for whom the notion of reputa-
tion is moot. When playing strangers, the participants cooperated an 
average of about 20% of the time; but when playing against the steady 
partners, the cooperation rate rose, on the average, to just over 40%. 
Another interesting finding is that the players could fairly neatly be 
divided into three types: cooperators, defectors, and mixers. Defectors 
almost always defected; cooperators generally cooperated most of the 
way through the plays; mixers cooperated with some probability p, 
which on average was about 20%.

Frank, Gilovich, and Regan (1993) instead studied one-shot PDs, 
with an eye toward discovering whether they could increase coopera-
tion through preplay communication as opposed to reputation building 
through repeated play. They divided their subjects into groups of three 
players each. Each subject played once each against the others in his 
group. But prior to actual play, each group spent a half hour alone 
together. The idea was that getting to know one another would not only 
foster cooperation but also enable the players to gauge how likely they 
believed the others would cooperate. Out of a total of 198 plays overall, 
the subjects cooperated (C) 146 times (74%). Also, the subjects cor-
rectly predicted 130 of the 146 Cs and 31 of the 52 defections, an 
accuracy rate of 76%.

Moving forward, what else can we learn from games such as the 
Ultimatum game and the PD? Rilling et al. (2002) performed fMRI 
scanning on women who played the PD against other women. Their 
results showed that mutual cooperation was associated with increased 
neural activity in a variety of areas (the nucleus accumbens, the caudate 
nucleus, the ventromedial frontal cortex, and the rostral anterior cingulate 
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cortex) that are active in reward processing. Beyond cooperation in the 
PD, it appears that these areas of the brain reinforce (or are reinforced by) 
general behaviors of reciprocal altruism. Scientists are beginning to study 
the neural correlates of altruism, and while thus far there are no definitive 
results, Tankersley, Stowe, and Huettel (2007) have identified neural cor-
relates of perceived “agency” by others on their subjects’ behalf.

With the Ultimatum game, Sanfey et al. (2003) used fMRI scanning 
to focus on the subjects as they reacted to “fair” or “unfair” proposals. 
Unfair proposals (i.e., where the Player 2’s were offered from 10 to 
30% of the $10 pot) were met with increased activity in the anterior 
insula and the dorsolateral prefrontal cortex, areas associated with emo-
tion and reflection, respectively. It would appear that the anterior insula 
is generating disgust, while the dorsolateral prefrontal cortex is trying 
to coax the subject into taking the money. The higher the activity in the 
anterior insula, the more likely the subjects were to reject the unfair 
offers. A study by Paulus et al. (2003) found that when subjects consid-
ered risky alternatives in general, the degree of risk was positively 
correlated with the degree of activity in the insular cortex. Interestingly, 
the level of activity in the insular cortex was in turn related to the sub-
ject’s propensity for avoiding harm, and for neuroticism, as measured 
on personality scales.

One important feature of the Sanfey et al. (2003) study is that the 
conflict between our emotional and rational “selves” was localized in 
the anterior insula and dorsolateral prefrontal cortex, respectively, as 
seen in the fMRI scans. It is instructive to consider an additional such 
skirmish before we move on. Westen et al. (2006) recruited strongly 
committed male Democrats and Republicans during the 2004 US 
presidential campaign to answer a series of questions while they were 
being scanned with fMRI. First, they were presented a statement by one 
of the candidates, followed by a statement showing that the candidate’s 
statement was inconsistent. Then, the subjects were presented with 
questions where they had to rate whether the candidate’s statements 
were inconsistent, and to what degree. This was followed by a statement 
that “explained away” the inconsistency. The final two questions asked 
the subjects to consider whether the candidate’s statements were actu-
ally less inconsistent than they initially thought, and by how much.

Not surprisingly, the Democrats gave the Democratic candidate 
(John Kerry) a break but not the Republican candidate (George W. 
Bush), while the Republicans gave Bush a break but not Kerry. But the 



50 CHAPTER 2 The Ways We Decide

point of the study was to locate the neural correlates of such “moti-
vated” reasoning, where we adopt justifications that minimize cognitive 
dissonance. Such reasoning is related to the confirmation bias that 
we discussed earlier. The main finding was that motivated reasoning is 
different from cold, logical reasoning (when our emotions are not 
engaged). More specifically, Westen et al. discovered that when the 
subjects were presented with contradictory (and therefore, emotionally 
threatening) statements from their favored candidate, they arrived at an 
alternative conclusion (i.e., cutting their candidate a break), and in 
developing this judgment, the “cold,” rational parts of their brains were 
not active, but the emotional lobes, such as the insula, were.

Behavior Modification and Conclusions

We’ve covered a lot of ground thus far, and now we should stop and ask, 
where is this taking us? In particular, is there some way for us, as indi-
viduals and as a society, to harness what we have learned in a constructive 
manner?

Thaler and Sunstein in their book Nudge (2008) have tried to pro-
vide a roadmap for how we can redirect ourselves away from some of 
the more unfortunate paths that our biased thought processes lead to. 
Their idea is to promote a philosophy, called libertarian paternalism, 
which we can apply to a number of both personal and public sector 
problems. Given a certain situation in which decision-makers would 
choose from a number of alternatives, how can one design a “choice 
architecture” that points, or “nudges,” them down a path that makes 
them better off (from their points of view) while still leaving them free 
to choose?

Let’s look at a couple of their examples. We already know from 
prospect theory that alternative “framing” of certain decisions—for 
example, when comparing outcomes to different reference points—can 
change the way we view them. The process to become an organ donor 
is a good example of this principle in action. In most states in the United 
States, one has to take a concrete action, that is, to explicitly provide 
consent, in order to donate one’s organs. But while the great majority 
of us believe that being an organ donor is a good thing, far fewer of us 
have checked the box on our driver’s licenses. In other words, when 
the default policy is that we are not donors, far fewer of us participate as 
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opposed to a system where the consent is presumed—where we would 
have to take action to opt out.

Another example is the way that social security was privatized in 
Sweden. More than a decade ago, the Swedish government overhauled 
their national pension fund. There were a number of design choices 
they faced in turning over individual pension fund control to their cit-
izens: at  one extreme, participants would be forced into a single 
default fund; at the other extreme, participants would be forced to 
select their allocations or else get dropped from the fund altogether; 
and in the middle, a default fund would be available, but the government 
would also promote, to some varying degree, free choice of asset 
allocation.

The Swedish government chose a policy whereby a default fund 
was made available to participants but selecting it was discouraged. At 
first sight, encouraging participants to seek out their own asset alloca-
tions seems to be a reasonable approach. But (with the help of hindsight), 
Thaler and Sunstein report that on the whole, people who chose their 
own investments did much worse than those enrolled solely in the 
default plan. While the moral of this story is that it can be dangerous to 
let Humans have such free choice, it remains unclear in general as to 
when people should be reined in (protected from the consequences of 
their biases) or not.

There are different ways in which people can be supported in their 
quest to improve their lives. Recently, a number of behavior-modifica-
tion programs have appeared, which are designed to help people lose 
weight, curb impulsive purchasing behavior, and break bad habits in 
general (Freedman, 2012). These programs, typically run as smartphone 
apps, are gaining in both popularity and efficacy. While one can quibble 
about whether behavior modification itself seems to treat us as automata 
as opposed to willful agents, some of the success of these programs indi-
cates that we can, as Freedman says, “purposefully alter our environment 
to shape our behavior in ways we choose.”

You already knew that people make some decisions without even 
knowing—like the folks in movie theaters who were shown subliminal 
messages to drink Coke, and, unaware of their subconscious desires, 
went straight to the concession stand. But what is remarkable is the 
sheer scope and variety of our emotional decision-making apparatus, 
and the difficulties our deliberate sides have in overcoming the gut feel-
ings. It is important to observe, as Lynch (2012) does, that over time, as 
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individuals and as a society we have done just this, in the decades-long 
shift in our attitudes on issues like race, environmentalism, and climate 
change.

Indeed, one is tempted to sound a “call to arms” to pursue a research 
program in which we aim to identify what categories of decisions are 
best left to our automatic systems, and which ones are appropriate for 
our reflective systems. The research we have seen on the IAT (Greenwald, 
McGhee, and Schwartz, 1998) and also on the affect heuristic (Finucane 
et al., 2000) might encourage us to believe that given enough time, our 
rational “override buttons” can be widely employed to overcome our 
biased, gut reactions. However, we have also seen in the Westen et al. 
study (2006) that sometimes the override button is operated by our 
emotional side, and having that extra bit of time to process our decision 
leads us down the wrong path. Such “moral dumbfounding” (Haidt and 
Hersh, 2001) certainly complicates the picture as we move forward; and 
as if that isn’t enough, let’s not forget that the evolutionary honing of 
our emotions further calls into question whether our reflective systems 
should always be trusted! Certainly, the question of determining when 
and why to use our rational “override” buttons will be a topic of central 
interest in the social sciences.

Ultimately, to navigate the world like Odysseus, we will need to 
learn more about ourselves than we currently do. Who among us can be 
nudged? Under what circumstances will nudging be successful? In how 
many ways can we positively modify our behavior? On the individual 
level, perhaps we will soon know enough about our genetic makeup to 
be able to customize programs that will enhance numerous aspects of 
our lives. And on the societal stage, maybe someday soon, we will 
understand how to better integrate our hearts and minds, thereby helping 
ourselves and our future generations to make wiser choices than the 
ones we make today.
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Introduction

Analytics has been defined as “the scientific process of transforming 
data into insight for making better decisions.” More and more organiza-
tions are using analytics to make better decisions and reduce risks. 
Analytics includes well-established methods such as mathematical 
optimization, simulation, probability theory, and statistics, as well as 
newer techniques that take elements from traditional methods and 
modify and/or combine them into robust frameworks in order to develop 
more powerful solution methods for many settings where traditional 
methods fall short. A prime example of the latter is the simulation–
optimization framework. As its name implies, this method combines 
simulation and optimization in order to tackle complex situations where 
risk and uncertainty do not behave according to certain simplifying 
assumptions.
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Taken separately, each method is critical, but limited in scope. On 
the one hand, optimization by itself provides an excellent method to 
select the best element in terms of some system performance criteria, 
from some set of available alternatives, in the absence of uncertainty. 
On the other hand, simulation is a tool that allows us to build a represen-
tation of a complex system in order to better understand the uncertainty 
in the system’s performance.

By putting these two methods together, we can develop a powerful 
framework that takes advantage of each method’s strengths, so that we 
have at our disposal a technique that allows us to select the best 
element from a set of alternatives and simultaneously take account of 
the uncertainty in the system.

In this chapter, we will begin with an example to illustrate each 
technique separately, and highlight the benefits of simulation optimi-
zation approaches in the presence of uncertainty. We will then explore 
the use of simulation optimization in real-world applications in risk-
management. Finally, we will summarize our discussion in a set of 
concluding remarks.

An Illustrative Example

“Portfolio investment theory” concerns finding the portfolio of invest-
ments that maximizes expected returns while minimizing risk. Since 
investors are risk-averse, they prefer portfolios with high expected 
returns and low risk (Sharpe, 1964).

In 1952, Nobel laureate Dr Harry Markowitz laid down the 
foundation for modern investment theory. Markowitz focused his 
attention on mean-variance efficient portfolios (Markowitz, 1952). 
A portfolio is mean-variance efficient if it has the highest expected 
(mean) return for a given variance, or, similarly, if it has the smallest 
variance for a given expected return. Markowitz developed this theory 
for portfolios of securities, such as stocks and bonds, for which returns 
are usually normally distributed. If portfolio returns are normally dis-
tributed, then its risk can be measured by the variance of its returns. 
If this is the case, then the optimal set of portfolios can be found 
by  traditional optimization methods, as we show in the following 
section.
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Optimization of Securities Portfolios

What constitutes the best portfolio of securities? In 1952, Markowitz 
attempted to answer this question with his famous paper, “Portfolio 
Selection.” In this paper, Markowitz formulated the portfolio selection 
problem as an optimization problem.

For simplicity, let’s first consider a market that contains only three 
assets (i.e., stocks), A

1
, A

2
, and A

3
. Let’s assume that we have a limited 

budget to invest in these assets, and that we want to invest our budget in 
its entirety among these assets. Therefore, we will denote x

1
, x

2
, and x

3
 

as the proportion of our budget that we will invest in A
1
, A

2
, and A

3
, 

respectively. Since we will invest our entire budget, it follows that:

x x x1 2 3 1

Now, let μ
1
, μ

2
, and μ

3
 denote the expected value (i.e., the mean) of the 

return of A
1
, A

2
, and A

3
, respectively; and let 1

2
2

2
3
2, , and  denote 

the variance of the probability distribution of the returns of A
1
, A

2
, and 

A
3
, respectively. Thus, we will use 1 2

2
,  to represent the covariance bet-

ween the probability distributions of the returns of A
1
, A

2
, and so forth.

The mean returns, return variances, and covariances can be esti-
mated from historic stock price data.

The mean return of the portfolio, μ
p
, will be equal to the weighted 

average expected return, where the weights correspond to the proportion 
of the budget invested in each asset; thus,

p 1 1 2 2 3 3x x x

The variance of the probability distribution of the portfolio returns, 

p
2 ,  is calculated as follows:

p , , ,
2

1 2
2

1 2 1 3
2

1 3 2 3
2

2 3x x x x x x

Therefore, we can formulate the problem of finding the best portfolio as 
follows:

	
Maximize p p

2 	 (3.1)

	 Subject to : x x x1 2 3 1 	 (3.2)

	 x x x1 2 3 0, , 	 (3.3)
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Equation 3.1 is known as the objective function, because it represents 
our main goal, or objective. In this case, our objective is to find the port-
folio with the maximum expected return and minimum risk.

Equation 3.2 makes sure the entire budget is invested among the 
assets; and Equation 3.3 enforces a positivity constraint on our invest-
ments (no short positions are allowed).

We could have used the alternate objective function:

	 Minimize p p
2 	 (3.1′)

In this case, our objective is to find the portfolio with minimum risk and 
maximum return. It is apparent that Equations 3.1 and  are equivalent.

These formulations can be solved using a specific type of 
mathematical programming technique called “quadratic programming.” 
By using quadratic programming, we can find the optimal solution(s) to 
the above portfolio selection problem. Unfortunately, there are two 
complicating factors here:

1.  There may be many—in certain cases, even an infinite number of—
optimal solutions to the formulation mentioned earlier. In fact, 
Markowitz calls the set of solutions the “efficient set,” and they all 
lie along a curve called the “efficient frontier.” It is up to the investor 
to “pick” the solution on the frontier that provides maximum return 
for the level of risk she is willing to accept.

2.  The formulation is valid only if one very strict assumption holds: the 
returns of each of the assets, and, hence, the portfolio returns must 
follow a normal probability distribution. If this is not the case, then 
the Markowitz model breaks down. Under these strict normality con-
ditions the variance is symmetric, so that the probability that the 
actual portfolio return will be above its estimated mean is the same as 
the probability that it will be below. However, using the variance as 
the only risk measure does not protect us from the probability that the 
portfolio return will be very small, or even negative; in other words, 
we have no idea of the extent to which our investment is “at risk.”

In most practical situations, especially when there is a large number of 
underlying assets to be considered, these complicating factors make any 
solution found by this method unreliable. On the one hand, it is difficult 
to quantify the exact level of risk a particular investor is willing to accept. 
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On the other hand, portfolio returns often do not follow a normal distri-
bution, or the distribution is severely skewed when investment costs and 
capital gains tax implications come into play. Therefore, although we 
have a very elegant model like Markowitz’s, we cannot use it.

We need a method that can provide us with more complete infor
mation about the quality of the portfolio in terms of risk and return.

Simulation

Monte Carlo simulation is a method used by financial companies to 
simulate and understand risks related to various investments (Hertz, 
1979). The main advantage of this method is that the normality assump-
tion is no longer a requirement; in fact, the power of the method is that 
we can use statistical techniques to analyze an asset’s historical data, 
and forecast its behavior into the future by simulating the probable 
outcomes. This provides freedom from strict assumptions about the 
probability distribution of the assets.

To illustrate this better, we have taken a sample of month-end 
closing stock prices for six very well-known high-tech corporations: 
Sun Microsystems, Oracle, Microsoft, Intel Corporation (INTEL), 
Cisco Systems, and Yahoo, for the period between March 31, 1999, and 
April 30, 2001.

Let’s take for instance, the end-of-month closing stock price for 
INTEL. During the (roughly) 2-year period, INTEL’s end-of-month 
stock price averaged $75.50, with an average monthly change of −2.74 
percentage points, and an overall drop of 74% from $118.88 to $30.91. 
During that period, the month-end stock price increased 11 times and 
decreased 14 times. The biggest month-to-month change for INTEL 
during that period was a 48.5% drop, from a $118.88 closing price on 
March 31, 1999 to April 30, 1999; conversely, the biggest increase of 
23.1%, from a closing price of $30.03 to $37.00 was registered between 
December 30, 2000, and January 30, 2001.

Using this information and some additional statistics, we can find a 
probability distribution that these data fit quite well. Several commercial 
software products exist that can perform “goodness-of-fit” testing for 
data such as these. For our example, we used Crystal Ball’s “Batch Fit” 
feature, which automatically finds the best fit among a set of more than 
a dozen well-known probability distributions (see http://www.oracle.

http://www.oracle.com/us/products/applications/crystalball
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com/us/products/applications/crystalball for more information about 
the Batch Fit and other features).

According to Crystal Ball, the historic end-of-month stock price 
best fits a lognormal probability distribution with mean = $76.03 and 
standard deviation = $39.22. If we plot this distribution, we obtain a 
graph like the one shown in Figure. 3.1.

From Figure 3.1, we can deduce that there is an 80% likelihood that 
month-end stock prices for INTEL will fall between roughly $33.00 
and $127.00, with only a 20% chance of being higher or lower.

Similarly, we can find the best-fitting distributions for each of the 
stocks that we are interested in including in our portfolio. These results 
are summarized in Table 3.1.

Based on information contained in the third column and the last 
column of Table 3.1, which contain the standard deviation and the average 
monthly return for each stock, if we were to use the pure optimization 
approach discussed previously, the optimal portfolio would result in an 
average monthly return of 2.59% over the next 2 years, with a standard 
deviation of returns of 0.19%, by taking the following portfolio positions:

•  Invest about 25.7% of our budget in ORACLE stock;

•  Invest about 17.7% of the budget in MICROSOFT stock;

•  Invest about 47.5% of the budget in INTEL stock; and,

•  Invest the remaining 9.1% of the budget in CISCO stock.

Figure 3.1  Crystal Ball screen shot of lognormal probability distribution.

http://www.oracle.com/us/products/applications/crystalball
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However, if we simulate this portfolio using Monte Carlo simulation 
and the best-fit distribution information given earlier, we obtain the 
following results:

•  Average monthly portfolio return = 0.99%

•  Standard deviation of returns = 0.93%

We can see that the simulation of the portfolio, which takes into account 
the uncertainty in the stock prices (i.e., the variability of stock prices 
due to a number of known and unknown factors), results in a much 
more conservative performance. In fact, according to the model, there is 
an almost 10% chance that the return on this portfolio will be negative.

So, can we pick a portfolio that is better? Well, what if we just 
invested an equal amount in each stock? We can simulate this portfolio 
with a 1/6 = 16.66% investment of the budget in each stock. The expected 
value of the monthly return based on point estimates is 0.63%; however, 
the simulation results in an average monthly return of 0.97%, with a 
standard deviation of 0.49%. Although the expected return is slightly 
lower than for the previous portfolio, the standard deviation has been 
greatly reduced, so this can be considered a “safer” portfolio. In fact, 
this portfolio has only a 1.55% chance of resulting in a negative return.

The question is: How can we find the best portfolio given the uncer-
tainty in stock prices? We quickly realize that it is extremely unlikely 
that we will find it by “trying out” different portfolio alternatives by 
hand, since there are so many possible combinations of assets and 
budget allocations. So we need something more powerful to help us.

The solution to this challenge is to combine the advantages of 
optimization and simulation into a single framework. On the one hand, opti-
mization can help us search for the best portfolio; on the other hand, 
simulation can ensure that we are not ignoring the uncertainty in stock prices.

A Simulation Optimization Solution 
Approach

As we learned in the previous section, simulation provides a way to 
evaluate the impact of changes to parameters and decisions in a model 
environment through the creation of “what-if” scenarios. Simulation 
also enables examination and testing of decisions prior to actually 
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implementing them, thus saving the decision-maker’s time and money. 
But perhaps most important, simulation enables the examination and 
evaluation of uncertainty and risks associated with a set of decisions, so 
that such risks can be understood and mitigated.

Although simulation provides all of these advantages, in most 
real-world situations—even one as simple as our portfolio example—
the set of possible decisions is too large to enumerate, let alone to be 
searched through efficiently to find the best possible solution. We need 
a way to guide our search.

The merging of simulation modeling with optimization technology 
has provided the advance making it possible to solve this problem (April 
et al., 2004).

Once a simulation model has been developed to represent a system 
or process, we want to find a configuration that is best according to 
some performance criteria. In our portfolio example, this corresponds 
to finding investment levels in the set of six candidate stocks that will 
result in maximum expected returns at some minimum risk level. When 
a system is complex and the configuration depends on a number of stra-
tegic choices, the trial-and-error approach results in very limited 
success. In these cases, we use an optimization tool to guide the search 
for the best configuration.

In our approach, we view the simulation model as a “black box,” 
meaning that we are only interested in obtaining an evaluation of 
performance from the simulation.

Figure 3.2 shows this black-box approach to simulation optimiza-
tion. In this approach, the optimization procedure, called the optimizer, 
first chooses a set of values for the input parameters, also called the 
decision variables; next, the simulation model is run with these 

Optimizer

Simulation 
model

Input
parameters

Responses
(System performance)

Figure 3.2  Black box approach to simulation optimization.
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parameter values, and the optimizer obtains an evaluation of the 
performance of the system. The optimizer then uses this response from 
the simulation model to select the next set of values for the input param-
eters. This loop continues until certain stopping rules are met.

The key to a good simulation optimization approach is the search 
algorithm embedded in the optimizer, which makes decisions about 
the  selection of new input parameter values at each iteration in the 
process.

Going back to our portfolio selection example, we now view our 
simulation model as a black box that provides a response about the 
expected return and standard deviation of returns of a selected portfolio. 
We wrap around it an optimizer that will guide us in selecting the allo-
cation of our budget to each stock in order to obtain the maximum 
expected return at some minimum level of risk.

In order to do this, we need to tell the optimizer exactly what we 
want to achieve. Therefore, we first state our primary objective: maxi-
mize the expected portfolio return. If we run the optimization with this 
objective alone, we obtain the following portfolio recommendation:

•  Invest the entire budget in ORACLE stock.

This is expected to produce the following results:

•  Average monthly portfolio return = 1.06%

•  Standard deviation of returns = 4.08%

In this case, since we did not tell the optimizer anything about the risk we 
are willing to accept, the optimizer naturally chose to invest the entire 
budget in the stock with the highest expected return, regardless of its vol-
atility. We want to do better than this. So we amend our objective to 
include the additional goal: keep risk under a certain acceptable threshold.

We now express our desires as follows:
Maximize the expected portfolio return, but make sure the standard 

deviation of returns is no higher than 0.2%.
If we optimize this model, the best solution found—at iteration 

861—recommends the following:

•  11% of budget should be invested in SUN MICROSYSTEMS stock;

•  46% of budget should be invested in MICROSOFT stock;



Simulation Optimization Applications in Other Real-World Settings 69

•  28% of budget should be invested in INTEL stock;

•  15% of budget should be invested in CISCO stock.

This yields the following results:

•  Average monthly portfolio return = 0.96%

•  Standard deviation of returns = 0.19%

It is notable that the optimal portfolio in this case includes NO 
investment in ORACLE stock despite it having the highest historical 
return. This is probably because ORACLE has the highest ratio of 
standard deviation to average return, making it the most volatile of the 
stocks, and thus increasing the riskiness of the portfolio. In fact, 
according to our amended model, the optimal portfolio described 
earlier has only a 0.04% chance of resulting in a negative return, which 
is a vast improvement.

Simulation Optimization Applications 
in Other Real-World Settings

The advantages of simulation optimization can not only be realized in 
financial modeling settings. A wide array of fields exists where systems 
exhibit high complexity and outcomes are sensitive to uncertainty. 
Examples are business processes, national defense systems, workforce 
planning, and so forth. When changes are proposed to a system in order 
to improve performance, the projected improvements can be simulated 
and optimized artificially. The sensitivity of performance objectives to 
proposed changes can be examined and quantified, reducing the risk of 
actual implementation, and increasing the confidence in the selected 
decision strategy.

In business process management, changes may entail adding, 
deleting, and modifying processes, process times, resource require-
ments, schedules, work rates, skill levels, and budgets, making this a 
very fertile for such approaches. Performance objectives may include 
throughput, costs, inventories, cycle times, resource and capital utiliza-
tion, start-up and set-up times, cash flow and waste. In the context of 
business process management and improvement, simulation can be 
thought of as a way to understand and communicate the uncertainty 
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related to making the changes, while optimization provides the way to 
manage that uncertainty.

We now focus on two examples to showcase the application and 
advantages of a simulation optimization approach to business process 
management.

Selecting the Best Configuration in a Hospital 
Emergency Room

The following example is based on a model of a real emergency room 
(ER) process provided by CACI, and simulated on SIMPROCESS. 
Consider the operation of an emergency room in a hospital. Figure 3.3 
shows a high-level view of the overall process. The process begins when 
a patient arrives through the doors of the ER, and ends when a patient is 
either released from the ER or admitted into the hospital for further 
treatment. Upon arrival, patients sign in, are assessed in terms of their 
condition, and are transferred to an ER room. Depending on their 
condition, patients must then go through the registration and treatment 
processes before being released or admitted into the hospital.

Patients arrive either on their own or in an ambulance, according to 
some arrival process. Arriving patients are classified into different 
levels, based on their condition, with Level 1 patients being more critical 
than Level 2 and Level 3.

Level 1 patients are taken to an ER room immediately upon arrival. 
Once in the room, they undergo their treatment. Finally, they complete 
the registration documentation process before being either released or 
admitted into the hospital for further treatment.

Level 2 and Level 3 patients must first sign in with an Administrative 
Clerk. After signing in, their condition is assessed by a Triage Nurse, 
and then they are taken to an ER room. Once in the room, Level 2 and 
Level 3 patients must first complete their registration documents, then 
go on to receive their treatment, and, finally, they are either released or 
admitted into the hospital for further treatment.

The ER treatment process consists of the following activities:

1.  A secondary assessment performed by a nurse and a physician;

2.  Laboratory tests, if necessary, performed by a patient care technician 
(PCT);

3.  The treatment itself, performed by a nurse and a physician.
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Figure 3.3  High-level process view.
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The registration process consists of the following activities:

1.  A data collection activity performed by an Administrative Clerk;

2.  An additional data collection activity performed by an Administrative 
Clerk, in case the patient has Worker’s Compensation Insurance;

3.  A printing of the patient’s medical chart for future reference, also 
performed by an Administrative Clerk.

Finally, 90% of all patients are released from the ER, while the remain-
ing 10% are admitted into the hospital for further treatment. The final 
release/hospital admission process consists of the following activities:

1.  In case of release, either a nurse or a PCT fills out the release papers 
(based on availability).

2.  In case of admission into the hospital, an Administrative Clerk fills 
out the patient’s admission papers. The patient must then wait for a 
hospital bed to become available. The time until a bed is available is 
handled by an empirical probability distribution. Finally, the patient 
is transferred to the hospital bed.

The ER has the following resources:

•  Nurses

•  Physicians

•  PCTs

•  Administrative Clerks

•  ER rooms

In addition, the ER has one Triage Nurse and one Charge Nurse at all times.
Due to cost and layout considerations, hospital administrators have 

determined that the staffing level must not exceed seven nurses, three 
physicians, four PCTs, and four Administrative Clerks. Further, the ER 
has 20 rooms available; however, using fewer rooms would be benefi-
cial, since the additional space could be used more profitably by other 
departments in the hospital. The hospital wants to find the configuration 
of the above resources that minimizes the total asset cost.

The asset cost includes the staff’s hourly wages and the fixed cost 
of each ER room used. We must also make sure that, on average, Level 
1 patients do not spend more than 2.4 hours in the ER. This can be 
formulated as an optimization problem, as follows:
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Minimize the expected total asset cost subject to the following 
constraints:

•  Average Level 1 cycle time is less than or equal to 2.4 hours.

•  Nurses are greater than or equal to 1 and less than or equal to 7.

•  Physicians are greater than or equal to 1 and less than or equal to 3.

•  PCTs are greater than or equal to 1 and less than or equal to 4.

•  Administrative Clerks are greater than or equal to 1 and less than or 
equal to 4.

•  ER rooms are greater than or equal to 1 and less than or equal to 20.

This is a relatively simple problem in terms of size: six variables and 
six constraints. However, if we were to rely solely on simulation to 
solve this problem, even after the hospital administrators have nar-
rowed down our choices to the above limits, we would have to 
perform 7 × 3 × 4 × 4 × 20 = 6720 experiments. If we want a sample 
size of, say, at least 30 runs per trial solution in order to obtain 
the desired level of precision, then each experiment would take about 
2 minutes.1 This means that a complete enumeration of all possible 
solutions would take approximately 13,400 minutes, or about 28 
working days. This is obviously too long a duration for finding a 
solution.

In order to solve this problem in a reasonable amount of time, 
we  used the OptQuest® optimization technology integrated with 
SIMPROCESS (see www.OptTek.com for more information about 
the OptQuest optimizer). As a base case, we decided to use the upper 
resource limits provided by hospital administrators, to get a reason-
ably good initial solution. This configuration yielded an expected 
total asset cost of $36,840, and a Level 1 patient cycle time of 
1.91 hours.

Once we set up the problem in OptQuest, we ran it for 100 itera-
tions (experiments), and 5 runs per iteration (each run simulates 5 days 
of the ER operation). Given these parameters, the best solution found at 
iteration 21 was the following:

Nurses Physicians PCTs Administrative Clerks ER rooms

4 2 3 3 12

1  We timed one experiment with 30 runs on a Dell Dimension 8100, with an Intel Pentium 
4 processor @ 1700 MHz.

http://www.OptTek.com
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The expected total asset cost for this configuration came out to $25,250 
(a 31% improvement over the base case), and the average Level 1 
patient cycle time was 2.17 hours. However, looking at the probability 
distribution for cycle time, we see that there is still a 45% chance that 
the Level 1 patient cycle time will be greater than 2.40 hours.

After obtaining this solution, we redesigned some features of the 
current model to improve the cycle time of Level 1 patients even further. 
In the proposed model, we assume that Level 1 patients can go through 
the treatment process and the registration process in parallel. That is, we 
assume that while the patient is undergoing treatment, the registration 
process is being done by a surrogate or whoever is accompanying the 
patient. If the patient’s condition is very critical, then someone else can 
provide the registration data; however, if the patient’s condition allows 
it, then the patient can provide the registration data during treatment. 
Figure  3.4 shows the model with this change. By implementing this 
change in the optimized model, we now obtain an average Level 1 
patient cycle time of 1.98 (a 12% improvement), with only a 30% 
chance that the Level 1 patient cycle time will be greater than 2.40 hours.

Upon re-optimizing this new model, given the change that we imple-
mented, we obtain a new optimal solution in 28 iterations as follows:

Nurses Physicians PCTs Administrative Clerks ER rooms

4 2 2 2 9

This configuration yields an expected total asset cost of $24,574, and an 
average Level 1 patient cycle time of 1.94 hours, with less than a 5% prob-
ability that the cycle time will exceed 2.40 hours. By using optimization, 
we were able to find a very high-quality solution in less than 30 minutes, 
which provides a very acceptable level of risk in terms of service quality 
(i.e., cycle time). In addition, we were able to make changes to improve 
the model and re-optimize to find a better configuration. It is highly 
unlikely that this solution would be found relying solely on simulation.

Selecting the Best Staffing Level for a Personal 
Claims Process at an Insurance Company

The following example is based on a model provided by SIMUL8 
Corporation. We used the SIMUL8 simulation tool for the simulation, 
and OptQuest for SIMUL8 for the optimization.
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A personal claims department in an insurance company handles 
claims made by their clients. Claims arrive according to a Poisson pro-
cess, with a mean inter-arrival time of 5 minutes. Figure 3.5 is a process 
map that depicts the personal claims process in terms of swim lanes.

The first lane corresponds to work done by a claims handler (CH) 
located at the client’s local service center. Upon arrival of a claim, an 
assessor determines if the client has a valid policy. If not (5% of all 
cases), then the case is terminated; otherwise (95% of all cases), the 
assessor enters the appropriate information in the system.

In the second lane, an assessor located at the service center (ASC) 
receives the information from the claims handler. The assessor first 
determines if the claim is covered by the client’s policy. If not (5% of all 
cases), the case is terminated; otherwise (95% of all cases), the assessor 
approves the preliminary estimate of the damage. If the damage exceeds 
$2000 (35% of all cases), the claim is sent to an assessor at headquarters 
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Figure 3.5  Map of personal claims process.
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for approval; otherwise (65% of all cases), it is sent directly to a senior 
assessor (SA).

Lane 3 corresponds to the assessor at headquarters (AHQ). The 
assessor first authorizes the on-site investigation of the accident. If the 
investigation determines that the incident is not covered by the client’s 
policy (2% of all cases), then the case is terminated; otherwise (98% of 
all cases), a final price is determined and the case is approved.

In lane 4, the SA receives the claim, checks it for completeness, and 
provides the final approval. Once the claim is approved, it is sent to 
document control (DC).

DC, in lane 5, is in charge of processing the payment to the client, 
closing the case and, finally, filing the claim.

The objective here is to find staffing levels for each of the five 
resource types, in order to minimize headcount, while keeping average 
throughput above 1500 claims during 4 weeks. Each resource type has 
a maximum limit of 20 people, and the overall headcount in the process 
cannot exceed 90. The formulation of the optimization problem is as 
follows:

Minimize the Headcount Subject to the following constraints:

•  Average Throughput is equal to or greater than 1500.

•  Claims handlers are greater than or equal to 1 and less than or equal 
to 20.

•  Service center assessors are greater than or equal to 1 and less than or 
equal to 20.

•  Headquarter assessors are greater than or equal to 1 and less than or 
equal to 20.

•  SAs are greater than or equal to 1 and less than or equal to 20.

•  DCs are greater than or equal to 1 and less than or equal to 20.

•  The overall headcount cannot exceed 90.

Once again, a what-if analysis of all the possible solutions to this 
problem would require examining and evaluating an unmanageably 
large number of scenarios—in this case, about 800,000. Optimization is 
necessary to find a good solution efficiently. A good starting point can 
probably be established by consulting with experienced managers in the 
insurance claims area, based on the expected demand of claims. We use 
OptQuest to optimize the staffing levels of this system. We run OptQuest 
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for 100 iterations and 5 simulation runs per iteration. Table 3.2 shows a 
summary of the results, and Figure 3.6 shows the graph depicting the 
search of OptQuest for Simul8 toward improving solutions.

The performance graph shows the value of the objective (in this 
case, headcount) on the y-axis, and the number of iterations on the x-axis. 
The performance curve (indicated in green) shows only improving 
solutions.

Since some of the solutions obtained from our optimization are 
relatively close in terms of throughput and cycle time, an analyst may 
want to reevaluate a set of the best n solutions to assess the precision of 
the results. In Table 3.2, we present the best 5 solutions obtained from 
our OptQuest run, by conducting an experiment of 20 trials for each 
solution. The information can now be given to a process manager. The 
manager can analyze the trade-offs between headcount and throughput 
or cycle time, to decide which configuration best aligns with service 
levels and process goals.

For example, it can be noted that solutions 1–3 are statistically the 
same. Solutions 4 and 5 are significantly better than 1–3 in terms of 
headcount, throughput, and cycle time; so, the analyst should pick one 
of these. Which one is better? We re-ran 60 trials for each of these two 
solutions, to obtain a 95% confidence interval for each of these 

Figure 3.6  Performance graph for the optimization of the personal claims process.
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measures. In both cases, the confidence intervals overlap. In fact, the 
resulting confidence intervals for throughput are almost identical; the 
intervals for cycle time are also very close, with the expected cycle time 
for Solution 4 (503 minutes) about 1.4% lower than that for Solution 5 
(510 minutes). The analyst should consider if the savings obtained from 
having one fewer assessor justifies such a small difference in cycle 
time. If so, then solution 5 should be chosen.

Conclusions

Practically every real-world situation involves uncertainty and risk, 
creating a need for optimization methods that can handle uncertainty in 
model data and input parameters. The combination of two popular 
methods, optimization and simulation, has made it possible to over-
come limitations of classical optimization approaches for dealing with 
uncertainty, where the goal is to find high-quality solutions that are 
feasible under as many scenarios as possible. Classical methods by 
themselves are unable to handle problems involving moderately large 
numbers of decision variables and constraints, or involving significant 
degrees of uncertainty and complexity. In these cases, simulation opti-
mization is becoming the method of choice.

The combination of simulation and optimization affords all the 
flexibility of the simulation engine in terms of defining a variety of 
performance measures as desired by the decision maker. In addition, as 
we demonstrate through illustrative examples in project portfolio selec-
tion, emergency room operation and insurance claims staffing, modern 
optimization engines can effectively enforce requirements on one or 
more outputs from the simulation. Finally, simulation optimization pro-
duces results that can be conveyed and grasped in an intuitive manner, 
providing an especially useful tool for identifying improved business 
decisions under risk and uncertainty.
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CHAPTER	 4

Optimal Learning in 
Business Decisions

Ilya O. Ryzhov
Robert H. Smith School of Business, University of Maryland, 
College Park, MD, USA

Introduction

We know that business decisions are made under uncertainty. The demand 
for a product at a retail store varies from one week to the next,  and 
the exact weekly sales cannot be known in advance. Customer response 
to a new product or service, offered, for example, through a website, is 
similarly uncertain. Even if a reliable forecast of sales is available, such 
a forecast will typically model some sort of average or aggregate 
behavior across a population of customers. Any individual customer is 
unlikely to behave exactly according to the forecast. Even the supply of 
the product may be uncertain. For example, a small electricity operator 
may generate electricity from a wind farm and sell it back to the grid; 
the firm’s revenue thus depends on volatile wind speeds. A manufac-
turer may contract with suppliers that experience occasional shortages.

Management science and business analytics offer many ways to 
deal with uncertainty. Chapter 3 showed how simulation–optimization 
can be deployed to optimize decisions when the causal relation between 
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controllable inputs and probabilities of outcomes can be quantified 
and  simulated. Sashihara (2011) describes many case applications in 
such business problems as logistics, pricing, marketing, and new 
product design, combining (i) statistical forecasts of the future, based 
on historical data collected from the field; (ii) rigorous models for 
decision-making; and (iii) probabilistic estimates of the likelihood of 
different future scenarios. In this chapter, we focus on a different point, 
namely, that these decisions also involve the additional dimension of 
“uncertainty about uncertainty,” or environmental uncertainty. Simply 
put, although we may develop models that consider uncertainty in cus-
tomer demand or product supply, we have no way of knowing whether 
these models are completely accurate. In fact, most models have some 
degree of inaccuracy. The underlying business processes may also 
change over time; our forecast of demand may change completely as 
new data come in. Our belief about the “average demand” or “best 
price” for a product will be repeatedly adjusted to reflect new 
information. However, high-impact decisions often have to be made 
with a limited amount of information available. For example, a company 
seeking to do business with suppliers from developing economies faces 
a considerable amount of uncertainty about the suppliers’ reliability, 
often without a great deal of historical data available. We may wish to 
consider the likelihood of a shortage as a factor in our decision to sign 
a contract with such a supplier, but we do not even know what the 
likelihood is, to say nothing of when the shortage might occur.

A manager making decisions in an uncertain environment faces a 
double challenge. First, the decision should consider multiple future sce-
narios and account for the possibility of unplanned shortages, downtime, 
fluctuations in demand, and so forth. This aspect can be considered by 
applying widely used analytical techniques, such as forecasts or models 
based on historical data. Then, once such models have been developed, 
the decision should be additionally adjusted to account for the chance 
that the model itself may be wrong or, alternately, that the model may 
itself be subject to change over time. If we have a way to anticipate such 
changes before they occur, our decisions will come closer to optimizing 
the real-world process, rather than just our current model of that process. 
The field of optimal learning studies exactly this challenge: how to move 
from experience-based decisions, which reflect the sum total of our 
current knowledge about a problem, to anticipatory decisions that con-
sider the potential for error or change in that knowledge.
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Anticipatory decisions are entering current business practice. A good 
example is e-commerce, where new information about customers is 
collected around the clock. When you shop online, you may notice that 
the price of a product changes frequently, sometimes multiple times per 
day, even for low-volume products (such as textbooks) that may spend 
a long time in inventory. New orders are not arriving often enough to 
change the demand forecast or the projected revenue curve so quickly 
or drastically. Rather, the changing prices reflect the retailer’s uncer-
tainty about customer response. Demand is not necessarily expected to 
spike after a price drop, but the retailer chooses to experiment with low 
prices, simply to learn more about customer reactions. Likewise, the 
retailer may nudge prices upward—historical data may suggest that 
demand will decrease, but the retailer would like to obtain more precise 
information about exactly which prices customers are willing to accept.

The retailer does not necessarily expect to improve sales immedi-
ately as a result of this type of experimentation. We may try a higher 
price, only to find that demand falls even more than we predicted. 
Alternately, lower prices may not increase sales by enough to compen-
sate for the lost revenue. However, the results of these experiments feed 
back into the retailer’s databases and models, increase the precision of 
future forecasts, and generally make it possible to make more informed 
pricing decisions that lead to greater revenues later—eventually, enough 
to make up for the cost of experimentation (relatively low in e-com-
merce, due to the ease of implementing a price change). The key idea is 
that information possesses inherent economic value. More information 
now leads to better decisions later. This long-term improvement can be 
used to valuate the experiment and determine whether it was worth the 
cost. The essence of anticipatory decision-making is to gauge this 
improvement before the experiment is conducted and make an informed 
trade-off between immediate economic benefit (lost revenues now) and 
long-term performance (improved revenues later).

Once we acknowledge that (i) any model or forecast is inaccurate 
and (ii) new information is valuable for its potential to improve the 
model, it is easy to think of many other situations where environmental 
uncertainty plays an important role. Below are some additional exam-
ples of high-impact decisions subject to uncertainty about uncertainty:

•  Marketing. The field of marketing analytics studies the extraction of 
information from customer data. By relating customer response to 
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different design attributes of marketing campaigns (e.g., the medium 
used, whether mail, phone, or online; the format of a piece of mail or the 
length of a phone call; the use of particular images, slogans, or text in 
an advertisement), we can predict how well a particular advertising 
campaign will do with different segments of the customer base. Such 
forecasts can be used to guide the design of the next campaign. However, 
even large amounts of data can produce ambiguous or contradictory 
forecasts. To obtain more precise information about a customer 
segment, a company may test a particular design attribute on a small 
portion of the customer population, before launching the campaign.

•  New product design. The profit margin and demand for a new product 
is unknown, so it is unclear how many units should be produced for a 
first run or which design should be selected from among a few com-
peting alternatives. However, we can run test markets on a few designs 
to get a better sense of the customer response. Each test market costs 
both time and money, so we may not be able to test every design 
or  even to get a precise estimate for the designs that we do test. 
Nonetheless, if properly used, the test markets can improve the per-
formance of the product upon launch.

•  Global operations. The performance of a supply chain is subject to 
uncertainty about the reliability of suppliers in developing economies 
(Wang, Gilland, and Tomlin, 2010). By signing a contract with one 
supplier, we can learn more about the supplier’s service reliability, 
but the costs of an uninformed decision can be high. Still, trying one 
supplier may also provide information about other suppliers in the 
same region or offering similar products.

•  Calibrating a design. The operations of a fleet of aircraft (flight sched-
ules, repair frequencies, customer demands, etc.) can be modeled 
using a computer simulation. The simulation outputs statistics such as 
the amount of unsatisfied demand or the time spent on the ground. 
These statistics are affected by different “rule-based” decision-making 
strategies, such as a penalty or opportunity cost for delayed flights 
or  a cap on the number of aircraft to keep at a single airport. By 
experimenting with these different settings, a better rule can be found.

•  Clinical trials. In clinical trials (or any other setting where new and 
risky technologies are researched), it is necessary to screen out a large 
number of unpromising experimental drug compounds and identify 
a  small shortlist of candidates. Then, it is necessary to conduct 
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additional experiments on the most promising compounds to eventu-
ally select the best, which is put into production. The cost of a single 
experiment on one candidate may be quite high; for example, it may 
be necessary to monitor the health condition of a group of mice for a 
week. It is impossible to test every possible compound, which makes 
it important to allocate the experiments wisely in order to maximize 
the chances of finding the best (Negoescu, Frazier, and Powell, 2011).

•  Operational flexibility. An industrial facility has high electricity con-
sumption. During a spike in the price of electricity, it is actually benefi-
cial to ramp down operations (ideally to stop altogether) to reduce 
energy costs until the spike passes. Ramping up takes time, so we have 
to predict the spike before it occurs. If our prediction is correct, the cost 
savings will be significant; if not, we will waste electricity in ramping 
back up as well as delay production. Energy prices are highly volatile, 
and existing price models and forecasts often have low accuracy.

•  Hiring and retention. Suppose that we are hiring a large number of 
workers for a manufacturing or service operation. As workers master 
various tasks, their performance tends to improve over time. If a new 
worker’s performance is lower than that of other workers, it may be 
that the worker is insufficiently qualified for the job, but it may also 
be that the worker simply needs more time to improve. Firing the 
employee means that the firm will incur additional costs for hiring 
and training a replacement, so the decision to fire or retain must 
consider the worker’s potential for future improvement (Arlotto, 
Chick, and Gans, 2010).

Figure 4.1 illustrates the relationship between modeling, decision-making, 
and information. The first step toward anticipatory decision-making is 
to develop a model for knowledge representation. We may also refer 

Action

Modeling
Data

analytics
Knowledge

representation
Decision
making

Feedback
Figure 4.1  Process diagram for anticipatory decision-making.
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to this model by other names such as “state of knowledge,” “belief model,” 
or simply “beliefs.” As the name implies, this model encompasses our 
current understanding of the problem we are solving, based on the 
most recent historical data available. A substantial amount of prior 
work goes into designing this model, represented by “Data analytics” 
in the diagram. For example, in a marketing application, this step 
would consist of mining historical data, identifying customer segments, 
screening out unimportant campaign and customer attributes, and using 
statistical regression or other methods to estimate the effects of impor-
tant attributes. Inherent in the belief model should be some sort of 
“margin for error,” a measure of how likely the estimated effects are to 
be inaccurate.

The next step is to use the knowledge representation to take an 
action, that is, to use our current understanding of the problem to make 
a decision. It is important for the knowledge representation to be as 
compact as possible. We need a simple way to express our beliefs about 
the problem, so that we may translate them to a rule for making decisions 
or interface them with optimization software to obtain a recommenda-
tion for the next decision. Either way, once the action is taken, the 
problem briefly passes out of our control, and we observe feedback 
from the field. For example, if the action is to launch an advertising 
campaign, the feedback is a measure of customer response; if the action 
is to adjust a price, the feedback is the resulting sales. The feedback 
need not be precise. We do not necessarily know if sales dropped 
because our price was too high or simply due to random fluctuations in 
the number of people shopping for the product on that day. All we can 
observe are the sales figures themselves.

Finally, once we receive the feedback, we adjust our beliefs about 
the problem to account for it. If a higher price led to a larger drop in 
sales than our model predicted, the model should be adjusted to make 
the forecast less optimistic. This modified or improved model can then 
be used to guide the next decision, leading to a constant loop between 
beliefs, decisions, and feedback. This loop implicitly assumes that we 
have a way to efficiently update the model to account for new knowledge. 
In this chapter, we will discuss two such “learning models” that are 
especially easy to update with new information. In general, it is impor-
tant to make sure that beliefs can be represented by a small set of 
numbers (such as means and standard deviations of forecasts) that can 
then be easily updated.
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So far, we have described experience-based decision-making, 
where we learn from our mistakes and continually update our beliefs 
with new information. The key to anticipatory decision-making is to 
acknowledge and account for the potential feedback before taking the 
next action. Our next decision should not only depend on the current 
beliefs but also on the potential of the decision to change those future 
beliefs. To put it a different way, our decision should look ahead to the 
future, more accurate belief model that will come about as a result of 
the decision. We should not only maximize the benefit of the next 
decision but also work to improve the model and put ourselves into a 
more advantageous position for the next round.

In the rest of this chapter, we will explore two examples where 
anticipatory decisions offer significant improvements over experi-
ence-based decisions. First, we discuss a newsvendor problem, a 
simple example from revenue management where the demand for 
a product is subject to environmental uncertainty. We show how this 
environmental uncertainty can be compactly represented and updated 
and then leveraged to improve long-term profits. Next, we consider 
the “selection” problem, where the goal is to identify the best among 
a fairly small set of decisions, such as supply contracts, operational 
policies, or R&D projects. In this problem, the cost of implementing 
an alternative (such as developing a research project and putting it 
into production) is high, making it important to collect more 
information before committing to a final decision. Again, we show 
how our uncertainty about the performance of different alternatives 
can be represented and updated with feedback from experiments 
(whether in the field or using a computer simulation). Then, we show 
how, in this setting, the potential of an experiment to improve our 
implementation decision can be quantified and used to determine how 
the experimental budget should be spent. Finally, we apply this 
method to the problem of selecting the best rule-based operational 
policy for managing inventory.

While the mathematical models in these examples will not neces-
sarily apply to every business problem, they do offer some general 
insights that also hold for other models. Most important is the idea that 
uncertainty can be valuable! Although uncertainty limits our ability to 
maximize profits or minimize costs, it also offers the potential for 
improvement. A decision that seems to offer poor performance, but that 
exhibits a high degree of uncertainty is more likely to be better than we 
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think. It may even be better than what seems to be the best decision at 
the moment—we may only need to invest a portion of our information 
budget to make sure.

The following sections include occasional references to other reading, 
much of it substantially more technical than this chapter. Readers 
interested in the big picture should feel free to skip these references, 
though some of them consider much more complex learning problems 
than those discussed here. Powell and Ryzhov (2012) present a more 
technical overview of the field.

Optimal Learning in the Newsvendor 
Problem

Our first example of environmental uncertainty in decision-making 
will consider the newsvendor problem, a classic model in operations 
management (Stevenson, 2008). Imagine a small firm selling a single 
product. A manager must decide how many units of the product should 
be produced; then, a random demand is observed and the firm sells as 
many units as possible. If the demand is higher than the production 
quantity, the entire supply can be sold, but there is an opportunity cost 
since profits could have been higher if we had stocked enough to satisfy 
all the demand. If the demand is lower than the production quantity, the 
firm is able to satisfy every customer but is left with extra inventory. 
For simplicity and to emphasize the trade-offs involved, we suppose 
that extra inventory is unsalvageable.1 Because demand is random, it is 
impossible to predict just the right production quantity for every 
situation. However, the manager can make a decision that will work 
well on average.

Suppose that the marginal production cost of the product is c dollars 
per unit, while the selling price is p. The quantity chosen by the man-
ager is represented by q, while D denotes the random demand. If we 
observe D = d, the profit realized by the firm is given by

	 q d p q d cq, ,min . 	 (4.1)

1  The name “newsvendor” comes from an analogy to a newsstand—leftover copies of 
today’s paper are essentially worthless and cannot be stored for sale at a future date.
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The quantity min(q, d) represents the most that we can sell: either we 
stocked less than the demand (and sold all of it), or the demand was 
smaller than we anticipated, and we ended up with extra inventory.

Of course, (4.1) will give a different result depending on the 
observed value d, so this equation is not useful for actually choosing 
an order quantity. However, we can calculate the expected profit 
realized by the firm as an average over all possible values d of D. 
We write this as

	
q pE q D cqmin ,, 	 (4.2)

a quantity that can be calculated exactly if we make some assumptions 
about the probability distribution of D. To give a single example, sup-
pose that D follows an exponential distribution with rate r. Recall that 
the exponential distribution is used to model random variables whose 
values are positive (as is the case for demand) and continuous (which can 
happen if fractional units of the product are possible, such as 2.3 pounds 
of sugar). The solid line in Figure 4.2a shows the probability density of 
an exponential distribution with rate r = 2. Values with higher density are 
more likely to be observed; under this distribution, the random variable 
tends to take on small values, but very large values can also be observed 
occasionally. The average or expected value of D is E(D) = 1/r, so larger 
rates (somewhat counterintuitively) lead to smaller demands.

By integrating (4.2) over the exponential probability density, we 
obtain

	
q

p

r
e cqrq1 , 	 (4.3)

an expression that only depends on the chosen production quantity. 
Again, while the actual realized profit will depend on the exact demand 
that we will ultimately observe, (4.3) represents a forecast or an 
expectation of the profit for a given production quantity q. The “ran-
domness” is removed from this expression because we are considering 
an average over all possible demands. After some more calculus, we 
can find

	
q

r

p
c

* log ,
1

	 (4.4)
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the production quantity that maximizes the profit function in (4.3). 
While this quantity is not guaranteed to perform well in every scenario, 
a risk-neutral manager would choose this decision because it produces 
the best performance on average.

So where does the idea of learning come into play? Our analysis 
has made the assumption that D is exponentially distributed with rate r. 
Even supposing that we agree with the overall choice of an exponential 
distribution, it is unlikely that the value of r used in our calculation is 
actually the true rate. It is more likely that we are working with some 
sort of guess or estimate of the rate, possibly based on our prior experi-
ence. For example, suppose that we have some historical demand data 
D

1
, D

2
, …, D

k
 for k planning periods. A natural approach would be to use

	

1 1

r

D D

k
k

, 	 (4.5)

that is, to assume that the true average demand 1/r can be accurately 
represented by the sample average of the k previous demands that we 
have in our data. We could then plug (4.5) into (4.4) and arrive at

	
q

D D

k

p
c

kPE 1 

log , 	 (4.6)

where the notation PE stands for “point estimate,” representing the fact 
that we are using a historical average as a direct stand-in for the true 
demand rate.

Figure 4.2  Comparison of (a) probability densities and (b) expected profit curves for 
newsvendor models under exponential and gamma-exponential demand assumptions.
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The main insight of optimal learning is that there is more uncer-
tainty in this problem than there seems to be. We are uncertain about 
the random demand and therefore model the demand using a proba-
bility distribution. What is more, however, we are uncertain about the 
probability distribution itself. Rather than assume we know r, as we 
do in (4.5), we will now model r itself as a random variable. The “ran-
domness” of r represents our uncertainty about the exact value of the 
rate: although we may believe that (4.5) is accurate, the exact value of 
r may be different. However, we should not discount the historical 
data entirely: we believe that the true value of r is more likely to be 
close to the prediction made in (4.5), although we may allow for the 
possibility that the historical data is very inaccurate. These concerns 
can be accommodated by choosing a good probability distribution for 
r. In this example, we will choose a gamma distribution with two 
parameters:

a k

b D Dk

,

.1 

Roughly, the first parameter a represents the amount of prior data that 
we have, and the second parameter b represents the total demand 
observed across the data. The expected value of r, under the assumption 
of a gamma distribution, is

E r
a

b

k

D Dk1 

,

which seems to be in line with (4.5). We still think that the reciprocal of 
the sample average computed from the data is the most likely value of 
r, but we allow the possibility of other scenarios.

Once we make r into a random variable, however, we have to revisit 
the distribution of the demand D. In effect, we are saying that if r is 
known, then D follows an exponential distribution (i.e., the demand is 
“conditionally exponential”). If we consider the uncertainty about the 
demand together with the uncertainty about the demand rate r, the 
distribution of D is modified. The dashed line in Figure 4.2a shows this 
modified density under the assumption that r follows a gamma distri-
bution with a = 2, b = 1. Notice that, in this case, E(r) = 2, whereas the 
solid line assumes that r = 2. However, there is a difference between 
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assuming that r is exactly equal to some value and assuming that r is 
equal to that value on average. By allowing r to be random, we see that 
larger values of the observed demand (1.5 and larger) are now slightly 
more likely to occur (have higher probability density) than they were 
when r was fixed.

Since the distribution of D has changed, the expected profit 
calculation is also different (and more difficult). Under the gamma 
assumptions on r, (4.3) changes to

	

q p
b

a

b

b q
cq

a

1
1

1

, 	 (4.7)

and the profit-maximizing price becomes

	

q b
p
c

a
GD

1

1 , 	 (4.8)

where GD stands for “gamma distribution,” representing the fact that 
our model now includes uncertainty about r.

Figure  4.2b compares the expected profit curves for r = 2 and r 
random with E(r) = 2. When r is unknown, the maximum possible 
profits are expected to be higher since large demands are believed to be 
slightly more likely to occur. More importantly, the profit-maximizing 
production quantity is greater when r is random than it is when r is 
known. In fact, it can be shown that this is always true: the GD quantity 
with parameters a and b is always greater than the PE quantity that 
assumes r = a/b. This fact leads us to the first major insight from optimal 
learning: uncertainty invites risk-taking. Increasing the production 
quantity is risky; while we can achieve higher profits if the demand is 
high, there is also a higher chance that we will be stuck with worthless 
inventory. However, if the demand distribution is itself uncertain, there 
is an incentive to adjust the production quantity a bit higher than it 
would be in a certain world, because there is now a chance that the 
demand distribution could be better than we think.

But what is the role of learning in this process? So far, we have 
described how good decisions are affected by the amount of uncer-
tainty experienced by the decision-maker about the problem. Learning 
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occurs, not only when uncertainty has an impact on our decision, but 
when our decision has an impact on this uncertainty. This can happen 
when the firm wishes to maximize profit over multiple planning 
periods and the manager’s beliefs about the demand rate are updated 
with new information. In other words, every time the manager chooses 
a production quantity and observes the subsequent demand, that 
observation will now change the assumed distribution of the demand 
rate r. The next production quantity will then be calculated from (4.8) 
using new, different a and b values. If we are able to observe the exact 
value of the demand, regardless of whether or not we had enough 
inventory to satisfy it, the update is straightforward: we simply 
increase a by 1 (reflecting the fact that we have one new piece of data) 
and add the demand value itself to b. In this case, it is enough to 
recompute (4.8) for each planning period using the most recent set of 
data—since the product cannot be salvaged at the end of a planning 
period, and since we observe the exact demand regardless of how 
much we produce, our production decision today will affect our 
profits for the current planning period, but will have no impact on 
future decisions.

However, it is much more realistic to suppose that we will not get to 
see the exact demand. Rather, we will observe our sales. If we sell 
everything we produce, we know that the actual demand may have been 
higher (i.e., we could have been able to sell more), but we do not know 
exactly how many potential customers we lost. By contrast, if we have 
leftover product at the end of the planning period, we know that our 
sales satisfied all the demand that there was. The difference between 
these two events is known as censored information and turns out to have 
a profound impact on decision-making. If we assume, again, that 
demand is exponentially distributed with rate r, and r itself follows a 
gamma distribution, with parameters a and b, we can use the following 
mechanism, created by Lariviere and Porteus (1999), to learn from 
censored information:

•  Given the current information a and b, choose a production 
quantity q.

•  If we have leftover inventory at the end of the planning period, 
increase a by 1 and add the amount sold to b.

•  If the entire production quantity is sold, add this quantity q to b. Do 
not change a.



96 CHAPTER 4  Optimal Learning in Business Decisions

We do not delve into the mathematical justification for this approach, 
but we briefly describe the intuition. Recall that a represents the amount 
of data that we have, while b represents the total demand that has been 
observed. If we do not sell everything that we produced, we know that 
the demand for that planning period was exactly equal to our sales. We 
thus add the quantity sold (i.e., the demand) to b and increase a by 1 to 
indicate that we have obtained a new piece of data. However, if our 
entire stock is sold, we still add sales to b (as we have observed part of 
the demand, at least), but we do not count this observation as a 
“complete” piece of data and thus do not add it to a.

This seems straightforward, but introduces a serious complication 
into the manager’s decision of choosing a production quantity. As we 
have observed before, large values of q are risky because they lead to a 
higher chance of having worthless leftover product. Now, however, left-
over product is not exactly worthless—the more we produce, the more 
likely we are to get a complete observation of the demand. Such obser-
vations come at a high price, since we cannot sell the extra product, but 
they provide more accurate information about the demand distribution 
and thus can potentially help us make better, more informed decisions 
in future planning periods. In other words, the manager’s decision does 
not only determine the firm’s profits, but it also determines the quality 
of the information collected by the firm. It may therefore be beneficial 
to sacrifice some profit in the short term in order to improve the firm’s 
production strategy over the long term.

Of course, the manager can always use the quantity provided by 
the GD formula in (4.8). However, even this strategy will no longer be 
optimal, because it does not explicitly consider the effect of today’s 
decision on the information that will be available in the future. For 
example, all other things being equal, we should make different 
decisions early on in the planning horizon than at the end. Intuitively, 
we have more freedom to experiment early on—if we are unsuc-
cessful, there will still be many opportunities to make up for it, and if 
we are successful and learn something useful, that information will 
benefit us for a long time to come. It goes without saying that 
day-to-day profits matter even when we are experimenting. An 
extremely poor result early on will be difficult to compensate, even if 
we make good decisions later.

In fact, Lariviere and Porteus (1999) provide a way to compute the 
trade-off between profits and information exactly. To find the best 
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production quantity, the manager needs to know the total number of 
planning periods that should be considered. Let N denote this number. 
For every time period n = 1, …, N, the production quantity is determined 
based on functions B

n
(a) and R

n
(a), computed as follows:

•  For any a, B
N + 1

(a) = R
N + 1

(a) = 0.

•  For n = 1, …, N, we calculate:

B a p R a R a

R a p c ac
B a
c

n n n

n
n

a

1 1

1

1

1 R an 1 1 .

•  The optimal production quantity at time n is given by

q b
B a
cn

n
a

* ,

1

1

where a and b represent the most recent information about r.
Calculating this quantity requires more work: in order to know the 

best decision at time n, we first need to calculate the best decisions for 
all future time periods for a variety of scenarios. However, the calcula-
tion is easy to automate and can be done in a spreadsheet for relatively 
small N. In our discussion, we focus on the implications. Figure 4.3a 
compares the optimal production quantities, in a problem with N = 10 
planning periods, to those obtained from GD and PE, under the same set 
of information. This last detail is crucial—just to demonstrate the con-
cept, we are assuming that the manager always holds the same 
information (represented by a and b), and we only vary the number of 
planning periods remaining. In other words, Figure 4.3a shows how the 
best possible decision changes if we have the same information early 
versus late in the planning horizon. The GD and PE production quan-
tities do not change with the planning period, since both of those 
formulas only seek to maximize one-time profits with no regard for the 
total number of decisions we will have to make. The optimal strategy, 
however, recommends more production early on. Figure 4.3b shows the 
probability of shortage (i.e., the probability that demand will exceed 
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Figure 4.3  Comparison of (a) optimal production quantities and (b) shortage probabili-
ties for different strategies in a problem with 10 planning periods under the same 
information.
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production) for each planning period. If we follow the optimal strategy, 
our higher production will reduce the likelihood of a shortage and 
increase the chance that we will get a complete observation. As we 
move forward in the planning horizon, information becomes less 
valuable; when we make the final decision, information has no value at 
all (because it can no longer be used to improve future decisions), and 
it is optimal to follow GD.

Our discussion reveals an even stronger insight: not only does 
uncertainty invite risk-taking, but so does learning. All else being 
equal, it is beneficial to behave more aggressively early on in the 
planning horizon. This means that we will be more likely—6% more 
likely, in Figure  4.3b—to incur extra costs due to unsalvageable 
leftover product. At the same time, however, we will also be more 
likely to obtain valuable complete demand data that will give us a 
more accurate model for future decisions. As we approach the end of 
the planning horizon, we ramp down our aggressive production 
strategy and place more emphasis on maximizing here-and-now 
profits. All together, this trade-off will produce higher cumulative 
profits in the long run than a strategy that does not look beyond the 
current planning period.

From an analytical point of view, the key aspects of the model can 
be summarized as follows:

•  Probability distributions play a double role in optimal learning. Not 
only do they represent the exogenous information we receive from 
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the field, such as customer demand, but they can also be used to 
model our beliefs about that information. Thus, we model demand 
using one random variable and then place a separate distribution on r, 
a number that characterizes the average demand.

•  Belief distributions add uncertainty. Not only do we have inherent 
uncertainty about the demand from one planning period to the next, 
we have additional uncertainty about the precise distribution of that 
demand. In effect, we have to consider many possible scenarios: in 
each one, the demand is random, but the average demand may be 
slightly higher or lower than our existing estimate.

•  New information changes the belief distribution, a process that itself 
has inherent economic value. By increasing the production quantity, 
we are in some sense investing in better information that can provide 
us with a more accurate demand forecast one planning period later. 
This information can be valuated and traded off against short-term 
economic gains.

Optimal Learning in the Selection Problem

In the newsvendor problem, we collected information about a single 
unknown value, namely, the demand rate r. For our second example, 
we consider a problem where there are multiple unknown values, and 
we can choose which one we want to learn about. This problem is 
known as ranking and selection in the academic literature. In a 
business context, the problem simply consists of choosing a “design 
alternative,” broadly defined, from a small set of candidates. Design 
alternatives represent high-impact managerial decisions such as the 
following:

•  System designs such as facility layouts

•  Long-term contracts with different partners or suppliers

•  Commitments to build new facilities (factories, power plants, etc.) in 
certain locations

•  Investments into new research or technology

•  Hiring or retention policies

•  Other decisions with significant economic or financial impact
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Typically, the set of possible decisions will be small, because decision-
making is occurring at a high level after many obviously inferior 
decisions have already been eliminated. The task of the manager or 
executive is to choose the best among the most promising decisions. In 
other words, we wish to identify the decision with the highest value, 
measured in terms of return (on an investment strategy or research 
program), cost (e.g., of a production or worker retention policy), or pro-
ductivity (of a facility with a certain layout). The difficulty of this task 
comes from the fact that we do not know these values exactly. However, 
we do have access to some prior information about the values. For 
example, manufacturers can construct and use simulation models to 
evaluate the throughput of a factory with a particular layout (Eneyo and 
Pannirselvam, 1998). Simulation has also been used to evaluate the 
potential power output of a new wind farm at a candidate location 
(Marmidis, Lazarou, and Pyrgioti, 2008), a process that often requires 
sophisticated physics-based models of wind speed, wind turbine opera-
tion, and power conversion. In global operations, a belief about the 
reliability of a supplier in a developing economy can be formulated 
based on prior experience with suppliers from the same country or 
region. The potential profitability of a new product can be estimated by 
running one or more preliminary test markets. However, all of these 
methods will only give us an approximation of the true value of a 
decision.

Consider the following simple example with three decisions. For 
each one, we have an estimated value, obtained through simulation, his-
torical data, field studies, or other means. We also have a standard 
deviation, which roughly represents a degree of confidence about the 
estimated value (lower standard deviation means that the estimate is 
more precise). For example, if we have more historical data about one 
particular decision, we will likely have a better understanding of how 
well it performs. Suppose that the three decisions are described by the 
following table.

Alternative Estimated value Standard deviation

1 $5M $0.5M

2 $4.5M $1M

3 $5.5M $0.25M
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If we had to make our final decision based purely on these numbers, we 
would probably prefer the third option: not only do we believe it to be 
the best (a risk-neutral decision-maker would trust the estimated values), 
we also are more confident in this belief than we are for the other two 
decisions. The real challenge appears when we can collect still more 
information before making the final decision. Suppose that one more 
simulation, test market, or field study can be conducted for any one of 
the three options. Our estimate for the alternative we choose will be 
adjusted based on the results (e.g., if alternative #3 performs worse than 
expected, the estimate of $5.5M can be reduced), and then we will make 
the final implementation decision. Which alternative should we learn 
about?

The answer is not at all clear. Should we spend our “information 
budget” on option #3, because it seems to be the most promising? In 
a way, this may be a waste: we already seem to know this alternative 
fairly well, and our experiment may simply tell us what we already 
know. By contrast, option #2 appears to underperform, but it also has 
the highest standard deviation, suggesting that there may be a sizable 
chance that this alternative is much better than we think. The “right” 
alternative to learn about should look reasonably good; if we strongly 
believe that, regardless of what its exact value is, there is no chance 
that it could ever be the best decision, there is no point in learning 
any more about it. At the same time, we should learn about an 
alternative with reasonably high uncertainty; otherwise, there is no 
reason to spend extra time collecting information. Our learning 
decision or measurement decision should thus depend on some 
combination of the alternatives’ estimated values and standard devi-
ations. For example, one simple way to measure the “potential” of an 
alternative is to simply add these two quantities. If v

i
 is the estimated 

value of alternative i and s
i
 is the standard deviation of the estimate, 

we can simply choose to learn about whichever alternative achieves 
the largest value of v

i
 + s

i
. This will favor alternatives that seem to be 

good, but it will also favor alternatives with more uncertainty. Under 
this system, alternative #3 from our example still seems like the best 
option.

The issue here is that there is no clear reason why v
i
 and s

i
 should be 

equally important. A more conservative decision-maker would prefer to 
put more weight on the estimated values. A more exploratory strategy 
would put more weight on the uncertainty, that is, it would prefer to 
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learn about alternatives that are not well understood. To account for 
these different priorities, we can modify our strategy as follows:

•  Calculate the potential of an alternative as

u w v w si i i i i1 ,

where the weight w
i
 is between 0 and 1. The closer w

i
 is to 1, the more 

conservative our decision will be.
•  Learn more about the alternative with the largest potential.

In fact, this simple strategy (known in a slightly different form as 
“interval estimation,” introduced by Kaelbling, 1993) can often be the 
right thing to do. The catch is that the weighting factor w

i
 has to be 

chosen carefully, often through trial and error. There appears to be no 
one value of w

i
 that will always work well; the “right” value depends on 

the estimated values themselves, the amount of uncertainty in our 
problem (if s

i
 is very large for every i, we may need to scale the weight 

up to make sure the estimated values are playing a part in the decision), 
and the precision of the information we are collecting. This last part is 
crucial: if the new information has the potential to significantly reduce 
our uncertainty, we may prefer an alternative with higher s

i
, just to get 

the chance to estimate its value more accurately. However, if the new 
information is unreliable and exhibits a large amount of variation, this 
kind of experimentation will not be as valuable. The exact balance 
between all of these factors is difficult to express using the simple 
weighting rule described earlier.

To develop a more sophisticated approach, we need a clear sense 
of what we are looking for when we collect information. As we have 
discussed, we do not necessarily want to learn more about the 
alternative that seems to be the best (has the highest value of v

i
). 

What we really want is to find an alternative that has high potential, 
not only to be the best, but to change our overall picture about the 
problem. We want to collect information that has high impact—that 
is, information that may cause us to change our plans for the imple-
mentation decision. As we shall see in the following, this can occur 
in two ways.

Figure 4.4 shows probability density curves for the three alterna-
tives in our recurring example. Just as in the newsvendor problem, we 
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model the “true” value of an alternative as a random variable. The ran-
domness here represents our uncertainty about the precise quality of the 
alternative. Thus, if alternative #3 is believed to have a value of $5.5M 
and the standard deviation of this estimate across our historical data is 
$0.25M, we can use a normal distribution with a mean of 5.5 and stan-
dard deviation of 0.25 to model our beliefs about #3. What we are 
saying here is the following:

•  We think that the value of this alternative is $5.5M.

•  The actual return from this alternative may be different, but we think 
that values closer to $5.5M are more likely.

•  There is a chance that our estimate is completely wrong, and the 
actual return may be $1M or $10M, but this is less likely compared 
to values around $5.5M.

A normal distribution easily models all of these statements. The normal 
probability density assigns the most weight to values that are close to 
the mean (i.e., these values are considered to be the most likely). 
However, some weight is still assigned to values that are far away from 
the mean; this weight will be greater if the standard deviation is higher. 
Figure 4.4a shows the normal belief densities for alternatives #1 and #3, 
with estimated values of $5M and $5.5M. The center of the density for 
alternative #1 is smaller than for #3, but the curve overall is wider. In 
fact, belief density #1 assigns a substantial weight to values that are 
greater than 5.5, the center of the other curve. The exact value of this 
weight can be found by calculating the area of the blue region in 

Figure 4.4  Evaluation of the potential of (a) alternative #1 and (b) alternative #2 against 
the current best option.
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Figure 4.4a. Suppose that V
1
 is normally distributed with a mean of 5 

and standard deviation of 0.5, V
2
 is normal with a mean of 4.5 and stan-

dard deviation of 1, and V
3
 is normal with a mean of 5.5 and standard 

deviation of 0.25. The probability we are interested in is

P V P Z P Z1 5 5
5 5 5

0 5
1 0 1587.

.

.
. ,

where Z is a standard normal (mean 0, variance 1) random variable.
For alternative #2, the probability that its true value is above 5.5 

will be the same, just because of the way we have set up the numbers in 
this example. We can calculate

P V P Z P Z2 5 5
5 5 4 5

1
1 0 1587.

. .
. .

However, we can observe from Figure 4.4b that belief density #2 puts 
more weight on larger values than density #1. For example, the proba-
bility that the value of #2 is above 6.5 is larger than the analogous 
probability for #1. Thus, both #1 and #2 have the same probability of 
being better than #3, but the magnitude of this improvement (if it 
occurs) will tend to be greater for alternative #2. Thus, although we cur-
rently think that #1 is better than #2, it is actually #2 that has the highest 
potential for improvement.

There is also one more way in which new information has the 
potential to change our beliefs about the alternatives. We could choose 
to learn about #3 and find that it performs much worse than expected, to 
the point where #1 begins to look like a better option. The probability 
that this will occur is

P V P Z P Z3 5
5 5 5

0 25
2 0 0228

.

.
. .

Note that our decision will only change if the value of #3 turns out to be 
smaller than 5. If our estimate for #3 goes down to 5.25, this will affect our 
belief about the return on alternative #3, but we will still continue to believe 
that #3 is better than the others. Likewise, if we learn about alternative #1, 
our decision will only change if our beliefs about #1 go over 5.5. This in 
itself is a major insight of optimal learning: new information is only 
valuable if it changes our decision, and furthermore, the value of 
information is greater if it is more likely to change our decision.
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Each of the three probabilities calculated earlier describes a scenario 
that changes our beliefs about which alternative is the best. In the first 
two cases, alternative #1 or #2 performs so well that it begins to outpace 
#3. In the last case, alternative #3 performs so poorly that #1 becomes 
the best. In all three cases, the potential of an alternative to change our 
beliefs about the problem depends on how it compares to the best of the 
rest. An alternative that is not currently our top choice should be evalu-
ated based on how likely it is to improve on that choice. The top choice 
itself should be compared to the second best. To formalize this concept, 
we define

	
d v vi i j i jmax 	 (4.9)

to be the amount of change in our beliefs about alternative i needed in 
order to change our decision. The maximum in (4.9) represents the best 
of the rest, that is, the highest estimated value among all alternatives 
other than i. For our example, we can calculate

d v v

d v v

d v v

1 1 3

2 2 3

3 3 1

0 5

1

0 5

.

.

as before. Notice that for alternatives #3 and #1 (currently believed to 
be the best and second best), the needed amount of change is the 
same: either our estimate for #1 should increase by 0.5 and go above 
#3, or our estimate for #3 should decrease by 0.5 and go below #1. As 
the name implies, if the needed amount of change for alternative i is 
small; learning about this alternative is more likely to change our 
decision.

However, as we discussed earlier, alternative #2 may have a higher 
information potential than #1, even though the needed amount of change 
is greater for #2. To formalize this concept, we introduce a measure of 
the accuracy of the new information we collect. Define the uncertainty 
reduction for alternative i to be

	
s s si i i

2 2 2post , 	 (4.10)

where s
i
 is the standard deviation (uncertainty) of our current beliefs 

about i and si
post  is the new uncertainty about alternative i resulting from 
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the new information. By convention, uncertainty is usually measured 
using the square of the standard deviation (variance). Then, the 
difference between these two variances is precisely the amount by 
which the new information reduces uncertainty.

We have not talked about si
post  thus far, and we cannot calculate it 

from the numbers given in our example. This quantity is an additional 
facet of the problem that may have to be estimated by the decision-
maker. Consider the following example. For alternative #1, our estimate 
is equal to 5 with a standard deviation of 0.5. Recall that for normal 
distributions, a 95% confidence interval for the true value can be con-
structed by taking

m si i2 ,

so we are 95% confident that the true value is within $1M of the current 
estimate of $5M. Suppose that the new information (field study, simula-
tion experiment, test market, etc.) can cut this error margin in half: with 
the new information, the true value will be within $0.5M of the new 
estimate, whatever that new estimate will be. Then, s1 0 25post .  and

s s s1
2

1
2

1

2
0 1875post . .

Similarly, for alternative #2, the standard deviation of our beliefs is 
$1M, resulting in a margin of error of plus or minus $2M. Suppose 
that a new experiment on alternative #2 can cut this in half; then, 
s2 0 5post .  and

s s s2
2

2
2

2

2
0 75post . .

In general, if we put the same amount of effort and resources into col-
lecting information, we will achieve more uncertainty reduction about 
alternatives whose standard deviation is higher. Intuitively, a small 
amount of field data about a new product or design, for which historical 
data were unavailable, will have more impact than the same amount of 
field data about a product with a long history.

If we think about uncertainty reduction in terms of the “margin for 
error” in our beliefs before and after the new information, we can then 
use (4.10) to quickly calculate si

2 . As a special case, suppose that we 
are able to learn the exact value of alternative i from the experiment 
(i.e., the new information has perfect accuracy). In this case, we 
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eliminate all of our uncertainty about that alternative, so the variance 
reduction is simply given by

	 s si i
2 2 . 	 (4.11)

In practice, we would use (4.11) in situations where we place a high 
level of trust in the accuracy of the information we collect and believe 
that the margin of error is so small as to be negligible.

We now combine (4.9) and (4.10) to define the normalized change

	
d

d

si
i

i

. 	 (4.12)

This quantity compensates a large amount of needed change by the 
quality of new information. Essentially, if the quality of our experiment 
is high, it will be easier to discover whether an alternative is signifi-
cantly better or worse than we thought. For our example, we have

d

d

1

2

0 5

0 1875
2 67

1

0 75
1 33

.

.
.

.
. .

Although the needed amount of change is greater for #2, the normalized 
change is actually smaller, meaning that learning about #2 will be more 
likely to change our decision.

Finally, we evaluate the normalized change by plugging it into 
what we will call the information potential function. For any real 
number z, define

	 g z z F z f z , 	 (4.13)

where F is the CDF of the standard normal (mean 0, variance 1) distri-
bution and f is the standard normal density. Finally, for every alternative 
i, calculate

	
K s g di i i . 	 (4.14)

The alternative with the highest value of information is also the one with 
the highest value of K

i
. This is the alternative that we prefer to learn about.
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We will not delve into the mathematical foundation behind (4.13) 
and (4.14) here, but we provide some intuition. Let us go back to 
Figure 4.4. Recall that the shaded regions represent scenarios where we 
learn about one of the alternatives, and the outcome of our experiment 
changes our beliefs enough to affect our final implementation decision. 
We can calculate the probability that such a scenario will occur, but this 
number does not capture certain nuances: recall that, although the 
probabilities were the same for alternatives #1 and #2, the belief density 
for #2 placed more weight on larger values. Thus, if #2 turned out to be 
the best alternative, the exact value of the “improvement” thus obtained 
would also tend to be larger than if #1 turned out to be the best. The 
information potential function g is a formula derived by computing the 
weighted average of the improvement. Essentially (omitting some 
details), we are adding up all the values in the shaded region and 
weighting each one by the likelihood that it will be the true value. The 
formula computed in (4.14) has several intuitive properties following 
from this concept:

•  If d
i
 is smaller, K

i
 will be larger. Recall that, if the amount of needed 

change is small, alternative i has more potential to change our deci-
sion. A result of this is that if the estimated value of alternative i is far 
below the current best alternative, the needed amount of change will 
be much greater, and we will be less likely to consider it.

•  If si  is larger, K
i
 will be larger. Uncertainty reduction is inherently 

valuable because it leads to more accurate beliefs and decisions. An 
alternative that seems to be poor but has a large amount of uncertainty 
is more likely to be much better than we think.

•  If di  is smaller, K
i
 will be larger. Again, if the normalized change is 

small, alternative i has more potential to change our decision.

All together, (4.14) provides a balance between our current beliefs 
about an alternative and our uncertainty about that alternative. The for-
mula (known by the names “expected improvement” and “knowledge 
gradient” and originally developed by Gupta & Miescke, 1996) also 
considers the relationship between alternative i and the other available 
decisions.

Although the mathematical reasoning behind (4.14) is somewhat 
involved, the calculations needed to make decisions are much simpler 
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and can easily be carried out in a spreadsheet. For our running example 
with three alternatives, the calculations are given in the following table.

Alternative m
i

s
i

d
i

si di K
i

1 5 0.5 0.5 0.4330 1.1547 0.0266

2 4.5 1 1 0.8660 1.1547 0.0532

3 5.5 0.25 0.5 0.2165 0.0036 0.0008

The learning decision is made by checking the final column. Alternative 
#2 is found to have the highest value of information, despite having 
the  lowest estimated beliefs, due to a high degree of uncertainty and 
uncertainty reduction. Thus, we choose to learn about #2 before making 
our final implementation decision. Note that alternative #3, despite hav-
ing the highest estimated beliefs, has the lowest information potential. 
This simply means that we prefer to learn about #2; however, if the 
results of our experiment are insufficiently strong, we may still prefer to 
implement #3.

One major question remains. So far, we have discussed how to effi-
ciently use a single opportunity to collect information. We have assumed 
that we can choose one alternative to learn about, but that the final 
implementation decision will be made after this new information is col-
lected. However, it is more likely that we will have more than one 
chance to learn before having to commit to an implementation. For 
example, our budget may allow for more than one test market. If we are 
using simulation models to evaluate the performance of our alterna-
tives, we would typically set aside several weeks or months of simulation 
time, in order to learn as much about as many alternatives as possible. 
In short, the information we collect does not have to immediately lead 
into the implementation decision. Rather, it should feed back into our 
beliefs and prepare us for the next opportunity to collect information. 
Thus, we need a simple mechanism for updating our beliefs with new 
information, similar to the one used in the newsvendor problem to 
update a gamma distribution.

The updating mechanism is easy to use, but requires us to specify 
an additional input si

noise  representing the accuracy of the new 
information collected, in the form of a standard error. We call this the 
noise error, and it simply means that, on average, the new information 
will be accurate (if we conduct many hundreds or thousands of 
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experiments and average the output, we will learn the correct value of 
the alternative), but a single experiment may have some variation. We 
are 95% confident that the output of the experiment will be equal to the 
true value, plus or minus some “noise” whose magnitude is within 
2si

noise. Once we specify si
noise, we no longer have to come up with a 

value for si
post , the new uncertainty of our beliefs after the experiment. 

This quantity is given by a formula

	

s

s s

i

i i

post

noise

2

2 2

1
1 1

. 	 (4.15)

Although (4.15) seems complicated, its meaning is actually quite simple. 
Since standard deviation (or its square, the variance) represents uncer-
tainty, it follows that larger s means greater uncertainty. Then, the reciprocal

p
si
i

1
2

can be viewed as a measure of the precision of our beliefs—larger s 
means smaller p and thus less precision. Then, (4.15) can be rewritten as

p p pi i i
post noise ,

which implies that our beliefs always become more precise when we 
obtain new information (alternately, “more information is always use-
ful”). With regard to our actual estimate of the value, it changes 
according to the equation

	
v

p v p X

p pi
i i i i

i i

post
noise

noise
, 	 (4.16)

where X
i
 is the observed output of the experiment (e.g., the sales in the 

test market or the simulated performance of the design). Equation (4.16) 
is simply a weighted average of our old beliefs about alternative i, rep-
resented by v

i
, and the new information about alternative i that we have 

obtained from the experiment, represented by X
i
. The weight of the old 

beliefs is determined by the precision of those beliefs, represented by p
i
. 

Thus, if our original beliefs were more precise (our original uncertainty 
about the value of i was smaller), we will rely on them more, and our 
new beliefs vi

post  will be closer to their original value v
i
. If our original 
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beliefs were imprecise (high uncertainty), we will rely more on the new 
information obtained from experiments.

Finally, we can put everything together into a procedure for collect-
ing information and making decisions. The procedure will go as follows:

•  Begin with a set of beliefs, consisting of two numbers v
i
 and s

i
, about 

every alternative i.

•  Based on the current beliefs, calculate the information potential K
i
 

from (4.14), for every i.

•  Perform an experiment on the alternative with the highest informa-
tion potential. If this is alternative i, collect a new observation or per-
formance value X

i
 from the experiment.

•  For the alternative we measured, update the beliefs using Equations 
(4.15) and (4.16). For the alternatives that were not measured, leave the 
beliefs as they were.

•  Repeat as many times as necessary, while our budget allows us to 
perform experiments. For each experiment, calculate K

i
 using only 

the most recent beliefs.

•  After all experiments have been used, implement the alternative with 
the highest estimated value, based on the most recent beliefs.

At this time, there is a considerable volume of simulated experiments 
(Frazier, Powell, and Dayanik, 2008; Negoescu, Frazier, and Powell, 2011; 
Ryzhov, Powell, and Frazier, 2012) suggesting that different versions of 
this procedure offer significant advantages over other strategies and rules 
of thumb such as interval estimation. The main advantage is that the con-
cept of information potential provides a way to quantify the exact balance 
between “learning” (the value of new information) and “earning” (the need 
to find a good solution). By looking at the way this quantity is calculated, 
we can obtain several important insights about the problem of learning:

•  The value of learning about an alternative is directly related to how 
likely that alternative is to change our decision. New data are only 
relevant if they have the ability to change the way decisions are made.

•  An alternative is more likely to be important (i.e., have high potential 
to change our decision) if it is believed to have high value, perhaps 
one that is close to the current best candidate.
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•  However, an alternative is also more likely to be important if we have 
more uncertainty about it, because this increases the odds that its 
actual value is much better than our old data suggest. The estimated 
value (obtained from the old data) is balanced with uncertainty in the 
“normalized change” calculation.

One important point to keep in mind is that it is crucial for the decision-
maker to have a realistic sense of how much uncertainty is present in the 
problem. If we are overconfident about an alternative and set s

i
 to be 

much smaller than it should be, this will affect the performance of the 
procedure. If we do not have a clear sense of the margins of error for our 
current beliefs, it is better to err on the side of caution and assume more 
uncertainty in the problem.

Optimizing a Rule-Based Policy for 
Inventory Management

We now give one example of how the selection procedure can be used 
in practice to optimize a decision. Our discussion in the preceding sec-
tion has used the abstract term “alternative” to describe any choice 
available to the decision-maker. This term can be defined quite broadly. 
In fact, we can integrate our learning procedure into various “rule-
based” strategies for making decisions. Instead of forcing a 
decision-maker to adopt a certain practice, we can leverage optimal 
learning to optimize or improve an existing practice. We illustrate this 
with an example from inventory management, namely, the (q, Q) 
inventory model of Scarf (1960).2

Suppose that a single product is stored at a warehouse. Initially, S
0
 

units are in stock. During the week, demand for the product is observed 
and the inventory decreases. The total demand during the first week is 
denoted by Z

1
. All the demand must be satisfied; if the warehouse runs 

out of inventory before the week is over, it is necessary to back-order 
additional units (at an extra cost to the company). The warehouse 
manager also has the option to place an order for additional inventory 
at the beginning of the week (for ease of explanation, let us assume 

2  This model is also commonly referred to as the (s, S) model, but the meaning remains the 
same.
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that it arrives instantaneously), but the manager has no way of know-
ing what the demand for the coming week will be. There is a fixed and 
variable cost for ordering, and unsold inventory also incurs a holding 
cost if carried over to the next week, so the manager would prefer not 
to order as long as there is currently enough to avoid a stock-out. At 
the same time, waiting too long to order increases the risk of these 
expensive stock-outs.

Clearly, the manager needs a strategy for determining when orders 
should be made and how much should be ordered. The insight of Scarf 
(1960) is that the total cost (holding, ordering, and shortage) can be 
minimized by a simple strategy described in Figure  4.5. First, we 
choose two numbers q and Q satisfying 0 < q < Q. We then apply the 
following rule:

•  If, at the beginning of a new week, the current inventory level is below 
q, order exactly enough to bring it up to Q. That is, if there are 3 boxes 
in inventory, q is 5 boxes, and Q is 10 boxes, the manager should 
order 7 boxes.

•  Otherwise, do not order anything and wait 1 week.

The blue line in Figure 4.5 is the changing inventory level. We see that 
the initial inventory level S

0
, at the beginning of week 0, is between q 

and Q, so the manager does nothing. By the beginning of week 1, the 
inventory level S

1
 has dropped below q, so the manager brings it up to 

Q. During the next two weeks, the inventory decreases but remains 
above q, so no further action is required. Essentially, we only reorder 

Q

q

S0

S2

Z2

Z1

Z3 S3

S1

Figure 4.5  Illustration of the behavior of a (q, Q) inventory policy.
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inventory when it becomes “low enough,” and then we order just enough 
to make it “high enough.”

In one of the most celebrated results of operations management, 
Scarf (1960) proved that this simple strategy can be optimal, that is, it 
can minimize total long-term cost. The catch, however, is that the two 
numbers q and Q have to be chosen correctly. For the sake of illustra-
tion, suppose that the fixed ordering cost is $0.15 per order (regardless 
of how many boxes are ordered), the holding cost is $0.35 to store one 
box for one additional week, the shortage cost is $1.20 for each back-
ordered box, and the order cost is $0.90 per box. Unfortunately, Scarf’s 
proof does not provide us with a way to find the “best” settings of q 
and Q. In order to truly minimize the total cost, these numbers must be 
carefully tuned.

The only way to learn about the performance of a particular choice 
of q and Q is to experiment with them. Either we could implement a 
(q, Q) strategy with our chosen two values in the field and observe the 
results after several weeks, or we could run a simulation model with 
the same values, using historical demand data to model the random 
weekly fluctuations in the demand. Trial and error is less costly if we 
do it inside a simulator rather than directly in the field, but nonethe-
less, we may not have enough time or computational resources to try 
every conceivable value of q and Q. Keep in mind also that other, more 
complex management problems may involve strategies with more 
than two tunable “parameters” (e.g., we may wish to assign high-pri-
ority calls to call center workers whose performance scores are above 
a certain threshold) making it even more difficult to find the right 
configuration.

Suppose that we are considering three possible values for each 
parameter (low, medium, and high). Thus, there are six possible com-
binations of q and Q (since Q must always be greater than q). The 
following table shows the performance of each configuration, in 
terms of total cost over some fixed length of time. These performance 
values were found by running a large number of simulations, with the 
assumption that weekly demands are independent and follow a 
normal distribution with a mean of 5 and standard deviation of 0.25. 
In practice, we would not know these demands and would have to 
infer the distribution from data—but even if we were to know the dis-
tribution exactly, there is still no easy way to calculate the optimal q 
and Q.



Optimizing a Rule-Based Policy for Inventory Management 115

Alternative q Q
Total cost  

(1 simulation)
Total cost (1000 

simulations)

1 1 2 $3852 $3656

2 1 5 $2895 $2473

3 4 5 $2792 $2498

4 1 10 $2751 $3053

5 5 10 $3636 $3541

6 9 10 $4156 $4264

From the last column of the table, we can see that the optimal choice 
seems to be configuration #2, where q = 1, Q = 5, narrowly beating out 
q = 4, Q = 5. However, these numbers were obtained by running 1000 
simulations for each configuration. If the total number of configurations 
were larger (e.g., several hundred or thousand), this exhaustive study 
would not be feasible. We would have to do the best we could with a 
limited number of simulations. The challenge is that a small number of 
simulations may produce inaccurate results: the above table shows that 
when we only perform one simulation on each configuration, the true 
best configuration #2 actually appears to be the third best, whereas the 
true third-best configuration #4 seems to be the best!

This is precisely the type of setting where optimal learning can 
help. Using the language of the previous section, let v

i
, our initial 

beliefs about configuration i, be equal to the number obtained from a 
single simulation, as given in the above table (so, v

1
 = 3852, v

2
 = 2895, 

etc.). Let s
i
 be equal to $1000, suggesting that we believe the true values 

to be within plus or minus $2000 of the initial estimates (which certainly 
seems reasonable). Let si

noise  be equal to $500, suggesting that the 
outcome of any individual simulation will be between plus or minus 
$1000 of the true value (a conservative estimate, considering the 
numbers in the table). Note that these are very rough guidelines for the 
uncertainty, but as we shall see, they are quite sufficient. While we 
would get better results by crafting these numbers more carefully, 
optimal learning is often able to discover optimal solutions starting 
from very rough beliefs.

Now, we can calculate the information potential. For the initial 
values as described earlier, we would make the calculations given in 
the following table. Note that since we are minimizing cost rather than 
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maximizing value, we repeat the analysis of the preceding section under 
the assumption that smaller values are better. Thus, (4.9) becomes

d v vi i j i jmin ,

as the “best of the rest” is now the one with the smallest value.

Alternative m
i

s
i

d
i

si di K
i

1 3852 1000 1101 970.1425 1.1349 62.1062

2 2895 1000 144 970.1425 0.1484 319.2866

3 2792 1000 41 970.1425 0.0423 366.8764

4 2751 1000 41 970.1425 0.0423 366.8764

5 3636 1000 885 970.1425 0.9122 95.2667

6 4156 1000 1405 970.1425 1.4482 31.9590

Because s
i
 and si

noise  are the same for every alternative, the uncertainty 
reduction si  is also the same (and also fairly high, considering the large 
difference between the belief and observation uncertainties). We do not 
yet have enough information to discern that we should look into config-
uration #2. However, even with our inaccurate initial beliefs, we see that 
the apparent best and second-best configurations (#3 and #4) have the 
same information potential. Configuration #2 is not far behind; the gap 
in potential is smaller than the difference in the initial estimates might 
indicate. Still, the choice of how to use the first simulation appears to be 
tied between #3 and #4, when we saw before that #2 is the best.

However, recall that the true power of optimal learning is in its 
ability to adapt its recommendations to new information. Having 
decided to learn about #3 or #4, we can run a single simulation of that 
configuration, then use (4.15) and (4.16) to update our beliefs with new 
information, and recalculate K

i
 with the new beliefs. Suppose that our 

total information budget consists of 10 simulations. The following table 
shows our final beliefs about each configuration, after allocating 10 
simulations to configurations with high information potential. Since the 
outcome of each simulation is random (due to the randomly generated 
demands), there will also be some variation in our final beliefs. To get a 
sense of the sensitivity of our solution to the random fluctuations in the 
demands, we run this problem five different times, starting from the 
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same initial beliefs every time. The numbers in parentheses represent 
the number of simulations that were allocated to a configuration in a 
particular run.

Alternative Run 1 Run 2 Run 3 Run 4 Run 5

1 3585 (1) 3852 (0) 3852 (0) 3520 (1) 3787 (1)

2 2519 (3) 2461 (4) 2402 (4) 2598 (3) 2510 (4)

3 2526 (4) 2507 (4) 2441 (4) 2686 (3) 2629 (3)

4 2942 (1) 2949 (1) 2981 (1) 2967 (2) 3000 (1)

5 4026 (1) 4137 (1) 3038 (1) 3153 (1) 3708 (1)

6 4156 (0) 4156 (0) 4156 (0) 4156 (0) 4156 (0)

Notice that although none of the final beliefs are exactly equal to the true 
values of the configurations (the values computed using 1000 simula-
tions), they are enough to correctly identify #2 as the best configuration 
in all five runs. Note also that in all five runs, the majority of the 
information budget (60–80%) is divided between alternatives #2 and 
#3, the true best and second best. Occasionally, we use a simulation to 
learn about #1, #4, or #5, but stop learning about them once we see that 
they are not promising. Configuration #6 simply does not show enough 
potential to ever justify the cost of learning about it.

By contrast, suppose that we follow the strategy of always simu-
lating whichever configuration appears to be the best (has the lowest 
estimated value) at any given moment, with no regard for uncertainty or 
information potential. The final beliefs obtained using this “greedy” or 
“myopic” strategy are shown in the following table.

Alternative Run 1 Run 2 Run 3 Run 4 Run 5

1 3852 (0) 3852 (0) 3852 (0) 3852 (0) 3852 (0)

2 2895 (0) 2895 (0) 2895 (0) 2895 (0) 2895 (0)

3 2454 (9) 2444 (9) 2467 (8) 2479 (9) 2600 (9)

4 2937 (1) 2843 (1) 2830 (2) 2973 (1) 3095 (1)

5 3636 (0) 3636 (0) 3636 (0) 3636 (0) 3636 (0)

6 4156 (0) 4156 (0) 4156 (0) 4156 (0) 4156 (0)

The situation is now quite different. We begin by measuring #4, since it 
appears to be the best according to our initial beliefs. Then, we quickly 
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learn that it is not as good as it seems and switch to #3, which we initially 
believed to be the second best. As we learn about #3, we discover that it is 
indeed reasonably good, so we stick with it and never choose to learn 
about #2. Our final decision after 10 simulations would be to implement 
#3 in all five runs, although in reality this is the second-best configuration. 
By considering the information potential of the different configurations, 
we were able to engage in more experimentation and learn something 
about 4–5 of the available alternatives, rather than only 1–2. However, it 
was not simply arbitrary trial and error, but rather targeted experimenta-
tion: we spent most of our learning budget on the top two candidates while 
occasionally learning something about several others.

What if we were to learn by simply simulating randomly chosen 
configurations? This is equivalent to splitting our information budget 
equally among the alternatives (on average) and would seem like a rea-
sonable approach if we really had no idea which configuration was the 
best. Our last table gives the results for this approach.

Alternative Run 1 Run 2 Run 3 Run 4 Run 5

1 3717 (3) 3763 (2) 3807 (1) 3852 (0) 3527 (2)

2 2895 (0) 2433 (4) 2366 (2) 2586 (1) 2895 (0)

3 2459 (2) 2792 (0) 2529 (1) 2506 (1) 2483 (3)

4 2927 (1) 2810 (1) 3058 (2) 3073 (4) 3027 (2)

5 2956 (1) 3076 (1) 3328 (2) 3641 (2) 4023 (1)

6 4207 (3) 4150 (2) 4391 (2) 4104 (2) 4273 (2)

This seems to do a little better—we now find the best configuration in 
two out of five runs. The other three times, we still pick #3. The draw-
back of this method is that we are wasting a significant portion of our 
budget on alternatives that don’t matter, such as #6. Earlier, we saw that 
there was simply no reason to learn about this configuration, as it was 
just too poor to ever have a chance of being the best. Also, if the number 
of alternatives is large, spreading out the budget will be quite ineffec-
tive; consider, for example, the task of allocating 10 simulations among 
1000 alternatives.

The main message of optimal learning is that it is possible to opti-
mize the collection of information, just as a business would optimize 
the use of any other resource. When faced with the problem of learning 
about a number of unknowns, we should strike a balance between 
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learning about solutions that seem to be good and learning about solu-
tions that seem to be suboptimal yet have high potential to be better than 
we think. Although the aforementioned example was small enough to 
allow us to find the best configuration by brute force (running 1000 
simulations on every alternative), it is easy to envision problems where 
the number of alternatives is in the hundreds or thousands. For example, 
if we are designing a new marketing campaign with 10 possible design 
attributes, where we have the choice of including or not including each 
attribute in the campaign, the number of possible combinations of 
attributes is equal to 210 = 1024. Furthermore, in that setting, the way to 
collect information would be, not to run a simulation model, but rather 
to conduct a limited field test with a particular design, avoiding the need 
to do thousands of experiments.

Discussion

As you read this chapter, please keep in mind that, like any concept 
from operations management, optimal learning is not limited to the two 
specific models we have covered here. Many of the applications we 
have cited require mathematical tools going beyond what we showed 
here. We have used these two models as examples to illustrate several 
key concepts that arise in every optimal learning problem and are 
addressed in some way by any learning model. These include:

•  Every model is uncertain. Tools such as decision analysis help us to 
consider multiple uncertain outcomes (such as whether the demand 
will be high or low) during planning, but even these tools are depend-
ent on some model for how likely one outcome is over another. These 
models are never completely accurate; rather, they are improved over 
time as new data come in.

•  Model uncertainty changes decisions. An ordering decision may be 
based on some forecast of demand. If new data comes in to alter the 
forecast, the decision will change as well. The best decisions are 
those that can anticipate the possibility of such change, before it 
occurs.

•  Information is only valuable if it changes decisions. Collecting data 
about an alternative that is clearly suboptimal is unproductive. Rather, 
it is better to spend a limited information budget on alternatives that 
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have high potential. This does not necessarily mean that they look 
good to us now, only that there is a reasonable chance that they might 
be better than we think.

•  Uncertainty is valuable. It is more difficult to make good decisions in 
an uncertain world, but even uncertainty can be an asset. If we are 
uncertain about a decision, that in itself gives it higher potential to be 
good. If we can make an informed trade-off between this potential 
and our need to optimize quickly, we increase our ability to discover 
a game-changing new decision.

Optimal learning methods work best when the information budget is 
very limited (if we have the ability to perform thousands of experi-
ments, it is less important to worry about allocating them efficiently), 
but the number of alternatives is reasonably large (perhaps several thou-
sand). As is frequent in operations research, optimal learning is most 
effective when used in tandem with other methodologies such as data 
analytics to build a body of prior information and conduct a prescreen-
ing of obviously unpromising choices. It generally works well with 
simple models for representing beliefs (e.g., using means and standard 
deviations), to minimize the time required to calculate information 
potential and other relevant quantities. However, optimal learning can 
leverage a simple belief model to develop sophisticated metrics for val-
uating alternatives and information that clearly identify the most 
promising alternatives and information, providing decision-makers 
with guidance in uncertain environments.
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Introduction

Real-world decision-makers often face multiple objectives. For 
example, many decisions in the business context aim to maximize both 
profits and market share (Keeney, 2007), while consumers may want to 
trade off the quality of a product against its price. Multiattribute utility 
theory (MAUT; Keeney and Raiffa, 1976) is one of the most well-known 
and rigorous methods for trading off multiple (generally conflicting) 
objectives. The additive form of the multiattribute utility function is 
often used, due to its simplicity, and has been shown to give satisfactory 
results in a wide variety of circumstances (Dawes and Corrigan, 1974; 
Stewart, 1996).
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One important task in constructing multiattribute utility functions is 
to choose appropriate attributes to quantitatively reflect stakeholder objec-
tives. Desirable attributes should be measurable on either natural scales 
(e.g., lives saved, dollars spent) or constructed scales. For an example of a 
constructed scale, Keeney and von Winterfeldt (1994) use a 0–5 scale to 
measure the environmental impact of nuclear waste disposal strategies. 
Attributes should also directly and unambiguously describe the degree to 
which the decision-maker’s objectives are met (Clemen and Reilly, 2001).

Another key task in the development of a multiattribute utility 
function is to obtain estimates for the weights (i.e., the relative impor-
tance) of the various attributes. Traditional elicitation methods include 
the ratio method (Edwards, 1977), the swing-weight method (von 
Winterfeldt and Edwards, 1986), and the trade-off and pricing-out 
methods (Keeney and Raiffa, 1976). However, these methods can be 
quite time-consuming to use. Moreover, asking stakeholders to provide 
precise assessments of attribute weights may also imply unwarranted 
precision of the elicitation results, due to the inherent uncertainties 
associated with subjective judgments (Schoemaker and Waid, 1982; 
Borcherding, Eppel, and von Winterfeldt, 1991).

Providing ordinal information rather than cardinal assessments is 
widely believed to be easier and more reliable. In fact, making pairwise 
comparisons has been suggested to be the first step in the process of 
evaluating alternatives (Watson and Buede, 1987). Moreover, ordinal 
judgments are generally easy to understand and interpret, avoiding the 
need for extensive orientation of stakeholders prior to the elicitation 
process. Finally, while it is unrealistic to expect agreement on cardinal 
assessments in a group decision process, consensus on rankings is often 
attainable (Kirkwood and Sarin, 1985). There have also been a broad 
range of applications on eliciting multiattribute preferences from 
ordinal information, for example, in the fields of marketing research 
(Green and Srinivasan, 1978; Green, Krieger, and Wind, 2001), health 
economics (McCabe et al., 2006; Ali and Ronaldson, 2012), and 
adversary preference modeling (CREATE, 2011).

Typical ordinal data for constructing multiattribute utility functions 
include rank orderings (or pairwise comparisons) of attribute weights, 
alternatives, or utility differences between paired alternatives (Horsky 
and Rao, 1984). For example, the Simple Multi-Attribute Rating 
Technique Extended to Ranking (SMARTER) method (Edwards and 
Barron, 1994) uses rank orderings of attribute importance directly to 
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derive point estimates for the attribute weights. By contrast, the 
maximum entropy utility method (Abbas, 2006) uses rank orderings of 
the attractiveness of alternatives to construct an overall value function 
for the alternatives. This method also has the potential for handling 
ordinal judgments over utility differences between paired alternatives; 
however, it does not provide estimates for the attribute weights.

In this chapter, we focus on an indirect elicitation process that con-
verts (partial) rank orderings of the alternatives into point estimates or 
probability distributions for the various attribute weights. In particular, 
we discuss three mathematical methods that can be used to derive weight 
estimates in the additive multiattribute utility from rank orderings of 
alternatives: conjoint analysis in marketing (Shocker and Srinivasan, 
1973; Green and Srinivasan, 1978), probabilistic inversion (PI; Bedford 
and Cooke, 2001; Neslo et al., 2011), and Bayesian density estimation 
(BDE; Ferguson, 1973). Conjoint analysis is compelling because of its 
simplicity and computational ease, at least in its most widely used form 
of the Linear Programming Technique for Multidimensional Analysis of 
Preference (LINMAP) (Green and Srinivasan, 1978). However, LINMAP 
generates only point estimates for the attribute weights, not probability 
distributions. Some conjoint approaches apply mixed-logit models to 
produce distributions for the various weights to reflect disagreements and 
variations across different stakeholders, but these often assume that the 
attribute weights are normally distributed (McFadden and Train, 2000).

The ability to generate probability distributions (rather than only 
point estimates) is if anything even more important for an elicitation 
method that deals with ordinal data than for one that deals with cardinal 
data. In general, ordinal judgments are relatively weak, so it is impor-
tant for an elicitation method to reflect the nature and degree of 
uncertainties arising from the use of ordinal data. Moreover, since 
single-modal parametric distributions are generally not adequately flex-
ible to handle widely differing, preferences, mixtures of distributions or 
other nonparametric representations may be preferable in practice. 
Therefore, PI and BDE have recently been adapted to apply to ordinal 
preference rankings (Neslo et al., 2011; Wang and Bier, 2013). Both PI 
and BDE can explicitly capture stakeholder uncertainties and disagree-
ments, by generating probability distributions over attribute weights 
without parametric assumptions such as normality.

Additionally, if a stakeholder’s rank orderings of alternatives cannot 
be explained by the available set of attributes, then the LINMAP 
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approach of conjoint analysis might give weight estimates that do not 
even approximately reproduce the stated rank orderings of the alterna-
tives. Other conjoint approaches based on logit or mixed-logit regression 
use a large variance of the residuals to reflect the lack of consistency 
between stakeholder preferences and the given set of attributes, but 
these approaches do not provide a unit-free measure to quantify the 
degree of inconsistency. By contrast, inspired by Jenelius, Westin, and 
Holmgren (2010), PI and BDE as applied in Wang and Bier (2013) 
allow for an unobserved attribute that may be important to the stake-
holders but has not been included in the analysis. The weight assigned 
to this unobserved attribute thus indicates how well or poorly the avail-
able set of attributes fits the given stakeholders’ judgments. Moreover, 
estimated values of the unobserved attribute for the various alternatives 
can also help to indicate which attributes may be missing.

In principle, conjoint analysis, PI, and BDE require stakeholders to 
provide only rank orderings of alternatives, which are believed to be 
easy to assess and interpret. Therefore, these methods may be quite use-
ful in eliciting preferences of stakeholders who do not have highly 
quantitative backgrounds. Moreover, the simplicity and automatic 
consideration of stakeholder uncertainties and disagreements would 
make these methods especially powerful in large-scale elicitation tasks 
(e.g., using online surveys).

Note that direct elicitation may still be necessary for making high-
stakes decisions such as major public policies, since stakeholders are 
more likely to act on recommendations based on the elicitation results 
if they feel that their views have been treated seriously and fully incor-
porated (Keeney, 2007). However, conjoint analysis, PI, and BDE can 
all be used not only as alternatives to direct elicitation but also as a 
source of inputs for convergent validation, a common technique in 
decision analysis. For example, we could ask the stakeholders to com-
ment on any observed discrepancies between the results of different 
elicitation approaches—for example, whether they put more credence 
in attribute weights inferred from their rankings of alternatives or in 
their directly assessed attribute weights.

In the following, we first provide a literature review on existing 
ordinal elicitation methods (including both direct and indirect 
approaches) and give some background on conjoint analysis, PI, and 
BDE. We then discuss how the three methods estimate attribute weights 
from rank orderings of alternatives provided by stakeholders, followed 
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by an illustrative case study on adversary preference elicitation. Next, 
we discuss how to use negative weights to capture the possibility that 
stakeholders may disagree on the direction of effects of each attribute 
(following CREATE, 2011), that is, whether a larger value of an attri-
bute corresponds to higher or lower utility.

We then conduct simulation-based sensitivity analysis to show how 
results differ when using complete rank orderings versus partial rank 
orderings of the alternatives. This is important, since if stakeholders 
needed to rank dozens of alternatives in order to obtain adequate weight 
estimates, ordinal elicitation methods would not be terribly practical. 
Finally, we conclude the chapter and present some directions for future 
research.

Literature Review

For simplicity, we focus our attention on the two-attribute case. (The 
discussion can be extended to cases with more than two attributes in a 
straightforward manner.) The standard additive multiattribute utility 
function takes the form

	 U w v w vn n n1 1 2 2 	 (5.1)

Where U
n
 is the overall utility of alternative n, and v

nm
 is the single-

attribute utility of alternative n on attribute m (for n = 1, …, N and 
m = 1, 2). The weights of the various attributes are assumed to be non-
negative and sum to one; that is, w

m
 ≥ 0 for m = 1, 2 and w

1
 + w

2
 = 1.

Note that v
nm

 reflects the stakeholder utility of alternative n on attri-
bute m, with 1 representing the best possible value and 0 the worst 
possible value. Nonlinear single-attribute utility functions can in prin-
ciple be used to capture stakeholder risk attitudes toward uncertain 
consequences (e.g., risk aversion, risk neutrality, or risk proneness; see 
von Winterfeldt and Edwards, 1986). However, detailed elicitation of 
stakeholder risk attitudes can be quite time-consuming. Instead, we 
could simply assume that v

nm
 is linear in the original attribute value 

(the approach adopted in this chapter) or use a logarithmic relationship 
based on Fechner’s law (Fechner, 1860), which states that human 
perceptions are logarithmic in the magnitude of the stimuli.

Following Wang and Bier (2013), we extend Equation 5.1 to incor-
porate an unobserved attribute that may be important to the stakeholders, 
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but has not been identified in the elicitation process. Specifically, we let 
w

3
 be the weight for the unobserved attribute and (y

1
, … , y

N
) be the util-

ities of the N alternatives on the observed attribute. The revised 
multiattribute utility function is then given by

	 U w v w v w yn n n n1 1 2 2 3 , 	 (5.2)

where w
m
 ≥ 0 for m = 1, 2, 3 and w

1
 + w

2
 + w

3
 = 1. Again, the single-

attribute utilities of the unobserved attribute for the various alternatives 
y

n
 are assumed to take on values in [0, 1]. Note that the weight on the 

unobserved attribute, w
3
, can be used to assess whether the two known 

attributes are adequate to capture the stakeholders’ stated (partial) rank 
orderings of the N alternatives.

A variety of elicitation methods in the literature are based on ordinal 
data. Some methods provide estimates for the overall utility values U

n
 

directly. For example, Abbas (2006) defines “utility densities” analo-
gous to probability densities and applies the principle of maximum 
entropy to assign utilities to the alternatives directly according to their 
ranks. However, this method does not provide explicit estimates of attri-
bute weights and therefore cannot be applied to additional alternatives 
that have not been ranked.

Other elicitation methods have been developed to generate esti-
mates for the attribute weights w

m
. For example, to avoid the difficulties 

associated with exact weight assessment, some researchers recommend 
instead simply rank ordering the importance of the various attributes 
(Dawes and Corrigan, 1974; Stillwell, Seaver, and Edwards, 1981). 
Among the existing formulas that convert rank orderings of attribute 
importance into cardinal estimates of attribute weights, SMARTER 
(Edwards and Barron, 1994) has been shown to be the most accurate 
(Barron and Barrett, 1996; Sarabando and Dias, 2006). (Note, however, 
that SMARTER has not been applied to cases with unobserved attrib-
utes, perhaps because it seems unrealistic to rank an attribute that we do 
not even know.) Suppose that a stakeholder weights attribute 1 more 
heavily than attribute 2; then the resulting weight estimates are the coor-
dinates of the centroid of the region {(w

1
, w

2
)|w

1
 + w

2
 = 1, w

1
 ≥ w

2
 ≥ 0}.

Note that SMARTER generates only point estimates of attribute 
weights rather than probability distributions. Therefore, it may not be 
appropriate for situations in which uncertainty about preferences is a 
crucial consideration. However, Rao and Sobel (1980) have derived a 
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marginal distribution for the kth largest weight using the principle of 
maximum entropy (such that no more information is reflected by the 
distribution than that given by the ranks only), in which the marginal 
means of the attribute weights correspond exactly to the SMARTER 
weights (Barron and Barrett, 1996).

In this chapter, however, we are interested in methods that yield 
estimates for attribute weights starting from ordinal judgments of 
alternative attractiveness U

n
 (rather than ordinal judgments of attribute 

importance w
m
). Conjoint analysis in marketing is one method for doing 

this (Green and Srinivasan, 1978). A representative approach to con-
joint analysis, LINMAP (Shocker and Srinivasan, 1973), uses a linear 
program to find weight estimates that yield the smallest sum of pairwise 
“violations” from a single stakeholder’s ranking of the alternatives. 
However, like SMARTER, LINMAP provides only point estimates for 
the attribute weights. In addition, the optimal attribute weights may not 
be unique, and there is no agreement in the literature on how to handle 
multiple optima. Finally, it is an open question how to aggregate attri-
bute weights obtained from multiple stakeholders using this approach.

Another version of conjoint analysis uses logistic regression to 
obtain weight estimates that best fit a stakeholder’s pairwise compari-
sons of alternatives (McFadden, 1977). However, this approach is based 
on the unrealistic assumption that different pairwise comparisons of the 
alternatives (derived from a single rank ordering of all alternatives given 
by a stakeholder) are independent. Moreover, it also yields only point 
estimates of attribute weights, which may not be adequate to capture 
heterogeneity among stakeholders. Mixed-logit models can be applied 
to obtain probability distributions for the attribute weights but often 
require that the distribution of attribute weights be multivariate normal 
(Revelt and Train, 1998; McFadden and Train, 2000).

By contrast, PI and BDE can be used to infer a joint probability dis-
tribution over the attribute weights (without distributional assumptions 
such as normality) from rank orderings of alternatives. Moreover, both 
PI and BDE take care of the aggregation of heterogeneous stakeholder 
opinions automatically and explicitly capture stakeholder disagree-
ments by (possibly multimodal) distributions.

In particular, PI (Cooke, 1994; Bedford and Cooke, 2001; Kraan 
and Bedford, 2005) aims to find a probability distribution over the attri-
bute weights that can reproduce the stakeholders’ stated (marginal) rank 
orderings of alternatives. Neslo et al. (2011) were the first to apply PI to 
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obtain distributions over multiple attribute weights that best fit the 
ordinal judgments given by stakeholders. Recently, Wang and Bier 
(2013) extend that model to include an unobserved attribute that may be 
important but has not yet been identified, which ensures the existence of 
feasible solutions in PI at least in theory.

The idea of BDE (Ferguson, 1973 ) is to update a decision-maker’s 
(possibly noninformative) prior distribution over the attribute weights 
by treating each stakeholder’s rank orderings as independent observa-
tions. BDE also allows the decision-maker to specify a level of reliance 
on his or her own judgment, as opposed to the stakeholder judgments. 
Erkanli, Stangl, and Muller (1993) were the first to apply BDE to 
estimation using ordinal inputs. However, they first convert the rank 
orderings to cardinal values (a process that may introduce additional 
information and biases) and then treat those cardinal values as if they 
were independent (even though they could not be, since the underlying 
ordinal rankings clearly could not be independent). Wang and Bier 
(2013) avoid these pitfalls by treating the entire set of rank orderings 
from a given stakeholder as a single observation (thus inherently 
accounting for the lack of independence between rank orderings given 
by the same stakeholder) and using the rank orderings directly (rather 
than converting them into cardinal values first). In the next section, we 
briefly discuss the mathematical models of conjoint analysis, PI, and 
BDE, when applied to generate estimates for attribute weights from 
preference rankings provided by stakeholders.

Estimating Attribute Weights from Ordinal 
Preference Rankings

Estimating attribute weights from preferences over alternatives requires 
that the stakeholder(s) be presented with a set of N alternatives to com-
pare and give the top R rankings (when R = N, the stakeholders give a 
complete ranking of the alternatives). The process also requires a pre-
defined set of attributes and the single-attribute utilities of each 
alternative on each attribute (i.e., the values of v

nm
 for n = 1, …, N, and 

m = 1, 2). For convenience, we denote the rank ordering of stakeholder 
k (for k = 1, …, K) by an ordered set of N distinct target indices 
RO( ) ( ) ( ), , ,k k

N
kn n1  where nr

k( )  is the index of the rth most preferred 
alternative for r = 1, …, R; for r R N nr

k1, , , ( ) is the index of one of 
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the N − R unranked alternatives. The task of conjoint analysis, PI, or 
BDE is then to generate cardinal estimates (point estimates or proba-
bility distributions) for the various attribute weights w

m
 that best fit the 

stakeholders’ rank orderings RO(k).
In particular, we focus on the LINMAP method of conjoint anal-

ysis, which generates only point estimates for the known attribute 
weights (w

1
, w

2
) using the standard additive multiattribute utility 

function without unobserved attributes. By contrast, PI and BDE allow 
for the possibility of an unobserved attribute and can generate proba-
bility distributions for the known attribute weights plus the weight of 
the unobserved attribute (w

1
, w

2
, w

3
).

Conjoint Analysis: LINMAP

The LINMAP method of conjoint analysis is designed for eliciting the 
preferences of a single stakeholder. Therefore, for simplicity, in this 
section, we suppress the superscripts of RO(k) and nr

k( ) For a given rank 
ordering RO, we can specify (R(R − 1)/2) + R(N − R) pairwise inequal-
ities involving the utilities of the N alternatives; that is, U Un ni i

 for 
1 ≤ i ≤ R and i < j ≤ N. According to Equation 5.1, given a set of estimated 
attribute weights ˆ ˆ ˆ( )w w w1 2,  (without considering the unobserved attri-
bute), the overall utility of alternative n can be estimated as

	 U w w v w vn n n( ) .  1 1 2 2

For a given pair of alternatives i and j such that i is preferred to j 
according to the stated rank ordering RO (i.e., n

i
 < n

j
), we then define 

the pairwise “violation” of i and j as z w U w U wij j i( ) ( ) ( )max{ , }  0 . 
LINMAP aims to find a set of weight estimates ŵ that yields the small-
est sum of pairwise violations from the rank ordering RO. In particular, 
the optimization problem is given by

	
min ,w z

i Ri j N
n nz i j

1

	 (5.3)

	
U w U w z i R i j Nn n n ni j i j

( ) ( ) ;  0 1for

	
z i j Nn ni j

0 1for ,

	
ˆ ˆ ˆ; , .w w w mm1 2 1 0 1 2and for
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This linear programming problem may generate nonunique optimal 
attribute weights, especially when there exist weight estimates (ŵ1, ŵ2) 
that can perfectly reproduce RO. For purposes of this chapter, however, 
we simply pick an arbitrary set of optimal weights if there are multiple 
solutions.

The literature recommends applying LINMAP to each individual 
stakeholder separately, but is not clear on how to aggregate the resulting 
weight estimates across multiple stakeholders. Therefore, in this chapter, 
we use a simple ad hoc aggregation rule (Shocker and Srinivasan, 
1979)—namely, averaging the point estimates of the attribute weights 
obtained from the various stakeholders.

Probabilistic Inversion

The task of PI as applied in Wang and Bier (2013) is to find a joint prob-
ability distribution for the uncertain attribute weights (including the 
weight for the unobserved attribute) w = (w

1
, w

2
, w

3
) and the unobserved 

attribute utilities y = (y
1
, …, y

N
) as given in 5.2, such that the distribution 

over (w, y) can reproduce the empirical distribution of the stakeholders’ 
rank orderings. In particular, the empirical distribution of the rankings 
given by K stakeholders is specified by a matrix P, where element P

rn
 

represents the probability that alternative n is ranked at the rth place 
by a randomly chosen one of the K stakeholders (for r = 1, …, R and 
n = 1, …, N). For example, if P

12
 = 0.5, it means that 50% of the stake-

holders rank alternative 2 at the first place.
In fact, multiple distributions for (w, y) can generate rankings 

whose marginal distribution matches the empirical distribution P. 
However, PI aims to select the matching distribution that is “closest” 
(in the sense of Kullback–Leibler divergence) to a predefined starting 
distribution Q

0
. In this chapter, we assume that Q

0
 is noninformative—

in particular, we choose a “flat” Q
0
 by assigning a Dirichlet distribution 

over (w
1
, w

2
, w

3
) with all parameters equal to one and independent uni-

form distributions on [0, 1] for each of the y
n
 (n = 1, …, N). If desired, 

however, we could also consider other types of noninformative starting 
distributions (e.g., U-shaped instead of uniform) or an informative 
starting distribution.

A Monte Carlo simulation-based implementation of PI then pro-
ceeds as follows. First simulate S independent samples (w(s), y(s)) (for 
s = 1, …, S) from the starting distribution Q

0
. Then find the optimal 
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discrete distribution q = (q
1
, …, q

S
) over the S samples by solving the 

following convex optimization problem:

	
min ln( )q

s

S

s sS
q Sq

 1
1

	 (5.4)

s

S

s rn
s s

rnq J w y P r R n N
1

1 1( ) ( ) , , ; , , ,, for

where Δ
S
(1) is the simplex defined by q R qS

ss

s

1
1 , and J(w(s), 

y(s)) is an R-by-N indicator matrix. In particular, for a given set of w(s) 
and y(s), the function J

rn
(w(s), y(s)) equals 1 if alternative n is ranked in the 

rth place and 0 otherwise. Note that the inclusion of the unobserved 
attribute ensures the existence of feasible solutions in PI; see more 
details in Wang and Bier (2013).

Bayesian Density Estimation

The idea of BDE as applied in Wang and Bier (2013) is to update the 
decision-maker’s prior distribution over (w, y) to yield a posterior distri-
bution, by treating each stakeholder’s rank ordering of the alternatives as 
an independent observation. In particular, we call the set of all possible 
values of (w, y) that are consistent with stakeholder k’s rank ordering 
RO(k) the “active region” AR(k) for stakeholder k (for k = 1, …, K); that is,

	

AR , , such that

, , for

( ) ( ) [ ]

( ) ( )

( )

( )

k N

n n

w y

w y w y
i
k

j
k

3 1 01

U U 11 i R i j Nand ,
	 (5.5)

where U
n
(w, y) is the multiattribute utility function as given in Equation 5.2.

If we assume that the decision-maker’s prior distribution over the 
uncertain parameters (w, y) is randomly chosen according to a Dirichlet 
process (Ferguson, 1973) concentrated at Q

0
 with self-trust degree α > 0, 

then the posterior distribution for (w, y) is also random and follows a 
Dirichlet process. In particular, the expected posterior distribution for 
(w, y) after observing K stakeholders’ rank orderings is given by

	 K
Q

K
Q

k

K
k

0
1

0

1 ( ) , 	 (5.6)
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where Q k
0
( ) is a truncated version of the starting distribution Q

0
 that puts 

nonzero mass on only points inside AR(k); that is, Q Qk

w y k0 0 1( )

{( ) }( ), AR
 

with 1
{·}

 being the indicator function. Note that Equation 5.6 suggests a 
linear pooling of the decision-maker’s prior knowledge with the stake-
holders’ judgments, where the value of α (relative to the number of 
stakeholders K) reflects the level of reliance on the decision-maker’s 
prior belief.

Statistical estimates for the moments of the distribution 5.6 can be 
obtained using Monte Carlo simulation (e.g., Gibbs sampling). In 
particular, to draw S random samples from 5.6, we need to randomly 
generate Sα/(α + K) points from the entire sample space of (w, y) and s/
(α + K) points from each of the active regions AR(k) for the K stake-
holders, both according to the predefined starting distribution Q

0
. (Note 

that the value of S must be chosen so that the sample sizes s/(α + K) and 
Sα/(α + K) are integers.) Again, more details of this methodology are 
available in Wang and Bier (2013).

Relationship between LINMAP, PI, and BDE

In general, LINMAP is designed for elicitation of the preferences of a 
single stakeholder, while PI and BDE can be used for multiple stake-
holders. LINMAP also generates only point estimates for the attribute 
weights, while PI and BDE produce probability distributions. However, 
there are some other interesting relationships between LINMAP, PI, 
and BDE.

First, consider the case when there is only one stakeholder (the 
default setting for the application of LINMAP) or when all stakeholders 
give the same rank ordering. Wang and Bier (2013) show that if zero 
weight is placed on the decision-maker’s judgment (i.e., the self-trust 
degree α → 0), then PI and BDE are equivalent in this case.

When there is only one stakeholder and his/her rank ordering of 
alternatives can be perfectly explained by the available set of attrib-
utes, then LINMAP achieves zero pairwise violations (possibly with 
multiple optimal solutions). BDE (or PI) is also feasible in this case 
even if we exclude the unobserved attribute. In fact, each point in the 
active region of BDE corresponding to the stakeholder’s stated rank 
ordering (without considering the unobserved attribute) is one pos-
sible set of optimal attribute weights that could be produced by 
LINMAP.
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If the stakeholder’s given rank ordering of alternatives does not 
deviate too much from the available set of attributes, then LINMAP can 
still obtain a set of estimated attribute weights that fits the stakeholder’s 
judgments reasonably well. Both PI and BDE would need to include the 
unobserved attribute to ensure feasibility in this case but would presum-
ably place small weight on it. Moreover, we would anticipate the 
LINMAP estimates to be quite close to the means of the probabilistic 
weights generated by PI or BDE.

However, if the stakeholder’s rank ordering of alternatives is based 
heavily on factors other than the available set of attributes, then any 
possible weights that do not consider the unobserved attribute might 
lead to substantial deviations from the stated ordinal ranking. Therefore, 
the LINMAP estimates are expected to perform poorly in reproducing 
the stated rank ordering in this case, while PI (or BDE) would perform 
better but would assign high weight to the unobserved attribute.

We now consider the case when there are multiple stakeholders 
who provide different ordinal judgments. PI and BDE will in general 
give different results in this case. Consider multiple groups of stake-
holders with different sets of ordinal rankings, where each group 
nonetheless yields the same empirical marginal ranking distribution P. 
PI would give the same result for all of these groups of stakeholders, 
while BDE would in general give different results for groups with dif-
ferent rank orderings. However, Wang and Bier (2013) show that if we 
choose a flat starting distribution Q

0
, then the PI result will coincide 

with the BDE result with the highest entropy.
The fact that PI exploits only marginal stakeholder rankings may 

make it suitable to use when the available judgments are not highly reli-
able (e.g., when using only a small number of stakeholders to represent 
the opinions of a much larger population), in which case we may not 
want to put too much emphasis on the empirical correlations between 
stakeholders. We could also use BDE in that case with a large self-trust 
degree assigned to the decision-maker’s prior knowledge.

However, when rankings from large numbers of stakeholders are 
available, we may wish to explicitly account for correlated rank order-
ings (e.g., if stakeholders who rank alternative 1 higher than 2 also rank 
alternative 3 higher than 4 and vice versa). PI is not able to capture the 
effects of such correlations, since it uses only the empirical marginal 
ranking distribution P. By contrast, BDE is sensitive to correlations 
among the rankings and thus will be more appropriate if we want to 
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account for the existence of different “schools of thought” (i.e., sub-
groups of stakeholders who hold similar opinions). The results in Wang 
and Bier (2013) also suggest that BDE tends to give multimodal 
distributions more often than PI in the face of multiple schools of 
thought. Therefore, when sufficient numbers of stakeholder judgments 
have been obtained to provide reasonable assurance that any apparent 
schools of thought are meaningful, BDE might be more appropriate.

Illustrative Case Study

In this section, we present a case study on elicitation of adversary pref-
erences about attacks against major US urban areas, to illustrate the 
applicability of LINMAP, PI, and BDE. In particular, we consider the 
10 urban areas with the highest expected damage from terrorism 
(according to Willis et al., 2005), including New York City (NYC); 
Chicago; San Francisco; Washington, DC; Los Angeles (LA); 
Philadelphia; Boston; Houston; Newark; and Seattle. We consider two 
known attacker attributes, expected yearly property loss from terrorism 
and population density (Willis et al., 2005), plus an unobserved attri-
bute. The original values of each known attacker attribute m (m = 1, 2) 
for each city n (n = 1, …, 10) are presented in Table 5.1. In order to 
apply LINMAP, PI, and BDE, we normalize these values to range bet-
ween 0 and 1 (as shown by v

1
 and v

2
 in Table 5.1). We assume that two 

hypothetical intelligence experts have given the rankings of the top five 
most attractive cities in Table 5.2.

We first apply LINMAP to get point estimates for the two known 
attribute weights from the rank orderings of the two experts separately. 
In the two-expert case, we average the LINMAP weights to get aggregate 
estimates. We then use PI and BDE to get probability distributions (and 
expected values) for the two known attribute weights plus the weight of 
the unobserved attribute, for the two experts separately and for both 
experts together. We choose a flat starting distribution for both PI and 
BDE. For comparison purposes, we set the self-trust degree α → 0 in 
BDE since PI does not have such a parameter. (In that case, PI and BDE 
give the same results when there is only one expert.) See results in 
Figure 5.1.

Note that the hypothetical judgments of expert 1 are well repre-
sented by the two known attributes and are more closely related to 
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property loss than to population density. The mean elicited weights for 
both PI and BDE reflect this by generating mean weights of E[w

1
] = 0.44 

for property loss and E[w
2
] = 0.34 for population density and a small 

weight of E[w
3
] = 0.22 for the unobserved attribute (as shown in the first 

row of Fig. 5.1). LINMAP omits the unobserved attribute but obtains 
qualitatively similar results, placing higher weight on property loss  
(ŵ1 = 0.59) than on population density (ŵ2 = 0.41).

However, LINMAP behaves quite differently from either PI or 
BDE when using the hypothetical judgments of expert 2 (see the second 
row of Fig.  5.1). This is because the hypothetical rank orderings of 
expert 2 were designed to reflect a preference for high property loss but 

Table 5.1  Attribute values for the 10 US cities with the highest 
expected terrorism losses

Property loss Population density

$ million v
1

per sq mile v
2

New York City 413 1.000 8159 1.000

Chicago 115 0.278 1634 0.200

San Francisco 57 0.138 1705 0.209

Washington DC 36 0.087 756 0.093

Los Angeles 34 0.082 2344 0.287

Philadelphia 21 0.051 1323 0.162

Boston 18 0.044 1685 0.207

Houston 11 0.027 706 0.087

Newark 7.3 0.018 1289 0.158
Seattle 6.7 0.016 546 0.067

Table 5.2  Hypothetical expert rank orderings for the illustrative 
case study

Rank Expert 1 Expert 2

1 New York City District of Columbia

2 Chicago Chicago

3 Los Angeles New York City

4 San Francisco San Francisco
5 Philadelphia Houston
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some aversion to attacks on densely populated cities (such as NYC). For 
example, these rankings might represent the target preferences of an 
attacker who wishes to cause significant economic damage and make a 
big splash but without large numbers of fatalities. Therefore, if the 
weight on population density is constrained to be positive, the two 
known attributes are inadequate to fully capture the judgments of 
expert 2. The best fit obtained by LINMAP assigns an extremely high 
weight to property loss ( ŵ1  = 0.98), but this assignment cannot explain, 
for example, why expert 2 ranks DC as the most attractive city and 
Houston among the top five, since both cities have relatively low prop-
erty losses. By contrast, PI and BDE identify that there may be other 
factors driving the judgments of expert 2, by placing a high expected 
weight E[w

3
] = 0.82 on the unobserved attribute.

When considering the judgments of both experts 1 and 2 combined, 
PI and BDE also seem to give more sensible results than LINMAP (see 
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Figure 5.1  Elicited probability densities and point estimates for the attribute weights.
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the third row of Fig. 5.1). In particular, both PI and BDE give multi-
modal distributions with high variance for the attribute weights, to 
explicitly account for the disagreement between the two experts. (In 
fact, BDE gives more noticeably multimodal results than PI for the 
weight assigned to property loss.) However, the average of the weights 
given by LINMAP camouflages such disagreement.

Thus, when an expert’s judgments are well represented by the 
known attributes, LINMAP is able to find a set of estimated attribute 
weights that give a good fit to the expert’s rank ordering of alternatives. 
Moreover, limited evidence in this chapter also suggests that in this case 
the LINMAP estimates will be reasonably close to the mean weights 
obtained using PI or BDE. However, when the known attributes do not 
adequately explain the expert judgments, LINMAP might generate 
nonsensical results, while PI and BDE can increase the weight on the 
unobserved attribute to reflect the fact that the available set of attributes 
is incapable of fully expressing the expert preferences.

Allowing for Negative Weights

Of course, stakeholders may disagree about whether a larger value of a 
particular attribute yields higher or lower utility. For example, in the 
context of adversarial preference modeling, some intelligence experts 
may believe that a particular adversary group favors smaller rather than 
larger numbers of fatalities, since attacks with a large number of fatal-
ities could lead to reduced support for the terrorist’s cause and/or 
massive US retaliation. However, other experts may believe that the 
adversary would prefer attacks that cause more fatalities, in order to 
evoke more fear.

To model this, CREATE (2011) proposes extending the standard 
additive multiattribute utility function to allow for negative weights 
while restricting the sum of the absolute values of the various attri-
bute weights to equal 1 (i.e., ˆ ˆw w1 2 1 for LINMAP and 
ˆ ˆ ˆw w w1 2 3 1 for PI or BDE). This choice of attribute weights 

allows enough flexibility to deal with stakeholder disagreement on the 
directions of the attribute weights but still constrains their magnitudes.

Note that for PI and BDE, we still require that the weight for the 
unobserved attribute be nonnegative (i.e., w

3
 ≥ 0). There are two reasons 

for this choice. First, the fact that the method (PI or BDE) fits not only 
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the weight w
3
 but also the values of the unobserved attribute y

n
 for the 

various alternatives implies that no degrees of freedom are lost by 
restricting w

3
 to be positive. This is because the attribute values can still 

be chosen appropriately to reflect stakeholders’ disagreement on the 
directions of the attribute scales. Second, if w

3
 is allowed to be negative, 

then the expected value E[w
3
] will no longer capture the full effect of 

the unobserved attribute, complicating the interpretation of the results.
In the illustrative case study of the previous section, when applying 

LINMAP, PI, and BDE with nonnegative weights to the rank ordering 
given by expert 2, we find that population density seems to be almost 
totally unimportant to the attacker (ŵ2 = 0.02 for LINMAP and 
E[w

2
] = 0.06 for PI or BDE, as shown in the second row of Fig. 5.1). 

However, by allowing for negative attribute weights, the LINMAP 
weight for population density becomes significantly negative (ŵ2 = 
−0.5). The PI and BDE results also give a probability of 0.73 of a nega-
tive weight on population density (as shown in Fig.  5.2), with mean 
E[w

2
] = − 0.18. This reflects the observation that the judgments of expert 

2 would be consistent with an adversary that is averse to attacks on cit-
ies with high population densities. Interestingly, although the LINMAP 
weights (ŵ1 = 0.5; ŵ2 = − 0.5) are not close to the mean weights elicited 
by PI or BDE (E[w

1
] = 0.26; E[w

2
] = − 0.18), they are quite close to the 

modes of the distributions for w
1
 and w

2
 given by PI and BDE.

Thus, elicitation methods with only nonnegative weights may 
incorrectly suggest that a given attribute is irrelevant or unimportant. 
Allowing for negative weights avoids this pitfall and also automatically 
accounts for the possibility of conflicting views among the stakeholders 
on whether a larger value of an attribute corresponds to higher or lower 
utility. This automated assessment is especially important for elicitation 
tasks with large numbers of stakeholders (e.g., using online surveys), 
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because it avoids the need to interview individual stakeholders about 
their (possibly differing) perceptions of the various attribute scales.

Reliability of Partial Rank Orderings

The elicitation methods discussed here are practical only if stakeholders 
can provide partial rank orderings of the available alternatives, rather 
than a full ranking of all alternatives, which may become cumbersome. 
In fact, there would be little reason to even obtain estimates of attribute 
weights, if stakeholders had to provide direct rankings of all alternatives 
in order to generate those estimates. Therefore, in this section, we con-
duct simulation-based sensitivity analysis to investigate whether 
elicitation results from partial rank orderings of alternatives are suffi-
ciently reliable for use in practice.

For simplicity, we apply LINMAP and BDE to the case of a single 
stakeholder, without allowing for negative attribute weights. We also 
choose a flat starting distribution for BDE and set the self-trust degree 
α → 0. (Note again that when there is only one expert, PI and BDE give 
the same results.)

We consider three main factors that might affect the reliability of 
partial rank orderings. First, for a fixed number of alternatives, we 
would expect that ranking more of the alternatives (i.e., larger R) would 
generate more reliable results than ranking fewer alternatives. However, 
it is important to know how quickly results become reliable as the 
number of ranked alternatives increases.

Second, the total number of alternatives (N) also seems to be an 
important factor. However, we have no prior hypothesis on whether 
results would be more reliable for a larger or smaller total number of 
alternatives.

Finally, we are interested in how the number of known attributes 
(M) affects the reliability of partial rank orderings. Partial rankings 
should hypothetically be less reliable for estimating large numbers of 
attribute weights, since in that case there are simply more parameters to 
estimate. Moreover, as the number of attributes grows, the various 
attributes would be more likely to be correlated, possibly leading to less 
stable elicitation results. Therefore, when the total number of attributes 
is greater, we expect that results derived from partial rank orderings 
would deviate more from those based on full rank orderings.
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In particular, we consider three levels for the total number of alter-
natives (N = 10, 20, or 50) and three levels for the number of known 
attributes (M = 2, 4, or 7). For each number of alternatives N, we com-
pare different levels of partial ranking R against full ranking of all N 
alternatives. When N = 10, we consider one partial rank ordering identi-
fying the top R = 5 alternatives; when N = 20, we consider two partial 
rank orderings, the top R = 5 or 10 alternatives; when N = 50, we con-
sider three cases, the top R = 5, 10, or 20 alternatives.

Here, reliability is measured by the Euclidean distance between the 
(mean) attribute weights elicited using full rank orderings and those 
obtained from partial rank orderings. For ease of interpretation, we nor-
malize this distance by dividing it by the square root of 2, which is the 
largest possible Euclidean distance between two nonnegative weights 
that sum up to unity, to yield a maximum normalized distance of 1. (Of 
course, the ideal distance is 0.)

For each of the aforementioned cases, we randomly generate 400 
sets of attribute values v

nm
 and rank orderings of the attractiveness of 

alternatives U
n
. Four hundred runs are sufficient to ensure that the sim-

ulation error is within ± 10 % of the quantity of interest. Figure  5.3 
presents the estimated normalized distances between the attribute 
weights elicited using partial versus full rank orderings in our 
simulations.

In general, larger subsets of partial rankings (i.e., larger R) lead to 
more reliable estimates for the attribute weights (smaller normalized 
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distances). This is true for all three methods (LINMAP, PI, and BDE), 
at least for the cases we considered.

Moreover, ranking roughly 20% of the alternatives (e.g., the top 5 
of 20 or the top 10 of 50) seems to provide sufficiently good weight 
estimates for the use of LINMAP, with a normalized distance of less 
than 0.2 from the weight estimates generated by full rankings. However, 
more alternatives need to be ranked for PI or BDE to achieve an 
equivalent level of reliability. This seems reasonable, because in order 
to generate probability distributions for the weights rather than only 
point estimates, PI and BDE attempt to get more information out of the 
data than LINMAP and thus may need more data in order to be 
reliable.

In spite of the need for larger numbers of partial rankings, PI and 
BDE are still not impractical. In fact, ranking roughly 50% of the alter-
natives (e.g., the top 5 of 10, the top 10 of 20, or the top 20 of 50) yields 
moderately reliable results (with a normalized distance of <0.3) in most 
cases.

We now compare the results given by ranking the top 50% of all 
alternatives for different numbers of alternatives (N), again from 
Figure 5.3. Larger numbers of alternatives (i.e., larger N) seem to give 
better results for LINMAP, but not for PI or BDE. This discrepancy 
makes the use of these methods suitable in different circumstances. In 
particular, LINMAP may perform better than PI and BDE for problems 
with large numbers of alternatives.

Finally, we investigate the effect of varying the number of known 
attributes (M). All three methods seem to work better for smaller num-
bers of attributes (i.e., smaller M). For example, when there are only two 
known attributes (M = 2), asking the stakeholders to provide only the top 
5 out of 50 alternatives (i.e., the top 10%) seems to produce quite reli-
able estimates for the attribute weights using LINMAP, PI, or BDE.

Conclusions and Directions 
for Future Research

This chapter focuses on an elicitation process that uses (partial) rank 
orderings of a given set of alternatives and mathematically derives esti-
mates for the various attribute weights in an additive multiattribute 
utility function that represents the stakeholders’ preferences.
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The LINMAP method in conjoint analysis has been popular since 
its emergence in the 1970s. It is simple and fast and can yield good 
point estimates for the attribute weights when a stakeholder’s rank 
orderings of alternatives do not deviate too much from the available set 
of known attributes. On the other hand, PI and BDE have only recently 
been applied to elicitation of ordinal judgments. Both of these newer 
methods can provide probability distributions over the attribute weights, 
thus explicitly accounting for the effects of uncertainty and disagree-
ment in group decision-making. PI and BDE can also generate weights 
for unobserved attributes, which is useful in quantifying whether the 
available set of attributes are adequate to capture the stakeholders’ rank 
orderings.

This chapter discusses extensions of these methods to allow for 
negative attribute weights (CREATE, 2011). Some attributes that seem 
totally unimportant when using only nonnegative weights may turn out 
to be surprisingly important after we drop the nonnegativity restriction. 
This is significant, since some stakeholders may disagree with the pre-
defined scales of the attributes—for example, thinking that a larger 
value of a given attribute corresponds to lower utility. Allowing for neg-
ative weights handles that possibility in an automatic and realistic way. 
This feature makes these methods especially useful for large-scale elic-
itations (e.g., through online surveys).

This chapter also examines the reliability of using partial rank 
orderings in eliciting attribute weights, compared to full rank orderings. 
The reliability of the methods appears to depend on the total number of 
alternatives, the number of ranked alternatives, and the number of 
known attributes. In general, ranking only 20% of the alternatives seems 
to be sufficient for the use of LINMAP, but more rankings (perhaps 
50%) may be needed for the use of PI or BDE.

The elicitation methods presented in this chapter have all been 
developed based on the assumption that stakeholders give rank order-
ings without ties. Shocker and Srinivasan (1974) have extended 
LINMAP to allow for tied rankings, by treating tied alternatives as hav-
ing utilities that are “close” to each other. We could also extend PI and 
BDE to accommodate tied rankings in a similar way. However, further 
research is needed to investigate the performance of LINMAP, PI, and 
BDE in the face of tied rank orderings.

In other work, we have found that when the values of some attributes 
are highly correlated with each other (which will tend to happen quite 
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often when the number of attributes is large), the elicitation results given 
by both PI and BDE can be unstable in the face of small changes in the 
attribute values. This effect is analogous to the problem of collinearity in 
multiple regression. Therefore, an interesting topic for future research 
would be to develop a “significance test” to assess whether removing an 
attribute would significantly change the relative weights of the remain-
ing attributes as well as the importance of the unobserved attribute.

Still, the basic approach of ordinal analysis discussed in this chapter 
is a rigorous and practical method and can readily be applied—for 
example, as a source of input for convergence validation.
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CHAPTER	 6

Causal Analysis and 
Modeling for Decision 
and Risk Analysis

Louis Anthony (Tony) Cox, Jr.
Cox Associates, NextHealth Technologies,  
University of Colorado-Denver, Denver, CO, USA

Introduction: The Challenge of Causal 
Inference in Risk Analysis

In decision and risk analysis, the goal of making decisions is to change 
the probabilities of outcomes to make preferred outcomes more likely. 
The decision-maker’s choices act upon the world, causing changes in 
outcome probabilities. Yet, this crucial concept of causal efficacy is 
seldom developed in detail in decision analysis, and the fact that formal 
probability theory applies only to events (subsets of a sample space) 
rather than to actions and their consequences is seldom emphasized 
(Pearl, 2010). Yet, if one is careless about causation—for example, by 
routinely interpreting statistical associations or regression coefficients 
as if they were known to be causal, as is unfortunately common practice 
in modern epidemiology and public health applications—then the 
decisions that one takes based on assumptions about causality may turn 
out to cause quite different shifts in outcome probabilities than those 
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that were expected and intended. Fortunately, modern methods of causal 
analysis can do much to prevent such unpleasant surprises. This chapter 
surveys some of the most useful methods for causal analysis, contrasts 
them with widely used but untrustworthy methods based on judgments 
about statistical associations, and develops their relations to Bayesian 
networks (BNs) and influence diagrams (IDs).

Our starting point is recognition that public health risk managers, reg-
ulators, policy makers, and others in positions of political influence or 
power are frequently presented with conflicting accounts of how the world 
works. They are urged by various interest groups—often passionately—to 
take different prompt, decisive actions based on these rival causal theories. 
Members of the Congress are implored by many climate scientists to do 
more to curb climate change before it is too late. Simultaneously, other 
groups beseech them not to spend resources on expensive actions that 
might create no, or little, or uncertain, benefits. While many financial econ-
omists and risk analysts call for tighter regulation of complex financial 
instruments, or better-funded public safety nets for big banks, or quicker 
and larger stimulus expenditures, others warn that these efforts risk exacer-
bating the problems they are meant to solve. Experts in development 
economics are split between those who encourage increasing aid payments 
to poor countries to jump-start their economies and those who say that such 
transfers merely cement the wealth, power, and corruption of existing 
power elites, thus helping to keep their countries poor.

In these and countless other disagreements, both sides usually have 
more-or-less plausible stories about how their recommended actions 
will cause desirable consequences, but their stories do not agree. This 
puts risk managers, decision-makers, and policy makers in the uncom-
fortable position of having to assess the credibility of rival causal 
theories—a task for which compelling data, decisive expertise, and 
provably useful training are often in short supply. The task is compli-
cated by the notorious difficulty of defining causality and by the fact 
that controlled experiments—or even careful replication of previous 
observations—are often impossible. Analysts and decision-makers 
must decide what to do based on observations of what has happened, 
without knowing what would have happened had different choices been 
made; history does not reveal its alternatives. Moreover, like risk itself, 
causality is often easier to model mathematically than to define well in 
words. Risk equations and causal models typically describe how 
changes in inputs to a system would change probabilities of outputs. 
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This provides the essential scientific information needed to inform risk 
management decisions. But such causal models and relations seldom 
lend themselves to clean verbal definitions of causality or of risk: they 
simply predict the changes in probable outcomes that would be caused 
by changes in inputs.

Example: Causality is Often Easier to Model 
Quantitatively than to Define Qualitatively

If water is left flowing into an initially empty bucket of volume V liters 
at a rate of r liters per minute for t > V/r minutes, causing the bucket to 
overflow, then philosophers and legal scholars might ponder whether 
the overflow was caused by an inadequate design decision (V too 
small) or excessively stressful operating conditions (r too large) or care-
less risk management (t too large), but a modeler can simply predict that 
the bucket will overflow if and only if t > V/r and leave to others the 
challenges of expressing this predictive conditional relation in satis-
fying causal terms. Even if the correct description of the problem 
parameters is uncertain, quantifying probabilities of an undesired out-
come (overflow) from a joint probability distribution for (V, r, t), would 
not change or obscure the underlying causal relation. Neither would 
interconnecting multiple (possibly leaky) buckets or allowing flow rate 
r to be described by a stochastic process raise any conceptual diffi-
culties for understanding the causal relations involved in calculating the 
probable time until the levels in one or more buckets first move outside 
a desired set of values. Many tasks in applied risk assessment involve 
such clear and easily modeled causal relations. Examples include pre-
dicting financial ruin probabilities (where money, rather than water, 
flows into and out of a business or an investment fund); developing bio-
logically based cancer risk assessment models (where cell populations 
make random transitions among stages); protecting and managing eco-
systems (where stocks of vulnerable species increase or decrease over 
time); operating complex engineering or industrial systems (where 
components may degrade and be inspected, maintained, replaced, or 
repaired over time); and performing microbial risk assessments (in 
which the burden of foodborne illnesses in a population changes as 
microbial safety practices change along the food supply chain). Risk 
models in these and other areas embed clear concepts of causation, 
often based on submodels or empirical estimates of how interventions 
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change the rates of flows or transitions among adjacent compartments. 
Decisions about how to intervene to cause more desirable patterns of 
flows or transitions can then be based on the resulting risk models.

Two natural reactions to the challenge of judging among rival causal the-
ories are to trust one’s common sense and intuition, deferring to gut feel 
when cognition must admit defeat; and to rely on trusted scientific experts, 
who specialize in the relevant technical disciplines, for candid advice 
about the probable consequences caused by different choices. But modern 
scholarship has diminished the luster and apparent trustworthiness of both 
intuitive and expert judgments in matters of causation. As discussed 
further in Chapters 2 and 10, psychologists have shown convincingly that 
all of us, including experts in science and statistics, are prone to heuristics 
and biases that limit the trustworthiness of our judgments. These include 
overconfidence in our own judgments, misattribution of effects to causes, 
excessive inclination to blame people instead of situations, affect bias (in 
which emotional responses color our beliefs about facts, inclining us 
toward causal theories that agree with our intuitive perceptions of what is 
good or bad), motivated reasoning (which prompts us to believe whatever 
seems most profitable for us to believe), and confirmation bias (which 
leads us to see only what we expect and to seek and interpret information 
selectively to reinforce our beliefs rather than to learn from reality) 
(Fugelsang et al., 2004; Gardner, 2009; Sunstein, 2009).

For over a decade, the peer-reviewed scientific literature on risks 
and causes has been found to reflect these very human biases, with a 
large excess of false-positive errors in published results and in confident 
public assertions about health effects of various interventions (Ottenbacher, 
1998; Imberger et al., 2011; Sarewitz, 2012). Attempts that fail to repli-
cate published results may carry little professional or academic reward, 
undermining incentives to try to independently replicate key claims 
(Sarewitz, 2012; Yong, 2012). Scientists with deep subject matter exper-
tise are not necessarily or usually also experts in causal analysis and 
valid causal interpretation of data, and their causal conclusions are often 
mistaken. This has led some commentators to worry that “science is 
failing us,” due largely to widely publicized but false beliefs about 
causation (Lehrer, 2012), and that, in recent times, “Most published 
research findings are wrong” (Ioannidis, 2005), with the most sensa-
tional and publicized claims being most likely to be wrong. Yet, 
published research findings, and their supporting causal models, provide 
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the essential bedrock of scientific and empirical support for decision 
processes based on analysis and deliberation. If this core scientific input 
is untrustworthy, then risk assessments and decisions based on it may 
also fail to perform as expected.

To feel the pull of rival causal theories, consider the contrasting 
accounts of public health effects caused by air pollution, shown in 
Table  6.1. On the left are quotes from studies usually interpreted as 
showing that exposure to air pollutants (mainly fine particulate matter 
(PM2.5)) causes increased risks of adverse health effects (e.g., Pope, 
2010), along with some quantitative risk estimates for these effects. On 
the right are caveats and results of studies suggesting that these associ-
ations may not be causal after all. Both seem more or less plausible at 
first glance. Yet, important policy decisions, such as about whether the 
costs of reducing pollution levels further would be justified by resulting 
benefits from improved public health, depend crucially on which of 
these rival interpretations is correct.

If one’s own judgment, scientific expert opinion, and the authority 
of peer-reviewed publications are all suspect as guides to the truth about 
such basic questions as whether air pollution caused adverse health 
effects in these studies, then how might one more objectively determine 
what causal conclusions are warranted by available facts and data, to 
serve as a basis for sounder risk-informed decision-making? A common 
approach in epidemiology is to use statistical tests to determine whether 
there is strong evidence for a nonrandom positive association between 
exposure and response and then to check whether, in the judgment of 
knowledgeable experts, the association can correctly be described 
by adjectives such as “strong,” “consistent,” “specific,” “temporal,” and 
“biologically plausible.” The problem with this very popular approach 
is that all of these (and other) laudatory adjectives can apply perfectly 
well to associations even when there is no causation. Such associations 
can be created by strong confounders with time delays; or by data selec-
tion and model selection biases; or by unmodeled errors in exposure 
estimates; or by regression to the mean, or contemporaneous historical 
trends, or a host of other well-known threats to valid causal inference 
(Campbell and Stanley, 1966; Cox, 2007). Applying adjectives to 
associations, as proposed in the thoughtful and influential work of 
Sir Bradford Hill and as subsequently implemented in many weight-
of-evidence schemes, does not overcome the basic limitation that an 
association is still only an association. Even the best qualified association 
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Table 6.1  Some examples of conflicting claims about health 
effects known to be caused by air pollution

Pro (causal interpretation or claim) Con (counterinterpretation or claim)

“Epidemiological evidence is used to 
quantitatively relate PM2.5 exposure 
to risk of early death. We find that 
UK combustion emissions cause 
~13,000 premature deaths in the UK 
per year, while an additional ~6000 
deaths in the UK are caused by 
non-UK European Union (EU) 
combustion emissions” (Yim and 
Barrett, 2012)

“[A]lthough this sort of study can 
provide useful projections, its results 
are only estimates. In particular, 
although particulate matter has been 
associated with premature mortality in 
other studies, a definitive cause-and-
effect link has not yet been 
demonstrated” (NHS, 2012)

“[A]bout 80,000 premature mortalities 
[per year] would be avoided by lowering 
PM2.5 levels to 5 µg/m3 nationwide” 
in the US. 2005 levels of PM2.5 caused 
about 130,000 premature mortalities 
per year among people over age 29, 
with a simulation-based 95% confidence 
interval of 51,000–200,000 (Fann  
et al., 2012)

“Analysis assumes a causal relationship 
between PM exposure and premature 
mortality based on strong 
epidemiological evidence… However, 
epidemiological evidence alone cannot 
establish this causal link” (EPA, 2011, 
table 5.11)

Significant negative associations have 
also been reported between exposures 
to some pollutants (e.g., NO2 (Kelly 
et al., 2011), PM2.5 (Krstić, 2011), 
and ozone (Powell, Lee, and Bowman, 
2012)) and short-term mortality and 
morbidity rates.

“Some of the data on the impact of 
improved air quality on children’s 
health are provided, including… 
the reduction in the rates of childhood 
asthma events during the 1996 
Summer Olympics in Atlanta, Georgia, 
due to a reduction in local motor vehicle 
traffic” (Buka, Koranteng, and Osornio-
Vargas, 2006). “During the Olympic 
Games, the number of asthma acute 
care events decreased 41.6% (4.23 
vs. 2.47 daily events) in the Georgia 
Medicaid claims file,” coincident with 
significant reductions in ozone and 
other pollutants (Friedman et al., 2001)

“In their primary analyses, which were 
adjusted for seasonal trends in air 
pollutant concentrations and health 
outcomes during the years before 
and after the Olympic Games, the 
investigators did not find significant 
reductions in the number of 
emergency department visits for 
respiratory or cardiovascular health 
outcomes in adults or children.” In 
fact, “relative risk estimates for the 
longer time series were actually 
suggestive of increased ED 
[emergency department] visits during 
the Olympic Games” (Health Effects 
Institute, 2010)
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may not reveal anything about causation, including the correct sign 
(positive or negative) of the causal influence of exposure on risk, if 
there is one. For example, if elderly people consume more baby aspirin 
than younger people to reduce their risk of heart attacks, then level of 
aspirin consumption might be significantly positively associated with 
increased risk of heart attack, even if increasing aspirin consumption 
would cause reduced heart attack risk at every age.

More generally, causality in risk analysis is not mainly about 
statistical associations between levels of passively observed variables 
but rather about how changes, if they were made, would propagate 
through systems (Druzdzel and Simon, 1993; Greenland and Brumback, 
2002). This distinction should be of critical importance to risk analysts 

Table 6.1  (Continued)

Pro (causal interpretation or claim) Con (counterinterpretation or claim)

“An association between elevated PM10 
levels and hospital admissions for 
pneumonia, pleurisy, bronchitis, and 
asthma was observed. During months 
when 24-hour PM10 levels exceeded 
150 micrograms/m3, average 
admissions for children nearly tripled; 
in adults, the increase in admissions was 
44 per cent” (Pope, 1989)

“Respiratory syncytial virus (RSV) 
activity was the single explanatory 
factor that consistently accounted for a 
statistically significant portion of the 
observed variations of pediatric 
respiratory hospitalizations. No 
coherent evidence of residual statistical 
associations between PM10 levels and 
hospitalizations was found for any age 
group or respiratory illness” (Lamm 
et al., 1994)

“Reductions in respiratory and 
cardiovascular death rates in Dublin 
suggest that control of particulate air 
pollution could substantially diminish 
daily death....Our findings suggest that 
control of particulate air pollution in 
Dublin led to an immediate reduction in 
cardiovascular and respiratory deaths” 
(Clancy et al., 2002). “The results could 
not be more clear, reducing particulate 
air pollution reduces the number of 
respiratory and cardiovascular related 
deaths immediately” (Harvard School 
of Public Health, 2002)

The same rate of reduction in death 
rates was already occurring long 
before the ban and occurred in other 
parts of Europe and Ireland not 
affected by it. “Serious epidemics 
and pronounced trends feign excess 
mortality previously attributed 
to heavy black-smoke exposure” 
(Wittmaack, 2007). “Thus, a causal 
link between the decline in mortality 
and the ban of coal sales cannot 
be established” (Pelucchi et al., 2009)
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advising public policy decision-makers on the probable consequences 
of proposed interventions and also to policy makers considering how 
much weight to give such advice. As a real-world example of how much 
it matters, mortality rates among the elderly tend to be elevated where 
and when fine particulate pollutant concentrations are highest among 
100 US cities (viz., in cities and months with cold winter days), and yet 
changes in these pollutant concentration levels from one year to the next 
are significantly negatively associated with corresponding changes in 
mortality rates, undermining any straightforward causal interpretation 
of the positive association between pollutant levels and mortality rates 
(Cox, 2012). Yet, this crucial distinction is often glossed over in the 
current language and presentation of health risk assessment results. 
For example, one recent article (Lepeule et al., 2012) announced that 
for six US cities, “Using the Cox proportional hazards model, statisti-
cally significant associations between [fine particulate matter] PM2.5 
exposure and all-cause, cardiovascular, and lung-cancer mortality were 
observed. …Each 10-μg/m3 increase in PM2.5 was associated with a 
14% increased risk of all-cause death.” But the word “increase” here 
does not refer to any actual change (increase over time) in PM2.5 levels 
or risk over time. Instead, it refers to associations between higher levels 
of PM2.5 and higher levels of risk. The study then infers that “These 
results suggest that further public policy efforts that reduce fine 
particulate matter air pollution are likely to have continuing public 
health benefits.” But this causal conclusion about predicted effects of 
changes does not follow from the statistical association between levels 
of PM2.5, since the two may (and in fact, in the United States, often do) 
have opposite signs (Cox et al., 2013). The contrasting statements on the 
left and right sides of Table 6.1 suggest that health effects researchers not 
infrequently leap from observations of associations to conclusion about 
causation, without carefully checking whether changes in inputs pro-
duce the changes in outputs that statistical associations between them 
suggest. This casual treatment of key causal questions must change, if 
risk analysis predictions are to become more accurate and trustworthy.

Risk management advice to decision-makers based on past 
statistical exposure–response associations (or other associations) may 
not be very useful for correctly predicting probable effects of future 
changes in exposures (or other variables) brought about by risk 
management interventions. Instead, an understanding of causal mecha-
nisms—that is, of how changes in some variables change others—is 
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usually necessary to correctly predict the effects of interventions 
(Greenland and Brumback, 2002; Freedman, 2004). This need not be 
difficult or mysterious. Simulation models (e.g., based on systems of 
differential and algebraic equations or on discrete-event models such as 
those in Chapter 3) describing flows of quantities among compartments 
over time, and the effects of interventions on flow rates, suffice to model 
the effects of interventions in many practical settings (Druzdzel and 
Simon 1993; Lu, Druzdzel, and Leong, 2000; Dash and Druzdzel, 
2008). However, shifting the emphasis from making judgments about 
the causal interpretation or “weight of evidence” of statistical associa-
tions to rigorous formal testing of causal hypotheses, formulated in 
terms of propagation of changes along causal paths (or through more 
complex causal networks), requires a major change in commonly taught 
epidemiological practices.

How to do Better: More Objective Tests for 
Causal Impacts

Happily, modern methods of causal analysis now enable decision and 
risk analysts to address questions about causation by considering 
relatively objective evidence on how and whether changes in the 
inputs to a system propagate to cause changes in its outputs. This is a 
far more  useful, and objective, approach than making judgments 
about statistical associations, for reasons given next. Well-developed 
methodological principles for drawing sound causal inferences 
from observational data include asking (and using data to answer) the 
following simple, systematically skeptical questions about observed 
exposure–response associations to test whether the observations 
are  logically capable of providing evidence for a genuine causal 
relation:

•  Do the study design and data collected permit convincing refutation 
of noncausal explanations for observed associations between levels 
of exposure and response (or between levels of other hypothesized 
cause-and-effect variables)? Potential noncausal explanations for 
associations include data selection and model selection biases, resid-
ual confounding by modeled confounders, unmodeled confounders, 
unmodeled errors in exposure estimates and covariates, unmodeled 
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uncertainties in model form specification, regression to the mean, and 
so forth (Cox, 2007). These potential rival explanations can be ruled 
out by appropriate study designs, control group comparisons, and 
data analyses, if they indeed do not explain the observed associations 
(Campbell and Stanley, 1966; Maclure, 1990; Cox, 2007). Assuming 
that they have been ruled out, the next questions consider whether 
there is objective evidence that the observed relation might be causal.

•  Are significant positive associations also found between changes in 
exposures and changes in response rates? If the answer is no, as 
revealed in some panel data studies of previously reported positive 
associations between exposure and response levels (Stebbings, 
1978), then this undermines causal interpretation of the positive 
associations.

•  Do changes in hypothesized causes precede changes in their hypoth-
esized effects? If not, for example, if health effects are already declin-
ing before reductions in exposure, then this casts doubt on the latter 
being a cause of the former. Doubt is increased if, as in the Dublin 
study in Table 6.1, a steep reduction in exposure is not followed by 
any detectable corresponding change in the rate of decline in effects.

•  Are reductions in hypothesized effects significantly greater in times 
and places where exposure went down than where exposure 
remained the same or went up? If not, as in the HEI (2010) analysis 
of the Atlanta Olympics data in Table 6.1, then this casts doubt on 
the hypothesis that reductions in exposure caused the reductions in 
effects.

•  Do changes in hypothesized causes (e.g., exposures) help to predict 
subsequent changes in their hypothesized effects? If not, for example, 
if changes in effects appear to be statistically independent of previous 
changes in the hypothesized causes, then this reduces the plausibility 
of a causal interpretation for a regression model, or other statistical 
model, relating them.

Such qualitative questions provide clear commonsense and logical 
foundations as screens for causal inference, and they are relatively easy 
to understand and ask.

Quantitative methods, although sometimes technically sophisti-
cated, help to implement many of the same basic ideas and to provide 
relatively objective answers using formal statistical tests. Among the 
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most useful analytic methods for testing causal hypotheses and con-
structing valid causal models from data are the following:

•  Intervention analysis (Friede, Henderson, and Kao, 2006), also called 
interrupted time series analysis, tests whether the best-fitting model 
of the data-generating process for an observed time series, such as 
daily mortality and morbidity counts, changed significantly at, or fol-
lowing, the time of an intervention. Intervention analysis provides 
methods to identify, test for, and estimate significant changes in time 
series that might have been caused by an intervention and that cannot 
easily be explained by other (noncausal) hypotheses.

•  Change-point analysis (Helfenstein, 1991; Gilmour et al., 2006). 
Intervention analysis seeks to quantify the changes in effects follow-
ing known changes in hypothesized causes. By contrast, change-point 
analysis searches for any significant changes in the data-generating 
process for effects (e.g., mortality rates) over an interval of time—for 
example, a change in the slope of a long-term declining trend in 
cardiovascular mortality rates or a change in the season-specific rate 
of hospital admissions for pediatric asthma. If such a change point is 
detected at, or closely following, an intervention, such as an emis-
sions ban that reduces pollution levels, then the intervention might 
have caused the change. If no change is detected, then there is no 
evidence that the intervention had a detectable effect.

•  Quasiexperimental designs and methods (Campbell and Stanley, 
1966) make use of control group comparisons (including pre- and 
postintervention observations on the same subjects) to try to system-
atically refute each of a list of identified methodological threats to 
valid causal inference, such as “history” (e.g., that the Dublin coal 
ban occurred during a long-term historical trend toward lower cardio-
vascular mortality rates due to better prevention, diagnosis, and treat-
ment), regression to the mean (unusual bursts of ill effects tend to be 
followed by lower levels even if any intervention that they may have 
triggered have no effect), aging of subjects, and so forth.

•  Panel data analysis (Angrist and Pischke, 2009) examines how well 
changes in explanatory variables predict changes in responses 
using  repeated measures of the same observational units over time 
to  control for unobserved confounders. In health risk assessment, 
comparing changes in exposures to changes in responses can give a 
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very different understanding of the likely health consequences caused 
by changes in exposure than studying estimated (or assumed) statisti-
cal associations between exposure and response levels (Stebbings, 
1978; Cox et al., 2013).

•  Granger causality tests (Eichler and Didelez, 2010). Changes in 
causes should help to predict subsequent changes in their effects, 
even if there is no intervention in the time series being observed. To 
formally test whether changes in exposure might be a contributing 
cause of changes in short-term daily mortality rates, for example, one 
could compare a simple predictive model, created by regressing 
future mortality rates against their own past (lagged) values, to a 
richer model that also regresses them against lagged values of expo-
sure as possible predictors. If including exposure history does not 
improve predictions of mortality rates (e.g., producing smaller mean 
squared prediction errors or larger mutual information between pre-
dicted and observed values), then the time series data do not support 
the hypothesis that exposure causes mortality, in the sense of helping 
to predict it. This method of testing causal hypotheses is incorporated 
in the Granger causality test. (It is now widely and freely available, 
e.g., as the granger.test procedure in R.) In practice, Granger causal-
ity testing may show that some significant correlates of short-term 
mortality rates (such as low temperature (Mercer, 2003)) are also 
Granger causes of the short-term mortality rates, while others (e.g., 
PM2.5) are not Granger causes (Cox et al., 2013). Although Granger 
tests are subject to the usual limitations of parametric modeling 
assumptions, such as the use of a linear regression model, the lack of 
Granger causation between exposure and response even when there is 
a clear, statistically significant positive regression relation between 
them highlights the importance of distinguishing between positive 
regression relations and causal relations. (This distinction has not 
been prominent in the air pollution health effects accountability lit-
erature to date, but deserves to be in the future.)

•  Conditional independence tests (Friedman and Goldszmidt, 1998; 
Freedman, 2004). In both cross-sectional and longitudinal data, a 
cause should provide some information about its effect that cannot be 
obtained from other sources. Conversely, if an effect is conditionally 
independent of a hypothesized cause, given the values of other 
explanatory variables (e.g., measured potential confounders and 
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covariates), then the causal hypothesis is not supported by the data 
(Freedman, 2004). For example, if daily mortality rates are condi-
tionally independent of pollution levels, given city and month and 
temperature, then there would be no evidence that pollution levels 
make a causal contribution to daily mortality rates. Conversely, if 
there is no way to eliminate the significant difference between mor-
tality rates for very different pollutant levels, holding other covariate 
levels fixed, then pollutant levels would appear as direct causes (“par-
ents”) of daily mortality rates in causal graph models (Friedman and 
Goldszmidt, 1998; Freedman, 2004).

•  Counterfactual and potential outcome models. A possible measure of 
causal impact of exposure on mortality rates in a population is the 
difference between the average mortality rates with and without 
exposures. Since no individual can be both exposed and unexposed, 
estimating this difference typically requires considering counterfac-
tual exposures and responses. One way to create such estimates is 
with a regression model. More generally, regression models can be 
used to estimate how risk would have changed had exposures been 
reduced, provided that the regression models describe effects of 
counterfactual exposures, rather than merely associations between 
predictors and predicted variables. There has much recent progress in 
technical methods for developing and fitting such counterfactual 
regression models (“marginal structural models” and their exten-
sions) to data to predict what would have happened if exposure had 
been lower or absent (Robins, Hernán, and Brumback, 2000; Moore 
et al., 2012). Such counterfactual causal models can yield insights 
and conclusions that are quite different from earlier regression 
models. For example, in one recent study, adverse effects of ozone 
exposure that are statistically significant in earlier regression models 
(which must make unverifiable modeling assumptions about what 
responses would be to combinations of predictors that do not occur in 
reality) are not significant when methods are applied that only use 
realistic exposure–response data (Moore et al., 2012).

•  Modeling causal mechanisms via propagation of changes through 
causal chains or networks. If exposure causes adverse health effects, 
it must do so via one or more causal pathways. Collecting biomarker 
data can allow testing of specific causal hypotheses about the mecha-
nisms of harm (Hack et al., 2010). Causal graph models, which factor 
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joint distributions into marginal and conditional distributions 
(Freedman, 2004), can be constructed to preserve causal orderings 
from structural equations or mathematical mechanistic models (Druzdzel 
and Simon, 1993; Lu, Druzdzel, and Leong, 2000; Dash and Druzdzel, 
2008). Then, if predicted changes in the variables that are supposed to 
transmit causal impacts are not observed, this would provide evidence 
against the hypothesized causal mechanism. Conversely, detecting 
and quantifying those changes (via conditional probability tables 
(CPTs)) allows prediction of the sizes of changes in health effects to 
be expected from changes in exposure, given the values of other vari-
ables in the causal model. For example, a recent study (Chuang et al., 
2007) provided panel data to test the specific mechanistic hypotheses 
for air pollution health effects, including that PM2.5 causes adverse 
cardiovascular effects by increasing oxidative stress as measured 
by  urinary 8-hydroxy-2′-deoxyguanosine (a marker for oxidative 
DNA damage). As summarized by Kaufman (2007), “blood and elec-
trocardiographic markers were repeatedly collected over 3 months to 
examine multiple potential mechanistic pathways. They had the 
benefit of fairly large daily fluctuations in exposure, presumably 
dictated by meteorological conditions. While their inflammatory, oxi-
dative stress, fibrinolysis, and coagulation health markers did not 
change consistently as hypothesized with fine particles, they did 
detect associations with some PM components and credited these to 
traffic-related air pollution…. Their measure of “oxidative stress” 
(urinary 8-hydroxy-2′-deoxyguanosine, assessing oxidative DNA 
damage) was not associated with pollution exposures. Heart rate vari-
ability metrics, on the other hand, consistently demonstrated negative 
associations with all air pollutants examined, in a manner that 
appeared to be independent of inflammation.” This ability to refute 
expected causal hypotheses, to discover new potential threats (such as 
reductions in heart rate variability), and to reveal unexpected time-
ordered sequences of changes makes panel data especially valuable 
for learning from data by testing and improving mechanistic models.

Table 6.2 summarizes some of the best-developed quantitative methods 
for testing causal hypotheses and for quantifying the sizes of causal 
effects. These methods of causal analysis are relatively objective. Unlike 
expert judgments and opinions about the causal interpretation of 
statistical associations, they can be independently replicated by others 
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using standard statistical methods (such as granger.test in the R statistical 
computing environment). They focus on answering the following key 
factual questions:

1.  Can any effect be detected (e.g., a significant change in a health 
effects time series following a change in exposures)? Change-point 
analysis, intervention analysis, and panel data analysis address this 
question. If there is no apparent effect, as in the Dublin study data 
(Wittmaack, 2007), then there is nothing to explain, and proffered 
causal interpretations are superfluous.

2.  If so, how large is it? This may be assessed via intervention analysis, 
change-point models, panel data, or quasiexperimental prepost com-
parisons. Counterfactual causal models can be used to estimate 
effects specifically caused by exposure, after untangling effects of 
confounders and feedback loops (Moore et al., 2012). If this causal 
effect is only a fraction as large as the statistical “effect” estimated 
from a regression model, then only that fraction of the statistical 
association should be attributed to exposure, as opposed to con-
founding or other sources.

3.  Can changes in responses be explained or predicted just as well 
without knowledge of a putative cause as with it? This crucial screen-
ing question can be answered using Granger tests, conditional 
independence tests, and quasiexperimental analyses. If knowledge 
of changes in a hypothesized cause does not improve ability to pre-
dict its hypothesized effects or, conversely, if the observed effects 
can be fully explained by other variables, then the causal hypothesis 
is not supported.

4.  Are the sequences of changes in variables implied by a hypothesized 
causal mechanism observed? This can be addressed using causal 
graph models and panel data analysis applied to biomarker data.

Using modern methods of causal analysis to address these factual ques-
tions can liberate risk analysts and policy makers from the need to rely 
on (potentially biased or unreliable) subjective judgments in addressing 
questions of causality. (See Chapters 2 and 10 for further discussion of 
potential pitfalls of subjective judgments.) They provide an alternative 
to the traditional Hill-type criteria popular in epidemiology (such as 
strength, consistency, specificity, and temporality of associations).
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Predictive Models: Bayesian Network (BN) 
and Causal Graph Models

A useful innovation for extending the realism and flexibility of graphical 
causal models moves beyond expected values and assumed linear regres-
sion relations among variables (used for much of the twentieth century in 
statistical and econometric analyses of causation via path analysis and 
structural equations models), by instead letting variables represent arbitrary 
random variables, with the conditional probability distribution of each var-
iable depending (only) on the values of the variables that point into it. This 
is the essential idea exploited in BN models. Each node in a discrete BN 
model can be thought of as having a corresponding conditional probability 
table (CPT) giving the conditional probability of each of its possible values 
for each combination of its input values. (In practice, if the node value prob-
abilities are not distinct for all possible combinations of inputs, then more 
efficient data structures than explicit CPTs may be used, but such imple-
mentation details are hidden in the software that makes BN technology 
convenient for general users. For example, if data are sufficiently abundant, 
then the empirical CPTs for nodes may be stored as classification trees 
and estimated by classification tree algorithms (Meek and Thiesson, 
2010), which can also be used to check the local conditional independence 
relations implied by the BN (Friedman and Goldszmidt, 1998).)

Changing the value (or the probability distribution of values) for 
one or more of the input variables in a BN causes the distributions for 
the values at other nodes to change in response to changes in the 
marginal distributions of their inputs. (Thus, in the two-node BN X → Y, 
the marginal probability that Y = y, denoted by Pr(y), is Pr(y) = Σ

x
Pr(y | 

x)Pr(x), so changes in the marginal distribution of input values, Pr(x), 
change Pr(y) accordingly.) Such changes can propagate along directed 
paths throughout the network, giving new probability distributions for 
output values and intermediate nodes as the input values (or, if they are 
uncertain, their probability distributions) change.

Example: A BN Model for Benzene  
Exposure–Response Relations

Figure 6.1 shows a simplified summary of the structure of a BN model 
for the causal relation between inhalation exposure to benzene and 
changes in the probable values of several other variables, including an 
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indicator of whether the exposed individual develops leukemia. The 
graphical model is simplified by lumping together into one node several 
intermediate variables (such as multiple urinary metabolites, in addition 
to trans, trans-muconaldehyde (ttMA), or multiple indicators of gene 
expression profiles) and by suppressing the detailed time courses of all 
variables (which could be represented by a dynamic Bayesian network 
(DBN) model, discussed shortly). The structure of the BN shows that 
the probability of leukemia depends on gene expression, chromosomal 
aberrations (hyperdiploidy), micronuclei, and the level of oxidative 
stress (as indicated by 8-oxo-2′-deoxyguanosine (8-OHdg), a product 
of DNA oxidation). Changes in the exogenous input, “Benzene in Air,” 
cause the conditional probability distributions of these other variables 
to change, which in turn changes the probability of leukemia.

Changes in benzene exposure also change the conditional proba-
bility distributions of other variables, such as those for the sizes of the 
populations of the erythroid burst-forming units (BFU-E) and the gran-
ulocyte–macrophage colony-forming units (CFU-GM) in the bone 

ALA

RBC WBC

CFU-GMBFU-E

CFU-GEMM

8-OHdg

Blood benzene/
urinary metabolites

urinary tt-MA

Benzene in air

Micronuclei

Leukemia

Hemo-
globin

Gene
expressionHyperdiploidy

Figure 6.1  An Example Bayesian network (BN) causal model for benzene and leukemia 
risk. Source: Hack et al. (2010).
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marrow or the size of the circulating population of red blood cells 
(RBC) and white blood cells (WBC). Although these variables do not 
lie on the directed paths leading from benzene exposure to leukemia, 
they share common ancestors (such as 8-OHdg and hyperdiploidy) with 
the leukemia node, and thus, one might expect strong statistical associ-
ations between these biomarkers of benzene exposure and risk of 
leukemia, even though neither is shown as a potential cause (ancestor in 
the directed acyclic graph (DAG) model) of the other.

BNs are usually assumed to be acyclic (DAGs), which makes the for-
ward propagation of changes in their input values or distributions 
especially straightforward. For much practical work, Gibbs sampling or 
other Markov chain Monte Carlo (MCMC) methods (implemented in 
software such as WinBUGS or R) provide a fast, practical way to approx-
imate, as accurately as desired, the output distributions for any given set 
of input values (or joint distribution of uncertain input values). When 
feedback loops or other cycles are required to adequately model a system, 
the successive values of each variable in consecutive periods or “time 
slices” can be represented as distinct variables. The BN relating these 
time-stamped variable values is then acyclic. This construction is called a 
dynamic Bayesian Network (DBN), and it allows BN technology to be 
applied to realistically complex dynamic systems. (The underlying algo-
rithms for quantifying conditional probabilities of outputs given inputs 
for DBNs extend those used for static BNs. For example, instead of 
relying on Gibbs sampling, as in WinBUGS, the use of efficient impor-
tance-weighted sampling methods such as dynamic particle filtering, 
developed specifically for multiperiod models with consecutive condi-
tioning of successive variable values on period-specific events or 
information, may be used to improve the speed and accuracy of dynami-
cally estimating posterior distributions. In addition to discrete nodes, with 
their CPTs, there may also be continuous nodes, with regression models 
in place of CPTs, in which the continuous output value of a variable is 
usually assumed to be conditionally Gaussian, with mean and variance 
that may depend on the values of the parent nodes that point into it. Das 
et al. (2005) discuss tractable inference algorithms, using particle filtering 
and other techniques, for hybrid DBNs with both discrete and continuous 
variables, and apply them to real-time updating of a threat assessment for 
possible ambush by mobile attackers in an urban environment.)

Both exact and approximate inference algorithms for BNs and 
DBNs are available that let the distributions of any variable(s) in the 
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model be updated (via Bayesian inference, i.e., conditioning in accord 
with Bayes’ rule) based on any set of observed (or assumed) values for 
other nodes (e.g., Cheng and Druzdzel, 2000; Guo and Hsu, 2002; Liu 
and Soetjipto, 2004). Such practical Bayesian inference in BNs directly 
addresses a key technical challenge of probabilistic risk assessment 
(PRA): how to calculate the probability distributions for unobserved 
quantities (e.g., future disease states) from observed or assumed values 
for other quantities (e.g., current exposure metrics and biomarker and 
other covariate data) using knowledge of the conditional probabilistic 
relations (represented in the CPTs) and the structure of causal pathways 
or dependency relations (represented via the BN graph structure) 
relating them. For example, in the benzene model in Figure 6.1, a risk 
assessment that quantifies the conditional probability of developing 
leukemia, given an exposure to benzene in air, could also be informed 
by (i.e., conditioned on) the results of blood tests that provide information 
on RBC and WBC, even though these are not themselves causal prede-
cessors of leukemia. Such Bayesian inference, in which posterior 
probabilities for events or conditions of interest (such as disease occur-
rence) are conditioned on all available measurements of variables in a 
BN, can be performed routinely using these BN algorithms.

Inference about the probability distributions of values of some nodes 
(i.e., variables), given the values of others, is the essence of BN infer-
ence when a BN model is known (or assumed). Although it is often 
natural and tempting to interpret BN graph structures as showing the 
directions of causal influences among variables, the technology of 
Bayesian inference in BNs works equally well with or without such a 
causal interpretation: the fundamental inference mechanism is condi-
tioning of the probabilities of some variables on observed values of 
others, and this need not reflect causality, in the sense that changes in 
parent nodes need not bring about (or make more probable the occur-
rence of) changes in their children. Such a causal relation may lend itself 
naturally to representation via a directed arc in a BN, but BN calcula-
tions can be carried out even when a causal interpretation does not hold. 
In this case, the BN is simply an efficient way of factoring and making 
calculations with a joint probability density function for the variables.

A more challenging type of inference is to learn the BN model 
itself—its structure (the graph showing which nodes point into 
which others), as well as the CPTs at its nodes—from data. There are 
now many BN-learning algorithms. Because the CPTs impose no 
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restrictions (such as linear relations between expected values) on the 
conditional distributions of outputs given inputs, BNs provide a very 
flexible, nonparametric framework for modeling probabilistic relations 
between discrete random variables. This flexibility supports methods 
for learning BNs from data by testing whether the empirical conditional 
frequency distribution of a variable differs significantly for different 
combinations of levels of other variables. If so, then the relevant condi-
tioning variables are identified as potential direct causes (parents), 
direct consequences (children), or indirect causes (ancestors) or conse-
quences (descendants) of the affected variable; otherwise, no arrows or 
paths need to connect them. To further identify which variables points 
into which, starting from the statistical finding that two variables pro-
vide significant mutual information about another (meaning that the 
conditional distribution of one depends on the value of the other), a 
variety of algorithms have been developed for learning BNS from data, 
typically by maximizing a statistical score subject to some simplifying 
assumptions or constraints (e.g., Daly, Shen, and Aitken, 2011). The 
richness of the options that are now available is well illustrated by the 
following description of bnlearn, an R package for BN learning and 
inference (http://www.bnlearn.com/):

bnlearn implements the following constraint-based structure learning 
algorithms: Grow-Shrink (GS); Incremental Association Markov Blanket 
(IAMB); Fast Incremental Association (Fast-IAMB); Interleaved 
Incremental Association (Inter-IAMB); the following score-based struc-
ture learning algorithms: Hill Climbing (HC); Tabu Search (Tabu); the 
following hybrid structure learning algorithms: Max-Min Hill Climbing 
(MMHC); General 2-Phase Restricted Maximization (RSMAX2); the 
following local discovery algorithms: Chow-Liu; ARACNE; Max-Min 
Parents & Children (MMPC); and the following Bayesian network clas-
sifiers: naive Bayes. Discrete (multinomial) and continuous (multivariate 
normal) data sets are supported, both for structure and parameter 
learning. …Each constraint-based algorithm can be used with several 
conditional independence tests [e.g., mutual information, Chi square, 
and Akaike Information Criterion test]… and each score-based algorithm 
can be used with several score functions [including] loglikelihood, the 
Akaike Information Criterion (AIC), the Bayesian Information Criterion 
(BIC), [and] a score equivalent… posterior density (BDe).

Thus, current BN-learning software offers several substantial technical 
solutions to the challenges of learning BN structures from data, and 

http://www.bnlearn.com
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design trade-offs for BN-learning algorithms (e.g., between the compu-
tational ease of fitting maximum-likelihood models and the greater 
difficulty of finding models that reduce prediction error rates) have 
been studied in a large and still expanding literature. Even when data 
sets are insufficient to confidently identify a single best BN model (by 
some criterion), recent model ensemble methods, including Bayesian 
model-averaging methods for BNs, allow final predictions to be based 
on multiple plausible BNs, which can reduce prediction errors, com-
pared to selecting any single model (Liu, Tian, and Zhu, 2007; Daly, 
Shen, and Aitken, 2011).

In practice, incorporating knowledge-based constraints (e.g., a 
causal ordering or partial ordering of variables, such as that benzene 
inhalation might cause changes in WBC counts, but changes in WBC 
counts do not cause benzene inhalation) can greatly reduce the computa-
tional search effort needed to identify one or more BNs that describe the 
available data, significantly improving both the accuracy (as judged by 
statistical criteria) and the causal interpretability of the resulting BNs 
(Daly, Shen, and Aitken, 2011). Such knowledge might come from an 
underlying mathematical model of the causal process, for example, using 
the Causal Ordering Algorithm (COA) (Dash and Druzdzel, 2008) or 
from commonsense understanding of potential causes and consequences. 
When correct causal information is not known, however, even diligent 
and ingenious efforts to apply BN and DBN technology are sometimes 
disappointing. Perhaps most notably, concentrated and sustained efforts 
by many experts to use BNs and DBNs to automatically infer (or “reverse 
engineer”) descriptions of gene interaction networks from observed time 
series of gene activation or expression have as yet met with only very 
limited success (David and Wiggins, 2007).

The maturation of BN technology has led to many successful appli-
cations in PRA and decision support, however. Some important examples 
include:

•  Disease diagnosis and management. BN-based risk assessment and 
risk management advisory systems have been developed for prostate 
cancer (Regnier-Coudert et al., 2012), lung cancer (Jayasurya et al., 
2010), breast cancer (Burnside et al., 2009), and brain tumors (Weidl, 
Iglesias-Rozas, and Roehrl, 2007), among others.

•  Natural disaster and catastrophe risk analysis. Applications include 
avalanche risk assessment systems (Gret-Regamey and Straub, 2006); 
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better flood prediction, with reduced false alarms and failures to warn 
compared to other methods (Li et al., 2010); and seismic risk predic-
tion, integrating a variety of different data and knowledge sources 
(including mining of spatial data) (Cockburn and Tesfamariam, 2012; 
Li et al., 2012).

•  Process control and safety management for industrial processes, from 
hazardous chemical or manufacturing facilities to food safety (Albert 
et al., 2008; Smid et al., 2012).

•  Transportation accident and maritime risk analysis, for example, 
modeling effects of organizational factors and other risk factors on 
train accidents (Marsh and Bearfield, 2004) or assessing collision and 
accident risks for offshore platforms and vessels (Ren et al., 2008).

•  Risk assessment of software quality, reliability, and defects, by using 
a BN to integrate judgments about such hard-to-quantify (but easy-to-
rate) inputs as testing process quality, testing effort, and quality of 
documentation (Fenton, Neil, and Marquez, 2008).

•  Financial and credit risk analysis and bank stress testing, in which 
BNs help to identify business interdependencies (and hence potential 
opportunities for risk contagion or common mode failures) among 
groups of borrowers, thus helping banks to avoid the inadvertent con-
centration of exposures to positively correlated credit risks in a bank’s 
loan portfolio (Pavlenko and Chernyak, 2010).

•  Organizing expert impressions about a variety of traditionally hard-
to-quantify business, financial, engineering, operational, and adver-
sarial risks, such as supply chain and supplier risks (Lockamy, 2011), 
new product development risks (Chin et al., 2009), cybersecurity, and 
terrorism attacks (Ezell et al., 2011).

Despite many successful decision and risk management applications of 
BNs, BN technology can readily be misused by applying it to poorly 
defined or meaningless concepts, for which human experts may none-
theless comfortably provide subjective estimates of conditional 
probabilities and postulate causal relationships. For example, nothing 
would prevent an analyst from soliciting opinions on the “degree of 
harshness” of a company’s business environment, the “level of prepara-
tion” that the business has to meet its challenges, and the resulting 
conditional probabilities of different levels of “business success,” given 
opinions about “degree of harshness” and “level of preparation.” These 
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concepts might have no clear definitions or meanings or might mean 
mutually inconsistent things to different experts and users, and yet a BN 
model could still be built and used and perhaps even foster a reassuring 
illusion of meaningful risk analysis, if no one pressed for meaning or 
clarity or realized that the inputs and outputs lacked useful definition. 
The ability of BNs to represent, store, process, and produce nonsense in 
the guise of elegantly displayed probability distributions invites the 
creation of poorly thought-out applications of BNs, especially since 
even well-developed applications often combine elements of expert 
judgment with more objective data or statistical models to assess 
conditional probabilities and to structure the BNs.

Deciding What to do: INFLUENCE DIAGRAMS (IDS)

BN risk models predict probabilities of outputs given inputs and/or other 
observations. To support improved risk management decisions, influence 
diagrams (IDs) (Howard and Matheson, 2005) extend BNs to include 
choice nodes (where decisions are made) and value nodes (where conse-
quences are evaluated), as well as BN-type chance nodes (representing 
random variables whose conditional probability distributions depend on 
the values of the parent nodes pointing into them). ID software products, 
such as the free Structural Modeling, Inference, and Learning Engine 
(SMILE) and GeNIe development environment for graphical interfaces 
(http://genie.sis.pitt.edu/) or the commercial product Analytica (http://
www.lumina.com/), also allow deterministic formulas (i.e., determin-
istic nodes), which may be viewed as special cases of chance nodes that 
assign a probability mass of 1 to the output value determined by the 
input values. Algorithmically, an ID can be transformed to an equivalent 
BN by suitable recoding of choice and value nodes as chance nodes, and 
well-developed algorithms for inference in BNs can then be applied to 
infer optimal decisions (Zhang, 1998).

IDs incorporate the flexible modeling capabilities of BNs for repre-
senting probabilistic causal mechanisms as CPTs (as well as the capacity 
to represent noncausal probabilistic dependencies of observed values, 
induced by a statistical joint distribution of values for variables that need 
not all be mutually statistically independent). They support the same 
types of Bayesian inference as BNs (i.e., conditioning on information 
to update posterior probability distributions of model variables). But ID 

http://genie.sis.pitt.edu/
http://www.lumina.com/
http://www.lumina.com/
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algorithms and software also allow automatic optimization of decisions 
(i.e., recommended choices at the choice nodes to maximize expected 
utility). The importance of causation is especially clear in this context: 
IDs seek to identify and recommend choices that will cause preferred 
probability distributions for consequences. Several workers in artificial 
intelligence, most notably Pearl (2010) and coworkers, have remarked 
that most traditional statistical and epidemiological methods lack ade-
quate concepts and language for predicting probable consequences in 
situations where a decision-maker chooses to do something or set a 
value of a control variable, rather than merely observing values of vari-
ables; they have therefore proposed new notation (such as P(y | do(x)) 
for the probability that variable Y will take value y if the decision-maker 
sets the value of X to x) and causal graph methods to model the proba-
bilities of effects caused by interventions. These are precisely the 
probabilities needed to populate the nodes of an ID model in which a 
choice affects the probability distribution of one or more other variables.

An ID can be used not only to show the qualitative paths by which 
decisions and other causes affect consequences (via the graph structure 
of the ID DAG model) but also to quantify the probabilities and expected 
utilities of consequences from different decisions. This combination of 
qualitative and quantitative information provides an explicit rationale 
for recommended decisions. Most ID software products also provide 
facilities for sensitivity analyses to show how the optimal decision 
changes as input assumptions, data, or values (e.g., trade-off weights at 
value or utility nodes) change. If the decisions of multiple agents—for 
example, a terrorist attacker and a defender, a physician and a patient 
(and possibly other parties, such as a drug manufacturer and an insur-
ance company or ACO), a corporation and a regulator, or a smuggler 
and an inspector—cause the consequences of interest, then IDs can be 
extended to represent the beliefs, preferences (utilities), and decisions 
of multiple agents. Such Multiagent Influence Diagrams (MAIDs) rep-
resent the beliefs and preferences of many interacting decision-makers, 
allowing game-theoretic and/or descriptive modeling of how the choices 
of one decision-maker affect the choices of others and hence the 
probable consequences of the multiagent interaction (Koller and Milch, 
2003; Gal and Pfeffer, 2008).

As discussed in Chapter 3, when enough is known about a system to 
simulate its behavior in detail, for example, using discrete-event 
simulation modeling, then probabilistic relations between inputs and 
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outputs similar to those that an ID provides can be developed via 
stochastic simulation, so that the response surface or probabilistic input–
output relation Pr(outputs | inputs) can be quantified numerically. Recent 
techniques of simulation–optimization can then be used to identify the 
input combinations that maximize expected utility (see Chapter  3). 
Thus, an ID can be viewed as similar to a high-level simulation–
optimization model, except that its CPTs need not be populated via 
detailed simulation or knowledge of causal mechanisms, but may instead 
be derived from empirical data or may be guessed at by users if adequate 
data are lacking.

IDs have been applied for over two decades in medical decision-
making and disease risk management expert systems (Neapolitan, 1991; 
Owens and Nease, 1993; Owens, Shachter, and Nease, 1997). They have 
been applied more recently to public health risk management decisions, 
such as whether, when, and how to vaccinate elderly populations against 
influenza (e.g., Baio et al., 2006) or manage polio risks (Tebbens et al., 
2008). Recent applications in ecological risk analysis include analysis 
of Deepwater Horizon spill responses (Carriger and Barron, 2011) and 
deciding how to minimize adverse effects of pesticides while meeting 
other goals (Carriger and Newman, 2012). Since they link decisions 
directly to their probable consequences and to evaluations of the result-
ing consequence probabilities, IDs and simulation–optimization causal 
models provide ideal support for many risk analysis applications; it is 
thus perhaps surprising that they are not yet even more widely in PRA 
and risk management.

When is a BN or ID Causal?

Like BNs, IDs are vulnerable to abuse. It is easy to incorporate mis-
taken or unvalidated modeling assumptions, treat noncausal (e.g., 
reduced-form statistical or econometric regression) relations as if they 
were causal, or show plausible-looking pictures that are vague about 
exactly whom or what they describe. For example, whereas a discrete-
event simulation model is usually very clear about the distinction 
between variability (arising from the joint distribution of attribute 
values for the individual entities in the model) and uncertainty (arising 
from stochastic events and from the uncertainty distributions of input 
values), IDs and BNs may blur these important conceptual distinctions. 
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In the domain of public health, Greenland and Brumback (2002) note 
that causal graphs (which include BNs and IDs) are often applied to 
populations, rather than to individuals within populations, or to causal 
mechanisms within individuals. An ID based on empirical relations in 
populations may not correctly describe causal relations for any individ-
uals in the population, as in the baby aspirin heart attack risk example.

However, these limitations are largely avoidable, at least in principle. 
Causal graph models, including BNs and IDs, can be constructed to rep-
resent causal mechanisms via their graph structures and CPTs (Druzdzel 
and Simon, 1993; Lu, Druzdzel, and Leong, 2000). (Technically, every 
BN can be represented by an equivalent system of simultaneous struc-
tural equations, by recoding its CPTs as structural equation model (SEM) 
equations; a COA for SEMs (Dash and Druzdzel, 2008) can then be 
applied to this SEM. The causal graph structure of the variables in the 
SEM, showing which variables are determined by which others, is the 
same as the causal graph structure of the BN. The equations of the SEM 
represent causal mechanisms, in the usual SEM sense that changes in 
their right-hand-side variables create corresponding changes in the left-
hand-side variables to restore equality. If the BN graph structure is 
constrained to correspond to valid structural equations, that is, equations 
that correctly model causal mechanisms, then the BN may be interpreted 
causally (Druzdzel and Simon, 1993)). Thus, although general BNs 
simply represent ways to factor joint probability distributions, so that 
their arrows do not necessarily have any causal interpretation (since arc 
directions can be reversed, via application of Bayes’ rule, without chang-
ing the joint distribution being represented), both BNs and IDs (Lu, 
Druzdzel, and Leong, 2000) can be deliberately constructed to represent 
networks of causal mechanisms.

However, making sure that an ID has such a valid causal interpreta-
tion takes care. One essential requirement is that the directions of arrows 
and the contents of CPTs should correctly reflect directed causal mech-
anisms (so that changes in inputs to a node really do cause changes in 
the probability distribution of its values) rather than just statistical asso-
ciations or probabilistic conditioning. This can be accomplished, for 
example, by first constructing a more detailed simulation model of the 
underlying causal processes and then constructing an ID that faithfully 
preserves the causal ordering of the variables while simplifying and 
summarizing the relations among changes in node inputs and probable 
values using CPTs. A second requirement is that the detailed CPTs or 
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regression relations used to populate ID nodes should represent causal 
effects of inputs on probable outputs rather than simply statistical asso-
ciations. For example, if a regression model is used to estimate how a 
node’s value depends on the values of its parents, then it should be a 
structural equation rather than a reduced-form equation. Otherwise, 
changes in inputs may fail to cause the changes in output probabilities 
predicted by the model.

Example: An ID for Health Effects of Air Pollution

Figure 6.2 shows an illustrative ID model for evaluating air pollution 
control health effects and optimizing emissions reduction decisions 
(Mansfield, Sinha, and Henrion, 2009). In this model, emissions 
reduction choices (decision rectangle, upper left corner) affect the net 
present value (NPV) of net benefits (hexagonal value node, right side) 
via increases in control costs and reductions in mortality. Figure 6.3 
(Morgan and Henrion (1990, chapter 10)) plots probability bands for 
the distribution of total costs, rather than net benefits (based on mon-
etized values of adverse health effects and control costs, in a similar 
ID model), against the decision variable indicating the fraction of 
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emissions eliminated. (For this hypothetical example, the median of 
the total cost distribution is minimized for an emissions reduction 
factor of about 0.3.) Such information can potentially help decision-
makers to identify pollution reduction targets that will balance 
marginal costs and expected marginal benefits while accounting for 
various uncertainties.

ID risk and uncertainty analysis software clearly has great potential 
to facilitate probabilistic risk assessment. It can help to help visualize 
and communicate probable consequences of alternative choices (and 
the extent of uncertainty about probable consequences). It can also 
identify choices that maximize criteria such as expected utility or that 
minimize criteria such as expected total costs. Yet, the same software 
can create models that incorporate unvalidated or mistaken assump-
tions. In effect, ID software makes it possible to easily integrate many 
components and submodels, but it does not check that the modeled 
causal relations are correct or meaningful. An ID and its output dis-
plays might look equally clear and convincing, whether or not it 
incorporates causal assumptions that correctly describe the real world. 
For example, in Figure  6.2, it would be easy to use a reduced-form 
linear regression model to populate the “slope of dose–response,” 
assuming (perhaps incorrectly) that such a slope exists and is well 

Figure 6.3  ID output identifies the emissions reduction that minimizes expected net cost. 
Source: Morgan and Henrion (1990).
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defined, even if the true dose–response relation has very different 
slopes at different exposure concentrations (e.g., if it is J-shaped or 
U-shaped). To assess whether node-specific CPTs or regression models 
in an ID are causally interpretable requires careful analysis from outside 
the ID modeling process.

Conclusions: Improving Causal Analysis  
of Health Effects

The principles and techniques discussed in this chapter for modeling 
causal relations and for protecting against false conclusions and drawing 
sound causal inference from data are ready for practical use—and, 
indeed, are increasingly being used—in health effects research and risk 
assessment, both to reduce uncertainty about causality in concentration–
response functions and to more clearly delineate needed distinctions 
between causal and noncausal associations. Taking seriously the need 
to apply more objective methods to assess causality in health risk 
assessment and public policy (and other) decision-making suggests the 
following policy-relevant perspectives:

•  Expert judgment-based assessments of causality and subjective 
causal interpretations of statistical associations are unreliable and 
prone to error and bias. This is illustrated in examples where confi-
dently expressed expert conclusions and more formal causal analyses 
conflict (as for several studies in Table 6.1). The prevalence of confir-
mation bias (Fugelsang et al., 2004; Gardner, 2009; Sunstein, 2009) 
makes it crucial for expert panels (or individuals) tasked with forming 
judgments about causation to seek out well-supported contrary views.

•  It is possible and practical to do better. More objective methods for 
causal analysis are now readily available, and more informative 
designs and analyses (e.g., using panel data to study changes in expo-
sure and response variables, instead of using regression models to 
study associations between their levels) can eliminate much of the 
speculation, controversy, and ambiguity surrounding causation in 
health effects research.

•  The credibility of conclusions about causation and the credibility of 
risk assessments and health benefits projections based on them should 
be assessed based on how well they provide sound, independently 
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reproducible answers to specific, factual, causal questions. These 
include addressing whether observed changes in hypothesized causal 
predecessors do in fact precede and help to explain or predict observed 
changes in their hypothesized effects. Passionate or confident beliefs 
about causation expressed by subject matter experts who have not yet 
addressed these questions using data and independently reproducible 
analyses should be regarded as expressions of personal belief rather 
than as answers to scientific questions.

Following these recommendations could transform health effects 
accountability research (Pope, 2010) by promoting health benefit esti-
mates for exposure reductions that are more realistic, and more solidly 
based on reproducible science and data, than those driving headlines 
today. This would reduce needless controversies over the interpretation 
of ambiguous statistical associations, focus attention on the sizes of 
demonstrable real-world causal impacts, and shift the emphasis of 
health effects claims for emissions reductions toward more objective 
and independently verifiable risk analysis.
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CHAPTER	 7

Making Decisions without 
Trustworthy Risk Models

Louis Anthony (Tony) Cox, Jr.
Cox Associates, NextHealth Technologies,  
University of Colorado-Denver, Denver, CO, USA

Challenge: How to make Good Decisions 
without agreed-to, Trustworthy 
Risk Models?

How can risk analysts help to improve policy and decision-making 
when the approximately correct relation between alternative acts and 
their probable consequences is unknown? This practical challenge of 
risk management with model uncertainty, which was discussed in 
Chapter 4 from the standpoint of learning how to act while recognizing 
that future information may cause current models to be revised or 
replaced, arises in even more extreme form when learning by trial and 
error is prohibitively costly or potentially fatal. Yet, decision-making 
without the support of models that can be trusted to deliver at least 
approximately correct results is a frequent feature of modern life, in 
problems ranging from preparing for climate change to managing 
emerging diseases to operating complex and hazardous facilities safely.

This chapter reviews constructive methods for improving predic-
tions and decisions when the correct description of the causal relation 
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between decisions and outcome probabilities is unknown or is highly 
uncertain. These methods are not yet as familiar to many risk analysts 
as older statistical and model-based methods, such as the paradigm of 
identifying a single “best-fitting” model and performing sensitivity 
analyses for its conclusions. They provide genuine breakthroughs for 
improving predictions and decisions when the correct model is highly 
uncertain. We demonstrate their potential by summarizing a variety of 
practical risk management applications.

As a point of departure, we recognize that some of the most trou-
bling risk management challenges of our time are characterized by 
deep uncertainties. Well-validated, trustworthy, risk models giving 
the probabilities of future consequences for alternative present 
decisions are not available; the relevance of past data for predicting 
future outcomes is in doubt; experts disagree about the probable con-
sequences of alternative policies or, worse, reach an unwarranted 
consensus that replaces acknowledgment of uncertainties and 
information gaps with groupthink; and policy makers (and probably 
various political constituencies) are divided about what actions to take 
to reduce risks and increase benefits. For such risks, there is little or 
no agreement even about what decision models to use, and risk ana-
lysts may feel morally obliged not to oversimplify the analysis by 
imposing one (Churchman, 1967; Rittel and Webber, 1973). Passions 
may run high and convictions of being right run deep, in the absence 
of enough objective information to support rational decision analysis 
and conflict resolution (Burton, 2008).

Examples of risk management with deep uncertainties include 
deciding where, when, and how to prepare for future effects of 
climate change (and, perhaps, of efforts to mitigate it); managing 
risks from epidemics and new or deliberately spread pathogens; 
protecting valuable but vulnerable species, habitats, and ecosystems 
from irreversible loss; testing and reducing new interdependencies 
in financial systems to reduce risks of catastrophic failure; designing 
and managing power grids and energy and traffic networks to 
increase their resilience and reduce their vulnerability to cascading 
failures; and trying to anticipate and defend against credible threats 
from terrorists, cybercriminals, bank fraud, and other adversarial 
risks. The final section will return to these motivating challenges, 
after we have reviewed technical concepts and methods that can help 
to meet them.
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Figure  7.1 (Walker, Marchau, and Swanson, 2010) summarizes 
some uncertainties about matters of fact and value that separate deep 
uncertainties (right two columns, levels 3 and 4) from the more trac-
table uncertainties encountered in statistics and scenario analysis with 
known probabilities (left two columns, levels 1 and 2). (The “weights 
on outcomes” row at the bottom alludes to value weights and allows for 
uncertain preferences or utilities.)

Although these challenges are formidable, the underlying risks are 
too important to ignore and too complex to dispose of easily. Policy 
makers will continue to turn to risk analysts for help. Risk analysts, in 
turn, need to be familiar with the best available methods for improving 
risk management decisions under such trying conditions. This chapter 
summarizes recent progress in ideas and methods that can help. There 
has been great progress in technical methods for assessing and managing 
risks with deep uncertainties in recent years, usually using multiple 
models and scenarios. These methods are not yet widely used in risk 

Level 1

Context A clear enough
future

A single system
model

A single system
model with a
probabilistic
parameterization

Several system
models, with
different
structures

A known range
of outcomes

Unknown system
model; know we
don’t know

Unknown
outcomes; know
we don’t know

To
ta

l i
g

n
o

ra
n

ce

D
et

er
m

in
is

m

Unknown
weights; know
we don’t know

A known range
of weights

Several sets of
point estimates
and con�dence
intervals for the
outcomes, with a
probability
attached
to each set

Several sets of
weights, with a
probability
attached
to each set

A point estimate
and con�dence
interval for each
outcome

A single 
estimate of the
weights

Alternate futures
(with probabilities)

A

B
C

A multiplicity of
plausible futures

Unknown future

Deep uncertainty

System
model

System
outcomes

Weights
on

outcomes

Level 2 Level 3 Level 4

Figure 7.1  A suggested taxonomy of uncertainties (Walker, Marchau, and Swanson, 
2010).
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analysis, compared to older methods that select a single statistical or 
simulation model and then perform sensitivity analyses on its results. 
The following sections seek to create an expository bridge from 
statistical methods and concepts that many risk analysts might already 
be familiar with (such as resampling techniques for robust statistical 
inference) to newer ideas from machine learning, robust optimization, 
and adaptive control that may be less familiar but that are promising for 
dealing with deep uncertainties in risk analysis.

Principles and Challenges for Coping 
with Deep Uncertainty

There is no shortage of advice for managing risks with deep uncertainties. 
We should design fault-tolerant, survivable, and resilient organizations, 
systems, and infrastructures. We should experiment with possible improve-
ments; learn quickly, effectively, and humbly from our own and others’ 
mistakes and experiences (including accident precursors and unexpected 
events); and actively seek feedback and local “on the ground” information 
so that we can adapt flexibly to unforeseen circumstances and performance 
glitches. We should loosen or decouple the tight couplings and depen-
dencies in existing complex systems and infrastructure—from oil rigs to 
financial systems—that set the stage for swiftly cascading failures and 
“normal accidents” (Harford, 2011). By adopting a vigilant, risk-aware 
mind-set and culture, we can, perhaps, build highly reliable organizations 
(HROs) around the five principles of preoccupation with failure, reluc-
tance to simplify interpretations of data and anomalies, sensitivity to 
operations, commitment to resilience, and deference to expertise rather 
than to authority (Weick and Sutcliffe, 2007).

The practical problem is thus not finding logical principles for 
managing risks with deep uncertainties, but figuring out how best to 
implement them in detail. Risk analysts who, however rightly, respond 
to deep uncertainty by advocating greater learning and flexibility, or 
by promoting the virtues of adaptation and resilience to communities, 
institutions, and organizations, may be unsure how to bring them 
about, or how much good they will do if implemented. The following 
sections review methods that can help to improve risk management 
decisions when approximately correct models of the causal relation 
between controllable inputs and probabilities of valued (desirable or 
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undesirable) outcomes are unknown, and learning and adaptation to 
new data are essential.

Point of Departure: Subjective Expected 
Utility Decision Theory

Traditional decision analysis and risk analysis make extensive use of 
models to predict the probable consequences of alternative risk 
management decisions. The paradigmatic analysis of decisions using 
subjective expected utility (SEU) theory, the gold standard for norma-
tive models of rational decision-making with level 1 uncertainties (see 
Chapter 2), proceeds as follows (Gilboa and Schmeidler, 1989):

•  Identify a choice set A of alternative risk management acts. The deci-
sion problem is posed as choosing among the acts in A. Acts may 
represent not only alternative actions, such as resource allocations, 
but also rules for making decisions over time, such as alternative reg-
ulatory standards, adaptive feedback control policies, decision rules, 
collective choice rules, liability allocation rules, investment strate-
gies, intervention trigger rules, and so on, depending on who is choos-
ing what.

•  Identify a set C of possible consequences. Choices of acts from A are 
to be made in an effort to make preferred consequences in C more 
likely and undesired ones less likely.

•  Quantify preferences. This is typically done by assessing a von 
Neumann–Morgenstern utility u(c), between 0 and 1, for each conse-
quence c in C, such that the decision-maker is indifferent between 
receiving consequence c with certainty and receiving the most-pre-
ferred consequence in C with probability u(c) and otherwise receiv-
ing the least-preferred consequence in C.

•  Optimize decisions. Expected utility (EU) theory prescribes selecting 
an act in A that will maximize the expected value of u(c), called EU. 
This prescription is typically justified by normative axioms for 
“rational” decision-making. It is implemented with the help of a 
probabilistic consequence (or risk) model, Pr(c | a), giving the prob-
ability of each consequence c if each act a is selected. Specifically, 
the EU of act a is EU(a) = Σ

c
Pr(c | a)u(c), with the sum replaced by an 

integral if the consequence set is continuous.
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•  Model and assess uncertainties. If no well-validated empirical model, 
Pr(c | a), is available, then use subjective probability judgments to 
complete an SEU model. For example, suppose that the consequence 
of choosing act a depends on what else happens that is not directly 
controllable by the decision-maker (i.e., not in the choice set A). 
These other inputs—which, together with a, determine the conse-
quence—lie in a set S of possible scenarios or states of nature. If 
c(a, s) denotes the consequence that occurs when act a is chosen and 
state s occurs, then the EU of act a can be expressed as EU(a) = Σ

s
u[c 

(a, s)]Pr(s). (More generally, if the consequence of a pair (a, s) is not 
deterministic, e.g., due to stochastic elements, then a conditional 
probability model for consequences, Pr(c | a, s), can be used to com-
pute EU via the formula EU(a) = Σ

c
u(c)Pr(c | a) = Σ

c
u(c)[Σ

s
Pr(c | a, s)

Pr(s)].) If necessary, subjective probabilities Pr(s) for the states can be 
developed or elicited, for example, based on willingness to bet on 
each s compared to other events with known probabilities (perhaps 
after calibration training). SEU theory shows that a decision-maker 
with preferences satisfying certain axioms should behave as if she 
had coherent subjective probabilities Pr(s) and should choose acts 
that maximize EU calculated from these probabilities.

Thus, probabilistic consequence models, Pr(c | a) (perhaps built up from 
components, such as c(a, s) or Pr(c | a, s) and Pr(s)), play a crucial role 
in enabling rational decision-making via the SEU paradigm. A com-
pletely known EU decision model for supporting a risk management 
decision can be summarized by a quadruple M = {A, C, u(c), Pr(c | a)}. 
When an approximately correct decision model is known and agreed on, 
EU provides a compelling normative framework for deciding what to do.

Four Major Obstacles to Applying SEU to Risk 
Management with Model Uncertainty

Fruitful though the SEU framework is, it cannot easily be applied to 
some of the most important risk management decisions that trouble 
modern societies, due to deep uncertainties. One obstacle to its practical 
application is uncertainty about what alternatives are available in the 
choice set A. A common problem is premature focusing on only a few 
salient options, which are not necessarily the best that could be devised. 
A second obstacle is uncertainty about the full range of possible 
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consequences in C. The challenges of “unknown unknowns” or failures 
of imagination for potential consequences—for example, failure to cor-
rectly envision and account for all the important consequences that an 
act might make more probable or lack of confidence that all such impor-
tant consequences have been identified—raise the concern that 
surprising “black swan” outcomes may occur, which were not consid-
ered when the decision was being made, but which would have changed 
the decision if they had been considered. The oft-bemoaned law of 
unintended consequences expresses this concern.

A third obstacle is that, even if A and C are both known, an approx-
imately correct risk model Pr(c | a) for consequence probabilities for 
different acts may not be known (perhaps because the underlying state 
or scenario probabilities, Pr(s), are not well known). Different stake-
holders may have conflicting beliefs about Pr(c | a) and hence conflicting 
beliefs about which act will maximize EU.

Finally, uncertainties or conflicts about values and preferences to 
be encoded in the utility function u(c) used to evaluate different conse-
quences—for example, arising from differences in willingness to take 
risks to achieve potential rewards or because the preferences of future 
generations for consequences of current decisions are not well known—
can make the expected utilities of different acts uncertain. Any of these 
obstacles can inhibit uncontroversial application of SEU theory to risk 
management problems, pushing a risk management problem to the right 
in Figure 7.1. If a completely known SEU model for supporting a risk 
management decision is denoted by M = {A, C, u(c), Pr(c | a)}, then the 
preceding difficulties can be viewed as instances of decision-making 
when the model, M, is unknown or disputed.

Decision-making without knowledge of, or agreement about, the 
basic assumptions needed to structure a decision problem by specifying 
a unique decision model, M, has been studied under headings such as 
deep uncertainty (Lempert and Collins, 2007), severe uncertainty (Ben 
Haim, 2001), model uncertainty, and wicked decision problems (Rittel 
and Webber, 1973). Constructive proposals to help guide risk 
management decision-making when relevant data are available, but a 
unique correct decision model is not known, are described next. Then 
we address the challenges of deeper uncertainty that arise when neither 
trustworthy predictive models nor relevant data are available at first, 
and it is necessary to learn and adapt as one goes. Finally, we will 
consider practical applications of these techniques.
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Ten Tools of Robust Risk Analysis for 
Coping with Deep Uncertainty

Table 7.1 summarizes ten tools that can help us to better understand 
deep uncertainty and make decisions even when approximately correct 
models are unknown. They implement two main strategies: finding 
robust decisions that work acceptably well for many models (those in 
the uncertainty set) and adaptive risk management or learning what to 
do by well-designed and well-analyzed trial and error. Each is discussed 
in the following paragraphs, which also explain the different columns 
for generating, optimizing/adapting, and combining multiple model 
results.

Using Multiple Models and Relevant Data 
to Improve Decisions

When an approximately correct model linking acts to their probable 
consequences is unknown, but relevant data are available, good risk 
management decisions can often be made by combining predictions 
from multiple models that are consistent with available knowledge and 
data (e.g., as judged by statistical criteria discussed later). We will call 
the set of alternative models considered the uncertainty set.

A “good” decision, given the information available when it is made, 
can be defined as one to which no other choice is clearly preferable 
(e.g., by stochastic dominance (Buckley, 1986), giving clearly higher 
probabilities of preferred outcomes and lower probabilities of undesired 
outcomes, as assessed by all models in the uncertainty set). Alternatively, 
a “good” decision procedure might be defined as one that, despite all 
uncertainties, performs almost as well as some ideal procedure (e.g., 
optimal decision-making with perfect information or the best performing 
of all the models in the uncertainty set), as assessed in hindsight by the 
difference in rewards that they generate (often referred to as the regret 
for using the inferior model). Both approaches have led to strikingly 
successful procedures for using multiple models to let data inform 
decisions, even when no unique correct (or approximately correct) 
model is known. We will refer to both as methods for robust risk anal-
ysis, that is, risk analysis that delivers recommendations that are robust 
to deep (and other) uncertainties, especially about the correct probabi-
listic relation between acts and their consequences.
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Several practical options are available for generating plausible 
models or scenarios (using various definitions of “plausible” or “consistent 
with data,” as discussed in the following sections), optimizing decisions 
within and across these multiple possibilities, and combining the different 
decision recommendations into a final decision recommendation in a way 
that allows some performance guarantees for the quality of the result. The 
essence of robust risk analysis, for a large class of decision procedures, 
can be summarized as follows:

1.  Generate: Generate or select multiple plausible models or scenarios, 
given available data and knowledge.

2.  Optimize/improve: Find the best decision for each considered model 
or scenario. This may be interpreted as the decision “recommended” 
or “voted for” by that model or scenario. Alternatively, if optimiza-
tion of decisions is not clearly defined or is not practical, but criteria 
and methods for improving models and decisions are available, then 
improve upon the ones considered so far until no further clear 
improvements can be made.

3.  Combine: Use the multiple decision recommendations to recom-
mend a final risk management decision by using some combination 
rule (such as majority voting) to combine the individual decision 
recommendations from step 2.

The robustness of the final decision recommendation can be defined and 
characterized in various ways, not only by the fraction of models that 
support it (or by upper bounds for the probability of models that do not) 
but also by upper bounds for the difference in average reward (e.g., EU or 
disutility) from following it versus from making the best decisions pos-
sible if the best model were known. The latter criterion leads to low-regret 
and reinforcement learning decision strategies for managing uncertain 
risks. The following paragraphs review methods for model generation, 
improvement, and combination to support robust risk analysis.

Robust Decisions with Model Ensembles

A crucial contribution to decision-making with deep uncertainty 
(Lempert and Collins, 2007; Bryant and Lempert, 2010) is the genera-
tion and analysis of many (e.g., thousands of) scenarios or models. 
Uncertainty about the most realistic decision model can be treated as 
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just one more source of uncertainty, with each scenario in the uncer-
tainty set now specifying a decision model to be used, as well as the 
values of other quantities that lie outside the choice set but that, together 
with the choice of act, affect consequences. If scenario probabilities are 
known, then EU can be maximized with respect to these probabilities. 
Even if the probabilities of different scenarios are not known, a decision 
that performs well by some criterion (e.g., which is undominated or 
which yields close to some provable upper bound on EU, given the 
information available when it is made) for most scenarios is likely to 
also do so in reality, if reality is well described by at least some sce-
narios in the uncertainty set and if this set is much more likely than the 
set of scenarios not considered—something that might be easier to 
assess than the individual scenario probabilities.

If one or a few decisions are “best” (e.g., maximizing scenario-
specific expected utilities) or “good” for all or most of the considered 
scenarios, then these decisions are, in this sense, robust to uncertainty 
about which scenario in the uncertainty set is correct (if any). By con-
trast, if such ensemble analysis reveals that different choices are best for 
substantial fractions of the plausible scenarios, then it will be clear that 
no robust decision exists that makes the choice of decision immune to 
uncertainty about the correct scenario and that more information is 
therefore needed before a decision recommendation can be made that is 
robust, in this sense, to remaining uncertainties.

Example: Robust Decisions with Model Uncertainty

Tables 7.2 and 7.3 present two very different views of a risk management 
decision problem. In this example, a perceived threat of concern to 
some stakeholders (e.g., crop blights from climate change, genetically 
modified organisms in food, nanoparticles in air, electromagnetic radi-
ation from cell phones, etc.) is assumed to have been identified, but it is 
not yet known whether complete scientific knowledge would reveal that 

Table 7.2  Decision problem for an optimistic scenario

Perceived threat 
is real, p ≤ 0.1

Perceived threat is 
not real, 1 – p ≥ 0.9

Expected 
disutility

Act now Disutility = 20 Disutility = 10 ≥10
Wait for more information Disutility = 40 Disutility = 0 ≤4
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the exposures or activities of concern actually cause the harms that peo-
ple worry about (abbreviated as “perceived threat is real”) or not 
(“perceived threat is not real”). (More generally, one might be uncertain 
about the size of the threat, but these two states suffice to illustrate the 
basic challenge.) The alternative risk management acts being consid-
ered are to intervene now, perhaps by limiting exposures as a 
precautionary measure, or to wait for more information before deciding 
whether to intervene.

The tables show the expected disutility (scaled from 0 to 100) for 
each act–state pair. For simplicity, we assume that everyone agrees that 
the best choice of act is the one that minimizes expected disutility 
(equivalent to maximizing EU). However, perhaps due to the affect heu-
ristic, optimistic stakeholders who think that the threat is probably not 
real (p ≤ 0.1) also tend to think that its disutility, should it occur after all, 
will be modest (even though there is no logical reason that probability 
and severity must be positively correlated). Conversely, those who per-
ceive the probability of a threat as being relatively high (p = 0.4) also 
tend to perceive the severity of the threat (its disutility if it occurs) as 
being relatively great. Tables 7.2 and 7.3 are intended to capture these 
perceptions. Each constitutes one scenario.

The pessimists in Table 7.3 are shown as having crisp probabilities 
for the states (probability that the threat is real = 0.4), but the optimists 
in Table 7.2 have only imprecisely specified probabilities (0 ≤ p ≤ 0.1). 
Simple EU calculations show that acting now is less desirable than 
waiting, for the scenario in Table 7.2, if the threat probability is p < 1/3 
(since then 20p + 10(1 – p) < 40p); hence, they prefer to wait; similarly, 
the pessimists described by Table 7.3 prefer to wait if p < 1/2, which it 
is (p = 0.4 in this scenario). Hence, both scenarios prescribe waiting. 
Even if many other scenarios lie between these two extremes (i.e., with 
scenario-specific probabilities and disutilities lying between those in 
Tables  7.2 and 7.3), and even if we are ignorant of the respective 

Table 7.3  Decision problem for a pessimistic scenario

Perceived threat 
is real, p = 0.4

Perceived threat is 
not real, 1 – p = 0.6

Expected 
disutility

Act now Disutility = 90 Disutility = 10 42 = 36 + 6
Wait for more information Disutility = 100 Disutility = 0 40



Ten Tools of Robust Risk Analysis for Coping with Deep Uncertainty 201

probabilities of these scenarios, or even of what all the scenarios are, 
waiting for more information is a robust optimal decision with respect 
to this uncertainty set. (However, if the pessimists who see the world as 
in Table  7.3 become slightly less pessimistic, by changing their 
assessment of the disutility of acting now if the perceived threat is real 
from 90 to 80, then neither decision would be robustly optimal.)

Example: Robustness, Multiple Models, Ambiguous 
Probabilities, and Multiple Priors

EU theory has been extended to allow for uncertain or “ambiguous” 
probabilities and models and to consider ambiguity aversion as well as 
risk aversion. Instead of evaluating EU with respect to a unique “best-
guess” prior probability distribution (or measure), an uncertainty set of 
multiple priors, all of which are considered plausible, can be used to 
represent ignorance of the true probability distribution. Then, axioms 
for decision-making with uncertain probabilities imply that a decision-
maker should choose the act that maximizes the minimum EU obtained 
by using any of these plausible probability distributions (or measures) 
(Gilboa and Schmeidler, 1989). More generally, Maccheroni, Marinacci, 
and Rustichini (2006) presented conditions under which a decision-
maker should choose the act in A that maximizes the minimum penalized 
EU, where different probability distributions or measures in the 
uncertainty set carry different penalties based on their plausibility. 
[Symbolically, such “variational preferences” prescribe choosing an act 
from choice set A to maximize the minimized value (over all members 
p of the uncertainty set) of the weighted sum E

p
[u(c | a)] + α(p), where 

E
p
[u(c | a)] is the usual EU of act a if probability measure p is used to 

compute expected values and α(p) is the penalty for using p. (α(p) = 0 if 
p is known to be correct and is larger for less plausible probability 
distributions or measures.) Robust decision-making (RDM) in this 
sense—maximizing the minimum expected reward (or credibility-
penalized EU) over an uncertainty set of alternative probabilities— 
connects to a tradition of robust control in control engineering (Hansen 
and Sargent, 2001, 2008), in which controls are sought that perform 
well for all models not too dissimilar to a known reference model that 
is considered plausible but not necessarily correct. The measure of dis-
similarity is typically based on information-theoretic metrics such as 
relative entropy or Kullback–Leibler divergence between the reference 
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model and the model being weighted (Laeven and Stadje, 2011). Robust 
control of stochastic systems with somewhat misspecified models (not 
too dissimilar from the reference model) is mathematically equivalent 
to a special case of decision-making with multiple priors (Hansen and 
Sargent, 2008).

Example: Robust Optimization and Uncertainty 
Sets Using Coherent Risk Measures

One of the most useful paradigms for decision-making is constrained 
optimization, in which the choice set A consists of all values of one or 
more decision variables satisfying a set of constraints and the decision-
maker seeks a set of values for the decision variables to maximize or 
minimize some objective function (e.g., average production of net ben-
efits or average cost of losses per unit time, respectively). For example, 
the decision variables might be the amounts invested in risky stocks or 
opportunities, the constraint might be that the amount invested must not 
exceed a total budget available to invest, and the objective function 
might be the expected value of the resulting portfolio. More generally, 
a robust linear optimization problem (Bertsimas and Brown, 2009) 
seeks to maximize a weighted sum of decision variables (the linear 
objective function, e.g., the value of a risky portfolio) while keeping 
other weighted sums of the decision variables (e.g., the costs or resources 
required to implement the decision) acceptably small (the constraints), 
when it is only known that the values of the weights and constraints 
belong to some uncertainty set of alternative possibilities but the prob-
abilities of different sets of weights and constraints are not known. 
Standard methods for solving deterministic constrained optimization 
problems, such as linear programming, which are suitable when the 
optimization problem is known with certainty, can give highly infea-
sible solutions when the problem data are uncertain; therefore, robust 
optimization methods must be used instead to address these model 
uncertainties (Ben-Tal, Ghaoui, and Nemirovski, 2009).

Any coherent risk measure representing the decision-maker’s 
aversion to risk of violating a budget (or other linear) constraint can be 
expressed as an equivalent robust linear optimization problem with a 
convex uncertainty set that is derived directly from the coherent risk 
measure (Bertsimas and Brown, 2009). For example, if the conditional 
value-at-risk (CVaR) risk measure is used to specify that the expected 
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value of cost in the worst (most costly) x% of cases must be no greater 
than some level b, then the corresponding uncertainty set can be 
generated by finding a set of probability measures that represent the 
CVaR measure of risk as minimizing expected values over that set. (Any 
coherent risk measure has such a minimum-expected-value-over-a-set-
of-probabilities representation.) The uncertainty set for the corresponding 
robust optimization problem is then just a convex set (a polytope) of 
weighted averages of the probability measures that represent the 
coherent risk measure. The set of decisions that create “acceptable” 
risks of violating the linear constraint compared to the status quo 
according to a coherent risk measure is identical to the set of decisions 
that satisfy the constraint for all sets of weights in the uncertainty set.

Robust linear optimization problems can be solved via linear 
programming (due to the polytope shape of the uncertainty set). Both 
linear and nonlinear robust optimization problems can be computation-
ally advantageous compared to nonrobust formulations, and the gap 
between the maximized EU or return from the correct model (if it were 
known) and the robust model is often surprisingly small (Ben-Tal, 
Bertsimas, and Brown, 2010; Bertsimas, Brown and Caramanis, 2011).

Averaging Forecasts

During the 1980s and 1990s, forecasting experts in time series econo-
metrics and management science participated in several competitions 
(the “M-competitions”) to discover empirically which forecasting 
models and methods worked best (e.g., minimizing mean squared error 
between forecast and subsequently revealed true values) in over 1000 
different economic and business time series. One finding was that a 
simple arithmetic average of forecasts made by different methods usu-
ally out-performed any of the individual forecasts being averaged 
(Makridakis and Hibon, 2000). Averaging tends to reduce the error 
from relying on any single model (even the single best one), when even 
the best-fitting model is unlikely to be perfectly correct and even 
relatively poorly fitting models are likely to contribute some information 
useful for prediction. This is similar to Condorcet’s centuries-old obser-
vation on majority voting with probabilistic knowledge: when each 
voter independently has a greater than 50% probability of correctly 
identifying which of two competing answers to a question is correct 
(assuming that one of them is), then majority rule in a large population 
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of such voters has a probability close to 100% of selecting the correct 
answer—possibly very much greater than the probability for any of the 
individuals (Condorcet, 1785). Even if the voter opinions are not com-
pletely statistically independent, a similar conclusion often holds, as 
discussed later (e.g., for resampling, boosting, Bayesian model 
averaging (BMA), and online decisions). Note that this argument does 
not require knowing the probabilities that the different voters will be 
correct. Replacing voters with models and votes with model-based fore-
casts or probabilistic predictions provides heuristic motivation for the 
benefits of averaging predictions across multiple models.

Since these early experiments, a variety of model ensemble methods 
have been developed that seek to make predictions and decisions that 
are robust to some model uncertainties, in the sense that they work well 
for a large set of alternative plausible models and do not depend on 
assuming that any specific model (e.g., the best-fitting one) correctly 
describes or predicts the real situation.

Resampling Data Allows Robust Statistical 
Inferences despite Model Uncertainty

One way to generate multiple models to contribute to an ensemble pre-
diction is to identify the “best” models (e.g., by traditional statistical 
criteria such as maximum likelihood or least squares or maximum a 
posteriori probability or minimum expected loss) for each of many ran-
domly sampled subsets of the data. It is common in applied risk 
assessment that the correct statistical model for fitting a curve (e.g., a 
dose–response function) or estimating a quantity of interest (e.g., an 
odds ratio) from data is unknown. Then, modern computational 
statistical resampling methods—such as the bootstrap, jackknife, model 
cross-validation, and bagging—can create many random subsamples of 
the original data, fit a (possibly nonparametric) model or estimate to 
each subsample, and average these sample-specific estimates to obtain 
a final estimate (e.g., Molinaro, Simon, and Pfeiffer, 2005). The 
empirical distribution of the sample-specific estimates around the final 
estimate indicates how far from the final estimate the unknown true 
model might fall. Resampling can reduce bias from overfitting, leading 
to wider confidence intervals for model-based estimates (because model 
uncertainty is considered) and correspondingly fewer false positives for 
significant effects than selecting a single “best” model. It allows robust 
statistical inferences and model-based predictions, within limits (set in 
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part by the model-fitting strategies used for the random samples, as well 
as by how the multiple samples are generated) even when the correct 
model is uncertain.

Adaptive Sampling and Modeling: Boosting

Instead of resampling data purely randomly, it turns out to be profoundly 
useful, for statistical classification problems, to construct deliberately 
biased samples that overweight data points that cannot yet be predicted 
well and then to iteratively improve models by fitting them to these 
deliberately biased training sets. On each iteration, a new statistical 
model is developed by fitting it to a new training set. Predictions from 
successive models are combined via a weighted-majority decision rule 
in which each model’s “vote” (predicted class) is weighted based on its 
relative performance in correctly classifying data points in the training 
set. If the data points are then weighted based on how well they are pre-
dicted by the current best model, and these weights are used to determine 
the inclusion probability for each data point in the next training sample 
(with the least-well-predicted points receiving higher (“boosted”) prob-
abilities of being included), then a few hundred or thousand iterations 
can often generate an excellent statistical classifier, starting from even a 
weak initial predictive model that classifies data points with only slightly 
greater than random accuracy. Such adaptive boosting (AdaBoost) algo-
rithms have proved highly successful in applications that require 
classifying cases into two or more classes. Examples include 
classification of credit applicants as “good” or “bad” credit risks (or into 
more than two credit risk categories) (Zhou and Lai, 2009), diagnosis of 
patients based on symptoms and markers (Tan, Chen, and Xia, 2009), 
prediction of which companies are most likely to go bankrupt over a 
stated time interval (Cortés, Gámez, and Rubio, 2007), prediction of 
toxicities of organic compounds (Su et al., 2011), and detection of intru-
sion in computer networks (Hu, Hu, and Maybank, 2008).

BMA for Statistical Estimation with Relevant Data 
but Model Uncertainty

One of the best-developed model ensemble methods is Bayesian Model 
Averaging (BMA) for statistical inference when the correct statistical 
model is uncertain. BMA seeks to weight model outputs (e.g., infer-
ences, predictions, or decision recommendations) according to their 
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probabilities of being correct, based on consistency with data. Like 
resampling methods, BMA creates many models (e.g., by considering 
all 2n subsets of n candidate predictors in different regression models), 
but it weights each model based on its likelihood in light of the data, 
rather than fitting different models to different subsets of the data. (If 
there are too many plausible models to make it practical to generate 
and fit all of them, then sampling only those that are most consistent 
with the data, according to some statistical criterion, in the ensemble of 
considered models may yield a computationally tractable compro-
mise.) BMA typically assesses consistency with the data by statistical 
criteria such as likelihood (i.e., model-predicted probability of the 
observed data) or likelihood penalized by model complexity, as 
reflected in degrees of freedom or number of constraints on data—the 
Bayesian information criterion (BIC). For example, a hypothesized 
causal model for multifactorial disease causation might be considered 
“consistent with data” if it implies a likelihood or BIC value for the 
observed data that is not much less than (e.g., is within an order of 
magnitude of) the maximum value for any model.

Given a model ensemble, BMA estimates the probability that a 
statistical property of interest holds (e.g., that a particular exposure 
variable is a significant predictor of a particular adverse health effect) 
or that a model-based prediction or conclusion is true (e.g., that the risk 
created by a given exposure exceeds a specified level), by considering 
the weighted fraction of the models in the ensemble that have that 
property or make that prediction, with each model weighted to reflect 
its conditional probability given the data (via a “Bayes factor” that 
reflects the likelihood of the data, given the model, in accord with 
Bayes’ rule). An intuitive motivation is that the conditional probability 
that any conclusion, X, is true, given some set of observations that we 
will call Data, can be written (tautologically, via the law of total prob-
ability) as

Pr ( ) Pr( | )Pr ( )
Pr ( )Pr ( )

X X M M
X M Mn n

| Data |Data
| | Data

1 1

where M
1
, M

2
, …, M

n
 are any set of mutually exclusive and collec-

tively exhaustive hypothesized models, Data represents any available 
observations, and Pr(M

j
 | Data) is proportional to the likelihood of the 

data if model M
j
 is correct, Pr(Data | M

j
). Various approximations 
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made for computational tractability and convenience, such as only 
sampling from a large set of possible models and only considering 
models with tractable priors (glossed over in this brief overview) and 
with likelihood function values within an order of magnitude or so of 
the maximum-likelihood one, lead to different detailed BMA algo-
rithms, appropriate for different types of statistical models ranging 
from regression models to Bayesian networks and causal graphs 
(Hoeting et al., 1999).

A substantial literature documents cases for which BMA-based 
statistical predictions or conclusions are less biased and more real-
istic than corresponding predictions or conclusions based on any 
single (e.g., best-fitting or maximum-likelihood) model. A typical 
result, as with resampling methods, is that confidence intervals for 
parameters estimated by BMA are wider, and type 1 errors (false pos-
itives) for falsely discovering what seem to be statistically “significant” 
results are correspondingly less common than when inferences are 
obtained from any single model, including the “best” model according 
to some model-selection criterion (Hoeting et al., 1999). This can 
have important implications for risk assessment results when model 
uncertainty is important. For example, when BMA is used to assess 
the statistical association between fine particulate matter (PM2.5) 
and mortality rates in some time series data sets, effects previously 
reported to be significant based on model selection (with model 
uncertainty ignored) no longer appear to be significant (Koop and 
Tole, 2004).

Learning How to Make Low-Regret Decisions

Resampling, boosting, and BMA methods are useful when they can fit 
multiple models to data that are known to be relevant for predicting 
future consequences of present decisions. If relevant data are initially 
unavailable, however, or if the relevance of past data to future situations 
is uncertain, then a different strategy is needed. This section considers 
what to do when data will be collected only as decisions are made and 
various different models (or experts or hypotheses or causal theories, 
etc.), with unknown probabilities of being correct, are available to 
inform decisions. This deeper uncertainty forces adaptive decision-
making as relevant data become available, rather than predetermining 
the best course of action from available relevant data.
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For systems with quick feedback, where the loss (or reward) for 
each act is learned soon after it is taken, some powerful approaches are 
now available for using multiple models to improve decisions. These 
situations can be modeled as online decision problems, in which what 
to do in each of many sequentially presented cases must be decided 
without necessarily knowing the statistical characteristics of the cases, 
which may be changing over time, or selected by one or more intelli-
gent adversaries or influenced by continually adapting agents or 
speculators in a market.

Suppose that {M
1
, M

2
, …, M

n
} are the different models (or theories, 

experts, scenarios, prediction algorithms, etc.) being considered, but 
their prior probabilities of being correct are unknown. Decision oppor-
tunities and feedback on resulting consequences arrive sequentially. 
For example, the risk manager may be confronted with a series of cases 
that require prompt decisions (such as stock market investment oppor-
tunities, patients to be treated, chemicals to be tested and classified, 
new drug applications or loan applications to be approved or rejected, 
etc.) If an approximately correct model were known, then it could be 
used to make decisions that would maximize the total reward earned 
from each decision, assuming that each choice of act for a case results 
in a consequence that can be evaluated by the decision-maker as hav-
ing some value, which we call the “reward” for that decision in that 
case. In practice, an approximately correct model may not be known, 
but in online decision problems, the risk manager learns the actual 
consequence and reward soon after each decision; if the different 
models are specific enough, then the consequences and rewards that 
would have been received if each model had been used to make the 
decision may also be known.

The cumulative regret for using one model rather than another can 
be defined and quantified as the difference between the cumulative 
reward that would have been earned by following the decision recom-
mendations from the second model instead of the first, if this difference 
is positive; equivalently, it is the cumulative loss from using the first 
model instead of the second. A good (or, more formally, low-regret) 
sequence of decisions, with respect to the ensemble {M

1
, M

2
, …, M

n
}, 

has an average regret per decision that approaches zero, compared to 
the best decisions that, in retrospect, could have been made using any of 
the models in the ensemble. In other words, a low-regret decision 
sequence does almost as well, on average, as if the decision-maker had 
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always used the best model, as judged with the advantage of hindsight. 
Practical low-regret decision algorithms focus on homing in quickly on 
approximately optimal (or low-regret) decision rules, while keeping 
regret small during the learning period.

Somewhat remarkably, low-regret decision strategies are often easy 
to construct, even if the probabilities of the different models in the 
ensemble are unknown (Cesa-Bianchi and Lugosi, 2006). The basic 
idea is to weight each model based on how often it has yielded the 
correct decision in the past and to make decisions at any moment rec-
ommended by a weighted majority of the models. After each decision is 
made and its outcome is learned, models that made mistaken recom-
mendations are penalized (their weights are reduced). Thus, the model 
ensemble produces recommendations that adapt to the observed perfor-
mances of the individual models, as revealed in hindsight. (An alternative 
is to use the model weights to create probabilities of selecting each 
model as the one whose recommendation will be followed for the next 
case; such probabilistic selection (with the wonderful name of a “follow 
the perturbed leader” (FPL) strategy) also produces low-regret decision 
sequences (Hutter and Poland, 2005). A further variation (Blum and 
Mansour, 2007) is to adjust the weight on each model only when it is 
actually used to make a decision; this is important if the consequences 
that would have occurred had a different model been used instead are 
not known.) In each of these cases, weighted majority or FPL algo-
rithms produce low-regret decision sequences; moreover, performance 
guarantees can be quantified, in the form of upper bounds for the 
average regret using the model ensemble algorithm compared to always 
using the best model (if it were known in advance).

If the environment is stationary (offering fixed but unknown proba-
bilities of consequences for different decisions), then the low-regret 
strategies effectively learn, and then exploit, its statistical properties. If 
the environment changes over time, then low-regret strategies can be 
transformed to yield adaptive low adaptive regret strategies. These 
replace cumulative regret measures with measures of performance on 
successive intervals, to make the decision sensitive to changes in the 
underlying process (Hazen and Seshadhri, 2007). Risk analysts and 
policy analysts often recommend using efficient adaptation in light of 
future information to cope with deep uncertainty. Model ensemble 
decision algorithms provide one constructive framework to implement 
such recommendations.
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Example: Learning Low-Regret Decision Rules with 
Unknown Model Probabilities

To understand intuitively how low-regret online decisions are possible, 
consider the extremely simple special case in which one must decide 
which of two possible decisions to make for each of a sequence of cases 
(e.g., invest or decline to invest in a new business opportunity, approve 
or deny a chemical product for consumer use, sell or hold a stock, 
administer or withhold an antibiotic in the treatment of a sick patient 
who might have a viral infection, etc.). After each decision is made, one 
of two possible outcomes is observed (e.g., business succeeds or fails, 
chemical product proves safe or hazardous, stock price moves up or 
down, patient would or would not have benefitted from the antibiotic, 
respectively). The decision-maker evaluates the results, assigning a 
“reward” (or loss) value to each outcome. The correct model for 
deciding what to do (or for predicting the outcome of each decision in 
each case) is uncertain. It belongs to some finite uncertainty set of 
alternative competing models {M1

, M
2
, …, M

n
} (perhaps developed by 

different experts or research groups or constituencies), but initially, the 
risk manager knows nothing more about which model is correct (e.g., 
there is no experience or available knowledge to assign meaningful 
probabilities to the individual models, or even to assign Dempster–
Shafer beliefs to subsets of models, within the uncertainty set).

Despite this ignorance of the correct model, a low-regret sequence 
of decision can still be constructed as follows (Cesa-Bianchi and Lugosi, 
2006):

1.  Assign all the models in the uncertainty set the same initial weight, 
1/n.

2.  As each case arrives, make the decision recommended by the 
weighted majority of models (i.e., sum the weights of all models in 
the ensemble that recommend each decision, and choose the decision 
with the maximum weight. In this simple example, with equal initial 
weights, this is the same as choosing the simple majority decision.) 
Resolve ties arbitrarily.

3.  As long as the ensemble-based recommendation is correct (reward 
maximizing) for each case in hindsight, make no changes; but when 
the ensemble recommendation is mistaken, reduce the weights of all 
of the models that made the mistaken recommendation to zero.
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Since majority rule is used, each new mistake eliminates at least half of 
the surviving models; thus, successive eliminations will lead to all 
decisions being made by the correct model (or to a subset of models that 
agree with the correct model), after a number of mistakes that is at most 
logarithmic in the number of models in the uncertainty set. After that, 
regret will be zero, and hence, average regret will approach zero as the 
correct model continues to be used.

For more realistic and complex cases, this simple procedure must be 
modified to achieve low-regret decisions. When there is no guarantee that 
the correct model is in the uncertainty set, and if only the consequences of 
the selected decisions are revealed (but not the consequences that other 
decisions would have produced), then the weights of models that contribute 
to incorrect (positive-regret) decisions are reduced only partially at each 
mistake, rather than jumping all the way to zero. Moreover, rather than mak-
ing deterministic recommendations, the weights of models in the ensemble 
are used to set probabilities of selecting each possible act. Nonetheless, for 
a variety of sequential decision problems (including ones with more than 
two possible outcomes and more than two possible acts to choose among for 
each case), such refinements allow efficient adaptive learning of decision 
rules that perform almost as well on average as if the best model in the 
ensemble (as evaluated with 20–20 hindsight) were always used.

Reinforcement Learning (RL) of Low-Regret Risk 
Management Policies for Uncertain Dynamic 
Systems

The online risk management decision problems considered so far, such as 
deciding whether to approve loans, administer antibiotics, sell stocks, and 
so on, are perhaps less exciting than the grand challenges of risk 
management under deep uncertainty mentioned in the introduction. 
However, key ideas of low-regret decision-making can be generalized to 
a broad class of RL decision problems and algorithms that encompass 
many more complex risk management decision problems of practical 
interest. State-of-the-art RL algorithms also show how to generate contin-
uous uncertainty sets based on observations and how to apply mathematical 
optimization to the resulting infinite ensembles of models to make low-
regret decision in both stationary and changing environments.

Many risk management decision problems with deep uncertainties 
involve trading off relatively predictable immediate gains against 
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uncertain future rewards or losses. Examples include extracting valuable 
nonrenewable resources with uncertain remaining reservoirs (such as 
oil or minerals); managing forests, vulnerable habitats, fisheries, or 
other renewable resources having uncertain population dynamics and 
extinction thresholds; attempted control of climate change with uncer-
tain damage thresholds and points of no return; and medical use of 
antibiotics whose use increases, to an unknown extent, the risk of future 
antibiotic-resistant infections. In each case, a decision about how much 
benefit to extract now, given the present (perhaps uncertain) state of the 
word, yields an immediate reward, but it may also cause a transition to 
a new possibility inferior state offering different (perhaps lower or even 
zero) rewards for future actions.

For purposes of quantitative analysis, the usual formulation of such 
a problem is called a Markov decision process (MDP). In an MDP, 
choosing act a when the state of the system is s yields an immediate 
reward, r(a, s), and also affects probabilities of transitions to each pos-
sible next state, Pr(s′ | a, s), where s′ = a possible next state and s = present 
state when act a is taken. (For stochastic rewards, the immediate reward 
may be the mean of a random variable with a distribution that depends 
on a and s.) A decision rule or policy for an MDP specifies the proba-
bility of taking each act when in each state. The set of such policies 
constitutes the choice set, A, in the standard EU formulation of decision 
theory discussed earlier, and the decision-maker seeks to identify the 
best policy. An optimal policy maximizes the value of the stream of 
rewards starting from each state; this value is usually denoted by Q(s) 
and is defined as the expected sum of the immediate reward and the 
discounted value of future rewards, assuming that decisions now and in 
the future are consistently optimized. If β is the one-period discount 
factor, then optimal values, denoted by Q(s), satisfy the following 
equation (the Bellman equation):

	
Q s r a s Q s s a s

a A
( ) max ( ) ( )Pr( | , ){ }

in
,

In words, the optimized reward starting from state s is the maximized 
(over all possible current acts) sum of the immediate reward plus the 
maximized expected discounted future reward starting from the next 
state. This system of equations (one for each s) can be solved for the 
optimal policy, by standard algorithms from operations research (such 



Ten Tools of Robust Risk Analysis for Coping with Deep Uncertainty 213

as linear programming, value iteration, policy iteration, and stochastic 
dynamic programming) or by RL algorithms (such as Q-learning or 
temporal difference learning) that use successive empirical estimates of 
the optimal value function, based on the observed history of states, acts, 
and rewards so far, to gradually learn an optimal or nearly optimal 
policy (Sutton and Barto, 2005).

Robust low-regret risk management policies for MDPs (Regan and 
Boutilier, 2008) generate low regrets even when the reward distributions 
and state transition probabilities are initially not known, but must be 
estimated from observations, and even when they may change over 
time, rendering what has been learned so far no longer useful. These 
complexities move the decision toward the right in Figure  7.1—the 
domain of deeper uncertainties. Practical applications of RL algo-
rithms to date have ranged from controlling hazardous chemical 
production processes to maximize average yield under randomly 
changing conditions while keeping the risk of entering dangerous pro-
cess states within specified bounds (Geibel and Wysotzk, 2005) to 
devising stoplight control policies to reduce jams and delays in urban 
traffic (Gregoire et al., 2007).

Experiments and brain imaging (functional MRI) studies of human 
subjects suggest that RL also has neural correlates, with the human 
brain processing differences between anticipated and obtained rewards 
for different policies under risk, and subsequently adapting perceptions 
and behaviors, in ways that can be interpreted in terms of RL algorithms 
(e.g., Kahnt et al., 2009). For example, whether subjects successfully 
learn which of four risky reward processes generates the highest 
average, based on repeated trial-and-error learning, appears to be pre-
dicted by the strength of physiologically measurable signals involved in 
RL (Schönberg et al., 2007), although other experiments show that 
learning is also affected by mental models (possibly incorrect) of 
processes generating data (Green et al., 2010).

Example: RL of Robust Low-Regret Decision Rules

If a decision-maker must make choices in an unknown MDP model, 
with only the sets of possible states and acts (S and A) known, but 
rewards and state transition probabilities resulting from taking act a in 
state s having to be estimated from experience, then a low-regret strategy 
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can be constructed using the following principle of optimism in the face 
of uncertainty (Jaksch, Ortner, and Auer, 2010):

1.  Divide the history of model use into consecutive episodes. In each 
episode, a single policy is followed. The episode lasts until a state is 
visited for which the act prescribed by the current policy has been 
chosen as often within the current episode as in all previous epi-
sodes. (The new episode thus at most doubles the cumulative number 
of occurrences of any state–act pair.) When an episode ends, the data 
collected is used to update the uncertainty set of considered models, 
as well as the policy to be followed next, as described next.

2.  At the start of each episode, create a new uncertainty set of plausible 
MDP models from confidence intervals around the empirically 
observed mean rewards and transition probabilities.

3.  Choose an optimistic MDP model (one yielding a high average 
reward) from the uncertainty set. Solve it via operations research 
optimization techniques to find a near-optimal policy.

4.  Apply this policy until the episode ends (see step 1). Then, return to 
step 2.

The analysis of a detailed algorithm (UCRL2, for upper confidence RL) 
implementing these steps shows a high probability (depending on the 
confidence levels used in step 2 to generate uncertainty sets) of low 
regret, compared to the rewards that would have been achieved if 
optimal policies for each of the true MDPs had been used (Jaksch, 
Ortner, and Auer, 2010). This result holds when any state can be reached 
from any other in finite time by appropriate choice of policies, and even 
when the true but unknown underlying MDP (i.e., reward distributions 
and transition probabilities) can change at random times (or in any other 
way that is oblivious to the decision-maker’s actions), provided that the 
number of changes allowed in an interval is finite. Intuitively, the 
UCRL2 algorithm seeks the best return by exploring different plausible 
models, starting with those that would yield the best returns if correct. 
As data accumulates, confidence intervals around estimated model 
parameters shorten. When the current model no longer appears best, 
exploration switches to a different model. The UCRL2 algorithm learns 
efficiently and can adapt to changes in the underlying unknown MDP 
quickly enough so that the policies it recommends are unlikely to spend 
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long yielding returns much lower than those from the best policies given 
perfect information.

Example: Model-Free Learning of Optimal 
Stimulus–Response Decision Rules

Rather than solving the Bellman equations directly, RL algorithms use 
data to approximate their solution increasingly well. For example, the 
state–act–reward–state–act (SARSA) RL algorithm updates the esti-
mated value (the sum of immediate and delayed rewards) from taking 
act a in state s, denoted by Q(s, a), via the equation

	

New , value previous , value
change in estimated valu

Q s a Q s a( ) ( )
[ ee of ,Q s a( )]

where α is a learning rate parameter and the change in the estimated 
value of Q(s, a) is the difference between its new value (estimated as the 
sum of the most recently observed immediate reward and the previously 
estimated discounted value starting from the observed new state) and its 
previously estimated value:
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(Here, a′ is the act taken in the observed next state, s′, according to the 
previously estimated value function Q(s, a); and r(s, a) + βQ(s′, a′) is 
the estimated value just received when act a was taken in state s.) The 
difference between this estimate of value just received and the previous 
estimated value Q(s, a) expected from taking act a in state s provides 
the feedback needed to iteratively improve value estimates and result-
ing policies. The change in the estimated value of Q(s, a) is zero only 
when its previously estimated value agrees with its updated value based 
on the sum of observed immediate reward and estimated delayed reward 
starting from the observed next state, that is, only when Q(s, a) = r(s, 
a) + βQ(s′, a′). When this condition holds for all states, the Bellman 
equation is satisfied, and the observed sequence of SARSA data (s, a, 
r(s, a), s′, a′) has been used to learn the optimal policy. Detailed imple-
mentations of this idea (e.g., incorporating randomization to assure that 
all act–state pairs will eventually be tried with nonzero probability and 
specifying the act to be selected in each state, typically as the “epsilon-
greedy” one that chooses an act at random with small probability and 
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otherwise chooses the one that maximizes the current estimated 
expected value of r(s, a) + βQ(s′, a′), perhaps with statistical regression 
or nonparametric smoothing models and Monte Carlo simulation of a 
random sample of future trajectories used to approximate Q(s′, a′) for 
large state spaces) yield practical RL algorithms for a variety of sequen-
tial decision problems with random transitions and immediate and 
delayed losses or rewards (Szepesvari, 2010).

Many RL algorithms learn by comparing the estimated rewards 
received using the current policy to the best estimated rewards that 
could have been received (as predicted by a model) had a different 
policy been used instead and revising the current policy based on this 
difference (which can be interpreted as a measure of regret). By con-
trast, the SARSA algorithm uses only the observed data on what was 
done and what reward was experienced (the SARSA data) to update the 
value estimates for act-state pairs and to gradually learn an optimal 
policy. No model of the underlying MDP (or other process) is required. 
In effect, the learner maintains estimated values for an ensemble of dif-
ferent stimulus–response (i.e., act-state) pairs, updates these value 
estimates based on the experienced differences between obtained and 
expected rewards, and uses them to decide what to do as each new state 
occurs. Such adaptive learning is suitable even when no model is avail-
able and will converge to the optimal policy for the underlying MDP, if 
one exists, under quite general conditions, even if the unknown MDP 
itself occasionally changes (Yu, Mannor, and Shimkin, 2009).

Recent work has started to extend RL algorithms to partially 
observable MDPs (POMDPs) in which the state at each moment (e.g., 
the size of a fishery stock) is not known with certainty, but must be 
inferred from statistical information (e.g., sampling). State-of-the-art 
RL algorithms for POMDPs balance exploration of new or underinves-
tigated decision rules (each of which maps histories of observed 
information, acts, and rewards to decisions about what act to take next) 
and exploitation of known high-performing decision rules. Similar to 
SARSA, this approach can learn optimal or near-optimal polices for the 
underlying POMDP, if one exists, even without a model of the process 
(Cai, Liao and Cari, 2009; Ross et al., 2011).

Ongoing extensions and refinements of these ideas—especially 
multiagent (social) learning and evolutionary optimization algorithms, 
in which the (perhaps fatal) experiences of some agents help to inform 
the subsequent choices of others (Waltman and van Eck, 2009)—will 
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bring further improvements in the ability to solve practical problems. 
However, the techniques summarized in Table  7.1 already suffice to 
support many valuable applications.

Applying the Tools: Accomplishments and 
Ongoing Challenges for Managing Risks 
with Deep Uncertainty

Conceptual frameworks and technical tools such as those in Table 7.1 
have practical value insofar as they help to improve risk management 
decisions with deep uncertainties. This section sketches applications of 
robustness and adaptive risk management methods to practical risk 
management problems with deep uncertainties and highlights some key 
challenges.

Before seeking sophisticated solutions to difficult problems, of 
course, it is well to cover the basics: pay attention to what doesn’t work, 
and stop doing it; if possible, encourage many independent experiments 
on a small scale to find out what works better; identify, reward, and 
spread successes; and don’t bet too heavily on unvalidated models or 
assumptions (Harford, 2011). The increasing capabilities of technical 
methods should not lead to neglect of such useful commonsense advice.

Planning for Climate Change and Reducing 
Energy Waste

In robust decision making (RDM), participants develop multiple sce-
narios—perhaps with the help of computer-aided scenario generation 
and an experienced facilitator (Bryant and Lempert, 2010)—to identify 
potential vulnerabilities of proposed decisions, such as where to build a 
road to connecting villages. These scenarios help participants to iden-
tify cost-effective ways to change the proposed decision to decrease 
vulnerabilities (e.g., potential loss of the road due to flooding or mud 
slides) and to develop increasingly robust decision options.

RDM has been advocated as a practical way to help multiple stake-
holders in communities and developing countries engage in planning 
for climate change and infrastructure development (Lempert and 
Kalra, 2008). Some limitations are that a robust decision may not exist, 
and the most relevant and likely scenarios, as viewed in hindsight, may 



218 CHAPTER 7  Making Decisions without Trustworthy Risk Models

not be identified during planning. (For example, empirical surprises, 
such as larger-than-predicted effects of “global dimming,” might not 
be considered among the scenarios, leading to an ensemble of predic-
tions with uncertain or debated credibility (Srinivasan and Gadgil, 
2002).) However, practical experience suggests that RDM can be help-
ful in envisioning and planning for possible futures (Bryant and 
Lempert, 2010).

While scenario-based planning methods such as RDM can help 
plan large-scale adaptation to envisioned potential changes, adaptive 
risk management methods can also guide smaller, immediate changes 
that significantly reduce energy waste and pollution by increasing the 
efficiency of energy consumption in uncertain environments. For 
example, RL algorithms have been used to design more efficient 
building energy conservation programs (subject to comfort constraints) 
(Dalamagkidis et al., 2007), devise more efficient use and coordination 
of stop lights to greatly reduce time spent by vehicles in urban traffic 
(Balaji, German, and Srinivasan, 2010), and optimize dynamic power 
used by devices (Wang, Xie, and Ammari, 2011). These applications 
reduce energy consumption without decreasing quality of life, by 
adaptively reducing wastes of energy.

Sustainably Managing Renewable Resources 
and Protecting Ecosystems

Sustainable management and harvesting of renewable resources can be 
formulated in terms of MDPs (or generalizations, such as semi-MDPs, 
in which the times between state transitions may have arbitrary 
distributions, or POMDPs). When the resources extend over large areas, 
with subareas developing differently over time, then the spatially dis-
tributed control problem of managing them can be factored into many 
local MDPs, represented as the nodes of a network, with local depen-
dencies between the MDPs indicated by edges between nodes. Such 
graph-based MDPs (GMDPs) represent a variety of spatially distributed 
control problems in forestry and agriculture (Forsell, Garcia, and 
Sabbadin, 2009).

As an example, in a large commercial forest consisting of many 
stands of trees, a decision must be made about when to harvest each stand, 
taking into account that random severe windstorms (perhaps every few 
decades) pose a risk of wiping out most of the commercial value of a 
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stand that is blown down before it is harvested but that neighboring stands 
can provide some shelter to each other and hence reduce risk of wind 
damage (Forsell, Garcia, and Sabbadin, 2009). If the probability 
distributions for rewards (e.g., based on market values of the crop over 
time) and state transition probabilities (e.g., based on statistics for 
windstorm arrival times and severities) were known in advance (level 1 
uncertainty), then a state-of-the-art way to devise a value-maximizing 
harvesting policy would be to use simulation–optimization. As discussed 
in Chapter 3, simulation-optimization tries one or more initial policies 
(perhaps a mix of randomly generated and historical ones), simulates the 
consequences of each policy many times via Monte Carlo simulation 
using the known probability distributions, and iteratively improves 
policies until no further increases in the reward (e.g., average simulated 
net present value) can be found. Coupled with design-of-experiment prin-
ciples for adaptively exploring the set of policies, together with 
sophisticated optimization steps (e.g., evolutionary optimization routines), 
current simulation–optimization algorithms can solve a wide range of 
forestry management problems under level 1 uncertainty. These include 
multicriteria decisions in which the utility derived from biodiversity, 
carbon sequestration, and standing forests, as well as the market value of 
timber, is taken into account (Yousefpour and Hanewinkel, 2009).

Simulation–optimization is impossible under deep uncertainty, 
however, because the probability distributions of consequences for dif-
ferent policies are unknown. Instead, current algorithms for risk 
management of GMDPs with unknown probabilities use collaborative 
multiagent RL algorithms. Each “agent” (typically identified with one 
node of the GMDP) makes decisions about one part of the problem 
(e.g., when to harvest one specific stand in a commercial forest). Each 
agent must coordinate with its neighbors to achieve optimal results. 
This is well within the capabilities of current multiagent RL algorithms 
for spatially distributed management of agricultural and forest resources 
(Forsell, Garcia, and Sabbadin, 2009).

Similar RL algorithms have been developed to adaptively manage 
risks of forest fires, which again pose locally linked risks that increase 
with time since last harvest (Chades and Bouteiller, 2005), and to pro-
tect and conserve biodiversity in Costa Rican forests over time, by 
adaptively coordinating and optimizing the reservation of subareas that 
will not be commercially exploited, in order to preserve habitats and 
species (Sabbadin et al., 2007). POMDPs are now starting to be used to 
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optimize allocation of scarce conservation resources to multiple 
conservation areas, when the presence and persistence of threatened 
species in each area is uncertain (McDonald-Madden et al., 2011). 
Thus, current applications of RL can help to protect forests and other 
ecosystems, as well as to manage commercial forests and other 
resources over long periods in the presence of uncertain, and possibly 
changing, risks.

Managing Disease Risks

Like the spatial spread of wind damage, forest fires, and habitat loss or 
gain, many contagious diseases also have strong spatial, as well as 
temporal, dependencies. Stopping the spread of an epidemic requires 
deciding not only how to act (e.g., vaccine vs. quarantine) but also 
where and when and with what intensity. The stakes are high: failing to 
quickly contain a potential epidemic or pandemic can impose enormous 
economic and health costs. For example, one recent estimate of the 
economic consequences of delaying detection of a foot-and-mouth dis-
ease (FMD) outbreak in a California cattle herd from 7 days to 22 days 
is about $66 billion (with over half a billion of additional loss and 2000 
additional cattle slaughtered for each extra hour of delay after 21 days) 
(Carpenter et al., 2011). Managing such risks in real time, with con-
stantly changing spatiotemporal disease data and uncertainties about 
where and when new cases may be discovered, requires a new genera-
tion of risk management tools to inform intervention decisions far more 
quickly than traditional methods. RL algorithms are being developed to 
meet this need.

For several decades, simulation–optimization has been applied to 
design epidemic risk management plans for both animal and human 
contagious diseases, when infectious disease control models (e.g., for 
mass dispensing of stockpiled medical countermeasures) involve only 
level 1 or level 2 uncertainties (Lee et al., 2010). For epidemic models 
with deeper uncertainties, RL optimization of policies is now starting to 
be used. For example, RL algorithms applied to a stochastic simulation 
model of the spread of an H1N1 influenza pandemic and its conse-
quences—from illnesses and deaths to healthcare expenses and lost 
wages and to shortages of vaccines, antiviral drugs, and hospital 
capacity—have recently been proposed to coordinate and optimize 
risk  mitigation measures (early response, vaccination, prophylaxis, 
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hospitalization, and quarantine applied at different times and locations) 
to create a cost-effective overall risk management strategy (Das, 
Savachkin, and Zhu, 2007).

In livestock, the spread of the highly contagious FMD can be con-
trolled by a combination of vaccination and culling. Both overreaction 
and underreaction cost animal lives and economic losses; therefore, 
adroit and flexible risk management that exploits information as it 
becomes available is very valuable. Recent research suggests that 
adaptive risk management of FMD epidemics substantially outperforms 
traditional prespecified control strategies (in which observed cases 
trigger automatic culling and/or vaccination within a set area around 
affected farms), saving unnecessary loss of animal life and more quickly 
suppressing FMD (Ge et al., 2010).

Robust, ensemble, and adaptive risk management techniques are 
also starting to be used to improve medical screening, diagnosis, predic-
tion, and treatment of a variety of diseases. Examples include the 
following:

•  Earlier detection of Alzheimer’s. Ensemble prediction methods can 
dramatically improve ability to detect and predict some medical con-
ditions from data. The challenging task of using brain imaging data 
to automatically identify women with mild Alzheimer’s disease is 
one where AdaBoost appears to substantially improve accuracy 
(Savio et al., 2009), and detection of Alzheimer’s in brain MRIs by 
model ensemble methods that incorporate AdaBoost compares 
favorably even to manually created “gold standard” classifications 
(Morra et al., 2010).

•  Improving HIV treatment using RL. A model-free RL algorithm has 
been proposed for using clinical data to decide adaptively when to 
cycle HIV patients off of harsh drug therapies, as part of a structured 
treatment interruption program designed to reduce risk of acquisition 
of drug resistance, as well as alleviating side effects (Ernst et al., 
2006). The RL algorithm works directly with clinical data (e.g., 
observed levels of CD4+ T cell counts), with no need for an accurate 
model of HIV infection dynamics.

•  Treating depression. RL algorithms that estimate value functions (the 
Q functions in the Bellman equation) despite missing data (e.g., 
caused by incomplete compliance and nonresponse bias in the patient 
population) have been used to adaptively refine treatments of 
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depressed patients by adjusting the combination of antidepressants 
administered over time, based on patient responses, to achieve quicker 
and more prevalent relief of symptoms (Lizotte et al., 2008).

•  Managing ischemic heart disease (IHD) and other dynamic diseases. 
The problems of managing various dynamic diseases over time based 
on inconclusive observations have been formulated as MDPs and 
POMPDs (e.g., Schaefer et al., 2004; Alagoz et al., 2011). For exam-
ple, for IHD, the physician and patient must decide when to adminis-
ter or change medication, schedule stress tests or coronary angiograms, 
perform angioplasty or coronary artery bypass graft surgery, and so 
on, based on time-varying information of uncertain relevance that 
may range from reports of chest pain to EKG readings. This disease 
management process has been formulated as a POMD (Hauskrecht 
and Fraser, 2000), and uncertainty sets and practical solution algo-
rithms for imprecisely known POMDs have been developed (Itoh and 
Nakamura, 2007; Ni and Liu, 2008).

•  Optimizing treatment of lung cancer patients in clinical trials. 
Treatment of patients with advanced lung cancer typically requires 
switching among different lines of chemotherapy. RL algorithms are 
now being developed to approximately optimize the treatment of 
individual patients even when not enough is known to model the pro-
gression of cancers in detail (Zhao, Kosorok, and Zeng, 2009). The 
authors note that “reinforcement learning has tremendous potential in 
clinical research because it can select actions that improve outcomes 
by taking into account delayed effects even when the relationship 
between actions and outcomes is not fully known.”

•  Predicting toxicity of chemicals. Ensemble learning and prediction 
methods, including AdaBoost and its generalizations, have recently 
been shown to improve prediction of mechanisms of toxicity for 
organic compounds (e.g., phenols) based on molecular descriptors 
(Niua et al., 2009) and to out-perform other QSAR methods (Svetnik 
et al., 2005).

•  Better targeting of radiation therapy under uncertainty. Robust opti-
mization of intensity-modulated proton beam therapy spares more 
healthy tissues and organs than conventional optimization methods 
(e.g., based on probabilistic margins of error) while providing excel-
lent coverage of the target tissue despite range and setup uncertainties 
(Fredriksson, Forsgren, and Hårdemark, 2011; Inaniwa et al., 2011). 
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Multiobjective evolutionary optimization algorithms have also been 
developed to automatically identify undominated choices for beam 
angles and intensities in radiation therapy treatment planning (Fiege 
et al., 2011).

•  Reducing schizophrenia hospitalization episodes. Model ensemble 
predictors incorporating AdaBoost have been used recently to improve 
prediction of schizophrenia relapses in patients participating in a 
weekly remote patient monitoring and disease management program 
(via a PC-to-phone platform), increasing specificity of predictions 
from 0.73 to 0.84 while keeping sensitivity at 0.65 (Hrdlicka and 
Klema, 2011).

These examples suggest the potential for robust and adaptive methods 
to improve health risk management under uncertainty. This potential is 
only starting to be realized, since the methods are still relatively new, 
but it seems certain that many more practical applications in medical 
decision and risk analysis will be seen over the next few years.

Maintaining Reliable Network Infrastructure 
Service Despite Disruptions

Quickly containing and recovering from cascading failures in a power 
grid is somewhat analogous to quickly suppressing a spreading epi-
demic. In both, observations and control opportunities are spatially 
distributed; costly preemptive measures can be taken at different places 
(e.g., vaccinating as-yet uninfected flocks or shedding power loads 
before generators are knocked off grid); and a quick, effective response 
can potentially avert orders-of-magnitude larger losses. It is therefore 
perhaps unsurprising that multiagent reinforcement learning (MARL) 
algorithms (especially hierarchies and teams of RL controllers, each 
using an RL algorithm) are now being studied as effective risk 
management tools for increasing network resilience and responding to 
catastrophic failure events. For example, a two-level hierarchical con-
trol framework has recently been proposed to manage power generation 
and distribution in interconnected power grids under changing load and 
hydrothermal energy supply conditions (Zhou, Chan, and Yu, 2011). 
Model-free RL (via Q-learning) is used both to figure out how best to 
implement high-level commands at generation units and what high-level 
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commands to give them to meet changing demands reliably and cheaply 
across the interconnected areas under normal conditions.

In the event of a catastrophic failure event that disables one or more 
generators (e.g., a storm, accident, or attack), decentralized (multia-
gent) Q-learning can again be used to quickly detect and prevent 
cascading failures and rapidly restore power grid systems (Ye, Zhang, 
and Sutato, 2011). Under such a contingency, adaptive load shedding, 
that is, selective deliberate dropping of electric power, keeps the net-
work stable, preventing the spread of blackouts and minimizing power 
losses to customers as failures are isolated, power is rerouted, and ser-
vice is automatically restored (Jung et al., 2002).

Similarly, multiagent distributed RL algorithms facilitate quick 
automated rerouting of data packet traffic in telecommunications net-
works following loss of fibers or switching centers, helping to make 
these networks highly resilient to equipment and link failures. Although 
vehicles cannot be rerouted as easily as data packets or electric power, 
control of urban traffic flow by applying similar distributed RL algo-
rithms to traffic lights can reduce average delays and expedite passage 
of emergency equipment when traffic networks and communications 
networks are interlinked (Kuyer et al., 2008).

Adversarial Risks and Risks from Intelligent Agents

Methods of ensemble, robust, and adaptive risk analysis do more than 
provide useful concepts and detailed algorithms for coping with model 
uncertainty (including ambiguous beliefs and preferences) in a variety 
of practical applications. They also shed light on some key theoretical 
questions in risk analysis, for example, by providing performance guar-
antees for how quickly adaptive low-regret risk management policies 
learned from data converge to approximately the best possible policy or 
by giving upper bounds on the size of the cumulative difference in 
rewards obtained from the policy used versus those that would have 
been obtained from the perfect-information optimal policy or some 
other reference policy. Mathematical analysis shows that risks from 
intelligent adversaries cannot necessarily be managed effectively by 
using the same concepts and methods as for risks from nonintelligent 
sources: the same performance guarantees do not hold for systems that 
respond intelligently to a decision-maker’s choices as for systems that 
do not (Yu, Mannor, and Shimkin, 2009).
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This does not mean that the methods are not useful for detecting 
and mitigating vulnerabilities to deliberate attacks. Indeed, RL algo-
rithms for POMDPs have been shown to improve the performance of 
early detection systems for anthrax outbreaks and proposed for use in 
reducing the consequences of possible bioterrorist attacks (Izadi and 
Buckeridge, 2007). RL algorithms are also used successfully to detect 
fraud in health insurance and auto insurance data (see background in 
Bolton and Hand, 2002; Lu, Boritz, and Covvey, 2006), and cost-sensi-
tive modifications of AdaBoost (AdaCost and asymmetric boosting) are 
effective in detecting credit card fraud (Fan et al., 1999; Masnadi-
Shirazi and Vasconcelos, 2007). AdaBoost and RL algorithms are also 
used to detect intrusions into computer systems and networks (Hu, Hu, 
and Maybank, 2008; Chen and Chen, 2009). Thus, methods of robust 
risk analysis, including ensemble and adaptive learning techniques, are 
becoming well established as tools for managing risks from intelligent 
adversaries.

However, the behaviors of systems of interacting intelligent agents 
(including software agents running their own RL algorithms, as well as 
humans) can be unpredictable, and low-regret policies (compared to the 
best that could be done with perfect information and coordination 
among agents on the same team) cannot necessarily be learned from 
data in the presence of intelligent adversaries (Yu, Mannor, and Shimkin, 
2009). Moreover, while single-agent RL methods can be constrained to 
operate safely (avoiding acts that might cause harm) while still learning 
optimal control laws for engineering systems with nonlinear responses 
and random disturbances (e.g., in robotics or industrial process control) 
(Perkins and Barto, 2002), interacting adaptive controllers in multia-
gent systems can settle into behavioral patterns that do not converge at 
all or that lead to a clearly dominated equilibrium (Busoniu, Babuska, 
and Schutter, 2008).

MARL algorithms are a hot research area (Dickens, Broda and 
Russo, 2010), with promising applications both for broad classes of 
decision problems, such as POMDs (Osada and Fujita, 2005), and also 
for practical problems such as automated trading in finance (Busoniu, 
Babuska, and Schutter, 2008) or detection and response to cyberterror-
ist distributed denial of service attacks in data networks (Xu, Sun, and 
Huang, 2007). However, much remains to be understood about how 
intelligent agents should and do coordinate, cooperate, compete, and 
conflict in networks and other environments before effective risk 
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management tools can be created for the deep uncertainties created by 
the interaction of multiple agents.

Conclusions

For decades, the field of health, safety, and environmental risk analysis 
has defined itself largely in terms of providing useful answers to a few 
fundamental questions, such as the following: What can go wrong? 
How likely is it to happen? If it does happen, what are the consequences 
likely to be? What should we do about it? What should we say about it, 
how, to whom? (The first three of these questions are from Kaplan and 
Garrick (1981); the remaining two incorporate elements of risk 
management decision-making and risk communication that have been 
emphasized more recently.) Tools for robust risk analysis, including 
model ensemble, robust optimization, and adaptive learning and deci-
sion-making methods, now make it practical to refine some of these 
questions and to pose new ones as follows:

•  Instead of (or in addition to) asking “What can go wrong?,” one might 
ask “Is there a clearly better risk management policy than the one I 
am now using?” The latter question implicitly acknowledges that not 
everything that might plausibly go wrong can necessarily be antici-
pated. What can be addressed, even with very imperfect information 
(e.g., in a POMDP with imprecise or unknown parameters), is whether 
some other policy mapping observed conditions to acts, or to proba-
bilities of acts, would be clearly better than the current one, by any of 
various criteria for comparing policies in the presence of deep uncer-
tainty (e.g., stochastic dominance, EU with imprecise probabilities, 
minimum EU with ambiguous probabilities, robust optimization, or 
measures of regret.)

•  Instead of asking “How likely is to happen?,” one can ask “How prob-
able should I make each of my next possible actions?” The probabili-
ties of different scenarios or states or events are often unknown when 
decisions must be made, and they depend in part on what acts we take 
now and later. For example, the probability of an accident at a nuclear 
power plant over some time horizon depends largely on the acts and 
policies chosen by its operators. The probability of survival over time 
for a patient depends on what the physician (and, perhaps, the patient) 
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will do, now and later. In general, asking how likely something is to 
happen requires specifying what we will do, now and later. What can 
be answered, therefore, is not necessarily how likely different future 
events are, but what one will do now and what policy, mapping obser-
vations to probabilities of acts, one will use to determine what to do 
later. Adaptive learning policies such as SARSA and UCRL2 typically 
prescribe probabilities for acts to balance the two goals of maximiz-
ing rewards based on current estimates (“exploiting” what is known 
now) and searching for possibly better polices (“exploring” what is 
still uncertain).

•  Instead of asking “If it does happen, what are the consequences likely 
to be?,” one can ask “Would a different choice of policy give me 
lower regret (or higher EU of consequences), given my uncertain-
ties?” Even though the probabilities of consequences of events, given 
a choice of acts (and hence the immediate and delayed rewards from 
different act–state pairs), may be unknown or estimated only within 
some ranges, low-regret policies can still be developed using adap-
tive learning algorithms. Robust optimization can sometimes iden-
tify recommended acts even if the consequences are highly uncertain. 
It is therefore not necessary (and may not be possible) to predict 
consequences of possible future events in order to recommend low-
regret or robust risk management policies. As a practical matter, 
decision-makers can choose policies, not events or consequences. 
Robust risk analysis therefore focuses on improving these choices, 
recognizing that event and consequence probabilities may be too 
uncertain to specify.

Robust risk analysis methods, including model ensemble, robust opti-
mization, and adaptive learning and decision algorithms, shift the 
emphasis of the questions that define risk analysis from passive (What 
might happen, and how likely is it?) to more active (How should I act, 
now and in the future?). Risk managers are viewed not only as helping 
to create the future through their current decisions but also as being able 
to act intelligently on the basis of future information to mitigate and 
control risks in ways that perhaps cannot be anticipated with the more 
limited information available today.

Many of the future challenges for robust risk analysis will focus on 
changing from a single decision-maker’s perspective (What should I 
do?) to a multiagent perspective (What should we do, how might they 
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respond, and how should we respond to their responses?) Chapter 10 
explains current approaches to answering these questions. Under
standing how multiple adaptive agents collectively affect and respond 
to a variety of risks, from economic and financial to sociopolitical to 
war and terrorism, remains an outstanding challenge for the next wave 
of advances in robust risk analysis concepts and methods.
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This is the first of three chapters that focus on real-world applications of 
decision and risk analysis. In this chapter, the main technical methods 
used are multiattribute utility theory and decision tree analysis. These are 
classical decision analysis topics that would have been familiar to practi-
tioners 30 years ago, but in this chapter they are applied to the challenging 
domain of valuing risks to life and health and trading them off against the 
pleasure derived from consumption. Chapters 9 and 10 consider applica-
tions of decision and risk analysis to building and defending resilient 
infrastructures and defending against attacks by terrorists or other intelli-
gent adversaries. All three chapters emphasize the practical applicability 
of decision and risk analysis methods to important decisions that are 
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often made without the benefit of such formal methods and that can 
potentially be made better with them.

Introduction

What comes to mind when you hear the term “medical decision-
making?” Common answers include hospitals, doctors, shots, medical 
tests, and treatments—things associated with illness. But medical 
decision-making encompasses topics broader than treating illness; it 
includes maintaining wellness. The decisions we make while we are 
healthy have a tremendous impact on long-term health and mortality. 
Analysis has shown that individuals’ own decisions are the leading 
cause of death in the United States (Keeney, 2008). This chapter dis-
cusses the decision analytic foundation of medical decision-making and 
how it is applied to decisions that affect life and health.

A general definition of medical decision-making is any decision 
situation that affects the provision of medical care or the medical well-being 
of individuals. Medical decision-making can refer to medical diagnostics, 
medical treatment selection, patient scheduling, public health decisions, as 
well as the impact of personal decisions on health, the focus of this chapter. 
Two recurrent themes across the applications of medical decision-making 
are the importance of decision-making on health outcomes and the 
importance of decision analytic principles. This chapter highlights these 
themes throughout its treatment of decisions on life and health.

The significance of the impact our decisions have on health cannot be 
overstated. The probability of each possible health outcome faced by an 
individual is determined by the sequence of decisions leading up to that 
outcome. In medical decision-making, one potential outcome is death. 
Consider the sequence of decisions involved for an individual who finds a 
lump in her breast. The decisions to perform a self-breast exam and to seek 
medical attention affect the severity of the condition when medical guidance 
is first sought. If the lump is determined to be cancerous, the probability of 
survival and the treatment prospects change based on the stage of the can-
cer. Thus, the sequence of decisions involved affect whether the individual 
will live or die, clearly illustrating the importance of medical decisions.

To analyze medical decisions, we rely on the elements of decision 
quality: a committed decision-maker, sound reasoning (the logic by 
which we choose), a set of feasible decision alternatives, a decision frame 
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that helps us focus on the right problem, good information, and clear 
values and trade-offs. Several of these components are largely dictated by 
the situation that will determine, for example, what information is rele-
vant and what alternatives are possible. The element of specifying values, 
however, depends entirely on the decision-maker. In medical decisions, it 
is important to know how the decision-maker values his/her life and his/
her monetary consumption. Such questions can be difficult and uncom-
fortable for some people to contemplate because although people are 
exposed to risks of death every day, they are often not aware of them. 
Medical decision-making requires people consider their own mortality, a 
necessity that often makes medical decision-making difficult.

As discussed in each of the previous chapters, the presence of 
uncertainty often adds difficulty to decision-making. Even when the 
decision-maker has all the relevant information and is clear about his/her 
values, he/she cannot be guaranteed a good outcome when uncertainty is 
present. Consider the individual who exercised regularly and maintains a 
healthy diet. In spite of these healthy decisions, there is no guarantee that 
he will not develop a grave medical condition such as cancer. This presence 
of uncertainty only compounds the difficulty of medical decision-making 
where the potential outcomes may include disability or death.

Our purpose in this chapter is to present medical decision-making 
from a modern decision analytic perspective. All the elements of 
decision quality are needed in medical decision-making, but we focus 
on the element of preferences. It can be assumed that better health is 
preferred to poorer health and that longer life in a good health state is 
preferred to shorter life in that state. But the relative preferences for dif-
ferent health prospects depend on the decision-maker. This chapter 
explains how medical preferences can be modeled with a multiattribute 
utility function and how these preferences can be used within a decision 
tree framework to analyze medical decisions.

In addition to preferences, the decision tree framework incorporates 
the other elements of decision quality. The construction of the decision 
tree is dictated by the decision frame or perspective. The decision 
alternatives are included in the form of choice nodes. Relevant 
information is included in the form of the probabilities at chance nodes. 
Information may also be incorporated in the tree through the generation 
of additional alternatives and the better characterization of potential 
outcomes. With the decision alternatives and their respective potential 
outcomes described, a multiattribute utility function is used to model 
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the decision-maker’s preferences under conditions of uncertainty. The 
expected utility associated with each alternative can then be determined. 
Using the logic of decision analysis, the preferred decision alternative 
can be determined.

To facilitate the explanation of decision analytic concepts in 
decisions affecting life and health, we present an illustrative example on 
the consumption of sugar-sweetened beverages (SSB). We explain the 
analysis framework and compile the data necessary for analysis. The 
selection of this particular example is motivated by research that has 
associated SSB consumption with an increased risk of type 2 diabetes 
(Schulze et al., 2004) and by the significant impact of type 2 diabetes on 
society. Over 8% of the US population is affected by diabetes, which is 
the leading cause of blindness, nontraumatic lower limb amputation, 
and kidney failure. It is the seventh leading cause of death in the Unites 
States (Centers for Disease Control and Prevention (CDC), 2011b).

While our discussion of medical decision-making is focused around 
the decision to consume SSB, the same concepts are fundamental to the 
analysis of any medical decision, and the approach is applicable to a 
variety of medical decision-making situations.

The chapter begins with a brief treatment of medical ethics relevant 
to the discussion of medical decision analysis. We then explain a multi-
attribute utility model of life and consumption before presenting the 
decision analytic framework. We discuss how the analysis for an 
individual decision can be used to derive insights of the implications for 
society at large. Finally, we discuss generalizations of the framework 
and alternative approaches to medical decision-making.

MEDICAL ETHICS AND AUTONOMY

Discussion of medical ethics is based on four guiding principles: 
autonomy, nonmaleficence, beneficence, and justice (Beauchamp and 
Childress, 2001). Within the context of decision-making, the principle 
of autonomy is particularly relevant. Autonomy refers to an individual’s 
right to self-determination, a right that indicates an individual has the 
right to make the decisions that will affect his/her health well-being.

Decision-making involves specifying values. Each person has his/
her own independent values. The diversity of individual values can lead 
to the existence of controversial choices (Savulescu, 2007). In this 
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chapter, we assume each individual retains autonomy over his/her own 
decisions. We further assume each individual is mentally competent to 
fully understand the decision at hand and potential consequences. Any 
value we calculate is specific to each individual and indeed can only be 
paid by that individual as it is determined by changes to life expectancy.

MULTIATTRIBUTE UTILITY FOR PREFERENCES OF 
LIFE AND CONSUMPTION UNDER UNCERTAINTY

Medical decision-making involves making decisions when the out-
comes are uncertain. The tenants of decision analysis are used in valuing 
preferences when uncertainty is present (Howard and Abbas, 2015). 
The rules of decision analysis are the following:

1.  The decision-maker can specify the probability of each possible 
prospect following the decision.

2.  The decision-maker can arrange the decision prospects in order of 
preference.

3.  In an uncertain deal with a probability p of obtaining the most 
preferred prospect and a probability 1 − p of the least preferred 
prospect, the decision-maker can specify a probability p that makes 
him indifferent between this deal and a decision prospect.

4.  The decision-maker is indifferent between obtaining any decision 
prospect and its respective uncertain deal as described in (3) so that 
all decision alternatives may be substituted with binary deals with 
the same two prospects.

5.  The decision-maker chooses the alternative that is substituted for the 
uncertain deal with the greatest probability of the most preferred 
prospect.

Maximizing expected utility is consistent with following these five 
rules. Specifying a utility function to describe preferences under uncer-
tainty facilitates decision-making. Instead of specifying indifference 
probabilities in uncertain deals for each prospect, the decision-maker 
specifies the attributes of each prospect that affect his/her preferences 
for that prospect and specifies his/her preferences for the attributes. For 
example, in medical decision-making, length of life might be an 
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important attribute to the decision-maker. When multiple attributes are 
present, a multiattribute utility function is used to describe the decision-
maker’s preferences under uncertainty.

One useful multiattribute utility model describes preferences over 
length of life and consumption through trade-offs between the two 
attributes (Howard, 1984). The parameters necessary to implement this 
model are the individual’s life expectancy l , risk tolerance (ρ), 
constant annual consumption (c), and trade-off parameter (η). These 
parameters are explained in more detail in the following paragraphs.

The life expectancy l  for a specific population can be obtained 
from government agencies that track mortality data. In the United 
States, mortality data is available from the Department of Health and 
Human Services (DHHS) and is illustrated in Figure 8.1 (Arias, 2010).

Constant annual consumption (c) is also determined by the deci-
sion-maker and is determined based on his/her estimation of his/her 
future prospects. The decision-maker is asked to think about his/her 
future consumption for the rest of his/her life that is above bare survival 
and how it may change with time. Next, the decision-maker is asked to 
consider receiving a constant amount each year in place of his/her vari-
able consumption. The decision-maker is asked to determine what 
constant consumption makes him just indifferent to receiving this 
constant amount or receiving his/her uncertain future consumption. 
Converting the uncertain variable consumption into a constant annual 
consumption, denoted c, will simplify the analysis. Note the distinction 
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that consumption is above what is required for survival. If consumption 
is defined differently, the model will need to take this into account.

The trade-off parameter η governs the decision-maker’s relative 
preference for years lived versus consumption. It is the percentage 
decrease in constant annual consumption the decision-maker would 
accept for his/her life to be 1% longer:

	

c c

l l

/

/
. 	 (8.1)

The parameter η is assessed for small changes in life expectancy. As life 
expectancy decreases, the decision-maker may refuse to trade any life 
expectancy for consumption. Thus, this model is best suited to small 
percentage changes in life and consumption. The parameter η need not 
be constant but could be a function of life expectancy.

Risk tolerance (ρ) describes the decision-maker’s attitude toward 
risk and uncertainty. It must be assessed from the decision-maker because 
it is specific to his/her preferences under conditions of uncertainty. A 
low risk tolerance indicates an unwillingness to accept uncertain deals or 
the necessity to be paid a high premium in order to accept uncertainty.

To assess risk tolerance, the decision-maker is asked to consider an 
uncertain deal in which there is a probability p of doubling his/her constant 
annual consumption for the remainder of his/her life when he is guaranteed 
to live his/her expected lifetime. With probability (1 − p), however, his/her 
constant annual consumption will be halved. The decision-maker is asked 
to determine the probability p that would make him just indifferent between 
his/her current constant annual consumption and the uncertain deal. The 
risk tolerance is the value that makes the decision-maker’s annual certain 
equivalent for consumption equal to his/her constant annual consumption.

With these attributes and parameters defined, the utility of consump-
tion and life length is given as

	

U c l
c l

l
( ) exp ., 1 	 (8.2)

It is an exponential utility function over the value determined by the 
trade-off between consumption and length of life, c l l/ . In general, 
any utility functional form could be used. In general, any utility 
functional form could be used that matches the decision maker’s 
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preferences. Note that (8.2) has several properties that are well suited to 
a medical context. It exhibits attribute dominance (Abbas and Howard, 
2005), meaning that if either attribute is zero, then the entire utility 
function is zero.  In addition, (8.2) does not exhibit utility independence. 
We leave it to the reader to consider why utility independence need not 
hold in the context of most medical decisions.

This multiattribute utility function can be used to calculate the value 
of medical decisions. We next discuss a decision analytic framework in 
which this model can be used to value the consumption of SSB.

Analysis Formulation

The analysis of a decision begins with determining the decision frame or 
perspective. The frame will determine how the decision is defined. For 
example, an individual wishing to lose weight may consider surgical 
options and frame the decision as which type of weight loss surgery to 
get. Another decision frame would lead the decision-maker to decide 
between which type of diet to follow or to decide which exercise plan to 
adopt. The frame determines the remainder of the analysis.

Once the frame is determined, the decision tree can be constructed. 
The tree will model the probability of each potential outcome of each 
decision alternative. Each outcome is described in terms of the impor-
tant attributes defined by the decision-maker. The preference for each 
outcome is described using an appropriate multiattribute utility function.

This section presents an illustrative example to explain the construction 
of a decision tree in a medical decision-making application. The example 
decision is on the consumption of SSB, which has been shown to increase 
the risk of developing type 2 diabetes (Schulze et al., 2004). Diabetes, in 
turn, increases the mortality risk by a factor of two (CDC, 2011b).

We first describe the decision tree framework and the appropriate 
calculations. We then discuss special considerations and limitations of 
such analyses. Finally, we present an analysis of the case example for 
determining the value of a medical decision.

The Decision Tree Framework

A decision tree consists of decision nodes, represented by squares, and 
uncertainty nodes represented by circles. For decisions that affect 
probabilities over several years, multiple uncertainty nodes may be used 
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sequentially. A general model of a decision that affects the probability 
of death for the remainder of one’s life is illustrated in Figure 8.2 where 
r represents the effect of the decision on the survival probability of each 
year of life, p

j
.

The general decision tree of Figure 8.2 can be tailored for use in a 
variety of decision situations. For example, consider decisions that 
affect risk of disease such as the risk of type 2 diabetes. We model the 
decision to consume SSB and its effect on the risk of type 2 diabetes in 
Figure  8.3. The notation is summarized in Table  8.1. The individual 
faces a decision, and the resulting risks are modeled sequentially by 
year, with each year denoted by the subscript j.

In each year following the decision, the individual faces a risk of 
death, regardless of the decision made. The probability of remaining 
alive at the end of year j given the individual is alive at the beginning of 
the year is denoted p. The probability of death is 1 − p

j
.

In each year the decision-maker remains alive, he/she faces a risk of 
developing diabetes in that year. The probability of being diagnosed 
with type 2 diabetes in a given year, conditional on being alive in that 
year, is denoted d. The relative risk of type 2 diabetes associated with 
the decision is a constant multiplier denoted r. Once he/she develops 
diabetes, his/her mortality probabilities increase; this change is not 

Decision 2

Year j

…

Decision 1

r (pj+1)

1–r (pj+1)
Deadj+1

Alivej+1

r(pj)

1–r (pj)
Deadj

Alivej

Year j+1

…(pj+1)

1–(pj+1)
Deadj+1

Alivej+1

(pj)

1–(pj)
Deadj

Alivej

Figure 8.2  General decision tree framework for a decision that affects the risk of death 
in future life years.
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illustrated in Figure  8.3. If he/she does not develop diabetes, he/she 
continues each year as before, with a probability of being alive and a 
probability of developing diabetes.

Calculations

The probability of a particular outcome is determined by following the 
path on the tree to that outcome. For example, the probability of being 
alive without a diagnosis of diabetes is calculated

	
p p dj j

i

j

i i( , ) .( )Alive No Diabetes
Current Age

1 	 (8.3)

The probability of dying at age j without having diabetes is

	
p p pj j j j j( , ) ( , )( ).Die No Diabetes Alive No Diabetes1 1 1 	 (8.4)

Consume SSB
pj

1–pj

Alivej

r(dj)

1–r(dj)

Yearj

(dj)

1–(dj)
pj

1–pj

pj+1

1–pj+1

r(dj+1)

1–r(dj+1)

Year j+1

pj+1

1–pj+1

(dj+1)

1–(dj+1)

…

…

Do not 
consume SSB

Deadj

Alivej

Deadj

Diabetesj

No diabetesj

Diabetesj

No diabetesj

Alivej+1

Deadj+1

Alivej+1

Deadj+1

Diabetesj+1

No diabetesj+1

Diabetesj+1

No diabetesj+1

Figure 8.3  Decision tree framework for determining the value of a personal decision.

Table 8.1  Notation used in the model

Notation Definition

p
j

The probability of being alive at the end of year j for the nondiabetic 
individual, conditioned on being alive at the beginning of the year

d
j

The probability of developing diabetes in year j
r The relative risk of type 2 diabetes associated with the decision
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The probability of being diagnosed with diabetes at a future age requires 
that the individual is alive and has not previously been diagnosed. It is 
calculated

	
p p p dj j j j j j( ) ( , ) .Alive ,Diabetes Alive No Diabetes1 1

	 (8.5)

The probability of being diagnosed with diabetes at age i and dying at 
age j is

p p pj i i i j
k i

j

( ) ( ) ,Die , Diabetes Alive , Diabetes Diabetes1
1

1

pk , ,Diabetes �


(8.6)

where p
j,Diabetes

 is the probability of being alive at the end of year j for the 
individual with diabetes, conditioned on being alive at the beginning of 
the year.

In some medical decisions, the possible outcomes are the same 
regardless of the decision made, but the probability distribution over the 
outcomes changes. This is the case for consuming SSB where the 
difference in the outcomes of the decision tree lies solely in the different 
risks of diabetes. The probability nodes in the decision alternative that 
does not change the individual’s risk of diabetes are the baseline risks 
of the population, d

j
. The probability nodes in the decision alternative 

with an increased risk of type 2 diabetes are modified by a multiplier, 
r(d

j
). Because the relative risks are determined through experimental 

studies specific to each probability d
j
, the probability at any given node 

in the tree is prevented from having a probability greater than 1. A 
benefit of this approach is that the model is flexible to analyze any 
decision for which the increased risk of a medical condition is known or 
can be estimated.

Analysis of such decisions enables the determination of the value of 
a decision in terms of its effect on lost life. The decision-maker’s value 
per SSB is calculated using an appropriate multiattribute utility model 
where one of the attributes is consumption. Each terminating branch of 
the tree represents one possibility and has a utility value. We find the 
probability of that outcome occurring and then can find the expected 
utility for that decision alternative in the tree. Optimization software 
is used to find the consumption change needed for the expected utility 
to be equal in each decision alternative in Figure 8.3. This change in 
consumption is used to determine the value of each SSB.
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Special Considerations and Limitations

In the application of any model, it is important to understand the under-
lying assumptions and potential limitations of the model. In addition, 
the model will only be as accurate as the data populating it. We discuss 
some limitations and special considerations in the application of data to 
this decision framework and specifically in the case of analyzing SSB 
consumption.

It must be possible to characterize the risks associated with the 
decision to conduct analysis. In the analysis of SSB consumption, we 
use constant risk multipliers as reported in the literature for the risk of 
type 2 diabetes associated with SSB consumption (Schulze et al., 
2004). These risks are reported as constant. However, it may be pos-
sible that they change over time. Any such changes over time will not 
be reflected in the model. These reported risks have been adjusted for 
numerous factors including age, physical activity, and family history, 
but any limitations in these reported risks will be reflected in the 
model. For example, the data available used only women as test sub-
jects; similar data for males is not available. Thus, any analysis for 
men must make assumptions on the applicability of data derived from 
women.

The baseline population risks for diabetes used are those reported 
in the literature (Narayan et al., 2003). We do not specify other factors 
that affect one’s risk of type 2 diabetes. For example, family history is 
a known risk factor. To include other such factors, a function of the 
baseline population risks may be used, f(p

j
). However, in this case, the 

data on the relative risk of the decision specific to individuals with 
given additional risk factors may not be available. Thus, assumptions 
still need to be made regarding the relative risk that will affect the anal-
ysis results.

The mortality for individuals with diabetes is the reported population 
average. If an individual manages his/her diabetes much better than the 
average person, his/her mortality probabilities will likely be lower than 
the population average. These considerations highlight the limitations 
of the framework.

Another consideration in the framework is the difference in how 
the mortality probability obtained from the US DHHS is calculated 
and in how the relative risk of mortality for individuals with diabetes 
is calculated. The age-specific mortality probabilities from the US 
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DHHS include individuals with and without diabetes. The relative 
risk of mortality for those with diabetes is relative to individuals 
without diabetes. To avoid overestimating the effect of diabetes on 
mortality, we can calculate separate mortality probabilities by diabetes 
state.

We introduce some new notation for these calculations. We let the 
mortality probabilities obtained for the population be denoted p

j,Population
. 

We let N
j
 and N j  denote the total number of individuals with and 

without diabetes alive at the beginning of the year. This data is available 
from the US National Health Interview Survey (CDC, 2011a). We let n

j
 

and nj  denote the number of individuals with and without diabetes, 
respectively, who die at age j.

To determine the separate mortality probabilities by diabetes status, 
we will derive two expressions that allow us to solve for the unknown 
quantities n

j
 and nj . The probabilities we are looking for will then be 

calculated as the number of individuals with or without diabetes who 
die in year j divided by those alive at the beginning of the year:

	

1

1

p
n

N

p
n

N

j
j

j

j
j

j

,

,

.

No Diabetes

Diabetes

	 (8.7)

The first expression we derive relates the population mortality proba-
bility to the sum of individuals dying in that year divided by the sum of 
individuals alive at the beginning of the year:

	
1 p

n n

N Nj
j j

j j
, .Population 	 (8.8)

The second expression describes the relative risk of mortality for those 
with and without diabetes. This relative risk has been examined in 
multiple studies (CDC, 2011b; Emerging Risk Factors Collaboration, 
2011). We use the estimate from the CDC (2011b) that individuals with 
diabetes have approximately twice the risk of mortality to obtain

	

n

N

n

N
a

a

a

a

2 . 	 (8.9)
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Solving (8.8) and (8.9) for n
j
 and nj  and plugging into (8.7) give the 

mortality probabilities by diabetes state:

	

1
1
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1
2

p
N N p

N N
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j

j j j

j j

j

j

,

,

No Diabetes

Diabetes

jj j

j j

p

N N

1

2

. 	 (8.10)

With the multiattribute utility model, the decision analytic framework, 
and the initial data and calculations discussed, we now present an anal-
ysis of the consumption of SSB.

Case Example: Value  to the Individual

A medical decision analysis can be used to derive numerous insights. In 
this section, we calculate the value of a decision to the decision-maker 
in terms of that decision’s effect on his/her expected life.

The preferences are modeled using a multiattribute utility function 
as previously described. The change in risks is modeled using the 
decision tree of Figure 8.2 that illustrates the change in probabilities 
associated with each decision. The expected utility for each decision is 
calculated, and the change in consumption necessary for the expected 
utilities to be equal can be determined. This change in consumption to 
reach indifference determines the value in terms of lost life.

We present an illustrative example and conduct sensitivity analyses 
to derive insights. Consider Janet, a 25-year-old professional who esti-
mates her constant annual consumption to be $80,000. Her risk tolerance 
is $40,000. She would be willing to forgo 1.5% of her income above 
bare survival in order for her life to be 1% longer.

With these parameters, we find that if Janet were to drink one sugar-
sweetened soft drink per day for the rest of her life, she would value 
each drink at a maximum of $7.64. This value is found using the 
decision framework with r = 1.83 to correspond to the risks of daily 
sugar-sweetened soft drink consumption (Schulze et al., 2004). The 
difference in constant annual consumption necessary for the decision 
alternatives to have equal expected utility is $2789, which is averaged 
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over each beverage to determine the value per drink. Because this 
relative risk is reported for one or more sugar-sweetened soft drink con-
sumed per day, the value calculated is a maximum value per drink. If 
more than one is consumed per day, the value per drink decreases 
although the value per year remains constant. Table  8.2 reports the 
relative risks associated with different consumption rates and the value 
per drink for Janet.

We examine the sensitivity of these results to the elicited parame-
ters. We first examine the effect of the trade-off parameter η when Janet 
consumes at least one SSB a day. The reported values are the maximum 
per beverage value. As the trade-off parameter η increases, the value per 
beverage increases as shown in Figure 8.4. This result is expected; the 
increase in value corresponds to the willingness to pay more for 
increases in life expectancy as indicated by the increase in η. Note this 
trend is not linear but is slightly convex.

Table 8.2  The per beverage value ranges calculated for the case 
example parameters

Sugar-sweetened beverage 
consumption

Relative risk of type 2 
diabetes*

Values per beverage for 
case example

1–4/month 1.06 $4.74–$18.98

2–6/week 1.49 $5.55–$16.64
≥ 1/day 1.83 $0–$7.64

* As reported in Schulze et al. (2004).
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We next consider the effect of the relative risk of type 2 diabetes. 
The results are presented in Figure 8.5. From this figure, we can deter-
mine the value of other decisions to Janet that affect her risk of diabetes. 
For example, suppose Janet had a relative risk of type 2 diabetes of 1 
and decided to begin a diet and exercise program that had been shown 
to reduce her risk of type 2 diabetes by 30%. The value of this program 
in terms of improving her mortality risk would be over $1200 per year.

We next consider risk tolerance and constant annual consumption. 
A decrease in risk tolerance results in an increase in the value per SSB, 
as shown in Figure 8.6. This trend makes intuitive sense; as an individual 
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becomes less willing to accept risk, any action that increases risk must 
have greater value.

A decrease in constant annual consumption leads to a decrease in 
the value per SSB. This result also makes intuitive sense because the 
preference model is based on percentage trade-offs between constant 
annual consumption and lifetime. For two individuals with the same 
percentage trade-off preference, the individual with a greater constant 
annual consumption is willing to forgo a greater amount of consump-
tion for lifetime leading to placing a greater value, in absolute terms, on 
the same increase in risk.

Societal Analysis

Thus far, our treatment of medical decisions has been on the level of an 
individual decision-maker. We now turn the discussion to conducting an 
analysis on the impact of a decision on society as a whole.

Medical decisions can impact society in a variety of ways. For 
example, the life years lived, the quality of health, or the medical costs 
incurred by society as a whole, as the result of a decision or set of 
decisions, can be examined. In this section, we illustrate how the 
decision tree framework already presented can be applied to such soci-
etal analysis. We continue the illustrative example on SSB in calculating 
the effect on expected medical costs. These costs may be paid by the 
individual, an insurance company, the government, or a combination of 
entities. Altogether, however, these medical costs represent a burden on 
society as a whole.

The outcomes represented in the decision tree must be described in 
terms that are relevant to society. For example, medical costs are a mea-
sure of the economic burden on society. In the case of diabetes, research 
has found that the average medical costs for an uncomplicated case of 
diabetes are $6649 per year (American Diabetes Association, 2008). 
The decision tree framework from Figure 8.2 is still used, but each out-
come is described by medical costs instead of the multiattribute utility 
for preferences used in the case of the individual.

The calculations are conducted as follows. To calculate the expected 
medical costs due to diabetes, we must specify the year in which the 
individual is diagnosed with diabetes and the year in which the individual 
dies. Let the subscript i indicate the age at diagnosis of diabetes, and let the 
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subscript j denote the age at death. The total average medical costs due to 
diabetes are the average annual cost multiplied by the years with diabetes:

	
Total Cost Annual Costi j j i, ( ) . 	 (8.11)

The expected medical costs are determined by the summation of the prod-
uct of (8.11) and the probability of diagnosis at age i and death at age j:

	
E p j i i j[ ] ( ) .,Cost Die ,Diabetes Total Cost 	 (8.12)

In this formulation, we assume the annual costs are the average for an 
uncomplicated case of diabetes. This approach represents an underesti-
mation of medical costs when complications due to diabetes occur.

We calculate the expected medical cost associated with a relative 
risk of type 2 diabetes of 1.83. For women, this is the relative risk asso-
ciated with consuming at least one sugar-sweetened soft drink a day. We 
use the midpoint of each age range in the calculation. The results are 
presented in Figure 8.7. The lower expected cost among males is due to 
the lower risk of type 2 diabetes among males.

An individual’s age plays a large role in the expected cost. Because 
we assume the decision-maker does not have diabetes at the time of the 
decision, increasing age means the individual has fewer life years 
remaining over which to accumulate potential medical costs.

To determine the effect of a decision on society at large, we require 
data on the decisions made by the population. The consumption of SSB 
by the Americans has been studied using the National Health and Nutrition 
Examination Survey that found that on average, 63% of the US adults 
consume an average of 17 ounces of SSB per day (Bleich et al., 2009). 
We can estimate the expected medical costs due to SSB by assuming this 
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rate is constant across ages and gender. We multiply the expected medical 
costs for each age group by the number of individuals in that age group. 
We use 5-year age groups, that is, ages 25–29, 30–33, and so on, as 
reported by the 2010 US census (Howden and Meyer, 2011). We use the 
expected medical costs corresponding to the midpoint of each group.

We find that the lifetime expected medical cost due to consuming SSB 
for adults ages 20 and over is $2.18 trillion. For the 80 years, it will take 
the youngest in this cohort to possibly reach age 100; this averages out to 
over $27 billion per year. This figure should be placed in the context of 
the US healthcare system as a whole. The US national health spending 
reached $2.7 trillion in 2011 (CMS, 2012), making the annual $27 billion 
per year represent approximately 1% of annual healthcare spending.

This analysis may also be placed in the context of other economic 
analyses of diabetes. In 2007, diabetes is estimated to have cost the 
United States $218 billion when both medical costs and lost produc-
tivity are included (Dall et al., 2010). The decision tree framework 
enables the quantification of the contribution of individual decisions to 
the burden on society. Analyses such as this highlight the significant 
national impact of individual decisions affecting wellness.

Quality of Health Considerations

We have discussed modeling preferences over length life and consump-
tion and valuing decisions in terms of these preferences. In addition to 
length of life, however, people often also place value on quality of 
health or quality of life. This section discusses the quantification and 
modeling of quality of health.

Measuring Quality of Health

The concept of quality of health is straightforward to understand; 
some  health states are preferred to others. But it has a less obvious 
measurement. Quantification can be accomplished through the 
comparison of perfect health to another health state, but multiple such 
approaches exist, including the standard gamble, the time-trade-off, and 
the rating scale method.

The standard gamble method relies on a comparison between a 
certain outcome and an uncertain deal. The decision-maker is asked to 
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consider the remainder of his/her life in the health state being mea-
sured. The decision-maker is then asked to consider an uncertain deal in 
which with probability p, he may obtain perfect health for the remainder 
of his/her life and with probability (1 − p), he will experience instant, 
painless death. Figure 8.8 illustrates the two prospects. The decision-
maker is asked to determine the probability p that would make him just 
indifferent between the two. As the health state approaches perfect 
health, the probability p to obtain indifference approaches 1. As the 
health state becomes worse, the probability p will decrease.

The use of standard gambles follows from the definition of utility 
in decision analysis (von Neumann and Morgenstern, 1947). The nature of 
the uncertain deal means that preferences under uncertainty are captured. 
The element of uncertainty is important because it is inevitably present in 
medical decision-making situations. However, the presence of uncertainty 
can also contribute to difficulty for the decision-maker. The decision-
maker may have difficulty assigning a probability p to health states close 
to perfect health as the probability is so close to 1. Other decision-makers 
may be unwilling to consider any risk of death for any health state, even if 
they are exposed to mortality risks on a daily basis. For these individuals, 
the time-trade-off method may be more appropriate.

The time-trade-off method assesses preferences for health states 
under conditions of certainty (Torrance, Sackett, and Thomas, 1972). 
The decision-maker is asked to consider the prospect of spending the 
rest of his/her life in a health state less than perfect health. Instead of 
this prospect, the decision-maker could spend the rest of his/her life in 
perfect health, but the length of life will be shorter. The decision-maker 
is asked to specify what reduction in life length would make his/her just 
indifferent between the two deterministic prospects. The time-trade-off 
utility is the ratio of time that would be spent in perfect health (life 
expectancy less reduction for indifference) divided by life expectancy.

A still simpler method is the rating scale. In this approach, death and 
perfect health lie at opposite ends of the scale. The decision-maker is 

p

1–p 

Perfect health

Immediate, painless death

Health state ~

Figure 8.8  Using a standard gamble question to determine the utility of a health state.
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asked to place the health state on the scale proportional to his/her relative 
preference for that state. This method does not incorporate uncertainty 
or trade-offs and is not supported by decision analytic theory. Due to 
these limitations as well as cognitive biases that can affect the results, 
this method is generally recommended for ordinal rankings or as a 
warm-up exercise only (Torrance, Feeny, and Furlong, 2001).

Preference Models with Quality of Health

Once a quantitative measure is placed on quality of health, a utility 
function or other models to describe preferences over quality of health 
may be specified. Multiple approaches exist to modeling preferences 
over quality of life, length of life, and monetary wealth. Some models 
only consider quality and length of life, while others also include 
monetary wealth. We describe how to use the trade-off utility function 
presented earlier in the chapter to include quality of health consider-
ations and also review some of the other most well-known approaches.

Let q denote the quality of life measure. For the multiattribute 
utility function based on trade-offs between life and consumption, a 
quality of life measure can be included:

	

U c l q
c ql

l
( ) exp ., , 1 	 (8.13)

Because (8.13) is used to describe the remainder of the decision-mak-
er’s life and the quality of health may not be constant, a weighted sum 
of the years spent in each health state may be used. Such considerations 
could be used in a more specific analysis of SSB that included quality 
of health states associated with diabetes.

Another commonly used model for preferences over health states is 
the quality-adjusted life year (QALY) model. This model is often used 
in medical cost-effectiveness studies (Gold et al., 1996). In the QALY 
model, if the quality measure is constant for the remaining lifetime t, 
then the QALYs are calculated by the product

	 QALYs tq. 	 (8.14)

If the quality measure changes over time periods, then each quality mea-
sure is weighted by the time spent in that health state and summed to 
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give the QALYs. Note that in order for the QALYs to represent an indi-
vidual’s utility over health quality and life years, then q must accurately 
represent the decision-maker’s utility for health quality and the follow-
ing conditions must also hold (Pliskin, Shepard, and Weinstein, 1980):

1.  Utility independence between life years and health quality

2.  Constant proportional trade-off between health quality and life years

3.  Risk neutrality over life years

In cases where these conditions do not hold, the QALY is a measure of 
time spent in health states of varying preference, but is not a utility.

Although the QALY model is frequently used, it is limited in its 
ability to describe preferences. For example, a person may wish to live 
long enough to see a child graduate from college. In this case, a life 
goal strongly influences this person’s preferences over life and health. 
A modification to the QALY model has been proposed to model such 
situations (Hazen, 2007). A third attribute to represent goal attainment 
is introduced and denoted g. Let u

Q
(q), u

T
(t), and u

G
(g) denote the deci-

sion-maker’s utility functions for the attributes health quality (q), life 
years (t), and goal attainment (g). Then a possible representation of 
utility to include an external goal is

	
U q t g u q u t k u g( ) ,( ) ( ) ( ), , Q T G G 	 (8.15)

where k
G
 is a weight representing the trade-off preference for goal 

attainment. Work has also been done to incorporate external goals in the 
elicitation of health quality measures (van der Pol and Shiell, 2007).

Another modification to the QALY model includes a term for 
monetary wealth or consumption in each time period (Smith and 
Keeney, 2005). We will denote the measure from this model as 
HC-QALY because it is a measure of both health and consumption. In 
this formulation, a utility function for the monetary wealth in each time 
period is multiplied by the quality of health for that period:

	
HC QALYs-

t

N

t t tq u c
1

( ), 	 (8.16)

where the subscript t denotes each of N total time periods of equal 
length, q

t
 is the quality of health measure, c

t
 is the consumption, and 

u
t
(c

t
) is the utility function over consumption in time period t.
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CONCLUSION

Medical decision-making covers a variety of decision situations that 
affect health and the provision of medical care. This chapter has pre-
sented medical decision-making from a decision analytic perspective 
and has focused on modeling preferences with a multiattribute utility 
function and using this model within a decision tree framework to con-
duct analyses.

An illustrative example on the consumption of SSB has been used 
throughout to illustrate the concepts. While we use this specific example, 
the concepts and approach in the analysis can be applied to numerous 
decision situations.

The impact of medical decisions on both individuals and society can 
be analyzed. The outcomes within the decision tree must be described in 
terms of the appropriate attributes. For the individual, these attributes 
are those in the multiattribute utility function that determine his/her 
preferences. For society, these attributes are the ones relevant to society 
for which a quantitative measure is possible.

Through the proper application of decision analytic techniques, we 
can conduct analyses to better understand medical decisions and their 
impact on both individuals and society as a whole.
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Prior to the terrorist attacks of September 11, 2001, the term “vulnerability 
assessment” was often used in relation to risk and system safety (Einarsson 
and Rausand, 1998). Concern about intentional threats was limited largely 
to the field of information security (e.g., Denning, 1999). Following 
September 11, however, there has been an increased emphasis on vul-
nerability to security threats from intelligent adversaries in all critical 
infrastructure systems, including electric power networks.

The United States created the Office of Homeland Security and 
the Homeland Security Council in 2001, which later led to the 
creation of the US Department of Homeland Security (DHS) in 2002. 
The first strategic document on homeland security, The National 
Strategy for Homeland Security (Bush, 2002), defined three strategic 
objectives: to prevent terrorist attacks against homeland targets, 
to  reduce vulnerability to terrorism, and to minimize damage and 
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recover from attacks. These three objectives roughly correspond to 
threat, vulnerability, and consequence.

In 2003, the DHS published The National Strategy for the Physical 
Protection of Critical Infrastructures and Key Assets (DHS, 2003), a 
guide to the protection of critical infrastructures (e.g., water, energy) and 
key assets (e.g., national icons, nuclear power plants). This document 
highlights the importance of protection, response, and recovery and spec-
ifies the roles of the federal government and the states in identifying and 
securing the critical infrastructures and key assets under their control.

More recently, the National Infrastructure Protection Plan was 
written to provide additional guidance on how to make the nation’s 
infrastructure safer, more secure, and more resilient (DHS, 2009). In 
particular, the plan requires implementation of a “long-term risk 
management program” that includes hardening, distributing, diversi-
fying, and increasing the resilience of infrastructure against threats and 
hazards; interdicting potential attacks; and planning for rapid response 
to disruptions and rapid recovery.

The DHS defines vulnerability as a “physical feature or operational 
attribute that renders an entity, asset, system, network, or geographic 
area open to exploitation or susceptible to a given hazard” (DHS, 2010). 
In this definition, vulnerability could include any weakness that a ter-
rorist could exploit or that makes the system more susceptible to either 
natural or man-made hazards. Other organizations use a narrower defi-
nition of vulnerability. For example, the US Coast Guard (USCG, 2003) 
defines vulnerability as “the conditional probability of success given a 
threat scenario occurs.”

In this work, we adopt a broader definition of vulnerability, which 
also includes weaknesses in the short-term response of the system to 
outages or attacks (in the form of cascading failures) and also the 
long-term recovery of the system (i.e., restoration time). We define 
resilience as “the performance of a system over time in response to 
adverse change.” Note that this definition is also consistent with the 
recent recommendation of the National Research Council (NRC) that 
DHS’s vulnerability analyses should ideally address issues of system 
capacity and long-term adaptation (NRC, 2010).

In particular, with cascading failures, even small outages or attacks 
can have a large impact. Cascading failures have historically been 
considered a major unsolved problem for complex networks such as 
electricity systems, but recent developments in probabilistic analysis of 
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cascading failure are making it possible to take cascading failures into 
account in methods of vulnerability assessment. Moreover, methods of 
vulnerability analysis can also be designed to highlight those vulnerabil-
ities that are likely to lead to disproportionately long restoration times.

Protecting a significant fraction of a large, complex electric power 
network is typically not cost-effective and may even be infeasible (Bier 
et al., 2007; Tas, 2012). As an alternative, vulnerability models can aim 
to make electric power networks more resilient. Therefore, after discuss-
ing vulnerability-assessment methods that focus mainly on protection, 
we move on to discuss models of cascading failure and restoration 
times, with the goal of addressing the entire impact of a technological 
failure, natural disaster, or intentional attack (rather than just the 
immediate impact of such adverse events).

VULNERABILITY-ANALYSIS METHODS

Methods for vulnerability analysis include rating-based methods, risk-
based methods, and game-theoretic methods. We discuss all three of 
these approaches in the following sections.

Note also that most risk-based and game-theoretic methods attempt 
to represent the physical system being analyzed in one of two different 
ways, using either topological models or flow-based models. Flow-based 
models aim to represent how a system actually functions. By contrast, 
topological models consider only the network structure. Thus, topological 
models can identify redundancies, potential bottlenecks, and so on, but 
cannot take into account factors such as capacity constraints (e.g., 
whether a particular line has sufficient capacity to serve all needed 
loads when other parts of the system have been degraded). We discuss 
rating-based methods, risk-based methods, and game-theoretic methods 
in turn in the following text.

Rating-Based Methods

Rating-based methods assign scores to various attributes of the system 
being analyzed. They are not specific to electric power networks and 
can generally be applied to a wide variety of systems, facilities, or 
networks. One such method is the Criticality, Accessibility, Recuperability, 
Vulnerability, Effect, and Recognizability (CARVER) method, originally 



262 CHAPTER 9  Electric Power Vulnerability Models

developed by the US Special Operations Forces to help prioritize targets 
during the Vietnam War. The DHS uses CARVER to prioritize critical 
components and assets as part of the Buffer Zone Protection Plan 
(Bennett, 2007). In this method, each potential target is scored on the 
attributes of criticality, accessibility, recuperability, vulnerability, effect, 
and recognizability; the resulting numbers are simply added to find a 
final score for each target, effectively assigning the same weight to each 
attribute. By contrast, Ezell (2007) uses an additive preference model in 
which different weights are assigned to the various vulnerability attrib-
utes to quantify the importance of vulnerabilities.

A similar rating-based method is the Enhanced Critical Infrastructure 
Protection (ECIP) program, developed by Argonne National Laboratory 
for the DHS (Fisher and Norman, 2010). In this model, facilities fill out 
questionnaires in order to score their vulnerabilities in areas such as 
physical site security, security management, and so on. The weights 
corresponding to the various areas were assessed using expert elicitation 
and are hardwired into the program. The program is intended for use by 
facility owners and operators to prioritize protective measures for a 
facility and compare risk management controls (fences, cameras, etc.) 
with those of other facilities in the same sector.

Rating-based methods are easy to implement, are applicable to virtu-
ally any type of infrastructure system, and can provide useful insights to 
decision-makers. However, they are perhaps best utilized for qualitative 
tasks, such as identifying threat scenarios or screening critical components, 
since they generally do not include a realistic representation of the physical 
system being analyzed and hence cannot account for factors such as flows 
within the system, dependencies among components, and so on. This weak-
ness is especially limiting when applying rating-based methods to complex 
networks such as electric power systems (as opposed to simple facilities 
that can be modeled as single entities), because the network topologies and 
dynamic behaviors of complex systems cannot be completely captured by 
rating the individual components of the system. Moreover, in most rating-
based models, threat is not considered explicitly.

Risk-Based Methods

Probabilistic risk assessment has been used to analyze the vulnerabil-
ities of infrastructure systems since the mid-1970s (Rasmussen, 1975). 
Many risk-based vulnerability-assessment methods were originally 



Vulnerability-Analysis Methods 263

developed for assessing system safety and reliability and are well 
accepted for that purpose; by contrast, the application of risk-based 
methods to intentional security threats is newer and more controversial.

Risk-based models attempt to answer three fundamental questions 
(Kaplan, 1997):

1.  What can go wrong?

2.  How likely is it?

3.  What are the consequences?

The resulting estimate of risk is generally expressed in the form

	 Risk f threat, vulnerability, consequence( )

Most commonly, risk-based models compute risk as the product of 
threat, vulnerability, and consequence. Some of the most prominent 
risk-based vulnerability models are discussed in the following text.

There are numerous government-sponsored vulnerability-assessment 
methods based on risk. For example, Risk Analysis and Management 
for Critical Assets Protection (RAMCAP, 2006), developed by the 
American Society of Mechanical Engineers under sponsorship by 
the DHS, models vulnerabilities using event trees. Moreover, threat is 
estimated as a function of both target attractiveness and adversary 
capability and intent. Risk is then estimated as the product of threat, 
vulnerability, and consequence.

Similarly, the Transit Risk Assessment Module (TRAM) also uses 
event trees to assess vulnerability (U.S. Federal Emergency 
Management Agency, 2011). While TRAM was originally designed to 
prioritize surface-transportation assets for protection from possible 
threats, similar models can also be applied to other types of infrastruc-
ture. One such example is the Maritime Security Risk Analysis Model 
(MSRAM), developed by the US Coast Guard in 2006 to help prioritize 
the risks of terrorist attacks on ports and waterways (Parfomak and 
Frittelli, 2007).

Some government models are specific to a particular type of threat, 
such as DHS’s Bioterrorism Risk Assessment model (DHS, 2006). This 
model uses event trees to prioritize bioterrorism threats based on 
subjective estimates of their probabilities and consequences. Similarly, 
the DHS also developed the Chemical Terrorism Risk Assessment 
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model and an Integrated Chemical, Biological, Radiological, and Nuclear 
Assessment model (NRC, 2010).

Other government vulnerability-assessment tools and programs are 
designed for specific sectors. Examples include the Aviation Domain 
Risk Assessment, the Dams Sector Analysis Tool, the Emergency 
Services Self-Assessment Tool, the National Transportation Sector 
Risk Assessment, the Ports and Waterways Safety Assessment, the Risk 
Assessment Methodology for Water Utilities, and the Water Infrastruc
ture Simulation Environment (DHS, 2010).

Risk-based models have also been frequently discussed in the 
academic literature. For example, Ezell, Farr, and Wiese (2000) propose 
a risk-based model to identify the vulnerable components of an infra-
structure system. The model first identifies vulnerabilities and threats. 
For each of the most plausible threat scenarios, components are ranked 
according to how vulnerable they are to that threat (based on exposure 
to the threat and accessibility of the component by the attacker). Event 
trees are then used to identify and quantify the likelihood of sequences 
that could lead to adverse consequences.

Apostolakis and Lemon (2005) develop a risk-based approach to 
analyze the vulnerabilities of water, natural gas, and electric power 
distribution networks in the face of relatively minor terrorist attacks. The 
authors focus on the topological structures of the networks and also the 
geographic locations of the components. For example, they note that 
electrical service ducts are often collocated with (or geographically in 
proximity to) natural gas and water networks, creating critical points that 
are highly vulnerable. The model identifies all possible combinations of 
failures that may result from a single attack somewhere in the system, 
but without any assessment of their likelihood. Instead, using expert 
judgment, the authors estimate the accessibility of each critical point. 
The screening methodology then identifies and ranks failure combina-
tions (i.e., minimal cut sets) based on their susceptibility to attack and 
the value of each target to the decision-maker (as calculated using 
multiattribute utility theory). For extensions of this work, see Koonce, 
Apostolakis, and Cook (2008) and Patterson and Apostolakis (2008).

Donde et al. (2005) use a graph-partitioning algorithm to identify 
critical power lines whose failure may cause severe system disruptions. 
Similarly, Lesieutre et al. (2006) use graph theory to identify subgraphs 
that are at risk for unmet demand in the case of extreme events. Bienstock 
and Mattia (2007) develop a graph-theoretic network model to explore 
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how the robustness of a network can be improved at minimum cost. 
They consider two types of investments: adding more capacity to an 
arc and adding more arcs in parallel. He et al. (2004) analyze voltage 
stability to identify weak components, while Vulkanovski, Cepin, and 
Mavko (2009) generate fault trees for each load in a system and identify 
the most important elements in those fault trees using risk importance 
measures.

In their flow-based model, Bienstock and Verma (2009) use mixed-
integer and nonlinear models to determine whether there is small 
number of arcs whose removal will cause a blackout. Similarly, Pinar 
et al. (2010) use a bilevel integer program to identify small groups of 
lines in a network whose removal would be anticipated to cause a 
severe disruption. They avoid the nonlinearity in their original bilevel 
mixed-integer nonlinear problem by approximating the problem as a 
mixed-integer linear problem. In the outer loop of their optimization, 
they identify the critical lines, while in the inner loop they measure 
blackout severity by solving the load-shedding problem that minimally 
decreases load given an assumed loss of the identified critical lines. 
Once the critical components that could lead to a blackout have been 
identified, the authors then find the minimum increase in generation 
required to avoid the blackout.

In general, many risk-based models are simple and practical to use; 
Ezell, Farr, and Wiese (2010) argue that the required inputs to risk-
based models can be readily obtained through expert elicitation and 
note that PRA has been successfully applied to a number of large com-
plex systems. However, Cox (2008) describes some of the limitations of 
risk-based models when applied to intentional threats. In particular, he 
notes that threat probabilities may not be well-defined constants, since 
an adversary might respond to any observed defenses; he also raises 
similar concerns about the possible ambiguity of vulnerability and 
consequence. Brown and Cox (2011) similarly warn that risk-based 
methods may result in misleading recommendations regarding protective 
actions, since the attack probabilities assumed in such methods may 
not reflect the attacker’s ability to learn from the defender’s analysis 
and/or the observed defenses.

The NRC (2010), in a recent review of DHS’s approach to risk 
analysis, has stated that the basic idea of representing risk as a function 
of threat, vulnerability, and consequence is sound but recommends 
improvements to the validity and reliability of such models. For that 
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reason, the NRC recommended that the DHS incorporate game theory 
into its vulnerability-analysis methods.

Game-Theoretic and Quasi-Game-Theoretic Methods

Unlike risk-based methods, game-theoretic vulnerability-assessment 
methods focus on the behavior of a strategic adversary. In particular, 
many game-theoretic vulnerability-assessment methods for networks 
are based on interdiction models. These games aim to determine how 
the attacker can “interdict” various components of the network in order 
to best achieve an objective. Then, the defender determines how best to 
operate the remaining network. In optimization terminology, these 
types of games (which are special cases of sequential or Stackelberg 
games) are often represented as mixed-integer bilevel programs; see 
Wood (1993) for an overview of interdiction models. Most interdiction 
models in the literature are deterministic. However, see Cormican, 
Morton, and Wood (1998) for an overview of stochastic interdiction 
models. More recently, Janjarassuk and Linderoth (2008) reformulate 
stochastic network-interdiction problems as deterministic mixed-inte-
ger programs, and Morton, Pan, and Saeger (2007) apply stochastic 
interdiction to the problem of nuclear smuggling.

Interdiction models have been extensively applied to transportation, 
nuclear smuggling, border patrol, and so on. Because this field is so 
broad, we limit the remainder of our discussion in this section to 
models that are either applied or potentially applicable to electric power 
networks.

In addition to truly game-theoretic models, however, we also 
address models that use the so-called conversational games (i.e., 
“advice, suggestions, and counsel about how to think strategically”; 
Shubik, 1987) or worst-case assumptions regarding threat scenarios. 
These quasi-game-theoretic models typically do not include any 
consideration of optimal defenses and may not even have been intended 
as models of adversary behavior. However, they go beyond simple 
risk-based models, since their use of worst-case assumptions in selecting 
which threat scenarios to consider can still help to shed light on possible 
attacker behavior.

We begin by studying topological models. Albert, Albert, and 
Nakarado (2004) develop a topological model to study the structural 
vulnerability of the North American power grid. They compare the 
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impact of various interdiction strategies, such as removing transmission 
substations at random, removing those nodes with the highest number 
of arcs into and out of them (i.e., the nodes of highest “degree”), or 
removing nodes in decreasing order of estimated load (where load is 
estimated by the number of paths through each node: i.e., “node 
betweenness”). They find that even the removal of a single transmission 
node can cause significant connectivity losses and that load-based or 
degree-based removal typically has much greater impact than removal 
of nodes at random.

In their topological model, Al-Mannai and Lewis (2008) use a 
game-theoretic approach, in which the defender minimizes the total 
network risk, calculated as the sum of the risks (vulnerability multiplied 
by consequence) of all components, where vulnerability is computed as 
a function of the attacker and defender resource allocations. Similar to 
Albert, Albert, and Nakarado (2004), Lewis (2009) attempts to correlate 
the vulnerability of a network with its topology by considering the 
degree of each node in the network, speculating that networks will 
generally be more vulnerable to the removal of higher-degree nodes. 
Based on the model of Al-Mannai and Lewis (2008), Lewis recommends 
that the defender allocate its resources to the most critical components 
but notes that the attacker’s optimal strategy may therefore be to attack 
less critical but undefended components.

Holmgren (2007) use a topological model to analyze effective 
strategies for defending electric power networks against intelligent 
attackers. In their model, the defender can either harden components or 
decrease their recovery times. They conclude that the optimal trade-off 
between these two measures depends on both the defender’s total level 
of resources and the nature of the attack scenario. For example, in the 
case of severe attack scenarios that are likely to cause large conse-
quences, they find that for their assumed parameter values, most of the 
available defensive resources should be allocated to recovery rather 
than hardening.

However, many scholars (especially power system engineers) have 
pointed out the drawbacks of using topological models to analyze 
network vulnerabilities. In particular, Hines, Cotilla-Sanchez, and 
Blumsack (2010) find that power grids are generally more vulnerable to 
flow-based attacks that consider actual flows within the network than to 
attacks that consider only the topology of the network (such as the 
degree of each node). Therefore, we now consider flow-based models.
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Salmeron, Wood, and Baldick (2004) develop a flow-based interdiction 
model to protect against worst-case attacks on electric transmission 
systems. The model is solved as a sequential game, in which the attacker 
selects an interdiction plan to maximize the cost of operating the network 
(including the cost of any lost loads), while the defender then operates 
the remaining parts of the network so as to minimize that cost. The 
authors solve the resulting optimization problem by a decomposition-
based heuristic algorithm. Salmeron, Wood, and Baldick (2009) improve 
on that algorithm, with the result that they can generate faster and better 
solutions for considerably larger electric power grids.

Arroyo and Galiani (2005) reformulate the model in Salmeron, 
Wood, and Baldick (2004) as a general nonlinear mixed-integer bilevel 
programming problem, making it possible for the attacker and the 
defender to have different objective functions. Instead of the decompo-
sition-based heuristic used by Salmeron, Wood, and Baldick (2004, 
2009), Motto, Arroyo, and Galiana (2005) transform Salmeron’s mixed-
integer bilevel program into a mixed-integer nonlinear program using 
the duality theorem and then convert this new problem into a mixed-
integer linear program. Using a flow-based model, Yao et al. (2007) extend 
Salmeron’s problem to a trilevel sequential game (i.e., a defender–
attacker–defender game) in which the defender is able to anticipate the 
optimal attack strategy for any given network structure and design 
the network accordingly. They also propose a solution procedure for 
the resulting game.

Bier et al. (2007) use a simple flow-based heuristic interdiction 
model, in which a greedy attacker interdicts the components with the 
maximum flow. In this model, there are three nested algorithms. First, 
the power flow in the network is simulated using a DC load-flow 
algorithm (Carreras et al., 2002) that minimizes the cost of operating 
the system. A greedy interdiction algorithm identifies the most heavily 
loaded line and sets its flow to zero (representing a hypothetical attack); 
the resulting flows in the rest of the network are then computed. Finally, 
a hardening algorithm identifies a set of potentially interdicted lines to 
be protected, as a way of assessing the effectiveness of protection 
against a greedy attacker. Bier et al. (2007) obtain results similar to 
those of Salmeron, Wood, and Baldick (2004), and note that hardening 
even a significant fraction of the transmission lines in a network may 
not be sufficient to substantially diminish the unmet demand resulting 
from a greedy attack, concluding that hardening of components is 
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unlikely to be cost-effective. Tas (2012) extends the model of Bier et al. 
(2007) to include nodes as well as arcs, making it possible to model 
attacks against generators, loads, and transformers in addition to trans-
mission lines. This approach allows consideration of various types of 
attacker and defender strategies, for example, strategies in which the 
attackers restrict their attention to a specific component type.

Finally, in their flow-based model, Romero et al. (2012) study the 
problem of allocating a fixed budget to minimize the consequences 
of an intelligent attack. In order to find an optimal defense strategy, 
they use Tabu search with an embedded greedy algorithm to simulate 
the attacker.

Game-theoretic models incorporate the intelligent nature of the 
terrorist threat, reflecting the fact that attackers can observe and inves-
tigate the potential vulnerabilities of a network. Moreover, flow-based 
game-theoretic models enable the attacker to consider the traffic on the 
network when planning an attack.

However, game-theoretic models also have some drawbacks. For 
example, it may be unrealistic to assume that attackers are perfectly 
rational and have unlimited computational ability. Another concern is 
the conservatism of game-theoretic models in assuming that the attacker 
will maximize the consequences of an attack (Ezell, Farr, and Wiese, 
2010), which will result in defending against only the most severe attacks 
and may therefore leave the defender vulnerable to less severe attacks.

In addition, rating-based models and models based on system 
topology instead of flow may be too simplistic to provide realistic 
representations of network dynamics. On the other hand, some game-
theoretic models that simulate power flows, such as the model of 
Salmeron, Wood, and Baldick (2004), are computationally demanding 
and may therefore be difficult to extend to represent some real-world 
concerns. For example, with the exception of Hines, Cotilla-Sanchez, 
and Blumsack (2010), Tas (2012), and Tas and Bier (2014). existing 
game-theoretic and quasi-game-theoretic models do not address the 
impact of cascading failures. In fact, other than Tas (2012), the only 
model we have identified that addresses both cascading failures and 
restoration times is that of Anghel, Werley, and Motter (2007), which 
does not include a game-theoretic representation of attacker behavior. 
In our view, one goal of vulnerability models should be to find an 
acceptable middle ground that is reasonably realistic in its representa-
tion of power flows but still simple enough to be readily applicable in 
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practice and capable of handling cascading failure and restoration times 
without too much computational difficulty. A sufficiently comprehensive 
model also makes it possible to analyze and compare a wide range of 
protective measures to improve network resilience. Therefore, in the 
following sections, we review models of cascading failures and restora-
tion times, respectively.

MODELING CASCADING FAILURES IN ELECTRIC 
POWER NETWORKS

Even small attacks or incidents can have a catastrophic impact on a 
system if there is a potential for cascading failure. Mili, Qiu, and Phadke 
(2004) explain cascading failure as follows: “the power that used to 
pass through the tripped lines finds its way through other links in the 
network, which in turn may overload some of them. …this sequence of 
line tripping followed by line overloading may propagate throughout 
the network until either the line overloading vanishes or the stability 
limits or voltage collapse limits are reached.”

Pure topological models inherently cannot deal with cascading 
failure, because cascading failure depends on links or nodes being 
overloaded beyond their capacity, not just on the topology of the 
network. Thus, there are two ways to represent cascading failure in a 
network. One is to try to infer which components might experience 
high flows from their topological position in the network, while the 
alternative approach is to model the flows explicitly. As a result, as 
before, we classify the cascading models in the literature into two broad 
categories: topological models (generally within accurate hypotheses of 
how flow works) and more rigorous flow-based models.

Models of cascading failure can also be categorized as determin-
istic (where failure of an overloaded component is assumed to occur 
based on a deterministic condition, such as load exceeding capacity 
by a given percentage) or probabilistic (where failure of an overloaded 
component is assumed to occur at random or in an unpredictable 
manner). In either case, failure of overloaded nodes or arcs has the 
potential to result in cascading failures by causing other system 
components to become overloaded. We first review deterministic 
models of cascading failure and then consider probabilistic models of 
cascading failure.
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Deterministic Models of Cascading Failure

In their topological model, Albert, Albert, and Nakarado (2004) simulate 
cascading failures deterministically by removing the ten nodes with the 
highest estimated loads, recalculating the estimated loads, and repeating 
the process until the estimated load shed is at least 60%. They note that 
removal of only 5% of the nodes in a system using this algorithm can 
result in predicted failure of almost the entire system. Moreover, they 
find much greater losses using this cascading-failure algorithm than 
using simpler load-based or degree-based algorithms that remove nodes 
based on their initial characteristics, without recalculation of loads.

Crucitti, Latora, and Marchiori (2004) develop a topological model 
that uses “the total number of most efficient paths” through a node as an 
indicator for the load served by that node. Cascading failure is assumed 
to occur when the load served by a given node is more than its pre-
defined capacity, leading to recalculation of the loads at each remaining 
node, which could cause even more nodes to become overloaded. The 
authors find that under some circumstances, failure of even a single 
node can lead to a total blackout, especially if the original failed node had 
a high estimated load.

Zhao, Park, and Lai (2004) develop a topological model to analyze 
the vulnerability and tolerance of complex networks to cascading 
failures. In their model, the load carried by each node is approximated 
by the number of shortest paths passing through that node. The capacity 
of the node is in turn assumed to be proportional to the original load 
(e.g., 20% more than the original load). The node with the largest number 
of arcs (i.e., the highest degree node) is assumed to be attacked, leading 
to a new set of shortest paths. At that point, the node with the highest 
number of shortest paths is assumed to fail if it exceeds its capacity, with 
this process being repeated a predetermined number of times. Like 
Crucitti, Latora, and Marchiori (2004), Zhao et al. note that disabling 
one or a few nodes can result in a complete blackout through cascading 
failure, even if the nodes of the network have relatively high capacities.

Kinney et al. (2005) model the power grid as a weighted graph. In 
their model, cascading failures are represented dynamically. As in Zhao, 
Park, and Lai (2004), the number of paths through each nondisabled 
node (i.e., the node betweenness) increases as breakdowns occur 
(since other nodes are no longer usable), until the capacity of a node 
is exceeded, resulting in its failure. The authors assume that after a 



272 CHAPTER 9  Electric Power Vulnerability Models

cascading failure, a previously overloaded component has the possibility 
of working again if the load later decreases to be below the capacity of 
the node. This study highlights the potential severity of small attacks 
targeted at nodes with either high node betweenness or high degree and 
finds that losing even a single transmission station may reduce the 
capacity of a network by up to 25%.

Wang and Rong (2009) develop a topological model to analyze 
the robustness of the US power grid. They develop a new method to 
estimate and redistribute load levels, rather than the commonly used 
node-betweenness measure. According to this method, each node is 
assigned a predetermined load level. If a node is attacked, its load is 
distributed to its neighboring nodes in a manner proportional to their 
loads. Wang and Rong try removing loads in both ascending and descend-
ing order of load. Surprisingly, they find that when the initial load on the 
system is small enough, attacks on the least heavily loaded nodes can 
actually be more harmful than attacks on heavily loaded nodes.

Dueñas-Osorio and Vemuru (2009) use a node-betweenness mea-
sure to estimate the load flows in a network and analyze the impact of 
the initial network design on the potential for cascading failure. They 
conclude that increasing the capacity of the network does not always 
increase its robustness to cascading failures and that other types of 
design changes (such as reducing congestion, making the network more 
decentralized, or increasing the number of alternative routes between 
any given origin and destination) can be more useful.

Buldyrev et al. (2010) develop a topological model to analyze the 
impact of cascading failure in two interdependent networks, such as an 
electric power network and a communication network that depends on 
it. The model randomly removes a fraction of nodes in one network 
and assumes cascading failure of the corresponding nodes in the other 
network (together with the edges that connect the failed nodes in the 
two networks), which can in turn cause new failures in the original 
network. The process can continue until there are either no more edges 
to remove or no more nodes to fail. The authors then examine how 
much of the supporting network must be protected so that the disabled 
nodes constitute only a small portion of both networks. The authors find 
that networks with a more variable degree distribution (i.e., with some 
high-degree nodes and some low-degree nodes) are generally less robust 
to random attacks, because failure of high-degree nodes can cause 
significant damage.
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As noted earlier, topological models estimate the flows in a network 
based on the inherent structure of the network. However, an electric 
power system may experience different loads at different times depend-
ing on the system characteristics. Therefore, rigorous flow-based 
models have been developed to simulate how flows within the system 
change after some components have been disabled.

The Critical Infrastructure Protection Decision Support System 
(CIP/DSS) includes a submodel specifically for electricity systems. 
Jointly developed by Argonne National Laboratory, Los Alamos National 
Laboratory, and Sandia National Laboratories (Bush et al., 2005) for use 
by government and industry, CIP/DSS represents the functional depen-
dencies within and among various infrastructure systems as flows 
and then simulates the dynamics resulting from these dependencies. 
However, it is extremely detailed and computation intensive and there-
fore may not be practical for routine industrial use.

Similarly, the Critical Infrastructure Modeling System (CIMS) was 
developed by Idaho National Laboratory in 2005 to identify interdepen-
dencies among various infrastructure sectors. CIMS uses discrete-event 
simulation to help visualize cascading failures and to explore the possible 
consequences of infrastructure interdependencies. Its main purpose is 
to conduct “what-if” analysis to understand the vulnerabilities of infra-
structure systems (Dudenhoeffer et al., 2006).

Other models are specifically designed to simulate flows in power 
networks. Ni et al. (2003) develop an online flow-based model for use 
by operators to decide when to alleviate stresses on a transmission 
network. The model deterministically removes circuits if they pass the 
emergency-overload limit a specified number of times (e.g., once or 
twice) and then recalculates all flows.

The Transmission Reliability Evaluation of Large-Scale System 
(TRELSS) is a risk-based model that simulates the cascading process 
based on some predetermined initial events in order to identify and rank 
critical cascading scenarios based on their severity and likelihood. The 
methodology has been used in transmission system enhancement projects 
as a prioritization tool (Hardiman, Kumbale, and Makarov, 2004).

In their flow-based model, Zima and Andersson (2004) calculate 
the impact of line outages on the flows in the remaining lines and 
cascade any overloaded lines deterministically after each calculation. 
The authors also calculate the minimal changes and/or load shedding 
needed to mitigate cascading failure.
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Hines, Cotilla-Sanchez, and Blumsack (2010) develop a flow-based 
model to calculate the impact of cascading failures on blackout size. In 
this model, after an initial failure, each neighboring component is 
assumed to be removed from service if its flow exceeds 50% of its 
capacity for more than 5 seconds; power flows are then recalculated. 
To our knowledge, this is the only flow-based model addressing adver-
sarial threats that are explicitly designed to cause cascading failures, 
although other models could also be used for this purpose.

Despite the development of many deterministic models of cascading 
failures, cascading failures have historically been considered a major 
unsolved problem in complex networks such as electricity systems, since 
it has proven difficult to determine exactly where and when cascading 
failures will occur. In particular, deterministic flow-based models are 
incapable of considering the hidden unidentified failures that may lead to 
cascading failure, since by definition such latent failures are unobservable. 
Therefore, we now consider probabilistic models of cascading failure.

Probabilistic Models of Cascading Failure

Since attempts to replicate the physics of what goes on in a network 
have not been particularly successful, some authors have proposed 
using probabilistic approaches to account for the difficulty of predicting 
cascading failures. For example, in their topological model, Liao et al. 
(2004) compute the probability that a random outage will produce a 
cascading failure of a certain size, conditional on an assumed set of 
hidden failures and network stress levels.

Based on historical data, Mili, Qiu, and Phadke (2004) estimate the 
likelihood of cascading failure for a given type of relay based on the 
percentage of relays of that type involved in past cascading failures. 
They then use the resulting likelihoods to calculate the probability of 
system failure using event trees.

In their flow-based model, Chen, Thorp, and Dobson (2005) assume 
that an overloaded line is more likely to fail in its first exposure to over-
load than in subsequent exposures. This is consistent with the idea that 
cascading failures result from preexisting hidden faults.

Dobson et al. (2001), Carreras et al. (2004), Dobson et al. (2007), 
and Newman et al. (2011) propose a probabilistic flow-based model 
(called the OPA model) in which cascading failure occurs with some 
probability when one or more lines are at or near their maximum 
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capacities. Their model has two intrinsic dynamics, slow and fast. The 
slow dynamics represent load growth and response to blackouts on a 
scale of days, months, or years. On each day of the simulation, the loads 
of the network are assumed to change by a factor of λ, where λ is a uni-
form random number between λ

min
 and λ

max
, with mean value  larger 

than one. Transmission-line capacity is also assumed to increase in 
response to blackouts.

The fast dynamics represent the possibility of cascading failures on 
a scale of seconds to minutes. The assumption is that even though dis-
ruptions can happen at any time, they are more likely to happen at or 
near times of peak load, when lines are highly stressed. Each overloaded 
line is assumed to fail with a specified probability p, after which loads 
are recomputed, with the process continuing until there are no more 
overloaded lines.

In order to model how transmission lines cascade and predict the 
total number of line failures, Dobson, Kim, and Wierzbicki (2010) 
propose using a probabilistic branching process, the parameters of 
which are estimated based on observed transmission-line failures in 
the past. Then, they test the closeness of the predicted distribution 
obtained using their branching process model with the distributions of 
the number of transmission-line failures obtained using their OPA 
model and find close results in most cases. Moreover, Dobson (2012) 
shows that line outages predicted by his branching process match 
well with 12.4 years of transmission-line outage data from a North 
American utility company.

Inspired by Dobson et al. (2001), Anghel, Werley, and Motter 
(2007) develop a probabilistic flow-based model that represents both 
cascading failure and the system operator’s response to disruptions. The 
authors analyze the optimal trade-off between the risk of cascading 
failure and the losses due to intentional load shedding by the operator. 
Tas (2012) also uses a modified version of the model of Dobson et al. 
(2001) to represent cascading failure.

MODELING RESTORATION TIMES

Most of the models discussed earlier represent the estimated impact of 
a disruption in a static manner, as a snapshot of the system. However, 
system owners, operators, and customers also care about how long it 
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will take for a system to return to normal operating conditions; likewise, 
intelligent adversaries may consider the likely durations of the distur-
bances they cause in deciding which components to target. Thus, models 
that consider the restoration times of failed components can give a more 
realistic portrayal of system risks. We again begin with topological 
models and then move on to flow-based models.

In their risk-based model, Apostolakis and Lemon (2005) use 
restoration times as part of their consequence analysis. However, they 
limit their analysis to minor attacks that would involve only minimal 
restoration times (e.g., less than a week), so their model may not be 
relevant to more serious threats. In particular, they note that coordinated 
attacks on several locations (which would require more time to repair) 
may also involve larger minimal cut sets and therefore may not be 
computationally feasible to analyze in their model.

Holmgren (2006) compares three strategies to decrease the vulner-
ability of power grid networks to both natural hazards and planned 
attacks: increasing the robustness of the network to cascading failures 
(by adding two underground power cables), increasing the ability of 
the network to recover quickly (a 15% reduction in restoration times), 
and increasing both robustness and rapid recovery (with one new 
underground cable and a 10% reduction in restoration times). He 
concludes that the combined strategy would yield roughly twice as 
much reduction in vulnerability as could be expected from either of the 
individual strategies. However, he also notes that a more realistic 
consequence analysis would require the use of a flow-based model.

Therefore, we now consider flow-based models involving restora-
tion times. CIP/DSS simulates the impact of disruption over time using 
system dynamics (Bush et al., 2005) and can be used to analyze how 
quickly a system would recover based on various recovery scenarios 
(e.g., with two repair crews vs. three).

Salmeron, Wood, and Baldick (2004) weight the importance of 
each component in their model by the average time required for repair 
or replacement of that component type and use this information in 
anticipating which components would be most attractive to attackers. 
However, they do not explicitly simulate changes in system performance 
over time as a result of restoration efforts after an attack. Similarly, Tas 
(2012) weights the importance of each component by the average time 
required for its restoration. He further analyzes changes in attacker and 
defender behavior when restoration times are taken into account. 
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Romero et al. (2012) similarly use different restoration costs and times 
for each component type in their budget-allocation algorithms for 
system improvement; however, they do not address cascading failure.

Anghel, Werley, and Motter (2007) model the restoration time of a 
transmission line as having a constant minimum value, plus an expo-
nentially distributed additional delay time. The authors simulate the 
resulting behavior of the system over time and analyze the optimal level 
of load shedding during the period before system restoration.

SUMMARY

Overall, game-theoretic methods of vulnerability analysis are preferred 
to rating-based or risk-based methods, when we aim to represent the 
behavior of a strategic threat. In particular, such models can represent 
threat as a function of the vulnerability of the network to an attack and 
the possible consequences of a successful attack.

In addition, while pure topological models may provide some insights 
into the structural changes necessary to achieve a less vulnerable system, 
modeling the flows within a network is critical to understanding what will 
happen in the event of a disruption. Flow-based models are therefore 
more realistic than topological models.

Cascading failures can be critical to understanding the response of 
complex systems that operate at or near their capacity. Hence, repre-
senting the possibility of cascading failure in electric power networks 
can help in identifying the most critical components. Exact modeling of 
the dynamics of cascading failure is not achievable at present; however, 
recent probabilistic approaches to modeling of cascading failure may 
provide a practical solution to this problem. Finally, we believe it is useful 
to incorporate restoration times into models of vulnerability, both to fully 
represent the overall impact of an attack and to capture the possible 
effects of restoration times on the attacker’s choice of strategies.

Table  9.1 summarizes the literature on vulnerability analysis of 
electric power networks, based on the vulnerability methods they adopt, 
the models they use for cascading failure (if any), and whether they 
incorporate restoration times. As can be seen from the table, most 
models address only one or two aspects of the problem. Anghel, Werley, 
and Motter (2007) develop a risk-based flow model that represents 
cascading failure probabilistically and includes restoration times, but 
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they do not consider the behavior of a strategic adversary. Salmeron, 
Wood, and Baldick (2004, 2009) and Holmgren (2007) use game-theoretic 
models with restoration times, but do not consider cascading failure. 
Hines, Cotilla-Sanchez, and Blumsack (2010) use a quasi-game-theoretic 
approach and model cascading failure; however, they do not consider 
restoration times. Dobson et al. (2001), Carreras et al. (2004), Dobson 
et al. (2007), and Newman et al. (2011) use flow-based models to model 
cascading failure probabilistically, but do not consider intentional threat 
scenarios or restoration times.

Tas (2012) uses a simple greedy heuristic attack and defense 
algorithm that allows modeling of both cascading failure and restoration 
times. He further analyzes how an attacker can choose attack strategies 
with the goal of causing cascading failures and/or long restoration times 
and discusses possible defenses against different types of attack strat-
egies. Thus, this model fills an important gap in the literature, since it 
offers a simple heuristic approach suitable for widespread use by practi-
tioners (unlike some of the more elaborate optimization-based models in 
the literature) while still reflecting important properties of real electricity 
networks (including realistic flows, cascading failures, and restoration 
processes). This approach is consistent with the view of Brown (2005) 
that an effective decision aid should “treat many issues minimally, rather 
than seek technical closure on any one.” We believe that this approach 
(analyzing the entire impact of a disruption at a modest level of detail) 
will enable practitioners to measure network resilience more effectively 
than models that provide a greater level of detail but address only a few 
aspects of system performance.
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INTRODUCTION

Deciding how to defend against terrorist threats requires the best 
insights that decision and risk analysis methods can offer. Well-
established decision analytic tools, such as decision trees, influence 
diagrams, and Bayesian networks, are commonly used in modeling 
counterterrorism decisions. These techniques use probabilities to model 
the uncertainty inherent in the domain, including uncertainty about ter-
rorist attack methods and targets. This chapter reviews three approaches 
to determining which terrorist plans are most likely: directly eliciting 
subjective probabilities from intelligence experts, modeling adaptive 
decision-making and game-theoretic strategizing by intelligent foes, 
and text mining of intelligence data to see what is actually happening. 
We focus on two example counterterrorism decisions to better under-
stand the problem: defending commercial aviation against surface-to-air 
missiles and screening cargo containers for nuclear threats.

von Winterfeldt and O’Sullivan (2006) perform a decision analysis 
to minimize the risk of attacks on commercial airlines using surface-to-air 
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missiles, called man-portable air defense system (MANPADS). In 
particular, they assessed the effectiveness of directed infrared counter-
measures (DIRCMs). Figure 10.1 illustrates an influence diagram for 
the MANPADS countermeasure decision. Square nodes represent 
decisions, and round nodes represent uncertain events. The arrows indi-
cate that the source node is relevant to the outcome of the destination 
node. Arrows pointing into a decision node indicate that the outcomes 
of their source nodes are known at the time the decision is made and are 
relevant to that decision. Arrows pointing into uncertainty nodes indi-
cate that the probability distribution of the uncertainty is conditional on 
the outcome of the source node. The row of uncertainty nodes in the 
middle of Figure 10.1 is the observable chain of events in a MANPADS 
attack. These uncertainties depend on the bottom row of uncertainties 
that represent events that will affect the outcome of the attack whether 
countermeasures are in place or not and the top row of uncertainties 
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Figure 10.1  An influence diagram for the MANPADS countermeasure decision.
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about whether the countermeasures will be effective if they are put into 
place. The events represented by the top row of uncertainties have zero 
probability if the decision is to not implement countermeasures. von 
Winterfeldt and O’Sullivan parameterized the probabilities for the top 
row and bottom row of uncertainties and allowed decision-makers to 
determine their own probabilities and perform sensitivity analysis. This 
was necessary because the events represent complex combination of 
more specific events and are thus difficult for intelligence experts to 
assess. For instance, the probability of an attempt involves a number of 
potential terrorist groups, their ability to obtain MANPADS, and their 
ability to get the MANPADS into the United States and near a target. 
Note that the attacker’s decision to attempt a MANPADS attack is 
treated as an uncertainty by von Winterfeldt and O’Sullivan.

Bakir (2008) performed a decision analysis for decisions about 
screening containers entering the United States by truck over the Mexican 
border for radioactive material or devices that could be used in an attack 
on targets in the United States. Three decisions are considered: improving 
transportation security, installing screening equipment at the Mexican 
border, and whether to use Advanced Scintillator Portals (ASPs) or keep 
existing Radiation Portal Monitors (RPMs). Merrick and McLay (2010) 
extend Bakir’s analysis, examining specifically if screening should be 
performed at all. Figure  10.2 shows an influence diagram for this 

Screen? Alarm Inspect? Find Attack

Dirty 
bomb

NORM

Figure 10.2  An influence diagram for the container screening decision.
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decision that includes whether to inspect the container if the device 
indicates radioactive material in the container. Naturally occurring 
radioactive material (NORM) sources are frequently shipped in con-
tainers, so such alarms can often not be a threat. The probability of an 
alarm signal must take into account whether terrorists have obtained 
material for a dirty bomb and decide to smuggle it into the United States 
in a container, as well as the probability of NORM sources inside the 
container. Observe again that the attacker decision to put a dirty bomb in 
the container is treated as an uncertainty by Merrick and McLay.

Decision analysis has also been used to rank critical infrastructures 
(Haimes, Kaplan, and Lambert, 2002; Apostolakis and Lemon, 2005), 
to determine bridges to protect (Leung, Lambert, and Mosenthal, 
2004), and to treat victims of a radioactive attack (Feng and Keller, 
2006). The representation of uncertainty in such counterterrorism 
decisions frequently involves probability elicitation from intelligence 
experts, each of whom is required to survey large amounts of intelli-
gence data. One of the most difficult uncertainties to model is the 
probability of different terrorist actions and how the terrorists will 
adapt to defender actions. Merrick and McLay (2010) examine the 
limits of probabilistic modeling of adaptation through changes in threat 
probabilities. They point out that the judgment task is complex, leading 
to probability assessments that may be wrong. (In technical parlance, 
such assessments may be “miscalibrated,” meaning that, e.g., events 
that are judged to happen with at least a certain frequency may not, in 
reality, do so.) Brown and Cox (2010) question the value of expert 
judgments and the use of nonadaptive models of terrorist behavior, 
given the attacker’s ability to game the resulting recommendations. 
Merrick and Parnell (2010) review adaptive and nonadaptive approaches 
to counterterrorism decisions and conclude that each can be useful 
when the required assumptions are met—but that what assumptions 
reflect reality is often in doubt.

A different stream of development applies data mining to intelli-
gence information, avoiding the need to speculate about or model 
adversarial decision processes and instead emphasizing detecting adver-
sarial plans and behaviors. However, the data is not structured 
conventionally, in terms of predefined fields and values, but arises as 
text, speech, photos and videos, Internet browsing patterns, cell phone 
and social media usage patterns, and so forth. The large volume of such 



Introduction 291

“unstructured” data is beyond the capabilities of most human processors. 
However, advances in natural language processing allow the categoriza-
tion and prioritization of unstructured data for human processing or 
even automated extraction of information.

The remainder of this chapter reviews these three alternative 
approaches. First, we discuss eliciting probabilities of terrorist actions. 
Next, we review the use of adaptive decision and game theory to model 
terrorist actions and reactions. Lastly, we review the use of natural lan-
guage processing and text mining to analyze intelligence information 
and determine likelihoods of terrorist actions. Arguably, these different 
approaches represent the past, present, and future of advanced decision 
and risk analysis. Since the 1960s, part of the canon of decision analysis 
has been subjective expected utility (SEU) theory, including elicitation 
and calibration of subjective probabilities. The limitations of human 
expertise have gradually been clarified by psychologists (as discussed 
in Nobel Prize winner Daniel Kahneman’s recent book Thinking Fast 
and Slow) and by social scientists who have studied the performance of 
expert probability judgments (e.g., Tetlock, 1995). Expert elicitation 
methods face many of the same key practical challenges today (espe-
cially that experts probability judgments are often wrong) than they did 
half a century ago. By contrast, modeling of intelligent adversaries and 
agents has progressed dramatically, with a variety of insights from 
behavioral decision theory and game theory illuminating what real people 
actually do, as opposed to what idealized rational agents should do. 
Modeling the real behavior of intelligent, emotional people brings a 
new layer of realism and predictive power to game-theoretic modeling. 
Finally, the detection of predictively useful patterns and integration of 
more knowledge than human experts can handle, distilled from a wide 
variety of unstructured data, represents the future (and parts of the pre-
sent) of “big data” and unstructured data processing technologies as 
they apply to improving risk analysis capabilities. The integration of 
these approaches holds great promise for improved risk analysis and 
better-informed decisions for managing risks of complex systems, espe-
cially when the actions of other human beings drive key risks and 
uncertainties. Cyber threats, financial system stability, national and 
international supply chains, political unrest, organized crime, and other 
challenging areas of social, political, and economic risk may soon 
benefit from these techniques.
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ELICITING ATTACKER ACTIONS FROM EXPERTS

Ezell et al. (2010) assert that the probabilities of different attacker 
alternatives should be elicited from intelligence experts. The use of 
expert judgment is not without its difficulties. In a practical sense, the 
main concern in using expert judgment in place of data is the validity of 
the judgments provided. Are the probabilities provided actually a valid 
scale related to the frequency of the events (Wallsten and Budescu, 
1983)? Calibration is one measure of validity. When the expert assesses 
the probability P does the event occur P% of the time? The decision-
maker would hope that P should be close to the observed relative 
frequency of the event, p̂  However, P is really a measure of the expert’s 
degree of belief and may not be based on the same data as p̂  (Keren, 
1997). Most literature observes the well-known S-shaped calibration 
curve in practice, caused by probability judgments that are more extreme 
than the corresponding relative frequency.

Calibration is not the only attribute of a good probability judgment. 
Consider the case of an expert assessing the probability that a container 
will set off the RPM alarm. An expert can say 2.5% and be perfectly 
calibrated, as this is the observed relative frequency of NORM sources 
across all containers, but this does not provide any helpful information 
about terrorist threats in a specific container (Liberman and Tversky, 
1993). Alternatively, an expert can always say there is a threat when there 
is not and say there is no threat when there is. The expert is then perfectly 
miscalibrated but highly informative as you can just assume the opposite 
of what the expert says (since P is related to p̂  in a known way).

What mechanisms affect the calibration and sharpness of proba-
bility judgments? When faced with the task of considering complex 
events such as these, we tend to simplify the task using simpler heuristic 
mechanisms. These heuristics have been shown to generate systematic 
biases in our judgments. We search our memory for relevant knowledge 
and combine that knowledge to form a judgment (Wallsten and Budescu, 
1983). The judgment then depends on the quality of our search for 
information and our ability to combine information to make a judg-
ment. Errors can be introduced as little effort is often used for these 
cognitive processes (Hora, 2007). Three main heuristics are discussed 
in the literature, although there are many more: the representativeness 
heuristic, the availability heuristic, and the anchoring heuristic. We will 
discuss each in turn in the context of the aforementioned examples.
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When asked to assess the probability that an individual is a terrorist 
or that a container contains a threatening device, we may use the repre-
sentativeness heuristic. We evaluate the probability by “the degree to 
which A is representative of B, that is, the degree to which A resembles 
B” (Tversky and Kahneman, 1974). Does the individual resemble a 
terrorist, or does this container seem like a threat? We compare what we 
are told about the subject to a typical member of the category of interest. 
The probability assessments are based on the representativeness of the 
individual or container, and the overall base rates of terrorists or threats 
are not considered. This can lead to racial profiling or overestimation of 
threats in containers.

We often judge the frequency of events by our ease of recalling 
similar events. This is called the availability heuristic (Kahneman and 
Tversky, 1973). For example, we may underestimate the probability of 
a MANPADS attack if we have not previously seen such an event. 
However, external events like the media can also lead to overestimation 
(Combs and Slovic, 1979). It also depends on how closely one experi-
ences a traumatic event. Kahneman, Slovic, and Tversky (1982) show 
that seeing an accident will lead to better recall than learning about it 
secondhand through a newspaper. The same would appear to be true for 
a terrorist incident. Fischoff et al. (2003) find a tendency to overesti-
mate the probability of a terrorist event in people that live close to a 
previous event, with the tendency being more pronounced in males, 
whites, adults, and Republicans.

To simplify the judgment task, we often look for a starting value 
and then adjust away from that value. However, the starting value, 
which can come from the formulation of the question or from initial 
computations by the expert, can become an anchor. Experts often 
insufficiently adjust away from initial anchors (Clemen and Reilly, 
2001). This heuristic is called anchoring and adjustment (Tversky and 
Kahneman, 1974). The bias is revealed when we change the anchor 
and get different judgments in repeated elicitations. For example, when 
we ask an expert for a best estimate and then a range, they will often 
adjust insufficiently away from the best estimate, making the range too 
small. This makes our judgments overconfident, as we do not admit to 
sufficient uncertainty.

Ravinder, Kleinmuntz, and Dyer (1988) and Howard (1989) show 
that decomposing complex events (breaking the problem down into 
smaller or more manageable chunks) improves the calibration and 
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sharpness of probability judgments. This helps when we are thinking 
about how the event in question relates to or is caused by other events 
(Clemen and Reilly, 2001). Decomposition should ideally provide a 
breakdown that is easier to contemplate. Ravinder, Kleinmuntz, and 
Dyer (1988) assessed the reliability of judgments achieved with varying 
levels of decomposition. They found that increasing the level of decom-
position does reduce random errors in the assessment, but only up to a 
point, and that each component event should be chosen to be as close as 
possible to the observable history of the expert to improve the accuracy 
of the probability judgments. Andradóttir and Bier (1997) find that it is 
better to err on the side of too many component events rather than too 
few to avoid significant drop-offs in performance.

Returning to our examples, we should note that von Winterfeldt and 
O’Sullivan (2006), Bakir (2008), and Merrick and McLay (2010) all 
acknowledged the potential for errors in probability assessments. Thus, 
they used ranges of probabilities and performed extensive sensitivity 
analysis to determine whether decisions would be affected by mis-
specification. This is always a hallmark of good decision analysis. 
However, even with such sensitivity analysis, assessing the probabil-
ities of terrorist actions is not without its difficulties and errors.

USING ADAPTIVE DECISION AND GAME THEORY

Game theory applications in counterterrorism explicitly model the 
decision of the terrorist (Kunreuther and Heal, 2003; Bier, 2005; Heal 
and Kunreuther, 2005; Banks and Anderson, 2006; Zhuang and Bier, 
2007; Zhuang et al., 2007; Bier et al., 2007a,b). Paté-Cornell and 
Guikema (2002), Parnell, Smith, and Moxley (2010), and Rios Insua, 
Jesus, and Banks (2009) combined game-theoretic and decision anal-
ysis approaches for counterterrorism. The aim of this stream of research 
is to work prescriptively to allocate defender resources in a way that 
minimizes risks from terrorist attacks.

Let us consider a single example from the perspective of these dif-
ferent approaches. Figure 10.3 shows a representative decision from the 
perspective of the defender. As an example of this setup, suppose the 
defender must decide whether to screen for nuclear threats in con-
tainers. Given this decision, the attacker may or may not obtain the 
material and capability for a radioactive dispersal device (RDD) and 



Using Adaptive Decision and Game Theory 295

then must decide whether to use this capability or to launch a more 
conventional attack. If the attacker decides on the RDD, they must get 
it through the defender’s screening (if any) and then successfully carry 
out the attack. If they decide on a conventional attack, then the screen-
ing will obviously not be effective. If the attack is successful, then there 
are varying levels of impact depending on which type of attack the 
attacker chose. As we are using a defender influence diagram, an uncer-
tainty node represents the attacker decision (as observed previously in 
von Winterfeldt and O’Sullivan (2006) and Merrick and McLay (2010)). 
This probability must be elicited for each such node, as discussed in 
Section “Eliciting attacker actions from experts”. To solve the defender 
decision, we perform backward induction in Figure  10.3 by taking 
expected consequences at each uncertainty node and minimizing 
expected consequences at the defender’s decision node.

Instead, we may choose to apply the red team approach and model 
the decision from the attacker’s perspective, as in Figure  10.4. The 
attacker decision is now a decision node. However, we now need two 
such diagrams, one when the defender decides to screen and one for no 
screening. To solve each attacker decision, we perform backward 
induction by taking expected consequences at each uncertainty node 
and maximizing expected consequences at the attacker decision node.

To avoid this complexity, we may choose to use sequential game 
theory and explicitly model both the defender and attacker decision 
nodes, as in Figure 10.5. To save space, we show only the uncertainty 
node for the marginal distribution of the impact given the attacker and 
defender decisions. To solve for both decisions, we perform backward 
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Figure 10.3  An influence diagram for the defender decision.
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induction by taking expected consequences for each possible 
combination of attacker and defender choices and then maximizing 
expected consequences at the attacker decision node and minimizing 
expected consequences at the defender decision node. However, as 
shown in Figure 10.6, not all uncertainty nodes are after the two decision 
nodes, so Figure 10.5 does not represent the correct chronological order.

Recent methods proposed by Parnell, Smith, and Moxley (2010) 
and Rios Insua, Jesus, and Banks (2009) solve for the attacker decision. 
The solution method finds the optimal decision for the attacker and the 
defender, where both are faced with uncertainty about the outcomes. 
Their approaches are similar to game theory, but the focus is prescrip-
tive (helping the defender find the optimal decision), rather than trying 
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Figure 10.5  A sequential game theory influence diagram for the attacker–defender decision.
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Figure 10.4  An influence diagram for the attacker decision.
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to descriptively model the interplay between attackers and defenders (as 
in an economic or political study of counterterrorism). Figure  10.6 
shows the approach proposed by Parnell, Smith, and Moxley (2010), 
called “intelligent adversary risk analysis.” Unlike Figure  10.5, the 
defender decision, attacker decision, and uncertainties are all repre-
sented in their correct time sequence. To solve the intelligent adversary 
risk analysis influence diagram, we perform backward induction by 
taking expected consequences for uncertainty nodes, maximizing 
expected consequences at the attacker decision node, and minimizing 
expected consequences at the defender decision node. Parnell et al. 
combine game theory and decision analysis to model sequential prob-
lems. In game theory parlance, Parnell et al.’s approach is a zero-sum 
game with common and perfect information.

The decision-maker may also choose to model the probabilities and 
objectives of the attacker and defender as different and may have uncer-
tainty about the specific values the attacker may use. Rios Insua, Jesus, 
and Banks (2009) propose joint attacker and defender decision dia-
grams, an approach they call “adversarial risk analysis.” The attacker 
decision is solved by backward induction as in Figure 10.4. The antici-
pated result of the attacker decision, occurring later in time than the 
defender decision, is used as an input to the defender influence diagram. 
In Figure 10.7, we show the defender’s uncertainty about the attacker’s 
beliefs, leading to a different solution to the attacker decision for each 
possibility. This induces a distribution over the attacker’s decision that 
is used as an attacker uncertainty node in the defender decision. The 
defender decision is then solved by backward induction as in Figure 10.3.

Defender
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Defender 
success

Attacker
success

Impact

Attacker
decision

Figure 10.6  An influence diagram using intelligent adversary risk analysis.
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As noted earlier, Ezell et al. (2010) specify a probability distribution 
over the set of alternatives faced by the attacker as in Figure 10.3. The 
adversarial risk analysis ends up with such a distribution as an output of 
the attacker model, but only elicits inputs to this model not outputs like 
Ezell et al., so the judgments will be better calibrated as discussed in 
Section “Eliciting attacker actions from experts.”

Each of the models discussed thus far makes assumptions about 
rationality of the decision-making process. In particular, the defender 
decision model assumes that the defender is rational and follows the 
foundations of SEU (Ramsey, 1931; Savage, 1954). Classical game 
theory models assume all decision-makers are rational (von Neuman 
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and Morgenstern, 1947). Behavioral game theory models do not 
assume rationality and attempt to represent what people actually do 
when faced with such strategic interactions with other decision-makers. 
Parnell, Smith, and Moxley (2010) assume that all decision-makers 
are rational and share the same probabilities and utilities. One could 
think of this as modeling what the defender would do if faced with the 
attacker’s decision. Rios Insua, Jesus, and Banks (2009) assume both 
that the defender is rational and that the defender believes the attacker 
is rational and can express her beliefs about the attacker’s probabil-
ities and utilities. In fact, both Parnell, Smith, and Moxley (2010) and 
Rios Insua, Jesus, and Banks et al. (2009) use expected consequences 
in their examples and do not employ utility functions. Zhuang and 
Bier (2007) do consider the attacker’s risk aversion by explicitly 
including a utility function in a game-theoretic setup. Wang and Bier 
(2011) extend the modeling of the attacker’s decision to consider a 
multiattribute utility function for selecting a target. Wang and Bier 
(2013) extend this work to statistically determine the attributes of a 
target from expert judgments from intelligence officials, thus 
combining the approaches of Sections “Eliciting attacker actions 
from experts” and “Using adaptive decision and game theory.”

It is well understood that without the use of decision analytic 
methods, human beings are not purely rational (while also not behaving 
in completely irrational or random ways) (Kahneman and Tversky, 
1974). Heuristics are employed to aid in decision-making, as exhibited 
repeatedly in experiments on decision behavior. These lead to devia-
tions from the behavior predicted by SEU. Descriptive decision models 
have been developed to represent actual decision-maker behavior for 
risky decisions with a single decision-maker. For example, real deci-
sion-makers will change their choices regarding gambles depending on 
how they are described. These are known as framing effects and go 
against the axioms of rationality (Tversky and Kahneman, 1981). We 
are averse to losses, rather than considering just our end point, and are 
overly attached to what we already have (endowment effect), rather 
than being willing to swap current and future endowments based on 
their utilities (Kahneman, 1991). We are also overly attracted to the 
sure thing (certainty effect). Descriptive decision models like prospect 
theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992) 
can replicate these effects and are thus good predictors of observed 
decision behavior.
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In counterterrorism, if we are attempting to model attacker 
decisions, we should not necessarily model them as purely rational. 
Shan and Zhuang (2013) introduce a probability that an attacker will 
act in a nonstrategic (nonexpected utility) manner. If the attacker does 
act strategically, then their action is determined using expected utilities 
and standard game theory approaches. If the attacker does not act stra-
tegically, then their action is assigned randomly from a predetermined 
distribution. This mixture distribution of rational and random actions is 
a good first step to reduce the pure rationality assumption. However, 
solving for the optimal attacker decision using SEU implies that we 
are ignoring biases that humans exhibit in making decisions under 
uncertainty without prescriptive help, like gain–loss effects, endow-
ment effects, certainty effects, and probability neglect. The deviation 
from expected utility is better understood than simply assigning random 
actions. This could mean that our models of attacker behavior are 
biased or just plain wrong. As we are trying to help the defender make 
better decisions, errors in our predictions of attacker behavior can in 
turn lead to defender decisions that are not truly optimal. Instead, we 
should ideally represent attacker decisions with descriptive decision 
models (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992; 
Birnbaum, 2005).

Such work is only beginning in the game theory literature but shows 
promise to improve adversarial decision and game theory. Behavioral 
economics and behavioral game theory study such deviations in mul-
tiple decision-maker situations. As pointed out by Camerer (2003), 
“behavioral game theory is about what players actually do.” For 
instance, a fully rational player should iteratively delete all dominated 
strategies. However, experimental evidence shows that people stop after 
a few such iterations (Nagel, 1995; Hoffman, McCabe, and Smith, 
1996; Ho, Camerer, and Weigelt, 1998). The longer people play a given 
game, the more levels of iteration they consider and the closer they get 
to an equilibrium solution. However, they will not necessarily avoid the 
deviations from expected utility found in prospect theory and other 
descriptive models of decision under risk and uncertainty.

Shalev (2000) borrowed prospect theory’s central concept of refer-
ence dependence, where decision-makers value outcomes not in an 
overall sense, but as gains and losses from a reference point. The most 
notable example of this effect is loss aversion: individuals assign greater 
weight to outcomes perceived as losses relative to their reference point 
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than to outcomes perceived as gains. Shalev aimed to incorporate this 
concept of loss aversion in a natural way into the traditional game-
theoretic solution concept of Nash equilibrium. Metgzer and Rieger (2010) 
addressed the effects of probability neglect by incorporating nonlinear 
probability weights into traditional game-theoretic solution concepts. 
Metzger and Rieger (2010) defined a new solution concept: mixed-
strategy prospect-theoretic equilibrium. However, Shalev (2000) and 
Metzger and Rieger (2010) use prospect theory only to model uncer-
tainty about the other players’ actions. We should also seek to incorporate 
these ideas in the combined decision analysis and game theory 
approaches of Parnell, Smith, and Moxley (2010) and Rios Insua, Jesus, 
and Banks (2009) to provide more accurate representations of the 
attacker’s behavior in these counterterrorism risk and decision models.

NATURAL LANGUAGE PROCESSING 
TO DETERMINE TERRORIST INTENT

Each of the methods discussed thus far aims to understand the likelihood 
of potential terrorist actions. The first approach requires intelligence 
analysts to consume and filter the vast amount of potentially relevant 
information and then form judgments about the probabilities and uncer-
tainties in the decision model. The second approach seeks to model the 
terrorist’s decision directly but still requires judgments about the terror-
ist’s beliefs and preferences. Paté-Cornell (2002) discusses the need for 
“fusion” of intelligence information (the process of merging “the 
content of signals, some sharp and some fuzzy, some independent and 
others not, into useful information”). Paté-Cornell proposes the use of 
Bayesian methods for this fusion, where the prior on a hypothesized 
terrorist action or plan is updated using the assessed likelihood of the 
observed signals were that hypothesis be true, instead of some other 
potential hypothesis. Figure 10.8 shows a Bayesian network by Paté-
Cornell, where messages are observed indicating different stages of the 
terrorist attack chain. The main problem is the scale of this process, as 
there are large numbers of signals, and many of these signals are in the 
form of unstructured data such as text or speech.

Natural language processing is the use of computers to obtain 
formal representations of meaning from human or natural language 
sources (Manning and Schutze, 1999; Liddy, 2003). The first 
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applications of such methods aimed to classify or categorize documents 
so they could be assigned appropriately to various analysts (Yilmazel et al., 
2002). This process is similar to automated website tagging or even 
information retrieval in library science. Numerous methods have been 
developed, including the naive Bayes classifier (McCallum and Nigam, 
1998), latent semantic indexing (Deerwester et al., 1990; Hofmann, 
1999), and support vector machines (Joachims, 2002). The underlying 
concept behind many of these techniques is the “bag of words” (Dumais 
et al., 1998; Sebastiani, 2002), where the frequency of a word is assumed 
to be independent of the frequencies of other words, given a category, 
classification, or tag (Fig. 10.9). These methods can be used to catego-
rize research articles as biology, chemistry, or physics, but they can also 
be used to classify emails, texts, and phone calls as terrorist related or 
not. The likelihood of a given set of word frequencies is then estimated 
for each possible category from a corpus or training set of documents. 
The frequency of words is calculated for each document in the corpus, 
and the relevant categories are defined by experts in the subject matter. 
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Figure 10.8  A Bayesian network of intelligence fusion from Paté-Cornell (2002).
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Figure 10.9  A Bayesian network of a bag of words.
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The algorithm is trained using the corpus and can then be used to give 
the probability of each potential category for a particular document. 
These algorithms can be used either supervised or unsupervised. In a 
supervised application, the predicted categories can be verified by a 
subject matter expert and then the document added to the corpus.

The next level of natural language processing is information extrac-
tion (Bikel, Schwartz, and Weischedel, 1999; Cowie and Wills, 2000; 
Doddington et al., 2004; Boschee, Weischedel, and Zamanian, 2005), 
taking text in any form and generating structured information (Zamin, 
2009). Figure  10.10 shows the general model form for information 
extraction, where words are distributed based on underlying concepts 
and the concepts follow an underlying process. To attempt to discover 
meaning in text, one must first preprocess the data to cleanse it of 
images and unwanted white spaces, to tokenize the text, and to tag parts 
of speech. This process is common to all natural language processing, and 
again, multiple methods have been proposed, including hidden Markov 
models (Merialdo, 1994), rule-based algorithms (Sleator and Temperley, 
1993), probabilistic context-free grammars (Klein and Manning, 2003), 
and maximum entropy methods (Toutanova and Manning, 2000). Once 
the parts of speech have been tagged, there are three general steps to 
achieve information extraction: named entity recognition, coreference 
resolution, and entity extraction. Named entity recognition classifies 
entities such as the names of people, organizations, locations, dates, and 
so on (Riloff, 1993; Kim and Moldovan, 1995; Madhyastha, Balakrishnan, 
and Ramakrishnan, 2003). Coreference resolution resolves which entities 
are referred to across different parts of text: when are references to the 
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Figure 10.10  A Bayesian network of a hidden Markov model for information extraction.
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same entity and when are they different? Common techniques include 
maximum entropy methods (Versley et al., 1998) and hidden Markov 
models (Soon, Lim, and Ng, 1999). Finally, entity extraction algorithms 
identify relevant facts in text, classifying them into predefined cate-
gories. This process can use support vector machines (Sun et al., 2003) 
or pattern learning algorithms (Kwee et al., 2005).

Once information has been extracted from text data, the next step is 
to make connections between entities across different documents. 
Social network analysis looks at social relationships in terms of net-
work or graph theory. These techniques have been used to analyze text 
on the web (Kuramochi and Karypis, 2002; Schenker et al., 2004, 2005; 
Cox and Holder, 2007) but can be more specifically applied to under-
standing a terrorist network (Diesner and Carley, 2005; Airoldi et al., 
2007). Figure 10.11 shows a social graph of the 9–11 terrorists, devel-
oped manually, at a scale much smaller than is now possible with 
automated processes. This work starts with information extraction and 
then uses link analysis, the detection of potentially interesting links bet-
ween entities that are supported by the corpus of data (Rosa, 2004; 
Badia and Kantardzic, 2005). Krebs (2002) and Zamin (2009) each 
independently represent the connections between the 9 and 11 attackers 
as a link analysis as represented in Figure 10.11.
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The final step in using natural language processing in analysis of 
terrorism documents and websites is intent extraction. The goal of intent 
extraction is to determine the presence of threats or planned attacks 
(Singh et al., 2006). Pattipati et al. (2006) use hidden Markov models 
and Bayesian networks to assess the presence of a planned attack, while 
Weinstein et al. (2009) use support vector machines applied to the 
output of the information extraction and link analysis. The difficulty in 
developing working prototypes is the need for a corpus of data consist-
ing of terrorist communications and text from situations that did lead up 
to an attack and also from situations that did not lead up to an attack. 
Blaylock and Allen (2005) develop a simulated corpus based on histor-
ical terrorist attacks, with controllable true signals and noise. With a 
corpus to train these models, they mirror Paté-Cornell’s approach in 
Figure 10.8, but the likelihoods are estimated from the corpus rather 
than by intelligence experts.

Natural language processing has great potential in counterter-
rorism. It can be used as a means to prioritize data sources (Yilmazel 
et al., 2002) or to directly extract information and links to inform 
intelligence analysts (Rosa, 2004; Badia and Kantardzic, 2005). The 
analysts are then better prepared for the probability elicitations 
required by the approaches discussed in Sections “Eliciting attacker 
actions from experts” and “Using adaptive decision and game theory.” 
Alternatively, it can be used directly to estimate probabilities for use 
in counterterrorism decision models (Singh et al., 2006; Pattipati  
et al., 2006; Weinstein et al., 2009). In either mode, automated 
processing of unstructured data will improve the detection of relevant 
signals. Given the imperfect nature of such methods, this process is 
best performed in a supervised mode, keeping the intelligence analyst 
in the process.

CONCLUSIONS

We have reviewed three approaches to determining the likelihood of 
terrorist actions: direct probability elicitation, adaptive decision and 
game theory, and natural language processing. While each of these 
approaches has its benefits and challenges, a combination of the three 
approaches is likely to be the best way forward. We have seen that 
adaptive decision and game theory allows a meaningful decomposition 
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of complex events into more directly quantifiable elements. This 
improves the calibration of probability judgments but leaves the intelli-
gence analyst with a vast amount of unstructured data to review. The 
inclusion of natural language processing in this process can improve 
the timeliness of judgments, the ability to include all relevant signals in 
the data, and the sharpness of the probability judgments. Thus, all three 
approaches combined have the promise to yield better-calibrated and 
sharper judgments and hence better-informed risk management 
decisions. If we then model attacker decisions using descriptive decision 
theory, we can remove an additional source of bias and achieve a more 
solid foundation for counterterrorism decisions.
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